

CONTENTS
Titlepage
Copyright
Dedication

Acknowledgments

Chapter	1:	Getting	Started

Hardware	Requirements
About	the	Raspberry	Pi	Zero	W

Installing	Raspbian
Connecting	to	a	Monitor,	Keyboard,	and	Mouse
Headless:	Connecting	Without	a	Monitor
Finding	Your	Pi	on	the	Local	Network

SSHing	to	Your	Raspberry	Pi
Logging	In	and	Changing	the	Default	Password
Basic	Configuration
The	PIXEL	Desktop

Introducing	the	Linux	Command	Line
Installing	Software
Getting	Help

Chapter	2:	Blink	an	LED

Hardware	Requirements

What	Is	GPIO?
Headers:	Hooking	Up	to	the	Pi	Zero	W
Wiring	an	LED	on	a	Breadboard
The	Raspberry	Pi	Pin	Layout

Controlling	an	LED	from	the	Command	Line
Blinking	an	LED	from	the	Command	Line

Blinking	an	LED	from	a	Python	Program
Fade	an	LED

Python	Blink	Using	RPi-gpio
Python	Fade	using	RPi-gpio
Reading	Input:	A	Pushbutton
Other	Languages,	Other	Interfaces

Chapter	3:	A	Temperature	Notifier	and	Fan	Control

Hardware	Requirements
What	Is	I2C?
Choosing	a	Sensor
A	Temperature	Tweeter

Controlling	a	Fan	or	Air	Conditioner

Chapter	4:	A	Wearable	News	Alert	Light	Show

Hardware	Requirements
DotStars
NeoPixels

Searching	for	Twitter	Keywords
Web	Scraping	in	Python
Making	It	Portable:	Batteries

Jumpstarting	the	Raspberry	Pi	Zero	W

CONTROL	THE	WORLD	AROUND	YOU	WITH	A	$10
COMPUTER

Akkana	Peck

Copyright	©	2017	Akkana	Peck.	All	rights	reserved.
	
Published	by	Maker	Media,	Inc.,	1700	Montgomery	Street,	Suite	240,	San	Francisco,
CA	94111
	
Maker	Media	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.
	
Publisher:	Roger	Stewart
Editor:	Patrick	DiJusto
Copy	Editor:	Elizabeth	Welch,	Happenstance	Type-O-Rama
Proofreader:	Scout	Festa,	Happenstance	Type-O-Rama
Interior	Designer	and	Compositor:	Maureen	Forys,	Happenstance	Type-O-Rama
Cover	Designer:	Maureen	Forys,	Happenstance	Type-O-Rama
Indexer:	Valerie	Perry,	Happenstance	Type-O-Rama
	
All	the	circuit	and	component	diagrams	in	this	book	are	created	using	Fritzing
(http://fritzing.org/home).
	
August	2017:	First	Edition
	
Revision	History	for	the	First	Edition
2017-08-28	First	Release
	
See	oreilly.com/catalog/errata.csp?isbn=9781680453911	for	release	details.
	
Make:,	Maker	Shed,	and	Maker	Faire	are	registered	trademarks	of	Maker	Media,	Inc.
The	Maker	Media	logo	is	a	trademark	of	Maker	Media,	Inc.	Jumpstarting	the	Raspberry
Pi	Zero	W	and	related	trade	dress	are	trademarks	of	Maker	Media,	Inc.	Many	of	the
designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are
claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	Maker
Media,	Inc.	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	in	caps
or	initial	caps.	While	the	publisher	and	the	author	have	used	good	faith	efforts	to
ensure	that	the	information	and	instructions	contained	in	this	work	are	accurate,	the
publisher	and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or	reliance	on
this	work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at	your	own
risk.	If	any	code	samples	or	other	technology	this	work	contains	or	describes	is	subject

http://safaribooksonline.com
http://corporate@oreilly.com
http://fritzing.org/home
http://oreilly.com/catalog/errata.csp?isbn=9781680453911

to	open	source	licenses	or	the	intellectual	property	rights	of	others,	it	is	your
responsibility	to	ensure	that	your	use	thereof	complies	with	such	licenses	and/or
rights.
	
978-1-680-45-391-1
	
Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.
Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,
problem	solving,	learning,	and	certification	training.	Safari	Books	Online	offers	a	range
of	plans	and	pricing	for	enterprise,	government,	education,	and	individuals.	Members
have	access	to	thousands	of	books,	training	videos,	and	prepublication	manuscripts	in
one	fully	searchable	database	from	publishers	like	O’Reilly	Media,	Prentice	Hall
Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit
Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,	McGraw-Hill,
Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more	information	about
Safari	Books	Online,	please	visit	us	online.
	
How	to	Contact	Us
Please	address	comments	and	questions	to	the	publisher:
	
Maker	Media
1700	Montgomery	St.
Suite	240
San	Francisco,	CA	94111
	
You	can	send	comments	and	questions	to	us	by	email	at	books@makermedia.com.
	
Maker	Media	unites,	inspires,	informs,	and	entertains	a	growing	community	of
resourceful	people	who	undertake	amazing	projects	in	their	backyards,	basements,	and
garages.	Maker	Media	celebrates	your	right	to	tweak,	hack,	and	bend	any	Technology
to	your	will.	The	Maker	Media	audience	continues	to	be	a	growing	culture	and
community	that	believes	in	bettering	ourselves,	our	environment,	our	educational
system—our	entire	world.	This	is	much	more	than	an	audience,	it’s	a	worldwide
movement	that	Maker	Media	is	leading.	We	call	it	the	Maker	Movement.
	
To	learn	more	about	Make:	visit	us	at	makezine.com.	You	can	learn	more	about	the

http://books@makermedia.com
http://makezine.com

company	at	the	following	websites:
	
Maker	Media:	makermedia.com
	
Maker	Faire:	makerfaire.com
	
Maker	Shed:	makershed.com

http://makermedia.com
http://makerfaire.com
http://makershed.com

DEDICATION

To	Dave:	husband,	friend,	life	companion…plus	editor	and	proofreader

ACKNOWLEDGMENTS

Any	book	represents	the	work	of	a	team,	not	just	a	single	author.

I’d	like	to	thank	my	husband	Dave	for	his	endless	work	reviewing	each	draft
and	helping	rein	in	my	prolixity—not	to	mention	putting	up	with	my	angst	and
bellyaching	when	things	didn’t	work	as	expected.

The	staff	at	Maker	Media—Liz,	Maureen,	and	especially	my	editor,	Patrick—
were	ever	helpful	and	patient,	putting	up	with	my	constant	stream	of	rewrites
and	trying	to	work	through	the	various	software	problems	we	encountered.

And	let’s	not	forget	all	the	folks	who	share	open	source	code	and	libraries.
Without	them,	the	Pi	Zero	W	would	never	light	a	single	LED.

The	wiring	diagrams	in	the	book	were	made	with	Fritzing,	a	terrific	free	tool
for	sharing	circuit	information	(http://fritzing.org/).	The	images	were	edited
with	GIMP,	the	premiere	open	source	image	editing	tool.	The	Fritzing	.fzz
and	GIMP	.xcf	files	are	on	the	book’s	GitHub	repository,
https://github.com/akkana/pi-zero-w-book.

http://fritzing.org/
https://github.com/akkana/pi-zero-w-book

W

Chapter	1

Getting	Started

hy	choose	the	Raspberry	Pi	Zero	W?	It’s	small.	It’s	cheap.	It’s	power
efficient.	It	has	WiFi	and	Bluetooth	Low	Energy	(BLE)	built	in.	And	it	has	the
same	general-purpose	input/output	(GPIO)	header	that	bigger	Raspberry	Pis
have:	the	gateway	to	controlling	all	sorts	of	hardware.

It’s	easy	to	build	gizmos	that	use	hardware	and	networking	in	fun	ways.	In
this	book,	you’ll	build	three	projects	using	the	Pi	Zero	W:

Blinking	LEDs

An	environmental	monitor	that	can	keep	track	of	the	temperature	in	your
house,	and	even	turn	on	your	fan	or	air	conditioner	before	you	get	home
from	work

A	wearable	light	string	that	monitors	news	feeds	and	websites	to	alert	you
when	there’s	something	interesting	going	on

You	don’t	need	much	prior	experience	with	either	hardware	or
programming—though	knowing	how	to	solder	will	help.

With	what	you	learn	from	these	projects,	you	can	extend	the	Pi’s	power	to
hundreds	of	other	hardware	and	software	projects.

HARDWARE	REQUIREMENTS
Each	chapter	opens	with	a	list	of	hardware	required	to	finish	the	project.	That
makes	it	easy	to	know	you	have	what	you	need	without	running	to	the
electronics	store	every	half	hour,	or	if	you	live	in	a	remote	area,	waiting
several	days	for	mail	order.

Here’s	the	hardware	you’ll	need	for	this	introductory	chapter:

The	Raspberry	Pi	Zero	W	itself	(though	you	can	follow	along	on	any
Raspberry	Pi)

A	power	source:	5	volts,	at	least	1	amp,	with	a	MicroUSB	plug

A	microSD	card,	preferably	at	least	8	GB,	to	use	with	a	monitor	(you	can
get	by	with	4	GB	if	you	only	want	to	run	“headless”)

Another	computer	with	WiFi	and	a	MicroSD	writer

To	use	the	PIXEL	desktop,	you’ll	need	the	following:

A	monitor,	keyboard,	and	mouse

A	cable	that	connects	mini-HDMI	to	your	monitor

A	USB	hub,	ideally	one	with	external	power	and	not	USB	3:	either	a	hub
that	plugs	into	MicroUSB,	or	a	regular	hub	plus	a	USB	On-the-Go	(OTG)
adapter

Now	let’s	look	at	the	board	itself.

ABOUT	THE	RASPBERRY	PI	ZERO	W
The	technical	specs	of	the	Pi	Zero	W	are	as	follows:

1	GHz,	single-core	ARM11	Broadcom	CPU

512	MB	of	RAM

MicroSD	card	slot

MicroUSB	power	connector

Mini-HDMI	video	port

MicroUSB	On-the-Go	(OTG)	port

Hardware	Attached	on	Top	(HAT)-compatible	40-pin	header

Composite	video	and	reset	headers

CSI	camera	connector

802.11n	wireless	LAN

Bluetooth	Low	Energy	4.0

Figure	1-1:	The	small	but	mighty	Raspberry	Pi	Zero	W

The	Pi	Zero	W	sports	a	fairly	punchy	processor	for	such	a	small,	inexpensive
device—not	as	hot	as	the	larger	Pi	3,	but	faster	than	the	original	Raspberry	Pi—
and	it	can	run	a	full	version	of	Linux.	That	means	you	have	hundreds	of
programs	and	libraries	already	available,	and	you	can	write	your	own	software
for	it	in	any	language	of	your	choice.	Most	examples	in	this	book	will	use
Python:	it’s	the	most	flexible,	the	easiest	to	learn,	and	very	well	supported.

The	Pi	Zero	W	doesn’t	arrive	with	an	operating	system,	or	even	any	built-in
storage.	It	has	to	boot	from	a	MicroSD	card	with	an	OS	installed.

The	most	popular	OS	for	the	Raspberry	Pi	family	is	Raspbian,	a	version	of
Debian	Linux.	It’s	built	for	the	ARM	CPU	and	customized	for	the	Raspberry	Pi,
so	that’s	what	you’ll	use	with	this	book.	You	can	also	run	other	versions	of

Linux,	such	as	Arch	or	Gentoo,	as	well	as	specialized	distributions	optimized
for	tasks	like	playing	video	on	your	TV.	But	the	Zero	W	isn’t	the	best	choice
for	such	heavy	lifting;	for	TV	you’re	better	off	choosing	the	faster	Raspberry
Pi	3.

You	can	buy	MicroSD	cards	that	already	have	Raspbian	installed,	but	it’s
easy	to	download	and	install	yourself.	You’ll	need	a	computer	(not	the	Pi	itself)
that	can	write	to	an	SD	card.

INSTALLING	RASPBIAN
Since	you	can’t	boot	your	Pi	Zero	W	until	you	install	an	OS	to	the	SD	card,
you’ll	do	this	step	with	your	existing	computer.

You	can	download	Raspbian	from	the	Raspberry	Pi	Foundation:
https://www.raspberrypi.org/downloads/raspbian/

It	gives	you	two	options:	install	just	Raspbian,	or	install	something	called
NOOBS	(which	stands	for	New	Out	Of	the	Box	Software).	NOOBS	gives	you
links	to	install	several	different	OS	options,	including	Raspbian,	but	it’s	a	larger
download	and	takes	longer	to	install.	For	this	book,	choose	Raspbian.

https://www.raspberrypi.org/downloads/raspbian/

Figure	1-2:	The	Raspbian	download	page

On	the	Raspbian	download	page,	you’ll	see	two	options:

Raspbian	Jessie	with	PIXEL

Raspbian	Jessie	Lite

Raspbian	is	a	version	of	Debian,	and	Debian	versions	are	named	after
characters	from	the	Toy	Story	movies.	Raspbian	is	currently	based	on	the	last
version	of	Debian,	named	Jessie—the	Yodeling	Cowgirl	from	Toy	Story	2	and
3.	As	this	book	was	being	written,	Debian	released	a	newer	version,	named
Stretch,	after	a	stretchy	purple	octopus	from	Toy	Story	3.	Raspbian	will
eventually	upgrade	to	Stretch,	but	there	shouldn’t	be	much	difference	on	the
surface.

PIXEL	is	the	name	of	the	desktop	Raspbian	uses—the	interface	and	menus
you	see	on	the	screen	when	you	connect	a	monitor	to	the	Pi.	If	you	plan	to

connect	your	Pi	to	a	monitor,	you	definitely	want	the	full	version	with	PIXEL.	If
you’re	planning	on	using	it	for	lightweight	hardware	projects,	never	want	to
run	a	desktop,	and	want	to	save	space	on	the	SD	card,	you	can	choose	Jessie
Lite.	In	that	case,	after	you’ve	finished	installing	Raspbian	to	your	SD	card,	you
can	skip	ahead	to	the	section	“Headless:	Connecting	Without	a	Monitor.”

Whichever	image	you	download,	unzip	it	to	get	a	file	with	a	name	like	2017-
04-10-raspbian-jessie.img.	(The	date	might	be	different.)	Follow	the
directions	linked	from	the	Raspbian	Download	page.	For	the	full	Raspbian,	if
your	unzip	program	is	old	and	can’t	handle	zip	files	larger	than	4	GB,	you	may
need	to	install	a	newer	one.

Then	write	the	unzipped	file	directly	to	your	SD	card.	You	need	to
overwrite	the	whole	card,	not	just	copy	the	file	onto	a	partition.	The	Raspbian
folks	recommend	using	a	tool	called	Etcher,	which	you	can	find	at
https://etcher.io/.	But	they	also	have	instructions	for	people	who	want	more
control	over	the	process:	Windows	users	can	use	Win32DiskImager,	and	Mac
and	Linux	people	can	use	dd.	If	you’re	a	Chromebook	user,	Raspbian	doesn’t
have	a	page	for	you,	but	if	you	use	developer	mode	and	bring	up	a	terminal,
you	can	follow	the	dd	instructions	meant	for	Linux	users.

CONNECTING	TO	A	MONITOR,	KEYBOARD,	AND
MOUSE
You	now	have	Raspbian	installed	and	you’re	ready	to	try	it.	If	you	don’t	have	a
monitor	handy	and	want	to	run	headless,	skip	ahead	to	the	section	“Headless:
Connecting	Without	a	Monitor.”

The	Pi	Zero	W	has	a	built-in	mini-HDMI	video	port.	So	you	will	need	a	cable
that	connects	from	mini-HDMI	to	whatever	your	monitor	requires,	like	HDMI
or	DVI,	or	you’ll	have	to	use	adapters	on	a	regular	HDMI	cable.

https://etcher.io/

Figure	1-3:	An	HDMI	cable	with	a	mini-HDMI	adapter

Figure	1-4:	Adapters	galore!	A	video	adapter	from	mini-HDMI	to	regular
HDMI,	and	then	to	DVI,	plus	a	USB	OTG	adapter.	The	Pi	Zero	W	also	has	a
ribbon	cable	attached	to	it.

You’ll	also	need	a	USB	hub.	The	Pi	Zero	W	has	only	a	single	MicroUSB	port
(plus	a	power	port	that	uses	the	same	connector),	but	you’ll	need	a	place	to
plug	in	both	a	keyboard	and	a	mouse.	The	hub	can	be	a	little	tricky:	Pis	have
known	problems	connecting	to	some	cheap	unpowered	hubs	and	trouble
driving	slow	hardware	like	a	mouse	or	keyboard	off	a	USB	3	hub.	Your	best
bet	is	a	USB	2	hub	with	an	external	power	supply.

Figure	1-5:	The	powered	USB	2	hub	is	plugged	in	to	the	Pi	via	a	USB	OTG
adapter.	The	author’s	DVI	KVM	is	connected	via	two	adapters	to	the	Zero	W’s
mini	HDMI,	and	the	mouse	and	keyboard	cables	from	the	KVM	plug	into	the
USB	hub.	Whew!

You	might	also	need	a	special	USB	cable.	Most	hubs	have	a	regular	USB	A
plug.	But	you	need	a	hub	specifically	intended	for	computers	with	MicroUSB,
or	an	adapter	that	goes	from	MicroUSB	to	your	hub.	One	option	is	a
MicroUSB-to-USB	A	female	adapter,	sometimes	called	a	USB	OTG	adapter;
they’re	inexpensive	and	will	probably	be	useful	for	a	variety	of	purposes	on
the	Pi	Zero	W.

Figure	1-6:	A	USB	On-the-Go	(OTG)	adapter

Got	your	mini-HDMI	and	USB	hub	all	set	up?	It’s	time	to	try	booting	the	Pi
Zero	W	with	a	monitor.	Skip	ahead	to	“Logging	In	and	Changing	the	Default
Password.”

HEADLESS:	CONNECTING	WITHOUT	A
MONITOR
The	Raspberry	Pi	Zero	W	is	a	great	hardware	controller.	It’s	small	and	power
efficient,	and	it	has	all	those	hardware	outputs.	You	might	have	bought	it
purely	for	that	purpose	and	have	no	intention	of	connecting	it	to	a	monitor.

But	how	do	you	get	your	software	on	it	or	test	it?

Fortunately,	there	are	several	ways	to	connect	over	the	Pi	Zero	W’s	built-in
WiFi.	The	easiest	is	Secure	Shell,	or	SSH.	But	before	you	can	do	that,	you	have
to	set	up	wireless	on	the	SD	card	so	that	the	Pi	will	boot	and	automatically
connect	itself	to	the	network.

Start	by	plugging	your	Raspbian	SD	card	into	your	computer.	If	you’ve	just
finished	copying	Raspbian	to	the	card,	eject	the	card	and	reinsert	it	to	force

the	computer	to	read	and	mount	the	new	partitions	you	just	wrote	onto	the
card.

