

	
	 	
	• 	Table of Contents
	• 	Index
	• 	Reviews
	• 	Examples
	• 	Reader Reviews
	• 	Errata
	• 	Academic

	Perl Template Toolkit
	By
 Darren Chamberlain, David Cross, Andy Wardley
	 	[image:]
	Publisher	: O'Reilly
	Pub Date	: December 2003
	ISBN	: 0-596-00476-1
	Pages	: 576

	

Written by core members of the technology's development
team, Perl Template Toolkit guides you
through the entire process of installing, configuring,
using, and extending the Template Toolkit. It begins with a
fast-paced but thorough tutorial on building web content
with the Template Toolkit, and then walks you through
generating and using data files, particularly with XML. It
also provides detailed information on the Template Toolkit's
modules, libraries, and tools in addition to a complete
reference manual.

	
	 	
	• 	Table of Contents
	• 	Index
	• 	Reviews
	• 	Examples
	• 	Reader Reviews
	• 	Errata
	• 	Academic

	Perl Template Toolkit
	By
 Darren Chamberlain, David Cross, Andy Wardley
	 	[image:]
	Publisher	: O'Reilly
	Pub Date	: December 2003
	ISBN	: 0-596-00476-1
	Pages	: 576

	

	 		Copyright
	 		Preface
	 	

 		Audience
	 	

 		About this Book
	 	

 		Conventions Used in This Book
	 	

 		Comments and Questions
	 	

 		Acknowledgments
	
	 		

 Chapter 1.
 Getting Started with the Template Toolkit
	 	

 		
 Section 1.1.
 What the Template Toolkit Does
	 	

 		
 Section 1.2.
 The Templating Ecosystem
	 	

 		
 Section 1.3.
 Installing the Template Toolkit
	 	

 		
 Section 1.4.
 Documentation and Support
	 	

 		
 Section 1.5.
 Using the Template Toolkit
	 	

 		
 Section 1.6.
 The Template Toolkit Language
	 	

 		
 Section 1.7.
 Template Variables
	 	

 		
 Section 1.8.
 Template Directives
	 	

 		
 Section 1.9.
 Integrating and Extending the Template Toolkit
	
	 		

 Chapter 2.
 Building a Complete Web Site Using the Template Toolkit
	 	

 		
 Section 2.1.
 Getting Started
	 	

 		
 Section 2.2.
 Template Components
	 	

 		
 Section 2.3.
 Defining Variables
	 	

 		
 Section 2.4.
 Generating Many Pages
	 	

 		
 Section 2.5.
 Adding Headers and Footers Automatically
	 	

 		
 Section 2.6.
 More Template Components
	 	

 		
 Section 2.7.
 Wrapper and Layout Templates
	 	

 		
 Section 2.8.
 Menu Components
	 	

 		
 Section 2.9.
 Defining and Using Complex Data
	 	

 		
 Section 2.10.
 Assessment
	
	 		

 Chapter 3.
 The Template Language
	 	

 		
 Section 3.1.
 Template Syntax
	 	

 		
 Section 3.2.
 Template Variables
	 	

 		
 Section 3.3.
 Virtual Methods
	
	 		

 Chapter 4.
 Template Directives
	 	

 		
 Section 4.1.
 Accessing Variables
	 	

 		
 Section 4.2.
 Accessing External Templates and Files
	 	

 		
 Section 4.3.
 Defining Local Template Blocks
	 	

 		
 Section 4.4.
 Loops
	 	

 		
 Section 4.5.
 Conditionals
	 	

 		
 Section 4.6.
 Filters
	 	

 		
 Section 4.7.
 Plugins
	 	

 		
 Section 4.8.
 Macros
	 	

 		
 Section 4.9.
 Template Metadata
	 	

 		
 Section 4.10.
 Exception Handling
	 	

 		
 Section 4.11.
 Flow Control
	 	

 		
 Section 4.12.
 Debugging
	 	

 		
 Section 4.13.
 Perl Blocks
	
	 		

 Chapter 5.
 Filters
	 	

 		
 Section 5.1.
 Using Filters
	 	

 		
 Section 5.2.
 Standard Template Toolkit Filters
	
	 		

 Chapter 6.
 Plugins
	 	

 		
 Section 6.1.
 Using Plugins
	 	

 		
 Section 6.2.
 Standard Template Toolkit Plugins
	
	 		

 Chapter 7.
 Anatomy of the Template Toolkit
	 	

 		
 Section 7.1.
 Template Modules
	 	

 		
 Section 7.2.
 The Runtime Engine
	 	

 		
 Section 7.3.
 Module Interfaces
	
	 		

 Chapter 8.
 Extending the Template Toolkit
	 	

 		
 Section 8.1.
 Using and Implementing Noncore Components
	 	

 		
 Section 8.2.
 Creating Filters
	 	

 		
 Section 8.3.
 Creating Plugins
	 	

 		
 Section 8.4.
 Building a New Frontend
	 	

 		
 Section 8.5.
 Changing the Language
	
	 		

 Chapter 9.
 Accessing Databases
	 	

 		
 Section 9.1.
 Using the DBI Plugin
	 	

 		
 Section 9.2.
 Using Class::DBI
	 	

 		
 Section 9.3.
 Using DBIx::Table2Hash
	
	 		

 Chapter 10.
 XML
	 	

 		
 Section 10.1.
 Simple XML Processsing
	 	

 		
 Section 10.2.
 Creating XML Documents
	 	

 		
 Section 10.3.
 Processing RSS Files with XML.RSS
	 	

 		
 Section 10.4.
 Processing XML Documents with XML.DOM
	 	

 		
 Section 10.5.
 Processing XML Documents with XML.XPath
	 	

 		
 Section 10.6.
 Processing XML Documents with XML.LibXML
	 	

 		
 Section 10.7.
 Using Views to Transform XML Content
	
	 		

 Chapter 11.
 Advanced Static Web Page Techniques
	 	

 		
 Section 11.1.
 Getting Started
	 	

 		
 Section 11.2.
 Library Templates
	 	

 		
 Section 11.3.
 Content Templates
	 	

 		
 Section 11.4.
 Navigation Components
	 	

 		
 Section 11.5.
 Structuring Page Content
	 	

 		
 Section 11.6.
 Creating a New Skin
	
	 		

 Chapter 12.
 Dynamic Web Content and Web Applications
	 	

 		
 Section 12.1.
 CGI Scripts
	 	

 		
 Section 12.2.
 CGI Templates
	 	

 		
 Section 12.3.
 Apache and mod_perl
	 	

 		
 Section 12.4.
 A Complete Web Application
	
	 		

 Appendix A.
 Appendix: Configuration Options
	 	

 		
 Section A.1.
 Template Toolkit Configuration Options
	 	

 		
 Section A.2.
 Apache::Template Configuration Options
	
	 		Colophon
	 		Index

Copyright

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational,
business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
logo are registered trademarks of O'Reilly Media,
Inc. Perl Template Toolkit, the image of a badger, and
related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this
book, the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

Preface

Perl Template Toolkit is an introduction to
the Template Toolkit. The Template Toolkit is most often used in the
creation of web sites, but it can be used as a general text
manipulation tool. It is a presentation management system that allows
you to separate aspects of presentation from the rest of an
application, in the same way that a database allows you to separate
storage concerns.

The information in this book is based on Version 2.10 of the Template
Toolkit, released in July 2003. The Template Toolkit will continue to
evolve. Apart from bug fixes and minor updates, the Version 2.*
branch will remain pretty much the same as it is now.

Version 3, expected sometime in 2004, will include new features and
some changes to the internal architecture. However, it is an
important requirement that new versions of the Template Toolkit are
backward-compatible with previous versions wherever possible.
Although the Template Toolkit may change in some subtle ways, the
basic principles, syntax, and style are here to stay.

Audience

This book should be useful to anyone building and maintaining web
sites or other complex content systems. No prior knowledge of Perl,
the Template Toolkit, or HTML is required to apply the basic
techniques taught in this book. Some of the more advanced topics
require some degree of familiarity with the Perl programming
language. Readers who understand the basic language constructs and
idioms of Perl and who already know how to install and use Perl
modules will have no trouble integrating the Template Toolkit into
their existing or new projects. Some chapters talk about more
specific application areas: HTML, web programming, XML, and SQL, for
example. Experience in these areas will make the benefits of the
Template Toolkit more readily apparent, but isn't
required.

About this Book

This book is divided into 12 chapters and 1 appendix.

Chapter 1, Getting Started with the Template Toolkit, provides an introduction to the
concepts of template processing in general and to the Template
Toolkit in particular. It also covers how to install the Template
Toolkit on your system and gives a brief tutorial on its use so that
you can check that installation is successful. In case it
isn't, the chapter also includes pointers to other
sources of information on the Template Toolkit.

Chapter 2, Building a Complete Web Site Using the Template Toolkit, is a tutorial on building a web site
using the Template Toolkit. It gives a brief overview of many of the
features of the Template Toolkit that are covered in more detail
later in the book.

Chapter 3, The Template Language, begins our detailed look at the
Template Toolkit. In this chapter, we look at the syntax of the
Template Toolkit's presentation language.

Chapter 4, Template Directives, covers the syntax and use of the many
templating directives that can be used from the Template Toolkit.

Chapter 5, Filters, takes a look at filters. These are
extensions to the Template Toolkit that allow you to filter your data
in various ways before presenting it to your users. This chapter
includes a guide to the various standard filters that are included
with the Template Toolkit distribution.

Chapter 6, Plugins, looks at the Template Toolkit plugins.
Plugins are another way to extend the Template Toolkit by giving your
templates access to powerful external modules. This chapter includes
a guide to the various standard plugins that are included with the
Template Toolkit distribution.

Chapter 7, Anatomy of the Template Toolkit, looks under the covers of the Template
Toolkit and examines in some detail how it all works from the inside.

Chapter 8, Extending the Template Toolkit, covers ways to extend the Template
Toolkit by writing your own filters and plugins.

Chapter 9, Accessing Databases, looks in detail at writing templates
that access data held in various different types of databases.

Chapter 10, XML, looks at using the Template Toolkit to
generate XML. It also covers reading XML documents and using their
contents from within your templates.

Chapter 11, Advanced Static Web Page Techniques, starts to put together everything
we've covered in the previous chapters and shows how
to build a static web site using the Template Toolkit.

Chapter 12, Dynamic Web Content and Web Applications, extends the example of the previous
chapter to add dynamic content to your web site.

Appendix A, describes the
configuration options for the Template Toolkit and
Apache::Template.

Conventions Used in This Book

The following typographical conventions are used throughout this book:

	Constant width

	
Used for Perl code, Template Toolkit directives, HTML, and code
examples.

	Italic

	
Used for filenames, URLs, hostnames, first use of terms, and emphasis.

			
Indicates a tip, suggestion, or general note.

			
Indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the
publisher:

	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or
any additional information. You can access this page at:

	http://www.oreilly.com/catalog/perltt

To comment on or ask technical questions about this book, send email
to:

	bookquestions@oreilly.com

For more information about books, conferences, software, Resource
Centers, and the O'Reilly Network, see the
O'Reilly web site at:

	http://www.oreilly.com

Acknowledgments

This book would not be possible without the contribution and support
of many individuals, including friends, family, and the hard-working
folks at O'Reilly & Associates, Inc. All three
of us wish to thank our production team and, in particular, our
editor, Nathan Torkington, for his fine word wrangling and masterful
cat herding. We would also like to thank our technical reviewers
Chris Devers, Mark Fowler, Andrew Langmead, Martin Portman, and Simon
Matthews for their detailed and insightful comments.

Andy Wardley

I'd like to start by thanking Dave, Darren, Nat, and
the production team at O'Reilly for turning a bunch
of words into a book. I would also like to thank Dom Millar for
suggesting a badger for the front cover, and the design team for
accommodating us with this beautiful animal.

The Template Toolkit has long since ceased to be a product of my work
alone, if indeed it ever was. It owes its success to the dedicated
efforts of an extended team of developers, testers, documenters, and
users. At the time of this writing, the Template Toolkit
documentation lists over sixty contributors who have donated their
time and effort in different ways. Our collective thanks go to each
of them: Chuck Adams, Stephen Adkins, Ivan Adzhubey, Mark Anderson,
Bradley Baetz, Thierry-Michel Barral, Craig Barratt, Stas Bekman,
Tony Bowden, Neil Bowers, Leon Brocard, Lyle Brooks, David Cantrell,
Piers Cawley, Darren Chamberlain, Eric Cholet, Dave Cross, Chris
Dean, Francois Desarmenien, Horst Dumcke, Mark Fowler, Michael
Fowler, Axel Gerstmair, Dylan William Hardison, Perrin Harkins, Bryce
Harrington, Dave Hodgkinson, Harald Joerg, Colin Johnson, Vivek
Khera, Rafael Kitover, Ivan Kurmanov, Hans von Lengerke, Jonas
Liljegren, Simon Luff, Paul Makepeace, Gervase Markham, Simon
Matthews, Robert McArthur, Craig McLane, Leslie Michael Orchard,
Eugene Miretskiy, Tatsuhiko Miyagawa, Keith G. Murphy, Chris Nandor,
Briac Pilpré, Martin Portman, Slaven Rezic, Christian
Schaffner, Randal L. Schwartz, Paul Sharpe, Ville Skyttä,
Doug Steinwand, Michael Stevens, Drew Taylor, Swen Thuemmler, Richard
Tietjen, Stathy G. Touloumis, Jim Vaughan, Simon Wilcox, and Chris
Winters.

Special thanks are due to Simon Matthews, who has been using and
abusing the Template Toolkit and its predecessors from the very
start. Countless pints of Guinness have been consumed through long
evenings spent discussing the design, development, and general
direction of the project. I would also like to thank Martin Portman
for the many enjoyable hours we have spent at the whiteboard, engaged
in animated conversation and frantic scribbling. Many of the
important TT design decisions have been thrashed out in the company
of Simon and Martin. Their efforts and input continue to be
gratefully received.

I would also like to thank all my other friends and colleagues of
past and present at Knowledge Pool, Canon Research Centre Europe, and
Fotango, many of whom are listed above. Each of these organizations
and the people within them have played important roles in the
evolution of the Template Toolkit.

Finally I would like to thank my wife, Sheila, and son, Ben, for
their love, patience, and understanding. Writing this book ate up far
too much of the time that should have been spent with you.

Darren Chamberlain

I'd like to thank my wife and kids for their help
and support, and for being so understanding of the time
I've spent writing instead of mowing the lawn or
playing. This wouldn't have been possible for me
otherwise, and I appreciate it more than they know.

Thanks to Boston.com for having the incredibly
sane policy of using the best tool for the job, which means letting
me use the Template Toolkit for so many things; to Andrew Langmead,
Chris Devers, and Mike Melillo for proofreading, fact-checking, and
putting up with me in general; and to Marc Lavallee, for introducing
me to TT in first place.

Thanks to Andy for writing the Template Toolkit, which is as fine and
versatile a piece of software as I've seen in a long
time. Andy, Dave, and Nat have all been great�I hope I get to
work them again.

And, of course, thanks to everyone who buys the book and keeps
O'Reilly (and their fine authors!) afloat.

David Cross

I'd like to thank Andy for developing the Template
Toolkit and both Darren and Andy for making the process of writing
this book as much fun as it was.

Thanks to the members of the London.pm/TT cabal for first introducing
me to the Template Toolkit and convincing me that it was the only
templating system that I needed to look at.

Thanks to the various clients and employers who have put up with me
leaving the office on time to get on with writing the book.
Particular thanks should go to the people at Bibliotech who took pity
on me trying to write and work simultaneously and resolved the
situation by making me redundant.

Most of this book has been written while listening to music.
I've found that I write best when listening to
either Billy Bragg or any combination of the Waterson/Carthy clan, so
thanks to them.

Thank you to Joss Whedon for cancelling "Buffy the
Vampire Slayer" while I was working on this book and
giving me one less reason to avoid writing.

Thank you to the various friends and family who have ensured that I
still have a social life despite my seeming to do my utmost to avoid
it.

Thanks, of course, to my parents Jean and John, and to my wife Gill.
Their love and support make it all much easier.

Chapter 1. Getting Started with the Template Toolkit

The Template Toolkit is an
all-Perl template processing system. Unlike many other Perl
templating systems, it is as proficient at producing HTML as it is at
producing XML, PDF, or any other output format. It has its own simple
templating language, so templates can be written and edited by people
who do not know Perl. And it supports command-line, modular, CGI, and
mod_perl operation.

In this chapter, we compare the Template Toolkit to other templating
systems such as HTML::Mason and HTML::Template, describe how to
install it, then show you what templates look like and how to process
them. The goal of this chapter is to get you started�you should
be able to install the Template Toolkit, write and understand basic
templates, and know how to process the templates from the command
line, from Perl programs, and from mod_perl.

1.1 What the Template Toolkit Does

The basic task of a template processor is to output some
amount of changeable data surrounded by some unchanging data. A
simple example of this is a form letter, where the same text is sent
to many different people, with just the name, address, and other
personal details being changed. The template contains the fixed
("boilerplate") text together with
special markup tags indicating where the variable pieces of data are
to be placed.

Example 1-1 shows a
template for such a form
letter. This template is marked up using the default style of the
Template Toolkit, where the [%
... %] tags indicate variable
values. Everything else is fixed text that passes through the
processor untouched.

Example 1-1. A form letter template, destruction.tt

People of [% planet %], your attention please.

This is [% captain %] of the
Galactic Hyperspace Planning Council.

As you will no doubt be aware, the plans
for development of the outlying regions
of the Galaxy require the building of a
hyperspatial express route through your
star system, and regrettably your planet
is one of those scheduled for destruction.

The process will take slightly less than
[% time %].

Thank you.

A template processor takes the template, together with a list of the
variable data to be included in the letter, and produces a finished
letter. The Template Toolkit provides tpage for doing
just that from the command line. Pass the name of the template file
to tpage as a command-line option, along with
any number of --define options to provide values
for variables. If the preceding template is stored in the
destruction.tt file in the current directory,
the following command processes it:

$ tpage --define planet=Earth \
> --define captain="Prostetnic Vogon Jeltz" \
> --define time="two of your earth minutes" \
> destruction.tt

The output this generates is shown in Example 1-2.

Example 1-2. Form letter generated by template in Example 1-1

People of Earth, your attention please.

This is Prostetnic Vogon Jeltz of the
Galactic Hyperspace Planning Council.

As you will no doubt be aware, the plans
for development of the outlying regions
of the Galaxy require the building of a
hyperspatial express route through your
star system, and regrettably your planet
is one of those scheduled for destruction.

The process will take slightly less than
two of your earth minutes.

Thank you.

Process the same template a few thousand times with different sets of
data and you have the entire basis of the junk-mail industry. Or a
Vogon Constructor Fleet.

This book is a good example of a more complex template. All
O'Reilly books conform to one of a small number of
formats. They all have similar sets of front matter (title page,
publication information, table of contents, and preface), followed by
the actual chapters, some (optional) appendices, an index, and
finally the colophon. Templates that define the look of all of these
parts are defined in the publication system, and the data for a
particular book is formatted to conform to those rules. If someone
decides to change the font used for the chapter titles in forthcoming
books, he need only change the setting in the template definition.

Another way to look at a template processor is as a tool for
separating processing from
presentation. For example, a company sales
report is probably created from data stored in a database. One way to
create the report would be to extract the required data into a
spreadsheet and then do calculations on the data to produce the
information required. The spreadsheet could then be printed out or
emailed to the required recipients.

Although you can use templates to generate any kind
of text document, the most common use is to generate HTML pages for
web content. The whole genre of template processing systems has
matured rapidly in less than a decade, particularly within the Perl
community, in response to the demands of people struggling to build
and maintain ever more complex content and applications for their web
sites.

Templates help in a number of ways. The most obvious benefit is that
they can be used to apply a consistent look and feel to all the pages
in a web site to achieve a common branding. You can use a template to
add standard headers, footers, menus, and other user interface
components as easily as the Hyperspace Planning Council ruthlessly
adds a few lines of Vogon poetry to every planet destruction order,
just to rub salt into the wounds.

This is just the tip of the iceberg. In addition to the use of
variables, the Template Toolkit provides a number of other directives
that instruct it to perform more complex processing actions, such as
including another template, repeating a section of markup for
different pieces of data, or choosing a section to process based on a
particular condition. Example 1-3 illustrates some
of these
directives
in action.

