

 Table of Contents

 Linux Shell Scripting Essentials

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. The Beginning of the Scripting Journey

 Hello World in shell

 Interacting with shell

 Let's make it scripted

 Define variables of choice

 Nomenclature

 Assigning a value

 Accessing a value

 Constant variables

 Reading variables from a user input

 Builtin shell variables

 Operators

 The assignment operator

 Arithmetic operators

 Logical operators

 Comparison operators

 Shell expansions

 ~ (Tilde)

 * (Asterisk)

 ? (Question mark)

 [] (Square brackets)

 { } (Curly brackets)

 Construct commands using eval

 Make bash behave using set

 Exit on the first failure

 Enabling/disabling symbolic link's resolution path

 Setting/unsetting variables

 Summary

 2. Getting Hands-on with I/O, Redirection Pipes, and Filters

 Standard I/O and error streams

 File descriptors

 Redirecting the standard I/O and error streams

 Redirecting standard output

 Redirecting standard input

 Redirecting standard errors

 Multiple redirection

 Pipe and pipelines – connecting commands

 Pipe

 Pipeline

 Regular expressions

 Regular expression metacharacters

 Character ranges and classes

 Character ranges

 Matching dates in mm-dd-yyyy format

 Matching a valid month

 Matching a valid day

 Matching the valid year in a date

 Combining valid months, days, and years regex to form valid dates

 Regex for a valid shell variable

 Filtering an output using grep

 Syntax

 Looking for a pattern in a file

 Looking for a pattern in multiple files

 A few more grep usages

 Searching in a binary file

 Searching in a directory

 Excluding files/directories from a search

 Display a filename with a matching pattern

 Matching an exact word

 Editing output using sed

 String substitution using s

 Multiple substitutions

 Duplicating a stream using tee

 Writing an output to stdout and appending to a file

 Sending an output to multiple commands

 Sorting and finding unique text

 Sorting an input text

 Sorting a single file

 Redirecting output to sort

 Filtering unique elements

 Unique elements in a file

 Character-based translation using tr

 Deleting input characters

 Squeezing to a single occurrence

 Inverting a character set to be translated

 Filtering based on lines—head and tail

 Printing lines using head

 Printing the first few lines

 Printing the first few bytes

 Printing lines using tail

 Checking log entries

 Finding any line in a file

 The Cut-based selection

 Cutting across columns

 Text selection in files

 Summary

 3. Effective Script Writing

 Exiting from scripts and exit codes

 Exit codes

 Exit codes with a special meaning

 Script with exit codes

 Testing expressions with a test

 File checks

 Arithmetic checks

 String checks

 Expression checks

 Using conditional statements with if and else

 Simple if and else

 The if, elif, and else statements

 Nested if

 Indexed arrays and associative arrays

 Indexed arrays

 Array declaration and value assignment

 Operations on arrays

 The associative array

 The declaration and value assignment

 Operations on arrays

 Looping around with for

 Simple iteration

 Iterating over a command output

 Specifying a range to the for loop

 Small and sweet for loop

 The select, while, and until loops

 Loop using select

 The while loop

 The until loop

 Switch to my choice

 Passing stdout as a parameter using xargs

 Basic operations with xargs

 Using xargs to find a file with the maximum size

 Archiving files with a given pattern

 Using functions and positional parameters

 Calling a function in bash

 Passing parameters to functions

 Alias

 Creating alias

 Listing all aliases

 Removing an alias

 pushd and popd

 Summary

 4. Modularizing and Debugging

 Modularizing your scripts

 Source to a script file

 Syntax

 Creating a shell script library

 Loading a shell script library

 Calling a shell library in bash

 Calling shell library in another shell script

 Passing command line parameters to script

 Reading arguments in scripts

 Shifting command line arguments

 Processing command line options in a script

 Debugging your scripts

 Debugging using echo

 Debugging an entire script using -x

 Debugging sections of a script using the set options

 Command completion

 Managing bash completion with complete

 Viewing the existing bash completion

 Modifying default bash completion behavior

 Removing bash completion specification

 Writing bash completion for your own application

 An example of bash completion

 Running the created bash completion

 Summary

 5. Customizing the Environment

 Knowing the default environment

 Viewing a shell environment

 printenv

 env

 Differences between shell and environment variables

 Modifying a shell environment

 Creating environment variables

 Modifying environment variables

 Deleting environment variables

 Using bash startup files

 .bashrc

 .bash_profile

 .bash_logout

 Knowing your history

 Shell variables controlling the history

 The history builtin command

 Modifying the default history behavior

 Handy shortcuts for seeing the history

 [Ctrl + r]

 Up and down arrow key

 !!

 !(search_string)

 !?(search_string)

 Task management

 Running tasks in the background

 Sending a running task to the background

 Listing background tasks

 Moving tasks to the foreground

 Terminating tasks

 Summary

 6. Working with Files

 Performing basic file operations

 Creating files

 Directory file

 Regular file

 Touch command

 Using the command line editors

 Using the cat command

 Redirecting the command's output

 Modifying files

 Viewing files

 Viewing content using cat

 more and less

 Deleting files

 Deleting a regular file

 Deleting a directory

 Moving and copying files

 Moving files

 Moving a directory to a new location

 Renaming a file

 Copying files

 Copying files locally

 Copying a file to another location

 Copying files remotely

 Copying files to a remote server

 Comparing files

 Files comparison using diff

 Example

 Finding files

 Searching files according to use case

 Finding and deleting a file based on inode number

 Links to a file

 Soft link

 Hard link

 Difference between hard link and soft link

 Special files

 The block device file

 Named pipe file

 Socket file

 Temporary files

 Creating a temporary file using mktemp

 Permission and ownership

 Viewing the ownership and permission of files

 Changing permission

 Changing the owner and group

 Changing a file's owner

 Changing group ownership

 Getting the list of open files

 Knowing the files opened by a specific application

 Listing the applications that opened a file

 Knowing the files opened by a user

 Configuration files

 Viewing and modifying configuration files

 Summary

 7. Welcome to the Processes

 Process management

 Process creation and execution

 Process termination

 Using the kill command

 Using the killall command

 Using the pkill command

 Listing and monitoring processes

 Listing processes

 Syntax

 Simple process selection

 Process selection by list

 Output format control

 Listing all processes with details

 Listing all processes run by a user

 Processes running in the current terminal

 Listing processes by a command name

 Tree format display of processes

 Monitoring processes

 Process substitution

 Diffing the output of two processes

 Process scheduling priorities

 Changing scheduling priorities

 Using nice

 Using renice

 Signals

 Available signals

 Traps

 Inter-process communication

 Information on IPC using ipcs

 Listing information provided by IPCs

 Knowing processes' PID who recently did IPCs

 Summary

 8. Scheduling Tasks and Embedding Languages in Scripts

 Running tasks at a specific time

 Executing scripts using at

 Scheduling commands

 Scheduling a script file

 Listing scheduled tasks

 Removing scheduled tasks

 Cron jobs

 Cron daemon

 Cron configuration

 Crontab entries

 Special strings in Crontab

 Managing the crontab entry

 Listing crontab entries

 Editing crontab entries

 Removing crontab entries

 systemd

 systemd units

 Managing services

 Status of a service

 Enabling and disabling services

 Start and stop a service

 Viewing system logs

 Viewing the latest log entries

 Viewing logs of a particular time interval

 Embedding languages

 Embedding Python language

 Embedding AWK language

 Summary

 Index

 Linux Shell Scripting Essentials

 Linux Shell Scripting Essentials

 Copyright © 2015 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 First published: November 2015

 Production reference: 1161115

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham B3 2PB, UK.

 ISBN 978-1-78528-444-1

 www.packtpub.com

 Credits

 Author

 Sinny Kumari

 Reviewers

 Grigor Aslanyan

 Mohamed Fawzy

 John Kennedy

 Commissioning Editor

 Pramila Balan

 Acquisition Editor

 Sonali Vernekar

 Content Development Editor

 Shali Deeraj

 Technical Editors

 Naveenkumar Jain

 Mitali Somaiya

 Copy Editor

 Trishya Hajare

 Project Coordinator

 Sanchita Mandal

 Proofreader

 Safis Editing

 Indexer

 Priya Subramani

 Production Coordinator

 Nitesh Thakur

 Cover Work

 Nitesh Thakur

 About the Author

 Sinny Kumari has been a GNU/Linux user since the beginning of her college days. Her passion is to contribute to free software that benefits millions of people. She is a KDE contributor, KDE e.V. member, Fedora packager, and a Google Summer of Code mentor.

 To keep up her passion in open source, she has been working as a software engineer at Red Hat after completing her bachelor's degree in computer science in 2012. As part of her work, she contributes to the Libabigail project that helps with ABI analysis on ELF binaries. She also loves going to technical conferences and sharing her experiences by giving talks. Her blogs about almost all of these activities can be found at http://sinny.io/.

 I want to thank my parents who have always supported, encouraged, and provided me with the best education. I would also like to thank my friends and family who were always around me to cheer me up. Special thanks to my friend, Shantanu Tushar, who clarified a few doubts I came across while writing this book. I would also like to thank the reviewers of this book and the entire PacktPub team.

 About the Reviewers

 Grigor Aslanyan is a theoretical cosmologist with a strong focus on computational methods for data analysis. He has a PhD in physics from the University of California, San Diego, and is currently a postdoctoral research fellow at the University of Auckland in New Zealand.

 Grigor was born and raised in Armenia. He obtained both bachelor's and master's degrees in physics and computer science at Yerevan State University, before moving to California for his PhD studies. He has also worked as a software engineer for three years at Ponté Solutions (a company later acquired by Mentor Graphics).

 Grigor's research focuses on studying the theory of the very early universe by using experimental data from cosmic microwave background radiation and galaxy surveys. His research requires the development and implementation of complex numerical tools used to analyze the data on large computational clusters, with the ultimate goal of learning about the theory of the early universe. Grigor's current research is focused on applying advanced data science and machine learning techniques to improve data analysis methods in cosmology, making it possible to analyze the large amounts of data expected from the current and future generation experiments.

 Grigor has implemented the publicly available numerical library Cosmo++ that includes general mathematical and statistical tools for data analysis as well as cosmology-specific packages. The library is written in C++ and is publicly available at http://cosmopp.com.

 I would like to thank the University of Auckland and my supervisor Richard Easther for supporting my work on this book.

 Mohamed Fawzy is an open source geek who adores working with servers. He has been working with Linux since 2013—working and delivering training in Linux system engineering. He has many contributions in open source communities, especially in Egypt where he is a Fedora project contributor and ambassador. He currently lives in Egypt and studies in Mansoura University.

 I would like to express my deepest appreciation to all those who have provided me the opportunity to achieve my life goals.

 I want to express my warm thanks to my family, especially my father who always supports me. I would like to thank my friends, Mohamed Desoky and Yomna Hafez who are engineers, and also my team, CatReloaded, and its core members, especially Amira, for my graduation project, Fedora. I would also like to thank all the contributors who work as friends, Levex, Zoltan, and others, for their support and guidance in my life.

 Special gratitude I give to our project manager, Sanchita Mandal, who coordinated the project well, the writer who did her best to write this book, and Packt Publishing.

 Thanks to you all for being in my life.

 John Kennedy has worked with UNIX and Linux since 1998. He has been shell scripting since 2001. His preferred language is BASH, although he has dabbled in Python.

 He has been reviewing and tech-editing books in his spare time since 2001 and has about 20 books under his belt. He believes the best part of reviewing is that he learns something from every book he works on.

 John was born in the US and grew up in Northern Virginia. He spent some time in the US Air Force and has lived in Germany and the United Kingdom. He is married to Michele and has two children, Denise and Kieran. He currently lives in Northern Virginia.

 I would like to thank my family including my nephews, Aiden and Mason, and my niece, Harriet, for supporting all the silly things I do and for giving me the time to work on this.

 I would also like to thank Sanchita Mandal who possesses great patience and flexibility and was very supportive. Also, my thank go to the author, Sinny Kumari who made this book easy to review and educational to read. Everyone at Packt also deserves recognition for all the titles and hard work that goes into producing them.

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 For support files and downloads related to your book, please visit www.PacktPub.com.

 Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.

 At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

 [image: Support files, eBooks, discount offers, and more]

 https://www2.packtpub.com/books/subscription/packtlib

 Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

 Why subscribe?

 	Fully searchable across every book published by Packt

 	Copy and paste, print, and bookmark content

 	On demand and accessible via a web browser

 Free access for Packt account holders

 If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

 Preface

 The shell on a GNU/Linux system is arguably the most powerful tool for any user. In general terms, the shell serves as an interface between the system's user and the operating system kernel. We use the shell to run commands in order to perform tasks and frequently save the output to files. While these simple use-case are easy to achieve by just using some commands on the shell, sometimes the task at hand is more complex than that.

 Enter shell scripting, the magical tool that allows you to write step-by-step instructions to the shell on how to perform a complex task. However, just learning the syntax to write scripts is not enough unless you know the commands at your disposal. Only then would scripts be reusable, efficient, and easy to use. When one has mastered the commands available on a GNU/Linux system, what follows is a frenzy to automate daily tasks—be it finding documents or cleaning up old movies that have long been watched. Whether you're an expert with other scripting languages or you're doing this for the first time, this book will show you how to do magic with shell scripts!

 What this book covers

 Chapter 1, The Beginning of the Scripting Journey, tells you about the importance of writing shell scripts along with a simple Hello World shell script program. It also covers the basic and essential shell script topics such as defining a variable, built-in variables, and operators. It also contains a detailed explanation of shell expansion that occurs with characters such as ~, *, ?, [], and {}.

 Chapter 2, Getting Hands-on with I/O, Redirection Pipes, and Filters, talks about the standard input, output, and error streams for a command and shell script. It also has instructions on how to redirect them to other streams. One of the most powerful concepts, namely regular expressions, is also covered. It serves as instructions to commands such as grep, sed, uniq, and tail for filtering useful data from input data.

 Chapter 3, Effective Script Writing, provides an insight into structuring shell scripts to organize tasks. After talking about script exit codes, it talks about basic programming constructs such as conditionals and loops. It then goes on to discuss the organization of code into functions and aliases. Finally, it wraps up with details on how xargs, pushd, and popd works.

 Chapter 4, Modularizing and Debugging, talks about making shell scripts modular by using common code that can be sourced. It also covers the details of command line arguments to scripts and how one can debug their scripts when they malfunction. This chapter also contains information on how the user can implement custom command completion.

 Chapter 5, Customizing the Environment, moves on to talk about the shell environment - what it contains, its significance, and finally how to modify it. It also takes the reader through the different initialization files that bash uses at startup. Finally, we talk about how to check command history and manage running tasks.

 Chapter 6, Working with Files, talks about files, which are the entities that most of any UNIX system is composed of. It covers the basic philosophy of "everything is a file" and takes the reader through basic file operations, comparing files, finding them, and creating links. This chapter then explains what special files and temporary files are, and the details involved in file permissions.

 Chapter 7, Welcome to the Processes, talks about executable files that come alive—and become processes. From listing and monitoring running processes, it goes on to talk about how to exploit process substitution. Next, it covers process scheduling priorities, signals, traps, and how processes can communicate with each other.

 Chapter 8, Scheduling Tasks and Embedding Languages in Scripts, discusses scheduling tasks at appropriate times by using the system Cron. Next, it covers systems that are responsible for orchestrating startup tasks in most modern Linux systems. Finally, this chapter contains instructions on how to embed scripts from other scripting languages into a shell script.

 What you need for this book

 The reader doesn't require any previous knowledge to understand this book, though some familiarity with Linux will help. On the software side, a recent enough Linux distribution with bash 4 should be able to try out all examples in this book.

 Who this book is for

 This book is aimed at administrators and those who have the basic knowledge of shell scripting and want to learn how to get the most out of writing shell scripts.

 Conventions

 In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

 Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can also use the printf command in shell programming for printing."

 A block of code is set as follows:

 $ name=foo
$ foo="Welcome to foo world"
$ echo $name
foo
$ new_name='$'$name #new_name just stores string value $foo
$ echo $new_name
$foo
$ eval new_name='$'$name # eval processes $foo string into variable and prints # foo variable value
Welcome to foo world

 Any command-line input or output is written as follows:

$ ps -p $$

 Note

 Warnings or important notes appear in a box like this.

 Tip

 Tips and tricks appear like this.

 Reader feedback

 Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

 To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.

 If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

 Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

 You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

 Errata

 Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

 To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

 Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

 Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

 We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

 If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

 Chapter1.The Beginning of the Scripting Journey

 Unix, Unix-like, or Linux-based OS provide a lot of powerful features to work upon. Among them, the most powerful and important feature is executing a wide range of commands to perform a task quickly and easily; for example, ls, cat, sort, grep, and so on. We will come to know about a subset of commands and usages throughout this book. In order to run a command, we need an interface that is widely known as shell.

 Shell is a program that acts as an interface between the users (we) and the OS kernel (Linux, Unix, and so on). Understanding in terms of Windows OS, shell serves a similar purpose DOS does. Different shells are available for Unix, Unix-like, or Linux OS. Some of the popular shells are Bourne shell (sh), C shell (csh), Korn shell (ksh), Bourne Again shell (bash), and Z shell (zsh).

 In this book, we will be using Linux OS and Bourne Again shell, popularly known by its acronym bash. Linux-based systems generally have bash already installed. In case bash is not installed, try installing the bash package from your distribution's package manager. In order to know which shell currently your Linux console is using, run the following command in terminal:

$ ps -p $$

 The output is as follows:

 PID TTY TIME CMD
12578 pts/4 00:00:00 bash

 In the preceding ouput, we see that the CMD column has value bash. This means, we are currently using bash shell in our current console.

 If your console is not using the bash shell, then you can run the following command:

$ bash

 Also, your shell will be bash now. To make bash as a default login shell, run the following command:

$ chsh -s /bin/bash

 The output obtained is as follows:

Changing shell for user.
Password:******
Shell changed.

 We are now set with bash shell and ready to learn shell scripting in detail. Shell scripts are nothing but plain text files with a series of commands that are run by bash in a specified order. Writing shell scripts is very useful when you have to perform a series of tasks by running various commands, as bash will read each line from a script file and run it without any need of user intervention. The general file extension used for shell scripts are .sh, .bash, .zsh, .ksh, and so on. Rather than using a file extension for shell scripts, it's preferred to keep a filename without extension and let an interpreter identify the type by looking into shebang (#!). Shebang is used in scripts to indicate an interpreter for execution. It is written in the first line of a script file, for example:

 #! /bin/bash

 It means use the bash shell to execute a given script. To run a shell script, make sure it has execute permission. To provide execute permission to an owner of a file, run the following command:

$ chmod u+x foo

 Here, foo is the shell script file. After running this command, foo will have execute permission for the owner of the file.

 Now, we are ready to proceed further on learning shell scripting concepts in detail. Each topic and subtopic covered in the chapters with examples will lead us progressively towards a good shell script programmer.

 In this chapter, we will talk broadly about the following topics:

 	Hello World in shell

 	Define variables of choice

 	Builtin shell variables

 	Operators

 	Shell expansions

 	Construct commands using eval

 	Make bash behave using set

 Hello World in shell

 Whenever we learn a new programming language, we first learn how to write the Hello World program in it. It is the best way to know and interact with a new language. This also helps in confirming that the basic environment for a program in a given language has been set up and you are good to dive deep inside this language.

 Interacting with shell

 We can print the output of commands in console in an interactive way. Console is also known as a standard input and output stream. To print anything in a bash console, use the echo command followed by what is to be printed:

$ echo Hello World
Hello World

 Alternatively, put the text to be printed in double quotes:

$ echo "Hello World"
Hello World

 You can also put the text to be printed in single quotes:

$ echo 'Hello World'
Hello World

 We can also use the printf command in shell programming for printing. The printf command also supports formatted printing, similar to what we have in C programming language— the printf() function:

$ printf "Hello World"
Hello World$

 Here, after the output, we see the command prompt ($) because printf doesn't add a default newline after execution while echo does. So, we have to explicitly add the newline (\n) in the printf statement to add a newline:

$ printf "Hello World\n"
Hello World

 Similar to the C printf(), we can specify formatted printing in bash. The syntax of bash printf is as follows:

printf FORMAT [ARGUMENTS]

 FORMAT is a string that describes the format specifications and is specified within double quotes. ARGUMENTS can be the value or a variable corresponding to format specification. Format specification consists of the percentage (%) sign followed by format specifier. Format specifiers are explained in the following table:

 	
 Format specification

 	
 Description

 	
 %u

 	
 This prints an unsigned integer value

 	
 %i or %d

 	
 This prints an associated argument as a signed number

 	
 %f

 	
 This prints an associated argument as a floating point number

 	
 %o

 	
 This prints an unsigned octal value

 	
 %s

 	
 This prints a string value

 	
 %X

 	
 This prints an unsigned hexadecimal value (0 to 9 and A to F)

 	
 %x

 	
 This prints an unsigned hexadecimal value (0 to 9 and a to f)

 The following examples demonstrate how to use format specification for printing different data type format in shell:

$ printf "%d mul %f = %f\n" 6 6.0 36.0
6 mul 6.000000 = 36.000000
$ printf "%s Scripting\n" Shell
Shell Scripting

 We can also optionally specify a modifier in format specification to align an output to provide better formatting to the output. Format modifiers are placed between % and the format specifier character. The following table explains format modifiers:

 	
 Format Modifiers

 	
 Description

 	
 N

 	
 This is any number that specifies a minimum field width.

 	
 .

 	
 This is used together with field width. The field doesn't expand when the text is longer.

 	
 -

 	
 This is the left-bound text printing in the field.

 	
 0

 	
 This is used to fill padding with zeros (0) instead of whitespaces. By default, padding is done with whitespaces.

 The following example demonstrates how to use format modifiers to improve printing formatting:

$ printf "%d mul %.2f = %.2f\n" 6 6.0 36.0
6 mul 6.00 = 36.00

 Let's make it scripted

 Interactive printing is good if we have to print one or two lines, but for a lot of printing, it's good and preferred to write a script file. A script file will contain all the instructions and we can run a script file to perform the needed task.

 Now, we are going to create a bash script file that makes use of the echo and printf commands and print messages:

#!/bin/bash
#Filename: print.sh
#Description: print and echo

echo "Basic mathematics"
printf "%-7d %-7s %-7.2f =\t%-7.2f\n" 23 plus 5.5 28.5
printf "%-7.2f %-7s %-7d =\t%-7.2f\n" 50.50 minus 20 30.50
printf "%-7d %-7s %-7d =\t%-7d\n" 10 mul 5 50
printf "%-7d %-7s %-7d =\t%-7.2f\n" 27 div 4 6.75

 The first line in bash script represents the path of the interpreter used. The second line is a comment line telling the filename of a script file. In shell script, we use # to add a comment. Furthermore, the echo command will print strings written within double quotes. For the rest, we have used printf to print formatted output.

 To run this script, we will first provide execute permission to a user/owner of this script:

$ chmod u+x print.sh

 Then, run the script file in console as follows:

$./print.sh

 The result after running this script will look as follows:

 [image: Let's make it scripted]

 Define variables of choice

 Now we know how to write a simple hello world shell script. Next, we will be getting familiar with variables in shell and how to define and use variables in shell.

 Nomenclature

 A variable name can be a combination of alphanumeric and underscore. Also, the name of the variable can't start with a number. The variable names in shell script are case-sensitive. Special characters, such as *, -, +, ~, ., ^, and so on, are not used in variable names because they have a special meaning in shell. The following table illustrates the correct and incorrect ways of naming a variable:

 	
 Correct variable names

 	
 Incorrect variable names

 	
 variable

 	
 2_variable

 	
 variable1

 	
 2variable

 	
 variable_2

 	
 variable$

 	
 _variable3

 	
 variable*^

 Assigning a value

 We can assign a value to a variable by using an assignment (=) operator and followed by a value. While assigning a variable value, there shouldn't be any space before and after the assignment operator. Also, a variable can't be declared alone; it has to be followed by its initial value assignment:

$ book="Linux Shell Scripting" # Stores string value

$ book = "Linux Shell Scripting" # Wrong, spaces around = operator
$ total_chapters=8 # Stores integer value
$ number_of_pages=210 # Stores integer value
$ average_pages_per_chapter=26.25 # Stores float value

 So, it's quite easy to declare and assign a value to a variable in shell script. You don't have to worry about the data type of a variable on the left-hand side. Whatever value you provide on the right-hand side, the variable stores that value.

 Tip

 Downloading the example code

 You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

 Accessing a value

 To access a variable value, use a dollar sign ($) operator followed by a variable name:

 #!/bin/bash
#Filename: variables.sh
#Description: Basic variable definition and accessing them

book="Linux Shell Scripting"
total_chapters=8
number_of_pages=210
average_pages_per_chapter=26.25

echo "Book name - $book"
echo "Number of Chapters - $total_chapters"
printf "Total number of pages in book - $number_of_pages\n"
printf "Average pages in each chapter - %-.2f\n" $average_pages_per_chapter

 The result of this script will look as follows:

 Book name - Linux Shell Scripting
Number of Chapters - 8
Total number of pages in book - 210
Average pages in each chapter – 26.25

 We can remove the value of a variable using the unset keyword in bash. Using unset to a variable deletes and resets it to null:

 #!/bin/bash
#Filename: unset.sh
#Description: removing value of a variable

fruit="Apple"
quantity=6
echo "Fruit = $fruit , Quantity = $quantity"
unset fruit
echo "Fruit = $fruit , Quantity = $quantity"

 The result after running this script will look as follows:

 Fruit = Apple , Quantity = 6
Fruit = , Quantity = 6

 It's clear that we used unset on a fruit variable, so when we try to access a variable fruit after unsetting it in line no. 8, it prints nothing. The quantity variable still retains its value because we haven't used unset on it.

 Constant variables

 We can also create the constant variable in bash whose value can't be changed. The readonly keyword is used to declare a constant variable. We can also use declare -r followed by a variable name to make it constant:

#!/bin/bash
#Filename: constant.sh
#Description: constant variables in shell

readonly text="Welcome to Linux Shell Scripting"
echo $text
declare -r number=27
echo $number
text="Welcome"

 The result after running this script will look as follows:

 Welcome to Linux Shell Scripting
27
constant.sh: line 9: text: readonly variable

 From the error message, it's clear that we can't change the value of a constant variable, and also we can't unset the value of the constant variable.

 Reading variables from a user input

 We can ask the user to provide input using the read shell built in command. The number of inputs to be given by a user is equivalent to the number of arguments provided to read. The value inserted by a user is stored in respective parameters passed to read. All parameters act as variables in which the corresponding user input value is stored.

 The syntax of read is as follows:

 read [options] var1 var2 … varN

 If no variable in an argument is specified, the input value by a user will be stored in the inbuilt variable REPLY and can be accessed further using $REPLY.

 We can read a user input in its input variable as follows:

 $ read
 Hello World
$ echo $REPLY
 Hello World

 We can read a value from user input as follows:

 $ read text
 Hello
$ echo $text
 Hello

 We can read multiple values from user input as follows:

 $ read name usn marks
 Foo 345 78
$ echo $name $usn $marks
 Foo 345 78

 We can read only the n characters and don't wait for the user to input a complete line as follows:

 $ read -n 5 # option -n number takes only 5 characters from user input
 Hello$
$ echo $REPLY
 Hello

 We can prompt the user a message before reading user input as follows:

 $ read -p "What is your name?" # -p allows to prompt user a message
 What is your name?Foo
$ echo $REPLY
 Foo

 Hiding an input character when reading in console:

 $ read -s -p "Enter your secret key:" # -s doesn't echo input in console
Enter your secret key:$ #Pressing enter key brings command prompt $
echo $REPLY
foo

 The following example shows the read command's usage:

#!/bin/bash
#Filename: read.sh
#Description: Find a file in a path entered by user

read -p "Enter filename to be searched:"
filename=$REPLY
read -p "Enter path for search:" path
echo "File $filename search matches to"
find $path -name $filename

 The following is the result of running the read.sh script in bash:

Enter filename to be searched:read
Enter path for search:/usr/bin
File read search matches to
/usr/bin/read

 Here, the find command has been used to search for the filename in the specified path. The detailed discussion of the command find will be done in Chapter 6, Working with Files.

 Builtin shell variables

 Builtin shell variables are predefined and are global variables that we can use in our script at any point of time. These are reserved shell variables and some of them may have a default value assigned by bash. Some variables' value will depend upon your current shell environment setup. The different type of shell may have a few specific reserved variables to it. All builtin shell variables' name will be in uppercase.

 A few reserved shell variables available in bash shell are as follows:

 	
 Shell variables available in bash

 	
 Description

 	
 BASH

 	
 This is the absolute path of the current bash being invoked

 	
 BASH_VERSION

 	
 This is the version number of bash

 	
 BASHPID

 	
 This is the process ID of the current bash process

 	
 EUID

 	
 This is the effective user ID of the current user, which is assigned during startup

 	
 HOME

 	
 This is the current user's home directory

 	
 HOSTNAME

 	
 This is the name of the current host

 	
 PATH

 	
 This is the colon-separated list of directories where shell will look for commands

 	
 PPID

 	
 This is the process ID of the shell's parent

 	
 PWD

 	
 This is the present working directory

 More shell variables can be found in man bash.

 We will see what values these shell variables contain by printing its value in a shell script:

 #!/bin/bash
#Filename: builtin_shell_variables.sh
#Description: Knowing about builtin shell variables

echo "My current bash path - $BASH"
echo "Bash version I am using - $BASH_VERSION"
echo "PID of bash I am running - $BASHPID"
echo "My home directory - $HOME"
echo "Where am I currently? - $PWD"
echo "My hostname - $HOSTNAME"

 After running this script, the output may vary depending upon what the value of these variables is set in your system. The sample output will be as follows:

 My current bash path - /bin/sh
Bash version I am using – 4.3.33(1)-release
PID of bash I am running - 4549
My home directory - /home/sinny
Where am I currently? - /home/sinny/Documents/
My hostname – localhost.localdomain

 The shell variables, such as PWD, PATH, HOME, and so on, are very useful and help in getting the information quickly by just echoing a value in it. We can also add or modify the value of some of shell variables, such as PATH, in order to add a custom path in which we want shell to look for commands.

 One of the use-cases of modifying the PATH variable value is: suppose, I have compiled a source code that generates a few binaries such as, foo and bar. Now, if I want shell to search in that particular directory for command as well, then add this directory path in the PATH variable and we are done. The following small shell script example shows how to do this:

 #!/bin/bash
#Filename: path_variable.sh
#Description: Playing with PATH variable

echo "Current PATH variable content - $PATH"
echo "Current directory - $PWD"
echo "Content of current directory\n`ls`"
PATH=$PATH:$PWD
echo "New PATH variable content - $PATH"
Now execute commands available in current working diectory

 The output after running this script will be somewhat as follows:

 Current PATH variable content - /usr/lib64/qt-3.3/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/sinny/go/source_code/go/bin:/home/sinny/.local/bin:/home/sinny/bin
Current directory - /home/sinny/test_project/bin
Content of current directory – foo bar
New PATH variable content - /usr/lib64/qt-/usr/lib64/qt-3.3/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/sinny/go/source_code/go/bin:/home/sinny/.local/bin:/home/sinny/bin: /home/sinny/test_project/bin

 We see from the output that a new PATH variable has my custom path added. From the next time, whenever I run the foo or bar commands with this custom PATH variable set, the absolute path of the foo and the bar command/binary won't be required. Shell will find out these variables by looking into its PATH variable. This is true only during the current session of shell. We will see this in Chapter 5, Customizing Environment in recipe, Modifying a shell environment.

 Operators

 Similar to other programming languages, shell programming also supports various types of operators to perform tasks. Operators can be categorized as follows:

 	Assignment operator

 	Arithmetic operators

 	Logical operators

 	Comparison operators

 The assignment operator

 Equal to an operator (=) is the assignment operator that is used to initialize or change the value of a variable. This operator works on any data such as a string, integer, float, array, and so on. For example:

$ var=40 # Initializing variable var to integer value
$ var="Hello" # Changing value of var to string value
$ var=8.9 # Changing value of var to float value

 Arithmetic operators

 Arithmetic operators are used for doing arithmetic operations on integers. They are as follows:

 	+ (plus)

 	- (minus)

 	* (multiplication)

 	/ (division)

 	** (exponentiation)

 	% (modulo)

 	+= (plus-equal)

 	-= (minus-equal)

 	*= (multiplication-equal)

 	/= (slash-equal)

 	%= (mod-equal)

 To perform any arithmetic operation, we prefix the expr and let keywords before the actual arithmetic expression. The following example shows how to perform an arithmetic operation in bash:

 #!/bin/bash
#Filename: arithmetic.sh
#Description: Arithmetic evaluation

num1=10 num2=5
echo "Numbers are num1 = $num1 and num2 = $num2"
echo "Addition = `expr $num1 + $num2`"`"
echo "Subtraction = `expr $num1 - $num2`"
echo "Multiplication = `expr $num1 * $num2`"
echo "Division = `expr $num1 / $num2`"
let "exponent = $num1 ** num2"
echo "Exponentiation = $exponent"
echo "Modulo = `expr $num1 % $num2`"
let "num1 += $num2"
echo "New num1 = $num1"
let "num1 -= $num1"
echo "New num2 = $num2"

 The result after running this script will look as follows:

 Numbers are num1 = 10 and num2 = 5
Addition = 15
Subtraction = 5
Multiplication = 50
Division = 2
Exponentiation = 100000
Modulo = 0
New num1 = 15
New num2 = 5

 Logical operators

 Logical operators are also known as Boolean operators. They are:

 ! (NOT), && (AND), and || (OR)

 Performing a logical operation returns a Boolean value as true (1) or false (0) depending upon the values of variable(s) on which the operation is done.

 One of the useful use-case is: suppose that we want to execute a command if the first command or operation returns successfully. In this case, we can use the && operator. Similarly, if we want to execute another command, irrespective of the first command that got executed or not, then we can use the || operator between two commands. We can use the ! operator to negate the true value. For example:

$ cd ~/Documents/ && ls

 The cd command is used to change the current path to the specified argument. Here, the cd ~/Documents/ command will change the directory to Documents if exists. If it fails, then ls won't get executed, but if cd to Documents succeeds, the ls command will display the content of Documents directory:

$ cat ~/file.txt || echo "Current Working directory $PWD"
cat: /home/skumari/file.txt: No such file or directory
Current Working directory /tmp/

 The cat command displays the content of file.txt if it exists. Irrespective of the cat ~/file.txt command execution, later the command that is echo "Current Working directory $PWD" will be executed:

$! cd /tmp/foo && mkdir /tmp/foo
bash: cd: /tmp/foo: No such file or directory

 By running the preceding commands, first it will try to change the directory to /tmp/foo. Here, ! cd /tmp/foo means if change directory to /tmp/foo doesn't succeed, then run the second command, which is mkdir /tmp/foo. The mkdir command is used to create a new directory. As a result of proceeding command execution, directory /tmp/foo will be created if it doesn't exist.

$ cd /tmp/foo

 Since the /tmp/foo directory has been created, a successful change of the directory will occur.

 Comparison operators

 Comparison operators compare two variables and check whether a condition is satisfied or not. They are different for integers and strings.

 Comparison operators that are valid for integer variables (consider a and b as two integer variables; for example, a=20, b=35) are as follows:

 	-eq (is equal to) - [$a -eq $b]

 	-ne (is not equal to) - [$a -ne $b]

 	-gt (is greater than) - [$a -gt $b]

 	-ge or >= (is greater than or equal to) - [$a -ge $b]

 	-lt (is less than) - [$a -lt $b]

 	-le (is less than or equal to) - [$a -le $b]

 	< (is less than) - (($a < $b))

 	<= (is less than or equal to) - (($a <= $b))

 	> (is greater than) - (($a > $b))

 	>= (is greater than or equal to) - (($a >= $b))

 Comparison operators that are valid for string variables (consider a and b as two string variables; for example, a="Hello" b="World") are as follows:

 	= (is equal to); for example, [$a = $b]

 	!= (is not equal to); for example, [$a != $b]

 	< (is less than); for example, [$a \< $b] or [[$a \< $b]] or (($a \< $b))

 	> (is greater than); for example,[$a \> $b] or [[$a > $b]] or (($a \> $b))

 	-n (string is non-empty); for example,[-n $a]

 	-z (string has zero length or null); for example,[-z $a]

 Shell uses the < and > operators for redirection, so it should be used with an escape (\) if used under […]. Double parentheses, ((...)) or [[…]], doesn't need an escape sequence. Using [[…]] also supports pattern matching.

 We will see the usage and examples of operators in more detail in Chapter 3, Effective Script Writing.

 Shell expansions

 While working with shell, we perform a lot of similar and repetitive tasks. For example, in the current directory, there are 100 files but we are interested only in shell script whose file extension is .sh. We can execute following command to view only shell script files in current directory:

$ ls *.sh

 This will show all the files ending with .sh. An interesting take away from here is the * wildcard. It means a match list of files whose name can be anything and that ends with .sh.

 Shell expands all wildcard patterns. A list of the latest wildcard patterns are as follows:

 	~ (Tilde)

 	* (Asterisk)

 	? (Question mark)

 	[] (Square brackets)

 	{ } (Curly brackets)

 To explain shell expansion for different wildcards, we will create a test folder in our home directory using the mkdir command containing different files mentioned as follows:

$ mkdir ~/test && cd ~/test
$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh hello.sh moo.sh

 The touch command creates an empty file if it doesn't exist. If a file exists, then the file timestamp changes:

$ ls
a ab bar bar.c bar.sh foo foo.c foo.txt hello hello.sh hello.txt moo moo.c moo.sh

 Running the preceding commands will create a test directory, and inside test directory creates files given as parameter to the touch command.

 ~ (Tilde)

 ~ (Tilde) gets expanded by bash when it is present at the beginning of an unquoted string. The expansion depends upon what tilde-prefix is used. Tilde prefixes are characters until the first unquoted (/) slash. Some of the bash expansions are as follows:

 	~: This is the user's home directory; the value is set in the $HOME variable

 	~user_name: This is the home directory of the user's user_name

 	~user_name/file_name: This is the file/directory file_name in the user's user_name home directory

 	~/file_name: This is the file/directory file_name in the home directory that is $HOME/file_name

 	~+: This is the current working directory; the value is set in the $PWD variable

 	~-: This is the old or last working directory; the value is set in the $OLDPWD variable

 	~+/file_name: This is the file/directory file_name in the current directory that is $PWD/file_name

 	~-/file_name: This is the file/directory file_name in the old/last working directory that is $OLDPWD/file_name

 * (Asterisk)

 It matches zero or more characters. Take a test directory as an example:

 	Display all files as follows:

$ ls *
a ab bar bar.c bar.sh foo foo.c foo.txt hello hello.sh hello.txt moo moo.c moo.sh

 	Display the C source files as follows:

$ ls *.c
bar.c foo.c moo.c

 	Display files that have a in its name, as follows:

$ ls *a*
a ab bar bar.c bar.sh

 	Deleting files with an extension .txt as follows:

$ rm *.txt
$ ls
a ab bar bar.c bar.sh foo foo.c hello hello.sh moo moo.c moo.sh

 ? (Question mark)

 It matches any single character: ? (single question mark will match a single character), ?? (double question mark matches any two characters), and so on. Take a test directory as an example:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh hello.sh moo.sh

 This will recreate files that were removed during the previous example, and also update the access and modification time of the existing files:

 	Get files whose name length is irrespective of what the extension file has:

$ ls ??
ab

 	Get files whose name length is 2 or 5:

$ ls ?? ?????
ab bar.c foo.c hello moo.c

 	Delete files whose name is four characters long:

$ rm ????
rm: cannot remove '????': No such file or directory
This error is because there is no file name with 4 character

 	Move files to the /tmp directory whose name is at least three characters long:

$ mv ???* /tmp
$ ls
a ab

 We see only two files in the test directory because the rest of the files were of the length 3 or more.

 [] (Square brackets)

 Square brackets match any character from the characters mentioned inside the square brackets. Characters can be specified as a word or range.

 A range of characters can be specified using - (hyphen). For example:

 	[a-c]: This matches a, b, or c

 	[a-z]: This matches any character from a to z

 	[A-Z]: This matches any character from A to Z

 	[0-9]: This matches any character from 0 to 9

 Take a test directory as an example and recreate files in a test directory:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh hello.sh moo.sh

 Get files whose name starts with a, b, c, or d with the following command:

$ ls [a-d]*
a ab bar bar.c bar.sh

 Get files whose name starts with any letter and ends with a letter o or h, with the following command:

$ ls [a-zA-Z]*[oh]
foo hello hello.sh moo moo.sh

 Get files that have at least the letter o twice in its name, with the following command:

$ ls *[o]*[o]*
foo foo.c foo.txt moo moo.c moo.sh

 [!characters] (Exclamation mark) is used to match a character that is not part of a charter set mentioned inside square brackets.

 Get files that don't have a number in its name, with the following command:

$ ls [!0-9]*
a ab bar bar.c bar.sh foo foo.c foo.txt hello hello.sh hello.txt moo moo.c moo.sh

 { } (Curly brackets)

 It creates multiple wildcard patterns to match. A brace expression may contain either a comma-separated list of strings, a range, or a single character.

 A range can be specified by using the following:

 	{a..z}: This matches all the charterer from a to z

 	{0..6}: This matches numbers 0, 1, 2, 3, 4, 5 and 6

 Take a test directory as an example and recreate files in the test directory:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh hello.sh moo.sh

 Get files that have the file extension .sh or .c, with the following command:

$ ls {*.sh,*.c}
bar.c bar.sh foo.c hello.sh moo.c moo.sh

 Copy bar.c to bar.html by using the following command:

$ cp bar{.c,.cpp} # Expands to cp bar.c bar.cpp
$ ls bar.*
bar.c bar.cpp bar.sh

 Print the number from 1 to 50 by using the following command:

$ echo {1..50}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

 Create 10 files that start with hello and has an extension .cpp:

$ touch hello{0..9}.cpp
$ ls *.cpp
hello0.cpp hello1.cpp hello2.cpp hello3.cpp hello4.cpp hello5.cpp hello6.cpp hello7.cpp hello8.cpp hello9.cpp

 To avoid shell expansion of a wildcard, use backslash (\) or write a string within a single quote (' ').

 Construct commands using eval

 The eval command is a shell builtin command used to construct a command by concatenating arguments passed to eval. A concatenated command is further executed by shell and returns a result. If no arguments are given to eval, it returns 0.