Normal	Raspbian	(not	NOOBS)	uses	two	partitions	on	the	SD	card.	The	first
is	the	boot	partition:	it	contains	a	Linux	kernel	and	some	startup	files	like
drivers	for	hardware	the	Pi	can’t	do	without.	The	second	is	the	root	partition,
where	most	of	Raspbian’s	files	are.	The	root	partition	is	formatted	as	the
native	Linux	ext4	filesystem,	and	you	probably	won’t	be	able	to	mount	it
except	from	another	Linux	computer.	Fortunately,	you	can	do	the
configuration	you’re	most	likely	to	need	using	only	the	boot	partition,	which
you	can	mount	on	any	computer.	Mount	that	partition	now.

Configuring	SSH	and	WiFi	from	Another	Computer

Raspbian	has	SSH	out	of	the	box,	but	it’s	disabled	by	default.	To	enable	it,
create	a	file	called	ssh	on	the	SD	card’s	boot	partition.	The	file	can	be	empty;
all	that	matters	is	that	it’s	named	ssh.	Now	Raspbian	will	start	SSH	the	next
time	you	boot.

That’s	the	easy	part.	Next	you	have	to	set	up	the	Pi’s	network	connection.

If	your	WiFi	network	uses	Dynamic	Host	Configuration	Protocol,	or	DHCP
(which	handles	automatic	addressing),	and	doesn’t	have	a	password	or	any
browser	authentication	screens,	the	Pi	should	connect	on	its	own.	In	that	case,
skip	ahead	to	“Finding	Your	Pi	on	the	Local	Network.”	Otherwise,	you	can
configure	networking	by	creating	a	file	on	the	boot	partition	called
wpa_supplicant.conf.

You’ll	need	the	name	of	your	network,	called	the	service	set	identifier
(SSID).	That’s	what	you	normally	see	in	your	computer’s	menus	when	you
connect.	Of	course,	you’ll	need	your	network	password	if	you	have	one.

If	your	network	requires	browser	authentication—in	other	words,	if	you
connect	to	the	network	without	a	password,	then	go	to	a	web	page	where	you
type	in	a	password—you’re	probably	out	of	luck.	There’s	no	easy	way	to	set	up
a	computer	to	do	that	automatically.	If	plugging	in	a	monitor	isn’t	possible,	you
have	a	couple	more	options.	You	can	use	a	USB	Ethernet	dongle	with	an	OTG
adapter.	Or	you	can	buy	a	USB	serial	cable	made	for	a	Raspberry	Pi,	in	which
case	you’ll	need	to	edit	config.txt	on	the	SD	card’s	boot	partition	and	add
these	two	lines	to	enable	a	serial	console	and	disable	Bluetooth:

enable_uart=1
dtoverlay=pi3-disable-bt

But	back	to	configuring	WiFi.

Got	your	SSID	and	password	ready?	Create	wpa_supplicant.conf	by
opening	it	with	whatever	text	editor	you	prefer.	You	must	use	a	plain	text
editor,	not	a	word	processor	like	Word.	If	you	don’t	already	have	a	text	editor
you	use	regularly,	try	Notepad	on	Windows,	TextEdit	on	Mac,	or	nano	on
Linux.

Enter	this:

ctrl_interface=DIR=/var/run/wpa_supplicant	GROUP=netdev
update_config=1
		
country=US
network={
				ssid="YOUR	SSID"
				psk="YOUR	PASSWORD"
}

in	which	YOUR	SSID	is	replaced	by	the	SSID	of	your	network,	and	YOUR
PASSWORD	is	replaced	by	your	network	password.	If	your	network	doesn’t
have	a	password,	use	this	instead:

network={
				ssid="YOUR	SSID"
				key_mgmt=NONE
}

If	your	SSID	is	hidden	(it	doesn’t	show	up	automatically	when	you	scan	for
networks),	it	might	help	to	add	this	line	after	the	key_mgmt	line:

				scan_ssid=1

Save	the	file	and	exit.

To	use	a	static	IP	address,	rather	than	one	dynamically	configured	with
DHCP,	you	need	an	extra	step.	(If	you	aren’t	sure,	you	probably	won’t	need
this	step.)

You’ll	need	to	mount	the	Raspbian	partition,	the	second	partition	on	the
hard	drive.	It’s	an	ext4	format	filesystem,	so	you’ll	probably	need	access	to	a

Linux	machine	for	this	part.	In	etcon	the	Raspbian	partition,	edit	the	file
dhcpcd.conf.	Add	a	section	at	the	bottom	with	your	static	network	information:

interface	wlan0
static	ip_address=192.168.1.x
static	routers=192.168.1.1
static	domain_name_servers=192.168.1.1

Replace	192.168.1.x	and,	if	needed,	the	other	addresses	with	the	ones	for
your	network.	Save	the	file	and	exit.	You’re	ready	to	try	booting.

FINDING	YOUR	PI	ON	THE	LOCAL	NETWORK
If	you’re	connecting	to	your	Pi	over	the	network	rather	than	using	a	monitor
and	you’re	not	using	a	static	IP	address,	you’ll	have	to	figure	out	what	address
it	ended	up	using.	That	will	be	four	numbers	separated	by	dots,	like
192.168.1.125.

If	you’re	on	your	own	home	network	and	you	can	log	in	to	your	WiFi	router
(usually	by	using	a	browser	to	navigate	to	http://192.168.1.1),	there’s	probably	a
Devices	tab	that	shows	all	devices	currently	on	the	network.	Look	for	a	new	or
unfamiliar	device:	that’s	probably	your	Pi.	It	might	even	show	a	hostname	of
raspberrypi.

If	you	do	a	web	search,	you’ll	find	utilities	to	search	for	Raspberry	Pis	on	the
local	network,	like	the	Adafruit-Pi-Finder.	But	here	are	some	lower-level	ways
to	search	for	your	Pi.

Using	arp	and	fping

If	you	can	install	the	fping	program,	here’s	a	fast	way	to	find	Raspberry	Pis	on
your	network:

fping	-a	-r1	-g	192.168.1.0/24		&>	/dev/null
arp	-n	|	fgrep	"	b8:27:eb"

Raspberry	Pi	WiFi	chips	have	Ethernet	addresses	that	start	with	b8:27:eb,
so	this	looks	only	for	Raspberry	Pis	on	the	network.

If	you	can’t	install	fping,	try	the	arp	command	anyway.	It	might	not	see	a
newly	booted	Pi,	but	it’s	worth	a	try.

http://192.168.1.1

If	it	doesn’t	find	anything,	a	more	reliable	program	is	nmap.

Using	nmap

You	can	find	all	the	machines	on	your	local	network	with	the	command	nmap.
Linux	machines	probably	have	nmap	already,	but	on	a	Mac	or	Windows
machine	you	can	get	it	from	https://nmap.org/download.html.	If	your	network
is	192.168.1:

sudo	nmap	-sn	192.168.1.0/24

You	can	search	for	only	Raspberry	Pi	devices	this	way:

$	sudo	nmap	-sn	192.168.1.0/24	|	grep	-i	-B	2	B8:27:EB

SSHING	TO	YOUR	RASPBERRY	PI
Once	your	Pi	is	up	and	running,	and	you	know	its	network	address,	you	can	log
in	using	SSH.	On	Mac	and	Linux,	and	Chromebooks	with	developer	mode,	get
a	terminal	and	type

ssh	ADDRESS-OF-YOUR-PI

Windows	doesn’t	have	SSH	installed	by	default,	but	there	are	plenty	of
good	SSH	programs	available.	The	most	popular	is	a	graphical	program	called
PuTTY.	You	can	download	graphical	SSH	programs	for	Mac	and	Chrome	OS,
too.

SSH	even	lets	you	run	desktop	programs	on	your	Pi,	using	a	technique
called	X	forwarding.	That	requires	an	X	server	program	on	your	local
computer.	Linux	comes	with	X	already;	on	Mac	you	can	download	X11	from
Apple;	on	Windows	there	are	various	X	servers	available,	such	as	Xming.

Once	you’re	running	X	on	your	local	computer,	log	in	to	your	Pi	with	ssh	-X
(that’s	a	capital	X)	from	Mac	or	Linux,	or	in	PuTTY,	enable	Connection	>	SSH	>
X11	in	the	PuTTY	configuration.	Then	you	can	run	graphical	programs	from
that	shell	and	they	will	display	on	your	local	machine.

LOGGING	IN	AND	CHANGING	THE	DEFAULT

https://nmap.org/download.html

PASSWORD
You’ve	booted	your	Pi	Zero	W	and	you’re	ready	to	log	in,	whether	it’s	in
PIXEL	or	over	SSH.	The	first	time	you	log	in,	use	the	username	pi,	and	the
password	raspberry.

If	you’ve	enabled	SSH,	you	will	see	a	warning:

SSH	is	enabled	and	the	default	password	for	the	'pi'	user	has	not	been	changed.
This	is	a	security	risk	-	please	login	as	the	'pi'	user	and	type	
'passwd'	to	set	a	new	password.

You	should	change	the	default	password!

You	can	change	the	password	right	now	using	the	command	line.	Bring	up	a
terminal	by	clicking	on	the	terminal	icon	at	the	top	of	the	screen,	as	shown	in
Figure	1-7,	or	by	choosing	Accessories	>	Terminal.

Figure	1-7:	The	PIXEL	desktop	showing	a	terminal

You’ll	be	working	a	lot	more	with	the	terminal	and	the	command	line	in	later
chapters,	but	for	now,	just	type	passwd	at	the	prompt:

$	passwd

Changing	password	for	pi.
(current)	UNIX	password:

Type	the	current	password,	raspberry.	Then,	when	prompted,	enter	your
new	password.

BASIC	CONFIGURATION
The	raspi-config	program	can	do	a	lot	of	basic	configuration.	In	the	terminal,
type

sudo	raspi-config

Navigate	around	this	screen	by	using	the	up	and	down	arrow	keys.	Hit	Enter
to	choose	one	of	the	categories	or	to	choose	an	option.

You	can	change	the	password	(if	you	didn’t	already	do	so	from	the
command	line)	or	set	a	hostname.

Under	Boot	Options,	you	can	choose	whether	to	start	in	the	graphical
desktop,	or	skip	it	and	just	boot	into	the	command-line	interface	(CLI)	if	you’re
running	headless.	For	each	option,	you	have	a	choice	of	whether	the	user	pi
will	be	logged	in	automatically,	or	whether	you’ll	have	to	log	in	with	a
password.	If	you’re	connecting	over	the	network	with	SSH,	that	setting
doesn’t	matter	much;	you’ll	have	to	log	in	no	matter	what	(though	there	are
ways	of	using	SSH	without	a	password).

Under	Localisation	Options,	you	can	use	Change	Locale	to	change	the
language	and	country	you	use.	For	instance,	if	you’re	in	the	United	States	I
recommend	changing	your	locale	to	en_US.UTF-8.	The	default	is	en_GB.UTF-8.

When	you’re	finished	with	Change	Locale,	press	the	Tab	key.	The	highlight
will	jump	to	Ok	and	you	can	press	Enter	to	accept	the	new	locale(s).	Next
you’ll	be	taken	to	a	screen	where	you	configure	the	system	locale.	People	in
the	United	States	should	choose	en_US.UTF-8.

The	Interfacing	Options	section	lets	you	enable	hardware	such	as	a	Pi
Camera,	if	you	have	one;	enable	services	like	SSH	or	virtual	network
computing	(VNC);	or	enable	hardware	options	like	SPI	or	I2C	(more	about
those	in	Chapter	3)	Serial,	1-Wire,	or	Remote	GPIO.

Figure	1-8:	raspi-config,	running	in	the	PIXEL	desktop

If	you’re	running	a	headless	Pi,	be	sure	to	enable	SSH	here.	The	trick	of
creating	a	file	named	ssh	on	the	boot	partition	works	only	once.	You	don’t
want	to	have	to	do	that	every	time	you	use	your	Pi!

There	are	other	sections,	like	Overclocking	and	Advanced	Options,	but	you
shouldn’t	need	to	adjust	those	options.

When	you’re	done	configuring,	press	Tab	to	get	to	Finish.	raspi-config	will
prompt	you	to	reboot	if	you’ve	changed	any	settings	that	require	a	reboot.

THE	PIXEL	DESKTOP
The	Raspberry	Pi	desktop	is	called	PIXEL.	Clicking	the	raspberry	icon	in	the
top	left	opens	a	set	of	menus	you	can	explore.	Next	to	that	are	icons	for	a	web
browser,	file	manager,	and	terminal	(you’ll	be	using	the	terminal	for	most	of
this	book).

The	final	two	icons	on	the	top	bar	are	Wolfram	and	Mathematica.	Wolfram
Research	made	these	tools	available	to	Raspberry	Pi	users	free	of	charge,
though	you’ll	probably	find	them	frustratingly	slow	on	the	Pi	Zero	W.	If	you

want	to	explore	the	Wolfram	world,	you’re	better	off	with	a	Raspberry	Pi	3.

At	the	upper	right	is	a	networking	icon,	showing	whether	your	Pi	W	is
connected	to	WiFi.	If	you	didn’t	already	configure	WiFi,	you	can	do	it	now—the
easy	way.	Click	on	the	WiFi	icon	in	the	upper	right,	choose	your	network,	and
set	your	password.

Figure	1-9:	Configuring	WiFi	in	PIXEL

Exploring	PIXEL

Once	WiFi	is	working,	doodle	to	your	heart’s	content.	There	are	lots	of	other
interesting	options	under	Preferences:	you	can	customize	the	fonts	and	colors
and	the	background	image,	change	the	behavior	of	the	mouse	and	keyboard,
and	add	new	items	to	the	menu.

You	can	also	install	new	software.	Click	the	raspberry	icon,	go	to
Preferences,	and	look	for	Add/Remove	Software.	There	are	hundreds	of
packages	you	can	install,	organized	by	category.	You’ll	install	a	few	of	those
packages	in	later	chapters.

INTRODUCING	THE	LINUX	COMMAND	LINE
A	lot	of	programming	requires	the	command	line,	so	you’ll	be	using	the
terminal	and	typing	commands	a	lot	with	this	book.	(It’s	also	handy	when
you’re	running	without	a	monitor,	or	debugging	something	on	a	device	that’s
at	the	other	side	of	the	house	or	out	in	the	back	yard.)

The	program	that	reads	your	commands	and	executes	them	is	called	the
shell.	You’ll	be	using	a	shell	called	Bash,	short	for	the	Bourne-Again	Shell.	The
name	is	a	pun:	the	original	Unix	shell	was	written	by	someone	named	Bourne,
but	it	wasn’t	open	source	and	couldn’t	be	used	in	free	operating	systems	like
Linux,	so	the	new	shell	rewritten	to	replace	the	Bourne	shell	was	dubbed
“Bourne	Again.”

The	first	word	you	type	at	the	shell	prompt	is	a	command,	and	all	the	words
after	the	command	are	called	arguments.	If	you	want	to	see	the	contents	of
the	current	directory,	type	ls	(a	command,	short	for	“list”	the	contents	of	the
directory).	If	you	want	to	see	the	contents	of	the	directory	called
python_games,	type	ls	python_games.	ls	is	still	the	command,	and	python_games
is	the	argument.

Some	commands	require	“root	privilege,”	which	is	like	the	Administrator
account	on	Windows.	For	those,	you	can	type	sudo	before	the	command	(sudo
is	short	for	Super	User	DO—in	other	words,	do	this	command	as	the	super
user).	Earlier	in	this	chapter	you	typed	sudo	raspi-config	to	reconfigure	the
system.

WARNING

Typing	commands	with	sudo	can	remove	files,	remove	software,	or
otherwise	damage	the	Raspbian	install.	Don’t	use	sudo	unless	you’re
doing	something	that	really	needs	it.

Editing	Command	Lines

The	normal	Backspace,	Delete,	arrow	keys,	Home,	and	End	work	when	you’re
editing	commands.	But	there	are	some	other	nice	features	too.

One	example	is	autocomplete.	You	hardly	ever	have	to	type	a	whole
command;	you	can	hit	the	Tab	key	to	see	what	options	you	have.	For	instance,
typing	ls	py	and	pressing	Tab	completes	to	ls	python_games/.	(The	slash	at
the	end	indicates	that	python_games	is	a	directory,	which	is	the	same	thing	as	a
folder:	it	isn’t	a	file;	it	contains	files.)

If	there’s	more	than	one	match,	Tab	will	only	complete	as	far	as	it	can.
Typing	ras	and	pressing	Tab	completes	to	raspi	because	there	are	a	bunch	of
different	commands	that	start	with	raspi.	But	if	you	keep	hitting	Tab	(two
more	times),	it	will	show	you	the	list	of	everything	that	matches:

pi@raspberrypi:~	$	raspi
raspi-config		raspistill				raspividyuv
raspi-gpio				raspivid						raspiyuv
pi@raspberrypi:~	$	raspi

At	this	point,	if	you	type	-c,	the	command	will	expand	to	raspi-config;	if
you	type	v	instead,	it	will	expand	to	raspivid,	which	would	let	you	take	videos
with	a	camera	module	if	you	have	one	installed.

Some	other	useful	editing	shortcuts:

The	up	arrow	shows	you	the	previous	command	you	typed,	which	you	can
edit	or	change.

Ctrl-W	deletes	the	last	word.

Ctrl-U	deletes	back	to	the	beginning	of	the	line.

Ctrl-K	deletes	to	the	end	of	the	line.

Ctrl-A	goes	to	the	beginning	of	the	line,	Ctrl-E	to	the	end,	Ctrl-B	moves
backward,	Ctrl-F	moves	forward,	Ctrl-H	deletes	the	previous	character,
and	Ctrl-D	deletes	the	next	character.	These	do	the	same	thing	as	Home,
End,	Left,	Right,	Backspace,	and	Delete,	but	you	can	type	them	without
moving	your	hands	from	the	normal	typing	position.

If	you	need	to	page	up	to	see	earlier	commands	you	typed,	use	Shift-
PageUp.

INSTALLING	SOFTWARE
You	can	install	software	from	the	command	line	as	well	as	from	the	PIXEL
menus.	The	Debian	installation	software	is	called	APT	(for	Advanced	Package
Tool),	and	most	of	the	software	installation	and	search	commands	start	with
apt.	You	can	search	for	packages	with	aptitude	search:

pi@raspberrypi:~	$	aptitude	search	camera
p			camera.app	-	GNUstep	application	for	digital	still	came
p			cameramonitor	-	Webcam	monitoring	in	system	tray
p			libomxil-bellagio0-components-c	-	Motorola	Camera	components	for
				Bellagio	Op
i			python-picamera	-	Pure	Python	interface	to	the	Raspberry	Pi’
p			python-picamera-docs	-	Documentation	for	the	Python	interface	to
i			python3-picamera	-	Pure	Python	interface	to	the	Raspberry	Pi
p			python3-snap-camera	-	A	camera	that	uses	PiFace	Control	and	Disp

The	lines	that	start	with	i—python-picamera	and	python3-picamera—mean
those	programs	are	already	installed.	The	others	are	available	for	installation.

