Table of Contents
Chef Infrastructure Automation Cookbook
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
Introduction
Using version control
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Chef on your workstation
Getting ready
How to do it...
How it works...
There's more...
See also
Using the Hosted Chef platform
Getting ready
How to do it...
How it works...
There's more...
See also
Managing virtual machines with Vagrant
Getting ready
How to do it...
How it works...
There's more...
See also
Creating and using cookbooks
Getting ready
How to do it...
How it works...
See also
Inspecting files on your Chef Server with Knife
Getting ready
How to do it...
How it works...
There's more...
See also
Defining cookbook dependencies
Getting ready
How to do it...
How it works...
There's more...
See also
Managing cookbook dependencies with Berkshelf
Getting ready
How to do it...
How it works...
There's more...
See also
Downloading and integrating cookbooks as vendor branches into your Git repository
Getting ready
How to do it...
How it works...
There's more...
See also
Using custom Knife plugins
Getting ready
How to do it...
How it works...
There's more...
See also
Changing organizations based on the current Git branch
Getting ready
How to do it...
How it works...
There's more...
See also
Deleting a node from the Chef Server
Getting ready
How to do it...
How it works...
There's more...
See also
Running Chef Solo
Getting ready
How to do it...
How it works...
There's more...
See also
Using roles
Getting ready
How to do it...
How it works...
See also
Using environments
Getting ready
How to do it...
How it works...
There's more...
See also
Freezing cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Running Chef Client as a daemon
Getting ready
How to do it...
How it works...
There's more...
Using the Chef console (Chef Shell)
How to do it...
How it works...
There's more...
See also
2. Evaluating and Troubleshooting Cookbooks and Chef Runs
Introduction
Testing your Chef cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Flagging problems in your Chef cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Test Driven Development for cookbooks using ChefSpec
Getting started...
How to do it...
How it works...
There's more...
See also
Integration testing your cookbooks with Test Kitchen
Getting started
How to do it...
How it works...
There's more...
See also
Showing affected nodes before uploading cookbooks
Getting ready
How to do it...
How it works...
See also
Overriding a node's run list to execute a single recipe
Getting ready
How to do it...
How it works...
See also
Using why-run mode to find out what a recipe might do
Getting ready
How to do it...
How it works...
See also
Debugging Chef Client runs
Getting ready
How to do it...
How it works...
There's more...
See also
Inspecting results of your last ChefClient run
Getting ready
How to do it...
How it works...
There's more...
See also
Raising and logging exceptions in recipes
Getting ready
How to do it...
How it works...
There's more...
See also
Diffing cookbooks with knife
Getting ready
How to do it...
How it works...
There's more...
See also
Using community exception and report handlers
Getting ready...
How to do it...
How it works...
There's more...
See also
Creating custom handlers
Getting ready...
How to do it...
How it works...
There's more...
See also
Introduction
Using community Chef style
Getting ready
How to do it...
How it works...
There's more...
See also
Using attributes to dynamically configure recipes
Getting ready
How to do it...
How it works...
There's more...
Calculating values in attribute files
See also
Using templates
Getting ready
How to do it...
How it works...
There's more...
See also
Mixing plain Ruby with Chef DSL
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Ruby gems and using them in recipes
Getting ready
How to do it...
How it works...
See also
Using libraries
Getting ready
How to do it...
How it works...
There's more...
See also
Using definitions
Getting ready
How to do it...
How it works...
There's more...
See also
Creating your own Light Weight Resource Providers (LWRP)
Getting ready
How to do it...
How it works...
There's more...
See also
Extending community cookbooks by using application wrapper cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Creating custom Ohai plugins
Getting ready
How to do it...
How it works...
There's more...
See also
Creating custom Knife plugins
Getting ready
How to do it...
How it works...
There's more...
See also
Introduction
Setting environment variables
Getting ready
How to do it...
How it works...
There's more...
See also
Passing arguments to shell commands
Getting ready
How to do it...
How it works...
There's more...
See also
Overriding attributes
Getting ready
How to do it...
How it works...
There's more...
See also
Using search to find nodes
Getting ready
How to do it...
How it works...
There's more...
Using Knife to search for nodes
Searching for arbitrary node attributes
Using Boolean operators in search
See also
Using data bags
Getting ready
How to do it...
How it works...
See also
Using search to find data bag items
Getting ready
How to do it...
How it works...
There's more...
See also
Using encrypted data bag items
Getting ready
How to do it...
How it works...
There's more...
Accessing encrypted data bag items from within recipes
Using a private key file
See also
Accessing data bag values from external scripts
Getting ready
How to do it...
How it works...
There's more...
See also
Getting information about the environment
Getting ready
How to do it...
How it works...
There's more...
See also
Writing cross-platform cookbooks
Getting ready
How to do it...
How it works...
There's more...
Avoiding case statements to set values based on platform
Declaring support for specific operating systems in your cookbook's metadata
See also
Finding the complete list of operating systems you can use in cookbooks
How to do it...
How it works...
There's more...
See also
Making recipes idempotent by using conditional execution
Getting ready
How to do it...
How it works...
There's more...
See also
5. Working with Files and Packages
Introduction
Creating configuration files using templates
Getting ready
How to do it...
How it works...
There's more...
See also
Using pure Ruby in templates for conditionals and iterations
Getting ready
How to do it...
How it works...
There's more...
See also
Installing packages from a third-party repository
Getting ready
How to do it...
How it works...
See also
Installing software from source
Getting ready
How to do it...
How it works...
There's more...
See also
Running a command when a file is updated
Getting ready
How to do it...
How it works...
There's more...
See also
Distributing directory trees
Getting ready
How to do it...
How it works...
There's more...
See also
Cleaning up old files
Getting ready
How to do it...
How it works...
There's more...
See also
Distributing different files based on the target platform
Getting ready
How to do it...
How it works...
See also
Introduction
Creating users from data bags
Getting ready
How to do it...
How it works...
There's more...
See also
Securing the Secure Shell Daemon (SSHD)
Getting ready
How to do it...
How it works...
There's more...
See also
Enabling passwordless sudo
Getting ready
How to do it...
How it works...
There's more...
See also
Managing NTP
Getting ready
How to do it...
How it works...
There's more...
See also
Managing nginx
Getting ready
How to do it...
How it works...
There's more...
See also
Creating nginx sites
Getting ready
How to do it...
How it works...
There's more...
See also
Creating MySQL databases and users
Getting ready
How to do it...
How it works...
There's more...
See also
Managing WordPress sites
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Ruby on Rails applications
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Varnish
Getting ready
How to do it...
How it works...
There's more...
See also
Managing your workstation
Getting ready
How to do it...
How it works...
There's more...
See also
7. Servers and Cloud Infrastructure
Introduction
Creating cookbooks from a running system with Blueprint
Getting ready
How to do it...
How it works...
There's more...
See also
Running the same command on many machines at once
How to do it...
How it works...
There's more...
See also
Setting up SNMP for external monitoring services
Getting ready
How to do it...
How it works...
There's more...
See also
Deploying a Nagios monitoring server
Getting ready
How to do it...
How it works...
There's more...
See also
Building high-availability services using Heartbeat
Getting ready
How to do it...
How it works...
There's more...
See also
Using HAProxy to load-balance multiple web servers
Getting ready
How to do it...
How it works...
See also
Using custom bootstrap scripts
Getting ready
How to do it...
How it works...
There's more...
See also
Managing firewalls with iptables
Getting ready
How to do it...
How it works...
See also
Managing fail2ban to ban malicious IP addresses
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Amazon EC2 instances
Getting ready
How to do it...
How it works...
There's more...
See also
Loading your Chef infrastructure from a file with spiceweasel and Knife
Getting ready
How to do it...
How it works...
There's more...
See also
Chef Infrastructure Automation Cookbook
Chef Infrastructure Automation Cookbook
Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: August 2013
Production Reference: 1200813
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK
ISBN 978-1-84951-922-9
Cover Image by Matthias Marschall (<mm@agileweboperations.com>)
Credits
Author
Matthias Marschall
Reviewers
Robert Curth
Julian C. Dunn
Seth Vargo
Acquisition Editor
Saleem Ahmed
Lead Technical Editor
Azharuddin Sheikh
Technical Editors
Sharvari Baet
Aparna Chand
Dylan Fernandes
Aparna K
Project Coordinator
Anugya Khurana
Proofreader
Jonathan Todd
Indexer
Monica Ajmera Mehta
Production Coordinator
Kirtee Shingan
Cover Work
Kirtee Shingan
Foreword
From the beginning, Chef has been about a group of like-minded practitioners working together to help one another build better infrastructure. We started small—just a few people tinkering and experimenting. As we gained more and more comfort and conviction in the tools we were building, and in one another, we expanded both in the scope of the infrastructures we were automating, and in the scope of the tool we were building.
Writing a book about a technology that moves as quickly as Chef does is a brave endeavor and one that can only really be undertaken by someone who has long been both a practitioner and active member of our community. Matthias is both, and I'm proud that we've come so far together that someone of his caliber would write a book about Chef.
If you're a first-time Chef, welcome to our community. May you build systems you are proud of, and that your users love. If you're a long-time member of our community, congratulations! Matthias has something to teach all of us, and you should take personal pride in the part you've played in getting all of us here.
Best wishes,
Adam Jacob
Co-founder of Opscode and the Creator of Chef
About the Author
Matthias Marschall is a software engineer "Made in Germany". His four children make sure that he feels comfortable in lively environments, and stays in control of chaotic situations. A lean and agile engineering lead, he's passionate about continuous delivery, infrastructure automation, and all things DevOps.
In recent years, Matthias has helped build several web-based businesses, first with Java and then with Ruby on Rails. He quickly grew into system administration, writing his own configuration management tool before moving his whole infrastructure to Chef in its early days.
In 2008, he started a blog (http://www.agileweboperations.com) together with Dan Ackerson. There they shared their ideas about DevOps since the early days of the continually emerging movement. You can find him on Twitter as @mmarschall.
Matthias is a CTO at gutefrage.net GmbH, helping run Germany's biggest Q&A site among other high-traffic sites. He holds a Master's degree in Computer Science (Dipl.-Inf. (FH)) and teaches courses on Agile Software Development at the University of Augsburg.
When not writing or coding, Matthias enjoys drawing cartoons and playing Go. He lives near Munich, Germany.
My thanks go to my colleagues at gutefrage.net for all those valuable discussions.
I thank Adam Jacob, Joshua Timberman, and all the other great people at Opscode for your help with the book.
Special thanks go to my reviewers Seth Vargo, Julian Dunn, and Robert Curth who made the book so much better.
Finally, thanks to my wife Stephanie. You paid the price when the pressure rose and my thoughts circled around the book. Without you, this book would not have happened. You have my love always!
About the Reviewers
Robert Curth is a simple engineer working at gutefrage.net who reviewed this book through the eyes of a Chef novice.
Julian C. Dunn is a Senior Consultant with Opscode, Inc., the developer of Chef. He has 15 years of experience in software development and infrastructure operations at companies of various sizes across industries as diverse as finance, media/broadcasting, Internet security, and advertising.
Prior to joining Opscode, Julian was a Senior Operations Engineer at SecondMarket, Inc., where he managed infrastructure in Amazon EC2 using Chef. Before SecondMarket, he worked as web operations manager at the Canadian Broadcasting Corporation where he managed content and streaming media delivery systems for Canada's largest website.
When not helping customers with automating all the things, he enjoys traveling, cycling, and stopping his cat from clawing the furniture.
Seth Vargo is a solutions engineer at Opscode, the maker of Chef. Seth created and currently leads the #learnchef campaign–a program designed to interactively teach Chef to new users. A graduate of the Carnegie Mellon Information Systems program, Seth has been a developer and systems administrator for more than 12 years. He is a proponent of open source, and is the author of popular open source tools such as powify, bootstrap_forms, strainer, fauxhai, and many Chef community cookbooks. When he's not at home in Pittsburgh, Pennsylvania, Seth is traveling and evangelizing Chef at conferences, meetup groups, and open training courses.
I'd like to thank Matthias for taking the initiative and making the effort to produce this book.
www.PacktPub.com
Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Preface
Irrespective of whether you're a systems administrator or a developer, if you're sick and tired of repetitive manual work and not knowing whether you may dare to reboot your server, it's time for you to get your infrastructure automated.
This book has all the required recipes to configure, deploy, and scale your servers and applications, irrespective of whether you manage five servers, 5,000 servers, or 500,000 servers.
It is a collection of easy-to-follow, step-by-step recipes showing you how to solve real-world automation challenges. Learn techniques from the pros and make sure you get your infrastructure automation project right the first time.
This book takes you on a journey through the many facets of Chef. It teaches you simple techniques as well as fully fledged real-world solutions. By looking at easily digestible examples, you'll be able to grasp the main concepts of Chef, which you'll need for automating your own infrastructure. Instead of wasting time trying to get existing community cookbooks running in your environment, you'll get readymade code examples to get you started.
After describing how to use the basic Chef tools, the book shows you how to troubleshoot your work and explains the Chef language. Then, it shows you how to manage users, applications, and your whole cloud infrastructure. The book concludes by providing you, additional, indispensable tools and giving you an in-depth look into the Chef ecosystem.
Learn the techniques of the pros by walking through a host of step-by-step guides to solve your real-world infrastructure automation challenges.
What this book covers
Chapter 1, Chef Infrastructure helps you to get started with Chef. It explains some key concepts such as cookbooks, roles, and environments and shows you how to use some basic tools such as it, Knife, Chef Shell, Vagrant and Berkshelf.
Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef Runs is all about getting your cookbooks right. It covers logging debugging as well as the why-run mode and shows you how to develop your cookbooks totally test driven.
Chapter 3, Chef Language and Style covers additional Chef concepts such as attributes, templates, libraries and even Light Weight Resource Providers. It shows you how to use plain old Ruby inside your recipes and ends with writing your own Ohai and Knife plugins.
Chapter 4, Writing Better Cookbooks shows you how to make your cookbooks more flexible. It covers ways to override attributes, use data bags and search, and to make your cookbooks idempotent. Writing cross-platform cookbooks is covered as well.
Chapter 5, Working with Files and Packages covers powerful techniques to manage configuration files and to install and manage software packages. It tells you how to install software from source and how to manage whole directory trees.
Chapter 6, Users and Applications shows you how to manage user accounts, securing SSH and configuring sudo. Then, it walks you through installing complete applications such as nginx, MySQL, Wordpress, Ruby on Rails, and Varnish. It ends by showing you how to manage your own OS X workstation with Chef.
Chapter 7, Servers and Cloud Infrastructure deals with networking and applications spanning multiple servers. You'll learn how to set up high-availability services and load-balancers and how to monitor your whole infrastructure with Nagios. Finally, it'll show you how to manage your Amazon EC2 cloud with Chef.
What you need for this book
To run the examples in this book you'll need a computer running OS X or Ubuntu Linux 12.04. The examples will use Sublime Text (http://www.sublimetext.com/) as the editor. Make sure you've configured its command-line tool, subl, to follow along smoothly.
It helps if you've Ruby 1.9.3 with Bundler (http://bundler.io/) installed on your box as well.
Who this book is for
This book is for system engineers and administrators who have a fundamental understanding of information management systems and infrastructure. It helps if you've already played around with Chef; however, the book covers all the important topics you will need to know. If you don't want to dig through a whole book before you can get started, this book is for you, as it features a set of independent recipes you can try out immediately.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "The Omnibus Installer will download Ruby and all required Ruby gems into /opt/chef/embedded."
A block of code is set as follows:
name "web_servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
'ntpdate' => {
'disable' => true
}
}
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
name "web_servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
'ntpdate' => {
'disable' => true
}
}
Any command-line input or output is written as follows:
mma@laptop:~/chef-repo $ knife role from file web_servers.rb
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Clicking the Next button moves you to the next screen".
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Chef Infrastructure
"What made Manhattan Manhattan was the underground infrastructure, that engineering marvel."
- Andrew Cuomo
In this chapter, we will cover the following:
Introduction
This chapter will cover the basics of Chef, including common terminology, workflow practices, and various tools surrounding Chef. We will explore version control using Git, walk through working with community cookbooks, and running those cookbooks on your own servers to configure them the way you need them.
First, let's talk about the terminology used in the Chef universe.
A cookbook is a collection of recipes – codifying the actual resources, which should be installed and configured on your node – and the files and configuration templates needed.
Once you've written your cookbooks, you need a way to deploy them to the nodes you want to provision. Chef offers multiple ways for this task. The most widely used way is to use a central Chef Server . You can either run your own or sign up for Opscode's Hosted Chef.
The Chef Server is the central registry where each node needs to get registered. The Chef Server distributes the cookbooks to the nodes based on their configuration settings.
Knife is Chef's command-line tool called to interact with the Chef Server. You use it for uploading cookbooks and managing other aspects of Chef.
On your nodes, you need to install Chef Client – the part that retrieves the cookbooks from the Chef Server and executes them on the node.
In this chapter, we'll see the basic infrastructure components of your Chef setup at work and learn how to use the basic tools. Let's get started with having a look at how to use Git as a version control system for your cookbooks.
Using version control
Do you manually back up every file before you change it? And do you invent creative filename extensions like _me and _you when you try to collaborate on a file? If you answer yes to any of the preceding questions, it's time to rethink your process.
A version control system (VCS) helps you stay sane when dealing with important files and collaborating on them.
Using version control is a fundamental part of any infrastructure automation. There are multiple solutions (some free, some paid) for managing source version control including Git, SVN, Mercurial, and Perforce. Due to its popularity among the Chef community, we will be using Git. However, you could easily use any other version control system with Chef.
Note
Don't even think about building your Infrastructure As Code without using a version control system to manage it!
Getting ready
You'll need Git installed on your box. Either use your operating system's package manager (such as Apt on Ubuntu or Homebrew on OS X), or simply download the installer from www.git-scm.org.
Git is a distributed version control system. This means that you don't necessarily need a central host for storing your repositories. But in practice, using GitHub as your central repository has proven to be very helpful. In this book, I'll assume that you're using GitHub. Therefore, you need to go to github.com and create a (free) account to follow the instructions given in this book. Make sure that you upload your SSH key following the instructions at https://help.github.com/articles/generating-ssh-keys, so that you're able to use the SSH protocol to interact with your GitHub account.
As soon as you've created your GitHub account, you should create your repository by visiting https://github.com/new and using chef-repo as the repository name.
How to do it...
Before you can write any cookbooks, you need to set up your initial Git repository on your development box. Opscode provides an empty Chef repository to get you started. Let's see how you can set up your own Chef repository with Git using Opscode's skeleton.
mma@laptop $ wget http://github.com/opscode/chef-repo/tarball/master
...TRUNCATED OUTPUT...
2013-07-05 20:54:24 (125 MB/s) - 'master' saved [9302/9302]
mma@laptop $ tar zvf master
mma@laptop $ mv opscode-chef-repo-2c42c6a/ chef-repo
mma@laptop $ cd chef-repo/
mma@laptop:~/chef-repo $ git init .
Initialized empty Git repository in /Users/mma/work/chef-repo/.git/
mma@laptop:~/chef-repo $ git remote add origin git@github.com:mmarschall/chef-repo.git
mma@laptop:~/chef-repo $ git add .
mma@laptop:~/chef-repo $ git commit -m "initial commit"
[master (root-commit) 6148b20] initial commit
10 files changed, 339 insertions(+), 0 deletions(-)
create mode 100644 .gitignore
...TRUNCATED OUTPUT...
create mode 100644 roles/README.md
mma@laptop:~/chef-repo $ git push -u origin master
...TRUNCATED OUTPUT...
To git@github.com:mmarschall/chef-repo.git
* [new branch] master -> master
How it works...
You've downloaded a tarball containing Opscode's skeleton repository. Then, you've initialized your chef-repo and connected it to your own repository on GitHub.
After that, you've added all the files from the tarball to your repository and committed them. This makes Git track your files and the changes you make later.
As a last step, you've pushed your repository to GitHub, so that your co-workers can use your code too.
There's more...
Let's assume you're working on the same chef-repo repository together with your co-workers. They cloned your repository, added a new cookbook called other_cookbook, committed their changes locally, and pushed their changes back to GitHub. Now it's time for you to get the new cookbook down to your own laptop.
Pull your co-workers, changes from GitHub. This will merge their changes into your local copy of the repository.
mma@laptop:~/chef-repo $ git pull
From github.com:mmarschall/chef-repo
* branch master -> FETCH_HEAD
...TRUNCATED OUTPUT...
create mode 100644 cookbooks/other_cookbook/recipes/default.rb
In the case of any conflicting changes, Git will help you merge and resolve them.
See also
Installing Chef on your workstation
If you want to use Chef, you'll need to install it on your local workstation first. You'll have to develop your configurations locally and use Chef to distribute them to your Chef Server.
Opscode provides a fully packaged version, which does not have any external prerequisites. This fully packaged Chef is called the Omnibus Installer. We'll see how to use it in this section.
Getting ready
Make sure you've curl installed on your box by following the instructions available at http://curl.haxx.se/download.html.
How to do it...
Let's see how to install Chef on your local workstation using Opscode's Omnibus Chef installer:
mma@laptop:~/chef-repo $ curl -L https://www.opscode.com/chef/install.sh | sudo bash
Downloading Chef...
...TRUNCATED OUTPUT...
Thank you for installing Chef!
mma@laptop:~ $ echo 'export PATH="/opt/chef/embedded/bin:$PATH"' >> ~/.bash_profile && source ~/.bash_profile
How it works...
The Omnibus Installer will download Ruby and all the required Ruby gems into /opt/chef/embedded. By adding the /opt/chef/embedded/bin directory to your .bash_profile, the Chef command-line tools will be available in your shell.
There's more...
If you already have Ruby installed in your box, you can simply install the Chef Ruby gem by running mma@laptop:~ $ gem install chef.
See also
Using the Hosted Chef platform
If you want to get started with Chef right away (without the need to install your own Chef Server) or want a third party to give you an Service Level Agreement (SLA) for your Chef Server, you can sign up for Hosted Chef by Opscode. Opscode operates Chef as a cloud service. It's quick to set up and gives you full control, using users and groups to control the access permissions to your Chef setup. We'll configure Knife, Chef's command-line tool to interact with Hosted Chef, so that you can start managing your nodes.
Getting ready
Before being able to use Hosted Chef, you need to sign up for the service. There is a free account for up to five nodes.
Visit http://www.opscode.com/hosted-chef and register for a free trial or the free account.
I registered as the user webops with an organization short-name of awo.
After registering your account, it is time to prepare your organization to be used with your chef-repo repository.
How to do it...
Carry out the following steps to interact with the Hosted Chef:
current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "webops"
client_key "#{current_dir}/webops.pem"
validation_client_name "awo-validator"
validation_key "#{current_dir}/awo-validator.pem"
chef_server_url "https://api.opscode.com/organizations/awo"
cache_type 'BasicFile'
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]
mma@laptop:~/chef-repo $ knife client list
awo-validator
How it works...
Hosted Chef uses two private keys (called validators): one for the organization and the other for every user. You need to tell Knife where it can find these two keys in your knife.rb file.
The following two lines of code in your knife.rb file tells Knife about which organization to use and where to find its private key:
validation_client_name "awo-validator"
validation_key "#{current_dir}/awo-validator.pem"
The following line of code in your knife.rb file tells Knife about where to find your users' private key:
client_key "#{current_dir}/webops.pem"
And the following line of code in your knife.rb file tells Knife that you're using Hosted Chef. You will find your organization name as the last part of the URL:
chef_server_url "https://api.opscode.com/organizations/awo"
Using the knife.rb file and your two validators Knife can now connect to your organization hosted by Opscode.
You do not need your own, self-hosted Chef Server, nor do you need to use Chef Solo in this setup.
There's more...
This setup is good for you if you do not want to worry about running, scaling, and updating your own Chef Server and if you're happy with saving all your configuration data in the cloud (under Opscode's control).
If you need to have all your configuration data within your own network boundaries, you might sign up for Private Chef, which is a fully supported and enterprise-ready version of Chef Server.
If you don't need any advanced enterprise features like role-based access control or multi-tenancy, then the open source version of Chef Server might be just right for you.
See also
Managing virtual machines with Vagrant
Developing Chef cookbooks requires you to run your work-in-progress cookbooks multiple times on your nodes. To make sure they work, you need a clean, initial state of your nodes every time you run them. You can achieve this by using Virtual Machines (VM). But manually setting up and destroying VMs is tedious and breaks your development flow.
Vagrant is a command-line tool that provides you with a configurable, reproducible, and portable development environment by enabling you to manage VMs. It lets you define and use preconfigured disk images to create new VMs. Also, you can configure Vagrant to use provisioners such as Shell scripts, Puppet, or Chef to bring your VM into the desired state.
In this recipe, we will see how to use Vagrant to manage VMs using VirtualBox and Chef Client as the provisioner.
Getting ready
Download and install VirtualBox at https://www.virtualbox.org/wiki/Downloads.
Download and install Vagrant at http://downloads.vagrantup.com/.
Install the Vagrant Omnibus plugin to enable Vagrant to install Chef Client on your VM by running the following commands:
mma@laptop:~/chef-repo $ vagrant plugin install vagrant-omnibus
Installing the 'vagrant-omnibus' plugin. This can take a few minutes...
Installed the plugin 'vagrant-omnibus (1.1.0)'!
How to do it...
Let's create and boot a virtual node by using Vagrant:
mma@laptop:~/chef-repo $ subl Vagrantfile
Vagrant.configure("2") do |config|
config.vm.box = "opscode-ubuntu-12.04"
config.vm.box_url = https://opscode-vm-bento.s3.amazonaws.com/vagrant/opscode_ubuntu-12.04_provisionerless.box
config.omnibus.chef_version = :latest
config.vm.provision :chef_client do |chef|
chef.provisioning_path = "/etc/chef"
chef.chef_server_url = "https://api.opscode.com/organizations/<YOUR_ORG>"
chef.validation_key_path = "/.chef/<YOUR_ORG>-validator.pem"
chef.validation_client_name = "<YOUR_ORG>-validator"
chef.node_name = "server"
end
end
mma@laptop:~/chef-repo $ vagrant up
Bringing machine 'server' up with 'virtualbox' provider...
...TRUNCATED OUTPUT...
[server] Importing base box 'opscode-ubuntu-12.04'...
...TRUNCATED OUTPUT...
[server] Installing Chef 11.4.4 Omnibus package...
[server] Running provisioner: chef_client...
Creating folder to hold client key...
Uploading chef client validation key...
Generating chef JSON and uploading...
Running chef-client...
[2013-05-27T20:06:04+00:00] INFO: *** Chef 11.4.4 ***
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ vagrant ssh
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-23-generic x86_64)
* Documentation: https://help.ubuntu.com/
Last login: Wed Apr 24 07:30:09 2013 from 10.0.2.2
vagrant@server:~$
How it works...
The Vagrantfile is written in a Ruby Domain Specific Language (DSL) for configuring the Vagrant virtual machines. We want to boot a simple Ubuntu VM. Let's go through the Vagrantfile step-by-step.
First, we create a config object. Vagrant will use this config object to configure the VM:
Vagrant.configure("2") do |config|
...
end
Inside the config block, we tell Vagrant which VM image to use, in order to boot the node:
config.vm.box = "opscode-ubuntu-12.04"
config.vm.box_url = "https://opscode-vm-bento.s3.amazonaws.com/vagrant/opscode_ubuntu-12.04_provisionerless.box"
We want to boot our VM using a so-called Bento Box provided by Opscode. We use Ubuntu version 12.04 here.
Note
If you have never used the box before, Vagrant will download the image file (a few hundred megabytes) when you run vagrant up for the first time.
As we want our VM to have Chef Client installed, we tell the Vagrant Omnibus plugin to use the latest version of Chef Client:
config.omnibus.chef_version = :latest
After selecting the VM image to boot, we configure how to provision the box using Chef. The Chef configuration happens in a nested Ruby block:
config.vm.provision :chef_client do |chef|
...
end
Inside this chef block, we need to instruct Vagrant on how to hook up our virtual node to the Chef Server. First, we need to tell Vagrant where to store all the Chef stuff on your node:
chef.provisioning_path = "/etc/chef"
Vagrant needs to know the API endpoint of your Chef Server. If you use Hosted Chef, it is https://api.opscode.com/organizations/<YOUR_ORG>. You need to replace <YOUR_ORG> with the name of the organization you created in your account on Hosted Chef. If you are using your own Chef Server, change the URL accordingly:
chef.chef_server_url = "https://api.opscode.com/organizations/<YOUR_ORG>"
While creating your organization on Hosted Chef, you must have downloaded your private key. Tell Vagrant where to find this file:
chef.validation_key_path = /.chef/<YOUR_ORG>—validator.pem"
Also, you need to tell Vagrant as which client it should validate itself against the Chef Server:
chef.validation_client_name = "<YOUR_ORG>-validator"
Finally, you should tell Vagrant how to name your node:
chef.node_name = "server"
After configuring your Vagrantfile, all you need to do is run the basic Vagrant commands like vagrant up, vagrant provision, and vagrant ssh. To stop your VM, just run the vagrant halt command.
There's more...
If you want to start from scratch again, you will have to destroy your VM as well as delete both the client and the node from your Chef Server by running the following commands:
mma@laptop:~/chef-repo $ vagrant destroy
mma@laptop:~/chef-repo $ knife node delete server -y && knife client delete server -y
Alternatively, you may use the Vagrant Butcher plugin found at https://github.com/cassianoleal/vagrant-butcher.
See also
Creating and using cookbooks
Cookbooks are an essential part of Chef. You can easily create them using Knife, Chef's command-line tool. In this section (and many of the following sections), I will assume that you're using a Chef Server to manage your infrastructure. You can either set up your own or use the Hosted Chef as described previously.
In this section, we'll create and apply a simple cookbook using Knife.
Getting ready
Make sure you've Chef installed and a node available for testing. Check out the installation instructions at http://learnchef.com if you need help here.
Edit your knife.rb file and add the following three lines to it, filling in your own values:
cookbook_copyright "your company"
cookbook_license "apachev2"
cookbook_email "your email address"
Note
The Apache 2 license is the most commonly found in cookbooks, but you're free to choose whichever suits your needs. If you put none as the cookbook_license, Knife will put "All rights reserved" into your recipe's metadata file.
Knife will use the preceding values as default whenever you create a new cookbook.
How to do it...
Carry out the following steps to create and use cookbooks:
mma@laptop:~/chef-repo $ knife cookbook create my_cookbook
** Creating cookbook my_cookbook
** Creating README for cookbook: my_cookbook
** Creating CHANGELOG for cookbook: my_cookbook
** Creating metadata for cookbook: my_cookbook
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
Uploaded 1 cookbook.
mma@laptop:~/chef-repo $ knife node run_list add server recipe[my_cookbook]
server:
run_list: recipe[my_cookbook]
user@server:~$ sudo chef-client
How it works...
Knife is the command-line interface for the Chef Server. It uses the RESTful API exposed by the Chef Server to do its work and helps you to interact with the Chef Server.
The knife command supports a host of commands structured like the following:
knife <subject> <command>
The <subject> used in this section is either a cookbook or a node. The commands we use are create or upload for the cookbook, and run_list add for the node.
See also
Inspecting files on your Chef Server with Knife
Sometimes, you may want to peek into the files stored on your Chef Server. You might not be sure about an implementation detail of that specific cookbook version, which is currently installed on your Chef Server, and would want to look it up. Knife can help you out by letting you show various aspects of the files stored on your Chef Server.
Getting ready
Make sure you have the iptables cookbook installed locally and uploaded to your Chef Server.
mma@laptop:~/work/chef_helpster $ knife cookbook site install iptables
Installing iptables to /Users/mma/work/chef-repo/cookbooks
...TRUNCATED OUTPUT...
mma@laptop:~/work/chef_helpster $ knife cookbook
Uploading iptables [0.12.0]
Uploaded 1 cookbook.
How to do it...
Let's find out how Knife can help you to look into a cookbook stored on your Chef Server:
mma@laptop:~/work/chef_helpster $ knife cookbook show iptables
iptables 0.12.0
mma@laptop:~/work/chef_helpster $ knife cookbook show iptables 0.12.0 definitions
checksum: 189188109499d68612a5b95b6809b580
name: iptables_rule.rb
path: definitions/iptables_rule.rb
specificity: default
url: https://s3.amazonaws.com/opscode-platform...
mma@laptop:~/work/chef_helpster $ knife cookbook show iptables 0.12.0 definitions iptables_rule.rb
#
Cookbook Name:: iptables
Definition:: iptables_rule
#
#
define :iptables_rule, :enable => true, :source => nil, :variables => {} do
...TRUNCATED OUTPUT...
end
How it works...
The knife show sub-command helps you understand what exactly is stored on the Chef Server. It let's you drill down into specific sections of your cookbooks and see the exact content of the files stored on your Chef Server.
There's more...