Example 1-3. Loops, conditions, and processing instructions in a template

[% FOREACH order IN council.demolition.orders %]
 [% PROCESS header %]

 [% IF order.destruction %]
 As you will no doubt be aware, the plans
 for development of the outlying regions
 of the Galaxy require the building of a
 hyperspatial express route through your
 star system, and regrettably your planet
 is one of those scheduled for destruction.
 [% ELSE %]
 Our representatives will be visiting your
 star system within the next few weeks,
 and would like to invite you to a reading of
 Vogon Poetry. Attendance is mandatory.
 Resistance is useless!
 [% END %]

 [% PROCESS footer %]

 [% PROCESS poetry/excerpt
 IF today.day = = 'Vogonsday'
 %]
[% END %]

We explain the purpose of these directives later in this chapter, and
show examples of the different ways they can be used throughout the
rest of the book. For now, you can probably work out what they do
from their names.

The Template Toolkit is just one example of a template processor.
Although it's written in Perl, you
don't actually need to know any Perl to use it. The
presentation language that it provides is intentionally simple,
regular, and easy to understand and use. This makes it simple for web
designers and other nonprogrammers to use it without first having to
get to grips with Perl. The Template Toolkit provides language
features and off-the-shelf plugin modules that allow you to perform
many common tasks, including CGI programming, manipulating XML files,
and accessing SQL databases.

If you do know Perl, however, you'll be able to get
more out of the Template Toolkit by writing custom functions and
extensions to handle the specifics of your particular application.
The good news for Perl programmers is that the Template Toolkit
allows you to separate Perl code clearly from HTML templates. This
clear separation means that you don't have to wade
through pages of HTML markup to find the part of your web application
that needs attention. It allows you to concentrate on one thing at a
time, be it the HTML presentation or the Perl application, without
having the other aspects in your face and under your feet. It makes
both your HTML templates and Perl code more portable and reusable,
and easier to read, write, and maintain.

1.2 The Templating Ecosystem

At least half a
dozen mature and respected templating systems are available for Perl.
The best-known and best-supported template processors include the
following:

	Text::Template

	
Text::Template
is a library for generating form letters, building HTML pages, or
filling in templates generally. A template is a piece of text that
has little Perl programs embedded in it here and there. When you fill
in a template, you evaluate the little programs and replace them with
their values. These programs are written in Perl: you embed Perl code
in your template, with { at the beginning and
} at the end. If you want a variable interpolated,
you write it the way you would in Perl. If you need to make a loop,
you can use any of the Perl loop constructions. All the Perl built-in
functions are available.

Text::Template is available from http://www.plover.com/~mjd/perl/Template/ or
from CPAN (http://search.cpan.org/dist/Text-Template/).

	HTML::Template

	
HTML::Template
attempts to make using HTML templates easy and natural. It extends
standard HTML with a few HTML-like tags, and enforces the divide
between design and programming by restricting what a template is
capable of doing. By limiting the programmer to using just simple
variables and loops in the HTML, the template remains accessible to
designers and other non-Perl people. The use of HTML-like syntax goes
further to make the format understandable to others.

HTML::Template is available from CPAN (http://search.cpan.org/dist/HTML-Template/).

	HTML::Mason

	
HTML::Mason is
a Perl-based web site development and delivery system. Mason allows
web pages and sites to be constructed from shared, reusable building
blocks called components. Components contain a
mix of Perl and HTML, and can call each other and pass values back
and forth like subroutines. Components increase modularity and
eliminate repetitive work: common design elements (headers, footers,
menus, logos) can be extracted into their own components where they
need be changed only once to affect the whole site. Mason also
includes powerful filtering and templating facilities and an
HTML/data caching model.

HTML::Mason is available from http://www.masonhq.com/ and CPAN (http://search.cpan.org/dist/HTML-Mason/).

	HTML::Embperl

	
Embperl
gives you the power to embed Perl code in your HTML documents, and
the ability to build your web site out of small reusable objects in
an object-oriented style. You can also take advantage of all the
usual Perl modules (including DBI for database access), use their
functionality, and easily include their output in your web pages.

Embperl has several features that are especially useful for creating
HTML, including dynamic tables, form field processing, URL
escaping/unescaping, session handling, and more.

Embperl is a server-side tool, which means that it's
browser-independent. It can run in various ways: under mod_perl, as a
CGI script, or offline.

HTML::Embperl is available from http://www.ecos.de/ or CPAN (http://search.cpan.org/dist/HTML-Embperl/).

	Apache::ASP

	
Apache::ASP provides an Active Server
Pages port to the Apache web server with Perl scripting only, and
enables development of dynamic web applications with session
management and embedded Perl code. Apache::ASP also provides many
powerful extensions, including XML taglibs, XSLT rendering, and new
events not originally part of the ASP API.

Apache::ASP is available from CPAN (http://search.cpan.org/dist/Apache-ASP/).

The Template Toolkit attempts to offer the best features of these
modules, including separation of Perl from templates and
applicability beyond HTML.

1.2.1 The Template Toolkit Is for More Than HTML

The Template Toolkit is a generic template
processing system that will process any kind of document for use in
any environment or application. Many other template systems were
designed specifically to create HTML pages for web content. In some
cases, that is all the system can be used for. In others, it is
possible (with varying degrees of difficulty) to use the system in a
non-web environment.

The Template Toolkit was originally designed to help Andy create his
web site, but he was careful to ensure that it was just as usable
outside of that environment. As a result, there is nothing within the
Template Toolkit that assumes it is being used to generate HTML. It
is equally at home creating any other kind of data.

1.2.2 The Template Toolkit Lets You Choose Your Separation

Template Toolkit doesn't
prescribe any particular methodology or framework that forces you to
use it in a certain way. Some modules (for example,
HTML::Template) enforce a very strict
interpretation of template processing that intentionally limits what
can be done in a template to accessing variables and using simple
conditional or looping constructs. Others (such as
HTML::Mason and HTML::Embperl)
use embedded Perl code to allow any kind of application functionality
to be incorporated directly into the templates.

The Template Toolkit gives you the best of both worlds. It has a
powerful data engine (the Stash) that does all
the hard work of mapping complex data structures from your Perl code,
configuration files, SQL databases, XML files, and so on, into
template variables that are accessed by a simple and uniform dotted
notation (e.g., person.surname). You can use this
to keep your templates simple without limiting the complexity or
functionality of the systems that put data into the templates.

At the opposite end of the spectrum, the Template Toolkit also allows
you to embed Perl code directly in your templates. We
don't normally encourage this because it tends to
defeat the purpose of having a template processing system in the
first place. Because this is the exception rather than the norm,
template processors must set the EVAL_PERL option
to embed Perl code in the template (it is disabled by default). We
look at how to set options later in this chapter.

Template Toolkit also lets you work between the two extremes. It
provides a rich set of language features
(directives) that allow you to add complex
functionality to your templates without requiring you to embed Perl
code. It also has a powerful plugin mechanism
that allows you to load and use Perl modules to extend the
functionality in any way you can imagine.

In short, the Template Toolkit allows you to take a modular approach
to building your web site or other document system, but
doesn't enforce it. Sometimes you want to build a
complex and highly structured system to run a web site. Other times
you just want to roll up a quick all-in-one template to generate a
report from a database. The Template Toolkit encourages whatever
approach is most appropriate to the task at hand.

1.2.3 Nonprogrammers Can Maintain Templates

Template Toolkit's
template language is designed to be as simple as possible without
being too simple. The dotted notation makes accessing variables far
less daunting than in Perl. For example:

$person->{surname} # Perl
person.surname # Template Toolkit

This hides the underlying implementation details from the template
designer. In the previous example, the Perl syntax implies that
$person is a reference to a hash array containing
a surname value. However, you might one day decide
to implement $person as an object with a
surname() method:

$person->surname() # Perl
person.surname # Template Toolkit

The Perl code requires a different syntax but the Template Toolkit
code stays the same. This lets you change the underlying
implementation at any time without having to change the templates. As
long as the data is laid out in the same way (i.e.,
don't change surname to
last_name), it doesn't really
matter what data structures are used, or whether they are
precomputed, fetched from a database, or generated on demand.

This uniform syntax also means that your template designers can
remain blissfully ignorant of the difference between a hash array and
an object. They don't have to worry about any
confusing syntax and can concentrate on the task at hand of
presenting the data nicely. This makes the template language as
friendly as possible for people who aren't already
Perl programmers.

The general rule is to use Perl for programming and the Template
Toolkit for presentation. But again, it's not
mandatory, so you're still free to bend (or break)
the rules when you really need to.

1.2.4 The Template Toolkit Is Easy to Extend

The Template Toolkit
is designed to be easy to extend. If it doesn't
already do what you want, there's a good chance you
can reimplement a small part of it to change it to do what you what.
The object-oriented architecture of the Template Toolkit makes this
process relatively straightforward, and there are programming hooks
throughout the system to give you as much flexibility as possible.

A number of plugins exist for the Template Toolkit, and we cover them
in Chapter 6. They are designed to give
templates convenient control over things such as HTML tables,
database connections, and CGI parameters.

1.3 Installing the Template Toolkit

At any one time you can download from the Web
at least two possible versions of the Template Toolkit: a stable
version and a developer version. The stable version has a version
number such as 2.10, and has been widely tested before release. The
developer versions have version numbers such as 2.10a, and typically
have bug fixes and early implementations of new features. Generally,
you should install the latest stable release.

1.3.1 Downloading

The Template Toolkit is available from the
Comprehensive Perl Archive Network (CPAN). You can always download
the most recent stable version of the Template Toolkit from
http://search.cpan.org/dist/Template-Toolkit/
(which is where most people download it).

In addition, a web site is dedicated to the Template Toolkit. Located
at http://www.template-toolkit.org, this site
offers the latest stable version, as well as a number of other
goodies such as native packages of the Template Toolkit for Debian
GNU/Linux, Mac OS X (for installation using Fink), and Microsoft
Windows (for installation using ActiveState's Perl
Package Manager).

You can also get developer versions of the Template Toolkit from the
web site. Normally, you need to download only the current stable
version, but if you come across a bug that isn't
fixed in the CPAN version, you may need to use a developer release.

If a developer release isn't
cutting-edge enough for you, the web site
contains information on how to get access to the CVS repository,
which is where the very latest versions of the Template Toolkit
source code are kept. If you want to add functionality to the
Template Toolkit or have found a bug that you can fix, and you want
your patch to be accepted by Template Toolkit developers, you should
make your changes against the current CVS HEAD.

1.3.2 Installing

Installing
the
Template Toolkit is like installing any other Perl module (see
perlmodinstall(1) for platform-specific
details). The basic idea is as follows:

$ perl Makefile.PL
$ make
$ make test
$ make install

A few optional modules and pages of documentation come with the
Template Toolkit, and how much of that gets installed is controlled
by arguments to perl Makefile.PL. Run
perl Makefile.PL TT_HELP to get
the following full list of options:

The following options can be specified as command-line
arguments to 'perl Makefile.PL'. e.g.,

 perl Makefile.PL TT_PREFIX=/my/tt2/dir TT_ACCEPT=y

 TT_PREFIX installation prefix (/usr/local/tt2)
 TT_IMAGES images URL (/tt2/images)
 TT_DOCS build HTML docs (y)
 TT_SPLASH use Splash! for docs (y)
 TT_THEME Splash! theme (default)
 TT_EXAMPLES build HTML examples (y)
 TT_EXTRAS install optional extras (y)
 TT_XS_ENABLE Enable XS Stash (y)
 TT_XS_DEFAULT Use XS Stash by default (y)
 TT_DBI run DBI tests (y if DBI installed)

 TT_LATEX install LaTeX filter (y if LaTeX found)
 TT_LATEX_PATH path to latex (system dependant)
 TT_PDFLATEX_PATH path to pdflatex (" " ")
 TT_DVIPS_PATH path to dvips (" " ")

 TT_QUIET no messages (n)
 TT_ACCEPT accept defaults (n)

By default, the Makefile.PL runs in interactive mode,
prompting for confirmation of the various configuration
options. Setting the TT_ACCEPT option causes the default
value (possibly modified by other command line options)
to be accepted. The TT_QUIET option can also be set to
suppress the prompt messages.

The make test
step
is important, especially if you're using a developer
release or version from CVS. Over 2,000 tests are provided with the
Template Toolkit to ensure that everything works as expected, and to
let you know about any problems that you might have. It takes no more
than a minute or so to run the tests, and they can save you a great
deal of debugging time in the unlikely event that something is wrong
with your installation.

Test failures don't necessarily indicate that
something is fatally wrong. A serious problem causes nearly all of
the tests to fail, although we haven't heard of that
happening to anyone for quite some time. More often than not, errors
raised in the test suite come
from plugin modules whose external Perl modules are not installed on
your system or are the wrong version.

This kind of problem is rarely serious. At worst, it may mean that a
particular plugin doesn't work as expected�or
at all�but that won't stop the rest of the
Template Toolkit from doing its job. You can usually solve the
problem by installing the latest version of any dependent modules. If
you are unsure about whether a particular test failure is
significant, ask on the mailing list, or check the mailing list
archives mentioned in Section 1.4.3, later in this
chapter. Major problems tend to be reported by many people.

The README and INSTALL
files in the Template Toolkit distribution directory provide further
information about running the test suite and what to do if something
goes wrong.

1.4 Documentation and Support

In this section, we take a look at the support that is available for
the Template Toolkit.

1.4.1 Viewing the Documentation

The Template
Toolkit comes with an incredible amount of documentation. The
documentation is supplied in the standard Perl Plain Old
Documentation (POD) format. Once you have installed the Template
Toolkit, you can see any of the documentation pages using
perldoc or man, just as you
can with any other Perl module:

$ perldoc Template # should always work
$ man Template # does not work everywhere

During the Template Toolkit installation procedure you are offered
the chance to install HTML versions of the documentation. The default
location for the installation of these files is
/usr/local/tt2 under Unix and
C:/Program Files/Template Toolkit 2 under Win32.
The installation procedure prompts for alternate locations.

If you are running a web server on your local machine, you can
configure it to know where these files are. For example, you might
put the contents of Example 1-4 in the
httpd.conf for an Apache web server.

Example 1-4. Apache configuration directives to view Template Toolkit documentation

TT2
Alias /tt2/images/ /usr/local/tt2/images/
Alias /tt2/docs/ /usr/local/tt2/docs/html/
Alias /tt2/examples/ /usr/local/tt2/examples/html/

<Directory /usr/local/tt2/>
 Options Indexes
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

You can now access the locally installed documentation by pointing
your browser at http://localhost/tt2/docs. For more
information on configuring your web server, see the
INSTALL file that comes with the Template
Toolkit.

The complete documentation set is also available online at the
Template Toolkit web site. You can find it at http://www.template-toolkit.org/docs.html.

1.4.2 Overview of the Documentation

A large
number of manual pages come with the
Template Toolkit. Here is a list of some of the most useful ones:

	Template

	
The manual page for the Template module, the main
module for using the Template Toolkit from Perl.

	Template::Manual

	
An introduction and table of contents for the rest of the manual
pages.

	Template::Manual::Intro

	
A brief introduction to using the Template Toolkit. Not unlike this
chapter.

	Template::Manual::Syntax

	
The syntax, structure, and semantics of the Template Toolkit
directives and general presentation language. Chapter 3 covers this aspect.

	Template::Manual::Variables

	
A description of the various ways that Perl data can be bound to
variables for accessing from templates. Chapter 3 also has the details.

	Template::Manual::Directives

	
A reference guide to all Template Toolkit directives, with examples
of usage. See Chapter 4.

	Template::Manual::VMethods

	
A guide to the virtual methods available to manipulate Template
Toolkit variables. These are also covered in Chapter 3.

	Template::Manual::Filters

	
A guide to the various standard filters that are supplied with the
Template Toolkit. See Chapter 5.

	Template::Manual::Plugins

	
A guide to the various standard plugins that are supplied with the
Template Toolkit. See Chapter 6.

	Template::Manual::Internals

	
An overview of the internal architecture of Template Toolkit. See
Chapter 7.

	Template::Manual::Config

	
Details of the configuration options that can be used to customize
the behavior and extend the features of the Template Toolkit. This is
covered in the Appendix.

	Template::Manual::Views

	
A description of dynamic views�a powerful but experimental
feature in the Template Toolkit. The use of views is covered briefly
in Chapter 9.

	Template::Tutorial

	
An introduction and table of contents to the tutorials that are
distributed with Template Toolkit. Currently there are two.
Template::Tutorial::Web is a quick start to using the Template
Toolkit to create web pages, and Template::Tutorial::Datafile is a
guide to creating datafiles in various formats (particularly XML).
See Chapter 2 and Chapter 10 for more information about using the
Template Toolkit to generate web pages and XML, respectively.

	Template::Library::HTML and Template::Library::Splash

	
Two guides to using libraries of user interface components (widgets)
for creating HTML with the Template Toolkit.

	Template::Modules

	
A list of the various Perl modules that make up the Template Toolkit.
Each module has its own manual page.

1.4.3 Accessing the Mailing List

If you can't find
the answer to your questions in any of the documentation, you can
always turn to the mailing list set up for discussion of the Template
Toolkit. You can subscribe to the mailing list at: http://template-toolkit.org/mailman/listinfo/templates.
All previous posts are archived at: http://template-toolkit.org/pipermail/templates.

Activity on the list is moderate (around 100 messages per month) and
many of the Template Toolkit experts are on the list.

1.5 Using the Template Toolkit

The rest of this chapter provides a brief introduction to using the
Template Toolkit. We look at the structure and syntax of templates,
showing how variables and directives are embedded in plain text and
expanded by the template processing engine. We talk about some of the
different kinds of directives that the Template Toolkit provides,
what they're used for, and how you go about using
them.

We start by looking at the four main ways of using the Template
Toolkit to process templates: from the command line using the
tpage and ttree programs;
from a Perl script using the Template module; and
in a mod_perl-enabled Apache web server using the
Apache::Template module.

1.5.1 tpage

The tpage program provides a quick and easy way to
process a template file from the command line. The name of the
template file is specified as a command-line argument. This is
processed through the Template Toolkit processing engine, and the
resultant output is printed to STDOUT:

$ tpage infile

You can use the > file redirect operator (if
your operating system supports it, or something similar) to save the
output
into another file:

$ tpage infile > outfile

In this example, the input template, infile, is
processed by tpage with the output saved in
outfile. If something goes wrong and the
template can't be processed (for example, if the
input file specified doesn't exist or contains an
invalid template directive or markup error), an
error is printed to STDERR, and
tpage exits without generating any standard
output.

The following shows what happens if we try and coerce
tpage into processing a file,
nosuchfile, which doesn't exist
on our system:

$ tpage nosuchfile
file error - nosuchfile: not found at /usr/bin/tpage line 60.

tpage offers just one command-line

option, --define,
which allows you to provide values for template variables embedded in
the document. We saw this earlier in Example 1-1
where it processed the Vogon form letter:

$ tpage --define planet=Earth \
> --define captain="Prostetnic Vogon Jeltz" \
> --define time="two of your earth minutes" \
> destruction.tt

The tpage program is ideal for simple template
processing such as this, where nothing more is required than the
ability to insert a few variable values. More complex tasks need the
ttree program or custom programs using the
Template module.

However, there is one last tpage trick we can
show you. If you don't provide
tpage with the name of a template file, it reads
it from STDIN. This allows you to use it as Unix-style pipeline
filter. For example, if the output of the mktemplate
program is a Template Toolkit template, the following command can be
used to pipe it into tpage to have it processed:

$ mktemplate | tpage

Invoking tpage by itself, with no arguments and
no piped input, starts it in interactive mode. In this case,
tpage sits and waits for you to type in a source
template. This can be very useful for trying out small snippets of
template syntax to see what they do.

Here's an example:

$ tpage
[% subject = 'cat'
 object = 'mat'
%]
The [% subject %] sat on the [% object %].
^D
The cat sat on the mat.

The first line invokes tpage from the command
line. The next three lines are the body of the template in which we
type, followed by the end-of-file (EOF) character telling
tpage that we're done. On Unix
systems, this is Ctrl-D, shown in the example as
^D. On Microsoft Windows platforms, Ctrl-Z is the
EOF character.

The rest of the example shows the output generated by
tpage from processing the template. The cat is
sitting on the mat, and everything is working as expected.

1.5.2 ttree

The
ttree program offers many more features and options
than tpage does. The first major difference is
that ttree works with entire directories of
templates rather than with single files. If you're
using the Template Toolkit to build a web site, for example, you can
point ttree at a directory of source templates
to process them all, saving the generated HTML pages to corresponding
files in an output directory.

The following example shows how you could invoke
ttree to process all the templates in the
templates directory (containing the files
cat and dog for the purpose
of this example), and save the generated output in files of the same
name, which are located in the output directory:

$ ttree -s templates -d output -v

The -s option defines the source directory for
templates, and -d defines the destination
directory for output files. The -v (verbose)
option causes ttree to print a summary of what
it's doing to STDERR.