You	can	install	them	with	sudo	apt-get	install:

sudo	apt-get	install	cameramonitor

APT	will	figure	out	what	other	packages	that	package	requires,	and	ask	you
whether	it	should	install	them	all.	If	you	type	y	(or	just	press	Enter),	it	will
install	all	the	necessary	packages.

Some	of	the	packages	are	downright	silly.	For	instance,	type	sudo	apt-get
install	cowsay	and	then	run	it:

pi@raspberrypi:~	$	cowsay	Raspberry	Pi	is	cool

<	Raspberry	Pi	is	cool	>

								\			^__^
									\		(oo)_______
												(__)\)\/\
																||----w	|
																||					||

Another	fun	program	is	sl:	it’s	there	so	that	if	you	mean	to	type	ls	but
accidentally	reverse	the	characters,	you	get	something	besides	a	boring	error
message.	Install	it	and	try	it	yourself	if	you	want	to	see	what	it	does.

GETTING	HELP
One	more	useful	command	is	man,	which	shows	the	built-in	man(ual)	pages.	man
ls	tells	you	all	about	the	ls	command.	(Press	the	spacebar	to	advance	to	the
next	page,	and	press	Q	to	quit.)	Unfortunately,	a	lot	of	the	Raspbian-specific
commands,	like	raspi-config,	don’t	have	man	pages,	but	you	can	learn	a	lot
about	basic	Linux	commands	this	way.

The	apropos	command	helps	you	find	man	pages.	So,	for	example,	apropos
gpio	tells	you	about	some	man	pages	where	you	can	read	about	the	GPIO
pins	on	the	Raspberry	Pi—if	you	didn’t	have	this	book	to	tell	you	about	them.

Some	commands	also	have	built-in	help.	If	you’re	wondering	how	to	run	a
program,	try	running	it	with	-h	or	--help	(that’s	one	dash	with	h	or	two	dashes
with	help).	Some	of	the	raspi	commands	are	nonstandard	and	take	just	help	as
an	argument—as	you’ll	see	in	the	next	chapter	when	you	progress	to	blinking
an	LED.

I

Chapter	2

Blink	an	LED

n	the	hardware	world,	the	traditional	first	program	most	people	write	makes
an	LED	blink.	It’s	simple,	and	who	doesn’t	like	a	light	show?

The	Raspberry	Pi’s	GPIO	headers	let	you	interface	with	all	sorts	of
hardware.	In	this	chapter,	you’ll	connect	an	LED	to	one	of	the	GPIO	pins	and
learn	several	ways	of	controlling	it,	turning	it	on	and	off	and	changing	its
brightness.	You	can	even	connect	a	pushbutton	and	modify	what	your	LED
does	according	to	whether	the	button	is	pushed.

HARDWARE	REQUIREMENTS
Here’s	a	list	of	what	you	need	for	this	chapter:

An	LED

A	small	resistor.	The	exact	value	doesn’t	matter;	something	around	200–
500	ohm	is	best.

A	large	resistor,	like	10	kΩ–100	kΩ.	Again,	the	exact	value	doesn’t	matter.

I	strongly	recommended	you	have	the	following:

A	solderless	breadboard,	any	size

A	2×20	pin	male	header	you	can	solder	to	the	Pi,	plus	a	2×20	ribbon	cable

or

A	2×20	female	header	you	can	solder	to	the	Pi

Soldering	equipment

The	following	are	optional:

A	pushbutton	or	switch	that	plugs	into	your	breadboard

A	Pi	GPIO	extension,	like	the	Adafruit	Pi	Cobbler	or	the	SparkFun	Pi
Wedge

WARNING

If	this	is	your	first	time	soldering,	practice	on	other	components	before
soldering	a	header	to	the	Raspberry	Pi.	Header	pins	are	close	together,
and	if	you	make	a	mistake	it’s	not	easy	to	recover.

WHAT	IS	GPIO?
Those	holes	down	the	side	of	the	Pi	Zero	W	are	for	general-purpose
input/output	(GPIO).	That’s	a	way	of	controlling	hardware	directly;	the	Pi	can
set	pins	to	high	or	low	voltages	to	control	a	device,	and	it	can	read	incoming
high	or	low	voltages	coming	from	a	sensor.

But	first,	you’ve	got	to	connect	something	to	the	GPIO.

HEADERS:	HOOKING	UP	TO	THE	PI	ZERO	W
The	Raspberry	Pi	Zero	W	is	sold	with	bare	“through-holes”	for	the	GPIO
connections,	whereas	larger	Raspberry	Pi	models	have	pins.	That	makes	sense
—the	Pi	Zero	line	is	great	for	hardware	control,	and	someone	buying	a	batch
of	them	might	want	to	solder	wires	to	just	a	few	of	those	connections	rather
than	using	a	bulky	set	of	pins.	But	it	makes	it	a	little	inconvenient	to	start
playing	with	your	Pi	Zero	W.

You	have	several	options.	The	classic	choice	is	to	solder	a	2×20	male
header,	like	the	one	shown	in	Figure	2-1,	onto	the	Pi.

Figure	2-1:	A	Pi	Zero	W	and	male	headers,	ready	to	be	soldered

A	male	header	makes	the	Pi	Zero	W	compatible	with	a	wide	range	of	add-
ons	sold	for	larger	Raspberry	Pi	models.

If	you’re	not	comfortable	with	soldering,	or	if	you	eventually	plan	to	use
your	Pi	Zero	in	a	very	small	box	where	there	isn’t	room	for	headers,	you	could
opt	for	a	solderless	“hammer	header.”	These	are	mostly	available	from	dealers
in	the	United	Kingdom,	but	Adafruit	resells	them	in	the	United	States.

If	you	use	a	male	header,	you’ll	need	either	a	40-wire	ribbon	cable	that
plugs	into	it	or	a	few	female-to-male	wire	leads.

Figure	2-2:	Male	header	with	female-to-male	leads

You	could	also	choose	a	female	2×20	pin	header.	It	isn’t	as	compatible	with
other	Pi	hardware,	but	it	makes	plugging	in	wires	super	easy.	You	don’t	need	a
ribbon	cable	or	any	special	wire	leads—just	regular	hook-up	wire.

Finally,	it	is	possible	to	get	by	temporarily	without	any	soldering	to	the
board	if	you	wedge	wires	diagonally	into	the	Pi’s	through-holes,	as	shown	in

Figure	2-3.

Figure	2-3:	Look,	Ma,	no	headers!

You	can	even	use	headers	this	way,	and	if	you	bend	the	ends	of	the	wires	a
little	where	they	emerge	underneath	the	Pi	Zero,	they	might	stay	in	place	a
little	better.

That	said,	I	don’t	recommend	working	this	way.	The	wires	won’t	make	a
good	connection,	and	you	may	waste	time	debugging	projects	that	don’t	work
because	of	a	flaky	connection.	If	you’re	excited	to	get	started	but	don’t	have
any	2×20	headers	on	hand,	go	ahead	and	try	it	for	this	chapter,	but	I	highly
recommend	you	order	something	better	before	you	move	on	to	Chapter	3.

In	the	hardware	list	at	the	beginning	of	this	chapter,	I	also	recommended

that	you	get	one	of	the	Raspberry	Pi	GPIO	extensions.	These	aren’t
necessary,	but	they’re	inexpensive	and	give	you	an	easy	way	of	making	the	Pi’s
GPIO	pins	accessible	on	a	breadboard.	Even	better,	they	include	labels
reminding	you	which	pin	is	which.	They	typically	include	a	ribbon	cable	that
connects	the	extension	to	a	male	header	on	the	Pi.

Figure	2-4:	A	GPIO	extension,	with	ribbon	cable	and	a	breadboard

WIRING	AN	LED	ON	A	BREADBOARD
An	LED	(which	stands	for	light-emitting	diode)	is	an	electronics	component
that	can	only	pass	electricity	in	one	direction.	So	to	hook	up	an	LED,	you	have
to	know	which	pin	is	positive.

Most	LEDs	have	one	pin	longer	than	the	other.	The	long	pin	goes	to	the
positive	terminal,	whereas	the	short	pin	goes	to	ground.	An	easy	way	to
remember	this	is	that	the	“plus”	side	has	had	some	length	added	to	it.

Figure	2-5:	An	LED.	The	long	lead	is	the	positive	side.

When	you	wire	up	an	LED,	you	should	always	include	a	resistor	in	the	circuit
to	limit	the	current.	Otherwise,	too	much	current	will	flow	through	the	LED
and	will	probably	burn	it	out,	with	a	pop	and	a	little	smoke.	(Ask	me	how	I
know	that!)

The	smaller	the	value	of	the	resistor,	the	brighter	the	LED	will	shine.	Most
small	LEDs	only	need	a	small	resistor,	around	200–500	ohms,	and	it’s
generally	not	critical	what	exact	value	you	use.

You’ll	have	to	connect	the	LED	to	the	resistor	somehow.	You	can	twist
wires	together	or	use	alligator	clips,	but	when	you’re	testing	circuits	it	saves	a
lot	of	time	to	use	a	solderless	breadboard	(Figure	2-6).

Figure	2-6:	Solderless	breadboard.	The	yellow	indicates	which	holes	are
connected.

A	breadboard	has	rows	of	five	holes	into	which	you	can	push	wires.	Each
row	of	five	holes	is	connected,	as	indicated	by	the	yellow	lines	in	Figure	2-6.
So	if	you	push	a	lead	of	the	resistor	and	a	lead	of	the	LED	into	holes	in	the
same	row,	they’ll	make	electrical	contact.

Some	breadboards,	like	the	one	pictured,	include	long	strips	intended	for
power	and	ground	connections.	When	you’re	building	a	circuit,	it’s	fairly
common	to	have	lots	of	devices	that	need	to	connect	directly	to	power	and
ground,	so	it’s	useful	to	have	the	longer	strips.	By	convention,	you’d	connect
the	strip	marked	red	to	power	and	the	strip	marked	blue	to	ground.	For	the
circuits	in	this	book,	you	won’t	need	a	power	or	ground	strip,	so	any	sort	of
breadboard	is	fine.

THE	RASPBERRY	PI	PIN	LAYOUT
The	Raspberry	Pi’s	output	pins	are	numbered	starting	in	the	upper	left:	pin	1
has	a	pad	that’s	a	square	rather	than	a	circle.	The	pin	assignments	are	fairly
chaotic	(Figure	2-7)

Figure	2-7:	The	Raspberry	Pi’s	GPIO	pins

So	pin	1	is	3.3	volts	of	power,	whereas	pin	2	is	5	volts.	Pin	3	is	called	GPIO	2,
pin	6	is	Ground,	and	so	on	to	the	final	pin,	40,	or	GPIO	21.	The	GPIO	numbers
are	all	out	of	order	and	you	aren’t	expected	to	remember	this	crazy	layout;

you	might	want	to	bookmark	this	page	while	you	work	on	projects	that	use
GPIO.

A	Raspberry	Pi	can	provide	5	volts	of	power	from	pins	2	and	4,	but	its	logic
circuitry	(on	the	GPIO	pins)	works	at	3.3	volts.	If	you’re	buying	hardware	you
want	to	drive	from	a	Pi,	make	sure	it	can	work	with	3.3V	and	doesn’t	require
5V.	(The	5V	pins	are	provided	in	case	you	need	to	power	hardware	that	needs
more	than	3.3	volts.)

To	test	your	LED	circuit,	connect	the	long	lead	of	the	LED	to	one	of	the
GPIO	3.3V	connections,	like	pin	1.	Connect	one	lead	of	the	resistor	to	a
ground	pin,	like	pin	6.	Then	connect	the	short	lead	of	the	LED	to	the	other
lead	of	the	resistor.	See	Figure	2-8.

Figure	2-8:	LED	wired	to	3.3V	power

The	LED	should	light	up.

CONTROLLING	AN	LED	FROM	THE	COMMAND

LINE
Unplug	your	LED’s	positive	lead	from	the	Pi’s	pin	1	and	connect	it	to	GPIO	14,
which	is	pin	8,	the	fourth	pin	in	the	outer	row.	Leave	your	resistor	plugged
into	Ground.	Now	you’re	ready	to	control	the	LED	from	software.

Figure	2-9:	An	LED	hooked	up	to	GPIO	14

You	don’t	have	to	write	any	code	to	light	an	LED	on	a	Raspberry	Pi.	All	you
need	is	the	raspi-gpio	command.	In	a	terminal	window	connected	to	your
Raspberry	Pi,	type

raspi-gpio	set	14	op	dh

The	LED	should	come	on.

Figure	2-10:	All	wired	up,	using	a	Pi	Cobbler	extension

The	pin	number	is	14,	and	the	op	(operation)	is	dh,	which	stands	for	“Driving
High.”

Now	replace	that	dh	with	dl	for	“Driving	Low”:

raspi-gpio	set	14	op	dl

TIP

Remember	that	pressing	the	up	arrow	key	will	display	your	last	shell
command.	Then	all	you	have	to	do	is	press	Backspace	to	delete	the	h,
then	type	l,	and	press	Enter.)

The	LED	should	turn	off.

That’s	all	you	need	to	know	about	raspi-gpio.	But	if	you	want	the	gory
details,	you	can	learn	more	than	you	ever	wanted	by	typing

raspi-gpio	help

BLINKING	AN	LED	FROM	THE	COMMAND	LINE
The	Bash	shell	is	programmable.	You	wouldn’t	want	to	write	a	long	program	in
it,	but	it’s	fine	for	little	snippets.	Type	the	following	into	the	shell:

pi@raspberrypi:~	$	while	true;	do
>	raspi-gpio	set	14	op	dh
>	sleep	1
>	raspi-gpio	set	14	op	dl
>	sleep	1
>	done

NOTE

The	>	at	the	beginning	of	each	line	is	the	prompt	the	shell	gives	you;
don’t	type	that	part.

You’ve	written	your	first	blinking	LED	program!	First,	you	tell	the	Pi	to	turn
on	pin	14;	then	you	tell	the	Pi	to	“sleep”	(that	is,	not	to	perform	any	other
commands)	for	one	second.	The	next	lines	tell	the	Pi	to	turn	off	pin	14	and
sleep	for	another	second.	The	while	true	command	tells	the	Pi	to	loop	these
commands.	The	light	should	blink	on	and	off	forever.	That	was	almost	too
easy.

When	you’re	tired	of	watching	it,	Ctrl-C	will	kill	the	program	and	give	you
your	prompt	back.	(That’s	true	of	most	programs	in	Linux.)

GPIO	from	the	Command	Line	via	Sysfs

There’s	another	way	to	access	GPIO	from	the	command	line:	using	an
interface	called	sysfs.	Sysfs	lets	you	talk	directly	to	the	Linux	kernel	by	writing
to	and	reading	from	files.

The	sysfs	interface	makes	GPIO	pins	available	via	files	inside	the
/sys/class/gpio	directory	(folder).	It	requires	one	line	of	setup	for	each	pin
you	plan	to	use:

echo	14	>	/sys/class/gpio/export

The	echo	command	just	prints	its	arguments.	Adding	>	makes	it	print	to	a	file
rather	than	to	the	terminal.	So	this	command	writes	14	to	the	file
/sys/class/gpio/export.	In	response,	the	kernel	will	create	a	new	directory
called	/sys/class/gpio/gpio14/,	containing	several	files	you	can	write	to
control	GPIO	pin	14.

echo	out	>	/sys/class/gpio/gpio14/direction

writes	“out”	to	the	file	named	direction	inside	the	gpio14	directory	you	just
created.	That	tells	the	kernel	you	want	to	use	that	pin	as	output	(you’d	use	in
to	use	a	pin	for	input).

echo	1	>	/sys/class/gpio/gpio14/value

A	value	of	1	turns	pin	14’s	voltage	high	(3.3	volts).	The	LED	should	go	on.
Echo	0	instead	of	1	to	turn	it	off	again.

Of	course,	you	can	use	this	inside	a	while	true;	do	loop,	just	as	you	did
with	raspi-gpio:

pi@raspberrypi:~	$	while	true;	do
>	echo	1	>	/sys/class/gpio/gpio14/value
>	sleep	1
>	echo	0	>	/sys/class/gpio/gpio14/value
>	sleep	1
>	done

BLINKING	AN	LED	FROM	A	PYTHON	PROGRAM
Now	it’s	time	to	use	a	real	programming	language:	Python.

If	you’re	using	the	desktop,	you	can	run	the	IDLE	Python	development
environment	by	choosing	the	following:

Menu	>	Programming	>	Python	3	(IDLE)

If	you’re	using	the	command	line,	run	the	Python	shell:

python3

Either	way,	you’ll	get	a	>>>	prompt.

NOTE

Raspbian	comes	with	both	Python	2	and	Python	3	installed.	The	examples
in	this	book	should	work	with	either	one,	except	as	noted.	If	you’re	just
getting	started	with	Python,	I	recommend	starting	with	3.

Controlling	an	LED	is	easy	with	the	GPIOzero	library.	Type	these	lines	at
the	>>>	Python	prompts:

from	gpiozero	import	LED
led	=	LED(14)
led.on()

You	can	make	that	into	a	blink	program,	sleeping	for	half	a	second	between
blinks:

from	time	import	sleep
while	True:
				led.on()
				sleep(.5)
				led.off()
				sleep(.5)

The	spaces	beginning	each	of	the	last	four	lines	are	important;	they	tell
Python	that	the	indented	lines	are	part	of	the	while	True	loop.	It	doesn’t
matter	how	many	spaces	you	include	as	long	as	you	use	the	same	number	for

all	four	lines.	If	you	use	a	different	number	of	spaces,	or	don’t	indent	at	all,
you’ll	get	an	IndentationError.	The	Python	style	guide	recommends	four
spaces	as	being	the	most	readable.

As	with	the	shell,	pressing	Ctrl-C	will	stop	the	program.

Saving	Your	Program:	Text	Editors

Of	course,	you	don’t	want	to	have	to	type	your	whole	program	into	the	Python
console	every	time	you	run	it.	You’ll	want	to	save	it	to	a	file.

You	can’t	use	a	word	processor,	like	Word	or	LibreOffice,	to	edit	programs.
You	need	something	that	can	edit	plain	text.

You	have	plenty	of	options	for	text	editors	on	Linux,	and	Internet	flame
wars	have	been	fought	over	which	is	best	(most	programmers	prefer	emacs	or
vim).	If	you	don’t	already	have	a	text	editor	you	favor,	try	nano	if	you’re	using
SSH	and	the	command	line.	If	you’re	using	the	graphical	desktop,	IDLE	has	a
File	>	New	option	with	a	built-in	editor,	or	you	can	use	Leafpad	(Accessories	>
Text	Editor).