Using Chef 11, you can pass patterns to the knife show command to tell it what exactly you want to see. Showing the contents of the iptables_rule definition can be done like this, in addition to the way we used previously:
mma@laptop:~/work/chef_helpster $ knife show cookbooks/iptables/definitions/*
cookbooks/iptables/definitions/iptables_rule.rb:
#
Cookbook Name:: iptables
Definition:: iptables_rule
#
#
define :iptables_rule, :enable => true, :source => nil, :variables => {} do
...TRUNCATED OUTPUT...
end
See also
Defining cookbook dependencies
Quite often, you might want to use features of other cookbooks in your own cookbooks. For example, if you want to make sure that all packages required for compiling the C software are installed, you might want to include the build-essential cookbook that does just that. When using Chef Server, it needs to know about such dependencies in your cookbooks. You need to declare them in the cookbook's metadata.
Getting ready
Make sure you've a cookbook named my_cookbook and the run_list command of your node includes my_cookbook, as described in the Creating and using cookbooks recipe.
How to do it...
Edit the metadata of your cookbook in the file cookbooks/my_cookbook/metadata.rb to add a dependency to the build-essential cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends 'build-essential'
depends 'apache2', '>= 1.0.4'
How it works...
If you want to use a feature of another cookbook inside your cookbook, you will need to include the other cookbook in your recipe.
include_recipe 'build-essential'
To tell the Chef Server that your cookbook requires the build-essential cookbook, you need to declare that dependency in the metadata.rb file. If you've uploaded all the dependencies on your Chef Server, the Chef Server will then send all the required cookbooks to the node.
Tip
Declaring dependencies is not necessary, if you're using Chef Solo.
The first depends call tells the Chef Server that your cookbook depends on the latest version of the build-essential cookbook.
The second depends call tells the Chef Server that your cookbook depends on a version of the apache2 cookbook, which is greater or equal to the version 1.0.4. You may use any of these version constraints with your depends calls:
There's more...
If you're using the foodcritic gem and include another recipe inside your recipe, without declaring the cookbook dependency in your metadata.rb file, foodcritic will warn you:
mma@laptop:~/chef-repo $ foodcritic my_cookbook
FC007: Ensure recipe dependencies are reflected in cookbook metadata: cookbooks/my_cookbook/recipes/default.rb:9
Additionally, you can declare conflicting cookbooks through the conflicts call:
conflicts "nginx"
Of course, you can use version constraints exactly the way you did with depends.
See also
Managing cookbook dependencies with Berkshelf
It's a pain to manually ensure that you've installed all the cookbooks, which another cookbook depends on. You've to download each and every one of them manually only to find out that with each downloaded cookbook, you inherit another set of dependent cookbooks.
And even if you use knife cookbook site install, which installs all the dependencies locally for you, your cookbook directory and your repository get cluttered with all those cookbooks. Usually, you don't really care about all those cookbooks and don't want to see or even manage them.
This is where Berkshelf comes into play. It works like Bundler for Ruby gems, managing cookbook dependencies for you. It downloads all the defined dependencies recursively.
Instead of polluting your Chef repository, it stores all the cookbooks in a central location. You just commit your Berkshelf dependency file (called Berksfile) to your repository, and every colleague or build server can download and install all those dependent cookbooks based on it.
Let's see how to use Berkshelf to manage the dependencies of your cookbook.
Getting ready
Make sure you've a cookbook named my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section.
How to do it...
Berkshelf helps you to keep those utility cookbooks out of your Chef repository. This makes it much easier to maintain the cookbooks, which really matter.
Let's see how to write a cookbook running a bunch of utility recipes and manage the required cookbooks with Berkshelf:
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'berkshelf'
mma@laptop:~/chef-repo $ bundler install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing berkshelf (2.0.7)
Using bundler (1.3.5)
Your bundle is complete!
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "chef-client"
depends "apt"
depends "ntp"
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
...
include_recipe "chef-client"
include_recipe "apt"
include_recipe "ntp"
mma@laptop:~/chef-repo $ subl Berksfile
site :opscode
metadata
mma@laptop:~/chef-repo $ cd cookbooks/my_cookbook
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ berks install
Using my_cookbook (0.1.0) from metadata
Installing chef-client (3.0.4) from site: 'http://cookbooks.opscode.com/api/v1/cookbooks'
Installing cron (1.2.4) from site: 'http://cookbooks.opscode.com/api/v1/cookbooks'
Installing apt (2.0.0) from site: 'http://cookbooks.opscode.com/api/v1/cookbooks'
Installing ntp (1.3.2) from site: 'http://cookbooks.opscode.com/api/v1/cookbooks'
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ berks upload
Using my_cookbook (0.1.0)
...TRUNCATED OUTPUT...
Uploading ntp (1.3.2) to: 'https://api.opscode.com:443/organizations/agilewebops'
How it works...
Berkshelf comes as a Ruby gem, which we need to install first.
Then, we create our cookbook and tell it to use a few other cookbooks.
Instead of manually installing all the cookbooks using knife cookbook site install, we create a Berksfile besides the metadata.rb file.
The Berksfile is pretty simple. We tell Berkshelf to use the Opscode community site as the default source for all cookbooks:
site :opscode
And we tell Berkshelf to read the metadata.rb file to find all the required cookbooks. This is the simplest way when working inside a single cookbook. Please see the following There's more… section to find an example of a more advanced usage of the Berksfile.
After telling Berkshelf where to find all the required cookbook names, we use it to install all those cookbooks:
berks install
Berkshelf stores cookbooks in ~/.berkshelf/cookbooks by default. This keeps your Chef repository clutter free. Instead of having to manage all the required cookbooks inside your own Chef repository, Berkshelf takes care of them. You simply need to check in Berksfile with your cookbook, and everyone using your cookbook can download all the required cookbooks using Berkshelf.
To make sure that there's no mix-up with different cookbook versions when sharing your cookbook, Berkshelf creates a file called Berksfile.lock alongside Berksfile. There you'll find the exact versions of all the cookbooks that Berkshelf installed:
{
"sha": "b7d5bda18ccfaffe88a7b547420c670b8f922ff1",
"sources": {
"my_cookbook": {
"path": "."
},
"chef-client": {
"locked_version": "3.0.4"
},
"cron": {
"locked_version": "1.2.4"
},
"apt": {
"locked_version": "2.0.0"
},
"ntp": {
"locked_version": "1.3.2"
}
}
}
Berkshelf will only use the exact versions specified in the Berksfile.lock file, if it finds this file.
Finally, we use Berkshelf to upload all the required cookbooks on the Chef Server:
berks upload
There's more...
Berkshelf integrates tightly with Vagrant via the vagrant-berkshelf plugin. You can set up Berkshelf and Vagrant in such a way that Berkshelf installs and uploads all the required cookbooks on your Chef Server whenever you execute vagrant up or vagrant provision. You'll save all the work of running berks install and berks upload manually before creating your node with Vagrant.
Let's see how you can integrate Berkshelf and Vagrant.
First, you need to install the Berkshelf plugin for Vagrant:
mma@mma-mbp:~/work/chef-repo (master)$ vagrant plugin install vagrant-berkshelf
Installing the 'vagrant-berkshelf' plugin. This can take a few minutes...
Installed the plugin 'vagrant-berkshelf (1.3.2)'!
Then, you need to tell Vagrant that you want to use the plugin. You do this by enabling the plugin in your Vagrantfile:
mma@mma-mbp:~/work/chef-repo (master)$ subl Vagrantfile
...
config.berkshelf.enabled = true
...
Then, you need a Berksfile in the root directory of your Chef repository, to tell Berkshelf which cookbooks to install on each Vagrant run:
cookbook 'my_cookbook', path: 'cookbooks/my_cookbook'
Eventually, you can start your VM using Vagrant. Berkshelf will first download and install all the required cookbooks in the Berkshelf, and upload them to the Chef Server. Only after all the cookbooks are made available on the Chef Server by Berkshelf, will Vagrant go on:
mma@mma-mbp:~/work/chef-repo $ vagrant up
Bringing machine 'server' up with 'virtualbox' provider...
...TRUNCATED OUTPUT...
[Berkshelf] Uploading cookbooks to 'https://api.opscode.com/organizations/agilewebops'
...TRUNCATED OUTPUT...
This way, using Berkshelf together with Vagrant, you save a lot of manual steps and get faster cycle times for your cookbook development.
See also
Downloading and integrating cookbooks as vendor branches into your Git repository
The Opscode community offers a wide variety of ready-made cookbooks for many major software packages. They're a great starting point for your own infrastructure. But, usually you need to modify these cookbooks to suit your needs. Modifying your local copy of a community cookbook leaves you in the dilemma of not being able to update to the latest version of the community cookbook without losing your local changes.
Getting ready
You'll need to make sure that your local Git repository is clean and does not have any uncommitted changes:
mma@laptop:~/chef-repo $ git status
On branch master
nothing to commit (working directory clean)
How to do it...
Carry out the following steps:
mma@laptop:~/chef-repo $ knife cookbook site install mysql
Installing mysql to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook build-essential version 1.2.0 successfully installed
mma@laptop:~/chef-repo $ cd cookbooks
mma@laptop:~/chef-repo/cookbooks $ ls -l
total 8
-rw-r--r-- 1 mma staff 3064 23 Nov 22:02 README.md
drwxr-xr-x 12 mma staff 408 28 Nov 20:40 build-essential
drwxr-xr-x 13 mma staff 442 28 Nov 20:34 my_cookbook
drwxr-xr-x 15 mma staff 510 28 Nov 20:39 mysql
drwxr-xr-x 7 mma staff 238 28 Nov 20:39 openssl
mma@laptop:~/chef-repo/cookbooks $ git status
On branch master
Your branch is ahead of 'origin/master' by 3 commits.
#
nothing to commit (working directory clean)
mma@laptop:~/chef-repo/cookbooks $ git log
commit 766bd4098184f4d188c75daa49e12abb5b1fd360
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:40:01 2012 +0100
commit 766bd4098184f4d188c75daa49e12abb5b1fd360
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:40:01 2012 +0100
Import build-essential version 1.2.0
commit 6ad70f1fbbb96df1fc55c3237966c60d156d6026
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:39:59 2012 +0100
Import openssl version 1.0.0
commit d03dd06f3c931078c2a9943a493955780e39bf22
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:39:58 2012 +0100
Import mysql version 2.0.2
The knife command successfully downloaded and imported the mysql cookbook as well as its dependencies: the build-essential and openssl cookbooks.
How it works...
Knife executes a set of commands to download the desired cookbook and to integrate it with your local repository.
Let's have a look at the output of the knife cookbook site install command again and go through it step-by-step.
First, the command makes sure that you're on the master branch of your repository:
Checking out the master branch.
The next step is to create a new vendor branch for the mysql cookbook if none exists so far:
Creating pristine copy branch chef-vendor-mysql.
Then it downloads the tarball, removes any older version, uncompresses the new tarball, and removes it after successfully extracting its contents into a new cookbook directory:
Downloading mysql from the cookbooks site at version 2.0.2 to /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Removing pre-existing version.
Uncompressing mysql version 2.0.2.
Removing downloaded tarball
Now, it's time to commit the newly extracted files to the vendor branch:
1 files updated, committing changes
Finally, it tags it with the current version of the cookbook:
Creating tag cookbook-site-imported-mysql-2.0.2
The knife cookbook site install command executes all the previous mentioned steps for all the cookbooks the desired cookbook depends on, by default.
Eventually, you end up with a separate branch, the so-called vendor branch, for every downloaded cookbook integrated into your master branch and nicely tagged. This approach enables you to change whatever you like in your master branch and still pull down newer versions of the community cookbook. Git will automatically merge both the versions or will ask you to remove conflicts manually; all the standard Git procedures.
Tip
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
There's more...
If you want to integrate the desired cookbook into another branch, use the --branch BRANCH_NAME parameter.
mma@laptop:~/chef-repo [experimental] $ knife cookbook site install mysql –-branch experimental
Installing mysql to /Users/mma/work/chef-repo/cookbooks
Checking out the experimental branch.
Pristine copy branch (chef-vendor-mysql) exists, switching to it.
Downloading mysql from the cookbooks site at version 2.0.2 to /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Removing pre-existing version.
Uncompressing mysql version 2.0.2.
removing downloaded tarball
No changes made to mysql
Checking out the experimental branch.
…TRUNCATED OUTPUT…
As you can see, instead of checking out the master branch, the knife cookbook site install command uses the experimental branch now.
You can use the -D switch when running the command to avoid downloading all the cookbooks your desired cookbook depends on.
mma@laptop:~/chef-repo $ knife cookbook site install mysql -D
Installing mysql to /Users/mma/work/chef-repo/cookbooks
Checking out the master branch.
Pristine copy branch (chef-vendor-mysql) exists, switching to it.
Downloading mysql from the cookbooks site at version 2.0.2 to /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Removing pre-existing version.
Uncompressing mysql version 2.0.2.
removing downloaded tarball
No changes made to mysql
Checking out the master branch.
You see that the command stopped after dealing with the mysql cookbook. It did not get the other cookbooks yet.
See also
Using custom Knife plugins
Knife comes with a set of commands out of the box. The built-in commands deal with the basic elements of Chef like cookbooks, roles, data bags, and so on. But, it would be nice to use Knife for more than just the basic stuff. Fortunately, Knife comes with a plugin API, and there are already a host of useful Knife plugins built by Opscode and the Chef community.
Getting ready
Make sure that you've Bundler installed on your local workstation:
mma@laptop:~/chef-repo $ gem install bundler
Fetching: bundler-1.3.5.gem (100%)
Successfully installed bundler-1.3.5
1 gem installed
Make sure you've got an account at Amazon AWS if you want to follow along and try out the knife-ec2 plugin. There are Knife plugins available for most cloud providers. Go through the There's more... section of this section for the list.
How to do it...
Let's see which Knife plugins are available, and try to use one for managing Amazon EC2 instances:
mma@laptop:~/chef-repo $ gem search -r knife-
*** REMOTE GEMS ***
knife-audit (0.2.0)
knife-azure (1.0.2)
...TRUNCATED OUTPUT...
knife-ec2 (0.6.4)
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'knife-ec2', '~>0.6.4'
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing knife-ec2 (0.6.4)
Using bundler (1.3.5)
Your bundle is complete!
mma@laptop:~/chef-repo $ knife ec2 flavor list --aws-access-key-id XXX --aws-secret-access-key YYYYY
ID Name Arch RAM Disk Cores
c1.medium High-CPU Medium 32-bit 1740.8 350 GB 5
…TRUNCATED OUTPUT…
m2.xlarge High-Memory Extra Large 64-bit 17510. 420 GB 6.5
t1.micro Micro Instance 0-bit 613 0 GB 2
How it works...
Knife looks for plugins at various places.
First, it looks into the .chef directory located inside your current Chef repository, to find the plugins specific to this repository:
./.chef/plugins/knife/
Then, it looks into the .chef directory located in your home directory, to find the plugins that you want to use in all your Chef repositories:
~/.chef/plugins/knife/
Finally, it looks for installed gems. Knife will load all the code from any chef/knife/ directory found in your installed Ruby gems. This is the most common way of using plugins developed by Opscode or the Chef community.
There's more...
There are Knife plugins for most of the major cloud providers as well as for most of the major virtualization technologies.
At the time of the writing of this book, the following cloud providers were supported by Knife plugins:
Virtualization technologies supported by Knife plugins are listed as follows:
See also
Changing organizations based on the current Git branch
Chef has this notion of environments to separate, for example, a staging environment from a production environment. You can define specific cookbook versions to be used only in a specific environment and a few more things.
But for development, you might want to give everyone a separate organization on Hosted Chef, to make sure that no one is stepping on one another's toes while doing heavy refactoring. This is not possible by solely using the environments feature.
Note
Please note that this is not a condoned behavior and has proven to be difficult to manage. It fails for many companies supported directly by Opscode. But, if this is the way to go for you, here you'll learn how.
If you're using separate organizations for each developer, you can automate choosing the right organization, by making your knife.rb aware of your current Git branch. I assume that you use the master branch for maintaining your production-ready cookbooks and the development branch for playing around with your stuff.
Let's see how to let Knife autoselect the correct organization.
Getting ready
Additionally to your default organization in your Hosted Chef account, you need to create a new organization for every totally sandboxed environment.
mma@laptop:~/chef-repo $ git checkout -b development
mma@laptop:~/chef-repo $ subl Gemfile
...
gem 'grit'
mma@laptop:~/chef-repo $ bundle install
...TRUNCATED OUTPUT...
Installing grit (2.5.0)
How to do it...
Let's create a knife.rb file, which evaluates your current Git branch and switches the Hosted Chef organization accordingly.
organization_base_name = "awo"
require 'grit'
repository = Grit::Repo.new(Dir.pwd)
current_branch = Grit::Head.current(repository).name
organization = organization_base_name
organization << "-#{current_branch}" unless current_branch == 'master'
chef_server_url "https://api.opscode.com/organizations/#{organization}"
mma@laptop:~/chef-repo $ knife node list
awo
mma@laptop:~/chef-repo $ git checkout development
mma@laptop:~/chef-repo [development]$ knife node list
awo-development
How it works...
To be able to use grit for getting the current branch name, we require the grit gem.
Next, we instantiate a Grit::Repo object from the current working directory. We then use this Grit::Repo object to retrieve the current branch. From the current branch, simply take the name and store it in the current_branch variable.
Now, it's time to set our organization name to the name of our default organization.
After that, we amend the organization name with a - symbol along with the branch name, unless the branch name equals master. This means that if we're currently in the master branch, Knife will use our default organization (without any suffix). If it is on a git branch, it will attach the suffix -branch_name to our organization name.
Further down, we use the constructed organization name to connect to the Chef Server by calling chef_server_url:
chef_server_url "https://api.opscode.com/organizations/#{organization}"
There's more...
Your knife.rb file is a plain Ruby file. You can put any Ruby code inside it using any gems you want.
To be a little more flexible, we made our knife.rb file even read an environment variable, CHEF_ORG, which overrides the git branch magic:
organization = ENV['CHEF_ORG'] || begin
require 'grit'
repository = Grit::Repo.new(Dir.pwd)
current_branch = Grit::Head.current(repository).name
chef_org = "awo"
chef_org << "-#{current_branch}" unless current_branch == 'master'
chef_org
end
As long as you don't set the environment variable CHEF_ORG, everything works as before. But if you call Knife in the following manner, it will use the given environment variable as the organization name directly.
mma@laptop:~/chef-repo $ CHEF_ORG=experimental knife node list
experimental
See also
Deleting a node from the Chef Server
Bootstrapping a node not only installs Chef on that node but also creates a client object on the Chef Server as well. The client object is used by the Chef Client to authenticate against the Chef Server on each run.
Additionally to registering a client, a node object is created. The node object is the main data structure, which is used by the Chef Client to converge the node to the desired state.
Getting ready
Make sure you've at least one node registered at your Chef Server, which is safe to remove.
How to do it...
Let's delete the node and the client object to completely remove your node from the Chef Server.
mma@laptop:~/chef-repo $ knife node delete my_node
Do you really want to delete my_node? (Y/N) y
Deleted node[my_node]
mma@laptop:~/chef-repo $ knife node client my_node
Do you really want to delete my_node? (Y/N) y
Deleted client[my_node]
How it works...
To keep your Chef Server clean, it's important to not only manage your node objects but also take care of your client objects.
Knife connects to the Chef Server and deletes the node object with the given name using the Chef Server RESTful API.
The same happens while deleting the client object on the Chef Server.
After deleting both the objects, your node is totally removed from the Chef Server. Now, you can reuse the same node name with a new box or virtual machine.
There's more...
It is a bit tedious and error prone when you have to issue two commands. To simplify things, you can use a Knife plugin called playground.
mma@laptop:~/chef-repo $ subl Gemfile
...
gem 'knife-playground'
mma@laptop:~/chef-repo $ bundle install
...TRUNCATED OUTPUT...
Installing knife-playground (0.2.2)
mma@laptop:~/chef-repo $ knife pg clientnode delete my_node
Deleting CLIENT my_node...
Do you really want to delete my_node? (Y/N) y
Deleted client[my_node]
Deleting NODE my_node...
Do you really want to delete my_node? (Y/N) y
Deleted node[my_node]
See also
Running Chef Solo
If running your own Chef Server seems like overkill and you're not comfortable with using Hosted Chef, you can use Chef Solo to execute cookbooks on your server.
Getting ready
Before you're able to run Chef Solo on your servers, you will need to add two files to your local Chef repository: solo.rb and node.json.
The solo.rb file tells Chef Solo where to find the cookbooks, roles, and data bags.
The node.json file sets the run list (and any other node-specific attributes if required).
current_dir = File.expand_path(File.dirname(__FILE__))
file_cache_path "#{current_dir}"
cookbook_path "#{current_dir}/cookbooks"
role_path "#{current_dir}/roles"
data_bag_path "#{current_dir}/data_bags"
mma@laptop:~/chef-repo $ git add solo.rb
{
"run_list": ["recipe[ntp]"]
}
mma@laptop:~/chef-repo $ knife cookbook site install ntp
Installing ntp to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook ntp version 1.3.0 successfully installed
mma@laptop:~/chef-repo $ git add node.json
mma@laptop:~/chef-repo $ git commit -m "initial setup for Chef Solo"
mma@laptop:~/chef-repo $ git push
Counting objects: 4, done.
Delta compression using up to 4 threads.
...TRUNCATED OUTPUT...
To git@github.com:mmarschall/chef-repo.git
b930647..5bcfab6 master -> master
Now you should be ready to install NTP on your server using Chef Solo.
How to do it...
Let's install NTP on your node using Chef Solo:
user@server:~$ git clone git://github.com/mmarschall/chef-repo.git
user@server:~$ cd chef-repo
user@server:~/chef-repo$ sudo chef-solo -c solo.rb -j node.json
[2012-12-08T22:54:13+01:00] INFO: *** Chef 11.0.0 ***
[2012-12-08T22:54:13+01:00] INFO: Setting the run_list to ["recipe[ntp]"] from JSON
...TRUNCATED OUTPUT...
[2012-12-08T22:54:16+01:00] INFO: Chef Run complete in 2.388374 seconds
[2012-12-08T22:54:16+01:00] INFO: Running report handlers
[2012-12-08T22:54:16+01:00] INFO: Report handlers complete
How it works...
solo.rb configures Chef Solo to look for its cookbooks, roles, and data bags inside the current directory: the Chef repository.
Chef Solo takes its node configuration from a JSON file, in our example we simply called it node.json. If you're going to manage multiple servers, you'll need a separate file for each node.
Then, Chef Solo just executes a Chef run based on the configuration data found in solo.rb and node.json.
Note
Chef Solo has limited functionality when compared to a Chef Server:
There's more...
Instead of cloning a GitHub repository on your server, you can collect your cookbooks into one file by using tar and make the resulting tarball available via HTTP. Your server can then download the cookbooks tarball if you tell it where the tarball lives, by using the -r parameter to Chef Solo.
To circumvent the limitations of Chef Solo, there exist various other tools such as littl e-chef or knife-solo.
See also
Using roles
Roles are the Chef way to group nodes. Typical cases are to have roles for web servers, database servers, and so on.
You can set custom run lists for all the nodes in your roles and override attribute values from within your roles.
Let's see how to create a simple role.
Getting ready
For the following examples, I assume that you have a node named server and that you have at least one cookbook (I'll use the ntp cookbook) registered with your Chef Server.
How to do it...
Let's create a role and see what we can do with it.
mma@laptop:~/chef-repo $ subl roles/web_servers.rb
name "web_servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
'ntpdate' => {
'disable' => true
}
}
mma@laptop:~/chef-repo $ knife role from file web_servers.rb
Updated Role web_servers!
mma@laptop:~/chef-repo $
knife node edit server
"run_list": [
"role[web_servers]"
]
Saving updated run_list on node server
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-07-25T13:28:24+00:00] INFO: Run List is [role[web_servers]]
[2013-07-25T13:28:24+00:00] INFO: Run List expands to [ntp]
...TRUNCATED OUTPUT...
How it works...
You define a role in a Ruby file inside the roles folder of your Chef repository. A role consists of a name and a description attribute. Additionally, a role usually contains a role-specific run list and role-specific attribute settings.
Every node, that has a role in its run list will have the role's run list expanded into its own. This means all the recipes (and roles) that are in the role's run list will be executed on your nodes.
You need to upload your role to your Chef Server using the knife role from file command.
Only then can you add the role to your node's run list.
Running Chef Client on a node having your role in its run list will execute all the recipes listed in the role.
The attributes you define in your role will be merged with attributes from environments and cookbooks according to the precedence rules described at http://docs.opscode.com/essentials_roles.html#attribute-precedence.
See also
Using environments
Having separate environments for development, testing, and production is a good idea to be able to develop and test cookbook updates and other configuration changes in isolation. Chef enables you to group your nodes into separate environments to support an ordered development flow.
Getting ready
For the following examples, I assume that you have a node named my_server in the _default environment and that you have at least one cookbook (I'll use the ntp cookbook) registered with your Chef Server.
How to do it...
Let's see how to manipulate environments using Knife.
Note
This is only a good idea if you want to play around. For serious work, please create files describing your environments and put them under version control as described in the There's more... section.
mma@laptop:~/chef-repo $ knife environment create book
{
"name": "book",
"description": "",
"cookbook_versions": {
},
"json_class": "Chef::Environment",
"chef_type": "environment",
"default_attributes": {
},
"override_attributes": {
}
}
Created book
mma@laptop:~/chef-repo $ knife environment list
_default
book
mma@laptop:~/chef-repo $ knife node list
my_server
mma@laptop:~/chef-repo $ knife node list -E book
mma@laptop:~/chef-repo $
mma@laptop:~/chef-repo $ knife node edit my_server
{
"name": "my_server",
"chef_environment": "book",
"normal": {
},
"run_list": [
"recipe[ntp]"
]
}
Saving updated chef_environment on node my_server
mma@laptop:~/chef-repo $ knife node list -E book
my_server
mma@laptop:~/chef-repo $ knife environment edit book
{
"name": "book",
"description": "",
"cookbook_versions": {
"ntp": "1.3.2"
},
"json_class": "Chef::Environment",
"chef_type": "environment",
"default_attributes": {
},
"override_attributes": {
"ntp": {
"servers": ["0.europe.pool.ntp.org", "1.europe.pool.ntp.org", "2.europe.pool.ntp.org", "3.europe.pool.ntp.org"]
}
}
}
Saved book
How it works...
A common use of environments is to promote cookbook updates from development to staging and then into production. Additionally, they enable you to use different cookbook versions on separate sets of nodes and also to use environment-specific attributes. You might have nodes with lesser memory in your staging environment as in your production environment. By using environment-specific default attributes, you can, for example, configure your MySQL service to consume lesser memory on staging than on production.
Note
The Chef Server always has an environment called _default which cannot be edited or deleted. All the nodes go in there if you don't specify any other environment.
Be aware that roles are not environment specific. You may use environment-specific run lists, though.
The node's environment can be queried using the node.chef_environment method inside your cookbooks.
There's more...
If you want your environments to be under version control (and you should!), a better way to create a new environment is to create a new Ruby file in the environments directory inside your Chef repository:
mma@laptop:~/chef-repo $ cd environments
mma@laptop:~/chef-repo $ subl book.rb
name "book"
You should add, commit, and push your new environment file to GitHub:
mma@laptop:~/chef-repo $ git add environments/book.rb
mma@laptop:~/chef-repo $ git commit -a -m "the book env"
mma@laptop:~/chef-repo $ git push
Now, you can create the environment on the Chef Server from the newly created file using Knife:
mma@laptop:~/chef-repo $ knife environment from file book.rb
Created Environment book
There is a way to migrate all the nodes from one environment to another using knife exec:
mma@laptop:~/chef-repo $ knife exec -E 'nodes.transform("chef_environment:_default") { |n| n.chef_environment("book")}
You can limit your search for nodes in a specific environment:
mma@laptop:~/chef-repo $ knife search node "chef_environment:book"
1 item found
See also
Freezing cookbooks
Uploading broken cookbooks overriding your working ones is a major pain and can result in widespread outrage throughout your infrastructure. If you've a cookbook version known to work, it is a good idea to freeze this version so that no one can overwrite the same version with broken code. When used together with environments, freezing cookbooks can keep your production servers safe.
Getting ready
Make sure you've at least one cookbook (I'll use the ntp cookbook) registered with your Chef Server.
How to do it...
Let's see what happens if we freeze a cookbook.
mma@laptop:~/chef-repo $ knife cookbook upload ntp --freeze
Uploading ntp [1.3.2]
Uploaded 1 cookbook.
mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [1.3.2]
Conflict: The cookbook ntp at version 1.3.2 is frozen. Use the 'force' option to override.
mma@laptop:~/chef-repo $ subl cookbooks/ntp/metadata.rb
…
version "1.3.3"
mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [1.3.2]
Uploaded 1 cookbook.
How it works...
By using the --freeze option when uploading a cookbook, you tell the Chef Server that it should not accept any changes to the same version of the cookbook anymore. This is important if you're using environments and want to make sure that your production environment cannot be broken by uploading a corrupted cookbook with the same version number as used on your production servers.
By changing the version number of your cookbook, you can upload the new version. Then you can make, for example, your staging environment use that new cookbook version.
There's more...
For supporting a more elaborate workflow, you can use the knife-spork Knife plugin. It helps multiple developers work on the same Chef Server and repository without treading on each other's toes. You can find more on it at https://github.com/jonlives/knife-spork.
See also
Running Chef Client as a daemon
While you can run Chef Client on your nodes manually whenever you change something in your Chef repository, it's sometimes preferable to have Chef Client run automatically ever so often. Letting Chef Client run automatically makes sure that no box misses any updates.
Getting ready
You need to have a node registered with your Chef Server. It needs to be able to run chef-client without any errors.
How to do it...
Let's see how to start Chef Client in daemon mode so that it runs automatically.
user@server:~$ sudo chef-client -i 1800
user@server:~$ ps auxw | grep chef-client
How it works...
The -i parameter will start Chef Client as a daemon. The given number is the seconds between each Chef Client run. In the previous example, we specified 1,800 seconds, which results in Chef Client running every 30 minutes.
You can use the same command in a service startup script.
There's more...
Instead of running Chef Client as a daemon, you can use a cron job to run it every so often:
user@server:~$ subl /etc/cron.d/chef_client
PATH=/usr/local/bin:/usr/bin:/bin
m h dom mon dow user command
*/15 * * * * root chef-client -l warn | grep -v 'retrying [1234]/5 in'
This cron job will run Chef Client every 15 minutes and swallow the first four retrying warning messages. This is important to avoid cron sending out e-mails if the Chef Server is a little slow and the Chef Client needs a few retries.
Note
It is possible to initiate a Chef Client run at any time by sending the SIGUSR1 signal to the Chef Client daemon:
user@server:~$ sudo killall -USR1 chef-client
Using the Chef console (Chef Shell)
Writing cookbooks is hard. What makes it even harder is the long feedback cycle of uploading them to the Chef Server, provisioning a Vagrant VM, checking how they failed there, rinse, and repeat. It would be so much easier if we could try out some pieces of the recipes we're writing before we've to do all this heavy lifting.
Chef comes with Chef Shell, which is essentially an interactive Ruby session with Chef. In the Chef Shell, you can create attributes, write recipes, and initialize Chef runs, among other things. It's there to evaluate parts of your recipes on the fly before you upload them to your Chef Server and execute complete cookbooks on your nodes.
How to do it...
Running the Chef Shell is straightforward.
mma@laptop:~/chef-repo $ chef-shell
loading configuration: none (standalone chef-shell session)
Session type: standalone
Loading...[2012-12-12T20:48:01+01:00] INFO: Run List is []
[2012-12-12T20:48:01+01:00] INFO: Run List expands to []
done.
This is chef-shell, the Chef Shell.
Chef Version: 11.0.0
http://www.opscode.com/chef
http://wiki.opscode.com/display/chef/Home
run `help' for help, `exit' or ^D to quit.
Ohai2u mma@laptop!
chef >
chef > attributes_mode
chef:attributes > set[:title] = "Chef Cookbook"
=> "Chef Cookbook"
chef:attributes > quit
=> :attributes
chef >
chef > recipe_mode
chef:recipe > file "/tmp/book.txt" do
chef:recipe > content node.title
chef:recipe ?> end
=> <file[/tmp/book.txt] @name: "/tmp/book.txt" @noop: nil @before: nil @params: {} @provider: Chef::Provider::File @allowed_actions: [:nothing, :create, :delete, :touch, :create_if_missing] @action: "create" @updated: false @updated_by_last_action: false @supports: {} @ignore_failure: false @retries: 0 @retry_delay: 2 @source_line: "(irb#1):1:in `irb_binding'" @elapsed_time: 0 @resource_name: :file @path: "/tmp/book.txt" @backup: 5 @diff: nil @cookbook_name: nil @recipe_name: nil @content: "Chef Cookbook">
chef:recipe >
chef:recipe > run_chef
[2012-12-12T21:07:49+01:00] INFO: Processing file[/tmp/book.txt] action create ((irb#1) line 1)
--- /var/folders/1r/_35fx24d0y5g08qs131c33nw0000gn/T/chef-tempfile20121212-11348-dwp1zs 2012-12-12 21:07:49.000000000 +0100
+++ /var/folders/1r/_35fx24d0y5g08qs131c33nw0000gn/T/chef-diff20121212-11348-hdzcp1 2012-12-12 21:07:49.000000000 +0100
@@ -0,0 +1 @@
+Chef Cookbook
\ No newline at end of file
[2012-12-12T21:07:49+01:00] INFO: entered create
[2012-12-12T21:07:49+01:00] INFO: file[/tmp/book.txt] created file /tmp/book.txt
How it works...