 The syntax of the eval command is as follows:

eval [arg …]

 The following example shows the expansion of a variable to the name of another variable using eval:

 $ name=foo
$ foo="Welcome to foo world"
$ echo $name
foo
$ new_name='$'$name #new_name just stores string value $foo
$ echo $new_name
$foo
$ eval new_name='$'$name # eval processes $foo string into variable and prints # foo variable value
Welcome to foo world

 Another example where eval can be useful is as follows:

 $ pipe="|"
$ df $pipe wc # Will give error because
df: '|': No such file or directory
df: 'wc': No such file or directory
$ eval df $pipe wc # eval executes it as shell command
12 73 705

 Here, the df command shows a system disk's usage:

 A shell script showing the use of eval is as follows:
#!/bin/bash
#Filename: eval.sh
#Description: Evaluating string as a command using eval

cmd="ls /usr"
echo "Output of command $cmd -"
eval $cmd #eval will treat content of cmd as shell command and execute it
cmd1="ls /usr | wc -l"
echo "Line count of /usr -"
eval $cmd1

expression="expr 2 + 4 * 6"
echo "Value of $expression"
eval $expression

 Running the script will give you the following result:

 Output of command ls /usr -
avr bin games include lib lib64 libexec local sbin share src tmp
Line count of /usr -
12
Value of expr 2 + 4 * 6
26

 Make bash behave using set

 The set command is a shell builtin command that is used to set and unset a value of the local variables in shell.

 The syntax of using set is as follows:

 set [--abBCefhHkmnpPtuvx] [-o option] [arg …]

 Some of the option values are allexport, braceexpand, history, keyword, verbose, and xtrace.

 Using set without any option displays the name and value of all shell variables and functions, in a format that can be reused as an input for setting and unsetting the currently set variables.

 Exit on the first failure

 In a shell script, by default, the next line is executed if an error occurs in the current line. Sometimes, we may want to stop running a script further after an error has been encountered. The -e option of set ensures to exit a script once any of the commands in a pipeline fails.

 In the following shell script, do_not_exit_on_failure.sh doesn't use set with the option -e:

$ cat do_not_exit_on_failure.sh

 #!/bin/bash
Filename: do_not_exit_on_failure.sh
Description: Resume script after an error

echo "Before error"
cd /root/ # Will give error
echo "After error"

 After running this script, the output is as follows:

 Before error
do_not_exit_on_failure.sh: line 6: cd: /root/: Permission denied
After error

 We see that the command after the error gets executed as well. In order to stop the execution after an error is encountered, use set -e in the script. The following script demonstrates the same:

$ cat exit_on_failure.sh

 #!/bin/bash
Filename: exit_on_failure.sh
Description: Exits script after an error

set -e
echo "Before error"
cd /root/ # Will give error
echo "After error"

 The output after running the preceding script is as follows:

 Before error
exit_on_failure.sh: line 7: cd: /root/: Permission denied

 We can see that the script has been terminated after encountering an error at the line number 7.

 Enabling/disabling symbolic link's resolution path

 Using set with the -P option doesn't resolve symbolic links. Following example demonstrate how we can enable or disable symbolic link resolution of /bin directory which is symbolic link of /usr/bin/ directory:

$ ls -l /bin
lrwxrwxrwx. 1 root root 7 Nov 18 18:03 /bin -> usr/bin
$ set –P # -P enable symbolic link resolution
$ cd /bin
$ pwd
/usr/bin
$ set +P # Disable symbolic link resolution
$ pwd
/bin

 Setting/unsetting variables

 We can use the set command to see all local variables accessible for the current process. The local variables are not accessible in the subprocess.

 We can create our own variable and set it locally as follows:

$ MYVAR="Linux Shell Scripting"
$ echo $MYVAR
 Linux Shell Scripting
$ set | grep MYVAR # MYVAR local variable is created
MYVAR='Linux Shell Scripting'
$ bash # Creating a new bash sub-process in current bash
$ set | grep MYVAR
$ # Blank because MYVAR is local variable

 To make a variable accessible to its subprocesses as well, use the export command followed by the variable to be exported:

$ MYVARIABLE="Hello World"
$ export MYVARIABLE
$ bash # Creating a new bash sub-process under bash
$ echo $MYVARIABLE
Hello World

 This will export the MYVARIABLE variable to any subprocess that ran from that process. To check whether MYVARIABLE has exported or not, run the following command:

$ export |grep MYVARIABLE
declare -x MYVARIABLE="Hello World"
$ export | grep MYVAR
$MYVAR variable is not present in sub-process but variable MYVARIABLE is present in sub-process.

 To unset local or exported variables, use the unset command and it will reset the value of the variable to null:

$ unset MYVAR # Unsets local variable MYVAR
$ unset MYVARIABLE # Unsets exported variable MYVARIABLE

 Summary

 After reading this chapter, you understood how to write simple shell script in bash by printing, echoing, and asking user input. You should now have a good understanding of defining and using variables in shell and what builtin shell variables exist. You are now familiar with what operators are available in shell and how they can create and evaluate their own expression. With information about wildcards available in this chapter, it makes work easier for you while you are dealing with similar kind of data or pattern. The shell builtin command set enables modifying shell variables easily.

 This chapter has built a foundation for upcoming chapters. Now, in next chapter, you will get to know about standard inputs, outputs, and errors. Also, there will be a detailed coverage of how to use an output from commands and then filter/transform them to show the data according to your need.

 Chapter2.Getting Hands-on with I/O, Redirection Pipes, and Filters

 In day-to-day work, we come across different kinds of files such as text files, source code files from different programming languages (for example, file.sh, file.c, and file.cpp), and so on. While working, we often perform various operations on files or directories such as searching for a given string or pattern, replacing strings, printing few lines of a file, and so on. Performing these operations is not easy if we have to do it manually. Manual searching for a string or pattern in a directory having thousands of files can take months, and has high chances of making errors.

 Shell provides many powerful commands to make our work easier, faster, and error-free. Shell commands have the ability to manipulate and filter text from different streams such as standard input, file, and so on. Some of these commands are grep, sed, head, tr, sort, and so on. Shell also comes with a feature of redirecting output from one command to another with the pipe ('|'). Using pipe helps to avoids creation of unnecessary temporary files.

 One of the best qualities of these commands is that they come along with the man pages. We can directly go to the man page and see what all features they provide by running the man command. Most of the commands have options such as --help to find the help usage and --version to know the version number of the command.

 This chapter will cover the following topics in detail:

 	Standard I/O and error streams

 	Redirecting the standard I/O and error streams

 	Pipe and pipelines—connecting commands

 	Regular expressions

 	Filtering output using grep

 	Editing output using sed

 	Duplicating a stream using tee

 	Sorting and finding unique text

 	Character-based translation using tr

 	Filtering based on lines—head and tail

 	Cut-based selection

 Standard I/O and error streams

 In shell programming, there are different ways to provide an input (for example, via a keyboard and terminal) and display an output (for example, terminal and file) and error (for example, terminal), if any, during the execution of a command or program.

 The following examples show the input, output, and error while running the commands:

 	The input from a user by a keyboard and the input obtained by a program via a standard input stream, that is terminal, is taken as follows:

 $ read -p "Enter your name:"
Enter your name:Foo

 	The output printed on the standard output stream, that is terminal, is as follows:

 $ echo "Linux Shell Scripting"
Linux Shell Scripting

 	The error message printed on the standard error stream, that is terminal, is as follows:

 $ cat hello.txt
cat: hello.txt: No such file or directory

 When a program executes, by default, three files get opened with it which are stdin, stdout, and stderr. The following table provides a short description of each of these:

 	
 File descriptor number

 	
 File name

 	
 Description

 	
 0

 	
 stdin

 	
 This is standard input being read from the terminal

 	
 1

 	
 stdout

 	
 This is standard output to the terminal

 	
 2

 	
 stderr

 	
 This is standard error to the terminal

 File descriptors

 File descriptors are integer numbers representing opened files in an operating system. The unique file descriptor numbers are provided to each opened files. File descriptors' numbers go up from 0.

 Whenever a new process in Linux is created, then standard input, output, and error files are provided to it along with other needed opened files to process.

 To know what all open file descriptors are associated with a process, we will consider the following example:

 Run an application and get its process ID first. Consider running bash as an example to get PID of bash:

 $ pidof bash
2508 2480 2464 2431 1281

 We see that multiple bash processes are running. Take one of the bash PID example, 2508, and run the following command:

$ ls -l /proc/2508/fd

 total 0
lrwx------. 1 sinny sinny 64 May 20 00:03 0 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 20 00:03 1 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 19 23:22 2 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 20 00:03 255 -> /dev/pts/5

 We see that 0, 1, and 2 opened file descriptors are associated with process bash. Currently, all of them are pointing to /dev/pts/5. pts, which is pseudo terminal slave.

 So, whatever we will do in this bash, input, output, and error related to this PID, output will be written to the /dev/pts/5 file. However, the pts files are pseudo files and contents are in memory, so you won't see anything when you open the file.

 Redirecting the standard I/O and error streams

 We have an option to redirect standard input, output, and errors, for example, to a file, another command, intended stream, and so on. Redirection is useful in different ways. For example, I have a bash script whose output and errors are displayed on a standard output—that is, terminal. We can avoid mixing an error and output by redirecting one of them or both to a file. Different operators are used for redirection. The following table shows some of operators used for redirection, along with its description:

 	
 Operator

 	
 Description

 	
 >

 	
 This redirects a standard output to a file

 	
 >>

 	
 This appends a standard output to a file

 	
 <

 	
 This redirects a standard input from a file

 	
 >&

 	
 This redirects a standard output and error to a file

 	
 >>&

 	
 This appends a standard output and error to a file

 	
 |

 	
 This redirects an output to another command

 Redirecting standard output

 An output of a program or command can be redirected to a file. Saving an output to a file can be useful when we have to look into the output in the future. A large number of output files for a program that runs with different inputs can be used in studying program output behavior.

 For example, showing redirecting echo output to output.txt is as follows:

$ echo "I am redirecting output to a file" > output.txt
$

 We can see that no output is displayed on the terminal. This is because output was redirected to output.txt. The operator '>' (greater than) tells the shell to redirect the output to whatever filename mentioned after the operator. In our case, it's output.txt:

$ cat output.txt
I am redirecting output to a file

 Now, let's add some more output to the output.txt file:

$ echo "I am adding another line to file" > output.txt
$ cat output.txt
I am adding another line to file

 We noticed that the previous content of the output.txt file got erased and it only has the latest redirected content. To retain the previous content and append the latest redirected output to a file, use the operator '>>':

$ echo "Adding one more line" >> output.txt
$ cat output.txt
I am adding another line to file
Adding one more line

 We can also redirect an output of a program/command to another command in bash using the operator '|' (pipe):

 $ ls /usr/lib64/ | grep libc.so
libc.so
libc.so.6

 In this example, we gave the output of ls to the grep command using the '|' (pipe) operator, and grep gave the matching search result of the libc.so library:

 Redirecting standard input

 Instead of getting an input from a standard input to a command, it can be redirected from a file using the < (less than) operator. For example, we want to count the number of words in the output.txt file created from the Redirecting standard output section:

$ cat output.txt
I am adding another line to file
Adding one more line
$ wc -w < output.txt
11

 We can sort the content of output.txt:

$ sort < output.txt # Sorting output.txt on stdout
Adding one more line
I am adding another line to file

 We can also give a patch file as an input to the patch command in order to apply a patch.diff in a source code. The command patch is used to apply additional changes made in a file. Additional changes are provided as a diff file. A diff file contains the changes between the original and the modified file by running the diff command. For example, I have a patch file to apply on output.txt:

$ cat patch.diff # Content of patch.diff file

 2a3
> Testing patch command
$ patch output.txt < patch.diff # Applying patch.diff to output.txt
$ cat output.txt # Checking output.txt content after applying patch
I am adding another line to file
Adding one more line
Testing patch command

 Redirecting standard errors

 There is a possibility of getting an error while executing a command/program in bash because of different reasons such as invalid input, insufficient arguments, file not found, bug in program, and so on:

$ cd /root # Doing cd to root directory from a normal user
bash: cd: /root/: Permission denied
Bash prints the error on a terminal saying, permission denied.

 In general, errors are printed on a terminal so that it's easy for us to know the reason for an error. Printing both the errors and output on the terminal can be annoying because we have to manually look into each line and check whether the program encountered any error:

$ cd / ; ls; cat hello.txt; cd /bin/; ls *.{py,sh}

 We ran a series of commands in the preceding section. First cd to /, ls content of /, cat file hello.txt, cd to /bin and see files matching *.py and *.sh in /bin/. The output will be as follows:

 bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv sys tmp usr var
cat: hello.txt: No such file or directory
alsa-info.sh kmail_clamav.sh sb_bnfilter.py sb_mailsort.py setup-nsssysinit.sh amuFormat.sh kmail_fprot.sh sb_bnserver.py sb_mboxtrain.py struct2osd.sh core_server.py kmail_sav.sh sb_chkopts.py sb_notesfilter.py

 We see that hello.txt doesn't exist in the / directory and because of this there is an error printed on the terminal as well, along with other output. We can redirect the error as follows:

$ (cd / ; ls; cat hello.txt; cd /bin/; ls *.{py,sh}) 2> error.txt

 bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv sys tmp usr var
alsa-info.sh kmail_clamav.sh sb_bnfilter.py sb_mailsort.py setup-nsssysinit.sh amuFormat.sh kmail_fprot.sh sb_bnserver.py sb_mboxtrain.py struct2osd.sh core_server.py kmail_sav.sh sb_chkopts.py sb_notesfilter.py

 We can see that the error has been redirected to the error.txt file. To verify, check the error.txt content:

$ cat error.txt
cat: hello.txt: No such file or directory

 Multiple redirection

 We can redirect stdin, stdout, and stderr together in a command or script or a combination of some of them.

 The following command redirects both stdout and stder:

$ (ls /home/ ;cat hello.txt;) > log.txt 2>&1

 Here, stdout is redirected to log.txt and error messages are redirected to log.txt as well. In 2>&1, 2> means redirect an error and &1 means redirect to stdout. In our case, we have already redirected stdout to the log.txt file. So, now both the stdout and stderr outputs will be written into log.txt and nothing will be printed on the terminal. To verify, we will check the content of log.txt:

$ cat log.txt
lost+found
sinny
cat: hello.txt: No such file or directory

 The following example shows the stdin, stdout, and stderr redirection:

$ cat < ~/.bashrc > out.txt 2> err.txt

 Here, the .bashrc file present in the home directory acts as an input to the cat command and its output is redirected to the out.txt file. Any error encountered in between is redirected to the err.txt file.

 The following bash script will explain stdin, stdout, stderr, and their redirection with even more clarity:

 #!/bin/bash
Filename: redirection.sh
Description: Illustrating standard input, output, error
and redirecting them

ps -A -o pid -o command > p_snapshot1.txt
echo -n "Running process count at snapshot1: "
wc -l < p_snapshot1.txt
echo -n "Create a new process with pid = "
tail -f /dev/null & echo $! # Creating a new process
echo -n "Running process count at snapshot2: "
ps -A -o pid -o command > p_snapshot2.txt
wc -l < p_snapshot2.txt
echo
echo "Diff bewteen two snapshot:"
diff p_snapshot1.txt p_snapshot2.txt

 This script saves two snapshots of all running processes in the system and generates diff. The output after running the process will look somewhat as follows:

$ sh redirection.sh

 Running process count at snapshot1: 246
Create a new process with pid = 23874
Running process count at snapshot2: 247

Diff bewteen two snapshot:
246c246,247
< 23872 ps -A -o pid -o command

> 23874 tail -f /dev/null
> 23875 ps -A -o pid -o command

 Pipe and pipelines – connecting commands

 The outputs of the programs are generally saved in files for further use. Sometimes, temporary files are created in order to use an output of a program as an input to another program. We can avoid creating temporary files and feed the output of a program as an input to another program using bash pipe and pipelines.

 Pipe

 The pipe denoted by the operator | connects the standard output of a process in the left to the standard input in the right process by inter process communication mechanism. In other words, the | (pipe) connects commands by providing the output of a command as the input to another command.

 Consider the following example:

$ cat /proc/cpuinfo | less

 Here, the cat command, instead of displaying the content of the /proc/cpuinfo file on stdout, passes its output as an input to the less command. The less command takes the input from cat and displays on the stdout per page.

 Another example using pipe is as follows:

$ ps -aux | wc -l # Showing number of currently running processes in system
254

 Pipeline

 Pipeline is a sequence of programs/commands separated by the operator ' | ' where the output of execution of each command is given as an input to the next command. Each command in a pipeline is executed in a new subshell. The syntax will be as follows:

 command1 | command2 | command3 …

 Examples showing pipeline are as follows:

$ ls /usr/lib64/*.so | grep libc | wc -l
13

 Here, we are first getting a list of files from the /usr/lib64 directory that has the .so extension. The output obtained is passed as an input to the next grep command to look for the libc string. The output is further given to the wc command to count the number of lines.

 Regular expressions

 Regular expression (also known as regex or regexp) provides a way of specifying a pattern to be matched in a given big chunk of text data. It supports a set of characters to specify the pattern. It is widely used for a text search and string manipulation. A lot of shell commands provide an option to specify regex such as grep, sed, find, and so on.

 The regular expression concept is also used in other programming languages such as C++, Python, Java, Perl, and so on. Libraries are available in different languages to support regular expression's features.

 Regular expression metacharacters

 The metacharacters used in regular expressions are explained in the following table:

 	
 Metacharacters

 	
 Description

 	
 * (Asterisk)

 	
 This matches zero or more occurrences of the previous character

 	
 + (Plus)

 	
 This matches one or more occurrences of the previous character

 	
 ?

 	
 This matches zero or one occurrence of the previous element

 	
 . (Dot)

 	
 This matches any one character

 	
 ^

 	
 This matches the start of the line

 	
 $

 	
 This matches the end of line

 	
 [...]

 	
 This matches any one character within a square bracket

 	
 [^...]

 	
 This matches any one character that is not within a square bracket

 	
 | (Bar)

 	
 This matches either the left side or the right side element of |

 	
 \{X\}

 	
 This matches exactly X occurrences of the previous element

 	
 \{X,\}

 	
 This matches X or more occurrences of the previous element

 	
 \{X,Y\}

 	
 This matches X to Y occurrences of the previous element

 	
 \(...\)

 	
 This groups all the elements

 	
 \<

 	
 This matches the empty string at the beginning of a word

 	
 \>

 	
 This matches the empty string at the end of a word

 	
 \

 	
 This disables the special meaning of the next character

 Character ranges and classes

 When we look into a human readable file or data, its major content contains alphabets (a to z) and numbers (0 to 9). While writing regex for matching a pattern consisting of alphabets or numbers, we can make use character ranges or classes.

 Character ranges

 We can use character ranges in a regular expression as well. We can specify a range by a pair of characters separated by a hyphen. Any characters that fall in between that range, inclusive, are matched. Character ranges are enclosed inside square brackets.

 The following table shows some of character ranges:

 	
 Character range

 	
 Description

 	
 [a-z]

 	
 This matches any single lowercase letter from a to z

 	
 [A-Z]

 	
 This matches any single uppercase letter from A to Z

 	
 [0-9]

 	
 This matches any single digit from 0 to 9

 	
 [a-zA-Z0-9]

 	
 This matches any single alphabetic or numeric characters

 	
 [h-k]

 	
 This matches any single letter from h to k

 	
 [2-46-8j-lB-M]

 	
 This matches any single digit from 2 to 4 or 6 to 8 or any letter from j to l or B to M

 Character classes: Another way of specifying a range of character matches is by using Character classes. It is specified within the square brackets [:class:]. The possible class value is mentioned in the following table:

 	
 Character Class

 	
 Description

 	
 [:alnum:]

 	
 This matches any single alphabetic or numeric character; for example, [a-zA-Z0-9]

 	
 [:alpha:]

 	
 This matches any single alphabetic character; for example, [a-zA-Z]

 	
 [:digit:]

 	
 This matches any single digit; for example, [0-9]

 	
 [:lower:]

 	
 This matches any single lowercase alphabet; for example, [a-z]

 	
 [:upper:]

 	
 This matches any single uppercase alphabet; for example, [A-Z]

 	
 [:blank:]

 	
 This matches a space or tab

 	
 [:graph:]

 	
 This matches a character in the range of ASCII—for example 33-126—excluding a space character

 	
 [:print:]

 	
 This matches a character in the range of ASCII—for example. 32-126—including a space character

 	
 [:punct:]

 	
 This matches any punctuation marks such as '?', '!', '.', ',', and so on

 	
 [:xdigit:]

 	
 This matches any hexadecimal characters; for example, [a-fA-F0-9]

 	
 [:cntrl:]

 	
 This matches any control characters

 Creating your own regex: In the previous sections of regular expression, we discussed about metacharacters, character ranges, character class, and their usage. Using these concepts, we can create powerful regex that can be used to filter out text data as per our need. Now, we will create a few regex using the concepts we have learned.

 Matching dates in mm-dd-yyyy format

 We will consider our valid date starting from UNIX Epoch—that is, 1st January 1970. In this example, we will consider all the dates between UNIX Epoch and 30th December 2099 as valid dates. An explanation of forming its regex is given in the following subsections:

 Matching a valid month

 	0[1-9] matches 01st to 09th month

 	1[0-2] matches 10th, 11th, and 12th month

 	'|' matches either left or right expression

 Putting it all together, the regex for matching a valid month of date will be 0[1-9]|1[0-2].

 Matching a valid day

 	0[1-9] matches 01st to 09th day

 	[12][0-9] matches 10th to 29th day

 	3[0-1] matches 30th to 31st day

 	'|' matches either left or right expression

 	0[1-9]|[12][0-9]|3[0-1] matches all the valid days in a date

 Matching the valid year in a date

 	19[7-9][[0-9] matches years from 1970 to 1999

 	20[0-9]{2} matches years from 2000 to 2099

 	'|' matches either left or right expression

 	19[7-9][0-9]|20[0-9]{2} matches all the valid years between 1970 to 2099

 Combining valid months, days, and years regex to form valid dates

 Our date will be in mm-dd-yyyy format. By putting together regex formed in the preceding sections for months, days, and years, we will get regex for the valid date:

 (0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[0-1])-(19[7-9][0-9]|20[0-9]{2})

 There is a nice website, http://regexr.com/, where you can also validate regular expression. The following screenshot shows the matching of the valid date among the given input:

 [image: Combining valid months, days, and years regex to form valid dates]

 Regex for a valid shell variable

 In Chapter 1, Beginning of Scripting Journey, we learned nomenclature of variables in shell. A valid variable name can contain a character from alphanumeric and underscore, and the first letter of the variable can't be a digit.

 Keeping these rules in mind, a valid shell variable regex can be written as follows:

 ^[_a-zA-Z][_a-zA-Z0-9]*$

 Here, ^ (caret) matches the start of a line.

 The regex [_a-zA-Z] matches _ or any upper or lower case alphabet [_a-zA-Z0-9]* matches zero or multiple occurrences of _,any digit or upper and lower case alphabet $ (Dollar) matches the end of the line.

 In character class format, we can write regex as ^[_[:alpha:]][_[:alnum:]]*$.

 The following screenshot shows valid shell variables using regex formed:

 [image: Regex for a valid shell variable]

 Note

 	Enclose regular expression in single quotes (') to avoid pre-shell expansion.

 	Use back slash (\) before a character to escape the special meaning of metacharacters.

 	Metacharacters such as ?, +, {, |, (, and) are known to be extended regex. They lose their special meaning when used in basic regex. To avoid this, use them with backslash '\?', '\+', '\{', '\|', '\(', and '\)'.

 Filtering an output using grep

 One of the powerful and widely used command in shell is grep. It searches in an input file and matches lines in which the given pattern is found. By default, all the matched patterns are printed on stdout that is usually terminal. We can also redirect the matched output to other streams such as file. Instead of giving an input from a file, grep can also take the input from the redirected output of the command executed on the left-hand side of '|'.

 Syntax

 The syntax of using the grep command is as follows:

 grep [OPTIONS] PATTERN [FILE...]

 Here, FILE can be multiple files for a search. If no file is given as an input for a search, it will search the standard input.

 PATTERN can be any valid regular expression. Put PATTERN within single quotes (') or double quotes (") as per need. For example, use single quotes (') to avoid any bash expansion and double quotes (") for expansion.

 A lot of OPTIONS are available in grep. Some of the important and widely used options are discussed in the following table:

 	
 Option

 	
 Usage

 	
 -i

 	
 This enforces case insensitive match in both pattern and input file(s)

 	
 -v

 	
 This displays the non-matching line

 	
 -o

 	
 This displays only the matched part in the matching line

 	
 -f FILE

 	
 This obtains a pattern from a file, one per line

 	
 -e PATTERN

 	
 This specifies multiple search pattern

 	
 -E

 	
 This considers pattern as an extended regex (egrp)

 	
 -r

 	
 This reads all the files in a directory recursively, excluding resolving of symbolic links unless explicitly specified as an input file

 	
 -R

 	
 This reads all the files in a directory recursively and resolving symbolic if any

 	
 -a

 	
 This processes binary file as a text file

 	
 -n

 	
 This prefixes each matched line along with a line number

 	
 -q

 	
 Don't print anything on stdout

 	
 -s

 	
 Don't print error messages

 	
 -c

 	
 This prints the count of matching lines of each input file

 	
 -A NUM

 	
 This prints NUM lines after the actual string match. (No effect with the -o option)

 	
 -B NUM

 	
 This prints NUM lines before the actual string match. (No effect with the -o option)

 	
 -C NUM

 	
 This prints NUM lines after and before the actual string match. (No effect with the -o option)

 Looking for a pattern in a file

 A lot of times we have to search for a given string or a pattern in a file. The grep command provides us the capability to do it in a single line. Let's see the following example:

 The input file for our example will be input1.txt:

$ cat input1.txt # Input file for our example

 This file is a text file to show demonstration
of grep command. grep is a very important and
powerful command in shell.
This file has been used in chapter 2

 We will try to get the following information from the input1.txt file using the grep command:

 	Number of lines

 	Line starting with a capital letter

 	Line ending with a period (.)

 	Number of sentences

 	Searching sub-string sent lines that don't have a periodNumber of times the string file is used

 The following shell script demonstrates how to do the above mentioned tasks:

 #!/bin/bash
#Filename: pattern_search.sh
#Description: Searching for a pattern using input1.txt file

echo "Number of lines = `grep -c '.*' input1.txt`"
echo "Line starting with capital letter:"
grep -c ^[A-Z].* input1.txt
echo
echo "Line ending with full stop (.):"
grep '.*\.$' input1.txt
echo
echo -n "Number of sentence = "
grep -c '\.' input1.txt
echo "Strings matching sub-string sent:"
grep -o "sent" input1.txt
echo
echo "Lines not having full stop are:"
grep -v '\.' input1.txt
echo
echo -n "Number of times string file used: = "
grep -o "file" input1.txt | wc -w

 The output after running the pattern_search.sh shell script will be as follows:

 Number of lines = 4
Line starting with capital letter:
2

Line ending with full stop (.):
powerful command in shell.

Number of sentence = 2
Strings matching sub-string sent:

Lines not having full stop are:
This file is a text file to show demonstration
This file has been used in chapter 2

Number of times string file used: = 3

 Looking for a pattern in multiple files

 The grep command also allows us to search for a pattern in multiple files as an input. To explain this in detail, we will head directly to the following example:

 The input files, in our case, will be input1.txt and input2.txt.

 We will reuse the content of the input1.txt file from the previous example:

 The content of input2.txt is as follows:

$ cat input2.txt

 Another file for demonstrating grep CommaNd usage.
It allows us to do CASE Insensitive string test
as well.
We can also do recursive SEARCH in a directory
using -R and -r Options.
grep allows to give a regular expression to
search for a PATTERN.
Some special characters like . * () { } $ ^ ?
are used to form regexp.
Range of digit can be given to regexp e.g. [3-6],
[7-9], [0-9]

 We will try to get the following information from the input1.txt and input2.txt files using the grep command:

 	Search for the string command

 	Case-insensitive search of the string command

 	Print the line number where the string grep matches

 	Search for punctuation marks

 	Print one line followed by the matching lines while searching for the string important

 The following shell script demonstrates how to follow the preceding steps:

 #!/bin/bash
Filename: multiple_file_search.sh
Description: Demonstrating search in multiple input files

echo "This program searches in files input1.txt and input2.txt"
echo "Search result for string \"command\":"
grep "command" input1.txt input2.txt
echo
echo "Case insensitive search of string \"command\":"
input{1,2}.txt will be expanded by bash to input1.txt input2.txt
grep -i "command" input{1,2}.txt
echo
echo "Search for string \"grep\" and print matching line too:"
grep -n "grep" input{1,2}.txt
echo
echo "Punctuation marks in files:"
grep -n [[:punct:]] input{1,2}.txt
echo
echo "Next line content whose previous line has string \"important\":"
grep -A 1 'important' input1.txt input2.txt

 The following screenshot is the output after running the shell script pattern_search.sh. The matched pattern string has been highlighted:

 [image: Looking for a pattern in multiple files]

 A few more grep usages

 The following subsections will cover a few more usages of the grep command.

 Searching in a binary file

 So far, we have seen all the grep examples running on text files. We can also search for a pattern in binary files using grep. For this, we have to tell the grep command to treat a binary file as a text file too. The option -a or –text tells grep to consider a binary file as a test file.

 We know that the grep command itself is a binary file that executes and gives a search result.

 One of the option in grep is --text. The string --text should be somewhere available in the grep binary file. Let's search for it as follows:

$ grep --text '\-\-text' /usr/bin/grep
 -a, --text equivalent to –binary-files=text

 We saw that the string --text is found in the search path /usr/bin/grep. The character backslash ('\') is used to escape its special meaning.

 Now, let's search for the -w string in the wc binary. We know that the wc command has an option -w that counts the number of words in an input text.

$ grep -a '\-w' /usr/bin/wc
 -w, --words print the word counts

 Searching in a directory

 We can also tell grep to search into all files/directories in a directory recursively using the option -R. This avoids the hassle of specifying each file as an input text file to grep.

 For example, we are interested in knowing at how many places #include <stdio.h> is used in a standard include directory:

$ grep -R '\#include <stdio\.h>' /usr/include/ | wc -l
77

 This means that the #include <stdio.h> string is found at 77 places in the /usr/include directory.

 In another example, we want to know how many Python files (the extension .py) in /usr/lib64/python2.7/ does "import os". We can check that as follows:

$ grep -R "import os" /usr/lib64/python2.7/*.py | wc -l
93

 Excluding files/directories from a search

 We can also specify the grep command to exclude a particular directory or file from search. This is useful when we don't want grep to look into a file or directory that has some confidential information. This is also useful in the case where we are sure that searching into a certain directory will be of no use. So, excluding them will reduce search time.

 Suppose, there is a source code directory called s0, which uses the git version control. Now, we are interested in searching for a text or pattern in source files. In this case, searching in the .git subdirectory will be of no use. We can exclude .git from search as follows:

$ grep -R --exclude-dir=.git "search_string" s0

 Here, we are searching for the search_string string in the s0 directory and telling grep to not to search in the .git directory.

 Instead of excluding a directory, to exclude a file, use the --exclude-from=FILE option.

 Display a filename with a matching pattern

 In some use-case, we don't bother with where the search matched and at how many places the search matched in a file. Instead, we are interested in knowing only the filename where at least one search matched.

 For example, I want to save filenames that have a particular search pattern found in a file, or redirect to some other command for further processing. We can achieve this using the -l option:

$ grep -Rl "import os" /usr/lib64/python2.7/*.py > search_result.txt
$ wc -l search_result.txt

 79

 This example gets name of the file in which import os is written and saves result in file search_result.txt.

 Matching an exact word

 The exact matching of the word is also possible using word boundary that is \b on both the sides of the search pattern.

 Here, we will reuse the input1.txt file and its content:

$ grep -i --color "\ba\b" input1.txt

 The --color option allows colored printing of the matched search result.

 The "\ba\b" option tells grep to only look for the character a that is alone. In search results, it won't match the character a present as a sub-string in a string.

 The following screenshot shows the output:

 [image: Matching an exact word]

 Editing output using sed

 The sed command is a non-interactive stream editor that allows you to modify the content of the standard input or file. It performs an operation on each line in a pipeline. The syntax will be:

 sed [OPTIONS]... {script} [input-file …]

 By default, the output is displayed on stdout, but can be redirected to a file if specified.

 The input-file are the files on which sed needs to be run. If no files are specified, it reads from stdin.

 The script can be a command or a file with multiple commands to pass to sed, and OPTIONS to sed are described in the following table:

 	
 Option

 	
 Description

 	
 -n

 	
 This suppresses automatic printing of pattern space

 	
 -e script

 	
 This allows multiple scripts to be executed

 	
 -r

 	
 This uses the extended regex in the script

 	
 -l N

 	
 This specifies line wrap length

 	
 --posix

 	
 This disables all GNU extensions

 	
 -u

 	
 This loads the minimal amounts of data from input and flushes output buffers frequently

 String substitution using s

 The sed command is widely used for string substitution in a text file. Programmers frequently use this feature while renaming a variable in a huge source code. It saves a lot of programmers' time by avoiding manual renaming.

 The substitution command s has the following field:

 s/regex/replacement/

 Here, s means perform substitution, / acts as separator, and regex is a regular expression that needs to be replaced. A simple string can also be specified here. The last field replacement is with what matched results should be replaced.

 By default, sed will replace only the first occurrence of a matched pattern in a line. To replace all occurrences, use the g flag after the end of /—, that is, s/regex/replacement/g.

 Some of the flags that can be used are mentioned in the following table:

 	
 Flag

 	
 Description

 	
 g

 	
 This applies replacement to all the matches in a line

 	
 p

 	
 This prints a new pattern space, if substitution occurs

 	
 w filename

 	
 This writes substituted pattern space to a filename

 	
 N

 	
 This replaces only the Nth matched result in a matched line

 We have the sed.sh file for our example. The content of this file is as follows:

$ cat sed.sh

 #!/bin/bash

var1="sed "
var1+="command "
var1+="usage"

echo $var1

 This is a shell script, where the variable var1 has been used at four places. Now, we want to rename the variable var1 to variable. We can do this very easily using the sed command:

$ sed -i 's/var1/variable/g' sed.sh
$ cat sed.sh

 #!/bin/bash

variable="sed "
variable+="command "
variable+="usage"

echo $variable

 Here, the -i option is used to replace an input file.

 Multiple substitutions

 We can also specify multiple commands to be executed for substitution using -e followed by a command.

 For example, consider the sed.txt file. The content of this file is as follows:

 $ cat sed.txt
The sed command is widely used for string
substitution in text file. Programmers frequently
use this feature while renaming a variable in huge source code.
It saves lot of programmers time by avoiding manual renaming.

 Now, we want to replace '.' with ',' and delete the line containing a string manual:

$ sed -e 's/\./,/g' -e '/manual/d' sed.txt
The sed command is widely used for string
substitution in text file, Programmers frequently
use this feature while renaming a variable in huge source code,

 In sed.txt file, the s/\./,/g command first replaces '.' with ',' and /manual/d deletes further the line containing the string manual.

 Duplicating a stream using tee

 In some cases, it's necessary to print an output on stdout and save an output in a file. In general, command output can either be printed or can be saved in a file. To solve it, the tee command is used. This command reads from the standard input and writes to both standard output and files. The syntax of tee will be as follows:

 tee [OPTION] [FILE …]

 The tee command copies the output to each FILE and also to stdout. The OPTIONS can be as follows:

 	
 Option

 	
 Description

 	
 -a, --append

 	
 This appends to the FILE instead of overwriting

 	
 -i, --ignore-interrupts

 	
 This ignores interrupt signals, if any

 Writing an output to stdout and file: In general, to write an output to stdout and file, we will call the same command twice, with and without redirection. For example, the following command shows how to print an output on stdout and save it to a file:

$ ls /usr/bin/*.pl # Prints output on stdout
/usr/bin/rsyslog-recover-qi.pl /usr/bin/syncqt.pl
$ ls /usr/bin/*.pl> out.txt # Saves output in file out.txt

 We can do both the tasks by running the ls command once using the tee command as follows:

$ ls /usr/bin/*.pl| tee out.txt # Output gets printed to stdout and saved in out.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl
$ cat out.txt #Checking content of out.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl

 We can also specify multiple filenames to tee for an output to be written in each file. This copies the output to all files:

$ ls /usr/bin/*.pl| tee out1.txt out2.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl

 By running the above commands, the output will be also written to the out1.txt and out2.txt files:

$ cat out1.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl
$ cat out2.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl

 Writing an output to stdout and appending to a file

 The tee command also allows you to append the output to a file instead of overwriting a file. This can be done using the -a option with tee. Appending an output to a file is useful when we want to write an output of various commands or an error log of different command execution in a single file.

 For example, if we want to keep the output of running the ls and echo commands in the out3.txt file and also display results on stdout, we can do as follows:

$ echo "List of perl file in /usr/bin/ directory" | tee out3.txt
List of perl file in /usr/bin/ directory

$ ls /usr/bin/*.pl| tee -a out3.txt
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl

$ cat out3.txt # Content of file
List of perl file in /usr/bin/ directory
/usr/bin/rsyslog-recover-qi.pl
/usr/bin/syncqt.pl

 Sending an output to multiple commands

 We can also use the tee command to provide an output of a command as an input to multiple commands. This is done by sending the tee output to pipe:

$ df -h | tee out4.txt | grep tmpfs | wc -l
7

 Here, the output of the df -h command is saved to the out4.txt file, the stdout output is redirected to the grep command, and the output of the search result from grep is further redirected to the wc command. At the end, the result of wc is printed on stdout.

 Sorting and finding unique text

 Shell provides different ways to sort the input text using the sort command. It's also possible to remove repeated lines from sorted/unsorted input text using the uniq command. The input text to sort and uniq commands can be given from a file, or redirected from another command.

 Sorting an input text

 The lines in the input text are sorted in the following order:

 	Numbers from 0 to 9

 	Uppercase letters from A to Z

 	Lowercase letters from a to z

 The syntax will be as follows:

 sort [OPTION] [FILE …]

 Single or multiple input files can be provided to sort for sorting.

 The sort command takes multiple options to provide flexibility in sorting. The popular and important OPTION to sort have been discussed in the following table:

 	
 Option

 	
 Description

 	
 -b

 	
 This ignores leading blanks

 	
 -d

 	
 This considers only blanks and alphanumeric characters

 	
 -f

 	
 This ignores a case

 	
 -i

 	
 This ignores a non-printable character

 	
 -M

 	
 This compares months that are unknown (for example, < JAN < FEB… < DEC)

 	
 -n

 	
 This sorts on the basis of numerical values

 	
 -r

 	
 This sorts in reverse order

 	
 -h

 	
 This sorts on human-readable numbers; for example, 9K, 5M, 1G, and so on.

 	
 -u

 	
 This gets unique lines

 	
 -o file

 	
 This writes an output to a file instead of stdout

 	
 -m

 	
 This merges the already sorted file without resorting it

 	
 -k n

 	
 This sorts data according to the given column n

 Now, we will see with the help of examples, how different sorting can be done on the input text data.

 Sorting a single file

 In our example, we will consider the sort1.txt file for sorting. The content of this file is as follows:

$ cat sort1.txt
Japan
Singapore
Germany
Italy
France
Sri Lanka

 To sort the content alphabetically, we can use the sort command without any option:

$ sort sort1.txt
France
Germany
Italy
Japan
Singapore
Sri Lanka

 To sort the content in reverse order, we can use the –r option:

$ sort -r sort1.txt
Sri Lanka
Singapore
Japan
Italy
Germany
France

 Sorting multiple files: We can also sort multiple files collectively, and the sorted output can be used for further queries.

 For example, consider sort1.txt and sort2.txt files. We will reuse the content of the sort1.txt file from the previous example. The content of sort2.txt is as follows:

$ cat sort2.txt
India
USA
Canada
China
Australia

 We can sort both the files together alphabetically as follows:

$ sort sort1.txt sort2.txt
Australia
Canada
China
France
Germany
India
Italy
Japan
Singapore
Sri Lanka
USA

 We can also use the -o option to save the sorted output of files in a file instead of displaying it on stdout:

$ sort sort1.txt sort2.txt -o sorted.txt
$ cat sorted.txt
Australia
Canada
China
France
Germany
India
Italy
Japan
Singapore
Sri Lanka
USA

 Redirecting output to sort

 We can sort an output redirected from another command. The following example shows the sorting of the df -h command output:

$ df -h # Disk space usage in human readable format

 [image: Redirecting output to sort]

 The following command sorts output of df by its 2nd column content:

$ df -h | sort -hb -k2 #. Sorts by 2nd column according to size available:

 [image: Redirecting output to sort]

 We can sort the ls -l output according to the last modification day and month:

$ ls -l /var/cache/ # Long listing content of /var/cache

 [image: Redirecting output to sort]

 To sort the ls -l output, first sort according to the month that is the 6th field using the -M option, and if the month for two or more row is the same, then sort according to the day that is the 7th field using -n for numerical sort:

$ ls -l /var/cache/ | sort -bk 6M -nk7

 [image: Redirecting output to sort]

 Filtering unique elements

 In many use-case, we need to remove duplicate items and keep only one occurrence of items. It is very useful when the output of a command or input file is too big, and it contains lot of duplicate lines. To get unique lines from a file or redirected output, the shell command uniq is used. One important point to note is that, in order to get the uniq output, input should be sorted, or first run the sort command to make it sorted. The syntax will be as follows:

 sort [OPTION] [INPUT [OUTPUT]]

 An input to uniq can be given from a file or another command's output.

 If an input file is provided, then an optional output file can also be specified on a command line. If no output file is specified, the output will be printed on stdout.

 The options that uniq supports are discussed in the following table:

 	
 Option

 	
 Description

 	
 -c

 	
 This prefixes lines with the number of occurrences

 	
 -d

 	
 This prints duplicate lines only once

 	
 -f N

 	
 This skips the comparison of the first N fields

 	
 -i

 	
 This is case-insensitive comparison of items

 	
 -u

 	
 This prints only unique lines

 	
 -s N

 	
 This avoids comparing the first N characters in line

 	
 -w N

 	
 This compares only N characters in line

 Unique elements in a file

 Consider the unique.txt file as an example on which we will run the uniq command with its options. The content of unique.txt is as follows:

$ cat unique.txt
Welcome to Linux shell scripting
1
Welcome to LINUX shell sCripting
2
Welcome To Linux Shell Scripting
4
2
4
Welcome to Linux shell scripting
2
3
Welcome to Linux shell scripting
2
Welcome to Linux shell scripting
Welcome to LINUX shell sCripting

 To remove duplicate lines from the unique.txt file, we can do the following:

 	Firstly, sort the file and then redirect the sorted text to the uniq command:

$ sort unique.txt | uniq

 	Use the -u option with the sort command:

$ sort -u unique.txt

 The output from running either of the commands will be the same, as follows:

 [image: Unique elements in a file]

 We can use the -c option to print the number of occurrences of each line in the input file:

$ sort unique.txt | uniq -c

 [image: Unique elements in a file]

 Using the options -c and -i will print the uniq lines along with the occurrence count. A comparison for unique line will be done case-insensitive:

$ sort unique.txt | uniq -ci

 [image: Unique elements in a file]

 To get only those lines in file that have appeared only once, the -u option is used:

$ sort unique.txt | uniq -u
1
3
Welcome To Linux Shell Scripting

 Similarly, to get the lines that have been appeared more than once in a file, -d is used:

$ sort unique.txt | uniq -d
2
4
Welcome to Linux shell scripting
Welcome to LINUX shell sCripting

 We can also tell the uniq command to find unique lines based on comparing only the first N character of the line:

$ sort unique.txt | uniq -w 10
1
2
3
4
Welcome to Linux shell scripting
Welcome To Linux Shell Scripting

 Note

 	The uniq command does not detect the repeated lines unless they are adjacent.