Save	your	LED	blinking	program	to	a	file	with	a	name	like	blink.py	(you	can
copy	and	paste	from	the	lines	you	typed	into	the	Python	console,	or	from	this
book’s	GitHub	repository	at	https://github.com/akkana/pi-zero-w-book):

from	gpiozero	import	LED
from	time	import	sleep
		
led	=	LED(14)
		
while	True:
				led.on()
				sleep(.5)
				led.off()
				sleep(.5)

Save	the	program	(in	IDLE	or	Leafpad,	choose	File	>	Save	or	press	Ctrl-S;	in
nano,	press	Ctrl-O	and	then	press	Enter	to	confirm	the	filename).	Now	run	it,
either	from	IDLE’s	Run	button	or	from	a	shell:

python	blink.py

and	your	LED	should	start	blinking.

https://github.com/akkana/pi-zero-w-book

NOTE

If	you’re	SSHed	into	your	Pi,	you	can	either	exit	nano	(Ctrl-X)	to	get	your
shell	prompt	back	or	open	a	second	SSH	window,	where	you	can	type
shell	commands	while	keeping	your	nano	window	open.	I	like	to	use
separate	windows.

FADE	AN	LED
The	GPIOzero	library	also	lets	you	set	LEDs	to	partial	brightness,	using	a
technique	called	pulse	width	modulation,	or	PWM.

A	Raspberry	Pi	can’t	actually	set	its	GPIO	pins	to	anything	besides	1	or	0
(3.3	volts	or	0	volts).	What	it	can	do	is	pulse	the	pin	(and	therefore	the	LED
connected	to	it)	between	1	and	0	rapidly.	The	more	time	it	spends	at	1,	the
brighter	the	LED	will	appear.	Fortunately,	you	don’t	have	to	manage	this	in
your	program;	you	can	let	GPIOzero’s	PWMLED	class	do	it	for	you.

Instead	of	creating	an	LED	object	with	led	=	LED(14),	use	PWMLED(14).	Then
use	a	variable	called	value	to	manage	the	LED’s	brightness,	starting	at	0	and
ramping	up	to	1,	then	starting	again	at	0:

from	gpiozero	import	PWMLED
from	time	import	sleep
		
led	=	PWMLED(14)
		
value	=	0
increment	=	.02
sleeptime	=	.03
		
try:
				while	True:
								value	+=	increment
								if	value	>	1:
												value	=	0
								led.value	=	value
								sleep(sleeptime)
		
except	KeyboardInterrupt:

				print("Bye!")

By	the	way,	GPIOzero	has	fairly	good	documentation	at
http://gpiozero.readthedocs.io/.	It	supports	a	curious	but	incomplete
collection	of	hardware,	and	in	some	cases	it’s	hard	to	tell	what	hardware	is
needed	to	use	specific	Python	classes.	If	you	happen	to	be	using	hardware	it
supports,	GPIOzero	makes	things	very	easy,	but	if	you’re	using	anything	else,
it	won’t	help	you.

With	that	in	mind,	it’s	good	to	know	something	about	the	more	general
library	that	sits	underneath	GPIOzero:	RPi-gpio.

PYTHON	BLINK	USING	RPI-GPIO
RPi-gpio	has	been	around	almost	since	the	first	Raspberry	Pi,	and	by	now	it’s
mature	and	powerful.	Using	it	directly	requires	a	couple	of	lines	of	setup
beyond	that	needed	for	GPIOzero,	after	which	it’s	just	as	easy:

import	RPi.GPIO	as	GPIO
from	time	import	sleep
		
GPIO.setmode(GPIO.BCM)
GPIO.setup(14,	GPIO.OUT)
		
while	True:
				GPIO.output(14,	GPIO.HIGH)
				sleep(.5)
				GPIO.output(14,	GPIO.LOW)
				sleep(.5)

GPIO.setmode(GPIO.BCM)	tells	the	RPi-gpio	library	to	use	the	names	of	the
pins.	If	you’re	using	GPIO	14,	you	pass	14	to	GPIO.output.	BCM	stands	for
BroadCoM,	because	the	pin	numbers	come	from	the	Broadcom-made	chip
used	in	the	Raspberry	Pi.	The	library	can	also	use	physical	pin	numbers,	if	you
pass	BOARD	instead	of	BCM.	If	you	look	at	the	pin	diagram	in	Figure	2-7,	GPIO	14
is	on	physical	pin	8,	so	this	would	also	have	worked:

GPIO.setmode(GPIO.BOARD)
GPIO.setup(8,	GPIO.OUT)
GPIO.output(8,	GPIO.HIGH)

You	may	see	a	warning	like	blink-rpi-gpio.py:8:	RuntimeWarning:	This

http://gpiozero.readthedocs.io/

channel	is	already	in	use,	continuing	anyway.	Use
GPIO.setwarnings(False)	to	disable	warnings.	You’d	see	this	warning	if	the
other	programs	you’ve	been	running	didn’t	clean	up	after	themselves.	When
they	stopped	using	the	Pi’s	GPIO,	they	left	the	GPIO	pins	active,	potentially
causing	problems	for	programs	that	might	run	later.

Ideally,	you	should	clean	up	after	your	program	has	run,	but	interrupting	it
with	Ctrl-C	makes	that	more	difficult.	You	could	avoid	the	Ctrl-C	by	blinking
only	a	fixed	number	of	times,	instead	of	forever:

for	i	in	range(10):
				GPIO.output(14,	GPIO.HIGH)
				sleep(.5)
				GPIO.output(14,	GPIO.LOW)
				sleep(.5)
		
GPIO.cleanup()

Note	that	the	GPIO.cleanup()	line	isn’t	indented.	That	way,	Python	knows
it’s	not	part	of	the	loop,	and	it	won’t	run	until	the	ten	blink	cycles	have
finished.

If	you	want	to	keep	the	infinite	loop	and	interrupt	it	with	Ctrl-C	as	you’ve
been	doing	but	still	clean	up	afterward,	you	could	“catch”	the	interrupt	like
this:

import	RPi.GPIO	as	GPIO
from	time	import	sleep
		
GPIO.setmode(GPIO.BCM)
GPIO.setup(14,	GPIO.OUT)
try:
				while	True:
								GPIO.output(14,	GPIO.HIGH)
								sleep(.5)
								GPIO.output(14,	GPIO.LOW)
								sleep(.5)
		
except	KeyboardInterrupt:
				GPIO.cleanup()

You	could	have	caught	KeyboardInterrupt	in	your	earlier	GPIOzero	blink
program,	and	GPIOzero	would	have	cleaned	up	automatically.	With
GPIOzero,	you	don’t	have	to	call	a	cleanup	function	explicitly;	just	add	pass

inside	the	except	section	to	make	sure	the	keyboard	interrupt	was	caught.

try:
				while	True:
								led.on()
								sleep(.5)
								led.off()
								sleep(.5)
except	KeyboardInterrupt:
				pass

PYTHON	FADE	USING	RPI-GPIO
Of	course	you	can	fade	with	RPi-gpio	PWM	as	well.	Anything	to	the	right	of	a
#	character	is	a	Python	comment	and	not	part	of	the	running	code.

		
import	RPi.GPIO	as	GPIO
from	time	import	sleep
		
GPIO.setmode(GPIO.BCM)
		
GPIO.setup(14,	GPIO.OUT)
pwm	=	GPIO.PWM(14,	100)					#	Set	up	PWM	on	pin	14	at	100	Hz
		
value	=	0
pwm.start(value)												#	Start	at	0
increment	=	2															#	How	smooth	is	the	fade?
sleeptime	=	.03													#	How	fast	is	the	fade?
		
try:
				while	True:
								value	+=	increment
								if	value	>	100:
												value	=	0
								pwm.ChangeDutyCycle(value)
								sleep(sleeptime)
		
except	KeyboardInterrupt:
				pwm.stop()
				GPIO.cleanup()

READING	INPUT:	A	PUSHBUTTON

You	can	read	input	from	pins	with	RPi-gpio	as	well	as	set	pin	values.

Figure	2-11:	Wiring	an	LED	plus	a	pushbutton.	Notice	that	both	resistors	are
tied	to	Ground	on	the	Pi.

Leave	your	LED	connected,	and	wire	up	a	pushbutton.	If	you	don’t	have	a
pushbutton	handy	or	can’t	find	one	that	plugs	into	your	breadboard,	you	can

fake	it	using	two	bare	wires	that	you’ll	touch	together.	That’s	really	all	a
pushbutton	is.

1.	 Wire	one	side	of	the	button	to	pin	1,	3.3v	power.

2.	 Wire	the	other	side	of	the	button	to	pin	10,	GPIO	15.	Then	attach	a	high-
value	resistor,	like	10	kΩ	or	more,	to	that	same	side	of	the	switch.	The
other	side	of	the	resistor	goes	to	ground.

This	is	what’s	known	as	a	“pull-down”	resistor.	Without	the	resistor,	when
the	switch	is	open,	GPIO	15	isn’t	connected	to	anything.	It’s	not	definitely	high
or	definitely	low,	so	if	you	read	its	value,	there’s	no	telling	what	you	might	see.
With	the	resistor	in	place,	if	the	switch	is	open,	GPIO	is	tied	to	ground
through	the	resistor.	But	when	you	push	the	button	(or	touch	the	two	wires
together	if	you	don’t	have	a	button),	it’s	much	easier	for	current	to	flow	from
the	3.3v	pin	through	the	switch	to	GPIO	15	than	to	go	through	that	big	10	kΩ
resistor.	So	GPIO	15	reads	high.

Now	you	can	read	the	value	at	GPIO	15	from	Python:

GPIO.setup(15,	GPIO.IN)
		
print("button:"	+	GPIO.input(buttonpin))

Let’s	try	doing	something	with	it	in	the	blinking	loop.	For	instance,	you
could	make	the	LED	blink	slowly	most	of	the	time,	but	make	it	blink	faster
when	you	press	the	button.

To	make	the	code	a	little	cleaner,	I’ll	make	variables	for	the	LED	pin	and	the
button	pin—that	makes	it	easier	to	change	them	if	you	decide	to	use	different
pins—and	for	the	sleep	durations.

Here’s	the	program	written	for	GPIOzero:

		
from	gpiozero	import	LED,	Button
from	time	import	sleep
		
led	=	LED(14)
button	=	Button(15)
		
#	Blink	times	in	seconds:
shortblink	=	.1
longblink	=	.7

		
for	i	in	range(100):
				#	Set	the	LED	pin	to	high	for	odd	numbers,	low	for	even.
				if	i	%	2:
								led.on()
				else:
								led.off()
		
				if	button.is_pressed:
								sleep(shortblink)
				else:
								sleep(longblink)

The	program	loops	100	times.	i	%	2	is	called	a	modulo—it	divides	i	by	2	and
takes	the	remainder.	So	when	i	is	odd,	i	%	2	will	be	1,	and	the	LED	will	come
on.	When	i	is	even,	i	%	2	will	be	0	and	the	LED	will	turn	off.

Then	each	time	around,	if	the	button	is	pressed,	we’ll	only	sleep	for	a	short
time;	if	the	button	isn’t	pressed,	we’ll	sleep	longer.

Here’s	an	RPi-gpio	version:

import	RPi.GPIO	as	GPIO
from	time	import	sleep
		
#	Use	Raspberry	Pi	board	pin	numbers:
GPIO.setmode(GPIO.BCM)
		
ledpin	=	14
buttonpin	=	15
		
#	Blink	times	in	seconds:
shortblink	=	.1
longblink	=	.7
		
#	set	up	GPIO	output	channel
GPIO.setup(ledpin,	GPIO.OUT)
GPIO.setup(buttonpin,	GPIO.IN)
		
for	i	in	range(100):
				#	Set	the	LED	pin	to	high	for	odd	numbers,	low	for	even.
				if	i	%	2:
								GPIO.output(ledpin,	GPIO.HIGH)
				else:
								GPIO.output(ledpin,	GPIO.LOW)
		

				#	Sleep	for	a	short	time	if	the	button	is	pressed,	otherwise	a	long	time:
				if	GPIO.input(buttonpin):
								sleep(shortblink)
				else:
								sleep(longblink)
		
#	Done:	clean	up!
GPIO.cleanup()

OTHER	LANGUAGES,	OTHER	INTERFACES
There	are	lots	of	options	for	programming	the	GPIO	on	a	Raspberry	Pi.
You’ve	already	seen	a	shell	script	and	Python.	But	if	you	have	another	favorite
language,	don’t	despair:	you	can	control	the	Pi’s	GPIO	from	C	or	C++,	Ruby,
Perl,	Java,	C#,	Pascal,	BASIC,	Gambas	(similar	to	Visual	Basic),	and	even
Scratch.	There’s	no	shortage	of	options!

Now	you	have	the	basics	of	both	input	and	output	with	the	Raspberry	Pi’s
GPIO.	LEDs	and	switches	are	simple,	but	a	lot	of	hardware	works	pretty	much
the	same	way.

But	some	hardware	is	more	complicated.	In	Chapters	3	and	4,	we’ll	take	a
look	at	interfacing	with	other	types	of	hardware,	as	well	as	some	things	you
can	do	with	the	Zero	W’s	Wi-Fi	capabilities.

D

Chapter	3

A	Temperature	Notifier	and	Fan	Control

o	you	hate	to	come	home	to	a	hot	house?	Or	do	you	just	want	to	know
what	the	temperature	is	in	your	office	so	you	can	dress	appropriately?

In	this	project,	you’ll	set	up	your	Pi	to	monitor	the	temperature	and	make	it
available	via	Twitter.	The	Pi	can	even	turn	on	a	fan	or	an	air	conditioner	before
you	get	home,	based	on	temperature	limits	you	set	or	a	Twitter	message	you
send	it.

HARDWARE	REQUIREMENTS
Here’s	a	list	of	what	you	need	for	this	chapter:

An	I2C	temperature	sensor,	such	as	the	Si7021,	MCP9808,	or	BME280

Four	hookup	wires

A	PowerSwitch	Tail	(optional,	for	switching	on	a	fan	or	air	conditioner)

Figure	3-1:	Testing	an	automated	fan	with	a	PowerSwitch	Tail	and	three
different	temperature	sensors	on	the	I2C	bus

NOTE

If	you	want	to	copy	and	paste	rather	than	typing	the	code	by	hand,	you
can	find	working	examples	at	the	book’s	GitHub	repository:
https://github.com/akkana/pi-zero-w-book.	You	can	even	check	it	out	on
your	Pi:	git	clone	https://github.com/akkana/pi-zero-w-book.git.

The	first	thing	you’ll	need	is	a	temperature	sensor	board.	These	are
inexpensive,	around	$5	to	$10,	depending	on	accuracy	and	the	other	features
they	offer,	such	as	the	ability	to	measure	humidity	or	barometric	pressure.
Most	of	them	use	a	protocol	called	I2C.

WHAT	IS	I2C?
I2C	(pronounced	“eye	squared	see”	or	“eye	two	see”)	stands	for	inter-
integrated	circuit.	It’s	a	protocol	for	reading	information	from,	and	writing	to,
low-power	devices	like	sensors.	It	uses	two	wires	(for	clock	and	data)	plus
another	pair	for	power	and	ground.	You’ll	sometimes	see	references	to	“two-
wire”	interfaces,	which	are	more	or	less	the	same	thing	as	I2C.

Each	I2C	device	has	an	address,	and	you	can	have	multiple	devices
connected	to	your	Pi	at	the	same	time	as	long	as	they	have	different
addresses.

The	System	Management	Bus	(SMBus)	is	a	slightly	simpler	subset	of	I2C.
That’s	worth	knowing	mostly	because	one	of	the	ways	of	talking	to	I2C	devices
using	Python	is	called	smbus.	The	smbus	library	is	fairly	simple	to	use	despite
an	almost	complete	lack	of	documentation;	fortunately,	you	can	find	lots	of
examples	on	the	web.	(The	GPIOzero	libraryhas	no	support—yet—for	I2C.	RPi-
gpiohas	some	support,	but	it’s	a	lot	more	fiddly	than	smbus.)

If	you’re	using	Raspbian-lite,	you’ll	have	to	install	a	couple	of	packages	first.
On	the	full	version	of	Raspbian,	these	packages	are	probably	already	installed,
but	it	doesn’t	hurt	to	run	this	command	anyway	to	be	sure:

sudo	apt-get	install	i2c-tools	python-smbus

Enabling	I2C

https://github.com/akkana/pi-zero-w-book
https://github.com/akkana/pi-zero-w-book.git

Raspbian	comes	with	support	for	I2C	built	in,	but	it’s	disabled	by	default.
Fortunately,	it’s	easy	to	enable.

In	a	terminal,	type	sudo	raspi-config,	move	down	to	Interfacing	Options,
and	press	Enter.	Then	move	down	to	I2C	and	press	Enter	again.	Use	the	Tab
or	left-arrow	key	and	press	Enter	to	answer	Yes	to	“Would	you	like	the	ARM
I2C	interface	to	be	enabled?”

Or,	if	you	prefer	using	the	GUI,	choose	Preferences	>	Raspberry	Pi
Configuration	and	click	the	OK	button	to	enable	I2C.

Either	way,	once	you	exit	you	should	have	I2C	enabled.	To	verify	that,	in	a
terminal,	type	this:

ls	/dev/i2c*

Note	the	asterisk	at	the	end	of	the	command:	it’s	a	wildcard	that	means	you
want	to	show	any	file	in	/dev	that	starts	with	i2c.	The	Pi	should	respond	with
this:

/dev/i2c-1

If	you	see	/dev/i2c-1,	you’re	set.	(On	early	Raspberry	Pis,	it	was	called	i2c-
0	instead	of	1.)

If	you	see	i2cdetect:	command	not	found,	it	means	you	didn’t	install	i2c-
tools	and	python-smbus	(see	the	section	“What	Is	I2C?”	earlier).

CHOOSING	A	SENSOR
A	wide	variety	of	inexpensive	temperature	sensors	are	available	that	“speak”
I2C.	Since	the	chips	themselves	are	tiny,	they’re	often	available	mounted	on
“breakout	boards”	that	make	it	easy	to	plug	the	sensor	into	a	breadboard	and
wire	it	to	your	Raspberry	Pi.	Many	temperature	sensors	also	measure	other
quantities,	such	as	atmospheric	pressure	or	humidity.

Whichever	sensor	you	choose,	you’ll	need	to	figure	out	how	to	talk	to	it
from	the	Pi.	Each	I2C	device	has	a	different	address	and	speaks	a	slightly
different	language.	The	details	for	each	chip	are	in	its	datasheet	(a	PDF	that
you	can	find	with	a	web	search;	for	example,	search	for	“Si7021	datasheet”),
but	extracting	the	details	from	a	datasheet	isn’t	always	easy.	I	recommend

starting	with	a	web	search	for	the	chip	name	plus	“python”	or	even	“raspberry
pi	python”	to	see	if	someone	has	already	done	that	work	for	you.	Ideally,	do
this	before	you	order	a	sensor,	so	you’ll	know	ahead	of	time	if	a	sensor	is
difficult	to	use	with	Python	on	the	Pi.