Here's an example of the kind of information
generated by the -v option:

ttree 2.63 (Template Toolkit version 2.10)

 Source: templates
 Destination: output
Include Path: []
 Ignore: []
 Copy: []
 Accept: [*]

 + dog
 + cat

This is a summary of the processing options, including the
Source and Destination that we
provided as the -s and -d
command-line options. The dog and
cat files are listed as the two files that
ttree found in the
templates directory. The +
characters indicate that both files were successfully processed,
creating dog and cat files
in the output directory.

Now that these templates have been processed,
ttree will not process them again until they are
modified or the corresponding output file is deleted. By looking at
the file modification times of the source template and destination
file, ttree can decide which templates have
changed and which have not. It saves time by processing only those
that have changed.

If you run the same ttree command again, you see
that the + characters to the left of the filenames
have changed to - characters:

ttree 2.63 (Template Toolkit version 2.10)

 Source: templates
 Destination: output
Include Path: []
 Ignore: []
 Copy: []
 Accept: [*]

 - dog (not modified)
 - cat (not modified)

These - characters indicate that the template
files were not processed this time, with the reason given in
parentheses to the right. This can save a great deal of time when
building large document systems using templates (e.g., a typical web
site) in which only a few pages change at any one time.

The -a option forces
ttree to process all templates, regardless of
their modification times:

 $ ttree -a

A second benefit of ttree is that it offers
numerous options for changing its behavior. Adding a standard header
and footer to each page template, for example, is as easy as setting
the relevant option:

$ ttree -s templates -d output -v \
> --pre_process=header \
> --post_process=footer

The number of options can be overwhelming at first, but in practice,
only a few are used on a regular basis. To avoid having to always use
the command line to specify options�something that can quickly
become cumbersome and error prone, especially if you are using more
than a few�ttree allows you to use
configuration files to define all the options for a particular web
site or other document system. You can then invoke
ttree, passing the name of the configuration
file using the -f option:

$ ttree -f /home/dent/web/ttree.cfg

Example 1-5 shows a sample
ttree configuration file.

Example 1-5. A sample ttree configuration file, ttree.cfg

src = /home/dent/web/templates
dest = /home/dent/web/html
lib = /home/dent/web/lib

pre_process = header
post_process = footer

verbose

In the configuration file, the -s and
-d options are represented by the
src and dest options. We also
added a lib option (-l on the
command line), which tells ttree about an
additional library directory where our header
and footer templates are found.

Setting up ttree is a little more involved than
using tpage, but the effort quickly pays off in
the time it saves you. We look at ttree in
detail in Chapter 2, showing everything from
first-time use through writing and managing
configuration files.

1.5.3 The Template Module

Both tpage and
ttree use the Template Perl
module to do the dirty work of processing templates. As it happens,
the Template module doesn't
actually do much in the way of dirty work itself, but delegates it to
other modules in the Template Toolkit with exotic names such as
Template::Service,
Template::Context,
Template::Provider, and
Template::Stash. The Template
module provides a simple interface for using the Template Toolkit
from Perl so that you don't have to worry about the
complex underlying functionality that makes it work. Chapter 7 goes into greater detail about what lurks
beneath the hood of the Template Toolkit, but for now we cover just
the basics.

If you are already a Perl hacker experienced in using modules, the
Template manpage gives you an executive summary to get you quickly up
to speed. If you're not a Perl hacker but would like
to be, Learning Perl, Third Edition, by Randal
Schwartz and Tom Phoenix (O'Reilly) is a good place
to start.

However, you don't need to know any Perl to use the
Template Toolkit. Thanks to the tpage and
ttree programs, you can build your entire web
site or other template-based document system without ever having to
write a line of Perl code. Nevertheless, it's useful
to have a basic understanding of how the Template
module is used in Perl programs (including tpage
and ttree), even if you never plan on using the
module. Also, certain features are accessible only through Perl (for
example, the ability to define a subroutine to return the value for a
variable), so there is a good chance that sooner or later you will
want or need those Perl-specific features.

Example 1-6 shows a simple Perl program for processing the
destruction.tt template from Example 1-1.

Example 1-6. A Perl program for processing the Vogon form letter template

#!/usr/bin/perl

use strict;
use warnings;
use Template;

my $tt = Template->new();
my $input = 'destruction.tt';
my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
};

$tt->process($input, $vars)
 || die $tt->error();

The first line defines the path to the Perl interpreter on your
system. This is very much a Unix-specific convention. On a Windows
machine, for example, this line is not relevant or required.

In the first block, we enable
Perl's strict and
warnings pragmata and then load the
Template module:

use strict;
use warnings;
use Template;

			
It is good Perl style to include use
strict; and use
warnings; at the top of every program, or to
invoke Perl with the -w switch
instead of use warnings; for versions of Perl
earlier than 5.6.0. These two precautions will catch many common
programming and typographical errors, and warn you about any
questionable practices. Perl examples in this book may omit them for
brevity, but you should always include them in any nontrivial chunk
of code.

The next line creates a new Template object and
assigns it to the $tt variable:

my $tt = Template->new();

We store the name of the template to be processed in the
$input variable and define some template
variables in $vars:

my $input = 'destruction.tt2';
my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
};

Then we invoke the process(
)
method against the $tt template object to process
the source template:

$tt->process($input, $vars)
 || die $tt->error();

The name of the source template file, here stored in the
$input variable, is passed as the first argument,
followed by a reference to a hash array of template variables,
defined in $vars.

The process() method processes the template and
returns a true value to indicate success. The output is printed to
STDOUT by default so that you see it scrolling up your screen when
you run the program.

If an error occurs, the process() method returns
false. In this case, we call the error() method
to find out what went wrong and report it as a fatal error using
die. An error can be returned for a number of
reasons, such as the file specified could not be found, had embedded
directives containing illegal syntax that could not be parsed, or
generated a runtime error while the template was being processed.

1.5.3.1 Template configuration options

We mentioned the
--pre_process and
--post_process options when using
ttree earlier. Now we can see how these are used
in the underlying Perl implementation.

Configuration options are passed to the new()
constructor method as a reference to a hash, as shown in Example 1-7. The Template module
expects options to be provided in uppercase, so the options for
ttree translate to the
PRE_PROCESS and POST_PROCESS options for
the Template module. We also set the
INCLUDE_PATH option to indicate the location of
the source and library templates, which ttree
provides from the src (or -s)
and lib (or -l) options. These
are provided as a reference to a list of the two directory paths.

Example 1-7. Specifying options when processing templates, ttperl3.pl

my $tt = Template->new({
 PRE_PROCESS => 'header',
 POST_PROCESS => 'footer',
 INCLUDE_PATH => [
 '/home/dent/web/templates', # src
 '/home/dent/web/lib', # lib
],
});

Now when the process() method is invoked against
the $tt object, the source template,
destruction.tt, will be processed complete with
the header and footer added
before and after the main page content, respectively. For this
example, we are assuming that the destruction.tt
template is located in the
/home/dent/web/templates directory, and that
header and footer can be
found in the /home/dent/web/lib directory.

The Template Toolkit provides numerous configuration options. These
are described in detail in the Appendix. We describe the useful ones
as we encounter them in later chapters.

1.5.4 Apache::Template Module

The Apache::Template
module
marries the Template Toolkit with the Apache web server. It is
distributed separately from the rest of the Template Toolkit and can
be downloaded
at http://search.cpan.org/dist/Apache-Template/.
It requires an Apache installation that includes Doug
MacEachern's mod_perl extension
module, details of which can be found at http://perl.apache.org/. For a full
discussion of mod_perl, we recommend
Practical mod_perl, by Stas Bekman and Eric
Cholet (O'Reilly), which contains an appendix
dealing specifically with using the Template Toolkit under Apache and
mod_perl.

Apache::Template can be configured via
Apache's normal httpd.conf
configuration file. Example 1-8 shows an extract of
an httpd.conf file that sets the same options as
Example 1-7.

Example 1-8. httpd.conf directives to set options with Apache::Template

PerlModule Apache::Template

TT2IncludePath /home/dent/web/templates
TT2IncludePath /home/dent/web/lib
TT2PreProcess header
TT2PostProcess footer

TT2Params uri env params cookies
TT2Headers modified length

<Files *.tt2>
 SetHandler perl-script
 PerlHandler Apache::Template
</Files>

The first section loads the Apache::Template
module:

PerlModule Apache::Template

The next block sets some standard Template Toolkit options:

TT2IncludePath /home/dent/web/templates
TT2IncludePath /home/dent/web/lib
TT2PreProcess header
TT2PostProcess footer

Apache::Template adopts the Apache convention of
using StudlyCaps for the names of configuration options and also adds
a unique TT2 prefix. So the
Apache::Template options
TT2IncludePath and
TT2PreProcess, for example, equate to the
INCLUDE_PATH and PRE_PROCESS
options for the Template module.

The two options that follow are specific to the
Apache::Template handler:

TT2Params uri env params cookies
TT2Headers modified length

The first, TT2Params, provides a
list of items that the handler should automatically extract from the
Apache request and make available as template variables. Any template
can use the uri, env,
params, and cookies variables
to access the request URI, environment variables, request parameters,
and cookies, respectively. The second directive,
TT2Headers, indicates that
Last-Modified and
Content-Length headers should be automatically
added to the response sent to the client.

The final section uses the Apache Files directive
to define the files that should be processed as templates:

<Files *.tt2>
 SetHandler perl-script
 PerlHandler Apache::Template
</Files>

The SetHandler and
PerlHandler directives within the
Files block are standard procedure in Apache for
binding a mod_perl handler
(Apache::Template in this case) to a set of files.
With this configuration, the Apache server processes any files with a
.tt2 extension using the
Apache::Template handler, but continues to deliver
pages with any other extensions as static files, or using any other
handlers defined for them.

This is a convenient way of mixing static HTML pages with dynamic
page templates in any directory that is currently accessible by the
Apache web server. If you want to create a static page, use a
.html or other appropriate extension. If you
want to create a dynamic page from a template, with the appropriate
headers and footer added automatically, simply give it a
.tt2 extension and leave
Apache::Template to take care of it.

If you would rather not open up your entire web server to the
Apache::Template module, you can instead use the
Location directive.

<Location /tt2/>
 SetHandler perl-script
 PerlHandler Apache::Template
</Location>

In this case, only those files located under the
/tt2/ URI will be processed through the
Apache::Template handler.

There are numerous other Apache configuration directives, all of
which are described in the documentation provided with Apache. For a
full discussion of the Apache::Template
configuration, see the Appendix.

1.6 The Template Toolkit Language

The Template Toolkit
language is a presentation language rather than a general-purpose
programming language. It provides the kind of features that you would
expect to see in a regular programming language, including loops,
conditional tests, and the ability to manipulate variable values.
However, in this case they serve a slightly different purpose. The
Template Toolkit is designed for the task of generating content and
presenting data, and it generally leaves more complex issues to a
real programming language, namely, Perl.

We have already seen the basics of what a template looks like�a
mixture of tags (known as directives) and other fixed text. The
template processor interprets the directives and the remaining text
is passed through unchanged.

By default, the start and end of a
directive
are marked by the sequences [% and
%], but the TAGS directive can
be used to change them if you don't like these. The
TAGS directive takes either one or two arguments.
The single-argument version expects the name of a predefined tag set.
For example, the star set replaces the tag
delimiters with [* and *]:

[% TAGS star %]
People of [* planet *], your attention please.

If you give TAGS two arguments, they define the
start and end tag markers that you want to use. For example, if
you're processing plain text, you might find
something like this more lightweight and easier to type:

[% TAGS { } %]
People of {planet}, your attention please.

Or if you are processing HTML and you prefer an HTML style, how about
this:

[% TAGS <tt: > %]
<p>People of <tt:planet>, your attention please.

Changes to tags take effect immediately and affect only the current
file.

You can also set these from the command line with
ttree by using the
--start_tag, --end_tag, and
--tag_style options. From a Perl script, the
corresponding configuration options for the
Template module are START_TAG,
END_TAG, and TAG_STYLE. For
Apache::Template, the TT2Tags
option can be used with one or two arguments, as per the
TAGS directive.

In the rest of this book, we use the default tag style. We like it
because it makes the directives stand out from the surrounding text,
rather than making them blend in. We think it makes templates easier
to read and write when you can more clearly distinguish one part from
another.

1.7 Template Variables

The variables
that we have used so far have been
scalar variables. A scalar variable stores a
single piece of information�either a string or a number.

The value of a scalar variable is inserted in a template by using the
variable name inside a directive like this:

[% planet %]

A variable wouldn't be worthy of the name if you
couldn't also set its value. We have seen examples
of doing this using the --define option of the
tpage command, but it is also possible to set a
variable's value inside a template:

[% planet = 'Magrethea' %]
People of [% planet %], your attention please.

1.7.1 Complex Variables

In addition
to scalar variables, the
Template Toolkit also supports two complex data types for storing
multiple values: the list and hash
array (also known as a hash). A list
is an ordered array of other variables, indexed numerically and
starting at element 0. A hash is an unordered collection of other
variables, which are indexed and accessible by a unique name or
key.

Perl programmers will already be familiar with these data structures.
When you use the Template Toolkit from Perl you can easily define
hash arrays and lists that are then passed as template variables to
the process() method.

Example 1-9 shows a Perl program similar to Example 1-6, which defines a list of
friends and a hash of terms as
template variables.

Example 1-9. Perl program to process friends.tt

use Template;

my $tt = Template->new();
my $input = 'friends.tt';
my $vars = {
 friends => ['Ford Prefect', 'Slartibartfast'],
 terms => {
 sass => 'know, be aware of, meet, have sex with',
 hoopy => 'really together guy',
 frood => 'really, amazingly together guy',
 },
];

$tt->process($input, $vars)
 || die $tt->error();

Example 1-10 is the friends.tt
template that Example 1-9 processes.

Example 1-10. The friends.tt template

Your friends are:
[% FOREACH friend IN friends -%]
 * [% friend %]
[% END -%]

You know the following terms:
[% FOREACH term IN terms.keys.sort -%]
 [% term %]: [% terms.$term %]
[% END -%]

This is the output generated by Example 1-9:

Your friends are:
 * Ford Prefect
 * Slartibartfast

You know the following terms:
 frood: really, amazingly together guy
 hoopy: really together guy
 sass: know, be aware of, meet, have sex with

There will be times when you're using the Template
Toolkit with tpage or ttree
and don't want to have to write a Perl program,
however simple, just to use some complex variables. The Template
Toolkit allows you to define lists and hash data structures inside
templates, using syntax similar (or identical if you prefer) to the
Perl equivalents shown earlier.

The simple examples in the sections that follow should give you a
flavor of how lists and hash data structures are defined and used in
templates. Chapter 3 describes the Template
Toolkit language in detail, showing the different variations in
syntax that are permitted to satisfy both Perl programmers (who
expect => to be used to separate a hash key
from a value, for example) and HTML designers (who probably
don't know any different and are just as happy using
the simpler =).

1.7.2 Lists

A list variable is defined in a template using the
[...] construct. Here's how we
would create the equivalent of the friends list
from Example 1-9:

[% friends = ['Ford Prefect', 'Slartibartfast'] %]

List elements are accessed using the dot operator
(.). Follow the list name with a dot and then the
element number, starting at zero for the first element:

[% friends.0 %] # Ford Prefect
[% friends.1 %] # Slartibartfast

It is also possible to access elements from the list using a variable
containing an index value. Simply prefix the variable with a
$ character:

[% index = 1 %]
[% friends.$index %] # Slartibartfast

1.7.3 Hashes

A hash is defined in a template using the
{...} construct:

[% terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 }
%]

Each pair of items within the { and
} is composed of the key, to the left of the
= (or => if you prefer), and
the value to the right. Separate pairs of items with commas, although
it's not obligatory. Here is the same template
written in a Perlish style:

[% terms => {
 sass => 'know, be aware of, meet, have sex with',
 hoopy => 'really together guy',
 frood => 'really, amazingly together guy',
 }
%]

Hash items are also accessed using the dot operator. In this case,
the key for the required item is specified after the dot character:

[% terms.hoopy %] # really together guy

You can also access hash items using a variable that contains a key.
Again, the variable name should be prefixed with a
$ character:

[% key = 'frood' %]
[% terms.$key %] # really, amazingly together guy

1.7.3.1 Nesting list and hash definitions

Lists and hashes
can be nested inside each other to create complex data structures:

[% arthur = {
 name = 'Arthur Dent',
 planet = 'Earth',
 friends = [
 { name = 'Ford Prefect'
 home = 'Betelgeuse'
 type = 'frood' }
 { name = 'Slartibartfast'
 home = 'Magrethea'
 type = 'hoopy' }
]
 terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 }
 }
%]

You can access items buried deep within a nested data structure by
chaining together a series of dot operations to create
a compound
variable:

[% arthur.friends.1.name %] # Slartibartfast

The Template Toolkit works out which dot operators are performing
hash lookups (friends and name)
and which are performing list lookups (1), and
then automatically does the right thing to return the correct value.
Comparing this to the equivalent Perl code, the Template
Toolkit's uniform dot operator makes things much
clearer:

TT
arthur.friends.1.name

Perl
$vars->{arthur}->{friends}->[1]->{name}

This illustrates one of
the key benefits of using a
presentation language like the Template Toolkit for generating
content, rather than a programming language such as Perl.[1] When you write a program using a real
programming language such as Perl, it's important to
know which variables are scalars and which are lists, hashes,
subroutines, objects, and so on. It's also critical
that you use exactly the right kind of syntax relevant to each data
type. Otherwise, your program might try to do something that it
shouldn't, possibly corrupting the data, causing the
program to exit with an error, or even failing to compile and run in
the first place.
[1] Which of course, we still rely on a great deal, not only as the
language in which the Template Toolkit is written, but also as the
means by which you can extend it and add your own custom
functionality to your templates, as we will see in the next
section.

However, when you're writing templates to present
your data as HTML pages, or in some other output format, these issues
are of less concern. You're far more interested in
how the data is going to be laid out, than in how it is stored or
calculated on demand by the underlying Perl code (as we see in the
next section). As long as the value for a user's
name, for example, is inserted in the right place in the template
when we ask for arthur.friends.1.name,
we're happy. By the time the data is presented as
output in a template, it is all text anyway.

You can also used dotted
variables as hash keys to reference
other variables. The following example shows how this is done using
${ ... } to explicitly scope the range of the
second variable name:

[% arthur.terms.${arthur.friends.1.type} %]

The arthur.friends.1.type variable returns the
value hoopy, resulting in a final expression
equivalent to arthur.terms.hoopy. This ultimately
provides us with the value really together guy.

You can use a temporary variable to break this down into smaller
pieces. For example:

[% friend = arthur.friends.1 -%]
[% friend.name %] is a [% arthur.terms.${friend.type} %].

This generates the following output:

Slartibartfast is a really together guy.

1.7.4 Dynamic Variables

The examples
that we've seen so far have used variables to store
static values. When you set a variable to contain a scalar value or a
reference to a list or hash array, it remains set to that value until
the next time you explicitly modify it. Whenever the variable is
used, the Template Toolkit simply looks up the current value for the
variable and inserts it in the right place.

The Template Toolkit also allows subroutines and objects to be used
to create dynamic variables. Each time such a variable is used, the
Template Toolkit will call the subroutine or object method bound to
it to return an appropriate value. Whereas static variables contain
precomputed values, these dynamic variables return values that are
recomputed each time they are used.

Example 1-11 shows a Perl program that defines two
template variables, one bound to a
subroutine, the other to an
object.

Example 1-11. Dynamic data in template variables

use Acme::Planet; # not a real module (yet)

my $vars = {
 help => sub {
 my $entry = shift;
 return "$entry: mostly harmless";
 },
 planet => Acme::Planet->new(name => 'Earth'),
};

In this example, the help variable is a reference
to a subroutine that expects a single argument,
$entry. The planet variable
references a hypothetical Acme::Planet object.
This isn't a real module (at the time of this
writing), but we're assuming that the
new constructor method creates an
Acme::Planet object against which we can invoke
the name() method to return the value provided,
Earth.

The following extract shows how these variables can be used in a
template:

The guide has this to say about [% planet.name %].
 [% help(planet.name) %]

This would generate the following output:

The guide has this to say about Earth.
 Earth: mostly harmless

Notice that when we call the name method on
planet we use the dot operator in exactly the same
way as we would if planet were a hash with a key
called name. The Template Toolkit
doesn't care which of these we have, it just looks
at the variable and works out what is the right thing to do. This
illustrates how you are not tied down to any particular
implementation for your underlying data structures, and can freely
change from hashes to objects and back again without affecting the
templates that use them.