 	To find unique lines, first sort the input using the sort command and then apply the uniq command

 Character-based translation using tr

 Another interesting shell command is tr. This translates, squeezes, or deletes characters from the standard input. The syntax will be as follows:

 tr [OPTION]... SET1 [SET2]

 The options for the tr commands are explained in the following table:

 	
 Option

 	
 Description

 	
 -c, -C

 	
 Use complement of SET1

 	
 -d

 	
 This deletes a range of characters specified in SET1.

 	
 -s

 	
 This replaces consecutive multiple occurrences of characters in SET1 with a single occurrence.

 	
 -t

 	
 This truncates SET1 to the length of SET2. Any extra characters in SET1 will be not considered for translation.

 SETs are a string of characters that can be specified using the following:

 	A character class: [:alnum:], [:digit:], [:alpha:] and so on

 	A character range: 'a-z', 'A-Z', and '0-9'

 	An escape character: \\, \b, \r, \n, \f, \v, and \t

 To provide an input text from a file and an output to a file, we can use the file redirection operators: < (less than for input) and > (greater than for output).

 Deleting input characters

 Sometimes, removing a few unnecessary characters from an input text is important. For example, our input text is in the tr.txt file:

$ cat tr.txt
This is a text file for demonstrating
tr command.
This input file contains digit 2 3 4 and 5
as well.
THIS IS CAPS LINE
this a lowercase line

 Suppose we want to remove all the caps letters from this file. We can use the -d option with SET1 as 'A-Z':

$ tr -d 'A-Z' < tr.txt
This is a text file for demonstrating
tr command.
This input file contains digit 2 3 4 and 5
as well.

this a lowercase line

 We see that the output doesn't have any caps letter. We can also removed a new line and space from a file as follows:

$ tr -d ' \n' < tr.txt > tr_out1.txt

 Here, we have redirected the output to tr_out1.txt:

$ cat tr_out1.txt
Thisisatextfilefordemonstratingtrcommand.Thisinputfileconatainsdigit234and5aswell.THISISCAPSLINEthisalowercaseline

 Squeezing to a single occurrence

 The -s option is useful when we don't want to delete a character throughout the input text, instead we want to squeeze down to a single occurrence if consecutive multiple occurrences of the given character is there.

 One of the use-case where it will prove useful is when we have multiple spaces in between two words that we want to bring down to a single space between any two words/strings in the input text. Consider the tr1.txt file as an example:

$ cat tr1.txt
India China Canada
USA Japan Russia
Germany France Italy
Australia Nepal

 By looking into this file, it's quite clear that texts are not properly aligned. There are multiple spaces between two words. We can squeeze multiple spaces to one space using the tr option with -s:

$ tr -s ' ' < tr1.txt
India China Canada
USA Japan Russia
Germany France Italy
Australia Nepal

 Inverting a character set to be translated

 Command tr also provides the -c or -C options to invert a character set to be translated. This is useful when we know what is not to be translated.

 For example, we want to keep only alphanumeric, newline, and white-space in the text string. Everything should be deleted from the input text. Here, it's easy to specify what not to delete rather than what to delete.

 For example, consider the tr2.txt file whose content is as follows:

$ cat tr2.txt
This is an input file.
It conatins special character like ?, ! etc
&^var is an invalid shll variable.
var1 is a valid shell variable

 To delete characters other than alphanumeric, newline, and white-space, we can run the following command:

tr -cd '[:alnum:] \n' < tr2.txt
This is an input file
It conatins special character like etc
var is an invalid shll variable
var1 is a valid shell variable

 Filtering based on lines—head and tail

 To display the content of a file, we will use the cat command. The cat command displays the whole file content on stdout. However, sometimes, we are interested in viewing only a few lines of a file. In this case, using cat will be tedious because we will have to scroll down to particular lines that we are interested in.

 Shell provides us the head and tail commands to print only the lines in which we are interested in. The main difference between both the commands is, head prints the lines from the beginning of the files, and tail prints the lines from the end of the files.

 Printing lines using head

 The syntax is as follows:

 head [OPTION] [FILE …]

 By default, head prints first 10 lines of each FILE to stdout. If no file is mentioned or '-' is specified, the input is taken from stdin.

 The options available in head can be used to change how much of the content to be printed. The options available are described in the following table:

 	
 Option

 	
 Description

 	
 -c [-] K

 	
 This prints first K bytes of a file. If -K is used, then you can output all contents except the last K bytes.

 	
 -n [-]K

 	
 This prints first K lines of each file. If -K is used, then you can output all lines except the last n lines.

 	
 -q

 	
 This prevents name of input files from being printed.

 	
 -v

 	
 This always outputs the header having the filename of each file.

 Printing the first few lines

 Let's see how many files /usr/lib64/ directory contains -:

$ ls /usr/lib64 | wc
3954

 We see that /usr/lib64 has 3954 files. Suppose, we don't want all the libraries names, but just the first five library names. We can use a head command for this as follows:

$ ls /usr/lib64 | head -n 5
akonadi
alsa-lib
ao
apper
apr-util-1

 Printing the first few bytes

 We use the -c option to print the first few bytes of a file, as follows:

$ head -c50 /usr/share/dict/linux.words /usr/share/dict/words
==> /usr/share/dict/linux.words <==
1080
10-point
10th
11-point
12-point
16-point
18-p
==> /usr/share/dict/words <==
1080
10-point
10th
11-point
12-point
16-point
18-p

 This first prints 50 bytes of the /usr/share/dict/linux.words and /usr/share/dict/words files.

 We can eliminate the printing of the header having a filename using –q:

$ head -c50 -q /usr/share/dict/linux.words /usr/share/dict/words
1080
10-point
10th
11-point
12-point
16-point
18-p1080
10-point
10th
11-point
12-point
16-point
18-p

 For a single file, command head doesn't print name of file in output. To see it, use –v option:

$ head -c50 -v /usr/share/dict/linux.words
==> /usr/share/dict/linux.words <==
1080
10-point
10th
11-point
12-point
16-point
18-p

 Printing lines using tail

 The syntax for tail is as follows:

 tail [OPTION] [FILE …]

 By default, tail prints the last 10 lines of each FILE to stdout. If no file is mentioned or '-' is specified, the input is taken from stdin.

 The options available in tail can be used to change how much of the content to be printed. The available options are described in the following table:

 	
 Option

 	
 Description

 	
 -c [+]K

 	
 This prints the last K byte of each file. If +K is used, then print from Kth byte of each file.

 	
 -n [+]K

 	
 This prints the last K lines of each file. If +K is used, then output from Kth line of each file.

 	
 -f [{name|descriptor}]

 	
 The outputs the appended data as the file grows.

 	
 --retry

 	
 This keeps trying to open a file if it is inaccessible.

 	
 --max-unchanged-stats=N

 	
 With the -f name, reopen the file that has not opened. This shows the changed size after N iterations (default 5).

 	
 --pid=PID

 	
 With -f, terminate if PID dies.

 	
 -q

 	
 Don't output header having filename of each file.

 	
 -F

 	
 This is the same as the -f name --retry option.

 	
 -s N

 	
 This sleeps for N seconds between iterations. With –pid=PID, check the process at least once in N seconds.

 	
 -v

 	
 This always outputs the header having a filename of each file.

 Checking log entries

 The tail command is frequently used to check the error or message log for the last few run of commands. With each new run, logs are appended at the end of the line.

 We will see in following example that kernel log entries are made when a new USB drive is added and when it is removed:

$ dmesg | tail -n7 # Log when USB was attached

 [120060.536856] sd 10:0:0:0: Attached scsi generic sg1 type 0
[120060.540848] sd 10:0:0:0: [sdb] 1976320 512-byte logical blocks: (1.01 GB/965 MiB)
[120060.541989] sd 10:0:0:0: [sdb] Write Protect is off
[120060.541991] sd 10:0:0:0: [sdb] Mode Sense: 23 00 00 00
[120060.543125] sd 10:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[120060.550464] sdb: sdb1
[120060.555682] sd 10:0:0:0: [sdb] Attached SCSI removable disk

$ dmesg | tail -n7 # USB unmounted

 [120060.540848] sd 10:0:0:0: [sdb] 1976320 512-byte logical blocks: (1.01 GB/965 MiB)
[120060.541989] sd 10:0:0:0: [sdb] Write Protect is off
[120060.541991] sd 10:0:0:0: [sdb] Mode Sense: 23 00 00 00
[120060.543125] sd 10:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[120060.550464] sdb: sdb1
[120060.555682] sd 10:0:0:0: [sdb] Attached SCSI removable disk
[120110.466498] sdb: detected capacity change from 1011875840 to 0

 We saw that when USB was unmounted, a new log entry was added:[120110.466498] sdb: detected capacity change from 1011875840 to 0 To check the last 10 yum logs in an RPM-based system, we can do the following:

sudo tail -n4 -v /var/log/yum.log

 ==> /var/log/yum.log-20150320 <==
Mar 19 15:40:19 Updated: libgpg-error-1.17-2.fc21.i686
Mar 19 15:40:19 Updated: libgcrypt-1.6.3-1.fc21.i686
Mar 19 15:40:20 Updated: systemd-libs-216-21.fc21.i686
Mar 19 15:40:21 Updated: krb5-libs-1.12.2-14.fc21.i686

 To see real-time logs, we can use the -f option. For example, the /var/log/messages file shows the general system activities. With tail -f, appended log messages in /var/log/messages will be printed on stdout as well:

$ tail -f /var/log/messages

 Jun 7 18:21:14 localhost dbus[667]: [system] Rejected send message, 10 matched rules; type="method_return", sender=":1.23" (uid=0 pid=1423 comm="/usr/lib/udisks2/udisksd --no-debug ") interface="(unset)" member="(unset)" error name="(unset)" requested_reply="0" destination=":1.355" (uid=1000 pid=25554 comm="kdeinit4: dolphin [kdeinit] --icon system-fil ")
Jun 7 18:21:14 localhost systemd-udevd: error: /dev/sdb: No medium found
Jun 7 18:21:14 localhost systemd-udevd: error: /dev/sdb: No medium found
Jun 7 18:27:10 localhost kernel: [135288.809319] usb 3-1.2: USB disconnect, device number 14
Jun 7 18:27:10 localhost kernel: usb 3-1.2: USB disconnect, device number 14
Jun 7 18:27:10 localhost systemd-udevd: error opening USB device 'descriptors' file

 The command prompt won't return back. Instead, the output will keep getting updated whenever there is new content in /var/log/messages.

 Finding any line in a file

 We can use head and tail to find any line of a file.

 We will consider the /usr/share/dict/words file as an example.

 Now, to find the 10th line of this file, we can do the following:

$ head -10 /usr/share/dict/words | tail -n1 # 10th line
20-point

$ head -200000 /usr/share/dict/words | tail -n1 # 200000th line
intracartilaginous

 The Cut-based selection

 We can also select a text from each line of single/multiple files using the cut command. The cut command allows us to select a column based on delimiters. By default, TAB is used as delimiter. We can also select a portion of the text in a line by specifying the characters or range. The syntax is as follows:

 cut OPTION [FILE …]

 The cut command works on the single and multiple files. By default, the output is printed on stdout.

 The options for the cut command are explained in the following table:

 	
 Option

 	
 Description

 	
 -b LIST

 	
 This selects bytes that are specified in LIST.

 	
 -c LIST

 	
 This selects characters that are specified in LIST.

 	
 -d DELIM

 	
 This uses delimiter as DELIM instead of TAB. It also prints lines that don't have a delimiter.

 	
 -f LIST

 	
 This only selects fields specified in LIST.

 	
 --complement

 	
 This complements a set of selected bytes, characters, or fields.

 	
 -s

 	
 Don't print lines that don't have a delimiter.

 	
 --output-delimiter=STRING

 	
 This uses STRING as the output delimiter. By default, the input delimiter is used.

 LIST is made up of a range or many ranges separated by a comma. A range is specified as follows:

 	
 Range

 	
 Meaning

 	
 N

 	
 This is the Nth byte, character, or field, counted from 1

 	
 N-

 	
 This is from the Nth byte, character, or field, to the end of the line

 	
 N-M

 	
 This is from the Nth to Mth byte (including M and N), character, or field.

 	
 -M

 	
 This is from the first to Mth (include) byte, character, or field.

 Cutting across columns

 A lot of Linux command outputs are formatted in such a way that the results have multiple fields and each field is separated by space or tabs. The outputs of each field can be viewed by looking down into a particular field column.

 Execute the ls -l ~ command and observe the following output:

$ ls -l ~

 [image: Cutting across columns]

 Now, we are interested only in knowing the modification time and filename. To achieve this, we will need the column 6 to 9:

$ ls -l ~ | tr -s ' ' |cut -f 6-9 -d ' '

 [image: Cutting across columns]

 By default, TAB is used as a delimiter. Here, there are multiple spaces between any two columns in the ls -l output. So, first using tr -s, we will squeeze multiple whitespace into single whitespace and then we will cut the column field range 6-9 with a delimiter as whitespace.

 Text selection in files

 Consider the cut1.txt file as an example. The content of the file is as follows:

$ cat cut1.txt

 The output will be:

 [image: Text selection in files]

 Now, we are interested in knowing the names of the students. We can get this by fetching the first column. Here, each column is separated by Tab. So, we will not have to specify the delimiter in our command:

$ cut -f1 cut1.txt
Name
Foo
Bar
Moo
Bleh
Worm
Lew

 Another interesting thing to do is to get unique department names. We can do this by using the following set of commands on the cut1.txt file:

$ cut -f4 cut1.txt | tail -n +2 | sort -u
Civil
CSE
ECE
Mechanical

 We can see that there are four unique departments mentioned in the cut1.txt file.

 Another interesting thing we can do is find out who received the highest marks, as follows:

$ cut -f1,3 cut1.txt | tail -n +2 | sort -k2 -nr | head -n1
Worm 99

 To find out who scored the highest mark, we first select the first and third column from the cut1.txt file. Then, we exclude the first line using tail -n +2, which tells us what this file is about, because we do not need this. After that, we do numerical sorting of the second column in reverse order, which contains the marks of all the students. Now, we know that the first column contains the details of those who scored the highest marks.

 Knowing the speed of your system processor is interesting in order to know the various details of your system. Among all, one of them knows the speed of your processor. The first thing to know is that all processor details are available in the /proc/cpuinfo file. You can open this file and see what all details are available. For example, we know that the processor's speed is mentioned in the "model name" field.

 The following shell script will show the speed of the processor:

 #!/bin/bash
#Filename: process_speed.sh
#Description: Demonstrating how to find processor speed ofrunning system

grep -R "model name" /proc/cpuinfo | sort -u > /tmp/tmp1.txt
tr -d ' ' </tmp/tmp1.txt > /tmp/tmp2.txt
cut -d '@' -f2 /tmp/tmp2.txt

 Running this script will output the processor speed of your system:

$ sh processor_speed.sh
2.80GHz

 We can also do without using temporary files:

$ grep -R "model name" /proc/cpuinfo | sort -u | cut -d '@' -f2
2.80GHz

 Summary

 After reading this chapter, you should know how to provide an input to commands and print or save its result. You should also be familiar with redirecting an output and input from one command to another. Now, you can easily search, replace strings or pattern in a file, and filter out data based on needs.

 From this chapter, we now have a good control on transforming/filtering text data. In next chapter, we will learn how to write more powerful and useful shell scripts by learning loops, conditions, switch, and the most important function in shell. We will also know how important it is to know the exit status of a command. In the next chapter, we will also see more advanced examples of commands that we have learned in this chapter.

 Chapter3.Effective Script Writing

 To write an effective script in shell, it is very important to know about the different utilities that shell provides. Similar to other programming languages, shell programming also requires a way to specify skipping or running certain commands under certain conditions. To perform a certain task on the list of elements, looping constructs are needed in shell as well.

 In this chapter, we will cover topics such as if, else, case, and select that can be used to run a certain block of commands according to the condition. We will see the for, while, and until constructs, which are used to loop over a certain block of commands in a script. We will see how the exit code, after the execution of a command or script, plays an important role in knowing whether a command was executed successfully or not. We will also see how a function can be defined in shell, which will allow us to write modular and reusable code from now on.

 This chapter will cover the following topics in detail:

 	Exiting from scripts and exit codes

 	Testing expressions with a test

 	Using conditional statements with if and else

 	Indexed arrays and associative arrays

 	Looping around with for

 	The select, while, and until loops

 	Switching to your choice

 	Using functions and positional parameters

 	Passing stdout as a parameter using xargs

 	Aliases

 	pushd and popd

 Exiting from scripts and exit codes

 We are now well familiar with shell script files, commands, and running them in bash to get the desired output. Until now, whatever shell script examples we have seen, they run line by line until the end of the file. While writing real-world shell scripts, it may not always be the case. We may need to exit a script in between, for example, when some error occurs, doesn't satisfy a certain condition, and so on. To exit from the script, the exit shell builtin is used with an optional return value. The return value tells the exit code, which is also known as return status or exit status.

 Exit codes

 Every command returns an exit code when it gets executed. Exit code is one of the ways to know whether a command is executed successfully or if some error has occurred. As per the POSIX (Portable Operating System Interface) standard convention, a command or program with successful execution returns 0, and 1 or a higher value for failed execution.

 In bash, to see the exit status of the last command executed, we can use "$?".

 The following example shows the exit code of the successful command execution:

$ ls /home # viewing Content of directory /home
foo

 Now, to see the exit code of the last executed command, that is, ls /home, we will run the following command:

$ echo $?
0

 We see that the exit status of the ls command execution is 0, which means it has executed successfully.

 Another example showing the exit code of the unsuccessful command execution is as follows:

$ ls /root/
ls: cannot open directory /root/: Permission deniedWe see that the ls command execution was unsuccessful with the Permission denied error. To see the exit status, run the following command:

$ echo $?
2

 The exit status code is 2, which is higher than 0, representing unsuccessful execution.

 Exit codes with a special meaning

 In different situations, a different exit code is returned by a script or command. Knowing the meaning of the exit code is useful while debugging a script or command. The following table explains which exit code is conventionally returned in different conditions of command or script execution:

 	
 Exit code

 	
 Description

 	
 0

 	
 Successful execution

 	
 1

 	
 General error

 	
 2

 	
 Error when using shell builtin commands

 	
 126

 	
 Permission issues while executing a command; we can't invoke the requested command

 	
 127

 	
 Could not invoke requested command

 	
 128

 	
 Specifying invalid argument to exit in script. Only value from 0 to 255 is valid exit code

 	
 128+n

 	
 Fatal error with the signal 'n'

 	
 130

 	
 Terminating script using Ctl + C

 	
 255*

 	
 Out of the range exit code

 Exit codes 0, 1, 126-165, and 255 are reserved and we should use other than these numbers when we return the exit code in script files.

 The following examples show the different exit codes returned by commands:

 	
 Exit code 0: The following is the successful execution of the echo command:

$ echo "Successful Exit code check"
Successful Exit code check
$ echo $?
0

 	
 Exit code 1: Copying files from /root have no permissions as shown:

$ cp -r /root/ .
cp: cannot access '/root/': Permission denied
$ echo $?
1

 	
 Exit code 2: Use read shell builtin with an invalid parameter as follows:

$ echo ;;
bash: syntax error near unexpected token ';;'
$ echo $?
2

 	
 Exit code 126: Run a /usr/bin directory as a command that is actually not a command:

$ /usr/bin
bash: /usr/bin: Is a directory
$ echo $?
126

 	
 Exit code 127: Run a command named foo that is not actually present in the system:

$ foo
bash: foo: command not found
$ echo $?
127

 	
 Exit code 128+n: Terminate a script by pressing Ctrl + C:

$ read

^C
$ echo $?
130

 Here, Ctrl + C sends the SIGQUIT signal whose value is 2. So, the exit code is 130 (128 + 2).

 Script with exit codes

 We can also exit shell builtin along with an exit code to know whether a script ran successfully or it encountered any error. Different error codes can be used to know the actual reason of an error while debugging your own script.

 When we don't provide any exit code in a script, the exit code of the script is determined by the last executed command:

 #!/bin/bash
Filename: without_exit_code.sh
Description: Exit code of script when no exit code is mentioned in script

var="Without exit code in script"
echo $var

cd /root

 The preceding script doesn't specify any exit code; running this script will give the following output:

$ sh without_exit_code.sh
Without exit code in script
without_exit_code.sh: line 8: cd: /root: Permission denied
$ echo $? # checking exit code of script
1

 The exit code of this script is 1 because we didn't specify any exit code and the last executed command was cd /root, which failed due to a permission issue.

 Taking the next example that returns the exit code 0, irrespective of any error that occurs—that is, script ran successfully:

 #!/bin/bash
Filename: with_exit_code.sh
Description: Exit code of script when exit code is mentioned in scr# ipt

var="Without exit code in script"
echo $var

cd /root

exit 0

 Running this script will give the following result:

 $ sh with_exit_code.sh
Without exit code in script
with_exit_code.sh: line 8: cd: /root: Permission denied
echo $?
0

 Now, the script file returns the exit code as 0. We now know what a difference adding an exit code in script can make.

 Another example with the exit status code is as follows:

 #!/bin/bash
Filename: exit_code.sh
Description: Exit code of script

cmd_foo # running command not installed in system
echo $?

cd /root # Permission problem
echo $?

echo "Hello World!" # Successful echo print
echo $?

exit 200 # Returning script's exit code as 200

 The output after running this script is as follows:

$ sh exit_status.sh
exit_code.sh: line 5: cmd_foo: command not found
127
exit_code.sh: line 8: cd: /root: Permission denied
1
Hello World!
0
$ echo $? # Exit code of script
200

 If no exit code is specified in a script, the exit code will be the exit status of the last command ran in the script.

 Testing expressions with a test

 The shell builtin command test can be used to check file types and compare expressions value. The syntax is test EXPRESSION or the test command is also equivalent to [EXPRESSION].

 It returns the exit code 1 (false) if the EXPRESSION result is 0, and 0 (true) for a non-zero EXPRESSION result.

 If no EXPRESSION is provided, the exit status is set to 1 (false).

 File checks

 Different kinds of checks can be done on the file using the test command; for example, file existence test, directory test, regular file check, symbolic link check, and so on.

 The options available to do various checks on a file are explained in the following table:

 	
 Option

 	
 Description

 	
 -e

 	
 fileChecks whether the file exists

 	
 -f file

 	
 The file is a regular fil

 	
 -d file

 	
 The file exists and is a directory

 	
 -h, -L file

 	
 The file is a symbolic link

 	
 -b file

 	
 The file is block special

 	
 -c file

 	
 The file is character special

 	
 -S file

 	
 The file is a socket

 	
 -p file

 	
 The file is a named pipe

 	
 -k file

 	
 Sticky bit of the file is set

 	
 -g file

 	
 set-group-ID (sgid) bit of the file is set

 	
 -u file

 	
 set-user-id (suid) bit of the file is set

 	
 -r file

 	
 Read permission on the file exists

 	
 -w file

 	
 Write permission on the file exists

 	
 -x file

 	
 Execute permission on the file exists

 	
 -t fd

 	
 File descriptor fd is open on terminal

 	
 file1 -ef file2

 	
 file1 is hard link to file2

 	
 file1 -nt file2

 	
 file1 is more recent compared to file2

 	
 file1 -ot file2

 	
 The modification time of file1 is older than file2

 Shell script performs different checks on the files as follows:

 #!/bin/bash
Filename: file_checks.sh
Description: Performing different check on and between files

Checking existence of /tmp/file1
echo -n "Does File /tmp/file1 exist? "
test -e /tmp/file1
echo $?

Create /tmp/file1
touch /tmp/file1 /tmp/file2
echo -n "Does file /tmp/file1 exist now? "
test -e /tmp/file1
echo $?

Check whether /tmp is a directory or not
echo -n "Is /tmp a directory? "
test -d /tmp
echo $?

Checking if sticky bit set on /tmp"
echo -n "Is sticky bit set on /tmp ? "
test -k /tmp
echo $?

Checking if /tmp has execute permission
echo -n "Does /tmp/ has execute permission ? "
test -x /tmp
echo $?

Creating another file /tmp/file2
touch /tmp/file2

Check modification time of /tmp/file1 and /tmp/file2
echo -n "Does /tmp/file1 modified more recently than /tmp/file2 ? "
test /tmp/file1 -nt /tmp/file2
echo $?

 The output of running this script is as follows:

 Does File /tmp/file1 exist? 1
Does file /tmp/file1 exist now? 0
Is /tmp a directory? 0
Is sticky bit set on /tmp ? 0
Does /tmp/ has execute permission? 0
Does /tmp/file1 modified more recently than /tmp/file2 ? 1

 In our output, 0 and 1 are the exist status after running a test command on files. The output 1 means the test failed and 0 means the test was successfully passed.

 Arithmetic checks

 We can also perform arithmetic checks between integer numbers. Comparison possible on integers is explained to following table:

 	
 Comparison

 	
 Description

 	
 INTEGER1 -eq INTEGER2

 	
 INTEGER1 is equal to INTEGER2

 	
 INTEGER1 -ne INTEGER2

 	
 INTEGER1 is not equal to INTEGER2

 	
 INTEGER1 -gt INTEGER2

 	
 INTEGER1 is greater than INTEGER2

 	
 INTEGER1 -ge INTEGER2

 	
 INTEGER1 is greater than or equal to INTEGER2

 	
 INTEGER1 -lt INTEGER2

 	
 INTEGER1 is lesser than INTEGER2

 	
 INTEGER1 -le INTEGER2

 	
 INTEGER1 is lesser than or equal to INTEGER2

 Shell script shows various arithmetic checks between two integers as follows:

 #!/bin/bash
Filename: integer_checks.sh
Description: Performing different arithmetic checks between integers

a=12 b=24 c=78 d=24
echo "a = $a , b = $b , c = $c , d = $d"

echo -n "Is a greater than b ? "
test $a -gt $b
echo $?

echo -n "Is b equal to d ? "
test $b -eq $d
echo $?

echo -n "Is c not equal to d ? "
test $c -ne $d
echo $?

 The output of running this script is as follows:

 a = 12 , b = 24 , c = 78 , d = 24
Is a greater than b ? 1
Is b equal to d ? 0
Is c not equal to d ? 0

 Also, here the test returns the exit status after running a comparison test between integers, and returns 0 (true) on success and 1 (false) if the test fails.

 String checks

 A command test also allows you to perform checks on and between strings. The possible checks are described in the following table:

 	
 Comparison

 	
 Description

 	
 -z STRING

 	
 The length of the string is zero

 	
 -n STRING

 	
 The length of the string is non-zero

 	
 STRING1 = STRING2

 	
 STRING1 and STRING2 are equal

 	
 SRING1 != STRING2

 	
 STRING1 and STRING2 are not equal

 Shell script shows various string checks on and between strings as follows:

 #!/bin/bash
Filename: string_checks.sh
Description: Performing checks on and between strings

str1="Hello" str2="Hell" str3="" str4="Hello"
echo "str1 = $str1 , str2 = $str2 , str3 = $str3 , str4 = $str4"

echo -n "Is str3 empty ? "
test -z $str3
echo $?

echo -n "Is str2 not empty? "
test -n $str2
echo $?

echo -n "Are str1 and str4 equal? "
test $str1 = $str4
echo $?

echo -n "Are str1 and str2 different? "
test $str1 != $str2
echo $?

 The output of running this script is as follows:

 str1 = Hello , str2 = Hell , str3 = , str4 = Hello
Is str3 empty ? 0
Is str2 not empty? 0
Are str1 and str4 equal? 0
Are str1 and str2 different? 0

 Here, the test returns 0 exit status if the string checks are true, else returns 1.

 Expression checks

 The test command also allows you to perform checks on and between expressions. An expression itself can contain multiple expressions to evaluate as well. The possible checks done are explained in the following table:

 	
 Comparison

 	
 Description

 	
 (EXPRESSION)

 	
 This EXPRESSION is true

 	
 ! EXPRESSION

 	
 This EXPRESSION is false

 	
 EXPRESSION1 -a EXPRESSION2

 	
 Both the expressions are true (the AND operation)

 	
 EXPRESSION1 -o EXPRESSION2

 	
 Either one of the expressions is true (the OR operation)

 Shell script shows various string checks on and between strings as follows:

 #!/bin/bash
Filename: expression_checks.sh
Description: Performing checks on and between expressions

a=5 b=56
str1="Hello" str2="Hello"

echo "a = $a , b = $b , str1 = $str1 , str2 = $str2"
echo -n "Is a and b are not equal, and str1 and str2 are equal? "
test ! $a -eq $b -a $str1 = $str2
echo $?

echo -n "Is a and b are equal, and str1 and str2 are equal? "
test $a -eq $b -a $str1 = $str2
echo $?

echo -n "Does /tmp is a sirectory and execute permission exists? "
test -d /tmp -a -x /tmp
echo $?

echo -n "Is /tmp file is a block file or write permission exists? "
test -b /tmp -o -w /tmp
echo $?

 The output of running this script is as follows:

 a = 5 , b = 56 , str1 = Hello , str2 = Hello
Is a and b are not equal, and str1 and str2 are equal? 0
Is a and b are equal, and str1 and str2 are equal? 1
Does /tmp is a sirectory and execute permission exists? 0
Is /tmp file is a block file or write permission exists? 0

 Similar to other checks with the test command, the 0 exit code means the expression evaluated is true and 1 means false evaluation.

 Using conditional statements with if and else

 Shell provides if and else to run conditional statements depending upon whether the evaluation is true or false. It is useful if we want to perform certain tasks only if a certain condition is true.

 The test condition to if can be given using a test condition or [condition]. We have already learned multiple use cases and examples of testing an expression in the previous section, Testing expressions with a test.

 Simple if and else

 The syntax of the if condition is as follows:

 if [conditional_expression]
then
 statements
fi

 If conditional_expression is true—that is, the exit status is 0—then the statements inside it get executed. If not, then it will be just be ignored and the next line after fi will be executed.

 The syntax of if and else is as follows:

 if [conditional_expression]
then
 statements
else
 statements
fi

 Sometimes, when a condition is not true, we might want to execute some statements. In such cases, use if and else. Here, if conditional_statement is true, statements within if get executed. Otherwise, statements within else will be executed.

 The following shell script prints the message if a file exists:

 #!/bin/bash
Filename: file_exist.sh
Description: Print message if file exists

if [-e /usr/bin/ls]
then
 echo "File /usr/bin/ls exists"
fi

 The output after running the script is as follows:

 File /usr/bin/ls exists

 Another example shows the greater one among two integers as follows:

 #!/bin/bash
Filename: greater_integer.sh
Description: Determining greater among two integers

echo "Enter two integers a and b"
read a b # Reading input from stdin
echo "a = $a , b = $b"
Finding greater integer
if test $a -gt $b
then
 echo "a is greater than b"
else
 echo "b is greater than a"
fi

 The following is the output after running the script:

 $ sh greater_integer.sh
Enter two integers a and b
56 8
a = 56 , b = 8
a is greater than b

 The if, elif, and else statements

 In some cases, more than two choices exist, of which only one needs to be executed. The elif allows you to use another if condition instead of using else if a condition is not true. The syntax is as follows:

 if [conditional_expression1]
then
 statements
elif [conditional_expression2]
then
 statements
elif [conditional_expression3]
then
 statements
 # More elif conditions
else
 statements

 The following shell script will make the elif usage more clear. This script asks a user to input a valid file or directory name with the absolute path. On a valid regular file or directory, it displays the following content:

 #!/bin/bash
Filename: elif_usage.sh
Description: Display content if user input is a regular file or a directoy

echo "Enter a valid file or directory path"
read path
echo "Entered path is $path"

if [-f $path]
then
 echo "File is a regular file and its content is:"
 cat $path
elif [-d $path]
then
 echo "File is a directory and its content is:"
 ls $path
else
 echo "Not a valid regular file or directory"
fi

 The output after running the script is as follows:

 Enter a valid file or directory path
/home/
Entered path is /home/
File is a directory and its content is:
lost+found sinny

 Nested if

 In many cases, multiple if conditions are required because the execution of a condition depends upon the result of another condition. The syntax will be as follows:

 if [conditional_expression1]
then
 if [conditional_expression2]
 then
 statements
 if [conditional_expression3]
 then
 statements
 fi
 fi
fi

 The following script example explains the nested if in more detail. In this script, we will see how to find the greatest one of the three integer values:

 #!/bin/bash
Filename: nested_if.sh
Description: Finding greatest integer among 3 by making use of nested if

echo "Enter three integer value"
read a b c
echo "a = $a , b = $b, c = $c"

if [$a -gt $b]
then
 if [$a -gt $c]
 then
 echo "a is the greatest integer"
 else
 echo "c is the greatest integer"
 fi
else
 if [$b -gt $c]
 then
 echo "b is the greatest integer"
 else
 echo "c is the greatest integer"
 fi
fi

 The output after running the script will be as follows:

 Enter three integer value
78 110 7
a = 78 , b = 110, c = 7
b is the greatest integer

 Indexed arrays and associative arrays

 Bash provides a feature to declare a list (or array) of variables in a one-dimensional array that can be an indexed array or associative array. The size of an array can be 0 or more.

 Indexed arrays

 An indexed array contains variables that may or may not have been initialized continuously. Indices of an indexed array start from 0. This means that the first element of an array will start at an index 0.

 Array declaration and value assignment

 An indexed array can be declared by just initializing any index as follows:

 array_name[index]=value

 Here, an index can be any positive integer or an expression must be evaluated to a positive integer.

 Another way of declaring is by using the declare shell built in as follows:

 declare -a array_name

 We can also initialize an array with values during a declaration. Values are enclosed within parentheses and each value is separated with a blank space as follows:

 declare -a array_name=(value1 value2 value3 …)

 Operations on arrays

 Initializing and declaring values to a variable is not sufficient. The actual usage of an array is when we perform different operations on it to get the desired result.

 The following operations can be done on an indexed array:

 	Accessing an array element by an index: An element of an array can be accessed by referring to its index value:

echo ${array_name[index]}

 	Printing the array's contents: The contents of an array can be printed if an index of an array is given as @ or *:

echo ${array_name[*]}
echo ${array_name[@]}

 	Obtaining the length of an array: The length of an array can be obtained using $# with the array variable:

echo ${#array_name[@]}
echo ${#array_name[*]}

 	Obtaining the length of an array element: The length of an array element can be obtained using $# on nth index:

echo ${#array_name[n]}

 	Deleting an element or an entire array: An element can be removed from an array using the unset keyword:

unset array_name[index] # Removes value at index
unset array_name # Deletes entire array

 The following shell script demonstrates the different operations on an indexed array:

 #!/bin/bash
Filename: indexed_array.sh
Description: Demonstrating different operations on indexed array

#Declaring an array conutries and intializing it
declare -a countries=(India Japan Indonesia 'Sri Lanka' USA Canada)

Printing Length and elements of countries array
echo "Length of array countries = ${#countries[@]}"
echo ${countries[@]}

Deleting 2nd element of array
unset countries[1]
echo "Updated length and content of countries array"
echo "Length = ${#countries[@]}"
echo ${countries[@]}

Adding two more countries to array
countries=("${countries[@]}" "Indonesia" "England")
echo "Updated length and content of countries array"
echo "Length = ${#countries[@]}"
echo ${countries[@]}

 The output after executing this script is as follows:

 Length of array countries = 6
India Japan Indonesia Sri Lanka USA Canada
Updated length and content of countries array
Length = 5
India Indonesia Sri Lanka USA Canada
Updated length and content of countries array
Length = 7
India Indonesia Sri Lanka USA Canada Indonesia England

 The associative array

 The associative array contains a list of elements in which each element has a key-value pair. The elements of an associative array are not referred by using an integer value 0 to N. It is referred by providing a key name that contains a corresponding value. Each key name should be unique.

 The declaration and value assignment

 The declaration of an associative array is done by using the -A option with the declare shell builtin as follows:

declare -A array_name

 An associate array uses a key instead of an index within a square bracket in order to initialize a value as follows:

array_name[key]=value

 Multiple values can be initialized in the following way:

array_name=([key1]=value1 [key2]=value2 ...)

 Operations on arrays

 A few operations on an associative array can be done similar to how an indexed array does, such as printing the length and content of an array. The operations are as follows:

 	Accessing an array element by the key name; to access an element of an associative array, use a unique key as follows:

 echo ${array_name[key]}

 	Printing associative array content: The following syntax is used to print an associative array:

 echo ${array_name[*]}
echo ${array_name[@]}
Obtaining the length of an array:
echo ${#array_name[@]}
echo ${#array_name[*]}

 	Getting the value and length of a given key:

 echo ${array_name[k]} # Value of key k
echo ${#array_name[k]} # Length of value of key k

 	Adding a new element; to add a new element in an associative array, use the += operator as follows:

 array_name+=([key]=value)

 	Deleting an element of an associative array with the k key as follows:

 unset array_name[k]

 	Deleting an associative array array_name as follows:

 unset array_name

 The following shell script demonstrates the different operations on an associative array:

 #!/bin/bash
Filename: associative_array.sh
Description: Demonstrating different operations on associative array

Declaring a new associative array
declare -A student

Assigning different fields in student array
student=([name]=Foo [usn]=2D [subject]=maths [marks]=67)

Printing length and content of array student
echo "Length of student array = ${#student[@]}"
echo ${student[@]}

deleting element with key marks
unset student[marks]
echo "Updated array content:"
echo ${student[@]}

Adding department in student array
student+=([department]=Electronics)
echo "Updated array content:"
echo ${student[@]}

 The output after executing this script is as follows:

 Length of student array = 4
Foo 67 maths 2D
Updated array content:
Foo maths 2D
Updated array content:
Foo maths Electronics 2D

 Looping around with for

 The for loop can be used to iterate over the items in a list or till the condition is true.

 The syntax of using the for loop in bash is as follows:

 for item in [list]
do
 #Tasks
done

 Another way of writing the for loop is the way C does, as follows:

 for ((expr1; expr2; expr3))
 # Tasks
done

 Here, expr1 is initialization, expr2 is condition, and expr3 is increment.

 Simple iteration

 The following shell script explains how we can use the for loop to print the values of a list:

 #!/bin/bash
Filename: for_loop.sh
Description: Basic for loop in bash

declare -a names=(Foo Bar Tom Jerry)
echo "Content of names array is:"
for name in ${names[@]}
do
 echo -n "$name "
done
echo

 The output of the script is as follows:

 Content of names array is:
Foo Bar Tom Jerry

 Iterating over a command output

 We know that a lot of commands give multiline output such as ls, cat, grep, and so on. In many cases, it makes sense to loop over each line of output and do further processing on them.

 The following example loops over the content of '/' and prints directories:

 #!/bin/bash
Filename: finding_directories.sh
Description: Print which all files in / are directories

echo "Directories in / :"
for file in 'ls /'
do
 if [-d "/"$file]
 then
 echo -n "/$file "
 fi
done
echo

 The output after running this script is as follows:

 Directories in / :
/bin /boot /dev /etc /home /lib /lib64 /lost+found /media /mnt /opt /proc /root /run /sbin /srv /sys /tmp /usr /var

 Specifying a range to the for loop

 We can also specify a range of integers in the for loop with an optional increment value for it:

 #!/bin/bash
Filename: range_in_for.sh
Description: Specifying range of numbers to for loop

echo "Numbers between 5 to 10 -"
for num in {5..10}
do
 echo -n "$num "
done

echo
echo "Odd numbers between 1 to 10 -"
for num in {1..10..2}
do
 echo -n "$num "
done
echo

 The output after running this script is as follows:

 Numbers between 5 to 10 -
5 6 7 8 9 10
Odd numbers between 1 to 10 -
1 3 5 7 9

 Small and sweet for loop

 In some cases, we don't want to write a script and then execute it; rather, we prefer to do a job in shell itself. In such cases, it is very useful and handy to write the complete for loop in one line, rather than making it multiline.

 For example, printing the multiples of 3 between 3 to 20 numbers can be done with the following code:

$ for num in {3..20..3}; do echo -n "$num " ; done
3 6 9 12 15 18

 The select, while, and until loops

 The select, while and until loops are also used to loop and iterate over each item in a list or till the condition is true with slight variations in syntax.

 Loop using select

 The select loop helps in creating a numbered menu in an easy format from which a user can select one or more options.

 The syntax of the select loop is as follows:

 select var in list
do
 # Tasks to perform
done

 The list can be pre-generated or specified while using the select loop in the form [item1 item2 item3 …].

 For example, consider a simple menu listing the contents of '/' and asking a user to enter an option for which you want to know whether it is a directory or not:

 #!/bin/bash
Filename: select.sh
Description: Giving user choice using select to choose

select file in 'ls /'
do
 if [-d "/"$file]
 then
 echo "$file is a directory"
 else
 echo "$file is not a directory"
 fi
done

 The following is the screenshot of the output after running the script:

 [image: Loop using select]

 To exit from the script, press Ctrl + C.

 The while loop

 The while loop allows you to do repetitive tasks until the condition is true. The syntax is very similar to what we have in the C and C++ programming language, which is as follows:

 while [condition]
do
 # Task to perform
done

 For example, read the name of the application and display pids of all the running instances of that application, as follows:

 #!/bin/bash
Filename: while_loop.sh
Description: Using while loop to read user input

echo "Enter application name"
while read line
do
 echo -n "Running PID of application $line :"
 pidof $line
done

 The output after running this script is as follows:

 Enter application name
firefox
Running PID of application firefox : 1771
bash
Running PID of application bash : 9876 9646 5333 4388 3970 2090 2079 2012 1683 1336
ls
Running PID of application ls:
systemd
Running PID of application systemd : 1330 1026 1

 To exit from the script, press Ctrl + C.

 The until loop

 The until loop is very similar to the while loop, but the only difference is that it executes code block until the condition executes to false. The syntax of until is as follows:

 until condition
do
 # Task to be executed
 done

 For example, consider that we are interested in knowing pid of an application whenever any instance of it is running. For this, we can use until and check pidof of an application at a certain interval using sleep. When we find pid, we can exit from the until loop and print pid of the running instance of the application.

 The following shell script demonstrates the same:

 #!/bin/bash
Filename: until_loop.sh
Description: Using until loop to read user input

echo "Enter application name"
read app
until pidof $app
do
 sleep 5
done
echo "$app is running now with pid 'pidof $app'"

 The output after executing this script is as follows:

 Enter application name
firefox
1867
firefox is running now with pid 1867

 Switch to my choice

 Switch is used to jump and run a certain case as per the result of the condition or expression is evaluated. It acts as an alternative to using multiple if in bash and keeps bash script much clear and readable.

 The syntax of switch is as follows:

 case $variable in
 pattern1)
 # Tasks to be executed
 ;;
 pattern2)
 # Tasks to be executed
 ;;
 …
 pattern n)
 # Tasks to be executed
 ;;
 *)
esac

 In syntax, $variable is the expression or value that needs to be matched among the list of choices provided.