Let’s	start	with	the	simple	and	accurate	MCP9808	chip.

The	MCP9808	I2C	Temperature	Sensor

The	breakout	board	has	eight	holes,	but	you’ll	only	need	four	of	them	for	basic
I2C:	Vdd	(input	voltage,	3.3	volts),	Gnd	(ground),	SCL	(clock),	and	SDA	(data).

Figure	3-2:	MCP9808	temperature	sensor	wiring

You’ll	probably	need	to	solder	a	header	onto	your	breakout	board,	or	use
test	leads	with	clips	that	can	make	good	contact	with	the	through-holes	on	the
board.

If	you	have	hookup	wires	in	a	selection	of	colors,	I	suggest	a	color	code
convention:	use	red	for	power,	black	for	ground,	orange	or	yellow	for	clock
(remember	this	as	“clock	works	orange”),	and	green	or	blue	for	data.	If	you
don’t	have	that	many	wire	colors,	don’t	worry—the	Pi	and	the	chip	won’t	care;
a	color	code	just	makes	it	easier	for	humans	to	see	at	a	glance	what’s	wired	to
what.

On	the	Pi	Zero	end,	wire	the	3.3v	power	(red)	wire	to	pin	1	on	the	Pi,	and	the
ground	(black)	wire	to	any	of	the	Pi’s	ground	connections,	such	as	pin	6	or	pin
9.	Refer	to	Figure	2-7,	in	the	previous	chapter,	if	you	need	to	check	pin
numbers.	Wire	SDA	to	the	Pi’s	pin	3	(GPIO	2),	and	CLK	(clock)	to	pin	5	(GPIO
3).

Figure	3-3:	MCP9808	wired	up	to	the	Pi	Zero	W,	ready	to	test

Now	check	to	make	sure	your	Pi	sees	the	new	I2C	device.	In	a	shell,	type

pi@raspberrypi:~	$	i2cdetect	-y	1

In	that	command,	1	is	the	number	of	the	I2C	bus	you’re	using.	Modern
Raspberry	Pis,	including	the	Zero	W,	have	two	I2C	buses,	and	bus	1	uses	pins	3
and	5;	older	Pis	have	only	one,	bus	0.

You	should	see	the	following:

0							1		2		3		4		5		6		7		8		9		a		b		c		d		e		f
00:										--	--	--	--	--	--	--	--	--	--	--	--	--
10:	--	--	--	--	--	--	--	--	18	--	--	--	--	--	--	--
20:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
40:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
50:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
60:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

The	output	shows	that	the	Pi	detected	a	device	at	address	(10	+	8)	=	18—the
address	the	MCP9808	uses.	If	you	don’t	see	anything	there,	check	your	wiring
and	don’t	proceed	until	ic2detect	-y	1	gives	the	right	output.	If	you	see	a
number	other	than	18	and	you	don’t	have	anything	else	plugged	into	your	Pi,	it
might	be	that	your	MCP9808	is	using	a	different	address;	try	using	the
address	you	see	instead	of	0x18	when	you	write	your	program.

If	you’re	sure	your	wires	are	plugged	into	all	the	right	places	but	i2cdetect
still	doesn’t	see	the	sensor,	try	connecting	A0,	A1,	and	A2	on	the	sensor	to
ground	on	the	Pi.	Those	lines	set	the	address	of	the	MCP9808,	and	some
breakout	boards	may	need	the	address	lines	grounded.

Measuring	the	Temperature

You	can	read	data	from	an	I2C	device	with	smbus:

import	smbus
bus	=	smbus.SMBus(1)
bus.read_i2c_block_data(address,	cmd)

For	this	sensor,	address	is	18	in	base	16.	In	Python,	you	can	represent	a
hexadecimal	number	by	putting	0x	in	front	of	it,	so	it’s	0x18.	cmd	is	the
command	you’re	sending	to	the	chip	to	tell	it	to	give	you	a	temperature
reading:	for	the	MCP9808,	that’s	0x05.

The	trick	is	interpreting	the	bytes	it	sends	back.	The	MCP9808	sends	2
bytes	(data[0]	and	data[1]	in	the	Python	code),	and	its	datasheet	helpfully
gives	example	code	to	translate	these	2	bytes	into	a	temperature	in	Celsius.
Translated	into	Python,	that	code	sample	looks	like	this:

#	Read	temperature	from	an	MCP9808	using	I2C.
		
import	smbus
		
MCP9808	=	0x18									#	The	default	I2C	address	of	the	MCP9808
temp_reg	=	0x05								#	The	temperature	register
		
bus	=	smbus.SMBus(1)
		
def	read_temperature_c():
				data	=	bus.read_i2c_block_data(MCP9808,	temp_reg)
		
				#	Calculate	temperature	(see	5.1.3.1	in	the	datasheet):
				upper_byte	=	data[0]	&	0x1f				#	clear	flag	bits
				lower_byte	=	data[1]
				if	upper_byte	&	0x10	==	0x10:		#	less	than	0C
								upper_byte	&=	0x0f
								return	256	-	(upper_byte	*	16.0	+	lower_byte	/	16.0)
				else:
								return	upper_byte	*	16.0	+	lower_byte	/	16.0
		
if	__name__	==	'__main__':
				ctemp	=	read_temperature_c()
				ftemp	=	ctemp	*	1.8	+32
				print("Temperature:	%.2f	F	(%.2f	C)"	%	ftemp,	ctemp)

Run	it,	either	from	IDLE	or	in	the	shell:

python	MCP9808.py

and	it	should	print	the	temperature	in	both	Fahrenheit	and	Celsius.

Here’s	one	more	neat	feature	of	the	MCP9808:	it	can	use	addresses
besides	0x18.	That’s	what	those	extra	pins	on	the	board	are	for.	So	if	you	want
to	have	multiple	MCP9808	sensors	attached	to	your	Pi	at	the	same	time,	you
can—as	long	as	you	wire	their	addresses	so	they’re	all	different.

Measuring	Temperature	and	Humidity	with	an	Si7021

Another	popular	sensor	is	the	Si7021,	which	measures	humidity	as	well	as
temperature.	It	has	an	older	sibling,	the	HTU21d,	that	uses	the	same	address
and	works	with	the	same	code.	Its	hookup	is	similar	to	the	MCP9808	and	it
uses	the	same	four	wires:	power,	ground,	data,	and	clock.	You	can	see	a	wiring
diagram	in	Figure	3-4.

Figure	3-4:	Si7021	temperature	and	humidity	sensor

The	software	side	is	a	little	more	complicated	than	the	other	chip,	since	the
Si7021	handles	several	commands.	Aside	from	measuring	both	temperature
and	humidity,	it	has	“hold”	and	“no	hold”	modes.

But	that’s	just	the	start	of	the	problems.	It	turns	out	that	when	you	read	2
bytes	from	an	Si7021	using	the	smbus	library,	the	second	byte	is	always	the

same	as	the	first.	So	you’re	really	only	reading	one	byte,	and	you	won’t	get	the
full	accuracy	of	the	chip.

NOTE

When	you	work	with	hardware,	you’ll	hit	problems	like	this	all	too	often.
Chips	don’t	do	quite	what	they	claim,	documentation	is	missing,	libraries
have	bugs,	and	quirks	need	to	be	worked	around.	That’s	all	normal,	and	if
you	start	feeling	a	little	frustrated,	don’t	feel	like	it’s	just	you.

The	duplicated	byte	seems	to	be	a	bug	in	the	smbus	library,	and	I	never	did
find	a	way	to	get	smbus	to	read	that	second	byte.	Fortunately,	there	are	other
solutions.	For	instance,	you	can	read	from	and	write	to	the	/dev/i2c-1	device
directly,	and	use	an	interface	called	fcntl	(short	for	“file	control”).

Here’s	a	program	that	does	that:

import	time,	array
import	io,	fcntl
class	Si7021:
				ADDRESS	=	0x40
				I2C_SLAVE=0x0703
				READ_TEMP_NOHOLD	=	b"\xF3"
				READ_HUM_NOHOLD	=	b"\xF5"
				SOFT_RESET	=	b"\xFE"
	
				def	__init__(self,	bus):
								#	Open	the	I2C	bus:
								self.fread		=	io.open("/dev/i2c-%d"	%	bus,	"rb",
																														buffering=0)
								self.fwrite	=	io.open("/dev/i2c-%d"	%	bus,	"wb",
																														buffering=0)
	
								#	initialize	the	device	as	a	slave:
								fcntl.ioctl(self.fread,	self.I2C_SLAVE,	self.ADDRESS)
								fcntl.ioctl(self.fwrite,	self.I2C_SLAVE,	self.ADDRESS)
	
								self.fwrite.write(self.SOFT_RESET)
								time.sleep(.1)
	
				def	close(self):
								self.fread.close()

								self.fwrite.close()
	
				def	readI2C(self,	cmd):
								self.fwrite.write(cmd)
								time.sleep(.1)
	
								data	=	self.fread.read(3)
								buf	=	array.array('B',	data)
	
								if	self.crc8check(buf):
												return	buf
								else:
												return	None
	
				def	read_temperature_c(self):
								buf	=	self.readI2C(self.READ_TEMP_NOHOLD)
								if	not	buf:
												return	-273.15				#	absolute	zero
	
								return	(((buf[0]	<<	8	|	buf	[1])	&	0xFFFC)
																*	175.72	/	65536.0	-	46.85)
	
				def	read_humidity(self):
								buf	=	self.readI2C(self.READ_HUM_NOHOLD)
								if	not	buf:
												return	-1
	
								return	(((buf[0]	<<	8	|	buf	[1])	&	0xFFFC)
																*	125.0	/	65536.0	-	6.0)
	
				def	crc8check(self,	value):
								remainder	=	((value[0]	<<	8)	+	value[1])	<<	8
								remainder	|=	value[2]
								divisor	=	0x988000
	
								for	i	in	range(0,	16):
												if(remainder	&	1	<<	(23	-	i)):
																remainder	^=	divisor
												divisor	=	divisor	>>	1
								if	remainder	==	0:
												return	True
								else:
												return	False
	
if	__name__	==	'__main__':
				sensor	=	Si7021(1)
				ctemp	=	sensor.read_temperature_c()

				print("Temperature:		%.2f	F	(%.2f	C)"
										%	ctemp	*	1.8	+	32,	ctemp)
				print("Relative	Humidity:	%.1f	%%"
										%	sensor.read_humidity())
				sensor.close()

Reading	Temperature	and	Pressure	from	a	BME280

The	final	temperature	sensor	we’ll	cover	here	is	the	BME280,	which	lets	you
read	barometric	pressure	as	well	as	temperature.	The	pressure	sensor	is	said
to	be	accurate	enough	that	you	can	use	it	as	an	altimeter—though	for	that,
you’d	need	to	calibrate	it,	since	air	pressure	varies	according	to	the	weather
as	well	as	with	altitude.

It	wires	up	pretty	much	the	same	as	the	other	two	chips,	as	you	can	see	in
Figure	3-5.

Figure	3-5:	Wiring	the	BME280	temperature	and	pressure	sensor

However,	in	software	the	BME	is	quite	a	bit	more	complicated	than	the
other	two	sensors.	It	needs	to	be	initialized,	and	then	you	have	to	read	several
values	and	turn	them	into	temperature	and	pressure.

Fortunately,	other	people	have	already	done	that	for	you,	and	there	are
several	libraries	that	work	well.	So	rather	than	trying	to	reproduce	pages	of
code	here,	do	a	web	search	for	“raspberry	pi	python	bme280,”	or	check	this
book’s	GitHub	repo,	https://github.com/akkana/pi-zero-w-book,	for	example
code	that	you	can	use	with	the	BME280.

A	TEMPERATURE	TWEETER

https://github.com/akkana/pi-zero-w-book

One	of	the	nifty	features	of	the	Raspberry	Pi	Zero	W	is	that	it	has	WiFi	built
in.	So	you	could,	say,	set	up	a	Twitter	account	to	tweet	the	temperature.

Registering	with	Twitter

The	hard	work	is	registration.	In	order	to	use	Twitter	from	a	program,	you
have	to	register	your	program	with	Twitter	and	jump	through	some	hoops	to
set	up	what’s	known	as	OAuth	authentication.

Go	to	https://apps.twitter.com/	(on	any	computer—you	don’t	have	to	do
this	part	on	the	Pi),	log	in	to	Twitter	if	you	haven’t	already,	and	click	Create
New	App.	If	you’re	setting	up	a	special	Twitter	account	for	your	temperature
tweeter,	log	in	as	that	account	rather	than	your	normal	account.

NOTE

Registering	a	Twitter	app	requires	registering	a	mobile	phone	number
with	Twitter.	If	that’s	not	an	option,	you	won’t	be	able	to	use	the	Twitter
API.	In	that	case,	skip	ahead	to	“Controlling	a	Fan	or	Air	Conditioner.”

https://apps.twitter.com/

Figure	3-6:	Twitter’s	page	for	registering	a	new	app

In	the	Application	Details	page,	the	hard	part	is	the	first	entry,	Name.	Your
app	name	has	to	be	unique	in	the	universe	of	everyone	who’s	ever	registered
a	Twitter	app.	You	may	have	to	try	quite	a	few	times	to	come	up	with	a	name
no	one	else	has	ever	thought	of.	Good	luck!

The	rest	of	the	fields	are	easier.	Description	is	a	short	description	of	what
your	app	does.	When	you’re	first	registering	it,	you	probably	don’t	know	yet
what	it	will	do,	so	this	isn’t	too	critical.	You	can	change	it	later.	Website	is	a
URL	for	a	website	describing	the	app.	If	you	have	a	web	page	or	a	GitHub
repository	where	you’ll	describe	it,	use	that.	If	not,	make	something	up.

Callback	URL	applies	mostly	to	web	apps;	you	can	leave	it	blank	for	a
Python	app.

Of	course,	you	have	to	click	that	you’ve	read	the	Developer	Agreement	and
understood	all	the	clauses	about	firstborn	children	and	blood	sacrifices.	You
did	notice	those	parts,	right?

Click	Create	Your	Twitter	Application.	If	you	found	a	name	that’s	not	taken,
Twitter	will	take	you	to	the	Application	Settings	page.	Otherwise,	try	another
name.

In	Application	Settings,	click	the	Permissions	tab	and	check	the	access
permissions;	by	default,	the	setting	may	be	Read	or	Read,	Write	but	you	may
want	to	change	it	to	Read,	Write	and	Access	Direct	Messages.	(In	Chapter	4,
you	will	use	Twitter’s	direct	messages.)	Changing	the	permissions	will	change
your	secret	keys,	so	set	the	permissions	first.

The	secret	keys?	They’re	the	point	of	this	whole	exercise.	Once	you	have
the	permissions	the	way	you	want	them,	click	the	Keys	And	Access	Tokens	tab
at	the	top	of	the	page.

You’ll	see	Consumer	Key	and	Consumer	Secret	there.	But	you	need	two
other	tokens	as	well:	Access	Token	and	Access	Token	Secret.	Even	though	it
sounds	like	some	of	them	are	secret	and	some	aren’t,	all	four	of	the	tokens	are
secret	and	you	shouldn’t	put	them	in	your	Python	program	or	share	them	with
other	people.

To	generate	the	other	two	tokens,	scroll	down	and	click	“Create	my	access
token”	at	the	bottom	of	page.

Figure	3-7:	Click	“Create	my	access	token”	to	generate	the	third	and	fourth
tokens.

Now	you’re	on	a	page	that	shows	all	four	tokens.	Copy	and	paste	them	to	a
file.	Linux	generally	stores	configurations	in	directories	named
~/.config/APPNAME/	(on	Linux,	the	tilde	character,	~,	is	short	for	your	home
directory,	/home/pi,	so	this	is	really	/home/pi/.config/APPNAME).	Create	that
directory.	Then,	from	the	shell,	type

mkdir	~/.config/YOUR_APP_NAME

Replace	YOUR_APP_NAME	appropriately	(but	it’s	best	to	avoid	using
spaces).

Then	in	your	editor,	create	a	file	in	that	directory	called	auth.	For	instance,	if
you’re	using	nano	to	edit	files,	use	this:

nano	~/.config/YOUR_APP_NAME/auth

Store	your	four	Twitter	tokens	in	it	so	it	looks	like	this:

consumer	YOUR_CONSUMER_KEY
consumer_secret	YOUR_CONSUMER_SECRET_KEY
access_token	YOUR_ACCESS_TOKEN
access_token_secret	YOUR_SECRET_ACCESS_TOKEN

Of	course,	replace	YOUR_CONSUMER_KEY	and	the	other	three	variables
with	the	actual	keys	you	copy	from	the	Twitter	page.

Now	your	Python	programs	will	be	able	to	read	the	keys	from	that	file
without	any	risk	of	people	seeing	your	secret	keys	when	you	share	your	code.

Python	Twitter	Libraries

There	are	lots	of	Python	wrappers	for	the	Twitter	API.	The	two	most	popular
are	Python-Twitter	and	Tweepy.	They’re	similar	enough	that	if	you	learn	one,
you	can	probably	learn	the	other	without	too	much	difficulty.	I’ll	use	Python-
Twitter	here.	Install	it	with	this	command:

sudo	apt-get	install	python-twitter

If	you	prefer	to	use	the	graphical	installer	in	PIXEL,	that’s	fine	too.

NOTE

The	Python-Twitter	in	the	Raspbian	repositories	only	works	with	Python
2,	which	is	the	default	Python	in	Raspbian.	If	you	prefer	Python	3,	you’ll
need	to	install	Python-Twitter	with	pip3.

Python-Twitter	depends	on	several	other	packages.	The	installer	will	ask
you	to	confirm	that	it’s	okay	to	install	those	packages	too.

You’re	ready	to	start	coding.	At	the	beginning	of	your	temperature-sensing
program,	import	the	twitter	module	(that’s	Python-Twitter,	which	you	just
installed).	Read	in	the	four	tokens	from	the	file,	examining	each	line	to	figure
out	which	token	is	which	and	storing	them	in	a	dictionary	called	oauthtokens.
Then	call	twitter.Api()	to	log	in	and	get	a	twitter.Api	object.

import	twitter
		
def	init_twitter():

				conffile	=	"/home/pi/.config/YOUR_APP_NAME/auth"
				oauthtokens	=	{}
				with	open(conffile)	as	conf:
								for	line	in	conf:
												line	=	line.split()
												oauthtokens[line[0]]	=	line[1]
		
				return	twitter.Api(
								consumer_key=oauthtokens["consumer"],
								consumer_secret=oauthtokens["consumer_secret"],
								access_token_key=oauthtokens["access_token"],
								access_token_secret=oauthtokens["access_token_secret"])

Once	you’re	logged	in,	you	can	call	Twitter	functions	to	get	the	timeline,
check	direct	messages,	post	tweets,	and	so	forth.	At	first,	though,	all	you’ll
need	is	the	ability	to	post	a	new	tweet.