Dynamic variables must be defined in Perl. There is no easy or clean
way to define dynamic variables from within a template, other than by
enabling the EVAL_PERL configuration option and
using embedded Perl. The preferred solution is to write a simple Perl
script that defines the relevant subroutines, objects, and other data
items and then processes the appropriate template or templates.
Another approach is to write a Template Toolkit plugin that
encapsulates the Perl code and can be loaded into any template on
demand. We look at plugins in detail in Chapter 6.

1.7.5 Virtual Methods

The Template Toolkit provides
virtual methods for
manipulating and accessing information about template variables. For
example, the length virtual method can be applied
to any scalar variable to return its string length in characters. The
virtual method is applied using the dot operator:

[% name = 'Slartibartfast' %]
[% name %]'s name is [% name.length %] characters long.

This generates the output:

Slartibartfast's name is 14 characters long.

Virtual methods are provided for the three main variables types:
scalars, lists, and hashes. The following example shows the
join list virtual method being used to return the
elements in a list joined into a single string. It adds a single
space character between each item in the list by default, but you can
provide a different delimiter by passing it as an argument in
parentheses.

[% friends = ['Andy', 'Darren', 'Dave'] %]
Your friends are [% friends.join(', ') %].

This will display:

Your friends are Andy, Darren, Dave.

Some virtual methods alter the contents of the variable that they act
on. For example, the pop method removes the last
item from a list and returns it:

[% last = friends.pop %]
Your friends are [% friends.join(', ') %] and [% last %].

This will display:

Your friends are Andy, Darren and Dave.

We saw an example earlier of how virtual methods were combined in a
dotted variable:

You know the following terms:
[% FOREACH term IN terms.keys.sort -%]
 [% term %]: [% terms.$term %]
[% END -%]

The part that we're particularly interested in is
this:

terms.keys.sort

The terms variable contains a reference to a hash.
The keys hash virtual method returns a reference
to a list of the keys in the hash. The keys aren't
returned in any particular order, but now that we have a list, we can
go on to call the sort list virtual method to
return a second list containing the items sorted in alphabetical
order.

We can then go one step further and call the join
virtual method on that list, to join the items into a single string:

[% terms.keys.sort.join(', ') %]

This generates the following output:

frood, hoopy, sass

Virtual methods are covered in detail in Chapter 3.

1.8 Template Directives

The examples we have looked at so far have concentrated on the use of
variables. The Template Toolkit also provides more advanced language
constructs called directives. These begin with
an uppercase keyword such as PROCESS,
IF, or FOREACH and tell the
template processing engine to do something.

1.8.1 Variable Directives

Given that directives start with an uppercase
keyword, you might be forgiven for thinking that the examples we have
seen so far don't count as directives:

[% name = 'Arthur Dent' %]
[% planet = { name = 'Earth' } %]
Welcome [% name %] of [% planet.name %].

However, the syntax that we have been using until now to set and get
variables is actually just a convenient shortcut for the full
version, which uses the SET and
GET keywords like so:

[% SET name = 'Arthur Dent' %]
[% SET planet = { name = 'Earth' } %]
Welcome [% GET name %] of [% GET planet.name %].

For obvious reasons, the shorter versions are used most of the time.

1.8.2 Template Processing Directives

Another use of template directives is for
changing the way templates are processed. The
PROCESS directive is one of the simplest. It loads
another template file, processes the contents, and inserts the
generated output in the calling template:

[% PROCESS header %]

The Template Toolkit provides the INCLUDE_PATH
option, which allows you to specify one or more directories where
your template files can be found. This allows you to specify your
templates with simple names such header, rather
than full file paths such as
/home/dent/templates/lib/header, for example.

The reason that it is called INCLUDE_PATH and not
PROCESS_PATH becomes obvious when we mention that
there is also an INCLUDE directive. The
INCLUDE directive and related
INCLUDE_PATH option have been part of the Template
Toolkit, and the Text::Metatext module that
preceded it, from the very beginning. The PROCESS
directive, on the other hand, was added at a later date, and was able
to reuse the INCLUDE_PATH option for the same
purposes.

The difference between PROCESS and
INCLUDE is revealed in Chapter 2. For now it suffices to know that
INCLUDE is most often used when you want to pass
variable values that should remain local to that one template:

[% INCLUDE header
 title = 'Vogon Poetry'
%]

The Template Toolkit is quite relaxed about how you lay out
directives. You can add as little or as much whitespace as you like
(including newlines) to help make your directive more readable. The
only rule is that you must separate individual words and phrases in
the directive (e.g., the INCLUDE keyword and the
header template name that follows it) with at
least one whitespace character. You don't need any
spacing between the opening tag and the start of the directive, or
between the end of the directive and the closing tag, but we
recommend it to help make directives easier to read.

The following examples are all valid and equivalent ways of writing
the same directive:

[%INCLUDE header title='Vogon Poetry'%]

[% INCLUDE header title='Vogon Poetry' %]

[% INCLUDE header
 title = 'Vogon Poetry'
%]

1.8.3 Loops

The
FOREACH directive allows you to create loops,
where a block of template content is processed, once for each item in
a list. Here's the general form:

[% FOREACH item IN list %]
 block of template content...
 ...can contain directives...
 ...and reference the [% item %] variable...
[% END %]

We've already seen a real example of this in action:

You know the following terms:
[% FOREACH term IN terms.keys.sort -%]
 [% term %]: [% terms.$term %]
[% END -%]

We know from looking at virtual methods earlier that the
terms.keys.sort variable returns a list of the
items frood, hoopy, and
sass. So our loop block will be repeated three
times, with the term variable set to each of those
values in turn. We print the term followed by its definition, fetched
from the terms hash array using the value of
term as the key. The term
variable must be prefixed with $ to indicate that
the value of the variable should be used rather than the literal
string term:

 [% term %]: [% terms.$term %]

The output generated for the complete block is as follows:

You know the following terms:
 frood: really, amazingly together guy
 hoopy: really together guy
 sass: know, be aware of, meet, have sex with

1.8.4 Conditionals

Conditionals
are another powerful language feature that
allow your templates to make decisions about what to process and what
not to process, based on the values of variables and more complex
expressions.

We saw an example of the IF directive in Example 1-3, shown here in condensed form for brevity:

[% IF order.destruction %]
 As you will no doubt be aware...
[% ELSE %]
 Our representatives will be...
[% END %]

If the order.destruction variable is true, the
first block, between the IF and
ELSE directives, is processed. Otherwise, the
block between the ELSE and END
is used.

The notion of truth is, in this sense, the same
as it is for Perl. If the variable is defined and contains any kind
of value except an empty string or the number zero, both Perl and the
Template Toolkit will consider it to be true. If the variable is
undefined, or contains a zero-length string or the number zero, it is
false. This applies to all Template Toolkit directives that perform
operations based on evaluating a variable or more complex expressions
for truth.

1.8.5 Filters, Plugins, and Macros

There's plenty more in the Template Toolkit that we
introduce in the chapters that follow. The following examples give a
taste of what is to come.

Filters
allow you to postprocess the output of a
block of template markup. The html filter, for
example, will convert any HTML-sensitive characters, such as
<, >, and
&, into their equivalent HTML entities,
<, >, and
&.

[% FILTER html %]
 Home > Dent > Friends > Slartibartfast
[% END %]

This generates the following output, which, when displayed as HTML on
a web browser, will show the original >
characters as intended:

Home > Dent > Friends > Slartibartfast

See Chapter 5 for further details.

Plugins
allow you to load and use Perl modules in
templates without having to write a Perl wrapper program to do it for
you. The following examples show how the CGI plugin (which delegates
to Lincoln Stein's CGI.pm module)
can be used for CGI programming:

[% USE CGI %]
[% name = CGI.param('name') or 'Arthur Dent' %]
[% planet = CGI.param('planet') or 'Earth' %]
 Welcome [% name %] of planet [% planet %].

Plugins also have their own chapter, Chapter 6.

The final teaser that we're going to show you is the
MACRO directive. This allows you to provide
simple names for more complex commands, as the following example
shows:

[% MACRO header(title, author)
 IF name = = 'Arthur Dent';
 INCLUDE arthur/header
 title = "Arthur Dent: $title";
 ELSE;
 INCLUDE guest/header
 title = "Guest User: $title";
 END;
%]

Don't worry if you can't make much
sense of that now. The point that we're illustrating
is that sometimes Template Toolkit code can get quite complex.
However, the MACRO directive allows you to define
the complicated part in one place so that you can use a much simpler
call to the macro in the rest of your templates:

[% header('Arthur Dent', 'My Home Page') %]

1.9 Integrating and Extending the Template Toolkit

A particular strength of
the Template Toolkit is that it doesn't try and do
everything by itself. It concentrates on providing features that are
generally applicable to template processing, leaving
application-specific functionality to be added using Perl.

We've seen how you can define dynamic variables to
allow your templates to access subroutines and objects written in
Perl. The plugin mechanism allows you to bundle Perl code in
self-contained modules that can be loaded straight into a template
with a USE directive, eliminating the need to
write a Perl wrapper program.

If that isn't enough, you can also define your own
filters and virtual methods, and even change the language itself if
you're feeling brave. This is covered in Chapter 8.

The fundamental concept that we're trying to get
across is that the Template Toolkit is, as the name suggests, a
toolkit for building things. It was designed to
be easily extended and integrated with other components so that it
can work within your requirements. It is not a complete web
programming language or content management system that tries to do
everything, and thus forces you into its way of thinking and working.

Sometimes that means you've got a little more
thinking to do for yourself, rather than just blindly following the
One True Way that we could have chosen for you. However, the benefit
is that your solutions will be more flexible and adaptable, as well
as better suited to addressing the problems at hand.

No two web sites (or document systems in general) are alike.
Similarly, no two web developers agree on every issue that presents
itself in the design and implementation of a web site. They each have
their own ideas about the best way to tackle different problems, and
prioritize different concerns according to the unique perspective
that their past experience affords them. Perfect solutions
don't exist (or if they do, we've
never encountered them). With this in mind, strive to build a system
that works today and tomorrow, even if it doesn't
solve every problem overnight. Know when to compromise ideals for the
sake of a pragmatic solution and when to stand firm on the issues
that are important.

So the golden rule of web programming is that there is no golden
rule. There are golden tools, and we like to consider the Template
Toolkit among them, but a tool is only as good as the person who uses
it. In the next chapter, we look at using the Template Toolkit to
generate web content so that you can become familiar with its ways
and start crafting your own web sites.

Chapter 2. Building a Complete Web Site Using the Template Toolkit

This chapter puts the Template Toolkit into context. We show several
different ways of using the Template Toolkit to simplify the process
of building and managing web site content. We start with some simple
examples showing the use of template variables and template
components that allow web content to be constructed in a modular
fashion. As we progress further into the chapter, we look at more
advanced techniques that address the issues of managing the site
structure, generating menus and other navigation components, and
defining and using complex data.

Although the focus of this chapter is on generating web content, it
also serves as a general introduction to the Template Toolkit. It
demonstrates techniques that can be adapted to different application
areas. This chapter will quickly get you up to speed using the
Template Toolkit, but without bogging you down in too much gory
detail (we're saving that for the rest of the book).
We come back to the Web to look at more advanced examples of static
and dynamic web content in Chapter 11 and Chapter 12.

Although we may touch briefly on some more advanced issues, we try
not to bore you with too much detail, except where it is absolutely
necessary to illustrate a key point or explain an important concept.
Chapter 3 discusses the syntax and structure of
templates and the use of variables, while Chapter 4 covers the various template directives.
More information relating to filters and plugins can be found in
Chapter 5 and Chapter 6,
respectively. More advanced topics concerning the use of the Template
Toolkit for generating web content and interfacing to web
applications can be found in Chapter 11 and
Chapter 12.

We assume a Unix system in the examples in this chapter, but the
principles apply equally well to other operating systems. On a
Microsoft Windows machine, for example, the File Explorer can be used
to create folders (directories) and shortcuts (symbolic links) using
the familiar point-and-click interface. Another option we can highly
recommend is to install Cygwin.
Cygwin is freely available from http://www.cygwin.com and provides you with a
Unix-like environment on Win32.

2.1 Getting Started

Every big web site is made up of individual pages.
Let's start with a small and simple page, showing
how to eliminate basic repetition using templates. In later sections,
we can build on this to generate more pages and add more complex
elements.

2.1.1 A Single Page

Example 2-1 shows the HTML markup of a
page that displays the customary
"Hello World" message, complete
with a title, footer, and various other bits of HTML paraphernalia.

Example 2-1. hello.html

<html>
 <head>
 <title>Arthur Dent: Greet the Planet</title>
 </head>

 <body bgcolor="#FF6600">
 <h1>Greet the Planet</h1>

 <p>
 Hello World!
 </p>

 <hr />

 <div align="middle">
 © Copyright 2003 Arthur Dent
 </div>
 </body>
</html>

HTML is relatively straightforward in terms of syntax and semantics.
We'll assume that you've got at
least a passing aquaintance with the basics of HTML. If you
don't, HTML & XML by
Chuck Musciano and Bill Kennedy (O'Reilly) provides
a definitive guide to the subject.

Although HTML is simple, it does tend to be rather verbose.
It's all too easy for the core content of the page
to be obscured by the extra markup required around it.
There's also some repetition that we would like to
avoid. The page title and author's name both appear
twice in the same page, for example. We can also assume that other
pages in the site will be using similar pieces of data, repeated over
and over again in numerous different places.

The author's name, background color, and copyright
message are a few examples of items that we would really rather
define in just one place in case we ever decide to change them. We
don't want to have to edit every page in the site
when we need to change the copyright message (at the start of a new
year, for example), or decide that blue is the new orange and want to
use it as the background color for every page.

2.1.2 A "Hello World" HTML Template

We can address these issues by
applying the basic principles of template processing. Rather than
creating the HTML page directly, we write a template for generating
the HTML page. In this document, we use template variables to store
these values instead of hardcoding them.

Example 2-2 shows a source template for the HTML
page in Example 2-1. The author's
name, page title, background color, and year have been replaced by
the variables author, title,
bgcol, and year, respectively.

Example 2-2. hello.tt

<html>
 <head>
 <title>[% author %]: [% title %]</title>
 </head>

 <body bgcolor="[% bgcol %]">
 <h1>[% title %]</h1>

 <p>
 Hello World!
 </p>

 <hr />

 <div align="middle">
 © Copyright [% year %] [% author %]
 </div>
 </body>
</html>

2.1.3 Processing Templates with tpage

Of course, a template isn't
something a browser can make sense of. We need to process the
template to generate HTML to send to the browser.
Let's use the tpage command we
met in Chapter 1:

$ tpage --define author="Arthur Dent" \
> --define title="Greet the Planet" \
> --define bgcol="#FF6600" \
> --define year=2003 \
> hello.tt > hello.html

The hello.html now contains the same HTML that
we saw in Example 2-1. This time, however, it has
been generated from a template. The benefit of this approach is that
we easily change any of these variable values and generate a new HTML
page, simply by invoking tpage with a different
set of parameters.

2.2 Template Components

Example 2-2 shows a template for generating a
complete HTML page. We refer to this kind of template as a
page template to distinguish it from the other kind of
template that we're now going to introduce: the
template component.

We use the term "template
component" to help us identify those smaller
templates that contain a reusable chunk of text, markup, or other
content, but don't constitute complete pages in
their own right. Template components are no different from page
templates as far as the Template Toolkit is
concerned�they're all just text files with
embedded directives that need processing and get treated equally.
Examples of typical template components include headers, footers,
menus, and other user interface elements that you will typically want
to use and reuse in different page templates across the site.

When we start using ttree a little later in this
chapter, we will need to be more careful about storing our page
templates separately from any template components. For now, however,
we can keep them all in the same directory, simplifying matters for
the purpose of our examples. As a general naming convention, we use a
.tt or .html file extension for
page templates (e.g., hello.tt), and no
extension for component templates (e.g.,
header), but this is entirely arbitrary. If you
want to give them an extension (e.g.,
header.ttc), that's fine.

2.2.1 Headers and Footers

Our first components can be created easily.
Extract the header and footer blocks from Example 2-2 and save them in their own
header and footer template
files, as in Examples Example 2-3 and Example 2-4.

Example 2-3. header

<html>
 <head>
 <title>[% author %]: [% title %]</title>
 </head>

 <body bgcolor="[% bgcol %]">
 <h1>[% title %]</h1>

Example 2-4. footer

 <hr />

 <div align="middle">
 © Copyright [% year %] [% author %]
 </div>
 </body>
</html>

2.2.1.1 The PROCESS directive

We can now load these template
components into a page template using the PROCESS
directive. Example 2-5 shows this in action.

Example 2-5. goodbye.tt

[% PROCESS header %]

 <p>
 Goodbye World.
 </p>

[% PROCESS footer %]

When the Template Toolkit encounters a PROCESS
directive, it loads the template from the file named immediately
after the PROCESS keyword
(header and footer are the
two templates in this example), processes it to resolve any embedded
directives, and then inserts the generated output into the calling
template in place of the original directive.

We can use tpage to process the
goodbye.tt template and save the generated
output to goodbye.html:

$ tpage --define author="Arthur Dent" \
> --define title="We'll Meet Again" \
> --define bgcol="#FF6600" \
> --define year=2003 \
> goodbye.tt > goodbye.html

The output generated, shown in Example 2-6, shows
how the header and footer have been processed into place and the
variable references within them correctly resolved.

Example 2-6. goodbye.html

<html>
 <head>
 <title>Arthur Dent: We'll Meet Again</title>
 </head>

 <body bgcolor="#FF6600">
 <h1>We'll Meet Again</h1>

 <p>
 Goodbye World.
 </p>

 <hr />

 <div align="middle">
 © Copyright 2003 Arthur Dent
 </div>
 </body>
</html>

2.2.1.2 The INSERT directive

The Template Toolkit provides a number of different directives for
loading external template components. The
INSERT directive, for example, inserts the
contents of a template, but without processing
any directives that may be embedded in it:

[% INSERT footer %]

INSERT is faster than PROCESS
because there's much less work involved in inserting
a file than there is in processing it as a template.
It's not going to work for us in our current example
because of the year and author
variables in the footer that need resolving. If we
INSERT the footer as it is, we'll
see the [% year %] and [% author
%] directives passed through as literal text.

However, we can hardcode the variables in the footer to make it a
fixed block of text that we can then load using
INSERT. For example:

 <hr />

 <div align="middle">
 © Copyright 2003 Arthur Dent
 </div>
 </body>
</html>

Although we've no longer got the benefit of using
variables or other template directives, we
are still defining the footer in one place where we can easily make
changes, should we ever need to.

In most day-to-day applications, the difference in speed between
INSERT and PROCESS
isn't going to be noticeable unless you really go
looking for it. You're generally better off using
whatever is most convenient for you, the template author. Worry about
performance only if and when it ever becomes an issue. With this in
mind, we'll leave our variables in the footer and
continue to use PROCESS.

The other directives for loading templates are
INCLUDE and WRAPPER, which
we'll be looking at shortly.

2.2.2 Benefits of Modularity

Separating
commonly used blocks of markup into
reusable template component files in this way allows you to take a
modular approach to building your web content. This brings a number
of important benefits.

The first is that the page templates become easier to write, edit,
and maintain. You can quickly and easily add new pages by reusing
existing template components to do the repetitive work, leaving the
template author to concentrate on adding the core content. When it
comes to updating the content, it becomes a lot easier to find what
you're looking for because you
don't have to pore through great chunks of HTML
markup that define header, footers, menus, and other user interface
elements.

In other words, we're achieving a clear
separation of concerns between the core content of the
pages and the parts that deal mainly with presentation. Content
authors can concentrate on writing content without worrying about
what kind of fancy user interface the web designers have dreamt up to
fit around it

The second benefit is that the headers, footers, and other template
components can easily be updated at any time, and need to be modified
only in one place. Changing the copyright messages, the background
color, or perhaps the layout of the footer, for
every page on the site, becomes as easy as
editing the one template component file and then processing the page
templates to rebuild the site content.

So the clear separation of concerns also works the other way around.
Web designers can concentrate on building a nice user interface for
the entire site without having to worry too much about the content of
individual pages.

Even if you're the all-in-one web designer, content
author, and webmaster for your site, it is still useful to maintain a
clear separation between these different aspects. You may have many
hats to wear, but you'll be most comfortable wearing
just one at a time.

2.3 Defining Variables

Our
current
use of tpage for processing templates is hardly
streamlined. We're spending a lot of time typing
variable values on the command line, something that can only get
worse as we add more pages that require processing to the site.