The Chef Shell starts an interactive Ruby (IRB) session enhanced with some Chef specific features. It offers certain modes such as attributes_mode or recipe_mode, which enable you to write commands like you would put them into an attributes file or recipe.
Entering a resource command into the recipe context will create the given resource, but not run it yet. It's like Chef reading your recipe files and creating the resources but not yet running them. You can run all the resources you created within the recipe context using the run_chef command. This will execute all the resources on your local box and physically change your system. For playing around with temporary files, your local box might do, but if you're going to do more invasive stuff such as installing or removing packages, installing services, and so on, you might want to use the Chef Shell from within a Vagrant VM.
There's more...
You can not only run the Chef Shell in standalone mode but also in Chef Solo mode and Chef Client mode. If you run it in Chef Client mode, it will load the complete run list of your node and you'll be able to tweak it inside the Chef Shell. You start the Chef Client mode by using the --client parameter:
mma@laptop:~/chef-repo $ chef-shell --client
You can configure which client your Chef Shell shall act as, as well as the Chef Server to connect to in a file called chef_shell.rb.
Additionally to evaluating recipe code within your Chef Shell, you can even use it to manage your Chef Server, for example, listing all nodes:
chef > nodes.list
=> [node[my_server]]
See also
Chapter 2. Evaluating and Troubleshooting Cookbooks and Chef Runs
"Most people spend more time and energy going around problems than in trying to solve them."
- Henry Ford
In this chapter, we'll cover the following:
Introduction
Developing cookbooks and making sure your nodes converge to the desired state is a complex endeavor. You need transparency about what is really happening. This chapter will cover a lot of ways to see what's going on and to make sure that everything is going smoothly.
Testing your Chef cookbooks
You know how annoying this is: you tweak a cookbook, upload it to your Chef Server, start a Chef run on your node and, boom! it fails. What's even more annoying is that it only fails because you missed a mundane comma in the default recipe of the cookbook you just tweaked, not because a black hole absorbed your node and the whole data center that node lives in. Fortunately, there's a very quick and easy way to find such simple glitches before you go all in and try to run your cookbooks on real nodes.
Getting ready
Install the ntp cookbook by running:
mma@laptop:~/chef-repo $ knife cookbook site install ntp
Installing ntp to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook ntp version 1.3.2 successfully installed
How to do it...
Carry out the following steps to test your cookbooks:
mma@laptop:~/chef-repo $ knife cookbook test ntp
checking ntp
Running syntax check on ntp
Validating ruby files
Validating templates
mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb
...
[node['ntp']['varlibdir']
node['ntp']['statsdir']].each do |ntpdir|
directory ntpdir do
owner node['ntp']['var_owner']
group node['ntp']['var_group']
mode 0755
end
end
...
mma@laptop:~/chef-repo $ knife cookbook test ntp
checking ntp
Running syntax check on ntp
Validating ruby files
FATAL: Cookbook file recipes/default.rb has a ruby syntax error:
FATAL: cookbooks/ntp/recipes/default.rb:25: syntax error, unexpected tIDENTIFIER, expecting ']'
FATAL: node['ntp']['statsdir']].each do |ntpdir|
FATAL: ^
FATAL: cookbooks/ntp/recipes/default.rb:25: syntax error, unexpected ']', expecting $end
FATAL: node['ntp']['statsdir']].each do |ntpdir|
FATAL: ^
How it works...
knife cookbook test executes a Ruby syntax check on all Ruby files within the cookbook as well as on all ERB templates. It loops through all Ruby files and runs ruby -c against each of them. ruby -c causes Ruby to check the syntax of the script and quit without running it.
After going through all Ruby files, knife cookbook test goes through all ERB templates and pipes the rendered version created by erubis -x through ruby -c.
There's more...
knife cookbook test does only a very simple syntax check on the Ruby files and ERB templates. There exists a whole eco-system of additional tools such as Foodcritic (a lint check for Chef cookbooks), ChefSpec, and Test Kitchen, and many more. You can go fully test driven if you want!
See also
Flagging problems in your Chef cookbooks
Writing solid Chef recipes can be quite challenging. There are a couple of pitfalls, which you can easily overlook. And writing cookbooks in a consistent style is even harder. You might wonder what the proven ways to write cookbooks are. Foodcritic tries to identify possible issues with the logic and style of your cookbooks.
In this section we'll learn how to use Foodcritic on some existing cookbooks.
Getting ready
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'foodcritic', '~>2.2.0'
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing foodcritic (2.2.0)
mma@laptop:~/chef-repo $ knife cookbook site install mysql
Installing mysql to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook mysql version 3.0.2 successfully installed
How to do it...
Let's see how Foodcritic reports findings:
mma@laptop:~/chef-repo $ foodcritic ./cookbooks/mysql
FC002: Avoid string interpolation where not required: ./cookbooks/mysql/attributes/server.rb:220
...TRUNCATED OUTPUT...
FC024: Consider adding platform equivalents: ./cookbooks/mysql/recipes/server.rb:132
mma@laptop:~/chef-repo $ foodcritic -C ./cookbooks/mysql
cookbooks/mysql/attributes/server.rb
FC002: Avoid string interpolation where not required
[...]
85| default['mysql']['conf_dir'] = "#{mysql['basedir']}"
[...]
cookbooks/mysql/recipes/client.rb
FC007: Ensure recipe dependencies are reflected in cookbook metadata
40| end
41|when "mac_os_x"
42| include_recipe 'homebrew'
43|end
44|
[...]
How it works...
Foodcritic defines a set of rules and checks your recipes against each of them. It comes with rules concerning various areas: style, correctness, attributes, strings, portability, search, services, files, metadata, and so on. Running Foodcritic against a cookbook tells you which of its rules matched a certain part of your cookbook. By default it gives you a short explanation of what you should do along the concerned file and line number.
If you run foodcritic -C, it displays the excerpts of the places where it found the rules to match.
In the preceding example, Foodcritic raised the issue that the mysql cookbook uses string interpolation where it is not required:
85| default['mysql']['conf_dir'] = "#{mysql['basedir']}"
This could be re-written as:
85| default['mysql']['conf_dir'] = mysql['basedir']
directly using the attribute value.
There's more...
Some of the rules, especially the ones from the styles section, are opinionated. You're able to exclude certain rules or complete sets of rules, such as the style rules when running Foodcritic.
mma@laptop:~/chef-repo $ foodcritic -t ~style ./cookbooks/mysql
FC007: Ensure recipe dependencies are reflected in cookbookmetadata: ./cookbooks/mysql/recipes/client.rb:42
FC024: Consider adding platform equivalents:./cookbooks/mysql/recipes/server.rb:132
FC024: Consider adding platform equivalents:./cookbooks/mysql/recipes/server.rb:134
FC028: Incorrect #platform? usage:./cookbooks/mysql/attributes/server.rb:120
In this case, the tilde negates the tag selection to exclude all rules with the style tag. Running without tilde would run the style rules exclusively:
mma@laptop:~/chef-repo $ foodcritic -t style ./cookbooks/mysql
FC002: Avoid string interpolation where not required:./cookbooks/mysql/attributes/server.rb:85
FC019: Access node attributes in a consistent manner:cookbooks/mysql/libraries/helpers.rb:24
FC019: Access node attributes in a consistent manner:cookbooks/mysql/libraries/helpers.rb:28
FC023: Prefer conditional attributes:./cookbooks/mysql/recipes/server.rb:157
If you want to run foodcritic in a continuous integration (CI) environment, you can use the -f parameter to indicate on which rules the build should fail:
mma@laptop:~/chef-repo $ foodcritic -f style ./cookbooks/mysql
FC001: Use strings in preference to symbols to access nodeattributes: ./cookbooks/mysql/templates/default/grants.sql.erb:1
…TRUNCATED OUTPUT…
FC028: Incorrect #platform? usage:./cookbooks/mysql/attributes/server.rb:120
mma@laptop:~/chef-repo $ echo $?
3
In this example, we tell foodcritic to fail if any rule of the style group fails. In our case, it returns a non zero exit code instead of zero, as it would if either no rule matches or we omit the -f parameter.
See also
Test Driven Development for cookbooks using ChefSpec
Test Driven Development (TDD) is a way to write unit tests before writing any recipe code. By writing the test first, you design what your recipe should do and you ensure that your test is for real because it should fail as long as you haven't written your recipe code.
As soon as you've done your recipe, your unit tests should pass.
ChefSpec is built on the popular RSpec framework and offers a tailored syntax for testing Chef recipes.
Let's develop a very simple recipe using the TDD approach with ChefSpec.
Getting started...
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's write a failing test first and then a recipe, which makes the test pass:
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'chefspec'
mma@laptop:~/chef-repo $ bundler install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing chefspec (1.3.1)
Using bundler (1.3.5)
Your bundle is complete!
mma@laptop:~/chef-repo $ mkdir cookbooks/my_cookbook/spec
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/spec/default_spec.rb
require 'chefspec'
describe 'my_cookbook::default' do
let(:chef_run) {
ChefSpec::ChefRunner.new(
platform:'ubuntu', version:'12.04'
).converge(described_recipe)
}
it 'creates a greetings file, containing the platformname' do
expect(chef_run).tocreate_file_with_content('/tmp/greeting.txt','Hello!ubuntu!')
end
end
mma@laptop:~/chef-repo $ rspeccookbooks/my_cookbook/spec/default_spec.rb
F
Failures:
1) my_cookbook::default creates a greetings file, containing the platform name
Failure/Error: expect(chef_run.converge(described_recipe)).to create_file_with_content('/tmp/greeting.txt','Hello! ubuntu!')
File content:
does not match expected:
Hello! ubuntu!
./cookbooks/my_cookbook/spec/default_spec.rb:11:in `block (2 levels) in <top (required)>'
Finished in 0.11152 seconds
1 example, 1 failure
Failed examples:
rspec ./cookbooks/my_cookbook/spec/default_spec.rb:10 # my_cookbook::default creates a greetings file, containing the platform name
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
template '/tmp/greeting.txt' do
variables greeting: 'Hello!'
end
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
<%= @greeting %> <%= node['platform'] %>!
mma@laptop:~/chef-repo $ rspeccookbooks/my_cookbook/spec/default_spec.rb
.
Finished in 0.10142 seconds
1 example, 0 failures
How it works...
First, you need to set up the basic infrastructure for using RSpec with Chef. You need the chefspec Ruby gem and your cookbook needs a directory called spec where all your tests will live.
When everything is set up, we're ready to start. Following the Test First approach of TDD, we create our spec before we write our recipe.
Every spec needs to require the chefspec gem:
require 'chefspec'
The main part of every spec is a describe block, where you tell RSpec that you want to test the default recipe of your cookbook:
describe 'my_cookbook::default' do
...
end
Now it's time to create the object simulating the Chef run. Note that ChefSpec will not really run your recipe, but simulate a Chef run so that you can verify whether certain expectations you have about your recipe hold true.
By using RSpec's let call, you create a variable called chef_run, which you can use later to define your expectations.
The chef_run variable is a ChefSpec::ChefRunner object. We want to simulate a Chef run on Ubuntu 12.04. The parameters platform and version, which we pass to the constructor during the ChefSpec::ChefRunner.new call, populate the automatic node attributes so that it looks like we do our simulated Chef run on an Ubuntu 12.04 node. ChefSpec uses Fauxhai to simulate the automatic node attributes as they would occur on various operating systems:
let(:chef_run) {
ChefSpec::ChefRunner.new(
platform:'ubuntu', version:'12.04'
).converge(described_recipe)
}
You can retrieve the recipe under test using the described_recipe call instead of typing my_cookbook::default again. Using described_recipe instead of the recipe name will keep you from repeating the recipe name in every it-block. It will keep your spec DRY:
ChefSpec::ChefRunner.new(...).converge(described_recipe)
Finally, we define what we expect our recipe to do.
We describe what we expect our recipe to do with it-statements. Our description of the it-call will show up in the error message, if this test fails:
it 'creates a greetings file, containing the platform name' do
...
end
Now it's finally time to formulate our exact expectations. We use standard RSpec syntax to define our expectations:
expect(...).to ...
Every expectation works on the simulated Chef run object, defined previously.
We use a ChefSpec specific matcher called create_file_with_content with the filename and the content as parameters to tell our spec what our recipe should do.
... create_file_with_content('/tmp/greeting.txt','Hello! ubuntu!')
On the ChefSpec site you find the complete list of custom matchers you can use to test your recipes in the ChefSpec README at:
https://github.com/acrmp/chefspec#making-assertions
After defining our spec, it's time to run it and see it fail:
$ rspec cookbooks/my_cookbook/spec/default_spec.rb
Then we write our recipe. We use the template resource to create a file with the contents as specified in the spec.
Finally, we run rspec again to see our spec pass!
There's more...
You can modify your node attributes before simulating the Chef run:
it 'uses a node attribute as greeting text' do
chef_run.node.override['my_cookbook']['greeting'] = "Go!"
expect(chef_run).tocreate_file_with_content('/tmp/greeting.txt','Go! ubuntu!')
end
Running rspec after adding the preceding test to our spec fails as expected, because our recipe does not handle the node parameter ['my_cookbook']['greeting'] yet:
.F
Failures:
1) my_cookbook::default uses a node attribute as greeting text
Failure/Error: expect(chef_run.converge(described_recipe)).tocreate_file_with_content('/tmp/greeting.txt','Go! ubuntu!')
File content:
Hello! ubuntu! does not match expected:
Go! ubuntu!
./cookbooks/my_cookbook/spec/default_spec.rb:16:in `block(2 levels) in <top (required)>'
Finished in 0.25295 seconds
2 examples, 1 failure
Failed examples:
rspec ./cookbooks/my_cookbook/spec/default_spec.rb:14 #my_cookbook::default uses a node attribute as greeting text
Now, we modify our recipe to use the node attribute:
node.default['my_cookbook']['greeting'] = "Hello!"
template '/tmp/greeting.txt' do
variables greeting: node['my_cookbook']['greeting']
end
And now, our tests pass again:
..
Finished in 0.25078 seconds
2 examples, 0 failures
See also
Integration testing your cookbooks with Test Kitchen
Verifying that your cookbooks really work when converging a node is essential. Only if you can trust your cookbooks are you ready to run them any time on your production servers.
Test Kitchen is Chef's integration testing framework. It enables you to write tests, which run after a VM is instantiated and converged using your cookbook. Your tests run in that VM and can verify that everything works as expected.
This is in contrast to ChefSpec, which only simulates a Chef run. Test Kitchen boots up a real node and runs Chef on it. Your tests see the real thing.
Let's see how you can write such integration tests for your cookbooks.
Getting started
Make sure you have a cookbook named my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you have Vagrant installed as described in the Managing virtual machines with Vagrant section in Chapter 1, Chef Infrastructure.
Make sure you have Berkshelf installed and hooked up with Vagrant as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
How to do it...
Let's create a very simple recipe and use Test Kitchen and Minitest to run a full integration test with Vagrant:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
file "/tmp/greeting.txt" do
content node['my_cookbook']['greeting']
end
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['greeting'] = "Ohai, Chefs!"
mma@laptop:~/chef-repo $ subl Gemfile
gem 'test-kitchen', '~> 1.0.0.alpha.7'
gem 'kitchen-vagrant'
mma@laptop:~/chef-repo $ bundle install
...TRUNCATED OUTPUT...
Installing test-kitchen (1.0.0.alpha.7)
Installing kitchen-vagrant (0.10.0)
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ cd cookbooks/my_cookbook
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subl.kitchen.yml

driver_plugin: vagrant
driver_config:
require_chef_omnibus: true
platforms:
- name: ubuntu-12.04
driver_config:
box: opscode-ubuntu-12.04
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-12.04_provisionerless.box
suites:
- name: default
run_list:
- recipe[minitest-handler]
- recipe[my_cookbook_test]
attributes: { my_cookbook: { greeting: 'Ohai, Minitest!'} }
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ mkdir test
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ cd test
mma@laptop:~/chef-repo/cookbooks/my_cookbook/test $ knifecookbook create my_cookbook_test
** Creating cookbook my_cookbook_test
** Creating README for cookbook: my_cookbook_test
** Creating CHANGELOG for cookbook: my_cookbook_test
** Creating metadata for cookbook: my_cookbook_test
mma@laptop:~/chef-repo/cookbooks/my_cookbook/test $ cd ..
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subl
test/cookbooks/my_cookbook_test/recipes/default.rb
include_recipe 'my_cookbook::default'
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ mkdir -ptest/cookbooks/my_cookbook_test/files/default/tests/minitest
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subltest/cookbooks/my_cookbook_test/files/default/tests/minitest/default_test.rb
require 'minitest/spec'
describe_recipe 'my_cookbook::default' do
describe "greeting file" do
it "creates the greeting file" do
file("/tmp/greeting.txt").must_exist
end
it "contains what's stored in the 'greeting' nodeattribute" do
file('/tmp/greeting.txt').must_include 'Ohai,Minitest!'
end
end
end
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subl Berksfile
site :opscode
metadata
cookbook "apt"
cookbook "minitest-handler"
cookbook "my_cookbook_test", path:"./test/cookbooks/my_cookbook_test"
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ kitchen test
-----> Starting Kitchen (v1.0.0.alpha.7)
...TRUNCATED OUTPUT...
-----> Converging <default-ubuntu-1204>
-----> Installing Chef Omnibus (true)
...TRUNCATED OUTPUT...
Starting Chef Client, version 11.4.4
[2013-06-29T18:33:57+00:00] INFO: *** Chef 11.4.4 ***
[2013-06-29T18:33:58+00:00] INFO: Setting the run_list to["recipe[minitest-handler]", "recipe[my_cookbook_test]"]from JSON
...TRUNCATED OUTPUT...
Running tests:
recipe::my_cookbook::default::greeting
file#test_0001_creates the greeting file = 0.00 s = .
recipe::my_cookbook::default::greeting
file#test_0002_contains what's stored in the 'greeting'
node attribute = 0.00 s = .
Finished tests in 0.011190s, 178.7277 tests/s, 178.7277assertions/s.
2 tests, 2 assertions, 0 failures, 0 errors, 0 skips
...TRUNCATED OUTPUT...
-----> Kitchen is finished. (2m5.69s)
How it works...
First, we create a very simple recipe, which writes the value of a node attribute to a file.
Then, we install the test-kitchen Ruby gem and the kitchen-vagrant gem to enable Test Kitchen to use Vagrant for spinning up its test VMs.
Then, it's time to configure Test Kitchen. You do this by creating a .kitchen.yml file in your cookbook directory. It consists of three parts:
Part one defines that you want to use Vagrant to spin up VMs and that you want Test Kitchen to install Chef using its Omnibus installer. This is necessary, because we'll use provisionerless Vagrant boxes in part two.
driver_plugin: vagrant
driver_config:
require_chef_omnibus: true
Part two defines on which platforms you want to test your cookbook. To keep things simple, we only define Ubuntu 12.04 here. Test Kitchen will always create and destroy new instances. You do not have to fear any side effects with Vagrant VMs you spin up using your Vagrant file.
platforms:
- name: ubuntu-12.04
driver_config:
box: opscode-ubuntu-12.04
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-12.04_provisionerless.box
Part three defines the test suites. We define only one called default. We tell Test Kitchen that we want to use the Minitest handler to run our specs and that it should use the my_cookbook_test cookbook to converge the node. As we'll see below, we're only including our my_cookbook::default recipe there so that we're able to test what that one does. As the last part of our test suite, we define the cookbook attribute's value so that we can make sure it is used:
suites:
- name: default
run_list:
- recipe[minitest-handler]
- recipe[my_cookbook_test]
attributes: { my_cookbook: { greeting: 'Ohai, Minitest!'} }
Now it's time to create our test cookbook, which will contain our specs and run our main cookbook.
The test cookbook is very simple in our case; it just calls our main cookbook. No further setup for running reasonable tests is necessary in our simple example.
Then, we write our Minitest spec to verify that the /tmp/greeting.txt file exists after the Chef run and that it contains the attribute value we defined when we described our test suite in .kitchen.yml.
To make sure that Test Kitchen has all required cookbooks available, we need to add them to our cookbook's Berksfile.
Finally, we can run Test Kitchen. It will first make sure that no old VMs are around and then create a new one. It installs Chef on that brand new VM and starts a Chef run. The Minitest handler hooks itself into the Chef run and executes our specs after the node converged.
If everything worked, Test Kitchen destroys the VM again.
If something fails, Test Kitchen keeps the VM around and you can poke around by running kitchen login.
There's more...
Test Kitchen does not only support Vagrant but also a host of other cloud providers such as OpenStack, Amazon EC2, and so on. Just install the kitchen-<YOUR_CLOUD_PROVIDER> gem instead of the kitchen-vagrant gem and make sure you put the corresponding configuration into your .kitchen.yml.
You can define multiple different platforms such as other Ubuntu versions or CentOS, and so on by adding to the platforms definition in .kitchen.yml:
platforms:
...
- name: centos-6.3
driver_config:
box: opscode-centos-6.3
box_url: https://opscode-vm-bento.s3.amazonaws.com/vagrant/opscode_centos-6.4_provisionerless.box
Note
You find Test Kitchen's log files inside your cookbook in the directory .kitchen/logs.
See also
http://jtimberman.housepub.org/blog/2013/03/19/anatomy-of-a-test-kitchen-1-dot-0-cookbook-part-2/
Showing affected nodes before uploading cookbooks
You know how it goes. You tweak a cookbook to support your new server and upload it to your Chef Server. Your new node converges just fine and you're a happy pal. Well, until your older production server picks up your modified cookbook during an automated Chef Client run and spits its guts at you. Obviously, you forgot that your old production server was still using the cookbook you tweaked. Luckily, there is the knife preflight command, which can show you all nodes using a certain cookbook before you upload it to your Chef Server.
Getting ready
For the following example, we assume that you've at least one role using the ntp cookbook in its run list and that you've multiple servers having this role and/or having the ntp cookbook in their run list directly.
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'knife-preflight'
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing knife-preflight (0.1.6)
How to do it...
Let's see how preflight works on the ntp cookbook:
Run the preflight command to find out which nodes and roles have the ntp cookbook in their expanded run lists. You'll obviously see your nodes and roles in the output instead of the exact ones listed below:
mma@laptop:~/chef-repo $ knife preflight ntp
Searching for nodes containing ntp OR ntp::default in their expanded run_list...
2 Nodes found
www-staging.example.com
cms-staging.example.com
Searching for roles containing ntp OR ntp::default in theirexpanded run_list...
3 Roles found
your_cms_role
your_www_role
your_app_role
Found 6 nodes and 3 roles using the specified searchcriteria
How it works...
There are multiple ways for a cookbook to get executed on a node:
No matter how a cookbook ended up in a node's run list, the knife preflight command will catch it because Chef stores all expanded lists of roles and recipes in node attributes. The knife preflight command issues a search for exactly those node attributes.
Eventually, the knife preflight command is a nicer way to run knife search node recipes:ntp -a name and knife search node roles:ntp -a name.
Note
When using the knife preflight command (or trying to search for the recipes and roles attributes of a node) it is important to be aware of the fact that those attributes are only filled after a Chef Client run. If you change anything in your run lists but do not run Chef Client, neither knife preflight nor knife search will pick up your changes.
See also
Overriding a node's run list to execute a single recipe
We all have those snowflake environments that are built using Chef but we're not comfortable with running Chef Client anymore. We know that some cookbooks have been enhanced but never tested against this specific environment. The risk of bringing it down by a Chef Client run is pretty high.
But, even though we do not dare to do a full Chef Client run we might need to run, for example, the users cookbook to add a new colleague to our snowflake environment. This is where Chef Client's feature to override a run list to execute a single recipe comes in very handy.
Note
Don't overuse this feature! Make sure you fix your environment so that you're comfortable to run Chef Client whenever you need to!
Getting ready
To follow along with the next example, you'll need a node hooked up to your Chef Server having multiple recipes and/or roles in its run list.
How to do it...
Let's see how to run a single recipe out of a bigger run list on your node:
mma@laptop:~/chef-repo $ knife node show www.example.com
...TRUNCATED OUTPUT…
Run List: role[base]
Roles: base
Recipes: chef-client::delete_validation, runit, chef-client
...TRUNCATED OUTPUT…
user@server:~$ chef-client -o "recipe[users]"
[Wed, 19 Dec 2012 22:27:02 +0100] INFO: *** Chef 11.2.0 ***
[Wed, 19 Dec 2012 22:27:09 +0100] INFO: Run List is [users]
[Wed, 19 Dec 2012 22:27:09 +0100] INFO: Run List expands to [users]
…TRUNCATED OUTPUT…
How it works...
Usually, the node uses the run list stored on the Chef Server. The -o parameter simply ignores the node's run list and uses whatever the value of the -o parameter is, as the run list for the current Chef run. It will not persist the passed-in run list. The next Chef Client run (without the -o parameter) will use the run list stored on the Chef Server again.
See also
http://docs.opscode.com/essentials_node_object_run_lists.html
Using why-run mode to find out what a recipe might do
why-run lets each resource tell you, what it would do right now assuming certain prerequisites. This is great because it gives you a glimpse about what might really happen on your node when you run your recipe for real.
But, because Chef converges a lot of resources to a desired state, why-run will never be accurate for a complete run. Nevertheless, it might help you during development while you're adding resources step-by-step to build the final recipe.
In this section, we'll try out why-run to see what it tells us about our Chef runs.
Getting ready
To try out why-run mode you need a node where you can execute Chef Client and at least one cookbook available to that node.
How to do it...
Let's try to run the ntp cookbook in why-run mode:
user@server:~$ sudo chef-client -o recipe['ntp'] --why-run
Converging 7 resources
Recipe: ntp::default
* package[ntp] action install[2012-12-22T20:27:44+00:00]INFO: Processing package[ntp] action install(ntp::default line 21)
- Would install version 1:4.2.6.p3+dfsg-1ubuntu3.1 ofpackage ntp
* package[ntpdate] action install[2012-12-22T20:27:46+00:00] INFO: Processing package[ntpdate]action install (ntp::default line 21)
(up to date)
* directory[/var/lib/ntp] action create[2012-12-22T20:27:46+00:00] INFO: Processingdirectory[/var/lib/ntp] action create (ntp::defaultline 26)
- Would create new directory /var/lib/ntp
- Would change mode from '' to '0755'
...TRUNCATED OUTPUT...
Chef Client finished, 8 resources updated
user@server:~$ sudo apt-get install ntp
…TRUNCATED OUTPUT…
0 upgraded, 3 newly installed, 0 to remove and 3 notupgraded.
…TRUNCATED OUTPUT…
* Starting NTP server ntpd [OK]
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place
user@server:~$ sudo chef-client -o recipe['ntp'] --why-run
…TRUNCATED OUTPUT…
Converging 7 resources
Recipe: ntp::default
* package[ntp] action install[2012-12-22T20:45:22+00:00]INFO: Processing package[ntp] action install(ntp::default line 21)
(up to date)
* package[ntpdate] action install[2012-12-22T20:45:22+00:00] INFO: Processing package[ntpdate]action install (ntp::default line 21)
(up to date)
* directory[/var/lib/ntp] action create[2012-12-22T20:45:22+00:00] INFO: Processingdirectory[/var/lib/ntp] action create (ntp::defaultline 26)
(up to date)
...TRUNCATED OUTPUT...
Chef Client finished, 3 resources updated
How it works...
The why-run mode is the no-op mode for Chef Client. Instead of providers modifying the system, it tries to tell what the Chef Client run would attempt to do.
It's important to know that why-run makes certain assumptions; if it cannot find the command needed to find out about the current status of a certain service, it assumes that an earlier resource would have installed the needed package for that service and that therefore the service would be started. We see this when the ntp cookbook tries to enable the ntp service:
* Service status not available. Assuming a prior action wouldhave installed the service.
* Assuming status of not running.
- Would enable service service[ntp]
Additionally, why-run shows diffs of modified files. In our example, those diffs show the whole files as those files do not exist yet. This feature is more helpful if you already have ntp installed and your next Chef run would only change a few configuration parameters.
Note
why-run mode will execute not_if and only_if blocks. It is assumed that the code within not_if and only_if blocks is only there to find out whether a resource should be executed and it is not there to modify the system.
See also
http://blog.afistfulofservers.net/post/2012/12/21/promises-lies-and-dryrun-mode/
Debugging Chef Client runs
Your Chef Client run fails and you don't know why. You get obscure error messages and you've a hard time to find any clue about where to look for the error. Is your cookbook broken? Do you have a networking issue? Is your Chef Server down? Only by looking at the most verbose log output have you a chance to find out.
Getting ready
You need a Chef Client configured to use Hosted Chef or your own Chef Server.
How to do it...
Let's see how we can ask Chef Client to print debug messages:
user@server:~$ sudo chef-client -l debug
…TRUNCATED OUTPUT…
Hashed Path:A+WOcvvGu160cBO7IFKLYPhh9fI=
X-Ops-Content-Hash:2jmj7l5rSw0yVb/vlWAYkK/YBwk=
X-Ops-Timestamp:2012-12-27T11:14:07Z
X-Ops-UserId:vagrant'
Header hash: {"X-Ops-Sign"=>"algorithm=sha1;version=1.0;",
"X-Ops-Userid"=>"vagrant", "X-Ops-Timestamp"=>"2012-12-
27T11:14:07Z", "X-Ops-Content-
Hash"=>"2jmj7l5rSw0yVb/vlWAYkK/YBwk=", "X-Ops-
Authorization-
1"=>"HQmTt9U/
LJJVAJXWtyOu3GW8FbybxAIKp4rhiw9O9O3wtGYVHyVGuoilWDao",
"X-Ops-Authorization-
2"=>"2/uUBPWX+YAN0g1/
fD2854QAU2aUcnSaVM0cPNNrldoOocmA0U5HXkBJTKok",
"X-Ops-Authorization-
3"=>"6EXPrEJg5T+
ddWd5qHAN6zMqYc3untb41t+eBpigGHPhtn1LLInMkPeIYwBm",
"X-Ops-Authorization-
4"=>"B0Fwbwz2HVP3wEsYdBGu7yOatq7fZBXHfIpeOi0kn/
Vn0P7HrucnOpONmMgU", "X-Ops-Authorization-
5"=>"RBmmbetFSKCYsdg2v2mW/
ifLIVemhsHyOQjffPYPpNIB3U2n7vji37NxRnBY",
"X-Ops-Authorization-
6"=>"Pb3VM7FmY60xKvWfZyahM8y8WVV9xPWsD1vngihjFw=="}
[2012-12-27T11:14:07+00:00] DEBUG: Sending HTTP Request via
GET to api.opscode.com:443/organizations/agilewebops/
nodes/vagrant
[2012-12-27T11:14:09+00:00] DEBUG: ---- HTTP Status and
Header Data: ----
[2012-12-27T11:14:09+00:00] DEBUG: HTTP 1.1 200 OK
[2012-12-27T11:14:09+00:00] DEBUG: server: nginx/1.0.5
[2012-12-27T11:14:09+00:00] DEBUG: date: Thu, 27 Dec 2012
11:14:09 GMT
[2012-12-27T11:14:09+00:00] DEBUG: content-type:
application/json
[2012-12-27T11:14:09+00:00] DEBUG: transfer-encoding:
chunked
[2012-12-27T11:14:09+00:00] DEBUG: connection: close
[2012-12-27T11:14:09+00:00] DEBUG: content-encoding: gzip
[2012-12-27T11:14:09+00:00] DEBUG: ---- End HTTP
Status/Header Data ----
…TRUNCATED OUTPUT…
How it works...
The -l option on the Chef Client run sets the log level to debug. In debug log level the Chef Client shows more or less everything it does including every request to the Chef Server.
There's more...
The debug log level is the most verbose one. You're free to use any of these: debug, info, warn, error, fatal with the -l switch.
See also
Inspecting results of your last ChefClient run
More often than we like to admit Chef Client runs fail. Especially when developing new cookbooks we need to know what exactly went wrong.
Even though Chef prints all the details to stdout, you might want to look at it again, for example, after clearing your shell window.
Getting ready
You need to have a broken cookbook in your node's run list.
How to do it...