Tweeting	the	Temperature

If	you’ve	already	initialized	the	Twitter	API,	all	you	need	to	post	a	tweet	is
PostUpdate("Whatever	you	want	to	say").	You	can	easily	add	that	to	your
temperature	monitoring	program:

if	__name__	==	'__main__':
				twitapi	=	init_twitter()
				
				ctemp	=	read_temperature_c()
				ftemp	=	ctemp	*	1.8	+	32
				twitapi.PostUpdate("The	temperature	is	%.1f	degrees!"	%	ftemp)

In	practice,	though,	this	approach	can	fail	in	various	ways.	For	instance,	if
you	run	this	code	inside	a	while	True	loop	and	the	temperature	hasn’t
changed	since	last	time,	you’ll	be	trying	to	post	the	exact	same	tweet	as	last
time,	and	your	program	will	die	with	a	Twitter	error,	since	Twitter	assumes
that	if	you	try	to	post	the	same	tweet	twice,	it	must	be	a	mistake.	To	guard
against	that,	check	for	Twitter	exceptions:

				while	True:
								ctemp	=	read_temperature_c()
								ftemp	=	ctemp	*	1.8	+	32
								try:
												tempx	=	"The	temperature	is	%.1f	degrees!"				
												twitapi.PostUpdate(tempx	%	ftemp)
								except	twitter.TwitterError	as	e:

												print("Twitter	error:	%s"	%	str(e))

Of	course,	you	can	do	variations,	such	as	posting	only	if	the	temperature	is
above	a	certain	value:

								try:
												if	ftemp>90:
																tempx	=	"It's	too	hot!!	%.1f	degrees!"				
																twitapi.PostUpdate(tempx	%	ftemp)
								except	twitter.TwitterError	as	e:
												print("Twitter	error:	%s"	%	str(e))

CONTROLLING	A	FAN	OR	AIR	CONDITIONER
In	Chapter	2,	“Blink	an	LED,”	you	turned	LEDs	on	and	off.	But	what	if	you	want
to	control	something	big?	For	instance,	wouldn’t	it	be	nice	to	be	able	to	switch
on	your	air	conditioner	automatically	when	the	temperature	rises	above	85
degrees?

You	can’t	do	that	directly;	if	you	tried	to	send	120	volts	of	alternating
current	through	a	Raspberry	Pi	you’d	have	crispy	burned	Pi.	You	need
something	that	can	take	input	at	one	voltage	and	use	it	to	switch	a	circuit
running	at	a	completely	different	voltage.	You	can	buy	relays	that	will	do	the
job,	but	there’s	a	device	that	makes	it	much	easier:	the	PowerSwitch	Tail	(see
Figure	3-8).

Figure	3-8:	The	PowerSwitch	Tail

The	manufacturer	calls	the	PowerSwitch	Tail	“an	opto-isolated	solid-state
relay.”	The	important	part	of	that	is	“isolated”;	it	means	there’s	no	electrical
connection	between	the	120-volt	AC	your	house	devices	use	and	the	delicate
3.3–5-volt	DC	innards	of	your	Raspberry	Pi.	(And	yes,	there’s	a	220-volt
version	for	use	outside	the	United	States.)

To	wire	up	the	PowerSwitch	Tail,	you’ll	need	two	or	three	bare	wires	and	a
slim	flat-bladed	screwdriver	to	anchor	the	wires.	On	the	Pi	Zero	W,	use	the
same	pin	you	used	for	the	LED	in	Chapter	2:	pin	8	or	GPIO	14	(though	nearly
any	GPIO	pin	will	work).

Figure	3-9:	Two	ways	of	wiring	the	PowerSwitch	Tail

The	PowerSwitch	Tail	has	three	terminals,	labeled	+in,	-in,	and	Ground.
There	are	two	ways	to	hook	it	up.	First,	you	can	connect	-in	to	a	ground
connection	on	your	Pi,	and	connect	+in	to	the	GPIO	signal	line	you’ll	control
with	software.	A	second	option	is	to	connect	Ground	on	the	PowerSwitch	Tail
to	ground	on	the	Pi,	connect	+in	to	3.3v	on	the	Pi,	and	connect	-in	to	your
GPIO	line.

Whichever	route	you	choose,	set	the	GPIO	line	to	high	or	low	the	same	way
you	did	with	the	blinking	LED	in	Chapter	2.	Depending	on	what	model	of
PowerSwitch	Tail	you	have,	the	logic	may	be	reversed;	you	might	need	to	set
the	GPIO	line	to	high	to	make	AC	flow	through	the	PowerSwitch	Tail,	or	you
might	need	to	set	it	to	low.

You	don’t	need	to	have	anything	plugged	in	to	the	PowerSwitch	Tail	to	test
it;	it	has	an	LED	that	lights	up	when	power	would	be	flowing,	and	you	can	hear

it	click	whenever	it	switches	on	or	off.	You	can	test	it	with	your	LED	code	from
Chapter	2—except	now,	instead	of	controlling	a	single	LED,	you	can	control	a
desk	lamp,	fan,	air	conditioner,	or	anything	else	you	can	plug	into	house
current.	Of	course,	with	a	fan	or	air	conditioner,	you	probably	don’t	want	to
blink	it	on	and	off	every	second!

Switching	a	Fan	Automatically	by	Temperature

I’ll	use	the	MCP9808	sensor	since	its	code	is	the	smallest,	but	you	can	replace
the	code	inside	get_temperature_f()	with	code	for	any	sensor	you	have.

#	Control	a	fan	or	air	conditioner	using	temperature	sensor	readings
		
import	RPi.GPIO	as	GPIO
import	smbus
from	time	import	sleep
		
#	Constants:
MCP9808	=	0x18									#	The	default	I2C	address	of	the	MCP9808
TEMP_REG	=	0x05								#	The	temperature	register
POWERSWITCH	=	14							#	GPIO	pin	for	the	PowerSwitch	Tail
		
#	Depending	on	your	model,	you	might	need	to	reverse	these:
FAN_ON	=	GPIO.HIGH
FAN_OFF	=	GPIO.LOW
		
#	How	hot	does	it	have	to	get	before	turning	on	a	fan?
TOO_HOT	=	80
		
#	How	many	seconds	should	we	sleep	between	temp	checks?
SLEEPTIME	=	60	*	5
		
bus	=	smbus.SMBus(1)
		
def	initialize():
				GPIO.setmode(GPIO.BCM)
				GPIO.setup(POWERSWITCH,	GPIO.OUT)
		
def	get_temperature_f():
				'''Return	temperature	in	Fahrenheit'''
				data	=	bus.read_i2c_block_data(MCP9808,	TEMP_REG)
		
				#	Calculate	temperature	(see	5.1.3.1	in	the	datasheet):
				upper_byte	=	data[0]	&	0x1f				#	clear	flag	bits
				lower_byte	=	data[1]

				if	upper_byte	&	0x10	==	0x10:		#	less	than	0C
								upper_byte	&=	0x0f
								ctemp	=	256	-	(upper_byte	*	16.0	+	lower_byte	/	16.0)
				else:
								ctemp	=	upper_byte	*	16.0	+	lower_byte	/	16.0
		
				print(ctemp	*	1.8	+	32)
				return	ctemp	*	1.8	+	32
		
if	__name__	==	'__main__':
				initialize()
		
				try:
								while	True:
												temp	=	get_temperature_f()
												if	temp	>=	TOO_HOT:
																GPIO.output(POWERSWITCH,	FAN_ON)
												else:
																GPIO.output(POWERSWITCH,	FAN_OFF)
		
												sleep(SLEEPTIME)
				except	KeyboardInterrupt:
								GPIO.cleanup()

Adjust	the	constants	as	needed,	like	which	pins	you’re	using,	whether	you
need	a	HIGH	or	LOW	signal	to	turn	your	fan	on,	and	what	temperature	should
trigger	the	fan	to	come	on.

Switching	via	Internet	Messaging

If	you	don’t	want	to	use	automatic	temperature	sensing,	you	can	send	a
message	over	the	Internet	to	switch	your	AC	on	and	off	remotely	from	work
or	wherever	you	might	be.	I’ll	use	Twitter	messaging	as	an	example,	but	you
could	check	email	messages,	or	use	a	service	that	receives	SMS	messages	you
send	from	your	phone.

For	instance,	you	could	send	your	Pi	a	direct	message	with	a	special	code,
like	“FAN	ON.”	Then	your	Pi	could	check	for	messages	inside	the	code	from
the	earlier	listing	in	the	section	“Tweeting	the	Temperature.”	Add	import
calendar	to	the	Python	imports	at	the	top	of	the	file,	and	then	add	a
check_for_command	function:

import	twitter
import	calendar

import	time
import	RPi.GPIO	as	GPIO
		
def	init_twitter():
				#	THE	SAME	CODE	YOU	USED	IN	PREVIOUS	EXAMPLES
		
twitapi	=	init_twitter()
messages_seen	=	set()
		
def	check_for_command(twitapi,	code,	recentminutes):
				'''Check	for	the	last	msg	that	starts	with	code
							and	was	sent	in	the	specified	number	of	minutes.
							Look	for	the	command	after	the	code,	e.g.,	FAN	ON.
							Returns	(cmd,	user)	if	there	was	a	command,
							cmd	is	a	string	like	"ON",	user	is	a	screen	name.
							Returns	(None,	None)	if	there	was	no	command.
				'''
				DMs	=	twitapi.GetDirectMessages(count=5,	skip_status=True)
				now	=	time.time()
				for	msg	in	DMs:
								#	Have	we	already	seen	this	message?
								if	msg.id	in	messages_seen:
												break
								messages_seen.add(msg.id)
		
								if	msg.text.startswith(code):
												#	strip	off	the	code	part	to	get	the	ON	or	OFF	command:
												cmd	=	msg.text[len(code):].strip()
		
												#	Parse	the	creation	time	for	the	message,
												#	make	sure	it	was	sent	recently
												t	=	time.strptime(msg.created_at,
																														'%a	%b	%d	%H:%M:%S	+0000	%Y')
												#	How	old	is	the	message?
												minutesold	=	(now	-	calendar.timegm(t))	/	60
												if	minutesold	>	recentminutes:
																break
		
												#	We	have	a	valid	command.
												return	cmd,	msg.sender_screen_name
		
				#	Didn't	see	a	command:
				return	None,	None

A	lot	of	the	code	has	to	do	with	parsing	the	time	to	be	sure	you’re	not
responding	to	a	command	you	sent	three	weeks	ago.	Twitter	sends	times	that

look	like	“Wed	Jul	05	19:15:12	+0000	2017”	in	GMT,	so	you	have	to	turn	that
into	a	Python	time	in	order	to	compare	it	to	the	current	time.

You’ll	probably	want	to	add	some	extra	checking	inside	the	if
msg.text.startswith(code)	section	for	security,	to	make	sure	the	message
comes	from	your	account.	You	don’t	want	just	any	Twitter	user	to	be	able	to
message	your	Pi	and	switch	your	home	appliances	on	or	off!

Add	the	Twitter	code	to	your	PowerSwitch	Tail	program,	and	in	the	while
True:	loop,	instead	of	(or	in	addition	to)	checking	whether	temp	>=	TOO_HOT,
check	for	a	Twitter	message:

if	__name__	==	'__main__':
				twitapi	=	init_twitter()
				powerswitch	=	14
				GPIO.setmode(GPIO.BCM)
				GPIO.setup(powerswitch,	GPIO.OUT)
				try:
								while	True:
												cmd,	user	=	check_for_command(twitapi,	"FAN",	30)
												if	cmd	==	"ON":
																GPIO.output(powerswitch,	GPIO.HIGH)
																twitapi.PostDirectMessage("Turned	fan	ON",
																																										screen_name=user)
												elif	cmd	==	"OFF":
																GPIO.output(powerswitch,	GPIO.LOW)
																twitapi.PostDirectMessage("Turned	fan	OFF",
																																										screen_name=user)
												elif	cmd:
																twitapi.PostDirectMessage("Unknown	command	%s"
																																										%	cmd,
																																										screen_name=user)
		
												time.sleep(60	*	5)			#	sleep	5	minutes	between	checks
		
				except	KeyboardInterrupt:
								GPIO.cleanup()

Then	all	you	have	to	do	is	send	yourself	(or	your	Pi,	if	you’ve	set	up	a
different	Twitter	account	for	it)	a	direct	message	saying	“FAN	ON,”	and	the	Pi
will	see	the	ON	command	and	switch	on	the	fan	for	you,	and	then	message	you
back	to	tell	you	it	saw	the	command.	If	you	want	to	turn	it	off	again,	send
another	message,	“FAN	OFF.”

Pretty	cool—literally!

Y

Chapter	4

A	Wearable	News	Alert	Light	Show

ou	know	how	to	make	a	single	LED	blink.	By	using	several	GPIO	pins,	you
could	make	a	few	LEDs	blink	together.	But	how	about	a	ring	of	twelve
multicolored	LEDs,	or	a	string	of	thirty,	all	changing	colors	at	once?	That
makes	for	a	much	prettier	light	display—especially	when	you	can	pin	it	on	your
jacket	or	wear	it	as	a	belt,	which	is	no	problem	with	a	computer	as	small	and
power	efficient	as	the	Pi	Zero	W.

This	chapter	will	introduce	a	couple	of	kinds	of	addressable	colored	LEDs
and	show	how	to	wire,	power,	and	program	them.	You’ll	be	able	to	monitor
your	Twitter	feed	and	change	the	pattern	of	the	lights	according	to	what’s
happening	on	Twitter.	Or,	if	you	don’t	use	Twitter,	you	can	scrape	any	website
you	follow	and	display	it	as	a	light	show.

Figure	4-1:	A	NeoPixel	Jewel	showing	off	its	colors

HARDWARE	REQUIREMENTS
Here’s	a	list	of	what	you	need	for	this	chapter:

An	addressable	RGB	light	string.	There	are	two	types:	the	WS2812B	or	the
SK6812,	sold	under	the	name	“NeoPixel,”	and	a	newer	type,	the	APA102C,
sold	by	Adafruit	under	the	name	“DotStar.”	DotStars	are	a	little	more
expensive	and	aren’t	available	in	as	many	shapes,	but	they’re	easier	to	use
and	capable	of	more	lighting	effects.

A	power	supply	for	the	lights,	with	a	jack	to	match	its	plug.	You	can	get	a
plug-in	“wall	wart,”	a	battery	if	you	want	to	make	it	wearable,	or	both.	See
“Power	Supplies”	in	a	moment,	or	check	out	the	section	“Making	It
Portable:	Batteries”	at	the	end	of	this	chapter	if	you	want	battery	details.

A	3.3-	to	5-volt	active	level	shifter	chip	such	as	a	74AHCT125	or	a

74AHCT245.	You	can	get	by	without	a	level	shifter,	but	if	you’re	ordering
parts	and	paying	for	shipping	anyway,	spend	the	extra	buck	and	a	half	and
buy	one.	See	the	section	“Logic	Level	Shifters”	later	in	this	chapter	for
more	information.

Soldering	equipment.	Most	light	strings	come	without	wires	attached,	so
you’ll	have	to	solder	on	some	wires.

Recommended:

A	multimeter	(a	cheap	one	is	fine)

A	large	capacitor	(1000	µF,	6.3V	or	higher)

Since	it’s	important	for	all	the	hardware	to	work	together,	let’s	talk	in	more
detail	about	some	of	it	so	you	know	that	you’re	ordering	the	right	parts.

Power	Supplies

Light	strings	take	a	lot	of	power—more	than	they	can	draw	from	the	Pi.	A
Raspberry	Pi’s	GPIO	pins	are	rated	for	16	milliamps	per	pin,	or	50	mA	across
the	whole	GPIO	header.	A	single	NeoPixel	or	DotStar	(just	one	pixel,	not	a
string	of	them)	draws	60	mA	at	full	brightness.	You	could	fry	your	Pi’s	GPIO	if
you	tried	to	power	multiple	pixels	that	way.

You	could	tap	into	the	5-volt	power	supply	you’re	using	to	power	your	Pi	if
it’s	a	2-amp	or	better	supply	and	if	you’re	not	powering	more	than	about	15
lights.	But	tapping	into	a	USB	cable	is	a	pain;	it’s	easier	to	use	a	separate
supply,	at	least	while	you’re	testing.	I	like	the	cheap	adjustable	“wall	warts.”

Figure	4-2:	Adjustable	“wall	wart”	power	supply,	along	with	a	matching	jack
with	bare	wire	leads	to	plug	into	a	breadboard

They	typically	come	with	a	selection	of	plugs,	and	you	can	either	turn	a	dial
or	change	plugs	to	get	different	voltages	and	polarities.	You’ll	also	need	a	jack
that	matches	one	of	the	plugs	on	the	wall	wart	and	can	connect	to	your
breadboard	(bare	wires)	or	directly	to	your	light	string.

Both	NeoPixels	and	DotStars	are	nominally	powered	at	5	volts,	though	less
is	fine.	Don’t	exceed	5	volts:	they’re	reportedly	very	sensitive	to	over-voltage

and	you	might	damage	your	light	string.	If	you	can	set	your	power	supply	to
around	4.5	volts,	that’s	perfect,	but	anything	from	3.5	to	5	should	work	as	long
as	it	provides	enough	current	to	power	your	light	string	(60	mA	times	the
number	of	lights).	Use	a	voltmeter	to	make	sure	the	power	supply	is	producing
what	it	claims—though	the	voltage	may	drop	quite	a	bit	once	you	add	a	load
like	a	light	string.	A	voltmeter	can	also	ensure	you	don’t	have	power	and
ground	reversed.

Also,	if	you	want	to	very	safe	about	your	light	strings,	connect	a	large
capacitor	(1000	µF,	6.3V	or	higher)	between	the	power	and	ground	terminals
to	protect	against	any	voltage	spikes	your	power	supply	might	generate.

I’ll	address	batteries	and	battery	plugs	at	the	end	of	this	chapter.

DOTSTARS
APA102C	light	strings,	also	called	DotStars,	use	a	protocol	called	“two-wire
SPI”	to	let	your	Raspberry	Pi	set	color	and	brightness	for	every	LED	in	the
string.	SPI	stands	for	Serial	Peripheral	Interface	bus;	two-wire	means,	in	this
case,	that	you	have	one	wire	for	data	and	a	second	wire	for	a	“clock”	signal	to
tell	the	light	string	when	new	data	is	available.	That’s	a	good	thing:	it’s	easy	to
drive	the	light	string	from	a	Raspberry	Pi,	much	easier	than	with	the	older	one-
wire	NeoPixel	strings.

Of	course,	all	electronic	devices	also	have	a	power	and	ground	wire	as	well.
Connect	the	ground	wire	to	the	ground	on	your	Pi,	but	remember,	don’t
power	the	light	string	from	the	Pi’s	GPIO	pins.	Use	a	separate	3-	to	5-volt
power	supply	for	the	DotStar’s	power	line.