It would be easy to mistype the value for a variable, for example, or
perhaps supply the wrong value altogether. You
wouldn't see any complaint from the Template
Toolkit. It would just go right ahead and process the template with
whatever values you supplied, possibly leading to an error on an HTML
page that could go unnoticed.

2.3.1 Configuration Template

A better approach is to create a template
component that defines any commonly used variables in one place.
Example 2-7 shows our config
template.

Example 2-7. config

[% author = 'Arthur Dent'
 bgcol = '#FF6600' # orange
 year = 2003
 copyr = "Copyright $year $author"
-%]

You can define any number of variables in a single directive, as
Example 2-7 illustrates. The Template Toolkit is
very flexible in terms of the syntax it supports inside its tags,
allowing you to spread your directives over several lines, adding as
little or as much whitespace as you like for formatting purposes. You
don't need to put each on a separate line as we have
here�they can all go on the same line as long as some kind of
whitespace is separating them. In the end, it's your
choice. The Template Tooolkit isn't fussy about how
you lay out your directives, as long as you follow the basic rules of
syntax, which we'll be introducing throughout this
chapter and describing in greater detail in Chapter 3.

2.3.1.1 Comments

You can add comments to annotate your code, as
shown in the second line of Example 2-7: #
orange. A comment starts with the
character and continues to the end of
the current line. The comment is ignored by the Template Toolkit, and
processing continues as normal on the next line.

If # is used as the first character immediately
following the opening [% tag, the Template Toolkit
ignores the entire directive up to the closing %]:

[%# this is a comment
 this line is also part of the comment
%]

2.3.1.2 Variable values

In Example 2-7, the four
variables set are author,
bgcol, year, and
copyr. The first two are defined as the literal
strings 'Arthur Dent' and
'#FF6600'. The ' single
quotation marks surrounding the values indicate that the contents
should be used as provided. This makes it clear to the Template
Toolkit that the # character in the definition for
bgcol, for example, is part of the value and not
the start of a comment. The third variable, year,
is defined as the integer value 2003. Numbers such
as these (and also floating-point numbers such as
2.718) don't need to be quoted,
but can be if you prefer.

The last variable, copyr, shows
an example of a double-quoted string,
in which the value is enclosed by " characters.
Here the Template Toolkit looks for any references to variables
embedded in the string, denoted by the $
character, and replaces (interpolates) them for
the corresponding values. In this example, the values for
year and author will be
interpolated into the string, resulting in the
copyr variable being set to "Copyright
2003 Arthur Dent".

2.3.2 Loading the Configuration Template

The config template can now be loaded using the
PROCESS directive to gain access to these variable
definitions. This is shown in Example 2-8, which
also defines the title variable specific to this
page. This is really no different from the way you might define a
constant or global variable at the start of a program in Perl or some
other programming language. It's good practice to do
this at the top of the file, where any future changes can easily be
made.

Example 2-8. earth.tt

[% title = 'Earth' -%]
[% PROCESS config -%]
[% PROCESS header %]

 <p>
 Mostly Harmless.
 </p>

[% PROCESS footer %]

Notice the - character placed immediately before
the closing %] tags at the end of the directives
on the first two lines. This tells the Template Toolkit to remove,
or chomp, the
newline and any other whitespace following the directive. Some older
web browsers don't like to see whitespace appearing
before the opening <html> element, so this
ensures that the header file is inserted right
at the top of the output. In effect, it is as if we had written the
template like so:

[% title = 'Earth' %][% PROCESS config %][% PROCESS header %]
...

Now the template can be processed using tpage
without the need to provide variable values as command-line
arguments:

$ tpage earth.tt > earth.html

2.3.2.1 Merging directives

The
start
of each page template can be simplified by defining the
title variable and the PROCESS
directives within a single directive tag. Each command is separated
from the next by a ; (semicolon) character.

For example, we can write:

[% title = 'Earth';
 PROCESS config;
 PROCESS header
%]

instead of the more verbose:

[% title = 'Earth' -%]
[% PROCESS config -%]
[% PROCESS header %]

There's no need for a semicolon at the end of the
last directive, but the Template Toolkit won't
complain if it finds one there. As we saw earlier, semicolons
aren't required between variable definitions that
appear one after another. However, a semicolon is required if you
switch from setting variables (which is technically the
SET directive, although the explicit
keyword is rarely used) to another kind of directive (e.g.,
PROCESS) in the same tag:

[% pi = 3.142 # semicolon optional
 e = 2.718 # " " " "
 i = 1.414; # semicolon mandatory
 PROCESS config; # " " " "
 phi = 1.618 # semicolon optional
%]

The distinction becomes a little more obvious when we use the
SET keyword explicitly and add some whitespace to
format the directives more clearly:

[% SET pi = 3.142
 e = 2.718
 i = 1.414;

 PROCESS config;

 SET phi = 1.618
%]

There's one final improvement we can make to the
block at the start of our page templates. The
two
PROCESS directives can be merged into one, with
the names of the templates separated by a + character:

[% title = 'Earth';

 PROCESS config
 + header
%]

The general rule of whitespace being insignificant inside directives
applies equally well to the PROCESS directive,
allowing us to list all the files on the same line, or across a
number of lines, as we've done here. This
flexibility allows us to lay out this header block in such a way that
it's clear from a glance what's
going on, and with the bare minimum of extra syntax cluttering up
this high-level view.

Example 2-9 shows this in the context of a complete
page template.

Example 2-9. magrethea.tt

[% title = 'Magrethea';

 PROCESS config
 + header
-%]

<p>
 Home of the custom-made
 luxury-planet building industry.
</p>

[% PROCESS footer %]

2.4 Generating Many Pages

The tpage program is fine for processing single
templates, but isn't really designed to handle the
many pages that comprise a typical web site. For this,
ttree is much more appropriate. It works by
drilling down through a source directory of your choosing, looking
for templates to process. The output generated is saved in a
corresponding file in a separate destination directory.

In addition to working well with a large number of template files,
ttree also provides a much greater range of
configuration options that allow you to modify the behavior of the
Template Toolkit when processing templates. This allows you to
further simplify the process of generating and maintaining web
content in a number of interesting ways that we'll
explore throughout this section.

Our
templates will need to be organized a little more
carefully when using ttree. In particular, we
need to separate those page templates that represent complete HTML
pages (hello.tt,
goodbye.tt, earth.tt, and
magrethea.tt in our previous examples) from
those that are reusable template components
(config, header, and
footer).

2.4.1 Creating a Project Directory

We'll start by creating a directory for
our web site, complete with subdirectories for the source templates
for HTML pages (src), a library of reusable
template components (lib), and the generated
HTML pages (html). We'll also
create a directory for miscellaneous files
(etc), including a configuration file for
ttree, and another (bin)
for any scripts we accrue to assist in building the site and
performing maintenance tasks.

$ cd /home/dent
$ mkdir web
$ cd web
$ mkdir src lib html etc bin

2.4.2 ttree Configuration File

Now we need to define a configuration file
for ttree. Example 2-10 shows an
example of a typical etc/ttree.cfg file.

Example 2-10. etc/ttree.cfg

directories
src = /home/dent/web/src
lib = /home/dent/web/lib
dest = /home/dent/web/html

copy images and other binary files
copy = \.(png|gif|jpg)$

ignore CVS, RCS, and Emacs temporary files
ignore = \b(CVS|RCS)\b
ignore = ^#

misc options
verbose
recurse

Options can appear in any order in the configuration file. In certain
cases (such as lib, copy, and
ignore), an option can be repeated any number of
times.

The first section defines the three important template directories:

directories
src = /home/dent/web/src
lib = /home/dent/web/lib
dest = /home/dent/web/html

The src option tells ttree
where to look for HTML page templates. The lib
option (of which there can be many) tells it where the library of
additional template components can be found. Finally, the
dest option specifies the destination directory
for the generated HTML pages.

The next two sections provide regular expressions that
ttree uses to identify files that should be
copied rather than processed through the Template Toolkit
(copy), and to identify files that should be
ignored altogether (ignore):

copy images and other binary files
copy = \.(png|gif|jpg)$

ignore CVS, RCS, and Emacs temporary files
ignore = \b(CVS|RCS)\b
ignore = ^#

In this example, we're setting the options so that
any images with png, gif, or
jpg file extensions are copied, and any CVS or
temporary files left lying around by our favorite text editor are
ignored.

The next section sets two ttree flags:

misc options
verbose
recurse

The verbose flag causes ttree
to print additional information to STDERR about what
it's doing, while it's doing it.
The recurse flag tells it to recurse down into any
sub-directories under the src directory.

2.4.3 Running ttree for the First Time

When you run
ttree for the first time, it will display the
following prompt, which asks if you'd like it to
create a default .ttreerc file:

Do you want me to create a sample '.ttreerc' file for you?
(file: /home/dent/.ttreerc) [y/n]:

Answer y to have it create the file in your home
directory.

This file is used to provide a default configuration for
ttree. If you've got only one
web site to maintain, you can copy the contents of the
etc/ttree.cfg file into it and run
ttree without any command-line options:

$ ttree

If you've got more than one site to maintain,
you'll probably want to keep separate configuration
files for each. In that case, you can use the -f
command-line option to provide the name of the configuration file
when you invoke ttree:

$ ttree -f /home/dent/web/etc/ttree.cfg

2.4.4 Using a Build Script

Rather
than providing a command-line configuration option for
ttree each time you use it, you may prefer to
write a simple build script that does it for you (as in Example 2-11).

Example 2-11. bin/build

ttree -f /home/dent/web/etc/ttree.cfg $@

The $@ at the end of the line passes any
command-line arguments on to the ttree program,
in addition to the -f option that is provided
explicitly.

2.4.5 ttree Configuration Directory

Another alternative is to set the
cfg option in the .ttreerc
file to denote a default directory for ttree
configuration files. You could set this to point to the project
directory:

cfg = /home/dent/web/etc

and then invoke ttree with the short name of the
configuration file:

$ tpage -f ttree.cfg

If you have many different web sites to maintain, another option is
to create one general directory for ttree
configuration files and use symbolic links from this directory to the
project-specific files. The .ttree directory in
your home directory is a common choice. In the
.ttreerc file, we specify it like so:

cfg = /home/dent/.ttree

Then we prepare the directory, creating a symbolic link to our
project-specific configuration file. We give it a memorable name
(e.g., dentweb) to distinguish it from the various
other ttree.cfg files that we may create links
to from this directory:

$ cd /home/dent
$ mkdir .ttree
$ cd .ttree
$ ln -s /home/dent/web/etc/ttree.cfg dentweb

With these changes in place, ttree can then be
invoked using the -f option to specify the
dentweb configuration file:

$ tpage -f dentweb

The settings in the .ttreerc file and the magic
of symbolic links result in ttree ending up with
the right configuration file without us having to specify the full
path to it every time. The other benefit of this approach is that
ttree can be invoked from any directory and the
correct configuration file will still be located.

2.4.6 Calling ttree Through the Build Script

From now on we'll assume that
the bin/build script invokes
ttree with the appropriate option to locate the
configuration file. For the sake of clarity, we'll
use it in the examples that follow whenever we want to build the site
content, rather than calling ttree directly. Any
other commands that you want performed when the site is built (e.g.,
copying files, restarting the web server or database) can also be
added here.

As we saw in Example 2-11, any command-line options
that we provide to the script are forwarded to
ttree. One particularly useful option is
-h, which provides
a helpful summary of all the different ttree
options:

$ bin/build -h
ttree 2.63 (Template Toolkit version 2.10)

usage: ttree [options] [files]

Options:
 -a (--all) Process all files, regardless of modification
 -r (--recurse) Recurse into sub-directories
 -p (--preserve) Preserve file ownership and permission
 -n (--nothing) Do nothing, just print summary (enables -v)
 -v (--verbose) Verbose mode
 -h (--help) This help
 -dbg (--debug) Debug mode
 -s DIR (--src=DIR) Source directory
 -d DIR (--dest=DIR) Destination directory
 -c DIR (--cfg=DIR) Location of configuration files
 -l DIR (--lib=DIR) Library directory (INCLUDE_PATH) (multiple)
 -f FILE (--file=FILE) Read named configuration file (multiple)

File search specifications (all may appear multiple times):
 --ignore=REGEX Ignore files matching REGEX
 --copy=REGEX Copy files matching REGEX
 --accept=REGEX Process only files matching REGEX

Additional options to set Template Toolkit configuration items:
 --define var=value Define template variable
 --interpolate Interpolate '$var' references in text
 --anycase Accept directive keywords in any case.
 --pre_chomp Chomp leading whitespace
 --post_chomp Chomp trailing whitespace
 --trim Trim blank lines around template blocks
 --eval_perl Evaluate [% PERL %] ... [% END %] code blocks
 --load_perl Load regular Perl modules via USE directive
 --pre_process=TEMPLATE Process TEMPLATE before each main template
 --post_process=TEMPLATE Process TEMPLATE after each main template
 --process=TEMPLATE Process TEMPLATE instead of main template
 --wrapper=TEMPLATE Process TEMPLATE wrapper around main template
 --default=TEMPLATE Use TEMPLATE as default
 --error=TEMPLATE Use TEMPLATE to handle errors
 --start_tag=STRING STRING defines start of directive tag
 --end_tag=STRING STRING defined end of directive tag
 --tag_style=STYLE Use pre-defined tag STYLE
 --plugin_base=PACKAGE Base PACKAGE for plugins
 --compile_ext=STRING File extension for compiled template files
 --compile_dir=DIR Directory for compiled template files
 --perl5lib=DIR Specify additional Perl library directories

2.4.7 A Place for Everything, and Everything in Its Place

Before we can run the
build script to generate the site content, we will need to move our
page and library template files into place.

The source templates for the HTML pages should now be moved into the
src directory where ttree
can find them. The HTML files that ttree
generates in the html output directory will be
given the same filename as the src template from
which they are generated. For this reason, we'll be
using a .html file extension on our page
templates from now on.

Also, move the template components config,
header, and footer into the
lib directory. These are (for now) also
identical to those shown in the earlier examples.

2.4.8 Running the Build Script

Now we can run the
bin/build script to invoke
ttree to build the site content:

$ bin/build
ttree 2.63 (Template Toolkit version 2.10)

 Source: /home/dent/web/src
 Destination: /home/dent/web/html
Include Path: [/home/dent/web/lib]
 Ignore: [\b(CVS|RCS)\b, ^#]
 Copy: [\.(png|gif|jpg)$]
 Accept: [*]

 + earth.html
 + magrethea.html

The sample output from ttree shown here
indicates that two page templates, earth.html
and magrethea.html, were found in the
src directory. The +
character to the left of the filenames indicates that the templates
were processed successfully. Corresponding
earth.html and
magrethea.html files will have been created in
the html directory containing the output
generated by processing the templates.

Now that we've set up ttree and
told it where our page templates are located, we can add new pages to
the site by simply adding them to the src
directory. When you next run the build script,
ttree will locate the new page templates, even
if they're located deep in a subdirectory (thanks to
the recurse option), and process them into the
corresponding place in the html directory.

You can now build all the static web pages in your site using a
single, simple command.

2.4.9 Skipping Unmodified Templates

When
ttree is run it tries to be smart in working out
which templates need to be processed and which
don't. It does this by comparing the file
modification time of the page template with the corresponding output
file (if any) that it previously generated.

Run the bin/build script again, and the
+ characters to the left of the filename change to
the - character:

$ bin/build
ttree 2.63 (Template Toolkit version 2.10)

 Source: /home/dent/web/src
 Destination: /home/dent/web/html
Include Path: [/home/dent/web/lib]
 Ignore: [\b(CVS|RCS)\b, ^#]
 Copy: [\.(png|gif|jpg)$]
 Accept: [*]

 - earth.html (not modified)
 - magrethea.html (not modified)

This indicates that the templates weren't processed
the second time around, with the message to the right of the
filenames explaining why. In this case, ttree
has recognized that the source templates,
src/earth.html and
src/magrethea.html, haven't
been modified since the corresponding output files,
html/earth.html and
html/magrethea.html, were created. Given that
nothing has changed, there's no need to reprocess
the templates.

There may be times when you want to force ttree
to build a particular page or even all the pages on the site,
regardless of any file modification times. You can process one or
more pages by naming them explicitly on the
command line:

$ bin/build earth.html magrethea.html

One time that you might want to force all pages to be rebuilt is when
you modify a header, footer, or some other template component that is
used by all the pages. Unfortunately, ttree
isn't smart enough to figure out which library
templates are used by which page templates.[1] The -a option tells
ttree to ignore file modification times and
process all page templates, regardless:
[1] This
occurs not because ttree is being lazy.
It's actually very difficult, if not impossible, to
do it accurately without processing the templates in their entirety.
By this time, the Template Toolkit has already done the hard work, so
there's nothing to be gained by discovering that the
template didn't need processing after all.

$ bin/build -a

2.5 Adding Headers and Footers Automatically

In addition to the fact that
ttree works well with large collections of page
templates, it also has the benefit of providing a large number of
configuration options that allow you to change the way it works and
how it uses the underlying Template Toolkit processor. Two of the
most convenient and frequently used options are
pre_process and
post_process. These allow you to specify one or
more templates that should be automatically
added to the top or bottom of each page template, respectively. This
can be used to add standard headers and footers to a generated page,
but pre- and postprocessed templates may not generate any visible
output at all. For example, we can use a preprocessed template to
configure some variables that we might want defined for use in the
page template or other template components.

The following can be added to the bottom of the
etc/ttree.cfg file to have the
config and header templates
preprocessed (in that order so that we can use variables defined in
config in the header) and
the footer template postprocessed:

pre_process = config
pre_process = header
post_process = footer

Now the page templates can be made even simpler, as Example 2-12 shows.

Example 2-12. src/magrethea.html

[% title = 'Magrethea' -%]

<p>
 Home of the custom-made
 luxury-planet building industry.
</p>

Remember that you'll need to use the
-a option to force ttree to
rebuild all pages in the site to have the changes take effect:

$ bin/build -a

2.5.1 Defining META Tags

There is one problem with this
approach. The header template is processed in
its entirety before the main page template gets a look in. This means
that the title variable isn't set
to any value when the header is processed. It
doesn't get set until the page template is
processed, by which time it's too late for the
header to use it.

The Template Toolkit won't complain if it encounters
a variable for which it doesn't have a value
defined. Instead, it will quietly use an empty string (i.e., nothing
at all) for the value of the variable and continue to process the
remainder of the template. The
DEBUG option (described in the Appendix)
can be set to have it raise an error in these cases, and can be
useful to help track down mistyped variable names and those that have
somehow eluded definition.

We can use the META directive to solve our immediate
problem. It works by allowing us to define values within the page
template that are accessible for use in the
header and any other preprocessed templates,
before the main page template is itself
processed.

Example 2-13 shows how this is done. Instead of
defining the title in a SET
directive (which technically we were, even if we had omitted the
SET keyword for convenience), we use the
META directive, but otherwise leave the definition
of the variable unmodified.

Example 2-13. src/milliways.html

[% META title = 'Milliways' %]

<p>
 The Restaurant at the
 End of the Universe.
</p>

Variables defined like this are made available as soon as the
template is loaded. This happens before any of
the preprocessed templates are processed so that these
META variables are defined and ready for use.

There are some subtle differences between META
variables and normal SET variables. The first is
that you can't use double-quoted strings to interpolate
other variables into the values for META
variables. You can use double-quoted strings,
but you can't embed variables in them and expect
them to get resolved. The simple reason for this is that
META variables are defined before the template is
processed with any live data. At this time, there
aren't any variables defined, so
there's no point trying to use them.

The second difference is that the variables must be accessed using
the template. prefix:

[% template.title %] not [% title %]

The template variable is a special variable
provided by the Template Toolkit containing information about the
current page template being processed. It defines a number of items,
including the name of the template file
(template.name) and the modification time
(template.modtime), as well as any
META variables defined in the template
(template.title).

The dot
operator, ., is the Template
Toolkit's standard notation for accessing a variable
such as title that is one small part of a larger,
more complex data structure such as template. It
doesn't matter for now (or generally at all) how
this is implemented behind the scenes because the dot operator hides
or abstracts that detail from you so that you
don't need to worry about it.

We'll be coming back to the dot operator later on in
this chapter when we look at defining and using complex data
structures. For now, it is sufficient to know that
template.title is how we access the
title META variable defined in
the main page template.

We can easily modify our header template to
accommodate these requirements and restore the page title to the
generated header (see Example 2-14).