Carry out the following steps:
user@server:~$ sudo chef-client
==
Recipe Compile Error in /srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb
==
NoMethodError

undefined method `each' for nil:NilClass
Cookbook Trace:

/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb:9:in `from_file'
Relevant File Content:

/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb:
2: # Cookbook Name:: my_cookbook
3: # Recipe:: default
4: #
5: # Copyright 2013, YOUR_COMPANY_NAME
6: #
7: # All rights reserved - Do Not Redistribute
8: #
9>> nil.each {} 10:
user@server:~$ less /srv/chef/file_store/chef-stacktrace.out
Generated at 2013-07-21 18:34:05 +0000
NoMethodError: undefined method `each' for nil:NilClass
/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb:9:in `from_file'
/opt/chef/embedded/lib/ruby/gems/1.9.1/gems/chef-11.4.4/lib/chef/mixin/from_file.rb:30:in `instance_eval'
/opt/chef/embedded/lib/ruby/gems/1.9.1/gems/chef-11.4.4/lib/chef/mixin/from_file.rb:30:in `from_file'
/opt/chef/embedded/lib/ruby/gems/1.9.1/gems/chef-11.4.4/lib/chef/cookbook_version.rb:346:in `load_recipe'
How it works...
Chef Client reports errors to stdout by default. If you missed that output, you need to look into the files Chef generated to find out what went wrong.
There's more...
If you provision a node using Vagrant, you'll find an additional file after a failed provisioning run: /srv/chef/file_store/failed-run-data.json. It contains detailed information on the node attributes as well as the backtrace to the error location.
See also
Raising and logging exceptions in recipes
Running your own cookbooks on your nodes might lead to situations where it does not make any sense to continue the current Chef run. If a critical resource is offline or a mandatory configuration value cannot be determined, it is time to bail out.
But, even if things are not that bad, you might want to log certain events while executing your recipes. Chef offers the possibility to write your custom log messages and to exit the current run, if you choose to do so.
In this section, we'll learn how to add log statements and stop Chef runs using exceptions.
Getting ready
You need to have at least one cookbook you can modify and run on a node. The following example will use the ntp cookbook.
How to do it...
Let's see how to add our custom log message to a recipe:
mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb
Chef::Log.info('** Going to install the ntp servicenow...')
service node['ntp']['service'] do
supports :status => true, :restart => truetrue
action [:enable, :start]
end
Chef::Log.info('** ntp service installed and startedsuccessfully!')
mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [1.3.2]
Uploaded 1 cookbook.
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2012-12-27T13:53:19+00:00] INFO: Storing updated cookbooks/ntp/TESTING.md in the cache.
[2012-12-27T13:53:19+00:00] INFO: ** Going to install the ntp service now...
[2012-12-27T13:53:19+00:00] INFO: ** ntp service installed and started successfully!
[2012-12-27T13:53:19+00:00] INFO: Processing package[ntp] action install (ntp::default line 21)
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb
...
Chef::Application.fatal!('Ouch!!! Bailing out!!!')
...
mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [1.3.2]
Uploaded 1 cookbook.
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-02-21T11:09:44+00:00] FATAL: 'Ouch!!! Bailing out!!!
==
Recipe Compile Error in/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb
==
SystemExit

exit
Cookbook Trace:

/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb:9:in `from_file'
Relevant File Content:

/srv/chef/file_store/cookbooks/my_cookbook/recipes/default.rb:
2: # Cookbook Name:: my_cookbook
3: # Recipe:: default
4: #
5: # Copyright 2013, YOUR_COMPANY_NAME
6: #
7: # All rights reserved - Do Not Redistribute
8: #
9>> Chef::Application.fatal!("'Ouch!!! Bailing out!!!")10:
[2013-02-21T11:09:44+00:00] ERROR: Running exceptionhandlers
[2013-02-21T11:09:44+00:00] FATAL: Saving node informationto /srv/chef/file_store/failed-run-data.json
[2013-02-21T11:09:44+00:00] ERROR: Exception handlerscomplete
How it works...
The fatal!(msg) method logs the given error message through Chef::Log.fatal(msg) and then exits the Chef Client process using Process.exit.
There's more...
You might want to exit the Chef Client run without logging a fatal message. You can do so by using the exit!(msg) method in your recipe. It will log the given message as debug and exit the Chef Client.
See also
http://rdoc.info/gems/chef/Chef/Application#fatal%21-class_method
http://stackoverflow.com/questions/14290397/how-do-you-abort-end-a-chef-run
Diffing cookbooks with knife
When working with a Chef Server you often need to know what exactly is already uploaded to it. You edit files like recipes or roles locally, and commit and push them to GitHub.
But, before you're ready to upload your edits to the Chef Server, you want to verify your changes. To do that you want to run a diff between the local version of your files against the version already uploaded to the Chef Server.
Getting ready
If you're using Chef 10.x or 0.10.x you need to install the knife-essentials gem by adding it to your Gemfile and running bundle install.
How to do it...
After changing a recipe, you can diff it against the current version stored on the Chef Server.
Let Knife show you the differences between your local version of my_cookbook and the version stored on the Chef Server by running:
mma@laptop:~/chef-repo $ knife diff cookbooks/my_cookbook
diff --knife remote/cookbooks/my_cookbook/recipes/default.rbcookbooks/my_cookbook/recipes/default.rb
--- remote/cookbooks/my_cookbook/recipes/default.rb 2012-11-2621:39:06.000000000 +0100
+++ cookbooks/my_cookbook/recipes/default.rb 2012-11-2621:39:06.000000000 +0100
@@ -6,3 +6,4 @@
#
All rights reserved - Do Not Redistribute
#
+group "my_group"
\ No newline at end of file
Only in cookbooks/my_cookbook: attributes
Only in cookbooks/my_cookbook: definitions
Only in cookbooks/my_cookbook: files
Only in cookbooks/my_cookbook: libraries
Only in cookbooks/my_cookbook: providers
Only in cookbooks/my_cookbook: resources
Only in cookbooks/my_cookbook: templates
How it works...
The diff verb for knife treats the Chef Server like a file server mirroring your local file system. That way you can run diffs comparing your local files against files stored on the Chef Server.
There's more...
If you want to show diffs of multiple cookbooks at once, you can use wildcards when running knife diff:
mma@laptop:~/chef-repo $ knife diff cookbooks/*
diff --knife remote/cookbooks/backup_gem/recipes/default.rbcookbooks/backup_gem/recipes/default.rb
...TRUNCATED OUTPUT...
diff --knife remote/cookbooks/backup_gem/metadata.rbcookbooks/backup_gem/metadata.rb
...TRUNCATED OUTPUT...
In addition to the diff verb, knife understands the verbs download, list, show, and upload. And it does not only offer these verbs for cookbooks but for everything that is stored on the Chef Server, such as roles, data bags, and so on.
See also
Using community exception and report handlers
When running your Chef Client as daemon on your nodes, you usually have no idea whether everything works as expected. Chef comes with a feature named Handler, which helps you to find out what's going on during your Chef Client runs.
There are a host of community handlers available, for example, for reporting Chef Client run results to IRC, via e-mail, to Campfire, Nagios, Graphite, you name it.
In this section, we'll see how to install an IRC handler as an example. The same method is applicable to all other available handlers.
Note
For a full list of available community handlers go to:
http://docs.opscode.com/essentials_handlers_available_handlers.html
Getting ready...
mma@laptop:~/chef-repo $ knife cookbook site installchef_handler
...TRUNCATED OUTPUT...
Cookbook chef_handler version 1.1.2 successfully installed
mma@laptop:~/chef-repo $ knife cookbook upload chef_handler
Uploading chef_handler [1.1.2]
Uploaded 1 cookbook.
How to do it...
Let's see how to install and use one of the community handlers:
mma@laptop:~/chef-repo $ knife cookbook create my_handlers
** Creating cookbook my_handlers
** Creating README for cookbook: my_handlers
** Creating CHANGELOG for cookbook: my_handlers
** Creating metadata for cookbook: my_handlers
mma@laptop:~/chef-repo $ sublcookbooks/my_handlers/metadata.rb
...
depends 'chef_handler'
mma@laptop:~/chef-repo $ sublcookbooks/my_handlers/recipes/default.rb
include_recipe 'chef_handler'
chef_gem "chef-irc-snitch"
chef_handler 'Chef::Handler::IRCSnitch' do
action :enable
arguments :irc_uri => "irc://nick:password@irc.example. com:6667/#admins"
source File.join(Gem::Specification.find{|s| s.name =='chef-irc-snitch'}.gem_dir,
'lib', 'chef-irc-snitch.rb')
end
mma@laptop:~/chef-repo $ knife cookbook upload my_handlers
Uploading my_handlers [0.1.0]
Uploaded 1 cookbook.
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2012-12-28T11:02:57+00:00] INFO: Enabling chef_handler[Chef::Handler::IRCSnitch] as a report handler
[2012-12-28T11:02:57+00:00] INFO: Enabling chef_handler[Chef::Handler::IRCSnitch] as a exception handler
[2012-12-28T11:02:58+00:00] INFO: Chef Run complete in 3.762220162 seconds
[2012-12-28T11:02:58+00:00] INFO: Running report handlers
[2012-12-28T11:02:58+00:00] INFO: Report handlers complete
How it works...
The chef_handler Light Weight Resource Provider (LWRP) provided by the chef_handler cookbook helps you enable and configure any custom handler without the need to manually modify the client.rb on all your nodes.
Typically, you install the desired community handler as a gem. You do this using the chef_gem resource.
You can pass an attributes hash to the Handler class and you need to tell the LWRP where it can find the Handler class. The default should be chef/handlers/... but more often than not, this is not the case. We're searching through all our installed Ruby gems to find the right one and append the path to the .rb file where the Handler class is defined.
The LWRP will take care of enabling the handler, if you tell it so using enable true.
There's more...
If you want, you can install your handler manually by editing client.rb on your nodes.
If your desired handler is not available as a Ruby gem, you can install it into /var/chef/handlers and use this directory as the source when using the chef_handler LWRP.
See also
Creating custom handlers
Chef handlers can be very helpful to integrate Chef with your tool chain. If there is no handler readily available for the tools you use, it's pretty simple to write your own.
We'll have a look how to create an exception handler reporting Chef Client run failures to Flowdock, a web-based team inbox and chat tool.
Getting ready...
As we want to publish information to a Flowdock inbox, you need to sign up for an account at http://www.flowdock.com. And we need to install the API client as a Ruby gem to be able to post to our team inbox from Chef.
Install the flowdock gem on your local development box:
mma@laptop:~/chef-repo $ subl Gemfile
...
gem 'flowdock'
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing flowdock (0.3.1)
How to do it...
Carry out the following steps to create a custom handler to post Chef run failures to Flowdock:
mma@laptop:~/work/chef-handler-flowdock $ mkdir -plib/chef/handler
mma@laptop:~/work/chef-handler-flowdock $ subllib/chef/handler/flowdock_handler.rb
require 'chef/handler'
require 'flowdock'
class Chef
class Handler
class FlowdockHandler < Chef::Handler
def initialize(options = {})
@from = options[:from] || nil
@flow = Flowdock::Flow.new(:api_token =>options[:api_token],
:source => options[:source] || "Chef Client")
end
def report
if run_status.failed?
content = "Chef Client raised an exception:
"
content << run_status.formatted_exception
content << "
"
content << run_status.backtrace.join("
")
@from = {:name => "root", :address =>"root@#{run_status.node.fqdn}"} if @from.nil?
@flow.push_to_team_inbox(:subject => "Chef Clientrun on #{run_status.node} failed!",
:content => content,
:tags => ["chef",run_status.node.chef_environment,run_status.node.name], :from => @from)
end
end
end
end
end
user@server:~$ sudo mkdir -p /var/chef/handlers
mma@laptop:~/work/chef-handler-flowdock $ scplib/chef/handler/flowdock_handler.rbuser@server:/var/chef/handlers/flowdock_handler.rb
user@server:~$ subl /etc/chef/client.rb
require '/var/chef/handlers/flowdock_handler'
exception_handlers <<Chef::Handler::FlowdockHandler.new(:api_token =>"FLOWDOCK_API_TOKEN")
If you've a failing Chef Client run on your node, your handler will report it to your Flowdock flow.
How it works...
To create a Chef handler your class needs to extend Chef::Handler. It should have two methods: initialize and report. Chef will call the report method at the end of every Chef Client run.
The handler class can access the run_status of the Chef Client run to retrieve information about the run, for example, the current node object, success? or failure?, and the exception (if any). You can find a full list of supported attributes here: http://docs.opscode.com/essentials_handlers_properties.html
As we only want to report exceptions, we execute our logic inside the report method only if the Chef run failed.
There's more...
Instead of manually installing the handler on all your nodes, you can create a cookbook (see the Using community exception and report handlers section in this chapter).
In our example, we create the Flowdock API client in the initialize method. If you use the LWRP to install the handler, the initialize method will receive an options Hash from the attribu tes call inside the chef_handler provider.
See also
Chapter 3. Chef Language and Style
"Style is what separates the good from the great."
– Bozhidar Batsov
In this chapter, we will cover the following:
Introduction
If you want to automate your infrastructure, you will end up using most of Chef's language features. In this chapter, we will have a look at how to use the Chef Domain Specific Language (DSL) from basic to advanced. We will end the chapter with creating custom plugins for Ohai and Knife.
Using community Chef style
It's easier to read code that adheres to a coding style guide. Especially when sharing cookbooks with the Chef community it is really important to deliver consistently styled code. On the following pages, you'll find some of the most important rules (out of many more—enough to fill a short book on its own) to apply to your own cookbooks.
Getting ready
As you're writing cookbooks in Ruby, it's a good idea to follow general Ruby principles for readable (and therefore maintainable) code.
Opscode proposes Ian Macdonald's Ruby Style Guide (http://www.caliban.org/ruby/rubyguide.shtml#style) in its Cookbook Style Guide Draft (http://wiki.opscode.com/display/chef/Cookbook+Style+Guide+Draft).
But, to be honest, I prefer Bozhidar Batsov's Ruby Style Guide (https://github.com/bbatsov/ruby-style-guide) due to its clarity.
Let's have a look at the most important rules for Ruby in general and for cookbooks specifically.
How to do it...
Let's walk through a few Chef styling guideline examples:
remote_directory node['nagios']['plugin_dir'] do
source 'plugins'
end
mma@laptop:~/chef-repo $ git config --global core.autocrlf true
Tip
For more options on how to deal with line endings in Git read https://help.github.com/articles/dealing-with-line-endings.
variables(
mon_host: 'monitoring.example.com',
nrpe_directory: "#{node['nagios']['nrpe']['conf_dir']}/nrpe.d"
)
version "1.1.0"
%w(redhat centos ubuntu debian).each do |os|
supports os
end
depends "apache2", ">= 1.0.4"
depends "build-essential"
my_string = "This resource changed #{counter} files"
node['nagios']['users_databag_group']
default['my_cookbook']['version'] = "3.0.11"
default['my_cookbook']['version'] = "3.0.11"
default['my_cookbook']['name'] = "Mine"
How it works...
Using community Chef style helps to increase the readability of your cookbooks. Your cookbooks will be read much more often than changed. Because of that, it usually pays off to put a little extra effort into following a strict style guide when writing cookbooks.
There's more...
Using Semantic Versioning (see: http://semver.org) for your cookbooks helps to manage dependencies. If you change anything, which might break cookbooks depending on your cookbook, you need to consider this as a backwards-incompatible API change. Semantic Versioning demands in that case that you increase the major number of your cookbook, for example, from 1.1.3 to 2.0.0, resetting minor and patch levels.
Using Semantic Versioning helps to keep your production systems stable if you freeze your cookbooks (see the Freezing Cookbooks section in Chapter 1, Chef Infrastructure).
See also
Using attributes to dynamically configure recipes
Imagine some cookbook author has hardcoded the path where the cookbook puts a configuration file—but in a place, that does not comply with your rules. Now you're in trouble! You can either patch the cookbook or rewrite it from scratch. Both options leave you with a lot of work and headache.
Attributes are there to avoid such headaches. Instead of hardcoding values inside cookbooks, attributes enable authors to make their cookbooks configurable. By overriding default values set in cookbooks, users can inject their own values. Suddenly, it's next to trivial to obey your own rules.
In the next section, we'll see how to use attributes in your cookbooks.
Getting ready
Make sure you have a cookbook called my_cookbook, and the run_list of your node includes my_cookbook as described in the Creating and Using Cookbooks section in Chapter 1, Chef Infrastru cture.
How to do it...
Let's see how to define and use a simple attribute:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['message'] = 'hello world!'
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
message = node['my_cookbook']['message']
Chef::Log.info("** Saying what I was told to say: #{message}")
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-13T20:48:21+00:00] INFO: ** Saying what I was told to say: hello world!
...TRUNCATED OUTPUT...
How it works...
Chef loads all attributes from the attribute files before it executes the recipes. The attributes are stored with the node object. You can access all attributes stored with the node object from within your recipes and retrieve their current values.
Chef has a strict order of precedence for attributes: default being the lowest, then comes normal (which is aliased with set), and then override. Additionally, attribute levels set in recipes have precedence over the same level set in an attribute file. And attributes defined in roles and environments have highest precedence since Chef 11.
There's more...
You can set and override attributes within roles and environments as well. Since Chef 11 attributes defined in roles or environments have the highest precedence (on their respective levels: default, normal, override).
mma@laptop:~/chef-repo $ subl roles/german_hosts.rb
name "german_hosts"
description "This Role contains hosts, which should print out their messages in German"
run_list "recipe[my_cookbook]"
default_attributes "my_cookbook" => { "message" => "Hallo Welt!" }
mma@laptop:~/chef-repo $ knife role from file german_hosts.rb
Updated Role german_hosts!
mma@laptop:~/chef-repo $ knife node edit server
"run_list": [
"role[german_hosts]"
]
Saving updated run_list on node server
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-13T20:49:49+00:00] INFO: ** Saying what I was told to say: Hallo Welt!
...TRUNCATED OUTPUT...
Calculating values in attribute files
Since Chef 11, attributes set in roles and environments (as shown earlier) have the highest precedence, and they're already available when the attribute files get loaded. This enables you to calculate attribute values based on role or environment-specific values.
mma@laptop:~/chef-repo $ subl roles/german_hosts.rb
name "german_hosts"
description "This Role contains hosts, which should print out their messages in German"
run_list "recipe[my_cookbook]"
default_attributes "my_cookbook" => {
"hi" => "Hallo",
"world" => "Welt"
}
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['message'] = "#{node['my_cookbook']['hi']} #{node['my_cookbook']['world']}!"
See also
Using templates
Configuration Management is all about, well, configuring your hosts. Usually, configuration is carried out using configuration files. Chef is using templates to be able to fill configuration files with dynamic values. It offers template as a resource you can use in your recipes.
You can retrieve such dynamic values from data bags, attributes, or even calculate them on the fly before passing them into the template.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how to create and use a template to dynamically generate a file on your node.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
template '/tmp/message' do
source 'message.erb'
variables(
hi: 'Hallo',
world: 'Welt',
from: node['fqdn']
)
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/message.erb
<%- 4.times do %>
<%= @hi %>, <%= @world %> from <%= @from %>!
<%- end %>
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
Run Chef Client on your node:
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-14T20:41:21+00:00] INFO: Processing template[/tmp/message] action create (my_cookbook::default line 9)
[2013-01-14T20:41:22+00:00] INFO: template[/tmp/message] updated content
...TRUNCATED OUTPUT...
user@server:~$ sudo cat /tmp/message
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
How it works...
Chef uses Erubis as its template language. It allows embedding pure Ruby code inside special symbols inside your templates.
You use <%= %> if you want to print the value of a variable or Ruby expression into the generated file.
You use <%- %> if you want to embed Ruby logic into your template file. We used it to loop our expression four times.
When you use the template resource, Chef makes all the variables you pass in available as instance variables when rendering the template. We used @hi, @world, and @from in our earlier example.
There's more...
The node object is available in a template as well. Technically, you could access node attributes directly from within your template:
<%= node['fqdn'] %>
But, this is not a good idea because it will introduce hidden dependencies to your template. It is better to make dependencies explicit, for example, by declaring the FQDN as a variable for the template resource inside your cookbook:
template '/tmp/fqdn' do
source 'fqdn.erb'
variables(
fqdn:node['fqdn']
)
end
Tip
Avoid using the node object directly inside your templates because this introduces hidden dependencies to node variables in your templates.
If you need a different template for a specific host or platform, you can put those specific templates into various subdirectories of the templates directory. Chef will try to locate the correct template by searching through these directories from most specific (host) to least (default).
You could put your message.erb into the directory cookbooks/my_cookbook/templates/host-server.vm ("host-#{node[:fqdn]}") if it would be host specific. If it would be specific to a certain platform version, you could put it into cookbooks/my_cookbook/templates/ubuntu-12.04 ("#{node[:platform]}-#{node[:platorm_version]}"), and if it would only be platform specific, you would put it into cookbooks/my_cookbook/templates/ubuntu ("#{node[:platform]}"). Only if your template is the same for any host or platform would you put it into the default directory.
Tip
Be aware of the fact that the templates/default directory means that a template file is the same for all hosts and platforms—it does not correspond to a recipe name.
See also
Mixing plain Ruby with Chef DSL
For creating simple recipes you only need to use resources such as template, remote_file, and service. But as your recipes become more elaborate, you'll discover the need to do more advanced things such as conditionally executing parts of your recipe, looping, or even complex calculations.
Instead of declaring the gem_package resource 10 times simply using different name attributes, it is so much easier to loop through an array of gem names creating the gem_package resources on the fly.
This is the power of mixing plain Ruby with Chef Domain Specific Language (DSL). We'll see a few tricks in the following sections.
Getting ready
Start a Chef Shell on any of your nodes in client mode to be able to access your Chef Server:
user@server:~$ sudo chef-shell --client
loading configuration: /etc/chef/client.rb
Session type: client
...TRUNCATED OUTPUT...
run `help' for help, `exit' or ^D to quit.
Ohai2u user@server!
chef >
How to do it...
Let's play around with some Ruby constructs in Chef Shell to get a feel for what's possible:
chef > nodes = search(:node, "hostname:[* TO *]")
=> [node[server],node[alice]]
chef > nodes.sort! {|a,b| a.name <=> b.name }
=> [node[alice],node[server]]
chef > nodes.each do |n|
chef > puts n['os']
chef ?> end
linux
windows
=> [node[server], node[alice]]
chef > Chef::Log.warn("No nodes found") if nodes.empty?
=> nil
chef > %w{ec2 essentials}.each do |gem|
chef > gem_package "knife-#{gem}"
chef ?> end
=> ["ec2", "essentials"]
How it works...
Chef recipes are Ruby files, which get evaluated in the context of a Chef run. They can contain plain Ruby code such as if statements and loops as well as Chef Domain Specific Language (DSL) elements such as resources (remote_file, service, template, and so on).
Inside your recipes you can simply declare Ruby variables and assign them any values. We used the Chef DSL method search to retrieve an array of Chef::Node instances and stored that array in the variable nodes.
Because nodes is a plain Ruby array, we can use all methods the array class provides, such as sort! or empty?.
And we can iterate through the array by using plain Ruby each, as we did in the third example explained earlier.
Another common thing is to use if, else, or case for conditional execution. In the preceding fourth example, we used if to only write a warning to the logfile, if the nodes array is empty.
In the last example, we combined an array of strings (holding parts of gem names) and the each iterator with the Chef DSL gem_package resource to install two Ruby gems. To take things one step further we used plain Ruby string expansion to construct the full gem names (knife-ec2 and knife-es sentials) on the fly.
There's more...
You can use the full power of Ruby combined with the Chef DSL in your recipes. Here is an excerpt from the server.rb recipe from Opscode's nagios cookbook, which shows what's possible:
Load search defined Nagios hostgroups from the nagios_hostgroups data bag and find nodes
begin
hostgroup_nodes= Hash.new
hostgroup_list = Array.new
search(:nagios_hostgroups, '*:*') do |hg|
hostgroup_list << hg['hostgroup_name']
temp_hostgroup_array= Array.new
if node['nagios']['multi_environment_monitoring']
search(:node, "#{hg['search_query']}") do |n|
temp_hostgroup_array << n['hostname']
end
else
search(:node, "#{hg['search_query']} AND chef_environment:#{node.chef_environment}") do |n|
temp_hostgroup_array << n['hostname']
end
end
hostgroup_nodes[hg['hostgroup_name']] = temp_hostgroup_array.join(",")
end
rescue Net::HTTPServerException
Chef::Log.info("Search for nagios_hostgroups data bag failed, so we'll just move on.")
end
First, they declare a few Ruby variables to use them later.
Then, they try to retrieve data from a data bag called nagios_hostgroups. To avoid the recipe failing if that data bag is not available, they wrap their logic with begin, rescue, and end—Ruby's way of exception handling.
Inside that block, you see a mix of plain Ruby stuff such as hostgroup_nodes = Hash.new and Chef DSL such as the usage of attributes or search.
See also
Installing Ruby gems and using them in recipes
Recipes are plain Ruby files. It is possible to use all of Ruby's language features inside your recipes. Most of the time the built-in Ruby functionality is enough but sometimes you might want to use additional Ruby gems, for example, to connect to an external application via an API or simply to access a MySQL database from within your recipe.
Chef lets you install Ruby gems from within a recipe so that you can use them inside the very same recipe.
Getting ready
Make sure you've a cookbook named my_cookbook, which is in your node's run list in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how we can use the ipaddress gem in our recipe:
mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
chef_gem 'ipaddress'
require 'ipaddress'
ip = IPAddress("192.168.0.1/24")
Chef::Log.info("Netmask of #{ip}: #{ip.netmask}")
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-18T14:02:02+00:00] INFO: Netmask of 192.168.0.1: 255.255.255.0
...TRUNCATED OUTPUT...
How it works...
A Chef run consists of a compile phase where it instantiates all resources and an execution phase where Chef runs the resource providers to converge the node.
If you want to use the functionality of a Ruby gem inside your cookbook, you need to install that gem during the compile phase. Otherwise it will not be available during the execute phase (only afterwards).
The chef_gem resource will exactly do that. And, if you're using Chef Omnibus, this is the only way to make gems available to Chef itself.
The gem_package resource, in contrast, installs the gem into the system Ruby. It does that during the converge phase of the Chef run. This means that gems installed by gem_package can not be used inside your recipes.
See also
Using libraries
While you can use arbitrary Ruby code within your recipes, this might quickly get messy if you're doing more complicated stuff like integrating existing infrastructure or doing complicated API calls.
Libraries provide a place to encapsulate complicated logic so that your recipes stay clean and neat.
In this section, we'll create a simple library to see how this works out.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's create a library and use it in a cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/libraries/ipaddress.rb
class Chef::Recipe
def netmask(ipaddress)
IPAddress(ipaddress).netmask
end
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
ip = '10.10.0.0/24'
mask = netmask(ip) # here we use the library method
Chef::Log.info("Netmask of #{ip}: #{mask}")
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-18T14:38:26+00:00] INFO: Netmask of 10.10.0.0/24: 255.255.255.0
...TRUNCATED OUTPUT...
How it works...
In your library code you can open the Chef::Recipe class and add your new methods.
Tip
This isn't the cleanest, but the simplest way of doing it. The following paragraphs will help you to find out a cleaner way.
class Chef::Recipe
def netmask(ipaddress)
...
end
end
Chef automatically loads your library code in the compile phase that enables you to use the methods you declare there inside your recipes:
mask = netmask(ip)
There's more...
Opening a class and adding methods pollutes the class' namespace. This might lead to name clashes, for example, if you define a method inside a library of your own cookbook and someone else defines a method with the same name in the library of another cookbook. Another clash would happen if you accidentally use a method name, which Chef defines in its Chef::Recipe class.
It's cleaner to introduce your own subclasses inside your libraries and define your methods as class methods. This avoids polluting the Chef::Recipe namespace.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/libraries/ipaddress.rb
class Chef::Recipe::IPAddress
def self.netmask(ipaddress)
IPAddress(ipaddress).netmask
end
end
You can use the method inside your recipes like this:
IPAddress.netmask(ip)
You can define library methods in Chef Shell directly in the root context:
user@server $ chef-shell --client
chef > class Chef::Recipe::IPAddress
chef ?> def self.netmask(ipaddress)
chef ?> IPAddress(ipaddress).netmask
chef ?> end
chef ?> end
Now you can use the library method inside the recipe context:
chef > recipe
chef:recipe > IPAddress.netmask('10.10.0.0/24')
=> "255.255.255.0"
See also
Using definitions
Your cookbooks grow and get pretty long. Silently some duplication sneak in as well. You'll come to the point where it is time to group resources and give them names to regain readability for your cookbook. And if you use the same set of resources again and again it is a good idea to refactor this group of resources into a definition.
In this section, we'll group a set of resources into a definition to make it reusable.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how to create and use a definition:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/definitions/capistrano_deploy_dirs.rb
define :capistrano_deploy_dirs, :deploy_to => '' do
directory "#{params[:deploy_to]}/releases"
directory "#{params[:deploy_to]}/shared"
directory "#{params[:deploy_to]}/shared/system"
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
capistrano_deploy_dirs do
deploy_to "/srv"
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-18T16:31:11+00:00] INFO: Processing directory[/srv/releases] action create (my_cookbook::default line 2)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/releases] created directory /srv/releases
[2013-01-18T16:31:11+00:00] INFO: Processing directory[/srv/shared] action create (my_cookbook::default line 3)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/shared] created directory /srv/shared
[2013-01-18T16:31:11+00:00] INFO: Processing directory[/srv/shared/system] action create (my_cookbook::default line 4)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/shared/system] created directory /srv/shared/system
...TRUNCATED OUTPUT...
How it works...
Definitions in Chef are like macros: you group a collection of resources and give this group a name. Chef reads the definition and expands its contents into the recipe during the compile phase.
A definition has a name (here capistrano_deploy_dirs) by which you can call it from your recipe. And a definition has a list of parameters (here deploy_to):
define :capistrano_deploy_dirs, :deploy_to => '' do
...
end
The code inside the definition has access to a hash called params. It contains all the keys you defined after the definition name. Here, Chef will add the three directory resources to the execution list:
define ...
directory "#{params[:deploy_to]}/releases"
directory "#{params[:deploy_to]}/shared"
directory "#{params[:deploy_to]}/shared/system"
end
In your recipes you can use the definition name instead of putting all the three directory resources. Inside the block you use dynamically generated methods to fill each parameter with its value:
capistrano_deploy_dirs do
deploy_to "/srv"
end
There's more...
Be aware that definitions are expanded into their containing resources. Definitions are not available during the execution phase. You cannot notify a definition, but only the resources it contains.
You could not address the definition:
notifies :delete, 'capsitrano_deploy_dirs', :immediately
But you could address the individual resources inside the definition:
notifies :delete, 'directory[/srv/releases], :immediately
See also
Creating your own Light Weight Resource Providers (LWRP)
Chef offers the opportunity to extend the list of available resources by creating a custom Light Weight Resource Provider (LWRP). By creating your own custom resources, you can simplify writing cookbooks because your own custom resources enrich the Chef DSL and make your recipe code more expressive.
Many of the custom resources in Opscode's community cookbooks (and elsewhere) are implemented as LWRPs. So there are many working examples in the real world such as iptables_rule or apt_repository, and many more.
In this section, we will create a very simple LWRP to demonstrate the basic mechanics.
Getting ready
Make sure you've a cookbook named greeting and the run_list of your node includes greeting in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how to build a very simple LWRP to create a text file on your node:
mma@laptop:~/chef-repo $ subl cookbooks/greeting/resources/default.rb
actions :create, :remove
attribute :title, kind_of: String, default: "World"
attribute :path, kind_of: String, default: "/tmp/greeting.txt"
mma@laptop:~/chef-repo $ subl cookbooks/greeting/providers/default.rb
action :create do
log "Adding '#{new_resource.name}' greeting as #{new_resource.path}"
file new_resource.path do
content "#{new_resource.name}, #{new_resource.title}!"
action :create
end
end
action :remove do
Chef::Log.info "Removing '#{new_resource.name}' greeting #{new_resource.path}"
file new_resource.path do
action :delete
end
end
mma@laptop:~/chef-repo $ subl cookbooks/greeting/recipes/default.rb
greeting "Ohai" do
title "Chef"
action :create
end
mma@laptop:~/chef-repo $ knife cookbook upload greeting
Uploading greeting [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
2013-06-28T21:32:54+00:00] INFO: Processing greeting[Ohai] action create (greeting::default line 9)
[2013-06-28T21:32:54+00:00] INFO: Adding 'Ohai' greeting as /tmp/greeting.txt
[2013-06-28T21:32:54+00:00] INFO: Processing file[/tmp/greeting.txt] action create (/srv/chef/file_store/cookbooks/greeting/providers/default.rb line 7)
[2013-06-28T21:32:54+00:00] INFO: entered create
[2013-06-28T21:32:54+00:00] INFO: file[/tmp/greeting.txt] created file /tmp/greeting.txt
...TRUNCATED OUTPUT...
user@server:~$ cat /tmp/greeting.txt
Ohai, Chef!
How it works...
LWRPs live in cookbooks. A custom resource, which you define in a file called default.rb in the resources directory of your cookbook, will be available under the cookbook name.
We create greeting/resources/default.rb and use it in our default recipe as follows:
greeting "..." do
end
Let's see how the resource definition in greeting/resources/default.rb looks like.