 In each choice, a pattern or a combination of patterns can be specified. The ;; tells bash that end of given choice block. The esac keyword specify end of case block.

 The following is an example to count the number of files and directories in a given path:

 #!/bin/bash
Filename: switch_case.sh
Description: Using case to find count of directories and files in a # path

echo "Enter target path"
read path
files_count=0
dirs_count=0

for file in 'ls -l $path | cut -d ' ' -f1'
do
 case "$file" in

 d*)
 dirs_count='expr $dirs_count + 1 '
 ;;
 -*)
 files_count='expr $files_count + 1'
 ;;
 *)
 esac
done

echo "Directories count = $dirs_count"
echo "Regular file count = $files_count"

 The output after running this script is as follows:

 Enter target path
/usr/lib64
Directories count = 134
Regular file count = 1563

 In this example, we first read an input path from a user using the read shell builtin. Then, we initialize the counter variable of files and directories count to 0. Furthermore, we use ls -l $path | cut -d ' ' -f1 to get a long list of file attributes of the path content and then retrieve its first column. We know that the first character of the first column of ls -l tells the type of the file. If it is d, then it is a directory, and - represents a regular file. The dirs_count or files_count variables get incremented accordingly.

 Passing stdout as a parameter using xargs

 The xargs command is used to build and execute a command line from a standard input. Commands such as cp, echo, rm, wc, and so on, don't take input from a standard input or redirected output from another command. In such commands, we can use xargs to provide an input as an output of another command. The syntax is as follows:

 xargs [option]

 Some of options are explained in the following table:

 	
 Option

 	
 Description

 	
 -a file

 	
 This reads items from a file instead of stdin

 	
 -0, --null

 	
 Inputs are null-terminated instead of whitespace

 	
 -t, --verbose

 	
 Prints a command line on a standard output before executing

 	
 --show-limits

 	
 This displays the limit on the length of the command line imposed by OS

 	
 -P max-procs

 	
 Runs upto the max-procs processes one at a time

 	
 -n max-args

 	
 This at most uses the max-args argument per command line

 Basic operations with xargs

 The xargs command can be used without any option. It allows you to enter an input from stdin, and when ctrl + d is called, it prints whatever was typed:

$ xargs
Linux shell
scripting
ctrl + d
Linux shell scripting

 The --show-limits option can be used to know the limit of the command line length:

$ xargs --show-limits
Your environment variables take up 4017 bytes
POSIX upper limit on argument length (this system): 2091087
POSIX smallest allowable upper limit on argument length (all systems): 4096
Maximum length of command we could actually use: 2087070
Size of command buffer we are actually using: 131072

 Using xargs to find a file with the maximum size

 The following shell script will explain how xargs can be used to get a file with the maximum size in a given directory recursively:

 #!/bin/bash
Filename: max_file_size.sh
Description: File with maximum size in a directory recursively

echo "Enter path of directory"
read path
echo "File with maximum size:"

find $path -type f | xargs du -h | sort -h | tail -1

 The output after running this script is as follows:

 Enter path of directory
/usr/bin
File with maximum size:
12M /usr/bin/doxygen

 In this example, we are using xargs to pass each regular file obtained from the find command for size calculation. Furthermore, the output of du is redirected to the sort command for a human-numeric sort and then we can print the last line or sort to get the file with a maximum size.

 Archiving files with a given pattern

 Another useful example of using xargs is to archive all the files that we are interested in, and these files can be kept as back files.

 The following shell script finds all the shell script in a specified directory and creates tar of it for further reference:

 #!/bin/bash
Filename: tar_creation.sh
Description: Create tar of all shell scripts in a directory

echo "Specify directory path"
read path

find $path -name "*.sh" | xargs tar cvf scripts.tar

 The output after running the script is as follows:

 Specify directory path
/usr/lib64
/usr/lib64/nspluginwrapper/npviewer.sh
/usr/lib64/xml2Conf.sh
/usr/lib64/firefox/run-mozilla.sh
/usr/lib64/libreoffice/ure/bin/startup.sh

 In this example, all the files with an extension .sh are searched and passed as parameters to the tar command to create an archive. The file scripts.tar is created in the directory from where the scripts are being called.

 Using functions and positional parameters

 Similar to other programming languages, function is a way to write a set of actions once and use it multiple times. It makes the code modular and reusable.

 The syntax of writing a function is as follows:

function function_name
 {
 # Common set of action to be done
 }

 Here, function is a keyword to specify a function and function_name is the name of the function; we can also define a function in the following ways:

function_name()
{
 # Common set of action to be done
}

 The actions written within curly braces are executed whenever a particular function is invoked.

 Calling a function in bash

 Consider the following shell script that defines the my_func()function:

 #!/bin/bash
Filename: function_call.sh
Description: Shows how function is defined and called in bash

Defining my_func function
my_func()
{
 echo "Function my_func is called"
 return 3
}

my_func # Calling my_func function
return_value=$?
echo "Return value of function = $return_value"

 To call my_func() in shell script, we just have to write a function's name:

 my_func

 The my_func function has a return value as 3. The return value of a function is the exit status of a function. In the preceding example, the exit status of the my_func function is assigned to the return_value variable.

 The result of running the preceding script is as follows:

 Function my_func is called
Return value of function = 3

 The return value of a function is what the return shell builtin is specified in its argument. If no return is used, then the exit code of the last command is executed in the function. In this example, the exit code will be the exit code of the echo command.

 Passing parameters to functions

 An argument to a function can be provided by specifying the first name of the function followed by space-separated arguments. A function in shell doesn't use parameters by its name but by positions; we can also say that the shell function takes positional parameters. Positional parameters are accessed by the variable names $1, $2, $3, $n, and so on, inside a function.

 The length of arguments can be obtained using $#, a list of arguments passed can be fetched together using $@ or $*.

 The following shell script explains how parameters are passed to the function in bash:

 #!/bin/bash
Filename: func_param.sh
Description: How parameters to function is passed and accessed in bash

upper_case()
{
 if [$# -eq 1]
 then
 echo $1 | tr '[a-z]' '[A-Z]'
 fi
}

upper_case hello
upper_case "Linux shell scripting"

 The output of the preceding script is as follows:

 HELLO
LINUX SHELL SCRIPTING

 In the preceding shell script example, we called the upper_case() method twice with the hello and Linux shell scripting parameters. Both of them get converted to uppercase. In a similar way, other functions can be written to avoid writing repetitive work again and again.

 Alias

 Alias in shell refers to giving another name to a command or group of commands. It is very useful when a name of a command is long. With the help of alias, we can avoid typing a bigger name and invoke a command by a name as per your convenience.

 To create an alias, alias shell builtin command is used. The syntax is as follows:

 alias alias_name="Commands to be aliased"

 Creating alias

 To print a disk space in a human-readable format, we use the df command with the -h option. By making alias of df -h to df, we can avoid typing again and again df -h.

 The output of the df command before aliasing it to df -h is shown in the following screenshot:

$ df

 [image: Creating alias]

 Now, to create alias for df -h to df, we will execute the following command:

$ alias df="df -h" # Creating alias
$ df

 The output obtained is as follows:

 [image: Creating alias]

 We see that after creating alias of df -h to df, a default disk space is printed in a human-readable format.

 Another useful example can be aliasing the rm command to rm -i. Using rm with the -i option asks the user for a confirmation before deleting them:

 #!/bin/bash
Filename: alias.sh
Description: Creating alias of rm -i

touch /tmp/file.txt
rm /tmp/file.txt # File gets deleted silently
touch /tmp/file.txt # Creating again a file
alias rm="rm -i" # Creating alias of rm -i
rm /tmp/file.txt

 The output after executing the preceding script is as follows:

 rm: remove regular empty file '/tmp/file.txt'? Y

 We can see that after alias creation, rm asks for a confirmation before deleting the /tmp/file.txt file.

 Listing all aliases

 To see the aliases that are already set for the current shell, use an alias without any argument or with the –p option:

 $ alias
alias df='df -h'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'

 We can see that the df alias that we created still exists, along with the already other existing aliases.

 Removing an alias

 To remove an already existing alias, we can use the unalias shell builtin command:

 $ unalias df # Deletes df alias
$ alias -p # Printing existing aliases
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'

 We see that the df alias has been removed. To remove all aliases, use unalias with the a option:

$ unalias -a # Delets all aliases for current shell
$ alias -p

 We can see that all aliases have now been deleted.

 pushd and popd

 Both pushd and popd are shell builtin commands. The pushd command is used to save the current directory into a stack and move to a new directory. Furthermore, popd can be used to return back to the previous directory that is on top of the stack.

 It is very useful when we have to switch between two directories frequently.

 The syntax of using pushd is as follows:

 pushd [directory]

 If no directory is specified, pushd changes the directory to whatever is on the top of the stack.

 The syntax of using popd is as follows:

 popd

 Using the popd switch, we can go back to the previous directory that is on top of the stack and pop that directory from stack.

 The following example counts the number of files or directories in a specified directory until one level:

 #!/bin/bash
Filename: pushd_popd.sh
Description: Count number of files and directories

echo "Enter a directory path"
read path

if [-d $path]
then
 pushd $path > /dev/null
 echo "File count in $path directory = 'ls | wc -l'"
 for f in 'ls'
 do
 if [-d $f]
 then
 pushd $f > /dev/null
 echo "File count in sub-directory $f = 'ls | wc -l'"
 popd > /dev/null
 fi
 done
 popd > /dev/null
else
 echo "$path is not a directory"
fi

 The output after running the preceding script is as follows:

 Enter a directory path
/usr/local
File count in /usr/local directory = 10
File count in sub-directory bin = 0
File count in sub-directory etc = 0
File count in sub-directory games = 0
File count in sub-directory include = 0
File count in sub-directory lib = 0
File count in sub-directory lib64 = 0
File count in sub-directory libexec = 0
File count in sub-directory sbin = 0
File count in sub-directory share = 3
File count in sub-directory src = 0

 Summary

 After reading this chapter, you should now be confident enough to write an effective shell script by using conditional statements, loops, and so on. Now, you can also write a modular and reusable code using the function in shell. Having the knowledge of exit code will help in knowing whether the command was executed successfully or not. You should also know a few more useful shell builtins such as alias, pushd, and popd.

 In the next chapter, we will learn more about modularizing our script by knowing how to write a reusable shell script itself, which can be used in shell scripts. We will also see how we can debug our shell scripts to fix problems.

 Chapter4.Modularizing and Debugging

 In the real world, when you write code, you either maintain it forever or someone takes ownership of it later and makes changes into it. It is very important that you write a good quality shell script so that it's easier to maintain it further. It is also important that the shell script is bug-free in order to get the work done as expected. Scripts running on production systems are very critical because any error or wrong behavior of the script may cause minor or major damage. To solve such critical issues, it is important to get it fixed as soon as possible.

 In this chapter, we will see how we can write modular and reusable code so that maintaining and updating our shell script application can be done quickly and without any hassle. We will also see how easily and quickly bugs in shell scripts can be solved using different debugging techniques. We will see how we can provide our users different choices for different tasks by providing support for command line options in a script. The knowledge of how to provide command line completion in a script will even increase the ease of using the script.

 This chapter will cover the following topics in detail:

 	Modularizing your scripts

 	Passing command line parameters to script

 	Debugging your scripts

 	Command completion

 Modularizing your scripts

 While writing a shell script, there is one stage when we feel that a shell script file has become too big to read and manage. To avoid such a scenario in our shell script, it is very important to keep the script modular.

 In order to keep the script modular and maintainable, you can do the following:

 	Create functions instead of writing the same code again and again

 	Write a common set of functions and variables in a separate script and then source to use it

 We have already seen how to define and use a function in Chapter 3, Effective Script Writing. Here, we will see how to divide a bigger script into smaller shell script modules and then use them by sourcing. In other words, we can say creating libraries in bash.

 Source to a script file

 Source is a shell built in command that reads and executes a script file in the current shell environment. If a script calls a source on another script file, all functions and variables available in that file will be loaded for use in calling script.

 Syntax

 The syntax of using the source is as follows:

 source <script filename> [arguments]

 OR:

 . <script filename> [arguments]

 The script filename can be with or without a path name. If the absolute or relative path is provided, it will look only into that path. Otherwise, a filename will be searched in the directories specified in the PATH variable.

 The arguments are treated as positional parameters to the script filename.

 The exit status of the source command will be the exit code of the last command executed in the script filename. If the script filename doesn't exist or there is no permission, then the exit status will be 1.

 Creating a shell script library

 A library provides a collection of features that can be reused by another application without rewriting from scratch. We can create a library in shell by putting our functions and variables to be reused in a shell script file.

 The following shell_library.sh script is an example of a shell library:

 #!/bin/bash
Filename: shell_library.sh
Description: Demonstrating creation of library in shell

Declare global variables
declare is_regular_file
declare is_directory_file

Function to check file type
function file_type()
{
 is_regular_file=0
 is_directory_file=0
 if [-f $1]
 then
 is_regular_file=1
 elif [-d $1]
 then
 is_directory_file=1
 fi
}

Printing regular file detail
function print_file_details()
{
 echo "Filename - $1"
 echo "Line count - `cat $1 | wc -l`"
 echo "Size - `du -h $1 | cut -f1`"
 echo "Owner - `ls -l $1 | tr -s ' '|cut -d ' ' -f3`"
 echo "Last modified date - `ls -l $1 | tr -s ' '|cut -d ' ' -f6,7`"
}

Printing directory details
function print_directory_details()
{
 echo "Directory Name - $1"
 echo "File Count in directory - `ls $1|wc -l`"
 echo "Owner - `ls -ld $1 | tr -s ' '|cut -d ' ' -f3`"
 echo "Last modified date - `ls -ld $1 | tr -s ' '|cut -d ' ' -f6,7`"
}

 The preceding shell_library.sh shell script contains the is_regular_file and is_directory_file global variables that can be used to know whether a given file is a regular file or directory after invoking the file_type()function. Furthermore, depending upon the type of the file, useful detailed information can be printed.

 Loading a shell script library

 Creating shell libraries are of no use unless it is used in another shell script. We can either use a shell script library directly in shell or within another script file. To load a shell script library, we will use the source command or. (period character) followed by shell script library.

 Calling a shell library in bash

 To use the shell_library.sh script file in shell, we can do the following:

$ source shell_library.sh

 OR:

$. shell_library.sh

 Calling any of them will make functions and variables available for use in the current shell:

 $ file_type /usr/bin
$ echo $is_directory_file
1
$ echo $is_regular_file
0
$ if [$is_directory_file -eq 1]; then print_directory_details /usr/bin; fi
Directory Name - /usr/bin
File Count in directory - 2336
Owner - root
Last modified date - Jul 12

 When the file_type /usr/bin command is executed, the file_type()function with the /usr/bin parameter will be called. As a result, the global variable is_directory_file or is_regular_file will get set to 1 (true), depending upon the type of the /usr/bin path. Using the shell if condition, we test whether the is_directory_file variable is set to 1 or not. If set to 1, then call the print_directory_details() function with /usr/bin as a parameter to print its details.

 Calling shell library in another shell script

 The following example explains the usage of the shell library in a shell script file:

 #!/bin/bash
Filename: shell_library_usage.sh
Description: Demonstrating shell library usage in shell script

Print details of all files/directories in a directory
echo "Enter path of directory"
read dir

Loading shell_library.sh module
. $PWD/shell_library.sh

Check if entered pathname is a directory
If directory, then print files/directories details inside it
file_type $dir
if [$is_directory_file -eq 1]
then
 pushd $dir > /dev/null # Save current directory and cd to $dir
 for file in `ls`
 do
 file_type $file
 if [$is_directory_file -eq 1]
 then
 print_directory_details $file
 echo
 elif [$is_regular_file -eq 1]
 then
 print_file_details $file
 echo
 fi
 done
fi

 The output after running the shell_library_usage.sh script is as follows:

 $ sh shell_library_usage.sh # Few outputs from /usr directory
Enter path of directory
/usr
Directory Name - bin
File Count in directory - 2336
Owner - root
Last modified date - Jul 12

Directory Name - games
File Count in directory - 0
Owner - root
Last modified date - Aug 16

Directory Name - include
File Count in directory - 172
Owner - root
Last modified date - Jul 12

Directory Name - lib
File Count in directory - 603
Owner - root
Last modified date - Jul 12

Directory Name - lib64
File Count in directory - 3380
Owner - root
Last modified date - Jul 12

Directory Name - libexec
File Count in directory - 170
Owner - root
Last modified date - Jul 7

 Note

 To load a shell script library, use source or . followed by script_filename.

 Both source and .(period character) execute a script in the current shell. ./script is not the same as . script because ./script executes the script in a subshell, while . script executes in a shell from where it was invoked.

 Passing command line parameters to script

 So far, we have seen the usage of the commands such as grep, head, ls, cat, and many more. These commands also support passing arguments to a command via a command line. Some of command line arguments are input files, output files, and options. Arguments are provided as per output needs. For example, ls -l filename is executed to get a long listing output, while ls -R filename is used to display recursively the contents of a directory.

 Shell script also supports providing command line arguments that we can process further by a shell script.

 The command line arguments can be given as follows:

<script_file> arg1 arg2 arg3 … argN

 Here, script_file is a shell script file to be executed, and arg1, arg2, arg3, argN, and so on, are command line parameters.

 Reading arguments in scripts

 Command line arguments are passed to a shell script as positional parameters. So, arg1 will be accessed in a script as $1, arg2 as $2, and so on.

 The following shell demonstrates the usage of the command line arguments:

 #!/bin/bash
Filename: command_line_arg.sh
Description: Accessing command line parameters in shell script

Printing first, second and third command line parameters"
echo "First command line parameter = $1"
echo "Second command line parameter = $2"
echo "Third command line parameter = $3"

 The following output is obtained after running the command_line_arg.sh script with arguments:

 $ sh command_line_arg.sh Linux Shell Scripting
First command line parameter = Linux
Second command line parameter = Shell
Third command line parameter = Scripting

 The following table shows special variables that are useful to get more information about command line parameters:

 	
 Special variables

 	
 Description

 	
 $#

 	
 Number of the command line arguments

 	
 $*

 	
 Complete set of command line arguments in a single string—that is, '$1 $2 … $n'

 	
 $@

 	
 Complete set of command line arguments, but each argument is enclosed in separate quotes—that is, '$1' '$2' … '$n'

 	
 $0

 	
 Name of the shell script itself

 	
 $1, $1, … $N

 	
 Refers to argument1, argument2, …, argumentN, respectively

 Using $# in a script to check the number of command line arguments will be very helpful to process arguments further.

 The following is another shell script example that takes command line arguments:

 #!/bin/bash
Filename: command_line_arg2.sh
Description: Creating directories in /tmp

Check if at least 1 argument is passed in command line
if [$# -lt 1]
then
 echo "Specify minimum one argument to create directory"
 exit 1
else
 pushd /tmp > /dev/null
 echo "Directory to be created are: $@"
 mkdir $@ # Accessing all command line arguments
fi

 The following output is obtained after executing the command_line_arg2.sh script:

$ sh command_line_arg2.sh a b
Directory to be created are: a b
$ sh command_line_arg2.sh
Specify minimum one argument to create directory

 Shifting command line arguments

 To shift command line arguments towards the left, the shift built in can be used. The syntax is as follows:

 shift N

 Here, N is the number of arguments by which it can shift to the left.

 For example, suppose the current command line arguments are arg1, arg2, arg3, arg4 and arg5. They can be accessed in a shell script as $1, $2, $3, $4, and $5, respectively; the $# value is 5. When we call shift 3, arguments get shifted by 3. Now, $1 contains arg4 and $2 contains arg5. Also, the $# value is now 2.

 The following shell script demonstrates the usage of shift:

 #!/bin/bash
Filename: shift_argument.sh
Description: Usage of shift shell builtin

echo "Length of command line arguments = $#"
echo "Arguments are:"
echo "\$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6"
echo "Shifting arguments by 3"
shift 3
echo "Length of command line arguments after 3 shift = $#"
echo "Arguments after 3 shifts are"
echo "\$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6"

 The following output is obtained after running the shift_argument.sh script with the arguments a b c d e f:

$ sh shift_argument.sh a b c d e f
Length of command line arguments = 6
Arguments are:
$1 = a, $2 = b, $3 = c, $4 = d, $5 = e, $6 = f
Shifting arguments by 3
Length of command line arguments after 3 shift = 3
Arguments after 3 shifts are
$1 = d, $2 = e, $3 = f, $4 = , $5 = , $6 =

 Processing command line options in a script

 Providing command line options make shell scripts more interactive. From the command line arguments, we can also parse options for further processing by a shell script.

 The following shell script shows the command line usage with options:

 #!/bin/bash
Filename: myprint.sh
Description: Showing how to create command line options in shell script

function display_help()
{
 echo "Usage: myprint [OPTIONS] [arg ...]"
 echo "--help Display help"
 echo "--version Display version of script"
 echo "--print Print arguments"
}

function display_version()
{
 echo "Version of shell script application is 0.1"
}

function myprint()
{
 echo "Arguments are: $*"
}

Parsing command line arguments

if ["$1" != ""]
then
 case $1 in
 --help)
 display_help
 exit 1
 ;;
 --version)
 display_version
 exit 1
 ;;
 --print)
 shift
 myprint $@
 exit 1
 ;;
 *)
 display_help
 exit 1
 esac
fi

 The following output is obtained after executing the myprint.sh script:

 $ sh myprint.sh --help
Usage: myprint [OPTIONS] [arg ...]
--help Display help
--version Display version of script
--print Print arguments
$ sh myprint.sh --version
Version of shell script application is 0.1
$ sh myprint.sh --print Linux Shell Scripting
Arguments are: Linux Shell Scripting

 Debugging your scripts

 We write different shell scripts to perform different tasks. Have you ever encountered any errors while executing a shell script? The answer would be mostly yes! This is to be expected as it is practically impossible to always write perfect shell scripts, without errors or bugs.

 For example, the following shell script is a buggy script while execution:

 #!/bin/bash
Filename: buggy_script.sh
Description: Demonstrating a buggy script

a=12 b=8
if [a -gt $b]
then
 echo "a is greater than b"
else
 echo "b is greater than a"
fi

 The following output is obtained after executing buggy_script.sh:

$ sh buggy_script.sh
buggy_script.sh: line 6: [: a: integer expression expected
b is greater than a

 From the output, we see that the error [: a: integer expression expected occurred at line 6. It's not always possible to know the reason of the error by just looking into an error message, especially when seeing an error for the first time. Also, looking manually into the code and rectifying an error is difficult when dealing with a lengthy shell script.

 To overcome all kinds of troubles while resolving an error or bug in a shell script, it's preferred to debug code. Debugging ways to debug a shell script are as follows:

 	Using echo in an expected buggy area of a script to print the contents of the variables or commands to be executed

 	Debugging an entire script using -x while running a script

 	Debugging a section of a script using set builtin command with the -x and +x options inside the script

 Debugging using echo

 The echo command is very useful as it prints whatever arguments are provided to it. When we encounter an error while executing a script, we know the line number with an error message. In such a case, we can use echo to print what is going to be executed before the actual execution.

 In our previous example, buggy_script.sh, we got an error at line 6—that is if [a -gt $b]—while execution. We can use the echo statement to print what is actually going to be executed at line 6. The following shell script adds echo in line 6, to see what will be executed finally at line 6:

 #!/bin/bash
Filename: debugging_using_echo.sh
Description: Debugging using echo

a=12 b=8
echo "if [a -gt $b]"
exit
if [a -gt $b]
then
 echo "a is greater than b"
else
 echo "b is greater than a"
fi

 We will now execute the debugging_using_echo.sh script as follows:

$ sh debugging_using_echo.sh
if [a -gt 8]

 We can see that the character a is getting compared with 8, while we were expecting the value of the variable a. This means that, by mistake, we forgot to use $ with a to extract the value of the variable a.

 Debugging an entire script using -x

 Using echo to debug is easy if the script is small, or if we know where exactly the problem is. Another disadvantage of using echo is that every time we make changes, we will have to open a shell script and modify the echo command accordingly. After debugging, we will have to remember to delete the extra echo lines added for the purposes of debugging.

 To overcome these problems, bash provides the -x option that can be used while executing a shell script. Running a script with the -x option runs a script in the debug mode. This prints all the commands that are going to be executed along with the output of the script.

 Consider the following shell script as an example:

 #!/bin/bash
Filename : debug_entire_script.sh
Description: Debugging entire shell script using -x

Creating diretcories in /tmp
dir1=/tmp/$1
dir2=/tmp/$2
mkdir $dir1 $dir2
ls -ld $dir1
ls -ld $dir2
rmdir $dir1
rmdir $dir2

 Now, we will run the preceding script as follows:

$ sh debug_entire_script.sh pkg1
mkdir: cannot create directory '/tmp/': File exists
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1
drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/
rmdir: failed to remove '/tmp/': Permission denied

 It gives an error that the /tmp/ directory already exists. By looking into the error, we can't say why it is trying to create the /tmp directory. To trace the entire code, we can run the debug_entire_script.sh script with the -x option:

$ sh -x debug_entire_script.sh pkg1
+ dir1=/tmp/pkg1
+ dir2=/tmp/
+ mkdir /tmp/pkg1 /tmp/
mkdir: cannot create directory '/tmp/': File exists
+ ls -ld /tmp/pkg1
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1
+ ls -ld /tmp/
drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/
+ rmdir /tmp/pkg1
+ rmdir /tmp/
rmdir: failed to remove '/tmp/': Permission denied

 We can see that dir2 is /tmp/. This means that no input is given to create the second directory.

 Using the -v option along with -x makes debugging even more verbose because -v displays input lines as it is:

 $ sh -xv debug_entire_script.sh pkg1
#!/bin/bash
Filename : debug_entire_script.sh
Description: Debugging entire shell script using -x

Creating diretcories in /tmp
dir1=/tmp/$1
+ dir1=/tmp/pkg1
dir2=/tmp/$2
+ dir2=/tmp/
mkdir $dir1 $dir2
+ mkdir /tmp/pkg1 /tmp/
mkdir: cannot create directory '/tmp/': File exists
ls -ld $dir1
+ ls -ld /tmp/pkg1
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1
ls -ld $dir2
+ ls -ld /tmp/
drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/
rmdir $dir1
+ rmdir /tmp/pkg1
rmdir $dir2
+ rmdir /tmp/
rmdir: failed to remove '/tmp/': Permission denied

 With verbose output, it is quite clear that the dir1 and dir2 variables are expecting a command line argument. So, two arguments must be provided from a command line:

$ sh debug_entire_script.sh pkg1 pkg2
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:50 /tmp/pkg1
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:50 /tmp/pkg2

 Now, the script works without any errors.

 Note

 Instead of passing the -xv options to bash from a command line, we can add it in the shebang line in the script file—that is, #!/bin/bash -xv.

 Debugging sections of a script using the set options

 To debug a shell script, it's not necessary to debug the entire script all the time. Sometimes, debugging a partial script is more useful and time-saving. We can achieve partial debugging in a shell script using the set builtin command:

 set -x (Start debugging from here)
set +x (End debugging here)

 We can use set +x and set -x inside a shell script at multiple places depending upon the need. When a script is executed, commands in between them are printed along with the output.

 Consider the following shell script as an example:

 #!/bin/bash
Filename: eval.sh
Description: Evaluating arithmetic expression

a=23
b=6
expr $a + $b
expr $a - $b
expr $a * $b

 Executing this script gives the following output:

 $ sh eval.sh
29
17
expr: syntax error

 We get the syntax error with an expression that is most likely the third expression—that is, expr $a * $b.

 To debug, we will use set -x before and set +x after expr $a * $b.

 Another script partial_debugging.sh with partial debugging is as follows:

 #!/bin/bash
Filename: partial_debugging.sh
Description: Debugging part of script of eval.sh

a=23
b=6
expr $a + $b

expr $a - $b

set -x
expr $a * $b
set +x

 The following output is obtained after executing the partial_debugging.sh script:

 $ sh partial_debugging.sh
29
17
+ expr 23 eval.sh partial_debugging.sh 6
expr: syntax error
+ set +x

 From the preceding output, we can see that expr $a * $b is executed as expr 23 eval.sh partial_debugging.sh 6. This means, instead of doing multiplication, bash is expanding the behavior of * as anything available in the current directory. So, we need to escape the behavior of the character * from getting expanded—that is, expr $a * $b.

 The following script eval_modified.sh is a modified form of the eval.sh script:

 #!/bin/bash
Filename: eval_modified.sh
Description: Evaluating arithmetic expression

a=23
b=6
expr $a + $b
expr $a - $b
expr $a * $b

 Now, the output of running eval_modified.sh will be as follows:

 $ sh eval_modified.sh
29
17
138

 The script runs perfectly now without any errors.

 Other than what we have learned in debugging, you can also use the bashdb debugger for even better debugging of the shell script. The source code and documentation for bashdb can be found at http://bashdb.sourceforge.net/.

 Command completion

 While working on a command line, everyone has to do a common task such as typing, which includes commands, its options, input/output file path, and other arguments. Sometimes, we write a wrong command name because of a spelling error in the command name. Also, typing a long file path will be very difficult to remember. For example, if we want to look recursively into the contents of a directory present at the path /dir1/dir2/dir3/dir4/dir5/dir6, we will have to run the following command:

$ ls -R /dir1/dir2/dir3/dir4/dir5/dir6

 We can see that the path of this directory is very long and there is a high chance of making an error while typing the full path. Due to these issues, working on a command line will take a longer time than expected.

 To solve all these problems, shell supports a very nice feature called command completion. Along with the other shell, bash also has a very good support of command completion.

 Most of the Linux distributions, for example, Fedora, Ubuntu, Debian, and CentOS have a pre-installed bash completion for core commands. If not available, it can be downloaded using the corresponding distribution package manager with the package name bash-completion.

 Command completion in shell allows you to autocomplete the rest of the characters of the partially typed command, suggesting possible options associated with the given command. It also suggests and autocompletes the partially typed file path.

 To enable autocompletion feature in bash, the Tab key is used. While typing a command, a single TAB autocompletes the command if the single command matches, and double [TAB] lists all the possible commands starting with a partially typed command.

 For example:

$ gr[TAB] # Nothing happens
$ gre[TAB] # Autocompletes to grep
$ grep[TAB][TAB] # Lists commands installed in system and starts with grep
grep grep-changelog grepdiff

 Now, suppose we want to see the contents of the /usr/share/man/ directory, we will have to type ls /usr/share/man/. Using bash completion, type the following command:

$ ls /u[TAB]/sh[TAB]/man

 Bash completion will auto-complete the missing partial path and the command will become:

$ ls /usr/share/man

 Managing bash completion with complete

 The complete is a shell builtin that can be used to see the available bash completion specification for the available commands in a system. It is also used to modify, delete, and create bash completion.

 Viewing the existing bash completion

 To know the existing bash completion, use the complete command with or without the–p option:

$ complete -p

 The following are some of the outputs of the preceding command:

complete cat # No completion output
complete -F _longopt grep # Completion as files from current directory
complete -d pushd # Completion as directories from current directory
complete -c which # Completion as list of all available commands

 To see bash completion on these commands, type the following command:

 This lists all files/directories, including hidden files/directories:

$ grep [TAB][TAB]

 This lists all files/directories, including hidden files/directories:

 $ cat [TAB][TAB]

 This tries to list all the available commands in a system. Pressing y will display commands and n will display nothing.

$ complete -c which [TAB][TAB]
 Display all 3205 possibilities? (y or n)

 Modifying default bash completion behavior

 We can also modify the existing bash completion behavior of a given command using the complete shell builtin command.

 The following command is used to change the behavior of the which command to not display any options:

$ complete which
$ which [TAB][TAB] # No auto completion option will be shown

 The following command is used to change the ls command tab behavior to show only the directories list as bash completion:

$ ls ~/[TAB][TAB] # Displays directories and file as auto-completion
file1.sh file2.txt dir1/ dir2/ dir3/
$ complete -d ls
$ ls ~/[TAB][TAB] # Displays only directory name as auto-completion
dir1/ dir2/ dir3/

 Removing bash completion specification

 We can remove bash completion specification for a command using the shell builtin complete with the –r option.

 The syntax is as follows:

complete -r command_name

 Consider the following as an example:

$ complete | grep which # Viewing bash completion specification for which
complete -c which
$ complete -r which # Removed bash completion specification for which
$ complete | grep which # No output

 If no command_name is given as an argument to complete -r, all the completion specifications are removed:

$ complete -r
$ complete

 Writing bash completion for your own application

 The bash-completion package doesn't provide autocompletion feature for any external tools. Suppose that we want to create a tool that has multiple options and arguments. To add a bash-completion feature to its options, we will have to create our own bash completion file and source into it.

 For example, package managers such as dnf and apt-get have its own bash completion file to support autocompletion for its options:

$ dnf up[TAB][TAB]
update updateinfo update-to upgrade upgrade-to
$ apt-get up[TAB][TAB]
update upgrade

 Consider the following shell script as an example:

 #!/bin/bash
Filename: bash_completion_example.sh
Description: Example demonstrating bash completion feature for command options

function help()
{
 echo "Usage: print [OPTIONS] [arg ...]"
 echo "-h|--help Display help"
 echo "-v|--version Display version of script"
 echo "-p|--print Print arguments"
}

function version()
{
 echo "Version of shell script application is 0.1"
}

function print()
{
 echo "Arguments are: $*"
}

Parsing command line arguments

while ["$1" != ""]
do
 case $1 in
 -h | --help)
 help
 exit 1
 ;;
 -v | --version)
 version
 exit 1
 ;;
 -p | --print)
 shift
 print $@
 exit 1
 ;;
 *)
 help
 exit 1
 esac
done

 To know about the supported options in bash_completion_example.sh, we will run the --help option:

$ chmod +x bash_completion_example.sh # Adding execute permission to script
$./bash_completion_example.sh --help
Usage: print [OPTIONS] [arg ...]
-h|--help Display help
-v|--version Display version of script
-p|--print Print arguments

 So, the supported options are -h, --help, -v, --version, -p, and --print.

 To write bash completion, information of the following bash internal variables are required:

 	
 Bash variables

 	
 Description

 	
 COMP_WORDS

 	
 An array of words that is typed on the command line

 	
 COMP_CWORD

 	
 An index of the word containing the current cursor position.

 	
 COMPREPLY

 	
 An array that holds the completion results that get displayed after pressing [TAB][TAB]

 The compgen is a shell builtin command that displays the possible completions depending on the options. It is used in shell functions to generate possible completions.

 An example of bash completion

 A bash-completion file for our shell script bash_completion_example will be as follows:

 # Filename: bash_completion_example
Description: Bash completion for bash_completion_example.sh

_bash_completion_example()
{
 # Declaring local variables
 local cur prev opts
 # An array variable storing the possible completions
 COMPREPLY=()
 # Save current word typed on command line in cur variable
 cur="${COMP_WORDS[COMP_CWORD]}"
 # Saving previous word typed on command line in prev variable
 prev="${COMP_WORDS[COMP_CWORD-1]}"
 # Save all options provided by application in variable opts
 opts="-h -v -p --help --verbose --print"

 # Checking "${cur} == -*" means that perform completion only if current
 # word starts with a dash (-), which suggest that user is trying to complete an option.
 # Variable COMPREPLY contains the match of the current word "${cur}" against the list
 if [[${cur} == -*]] ; then
 COMPREPLY=($(compgen -W "${opts}" -- ${cur}))
 return 0
 fi
}

Register _bash_completion_example to provide completion
on running script bash_completion_example.sh
complete -F _bash_completion_example ./bash_completion_example.sh

 As per convention, a bash-completion function name should start with an underscore (_) followed by the name of the application—that is, _bash_completion_example. Furthermore, we reset the bash variable COMPREPLY to clean up any previous left out data. Then, we declare and set the cur variable to the current word of the command line and the prev variable to the previous word in the command line. Another variable opts is declared and initialized with all the options that are recognized by an application; in our case, they are -h -v -p --help --verbose –print. The condition if [[${cur} == -*]] checks whether the current word is equal to -* because our option starts with - followed by any other character. If true, then display all the matching options using the compgen shell builtin with the -W option.

 Running the created bash completion

 In order to run the created bash completion, the easiest way is to source into source bash_completion_example shell script and then run the script or command:

$ source ./bash_completion_example
Now, execute shell script:
$./bash_completion_example.sh -[TAB][TAB]
-h --help -p --print -v --verbose
$./bash_completion_example.sh --[TAB][TAB]
--help --print --verbose
$./bash_completion_example.sh –-p[TAB]

 Here, --p[TAB] gets auto-completed to -–print.

 Summary

 After reading this chapter, you should now able to write a shell script that can be easy to maintain and modify by others. Now, you know how to use an existing shell script library in your own script by using the source command. You also got familiarity with fixing errors and bugs in a shell script by making use of the different debugging techniques. You should also know how to write a script by taking command line arguments and providing bash completion features for it.

 In the next chapter, we will see how to view, change, create, and delete environment variables in order to meet the requirement of running our applications.

 Chapter5.Customizing the Environment

 In a default system, we get certain settings that are preconfigured. As time progresses, we often feel the need to modify some of the default settings provided. Similar needs arise when we are working in a shell to get things done, for example, modifying the environment according to the needs of the application. Some of the features are so irresistible that we may need them every time, for example, the editor of our choice used by an application. While working on an important task, it may happen that we forget a command that we used a few days ago. In such cases, we try to recall that command as soon as possible to get work done. If we can't remember, we consume time and effort searching on the Internet or in text books for the exact command and syntax.

 In this chapter, we will see how, by adding or changing the existing environment variables, we can modify the environment as per our application needs. We will also see how a user can modify the .bashrc, .bash_profile, and .bash_logout files to make the setting changes available permanently. We will see how we can search and modify the history of previously executed commands. We will also see how to run multiple tasks from a single shell and manage them together.

 This chapter will cover the following topics in detail:

 	Knowing the default environment

 	Modifying the shell environment

 	Using bash startup files

 	Knowing your history

 	Managing tasks

 Knowing the default environment

 Setting up a proper environment is very important for running a process. An environment consists of environment variables that may or may not have a default value set. The required environment is set by modifying the existing environment variables or creating new environment variables. Environment variables are exported variables that are available to the current process and also its child processes. In Chapter 1, The Beginning of the Scripting Journey, we learned about some of the builtin shell variables that can be used in our application as environment variables to set the environment.

 Viewing a shell environment

 To view the current environment in the shell, we can use the printenv or env commands. Environment variables may have no value, a single value, or a multiple value set. If multiple values exist, each value is separated by a colon (:).

 printenv

 We can use printenv to print the value associated with a given environment variable. The syntax is as follows:

 $ printenv [VARIABLE]

 Consider the following as examples:

$ printenv SHELL # Prints which shell is being used
/bin/bash
$ printenv PWD # Present working directory
/home/foo/Documents
$ printenv HOME # Prints user's home directory
/home/foo
$ printenv PATH # Path where command to be executed is searched
/usr/lib64/qt-3.3/bin:/usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/foo
$ printenv USER HOSTNAME # Prints value of both environment variables
foo
localhost

 If no VARIABLE is specified, printenv prints all environment variables as follows:

$ printenv # Prints all environment variables available to current shell

 env

 We can also use the env command to view environment variables as follows:

$ env

 This displays all environment variables defined for a given shell.

 Note

 To view value(s) of a specific environment variable, the echo command can also be used followed by an environment variable name prefixed with a dollar symbol ($). For example, echo $SHELL.

 Differences between shell and environment variables

 Both shell and environment variables are variables that are accessible and set for a given shell that may be used by an application or a command running in that shell. However, there are a few differences between them, which are set out in the following table:

 	
 Shell variables

 	
 Environment variables

 	
 Both local and exported variables are shell variables

 	
 Exported shell variables are environment variables

 	
 The set builtin command is used to see the name and corresponding value of a shell variable

 	
 The env or printenv command is used to see the name and corresponding value of an environment variable

 	
 Local shell variables are not available for use by their child shells

 	
 Child shells inherit all environment variables present in the parent shell

 	
 A shell variable is created by specifying a variable name on the left and value(s) separated by a colon (:) on the right-hand side of an equal operator (=)

 	
 An environment variable can be created by prefixing an export shell built - in command to the existing shell variable, or while creating a new shell variable

 Modifying a shell environment

 When a new shell is launched, it has the initial environment set that will be used by any application or command that gets executed in a given shell. We now know that the env or setenv shell builtin command can be used to view which environment variables are set for this shell. The shell also provides the capability to modify the current environment. We can also modify the current bash environment by creating, modifying, or deleting environment variables.

 Creating environment variables

 To create a new environment variable in a shell, the export shell builtin command is used.

 For example, we will create a new environment variable ENV_VAR1:

$ env | grep ENV_VAR1 # Verifying that ENV_VAR1 doesn't exist
$ export ENV_VAR1='New environment variable'

 A new environment variable with the name ENV_VAR1 is created. To view a new environment variable, we can call the printenv or env command:

$ env | grep ENV_VAR1
ENV_VAR1=New environment variable
$ printenv ENV_VAR1 # Viewing value of ENV_VAR1 environment variable
New environment variable

 We can also use the echo command to print the value of an environment variable:

$ echo $ENV_VAR1 # Printing value of ENV_VAR1 environment variable
New environment variable

 A local shell variable can also be exported further as an environment variable. As an example, we will create the ENV_VAR2 and LOCAL_VAR1 variables:

$ ENV_VAR2='Another environment variable'
$ LOCAL_VAR1='Local variable'
$ env | grep ENV_VAR2 # Verifying if ENV_VAR2 is an environment variable

 No environment variable is found with the name ENV_VAR2. This is because while creating ENV_VAR2, it wasn't exported. Therefore, it will be created as a local variable of a shell:

$ set | grep ENV_VAR2
ENV_VAR2='Another environment variable'
$ set | grep LOCAL_VAR1
LOCAL_VAR1='Local variable'

 Now, to make the ENV_VAR2 shell variable as an environment variable, we can use the export command:

$ export ENV_VAR2 # Becomes environment variable
$ printenv ENV_VAR2 # Checking of ENV_VAR2 is an environment variable
Another environment variable
$ printenv LOCAL_VAR1

 The variable LOCAL_VAR1 is not an environment variable.

 One of the important features of environment variables is that it is available to all of its child shells. We can see this in the following example:

$ bash # creating a new bash shell
$ env | grep ENV_VAR2 # Checking if ENV_VAR2 is available in child shell
ENV_VAR2=Another environment variable
$ env | grep ENV_VAR1
ENV_VAR1=New environment variable
$ env | grep LOCAL_VAR1

 We can see that the environment variables from a parent shell got inherited by a child shell—for example, ENV_VAR1, ENV_VAR2—while the local variable, such as LOCAL_VAR1, remains available only to a shell in which the variable was created.