Example 2-14. lib/header

<html>
 <head>
 <title>[% author %]: [% template.title %]</title>
 </head>

 <body bgcolor="[% bgcol %]">
 <h1>[% template.title %]</h1>

2.6 More Template Components

You can create
any number of different reusable template components to help you
generate the content for your web site. Whenever you find yourself
repeating the same, or a similar, block of markup in more than one
place, you might want to consider moving it into a separate template
file that you can then use and reuse whenever you need it. This not
only saves you a lot of typing, but also ensures that the HTML
generated in each place you use it is identical, or as near to
identical as you would like it to be, accounting for any variables
that might change from one use to the next.

Example 2-15 shows a template component for
displaying an entry from Arthur's favorite reference
book.

Example 2-15. lib/entry

<p>
 The Hitch Hiker's Guide to the Galaxy
 has this to say on the subject of
 "[% title %]".
</p>

<table border="0">
 <tr valign="top">
 <td>
 [% title %]:
 </td>
 <td>
 [% content %]
 </td>
 </tr>
</table>

The template uses two variables, title and
content. The value for title
can in this case be copied from template.title,
thereby providing the title set in the META
directive for the page. A value for content will
be set explicitly for the sake of simplicity. These variables can be
set either before the PROCESS directive:

[% title = template.title
 content = 'Mostly harmless'
%]

[% PROCESS entry %]

or as part of the PROCESS directive, following the
template name as additional arguments:

[% PROCESS entry
 title = template.title
 content = 'Mostly harmless'
%]

The end result is the same. The Template Toolkit treats all
variables
as global by default so that you can define a variable in one
template and use it later in another without having to explicitly
pass it as an argument every time. In both of the preceding examples,
the title and content variables
are defined globally and can subsequently be used in both the called
template (entry) and the calling template
(earth.tt) after the point of definition.

In the following fragment, for example, the reference to the
content variable at the end of the template will
generate the value "Mostly
harmless" as set in the earlier
PROCESS directive:

[% PROCESS entry
 title = template.title
 content = 'Mostly harmless'
%]

[% content %] # Mostly harmless

2.6.1 The INCLUDE Directive

There may be times when you
would rather keep the definition of certain variables local to a
particular template. The INCLUDE directive
provides a way of doing this. In terms of syntax, it is used in
exactly the same way as the PROCESS directive in
all except the keyword.

The key difference between INCLUDE and
PROCESS is that INCLUDE
localizes any variables that are passed to the
template as arguments in the directive. The variables passed have
local values for the template component being processed by
INCLUDE, but then revert to their previous values
or undefined states.

In the following fragment, we define two variables at the start of
the template whose values we would like to preserve to be used in the
sentence at the end:

[% name = 'Zaphod Beeblebrox'
 title = 'President of the Galaxy'
%]

[% INCLUDE entry
 title = 'Earth'
 content = 'Mostly harmless'
%]

Hi! I'm [% name %], [% title %].

The INCLUDE directive provides local definitions
for the title and content
variables for the entry template to display.
However, the original value for the title variable
will be left untouched, and there will be no trace of the
content variable outside of the
entry template.

The final line of the template generates the output that
we're expecting:

Hi! I'm Zaphod Beeblebrox, President of the Galaxy.

Had we used PROCESS instead of
INCLUDE, the value for title
would have been overwritten and the output generated by the final
line would incorrectly read:

Hi! I'm Zaphod Beeblebrox, Earth.

There is one important caveat to be aware of. The
INCLUDE directive only localizes simple variables.
Any complex variables containing dot operators
are effectively global regardless of whether you use
INCLUDE, PROCESS, or any other
directive.

Dotted variables
are a little like Perl's package variables. In Perl,
you can refer to a variable as, for example,
$My::Dog::Spot. This tells Perl the precise
location for the variable $Spot in the
My::Dog package. In the Template Toolkit, the
equivalent variable would be something like
my.dog.spot.

On the other hand, a Perl variable written as just
$Spot could be either a
"global" (for these purposes)
variable defined in the current package, or a lexically scoped
variable in the current subroutine, for example. Similarly, in the
Template Toolkit, the equivalent variable spot
could also be a global variable or a local copy created by invoking a
template using INCLUDE.

The explanation isn't important as long as you
remember the simple rule: the INCLUDE localizes
only simple variables that don't contain any
"." dots.

2.6.2 Setting Default Values

When you define
a reusable template
component, you may want to provide default values for any variables
used in the template. For example, the following template component
might want to ensure that sensible values are provided for the
<title> element and
bgcolor attribute in the
<body>, even if the respective
title and bgcol variables
aren't set:

<html>
 <head>
 <title>[% title %]</title>
 </head>
 <body bgcolor="[% bgcol %]">
 ...

2.6.2.1 The DEFAULT directive

One way to achieve this is by using the
DEFAULT directive. The syntax is the same as
SET in everything but the keyword, allowing you to
provide default values for one or more variables:

[% DEFAULT
 title = "Arthur Dent's Web Site"
 bgcol = '#FF6600'
-%]
<html>
 <head>
 <title>[% title %]</title>
 </head>
 <body bgcolor="[% bgcol %]">
 ...

The key difference between DEFAULT and
SET is that DEFAULT will set
the variable to the value prescribed only if it is currently
undefined, if it is set to an empty string, or if it contains the
number zero. (Perl programmers will recognize the similarity with
Perl's idea about what is true
and false when it comes to the value of a
variable.) The component will use any existing values for
title and bgcol, either defined
globally or passed as explicit arguments when the template is used.
Otherwise, it will use the values provided in the
DEFAULT directive.

2.6.2.2 Expressions

Another approach is to use Template Toolkit
expressions
instead of just variables. Expressions allow you to make logical
statements including the and and
or operators, both of which can be written in
either upper- or lowercase. For example, we can write:

[% bgcol or '#FF6600' %]

instead of just:

[% bgcol %]

The tertiary ?: operator is another option. It
provides the equivalent of an IF...THEN...ELSE
construct, in which the expression to the left of the
? is evaluated to determine whether it is true or
false. If true, whatever comes after the ? and
before the : is used. Otherwise, it returns
whatever follows the :.

Here's an example showing how the
?: operator can be used to generate an appropriate
title for the page:

[% title ? "Arthur Dent: $title"
 : "Arthur Dent's Web Site"
%]

If the title variable is set, the string
"Arthur Dent: $title" is used. This uses variable
interpolation to insert the current value for the
title variable into the string, following
Arthur's name. If title
isn't set to anything that the Template Toolkit
considers meaningfully true, the string "Arthur Dent's Web
Site" is instead used. The expression
doesn't need to be split across two lines as
we've shown here, but in this case it helps to make
the code clearer and easier to read.

So if title is set to Earth,
the directive will generate the following output:

Arthur Dent: Earth

If the title isn't set, it will instead generate
this output:

Arthur Dent's Web Site

Expressions can also contain comparison operators, as shown in the
following example. These are discussed in detail in Chapter 3.

[% age > 18 ? 'Welcome to my site...'
 : "Sorry, but you're not old enough..."
%]

2.6.2.2.1 = versus = =

One important distinction worth mentioning now is the
difference between = and = =.
The first performs an assignment, setting the variable named on the
left to the value (or expression) on the right:

[% foo = bar %]

The second is the equality comparison operator, which
tests to see whether the string values of the items on either side
are identical:

[% foo = = bar ? 'equal' : 'not equal' %]

2.6.2.2.2 Setting variables using expressions

Expressions
can also be used to set the value of a variable. For example, the
pagetitle variable can be set to either of the
values previously shown, depending on the setting of
title, using the following code:

[% pagetitle = title ? "Arthur Dent: $title"
 : "Arthur Dent's Web Site"
%]

It's perfectly valid to use a variable in an
expression to update the same variable. Everything to the right of
the = is evaluated first, and the resulting value
is then used to set the variable specified to the left of the
=:

[% title = title ? "Arthur Dent: $title"
 : "Arthur Dent's Web Site"
%]

2.6.2.2.3 Setting variables using directives

You can
also assign the output of a
directive to a variable. In the following example, the
header template is processed using the
PROCESS directive and the generated output is
stored in the headtext variable:

[% headtext = PROCESS header %]

2.6.3 The IF Directive

The IF directive can be used to encode more
complex conditional logic in templates. It evaluates the expression
following the IF keyword, which in these examples
will be a simple variable. If the expression is true, the following
block, up to the matching END directive, is
processed. Otherwise, it is ignored.

Here's a simple example:

<body
[%- IF bgcol -%]
 bgcolor="[% bgcol %]"
[%- END -%]
>

This example uses an IF block to add the
bgcolor attribute to the HTML
<body> element, but only if the
bgcol variable is defined and contains a true
value. By careful placement of - characters at the
start and end of the IF and END
directives, we're enabling the Template
Toolkit's prechomping and postchomping facility.
This removes the newline characters before the [%
tags and after the %] tags so that the output
lines up in the correct place in the <body>
element.

So, for a bgcol value of
#FF6600, the following output would be generated:

<body bgcolor="#FF6600">

For an undefined bgcol, we would instead see the
following:

<body>

Like many of the Template Toolkit directives that expect a block to
follow, the IF directive can be used in
side-effect notation.

For example, you can write:

[% INCLUDE header IF title %]

instead of the more laborious:

[% IF title; INCLUDE header; END %]

This works only when you've got a single directive
or variable as the content for the block�in this example,
it's the INCLUDE header
directive. Our earlier example, which constructed the
<body> tag, included both text and a
reference to the bgcol variable in the block.
However, we can write this using a double-quoted string to
interpolate the value for bgcol:

<body [%- " bgcolor=\"$bgcol\"" IF bgcol %]>

Matters are complicated a little by the need to escape the double
quotes inside the double quotes. The \ character
tells the Template Toolkit that the following " is
part of the string, and not the quote that terminates it. Overall
it's an improvement over the more explicit
IF...END form and illustrates a useful principle.

You can add an ELSE block after the
IF block, which will be processed if the variable
(or more generally, the expression) is false. For example:

[% IF bgcol -%]
<body bgcolor="[% bgcol %]">
[%- ELSE -%]
<body>
[%- END -%]

There is also the ELSIF directive, which allows you to define
different blocks for different conditions:

[% IF name = = 'Arthur Dent'
 OR name = = 'Ford Prefect' %]
Hello [% name %]!
[% ELSIF name.match('(?i:vogon)') %]
I'm sorry, but there's no one at home.
Please don't bother calling again.
[% ELSE %]
Hello World!
[% END %]

In this example, the ELSIF expression uses the
match virtual method to test whether the
name contains anything looking remotely Vogon. The
argument passed to the match method is a Perl
regular expression, allowing us to use the
(?i:...) grouping to construct a case-insensitive
match. An ELSE block is also provided in case
neither the IF nor ELSIF
conditions match.

The SWITCH directive, described in detail in Chapter 4, provides an alternative for more
complicated multiway matching.

2.7 Wrapper and Layout Templates

Now it's time to bring out some of the bigger guns
of the Template Toolkit. The WRAPPER directive and layout templates
let you define a common look for web pages in a single file, rather
than scattering the components over header and
footer files.

2.7.1 The WRAPPER Directive

The entry template
from Example 2-15 works well when the content to be
displayed is relatively simple. However, it quickly becomes
cumbersome for longer entries such as the one shown here:

[% INCLUDE entry
 title = 'Vogon Poetry'
 content = 'Vogon poetry is of course the
 third worst in the Universe.
 The second worst is that of...

 ...etc...

 ...in the destruction of the
 planet Earth'
%]

Special care must be taken when quoting content that contains quote
characters. Consider the following extract that illustrates this
problem:

Grunthos is reported to have been "disappointed"
by the poem's reception.

If this is enclosed in single-quote characters, the apostrophe in
"poem's" must be
escaped by preceding it with a backslash \
character (the apostrophe and single-quote characters are one and the
same for these purposes):

[% INCLUDE entry
 title = 'Grunthos the Flatulent'
 content = 'Grunthos is reported to have
 been "disappointed" by the
 poem\'s reception.'
%]

Another alternative is to use double quotes to define the variable,
allowing single quotes to remain as they are. But in this case, any
occurrences of double quotes will then need to be escaped:

[% INCLUDE entry
 title = 'Grunthos the Flatulent'
 content = "Grunthos is reported to have
 been \"disappointed\" by the
 poem's reception."
%]

A better solution is to use the WRAPPER directive.
It works in a similar way to INCLUDE, but uses an
additional END directive to enclose a block of
template content. The WRAPPER directive uses this
block as the value for the content variable:

[% WRAPPER entry
 title = 'Grunthos the Flatulent'
%]
 Grunthos is reported to have
 been "disappointed" by the
 poem's reception.
[% END %]

The immediate benefit in this example is that the extract is now a
block of plain text rather than a quoted string. There is no longer
any need to escape the quote characters within it.

The WRAPPER
block
can contain any combination of text and template directives, even
including other nested WRAPPER blocks. The
following fragment shows a simple example in which the
reaction variable is used to report
Grunthos' reaction:

[% reaction = 'disappointed' %]

[% WRAPPER entry
 title = 'Grunthos the Flatulent'
%]
 Grunthos is reported to have
 been "[% reaction %]" by the
 poem's reception.
[% END %]

The WRAPPER block is processed first to resolve
any directives within it. Then the complete block, including any
output generated dynamically by embedded directives, is passed to the
entry template as the value for the
content variable.

It's no coincidence that we chose
content as a variable name in the
entry template in Example 2-15,
knowing full well that we would later use it in this example for
WRAPPER. The WRAPPER directive
always assigns the block content to the content
variable, and in that sense it's one of the Template
Toolkit's
"special" variables, like the
template variable that we used earlier. However,
there's nothing to stop you from using it as a
regular variable, and indeed it makes a good choice in any template
for a variable that you might one day want to define as a block in a
WRAPPER directive.

The end result is that the entry template works
as expected, whether we call it using INCLUDE and
pass the content explicitly as a variable, or call
it using WRAPPER and define the
content implicitly in the enclosed block.

2.7.2 Using an Automatic Wrapper Template

In Examples Example 2-4 and Example 2-14, we created
separate header and footer
files to add to the start and end of each HTML page generated. One
problem with this approach is that neither file contains valid HTML
markup. The header provides the opening tag of
the html element, for example, but the
corresponding closing tag is located at the end of the
footer file.

Having HTML elements split across separate files makes them harder to
maintain, and increases the likelihood of them being accidentally
mismatched or incorrectly nested. It is also likely to confuse or
infuriate any HTML-aware text editors or validation tools that you
may be using.

A better approach is to use a wrapper template
to combine the header and
footer into one template. The
content variable is used to denote the position
for the page content. This is shown in Example 2-16.

Example 2-16. lib/wrapper

<html>
 <head>
 <title>[% author %]: [% template.title %]</title>
 </head>

 <body bgcolor="[% bgcol %]">
 <h1>[% template.title %]</h1>

 [% content %]

 <hr />

 <div align="middle">
 © [% copyr %]
 </div>
 </body>
</html>

We need to modify the etc/ttree.cfg file to
specify the new wrapper template using the
wrapper option. The fact that our
wrapper template happens to be called
wrapper is entirely coincidental (but
intentional). We could have named the file tom,
dick, larry, or something
else if we wanted to, but it wouldn't be as succinct
or descriptive as wrapper.

We're still using the pre_process
option to load the config template, but we can
now remove the references to the header and
footer (or comment them out as shown here),
replacing them with a single wrapper option:

pre_process = config
wrapper = wrapper
pre_process = header
post_process = footer

With the wrapper option in place, the Template
Toolkit processes the main page template (after preprocessing the
config template) and then calls the
wrapper template, passing the generated page
content as the content variable. It has the same
effect as if there were an explicit WRAPPER
directive around the entire page content:

[% WRAPPER wrapper %]
 The entire page content goes here...
[% END %]

Of course, the benefit of having the Template Toolkit apply a
wrapper automatically is that you
don't need to edit any of your page templates to add
it explicitly. You can switch from using
pre_process and post_process to
wrapper, or you can change the name of any of the
header, footer, or
wrapper templates, without having to make any
changes to your core content.

To put the change into effect, run the bin/build
script with the -a option to have it rebuild all
pages in the site:

$ bin/build -a

2.7.3 Using Layout Templates

Most real
web sites will require far more complex layout templates than the
simple wrapper we saw in Example 2-16. A common practice is to use HTML tables to
place different elements such as headers, footers, and menus in a
consistent position and formatting style. These elements may
themselves be built using tables and other HTML elements, perhaps
nested several times over. This can quickly lead to confusing markup
that is hard to read and even harder to update.

Consider the following example, which illustrates how
difficult
nested tables can be to write and maintain:

<table border="0" cellpadding="0" cellspacing="0">
 <tr valign="top">
 <td>
 <table border="0">
 <tr>
 <td>
 Oh Dear!
 </td>
 <td>
 This is not a good example
 of a layout template...
 </td>
 <td>
 <table>
 ...etc...
 </table>
 </tr>
 </table>
 </td>
 <td>
 <table>
 ...etc...
 </table>
 </td>
 .
 .
 .

The sensible formatting helps to make the structure clearer through
use of indenting. However, it is still difficult to match rows and
cells with their corresponding tables, and there is little indication
of what the different tables contribute to the overall layout.

A better approach is to build the layout using several different
templates. For example, we can simplify the preceding template by
moving the inner tables to separate templates:

<table border="0" cellpadding="0" cellspacing="0">
 <tr valign="top">
 <td>
 [% PROCESS sidebar %]
 </td>
 <td>
 [% PROCESS topmenu %]
 </td>
 .
 .
 .

Now we can easily see the high-level structure without getting bogged
down in the detail of the nested tables. Furthermore, by giving our
templates names that reflect their purpose (e.g.,
sidebar and topmenu), we
effectively have a self-documenting template that shows at a glance
what it does. Another benefit is that the individual elements, the
sidebar and topmenu in this
example, will themselves be much easier to write and maintain in
isolation. They also become reusable, allowing you to incorporate
them into another part of the site (or perhaps another site) with a
PROCESS or similar directive.

2.7.4 Layout Example

Let's work
through a complete example now, applying this principle to the
presentation framework for our web site. Example 2-17
shows an alternate version of the wrapper
template that delegates the task to two further templates,
html and layout.

Example 2-17. lib/wrapper2

[% WRAPPER html + layout;
 content;
 END
-%]

The two wrapper templates, html and
layout, are both specified in the one
WRAPPER directive, separated using the
+ character in the same way that we used it with
the PROCESS directive in Example 2-9. In this case, the page content will be
processed first, then the layout template, and
finally the html template. Remember that the
WRAPPER directive works "inside
out" by processing the wrapped content first, and
then the wrapping templates.

If we unwrap the preceding directive into two separate
WRAPPER calls, it should become more obvious why
the WRAPPER directive processes the templates in
the reverse order to how
they're specified:

[% WRAPPER html;
 WRAPPER layout;
 content;
 END;
 END
%]

The end result is that it does what you would expect, regardless of
the slightly counterintuitive order in which it does it. The
html template ends up wrapping the
layout template, which in turn wraps the value
of the content variable, which in this case is the
output from processing the main page template.

2.7.4.1 Side-effect wrappers

The WRAPPER directive can also be used in
side-effect notation. Consider the following fragment:

[% WRAPPER layout;
 content;
 END
%]

You can simplify this by writing it as follows:

[% content WRAPPER layout %]

The wrapper template shown in Example 2-17 can be rewritten in the same way, as shown in
Example 2-18.

Example 2-18. lib/wrapper3

[% content WRAPPER html + layout -%]

2.7.4.2 Separating layout concerns

Using two separate layout templates, html and
layout, allows us to make a clear separation
between the different kinds of markup that we're
adding to each page. The html template adds the
<head> and <body>
elements required to make each page valid
HTML. The layout template deals with the overall
presentation of the visible page content, adding a header, footer,
menu, and other user interface components.

Example 2-19 shows the html
template.

Example 2-19. lib/html

<html>
 <head>
 <title>[% author %]: [% template.title %]</title>
 </head>

 <body bgcolor="[% bgcol %]">
 [% content %]
 </body>
</html>

Example 2-20 shows the layout
template.

Example 2-20. lib/layout

<table border="0" width="100%">
 <tr>
 <td colspan="2">
 [% PROCESS pagehead %]
 </td>
 </tr>
 <tr valign="top">
 <td width="150">
 [% PROCESS menu %]
 </td>
 <td>
 [% content %]
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 [% PROCESS pageinfo %]
 </td>
 </tr>
</table>

We've created a new header
template,
pagehead, shown in Example 2-21,
which generates a headline for the page. It's simple
for now, but we can easily change it to something more complicated at
a later date.

Example 2-21. lib/pagehead

<h1>[% template.title %]</h1>

We're also using another template,
menu, to handle the generation of a menu for the
site. We'll be looking at this shortly.

Example 2-22 shows the final template used in the
layout, pageinfo.
This incorporates the copyright message and some information about
the page template being processed.