First, we define the actions, which our resource should support:
actions :create, :remove
Then, we define attributes you can pass to the resource when using it in your cookbook. In our case, we define two string attributes with their default values:
attribute :title, kind_of: String, default: "World"
attribute :path, kind_of: String, default: "/tmp/greeting.txt"
Now, we can use those actions and attributes in our recipe:
greeting "Ohai" do
title "Chef"
action :create
end
We've defined the resource, now it's time to make it do something. The implementation of a resource lives in one or many providers. You might find multiple providers for the same resource for different operating systems. But we keep it simple here and create only one provider in greeting/providers/default.rb.
The provider has to implement each action defined in the resource in our case we need to implement two actions: create and remove.
action :create do
...
end
action :remove do
...
end
Now, you can use pure Ruby and existing Chef resources to make your provider do something. First, we create a log statement and then we use the existing file resource to create a text file containing the greeting:
log "Adding '#{new_resource.name}' greeting as #{new_resource.path}"
file new_resource.path do
...
end
new_resource is a Ruby variable containing the resource definition from the recipe using the resource. In our case, new_resource.name evaluates to "Ohai" and new_resource.path evaluates to the attribute's default value (because we did not use that attribute when using the greeting resource in our cookbook).
Inside the file resource, we use our resource's title (new_resource.title) attribute to fill the text file:
file new_resource.path do
content "#{new_resource.name}, #{new_resource.title}!"
action :create
end
The remove action works similar to the create action, but calling the file resource's delete action instead.
There's more...
To simplify the usage of your custom resource, you can define a default action. You declare it using the default_action call:
default_action :create
Now you can use your new resource like this:
greeting "Ohai" do
title "Chef"
end
Note
If you're using plain Ruby code in your providers, you need to make sure that your code is idempotent. This means that it only runs if it has to modify something. You should be able to run your code multiple times on the same machine, without executing unnecessary actions on each run.
If you want your resource to support the why-run, you need to add the following to it:
def whyrun_supported?
true
end
Then, you can wrap your code with a converge_by block. This will produce the message it displays in why-run mode instead of executing the code inside.
converge_by("Doing something with #{ @new_resource }") do
...
end
See also
Extending community cookbooks by using application wrapper cookbooks
Using community cookbooks is great. But sometimes they do not exactly match your use case. You need to modify them. If you don't want to use Git vendor branches generated by knife cookbook site install, you need to use the library versus application cookbook approach.
In this approach, you don't touch the community (library) cookbook. Instead, you include it in your own application cookbook and modify resources from the library cookbook.
Let's see how to extend a community cookbook within your own application cookbook.
Getting ready
We'll use the ntp cookbook as a library cookbook and will change the ntpdate configuration it installs.
mma@laptop:~/chef-repo $ knife cookbook site install ntp
Installing ntp to /Users/mma/work/chef-repo/cookbooks
...TRUNCATED OUTPUT...
Cookbook ntp version 1.3.2 successfully installed
mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [1.3.2]
mma@laptop:~/chef-repo $ knife cookbook create my-ntp
** Creating cookbook my-ntp
** Creating README for cookbook: my-ntp
** Creating CHANGELOG for cookbook: my-ntp
** Creating metadata for cookbook: my-ntp
mma@laptop:~/chef-repo $ knife node edit server
"run_list": [
"recipe[my-ntp]"
]
Tip
You could use Berkshelf as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Creating and Using Cookbooks, to manage the dependency on the ntp cookbook within your my-ntp cookbook
How to do it...
Let's see how we can change the ntp cookbook's behavior from our own cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/metadata.rb
version '0.1.0'
...
depends 'ntp'
mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/recipes/default.rb
...
include_recipe 'ntp::ntpdate'
resources("template[/etc/default/ntpdate]").cookbook "my-ntp"
mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/templates/default/ntpdate.erb
<% if @disable %>exit 0<% end %>
...
NTPOPTIONS="-v"
mma@laptop:~/chef-repo $ knife cookbook upload my-ntp
Uploading my-ntp [0.1.0]
user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-19T22:14:31+00:00] INFO: Processing template[/etc/default/ntpdate] action create (ntp::ntpdate line 28)
[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate] updated content
[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate] owner changed to 0
[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate] group changed to 0
[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate] mode changed to 644
[2013-01-19T22:14:32+00:00] INFO: Chef Run complete in 2.251344614 seconds
...TRUNCATED OUTPUT...
user@server $ cat /etc/default/ntpdate
...TRUNCATED OUTPUT...
Additional options to pass to ntpdate
NTPOPTIONS="-v"
How it works...
We retrieve and modify the template resource for the /etc/default/ntpdate file from the ntp cookbook. First, we need to include the recipe, which defines the resource we want to modify. This is necessary so that Chef creates the resource during the compile phase of the Chef run.
include_recipe 'ntp::ntpdate'
The resources method retrieves the given resource. We can then call all the methods on it, which we could call while defining it in a recipe. In our example, we want to tell the template resource that it can find the ERB template in our cookbook instead of the original ntp cookbook.
resources("template[/etc/default/ntpdate]").cookbook "my-ntp"
This modification of the resource happens during the compile phase. Only after Chef has evaluated the whole recipe will it execute all resources it built during the compile phase.
There's more...
If you're using any cookbook dependency management solution such as libarian-chef or berkshelf, or you're not using Git, this is currently the only way to modify parts of recipes, which are not meant to be configured via attributes.
I don't like this approach too much. It is the exact same thing as monkey-patching any Ruby class by reopening it in your own source files. This usually leads to brittle code as your code now depends on implementation details of another piece of code instead of depending on its public interface (in Chef recipes the public interface is its attributes).
You should be aware of the fact that what you're doing is dangerous. Keep such cookbook modifications in a separate place so that you can easily find out what you did later. If you bury your modifications deep inside your complicated cookbooks, you might experience very bad debug issues later.
See also
Creating custom Ohai plugins
Ohai is the tool used by Chef Client to find out everything about the node's environment. During a Chef Client run, it populates the node object with all the information it found out about the node such as its operating system, hardware, and so on.
It is possible to write custom Ohai plugins to query additional properties about a node's environment.
In this example, we will see how to query the currently active firewall rules using iptables and make them available as node attributes.
Getting ready
Make sure you have iptables installed on your node. See the Managing firewalls with iptables section in Chapter 7, Servers and Cloud Infrastructure.
Make sure you have the chef-client cookbook available:
mma@laptop:~/chef-repo $ knife cookbook site install chef-client
Installing chef-client to /Users/mma/work/chef-repo/cookbooks
mma@laptop:~/chef-repo $ knife cookbook upload chef-client
Uploading chef-client [3.0.4]
mma@laptop:~/chef-repo $ knife node run_list add server 'chef-client::config'
server:
run_list:
recipe[chef-client::config]
How to do it...
Let's write a simple Ohai plugin, which lists all currently active iptables rules:
mma@laptop:~/chef-repo $ knife cookbook site install ohai
Installing ohai to /Users/mma/work/chef-repo/cookbooks
mma@laptop:~/chef-repo $ subl cookbooks/ohai/files/default/plugins/iptables.rb
provides "iptables"
iptables Mash.new
`iptables -S`.each_line.with_index do |line,i|
iptables[i] = line
end
mma@laptop:~/chef-repo $ knife cookbook upload ohai
Uploading ohai [1.1.8]
mma@laptop:~/chef-repo $ knife node run_list add server ohai
server:
run_list:
recipe[chef-client::config]
recipe[ohai]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Recipe: ohai::default
* ohai[custom_plugins] action reload
- re-run ohai and merge results into node attributes
...TRUNCATED OUTPUT...
How it works...
The chef-client cookbook configures Chef Client to look for additional Ohai plugins in the directory /etc/chef/ohai_plugins by adding this line to /etc/chef/client.rb:
Ohai::Config[:plugin_path] << "/etc/chef/ohai_plugins"
You can simply install the ohai cookbook and add your Ohai plugins to the cookbooks/ohai/files/default/plugins directory. The ohai cookbook will then upload your plugins to your node.
A custom Ohai plugin has only a few basic parts:
provides "iptables"
The preceding code tells Ohai that the node attributes you fill will be available under the iptables key.
You collect the node attributes in a Mash—an extended version of a Hash.
iptables Mash.new
The preceding line of code creates an empty node attribute.
Then we run iptables -S to list all currently loaded firewall rules and loop through the lines. Each line gets added to the Mash with its line number as the key:
`sudo iptables -S`.each_line.with_index do |line,i|
iptables[i] = line
end
Ohai will add the contents of that Mash as node attributes during a Chef Client run. We can now use the new iptables node attribute in our recipes:
node['iptables']
There's more...
You can use your Ohai plugin as a library. This enables you to use the functionality of your Ohai plugins in arbitrary Ruby scripts. Fire up IRB in the /etc/chef/ohai_plugins directory and run the following commands:
user@server:/etc/chef/ohai_plugins$ /opt/chef/embedded/bin/irb
>> require 'ohai'
>> Ohai::Config[:plugin_path] << '.'
>> o = Ohai::System.new
>> o.all_plugins
>> o.iptables
=> {0=>"-P INPUT ACCEPT\n", 1=>"-P FORWARD ACCEPT\n", 2=>"-P OUTPUT ACCEPT\n", 3=>"-N FWR\n", 4=>"-A INPUT -j FWR\n", 5=>"-A FWR -i lo -j ACCEPT\n", 6=>"-A FWR -m state --state RELATED,ESTABLISHED -j ACCEPT\n", 7=>"-A FWR -p icmp -j ACCEPT\n", 8=>"-A FWR -p tcp -m tcp --dport 22 -j ACCEPT\n", 9=>"-A FWR -p tcp -m tcp --tcp-flags SYN,RST,ACK SYN -j REJECT --reject-with icmp-port-unreachable\n", 10=>"-A FWR -p udp -j REJECT --reject-with icmp-port-unreachable\n"}
See also
Creating custom Knife plugins
Knife, the command-line client for the Chef Server, has a plugin system. This plugin system enables us to extend the functionality of Knife in any way we need it. The knife-ec2 plugin is a common example: it adds commands such as ec2 server create to Knife.
In this section, we will create a very basic custom Knife plugin to learn about all the required building blocks of Knife plugins. As Knife plugins are pure Ruby programs, which can use any external libraries, there are no limits for what you can make Knife do. This freedom enables you to build your whole DevOps workflow on Knife, if you want to.
Now, let's teach Knife to tweet in your name!
Getting ready
Make sure you have a Twitter user account and you have created an application with Twitter (https://dev.twitter.com/apps/new).
While creating your Twitter application, you should set the OAuth access level to "Read and write" to enable your application to post in your name.
Create an access token by connecting the application to your Twitter account. This will enable your Twitter application (and therefore your Knife plugin) to tweet as your Twitter user.
Make sure you have the twitter gem installed. It will enable you to interact with Twitter from within your Knife plugin:
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'twitter'
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing twitter (4.8.1)
How to do it...
Let's create a Knife plugin so that we can tweet using Knife using the following command:
$ knife tweet "having fun building knife plugins"
mma@laptop:~/chef-repo $ mkdir -p .chef/plugins/knife
mma@laptop:~/chef-repo $ subl .chef/plugins/knife/knife_twitter.rb
require 'chef/knife'
module KnifePlugins
class Tweet < Chef::Knife
deps do
require 'twitter'
end
banner "knife tweet MESSAGE"
def run
Twitter.configure do |config|
config.consumer_key = "Your Twitter app consumer key"
config.consumer_secret = "Your Twitter app consumer secret"
config.oauth_token = "Your OAuth token for your Twitter app"
config.oauth_token_secret = "Your OAuth token secret for your Twitter app"
end
Twitter.update("#{name_args.first} #opschef")
end
end
end
mma@laptop:~/chef-repo $ knife tweet "having fun with building knife plugins"
How it works...
There are three ways to make your Knife plugins available: in your home directory under ~/.chef/plugins/knife (so that you can use them for all your Chef repositories), in your Chef repository under .chef/plugins/knife (so that every co-worker using that repository can use them), or as a Ruby gem (so that everyone in the Chef community can use them).
We chose the second way so that everyone working on our Chef repository can download and use our Twitter Knife plugin.
First, we need to include Chef's Knife library into our Ruby file in order to be able to create a Knife plugin:
require 'chef/knife'
Then, we define our plugin as follows:
module KnifePlugins
class Tweet < Chef::Knife
...
end
end
The preceding code creates the new Knife command tweet. The command is derived from the class name we give our plugin. Each Knife plugin needs to extend Chef::Knife.
The next step is to load all required dependencies. Instead of simply putting multiple require calls at the beginning of our Ruby file, Knife provides the deps method (which we can override) to load dependencies lazily on demand:
deps do
require 'twitter'
end
Putting require 'twitter' inside the deps method makes sure that the twitter gem only gets loaded if our plugin gets run. Not doing so would mean that the twitter gem would get loaded on each Knife run, no matter whether it would be used or not.
After defining the dependencies, we need to tell the users of our plugin what it does and how to use it. Chef::Knife provides the banner method for defining the message users see when they call our plugin with the --help parameter:
banner "knife tweet MESSAGE"
Let's see how this works:
mma@laptop:~/chef-repo $ knife tweet --help
knife tweet MESSAGE
Finally, we need to actually do something. The run method is the place to put the code we want to execute. In our case, we connect to our Twitter application by calling configure on the Twitter class, passing our authentication credentials. Then we send our tweet:
Twitter.update("#{name_args.first} #opschef")
The name_args variable contains the command-line arguments. We take the first one as the message we send to Twitter and add the #opschef hash tag to every message we send.
There's more...
You can add simple error handling to make sure that the user doesn't send empty tweets by adding this block right at the beginning of the run method:
run
unless name_args.size == 1
ui.fatal "You need to say something!"
show_usage
exit 1
end
...
end
This piece of code gets executed if there isn't exactly one command-line argument available to the knife tweet call. In that case it will print the error message, and the user would get same message when using the --help parameter. Then, this block will exit with the error code 1 without doing anything else.
See also
Chapter 4. Writing Better Cookbooks
"When you know better, you do better"
- Maya Angelou
In this chapter, we will cover the following:
Introduction
In this chapter, we'll see some of the more advanced topics in action. You'll see how to make your recipes more flexible using search and data bags and how to make sure your cookbooks run on different operating systems. You'll gain critical knowledge to create extensible and maintainable cookbooks for your infrastructure.
Setting environment variables
You might have experienced this: you try out a command on your node's shell and it works perfectly. Now, you try to execute the very same command from within your Chef recipe but it fails. One reason might be that there are certain environment variables set in your shell, which are unset during the Chef run. You might have set them manually or you might have set them in your shell startup scripts—it does not really matter. You'll need to set them again in your recipe.
In this section, you will see how to set environment variables needed during a Chef run.
Getting ready
Make sure you have a cookbook called my_cookbook, and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how we can set environment variables from within Chef recipes:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
ENV['MESSAGE'] = 'Hello from Chef'
execute 'print value of environment variable $MESSAGE' do
command 'echo $MESSAGE > /tmp/message'
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-25T15:01:57+00:00] INFO: Processing execute[printvalue of environment variable $MESSAGE] action run(my_cookbook::default line 11)
[2013-01-25T15:01:57+00:00] INFO: execute[print value ofenvironment variable $MESSAGE] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ cat /tmp/message
Hello from Chef
How it works...
Ruby exposes the current environment via ENV—a hash to read or modify environment variables. We are using ENV to set our environment variable. It is valid for the Ruby process in which Chef Client runs as well as all child processes.
The execute resource is spawning a child process of the Ruby process running Chef Client. Because it is a child process, the environment variable we set in the recipe is available to the script code the execute resource runs.
We simply access the environment variable by $MESSAGE as we would do on the command line as well.
There's more...
The execute resource offers a way to pass environment variables to the command it executes.
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
execute 'print value of environment variable $MESSAGE' do
command 'echo $MESSAGE > /tmp/message'
environment 'MESSAGE' => 'Hello from the execute resource'
end
user@server:~$ cat /tmp/message
Hello from the execute resource
Tip
Setting an environment variable using ENV will make that variable available during the whole Chef run. In contrast, passing it to the execute resource will only make it available for that one command executed by the resource.
See also
http://docs.opscode.com/essentials_environment_variables.html
Passing arguments to shell commands
Chef Client enables you to run shell commands by using the execute resource. But how can you pass arguments to such shell commands? Let's assume you want to calculate a value you need to pass to the shell command in your recipe. How can you do that? Let's find out...
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how we can pass Ruby variables into shell commands:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
max_mem = node['memory']['total'].to_i * 0.8
execute 'echo max memory value into tmp file' do
command "echo #{max_mem} > /tmp/max_mem"
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-01-25T15:01:57+00:00] INFO: Processing execute[echo max memory value into tmp file] action run (my_cookbook::default line 11)
[2013-01-25T15:01:57+00:00] INFO: execute[echo max memory value into tmp file] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ cat /tmp/max_mem
299523.2
How it works...
We calculate a value, which we want to pass to the command we want to execute. The node['memory']['total'] call returns a string. We need to convert it to integer by calling to_i on the returned string to be able to multiply it with 0.8.
As recipes are Ruby files, you can use string expansion if you need it. One way to pass arguments to shell commands defined by execute resources is to use string expansion in the command parameter:
command "echo #{max_mem} > /tmp/max_mem"
In the preceding line, Ruby will replace #{max_mem} with the value of the max_mem variable just defined. The string, which we pass as a command to the execute resource could look like this (assuming that node['memory']['total'] returns 1000):
command "echo 800 > /tmp/max_mem"
Tip
Be careful! You need to use double quotes if you want Ruby to expand your string.
There's more...
String expansion works in multiline strings as well. You can define them like this:
command <<EOC
echo #{message} > /tmp/message
EOC
Tip
EOC is the string delimiter. You're free to use whatever you want here. It can be EOF, EOH, STRING, FOO, or whatever you want it to be. Just make sure to use the same delimiter at the beginning and the end of your multiline string.
We've seen another way to pass arguments to shell commands by using environment variables in the previous section.
See also
Overriding attributes
You can set attribute values in attribute files. Usually, cookbooks come with reasonable default values for attributes. But the default values might not suit your needs. If they don't fit, you can override attribute values.
In this section, we'll look at how to override attributes from within recipes and roles.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how we can override attribute values:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['version'] = '1.2.6'
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
node.override['my_cookbook']['version'] = '1.5'
execute 'echo the path attribute' do
command "echo #{node['my_cookbook']['version']}"
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
* execute[echo the path attribute into a temp file]action run[2013-02-08T11:27:19+00:00] INFO: Processingexecute[echo the path attribute into a temp file]action run (my_cookbook::default line 9)
1.5
[2013-02-08T11:27:19+00:00] INFO: execute[echo the pathattribute into a temp file] ran successfully
- execute echo 1.5
How it works...
You set a default value for the version attribute in your cookbook's default attributes file. Chef evaluates the attributes file early in the Chef run and makes all defined attributes available via the node object. Your recipes can use the node object to access the values of the attributes.
The Chef DSL provides various ways to modify attributes once they are set. In our example, we used the override method to change the value of the attribute inside our recipe. After that call, the node will carry the newly set value for the attribute instead of the old value set via the attributes file.
There's more...
You can override attributes from within roles and environments as well. In the following example, we set the version attribute to 2.0.0 (instead of keeping the default value of 1.2.6).
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['version'] = '1.2.6'
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
execute 'echo the path attribute' do
command "echo #{node['my_cookbook']['version']}"
end
mma@laptop:~/chef-repo $ subl roles/upgraded_hosts.rb
name "upgraded_hosts"
run_list "recipe[my_cookbook]"
default_attributes 'my_cookbook' => { 'version' => '2.0.0' }
mma@laptop:~/chef-repo $ knife role from fileupgraded_hosts.rb
Updated Role upgraded_hosts!
mma@laptop:~/chef-repo $ knife node edit server
"run_list": [
"role[upgraded_hosts]"
]
Saving updated run_list on node server
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Recipe: my_cookbook::default
* execute[echo the path attribute into a temp file]action run[2013-02-08T10:23:48+00:00] INFO: Processingexecute[echo the path attribute into a temp file]action run (my_cookbook::default line 9)
/opt/my_cookbook-2.0.0
[2013-02-08T10:23:48+00:00] INFO: execute[echo the pathattribute into a temp file] ran successfully
- execute echo /opt/my_cookbook-2.0.0
[2013-02-08T10:23:49+00:00] INFO: Chef Run complete in2.483312728 seconds
See also
http://docs.opscode.com/essentials_cookbook_attribute_files.html
Using search to find nodes
If you are running your infrastructure in any type of virtualized environment like a public or private cloud, the server instances you use change frequently. Instead of having a well-known set of servers, you destroy and create virtual servers regularly.
In this situation, your cookbooks cannot rely on hard coded server names when you need a list of available servers. You might need such a list to add them to monitoring or building firewall rules for your nodes.
Chef provides a way to find nodes by their attributes, for example, their roles. In this section, we'll see how you can retrieve a set of nodes to use them in your recipes.
Getting ready
Make sure you have a cookbook called my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how we can find all nodes having a certain role:
mma@laptop:~/chef-repo $ knife role create web
"run_list": [
"recipe[my_cookbook]"
],
Created role[web]
mma@laptop:~/chef-repo $ knife node create webserver
"run_list": [
"role[web]"
],
Created node[webserver]
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
servers = search(:node, "role:web")
servers.each do |srv|
log srv.name
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-02-19T21:32:00+00:00] INFO: webserver
...TRUNCATED OUTPUT...
How it works...
The Chef Server stores all nodes with their attributes. The attributes are partly auto-detected using ohai (such as name, IP address, CPUs, and so on) and partly configured by you (such as run_list). The Chef DSL offers the search method to look up nodes based on your search criteria. In the preceding example, we simply used a role as the search criteria. But, you can use any combination of available node attributes to construct your search.
The search method returns a list of node objects, which you can use in your recipe. In the preceding example, we looped through the list of nodes using the standard Ruby each iterator. The current element is available as the variable you declare between the | after the do. In our case, it is a full-blown node object and you can use it to retrieve its attributes or even modify it.
There's more...
Search is a very powerful tool for dynamically identifying nodes. You cannot only search for roles but for all node attributes, you can use Boolean operators to craft more complex queries and you can use search in your cookbooks as well as with Knife. Let's see how you take search a bit further:
Using Knife to search for nodes
Knife offers the very same search syntax as the search method within your recipes. It lets you search for nodes via the command line:
mma@laptop:~/chef-repo $ knife search node "role:web"
3 items found
Node Name: web
...TRUNCATED OUTPUT...
Node Name: web1
...TRUNCATED OUTPUT...
Node Name: web2
...TRUNCATED OUTPUT...
Searching for arbitrary node attributes
In addition to searching for roles, you can search for any attribute of a node. Let's see how you can search for a node having ubuntu as its platform using knife:
mma@laptop:~/chef-repo $ knife search node "platform:ubuntu"
3 items found
Node Name: web
...TRUNCATED OUTPUT...
Node Name: vagrant
...TRUNCATED OUTPUT...
Node Name: db
...TRUNCATED OUTPUT...
Using Boolean operators in search
If you want to combine multiple attributes in your search query, you can use Boolean operators such as NOT, AND, and OR:
mma@laptop:~/chef-repo $ knife search node 'platform:ubuntu ANDname:v*'
1 items found
Node Name: vagrant
...TRUNCATED OUTPUT...
See also
Using data bags
There are situations where you have data, which you do neither want to hard code in your recipes nor store as attributes in your cookbooks. Users, external servers, or database connections are examples of such data. Chef offers the so called data bags to manage arbitrary collections of data, which you can use with your cookbooks.
Let's see how we can create and use a data bag and its data bag items.
Getting ready
In the following example, we want to send HTTP requests. To be able to follow along with the example, you'll need an HTTP end point.
One way to establish an HTTP end point is to just run nc –l 80 on any server accessible by your node and use its IP address below.
Another way to establish an HTTP end point, which shows us the requests we make, is a free service called RequestBin. To use it, follow these steps:
How to do it...
Let's create a data bag holding our HTTP end point URL and use it from within our recipe:
mma@laptop:~/chef-repo $ mkdir data_bags/hooks
mma@laptop:~/chef-repo $ subl data_bags/hooks/request_bin.json
{
"id": "request_bin",
"url": "http://requestb.in/1abd0kf1"
}
mma@laptop:~/chef-repo $ knife data bag create hooks
Created data_bag[hooks]
mma@laptop:~/chef-repo $ knife data bag from file hooksrequestbin.json
Updated data_bag_item[hooks::RequestBin]
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
hook = data_bag_item('hooks', 'request_bin')
http_request 'callback' do
url hook['url']
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-02-22T20:37:35+00:00] INFO: http_request[callback]GET to http://requestb.in/1abd0kf1 successful
...TRUNCATED OUTPUT...
How it works...
A data bag is a named collection of structured data entries. You define each data entry, called a data bag item, in a JSON file. You can search for data bag items from within your recipes to use the data stored in the data bag.
In our example, we created a data bag called hooks . A data bag is a directory within your Chef repository, and you can use knife to create it on the Chef Server.
Then, we created a data bag item with the name request_bin in a file called request_bin.json inside the data bag's directory and uploaded it to the Chef Server as well.
Our recipe retrieves the data bag item using the data_bag_item method, taking the data bag name as first parameter and the item name as second parameter.
Then, we create an http_request resource passing it the url attribute of the data bag item. You can retrieve any attribute from a data bag item using the Hash notation hook['url'].
See also
Using search to find data bag items
You might want to execute code in your recipe multiple times—once for every data bag item like for each user or each HTTP end point.
You can use search to find certain data bag items and loop through search results to execute code multiple times.
Let's see how we can make our recipes more dynamic by searching for data bag items.
Getting ready
Follow the Getting ready and How to do it... (steps 1–4) sections, in the Using data bags section.
How to do it...
Let's create a recipe searching for data bag items and calling the http_request resource for everyone:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
search(:hooks, '*:*').each do |hook|
http_request 'callback' do
url hook['url']
end
end
How it works...
Our recipe is using the search method to retrieve all items from the data bag called hooks. The first parameter to the search method is the name of the data bag (as Ruby symbol). The second parameter is the search query—in our case we're looking for all data bag items by using *:*. Using the each iterator, we loop through all found data bag items. Inside the Ruby block, which gets executed for each item, we can access the item using the variable hook.
We create an http_request resource for each data bag item, passing the URL stored in the item as the url parameter to the resource. You can access arbitrary attributes of your data bag item using a Hash-like notation.
There's more...
You can use various search patterns to find certain data bag items, for example:
search(:hooks, "id:request_bin")
or
search(:hooks, "url:*request*)
See also
http://docs.opscode.com/chef/essentials_data_bags.html#using-search
Using encrypted data bag items
Data bags are a great way to store user and application-specific data. Before long you'll want to store passwords and private keys in data bags as well. But, you might (and should) be worried about uploading confidential data to a Chef Server.
Chef offers encrypted data bag items to enable you to put confidential data into data bags, reducing the implied security risk.
Getting ready
Make sure you have a Chef repository and can access your Chef Server.
How to do it...
Let's create and encrypt a data bag item and see how we can use it:
mma@laptop:~/chef-repo $ mkdir data_bags/accounts
mma@laptop:~/chef-repo $ subl data_bags/accounts/google.json
{
"id": "google",
"email": "some.one@gmail.com",
"password": "Oh! So secret?"
}
mma@laptop:~/chef-repo $ knife data bag create accounts
Created data_bag[accounts]
Note
Be careful! Using the --secret command line switch is dangerous, because it will show up in your shell history and in log files. Have a look at the following There's more... section to find out how to use a private key instead of a plain text secret.
mma@laptop:~/chef-repo $ knife data bag from file accountsgoogle.json --secret 'Open sesame!'
Updated data_bag_item[accounts::google]
mma@laptop:~/chef-repo $ knife data bag show accounts google
email:
cipher:
aes-256-cbc
encrypted_data:DqYu8DnI8E1XQ5I/jNyaFZ7LVXIzRUzuFjDHJGHymgxd9cbUJQ48nYJ3QHxi
3xyE
iv: B+eQ1hD35PfadjUwe+e18g==
version: 1
id: google
password:
cipher: aes-256-cbc
encrypted_data:m3bGPmp6cObnmHQpGipZYHNAcxJYkIfx4udsM8GPt7cT1ec0w+IuLZk0Q9F8
2pX0
iv: Bp5jEZG/cPYMRWiUX1UPQA==
version: 1
mma@laptop:~/chef-repo $ knife data bag show accounts google --secret 'Open sesame!'
email: some.one@gmail.com
id: google
password: Oh! So secret?
How it works...
Passing --secret to the knife command creating the data bag item encrypts the contents of the data bag.
Tip
The ID of the data bag item will not be encrypted, because the Chef Server needs it to work with the data bag item.
Chef uses a shared secret to encrypt and decrypt data bag items. Everyone having access to the shared secret will be able to decrypt the contents of the encrypted data bag item.
There's more...
Accessing encrypted data bag items from the command line with knife is usually not what you want. Let's have a look at how to use encrypted data bag items in real life.
Accessing encrypted data bag items from within recipes
To use encrypted data bag items in your recipe, use a code similar to the following:
google_account = Chef::EncryptedDataBagItem.load("accounts","google", "Open sesame!")
google_account["password"] # will give you the decrypted password
Using a private key file
Instead of passing the shared secret via the command line or hard coding it into your recipe (which is a really bad idea anyways), you can create an openssl format private key and pass its file location to the knife command:
Note
You can create an openssl format private key like this:
$ openssl genrsa -out data_bag_secret_key.pem 1024
mma@laptop:~/chef-repo $ knife data bag from file accountsgoogle.json --secret-file .chef/data_bag_secret_key.pem
The preceding command assumes that you have a file called data_bag_secret_key.pem in the .chef directory.
To enable your node to decrypt the data bag item, you need to scp your secret key file to your node and put it in the /etc/chef/ directory.
Note
The initial bootstrap procedure for a node will put the key in the right place on the node, if one already exists in your Chef repository.
Make sure that /etc/chef/client.rb points to your data_bag_secret_key.pem file:
encrypted_data_bag_secret "/etc/chef/data_bag_secret_key.pem"
Now, you can access the decrypted contents of your data bag items in your recipes without passing the secret to the load call:
google_account = Chef::EncryptedDataBagItem.load("accounts","google")
Chef will look for the file configured in client.rb and use the secret given there to decrypt the data bag item.
See also
Accessing data bag values from external scripts
Sometimes you cannot put a server under full Chef control (yet). In such cases, you might want to be able to access values managed in Chef data bags from scripts, which are not maintained by Chef. The easiest way to do this is to dump the data bag values (or any node values for that matter) into a JSON file and let your external script read them from there.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Create a data bag so that we can use its values later:
mma@laptop:~/chef-repo $ mkdir data_bags/servers
mma@laptop:~/chef-repo $ knife data bag create servers
Created data_bag[servers]
mma@laptop:~/chef-repo $ subl data_bags/servers/backup.json
{
"id": "backup",
"host": "10.0.0.12"
}
mma@laptop:~/chef-repo $ knife data bag from file serversbackup.json
Updated data_bag_item[servers::backup]
How to do it...
Let's create a JSON file containing data bag values using our cookbook so that external scripts can access those values:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
file "/etc/backup_config.json" do
owner "root"
group "root"
mode 0644
content data_bag_item('servers', 'backup')['host'].to_json
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-14T20:30:33+00:00] INFO: Processingfile[/etc/backup_config.json] action create(my_cookbook::default line 9)
[2013-03-14T20:30:34+00:00] INFO: entered create
[2013-03-14T20:30:34+00:00] INFO:file[/etc/backup_config.json] owner changed to 0
[2013-03-14T20:30:34+00:00] INFO:file[/etc/backup_config.json] group changed to 0
[2013-03-14T20:30:34+00:00] INFO:file[/etc/backup_config.json] mode changed to 644
[2013-03-14T20:30:34+00:00] INFO:file[/etc/backup_config.json] created file/etc/backup_config.json
...TRUNCATED OUTPUT...
user@server:~$ cat /etc/backup_config.json
"10.0.0.12"
How it works...
The file resource creates a JSON file in the /etc directory. It gets the file's content directly from the data bag by using the data_bag_item method. This method expects the name of the data bag as first argument and the name of the data bag item as second argument. We then access the host value from the data bag item and convert it to JSON.
The file resource uses this JSON-converted value as its content and writes it to disk.
Now any external script can read the value from that file.
There's more...
If you are sure that your data bag values don't get modified by the Chef Client run on the node, you could use the Chef API directly from your script.
See also
http://stackoverflow.com/questions/10318919/how-to-access-current-values-from-a-chef-data-bag
Getting information about the environment
Sometimes your recipes need to know details about the environment they are modifying. I'm not talking about Chef environments but about things like Linux kernel versions, existing users, or network interfaces.
Chef provides all this information via the node object. Let's have a look how to retrieve it.
Getting ready
Log in to any of your Chef-managed nodes and start the Chef Shell:
user@server:~$ sudo chef-shell --client
chef >
How to do it...