 Modifying environment variables

 Shell provides flexibility for modifying any existing environment variable. For example, consider the HOME environment variable. By default, the HOME environment variable contains the path of the current logged in user's home directory:

$ printenv HOME
/home/foo
$ pwd # Checking current working directory
/tmp
$ cd $HOME # Should change directory to /home/foo
$ pwd # Check now current working directory
/home/foo

 Now, we will modify the HOME environment variable value to /tmp:

$ HOME=/tmp # Modifying HOME environment variable
$ printenv HOME # Checking value of HOME environment variable
/tmp
$ cd $HOME # Changing directory to what $HOME contains
$ pwd # Checking current working directory
/tmp

 We can also append a value to an environment variable. To do this, make sure the new value is separated with a colon (:). For example, consider the PATH environment variable:

$ printenv PATH
usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/foo/.local/bin:/home/foo/bin

 Now, we want to add a new path to the PATH variable—for example, /home/foo/projects/bin—so that, while looking for a program or command, the shell can search the specified path too. To append a path to the PATH environment variable, use a colon (:) followed with a new path name:

$ PATH=$PATH:/home/foo/projects/bin # Appends new path
$ printenv PATH
usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/foo/.local/bin:/home/foo/bin:/home/foo/projects/bin

 We can see that the new path has been appended to the existing values of the PATH variable.

 We can also append multiple values to an environment variable; for that, each value should be separated by a colon (:).

 For example, we will add two more application paths to the PATH variable:

$ PATH=$PATH:/home/foo/project1/bin:PATH:/home/foo/project2/bin
$ printenv PATH
usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/foo/.local/bin:/home/foo/bin:/home/foo/projects/bin:/home/foo/project1/bin:PATH:/home/foo/project2/bin

 The two new paths, /home/foo/project1/bin and /home/foo/project2/bin, have been added to the PATH variable.

 Deleting environment variables

 We can delete or reset a value of an environment variable using the unset shell builtin command.

 For example, we will create an environment variable called ENV1:

$ export ENV1='My environment variable'
$ env | grep ENV1 # Checking if ENV1 environment variable exist
ENV1=My environment variable
$ unset ENV1 # Deleting ENV1 environment variable
$ env | grep ENV1

 The environment variable ENV1 gets deleted by the unset command. Now, to reset an environment variable, assign it a blank value:

$ export ENV2='Another environment variable'
$ env | grep ENV2
ENV2=Another environment variable
$ ENV2='' # Reset ENV2 to blank
$ env | grep ENV2
ENV2=

 Using bash startup files

 Until now, to perform a task or set anything for a given shell, we had to execute the needed commands in a shell. One of the main limitations to this approach is that the same configuration won't be available in a new shell. In a lot of cases, a user may want that whenever he or she launches a new shell, whereas instead a new customized configuration on top of the default configuration is available for use. For customizing bash, three files are available in a user's home directory that get executed by default whenever a user launches a new bash. These files are bashrc, .bash_profile, and .bash_logout.

 .bashrc

 In a graphical system, mostly a non-login shell is used by a user. To run a non-login shell, we don't need the login credentials. Starting a shell in a graphical system provides a non-login shell. When a bash is invoked in non-login mode, the ~/.bashrc file is invoked and the configuration available in it is executed and applied in any bash shell being launched. Settings that are needed in both the login and non-login shell are kept in the ~/.bashrc file.

 For example, on a Fedora 22 system default, the ~/.bashrc file looks as follows:

 # .bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

 Any addition done in ~/.bashrc will be reflected only to the current user's bash shell. We can see that the .bashrc file also checks whether the etc/bashrc file is available. If available, that gets executed too. The /etc/bashrc file contains configuration applied to a bash shell for all users—that is, systemwide. Sysadmin can modify the /etc/bashrc file if any configuration needs to be applied to all users' bash shells.

 The file /etc/bashrc also looks into the script files available in /etc/profile.d, which can be confirmed by the following code snippet taken from the /etc/bashrc file:

 for i in /etc/profile.d/*.sh; do
 if [-r "$i"]; then
 if ["$PS1"]; then
 . "$i"

 The following example shows a modified .bashrc file. Name this file custom_bashrc:

 # custom_bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User added settings
Adding aliases
alias rm='rm -i' # Prompt before every removal
alias cp='cp -i' # Prompts before overwrite
alias df='df -h' # Prints size in human readable format
alias ll='ls -l' # Long listing of file

Exporting environment variables
Setting and exporting LD_LIBRARY_PATH variable
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/libs
Setting number of commands saved in history file to 10000
export HISTFILESIZE=10000

Defining functions
Function to calculate size of current directory
function current_directory_size()
{
echo -n "Current directory is $PWD with total used space "
du -chs $PWD 2> /dev/null | grep total | cut -f1
}

 The LD_LIBRARY_PATH environment variable is used to give the runtime shared library loader (ld.so) an extra set of directories to look for when searching for shared libraries. You can learn more about the shared library at http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html.

 Make a backup of your original ~/.bashrc file before modifying it:

$ cp ~/.bashrc ~/.bashrc.bak

 Now, copy the custom_bashrc file to ~/.bashrc:

$ cp custom_bashrc ~/.bashrc

 To apply modified settings, open a new bash shell. To apply a new .bashrc in the same bash shell, you can source into a new ~/.bashrc file:

$ source ~/.bashrc

 We can check whether the new settings are available or not:

$ ll /home # Using alias ll which we created

 total 24
drwx------. 2 root root 16384 Jun 11 00:46 lost+found
drwx--x---+ 41 foo foo 4096 Aug 3 12:57 foo

$ alias # To view aliases

 alias cp='cp -i'
alias df='df -h'
alias ll='ls -l'
alias ls='ls --color=auto'
alias rm='rm -i'
alias vi='vim'

 The alias command displays aliases that we added in .bashrc—that is, rm, cp, df, and ll.

 Now, call the current_directory_size()function that we added in .bashrc:

$ cd ~ # cd to user's home directory
$ current_directory_size
Current directory is /home/foo with total used space 97G
$ cd /tmp
$ current_directory_size
Current directory is /tmp with total used space 48K

 Make sure to move back the original .bashrc file whose backup we created at the beginning of this example, and source into it to get the settings reflected in the current shell session. This is required if you don't want any of the configuration changes that we did while playing out the preceding example:

$ mv ~/.bashrc.bak ~/.bashrc
$ source ~/.bashrc

 Note

 When bash is invoked as a non-login shell, it loads the configuration available in the ~/.bashrc, /etc/bashrc, and /etc/profile.d/*.sh files.

 .bash_profile

 In a non-graphical system, after a successful login, the user gets a shell. Such a shell is called a login shell. When a bash is invoked as a login shell, first the /etc/profile file gets executed; this runs the script available in /etc/profile.d/ as well. The following code snippet taken from /etc/profile also mentions this:

 for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
 if ["${-#*i}" != "$-"]; then
 . "$i"
 else

 These are global settings applied to any user's login shell. Furthermore, ~/.bash_profile gets executed for a login shell. On a Fedora 22 system, the default content of the ~/.bash_profile file looks as follows:

 # .bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

 From the contents, we can see that it looks for the .bashrc file in a user's home directory. If the .bashrc file is available in a home directory, it gets executed. We also know that the ~/.bashrc file executes the /etc/bashrc file as well. Next, we see that .bash_profile appends the PATH variable with the $HOME/.local/bin and $HOME/bin values. Furthermore, the modified PATH variable is exported as an environment variable.

 A user can modify the ~/.bash_profile file as per his/her customized configuration needs, such as default shell, editor for login shell, and so on.

 The following example contains a modified configuration in .bash_profile. We will use bash_profile as its filename:

 # .bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

Added configuration by us
Setting user's default editor
EDITOR=/usr/bin/vim
Show a welcome message to user with some useful information
echo "Welcome 'whoami'"
echo "You are using $SHELL as your shell"
echo "You are running 'uname ' release 'uname -r'"
echo "The machine architecture is 'uname -m'"
echo "$EDITOR will be used as default editor"
echo "Have a great time here!"

 Changes are made after the Added configuration by us comment. Before we apply this new configuration to ~/.bash_profile, we will first make a backup of the original file. This will help us in restoring the original content of the .bash_profile file:

$ cp ~/.bash_profile ~/.bash_profile.bak

 A new file .bash_profile.bak will be created in the home directory. Now, we will copy our new configuration to ~/.bash_profile:

$ cp bash_profile ~/.bash_profile

 To see the reflected changes in a login shell, we can either login as a non-graphical interface or just perform ssh into the same machine to run a login shell. SSH (Secure Shell) is a cryptographic network protocol for initiating text-based shell sessions on remote machines in a secure way. In UNIX and Linux-based systems, SSH to a local or remote machine can be done using the ssh command. The man page of ssh (man ssh) shows all the capabilities provided by it. To do a remote login on the same machine, we can run ssh username@localhost:

$ ssh foo@localhost # foo is the username of user

 Last login: Sun Aug 2 20:47:46 2015 from 127.0.0.1
Welcome foo
You are using /bin/bash as your shell
You are running Linux release 4.1.3-200.fc22.x86_64
The machine architecture is x86_64
/usr/bin/vim will be used as default editor
Have a great time here!

 We can see that all the details added by us are printed in a login shell. Another way to quickly test our new .bash_profile is by doing source to it:

$ source ~/.bash_profile

 Welcome foo
You are using /bin/bash as your shell
You are running Linux release 4.1.3-200.fc22.x86_64
The machine architecture is x86_64
/usr/bin/vim will be used as default editor
Have a great time here!

 To reset changes done in the ~/.bash_profile file, copy from the ~/.bash_profile.bak file that we created at the beginning of this example and source into it to get the changes reflected in the current shell:

$ mv ~/.bash_profile.bak ~/.bash_profile
$ source ~/.bash_profile

 Note

 When bash is invoked as a login shell, it loads the configuration available in the /etc/profile, /etc/profile.d/*.sh, ~/.bash_profile, .~/.bashrc, and ~/etc/bashrc files.

 .bash_logout

 The .bash_logout file present in a user's home directory gets executed every time a login shell exits. This is useful when a user has logged in remotely or has a non-graphical interface. A user can add clean-up tasks to be performed before he/she logs off from a system. A clean-up task may include removing the temporary files created, clearing environment variables, logging off important data, archiving or encrypting certain tasks, uploading onto the Web, and so on.

 Knowing your history

 Shells provide an interesting feature that allows you to find out the history of all commands you have executed previously in a shell. It often happens that we forget what command was typed on the previous day to perform a task. We may or may not be able to recall the exact syntax, but it is very convenient that we can refer to the history saved by the shell.

 Shell variables controlling the history

 There are shell variables that can be altered to change what and how much history a user can see. These shell variables are mentioned in the following table:

 	
 Name

 	
 Value

 	
 HISTFILE

 	
 Name of file in which by default history will be saved

 	
 HISTFILESIZE

 	
 Number of commands to be kept in history file

 	
 HISTSIZE

 	
 Number of history to be stored in memory for current session

 	
 HISTCONTROL

 	
 A colon-separated list of values controlling how commands are saved on the history list

 The value of the HISTCONTROL shell variable can be:

 	
 Value

 	
 Description

 	
 ignorespace

 	
 Lines which starts with a blank space, doesn't save in history list

 	
 ignoredups

 	
 Don't save lines which matches in previous saved history list

 	
 ignoreboth

 	
 Applies both ignorespace and ignoredups

 	
 erasedups

 	
 Remove all previous lines from history matching current line before saving it in history file

 Let's see what values these shell variables may contain:

$ echo $HISTFILE
/home/foo/.bash_history
$ echo $HISTFILESIZE
1000
$ echo $HISTSIZE
1000
$ echo $HISTCONTROL
ignoredups

 From the value obtained, we can see that the default history is saved into the .bash_history file of a user's home directory, with the maximum history command lines saved as 1000. Also, any duplicate history that is already present in the previous history line isn't saved.

 The history builtin command

 Shells provide the history builtin command so that a user will know the history of commands executed up to now.

 Running the history without any options, prints all the previously typed commands on stdout. The sequence of commands are provided oldest to latest as we go from top to bottom of the output:

$ history # Prints all commands typed previously on stdout
$ history | tail -n10 # Prints last 10 commands executed

 [image: The history builtin command]

 The following table explains the options available with the history shell built - in command:

 	
 Option

 	
 Description

 	
 -a

 	
 Append the new history lines into history immediately

 	
 -c

 	
 Clears history from current list

 	
 -d offset

 	
 Deletes history from offset specified

 	
 -r

 	
 Append the content of saved history to current list

 	
 -w

 	
 Write the current history list to the history file after overwriting existing saved history contents

 To see the last five commands executed, we can also perform the following commands:

$ history 5
 769 cd /tmp/
 770 vi hello
 771 cd ~
 772 vi .bashrc
 773 history 5

 We will find that all the commands executed match a given string from the history file. For example, search for commands having the set string in them:

$ history | grep set
 555 man setenv
 600 set | grep ENV_VAR2
 601 unset ENV_VAR2
 602 set | grep ENV_VAR2
 603 unset -u ENV_VAR2
 604 set -u ENV_VAR2
 605 set | grep ENV_VAR2
 737 set |grep HIST
 778 history | grep set

 To clear all the history of commands saved and to append the history available in the current list, we can do the following (don't run the following commands if you don't want to loose the saved command history):

$ history -c # Clears history from current list
$ history -w # Overwrite history file and writes current list which is empty

 Modifying the default history behavior

 By default, shell has some values set for managing the history. In the previous section, we saw that a maximum of 1000 lines of history will be stored in the history file. If a user spends most of his time working with a shell, he may have used 1000 or above commands in one or two days. In such a case, he will not be able to look at the history if he has typed a command ten days ago. Depending upon the individual use-case, a user can modify the number of lines to be stored in the history file.

 Executing the following command will set the maximum number of lines the history file may have to 100000:

$ HISTFILESIZE=100000

 Similarly, we can change where the history file should be saved. We saw that, by default, it is saved in the .bash_history file in the home directory. We can modify the HISTFILE shell variable and set it to whatever location we want our command history to be saved to:

$ HISTFILE=~/customized_history_path

 Now the executed command history will be saved in the customized_history_path file in the home directory instead of the ~/.bash_history file.

 To make these changes reflect to all the shells being launched by a user and for all sessions, add these modifications to the ~/.bashrc file.

 Handy shortcuts for seeing the history

 Depending upon a user's history size setting, the number of commands available in the history may be large. If a user wants to look for a specific command, he or she will have to look through the entire history, which can sometimes be troublesome. Shells provide some shortcuts to help us find a specific command previously executed. Knowledge of these shortcuts can save time in finding previously executed commands in the history.

 [Ctrl + r]

 While working in a shell, the [Ctrl + r] shortcut allows you to search for a command in the history. Start typing a command after pressing [Ctrl + r]; the shell shows a complete command that matches the substring of the command typed. To move forward to the next match, type [Ctrl + r] on the keyboard again and so on:

$ [ctrl + r]
(reverse-i-search)'his': man history

 We can see that typing his, suggested from history man history that we previously typed.

 Up and down arrow key

 The up and down arrow keys available on the keyboard can be used to go back and forward in the history of commands previously executed by the user. For example, to get the previous command, press the up arrow key once. To go back even further, press the up arrow key again and so on. Further, to go forward in the history use the down arrow key.

 !!

 The shortcut !! can be used to reexecute the last command executed in the shell:

$ ls /home/
lost+found foo
$!!
ls /home/
lost+found foo

 !(search_string)

 This shortcut executes the last command starting with search_string:

$!l
ls /home/
lost+found skumari
$!his
history 12

 !?(search_string)

 This shortcut executes the last command found with the substring search_string:

$!?h
ls /home/
lost+found skumari

 Task management

 When an application runs, it is possible that it will run for a long period of time or run until the computer shuts down. While running an application in a shell, we know that a shell prompt only comes back when running a program in the shell completes successfully or terminates due to some error. Unless we get a shell prompt back, we can't run another command in the same shell. We can't even close that shell because it will close the running process.

 Also, to run another application, we will have to open another shell in a new terminal and then run it. It can become difficult and tedious to manage if we have to run a lot of tasks. Shells provide ways to run a task in the background and suspend, kill, or move back in the foreground.

 Running tasks in the background

 A task can be started as a background in a shell by appending an ampersand (&).

 For example, we want to search for a string in the entire filesystem. Depending upon the filesystem's size and the number of files, it may take a lot of time. We can call the grep command to search for a string and save the result in a file. A filesystem hierarchy in Linux starts from the root('/').

$ grep -R "search Text" / 2>/dev/null > out1.txt &
[1] 8871
$

 Here, the grep searches for a string in the entire filesystem, sends any error message to /dev/null, and saves the search result into the out1.txt file. An ampersand (&) at the end sends the entire job to the background, prints PID of the started task, and returns back the shell prompt.

 Now, we can do other work in the same opened shell and perform other tasks.

 Sending a running task to the background

 It often happens that we run a task in a shell normally—that is, as a foreground task—but later we want to move it to the background. It is possible to do this by first suspending the current task using [Ctrl + z] and then using bg to move the task to the background.

 Consider the last text search as an example. We start a search normally as follows:

$ grep -R "search Text" / 2>/dev/null > out2.txt

 We will not see anything happening on the shell and we will just keep waiting for a shell prompt to return. Alternatively, we can suspend the running job using [Ctrl + z]:

[ctrl + z]
[2]+ Stopped grep -R "search Text" / 2> /dev/null > out2.txt

 Then, to send a suspended task to continue running in the background, use the bg command:

$ bg
[2]+ grep -R "search Text" / 2> /dev/null > out2.txt

 Listing background tasks

 To find out which tasks are running in the background or suspended in the current shell, jobs shell built - in is used as follows:

 $ jobs

 [1]- Running grep -R "search Text" / 2> /dev/null > out1.txt &
[2]+ Running grep -R "search Text" / 2> /dev/null > out2.txt &

 Here, index [1] and [2] are job numbers.

 The character '+' identifies the job that would be used as a default by the fg or bg command, and the character '-' identifies the job that would become a default if the current default job exits or terminates.

 Create another task and suspend it using the following commands:

$ grep -R "search Text" / 2>/dev/null > out3.txt
[ctrl + z]
[3]+ Stopped grep -R "search Text" / 2> /dev/null > out3.txt
$ jobs
[1] Running grep -R "search Text" / 2> /dev/null > out1.txt &
[2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+ Stopped grep-R "search Text" / 2> /dev/null > out3.txt

 To view PID of all background and suspended tasks, we can use the –p option:

$ jobs -p

 8871
8873
8874

 PID of jobs is in sequence. To view only the tasks running in the background, the -r option is used as follows:

$ jobs -r

 [1] Running grep -R "search Text" / 2> /dev/null > out1.txt &
[2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &

 To view only the suspended tasks, the -s option is used as follows:

$ jobs -s

 [3]+ Stopped grep-R "search Text" / 2> /dev/null > out3.txt

 To view a particular index job, use an index number with the jobs command:

$ jobs 2

 [2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &

 Moving tasks to the foreground

 We can move a background or suspended task to the foreground using the shell built - in command fg:

$ jobs # Listing background and suspended tasks

 [1] Running grep -R "search Text" / 2> /dev/null > out1.txt &
[2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+ Stopped grep-R "search Text" / 2> /dev/null > out3.txt

 The character '+' is mentioned in the job index 3. This means, running the fg command will run the third job in the foreground:

$ fg
$ grep -R "search Text" / 2> /dev/null > out3.txt

[ctrl + z]
[3]+ Stopped grep -R "search Text" / 2> /dev/null > out3.txt

 The following command suspends the third task:

$ jobs
[1] Running grep -R "search Text" / 2> /dev/null > out1.txt &
[2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+ Stopped grep-R "search Text" / 2> /dev/null > out3.txt

 To move a particular job to the foreground, use fg with a task index number:

$ fg 1 # Moving first tasks to foreground
$ grep -R "search Text" / 2> /dev/null > out1.txt
[ctrl + z]
[1]+ Stopped grep -R "search Text" / 2> /dev/null > out1.txt

 Terminating tasks

 We can also delete a running or suspended task if it's no longer needed. This can be done by using the disown shell built - in command:

$ jobs # List running or suspended tasks in current shell

 [1]+ Stopped grep -R "search Text" / 2> /dev/null > out1.txt
[2] Running grep -R "search Text" / 2> /dev/null > out2.txt &
[3]- Stopped grep -R "search Text" / 2> /dev/null > out3.txt

 Using disown without any option, deletes a task that has the character '+' mentioned with a task:

$ disown
bash: warning: deleting stopped job 1 with process group 8871

$ jobs # Listing available jobs
[2]- Running grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+ Stopped grep -R "search Text" / 2> /dev/null > out3.txt

 To delete running tasks, the -r option is used:

$ disown -r
jobs
[3]- Stopped grep -R "search Text" / 2> /dev/null > out3.txt

 To remove all tasks, the -a option is used as follows:

$ disown -a # Gives warning for deleting a suspended task
bash: warning: deleting stopped job 3 with process group 8874
$ jobs

 The output of jobs shows nothing because all the suspended and running tasks got deleted by the -a option.

 Summary

 After reading this chapter, you now know how to create and modify environment variables in a shell. You also know how .bashrc and .bash_profile help in making changes that are available permanently for all sessions of a user. You learned how to search the history of commands that we have previously executed and also how to run and manage different tasks in a shell by using the fg and bg shell built - in commands.

 In the next chapter, we will see what important types of files are available on Linux-based systems and what operations can be performed on them to get meaningful results.

 Chapter6.Working with Files

 For simplicity, everything in UNIX and Linux-based operating systems is treated as a file. Files in the filesystem are arranged in a hierarchical tree like a structure with the root of the tree denoted by '/' (forward slash). A node of the tree is either a directory or file where the directory is also a special type of file containing inode numbers and a corresponding filename entry of the list of files inside it. An inode number is an entry in an inode table that contains metadata information related to the file.

 In this chapter, we will take a closer look at the important and commonly used file types. We will see how we can create, modify, and perform other useful operations on files. We will also see how to monitor a list of files opened by a process or user.

 This chapter will cover the following topics in detail:

 	Performing basic file operations

 	Moving and copying files

 	Comparing files

 	Finding files

 	Links to a file

 	Special files

 	Temporary files

 	Permission and ownership

 	Getting the list of open files

 	Configuration files

 Performing basic file operations

 Most commonly used files are regular files and directories. In the following subsection, we will see the basic file operations.

 Creating files

 We can create both regular files and directories in shell using different shell commands.

 Directory file

 A directory is a special type of file that contains a list of filenames and a corresponding inode number. It acts as a container or folder to hold files and directories.

 To create a new directory through shell, we can use the mkdir command:

$ mkdir dir1

 We can also provide multiple directories' name as arguments to the mkdir command as follows:

$ mkdir dir2 dir3 dir4 # Creates multiple directories

 We can create a parent directory if the specified pathname to mkdir is not present. This is done using the -p option in mkdir:

$ mkdir -p /tmp/dir1/dir2/dir3

 Here, if dir1 and dir2 are the parent directories for dir3 and don't exist already, the -p option will create the dir1 directory first and then dir2 subdirectory inside dir1 and the dir3 subdirectory inside dir2.

 Regular file

 In general, text and binary files are known as regular files. In shell, a regular file can be created in multiple ways. Some of them are mentioned in the following sections.

 Touch command

 A new regular file can also be created using the touch command. It is mainly used to modify the timestamp of the existing file, but if the file doesn't exist, a new file is created:

$ touch newfile.txt # A new empty file newfile.txt gets created
$ test -f newfile.txt && echo File exists # Check if file exists
File exists

 Using the command line editors

 We can open any command line editor; for example, vi/vim, emacs, nano in shell, write content, and save content in file.

 Now, we will create and write a text using the vi editor:

$ vi foo.txt # Opens vi editor to write content

 Press the key I to enter the INSERT mode of vi and then type the text as shown in the following screenshot:

 [image: Using the command line editors]

 After writing the text, press the Esc key and then type the :wq command to save and exit from the vi editor. To know vi/vim in detail, refer to its man page or the online documentation (http://www.vim.org/docs.php):

 [image: Using the command line editors]

 Using the cat command

 We can even use the cat command to write the content into an existing or a new regular file, as follows:

$ cat > newfile1.txt
We are using cat command
to create a new file and write into
it
[Ctrl + d] # Press Ctrl + d to save and exit
$ cat newfile1.txt # See content of file
We are using cat command
to create a new file and write into
it

 By using the >> operator instead of >, we can append instead of overwriting the file's content.

 Redirecting the command's output

 While executing a command in bash or script, we can redirect results into an existing or a new file:

$ ls -l /home > newfile2.txt #File gets created containing command output
$ cat newfile2.txt
total 24
drwx------. 2 root root 16384 Jun 11 00:46 lost+found
drwx—x---+ 41 foo foo 4096 Aug 22 12:19 foo

 Modifying files

 To modify the content of a regular file in shell, open a file in an editor, make the required changes, and then save and exit. We can also use the >> operator to append the command's output to the specified file:

Command >> file.txt

 For example, we will save the ls output of /home in the ls_output.txt file:

$ ls /home/ >> ls_output.txt
$ cat ls_output.txt # Viewing content of file
lost+found
foo

 Now, we will append the ls output of another directory /home/foo/ as follows:

$ ls /home/foo >> ls_output.txt
lost+found
foo
Desktop
Documents
Downloads
Pictures

 We saw that the ls_output.txt file gets modified by appending the content of the ls command output.

 Viewing files

 To view the content of a regular file, we can simply open a file in an editor such as vi/vim, emacs and nano. We can also use the cat, less and more commands to view the file's content.

 To view the contents of a directory, we use the ls command:

$ ls /home/
lost+found foo

 To view the contents of a directory recursively, use ls with the -R or --recursive option.

 Viewing content using cat

 We can use the cat command to view the content of the file as follows:

$ cat newfile1.txt
We are using cat command
to create a new file and write into
it
$ cat -n newfile1.txt # Display line number as well
 1 We are using cat command
 2 to create a new file and write into
 3 it

 more and less

 The more and less commands are very useful and handy to view a large file that doesn't fit on the current terminal.

 The more command displays the content of a file in page format, in which we can scroll up and down to view the remaining contents of the file:

$ more /usr/share/dict/words

 A file path is passed as an argument to the more command. In the above example, it will display the content of the file words available in the /usr/share/dict/ directory.

 The key s is used to skip forward k lines of text. The key f is used to skip forward k screenful of text. The key b is used to skip backward k screenful of text.

 The less command is more popular and widely used to view the content of large files. One of the advantages of using the less command is that it doesn't load entire files in the beginning and as a result, viewing the content of large files is faster.

 The usage of less is very similar to the more command:

$ less /usr/share/dict/words

 Navigation is much easier while using the less command. It also has more options to customize the filtered view of a file's content.

 The more and less commands can take an input from stdin if no input file is provided. Use a pipe ('|') to give an input from stdin:

$ cat /usr/share/dict/words | more # cat output redirected to more
$ grep ^.{3}$ /usr/share/dict/words | less # Matches all 3 character words

 See the man page of more and less for the detailed usage.

 Note

 The behavior of the more command may vary on different systems because of its different implementations.

 Deleting files

 We can also delete regular files and directories if they are no longer required.

 Deleting a regular file

 To delete a regular file, we use the rm command in shell.

 The rm command deletes the file if it exists, otherwise it prints an error on stdout if it doesn't exist:

$ rm newfile1.txt # Deletes if file exists
$ rm newfile1.txt # Prints error message if file doesn't exist
rm: cannot remove 'newfile1.txt': No such file or directory

 To ignore an error message, rm can be used with the –f option:

$ rm -f newfile1.txt
$ rm -i newfile.txt # Interactive deletion of file
rm: remove regular empty file 'newfile.txt'?

 Enter the key y to delete a file and n to skip the deletion of a file.

 Deleting a directory

 To delete a directory, we can use the rmdir and rm commands. We will consider directories that are created in the Directory files under the File creation subtopic:

$ rmdir dir2/ # Deletes directory dir2
$ rmdir dir1/ # Fails to delete because of non-empty directory
rmdir: failed to remove 'dir1/': Directory not empty

 To delete a nonempty directory, first delete the contents and then remove the directory. We can also use rm to remove an empty or a nonempty directory.

 The –d option removes an empty directory as follows:

$ ls dir3/ # Directory dir3 is empty
$ rm -d dir3/ # Empty diretcory dir3 gets deleted
$ ls dir1/ # Diretcory dir1 is not empty
dir2
$ rm -d dir1/ # Fails to delete non-empty directory dir1
rm: cannot remove 'dir1': Directory not empty

 The option -r, -R, or --recursive removes the directory and its contents recursively:

$ rm -ri dir1/ # Asks to remove directory dir1 recursively
rm: descend into directory 'dir1'? Y

 Typing y confirms that dir1 should be deleted.

 Note

 Use rm carefully with the -r option. If possible, use it with the -i option to avoid an accidental deletion of an entire directory's contents.

 Moving and copying files

 We often need to copy or move files from one location to another in order to arrange files according to the need. We also can copy our computer data to an external drive or another computer available locally or remotely in order to keep the backup of the important data.

 Moving files

 Moving regular files and directories is useful when we want to keep exactly one copy of the data at a new location. The mv command is used to move files from one location to another.

 The syntax of using the mv command is as follows:

mv [option] source... destination

 Here, source is the file or directory to be moved. Multiple source files can be specified and destination is the location in which the files and directories should be moved.

 Some of the important options of the mv command are explained in following table:

 	
 Option

 	
 Description

 	
 -n

 	
 Don't overwrite an existing file

 	
 -i

 	
 Prompt before overwriting an existing file

 	
 -f

 	
 Don't prompt while overwriting an existing file

 	
 -u

 	
 Move a source file only when the source is newer than the destination or when the destination is missing

 	
 -v

 	
 Print name of the files being moved

 Moving a directory to a new location

 To move a directory from one location to another, execute the following command:

$ mkdir ~/test_dir1 # Directory test_dir1 created in home directory
$ mv ~/test_dir1/ /tmp # moving directory to /tmp

 The test_dir1 directory has been moved to /tmp and no copy of test_dir1 exists in the home directory now.

 Now, we will create a directory called test_dir1 again in the user's home directory:

$ mkdir ~/test_dir1 # Directory test_dir1 created in home directory

 Try again to move test_dir1 in /tmp with the –i option:

$ mv -i ~/test_dir1/ /tmp
mv: overwrite '/tmp/test_dir1'?

 We can see that the -i option asks a user explicitly whether we want to overwrite an existing directory with a new directory or not.

 Note

 Use the mv command with the -i option to avoid an accidental overwrite of a file.

 Renaming a file

 We can also use the mv command to rename a filename. For example, we have the test_dir1 directory in the /tmp directory. Now, we want to rename it as test_dir. We can execute the following command:

$ mv /tmp/test_dir1/ /tmp/test_dir # directory got renamed to test_dir

 Copying files

 Creating copies of files is a very common operation that can be performed locally or to a remote system.

 Copying files locally

 To copy the files on a local machine, the cp command is used.

 The syntax of using the cp command is as follows:

cp [option] source … destination

 Here, source can be a single file, multiple file, or a directory, while destination can be a file if source is a single file. Otherwise, destination will be a directory.

 Some of important options to the cp command are as follows:

 	
 Options

 	
 Description

 	
 -f

 	
 Don't prompt while overwriting an existing file

 	
 -i

 	
 Prompt before overwriting an existing file

 	
 -R

 	
 Copy directories recursively

 	
 -u

 	
 Copy a source file only when the source is newer than the destination or when the destination is missing

 	
 -p

 	
 Preserve attributes of a copied file with the original file

 	
 -v

 	
 Verbose output of which file is being copied

 Copying a file to another location

 To copy a file to another location, execute the following command:

$ touch ~/copy_file.txt # Creating a file
$ cp ~/copy_file.txt /tmp/ # Copying file to /tmp

 Now, we have two copies of the copy_file.txt file that are at the user's home directory and the /tmp directory.

 To copy a directory, we use cp with the -R option:

$ mkdir ~/test_dir2 # Creating a test diretcory
$
cp -R ~/test_dir2 /tmp/

 The test_dir2 directory gets copied to /tmp along with all the contents available in the directory.

 Copying files remotely

 To copy files on a remote machine, the scp command is used. It copies files between hosts on a network. The scp command uses ssh to authenticate the target host and transfer data.

 The simple syntax of scp is as follows:

scp [option] user1@host1:source user2@host2:destination

 Here, in user1@host1:source, user1 is the username of the source from where a file will be copied and host1 is the hostname or IP address; source can be a file or a directory to be copied.

 In user2@host2:destination, user2 is the username of the target host where files should be copied and host2 is the hostname or IP address; destination can be a file or directory where it gets copied. If no destination is specified, a copy will be made in the target host's home directory.

 If no remote source and destination to provided, a copy will be made locally.

 A few important options of scp are discussed in the following table:

 	
 Option

 	
 Description

 	
 -C

 	
 Enable compression while transferring data over a network

 	
 -l limit

 	
 Limit the used bandwidth specified in Kbit/s

 	
 -p

 	
 Preserve attributes of a copied file with the original file

 	
 -q

 	
 Don't print any progress output on stdout

 	
 -r

 	
 Copy directory recursively

 	
 -v

 	
 Verbose output while the copy is in progress

 Copying files to a remote server

 To copy files to a remote server, it is very important that the ssh server is already running on the server. If it is not, make sure to start the ssh server. To copy files, use the scp command as follows:

$ scp -r ~/test_dir2/ foo@localhost:/tmp/test_dir2/

 Here, we have made a copy to a local machine. So, the hostname used is localhost. Now, we have another directory test_dir2 inside /tmp/test_dir2/:

$ ls -l /tmp/test_dir2
total 0
drwxrwxr-x. 2 foo foo 40 Aug 25 00:44 test_dir2

 Comparing files

 A comparison between two similar files makes sense in order to know what differences exist between the two files. For example, comparing the results obtained by a command ran on two sets of data. Another example can be comparing an older and a newer version of a shell script file in order to know what modifications have been made in script. Shell provides the diff command for file comparison.

 Files comparison using diff

 The diff command is used to compare files line by line. The syntax of using the diff command is as follows:

diff [option] file1 file2

 Where, file1 and file2 are the files to be compared.

 The options of the diff command are explained in the following table:

 	
 Option

 	
 Description

 	
 -q

 	
 Only print if files differ

 	
 -s

 	
 Print a message on stdout if the two files are identical

 	
 -y

 	
 Display the diff results side by side

 	
 -i

 	
 Do case-insensitive comparison of the files' content

 	
 -b

 	
 Ignore changes in the number of whitespace

 	
 -u NUM

 	
 Output NUM (default 3) lines of unified context

 	
 -a

 	
 Consider files as text files while comparison

 Example

 The diff command shows the comparison results for the added, removed, and modified lines between two files.

 We will consider the comparison_file1.txt and comparison_file2.txt text files as an example:

$ cat comparison_file1.txt # Viewing content of file
This is a comparison example.

This line should be removed.
We have added multiple consecutive blank spaces.
THIS line CONTAINS both CAPITAL and small letters

$ cat comparison_file2.txt # Viewing content of file
This is a comparison example.
We have added multiple consecutive blank spaces.
this line contains both CAPITAL and small letters
Addition of a line

 Now, we will compare the comparison_file1.txt and comparison_file2.txt files:

$ diff comparison_file1.txt comparison_file2.txt
2,5c2,4
<
< This line should be removed.
< We have added multiple consecutive blank spaces.
< THIS line CONTAINS both CAPITAL and small letters

> We have added multiple consecutive blank spaces.
> this line contains both CAPITAL and small letters
> Addition of a line

 Here, < (less than) means removed lines and > (greater than) means added lines.

 Using the -u option makes the diff output even more readable as follows:

$ diff -u comparison_file1.txt comparison_file2.txt
--- comparison_file1.txt 2015-08-23 16:47:28.360766660 +0530
+++ comparison_file2.txt 2015-08-23 16:40:01.629441762 +0530
@@ -1,6 +1,5 @@
 This is a comparison example.
-
-This line should be removed.
-We have added multiple consecutive blank spaces.
-THIS line CONTAINS both CAPITAL and small letters
+We have added multiple consecutive blank spaces.
+this line contains both CAPITAL and small letters
+Addition of a line

 Here, '-' tells the lines available in an older file (comparison_file1.txt), but which is no longer present in the newer file (comparison_file2.txt).

 The '+' tells lines being added in newer file (comparison_file2.txt).

 We can even do a case-insensitive comparison of the content using the –i option:

$ diff -i comparison_file1.txt comparison_file2.txt
2,4c2
<
< This line should be removed.
< We have added multiple consecutive blank spaces.

> We have added multiple consecutive blank spaces.
5a4
> Addition of a line

 To ignore multiple blank spaces, use diff with make -b option:

$ diff -bi comparison_file1.txt comparison_file2.txt
2,3d1
<
< This line should be removed.
5a4
> Addition of a line

 Finding files

 In a filesystem, there is huge number of files available. Sometimes, there are external devices that are attached as well, which may also contain huge number of files. Imagine that there are millions and billions of files in a system and in which we have to search for a specific file or pattern of a file. Manual searching of a file is possible if the number of files is from 10 to 100, but it is almost impossible to search in millions of files. To solve this problem, UNIX and Linux provide the find command. It is a very useful command for searching files in a computer.

 The syntax of using the find command is as follows:

 find search_path [option]

 Here, in search_path, specify the path in which find should search for file_search_pattern.

 A few important options are mentioned in the following table:

 	
 Option

 	
 Description

 	
 -P

 	
 Don't follow symbolic link. This is default behavior

 	
 -L

 	
 Follow symbolic link while searching

 	
 -exec cmd ;

 	
 Execute command cmd passed as parameter to -exec

 	
 -mount

 	
 Don't search in other file system

 	
 -executable

 	
 Matches executable files

 	
 -group gname

 	
 File belongs to group gname

 	
 -user uname

 	
 Files owned by user uname

 	
 -name pattern

 	
 Search file for given pattern

 	
 -iname pattern

 	
 Case insensitive search of file for given pattern

 	
 -inum N

 	
 Search file with inode number N

 	
 -samefile name

 	
 File with same inode number as name

 	
 -regex pattern

 	
 Match files with given regular expression pattern. Matches for whole path.

 	
 -iregex pattern

 	
 Case insensitive match of files with given regular expression pattern. Matches for whole path.

 Searching files according to use case

 The following shell script shows some use cases of how to use the find command:

 #!/bin/bash
Filename: finding_files.sh
Description: Searching different types of file in system

echo -n "Number of C/C++ header files in system: "
find / -name "*.h" 2>/dev/null |wc -l
echo -n "Number of shell script files in system: "
find / -name "*.sh" 2>/dev/null |wc -l
echo "Files owned by user who is running the script ..."
echo -n "Number of files owned by user $USER :"
find / -user $USER 2>/dev/null |wc -l
echo -n "Number of executable files in system: "
find / -executable 2>/dev/null | wc -l

 The following is the sample output after executing the preceding finding_files.sh script:

 Number of C/C++ header files in system: 73950
Number of shell script files in system: 2023
Files owned by user who is running the script ...
Number of files owned by user foo :341726
Number of executable files in system: 127602

 Finding and deleting a file based on inode number

 The find command can be used to find a file based on its inode number.

$ find ~/ -inum 8142358
/home/foo/Documents

 The -inum option is good to use with exec to delete files that cannot be deleted by a filename. For example, a file named -test.txt can't be deleted using the rm command:

$ ls -i ~ |grep test # Viewing file with its inode number
8159146 -test.txt

 To delete the -test.txt file, execute the following command:

$ find ~/ -inum 8159146 -exec rm -i {} \; # Interactive deletion
rm: remove regular file '/home/skumari/-test.txt?' y

 Links to a file

 A link to a file means referring the same file by different filenames. In Linux and Unix-based system, the following two types of links exist:

 	A soft link or a symbolic link

 	A hard link

 To create links between files, the ln command can be used. The syntax is as follows:

ln [option] target link_name

 Here, target is the filename for which a link has to be created and link_name is the name by which a link has to be created.

 Soft link

 A soft link is a special kind of file that just points to another file. This makes it easier to create a shortcut of a file and easy accessibility of a file to a different location in a filesystem.

 To create a symbolic link of a file, the ln command is used with the -s option. For example, we will create a symbolic link of the /tmp directory in our home directory:

$ ln -s /tmp ~/local_tmp

 Now, we have a symbolic link of the /tmp directory in our home directory by the name local_tmp. To access the /tmp data, we can also cd into the ~/local_tmp directory. To know whether a file is a symbolic link or not, run ls -l on a file:

$ ls -l ~/local_tmp
lrwxrwxrwx. 1 foo foo 5 Aug 23 23:31 /home/foo/local_tmp -> /tmp/

 If the first character of the first column is l, then it means it is a symbolic link. Also the last column says /home/foo/local_tmp -> /tmp/, which means local_tmp is pointing to /tmp.

 Hard link

 A hard link is a way to refer a file with different names. All such files will have the same inode number. An inode number is an index number in an inode table that contains metadata about a file.

 To create a hard link of a file, use the ln command without any option. In our case, we will first create a regular file called file.txt:

$ touch file.txt
$ ls -l file.txt
-rw-rw-r--. 1 foo foo 0 Aug 24 00:13 file.txt

 The second column of ls tells the link count. We can see that currently it is 1.

 Now, to create a hard link of file.txt, we will use the ln command:

$ ln file.txt hard_link_file.txt

 To check whether a hard link is created for file.txt, we will see its link count:

$ ls -l file.txt
-rw-rw-r--. 2 foo foo 0 Aug 24 00:13 file.txt

 Now, the link count is 2 because a hard link has been created with the name hard_link_file.txt.

 We can also see that the inode number of the file.txt and hard_link_file.txt files are the same:

$ ls -i file.txt hard_link_file.txt
96844 file.txt
96844 hard_link_file.txt

 Difference between hard link and soft link

 The following table shows a few important differences between a hard link and a soft link:

 	
 Soft link

 	
 Hard link

 	
 The inode number of the actual file and the soft link file are different.

 	
 The inode number of the actual file and the hard link file are the same.

 	
 A soft link can be created across different filesystems.

 	
 A hard link can only be created in the same filesystem.

 	
 A soft link can link to both regular files and directories.

 	
 A hard link doesn't link to directories.

 	
 Soft links are not updated if the actual file is deleted. It keeps pointing to a nonexistent file.

 	
 Hard links are always updated if the actual file is moved or deleted.

 Special files

 The files other than regular files, directories, and link files are special files. They are as follows:

 	The block device file

 	The character device file

 	The named pipe file

 	The socket file

 The block device file

 A block device file is a file that reads and writes data in block. Such files are useful when data needs to be written in bulk. Devices such as hard disk drive, USB drive, and CD-ROM are considered as block device files. Data is written asynchronously and, hence, other users are not blocked to perform the write operation at the same time.

 To create a block device file, mknod is used with the option b along with providing a major and minor number. A major number selects which device driver is being called to perform the input and output operation. A minor number is used to identify subdevices:

$ sudo mknod block_device b 0X7 0X6

 Here, 0X7 is a major number and 0X6 is a minor number in hexadecimal format:

$ ls -l block_device
brw-r--r--. 1 root root 7, 6 Aug 24 12:21 block_device

 The first character of the first column is b, which means it is a block device file.

 The fifth column of the ls output is 7 and 6. Here, 7 is a major number and 6 is a minor number in decimal format.