DotStar	strings	have	a	direction:	you	need	to	attach	your	signal	wires	at	the
input	end	of	the	string,	not	the	output	end.	If	you	look	closely,	the	string
probably	has	arrows	indicating	direction,	from	input	to	output.	There	may
already	be	wires	attached	at	one	end	or	the	other,	but	don’t	be	fooled—some
strings	come	with	wires	attached	at	the	wrong	end,	in	which	case	you	should
ignore	them	and	solder	your	own	wires	to	the	input	end.	(If	your	string	comes
with	wires	at	the	output	end,	you	can	keep	them	in	case	you	want	to	add	a
second	DotStar	string,	or	you	can	just	cut	them	off.)

Figure	4-3:	The	arrows	show	the	direction	of	the	DotStar	string.

If	you’re	powering	your	DotStar	at	3	to	4	volts,	there’s	an	easy	way	to	wire	it
(Figure	4-4):	connect	your	power	supply’s	positive	wire	to	the	light	string’s	+5V
connection.	Connect	both	grounds,	from	the	Pi	and	the	light	string,	to	ground
on	your	power	supply.

Then	connect	Data	Input	(it	might	be	labeled	DI)	to	GPIO	10.	If	you’re	using
a	GPIO	breadboard	extension,	GPIO	10	might	be	labeled	MOSI,	for	“Master
Out,	Slave	In.”	Your	Pi	is	the	master,	and	it’s	sending	data	out	through	MOSI
to	the	slave,	the	light	string.	Connect	the	clock	input	wire	(CI)	to	GPIO	11,	also
called	SCLK.	This	wiring	should	work	as	long	as	the	DotStar’s	input	voltage	is
similar	to	the	Pi’s	3.3	volts.	It	might	not	work	at	5	volts.

To	test	it,	you’ll	need	to	download	some	software.	Using	a	prewritten	library
is	easiest	so	you	don’t	have	to	handle	all	the	details	of	SPI.	In	this	case,	the
best	supported	library	is	provided	by	Adafruit.	It’s	hosted	on	GitHub,	and	you
can	use	git	to	download	it.	Bring	up	a	terminal	on	your	Pi.

If	you’re	running	headless,	you	may	not	have	git	yet.	Type	this	command	to
be	sure:

sudo	apt-get	install	git

Figure	4-4:	The	simplest	wiring	for	a	DotStar	string

Then	download	and	install	the	DotStar	library,	with	three	more	commands:

git	clone	https://github.com/adafruit/Adafruit_DotStar_Pi.git
cd	Adafruit_DotStar_Pi
sudo	python	setup.py	install

Time	to	test	it!	Edit	the	file	strandtest.py	with	nano,	Leafpad,	or	whatever
text	editor	you	prefer.	Look	near	the	beginning	of	the	file	for	the	line	where
numpixels	is	set.

Figure	4-5:	Edit	strandtest.py	and	look	for	numpixels.

Change	numpixels	to	the	number	of	pixels	in	your	string.	A	few	lines	down
from	that,	look	for	the	line	that	says

strip					=	Adafruit_DotStar(numpixels,	datapin,	clockpin)

(the	first	strip	=	line,	the	one	that’s	not	commented	out),	and	change	it	to

strip	=	Adafruit_DotStar(numpixels,	12000000)

That’s	12	followed	by	six	zeros.	Save	the	file,	then	run

sudo	python	strandtest.py

With	any	luck,	you’ll	see	beautiful	bars	of	color	pulsing	down	your	strip.

NOTE

SPI	programs	generally	have	to	run	with	root	permission,	which	is	what
sudo	does	for	you.	That	means	you	should	run	light	string	programs	from
the	terminal	with	sudo,	even	if	you’ve	been	using	IDLE	for	your	other
Python	programs.

Figure	4-6:	DotStar,	wired	up	and	running.	The	chip	on	the	breadboard	is	a
74LVC245	level	shifter.

If	the	LEDs	don’t	light	up,	especially	if	you’re	powering	the	light	strip	at
close	to	5	volts,	you	may	need	a	level	shifter.

Logic	Level	Shifters

The	Raspberry	Pi’s	GPIO	signals	are	only	3.3	volts.	Since	the	DotStar	expects
5V,	sometimes	the	Pi’s	signals	may	not	be	strong	enough,	and	you	might	need
to	boost	them.

A	logic	level	shifter	can	take	input	at	3.3	volts	and	convert	it	to	5.	You	can
buy	passive	level	shifters,	sold	under	names	like	“Bi-Directional	Level	Shifter,”

but	unfortunately	those	boards	aren’t	fast	enough	to	handle	this	job.	You
need	an	active	level	shifter.	These	chips	have	a	lot	of	confusing	names,	but	the
names	often	include	terms	like	“line	driver”	or	“bus	transceiver,”	sometimes
with	“3-state”	or	“tri-state”	thrown	in.	The	two	most	popular	level	shifting	chips
known	to	work	with	addressable	LED	strings	are	the	74LVC245	and	the
74AHCT125.	Figures	4-7	and	4-8	show	wiring	diagrams.

Figure	4-7:	Wiring	a	DotStar	string	with	the	74LVC245	Octal	Bus	Transceiver
with	3-State	Outputs

Figure	4-8:	Wiring	a	DotStar	string	with	the	74AHCT125	Quad	Buffer/Line
Driver,	3-State

Once	the	wiring	is	ready,	run	sudo	python	strandtest.py	again.	If	low	signal
voltage	was	the	problem,	a	level	shifter	will	get	your	DotStars	glowing.	If	not,
recheck	your	wiring.

NEOPIXELS
WS2812B	or	SK6812	light	strings,	sold	by	Adafruit	under	the	name	NeoPixels,
have	been	around	for	years.	They’re	less	expensive	than	DotStars,	and	you
can	get	them	in	all	sorts	of	configurations:	strings,	jewels,	circles,	sticks,
matrices,	and	individual	pixels.

Unfortunately,	they’re	a	lot	trickier	to	use	with	a	Pi.	Why?	They	need
precise	timing.	They	only	have	a	data	line,	whereas	DotStars	have	a	data	line
and	a	clock	line.	Since	there’s	no	clock,	the	controller	expects	to	get	its	data	in
a	prompt,	orderly	fashion.	That’s	easy	with	a	microcontroller	like	an	Arduino,
but	it’s	more	difficult	from	a	computer	running	Linux.	A	real	operating	system
might	be	busy	with	other	things	just	at	the	time	when	a	signal	needs	to	be
sent	to	the	light	controller.

NeoPixels	are	also	a	little	pickier	than	DotStars	about	input	voltage.	They
have	the	same	overvoltage	problems	as	DotStars	(try	not	to	exceed	5	volts),
but	unlike	DotStars,	if	you	go	too	low,	below	4	volts,	you	may	see	strange
behavior.

The	Simplest	Hookup

As	with	DotStars,	there’s	a	simple	hookup	that	might	work	if	you’re	running
around	4	volts	to	your	light	string.	First,	run	power	and	ground	from	your
power	source	to	the	light	string.	You’ll	also	need	a	connection	from	the	power
source’s	ground	to	one	of	the	Pi’s	ground	pins.

WARNING

Be	careful	not	to	connect	the	external	power	source’s	positive	terminal
to	any	of	the	Pi’s	pins!	You	could	burn	out	your	Pi.

For	signaling,	run	a	wire	from	the	light	string’s	Data	In	to	GPIO	18	(pin	12).
You’ll	be	using	PWM	to	talk	to	the	light	string,	and	PWM	is	only	available	on	a
few	Raspberry	Pi	pins,	including	GPIO	18.

Figure	4-9:	The	simplest	NeoPixel	hookup.	It	may	not	work,	depending	on
your	voltage	source.

The	Software

For	a	long	time,	there	was	no	way	of	driving	NeoPixels	directly	from	a
Raspberry	Pi.	Then	along	came	a	library	called	rpi_ws281x.	It	even	comes	with
Python	bindings.

The	library	is	written	in	the	C	language	and	uses	a	build	system	called
scons,	so	you’ll	need	to	install	some	prerequisites	to	build	it:

sudo	apt-get	install	build-essential	python-dev	git	scons	swig

Once	those	are	installed,	build	and	install	the	library.	At	the	prompt,	type
the	following	five	commands:

git	clone	https://github.com/jgarff/rpi_ws281x.git
cd	rpi_ws281x
scons

cd	python
sudo	python	setup.py	install

All	that	installation	and	building	takes	a	little	while,	but	once	it’s	ready,	you
can	change	into	the	examples	directory,	where	the	Python	example	scripts	are
(in	Linux,	cd	stands	for	“change	directory”):

cd	examples
ls

You	should	see	the	following:

SK6812_lowlevel.py				SK6812_white_test.py		multistrandtest.py		strandtest.py
SK6812_strandtest.py		lowlevel.py											neopixelclock.py

These	are	all	example	programs	you	can	run.	Start	by	editing	strandtest.py
in	nano,	Leafpad,	or	whatever	text	editor	you	prefer.

Figure	4-10:	Editing	strandtest.py

Change	LED_COUNT	to	the	number	of	LEDs	you	have	in	your	string.	Notice
that	LED_PIN	is	also	set;	if	you	want	to	fiddle	with	different	pins	later,	you	can
do	so	here	(but	stick	with	18	for	now).

Save	the	file.	Then,	back	in	the	shell,	type

sudo	python	strandtest.py

(you	have	to	use	sudo	because	PWM,	like	SPI,	requires	root	permission)	and
cross	your	fingers.	If	all	goes	well,	you’ll	see	a	beautiful	light	show.

Troubleshooting

What	if	you	don’t	see	anything,	or	you	see	a	few	lights	turn	on	but	no	light
show?	There	are	several	things	that	could	go	wrong.	These	light	strings	are
finicky.

Check	your	voltage	level	with	a	voltmeter	and	make	sure	it’s	around	4.5–5
volts	and	the	right	polarity	(you	don’t	have	V+	and	ground	mixed	up).

If	voltage	is	good,	it’s	possible	the	Pi’s	audio	hardware	is	interfering—it	uses
some	of	the	same	PWM	resources	the	light	string	needs.	You	can	disable	it.
First,	create	a	file	named	/etc/modprobe.d/snd-blacklist.conf.	You’ll	need
sudo	permission	to	edit	that	file.	Try	this:

sudo	leafpad	/etc/modprobe.d/snd-blacklist.conf

(or	nano	instead	of	leafpad	if	you’re	running	headless).	Add	this	line:

blacklist	snd_bcc28i035

Then	reboot.

NOTE

If	you	use	your	Pi	to	play	music	or	other	sounds,	remove	the	snd-
blacklist.com	file	when	you’re	done	with	your	NeoPixels.	You	can’t	do
both	at	the	same	time.

For	more	information	on	this	and	other	things	that	can	go	wrong,	see	the
GitHub	page	for	the	library:	https://github.com/jgarff/rpi_ws281x.

The	next	likely	culprit	is	logic	levels—that	pesky	requirement	that	the
WS2812B	wants	5	volts	and	the	Pi	only	provides	3.3.

To	get	around	that,	you	might	need	a	logic	level	shifter.	For	background	on
them,	see	“Logic	Level	Shifters”	earlier.

Figures	4-11	and	4-12	show	wiring	diagrams	for	NeoPixels	with	the	two	most
popular	level-shifting	chips.

With	any	luck,	if	your	light	string	wasn’t	working	before,	a	level	shifter	will
get	you	going.

https://github.com/jgarff/rpi_ws281x

Figure	4-11:	Wiring	a	NeoPixel	light	string	with	the	74LVC245	Octal	Bus
Transceiver	with	3-State	Outputs

Figure	4-12:	Wiring	a	NeoPixel	light	string	with	the	74AHCT125	Quad
Buffer/Line	Driver,	3-state

One	last	comment	about	NeoPixels.	It’s	theoretically	possible	to	drive	them
using	one-wire	SPI,	similar	to	the	two-wire	SPI	the	DotStars	use,	rather	than
PWM.	For	SPI,	use	the	Pi’s	GPIO	10,	labeled	“MOSI,”	rather	than	GPIO	18,	and
change	the	pin	specified	in	strandtest.py.	On	the	face	of	it,	SPI	sounds	like	it
ought	to	be	a	more	reliable	method,	but	in	practice,	I’ve	had	no	luck	using	SPI
with	NeoPixels.	Feel	free	to	try	it,	and	drop	me	a	line	if	you	get	it	to	work.

SEARCHING	FOR	TWITTER	KEYWORDS
I	know	that	it’s	tempting	just	to	run	strandtest.py	forever.	Ooh,	shiny!	But
why	not	make	the	LEDs	show	something	useful	instead?

How	about	monitoring	keywords	on	your	Twitter	stream	so	you	can	see
trends	visually	with	changing	colors?	(If	you	skipped	the	Twitter	discussion	in
Chapter	3,	“A	Temperature	Notifier	and	Fan	Control,”	don’t	despair;	skim	this
section,	then	skip	ahead	to	“Web	Scraping	in	Python”	for	a	non-Twitter
option.)

If	you’re	still	in	the	NeoPixel	or	DotStar	library	after	running	strandtest.py,
get	out	of	it:	cd	with	no	other	arguments	will	get	you	back	to	your	home
directory.	Create	a	file	called	twit.py	that	includes	your	Twitter	code	(import
twitter	and	the	init_twitter()	function)	from	Chapter	3.

In	Python-Twitter,	GetHomeTimeline()	will	get	your	timeline—the	list	of
recent	tweets	from	everyone	you	follow.	You	can	make	a	loop	that	checks
your	timeline	every	couple	of	minutes	and	prints	any	new	tweet	you	haven’t
seen	before.	To	try	that,	add	this	section	to	twit.py:

import	time
		
if	__name__	==	'__main__':
				twitapi	=	init_twitter()
		
				tweets_seen	=	set()				#	The	set	of	tweets	already	seen
		
				while	True:
								timeline	=	twitapi.GetHomeTimeline()
								print("\n==========================")
								for	tweet	in	timeline:
												if	tweet.id	in	tweets_seen:
																continue
		

												print("\n===	%s	(%s)	==="	%	(tweet.user.screen_name,
																																									tweet.user.name))
												print(tweet.text)
												print("				%s"	%	tweet.created_at)
												tweets_seen.add(tweet.id)
								time.sleep(120)				#	Wait	two	minutes

GetHomeTimeline()	returns	a	list,	and	each	tweet	in	the	list	is	a
twitter.Status	object.	The	online	documentation	for	Python-Twitter	isn’t	very
complete,	but	the	library	has	built-in	help	you	can	get	in	the	Python	console	or
in	IDLE:

>>>	import	twitter
>>>	help(twitter.Api.GetHomeTimeline)

If	you	try	that,	it	will	tell	you	that	GetHomeTimeline	returns	a	sequence	of
twitter.Status	instances,	one	for	each	message.	Then	you	can	find	out	what	a
Status	includes:

>>>	help(twitter.Status)

The	important	part	of	a	twitter.Status	is	.text:	that’s	the	content	of	the
tweet,	so	you	can	print	tweet.text,	and	tweet.text	is	where	you	should	look
for	keywords.

In	the	listing,	tweets_seen	is	a	set	of	all	the	tweets	you’ve	already	seen,	so
you	can	check	whether	you’ve	seen	each	tweet	before	and	print	it	only	the
first	time.

String	Searches	and	Python	Dictionaries

Once	you	have	the	text	of	a	tweet,	Python	makes	string	searches	super	easy.
For	example,	if	you	want	to	know	whether	a	Twitter	status	includes	“raspberry
pi,”	you	can	use	this:

				if	"raspberry	pi"	in	tweet.text.lower():
								print	"Another	Raspberry	Pi	tweet!"

The	.lower()	function	converts	the	status	text	to	all	lowercase,	so	you	can
search	for	“raspberry	pi”	without	needing	to	worry	whether	it	might	be
“Raspberry	Pi”	or	“RASPBERRY	PI.”

Pick	a	few	topics	you	want	to	match	and	keywords	that	tell	you	somebody’s

tweeting	about	each	topic.	For	instance,	I	follow	a	lot	of	science	and	tech
people.	I	also	follow	people	who	tweet	about	nature	and	the	outdoors.	How
many	tweets	are	related	to	Raspberry	Pi	or	open	source,	compared	to	the
ones	about	nature?	You	could	set	up	a	Python	dictionary	like	this:

topicwords	=	{
				'tech':			['raspberry	pi',	'linux',	'maker',	'open	source'],
				'nature':	['bike',	'hike',	'bird',	'bear',	'trail']
				}

A	Python	dictionary	lets	you	index	by	keywords.	topicwords	is	the
dictionary.	topicwords['tech']	gets	you	the	list	of	techie	words.
topicwords['tech'][2]	gets	you	the	third	word	in	that	list,	or	maker[2]	(2	gives
you	the	third	word	in	the	list,	and	not	the	second,	because	Python,	like	most
computer	languages,	starts	lists	with	0).

You	could	use	any	categories,	such	as	emotion	words	like	“happy,”	“smile,”
“rofl,”	“sad,”	or	“angry”;	sports	terms;	terms	related	to	politics;	and	so	forth,
depending	on	what	you	see	in	your	Twitter	stream.	Adjust	the	list	for	your
own	preferences	and	experiment.	You	can	use	a	lot	more	keywords	than	this
example,	though	I	recommend	sticking	to	only	two	or	three	topics	initially.
Note	that	all	the	terms	are	lowercase,	even	those	that	are	usually	capitalized,
like	“ROFL”;	that’s	because	we’re	converting	everything	to	lowercase	before
comparing	the	strings.

Now	you	can	get	your	home	timeline.	Look	through	all	the	Status.texts	and
see	if	any	of	the	keywords	are	there.	To	do	that,	loop	over	the	statuses;	then
for	each	status,	loop	over	the	topics	(tech	and	nature);	then	for	each	topic,
loop	over	the	keywords	in	that	topic	and	see	if	that	keyword	is	in	that
Status.text.	Put	this	in	your	twit.py	script,	after	the	end	of	init_twitter()
and	before	if	__name__	==	'__main__'::

def	match_keywords(twitapi,	topicwords):
				timeline	=	twitapi.GetHomeTimeline(50)
				matches	=	{}				#	Build	up	a	new	dictionary	of	matches	to	return
		
				for	tweet	in	timeline:
								text	=	tweet.text.lower()
								for	topic	in	topicwords:
												for	word	in	topicwords[topic]:
																if	word	in	text:												#	Got	a	match!	Add	it.
																				if	topic	in	matches:				#	saw	this	topic	already

																								matches[topic]	+=	1
																				else:									#	first	time	we've	seen	this	topic
																								matches[topic]	=	1
				return	matches

match_keywords	returns	a	new	dictionary	that	looks	something	like	this:	{
'nature':	3,	'tech':	6.	This	indicates	that	there	were	three	tweets	with
nature	keywords	and	six	that	were	techie.	You	can	test	it	by	printing	its	output
from	if	__name__	==	'__main__':.

				print(match_keywords(twitapi,	topicwords))

Displaying	Twitter	Information	on	a	Light	String

You	have	the	new	dictionary	returned	from	match_keywords.	How	do	you	show
it	on	a	light	string?