Let's play around with the node object and have a look at which information it stores:
chef > node.keys.sort
=> ["block_device", "chef_packages", "command", "counters", "cpu", "current_user", "dmi", "domain", "etc", "filesystem", "fqdn", "hostname", "idletime", "idletime_seconds", "ip6address", "ipaddress", "kernel", "keys", "languages", "lsb", "macaddress", "memory", "network", "ntp", "ohai_time", "os", "os_version", "platform", "platform_family", "platform_version", "recipes", "roles", "root_group", "tags", "uptime", "uptime_seconds", "virtualization"]
chef > node['network']['interfaces'].keys.sort
=> ["lo", "eth0"]
chef > node['etc']['passwd'].keys.sort
=> ["backup", "bin", "daemon", "games", "gnats", "irc", "libuuid", "list", "lp", "mail", "man", "messagebus", "news", "nobody", "ntp", "proxy", "root", "sshd", "sync", "sys", "syslog", "uucp", "vagrant", "vboxadd", "www-data"]
chef > node['etc']['passwd']['root']
=> {"dir"=>"/root", "gid"=>0, "uid"=>0, "shell"=>"/bin/bash", "gecos"=>"root"}
chef > node['lsb']['codename']
=> "precise"
chef > node['kernel']['modules'].keys.sort
=> ["dm_crypt", "drm", "e1000", "ext2", "i2c_piix4", "lp", "mac_hid", "microcode", "parport", "parport_pc", "ppdev", "psmouse", "serio_raw", "vboxguest", "vboxsf", "vboxvideo", "vesafb"]
How it works...
Chef uses Ohai to retrieve a node's environment. It stores the data found by Ohai with the node object in a Hash-like structure called a Mash. In addition to providing key-value pairs, it adds methods to the node object to query the keys directly.
Instead of using node['lsb']['codename'] you could use node.lsb.codename as well.
There's more...
You can use the exact same calls we used in Chef Shell inside your recipes.
See also
Ohai is responsible for filling the node with all that information. Read more about Ohai at:
http://docs.opscode.com/ohai.html
Writing cross-platform cookbooks
Imagine you have written a great cookbook for your Ubuntu node and now you need to run it on that CentOS server. Ouch. It will most probably fail miserably. Package names might be different, you need to use YUM instead of APT, and configuration files are in different places. Things get even worse if you want to run your cookbook on a Windows box.
Luckily, Chef provides you with a host of features to write cross-platform cookbooks. With just a few simple commands, you can make sure that your cookbook adapts to the platform your node is running on. Let's have a look how to do this.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Retrieve the node's platform and execute conditional logic in your cookbook depending on the platform:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
Log.info("Running on ubuntu") if node.platform['ubuntu']
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
Uploading my_cookbook [0.1.0]
Uploaded 1 cookbook.
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-03T20:07:39+00:00] INFO: Running on Ubuntu
...TRUNCATED OUTPUT...
Alternatively, if you are not interested in the specific platform but you only need to know whether you run on a Debian derivative, you can put the following line into your default recipe:
Log.info("Running on a debian derivative") ifplatform_family?('debian')
Upload, the modified cookbook and running Chef Client on a Ubuntu node would show:
[2013-03-03T20:16:14+00:00] INFO: Running on a debianderivative
How it works...
Ohai discovers the current node's operating system and stores it as platform attribute with the node object. You can access it like any other attribute using either Hash syntax:
node['platform']
or you can use method style syntax:
node.platform
Chef knows which operating systems belong together. You can use this knowledge by using the platform_family method from the Chef DSL.
You can then use basic Ruby conditionals, such as if, unless, or even case to make your cookbook do platform specific things.
There's more...
Let's have a closer look at what else is possible.
Avoiding case statements to set values based on platform
The Chef DSL offers the convenience methods value_for_platform and value_for_platform_family. You can use them to avoid complex case statements and use a simple Hash instead. The runit cookbook, for example, uses value_for_platform to pass the start command for the runit service to the execute resource:
execute "start-runsvdir" do
command value_for_platform(
"debian" => { "default" => "runsvdir-start" },
"ubuntu" => { "default" => "start runsvdir" },
"gentoo" => { "default" => "/etc/init.d/runit-start start" }
)
action :nothing
end
The command will be runsvdir-start on Debian, start runsvdir on Ubuntu, and will use an init.d script on Gentoo.
Tip
Some of the built-in resources have platform-specific providers. For example, the group resource uses one of the following providers depending on the platform:
Chef::Provider::Group::Dscl on Mac OS X
Chef::Provider::Group::Pw on FreeBSD
Chef::Provider::Group::Usermod on Solaris
Declaring support for specific operating systems in your cookbook's metadata
If your cookbook is written for a well-defined set of operating systems, you should list the supported platforms in your cookbook's metadata:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/metadata.rb
supports 'ubuntu'
If your cookbook supports multiple platforms, you can use a nice Ruby shortcut to list all the platforms as a Ruby array of strings (using the %w shortcut) and loop through that array to call supports for each platform:
%w(debian ubuntu redhat centos fedora scientific amazon oracle).each do |os|
supports os
end
See also
https://github.com/opscode-cookbooks/runit/blob/master/recipes/default.rb
Finding the complete list of operating systems you can use in cookbooks
You want to write cookbooks, which work on different operating systems such as Ubuntu, RedHat, Debian, or Windows.
Inside your cookbooks, you need to distinguish between those different platforms. And you need to tell your cookbook which platforms it supports. But, you don't know which platform values you can use inside your metadata.rb or your recipes.
In this section, we'll look at a very simple way to ask Chef which values for platform it defines.
How to do it...
Let's use plain Ruby to find out all possible values for platform and use a subset of those in our metadata.rb:
mma@laptop:~/chef-repo/cookbooks $ ruby -rubygems -rchef -e'puts Chef::Platform.platforms.keys.sort.join(", ")'
aix, amazon, arch, centos, debian, default, fedora,
...TRUNCATED OUTPUT...
ubuntu, windows, xenserver
mma@laptop:~/chef-repo/cookbooks $ sublmy_cookbook/metadata.rb
...
%w(debian ubuntu mac_os_x).each do |os|
supports os
end
How it works...
Chef maintains a set of supported operating system platforms it runs on in the Chef::Platform class. To query this class for the list of platforms, we use the Ruby command line.
We need to require rubygems and the chef by adding two -r parameters to the ruby call.
The -e parameter contains the Ruby code we want to execute. In our case, we use puts to print the result of our query to your console.
The Chef::Platform class holds a collection called platforms. We get its keys, sort them, and join the contents of the resulting Ruby array to a comma-separated string:
Chef::Platform.platforms.keys.sort.join(", ")
There's more...
Each platform in the Chef::Platforms collection has not only the platform name as key (this is what we used to display all supported platforms in the preceding example) but also a set of default providers.
Providers contain the platform-specific implementation details for resources. For example, the package resource has providers to use Apt on Ubuntu, but Yum on RedHat.
Note
Instead of using the Ruby command line, we can use the Chef classes in the Interactive Ruby shell (IRB) as well.
mma@laptop:~/chef_helpster $ irb
1.9.3p194 :001 > require 'chef'
=> true
1.9.3p194 :002 > Chef::Platform.platforms[:ubuntu]
=> {:default=>{:package=>Chef::Provider::Package::Apt,:service=>Chef::Provider::Service::Debian,:cron=>Chef::Provider::Cron, :mdadm=>Chef::Provider::Mdadm}}
You can change how your recipe works depending on the platform it runs on (example taken from Opscode's apache cookbook):
service "apache2" do
case node[:platform]
when "centos","redhat","fedora","suse"
service_name "httpd"
...TRUNCATED OUTPUT…
when "arch"
service_name "httpd"
end
supports value_for_platform(
"debian" => { ... },
"ubuntu" => { ... },
...TRUNCATED OUTPUT...
"default" => { ... }
)
action :enable
end
This version of the apache cookbook sets up the apache service with different names and commands depending on the platform and tells Chef which actions may be called to manage the apache service.
Chef sets the node attribute :platform according to the underlying operating system. You can use this node attribute to tailor your recipe code for each platform you need to.
See also
Making recipes idempotent by using conditional execution
Chef manages the configuration of your nodes. It is not simply an installer for new software but you will run Chef Client on existing nodes as well as new nodes.
If you run Chef Client on an existing node, you have to make sure that your recipes do not try to re-execute resources that have already reached the desired state.
Running resources repeatedly will be a performance issue at best and will break your servers at worst. Chef offers a way to tell resources to not run or only if a certain condition is met. Let's have a look how conditional execution of resources works.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's see how to use conditional execution in our cookbooks:
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/recipes/default.rb
http_request 'callback' do
url node['my_cookbook']['callback']['url']
only_if { node['my_cookbook']['callback']['enabled'] }
end
mma@laptop:~/chef-repo $ sublcookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['callback']['url'] ='http://www.opscode.com'
default['my_cookbook']['callback']['enabled'] = true
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-04T20:28:01+00:00] INFO: Processing http_request[callback] action get (my_cookbook::default line 9)
[2013-03-04T20:28:02+00:00] INFO: http_request[callback] GET to http://www.opscode.com successful
...TRUNCATED OUTPUT...
How it works...
You can use only_if and not_if with every resource. In our example we passed it a Ruby block. The Ruby block simply queried a node attribute. Because we set the enabled attribute to true, the Ruby block evaluates to true. And, because we used only_if, the resource executes.
You can use the full power of Ruby to find out whether the resource should run or not. Instead of using the curly braces, you can use do … end to surround a multiline Ruby block.
There's more...
Instead of passing a Ruby block, you can pass a shell command as well:
http_request 'callback' do
url node['my_cookbook']['callback']['url']
only_if "test -f /etc/passwd"
end
In this example, Chef will execute the test command in a shell. If the shell command returns the exit code 0, the resource will run.
See also
Chapter 5. Working with Files and Packages
"The file is a gzipped tar file. Your browser is playing tricks with you and trying to be smart."
– Rasmus Lerdorf
In this chapter, we will cover the following:
Introduction
Moving files around and installing software are the most common tasks when setting up your nodes. In this chapter, we'll have a look at the various ways Chef supports you in dealing with files and software packages.
Creating configuration files using templates
The term Configuration Management already says it loud and clear: your recipes manage the configuration of your nodes. This means managing configuration files in most cases. Chef uses templates to dynamically create configuration files from given values. It takes such values from data bags or attributes, or even calculates them on the fly before passing them into the template.
Let's see how we can create configuration files using templates.
Getting ready
Make sure you have a cookbook named my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's use a template resource to create a configuration file:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
template "/etc/logrotate.conf" do
source "logrotate.conf.erb"
variables(
how_often: "daily",
keep: "31"
)
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/logrotate.conf.erb
<%= @how_often -%>
rotate <%= @keep -%>
create
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-05T21:40:58+00:00] INFO: Processing template[/etc/logrotate.conf] action create (my_cookbook::default line 9)
[2013-03-05T21:41:04+00:00] INFO: template[/etc/logrotate.conf] backed up to /srv/chef/cache/etc/logrotate.conf.chef-20130305214104
[2013-03-05T21:41:04+00:00] INFO: template[/etc/logrotate.conf] updated content
...TRUNCATED OUTPUT...
user@server:~$ cat /etc/logrotate.conf
daily
rotate 31
create
How it works...
If you want to manage any configuration file with Chef, you have to follow the given steps:
<%= @variable_name -%>
Tip
Whenever possible, try using attributes instead of hardcoding values in your recipes.
There's more...
Be careful when a package update makes changes to default configuration files. You need to be aware of those changes and merge them manually into your hand-crafted configuration file template.
Otherwise, you'll lose all the configuration settings you did using Chef.
Tip
It's usually a good idea to add a comment at the top of your configuration file, saying it is managed by Chef, to avoid accidental changes.
See also
Using pure Ruby in templates for conditionals and iterations
Switching options on and off in a configuration file is a pretty common thing. Since Chef is using ERB as its template language, you can use pure Ruby to control the flow in your templates. You can use conditionals or even loops in your templates.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's create a hypothetical configuration file listing the IP addresses of a given set of backend servers. We only want to print that list if the flag called enabled is set to true:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
template "/tmp/backends.conf" do
mode "0444"
owner "root"
group "root"
variables({
:enabled => true,
:backends => ["10.0.0.10", "10.0.0.11", "10.0.0.12"]
})
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/backends.conf.erb
<%- if @enabled %>
<%- @backends.each do |backend| %>
<%= backend %>
<%- end %>
<%- else %>
No backends defined!
<%- end %>
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-18T20:40:43+00:00] INFO: Processing template[/tmp/backends.conf] action create (my_cookbook::default line 9)
[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf] updated content
[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf] owner changed to 0
[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf] group changed to 0
[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf] mode changed to 444
...TRUNCATED OUTPUT...
user@server:~$ cat /tmp/backends.conf
10.0.0.10
10.0.0.11
10.0.0.12
How it works...
You can use plain Ruby in your templates. We mix two concepts in our example. First, we use an if-else block to decide whether we should print a list of IP addresses or just a message. Second, if we are going to print the list of IP addresses, we will use a loop to go through all of them.
Let's have a look at the conditional:
<%- if @enabled %>
...
<%- else %>
No backends defined!
<%- end %>
We pass either true or false as the value of the variable called enabled. You can access the given variables directly in your template. If we pass true, the first block of Ruby code will be executed while rendering the template. If we pass false, Chef will render the string No backends defined! as the content of the file.
Tip
You use <%- %> if you want to embed Ruby logic into your template file.
Now, let's see how we loop through the list of IPs:
<%- @backends.each do |backend| %>
<%= backend %>
<%- end %>
We pass an array of strings as the value of the backend variable. In the template, we use the each iterator to loop through the array. While looping, Ruby assigns each value to the variable we define as the looping variable between the | characters. Inside the loop, we simply print the value of each array element.
While it is possible to use the full power of Ruby inside your templates, it is a good idea to keep them as simple as possible. It is better to put more involved logic into your recipes and pass pre-calculated values to the templates. You should limit yourself to simple conditionals and loops to keep templates simple.
There's more...
You can use conditionals to print strings such as in the following example:
<%= "Hello world!" if @enabled -%>
If you use this in your template, the string Hello world! will be printed only if the variable enabled is set to true.
See also
Installing packages from a third-party repository
Even though the Ubuntu package repository contains many up-to-date packages, you might bump into situations where either the package you need is missing or is outdated. In such cases, you can either use third-party repositories or your own (containing self-made packages). Chef makes it simple to use additional package repositories with the apt cookbook,if you're on Debian or Ubuntu.
Tip
Chef provides a yum resource, if you're on RedHat/CentOS/Fedora/Scientific
Getting ready
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Retrieve the apt cookbook:
mma@laptop:~/chef-repo $ knife cookbook site install apt
...TRUNCATED OUTPUT...
Cookbook apt version 1.9.0 successfully installed
How to do it...
Let's have a look at how you can install the s3cmd tool from the repository at s3tools.org:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "apt"
apt_repository "s3tools" do
uri "http://s3tools.org/repo/deb-all"
components ["stable/"]
key "http://s3tools.org/repo/deb-all/stable/s3tools.key"
action :add
end
package "s3cmd"
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "apt"
mma@laptop:~/chef-repo $ knife cookbook upload apt
Uploading apt [1.9.0]
Uploaded 1 cookbook.
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ dpkg -l s3cmd
No packages found matching s3cmd.
user@server:~$ apt-cache showpkg s3cmd
Package: s3cmd
Versions:
1.0.0-1 (/var/lib/apt/lists/us.archive.ubuntu.com_ubuntu_dists_precise_universe_binary-amd64_Packages)
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-18T21:07:14+00:00] INFO: Processing apt_repository[s3tools] action add (my_cookbook::default line 11)
[2013-03-18T21:07:14+00:00] INFO: Processing remote_file[/srv/chef/file_store/s3tools.key] action create (/srv/chef/file_store/cookbooks/apt/providers/repository.rb line 53)
...TRUNCATED OUTPUT...
[2013-03-18T21:07:19+00:00] INFO: execute[apt-get update] ran successfully
[2013-03-18T21:07:19+00:00] INFO: Processing package[s3cmd] action install (my_cookbook::default line 18)
...TRUNCATED OUTPUT...
user@server:~$ apt-cache showpkg s3cmd
Package: s3cmd
Versions:
1.0.0-4 (/var/lib/apt/lists/s3tools.org_repo_deb-all_stable_Packages) (/var/lib/dpkg/status)
user@server:~$ dpkg -l
...TRUNCATED OUTPUT...
ii s3cmd 1.0.0-4 The ultimate Amazon S3 and CloudFront command line client
How it works...
The apt cookbook provides an easy way to deal with additional APT repositories. We install it from the community cookbook site using Knife before getting started.
Tip
You could use Berkshelf as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure instead of using knife cookbook site install.
We need to tell Chef that we want to use it by adding the depends call to our cookbook's metadata.rb file.
The apt cookbook defines the apt_repository resource. To be able to use it, we need to include the apt recipe in our default recipe:
include_recipe "apt"
As soon as we've the apt cookbook available, we can add the third-party repository using the apt_repository resource:
apt_repository "s3tools" do
uri "http://s3tools.org/repo/deb-all"
components ["stable/"]
key "http://s3tools.org/repo/deb-all/stable/s3tools.key"
action :add
end
In our case, we choose to add the stable branch only.
After adding the third-party repository, we can install the desired package:
package "s3cmd"
See also
Installing software from source
If you need to install a piece of software that is not available as a package for your platform, you will need to compile it yourself.
In Chef, you can easily do this by using a script resource. What is more challenging is to make such a script resource idempotent.
In the following section, we will see how to do both.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's take nginx as a well-known example for installing it from source:
Note
The nginx community cookbook has a recipe for installing nginx from source. The following example is only to illustrate how you can install any software from source.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
version = "1.3.9"
bash "install_nginx_from_source" do
cwd Chef::Config['file_cache_path']
code <<-EOH
wget http://nginx.org/download/nginx-#{version}.tar.gz
tar zxf nginx-#{version}.tar.gz &&
cd nginx-#{version} &&
./configure && make && make install
EOH
not_if "test -f /usr/local/nginx/sbin/nginx"
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-19T21:21:18+00:00] INFO: Processing bash[compile_nginx_source] action run (my_cookbook::default line 15)
[2013-03-19T21:21:44+00:00] INFO: bash[compile_nginx_source] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ /usr/local/nginx/sbin/nginx -v
nginx version: nginx/1.3.9
How it works...
The bash resource executes only if the nginx executable is not found in the /usr/local/nginx/sbin directory. Our not_if block tests for this.
Before it runs the script given as code, it changes into the working directory given as cdw. We use Chef's file cache directory instead of /tmp because /tmp might get deleted between reboots. To avoid downloading the source tarball again, we want to keep it at a permanent location.
Tip
Usually, you would retrieve the value for the version variable from an attribute defined in my_cookbook/attributes/default.rb.
The script itself simply unpacks the tarball, configures, prepares, and installs nginx. We chain the commands using && to avoid running all the later commands if an earlier one fails.
Tip
<<-EOH
...
EOH
The preceding code is a Ruby construct for denoting multiline strings.
There's more...
Right now, the recipe will download the source tarball repeatedly even if it is already there (at least as long as the nginx binary is not found). You can use the remote_file resource instead of calling wget in your bash script. remote_file is idempotent—it will only download the file if it needs to.
Change your default recipe in the following way to use the remote_file resource:
version = "1.3.9"
remote_file "fetch_nginx_source" do
source "http://nginx.org/download/nginx-#{version}.tar.gz"
path "#{Chef::Config['file_cache_path']}/nginx-#{version}.tar.gz"
end
bash "install_nginx_from_source" do
cwd Chef::Config['file_cache_path']
code <<-EOH
tar zxf nginx-#{version}.tar.gz &&
cd nginx-#{version} &&
./configure --without-http_rewrite_module &&
make && make install
EOH
not_if "test -f /usr/local/nginx/sbin/nginx"
end
See also
Running a command when a file is updated
If your node is not under complete Chef control, it might be necessary to trigger commands when Chef changes a file. For example, you might want to restart a service that is not managed by Chef, when its configuration file (which is managed by Chef) changes. Let's see how you can achieve this with Chef.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's create an empty file as trigger and run a bash command, if that file changes:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
template "/tmp/trigger" do
notifies :run, "bash[run_on_trigger]", :immediately
end
bash "run_on_trigger" do
user "root"
cwd "/tmp"
code "echo 'Triggered'"
action :nothing
end
mma@laptop:~/chef-repo $ touch cookbooks/my_cookbook/templates/default/trigger.erb
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-20T20:29:32+00:00] INFO: Processing template[/tmp/trigger] action create (my_cookbook::default line 9)
[2013-03-20T20:29:33+00:00] INFO: template[/tmp/trigger] updated content
[2013-03-20T20:29:33+00:00] INFO: template[/tmp/trigger] sending run action to bash[run_on_trigger] (immediate)
[2013-03-20T20:29:33+00:00] INFO: Processing bash[run_on_trigger]
action run (my_cookbook::default line 13)
[2013-03-20T20:29:33+00:00] INFO: bash[run_on_trigger] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-20T20:29:58+00:00] INFO: Processing template[/tmp/trigger] action create (my_cookbook::default line 9)
[2013-03-20T20:29:58+00:00] INFO: Processing bash[run_on_trigger] action nothing (my_cookbook::default line 13)
...TRUNCATED OUTPUT...
How it works...
We define a template resource and tell it to notify our bash resource immediately. Chef will notify the bash resource only if the template resource changed the file. To make sure that the bash script runs only when notified, we define its action as nothing.
We see in the output of the first Chef Client run (which created the trigger file) that the bash script was executed:
bash[run_on_trigger] ran successfully
We see in the output of the second Chef Client run that in the preceding message is missing. Chef did not execute the script because it did not modify the trigger file.
There's more...
Instead of a template, you can let a file or remote_file resource trigger a bash script. When compiling programs from source, you will download the source tarball using a remote_file resource. This resource will trigger a bash resource, which will then extract, compile, and install the program.
See also
Distributing directory trees
You need to upload a complete directory structure to your nodes. It might be a static website or some backup data, which is needed on your nodes. You want Chef to make sure that all the files and directories are there on your nodes. Chef offers the remote_directory resource to handle this case. Let's see how you can use it.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
How to do it...
Let's upload a directory with some files to our node:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
remote_directory "/tmp/chef.github.com" do
files_backup 10
files_owner "root"
files_group "root"
files_mode 00644
owner "root"
group "root"
mode 00755
end
mma@laptop:~/chef-repo $ mv chef.github.com cookbooks/my_cookbook/files/default
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-22T08:36:45+00:00] INFO: Processing remote_directory[/tmp/chef.github.com] action create (my_cookbook::default line 9)
[2013-03-22T08:36:45+00:00] INFO: remote_directory[/tmp/chef.github.com] created directory /tmp/chef.github.com
[2013-03-22T08:36:45+00:00] INFO: remote_directory[/tmp/chef.github.com] owner changed to 0
[2013-03-22T08:36:45+00:00] INFO: remote_directory[/tmp/chef.github.com] group changed to 0
[2013-03-22T08:36:45+00:00] INFO: remote_directory[/tmp/chef.github.com] mode changed to 755
...TRUNCATED OUTPUT...
[2013-03-22T08:36:46+00:00] INFO: Processing cookbook_file[/tmp/chef.github.com/images/body-bg.png] action create (dynamically defined)
[2013-03-22T08:36:46+00:00] INFO: cookbook_file[/tmp/chef.github.com/images/body-bg.png] owner changed to 0
[2013-03-22T08:36:46+00:00] INFO: cookbook_file[/tmp/chef.github.com/images/body-bg.png] group changed to 0
[2013-03-22T08:36:46+00:00] INFO: cookbook_file[/tmp/chef.github.com/images/body-bg.png] mode changed to 644
[2013-03-22T08:36:46+00:00] INFO: cookbook_file[/tmp/chef.github.com/images/body-bg.png] created file /tmp/chef.github.com/images/body-bg.png
...TRUNCATED OUTPUT...
user@server:~$ ls -l /tmp/chef.github.com
total 16
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images
4 -rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets
How it works...
You need to put the directory that you want to distribute to your nodes into your cookbook under the default of your cookbook's files directory. The remote_directory resource picks it up from there and uploads it to your nodes. By default, the name of the resource (in our example /tmp/chef.github.com) will act as the target directory.
Tip
Be careful not to put very heavy directory structures into your cookbooks. You will not only need to distribute them to every node but also to your Chef Server.
There's more...
While you could use the remote_directory resource for deploying your applications, there are better ways to do the same. Either you could use any of Chef's application cookbooks that are available, for example, for Ruby or PHP applications, or you use tools such as Capistrano or Mina for deployment.
See also
Cleaning up old files
What happens if you want to remove a software package from your node? You have to be aware of the fact that Chef is not automatically removing stuff from your nodes. Removing a resource from your cookbook does not mean that Chef will remove the resource from your nodes. You need to do this by yourself.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you have a remote_directory resource in my_cookbook as described in the Distributing directory trees section.
How to do it...
Let's remove the remote_directory resource from my_cookbook and see what happens:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
there used to be the remote_directory resource
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
...TRUNCATED OUTPUT...
user@server:~$ ls -l /tmp/chef.github.com
total 16
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images
4 -rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets
Now, let's explicitly remove the directory structure:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
directory "/tmp/chef.github.com" do
action :delete
recursive true
end
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
2013-03-25T21:05:20+00:00] INFO: Removing cookbooks/my_cookbook/files/default/chef.github.com/javascripts/main.js from the cache; it is no longer needed by chef-client.
[2013-03-25T21:05:20+00:00] INFO: Removing cookbooks/my_cookbook/files/default/chef.github.com/stylesheets/print.css from the cache; it is no longer needed by chef-client.
...TRUNCATED OUTPUT...
user@server:~$ ls -l /tmp/chef.github.com
ls: cannot access /tmp/chef.github.com: No such file or directory
How it works...
Removing a resource from your cookbook will lead to Chef not knowing anything about it anymore. Chef does not touch the things that are not defined in cookbooks, even if Chef created them once.
To clean up stuff you created using Chef, you need to put the reverse actions into your cookbooks. If you created a directory using Chef, you need to explicitly delete it by using the directory resource with action :delete in your cookbook.
The directory resource is idempotent. Even if the directory is already deleted, it will run fine and simply do nothing.
There's more...
If you upload a directory structure using the remote_directory resource, you can use the purge parameter to delete files within that directory structure, if they are no longer in your cookbook. In this case, you do not need to delete each file by using a file resource with the delete action:
remote_directory "/tmp/chef.github.com" do
...
purge true
end
See also
Distributing different files based on the target platform
If you have nodes with different operating systems such as Ubuntu and CentOS, you might want to deliver different files to each of them. There might be differences in the necessary configuration options and the like. Chef offers a way for files and templates to differentiate which version to use based on a node's platform.
Getting ready
Make sure you have a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Che f Infrastructure.
How to do it...
Let's add two templates to our cookbook and see which one gets used:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
template "/tmp/message" do
source "message.erb"
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/message.erb
Hello from default template!
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/ubuntu-12.04/message.erb
Hello from Ubuntu 12.04!
mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-03-25T21:31:02+00:00] INFO: template[/tmp/message] updated content
...TRUNCATED OUTPUT...
user@server:~$ sudo cat /tmp/message
Hello from Ubuntu 12.04!
How it works...
Chef tries to use the most specific template for a given platform by looking for templates in the following order, if the given platform would be Ubuntu 12.04:
my_cookbook/templates/my_node.example.com/message.erb
my_cookbook/templates/ubuntu-12.04/message.erb
my_cookbook/templates/ubuntu-12/message.erb
my_cookbook/templates/ubuntu/message.erb
my_cookbook/templates/default/message.erb
Chef takes the first hit. If there is a file in a directory with the same name as the fully qualified domain name (FQDN) of the node, it will take that one.
If not, it will look through the other directories (if existing) like ubuntu or ubuntu-12.04, and so on.
The only directory that is mandatory, is the default directory.
See also
Chapter 6. Users and Applications
"The system should treat all user input as sacred."
– Jef Raskin
In this chapter, we will cover the following:
Introduction
In this chapter, we'll see how to manage the user accounts on your nodes with Chef. This is one of the fundamental things you can start your infrastructure automation efforts with.
After dealing with users, we'll have a look at how to install and manage more advanced applications. Our examples are mainly covering a web application stack using nginx as a web server, MySQL as the database, and WordPress or Ruby on Rails for the web application.
We'll close the chapter with showing you how to manage your local workstation with Chef.
Creating users from data bags
When managing a set of servers it's important to make sure that the right people (and only them) have access to them. You definitely don't want a shared account whose password is known by everyone. You don't want to hardcode any users into your recipes either because you want to separate logic and data.
Chef helps you to manage users on your nodes using data bags for your users and to let a recipe create and remove the users accordingly.
Let's have a look at how you can do that.
Getting ready
Make sure you've a cookbook named my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
Make sure you've a public SSH key available for your user by following the instructions at: http://git-scm.com/book/en/Git-on-the-Server-Generating-Your-SSH-Public-Key
How to do it...
First, we need to set up the data bag and at least one data bag item for our first user:
mma@laptop:~/chef-repo $ knife data bag create users
Created data_bag[users]
mma@laptop:~/chef-repo $ mkdir data_bags/users
mma@laptop:~/chef-repo $ subl data_bags/users/mma.json
{
"id": "mma",
"ssh_keys": [
"ssh-rsa AAA345...bla== mma@laptop"
],
"groups": ["staff"],
"shell": "\/bin\/bash"
}
mma@laptop:~/chef-repo $ knife data bag from file users mma.json
Updated data_bag_item[users::mma]
Now it's time to set up the recipe to manage our users:
Tip
Because the Chef Server indexes data bags, it can take a few minutes until a new data bag is available for use. If you encounter an error, please wait a few minutes and then try again.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
depends "users"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "users"
users_manage "staff" do
group_id 50
action [:remove, :create]
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
- create user user[mma]
...TRUNCATED OUTPUT...
- alter group group[staff]
- replace group members with new list of members
...TRUNCATED OUTPUT...
user@server:~$ fgrep mma /etc/passwd
mma:x:1000:1001::/home/mma:/bin/bash
user@server:~$ fgrep staff /etc/group
staff:x:50:mma
How it works...
The users cookbook requires that you create a users data bag and one data bag item for each user. In that data bag item, you define the attributes of the user: groups, shell, and so on. You even can include an "action" attribute, which defaults to "create" but could be "remove" as well.
To be able to manage users, you need to include it as a dependency in your cookbook's metadata. In your recipe you include the users cookbook default recipe to be able to use the manage_users Light Weight Resource Provider (LWRP) provided by the users cookbook.
The manage_users LWRP takes its name attribute "staff" as the group name it should manage. It searches for data bag items having that group in their groups entry and uses every entry found to create those users and groups.
Tip
The manage_users LWRP replaces group members—existing (non-Chef managed) users will get thrown out of the given group (bad, if you manage the sudo group on Vagrant).
By passing both actions :create and :remove into the LWRP, we make sure that it searches for both: users to remove and users to add.
There's more...
Let's have a look at how you can remove a user:
mma@laptop:~/chef-repo $ subl data_bags/users/mma.json
{
"id": "mma",
"ssh_keys": [
"ssh-rsa AAA345...bla== mma@laptop"
],
"groups": ["staff"],
"shell": "\/bin\/bash",
"action": "remove"
}
mma@laptop:~/chef-repo $ knife data bag from file users mma.json
Updated data_bag_item[users::mma]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
- remove user user[mma]
...TRUNCATED OUTPUT...
- alter group group[staff]
- replace group members with new list of members
...TRUNCATED OUTPUT...
user@server:~$ fgrep mma /etc/passwd
...NO OUTPUT...
Tip
If the user you want to remove is currently logged in, you will get an error. This happens because the underlying operating system command userdel cannot remove the user (and exits with return code 8):
Chef::Exceptions::Exec

userdel mma returned 8, expected 0
See also
Securing the Secure Shell Daemon (SSHD)
Depending on your Linux flavor, the ssh daemon might listen on all network interfaces on the default port and allow root and password logins.
This default configuration is not very safe. Automated scripts can try to guess the root password. You're at the mercy of the strength of your root passwords.
It's a good idea to make things stricter. Let's see how you can do this.
Getting ready
Create a user who can log in using his ssh key instead of a password. Doing this with Chef is described in the Creating users from data bags section.
Make sure you have a cookbook named my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
Tip
Attention: Configuring sshd might lock you out of your system. Make sure you've an open ssh connection with root access to fix what an error in your cookbook might have broken!
How to do it...
We'll secure sshd by disabling root login (you should use sudo instead) and by disabling password logins. Users should only be able to log in using their ssh key.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "openssh"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
node.default['openssh']['server']['permit_root_login'] = "no"
node.default['openssh']['server']['password_authentication'] = "no"
include_recipe 'openssh'
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
* template[/etc/ssh/sshd_config] action create[2013-03-29T19:42:38+00:00] INFO: Processing template[/etc/ssh/sshd_config] action create (openssh::default line 66)
...TRUNCATED OUTPUT...