 A character device file is a file that reads and writes data in character-by-character fashion. Such devices are synchronous and only one user can do the write operation at a time. Devices such as keyboard, printer, and mouse are known as character device files.

 Following command will create a character special file:

$ sudo mknod character_device c 0X78 0X60

 Here, 0X78 is a major number and 0X60 is a minor number that is in hexadecimal format.

$ ls -l character_device # viewing attribute of character_device file
crw-r--r--. 1 root root 120, 96 Aug 24 12:21 character_device

 The first character of the first column is c, which means it is a character device file. The fifth column of the ls output is 120 and 96. Here, 120 is a major number and 96 is a minor number in decimal format.

 Named pipe file

 Named pipe files are used by different system processes to communicate with each other. Such communication is also known as interprocess communication.

 To create such a file, we use the mkfifo command:

$ mkfifo pipe_file # Pipe file created
$ ls pipe_file # Viewing file content
prw-rw-r--. 1 foo foo 0 Aug 24 01:41 pipe_file

 Here, the first character of the first column is 'p', which means it is a pipe file. There are a lot of pipe files available in the /dev directory.

 We can also create a named pipe using the mknod command with the p option:

$ mknod named_pipe_file p
$ ls -l named_pipe_file
prw-rw-r--. 1 foo foo 0 Aug 24 12:33 named_pipe_file

 The following shell script demonstrates a reading message from a named pipe. The send.sh script creates a named pipe called named_pipe, if it doesn't exist, and then sends a message on it:

#!/bin/bash

Filename: send.sh
Description: Script which sends message over pipe

pipe=/tmp/named_pipe

if [[! -p $pipe]]
then
 mkfifo $pipe
fi

echo "Hello message from Sender">$pipe

 The receive.sh script checks whether a named pipe with the name named_pipe exists, reads a message from a pipe, and displays on stdout:

 #!/bin/bash
#Filename: receive.sh
Description: Script receiving message from sender from pipe file

pipe=/tmp/named_pipe

if [[! -p $pipe]]
then
 echo "Reader is not running"
fi

while read line
do
 echo "Message from Sender:"
 echo $line
done < $pipe

 To execute it, run send.sh in a terminal and receive.sh in another terminal:

$ sh send.sh # In first terminal
$ sh receive.sh # In second terminal
Message from Sender:
Hello message from Sender

 Socket file

 A socket file is used to pass information from one application to another. For example, if Common UNIX Printing System (CUPS) daemon is running and my printing application wants to communicate with it, then my printing application will write a request to a socket file where CUPS daemon is listening for upcoming requests. Once a request is written to a socket file, the daemon will serve the request:

$ ls -l /run/cups/cups.sock # Viewing socket file attributes
srw-rw-rw-. 1 root root 0 Aug 23 15:39 /run/cups/cups.sock

 The first character in the first column is s, which means it is a socket file.

 Temporary files

 Temporary files are the files that are needed for a short interval of time while an application is running. Such files are being used to keep intermediate results of running a program and they are no longer needed after the program execution is complete. In shell, we can create temporary files using the mktemp command.

 Creating a temporary file using mktemp

 The mktemp command creates a temporary file and prints its name on stdout. Temporary files are created by default in the /tmp directory.

 The syntax of creating a temporary file is as follows:

$ mktmp
/tmp/tmp.xEXXxYeRcF

 A file with the name tmp.xEXXxYeRcF gets created into the /tmp directory. We can further read and write into this file in an application for temporary use. Using the mktemp command instead of using a random name for a temporary filename avoids accidental overwrite of an existing temporary file.

 To create a temporary directory, we can use the -d option with mktemp:

$ temp_dir=mktemp -d
$ echo $temp_dir
/tmp/tmp.Y6WMZrkcj4

 Furthermore, we can explicitly delete it as well:

$ rm -r /tmp/tmp.Y6WMZrkcj4

 We can even specify a template to use for a temporary file by providing an argument as name.XXXX. Here, name can be any name by which a temporary file should begin, and XXXX tells the length of a random character to be used after a dot (.). In general, while writing an application if temporary files are needed, the application name is given as the temporary file name.

 For example, a test application needs to create a temporary file. To create a temporary file, we will use the following command:

$ mktemp test.XXXXX
test.q2GEI

 We can see that the temporary file name begins with test and contains exactly five random letters.

 Note

 The time when temporary files will be cleaned up is distribution-specific.

 Permission and ownership

 As a user of a system, to access a file in Linux and UNIX, it is important that a user has the required permission for that specific file or directory. For example, as a regular user, perform cd into /root:

$ cd /root
bash: cd: /root/: Permission denied

 We were not able to do so because of the permission denied error:

$ cd ~/

 We were successfully able to do cd into the user's home directory because a user had the permission to access its own home directory.

 Every file in UNIX or Linux has an owner and an associated group. It also has a set of permissions (read, write, and execute) with respect to the user, group, and others.

 Viewing the ownership and permission of files

 The ls command with the -l option is used to view the ownership and permission of a file:

$ touch permission_test_file.txt # Creating a file
$ ls -l permission_test_file.txt # Seeing files' attributes
-rw-rw-r-- 1 foo foo 0 Aug 24 16:59 permission_test_file.txt

 Here, the first column of ls contains the permission information—that is, -rw-rw-r--.

 The first character specifies a file's type, which is dash (-) in this example. A dash means that it is a regular file. It can have other characters as follows:

 	p: This means it is a named pipe file

 	d: This means it is a directory file

 	s: This means it is a socket file

 	c: This means it is a character device file

 	b: This means it is a block device file

 The next three characters belong to a user's or owner's permission. It can be either rwx or dash at any of these spaces. The permission r specifies that the read permission is available, w specifies that the write permission is available, and x specifies that the execute permission is available over the given file. If a dash is present, then the corresponding permission is missing. In the above example, an owner's permission is rw-, which means the owner has read and write permission on the permission_test_file.txt file but no execute permission.

 The next three characters belong to a group's permission. It can be rwx or dash at any of these places if the corresponding permission is missing. In the preceding example, the permission given to a group is rw-, which means the read and write permissions are present and the execute permission is missing.

 The next three characters belong to other's permission. In the preceding example, the permission given to others is r--, which means other users can read the content of the permission_test_file.txt file but can't modify or execute it.

 The next column in the ls -l output—that is, the second column specifies who the owner of file is. In our example, the second column value is foo, which means foo has the ownership of the file. By default, the ownership of a file is given to whoever has created that file.

 The third column in the ls -l output that specifies the group to which a file belongs to. In our case, the group of the permission_test_file.txt file is foo.

 Changing permission

 To change the permission of a file, the chmod command is used. The syntax of using chmod is as follows:

chmod [option] mode[,mode] file

 Or,

chmod [option] octal-mode file

 An important option of chmod is -R, which means change the files and directories permission recursively.

 The mode can be [ugoa][-+][rwx].

 Here, u is the owner, g is the group, o is other, and a is all users—that is, ugo.

 Specifying - (minus) removes the specified permission and specifying +(plus) adds the specified permission.

 The letters r(read), w(write), and x(execute) specify permissions.

 The octal-mode specifies the rwx permission of a user together in octal format, which can be from 0 to 7. The following table explains the octal representation of a permission to a specific user:

 	
 Octal Value

 	
 Binary representation

 	
 Meaning

 	
 0

 	
 000

 	
 No read, write, and execute permissions (---)

 	
 1

 	
 001

 	
 Only execute permission (--x)

 	
 2

 	
 010

 	
 Only write permission (-w-)

 	
 3

 	
 011

 	
 Write and execute permissions (-wx)

 	
 4

 	
 100

 	
 Only read permission (r--)

 	
 5

 	
 101

 	
 Read and execute permissions (r-x)

 	
 6

 	
 110

 	
 Read and write permissions (rw-)

 	
 7

 	
 111

 	
 Read, write, and execute permissions (rwx)

 To demonstrate the changing permission on a file, we will create a file as follows:

$ touch test_file.txt
$ ls -l test_file.txt # Checking permission of file
-rw-rw-r--. 1 foo foo 0 Aug 24 18:59 test_file.txt

 The default permission given to a regular file is the Read permission to an owner, group, and other. The Write permission is given to the owner and group. No execute permission is given to anyone.

 Now, we want to modify a permission in such a way that only the owner can have the write permission, and keeping the other permission as it is. We can do this in the following way:

$ chmod 644 test_file.txt
$ ls -l tst_file.txt
-rw-r--r--. 1 foo foo 0 Aug 24 19:03 test_file.txt

 Now, we can see that only an owner can modify test_file. While using octal mode, we have to specify the exact permission that we want to see further. In chmod, we gave octal_mode as 644; here the first octal digit, that is, 6 signifies the read, write, and execute permissions of the owner. Similarly, the second octal digit 4 specifies the permissions for the group and the third digit specifies the permission for others.

 There is another way to modify a permission, which is by using mode. Mode is specified as [ugoa][-+][rwx]. Here, we only have to specify which permission we want to add or remove.

 For example, we want to remove the write permission from an owner and add the execute permission to all. We can do this as follows:

$ chmod u-w,a+x test_file.txt
$ ls -l test_file.txt
-r-xr-xr-x. 1 foo foo 0 Aug 24 19:03 test_file.txt

 Changing the owner and group

 We can also change the owner and group ownership of a file. This allows flexibility to further modify the group and owner of a file.

 Changing a file's owner

 To change the owner of a command, chown is used. This is useful for sysadmin in different cases. For example, a user is working on a project and now the user is going to discontinue working on that project. In such a case, sysadmin can modify the ownership to a new user who is responsible for continuing that project. Sysadmin can change the ownership of a file to a new user for all the related files in a project.

 In our previous example, foo is the owner of the test_file.txt file. Now, we want to transfer the ownership of a file to user bar.

 If the user bar doesn't exist in a system, a new user bar can be created using the useradd command. The useradd command needs the root access.

 Following command will create a new user called bar:

$ sudo useradd bar # New user bar will be created

 We can change ownership of test_file.txt file to user bar by executing the following command as root or sudo:

$ sudo chown bar test_file.txt # Changing ownership of file to user bar
$ ls -l test_file.txt
-r-xr-xr-x. 1 bar foo 0 Aug 24 19:03 test_file.txt

 We can see that the ownership of a file is changed to bar.

 Changing group ownership

 To modify the group ownership of a file, we can either use the chown or chgrp command. To create a new group, the groupadd command is used as sudo or root. For example, we want to create a new group called test_group:

$ sudo groupadd test_group

 Now, we will change the group of the example file test_file.txt by using the chown command. This can be done by executing the following command:

$ sudo chown :test_group test_file.txt # Modifying group ownership
$ ls -l test_file.txt
-r-xr-xr-x. 1 bar test_group 0 Aug 24 19:03 test_file.txt

 We can see that the group has been modified to test_group. To change the group using the chgrp command, we can execute the following command:

$ sudo chgrp bar test_file.txt # Changing group ownership to bar
$ ls -l test_file.txt
-r-xr-xr-x. 1 bar bar 0 Aug 24 19:03 test_file.txt

 Now, we will revert back the owner and group to foo for the test_file.txt file:

$ sudo chown foo:foo test_file.txt
$ ls -l test_file.txt
-r-xr-xr-x. 1 foo foo 0 Aug 24 19:03 test_file.txt

 The new owner name is provided before : (colon) and the group name after : ,while modifying the owner and group ownership using the chown command.

 Getting the list of open files

 We know that there can be millions of files available in a system, which can be binary files, text files, directories, and so on. When a file is not in use, they are just available on a storage device as 0 and 1. To view or process a file, it needs to be opened. An application that is executing may open multiple files. Knowing what files are opened by a running application is very useful. To know the list of opened files, the lsof command is used.

 Executing the following command gives the list of all opened files:

$ lsof

 This gives a huge output of all the opened files.

 Knowing the files opened by a specific application

 To know the list of files opened by a specific application, first get the Process ID (PID) of the running application:

$ pidof application_name

 For example, let's run cat without any parameter:

$ cat

 In another terminal, run the following commands:

$ pidof cat
15913
$ lsof -p 15913

 Alternatively, we can directly write the following command:

$ lsof -p 'pidof cat'

 The following is a sample screenshot of the lsof output:

 [image: Knowing the files opened by a specific application]

 In the output, we see that there are various columns of results. The first column is COMMAND—that is, for the application this file has been opened, the PID column specifies the PID with which the file has been opened, USER tells which user has opened the file, FD is the file descriptor, TYPE specifies the type of file, DEVICE specifies the device number with values separated by a comma, SIZE/OFF specifies the size of the file or the file offset in bytes, and NAME is the filename with the absolute path.

 In the output, we can see that the application has opened cat binary from /usr/bin. It has also loaded the shared library files such as libc-2.21.so and ld-2.21.so available in /usr/lib64/. Also, there is a character device dev/pts/2 that has been opened.

 Listing the applications that opened a file

 We can also find out which all applications opened a file. This can be done by executing the following command:

$ lsof /usr/bin/bash

 The following is the sample output:

 [image: Listing the applications that opened a file]

 From the output, we can see that the bash file has been opened by six running applications.

 Knowing the files opened by a user

 To know the list of files opened by a specific user, run lsof with the -u option. The syntax is as follows:

lsof -u user_name

 For example, consider the following command:

$ lsof -u foo | wc -l
525

 This means, currently 525 files are opened by the user root.

 Configuration files

 Configuration or config files are regular files that contain settings for an application. During the initial stage of execution, many applications in Linux and UNIX read settings from config file(s) and configure the application accordingly.

 Viewing and modifying configuration files

 Configuration files are generally present in the /etc/ directory and can be viewed using the cat command.

 For example, consider viewing the resolv.conf config file:

$ cat /etc/resolv.conf

 # Generated by NetworkManager
search WirelessAP
nameserver 192.168.1.1

 The resolv.conf file contains the order in which to contact DNS servers.

 We can also modify a configuration file to meet our requirements. For example, we can add another DNS entry in the /etc/resolv.conf file with the DNS value 8.8.8.8, if some of network URLs are accessible via 192.168.1.1. The modified cat /etc/resolv.conf will look like the following:

$ cat /etc/resolv.conf

 # Generated by NetworkManager
search WirelessAP
nameserver 192.168.1.1
nameserver 8.8.8.8

 There are a lot of other config files available in a system such as ssh, passwd, profile, sysconfig, crontab, inittab, and so on, in the /etc/ directory.

 Summary

 After reading this chapter, you should now know that the UNIX and Linux-based operating system treats everything as files that can be further categorized as regular, directory, link, block device, character device, socket, and pipe files. You should also know how to perform basic operations on any of these files. Now, you should have good knowledge of how to view and modify the permissions and ownership of a file. You should also know how to monitor and manage the list of open files in a system using the lsof command.

 In the next chapter, you will learn how a process gets created in a system and how to monitor and manage all running processes. We will also see how two or more processes communicate with each other using Inter Process Communication (IPC) mechanism.

 Chapter7.Welcome to the Processes

 A program under execution is known as process. When an operating system gets booted up, multiple processes get started in order to provide various functionalities and user interfaces so that a user can easily perform the required tasks. For example, when we start a command line server, we will see a terminal with bash or any other shell process that has been started.

 In Linux, we have full control over processes. It allows us to create, stop, and kill processes. In this chapter, we will see how a process is created and managed by using commands such as top, ps, and kill and by changing its scheduling priority. We will also see how a signal can lead to the sudden termination of a process and also the ways to handle signals in a script using the command trap. We will also see one of the beautiful features of processes called Inter-process communication, which allows them to communicate with each other.

 This chapter will cover the following topics in detail:

 	Process management

 	Listing and monitoring processes

 	Process substitution

 	Process scheduling priorities

 	Signals

 	Traps

 	Inter-process Communication

 Process management

 Managing processes is very important because processes are what consumes system resources. System users should be careful about the processes they are creating, in order to ensure that a process is not affecting any other critical processes.

 Process creation and execution

 In bash, creating a process is very easy. When a program is executed, a new process is created. In a Linux or Unix-based system, when a new process is created, a unique ID is assigned to it, which is known as PID. A PID value is always a positive number starting from 1. Depending upon a system having init or systemd, they always get the PID value 1 because this will be the first process in a system and it is the ancestor of all other processes.

 The maximum value of PID is defined in the pid_max file, which should be available in the /proc/sys/kernel/ directory. By default, the pid_max file contains the value 32768 (max PID + 1), which means a maximum of 32767 processes can exist in a system simultaneously. We can change the value of the pid_max file depending upon needs.

 For understanding the process creation better, we will create a new process vi from bash:

$ vi hello.txt

 Here, we have created a new process vi that opens the hello.txt file in editor to read and write text. Calling the vi command causes the binary file /usr/bin/vi to execute and perform the needed tasks. A process that creates another process is known as the parent of the process. In this example, vi was created from bash, so bash is the parent of the process vi. The method of creating a child process is known as forking. During the process of fork, a child process inherits the properties of its parents such as GID, real and effective UID and GID, environment variables, shared memory, and resource limit.

 To know the PID of the vi process created in the preceding section, we can use the commands such as pidof and ps. For example, run the following command in a new terminal to know the pid of the vi process:

$ pidof vi # Process ID of vi process
21552
$ ps -o ppid= -p 21552 # Knowing parent PID of vi process
1785

 Once a task is completed, a process gets terminated and PID is free to get assigned to a new process based on need.

 The detailed information about each process is available in the /proc/ directory. A directory with the PID name gets created for each process in /proc/ containing its detailed information.

 A process can be in any of the following states during its lifetime:

 	Running: In this state, a process is either running or ready to run

 	Waiting: A process is waiting for a resource

 	Stopped: A process has been stopped; for example, after receiving a signal

 	Zombie: A process has exited successfully, but its state change wasn't yet acknowledged by the parent

 Process termination

 In normal circumstances, after completing tasks, a process terminates and frees up the allocated resources. If the shell has forked any subprocesses, then it will wait for them to finish their task first (other than a background process). In some cases, a process may not behave normally and it can be waiting or consuming resources for a longer time than expected. In some other cases, it may happen that a process is now no longer required. In such cases, we can kill the process from a terminal and free up resources.

 To terminate a process, we can use the kill command. The killall and pkill commands can also be used if available on a system.

 Using the kill command

 The kill command sends the specified signal to the specified processes. If no signal is provided, the default SIGTERM signal is sent. We will see more about signals further down in this chapter.

 The following is the syntax of using the kill command:

kill PID

 AND

kill -signal PID

 To kill a process, first get the PID of that process as follows:

$ pidof firefox # Getting PID of firefox process if running
1663
$ kill 1663 # Firefox will be terminated
$ vi hello.txt # Starting a vi process
$ pidof vi
22715
$ kill -SIGSTOP 22715 # Sending signal to stop vi process
[1]+ Stopped vi

 Here, we used the SIGSTOP signal to stop the process instead of killing it. To kill, we can use the SIGKILL signal or the associated value to this signal, which is 9.

$ kill -9 22715 # Killing vi process

 OR

$ kill -SIGKILL 22715 # Killing vi process

 Using the killall command

 It's easy to remember a process by name rather than by PID. The killall command makes it easier to kill a process since it takes the command name as a parameter to kill a process.

 The following is the syntax of the killall command:

killall process_name

 AND

killall -signal process_name

 For example, we can kill the firefox process by name, as follows:

$ killall firefox # Firefox application gets terminated

 Using the pkill command

 The pkill command can also be used to kill a process by its name. Unlike the killall command, by default the pkill command finds all the processes beginning with the name specified in its argument.

 For example, the following command demonstrates how pkill kills the firefox process from its partial name specified in an argument:

$ pkill firef # Kills processes beginning with name firef and hence firefox

 The pkill command should be used carefully because it will kill all the matching processes, which may not be our intention. We can determine which processes are going to be killed by pkill, using the pgrep command with the -l option. The pgrep command finds processes based on its name and attributes. Run the following commands to list all process names and its PID whose name begin with the firef and fire strings, respectively:

$ pgrep firef
 8168 firefox

 Here, firefox is the matching process name and its PID is 8168:

$ pgrep fire
 747 firewalld
 8168 firefox

 We can also tell pkill to kill a process with exact match of process name using the --exact or -x option as follows:

$ pgrep -x -l firef # No match found
$ pkill -x fire # Nothing gets killed
$ pgrep --exact -l firefox # Process firefox found
8168 firefox
$ pkill --exact firefox # Process firefox will be killed

 The pkill command can also send a specific signal to all matching processes with the -signal_name option as follows:

$ pkill -SIGKILL firef

 The preceding command sends the SIGKILL signal to all processes whose name begins with firef.

 Listing and monitoring processes

 In a running system, we often notice that suddenly a system is responding slowly. This can be because a running application is consuming a lot of memory or a process is doing CPU-intensive work. It's hard to predict which application is causing the system to respond slower. To know the reason, it is good to know what all processes are running and also know the monitoring behavior (such as the amount of CPU or memory being consumed) of processes.

 Listing processes

 To know a list of processes running in the system, we can use the ps command.

 Syntax

 The syntax of the ps command is as follows:

ps [option]

 There are a lot of options to use the ps command. The commonly used options are explained in the following table.

 Simple process selection

 The following table shows the multiple options that can be clubbed together and used to get a better selection of results:

 	
 Option

 	
 Description

 	
 -A, -e

 	
 Selects all processes

 	
 -N

 	
 Selects all processes that don't fulfill a condition—that is, negate selection

 	
 T

 	
 Selects the processes associated with the current terminal

 	
 r

 	
 Restricts selection to only running processes

 	
 x

 	
 Selects processes that have no controlling terminal such as daemons launched during booting

 	
 a

 	
 Selects the processes on a terminal including all users

 Process selection by list

 The following options accept a single argument in the form of a blank-separated or comma-separated list; they can be used multiple times:

 	
 Option

 	
 Description

 	
 -C cmdlist

 	
 Selects the process by its name. The list of names for selection is provided in cmdlist.

 	
 -g grplist

 	
 Selects the process by an effective group name provided in the list of the grplist arguments.

 	
 -G grplist

 	
 Selects the process by a real group name provided in the list of the grplist arguments.

 	
 -p pidlist

 	
 Selects the process by its PID mentioned in pidlist.

 	
 -t ttylist

 	
 Selects the process by a terminal mentioned in ttylist.

 	
 -U userlist

 	
 Selects the process by a real user ID or name mentioned in userlist.

 	
 -u userlist

 	
 Selects the process by an effective user ID or name mentioned in userlist.

 Output format control

 The following options are used to choose how to display the ps command output:

 	
 Option

 	
 Description

 	
 -j

 	
 Shows the job format.

 	
 -f

 	
 This is used for a full format listing. It also prints the argument passed to the command.

 	
 u

 	
 Displays user-oriented format.

 	
 -l

 	
 Displays long format.

 	
 v

 	
 Displays the virtual memory format.

 Listing all processes with details

 To know all processes on a system, the -e option can be used. To have a more detailed output, use it with the u option:

$ ps -e u | wc -l # Total number of processes in system
211
$ ps -e u | tail -n5 # Display only last 5 line of result

 [image: Listing all processes with details]

 We can see from the output that all users' processes are displayed. The command that is actually displaying the output—that is, ps -e u | tail -n5—is also mentioned in the ps output as two separate running processes.

 In BSD style, use the aux option to get the result that we get from -e u:

$ ps aux

 On a Linux-based operating system, aux as well as -e u options will work fine.

 Listing all processes run by a user

 To know which processes are being by a specific user, use the -u option followed by the username. Multiple usernames can also be provided separated by a comma (,).

$ ps u -u root | wc -l
130
$ ps u -u root | tail -n5 # Display last 5 results

 The preceding command displays the following result:

 [image: Listing all processes run by a user]

 We see that all processes are running as the user root. The rest of the users' processes have been filtered out.

 Processes running in the current terminal

 It is useful to know which processes are running in the current terminal. It can help in deciding whether to kill a running terminal or not. We can make a list of processes running in the current terminal using the T or t option.

$ ps ut

 The output for the following command as follows:

 [image: Processes running in the current terminal]

 We can see from the output that bash and the ps uT command (which we just executed to display the result) are only running processes in the current terminal.

 Listing processes by a command name

 We can also know process details by its name using the -C option followed by the command name. Multiple command names can be separated by a comma (,):

$ ps u -C firefox,bash

 The following output is obtained:

 [image: Listing processes by a command name]

 Tree format display of processes

 The pstree command displays running processes in a tree structure, which makes it very easy to understand the parent and child relationship of processes.

 Running the pstree command with the -p option shows processes in the tree format with its PID number as follows:

$ pstree -p

 [image: Tree format display of processes]

 From the pstree output, we see that the parent process of all processes is systemd. This is started as the first process that is responsible for executing the rest of the processes. In parenthesis, the PID number of each process is mentioned. We can see that the systemd process got PID 1 that is always fixed. On the init based-operating system, init will be the parent of all processes and have PID 1.

 To see processes process the tree of a particular PID, we can use pstree with the PID number as an argument:

$ pstree -p 1627 # Displays process tree of PID 1627 with PID number

 [image: Tree format display of processes]

 Use the pstree command with the -u option to see when the UID of the process and parent differs:

$ pstree -pu 1627

 [image: Tree format display of processes]

 We can see that initially, bash is being run by the user skumari with the PID 1627. Further down in the tree, the sudo command is running as a root.

 Monitoring processes

 It is very important to know how much memory and CPU a process is consuming while running, in order to ensure there is no leak of memory and over-CPU computation happening. There are commands such as top, htop, and vmstat that can be used to monitor the memory and CPU consumed by each process. Here, we will discuss the top command because it is preinstalled in a Linux-based operating system.

 The top command displays the dynamic real-time usage of the CPU, memory, swap, and the number of tasks currently running with their state.

 Running top without any options gives the following result:

$ top

 [image: Monitoring processes]

 In the top command output, the first line tells us about the length of time since the system last booted, the number of users, and the load average.

 The second line tells us about the number of tasks and their statuses—running, sleeping, stopped, and zombie.

 The third line gives us the details of the CPU usage in percentage. The different CPU usages are shown in the following table:

 	
 Value

 	
 Description

 	
 us

 	
 % of the CPU time spent in running un-niced user processes

 	
 sy

 	
 % of the CPU time spent in kernel space—that is running kernel processes

 	
 ni

 	
 % of the CPU time running niced user processes

 	
 id

 	
 % of the time spent idle

 	
 wa

 	
 % of the time spent waiting for the I/O completion

 	
 hi

 	
 % of the time spent servicing the hardware interrupt

 	
 si

 	
 % of the time spent servicing the software interrupts

 	
 st

 	
 % of the time consumed by a virtual machine

 The fourth line tells us about the total, free, used, and buffered RAM memory usage.

 The fifth line tells us about the total, free and used swap memory.

 The remaining lines give the detailed information about running processes. The meaning of each column is described in the following table:

 	
 Column

 	
 Description

 	
 PID

 	
 Process ID

 	
 USER

 	
 Effective user name of task's owner

 	
 PR

 	
 Priority of task (lower the value, more is the priority)

 	
 NI

 	
 Nice value of task. Negative nice value means more priority and positive means lesser priority

 	
 VIRT

 	
 Virtual memory size used by process

 	
 RES

 	
 Non-swapped physical memory a process

 	
 SHR

 	
 Amount of shared memory available to a process

 	
 S

 	
 Process status – D (uninterruptible sleep), R (Running), S(Sleeping), T (Stopped by job control signal), t (Stopped by debugger), Z (Zombie)

 	
 %CPU

 	
 % of CPU currently used by process

 	
 %MEM

 	
 % of Physical memory currently used by process

 	
 TIME+

 	
 CPU Time, hundredths

 	
 COMMAND

 	
 Command name

 We can also reorder and modify the output when the top is running. To see help, use the ? or h key and the help window will be displayed, which contains following details:

 [image: Monitoring processes]

 To sort on the basis of a specific field, the easiest method is to press the f key while top is running. A new window opens showing all the columns. The opened window looks as follows:

 [image: Monitoring processes]

 Use the up and down arrows to navigate and select a column. To sort on the basis of a particular field, press the s key and then press q to switch back to the top output window.

 Here, we have selected NI and then pressed the s key and the q key. Now, the top output will be sorted with nice number. The output of the top after sorting with the column NI looks as follows:

 [image: Monitoring processes]

 Process substitution

 We know that we can use a pipe to provide the output of a command as an input to another command. For example:

$ cat file.txt | less

 Here, the cat command output—that is, the content of file.txt—is passed to the less command as an input. We can redirect the output of only one process (cat process in this example) as an input to another process.

 We may need to feed the output of multiple processes as an input to another process. In such a case, process substitution is used. Process substitution allows a process to take the input from the output of one or more processes rather than a file.

 The syntax of using process substitution is as follows:

 To substitute input file(s) by list

<(list)

 OR

 To substitute output file(s) by list

>(list)

 Here, list is a command or a pipeline of commands. Process substitution makes a list act like a file, which is done by giving list a name and then substituting that name in the command line.

 Diffing the output of two processes

 To compare two sets of data, we use the diff command. However, we know that the diff command takes two files as an input for producing diff. So, we will have to first save the two sets of data into two separate files and then run diff. Saving the content for diff adds extra steps, which is not good. To solve this problem, we can use the process substitution feature while performing diff.

 For example, we want to know the hidden files in a directory. In a Linux and Unix-based system, files that starts with . (dot) are known as hidden files. To see the hidden files, the -a option is used with the ls command:

$ ls -l ~ # Long list home directory content excluding hidden files
$ ls -al ~ # Long list home directory content including hidden files

 To get only the hidden files in a directory, run the diff command on the sorted output obtained from the preceding two commands:

$ diff <(ls -l ~ | tr -s " " | sort -k9) <(ls -al ~ | tr -s " " | sort -k9)

 [image: Diffing the output of two processes]

 Here, we have fed the commands ls -l ~ | tr -s " " | sort -k9 and ls -al ~ | tr -s " " | sort -k9 as input data to the diff command instead of passing the two files.

 Process scheduling priorities

 During a process lifetime, it may need CPU and other resources to keep executing normally. We know that multiple processes are running simultaneously in a system and they may need a CPU to complete an operation. To share the available CPUs and resources, process scheduling is done so that each process gets a chance to make use of the CPU. When a process gets created, an initial priority value is set. Depending upon the priority value, the process gets the CPU time.

 The process scheduling priority range is from -20 to 19. This value is also called a nice value. The lower the nice value, the higher is the scheduling priority of a process. So, the process with -20 will have the highest scheduling priority and the process with the nice value 19 will have the lowest scheduling priority.

 To see the nice value of a process, the ps or top command can be used. The corresponding nice value of a process is available in the NI column:

$ ps -l

 [image: Process scheduling priorities]

 In the ps output, we can see in the NI column that the nice value of bash and the ps processes is 0.

 Changing scheduling priorities

 Every process in a system has some priority assigned that depends upon its nice value. Based on priority, the process gets CPU time and other resources to use. Sometimes, it may happen that a process needs to be executed quickly, but it is waiting for CPU resources to be freed for long time because of a lower scheduling priority. In such cases, we may want to increase its scheduling priority in order to finish a task sooner. We can change the scheduling priority of a process by using the nice and renice commands.

 Using nice

 The nice command launches a process with a user-defined scheduling priority. By default, processes created by a user get the nice value 0. To verify this, run the nice command without any option:

$ nice
0

 Let's create a new firefox process that actually consumes CPU and resources:

$ killall firefox # Terminate any firefox if already running
$ firefox & # Firefox launched in background
$ top

 [image: Using nice]

 We can see that the nice value of firefox is 0 and the CPU usage is 8.7%.

 Now, we will kill the current firefox and launch another firefox with the nice value 10. This means, firefox will have a lower priority than other user-created processes.

 To create a process with a different nice value, the -n option is used with nice:

$ killall firefox
$ nice -n 10 firefox &

 OR

$ nice -10 firefox &

 To see what nice value firefox has now, check the top output:

$ top

 [image: Using nice]

 We can see that the firefox process has the 10 nice value. To provide more scheduling priority—that is, setting a negative nice value to a process—root privilege is required.

 The following example sets the firefox process as a higher scheduling priority:

$ nice -n -10 firefox

 OR

$ sudo nice --10 firefox

 Using renice

 The nice command can only modify a nice value during the launch of a process. However, if we want to change a running process scheduling priority, then the renice command should be used. The renice command alters the scheduling priority of one or more running processes.

 The syntax of using renice is as follows:

renice [-n] priority [-g|-p|-u] identifier

 Here, the -g option considers succeeding an argument—that is, identifier as GIDs.

 The -p option considers succeeding an argument—that is, identifier as PIDs.

 The -u option considers succeeding an argument—that is, identifier as usernames or UIDs.

 If none of the options—-g, -p, or -u—are provided, identifiers are considered as PIDs.

 For example, we will change the priority of all the processes belonging to a user. Firstly, see the current priority of processes owned by the user:

$ top -u skumari # User is skumari

 [image: Using renice]

 Now, we will modify the priority of all processes using renice with the –u option:

$ sudo renice -n -5 -u skumari

 Let's view a new nice value of processes owned by the user skumari:

$ top -u skumari

 [image: Using renice]

 To modify the scheduling priority of a few processes, modify using the process's PIDs. The following example modifies the process plasmashell and Firefox having the PIDs 1505 and 5969 respectively:

$ sudo renice -n 2 -p 1505 5969
$ top -u skumari

 [image: Using renice]

 Now, we can see that the nice values of the process plasmashell and Firefox are 2.

 Signals

 A signal is a software interrupt to notify processes that an external event has occurred. In a normal execution, processes keeps running as expected. Now, for some reason, a user may want to cancel a running process. When the process is started from a terminal, it will terminate when we hit the Ctrl + c keys or run the kill command.

 When we press Ctrl + c keys while process is running in a terminal, a signal SIGINT is generated and sent to the process running in foreground. Also, when the kill command is called on process, the SIGKILL signal is generated and the process is terminated.

 Available signals

 Among all available signals, we will discuss the frequently used signals here:

 	
 Signal name

 	
 Value

 	
 Default Action

 	
 Description

 	
 SIGHUP

 	
 1

 	
 Term

 	
 This signal is used to Hangup or death of controlling process

 	
 SIGINT

 	
 2

 	
 Term

 	
 This signal is used to interrupt from keyboard like ctrl + c, ctrl + z

 	
 SIGQUIT

 	
 3

 	
 Core

 	
 This signal is used to quit from keyboard

 	
 SIGILL

 	
 4

 	
 Core

 	
 It is used to for Illegal instruction

 	
 SIGTRAP

 	
 5

 	
 Core

 	
 This signal is used to trace or breakpoint trap

 	
 SIGABRT

 	
 6

 	
 Core

 	
 It is used to abort signal

 	
 SIGFPE

 	
 8

 	
 Core

 	
 Floating point exception

 	
 SIGKILL

 	
 9

 	
 Term

 	
 Process terminates immediately

 	
 SIGSEGV

 	
 11

 	
 Core

 	
 Invalid memory reference

 	
 SIGPIPE

 	
 13

 	
 Term

 	
 Broken pipe

 	
 SIGALRM

 	
 14

 	
 Term

 	
 Alarm signal

 	
 SIGTERM

 	
 15

 	
 Term

 	
 Terminate the process

 	
 SIGCHLD

 	
 17

 	
 Ign

 	
 Child stopped or terminated

 	
 SIGSTOP

 	
 19

 	
 Stop

 	
 This signal is used to stop the process

 	
 SIGPWR

 	
 30

 	
 Term

 	
 Power failure

 In the preceding table, we mentioned the signal name and value. Any of them can be used while referring to a signal. The meaning of terms used in the Default action section are as follows:

 	Term: Terminate

 	Core: Terminate the process and dump core

 	Ign: Ignore the signal

 	Stop: Stop the process

 Depending upon what kind of signal it is, any of the following actions can be taken:

 	A signal can be ignored by a process, which means no action will be taken. Most of the signals can be ignored, except SIGKILL and SIGSTOP. The SIGKILL and SIGSTOP signals can't be caught, blocked, or ignored. This allows the kernel to kill or stop any process at any point of time.

 	A signal can be handled by writing a signal handler code specifying the required action to be taken after a particular signal is received.

 	Each signal has a default action, so let the signal perform the default action; for example, terminate the process in case the SIGKILL signal is sent.

 To know all signals and its corresponding value, use the kill command with the–l option:

$ kill -l

 [image: Available signals]

 The kill command also provides a way to convert a signal number to a name when used in the following way:

kill -l signal_number

$ kill -l 9
KILL
$ kill -l 29
IO
$ kill -l 100 # invalid signal number gives error
bash: kill: 100: invalid signal specification

 To send a signal to process(es), we can use the kill, pkill, and kilall commands:

$ kill -9 6758 # Sends SIGKILL process to PID 6758
$ killall -1 foo # Sends SIGHUP signal to process foo
$ pkill -19 firef # Sends SIGSTOP signal to processes' name beginning with firef

 Traps

 When a process is running and in between we kill the process, the process terminates instantly without doing anything further. A programmer who writes a program may want to do some tasks before a program actually terminates; for example, a clean up of the temporary directories created, saving applications' state, saving logs, and so on. In such a case, a programmer would like to listen to signals and do the required task before actually allowing you to terminate the process.

 Consider the following shell script example:

 #!/bin/bash
Filename: my_app.sh
Description: Reverse a file

echo "Enter file to be reversed"
read filename

tmpfile="/tmp/tmpfile.txt"
tac command is used to print a file in reverse order
tac $filename > $tmpfile
cp $tmpfile $filename
rm $tmpfile

 This program takes an input from a user file and then reverses the file content. This script creates a temporary file to keep the reversed content of the file and later copies it to the original file. At the end, it deletes the temporary file.

 When we execute this script, it may be waiting for a user to input a text filename or maybe in between reversing the file (a large file takes more time to reverse the content). During this, if processes are terminated, then the temporary file may not get deleted. It is the programmer's task to make sure that temporary files are deleted.

 To solve such a problem, we can handle the signal, perform the necessary tasks, and then terminate the process. This can be achieved by using the trap command. This command allows you to execute a command when a signal is received by a script.

 The syntax of using trap is as follows:

$ trap action signals

 Here, we can provide trap action to be performed. An action can be an executing command (s).

 In the preceding syntax of trap, signals refers to providing one or more signal names for which an action has to be performed.

 The following shell script demonstrates how trap is used to perform tasks before a process suddenly exits on receiving a signal:

 #!/bin/bash
Filename: my_app_with_trap.sh
Description: Reverse a file and perform action on receiving signals

echo "Enter file to be reversed"
read filename

tmpfile="/tmp/tmpfile.txt"
Delete temporary file on receiving any of signals
SIGHUP SIGINT SIGABRT SIGTERM SIGQUIT and then exit from script
trap "rm $tmpfile; exit" SIGHUP SIGINT SIGABRT SIGTERM SIGQUIT
tac command is used to print a file in reverse order
tac $filename > $tmpfile
cp $tmpfile $filename
rm $tmpfile

 In this modified script, when any of the signals such as SIGHUP, SIGINT, SIGABRT, SIGTERM, or SIGQUIT are received, then rm $tmpfile; exit will be executed. This means that a temporary file will first be deleted and then you can exit from the script.

 Inter-process communication

 A process alone can do a certain things, but not everything. It will be a very useful and good resource utilization if two or more processes can communicate with each other in the form of sharing results, sending or receiving messages, and so on. In a Linux or Unix-based operating system, two or more processes can communicate with each other using IPC.

 IPC is the technique by which processes communicate with each other and are managed by kernel.

 IPC is possible to do by any of the following ways:

 	Named pipes: These allow processes to read from and write into it.

 	Shared memory: This is created by one process and is further available for read from and write to this memory by multiple processes.

 	Message queue: This is a structured and an ordered list of memory segments where processes store or retrieve data in queue fashion.

 	Semaphores: This provides a synchronizing mechanism for processes that are accessing the same resource. It has counters that are used to control the access to shared resources by multiple processes.

 While discussing named pipes in Chapter 6, Working with Files, we learned how processes can communicate using named pipes.

 Information on IPC using ipcs

 The ipcs command provides information about IPC facilities for which a calling process has the read access. It can provide information on three resources: shared memory, message queue, and semaphore.

 The syntax of using ipcs is as follows:

ipcs option

 Where options are as follows:

 	
 Option

 	
 Description

 	
 -a

 	
 Displays information for all resources—shared memory, message queue, and semaphore

 	
 -q

 	
 Displays information about active message queues

 	
 -m

 	
 Displays information about active shared memory segments

 	
 -s

 	
 Displays information about active semaphore sets

 	
 -i ID

 	
 Shows the detailed information for an ID. Use it with the -q, -m or -s option.

 	
 -l

 	
 Shows resource limits

 	
 -p

 	
 Shows PIDs of the resource creator and last operator

 	
 -b

 	
 Prints sizes in bytes

 	
 --human

 	
 Print sizes in a human-readable format

 Listing information provided by IPCs

 We can use the ipcs command without an option or with –a:

$ ipcs

 OR

$ ipcs -a

 [image: Listing information provided by IPCs]

 To see only the shared memory segment, we can use ipcs with the –m option:

$ ipcs -m --human

 [image: Listing information provided by IPCs]

 Here, the --human option made a size column in a more readable format by providing the size in KB and MB instead of giving it in bytes.

 To find out detailed information about a resource ID, use ipcs with the -i option followed by the resource ID:

$ ipcs -m -i 393217

 [image: Listing information provided by IPCs]

 Knowing processes' PID who recently did IPCs

 We can know the PID of the processes that have recently accessed a specific IPC resource using the -p option:

$ ipcs -m -p

 [image: Knowing processes' PID who recently did IPCs]

 Here, the cpid column shows pid of the processes that created the shared memory resource, and lpid refers to the PID of the processes that last accessed the shared memory resource.

 Summary

 After reading this chapter, you will understand what process is in a Linux and UNIX-based system. You should now know how to create, stop, terminate, and monitor processes. You should also know how to send signals to a process and manage the received signals in your shell script with the trap command. You have also learned how different processes communicate with each other using IPC on mechanism in order to share resources or to send and receive messages.

 In the next chapter, you will learn about the different ways in which tasks can be automated and how they run at a specified time without any further human intervention. You will also learn how and why start-up files are created, and how to embed other programming languages such as Python in a shell script.

 Chapter8.Scheduling Tasks and Embedding Languages in Scripts

 Until now, we learned about various useful shell utilities and how to write them into a shell script in order to avoid writing the same instructions again and again. Automating tasks by writing into scripts reduces the tasks up to a certain extent, but still we will have to run those scripts whenever required. Sometimes, it happens that we want to run a command or script at a particular time, for example, sysadmin has to run a clean-up and maintenance of a system available in the data center at 12:30 AM. To perform the required operation, sysadmin will login into a machine around 12:30 AM and do the necessary work. But what if his or her home network is down and the data center is far? It will be inconvenient and tough to perform a task at that moment. There are also a few tasks that need to be performed on daily or hourly basis, for example, monitoring the network usage of each user, taking a system backup, and so on. It will be very boring to execute repetitive tasks again and again.