Example 2-22. lib/pageinfo

[% USE Date %]

© [% copyr %]

[% template.name -%]
last modified
[%- Date.format(template.modtime) %]

Notice how we're using the
template.name and
template.modtime variables to access the filename and
modification time of the current page template. The
template.modtime value is returned as a large
number that means something to computers[2] but not a great deal to humans.
To turn this into something more meaningful, we're
using the Date plugin to format the number as a human-readable
string.
[2] It's the number of seconds that have elapsed
since January 1, 1970, known as the the Unix
epoch.

2.7.4.3 Plugins and the USE directive

Plugins are a
powerful
feature of the Template Toolkit that allow you to load and use
complex functionality in your templates, but without having to worry
about any of the underlying implementation detail. Plugins are
covered in detail in Chapter 6, but
there's not much you need to know to start using
them.

In Example 2-22, we first load the Date plugin with
the USE
directive:

[% USE Date %]

This creates a Date template variable that
contains a reference to a plugin object (of the
Template::Plugin::Date class, but you
don't need to know that). We can then call the
format method against the Date
object using the dot operator, passing the value for
template.modtime as an argument:

[%- Date.format(template.modtime) %]

The output generated would look something like this:

17:43:35 14-Jul-2003

That's all we need to do to load and use the Date
plugin. Dozens of plugins are available for doing all kinds of
different tasks, described in detail in Chapter 6.

2.8 Menu Components

In the
layout template in Example 2-20, we delegate the task of generating a menu for
the web site to the menu template. Before we
look at how the template does this, let's see an
example of the kind of HTML that we would like it to generate.

<table border="0">
 <tr>
 <td>

 </td>
 <td>
 Earth
 </td>
 </tr>
 <tr>
 <td>

 </td>
 <td>
 Magrethea
 </td>
 </tr>
</table>

The entire menu is defined as a <table>
element, containing one <tr> row for each
item, each of which holds two <td> cells,
one to display an icon, the other a link to a particular page. Only
two items are in this simple example, but already we can see how it
gets repetitive very quickly. This suggests that we can modularize
the markup into separate template components.

2.8.1 Simple Menu Template

Example 2-23 shows a
menu template that defines the outer
<table> elements and uses a second template,
menuitem, to generate each item.

Example 2-23. lib/menu

<table border="0">
[%
 PROCESS menuitem
 text = 'Earth'
 link = 'earth.html';

 PROCESS menuitem
 text = 'Magrethea'
 link = 'magrethea.html';
%]
</table>

[% BLOCK menuitem %]
<tr>
 <td>

 </td>
 <td>
 [% text %]
 </td>
</tr>
[% END %]

2.8.1.1 The BLOCK directive

We could easily define the
menuitem template in a separate file as we have
with other components, but it would require us to split the HTML
<table> markup into different files. This
would make it harder to maintain and possibly lead to tag mismatch or
other formatting errors.

Instead, we define the menuitem template inside
the menu template using the
BLOCK directive. The argument following the
BLOCK keyword is a name for the template
component, which can then be used in any PROCESS,
INCLUDE, or WRAPPER directives.
The content of the component follows, and can contain any kind of
Template Toolkit directives up to the corresponding
END directive.

[% BLOCK menuitem %]
 <tr>
 <td>

 </td>
 <td>
 [% text %]
 </td>
 </tr>
[% END %]

The menuitem template block is defined at the
bottom of the menu template, but that
doesn't stop us from using it earlier in the same
template, before it is defined.

The menuitem block will remain defined while the
menu template is being processed. Any other
templates that are called from within the menu
template (e.g., by a PROCESS or
INCLUDE directive) will also be able to use the
menuitem block.

2.8.2 Component Libraries

When a template is loaded using the
PROCESS directive, any BLOCK
definitions within it will be imported and available for use in the
calling template. Templates loaded using the
INCLUDE directive keep to themselves and
don't export their BLOCK
definitions (or any of their local variables, as described in the
earlier discussion of the INCLUDE directive).

This feature allows you to create single template files that contain
libraries of smaller template components, defined using the
BLOCK directive. This is illustrated in Example 2-24.

Example 2-24. lib/mylib

[% BLOCK image -%]
 <img src="[% src %]" alt="[% alt %]"
 width="[% width %]" height="[% height %]" />
[%- END %]

[% BLOCK link -%]
 [% text %]
[%- END %]

[% BLOCK icon;
 INCLUDE image
 src = '/images/icon.png'
 alt = 'dot icon'
 width = 4
 height = 4 ;
END
-%]

Notice how the icon BLOCK
definition is defined within a
single directive, and consists of nothing more than a call to the
image template component, defined earlier in the
same file. This illustrates how easy it is to reuse existing
components to quickly adapt them for more specific, or alternate
purposes.

The BLOCK definitions can be loaded from the
mylib template with a PROCESS
directive. Then they can be used just like any other template
component. Example 2-25 shows a variation of the
menu template from Example 2-23
in which the icon and link
components are used to generate the menu items.

Example 2-25. lib/menu2

[% PROCESS mylib %]

<table border="0">
[%
 PROCESS menuitem
 text = 'Earth'
 link = 'earth.html';

 PROCESS menuitem
 text = 'Magrethea'
 link = 'magrethea.html';
%]
</table>

[% BLOCK menuitem %]
<tr>
 <td>
 [% PROCESS icon %]
 </td>
 <td>
 [% PROCESS link %]
 </td>
</tr>
[% END %]

2.8.2.1 The EXPOSE_BLOCKS option

You can also set an option that allows you to use
BLOCK directives without having to first
PROCESS the template in which
they're defined. The
expose_blocks option for
ttree and the corresponding
EXPOSE_BLOCKS option for the
Template module can be set to make this possible.

For example, by adding the following to the
etc/ttree.cfg file:

expose_blocks

we can then access a BLOCK in the
mylib template like so:

[% PROCESS mylib/icon %]

The template name, mylib, is followed by the
BLOCK name, icon, separated
by a / (slash) character. The notation is
intentionally identical to how you would specify the
icon file in the mylib
directory. This is another example of how the Template Toolkit
abstracts certain underlying implementation details so that you
don't tie yourself down to one particular way of
doing something.

At a later date, for example, you might decide to split the
mylib template into separate files, stored in
the mylib directory. The same directive will
continue to work because the syntax is exactly the same for blocks in
files as it is for files in directories:

[% PROCESS mylib/icon %]

This gives you more flexibility in allowing you to change the way you
organize your template components, without having to worry about how
that might affect the templates that use them.

2.8.3 The FOREACH Directive

The menu component from Example 2-25 can be simplified further by first defining a
list of menu items and then iterating over them using the
FOREACH directive. Example 2-26
demonstrates this.

Example 2-26. lib/menu3

[% PROCESS mylib %]

[% menu = [
 { text = 'Earth'
 link = 'earth.html' }
 { text = 'Magrethea'
 link = 'magrethea.html' }
]
%]

<table border="0">
[% FOREACH item IN menu %]
<tr>
 <td>
 [% PROCESS icon %]
 </td>
 <td>
 [% PROCESS link
 text = item.text
 link = item.link
 %]
 </td>
</tr>
[% END %]
</table>

The menu variable is defined as a list of
hash arrays, each containing a
text and link item:

[% menu = [
 { text = 'Earth'
 link = 'earth.html' }
 { text = 'Magrethea'
 link = 'magrethea.html' }
]
%]

The main body of the template defines an HTML
<table> element. Within the table, the
FOREACH directive iterates through the
menu list, setting the item
variable to each element in turn.

<table border="0">
[% FOREACH item IN menu %]
<tr>
 <td>
 [% PROCESS icon %]
 </td>
 <td>
 [% PROCESS link
 text = item.text
 link = item.link
 %]
 </td>
</tr>
[% END %]
</table>

The block following the FOREACH directive, up to
the corresponding END, can contain text and other
directives, even including nested FOREACH blocks.
To make the code easier to read, we might prefer to define the
menuitem BLOCK, as shown in
Example 2-25. This allows us to simplify the
FOREACH directive, merging it into a single tag.

<table border="0">
[% FOREACH item IN menu;
 PROCESS menuitem
 text = item.text
 link = item.link;
 END
%]
</table>

The FOREACH block now contains just one directive
to PROCESS the menuitem
component. The text and link
variables are set to the item.text and
item.link values, respectively.

When the items in a FOREACH list are hash arrays,
as they are in Example 2-26, you can omit the name of
the item variable:

<table border="0">
[% FOREACH menu;
 PROCESS menuitem;
 END
%]
</table>

In this case, the values in each hash array will be made available as
local variables inside the FOREACH block. So
item.text becomes the text
variable, and item.link becomes
link, but only within the scope of the
FOREACH block. This conveniently allows us to
process the menuitem template without needing to
explicitly dereference the item variables.

There's one more improvement we can make by taking
advantage of the Template Toolkit's side-effect
notation. Instead of writing the PROCESS menuitem
directive in the FOREACH block all by itself, we
can put it before the FOREACH
and do away with the semicolons and END keyword:

<table border="0">
[% PROCESS menuitem FOREACH menu %]
</table>

All these enhancements to the menu
template are shown in Example 2-27.

Example 2-27. lib/menu4

[% PROCESS mylib %]

[% menu = [
 { text = 'Earth'
 link = 'earth.html' }
 { text = 'Magrethea'
 link = 'magrethea.html' }
]
%]

<table border="0">
[% PROCESS menuitem FOREACH menu %]
</table>

[% BLOCK menuitem %]
<tr>
 <td>
 [% PROCESS icon %]
 </td>
 <td>
 [% PROCESS link %]
 </td>
</tr>
[% END %]

2.9 Defining and Using Complex Data

The variables that we have used so far have mostly been simple
scalar variables that contain just one value.
The few exceptions include the tantalizing glimpses of the
template variable, and the Date plugin in Example 2-22. As we saw in Chapter 1,
the Template Toolkit also supports lists and hash arrays for complex
data, and allows you to access Perl subroutines and objects.

In this section, we will look more closely at defining and using
complex data structures, and describe the different Template Toolkit
directives for inspecting, presenting, and manipulating them.

2.9.1 Structured Configuration Templates

Larger sites will typically use dozens of
different global site variables to represent colors, titles, URLs,
copyright messages, and various other parameters. The Template
Toolkit places no restriction on the number of different variables
you use, but you and your template authors may soon lose track of
them if you have too many.

Another problem with having lots of global variables lying around is
that you might accidentally overwrite one of them. We saw in Example 2-7 how the author variable was
used to store the name of the site author, Arthur Dent, for use in
the header and footer
templates. At some later date, we might decide to add a
quote template component that also uses the
author variable. This is shown in Example 2-28.

Example 2-28. lib/quote

<blockquote>
 [% quote %]
</blockquote>

 -- [% author %]

There's no problem if we use
INCLUDE to load the template, providing a local
variable value for author:

[% INCLUDE quote
 author = 'Douglas Adams'
 quote = 'I love deadlines. I like the
 whooshing sound they make as
 they fly by.'
%]

The value for author supplied as a parameter to
the INCLUDE directive (Douglas
Adams) remains set as a local variable within the
quote template. It doesn't
affect the global author variable that is defined
in the config (Arthur Dent).

However, it is all too easy to forget that the
author variable is
"reserved"�especially if
it's just one of a large number of such
variables�and to use PROCESS instead of
INCLUDE:

[% PROCESS quote
 author = 'Douglas Adams'
 quote = 'I love deadlines. I like the
 whooshing sound they make as
 they fly by.'
%]

The PROCESS directive doesn't
localize any variables. As a result, our global
author variable now is incorrectly set to
Douglas Adams instead of Arthur
Dent. One solution is to religiously use
INCLUDE instead of PROCESS at
every opportunity. However, that's just working
around the problem rather than addressing the real issue.
Furthermore, the INCLUDE directive is quite a bit
slower than PROCESS, and if performance is a
concern for you, you should be looking to use
PROCESS wherever possible.

Variables are localized for the INCLUDE directive
in a part of the Template Toolkit called the
Stash. It saves a copy of all the current
variables in use before the template is processed, and then restores
them to these original values when processing is complete.
Understandably, this process takes a certain amount of time (not much
in human terms, but still a finite amount), and the more variables
you have, the longer it takes.

It is worth stressing that for most users of the Template Toolkit,
these performance issues will be of no concern whatsoever. If
you're using the Template Toolkit to generate static
web content offline, it makes little difference if a template takes a
few hundredths or thousandths of a second longer to process. Even for
generating dynamic content online, performance issues such as these
probably aren't going to concern you unless you have
particularly complicated templates or your site is heavily loaded and
continually generating lots of dynamic content.

The more important issue is one of human efficiency. We would like to
make it easier for template authors to keep track of the variables in
use, make it harder for them to accidentally trample on them in a
template component, and ideally, allow them to use
PROCESS or INCLUDE, whichever
is most appropriate to the task at hand.

The answer is to use a nested data structure to define all the
sitewide variables under one global variable. Example 2-29 shows how numerous configuration variables can
be defined as part of the
site data structure, in this case
implemented using a hash array.

Example 2-29. lib/site

[% site = {
 author = 'Arthur Dent'
 bgcol = '#FF6600' # orange
 year = 2003
 }

 site.copyr = "Copyright $site.year $site.author"
%]

To interpolate the values for the year and
author to generate the copyright string, we must
now give them their full names, site.year and
site.author. We need to set the
site.copyr variable after the
initial site data structure is defined so that we
can use these variables. In effect, the site
variable doesn't exist until the closing brace, so
any references to it before that point will return empty values
(unless the site has previously been set to
contain these items at some earlier point).

[% site = {
 author = 'Arthur Dent'
 bgcol = '#FF6600' # orange
 year = 2003

 # this doesn't work because site.year
 # and site.author are undefined at
 # this point
 copyr = "Copyright $site.year $site.author"
 }
%]

Sitewide values can now be accessed through the
site hash in all templates, leaving
author, bgcol,
year, and all the other variables (except
site, of course) free to be used, modified, and
updated as "temporary" variables by
page templates and template components. Now there's
just one variable to keep track of, so there's much
less chance of accidentally overwriting an important piece of data
because you forgot it was there. It also means that the
INCLUDE directive works faster because it has only
one variable to localize instead of many. The Stash copies only the
top-level variables in the process of localizing them and
doesn't drill down through any of the nested
data
structures it finds.

2.9.2 Layered Configuration Templates

As your site
data
structure becomes more complicated, you might find it easier to build
it in layers using several templates. Example 2-30
shows a preprocessed configuration template that loads the
site, col, and
url templates using PROCESS.

Example 2-30. lib/configs

[% PROCESS site
 + col
 + url
-%]

We have already seen the site template in Example 2-29. Example 2-31 shows the
col and url configuration
templates.

Example 2-31. lib/col

[% site.rgb = {
 white = '#FFFFFF'
 black = '#000000'
 orange = '#FF6600'
 }

 site.col = {
 back = site.rgb.orange
 text = site.rgb.white
 }
-%]

Example 2-31 shows the definition of a
site.rgb hash and then another,
site.col, which references values in the first.
Template authors can use explicit colors, by referencing
site.rgb.orange, for example, to fetch the correct
RGB value, #FF6600. Or they can code their
templates to use colors defined in the site.col
structure�for example, referencing
site.col.back in the html
template to set the bgcolor attribute of the HTML
<body> element. Either way, the colors are
defined in one place, and the symbolic names allow us to see at a
glance that the background color for the pages in the site is
currently orange.

The url template is a little simpler, but also
illustrates how variables can be built in stages (see Example 2-32).

Example 2-32. lib/url

[% url = 'http://tt2.org/ttbook'

 site.url = {
 root = url
 home = "$url/index.html"
 help = "$url/help.html"
 images = "$url/images"
 }

-%]

The benefits of this approach are twofold. The first is that you can
save yourself a great deal of typing by replacing a long-winded URL
with a shorter variable name. The second benefit is that you can
easily change all the URL values in a single stroke by changing the
root url from which they are constructed.

One advantage of building a complex data structure from several
templates is that you can easily replace one of the templates without
affecting the others. For example, you might want to use a different
set of URL values at some point. Rather than edit the
url template, you can copy the contents to a new
file (e.g., url2), make the changes there, and
then update the configs template accordingly:

[% PROCESS site
 + col
 + url2
-%]

If you must revert to the old URLs at a later date, you need to
change only the configs template to load
url instead of url2. You
can also use this approach to load different configuration templates
based on a conditional expression. For example:

[% PROCESS site
 + col;

 IF developing;
 PROCESS url2;
 ELSE;
 PROCESS url;
 END
-%]

2.9.3 Choosing Global Variables Wisely

Fewer global variables are better, but
don't try to cram everything into the one
site variable if more would do the job better. Try
and separate your variables into structures according to their
general purpose and relevance to different aspects of the site. For
example, you can define one structure containing everything related
to the site as a whole (e.g., site), and another
related to the individual page being processed (e.g.,
page):

[% site = {
 title = "Arthur Dent's Web Site"
 author = 'Arthur Dent'
 # ...etc...
 }

 page = {
 title = template.title
 author = template.author or site.author
 }
%]

You may also want to define others to represent a
user, server,
application, or request
depending on how you're using the Template Toolkit
and what you're using it for.

The Template Toolkit allows you to use upper- or lowercase, or some
combination of the two, to specify variable names.
It's not recommended that you use all uppercase
variable names, as they might clash with current (or future) Template
Toolkit directives. However, you might like to capitalize your global
variables to help you remember that they're special
in some way (e.g., Site versus
site):

[% Site = {
 # ...etc...
 }
 Page = {
 # ...etc...
 }
 User = {
 # ...etc...
 }
%]

2.9.4 Passing Around Data Structures

You can pass a
complex data structure around the Template Toolkit as easily as you
would a scalar variable. Example 2-33 shows a
configuration template that defines the site.menu
data structure to contain the menu items that we used earlier in
Example 2-26.

Example 2-33. lib/menudef

[% site.menu = [
 { text = 'Earth'
 link = 'earth.html' }
 { text = 'Magrethea'
 link = 'magrethea.html' }
]
%]

We've moved the definition of the sitewide menu into
a central configuration file and will need to add it to the list of
templates loaded by the PROCESS directive in the
pre-processed configs template shown in Example 2-30:

[% PROCESS site
 + col
 + url
 + menudef
-%]

Now we can remove the definition of the menu structure from the
component (or components) that generate the menu in a particular
style, as shown in Example 2-34.

Example 2-34. lib/menu5

[% PROCESS mylib %]

<table border="0">
[%- FOREACH item IN menu;
 PROCESS menuitem
 text = item.text
 link = item.link;
END
-%]
</table>

[% BLOCK menuitem %]
<tr>
 <td>
 [% PROCESS icon %]
 </td>
 <td>
 [% PROCESS link %]
 </td>
</tr>
[% END %]

The value for menu (site.menu
in this case) is passed to the menu5 template as
an argument in an INCLUDE directive:

[% INCLUDE menu5
 menu = site.menu
%]

The benefit of this approach is that the component that generates the
menu is now generic, and will work with any menu
data you care to define. Wherever you need a menu in the same style,
simply call the component and pass in a different definition of
menu data:

[% INCLUDE menu5
 menu = [
 { text = 'Milliways'
 link = 'milliways.html' }
 { text = 'Hotblack Desiato'
 link = 'desiato.html' }
]
%]

Separating the definition of a menu from its presentation also makes
it easier to change the menu style at a later date.
There's only one generic menu component to update or
replace, regardless of how many times it is used in various places
around the site. If you want two or more different menu styles,
simply create additional menu components with different names or in
different locations. For example, you may have
site_menu and page_menu, or
site/menu and page/menu, or
perhaps something such as slick/graphical/menu
and plain/text/menu.

2.10 Assessment

This brings us nicely back to where we started,
looking at the basic principle of template processing: separating
your data from the way it is
presented. It's not always
clear where your data belongs: in a configuration template; defined
in a Perl script; or perhaps stored in a SQL database or XML file.
Sometimes you'll want to begin by defining some
simple variables in a configuration template so that you can start
designing the layout and look and feel of the site. Later on, you
might choose to define that data somewhere else, passing it in from a
Perl script or making it available through a plugin.

The beauty of the Template Toolkit is that it really
doesn't matter. It abstracts the details of the
underlying implementation behind the uniform dotted notation for
accessing data so that your templates keep working when your storage
requirements change, as they inevitably will for many web sites.

It also makes it easy to include things such as loops, conditional
statements, and other templates as easy as possible so that you can
concentrate on presentation, rather than getting bogged down in the
more precise details of full-blown programming language syntax. This
is what we mean when we describe the Template Toolkit as a
presentation language rather than a
programming language.