[2013-03-29T19:42:38+00:00] INFO: service[ssh] restarted
...TRUNCATED OUTPUT...
user@server:~$ cat /etc/ssh/sshd_config
Generated by Chef for server
AuthorizedKeysFile %h/.ssh/authorized_keys
ChallengeResponseAuthentication no
PermitRootLogin no
PasswordAuthentication no
UsePAM yes
...TRUNCATED OUTPUT...
How it works...
The openssh cookbook offers attributes for most configuration parameters in ssh_config and sshd_config. We override the default values in our cookbook and include the openssh default recipe.
The order is significant here because this way the openssh recipe will use our overridden values instead of its defaults.
The openssh cookbook writes the /etc/ssh/sshd_config file and restarts the sshd service. After running this recipe, you will no longer be able to SSH into the node using a password.
There's more...
If your nodes are connected to a Virtual Private Network (VPN) by using a second network interface, it's a good idea to bind sshd to that secure network only. That way you block anyone from the public Internet trying to hack your sshd.
You can override the listen_address attribute in your cookbook:
node.default['openssh']['server']['listen_address']
If your nodes need to be accessible via the Internet, you might want to move sshd to a higher port to get rid of the automated attacks:
node.default['openssh']['server']['port'] = '6222'
In this case, you need to use -p 6222 with your ssh commands to be able to connect to your nodes.
Moving your sshd to a non-privileged port is adding one layer of security, but comes at the cost that you move from a privileged port to a non-privileged port on your node. This holds the risk that someone on your box highjacks that port. Read more about the implications at: http://www.adayinthelifeof.nl/2012/03/12/why-putting-ssh-on-another-port-than-22-is-bad-idea/
See also
Enabling passwordless sudo
You've secured your sshd so that your users can only log in with their own user accounts instead of root. Additionally, you've made sure that your users do not need a password but are forced to use their private keys for authentication.
But once authenticated, they want to administer the system. That's why it is a good idea to have sudo installed on all boxes. Sudo enables non-root users to execute commands as root, if they're allowed to. Sudo will log all such command executions.
To make sure that your users don't need passwords here either you should configure sudo for passwordless logins. Let's have a look at how to do that.
Getting ready
Make sure you've a cookbook named my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's make Chef modify the sudo configuration to enable passwordless sudo for the staff group:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "sudo"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
Tip
Vagrant users: If you are working with a Vagrant-managed VM, make sure to include the vagrant group in the sudo configuration. Otherwise, your vagrant user will not be able to sudo anymore.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
node.default['authorization']['sudo']['passwordless'] = true
node.default['authorization']['sudo']['groups'] = ['staff', 'vagrant']
include_recipe 'sudo'
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-12T19:48:51+00:00] INFO: Processing template[/etc/sudoers] action create (sudo::default line 41)
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] backed up to /srv/chef/cache/etc/sudoers.chef-20130412194851
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] updated content
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] owner changed to 0
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] group changed to 0
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] mode changed to 440
...TRUNCATED OUTPUT...
user@server:~$ sudo cat /etc/sudoers
...
Members of the group 'staff' may gain root privileges
%staff ALL=(ALL) NOPASSWD:ALL
Members of the group 'vagrant' may gain root privileges
%vagrant ALL=(ALL) NOPASSWD:ALL
How it works...
The sudo cookbook rewrites the /etc/sudoers file using the attribute values we set in the node. In our case, we set:
node.default['authorization']['sudo']['passwordless'] = true
This will tell the sudo cookbook that we want to enable our users to sudo without any password.
Then, we tell the sudo cookbook which groups should have passwordless sudo rights:
node.default['authorization']['sudo']['groups'] = ['staff', 'vagrant']
The last step is to include the sudo cookbook's default recipe to let it install and configure sudo on your nodes:
include_recipe 'sudo'
There's more...
By using the LWRP from the sudo cookbook, you can manage each group or user individually. The LWRP will place configuration fragments inside /etc/sudoers.d. You can use this to use your own template for the sudo configuration:
sudo 'mma' do
template 'staff_member.erb' # local cookbook template
variables :cmds => ['/etc/init.d/ssh restart']
end
This snippet assumes that you have my_cookbook/templates/default/staff_member.erb in place.
See also
Managing NTP
Your nodes should always have synchronized clocks, if nothing else because Chef Server requires clients' clocks to be synchronized with it. This is required because the authentication of clients is based on a time window to prevent man-in-the-middle attacks.
NTP is there to synchronize your nodes' clocks with its upstream peers. It usually uses a set of trusted upstream peers so that it gets a reliable timing signal.
It's a good idea to put the installation of NTP into a role, which you assign to every node. Bugs caused by clocks running are not nice to track down. Better avoid them in the first place by using NTP on every node.
Getting ready
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including the ntp cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'ntp'
Install the ntp cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/
Using ntp (1.3.2)
...TRUNCATED OUTPUT...
Upload the ntp cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading ntp (1.3.2) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
How to do it...
Let's create a role called "base", which ensures that your nodes will synchronize their clocks using NTP:
mma@laptop:~/chef-repo $ subl roles/base.rb
name "base"
run_list "recipe[ntp]"
default_attributes ("ntp" => {
"servers" => ["0.pool.ntp.org", "1.pool.ntp.org", "2.pool.ntp.org"]
})
mma@laptop:~/chef-repo $ knife role from file base.rb
Updated Role base!
mma@laptop:~/chef-repo $ knife node edit server
...
"run_list": [
"role[base]"
]
...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-16T18:22:36+00:00] INFO: service[ntp] restarted
...TRUNCATED OUTPUT...
user@server:~$ /etc/init.d/ntp status
* NTP server is running
How it works...
The ntp cookbook installs the required packages for your node's platform and writes a configuration file. You can influence the configuration by setting default attributes in the ntp namespace. In our preceding example, we configured the upstream NTP servers for our node to query.
Tip
If you're on Debian or Ubuntu, the ntp cookbook installs ntpdate as well. ntpdate is there to quickly synchronize and set a node's date and time.
There's more...
The ntp cookbook contains an ntp::disable recipe and an ntp::undo recipe as well. You can disable the NTP service by adding ntp::disable to your node's run list, and you can completely remove NTP from your node by adding ntp::undo to your node's run list.
See also
Managing nginx
Suppose you need to set up a website that handles a lot of traffic simultaneously. nginx is a web server designed to handle high loads and is used by a lot of big web companies such as Facebook, Dropbox, and WordPress.
You'll find nginx packages in most major distributions, but if you want to extend nginx using modules, you'll need to compile nginx from source.
In this section, we'll configure the nginx community cookbook to just do that.
Getting ready
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including the nginx cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'nginx'
Install the nginx cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/
Using nginx (1.7.0)
...TRUNCATED OUTPUT...
Upload the nginx cookbook to your Chef Server:
mma@laptop:~/chef-repo $ berks upload
Using nginx (1.7.0)
...TRUNCATED OUTPUT...
Uploading nginx (1.7.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
How to do it...
Let's set up a role and configure how we want to build nginx:
mma@laptop:~/chef-repo $ subl roles/web_server.rb
name "web_server"
run_list "recipe[nginx::source]"
default_attributes ("nginx" => {
"init_style" => "init",
"enable_default_site" => false,
"upload_progress" => {
"url" => "https://github.com/masterzen/nginx-upload-progress-module/tarball/v0.9.0"
},
"source" => {
"modules" => ["upload_progress_module"]
}
})
mma@laptop:~/chef-repo $ knife role from file web_server.rb
Updated Role web_server!
mma@laptop:~/chef-repo $ knife node edit server
...
"run_list": [
"role[web_server]"
]
...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-19T07:40:35+00:00] INFO: Loading cookbooks [apt, build-
essential, nginx, ohai, yum]
...TRUNCATED OUTPUT...
[2013-04-19T07:41:47+00:00] INFO: service[nginx] restarted
...TRUNCATED OUTPUT...
user@server:~$ sudo nginx -V
nginx version: nginx/1.2.6
built by gcc 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)
TLS SNI support enabled
configure arguments: --prefix=/opt/nginx-1.2.6 --conf-path=/etc/nginx/nginx.conf --with-http_ssl_module --with-http_gzip_static_module --add-module=/srv/chef/file_store/nginx_upload_progress/7b3f81d30cd3e8af2c343b73d8518d2373b95aeb3d0243790991873a3d91d0c5
How it works...
We configure how we want to use nginx in our new role, web_server. First, we decide that we want to install nginx from source, because we want to add an additional module. We do this by adding the nginx::source recipe to the run list:
run_list "recipe[nginx::source]"
Then, we set the attributes necessary for our source build. They all live in the nginx namespace:
default_attributes ("nginx" => {
...
})
As we want to use the default way of starting the nginx service on Ubuntu, we set the init_style to init. That will create startup scripts for init.d.
"init_style" => "init",
Other options would have been to use runit or bluepill among others.
Then, we have to tell the nginx recipe where to find the source code for the upload_progress module:
"upload_progress" => {
"url" => "https://github.com/masterzen/nginx-upload-progress-module/tarball/v0.9.0"
},
Finally, we've to instruct the nginx recipe to compile nginx with the upload_progress_module enabled:
"source" => {
"modules" => ["upload_progress_module"]
}
After defining the role, we have to upload it to the Chef Server and to add it to the node's run list. Running Chef Client on the node will now create all necessary directories, download all required sources, and build nginx with the module enabled.
The nginx cookbook will create a default site by default. You can check its configuration here:
user@server:~$ sudo nginx -V
There's more...
If you only want to use your distribution's default nginx package, you can use the nginx default recipe instead of nginx::source in your role's run list:
run_list "recipe[nginx]"
If you want to disable the default site, you need to set the attribute accordingly:
"default_site_enabled" => false
You'll find all tunable configuration parameters in the nginx cookbook's attributes file. You can modify them according to preceding examples.
Tip
The nginx cookbook sets up handling of sites and its configuration similar to Debian's way of configuring Apache2. You can use nxdissite and nxensite to disable and enable your sites, which you find under /etc/nginx/sites-available and /etc/nginx/sites-enabled respectively.
You can set up nginx as reverse proxy using the application_nginx cookbook.
See also
Creating nginx sites
Assuming you've nginx installed, you want to manage your websites with Chef. You need to create an nginx configuration file for your website and upload your HTML file(s). Let's see how to do this.
Getting ready
Make sure you've a cookbook named my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
mma@laptop:~/chef-repo $ subl roles/web_server.rb
name "web_server"
run_list "recipe[my_cookbook]"
default_attributes "nginx" => {
"init_style" => "init",
"enable_default_site" => false
}
mma@laptop:~/chef-repo $ knife role from file web_server.rb
Updated Role web_server!
mma@laptop:~/chef-repo $ knife node edit server
...
"run_list": [
"role[web_server]"
]
...
How to do it...
Let's put together all the code to configure your site in nginx and to upload a sample index.html file:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "nginx"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "nginx::source"
app_name = "my_app"
app_home = "/srv/#{app_name}"
template "#{node[:nginx][:dir]}/sites-available/#{app_name}" do
source "nginx-site-#{app_name}.erb"
owner "root"
group "root"
mode "0644"
variables :app_home => app_home
notifies :restart, resources(:service => "nginx")
end
directory "#{app_home}/public" do
recursive true
end
file "#{app_home}/public/index.html" do
content "<h1>Hello World!</h1>"
end
nginx_site "#{app_name}"
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/nginx-site-my_app.erb
server {
listen 80;
server_name _;
root <%= @app_home %>/public;
}
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-22T20:18:46+00:00] INFO: Processing execute[nxensite my_app] action run (my_cookbook::default line 23)
...TRUNCATED OUTPUT...
user@server:~$ wget localhost
--2013-04-22 20:18:59-- http://localhost/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 21 [text/html]
Saving to: `index.html'
100%[===>] 21 --.-K/s in 0s
2013-04-22 20:18:59 (1.47 MB/s) - `index.html' saved [21/21]
user@server:~$ cat index.html
<h1>Hello World!</h1>
How it works...
After setting two variables, the recipe installs a template for the nginx configuration file. The template ends up as /etc/nginx/sites-enabled/my_app.
Next, we create the directory and the index.html file in /srv/my_app/public. This is the directory our nginx configuration template uses as its root location.
Finally, we enable the site we just created using the nginx_site resource, which is defined by the nginx cookbook.
The configuration file template nginx-site-my_app.erb makes nginx listen on port 80 and defines the root location as /srv/my_app/public.
There's more...
If you want to disable your site, you simply replace:
nginx_site "#{app_name}"
with:
nginx_site "#{app_name}" do
enable false
end
After uploading the modified cookbook and running Chef Client again, you should not be able to retrieve index.html anymore:
user@server:~$ wget localhost
--2013-04-22 20:50:44-- http://localhost/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:80... failed: Connection refused.
See also
Creating MySQL databases and users
You need to use two different cookbooks for managing MySQL (or any other database) on your nodes: the generic database cookbook and the mysql cookbook.
The database cookbook provides resources for managing databases and database users for MySQL, PostgreSQL, and Microsoft SQL Server. The mysql cookbook installs a MySQL Client and server.
Let's see how we can install a MySQL server and create a database and a database user.
Getting ready
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
We'll install MySQL server with a database and a user:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "database"
depends "mysql"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe 'mysql::server'
include_recipe 'mysql::ruby'
include_recipe 'database'
connection_params = {
:username => 'root',
:password => node['mysql']['server_root_password']
}
mysql_database 'my_db' do
connection connection_params
action :create
end
mysql_database_user 'me' do
connection connection_params
password 'my_password_11'
privileges [:all]
action [:create, :grant]
end
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-23T19:32:07+00:00] INFO: Processing chef_gem[mysql] action install (mysql::ruby line 36)
[2013-04-23T19:32:07+00:00] INFO: Processing mysql_database[my_db] action create (my_cookbook::default line 25)
[2013-04-23T19:32:07+00:00] INFO: Processing mysql_database_user[me] action create (my_cookbook::default line 30)
...TRUNCATED OUTPUT...
user@server:~$ mysql -u me -p
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| my_db |
...
How it works...
First, we include the mysql::server recipe to install MySQL:
include_recipe 'mysql::server'
Additionally we need the msql Ruby gem to create the database and the user:
include_recipe 'mysql::ruby'
Then it's time to include the database recipe to be able to use the database and database_user resources later in our recipe:
include_recipe 'database'
As we want to connect to our MySQL server multiple times, we define the connection parameters as a variable called connection_params in our recipe:
connection_params = {
:username => 'root',
:password => node['mysql']['server_root_password']
}
The mysql::server recipe creates a random root password and stores it in the node under the key ['mysql']['server_root_password'].
Then we use the mysql_database resource from the database cookbook to create a database called my_db:
mysql_database 'my_db' do
connection connection_params
action :create
end
And finally, we use the mysql_database_user resource to create a user called me and grant him all privileges:
mysql_database_user 'me' do
connection connection_params
password 'my_password_11'
privileges [:all]
action [:create, :grant]
end
There's more...
It's quite common to have things such as a database name or users with their privileges stored in data bags. You can find out how to do this in the Using search to find data bag items section in Chapter 4, Writing Better Cookbooks.
See also
Managing WordPress sites
You need to enable your business users to manage their own website. WordPress has come a long way providing all necessary features. You might have seen it as a simple blogging tool. But, it has grown to a fully featured content management system in recent years. Fortunately, managing WordPress with Chef is pretty straightforward.
Let's have a look how to do it.
Getting ready
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
We'll install WordPress using the community cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "apt"
depends "wordpress"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
node.default['wordpress']['db']['database'] = "my_wordpress"
node.default['wordpress']['db']['user'] = "me"
node.default['wordpress']['db']['password'] = "my_password_11"
include_recipe "apt"
include_recipe 'wordpress'
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-04-27T19:29:44+00:00] INFO: Navigate to 'http://vagrant.vm/wp-admin/install.php' to complete wordpress installation
...TRUNCATED OUTPUT...
How it works...
The wordpress cookbook installs a full Apache-MySQL-PHP-stack. That's why when you're installing it into your repository, it will install quite a few supporting cookbooks as well.
To use the wordpress cookbook, you simply include it in your own cookbook's recipe:
include_recipe 'wordpress'
Because the wordpress cookbook will install software from your operating system's package repository (using apt in our case on Ubuntu), we include the apt cookbook right before including the wordpress cookbook. That way we make sure that the package list on your node is up-to-date. If you omit this step, the wordpress cookbook might fail because some outdated packages do not fit together.
include_recipe 'apt'
include_recipe 'wordpress'
And, because we do not like the default values for the database name, database user, and the password for the database user, we override those attributes in the beginning of our default recipe:
node.default['wordpress']['db']['database'] = 'my_wordpress'
node.default['wordpress']['db']['user'] = 'me'
node.default['wordpress']['db']['password'] = 'my_password_11'
You can look up the default values in cookbooks/wordpress/attributes/default.rb.
There's more...
The wordpress cookbook installs the complete stack but does not set up your first blog. It asks you to call the WordPress installation page with your browser to set up your first blog.
If you already have a tarball of your blog available, you could deliver it to your node as described in the Distributing Directory Trees section in Chapter 5, Working with Files and Packages.
See also
Managing Ruby on Rails applications
Ruby on Rails helps you to quickly get up and running with your web applications. But, deployment is not an issue solved by the framework. In this section, we'll see how to write the simplest possible recipe to deploy a Rails application, using unicorn as the application server and SQLite as the database.
Getting ready
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure..
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's get our Ruby on Rails application up and running on our node:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "application_ruby"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
application "rails-app" do
packages %w[ruby1.9.3 runit git sqlite3 libsqlite3-dev]
path "/usr/local/www/rails-app"
owner "www-data"
group "www-data"
environment_name "development"
repository "https://github.com/mmarschall/rails-app.git"
rails do
gems %w[bundler]
database_template "sqlite3_database.yml.erb"
database do
adapter "sqlite3"
database "db/rails-app.sqlite3"
end
end
unicorn do
end
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/sqlite3_database.yml.erb
<%= @rails_env %>:
adapter: <%= @database['adapter'] %>
host: <%= @host %>
database: <%= @database['database'] %>
pool: 5
timeout: 5000
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-05-09T20:36:40+00:00] INFO: execute[/etc/init.d/rails-app hup] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ wget localhost:8080
2013-05-10 20:08:41 (16.4 MB/s) - `index.html' saved [14900]
user@server:~$ cat index.html
<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails: Welcome aboard</title>
...
How it works...
Opscode provides the abstract application cookbook for deploying web applications. We call our application "rails-app":
application "rails-app" do
...
end
Inside the application block, we define the details of our web app. First, we need to install a few operating system packages. In our case, we assume an empty node, not even having Ruby installed.
packages %w[ruby1.9.3 runit git sqlite3 libsqlite3-dev]
ruby1.9.3 will make sure that we have a Ruby runtime installed. If you installed your Chef Client using the Omnibus installer, it comes with an embedded Ruby, which you might not want to use for running your Rails application.
As we're going to use unicorn to run our Rails application, we need to install runit, because that's the way unicorn is installed at the writing of this book.
Git is required to be able to checkout our repository from github.com.
Finally, we're using SQLite for our Rails application and need to install it first.
The next step is to configure the deployment details. Where should our app go (path)? Which user and group should own the application (owner, group), and where do we find the source code of our app (repository)?
path "/usr/local/www/rails-app"
owner "www-data"
group "www-data"
...
repository "https://github.com/mmarschall/rails-app.git"
Tip
Make sure you've enabled therubyracer and the unicorn gems in your Rails application's Gemfile:
gem 'therubyracer', platforms: :ruby
gem 'unicorn'
If you don't want to run your application in a production environment, you can specify the desired environment_name in your cookbook, like we do:
environment_name "development"
Your application will be fetched from github.com and the cookbook will install it in a directory structure you are familiar with from using Capistrano. It will put the current revision of your app into the releases directory and create a symlink to it as current.
Now, it's time to define the Rails-specific things. First of all, we want to install the bundler gem because our Rails application is using a Gemfile for its dependencies:
rails do
gems %w[bundler]
...
end
The %w[] syntax creates an array of strings. You could write ["bundler"] instead. It doesn't make any difference for one element, but when putting multiple elements into your array, you save a lot of double quotes and commas with the %w syntax.
As our Rails application uses SQLite as its persistence store, we need to use our own template for the database.yml file.
database_template "sqlite3_database.yml.erb"
Then, we can use a database block to populate it with the values we need:
database do
adapter "sqlite3"
database "db/rails-app.sqlite3"
end
We're telling our Rails application that we're using an SQLite database and want it to store its data in a file called db/rails-app.sqlite3.
Finally, we need to tell our cookbook that we want to run our Rails application using unicorn. An empty block will suffice as long as we don't want to change any default attributes like port or number of workers.
unicorn do
end
There's more...
Usually, the application cookbook's deploy resource will only deploy new revisions of your Rails app. If you want to ensure that it grabs the same revision again and again, you need to call the force_deploy action on your application resource:
application "rails-app" do
...
action :force_deploy
end
If you want to use a new or existing MySQL server, you can assign it a role, for example, rails_database_master and pass that role name to the application resource. It will then search for the node and use its IP address in the database.yml:
application "rails-app" do
...
database_master_role " rails_database_master"
end
In this case, you don't need to use your own database.yml template.
If you want to run a cluster of nodes, each one installed with your Rails application, you can use the application_nginx cookbook to install an nginx load balancer in front of your application server cluster.
See also
Managing Varnish
Varnish is a web application accelerator. You install it in front of your web application to cache generated HTML files and serve them faster. It will take a lot of burden from your web application and can even provide you with extended uptime—covering up for application failures through its cache while you are fixing your application.
Let's see how to install Varnish.
Getting ready
You need a web server running on your node at port 8080. We'll set up Varnish to use localhost:8080 as its backend host and port. You can achieve this by installing a Ruby on Rails application on your node as described in the Managing Ruby on Rails applications section.
Make sure you've a cookbook called my_cookbook and the run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's install Varnish with its default parameters. We will use the Varnish provided apt repository to have access to the latest versions of Varnish:
Tip
If you don't have the apt cookbook in your node's run list (which you should have), you need to add depends "apt" to your cookbook's metadata and include_recipe "apt" in your cookbook's default recipe.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends "varnish"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "varnish::apt_repo"
node.set['varnish']['storage_file'] = '/var/lib/varnish/vagrant/varnish_storage.bin'
include_recipe "varnish"
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-05-11T19:23:37+00:00] INFO: service[varnish] restarted
...TRUNCATED OUTPUT...
user@server:~$ wget localhost:6081
2013-05-10 20:08:41 (16.4 MB/s) - `index.html' saved [14900]
How it works...
As we want to use the latest Version of varnish (and not the usually outdated one from the default Ubuntu package repository), we set up the varnish apt repository first:
include_recipe "varnish::apt_repo"
By default, the varnish cookbook uses "/var/lib/varnish/$INSTANCE/varnish_storage.bin" as its file storage location. This does not work on a Vagrant box. That's why we override the default attribute and set our own path:
node.set['varnish']['storage_file'] = '/var/lib/varnish/vagrant/varnish_storage.bin'
Finally, we include the Varnish recipe itself to install, configure, and start the Varnish server listening to its default port 6081:
include_recipe "varnish"
There's more...
You can connect to the Varnish admin interface by logging in to your node and running telnet:
user@server:~$ sudo telnet localhost 6082
See also
Managing your workstation
You know the drill. You get a brand new MacBook and need to set up all your software—again. Chef can help here, too.
We will have a look at how to install applications and tweak settings on your local development box with Chef.
Tip
This example is based on recipes for OS X only, but you can tweak it to run on Windows or Linux, too.
Getting ready
Follow the instructions given in the Installing Chef on your workstation section in Chapter 1, Chef Infrastructure, to get the basic Chef environment working on your box.
First, we need to prepare our own repository for our individual setup:
mma@laptop:~/ $ git clone https://github.com/<YOUR GITHUB USER>/osx-workstation.git
mma@laptop:~/ $ cd osx-workstation
mma@laptop:~/osx-workstation $ bundle install
...TRUNCATED OUTPUT...
Installing soloist (1.0.1)
...TRUNCATED OUTPUT...
How to do it...
Let's set up Soloist to use a few readymade recipes provided by the folks at PivotalLabs:
mma@laptop:~/osx-workstation $ subl Cheffile
site 'http://community.opscode.com/api/v1'
cookbook 'pivotal_workstation',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'pivotal_workstation'
cookbook 'sprout-osx-apps',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'sprout-osx-apps'
cookbook 'sprout-osx-settings',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'sprout-osx-settings'
cookbook 'osx',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'osx'
mma@laptop:~/osx-workstation $ subl soloistrc
recipes:
- sprout-osx-apps::freeruler
- sprout-osx-settings::dock_preferences
node_attributes:
dock_preferences:
orientation: left
mma@laptop:~/osx-workstation $ sudo soloist
Installing dmg (1.1.0)
Installing osx (0.1.0)
Installing sprout-osx-apps (0.1.0)
Installing sprout-osx-settings (0.1.0)
Installing pivotal_workstation (1.0.0)
Starting Chef Client, version 11.4.4
...TRUNCATED OUTPUT...
Recipe: sprout-osx-apps::freeruler
...TRUNCATED OUTPUT...
Chef Client finished, 3 resources updated
How it works...
Soloist is a quick and easy way to configure Chef Solo on your box. It uses Librarian to manage cookbook dependencies. You define which cookbooks to use by including them into your Cheffile:
cookbook 'sprout-osx-apps',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'sprout-osx-apps'
You define the cookbook name, tell Librarian in which Git repository this cookbook lives, and tell it a pathname, where to install it locally. Librarian will install all cookbooks defined in the Cheffile to the local cookbook's directory.
The other part we need to configure is what Soloist should run. We do this in the soloistrc file. First, we tell Soloist, which recipes it should converge on our local development box:
recipes:
- sprout-osx-apps::freeruler
- sprout-osx-settings::dock_preferences
Then, we set some attributes, further finetuning the setup on our box:
node_attributes:
dock_preferences:
orientation: left
Here we set the attribute node['dock_preferences']['orientation'] = 'left'. This attribute is used by the sprout-osx-settings::dock_preferences cookbook.
Soloist will use Librarian to install all cookbooks defined in the Cheffile and then converge all recipes listed in the soloistrc file. Before converging, it will set all given node attributes to be used by the recipes.
The sprout repository holds a huge amount of cookbooks to install OS X apps and configure settings.
The sprout osx cookbook provides us with the osx_defaults provider used by the sprout-osx-settings cookbook. To install applications, the sprout-osx-applications cookbook uses either the standard Chef dmg_package resource or a mixture of remote_file and execute blocks to install a tarball.
There's more...
If you want to create your own cookbooks to be used by Soloist, just create a directory in your osx-workstation repository:
mma@laptop:~/osx-workstation $ mkdir site-cookbooks
And add that new cookbook path to your Cheffile for Librarian to find your new cookbooks:
cookbook 'meta',
:path => 'site-cookbooks/meta'
Now you can use your own cookbooks in your soloistrc file.
Instead of using dmg_package and o sx_default resources for OS X, you can use the default package providers for your own operating system. You might want to create your own provider for settings specific to your platform, if not available already in Chef.
See also
Chapter 7. Servers and Cloud Infrastructure
"The interesting thing about cloud computing is that we've redefined cloud computing to include everything that we already do."
– Richard Stallman
In this chapter, we will cover the following:
Introduction
In the preceding chapters, we mostly looked at individual nodes. Now, it's time to consider your infrastructure as a whole. We'll see how to manage services spanning multiple machines like load balancers and how to manage the networking aspects of your infrastructure.
Creating cookbooks from a running system with Blueprint
Everyone has it: that one server in the corner of the data center that no one dares to touch anymore. It's like a precious snowflake: unique and infinitely fragile. How do you get such a server under configuration management?
Blueprint is a tool to find out and record exactly what's on your server. It records all directories, packages, configuration files, and so on.
Blueprint can spit out that information about your server in various formats; one of them is a Chef recipe. You can use such a generated Chef recipe as a basis to rebuild that one unique snowflake server.
Let's see how to do that.
Getting ready
Make sure you've Python and Git installed on the node you want to run Blueprint on:
user@server:~$ sudo apt-get install git python
How to do it...
Let's see how to install Blueprint and create a Chef cookbook for our node:
user@server:~$ pip install blueprint
user@server:~$ sudo blueprint create my-server
[blueprint] using cached blueprintignore(5) rules
[blueprint] searching for Python packages
[blueprint] searching for PEAR/PECL packages
[blueprint] searching for Yum packages
[blueprint] searching for Ruby gems
[blueprint] searching for npm packages
[blueprint] searching for software built from source
[blueprint] searching for configuration files
[blueprint] /etc/ssl/certs/AC_Ra\xc3\xadz_Certic\xc3\xa1mara_S.A..pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/NetLock_Arany_=Class_Gold=_F\xc5\x91tan\xc3\xbas\xc3\xadtv\xc3\xa1ny.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/EBG_Elektronik_Sertifika_Hizmet_Sa\xc4\x9flay\xc4\xb1c\xc4\xb1s\xc4\xb1.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/Certinomis_-_Autorit\xc3\xa9_Racine.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/T\xc3\x9cB\xc4\xb0TAK_UEKAE_K\xc3\xb6k_Sertifika_Hizmet_Sa\xc4\x9flay\xc4\xb1c\xc4\xb1s\xc4\xb1_-_S\xc3\xbcr\xc3\xbcm_3.pem not UTF-8 - skipping it
[blueprint] searching for APT packages
[blueprint] searching for service dependencies
user@server:~$ blueprint show -C my-server
my-server/recipes/default.rb
user@server:~$ cat my-server/recipes/default.rb
#
Automatically generated by blueprint(7). Edit at your own risk.
#
cookbook_file('/tmp/96468fd1cc36927a027045b223c61065de6bc575.tar') do
backup false
group 'root'
mode '0644'
owner 'root'
source 'tmp/96468fd1cc36927a027045b223c61065de6bc575.tar'
end
execute('/tmp/96468fd1cc36927a027045b223c61065de6bc575.tar') do
command 'tar xf "/tmp/96468fd1cc36927a027045b223c61065de6bc575.tar"'
cwd '/usr/local'
end
directory('/etc/apt/apt.conf.d') do
...TRUNCATED OUTPUT...
service('ssh') do
action [:enable, :start]
subscribes :restart, resources('cookbook_file[/etc/default/keyboard]', 'cookbook_file[/etc/default/console-setup]', 'cookbook_file[/etc/default/ntfs-3g]', 'package[openssh-server]', 'execute[96468fd1cc36927a027045b223c61065de6bc575.tar]')
end
How it works...
Blueprint is a Python package that finds out all the relevant configuration data of your node and stores it in a Git repository. Each Blueprint has its own name.
You can ask Blueprint to show the contents of its Git repository in various formats. Using the -C flag to the blueprint show command creates a Chef cookbook containing everything you need in that cookbook's default recipe. It stores the cookbook in the directory from where you run Blueprint and uses the Blueprint name as the cookbook name as shown in the following code:
user@server:~$ ls -l my-server/
total 8
drwxrwxr-x 3 vagrant vagrant 4096 Jun 28 06:01 files
-rw-rw-r-- 1 vagrant vagrant 0 Jun 28 06:01 metadata.rb
drwxrwxr-x 2 vagrant vagrant 4096 Jun 28 06:01 recipes
There's more...
You can inspect your Blueprints using specialized show commands in the following way:
user@server:~$ blueprint show-packages my-server
...TRUNCATED OUTPUT...
apt wireless-regdb 2011.04.28-1ubuntu3
apt zlib1g-dev 1:1.2.3.4.dfsg-3ubuntu4
python2.7 distribute 0.6.45
python2.7 pip 1.3.1
pip blueprint 3.4.2
pip virtualenv 1.9.1
The preceding command shows all kinds of installed packages. Other show commands are as follows:
Blueprint is able to output your server configuration as a shell script as shown in the following command line:
user@server:~$ blueprint show -S my-server
You can use this script as a basis for a knife bootstrap as described in the Using custom bootstrap scripts section.
See also
Running the same command on many machines at once
A simple problem with so many self-scripted solutions is logging in to multiple servers in parallel executing the same command on every server at once. No matter whether you want to check the status of a certain service or look at some critical system data on all servers, being able to log in to many servers in parallel can save you a lot of time and hassle (imagine forgetting one of your seven web servers when disabling the basic authentication for your website).
How to do it...
Let's try to execute a few simple commands on multiple servers in parallel:
mma@laptop:~/chef-repo $ knife ssh 'roles:webserver' 'sudo sv status nginx'
www1.prod.example.com run: nginx: (pid 12356) 204667s; run: log: (pid 1135) 912026s
www2.prod.example.com run: nginx: (pid 19155) 199923s; run: log: (pid 1138) 834124s
www.test.example.com run: nginx: (pid 30299) 1332114s; run: log: (pid 30271) 1332117s
mma@laptop:~/chef-repo $ knife ssh 'chef_environment:staging AND ec2:*' uptime
ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com 21:58:15 up 23 days, 13:19, 1 user, load average: 1.32, 1.88, 2.34
ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com 21:58:15 up 10 days, 13:19, 1 user, load average: 1.51, 1.52, 1.54
How it works...