 In this chapter, we will see how to solve such issues by scheduling tasks at a specific time or interval of time by using utilities at and crontab. We will also see how systemd (the first process started after a system is booted up with PID 1) manages processes needed after system start-up. We will also see how systemd manages different services and system logs. At the end, we will learn how we can embed other scripting languages in a shell script to get extra capabilities in the shell script.

 This chapter will cover the following topics in detail:

 	Running tasks at a specific time

 	Cron jobs

 	Managing Crontab entry

 	systemd

 	Embedding languages

 Running tasks at a specific time

 In general, when we run a command or script, it starts executing instantly. However, what if we want it to run later at a specific time? For example, I want to download large data from the Internet, but don't want to slow down my Internet bandwidth while I am working. So, I would like to run my download script at 1:00 AM since I won't be using the Internet for any kind of work after 1:00 AM. It is possible to schedule download scripts or commands later at a specified time using the at command. We can also list scheduled tasks using the atq command or remove any scheduled tasks using the atrm command.

 Executing scripts using at

 We will use the at command to run tasks at a given time. The syntax of using the at command is as follows:

at [Option] specified_time

 In the preceding syntax, specified_time refers to the time at which a command or script should run. The time can be in the following format:

 	
 Time format

 	
 Description

 	
 HH:MM

 	
 The specific time of the day in hours (HH) and minutes (MM). If the time is already past, then the next day is assumed. Time is specified in 24 hours format.

 	
 noon

 	
 At 12:00 during day time.

 	
 teatime

 	
 At 16:00 or 4 pm in afternoon.

 	
 midnight

 	
 At 12:00 at night.

 	
 today

 	
 Refers to the current time on same day.

 	
 tomorrow

 	
 Refers to the current time on the next day.

 	
 AM or PM

 	
 Suffixed with the time to specify time in 12-hour format, for example, 4:00PM.

 	
 now + count time-units

 	
 Run a script at the same time after a certain time-unit. Count can be an integer number. Time units can be in minutes, hours, days, weeks, months, or years.

 	
 Date

 	
 A date can be given in the form of month-name, day, and optional year. Date can be in one of the following formats: MMDD[CC]YY, MM/DD/[CC]YY, DD.MM.[CC]YY, or [CC]YY-MM-DD.

 The options to the at command are explained in the following table:

 	
 Option

 	
 Description

 	
 -f FILE

 	
 Specify a script file to be executed.

 	
 -l

 	
 Alias to the atq command.

 	
 -m

 	
 Send an e-mail to the user on job completion.

 	
 -M

 	
 Don't send an e-mail to the user.

 	
 -r

 	
 Alias to the atrm command.

 	
 -t time

 	
 Run a job at the time. The format of time is given as [[CC]YY]MMDDhhmm[.ss].

 	
 -c job_number

 	
 Print the job associated with job_number on a standard output.

 	
 -v

 	
 Print the time at which the job will be executed.

 Scheduling commands

 The following command is scheduled to run at 14:00, which stores the filesystem's usage in a file called file_system_usage.log in a user's home directory:

$ at 14:00
warning: commands will be executed using /bin/sh
at> df > ~/file_system_usage.log
at> <EOT>
job 33 at Mon Sep 21 14:00:00 2015

 When we run the at command as shown, a warning message warning: commands will be executed using /bin/sh is printed, which specifies which shell will be used to execute commands. In the next line, we will see at prompt where we can specify the list of commands to be executed at 14:00. In our case, we entered the df > ~/file_system_usage.log command, which means run the df command and save its result in the file_system_usage.log file.

 Once the list of commands to be entered is finished, press the Enter key and then, in the next line, use the Ctrl + d keys to exit from at prompt. Before getting a normal shell prompt, we will see the message saying created job number and time stamp at which the job will be executed. In our case, the job number is 33 and the time stamp is Mon Sep 21 14:00:00 2015.

 We can check the content of the file_system_usage.log file once the time stamp we specified is over.

 We can print on stdout what is going to be executed when a particular scheduled job runs:

$ at -c 33 # Lists content of job 33

 [image: Scheduling commands]

 We can see that the df > ~/file_system_usage.log command will be executed. The rest of the lines specify in what environment a task will be executed.

 Now, consider a job scheduled by the root user:

at -v 4am
Mon Sep 21 04:00:00 2015

warning: commands will be executed using /bin/sh
at> reboot
at> <EOT>
job 34 at Mon Sep 21 04:00:00 2015

 The job with the number 34 is scheduled by the user root. This job system will reboot at 4am.

 Scheduling a script file

 We can schedule a script file for execution at a specific time using the -f option with the at command.

 For example, we want to run the loggedin_user_detail.sh script next week at 4 pm. This script lists logged in users and what processes they are running when the script gets executed at a scheduled time. The content of the script is as follows:

$ cat loggedin_user_detail.sh
#!/bin/bash
Filename: loggedin_user_detail.sh
Description: Collecting information of loggedin users

users_log_file=~/users_log_file.log
echo "List of logged in users list at time 'date'" > $users_log_file
users=('who | cut -d' ' -f1 | sort | uniq')
echo ${users[*]} >> $users_log_file

for i in ${users[*]}
do
 echo "Processes owned by user $i" >> $users_log_file
 ps u -u $i >> $users_log_file
 echo
done
$ chmod +x loggedin_user_detail.sh # Provide execute permission

 Now, to run the preceding script at 4 pm next week, we will run the following command:

$at -f loggedin_user_detail.sh 4pm + 1 week
warning: commands will be executed using /bin/sh
job 42 at Sun Sep 27 16:00:00 2015

 We can see that the job has been scheduled to run one week later.

 Listing scheduled tasks

 Sometimes, it happens that a task has been scheduled to run at a specific time, but we forget the time at which a task is supposed to run. We can see the already scheduled tasks using one of the atq or the at command with the -l option:

$ atq
33 Mon Sep 21 14:00:00 2015 a skumari
42 Sun Sep 27 16:00:00 2015 a skumari

 The atq command displays jobs scheduled by the current user with the job number, time, and user's name:

$ sudo atq
34 Mon Sep 21 04:00:00 2015 a root
33 Mon Sep 21 14:00:00 2015 a skumari
42 Sun Sep 27 16:00:00 2015 a skumari

 Running atq with sudo, lists jobs scheduled by all users.

 Removing scheduled tasks

 We can also remove a scheduled task if the task is no longer required to be performed. Removing a task is also useful when we want to the modify time at which a task is to be executed. To modify time, first remove the scheduled task and then create the same task again with the new time.

 For example, we don't want to reboot a system at 1 am instead of 4 am. For this, the root user will first remove the job 34 using the atrm command:

atrm 34
$ sudo atq # Updated lists of tasks
 33 Mon Sep 21 14:00:00 2015 a skumari
 42 Sun Sep 27 16:00:00 2015 a skumari
at 1am
warning: commands will be executed using /bin/sh
 at> reboot
 at> <EOT>
job 47 at Mon Sep 21 01:00:00 2015
$ sudo atq
 33 Mon Sep 21 14:00:00 2015 a skumari
 42 Sun Sep 27 16:00:00 2015 a skumari
 47 Mon Sep 21 01:00:00 2015 a root

 We can see that the task scheduled by the root user will now run at 1 am instead of 4 am.

 Cron jobs

 Cron jobs are jobs or tasks that run at regular intervals of time unlike the at command. For example, in office, my job is to keep all the detailed information of company employees that is confidential. To keep it secure and updated without any loss of information, I will have to take the backup of the latest data in external devices such as a hard disk or a flash drive. Depending upon the number of employees, I may have to take the backup on a minute, hour, daily or weekly basis. It's hard, tedious, and a waste of time to back up manually every time. By having the knowledge of how to schedule a cron job, it can be very easily achieved. A Cron job creation is frequently done by system administrators to schedule tasks that are to be performed at regular intervals, for example, taking the backup of a system, saving logs of each user who is logged in, monitoring and reporting the network usage of each user, performing system clean-up, scheduling system update, and so on.

 Cron consists of two parts: cron daemon and cron configuration.

 Cron daemon

 The cron daemon automatically starts when a system is booted and keeps running in the background. Daemon process is known as crond and is started by systemd or the init process, depending upon what your system has. Its task is to check configuration files regularly at one minute intervals and check whether any tasks are to be completed.

 Cron configuration

 Cron configuration contains files and directories where the Cron jobs to be scheduled are written. They are available in the /etc/ directory. The most important file associated with cron configuration is crontab. In a Linux system, configuration files related to cron are as follows:

 	/etc/cron.hourly/: This contains the scripts to be run each hour

 	/etc/cron.daily/: This contains the scripts to be run once in a day

 	/etc/cron.weekly/: This contains the scripts to be run once in a week

 	/etc/cron.monthly/: This contains the scripts to be run once in a month

 	/etc/crontab: This contains commands and the interval at which they should run

 	/etc/cron.d/: This is the directory with files having commands and the interval at which they should run

 Scripts can be directly added into any of the directories such as cron.hourly/, cron.daily/, cron.weekly/, or cron.monthly/, in order to run them at an hourly, daily, weekly, or monthly basis respectively.

 The following is a simple shell script firefox_memcheck.sh, which checks whether a Firefox process is running or not. If Firefox is running and its memory usage is greater than 30 percent, then restart Firefox:

 #!/bin/sh
Filename: firefox_memcheck.sh
Desription: Resatrts application firefix if memory usage is more than 30%

pid='pidof firefox' # Get pid of firefox
if [$pid -gt 1]
then
 # Get current memory usage of firefox
 current_mem_usage='ps -u --pid $pid| tail -n1 | tr -s ' ' | cut -d ' ' -f 4'
 # Check if firefox memory usage is more than 30% or not
 if [$(echo "$current_mem_usage > 30" | bc) -eq 1]
 then
 kill $pid # Kill firefox if memory usage is > 30%
 firefox & # Launch firefox
 fi
fi

 We can add this script into the /etc/cron.hourly/ directory of the system and it will keep checking our Firefox memory usage. This script can be modified to monitor the memory usage for other processes too.

 Crontab entries

 By putting scripts into cron.{hourly, daily, weekly, monthly}, we can only set tasks at an interval of an hour, day, week, and month. What if a task has to run at 2-day intervals, 10-day intervals, 90 minute intervals, and so on? To achieve this, we can add tasks into the /etc/crontab file or the /etc/cron.d/ directory. Each user may have their own crontab entry and files related to each users are available in /var/spool/.

 A crontab entry looks as follows:

 [image: Crontab entries]

 We can see from the preceding screenshot that a crontab entry has five asterisks. Each asterisk defines a specific duration. We can replace * with a value suggested against each of them or leave it as it is. If * is mentioned in a field, then it means consider all the instances of that field.

 The timing syntax can also be described as follows:

 	Specify the minutes value between 0 to 59

 	Specify hours that can range from 0 to 23

 	Specify days that can range from 1 to 31

 	Specify months that can range from 1 to 12 or we can write Jan, Feb, … Dec

 	Specify the day of a week that can range from 0 to 6 or we can write sun (0), mon (1), …, sat (6)

 All five fields are separated by blank spaces. It is followed by a username that specifies by which user the command will be executed. Specifying the username is optional and by default it is run as a root. The last field is command that is scheduled for execution.

 An example demonstrating how to write the crontab entry is as follows:

20 7 * * 0 foo command

 Each field can be explained as follows:

 	20: 20th minute

 	7: 7AM

 	*: Each day

 	*: Each month

 	0: On Sunday

 	foo: This command will run as the foo user

 	command: This is the specified command to be executed

 So, the command will run as root at 7:20 AM every Sunday.

 We can specify multiple instances of a filed using a comma (,):

30 20,22 * * * command

 Here, command will run at 8:30 PM and 10:30 PM every day.

 We can also specify a range of time in a field using a hyphen (-) as follows:

35 7-11 * * 0-3 command

 This means, the run command is at 7:35, 8:35, 9:35, 10:35, and 11:35 on Sunday, Monday, Tuesday, and Wednesday.

 To run a script at a specific interval, we can specify the forward slash (/) as follows:

20-45/4 8 9 4 * command

 The command will run on 9th April between 8:20 AM to 8:45 AM at an interval of 4 minutes.

 Special strings in Crontab

 Crontab may have the following strings specified as well:

 	
 String

 	
 Description

 	
 @hourly

 	
 Run once in an hour, equivalent to 0 * * * *

 	
 @daily or @midnight

 	
 Run once in a day, equivalent to 0 0 * * *

 	
 @weekly

 	
 Run once in a week, equivalent to 0 0 * * 0

 	
 @monthly

 	
 Run once in a month, equivalent to 0 0 1 * *

 	
 @yearly or @annually

 	
 Run once in a year, equivalent to 0 0 1 1 *

 	
 @reboot

 	
 Run at system start-up

 Managing the crontab entry

 We don't add or modify an entry of a crontab directly. It is done by using the crontab command that allows you to add, modify, and list crontab entries. Each user can have their own crontab where they can add, delete, or modify tasks. By default, it is enabled for all users, but if a system administrator wants to restrict some of the users, he or she can add that user in the /etc/cron.deny file.

 The syntax of using the crontab command is as follows:

crontab [-u user] file
crontab [-u user] [option]

 The options of the crontab are explained in the following table:

 	
 Option

 	
 Description

 	
 -u user

 	
 Appends the name of the user whose crontab is to be modified

 	
 -l

 	
 Displays the current crontab on stdout

 	
 -e

 	
 Edit the current crontab using an editor specified by the EDITOR env

 	
 -r

 	
 Remove the current crontab

 	
 -i

 	
 Interactive removal of the current crontab when used with the -r option

 Listing crontab entries

 To list the crontab entries, we use the -l option for the current user:

$ crontab -l
no crontab for foo

 The output says that there is no crontab entry for the user foo. It means the user foo has not added any task in his or her crontab yet.

 To view crontab as the root user, type the following command:

crontab -l
no crontab for root

 Alternatively, use the following command:

$ sudo crontab -l

 Editing crontab entries

 Crontab of the current user can be edited or modified by using the -e option with crontab:

$ crontab -e

 After executing the preceding command, an editor will open where the user can add tasks into the crontab file. In our case, the vi editor is launched. The following entries have been added into the user foo crontab entry:

 [image: Editing crontab entries]

 After saving and exiting from the editor, the output obtained is as follows:

 no crontab for foo - using an empty one
crontab: installing new crontab

 To view the modified crontab entry of the user foo, run the –l option again:

$ crontab -l

 [image: Editing crontab entries]

 To create the crontab entry of the user root, we can run crontab with the -e option as the root:

crontab -e

 OR

$ sudo crontab -e

 After running the preceding command, the editor opens to modify crontab for the user root that looks as follows after adding entries:

 [image: Editing crontab entries]

 To view the crontab entry of the root, we can use crontab -l as the root user:

crontab -l

 [image: Editing crontab entries]

 The root user can also view and modify the crontab entry of another user. This is done by specifying the -u option followed by the username:

crontab -u foo -e # Modifying crontab of user foo as root

 Crontab of the user foo will be opened for modification as follows:

 [image: Editing crontab entries]

 To view the crontab entry of another user, run the -l option with –u as follows:

crontab -u foo -l

 We can display the crontab of the user foo as follows:

 [image: Editing crontab entries]

 Crontab entries are created using the crontab command and are stored in the /var/spool/cron/ directory. A file is created by the name of the user:

ls /var/spool/cron
root foo

 We can see that a file is created for the users root and foo.

 Removing crontab entries

 We can also remove crontab using the -r option with the crontab command. By default, crontab of the current user is deleted. Using the option with -i allows the interactive removal of crontab:

crontab -i -r
crontab: really delete root's crontab? Y

 By running the preceding command, the crontab entry of the user root has been deleted. We can verify this by running the -l option:

crontab -l
no crontab for root

ls /var/spool/cron
foo

 The user root can also delete crontab of other users by specifying the user in the–u option:

crontab -r -i -u foo
crontab: really delete foo's crontab? n

 We specified 'n' (no) instead of 'y' (yes), so the removal of the user foo crontab will be aborted.

 Let's delete this now:

crontab -r -i -u foo
crontab: really delete foo's crontab? Y

 Now, the crontab entry of the user foo has been removed. To verify, run the following command:

$ crontab -l
no crontab for foo

 systemd

 Nowadays, most of the Linux distribution systems such as Fedora, Ubuntu, Arch Linux, Debian, openSUSE, and so on, have switched from init to systemd. systemd is the first process that gets started after system boot-up with PID 1. It controls and manages other processes that should be started after the system boot-up. It is also known as basic building block for an operating system. To learn about an init-based system, refer to the Wikipedia link at https://en.wikipedia.org/wiki/Init.

 systemd units

 systemd has several units, each containing a configuration file with information about a service, socket, device, mount point, swap file or partition, start-up target, and so on.

 The following table explains some of unit files:

 	
 Unit type

 	
 File extension

 	
 Description

 	
 Service unit

 	
 .service

 	
 A system service

 	
 Device unit

 	
 .device

 	
 A device file recognized by kernel

 	
 Mount unit

 	
 .mount

 	
 A file system mount point

 	
 Timer unit

 	
 .timer

 	
 A systemd timer

 	
 Swap unit

 	
 .swap

 	
 A swap file

 To list all the installed unit files in a system, run the systemctl command with the list-unit-files option:

$ systemctl list-unit-files | head -n 12

 [image: systemd units]

 To list unit files of a unit type, use the list-unit-files and --type options. Running the following command will show only a service unit available in the system:

$ systemctl list-unit-files --type=service | head -n 10

 [image: systemd units]

 Managing services

 systemd manages all the available services in a system, from the time of Linux kernel boot up till the shutdown of the system. A service in a Linux system is an application that runs in the background or is waiting to be used. Service management files have the suffix .service in its file name.

 In systemd-based Linux system, a user or an administrator can manage services using the systemctl command.

 Status of a service

 To list the current status of services and check whether it is running or not, use systemctl status:

 For example, to see the status of my NetworkManager service, run the following command:

$ systemctl status -l NetworkManager.service

 [image: Status of a service]

 We can see that the NetworkManager service is running and is in active state. It also provides detailed information associated with the current NetworkManager service.

 Let's see status of another service called the sshd. The sshd service controls whether ssh connection is possible to a system or not:

$ systemctl status sshd.service

 [image: Status of a service]

 This shows that service sshd is inactive currently.

 If no verbose output is required, then we can just use the is-active option to see a service status:

$ systemctl is-active sshd.service
unknown
$ systemctl is-active NetworkManager.service
active

 Here, active means a service is running and unknown means a service is not running.

 Enabling and disabling services

 When a system is booted, systemd automatically starts some of the services. A few of the services may not be running as well. To enable a service to run after a system is booted, use systemctl enable and to stop a service running by a system during boot time, use systemctl disable.

 Executing the following command will allow systemd to run the sshd service after a system is booted up:

systemctl enable sshd.service

 Executing the following command will allow systemd to not run sshd.service when a system is booted up:

systemctl disable sshd.service

 To check whether a service is enabled or not, run the systemctl is-enabled command:

$ systemctl is-enabled sshd.service
disabled
$ systemctl is-enabled NetworkManager.service
enabled

 It means that the sshd service is disabled currently during the system start-up, while the NetworkManager service is enabled during the start-up by systemd.

 Start and stop a service

 When a system is running, sometimes we may need some services running. For example, to do ssh in my current system from another system, the sshd service must be running.

 For example, let's see what the current status of the sshd service is:

$ systemctl is-active sshd.service
unknown

 The sshd service is not running currently. Let's try to do ssh in a system:

$ ssh foo@localhost # Doing ssh to same machine # Doing ssh to same machine
 ssh: connect to host localhost port 22: Connection refused

 We can see that the ssh connection has been refused.

 Now, let's start running the sshd service. We can start a service by using the systemctl start command as follows:

systemctl start sshd.service
$ systemctl is-active sshd.service
active

 Now, the sshd service is running. Try doing ssh into the machine again:

$ ssh foo@localhost
Last login: Fri Sep 25 23:10:21 2015 from 192.168.1.101

 Now, the login has been done successfully.

 We can even restart a running service using the systemctl restart command. This is required when a service has been modified. Then, to enable the modified setting, we can just restart it.

systemctl restart sshd.service

 The preceding command will restart the sshd service.

 When ssh is no longer required, it's safe to stop running it. This avoids an anonymous access to a machine. To stop running a service, run the systemctl stop command:

systemctl stop sshd.service
$ systemctl is-active sshd.service
unknown

 Viewing system logs

 To check whether a user is working on an individual or enterprise machine, viewing system logs is very important in order to trace a problem and get detailed information of activities happening in a system. Viewing system logs plays an important role in monitoring and ensuring network traffics are not vulnerable. On a systemd-based system, system logs are collected and managed by one of its component called journald. Its task is to collect a log of applications and kernel. Log files are available in the /var/log/journal/ directory.

 To view a log collected by journald, the journalctl command is used:

journalctl

 Running the preceding command displays all system logs collected, starting from old and grows down to newer logs.

 Viewing the latest log entries

 To see the latest log entries and continuously printing new entries as appended to the journal, use the –f option:

$ journalctl -f

 [image: Viewing the latest log entries]

 To see the log entries captured since the last boot of a system, use the –b option:

$ journalctl -b

 [image: Viewing the latest log entries]

 Viewing logs of a particular time interval

 We can also view logs of a particular time interval. For example, to view logs of the last 1 hour, we can run the following command:

$ journalctl --since "1 hour ago" --until now

 To view log entries since July 1, 2015 until now, we can run the following command:

$ journalctl --since 2015-07-01

 To view logs from Aug 7, 2015 at 7:23 PM to Aug 9, 2015 at 7 AM, we can run the following command:

$ journalctl --since "2015-08-07 19:23:00" --until "2015-08-09 7:00:00"

 Embedding languages

 Shell scripting provides a certain set of features as compared to what we get in other scripted programming languages such as Python, Ruby, Perl, and AWK. These languages provide additional features as compared to what we get in a shell script language. On Linux and UNIX-based system, to use these languages, we have to install them separately if they are not preinstalled.

 Consider a simple example: there is a json or XML file and we want to parse it and retrieve the data stored in it. It's very hard and error-prone to do this using shell and its commands, but if we are aware of the Python or Ruby languages, we can easily do it and then embed it into a shell script. Embedding another language in a shell script should be done to reduce the effort and also to achieve better performance.

 The syntax for embedding other languages in a shell script is as follows:

 	
 Scripting language

 	
 The syntax of embedding into a shell script

 	
 Python (Python version 2)

 	
 python -c ' '. Inside single quotes write the Python code to be processed

 	
 Python3

 	
 python3 -c ' '. Inside single quotes write the Python version 3 code to be processed

 	
 Perl

 	
 perl -e ' '. Inside single quotes write the Perl code.

 	
 Ruby

 	
 ruby -e ' '. Inside single quotes write the Ruby code.

 	
 AWK

 	
 This can be used as a command utility. Refer to the awk man page for available options.

 Embedding Python language

 To embed Python language inside a shell script, we will use python -c " Python Code". To learn about Python, refer to the official website at https://www.python.org/.

 A simple Python example would be printing Hello World in Python, which is done as follows:

 print "Hello World"

 To embed this in a shell script, we can write the code as follows

 #!/bin/bash
Filename: python_print.sh
Description: Embeding python in shell script

Printing using Python
python -c 'print "Hello World"'

 We will now execute the python_print.sh script as follows:

$ sh python_print.sh
Hello World

 To embed multiple lines of Python code in a shell script, use the following code:

 python - <<EOF
Python code
EOF

 Here, python - instructs the python command to take the input from stdin and EOF is a label that instructs to take the stdin input until it encounters the EOF text.

 The following example embeds Python language in a shell script and fetches unread e-mails from the user's Gmail account:

 #!/bin/bash
Filename: mail_fetch.sh
Description: Fetching unread email from gmail by embedding python in shell script

Enter username and password of your gmail account
echo Enter your gmail username:
read USER
echo Enter password:
read -s PASSWD

echo Running python code
python - <<CODE
Importing required Python module

import urllib2
import getpass
import xml.etree.ElementTree as ET

Function to get unread messages in XML format
def get_unread_msgs(user, passwd):
 auth_handler = urllib2.HTTPBasicAuthHandler()
 auth_handler.add_password(
 realm='mail.google.com',
 uri='https://mail.google.com',
 user=user,
 passwd=passwd
)
 opener = urllib2.build_opener(auth_handler)
 urllib2.install_opener(opener)
 feed = urllib2.urlopen('https://mail.google.com/mail/feed/atom')
 return feed.read()

xml_data = get_unread_msgs("$USER", "$PASSWD")
root = ET.fromstring(xml_data)

Getting Title of unread emails
print "Title of unread messages:"
print "........................"
count=0
for e in root.iter('{http://purl.org/atom/ns#}title'):
 print e.text

CODE

echo "Done!"

 After executing this script, the sample output looks as follows:

 $ sh mail_fetch.sh
Enter your gmail username:
foo@gmail.com
Enter password:

Running python code
Title of unread messages:
.....................……………..
Gmail - Inbox for foo@gmail.com
Unread message1
unread message2
Unread message3
Done!

 Embedding AWK language

 Awk is a programming language designed for text processing and is mainly used for fetching relevant data and for reporting tools. To learn more about AWK programming language, refer to its man page or visit the website at http://www.gnu.org/software/gawk/manual/gawk.html.

 The Awk language can be very easily used in a shell script. For example, consider the output of the df command on a running system:

$ df -h

 [image: Embedding AWK language]

 To fetch the fourth column—that is, the Avail field using awk—we can write a shell script using awk as follows:

 #!/bin/bash
Filename: awk_embed.sh
Description: Demonstrating using awk in shell script

Fetching 4th column of command df output
df -h |awk '{ print $4 }'

 [image: Embedding AWK language]

 Consider another example in which we will use an input file that will be the /etc/passwd file of a system. This file contains the basic information about each user or account on a Linux or UNIX-based system.

 Each line of a /etc/passwd file looks as follows:

root:x:0:0:root:/root:/bin/bash

 There are seven fields and each field is separated by a colon (:). To learn the detailed meaning of each field, refer to the Wikipedia link at https://en.wikipedia.org/wiki/Passwd.

 The following shell script makes use of awk features and displays some useful information from the /etc/passwd file. For example, we will consider the following as the content of the passwd file:

$ cat passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt

$ cat passwd_file_info.sh # Shell script content
#!/bin/bash
Filename: passwd_file_info.sh
Desciption: Fetches useful information from /etc/passwd file using awk

Fetching 1st and 3rd field i.e. Username and UID and separate them with blank space
awk -F":" '{ print "Username: " $1 "\tUID:" $3 }' passwd

Searching line whose user is root
echo "User root information"
awk '$1 ~ /^root/' passwd

 Running this script gives following result:

$ sh passwd_file_info.sh
Username: root UID:0
Username: bin UID:1
Username: daemon UID:2
Username: adm UID:3
Username: lp UID:4
Username: sync UID:5
Username: shutdown UID:6
Username: halt UID:7

User root information
root:x:0:0:root:/root:/bin/bash

 Note

 It is also possible to use compiled languages such as C, C++, and Java in a shell script. To do so, write commands to compile and execute the code.

 Summary

 After reading this chapter, you should now know how to schedule a task to be performed at a specific time using the at command. You should also know the benefits of creating Cron jobs, which need to be performed multiple times. You should have also learned how to use the crontab command to add, modify, list, and remove crontab entries. You also have a good understanding of systemd—the first process created on a system—and how it manages other system processes, services, and logs. You should also know how to embed other scripting languages such as Python, AWK, Ruby, and so on, in a shell script.

 After reading all of these chapters and practicing the examples, you should now be confident in shell scripting. Being a master of the command line, you are now capable of writing your own shell scripts to solve your day-to-day tasks. Finally, if anything is not covered in this book, you know that you should look into the man page of any command for help.

 Index

 A

 	alias

 	about / Alias

 	creating / Creating alias

 	listing / Listing all aliases

 	removing / Removing an alias

 	arithmetic operators / Arithmetic operators

 	assignment operator / The assignment operator

 	associative array

 	about / The associative array

 	declaration / The declaration and value assignment

 	value assignment / The declaration and value assignment

 	operations / Operations on arrays

 	at command

 	used, for executing scripts / Executing scripts using at

 	AWK language

 	embedding / Embedding AWK language

 	URL / Embedding AWK language

 B

 	bash completion

 	managing, with complete / Managing bash completion with complete

 	existing bash completion, viewing / Viewing the existing bash completion

 	default bash completion behavior, modifying / Modifying default bash completion behavior

 	specification, removing / Removing bash completion specification

 	example / An example of bash completion

 	created bash completion, running / Running the created bash completion

 	bash startup files

 	using / Using bash startup files

 	.bashrc / .bashrc

 	.bash_profile / .bash_profile

 	.bash_logout / .bash_logout

 	basic file operations

 	about / Performing basic file operations

 	files, creating / Creating files

 	files, modifying / Modifying files

 	files, viewing / Viewing files

 	files, deleting / Deleting files

 	block device file

 	about / The block device file

 	creating / The block device file

 	builtin shell variables

 	defining / Builtin shell variables

 C

 	cat command

 	about / Filtering based on lines—head and tail

 	character based translation

 	tr, using / Character-based translation using tr

 	input characters, deleting / Deleting input characters

 	squeezing, to single occurrence / Squeezing to a single occurrence

 	character set, inverting / Inverting a character set to be translated

 	character classes

 	about / Character ranges and classes, Character ranges

 	[*alnum*] / Character ranges

 	[*alpha*] / Character ranges

 	[*digit*] / Character ranges

 	[*lower*] / Character ranges

 	[*upper*] / Character ranges

 	[*blank*] / Character ranges

 	[*graph*] / Character ranges

 	[*print*] / Character ranges

 	[*punct*] / Character ranges

 	[*xdigit*] / Character ranges

 	matching dates, in mm-dd-yyyy format / Matching dates in mm-dd-yyyy format

 	character device file

 	about / The block device file

 	creating / The block device file

 	character ranges

 	about / Character ranges and classes, Character ranges

 	[a-z] / Character ranges

 	[A-Z] / Character ranges

 	[0-9] / Character ranges

 	[a-zA-Z0-9] / Character ranges

 	[h-k] / Character ranges

 	[2-46-8j-lB-M] / Character ranges

 	regex, for valid shell variable / Regex for a valid shell variable

 	command completion

 	about / Command completion

 	bash completion, managing with complete / Managing bash completion with complete

 	bash completion, writing for application / Writing bash completion for your own application

 	command line parameters

 	passing, to script / Passing command line parameters to script

 	arguments, reading in script / Reading arguments in scripts

 	command line arguments, shifting / Shifting command line arguments

 	command line options, processing in script / Processing command line options in a script

 	commands

 	scheduling / Scheduling commands

 	Common UNIX Printing System (CUPS)

 	about / Socket file

 	comparison operators / Comparison operators

 	conditional statements

 	using, with if and else / Using conditional statements with if and else, Simple if and else

 	elif statement / The if, elif, and else statements

 	if statement / The if, elif, and else statements

 	else statement / The if, elif, and else statements

 	nested if / Nested if

 	configuration files

 	about / Configuration files

 	viewing / Viewing and modifying configuration files

 	modifying / Viewing and modifying configuration files

 	construct commands

 	defining, eval used / Construct commands using eval

 	cron configuration / Cron configuration

 	cron daemon / Cron daemon

 	Cron jobs

 	defining / Cron jobs

 	cron daemon / Cron daemon

 	cron configuration / Cron configuration

 	crontab entries / Crontab entries

 	crontab entries

 	writing / Crontab entries

 	special strings / Special strings in Crontab

 	managing / Managing the crontab entry

 	listing / Listing crontab entries

 	editing / Editing crontab entries

 	removing / Removing crontab entries

 	cut-based selection

 	about / The Cut-based selection, Cutting across columns

 	text selection, in files / Text selection in files

 	cut command, options

 	-b LIST / The Cut-based selection

 	-c LIST / The Cut-based selection

 	-d DELIM / The Cut-based selection

 	-f LIST / The Cut-based selection

 	--complement / The Cut-based selection

 	-s / The Cut-based selection

 	--output-delimiter=STRING / The Cut-based selection

 D

 	debugging, scripts

 	performing / Debugging your scripts

 	echo command used / Debugging using echo

 	entire script, debugging with -x option / Debugging an entire script using -x

 	section, debugging with set options / Debugging sections of a script using the set options

 	default environment

 	defining / Knowing the default environment

 	default history behavior

 	modifying / Modifying the default history behavior

 	diff command

 	options / Files comparison using diff

 	directory file

 	about / Directory file

 E

 	/etc/passwd

 	URL / Embedding AWK language

 	environment variables

 	versus shell variables / Differences between shell and environment variables

 	about / Differences between shell and environment variables

 	exit codes

 	about / Exit codes

 	with special meaning / Exit codes with a special meaning

 	Exit code 0 / Exit codes with a special meaning

 	Exit code 1 / Exit codes with a special meaning

 	Exit code 2 / Exit codes with a special meaning

 	Exit code 126 / Exit codes with a special meaning

 	Exit code 127 / Exit codes with a special meaning

 	Exit code 128+n / Exit codes with a special meaning

 	expressions, testing with test command

 	about / Testing expressions with a test

 	file checks / File checks

 	arithmetic checks / Arithmetic checks

 	string checks / String checks

 	expression checks / Expression checks

 F

 	files

 	creating / Creating files

 	directory file / Directory file

 	regular file / Regular file

 	viewing / Viewing files

 	viewing, ls command used / Viewing files

 	content, viewing with cat command / Viewing content using cat

 	viewing, more command used / more and less

 	viewing, less command used / more and less

 	deleting / Deleting files

 	regular file, deleting / Deleting a regular file

 	directory, deleting / Deleting a directory

 	copying / Moving and copying files, Copying files

 	moving / Moving files

 	directory, moving to new location / Moving a directory to a new location

 	renaming / Renaming a file

 	copying locally / Copying files locally

 	copying, to another location / Copying a file to another location

 	copying remotely, scp command used / Copying files remotely

 	copying, to remote server / Copying files to a remote server

 	comparing / Comparing files

 	comparing, diff command used / Files comparison using diff, Example

 	searching / Finding files

 	searching, according to usecase / Searching files according to use case

 	finding and deleting, based on inode number / Finding and deleting a file based on inode number

 	link, creating / Links to a file

 	special files / Special files

 	temporary files / Temporary files

 	permissions / Permission and ownership

 	ownership / Permission and ownership

 	opened files list, obtaining / Getting the list of open files

 	configuration files / Configuration files

 	fle descriptors

 	about / File descriptors

 	for loop

 	about / Looping around with for

 	simple iteration / Simple iteration

 	command output, iterating over / Iterating over a command output

 	range, specifying / Specifying a range to the for loop

 	format modifiers

 	defining / Interacting with shell

 	format specification

 	used, for printing different data type format / Interacting with shell

 	functions

 	using / Using functions and positional parameters

 	calling in bash / Calling a function in bash

 	parameters, passing to / Passing parameters to functions

 G

 	grep command

 	used, for filtering output / Filtering an output using grep

 	syntax / Syntax, Looking for a pattern in a file

 	uses / A few more grep usages

 	searching, in a binary file / Searching in a binary file

 	searching, in a directory / Searching in a directory

 	files/directories, excluding from search / Excluding files/directories from a search

 	filename, displaying with matching pattern / Display a filename with a matching pattern

 	exact word, matching / Matching an exact word

 	output, editing with sed command / Editing output using sed, String substitution using s

 	multiple substitutions / Multiple substitutions

 	grep command, options

 	-i / Syntax

 	-v / Syntax

 	-o / Syntax

 	-f FILE / Syntax

 	-e PATTERN / Syntax

 	-E / Syntax

 	-r / Syntax

 	-R / Syntax

 	-a / Syntax

 	-n / Syntax

 	-q / Syntax

 	s / Syntax

 	-c / Syntax

 	-A NUM / Syntax

 	-B NUM / Syntax

 	-C NUM / Syntax

 	pattern, searching in multiple files / Looking for a pattern in multiple files

 H

 	head command

 	about / Filtering based on lines—head and tail

 	used, for printing lines / Printing lines using head, Printing the first few bytes, Checking log entries

 	used, for finding lines / Finding any line in a file

 	head command, options

 	-c [-] K / Printing lines using head

 	-n [-]K / Printing lines using head

 	-q / Printing lines using head

 	-v / Printing lines using head

 	Hello world

 	defining, in shell / Hello World in shell

 	interacting, with shell / Interacting with shell

 	bash script file, creating / Let's make it scripted

 	history, shell

 	defining / Knowing your history

 	shortcuts / Handy shortcuts for seeing the history

 	history builtin command

 	about / The history builtin command

 	history shell builtin command

 	defining / The history builtin command

 I

 	indexed array

 	about / Indexed arrays

 	array declaration / Array declaration and value assignment

 	value assignment / Array declaration and value assignment

 	operations / Operations on arrays

 	init-based system

 	URL / systemd

 	input text

 	sorting / Sorting an input text

 	single file, sorting / Sorting a single file

 	multiple files, sorting / Sorting a single file

 	output, redirecting to sort / Redirecting output to sort

 	inter-process communication

 	about / Inter-process communication

 	named pipes / Inter-process communication

 	shared memory / Inter-process communication

 	message queue / Inter-process communication

 	semaphores / Inter-process communication

 	information about IPC, ipcs command used / Information on IPC using ipcs

 	information, listing / Listing information provided by IPCs

 	PID of processes, knowing / Knowing processes' PID who recently did IPCs

 K

 	killall command / Using the killall command

 	kill command / Using the kill command

 L

 	languages

 	embedding / Embedding languages

 	links, between files

 	soft link / Soft link

 	hard link / Hard link

 	hard link, versus soft link / Difference between hard link and soft link

 	logical operators / Logical operators

 M

 	matching dates

 	valid month, matching / Matching a valid month

 	valid day, matching / Matching a valid day

 	valid year in date, matching / Matching the valid year in a date

 	valid months, combining with days and regex / Combining valid months, days, and years regex to form valid dates

 	metacharacters, regular expression

 	about / Regular expression metacharacters

 	* (Asterisk) / Regular expression metacharacters

 	+ (Plus) / Regular expression metacharacters

 	? / Regular expression metacharacters

 	. (Dot) / Regular expression metacharacters

 	^ / Regular expression metacharacters

 	$ / Regular expression metacharacters

 	[...] / Regular expression metacharacters

 	[^...] / Regular expression metacharacters

 	| (Bar) / Regular expression metacharacters

 	\{X\} / Regular expression metacharacters

 	\{X,Y\} / Regular expression metacharacters

 	\(...\) / Regular expression metacharacters

 	\< / Regular expression metacharacters

 	\> / Regular expression metacharacters

 	\ / Regular expression metacharacters

 N

 	named pipe file

 	about / Named pipe file

 	creating / Named pipe file

 	nice command / Using nice

 O

 	opened files

 	list, obtaining / Getting the list of open files

 	files opened by specific application, listing / Knowing the files opened by a specific application

 	applications, listing / Listing the applications that opened a file

 	files opened by specific user, listing / Knowing the files opened by a user

 	operators

 	defining / Operators

 	assignment operator / The assignment operator

 	arithmetic operators / Arithmetic operators

 	logical operators / Logical operators

 	comparison operators / Comparison operators

 	>> / Redirecting the standard I/O and error streams

 	< / Redirecting the standard I/O and error streams

 	>& / Redirecting the standard I/O and error streams

 	>>& / Redirecting the standard I/O and error streams

 	| / Redirecting the standard I/O and error streams

 	options, at command

 	-f FILE / Executing scripts using at

 	-l / Executing scripts using at

 	-m / Executing scripts using at

 	-M / Executing scripts using at

 	-r / Executing scripts using at

 	-t time / Executing scripts using at

 	-c job_number / Executing scripts using at

 	-v / Executing scripts using at

 	options, crontab

 	-u user / Managing the crontab entry

 	-l / Managing the crontab entry

 	-e / Managing the crontab entry

 	-r / Managing the crontab entry

 	-i / Managing the crontab entry

 	ownership, files

 	about / Permission and ownership

 	viewing / Viewing the ownership and permission of files

 	owner, changing / Changing the owner and group, Changing a file's owner

 	group ownership, changing / Changing group ownership

 P

 	parameters

 	passing, to functions / Passing parameters to functions

 	permissions, files

 	about / Permission and ownership

 	viewing / Viewing the ownership and permission of files

 	changing / Changing permission

 	pipe

 	about / Pipe

 	pipeline

 	about / Pipe and pipelines – connecting commands, Pipeline

 	popd command

 	about / pushd and popd

 	positional parameters

 	using / Using functions and positional parameters

 	POSIX (Portable Operating System Interface) / Exit codes

 	processes

 	listing / Listing and monitoring processes

 	monitoring / Monitoring processes

 	processes, listing

 	about / Listing processes

 	syntax / Syntax

 	simple process selection / Simple process selection

 	process selection by list / Process selection by list

 	output format control / Output format control

 	processes with details / Listing all processes with details

 	processes run by user / Listing all processes run by a user

 	processes running in current terminal / Processes running in the current terminal

 	processes by command name / Listing processes by a command name

 	tree format display / Tree format display of processes

 	Process ID (PID) / Knowing the files opened by a specific application

 	process management

 	about / Process management

 	process, creating / Process creation and execution

 	process, executing / Process creation and execution

 	process, terminating / Process termination

 	process scheduling priorities

 	about / Process scheduling priorities

 	changing / Changing scheduling priorities

 	changing, nice command used / Using nice

 	changing, renice command used / Using renice

 	process substitution

 	about / Process substitution

 	output of two processes, comparing / Diffing the output of two processes

 	process termination

 	performing / Process termination

 	kill command, used / Using the kill command

 	killall command, used / Using the killall command, Using the pkill command

 	pstree command / Tree format display of processes

 	pushd command

 	about / pushd and popd

 	Python

 	URL / Embedding Python language

 	Python languages

 	embedding / Embedding Python language

 R

 	ranges

 	N / The Cut-based selection

 	N- / The Cut-based selection

 	N-M / The Cut-based selection

 	-M / The Cut-based selection

 	regular expression

 	about / Regular expressions

 	metacharacters / Regular expression metacharacters

 	classes / Character ranges and classes, Character ranges

 	character ranges / Character ranges

 	creating / Character ranges

 	URL / Combining valid months, days, and years regex to form valid dates

 	regular file

 	about / Regular file

 	touch command / Touch command

 	command line editors, using / Using the command line editors

 	cat command, using / Using the cat command

 	command output, redirecting / Redirecting the command's output

 	renice command / Using renice

 	resolution path, symbolic link

 	enabling / Enabling/disabling symbolic link's resolution path

 	disabling / Enabling/disabling symbolic link's resolution path

 S

 	scheduled tasks

 	listing / Listing scheduled tasks

 	removing / Removing scheduled tasks

 	scp command

 	options / Copying files remotely

 	script file

 	scheduling / Scheduling a script file

 	scripts

 	exiting from / Exiting from scripts and exit codes

 	with exit codes / Script with exit codes

 	modularizing / Modularizing your scripts

 	source / Source to a script file

 	debugging / Debugging your scripts

 	executing, at command used / Executing scripts using at

 	sed command, flags

 	g / String substitution using s

 	p / String substitution using s

 	w filename / String substitution using s

 	N / String substitution using s

 	sed command, options

 	-n / Editing output using sed

 	-e script / Editing output using sed

 	-r / Editing output using sed

 	-l N / Editing output using sed

 	--posix / Editing output using sed

 	-u / Editing output using sed

 	select loop

 	using / Loop using select

 	services

 	managing / Managing services

 	status / Status of a service

 	enabling / Enabling and disabling services

 	disabling / Enabling and disabling services

 	starting / Start and stop a service

 	stopping / Start and stop a service

 	set command

 	using / Make bash behave using set

 	exit, on first failure / Exit on the first failure

 	SETs / Character-based translation using tr

 	shared library

 	URL / .bashrc

 	shell environment

 	viewing / Viewing a shell environment

 	printenv / printenv

 	env / env

 	modifying / Modifying a shell environment

 	environment variables, creating / Creating environment variables

 	environment variables, modifying / Modifying environment variables

 	environment variables, deleting / Deleting environment variables

 	shell expansions

 	defining / Shell expansions

 	~ (Tilde) / ~ (Tilde)

 	* (Asterisk) / * (Asterisk)

 	? (Question mark) / ? (Question mark)

 	[] (Square brackets) / [] (Square brackets)

 	{ } (Curly brackets) / { } (Curly brackets)

 	shell script library

 	creating / Creating a shell script library

 	loading / Loading a shell script library

 	calling in bash / Calling a shell library in bash

 	calling, in another shell script / Calling shell library in another shell script

 	shell variables

 	used, in bash shell / Builtin shell variables

 	versus environment variables / Differences between shell and environment variables

 	about / Differences between shell and environment variables

 	used, for controlling history / Shell variables controlling the history

 	shell variables, bash shell

 	BASH / Builtin shell variables

 	BASH_VERSION / Builtin shell variables

 	BASHPID / Builtin shell variables

 	EUID / Builtin shell variables

 	HOME / Builtin shell variables

 	HOSTNAME / Builtin shell variables

 	PATH / Builtin shell variables

 	PPID / Builtin shell variables

 	PWD / Builtin shell variables

 	shortcuts, shell

 	defining / Handy shortcuts for seeing the history

 	[Ctrl + r] / [Ctrl + r]

 	up and down arrow key / Up and down arrow key

 	!! / !!