How	about	showing	a	pixel	for	each	tweet	that	matches	a	keyword,	with	a
different	color	for	each	topic?	The	colors	can	cycle	across	the	string	or
around	the	circle	so	it	won’t	be	boring	to	look	at.

In	the	same	directory	where	you	have	twit.py,	edit	a	new	file	called
twitterlights.py	and	make	the	first	line	import	twit	so	it	can	use	the	Twitter
code	you	already	wrote.	Add	import	time	so	you	can	sleep	between	updates.

Then	include	the	module	for	whichever	light	string	you’re	using,	and	set	up
the	values	it	needs.	Fortunately,	Adafruit	wrote	their	NeoPixel	and	DotStar
libraries	to	have	similar	calls:	they	both	have	a	Color	type,	and	they	both	have
strip.begin(),	strip.setPixelColor(i,	Color(*color)),	and	strip.show().	So
after	you	initialize	the	light	string,	you	can	use	the	same	code	to	control	it
whether	it’s	a	DotStar	or	a	NeoPixel.

To	initialize	the	string,	you’ll	need	the	basic	definition	of	the	light	strip,	plus
a	way	to	define	colors.	So	import	Color	as	well	as	the	strip	itself	(for	NeoPixels,
you’ll	also	need	to	import	ws),	define	your	number	of	pixels	as	num_pixels,	and
initialize	your	strip.	You	can	copy	and	paste	from	whatever	worked	in
strandtest.py:

import	twit
import	time
		
#	For	DotStars:

from	dotstar	import	Adafruit_DotStar,	Color
num_pixels	=	30
strip	=	Adafruit_DotStar(num_pixels,	12000000)
strip.begin()

or

import	twit
import	time
		
#	For	NeoPixels:
from	neopixel	import	Adafruit_NeoPixel,	Color,	ws
		
#	LED	strip	configuration:
LED_PIN								=	18						#	GPIO	pin	(18	uses	PWM!).
LED_FREQ_HZ				=	800000		#	LED	signal	frequency	(usually	800khz)
LED_DMA								=	5							#	DMA	channel	to	use	(try	5)
LED_BRIGHTNESS	=	256					#	0	for	darkest,	255	for	brightest
LED_INVERT					=	False			#	True	to	invert	the	signal
LED_CHANNEL				=	0							#	set	to	'1'	for	GPIOs	13,	19,	41,	45	or	53
LED_STRIP						=	ws.WS2811_STRIP_GRB			#	Strip	type,	color	ordering
		
num_pixels	=	7
		
strip	=	Adafruit_NeoPixel(num_pixels,	LED_PIN,
																										LED_FREQ_HZ,	LED_DMA,	LED_INVERT,
																										LED_BRIGHTNESS,	LED_CHANNEL,	LED_STRIP)
strip.begin()

That	takes	care	of	initializing	the	light	string.	Now	how	do	you	use	it	to	show
the	Twitter	keywords?

Let’s	specify	a	color	for	each	topic.	Colors	are	specified	as	a	list	of	(Red,
Green,	Blue),	with	each	primary	color	going	from	0	to	255.	(0,	0,	0)	is	black	(all
colors	off),	(255,	255,	255)	is	white	at	full	brightness	(all	three	colors	on),	(255,
0,	0)	is	bright	red,	(0,	32,	0)	is	dim	green,	and	so	on.	To	show	tech	as	purple
and	nature	as	green:

topiccolors	=	{
				'nature':	Color(0,	255,			0),
				'tech':			Color(255,			0,	255),
				}

The	following	code	will	display	as	many	pixels	of	each	color	as	there	are
tweets	seen.	If	you	see	seven	nature	tweets	and	five	tech	tweets,	it’ll	show

seven	green	pixels	and	five	purple	pixels,	advancing	down	the	light	strip	or
around	the	circle.

TWITTER_CHECK_TIME	=	120							#	How	often	to	check	Twitter
TIME_BETWEEN_PIXELS	=	.02						#	Seconds	from	one	pixel	to	the	next
led_number	=	0																	#	Which	LED	are	we	setting	right	now?
tot_time	=	TWITTER_CHECK_TIME		#	So	we'll	check	immediately
		
twitapi	=	init_twitter()
		
while	True:
				if	tot_time	>=	TWITTER_CHECK_TIME:
								keywords_found	=	twit.match_keywords(twitapi,	topicwords)
								tot_time	=	0
								print(keywords_found)
		
				#	Loop	over	the	topics:
				for	topic	in	keywords_found:
								#	keywords_found[topic]	is	the	number	of	keywords
								#	we	matched	on	Twitter.	Show	that	number	of	pixels.
								#	The	color	for	this	topic	is	topiccolors[topic].
								for	i	in	range(keywords_found[topic]):
												strip.setPixelColor(led_number,	topiccolors[topic])
												strip.show()
												led_number	=	(led_number	+	1)	%	num_pixels
												time.sleep(TIME_BETWEEN_PIXELS)
												tot_time	+=	TIME_BETWEEN_PIXELS

That	looks	good	most	of	the	time,	but	there’s	one	more	tweak	to	make	it
look	even	better.	If	the	total	number	of	Twitter	hits	over	all	the	topics	divides
evenly	into	the	number	of	pixels,	or	vice	versa—suppose	you	have	20	pixels,
and	you	saw	seven	tech	tweets	and	three	nature	tweets,	for	a	total	of	ten—
then	the	colors	will	just	stay	in	the	same	place	rather	than	advancing	around
the	string,	and	the	display	will	look	static.	You	can	guard	against	that	by	taking
the	sum	of	the	keywords	found	for	each	topic	and	using	the	modulo	operator
(%)	to	check	for	divisions	with	no	remainder,	and	then	adding	a	blank	pixel	in
that	case.	Put	this	code	right	after	print(keywords_found),	indented	only	four
spaces,	not	eight:

				tot_hits	=	sum(keywords_found[i]	for	i	in	keywords_found)
				if	num_pixels	%	tot_hits	==	0	or	tot_hits	%	num_pixels	==	0:
								keywords_found['blank']	=	1

Whew!	Lots	of	steps,	but	the	result	is	pretty.	Once	it’s	working,	try	adding

more	topics	in	different	colors.

WEB	SCRAPING	IN	PYTHON
Don’t	care	for	Twitter,	or	just	more	interested	in	following	some	other
website?	No	problem—you	can	write	a	web	scraper.

“Scraping”	means	downloading	a	web	page	and	searching	through	the	text.
Here’s	a	very	simple	Python	web	scraper	that	accepts	the	same	list	of	topic
words	as	in	the	Twitter	example	and	returns	the	same	dictionary	of	matches:

import	requests
		
def	match_keywords(url,	topicwords):
				r	=	requests.get(url)
				matches	=	{}
		
				for	line	in	r.text.splitlines():
								line	=	line.lower()								#	convert	it	to	lowercase
								for	topic	in	topicwords:
												for	word	in	topicwords[topic]:
																if	word	in	line:
																				#	Add	it	to	matches
																				if	topic	in	matches:
																								matches[topic]	+=	1
																				else:
																								matches[topic]	=	1
				return	matches

This	code	splits	the	output	into	lines	and	counts	the	number	of	lines	where
there	was	a	keyword	match.	You	can	test	it	with	this:

if	__name__	==	'__main__':
				topicwords	=	{
								#	Set	up	your	topic	words	here,	as	in	the	Twitter	section
								}
		
				print(match_keywords('http://WEBSITE_TO_SCRAPE',	topicwords))

Of	course,	replace	WEBSITE_TO_SCRAPE	with	whatever	website	you	want
to	try.

This	scraper	isn’t	ideal,	though,	because	90	percent	of	a	typical	web	page
consists	of	menus,	sidebars,	ads,	and	JavaScript,	and	you	don’t	want	to	scrape

that.	You	only	want	to	look	at	the	text	you’d	see	if	you	viewed	the	page	in	a
browser.	For	that,	you	need	to	parse	the	web	page’s	source,	which	you	can	do
with	a	Python	module	called	BeautifulSoup.	First	you	have	to	install	it	(this
covers	both	Python	2	and	Python	3):

sudo	apt-get	install	python-bs4	python-lxml	python3-bs4

Then	you	can	parse	the	web	page	and	remove	all	that	JavaScript.
(Removing	menus	and	sidebars	is	harder	and	is	left	as	an	exercise	for	the
reader.)	You	can	search	for	<script>	tags,	remove	(“extract”)	them	from	the
page,	get	only	the	text	part	of	what’s	left,	convert	it	to	lowercase,	split	it	into
lines,	and	then	run	your	keyword	search.	The	if	__name__	==	'__main__':	part
doesn’t	change.

import	requests
from	bs4	import	BeautifulSoup
		
def	match_keywords(url,	topicwords):
				r	=	requests.get(url)
				soup	=	BeautifulSoup(r.text,	"lxml")
		
				#	Remove	javascript:
				for	script	in	soup(["script"]):
								script.extract()						#	Remove	all	<script>	tags
		
				matches	=	{}
		
				for	line	in	soup.text.lower().splitlines():
								for	topic	in	topicwords:
												for	word	in	topicwords[topic]:
																if	word	in	line:
																				if	topic	in	matches:
		
																								matches[topic]	+=	1
																				else:
																								matches[topic]	=	1
				return	matches

You	can	get	as	fancy	as	you	want	to	with	BeautifulSoup	and	look	only	for
certain	tags,	only	for	headlines,	and	so	forth.	When	you’re	happy	with	your
scraper,	you	can	import	it	into	a	light	string	program,	just	as	you	would	have
with	twit.py,	except	that	you’ll	import	scrape	rather	than	twit,	and	instead	of
initializing	the	Twitter	API,	you’ll	call	scrape.match_keywords('THE-WEBSITE-TO-

SCRAPE’,	topicwords.

NOTE

The	legality	of	web	scraping	still	isn’t	a	settled	issue	in	most	countries.
There	have	been	lawsuits	in	cases	where	a	company	scraped	a
competitor’s	website	for	commercial	gain,	but	generally	no	one	cares
about	individual	scraping	that	isn’t	posted	anywhere	public.	And	of
course,	no	one	objects	to	Google	scraping	their	websites	to	index	them.
When	you’re	scraping	websites,	be	nice	and	don’t	flood	the	site’s
connection;	make	sure	your	program	sleeps	a	reasonable	amount	of	time
(a	few	minutes)	between	fetches.

MAKING	IT	PORTABLE:	BATTERIES
Once	you	have	your	light	string	working,	wouldn’t	it	be	nice	to	get	it	off	your
desk	and	make	it	wearable?

Since	you’ll	be	running	the	Pi	as	well	as	the	light	string	off	batteries,
calculate	the	amps	you	expect	your	lights	will	draw:	about	60	mA	at	full
brightness	times	the	number	of	pixels.	Then	add	about	an	amp	for	the	Pi,
though	you	can	probably	get	by	with	as	little	as	0.2	amps	if	it’s	idling	most	of
the	time,	or	a	little	more	if	it’s	going	to	be	doing	heavy	computation.	Batteries
are	rated	by	“amp	hours,”	so	if	you	can	estimate	the	amps	your	project	needs,
you	can	make	a	first	guess	as	to	how	long	any	given	battery	will	run	it.

One	easy	option	is	a	portable	USB	charger	with	a	lithium-ion	battery.

These	are	sold	as	emergency	chargers	for	cellphones,	but	they	can	power
any	device	that	expects	to	be	plugged	into	a	USB	port.	Typically	they	come
with	a	USB	A	jack,	so	you	can	plug	in	a	normal	USB	A	to	MicroUSB	cable	to
get	power	to	your	Pi.

Figure	4-13:	A	couple	of	portable	USB	chargers

To	power	a	light	string	in	addition	to	a	Pi,	you’ll	probably	have	to	make	a	Y
connector	that	goes	from	the	battery’s	USB	plug	to	the	light	string.	Even	if
you	use	separate	batteries	for	the	Pi	and	the	light	string,	you’ll	still	need	a	Y
connector	to	link	the	two	batteries’	grounds	together.	Be	sure	to	check	the
current	output	limitations	(amps)	on	any	battery	you	buy;	small	batteries	may
not	have	enough	juice	to	power	a	Pi	or	a	light	string,	let	alone	both.

You	can	use	AA	or	AAA	battery	packs,	but	I	don’t	recommend	it.	Three	AA
alkaline	batteries	provide	4.5	volts,	and	four	nickel-metal	hydride	(NiMH)
rechargeables	provide	4.8.	Either	of	those	is	within	the	acceptable	voltage
range,	but	the	batteries	won’t	last	very	long,	and	when	they	get	tired	the
voltage	will	fall	off	steeply,	to	the	point	where	your	Pi	might	start	behaving
erratically.

Another	option	is	lithium-polymer	batteries,	sold	in	hobby	shops	for
powering	radio	control	airplanes	and	cars.

WARNING

Lithium-polymer	batteries	require	a	special	charger	and	are	finicky	about
how	they’re	charged.	If	you	overcharge	them	or	accidentally	short	them,
they	can	easily	start	a	fire.	Lots	of	model	airplane	geeks	use	and	love	li-
po	batteries,	but	read	up	on	them	before	committing.

A	lot	of	NeoPixel	tutorials	recommend	a	single-cell	li-po,	which	delivers	3.7
volts,	a	nice	safe	voltage	for	the	light	strings.	But	that’s	not	enough	voltage	to
power	the	Pi,	so	you’ll	need	a	separate	battery	or	a	step-up	power	converter.

If	you	use	a	two-cell	li-po,	available	in	hobby	shops	that	sell	model	airplane
supplies,	you	get	7.4	volts—far	too	high	for	either	the	Pi	or	the	light	string—but
you	can	use	a	voltage	regulator	or	step-down	power	converter	to	bring	the
voltage	down	to	5	volts.	A	voltage	regulator	might	need	a	heat	sink,	so	read
up	on	the	details	of	the	regulator	you	choose.	Step-down	power	converters
are	more	efficient	and	might	not	need	a	heat	sink.	Either	way,	make	sure	it	can
handle	several	amps.

Figure	4-14:	5V	voltage	regulator	used	with	a	battery	of	higher	voltage

Plugs	for	Portable	Projects

No	matter	what	battery	you	use,	you’ll	most	likely	have	to	solder	a	cable	with

connectors.	If	you	use	one	battery	to	power	both	the	Pi	and	the	light	string,
you’ll	need	a	Y	connector	that	has	power	and	ground	from	the	battery	going
both	to	the	Pi	and	to	the	light	string.	Even	if	you	use	two	batteries	with
separate	connectors,	you’ll	still	need	some	form	of	Y	to	connect	the	Pi’s
ground	to	the	light	string.	Just	like	people,	electronic	gizmos	need	common
ground	to	communicate.

Figure	4-15:	Running	both	the	Pi	Zero	W	and	a	NeoPixel	Jewel	off	a	USB
backup	battery,	with	a	MicroSD	plug	(made	from	a	spare	USB	OTG	adapter)

for	the	Pi	and	a	mini-Deans	connector	for	the	NeoPixel

On	the	Pi’s	side,	it’s	best	to	use	a	MicroUSB	plug	for	power.	You	can
provide	5V	input	power	via	GPIO	pin	2	(the	one	labeled	5v),	but	there’s	no
protection	against	voltage	spikes	as	there	is	on	the	Pi’s	normal	MicroUSB
Power	In	jack.	If	you	bought	a	pack	of	USB	OTG	adapters	to	get	your	USB	hub
working	(Chapter	1),	they	also	make	nice	solderable	MicroUSB	connectors.

For	the	light	string	(and	the	battery,	if	you’re	not	using	one	that	comes	with
a	connector),	you	have	your	choice.	There	are	lots	of	options:	various	types	of
connectors,	Deans	and	mini-Deans,	phone	plugs	(meant	for	audio),	car	and
motorcycle	plugs…the	list	is	endless,	and	there’s	no	standard.	Use	whatever
you	can	find	easily,	especially	if	you	have	a	local	store	that	carries	them.	(No
matter	how	many	connectors	you	think	you	bought,	you	will	run	short	on	a
Friday	night	when	you’re	working	on	that	last-minute	project	for	the
weekend.)	Hobby	shops	that	sell	radio	control	planes	and	cars	are	good
hunting	grounds.

Figure	4-16:	Connectors	galore!

Whatever	connectors	you	decide	to	use,	get	several	of	them,	both	male	and
female,	so	you	can	make	adapters	for	several	batteries,	adapters	from	your
wall	wart	to	your	wearable	device,	and	so	on.

There	you	have	it:	a	wearable	device	that	is	not	only	pretty,	but	actually
shows	you	useful	information,	updated	in	real	time.

And	that’s	it!	Now	you’ve	built	a	selection	of	projects	using	the	Raspberry	Pi
Zero	W.	You	can	use	these	projects	as	a	basis	for	further	adventures	with	the
Pi.	Don’t	forget	to	check	out	the	GitHub	repo,	https://github.com/akkana/pi-
zero-w-book,	where	you’ll	find	all	the	code	in	the	book	(so	you	don’t	have	to
type	it	in	yourself),	wiring	diagrams,	and	maybe	a	few	additional	examples	of
what	the	Pi	Zero	W	can	do.

Have	fun!

https://github.com/akkana/pi-zero-w-book

	Titlepage
	Copyright
	Dedication
	Acknowledgments
	Chapter 1: Getting Started
	Hardware Requirements
	About the Raspberry Pi Zero W
	Installing Raspbian
	Connecting to a Monitor, Keyboard, and Mouse
	Headless: Connecting Without a Monitor
	Finding Your Pi on the Local Network
	SSHing to Your Raspberry Pi
	Logging In and Changing the Default Password
	Basic Configuration
	The PIXEL Desktop
	Introducing the Linux Command Line
	Installing Software
	Getting Help

	Chapter 2: Blink an LED
	Hardware Requirements
	What Is GPIO?
	Headers: Hooking Up to the Pi Zero W
	Wiring an LED on a Breadboard
	The Raspberry Pi Pin Layout
	Controlling an LED from the Command Line
	Blinking an LED from the Command Line
	Blinking an LED from a Python Program
	Fade an LED
	Python Blink Using RPi-gpio
	Python Fade using RPi-gpio
	Reading Input: A Pushbutton
	Other Languages, Other Interfaces

	Chapter 3: A Temperature Notifier and Fan Control
	Hardware Requirements
	What Is I2C?
	Choosing a Sensor
	A Temperature Tweeter
	Controlling a Fan or Air Conditioner

	Chapter 4: A Wearable News Alert Light Show
	Hardware Requirements
	DotStars
	NeoPixels
	Searching for Twitter Keywords
	Web Scraping in Python
	Making It Portable: Batteries