First, you have to specify a query for finding your nodes. It is usually a good idea to test your queries by running a command such as uptime (instead of dangerous commands like sudo restart now). Your query will obviously use the node index and the complete Knife query syntax is available.
Knife will run the search and connect to each found node executing the given command on every single one. It will collect and display all outputs received by the nodes.
There's more...
You can open terminals to all the nodes identified by your query by using either tmux or screen as commands.
If you don't want to use a search query, you can list the desired nodes using the -m option:
mma@laptop:~/chef-repo $ knife ssh 'www1.prod.example.com www2.prod.example.com' uptime -m
www1.prod.example.com 22:10:00 up 9 days, 16:00, 1 user, load average: 0.44, 0.40, 0.38
www2.prod.example.com 22:10:00 up 15 days, 10:28, 1 user, load average: 0.02, 0.05, 0.06
See also
Setting up SNMP for external monitoring services
Simple Network Management Protocol (SNMP) is the standard way to monitor all your network devices. You can use Chef to install the SNMP service on your node and configure it to match your needs.
Getting ready
Make sure you've a cookbook named my_cookbook and run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's change some attributes and install SNMP on our node:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
depends "snmp"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
node.default['snmp']['syslocationVirtual'] = "Vagrant VirtualBox"
node.default['snmp']['syslocationPhysical'] = "My laptop"
node.default['snmp']['full_systemview'] = true
include_recipe "snmp"
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
- restart service service[snmpd]
...TRUNCATED OUTPUT...
user@server:~$ snmpwalk -v 1 localhost -c public iso.3.6.1.2.1.1.5.0
iso.3.6.1.2.1.1.5.0 = STRING: "vagrant"
How it works...
First, we need to tell our cookbook that we want to use the snmp cookbook by adding a depends call to our metadata file. Then, we modify some of the attributes provided by the snmp cookbook. The attributes are used to fill the /etc/snmp/snmp.conf file, which is based on the template provided by the snmp cookbook.
The last step is to include the snmp cookbook's default recipe in our own recipe. This will instruct Chef Client to install snmpd as a service on our node.
There's more...
You can override ['snmp']['community'] and ['snmp']['trapcommunity'] as well.
See also
Deploying a Nagios monitoring server
Nagios is one of the most widely spread monitoring packages available. Opscode provides you with a cookbook for installing a Nagios server as well as Nagios clients. It provides ways to configure service checks, service groups, and so on using data bags instead of manually editing Nagios configuration files.
Getting ready
Make sure you've a cookbook named my_cookbook and run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including the nagios cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'nagios'
Install the nagios cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/
Using nagios (4.1.4)
...TRUNCATED OUTPUT...
Upload the nagios cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading nagios (4.1.4) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
How to do it...
Let's create a user for the Nagios web interface and set up a Nagios server with a check for SSH.
Note
You may want to use an online htpasswd generator like http://www.htaccesstools.com/htpasswd-generator/ if you don't have htpasswd installed on your system.
mma@laptop:~/chef-repo $ htpasswd -n -s mma
New password:
Re-type new password:
mma:{SHA}AcrFI+aFqjxDLBKctCtzW/LkVxg=
mma@laptop:~/chef-repo $ subl data_bags/users/mma.json
{
"id": "mma",
"htpasswd": "{SHA}AcrFI+aFqjxDLBKctCtzW/LkVxg=",
"groups": "sysadmin"
}
mma@laptop:~/chef-repo $ knife data bag from file users mma.json
Updated data_bag_item[users::mma]
mma@laptop:~/chef-repo $ knife data bag create nagios_services
Created data_bag_item[nagios_service]
mma@laptop:~/chef-repo $ subl roles/monitoring.rb
name "monitoring"
description "Nagios server"
run_list(
"recipe[apt]",
"recipe[nagios::server]"
)
default_attributes(
"nagios" => {
"server_auth_method" => "htauth"
}
)
mma@laptop:~/chef-repo $ knife role from file monitoring.rb
Updated Role monitoring!
mma@laptop:~/chef-repo $ knife node edit server
...
"run_list": [
"role[monitoring]"
]
...
saving updated run_list on node server
mma@laptop:~/chef-repo $ subl data_bags/nagios_service/ssh.json
{
"id": "ssh",
"hostgroup_name": "linux",
"command_line": "$USER1$/check_ssh $HOSTADDRESS$"
}
mma@laptop:~/chef-repo $ knife data bag from file nagios_services ssh.json
Updated data_bag_item[nagios_services::ssh]
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-06-12T20:50:09+00:00] INFO: Processing service[nagios] action start (nagios::server line 284)
...TRUNCATED OUTPUT...
How it works...
First, we set up a user for managing the Nagios web interface. We create a data bag called users and a data bag item for your user (in the preceding example, the user is called mma. You will change that to the usernames you desire).
By default, Nagios will set up web access for every user in the sysadmins group.
As we want to use HTTP basic authentication for the Nagios web interface, we need to create a password hash to put into our users data bag.
To make Nagios use HTTP basic authentication, we need to set the server_auth_method attribute to htauth when defining the monitoring role, which we assign to our node.
Then, we configure a service check for SSH using a default template for the Nagios configuration file. To do so we create a data bag and a data bag item for our service.
Finally, we run Chef Client on our node and validate that we can log in with our user/password to the Nagios web frontend running on our node and make sure that the SSH service check is running.
There's more...
You can change that default group to choose users for the Nagios web interface by modifying the ['nagios']['users_databag_group'] attribute in the role you use to configure your Nagios server.
You can set up your checks using your own templates and you can configure the contact groups and so on.
See also
Building high-availability services using Heartbeat
If you want to offer any IP-based service with automatic failover to provide high availability (HA), you can use Heartbeat to create an HA cluster.
Heartbeat will run on two or more nodes and ensure that the IP address you chose to make highly available will switch to a working node, if one of them goes down. That way, you have a failover IP address, which is guaranteed to reach a running host as long as there is one left.
Let's have a look at how to install Heartbeat on your nodes and configure it with a failover IP address.
Getting ready
Make sure you've a cookbook called my_cookbook and run_list of all the nodes you want to add to your HA cluster including my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's use the community-provided heartbeat cookbook and configure it to work with our nodes:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
...
depends "heartbeat"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "heartbeat"
heartbeat "heartbeat" do
authkeys "MySecrectAuthPassword"
autojoin "none"
warntime 5
deadtime 15
initdead 60
keepalive 2
logfacility "syslog"
interface "eth1"
mode "bcast"
udpport 694
auto_failback true
resources "192.168.0.100"
search "name:ha*"
end
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-06-14T20:02:26+00:00] INFO: service[heartbeat] restarted
...TRUNCATED OUTPUT...
user@ha1:~$ cl_status rscstatus -m
This node is holding all resources.
user@ha2:~$ cl_status rscstatus -m
This node is holding local resources.
user@ha1:~$ sudo service hartbeat stop
user@ha2:~$ cl_status rscstatus -m
This node is holding all resources.
How it works...
The heartbeat cookbook installs the Heartbeat service on all your nodes. In this example, we assume that your hostnames are ha1, ha2, and so on.
Then, we need to configure our HA-cluster. In the preceding example, we do this within our recipe.
First, you need to define a password. The nodes will use this password to authenticate themselves to each other.
Setting autojoin to none will make it impossible that new nodes get added outside of your Chef Client runs.
Next, we set the timeouts to tell Heartbeat when to act, if something seems wrong. The timeouts are given in seconds.
In the preceding example, we ask Heartbeat to use the broadcast method on the network interface eth1.
resources is your failover IP address. This IP address will be highly available in your setup.
The search call contains the query to find all the nodes to include in the Heartbeat setup. In our example, we search for nodes having their name starting with ha.
After uploading all cookbooks and running Chef Client, we can verify our setup by querying the Heartbeat status on both the nodes.
By stopping the Heartbeat service on the node currently having the failover IP address assigned to it, the second node will take over automatically.
There's more...
You can configure the Heartbeat by setting attributes in a role as well. In this case, it would make sense to set the search attribute to find all the nodes having the role.
See also
Using HAProxy to load-balance multiple web servers
You've a successful website and it is time to scale out to multiple web servers to support it. HAProxy is a very fast and reliable load-balancer and proxy for TCP and HTTP-based applications.
You can put it in front of your web servers and let it distribute the load. If you configure it on a HA cluster using Heartbeat (see the Building high-availability services using Heartbeat section), you have a fully high-availability solution available.
Getting ready
Make sure you've at least one node registered at your Chef Server having the role web_server in its run list. The following example will set up HAProxy so that it routes all requests to all your nodes having the web_server role.
Make sure you've a cookbook called my_cookbook and run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's see how to set up a simple HAProxy balancing to all nodes having the web_server role:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
...
depends "haproxy"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
node.default['haproxy']['httpchk'] = true
node.default['haproxy']['x_forwarded_for'] = true
node.default['haproxy']['app_server_role'] = "web_server"
include_recipe "haproxy::app_lb"
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-06-16T18:57:07+00:00] INFO: service[haproxy] reloaded
...TRUNCATED OUTPUT...
How it works...
First, we download the haproxy cookbook provided by Opscode.
Then, we change some of the default values: setting httpchk to true makes sure that HAProxy takes backend servers out of the cluster, if they don't respond anymore.
The x_forwarded_for attribute tells HAProxy to set the X-Forwarded-For HTTP header. It will contain the client IP address. If you don't set that header, your web servers will only see the IP address of your HAProxy server in their access logs instead of your client's IP addresses. This would make it very difficult to debug problems with your web applications.
The third attribute that we change is app_server_role. You can set whatever role your backend application servers have. The haproxy cookbook will include every node (using its ipaddress node attribute as returned by Ohai) having this role into the cluster.
After overriding those attributes, we run the app_lb recipe from the haproxy cookbook. The app_lb recipe will install HAProxy from a package and run a search for all nodes having the configured role.
After uploading all cookbooks and running Chef Client, you'll find the HAProxy admin interface on your node at port 22002. Hitting your HAProxy node at port 80 will forward your request to one of your web servers.
See also
Using custom bootstrap scripts
While creating a new node, you need to make sure that it has Chef installed on it. Knife offers the bootstrap subcommand to connect to a node via Secure Shell (SSH) and run a bootstrap script on the node.
The bootstrap script should install Chef Client on your node and register the node with your Chef Server. Opscode comes with a few default bootstrap scripts for various platforms. There are options to install Chef Client using the Opscode Omnibus installer, packages, or Ruby gems.
If you want to modify the way your Chef Client gets installed on your nodes, you can create and use custom bootstrap scripts.
Let's have a look how to do this.
Getting ready
Make sure you've a node ready to become a Chef Client and can SSH into it. In the following example we'll assume that you'll have a username and password to log in to your node.
How to do it...
Let's see how to execute our custom bootstrap script with Knife to install Chef Client on our node:
mma@laptop:~/chef-repo $ curl https://raw.github.com/opscode/chef/master/lib/chef/knife/bootstrap/chef-full.erb -o bootstrap/my-chef-full.erb
2013-06-17 13:59:24 (23.4 MB/s) - 'chef-full.erb' saved [1495/1495]
mma@laptop:~/chef-repo $ subl bootstrap/my-chef-full.erb
...
mkdir -p /etc/chef
cat > /etc/chef/greeting.txt <<'EOS'
Ohai, Chef!
EOS
...
mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x user --template-file bootstrap/my-chef-full.erb --sudo
192.168.0.100 [2013-06-17T11:54:27+00:00] WARN: Node bootstrapped has an empty run list.
user@server:~$ cat /etc/chef/greeting.txt
Ohai, Chef!
How it works...
The chef-full.erb bootstrap script uses the Omnibus installer to install Chef Client and all its dependencies on your node. It comes packaged with all dependencies so that you don't need to install a separate Ruby or additional gems on your node.
First, we download the bootstrap script coming as part of Chef. Then, we customize it as we like. Our example of putting an additional text file is trivial, so feel free to change it to whatever you need.
After changing our custom bootstrap script, we're only one command away from a fully bootstrapped Chef node.
Note
If you want to bootstrap a virtual machine you started with Vagrant for testing your bootstrap script, you might need to use localhost as the node's IP address, and add -p 2222 to your command line to tell knife to connect through the forwarded SSH port of your VM.
There's more...
If you already know the role your node should play or which recipes you want to run on your node, you can add a run list to your bootstrapping call:
mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x user --template-file bootstrap/my-chef-full.erb --sudo -r 'role[web_server]'
Here, we added the role web_server to the run list of the node using the -r parameter.
See also
Managing firewalls with iptables
Securing your servers is very important. One basic way of shutting down quite a few attack vectors is running a firewall on your nodes. The firewall will make sure that only those network connections are accepted, which hit the services you decide to allow.
On Ubuntu, iptables is one of the tools available for the job. Let's see how to set it up to make your servers more secure.
Getting ready
Make sure you've a cookbook called my_cookbook and run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's set up iptables so that it blocks all network connections to your node and only accepts connections to the SSH and HTTP ports:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
...
depends "iptables"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "iptables"
iptables_rule "ssh"
iptables_rule "http"
execute "ensure iptables is activated" do
command "/usr/sbin/rebuild-iptables"
creates "/etc/iptables/general"
action :run
end
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/ssh.erb
Allow ssh access to default port
-A FWR -p tcp -m tcp --dport 22 -j ACCEPT
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/templates/default/http.erb
-A FWR -p tcp -m tcp --dport 80 -j ACCEPT
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-06-17T19:26:25+00:00] INFO: execute[rebuild-iptables] ran successfully
...TRUNCATED OUTPUT...
user@server:~$ sudo iptables -L
Chain FWR (1 references)
target prot opt source destination
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT icmp -- anywhere anywhere
ACCEPT tcp -- anywhere anywhere tcp dpt:http
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
REJECT tcp -- anywhere anywhere tcpflags: SYN,RST,ACK/SYN reject-with icmp-port-unreachable
REJECT udp -- anywhere anywhere reject-with icmp-port-unreachable
How it works...
First, we download the iptables cookbook from the Opscode community site.
Then, we modify our own cookbook to install iptables. This will set it up in such a way that all network connections get refused by default.
To be able to access the node via SSH afterwards, we need to open up port 22. To do so, we create the template my_cookbook/templates/default/ssh.erb and include the required iptables rule.
We do the same for port 80 to accept HTTP traffic to our node.
The iptables cookbook will drop off those templates in /etc/iptables.d and configure iptables so that it loads all those files on startup. It installs the script rebuild-iptables to do that.
Finally, we make sure that iptables has been activated. We add this step because I saw that the iptables cookbook ran, but did not load all the rules. That is fatal because you deem your box secured whereas in fact it is wide open.
After doing all our modifications, we upload all cookbooks and run Chef Client on our node.
We can validate whether iptables is running by listing all the active rules using the -L parameter to an iptables call on our node. You see the ACCEPT lines for ports http and ssh. That's a good sign. The last two lines shut down all other services.
See also
Managing fail2ban to ban malicious IP addresses
Brute-force attacks against any of your password-protected services like SSH or break-in attempts against your web server are happening frequently for every public-facing system.
The fail2ban tool monitors your logfiles and acts as soon as it discovers malicious behavior in the way you told it to. One common use case is blocking malicious IP addresses by establishing firewall rules on the fly using iptables.
In this section, we'll have a look at how to set up a basic protection for SSH using fail2ban and iptables.
Getting ready
Make sure you've a cookbook named my_cookbook and run_list of your node includes my_cookbook as described in the Creating and using cookbooks section in Chapter1, Chef Infrastructure.
Make sure you've the berkshelf gem installed as described in the Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.
Create your Berksfile in your Chef repository including my_cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
How to do it...
Let's install fail2ban and create a local configuration enabling one additional rule to protect your node against SSH DDos attacks. This approach is easily extensible for various additional services.
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
...
depends "iptables"
depends "fail2ban"
mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/recipes/default.rb
include_recipe "iptables"
iptables_rule "ssh"
include_recipe "fail2ban"
file "/etc/fail2ban/jail.local" do
content <<-EOS
[ssh-ddos]
enabled = true
port = ssh
filter = sshd-ddos
logpath = /var/log/auth.log
maxretry = 6
EOS
owner "root"
group "root"
mode 0644
notifies :restart, "service[fail2ban]"
end
mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to: 'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...
user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2013-06-19T12:25:40+00:00] INFO: service[fail2ban] started
...TRUNCATED OUTPUT...
user@server:~$ cat /etc/fail2ban/jail.local
[ssh-ddos]
enabled = true
...TRUNCATED OUTPUT...
How it works...
First, we need to install iptables because we want fail2ban to create iptables rules to block malicious IP addresses. Then, we pull the fail2ban cookbook down into our local Chef repository.
In our cookbook's default recipe, we install iptables and fail2ban.
Then, we create a custom configuration for fail2ban to enable the ssh-ddos protection. fail2ban requires you to put your customizations into a file called /etc/fail2ban/jail.local.
It first loads /etc/fail2ban/jail.conf and then loads jail.local overriding the jail.conf settings. That way, setting enabled=true for the ssh-ddos section in jail.local will enable that section after restarting the fail2ban service.
There's more...
If you want to protect more services, just keep copying the desired sections from the /etc/fail2ban/jail.conf file into your cookbook, changing enabled=false to enabled=true on the way and tweaking any other parameters you want to change.
If you've a bigger set of settings, you might want to create a file in my_cookbook/files/default and use this instead of adding it to the string in your recipe.
See also
Managing Amazon EC2 instances
Amazon Web Services (AWS) include the Amazon Elastic Compute Cloud (EC2) where you can start virtual machines running in the cloud. In this section, we will use Chef to start a new EC2 instance and bootstrap Chef Client on it.
Getting ready
Make sure you have an account at AWS.
To be able to manage EC2 instances with Knife, you need security credentials. It's a good idea to create a new user in the AWS Management Console using AWS Identity and Access Management (IAM) by following Amazon's documentation: http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html
Note down your new user's AWS Access Key ID and AWS Secret Access Key.
Additionally, you will need to create an SSH key pair and download the private key to enable Knife to access your node via SSH.
To create a key pair, log in to AWS Console and navigate to EC2 service (https://console.aws.amazon.com/ec2/home). Then, choose Key Pairs under the Network & Security section in the navigation. Click on the Create Key Pair button and enter something like aws_knife_key as the name. Store the downloaded aws_knife_key.pem private key in your ~/.ssh directory.
How to do it...
Let's use the knife-ec2 plugin to instantiate and bootstrap an EC2 node with Ubuntu 12.04:
mma@laptop:~/chef-repo $ gem install knife-ec2
Note
Use /opt/chef/embedded/bin/gem install knife-ec2 if you've installed Chef on your local workstation using the Omnibus installer.
Note
You need to look up the most current AMI ID for your node at http://cloud-images.ubuntu.com/locator/ec2/ and use it in your knife call instead of ami-cf5e2ba6. See the following How it works... section for more details about how to identify the correct AMI.
mma@laptop:~/chef-repo $ knife ec2 server create -d 'chef-full' -r 'recipe[apt]' -S 'aws_knife_key' -x ubuntu -i ~/.ssh/aws_knife_key.pem -I 'ami-cf5e2ba6' -f 'm1.small' -A 'Your AWS Access Key ID' -K 'Your AWS Secret Access Key'
Instance ID: i-70165011
Flavor: m1.small
Image: ami-cf5e2ba6
Region: us-east-1
Availability Zone: us-east-1b
Security Groups: default
Tags: {"Name"=>"i-70165011"}
SSH Key: aws_knife_key
Waiting for server.............................
Public DNS Name: ec2-54-226-232-107.compute-1.amazonaws.com
Public IP Address: 54.226.232.107
Private DNS Name: ip-10-191-185-138.ec2.internal
Private IP Address: 10.191.185.138
Waiting for sshd...done
Bootstrapping Chef on ec2-54-226-232-107.compute-1.amazonaws.com
...TRUNCATED OUTPUT...
ec2-50-17-112-73.compute-1.amazonaws.com Chef Client finished, 3 resources updated
...TRUNCATED OUTPUT...
mma@laptop:~/chef-repo $ ssh -i ~/.ssh/aws_knife_key.pem ubuntu@ec2-54-226-232-107.compute-1.amazonaws.com
How it works...
First, we need to install the EC2 plugin for Knife. It comes as a Ruby gem.
Then, we need to make a few decisions on which type of EC2 instance we want to launch and where it should run:
As soon as you know what you want to achieve, it's time to construct the launch command. It consists of the following parts:
The knife-ec2 plugin adds a few subcommands to Knife. We use the ec2 server create subcommand to start a new EC2 instance.
The initial parameters we use are dealing with the desired Chef Client setup:
The second group of parameters deals with SSH access to the newly created instance:
The third set of parameters deals with the AWS API:
Note
The AWS Access Key ID and AWS Secret Access Key are the security credentials of a user who is allowed to use the AWS API. You create such users in the IAM section of the AWS management console.
The SSH key pair is there for securing the access to your nodes. By defining the name of the key pair in the Knife command, the public key of your SSH key pair will be installed for the SSH user on your new node. You create such SSH key pairs in the EC2 section of the AWS management console.
The command will now start a new EC2 instance via the AWS API using your AWS credentials. Then it will log in using the given SSH user and key and run the given bootstrap script on your new node to make it a working Chef Client and register it with your Chef Server.
There's more...
Instead of adding your AWS credentials to the command line (which is unsafe as they will end up in your shell history), you can put them into your knife.rb:
knife[:aws_access_key_id] = "Your AWS Access Key ID"
knife[:aws_secret_access_key] = "Your AWS Secret Access Key"
Instead of hard coding it there, you can even use environment variables to configure knife:
knife[:aws_access_key_id] = ENV['AWS_ACCESS_KEY_ID']
knife[:aws_secret_access_key] = ENV['AWS_SECRET_ACCESS_KEY']
The knife-ec2 plugin offers additional subcommands. You can list them by just typing the following command line:
mma@laptop:~/chef-repo $ knife ec2
** EC2 COMMANDS **
knife ec2 flavor list (options)
knife ec2 instance data (options)
knife ec2 server create (options)
knife ec2 server delete SERVER [SERVER] (options)
knife ec2 server list (options)
See also
Loading your Chef infrastructure from a file with spiceweasel and Knife
Having all your cookbooks, roles, and data bags as code under version control is great, but having your repository alone is not enough to be able to spin up your complete environment from scratch again. Starting from the repository alone, you will need to spin up nodes, upload cookbooks to your Chef Server, and recreate data bags there.
Especially when you are using a cloud provider for spinning up your nodes, it would be great if you could spin up your nodes automatically and hook them up to your freshly created and filled Chef Server.
The Spiceweasel tool lets you define all your cookbooks, data bags, and nodes and generates all necessary knife commands to recreate your complete environment including spinning up nodes and populating your empty Chef Server or organization on Hosted Chef.
Let's see how to dump our current repository and how to recreate our infrastructure with it.
Getting ready
Make sure you are able to spin up Amazon EC2 instances using Knife as described in the Managing Amazon EC2 instances section.
How to do it...
Let's use Spiceweasel to dump our current configuration, add some EC2 nodes, and recreate our complete environment:
mma@laptop:~/chef-repo $ gem install spiceweasel
Fetching: ridley-0.12.4.gem (100%)
Fetching: berkshelf-1.4.6.gem (100%)
Fetching: spiceweasel-2.4.0.gem (100%)
Successfully installed ridley-0.12.4
Successfully installed berkshelf-1.4.6
Successfully installed spiceweasel-2.4.0
3 gems installed
mma@laptop:~/chef-repo $ spiceweasel --extractyaml > infrastructure.yml
mma@laptop:~/chef-repo $ cat infrastructure.yml

berksfile:
cookbooks:
- my_cookbook:
version: 0.1.0
roles:
- base:
data bags:
- users:
items:
- mma
mma@laptop:~/chef-repo $ spiceweasel infrastructure.yml
berks upload -b ./Berksfile
knife cookbook upload my_cookbook
knife role from file base.rb
knife data bag create users
knife data bag from file users mma.json
mma@laptop:~/chef-repo $ spiceweasel -e infrastructure.yml
Uploading my_cookbook [0.1.0]
Updated Role base!
Data bag users already exists
Updated data_bag_item[users::mma]
How it works...
The Spiceweasel scans your local Chef repository and notes down everything as a YAML file.
When reading a given YAML file, it generates Knife commands to make the contents of the Chef repository available on the Chef Server.
There's more...
You can define nodes in your infrastructure.yml file: either local nodes, which Spiceweasel will then bootstrap, or nodes for cloud providers. Spiceweasel will then create knife <provider> server create commands for each specified node.
Using nodes in your infrastructure.yml file enables you to recreate a complete environment including all the necessary VMs using Spiceweasel.
You can use Spiceweasel to delete your setup from your Chef Server by using the --delete flag when running Spiceweasel:
mma@laptop:~/chef-repo $ spiceweasel --delete infrastructure.yml
See also
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
R
S
T
U
V
W
X
Table of Contents
Chef Infrastructure Automation Cookbook
Table of Contents
Chef Infrastructure Automation Cookbook
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Chef Infrastructure
Introduction
Using version control
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Chef on your workstation
Getting ready
How to do it...
How it works...
There's more...
See also
Using the Hosted Chef platform
Getting ready
How to do it...
How it works...
There's more...
See also
Managing virtual machines with Vagrant
Getting ready
How to do it...
How it works...
There's more...
See also
Creating and using cookbooks
Getting ready
How to do it...
How it works...
See also
Inspecting files on your Chef Server with Knife
Getting ready
How to do it...
How it works...
There's more...
See also
Defining cookbook dependencies
Getting ready
How to do it...
How it works...
There's more...
See also
Managing cookbook dependencies with Berkshelf
Getting ready
How to do it...
How it works...
There's more...
See also
Downloading and integrating cookbooks as vendor branches into your Git repository
Getting ready
How to do it...
How it works...
There's more...
See also
Using custom Knife plugins
Getting ready
How to do it...
How it works...
There's more...
See also
Changing organizations based on the current Git branch
Getting ready
How to do it...
How it works...
There's more...
See also
Deleting a node from the Chef Server
Getting ready
How to do it...
How it works...
There's more...
See also
Running Chef Solo
Getting ready
How to do it...
How it works...
There's more...
See also
Using roles
Getting ready
How to do it...
How it works...
See also
Using environments
Getting ready
How to do it...
How it works...
There's more...
See also
Freezing cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Running Chef Client as a daemon
Getting ready
How to do it...
How it works...
There's more...
Using the Chef console (Chef Shell)
How to do it...
How it works...
There's more...
See also
2. Evaluating and Troubleshooting Cookbooks and Chef Runs
Introduction
Testing your Chef cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Flagging problems in your Chef cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Test Driven Development for cookbooks using ChefSpec
Getting started...
How to do it...
How it works...
There's more...
See also
Integration testing your cookbooks with Test Kitchen
Getting started
How to do it...
How it works...
There's more...
See also
Showing affected nodes before uploading cookbooks
Getting ready
How to do it...
How it works...
See also
Overriding a node's run list to execute a single recipe
Getting ready
How to do it...
How it works...
See also
Using why-run mode to find out what a recipe might do
Getting ready
How to do it...
How it works...
See also
Debugging Chef Client runs
Getting ready
How to do it...
How it works...
There's more...
See also
Inspecting results of your last ChefClient run
Getting ready
How to do it...
How it works...
There's more...
See also
Raising and logging exceptions in recipes
Getting ready
How to do it...
How it works...
There's more...
See also
Diffing cookbooks with knife
Getting ready
How to do it...
How it works...
There's more...
See also
Using community exception and report handlers
Getting ready...
How to do it...
How it works...
There's more...
See also
Creating custom handlers
Getting ready...
How to do it...
How it works...
There's more...
See also
3. Chef Language and Style
Introduction
Using community Chef style
Getting ready
How to do it...
How it works...
There's more...
See also
Using attributes to dynamically configure recipes
Getting ready
How to do it...
How it works...
There's more...
Calculating values in attribute files
See also
Using templates
Getting ready
How to do it...
How it works...
There's more...
See also
Mixing plain Ruby with Chef DSL
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Ruby gems and using them in recipes
Getting ready
How to do it...
How it works...
See also
Using libraries
Getting ready
How to do it...
How it works...
There's more...
See also
Using definitions
Getting ready
How to do it...
How it works...
There's more...
See also
Creating your own Light Weight Resource Providers (LWRP)
Getting ready
How to do it...
How it works...
There's more...
See also
Extending community cookbooks by using application wrapper cookbooks
Getting ready
How to do it...
How it works...
There's more...
See also
Creating custom Ohai plugins
Getting ready
How to do it...
How it works...
There's more...
See also
Creating custom Knife plugins
Getting ready
How to do it...
How it works...
There's more...
See also
4. Writing Better Cookbooks
Introduction
Setting environment variables
Getting ready
How to do it...
How it works...
There's more...
See also
Passing arguments to shell commands
Getting ready
How to do it...
How it works...
There's more...
See also
Overriding attributes
Getting ready
How to do it...
How it works...
There's more...
See also
Using search to find nodes
Getting ready
How to do it...
How it works...
There's more...
Using Knife to search for nodes
Searching for arbitrary node attributes
Using Boolean operators in search
See also
Using data bags
Getting ready
How to do it...
How it works...
See also
Using search to find data bag items
Getting ready
How to do it...
How it works...
There's more...
See also
Using encrypted data bag items
Getting ready
How to do it...
How it works...
There's more...
Accessing encrypted data bag items from within recipes
Using a private key file
See also
Accessing data bag values from external scripts
Getting ready
How to do it...
How it works...
There's more...
See also
Getting information about the environment
Getting ready
How to do it...
How it works...
There's more...
See also
Writing cross-platform cookbooks
Getting ready
How to do it...
How it works...
There's more...
Avoiding case statements to set values based on platform
Declaring support for specific operating systems in your cookbook's metadata
See also
Finding the complete list of operating systems you can use in cookbooks
How to do it...
How it works...
There's more...
See also
Making recipes idempotent by using conditional execution
Getting ready
How to do it...
How it works...
There's more...
See also
5. Working with Files and Packages
Introduction
Creating configuration files using templates
Getting ready
How to do it...
How it works...
There's more...
See also
Using pure Ruby in templates for conditionals and iterations
Getting ready
How to do it...
How it works...
There's more...
See also
Installing packages from a third-party repository
Getting ready
How to do it...
How it works...
See also
Installing software from source
Getting ready
How to do it...
How it works...
There's more...
See also
Running a command when a file is updated
Getting ready
How to do it...
How it works...
There's more...
See also
Distributing directory trees
Getting ready
How to do it...
How it works...
There's more...
See also
Cleaning up old files
Getting ready
How to do it...
How it works...
There's more...
See also
Distributing different files based on the target platform
Getting ready
How to do it...
How it works...
See also
6. Users and Applications
Introduction
Creating users from data bags
Getting ready
How to do it...
How it works...
There's more...
See also
Securing the Secure Shell Daemon (SSHD)
Getting ready
How to do it...
How it works...
There's more...
See also
Enabling passwordless sudo
Getting ready
How to do it...
How it works...
There's more...
See also
Managing NTP
Getting ready
How to do it...
How it works...
There's more...
See also
Managing nginx
Getting ready
How to do it...
How it works...
There's more...
See also
Creating nginx sites
Getting ready
How to do it...
How it works...
There's more...
See also
Creating MySQL databases and users
Getting ready
How to do it...
How it works...
There's more...
See also
Managing WordPress sites
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Ruby on Rails applications
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Varnish
Getting ready
How to do it...
How it works...
There's more...
See also
Managing your workstation
Getting ready
How to do it...
How it works...
There's more...
See also
7. Servers and Cloud Infrastructure
Introduction
Creating cookbooks from a running system with Blueprint
Getting ready
How to do it...
How it works...
There's more...
See also
Running the same command on many machines at once
How to do it...
How it works...
There's more...
See also
Setting up SNMP for external monitoring services
Getting ready
How to do it...
How it works...
There's more...
See also
Deploying a Nagios monitoring server
Getting ready
How to do it...
How it works...
There's more...
See also
Building high-availability services using Heartbeat
Getting ready
How to do it...
How it works...
There's more...
See also
Using HAProxy to load-balance multiple web servers
Getting ready
How to do it...
How it works...
See also
Using custom bootstrap scripts
Getting ready
How to do it...
How it works...
There's more...
See also
Managing firewalls with iptables
Getting ready
How to do it...
How it works...
See also
Managing fail2ban to ban malicious IP addresses
Getting ready
How to do it...
How it works...
There's more...
See also
Managing Amazon EC2 instances
Getting ready
How to do it...
How it works...
There's more...
See also
Loading your Chef infrastructure from a file with spiceweasel and Knife
Getting ready
How to do it...
How it works...
There's more...
See also
Index