 	!(search_string) / !(search_string)

 	!?(search_string) / !?(search_string)

 	signals

 	about / Signals

 	frequently used signals / Available signals

 	Default action section / Available signals

 	socket file

 	about / Socket file

 	sort command, options

 	-b / Sorting an input text

 	-d / Sorting an input text

 	-f / Sorting an input text

 	-i / Sorting an input text

 	-M / Sorting an input text

 	-n / Sorting an input text

 	-r / Sorting an input text

 	-h / Sorting an input text

 	-u / Sorting an input text

 	-o file / Sorting an input text

 	-m / Sorting an input text

 	-k n / Sorting an input text

 	source

 	about / Source to a script file

 	syntax / Syntax

 	special files

 	about / Special files

 	block device file / The block device file

 	character device file / The block device file

 	named pipe file / Named pipe file

 	socket file / Socket file

 	standard I/O and error streams

 	about / Standard I/O and error streams

 	stdin file / Standard I/O and error streams

 	stdout file / Standard I/O and error streams

 	stderr file / Standard I/O and error streams

 	file descriptors / File descriptors

 	redirecting / Redirecting the standard I/O and error streams, Redirecting standard output

 	standard input, redirecting / Redirecting standard input

 	standard error, redirecting / Redirecting standard errors, Multiple redirection

 	stdout

 	passing as parameter, xargs used / Passing stdout as a parameter using xargs

 	stream

 	duplicating, with tee command / Duplicating a stream using tee

 	output, writing, to stdout / Writing an output to stdout and appending to a file

 	appending, to file / Writing an output to stdout and appending to a file

 	output, sending to multiple commands / Sending an output to multiple commands

 	switch

 	about / Switch to my choice

 	syntax / Switch to my choice

 	systemd

 	defining / systemd

 	unit files, defining / systemd units

 	system logs

 	viewing / Viewing system logs

 	latest log entries, viewing / Viewing the latest log entries

 	particular time interval logs, viewing / Viewing logs of a particular time interval

 T

 	tail command

 	about / Filtering based on lines—head and tail

 	tail command, options

 	-c [+]K / Printing lines using tail

 	-n [+]K / Printing lines using tail

 	-f [{name|descriptor}] / Printing lines using tail

 	--retry / Printing lines using tail

 	--max-unchanged-stats=N / Printing lines using tail

 	--pid=PID / Printing lines using tail

 	-q / Printing lines using tail

 	-F / Printing lines using tail

 	-s N / Printing lines using tail

 	-v / Printing lines using tail

 	task management

 	defining / Task management

 	tasks, running in background / Running tasks in the background

 	running task, sending to background / Sending a running task to the background

 	background tasks, listing / Listing background tasks

 	tasks, moving to foreground / Moving tasks to the foreground

 	tasks, terminating / Terminating tasks

 	tasks

 	running, at specific time / Running tasks at a specific time

 	tee command

 	used, for duplicating stream / Duplicating a stream using tee

 	tee command, options

 	-a, --append / Duplicating a stream using tee

 	-i, --ignore- / Duplicating a stream using tee

 	temporary files

 	about / Temporary files

 	creating, mktemp used / Creating a temporary file using mktemp

 	traps

 	about / Traps

 	tr command

 	used, for character based translation / Character-based translation using tr

 	tr commands, options

 	-c / Character-based translation using tr

 	-C / Character-based translation using tr

 	-d / Character-based translation using tr

 	-s / Character-based translation using tr

 	-t / Character-based translation using tr

 U

 	uniq command, options

 	-c / Filtering unique elements

 	-d / Filtering unique elements

 	-f N / Filtering unique elements

 	-i / Filtering unique elements

 	-u / Filtering unique elements

 	-s N / Filtering unique elements

 	-w N / Filtering unique elements

 	unique text

 	sorting / Sorting and finding unique text

 	finding / Sorting and finding unique text

 	input text, sorting / Sorting an input text

 	unique elements, filtering / Filtering unique elements, Unique elements in a file

 	unit files

 	defining / systemd units

 	until loop

 	about / The until loop

 	using / The until loop

 V

 	variables

 	defining / Define variables of choice

 	nomenclature / Nomenclature

 	value, assigning / Assigning a value

 	value, accessing / Accessing a value

 	constant variables / Constant variables

 	reading, from user input / Reading variables from a user input

 	setting / Setting/unsetting variables

 	unsetting / Setting/unsetting variables

 	vim

 	reference link / Using the command line editors

 W

 	while loop

 	about / The while loop

 	using / The while loop

 X

 	xargs command

 	about / Passing stdout as a parameter using xargs

 	syntax / Passing stdout as a parameter using xargs

 	basic operations / Basic operations with xargs

 	for finding file with maximum size / Using xargs to find a file with the maximum size

 	files, archiving with given pattern / Archiving files with a given pattern

OEBPS/Images/4335_02_13.jpg
Jun
Jun
Jun
Jun
Jun
Jun

ISR

20:
20:
20:
20:
20:
20:

06
06
07
06
07
06

Desktop
Document
example. txt
hello. txt
Music
Videos

OEBPS/Images/4335_02_14.jpg
Foo
Bar
Moo
Bleh
Worm
| ew

AB1
AB2
AB3
AB4
AB5
AB6

67
98
23
920
99
67

Department
CSE

ECE

CSE

CSE
Mechanical
Civil

OEBPS/Images/4335_07_01.jpg
skusari
skumar i
root

skumar i
kusari

6941
6976
6961
1

0.0 0.3 439244 28604 7 H
0.0 0.3 439244 28604 7 H
60 00 o o1 s
000 0.0 153188 3860 pts/1 R+
0.6 6.6 189544 1880 ptssl S

0 kdeinit4: kio_http [k e
o kdeinita: kio http [k e
o lavorker/o:2]

OEBPS/Images/cover.jpeg
Linux Shell Scripting
Essentials

Learn shell scripting to solve complex shel\ related problems and
efficiently automate your day-to-day ta

PACKT i

OEBPS/Images/4335_07_18.jpg
USER NI VIRT SHR S %CPU SHEM _ TIME+ COMMAND
1505 skumari 22 2 5205440 207740 101648 S 43.3 3.8 12:41.93 plasmashell
5060 skumari 22 2 1357716 460692 108340 S 4.3 5.0 2:26.84 firefox
1497 skumari 15 -5 3114900 00052 54708 S 4.0 1.1 3:26.72 kwin x1l
1584 skumari 15 -5 593648 50636 40696 S 0.7 0.6 0:16.07 yakuake

OEBPS/Images/4335_08_13.jpg
Isysten] Successfully activated service

120 carbon dbus[673]:

org. freedesktop.nn_dispatcher '

Sep 27 01:22:20 carbon systemd[1]: Started Network Manager Script Dispatch

er service

Sep 27 01:22:

5524204967295 subj=systen_u:systen
"systemd" ex

130> pid=1 uid=0 auid=4294967295
init_t:s0 msg='unit=NetworkManager-d
Just/Uib/systend/systend* hostname=? add

Sep 27 01:22:20 carbon nm-dispatcher[3061]: Dispatching action *dhcpd-chan
ge' for wipdse

Sep 27 01:22:30 carbon audit[1]: <audit-1131> pid:
5e5=4294967295 subj=systen_uisysten_r:init_t
ispatcher comn="systemd" exe="/usr/lib/systend/systend" hostnam
terminal=? res=success’

Sep 27 01:23:12 carbon avahi-daemon[687]: Invalid response packet from hos
t 192.168.1.101.

Sep 27 01:24:52 carbon avahi-daemon[687]: Invalid response packet from hos
t 192.168.1.101.

Sep 27 01:26:31 carbon avahi-daemon[687]: Invalid response packet from hos
t 192.168.1.101.

Sep 27 01:28:11 carbon avahi-daemon[687]: Invalid response packet from hos
t 192.168.1.101.

Sep 27 01:29:52 carbon avahi-daenon[687]: Inva
t 192.168.1.101.

id=0 auid=4294967295
150 msg='unit=NetworkManager-d
add

response packet from hos

OEBPS/Images/4335_07_06.jpg
bash (1627) sh (10734
t(10732)

ss (10733)

ess (10759)

OEBPS/Images/4335_07_15.jpg
top - 22:57:59 up 3:37, 3 users, load average: 0.12, 6.36, 6.33
Tasks: 217 total, 1 running, 209 sleeping, 6 stopped, 1 zombie
Cpu(s): 3.7 us, 3.1sy, 0.8 ni, 92.2 id, 0.3wa, 0.0 hi, 0.0si, 0.0 st

KiB Men : 7852744 total, 4539276 free, 1446520 used, 1866948 buff/cache
KiB Swap. o total, o free, 0 used. 6042240 avail Hem

PID USER PR “.CPU SHEN —TIME+ COMHAND
1505 skumari 20 © 5203304 295492 99932 S 14.3 3.8 8:17.04 plasnashell
863 root 20 0 461944 146024 114252 S 8.6 1.9
5860 skumari 30 10 1246200 352664 104852 S 4.7 4.5
1497 skumari 20 0 3113320 89048 543245 3.0 1.1
5053 skumari 20 0 454076 43156 36532 S 1.3 0.5

OEBPS/Images/4335_08_08.jpg
My crontab entries

0n every reboot launch application firefox
reboot firefox

Every month run take_backup.sh script to take required backup
anonthly /home/foo/take_backup.sh

Every day at 1:30 AW check disk space
30 1+ + + /home/foo/check-disk-space.sh

Run this cleanup script on every sunday

OEBPS/Images/4335_08_16.jpg

OEBPS/Images/4335_06_03.jpg
sof: WARNING: can't stat() tracefs file system /sys/kernel/debug/trac.

Output information may be incomplete.

conanp.
cat
cat
cat
cat
cat
cat
cat
cat
cat

)
15946
15046
15046
15946
15046
15946
15046
15046
15946

USER
skumari
skumari.
skumari
Skumari

Skumari
skumari
okumari

)
ad
rtd
txt
ou
w
u

TYPE
1R
IR
REG
REG
REG
REG
R
R
R

DEVICE

S1zE/0FF
1020

1096
54128
107714000
2095260
158816
oto

oto

ot

HobE
1831

2
1442296
1448050
1448004
1447997
5

5

H

NARE
Tap

7

Jusr/bin/cat
Jusr/Uib/locale/locate-archive
Jusr/Uib64/1ibe -2.21. 50
Tusr/Uib6a/1d-2.21.50
Tdov/pts/2

Ldev/pts/2

dev/pts/2

OEBPS/Images/4335_07_21.jpg
--- Shared Memory Segments -~
key shnid owner
0x66c6536 0 root
0x00000000 393217 skumari
0x00000000 622504 skumari
0x00000000 98307 skumari
0x00000000 131076 skumari
0x00000000 720901 skumari
0x00000000 1081350 skumari
0x00000000 458750 skumari
0x00000000 851976 skumari
0x00000000 524207 skumari
0x00000000 1245194 skumari
0x00000000 917515 skumari
0x00000000 1867788 skumari
0x00000000 1048589 skumari
0x00000000 1277966 skumari
0x00000000 1540111 skumari

3

0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

OEBPS/Images/4335_06_02.jpg
T am writing text using vi editor.
Pressing key 'i' enables INSERT mode in vi editor.

awall

OEBPS/Images/4335_08_11.jpg
@ NetworkManager.service - Network Manager

Loaded: loaded (/usr/lib/systend/systen/NetworkManager . service; enabled
i vendor preset: enabled)

Active: active (running) since Thu 2015-09-24 10:32:17 TST; 2 days ago
Main PID: 779 (NetworkManager)

CGroup: /system.slice/NetworkManager . service

779 /ust/sbin/NetworkManager - -no-daemon
24346 /sbin/dnclient -d -q -sf /usr/Libexec/nm-dhcp-helper -p

f /var/run/dnclient-wlpdso.pid -1f /var/Lib/NetworkManager/dnclient-26b3a3
Bc-5737-4759-984-e69530760fa5-wlpds0. lease -cf /var/Lib/NetworkManager/dh
client-wlpdso.conf wipdso

Sep 27 00:36:05 carbon dhclient[243461: DHCPREQUEST on wlpdso to 192.168.1
.1 port 67 (xid=0x9baf4314)

Sep 27 00:36:05 carbon dhclient[243461: DHCPACK from 192.168.1.1 (xid=0x9b
af4314)

Sep 27 00:36:05 carbon NetworkManager[779]: <info> address 192.168.1.10
o

Sep 27 00:36:05 carbon NetworkManager[779]: <info> plen 24 (255.255.255
.0)

Sep 27 00:36:05 carbon NetworkManager[779]: <info> gateway 192.168.1.1
Sep 27 00:36:05 carbon NetworkManager[779]: <info> server identifier 19
2.168.1.1

Sep 27 00:36:05 carbon NetworkManager[779]: <info> lease time 7200

Sep 27 00:36:05 carbon NetworkManager(779]: <info> nameserver '192.168.
1.1

Sep 27 00:36:05 carbon NetworkManager[779]: <info> (wlpds0): DHCPv4 state
changed bound -> bound

Sep 27 00:36:05 carbon dhclient(24346]: bound to 192.168.1.106 -~ renewal
in 2775 seconds.

OEBPS/Images/4335_02_01.jpg

OEBPS/Images/4335_07_19.jpg
SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) S16BUS 8) SIGFPE 9) SIGKILL ~ 10) SIGUSRL
11) SIGSEGY 12) SIGUSR2 13) SIGPIPE 14) SIGALRH 15) STGTERM
16) SIGSTKFLT ~ 17) SIGCHLD ~ 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGITIN 22 SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) STGVTALRM 27) SIGPROF 28) SIGWINCH 20) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTHIN 35) SIGRTMINKL 36) SIGRTHIN42 37) SIGRTHIN3
38) STGRTHINt4 39) SIGRTHINS 40) STGRTHINt6 41) SIGRTHIN4T 42) STGRTHIN+S
43) SIGRTHINN 44) SIGRTHINH1O 45) SIGRTHINHLL 46) SIGRTHINHI2 47) STGRTHINH13
48) STGRTHTN+14 49) SIGRTHINHIS 50) STGRTHAX-14 51) SIGRTHAX-13 52) STGRTHAX-12
53) SIGRTHAX-11 54) SIGRTHAX-10 55) SIGRTHAX-O 56) SIGRTHAX-8 57) SIGRTHAX-7
58) STGRTHAX-6 50) SIGRTHAX-5 60) STGRTHAX-4 61) SIGRTHAX-3 62) STGRTHAX-2
63) SIGRTMAX-1 64) SIGRTMAX

OEBPS/Images/4335_02_10.jpg
(ST

Swn

Welcome to Linux shell scripting
Welcome to LINUX shell sCripting
Welcome To Linux Shell Scripting

OEBPS/Images/4335_08_07.jpg
My crontab entries

On every reboot launch application firefox
@reboot firefox

Every month run take_backup.sh script to take required backup
@nonthly /home/foo/take_backup.sh

Every day at 1:30 AM check disk space
30 1+ + * /home/foo/check-disk-space.sh

Run this cleanup script on every sunday
+ + + + 0 /home/foo/cleanup_script.shll

-~ INSERT --

OEBPS/Images/4335_08_05.jpg
Crontab of user root

Start monitoring network usage by each user
@reboot /root/users_network_monitor.sh

Take daily back at 4 AM
4+ + + /root/back_script.sh

OEBPS/Images/4335_08_09.jpg
UNIT FILE

proc-sys-fs-binfmt_misc.automount static
dev-hugepages . mount static
dev -mqueue . mount static
proc-fs-nfsd.mount static
proc-sys-fs-binfmt_misc.mount static
sys- fs- fuse-connections.mount static
sys-kernel-config.mount static
sys-kermel-debug. mount static
tmp . mount static
var-lib-nfs-rpc_pipefs.mount static

cups.path enabled

OEBPS/Images/4335_07_04.jpg
UL

V5c RSS VAN
118680 5348 pts/1 S 6:00 /bin/bash
305800 1548020 7 SU Sepda 51:07 /usr/Lib6a/firefox/firefox
118800 4960 ptas2 Set 11:31 0:60 /binsbash

somari 1627 9.0
dcomari 1663 5.6 1t
omarl 5888 6.8

e

OEBPS/Images/4335_06_01.jpg
I am writing text using vi editor.
Pressing key 'i' enables INSERT mode in vi editor.

-- INSERT 3,1 Al

OEBPS/Images/4335_07_05.jpg
systemd(1)—

T NetworkManager(771)——dhclient (8980)
NetworkManager} (763)
{gdbus} (793)

{gmain} (789)

[-abrt-dump-journ (1676)

f-abrt-watch-log (1679)

f-abrtd (711)—{qdbus} (1075)

faccounts-daeson (672)——{gdbus} (684)
{guain} (682)

falsactl(659)
[-at-spi-bus-laun (1649)——dbus-daemon (1662)—{ dbus-daenon} (1666)
{gdbus} (1657)
{gnain} (1664)
[-at-spi2- registr(1671)—{gdbus} (1683)
[-atd(798)
[-auditd (646)—{auditd} (655)
[-avahi-daemon (662)—avahi-daenon (671)
F-bluetoothd (691)
-choqok (1591)
{-chronyd (665)
fcolord(1375)—{gdbus} (1377)
{gnain} (1380)
f-crond (799)
|—cupsd (1865)

OEBPS/Images/4335_07_14.jpg
top - 22:44:30 up 3:24, 2 users, load average: 6.13, 0.27, 0.30
Tasks: 216 total, 1 rumning, 210 sleeping, 4 stopped, 1 zombie
cpu(s): 4.9 us, 3.2 sy, ni, 91.7 id, 8.3 wa, 0.0 hi, 0.8 i, 0.0 st

KiB Men : 7852744 total, 4108372 free, 1899432 used, 1844940 buff/cache
KiB Swap o total, o free, 0 used. 5475520 avail Hem

PID USER VIRT _RES “.CPU_SMEN —TIHE+ COMAND
skumari 0 4564164 280208 91628 plasmashell
863 root 20 0 666532 226088 194692 Xorg
1672 skumari 20 © 2189352 815052 157464 Firefox

0

0

1497 skumari 20 0 3113436 89088 54616 kuin_x11
1584 skumari 20 502844 49506 40636 yakuake

OEBPS/Images/4335_02_06.jpg
Filesystem
/dev/sdal
tnpfs
tnpfs
devtmpfs
tnpfs
tnpfs
tnpfs
tnpfs
/dev/sda2
/dev/sdas
/dev/dn-0

Size
477M
787M
787M
3.9G
3.9G
3.9G
3.9G
3.9G

560G
102G
140G

Used
245M

28K

1.0M
120K
516K
136G
70G
115G

Avail Use%
203M 55%
787M 0%
787M 1%
3.9G 0%
3.96G 0%
3.9G 1%
3.9G 1%
3.9G 1%

34G 28%
32G 69%
18G 87%

Mounted on
/boot
/run/user/989
/run/user/1600
/dev
/sys/fs/cgroup
/run

/dev/shm

/tnp

/

/media/Data
/home.

OEBPS/Images/4335_05_01.jpg
vim bash_profile
727 cp bash _profile ~/.bash_profile
728 vim bash_profile

729 source bash_profile

730 man ssh

731 exit

732 source ~/.bash_profile

733 history

734 history |less

735 history | tail -n10

OEBPS/Images/4335_08_12.jpg
@ sshd.service - OpenSSH server daeson
Loaded: loaded (/usr/lib/systend/systen/sshd.service; disabled; vendor
preset: enabled)
Active: inactive (dead)
Docs: man:sshd (8)
man:sshd_config(5)

OEBPS/Images/4335_08_03.jpg
My crontab entries

On every reboot launch application firefox
@reboot firefox

Every month run take_backup.sh script to take required backup
@nonthly /home/foo/ take_backup.sh

Every day at 1:30 AM check disk space
30 1 + * * /home/foo/check-disk-space.sh

OEBPS/Images/4335_07_03.jpg
PID %CPU %MEM
skumari 1627 0.0 0,
skumari 7329 0

VSZ RSS TTY STAT START ~ TIME COMMAND
118680 5348 pts/L Ss Sepdd 0:00 /bin/bash
153188 3852 pts/1 R+ 13:27 0:00 ps uT

OEBPS/Images/4335_08_02.jpg
day of month (1 - 31)
month (1 - 12) 0R jan, feb,

day of week (0 - 6) (Sunday=0 or 7) OR sun,mon, tue,wed, thu, fri, sat

* user-nane command to be executed

OEBPS/Images/4335_08_14.jpg
- Logs begin at Thu 2615-06-11 00:59:22 IST, end at Sun 2015-69-27 61:36:

Sep 24 10:32:05 carbon systend-journal[134]: Runtime journal (/run/log/jou
Haxinun alloved usage is set
Leaving at least 575.1H free
Enforced usage linit is thus

journal[134]: Runtime journal (/run/log/jou|
Haxinun alloved usage is set
Leaving at least 575.1H free
Enforced usage linit is thus

carbon kernel: Initializing cgroup subsys cpuset

carbon kernel: Initializing cgroup subsys cpu

carbon kernel: Initializing cgroup subsys cpuacct

carbon kernel: Linux version 4.1.6-201.fc22.x86_64 (mockbu

carbon kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-4.1.

Sep 24 10:32:05 carbon systen:

sep 24
Sep 24
Sep 24
Sep 24
Sep 24

OEBPS/Images/4335_08_10.jpg
UNIT FILE STATE

abrt-ccpp.service enabled
abrt-journal-core.service disabled
abrt-oops.service enabled
abrt-pstoreoops. service disabled
abrt-vmcore . service enabled
abrt-xorg.service enabled
abrtd.service enabled
accounts-daemon. service enabled

alsa-restore.service static

OEBPS/Images/4335_07_17.jpg
USER
‘skunari

5205272
1357588
453352
3114868
2045860
593648
607876
815504
598832
657484
585212
212472
550348
44996,
84128

]

297616
59712
42408
90012
94012
50632
30756
34748
31780
18212
34964
232002
53014
4700
2036

o

101492
108340
36368
54668
66452
49696,
26276
30444
27368
32208
30888
114260
42336
120

o

o

TIME+

COMMAND
plasmashell
firefox
ksnapshot
kwin_x11

kdeds.

yakuake
Klauncher

kac tivitynanage
Kaccess
ksmserver
kwalletds
soffice.bin
plugin-containe
systend
(sd-pan)
Kwalletd

OEBPS/Images/4335_08_06.jpg
Crontab of user root

Start monitoring network usage by each user
@reboot /root/users_network_monitor.sh

Take daily back at 4 AM
0 4 + + + /root/back_script.sh

OEBPS/Images/4335_06_04.jpg
(COMMAND
startkde
bash

sh

bash
bash
bash

PID
1348
1721
9524
9613

11202

15947

USER
skumari
skumari
skumari
skumari
skumari
skumari

FD
txt
txt
txt
txt
txt
txt

TYPE DEVICE SIZE/OFF

REG
REG
REG
REG
REG
REG

8,1

1071960
1071960
1071960
1071960
1071960
1071960

NODE
1447000
1447000
1447000
1447000
1447000
1447000

NAME
/Jusr/bin/bash
Jusr/bin/bash
/Jusr/bin/bash
/usr/bin/bash
Jusr/bin/bash
Jusr/bin/bash

OEBPS/Images/4335_07_11.jpg
top - 00:45:34 up 1 day, 3:06, 2 users, load average: 0.67, 0.18, 0.21
Tasks: 219 total, 1 rumning, 213 sleeping, 4 stopped, 1 zombie
“Cpu(s): 5.2 us, 1.4sy, ©.0ni, 93.2 id, 0.3wa, 0.0 hi, 0.0 si, 0

7852744 total, 871408 free, 3062076 used, 3919260 buff/cache
o total, o free, 6 used. 4862792 avail Hem

USER PR TIHE CONMAND
khugepaged
.01 alsactl
:00.00 ksnd
00.32 rtkit-daemon

3
0.
2.96 systend
3
3
8

19
659 root 39 10 16788 2620 2356
39 root 2% 5 o o 0
666 rtkit 21 1 164636 2240 2048
1 root 20 0 12854 8452 5588
0 o o 0
0] o 0
0 0 0 0

163 kthreadd
116 ksoftirgd/o
.72 rcu_sched

2 root 20
3 root 2
7 root 20

OEBPS/Images/4335_07_22.jpg
Shared memory Segment shmid=393217
uid=1000 9id=1000 cuid=1000
mode=01600 access_perns=0600
bytes=4194304 1pid=5134 cpid=1774

att_time=Wed Sep 9 23:37:14 2015
det_tine=Wed Sep 9 23:37:14 2015
change_time=Wed Sep 9 19:45:06 2015

cgid=1000

nattch=2

OEBPS/Images/4335_07_10.jpg
) whose current sort field is %CPU
Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,

"d" or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!

“ PID = Process Id wHj Hajor Faults delta
- USER Effective User Name viin Hinor Faults delta
+ PR Priority USED Restswap Size (KiB)
. Nice Value nsIPC = IPC namespace Inode
« VIRT Virtual Inage (KiB) nsHNT = HNT namespace Inode
* RES Resident Size (KiB) nsNET = NET namespace Inode
+ SHR Shared Menory (KiB) nsPID = PID namespace Inode
s Process Status nSUSER = USER namespace Inode
+ ncPy cPU Usage nsUTS = UTS namespace Inode
+ HEN Hemory Usage (RES)
* TIME+ = CPU Tine, hundredths
* COMMAND = Command Name/Line

PPID Parent Process pid

uIp Effective User 1d

RUID = Real User Id
RUSER = Real User Name

OEBPS/Images/4335_07_13.jpg
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIHE CHD
05 1000 1620 1584 0 80 29670 wait pts/l 00:00:00 bash
O R 1000 3987 1620 O 80 37772 pts/1 00:00:00 ps

OEBPS/Images/4335_02_07.jpg
total 64

drwxrwxr-x.
drwxr-xr-x.

drwxrws- -
drwxrwx- -

drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.

drwx
drwx--x

X.
drwxr-sr-x.
drwxrwsr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwx rwxr-x.

[RENINIUIRESERININININIRERINFTIN]

abrt
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

abrt
root
ccache
p
root
root
root
root
root
root
man
mock
root
root
root
root

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Feb
Mar
oct
Jun
Dec
Jun
Dec
Apr
Jun
Apr
Jun
May
Jan
May
Apr
Dec

24
12
20

12

15

28

14
19

14
12

20
12

40
15

2014

01:
19
10

37
19
25

2014

18
10
:36
147
03
23
19:
16:
19:

21
11

06
31

00
56
04
43
13

abrt-di
app-info
ccache
cups
dnf
fontconfig
foomatic
krbSrcache
ldconfig
libvirt
man
mock
PackageKit
powertop
realnd

um

OEBPS/Images/4335_02_02.jpg
e Mo Mg
Expresion
A aanezea)ed) o
_
-
_
Gartabe
_
Lvarsasted
=
variaste.|
=
variaste]

2 variatld

OEBPS/Images/4335_08_01.jpg
PAM_KWALLET_LOGIN=/tmp//skumari.socket; export PAM_KWALLET_LOGIN
XAUTHORTTY=/tmp/xauth-1000-_0; export XAUTHORITY
CCACHE_HASHDIR=; export CCACHE_HASHDIR

cd /home/skumari || {

echo 'Execution directory inaccessible' >&2

exit 1

+
${SHELL: -/bin/sh} << 'marcinDELIMITEROaeddab2’
df > ~/file_system_usage.log

marc inDEL TNITEROaeddab2

OEBPS/Images/4335_02_03.jpg
This program searches in files inputl.txt and input2.txt
Search result for string "command”:

inputl.txt:of grep grep is a very important and
input1.txt :powerful in shell.
Case insensitive search of string “"command”:

inputl.txt:of grep grep is a very important and
input 1. txt :powerful in shell.

input2.txt:Another file for demonstrating grep CommaNd usage.

Search for string "grep” and print matching line too:

inputl.txt:2:of grep command. grep is a very iortant and

input2.txt:1:Another file for demonstrating CommaNd usage.
input2.txt:6:grep allows to give a regular expression to

Punctuation marks in files:

inputl.txt:2:of grep command. grep is a very important and
inputl.txt:3:powerful command in shell.

input2.txt:1:Another file for demonstrating grep CommaNd usage.
input2.txt:3:as well

input2.txt:5:using and -r Options.

input2.txt:7:search for a PATTERN.

input2.txt:8:Some special characeters like . * () { } § ~ ?
input2.txt:9:are used to form regexp.

input2.txt:10:Range of digit can be given to regexp e.g. [3-6],
input2.txt:11 [0-9]

Next line content whose previous line has string "important”:
inputl.txt:of grep command. grep is a very ﬁ and
input1.txt-powerful command in shell.

OEBPS/Images/4335_01_01.jpg
Basic mathematics

23 plus 5.50 = 28.50
50.50 minus 20 B 30.50
10 mul 5 = 50

27 div 4 = 6.75

OEBPS/Images/4335_02_09.jpg
S WN -

Welcome to Linux shell scripting
Welcome to LINUX shell sCripting
Welcome To Linux Shell Scripting

OEBPS/Images/PacktLibLogo.jpg

OEBPS/Images/4335_02_11.jpg
= s wn o

lelcome to Linux shell scripting

OEBPS/Images/4335_03_03.jpg
Filesystem
devtnpfs
tnpfs
tnpfs
tnpfs
/dev/sdal
tnpfs
/dev/dm-0
tnpfs
tmpfs

3.86
3.86
3.86
3.86

386
3.86
1976
767M
767M

Used Avail Use%

]
328K
1.2m

]

146
292K
856G

]

36K

3.86
3.86
3.86
3.86

236
3.86
1036
767M
767M

0%
1%
1%
0%
38%
1%
46%
0%
1%

Mounted on
/dev
/dev/shm
/run
/sys/fs/cgroup
/

/tnp

/home
/run/user/990
/run/user/1000

OEBPS/Images/4335_02_05.jpg
Filesystem
devtmpfs
tnpfs
tnpfs
tnpfs
/dev/sda2
tnpfs
/dev/sdal
/dev/sdas
/dev/dn-©
tnpfs
tmpfs

Size
3.9G
3.9G
3.9G
3.9G

560G
3.96
477M
102G
140G
787M
787M

Used

120K
1020K

136
248K
245M

70G
115G

28K

Avail Use%
3.9G 0%
3.9G 1%
3.9G 1%
3.9G 0%

34G 28%
3.9G 1%
203M 55%
32G 69%
186G 87%
787M 0%
787M 1%

Mounted on
/dev

/dev/shm

/run
/sys/fs/cgroup
/

/tnp

/boot
/media/Data
/home
/run/user/989
/run/user/1000

OEBPS/Images/4335_02_08.jpg
total 64

drwxr-xr-x.
drwxrwxr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwx--x--x.
drwxr-xr-x.
drwxrwsr-x.

drwx rwx

drwxr-xr-x.

drwx- -

drwxr-sr-x.

drwxrws

drwxr-xr-x.
drwxr-xr-x.
[drwxrwxr-x.

ERENINESININIRERENFRINNIUINE)

root
abrt
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
abrt
root
root
root
root
root
mock
p
root
root
man
ccache
root
root
root

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Jan
Feb
Mar
Apr
Apr
Apr
May
May
Jun
Jun
Jun
Jun
oct
Dec
Dec
Dec

23
20
12
16
18
:36
19:
03:
137
10:
10:
147

21

01

11

56
40
15
43
06

04
00

25
31

2014
2014

19
19

19
13

PackageKit
abrt-di
app-info
realnd
krbSrcache
libvirt
powertop
mock
cups
fontconfig
ldconfig
man
ccache
foomatic
dnf

um

OEBPS/Images/4335_02_04.jpg
This file is a text file to show demonstration
0f grep command. grep is a very important and

OEBPS/Images/4335_07_09.jpg
Help for Interactive Commands - proc version 3.3.10
Window [EE]: Cunulative mode OFf. Delay 2.0 secs; Secure mode Off.

Global: 'Z' colors; '8' bold; 'E'/'e’ summary/task memory scale
Toggle Summary: ‘U load avg; 't'" task/cpu stats; 'm' memory info
Toggle: '0' zeros; '1/2/3' cpus or numa node views; 'I' Irix mode
Fields: 'f'/'F' add/remove/order/sort; ‘X' increase fixed-width

Locate: 'L'/'& find/again; Wove sort column: '<'/'>' left/right
Toggle: 'R’ Sort; ‘W' Threads; 'V' Forest view; '3' Num justify
. Toggle: 'c' Cnd name/Line; 'i' Idle; 'S’ Time; 'j' Str justify
© Toggle highlights: 'x' sort field; 'y’ running tasks

Toggle: 'z' color/mono; 'h' bold/reverse (only if 'x' or 'y')
Filter by: 'w'/'U' effective/any user; 'o'/'0' other criteria

L Set: 'n'/'# max tasks displayed; Show: Ctrl+'0" other filter(s)
. Toggle scroll coordinates msg for: up,down, left, right, hone, end

Hanipulate tasks: 'k’ kill;
Set update_interval
Write configuration file ‘W';
Quit

(commands shown with '. require a visible task display window)
Press “h' or ‘7' for help with Windows,
Type 'q' or <Esc> to continue I

enice

Inspect other output 'Y’

OEBPS/Images/4335_02_12.jpg
o

sinny
sinny
sinny
sinny
sinny
sinn:

sinny
sinny
sinny
sinny
sinny
sinn:

4096
4096
68

0
4096
4096

Jun
Jun
Jun
Jun
Jun
Jun

I ENENENEIN

20:
20:
20:
20:
20:
20:

06
06
07
06
07
06

Desktop
Document
example. txt
hello. txt
Music
Videos

OEBPS/Images/4335_03_02.jpg
Filesystem 1K-blocks ~ Used Available Use% Mounted on
devtmpfs 3916488 0 3916488 0% /dev

tmpfs 3926460 328 3926132 1% /dev/shm
tnpfs 3926460 1144 3925316 1% /run

topfs 3926460 0 3926460 0% /sys/fs/cgroup
/dev/sdal 39573920 14156704 23383912 38% /

tmpfs 3926460 292 3926168 1% /tmp

/dev/dm-0 206287288 88348884 107436264 46% /home

tnpfs 785296 0 785296 0% /run/user/990
tmpfs 785296 36 785260 1% /run/user/1000

OEBPS/Images/4335_07_20.jpg
- Message Queues ---

key

nsqid

owner

Shared Memory Segments

key
0x6¢66536
0x00000000
0x00000000
0x00000000
0200000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0100000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

key

shmid
0
393217
622594
98307
131076
720901
1081350
458759
851976
524297
1245194
917515
1867788
1048589
1277966
1540111

- Semaphore Arrays -

semid

owner
root

skumari
skumari
skumari
skumari
skumari
skumari
skumari
skumari
skumari
skumari,
skumari
skumari,
skumari
skumari
skumari

owner

perns

perns
600
600
600
700
700
600
600
700
600
600
700
600
600
600
700
600

perns

used-bytes

bytes
4096
4194304
900
7979520
7979520
393216
1146320
1184260
900
16777216
6386688
134217728
9216
2007152
444928
393216

nsems

messages

nattch

NNNNNNNNNRNNNNNN S

status

dest
dest
dest
dest
dest
dest
dest
dest
dest
dest
dest
dest
dest
dest
dest

OEBPS/Images/4335_08_04.jpg
My crontab entries

0n every reboot launch application firefox
@reboot firefox

Every month run take_backup.sh script to take required backup
@monthly /home/foo/take_backup.sh

Every day at 1:30 AM check disk space
30 1 * + * /home/foo/check-disk-space.sh

OEBPS/Images/4335_07_08.jpg
1663
862
1402
9220
2174
11986
1361
1a88
1588
1602
3270

“Cpu (s
KiB Hem
KiB Swap:

top - 23:06:06 up 1 day,
Tasks: 216 total,
4.0 us,

root
skumari.

skusa
skumar i
skumar i
skusa
skuma
skumari.
skuma
skumar i
root
root
root
root
root
root
root

0.9 sy,

7852744 total,
o total,
20 0 336205
2 0 866832
20 03117156
20 05163732
20 0 925032
2 o 453372
2 o 607838
2 0 657624
20 0 593968
20 0 609740
20 02027736
20 o 128524
20 o o
2 o 6
0 -2 o
20 o o
2 o o
2 o 0

1:27,

2 users,
1 running, 218 sleeping,

9.0 ni, 94.8 id,
378972 free,

o free,

1.771g
489540
92720
226134
108304
42756
30248
48496
51848
49644
236988
Bas2

459232
450060
55536
91108
53196
36700
25792
32388
42320
37864
123960
5588

4 stoppe
.3 va,

2802984 used,

0 used.

load average: 0.14, 0.17, 6.20

d,
o

1 zombie.
o hi, si, e
4670788 buff/cache
4327320 avail Hen

st

TIHES

COMMAND

plasnashell
plugin-containe
ksnapshot
Klauncher
ksmserver
yakuake
ktorrent
soffice.bin
systend
kthreadd
ksof tirgd/o
kuorker/0:0H
cu_sched

rcuos/0

OEBPS/Images/4335_08_15.jpg
Filesystem Used Avail Use% Mounted on
devtmpfs 3.86 0 3.86 0% /dev

tmpfs 3.86 128K 3.8G6 1% /dev/shm
tmpfs 3.86 1.2M 3.86 1% /run

tmpfs 3.86 0 3.86 0% /sys/fs/cgroup
/dev/sdal 386 216 156 59% /

tmpfs 3.86 9.3M 3.86 1% /tmp

/dev/dn-0 1976 996 886 53% /home

tmpfs 767H 0 767N 0% /run/user/990
tmpfs 767M 40K 767M 1% /run/user/1000

OEBPS/Images/4335_03_01.jpg
1) bin
2) boot 13) opt
3) dev 14) proc
4) etc 15) root
5) home 16) run
6) kdeinit5_0 17) sbin
7) klauncherT14835.1.slave-socket 18) srv
8) lib 19) sys
9) lib64 20) tmp
10) lost+found 21) usr
11) media 22) var
#7 2
boot is a directory
#7 5
home is a directory
#? 7
klauncherT14835.1.slave-socket is not a siretcory

OEBPS/Images/4335_07_02.jpg
[kworker/3:1]
[kworker/0:0]
Tkworker/2:0]
[kworker/0:1]
(kworker/ul6:1]

OEBPS/Images/4335_07_07.jpg
Esudu(}(l?ﬁﬂ, root)
udo (10787, root)—grep (10788)

OEBPS/Images/4335_07_23.jpg
------ Shared Memory Creator/Last-op PIDs --------
shnid owner cpid pid
o root 247 247

393217 skumari 1774 5134
622504 skumari 2074 5134
98307 skumari 1650 5134
131076 skumari 1654 6187
720001 skumari 2125 5134
1081350 skumari 2365 5134
458759 skumari 1631 5134
851976 skumari 2074 5134
524297 skumari 1774 5134
1245194 skumari 1629 5640
917515 skumari 1774 5134
1867788 skumari 4829 858

1048589 skumari 2125 5134
1277966 skumari 1629 5640
1540111 skumari 2125 5134

OEBPS/Images/4335_07_12.jpg
az,

> drwxrwxrex.
> drwxrwxrwt,
> drwxrwxr-x.
> drwxrwxrex.
429, 12

drwxrwxr-x.
drwxrwxr-x.

>

I e
W W

8 skumari skumari 220 Sep 7 23:23 .

21 root root 680 Sep 7 23:43
skumari 40 Sep 7 23:15 .cache
skumari 40 Sep 7 23:15 .cups

skumari 40 Sep 7 23:15 .mozilla
skumari 40 Sep 7 23:15 .ssh

skumari 0 Sep 7 23:16 .viminfo
skumari skumari

0 Sep 7 23:16 .xsession-errors

OEBPS/Images/4335_07_16.jpg
5069
1497
6409
1584
2064
1483
1588
1635
1262
1264
1266
1267
1282
1283
1207
1350
1353

USER
‘skumari
skunari
skunari
skusari
skumari
skumari.
skumari
skumari
skumari
skumari
skumari
skumari
skusari
skumari
skusari
skumari
skumari
skusari

VIR
5205352
6 1357460
6 3115036
453804
503648
2210268
508832
660228
1293448
44996
81128

3
114856
16064
63364
53408
414836
11972

RES
297680
459964
90048
43096
50616
229864
31780
139944
51506
4740
2936

o
3064
1564
4196
572
26336
2764

101604
108340
54828
36788
10696
114260
27368
69468
39660
4124
0

0
2800
1360
2672
o
22200
2576

TIME+ COMMAND
plasnashell
Firefox
kwin_x11
ksnapshot
yakuake
soffice.bin
kaccess
chogok
knotify4
systend
(sd-pan)
kualletd
startkde
dbus-Launch
dbus-daemon
ssh-agent
kualletd
gam_server