It is an example of a domain-specific
language that in many ways is similar to SQL,
which is a domain-specific language for formulating database queries.
As such, it should generally be used for what it is good at, rather
than being contorted into doing something that might be a lot easier
in another language. That doesn't mean that you
can't use the Template Toolkit to do CGI
programming, embed Perl, or even write Vogon poetry, if
that's your thing, but that's not
necessarily where its particular strengths lie.[3]
[3] Although the jury is still grooping hooptiously at the
implorations of generating Vogon Poetry using the Template
Toolkit.

And that's where Perl comes in. The Template Toolkit
is designed to integrate with Perl code as cleanly and as easily as
possible. When you want to do something more than the Template
Toolkit provides, it is easy to append your own additions using a
real programming language such as Perl. The plugin mechanism makes it
easy to load external Perl code into templates so that
you're not always writing Perl wrapper scripts just
to add something of your own.

However, this total separation is not something that the Template
Toolkit enforces, although the default settings for various
configuration options such as EVAL_PERL do tend to
encourage it. Sometimes you just want to define a simple Perl
subroutine in a template, for example, and don't
want to bother with a separate Perl script or plugin module. The
Template Toolkit gives you the freedom to do things such as this when
you really want to.

For example, by enabling the EVAL_PERL option (see
Chapter 4 and the Appendix for details), we can
quickly define a Perl subroutine and bind it to a template variable,
using a PERL block such as the following:

[% PERL %]
$stash->set(help => sub {
 my $entry = shift;
 return "$entry: mostly harmless";
});
[% END %]

The $stash->set(var => $value) code, shown
here binding the help variable to the Perl
subroutine, is the Perl equivalent of writing [% var = value
%] in a template�except, of course, that you
can't usually define a subroutine directly in a
template, only by using Perl code with EVAL_PERL
set (which we think is a sensible restriction). This block can easily
be defined in a preprocessed configuration template to keep it out of
harm's way, leaving the template authors to use the
simple variable:

[% help('Earth') %]

The important thing is to achieve an appropriate
separation of concerns, rather than a total
separation of concerns. Sometimes it's easier to
define everything in one template or Perl program and to use a clear
layout to separate the different parts. Splitting a small and
self-contained document into several different pieces, each
comprising just one part of the jigsaw puzzle, can make it hard to
see the big picture. On the other hand, a more complex web site may
have bigger pieces that absolutely need to be maintained in isolation
from the other parts. Remember, there is no golden rule, so the
Template Toolkit doesn't try and enforce one on you.

The techniques that we've taught you in this chapter
will allow you to address most, if not all, of the simple but common
problems that you'll typically face when building
and maintaining a web site. We'll be coming back to
the Web in Chapter 11 to look at some further
ways in which the Template Toolkit can be used to enhance your site
and make your life easier. In Chapter 12,
we'll be showing how it can be used to handle the
presentation layer to simplify the process of building and
customizing web applications.

Chapter 3. The Template Language

While a programming language is designed to manipulate data, a
presentation language is used to turn the data into plain text, HTML,
or some other format.[1] As long as the data
is made available to us in a textual representation when we ask for
it, we really don't need to worry too much about how
it is stored or computed behind the scenes.
[1] We'll assume
for now that the presentation formats are all different kinds of
text, although you can also use the Template Toolkit to generate
binary files such as images.

That's not to say that you can't
create and manipulate variables in templates. However, their most
common use is for dealing only with presentation aspects, by using
variables to define colors or other layout parameters, displaying the
first N search results, or sorting a list of
names into alphabetical order, for example. It is unusual (but not
unheard of) to use the Template Toolkit to modify data that has any
lasting effect. In general, data is passed to a template and then
thrown away, so it doesn't matter if
it's changed in any way.

In this chapter, we take a closer look at the details of the Template
Toolkit presentation language. The general syntax of templates comes
under scrutiny first, and we give examples of how the default style
can be customized using configuration options and template
directives. The rest of the chapter is then dedicated to an in-depth
study of variables. We describe the various data types, showing how
they are defined and used in both Perl and template markup.

We concentrate on the general characteristics of the language without
looking too closely at any of the specific directives that the
Template Toolkit provides (PROCESS,
WRAPPER, USE, and so on). These
are described in detail in Chapter 4. A full
discussion of filters and plugins is left for Chapter 5 and Chapter 6,
respectively.

While you can write templates that have a lasting effect on
data�say, by updating a database
directly�that's not really how the Template
language was intended to be used. We return to this subject in
Chapter 11 and Chapter 12, when we look more closely at separating
the functional parts of an application from those that deal only with
presentation.

3.1 Template Syntax

The Template Toolkit has many configuration options to change the
appearance and meaning of the directives in a template. This section
looks at the different types of directives, shows how to change the
directive tags, and describes the various ways you can control the
processing of whitespace around directives.

3.1.1 Text and Directives

A template
contains a mixture of fixed text and
directive tags, denoted by the [% and
%] markers. Everything coming after the
[% and before the following %]
is part of the directive tag. Everything else in the document is
fixed text that is passed through intact.

Well, that's the default behavior, anyway. There are
certain occasions when the text surrounding directives
will be modified. For example, the
whitespace chomping
options (PRE_CHOMP and
POST_CHOMP) and related flags (which
we'll be looking at shortly) tell the Template
Toolkit to remove any extraneous whitespace in the text on either
side of (i.e., before or after) a directive. The
INTERPOLATE option is another example that, when
set (which it isn't by default), causes the text
part of the template to be passed through a second scanning process
to look for any embedded variables, denoted by a $
prefix�e.g., Hello $planet. More on that
later.

You can also change the characters used to denote tags with the
TAG_STYLE, START_TAG, and
END_TAG configuration options, and with the
TAGS directive. We'll also be
looking at this shortly.

3.1.1.1 Template parser

All
of
this happens inside a part of the Template Toolkit called the
parser (implemented in the
Template::Parser module, and assisted by various
others including Template::Grammar and
Template::Directives). The job of the parser is to
scan the source template to figure out which parts are text and which
are directives, taking all the relevant configuration options and any
values set by the TAGS directive into account.
Having worked out where the directive tags are, it then parses the
statements within them, checking that their syntax and structure are
correct. If they aren't, the parser returns a
parse error along with a short message explaining
the problem.

3.1.1.2 Parse errors

We can demonstrate a parse error by having
tpage process the template in Example 3-1, which contains an erroneous directive. The
mandatory template filename after the PROCESS
keyword is missing.

Example 3-1. badfile

[% # this is an invalid directive
 # and will raise a parse error
 PROCESS
%]

This is what happens when we run tpage:

$ tpage badfile
file error - parse error - badfile line 1-4:
 unexpected end of directive
 [% # this is an invalid directive
 # and will raise a parse error
 PROCESS
 %]
 at /usr/bin/tpage line 60.

We've edited the output a little for the sake of
clarity, but all the important parts are there. The message tells us
what kinds of errors occurred (in this case, a general
file error and a parse error),
what the error was (unexpected end of directive),
and where it occurred (badfile line 1-4). It also
shows the offending directive and reports the line number in the
tpage program where the error was raised
(at /usr/bin/tpage line 60).

3.1.1.3 Caching templates

If the template
content is valid, the parser compiles it into
a Perl subroutine that faithfully reproduces its exact functionality.
Although the subroutine takes a little time to parse and compile the
template into the equivalent Perl code, it is more than paid back by
the speed at which it then runs. The great benefit of this approach
is that the compiled template (i.e., the Perl subroutine) can be
cached internally by the Template Toolkit for
subsequent reuse. It keeps hold of the subroutine for each template
that gets compiled so that it doesn't have to do the
hard job of parsing and compiling it again the next time you want to
use it.

This caching lasts for the lifetime of the Perl
Template object being used. When you run
ttree to build all the pages in a web site, for
example, one Template object is used throughout.
Every page can call the menuitem template a
dozen times, for instance, but it will only be parsed and compiled
the first time it is used. This is also ideal when
you're using the Template Toolkit to serve dynamic
pages from a persistent web server process (i.e., Apache and
mod_perl). In contrast to a CGI script, which is restarted each time
it is used and must create a new Template object
each time, an Apache mod_perl handler can reuse a
shared Template object, allowing the compiled
templates to remain cached and ready to be used over and over again.

3.1.1.4 Flexible syntax

The job of parsing a template document
is not an easy one. The Template Toolkit parser tries to be as
flexible as possible with regard to the syntax and structure of
directive tags. It doesn't complain if you forget
(or choose not) to put a comma between items in a list, for example.
As long as there's some kind of whitespace to
separate them and the meaning isn't ambiguous, it
will work around you so that you don't have to work
around it.

Understandably, there are some basic rules that
you'll need to follow, as well as some general
guidelines that can help to make your templates easier to read and
write. This section covers them in detail and shows the various ways
in which the default behavior can be modified through the use of
configuration options and other means.

As long as you follow the basic rules, the matter of how you lay out
your directives, incorporating whitespace, formatting, and comments,
is very much one of personal taste. You don't have
to lay out your templates (or Perl code) nicely at all if you
don't want to, but you will appreciate it when you
come back to them after an absence and have to try and figure out
what is going on. Anyone else who has to maintain your templates will
also appreciate your efforts in making them as simple and clear as
possible.

3.1.2 Template Tags

The default characters that the Template
Toolkit uses to denote the position of directive tags are
[% and
%].

We saw an example in Chapter 2 showing how the
TAGS directive can be used to set a different tag
style for a single template file:

[% TAGS star %]
People of [* planet *], your attention please.

The tag style can be changed any number of times within a template
and will revert to the current default at the end.

Figure 3-1 shows a list of the different tag styles
available.

Figure 3-1. Tag styles

[image: figs/pttk_0301.gif]

Custom start and end tags can be set using the two-argument form of
the TAGS directive:

[% TAGS { } %]
People of {planet}, your attention please.

The TAGS directive should always be specified in a
tag by itself. It is something of a special case for the parser and
doesn't obey the usual rule for directives of
allowing a semicolon to separate one statement from the next.

[% TAGS star;
 # don't do this... it doesn't work
 PROCESS header
%]

However, you can use the whitespace chomping
flags in a TAGS directive:

[% TAGS star -%]
[* PROCESS header -*]

The Template Toolkit provides the
TAG_STYLE configuration option for
setting a named tag style from Perl:

my $tt = Template->new({
 TAG_STYLE => 'star',
});

If you can't find an existing style you like, you
can define custom start and end tags using the
START_TAG and END_TAG options:

my $tt = Template->new({
 START_TAG => quotemeta('[*'),
 END_TAG => quotemeta('*]'),
});

The START_TAG and
END_TAG options support Perl regular
expressions, giving you precise control over exactly what you want to
match. One side effect of this is that any regular expression
metacharacters (such as [and
*) will need to be explicitly escaped with a
\ prefix (e.g., '\[*') or
passed through Perl's quotemeta
function, as shown in the previous example.

The next example shows how regular expressions can be used for the
START_TAG and END_TAG options:

my $tt = Template->new({
 START_TAG => '<(?i:tt):',
 END_TAG => '/?>',
});

Here we allow the <tt: prefix to be specified
in uppercase, lowercase, or mixed case (the
(?i:...) part of the
START_TAG regular expression), and the
END_TAG to permit an optional /
before the closing >. The following fragment
shows four tags in slightly different styles, all of which will be
matched by the START_TAG and
END_TAG regular expressions:

<tt:pi=3.142/>
<tt:e=2.718>
pi: <TT:pi>
 e: <TT:e/>

The TAG_STYLE option takes priority over any
values for START_TAG and
END_TAG, so it makes no sense to mix them in the
same configuration. Use either TAG_STYLE or
START_TAG and END_TAG.

3.1.3 Interpolated Variables

The INTERPOLATE option allows you to embed
variables in plain text using a simple $variable
or ${variable} syntax. It is disabled by default,
but can be set to any true value as a configuration option to enable
this behavior.

my $tt = Template->new({
 INTERPOLATE => 1,
});

With the INTERPOLATE option enabled, the following
template fragments have the same effect:

using explicit directives
[% page.title %]

using interpolated variables
$page.title

Variable names can contain dotted elements, as shown by
$page.title in the preceding example. The
explicit braces can be used to delimit a
variable name where necessary.

For example:

Without the explicit scoping, the parser would treat
icon.file.png as the variable name:

incorrect usage

You must also use braces to explicitly scope embedded variables if
you want to pass arguments to any of the dotted elements:

If you've got the INTERPOLATE
mode set and want to use a $ character in your
document without it triggering a variable
lookup, escape it with a \ prefix to nullify its
special meaning.

For example:

...costing less than one
 Altairian dollar (\$1.00 ALD)
 per day...

The

backslash tells the parser to treat
the $ that follows it as just that, a literal
$ character, rather than trying to interpret it as
the start of a reference to a nonexistant $1.00
variable. Rather surprisingly, 1.00 is a perfectly
valid variable name, given that variables can be dotted, with each
part being composed of any combination of letters, numbers, or
underscores. You'll have a difficult job trying to
use a variable called 1.00 because the Template
Toolkit will assume that you really mean the floating-point number
1.00 whenever you try and use it. Nevertheless,
it's enough to confuse the parser in this case, so
the preceeding \ is used to clarify our meaning.

3.1.4 Comments

Comments can be added to directives, either to
provide explanations of what's going on for future
maintainers (i.e., you, in six months time, when
you've forgotten what you did and why you did it),
or to temporarily disable all or part of the directive for testing or
debugging purposes.

The # character introduces a comment in a
directive. Everything from the # to the end of the
current line is ignored. Here's an example that
would be cryptic (at best) without the liberal use of comments that
we've afforded it:

[% # Calculate whether year is a leap year
 # if it's evenly divisible by 4...
 IF (year % 4) = = 0;
 # if it is not a century year...
 IF (year % 100) = = 0;
 is_leap = 1; # it's a leap year
 # if it is a century year and divisible by 400 ...
 ELSIF (year % 400) = = 0;
 is_leap = 1; # it's a leap year
 END;
 END;
 %]

Comments can begin at the start of a line or part of the way through
it. In either case, once you've started a comment on
a line, there's no turning back. The rest of the
line is a comment, and there's no character that
will put you back into
"uncommenting" mode.

If the # comment character immediately follows the
[% start tag (or the appropriate value for the
start tag if you're using something other than the
default), with no intervening whitespace, the whole directive is
treated as one big comment and is totally ignored. This can be used
to temporarily disable an entire directive tag.

[%# this is broken, so disable it...
 IF skateboarding;
 kickflip(
 rotation = 180,
 direction = 'backside'
);
 END
%]

The first # character in the preceding directive
temporarily disables the entire block of code. When and if we want to
use it again, we can simply remove the leading comment line, or add a
space between the [% and # to
make it a single-line comment:

[% # this is working again!
 IF skateboarding;
 kickflip(
 rotation = 180,
 direction = 'backside'
);
 END
%]

There's not a lot to distinguish between these two
examples, so be aware of the big difference that a single space can
make.

3.1.5 Whitespace Chomping

Anything outside
a directive tag is considered fixed text and is passed through
unaltered. This includes all whitespace and newline characters
surrounding directive tags. Directives such as SET
and BLOCK that don't generate any
output by themselves will leave gaps in the output document.

For example:

Foo
[% a = 10 %]
Bar

The newline following the directive is left intact, resulting in the
following output:

Foo

Bar

This generally isn't a problem when
you're generating HTML, which treats whitespace as
(mostly) irrelevant. However, it will be of greater concern when
generating plain-text documents or other formats in which whitespace
is significant.

3.1.5.1 Chomping flags

The -
 chomping flag can be placed immediately
after an opening directive tag (e.g., [% or the
current value for the start tag) to have the Template Toolkit remove
the newline and any other whitespace immediately preceding the
directive tag. This is called prechomping.

Here is a trivial example to illustrate:

Foo
[%- 'Bar' %]
Baz

The template is parsed as if written:

Foo[% 'Bar' %]
Baz

and therefore generates the following output:

FooBar
Baz

As you might expect, you can also place a -
immediately before the closing directive tag (e.g.,
%] or the current value for the end tag) to enable
postchomping.

The following example:

Foo
[% 'Bar' -%]
Baz

is parsed as if written:

Foo
[% 'Bar' %]Baz

and generates the following output:

Foo
BarBaz

Both prechomping and postchomping flags can be set for a directive,
as shown in the following example, which generates the output
FooBarBaz:

Foo
[%- 'Bar' -%]
Baz

3.1.5.2 Chomping options

You can
set the PRE_CHOMP and
POST_CHOMP options to enable prechomping and
postchomping as the default for all directives:

my $tt = Template->new({
 PRE_CHOMP => 1,
 POST_CHOMP => 1,
});

With these options set, the following example:

Foo
[% 'Bar' %]
Baz

is equivalent to explicitly adding a - at the
start and end of the tag:

Foo
[%- 'Bar' -%]
Baz

You can then use + in place of where the
- would usually go if you want to
disable the default prechomping or postchomping
behavior on a per-directive basis. In other words, the
+ tells the Template Toolkit to not chomp the
whitespace coming before or after a directive, regardless of the
current settings of the PRE_CHOMP and
POST_CHOMP options.

Foo
[%+ 'Bar' +%]
Baz

To summarize, the PRE_CHOMP and
POST_CHOMP options define the default behavior,
but the - and + options take
priority on an individual directive basis.

The PRE_CHOMP and POST_CHOMP
options also support a different style of chomping that you can
enable by setting their values to 2 instead of
1. Instead of removing the whitespace entirely, it
is collapsed into a single space.

3.1.5.3 Chomping constants

The
Template::Constants module defines an exportable set of
constants, CHOMP_NONE (0),
CHOMP_ALL (1), and
CHOMP_COLLAPSE (2), that you can use to make your
code more readable. They are loaded into a Perl program when you
use the Template::Constants
module, providing the quoted name :chomp as an
argument. The following example demonstrates this, and shows how the
CHOMP_COLLAPSE constants can then be used:

use Template;
use Template::Constants qw(:chomp);

my $tt = Template->new({
 PRE_CHOMP => CHOMP_COLLAPSE,
 POST_CHOMP => CHOMP_COLLAPSE,
});

When the following template is processed:

Foo
[% 'Bar' %]
Baz

it is parsed as if written:

Foo [% 'Bar' %] Baz

and therefore generates the following output:

Foo Bar Baz

The + flags have the same effect of protecting
whitespace around a directive regardless of the
PRE_CHOMP or POST_CHOMP option
being set to CHOMP_ALL or
CHOMP_COLLAPSE.

3.1.6 Multiple Directive Tags

When you start to use more complex
directives, you may find your templates start to look a little
cluttered, as Example 3-2 shows.

Example 3-2. printer1

[% IF title %]
 [% IF printer_friendly %]
 [% INCLUDE headers/printer_friendly %]
 [% ELSE %]
 [% INCLUDE headers/standard %]
 [% END %]
[% END %]

The default tag style is designed to make the directives stand out
from the rest of the document. However, the [% and
%] characters overwhelm the important part of this
example, the content of the various directives, making the template
harder to both read and write.

Fortunately, the Template Toolkit has been around long enough for
people to get bored of typing [% and
%] and demand a better solution. The answer is to
merge the directives into one tag, using the ;
(semicolon) character to delimit one directive statement from the
next.

Example 3-3 demonstrates this, showing how much
simpler Example 3-2 can be written.

Example 3-3. printer2

[% IF title;
 IF printer_friendly;
 INCLUDE headers/printer_friendly;
 ELSE;
 INCLUDE headers/standard;
 END;
END
%]

When you merge directives together, you lose any whitespace that
might previously have been nestling between the directives. That may
be what you want. If it isn't, you can easily add it
back where you need it by adding literal strings, including any text
and whitespace required, as part of the directive block. This is
shown in Example 3-4.

Example 3-4. person1

[% FOREACH person IN company.employees;
 "* ";
 person.name;
 "\n ";
 person.email;
 "\n\n";
END
%]

With a "double-quoted" string, the
\n sequence introduces a newline character. So
given the following definition for company:

[% company = {
 employees = [
 { name = 'Tom' email = 'tom@tt2.org' },
 { name = 'Dick' email = 'dick@tt2.org' },
 { name = 'Larry' email = 'larry@tt2.org' },
]
 }
%]

the output generated by Example 3-4 would be:

* Tom
 tom@tt2.org

* Dick
 dick@tt2.org

* Larry
 larry@tt2.org

3.1.7 Side-Effect Notation

The IF,
UNLESS, FOREACH,
WHILE, WRAPPER, and
FILTER directives expect a template block to
follow them, up to the relevant END directive (or
ELSIF or ELSE in the case of
IF and UNLESS). They can also
be used in a "side-effect"
notation. This is a concept borrowed from Perl in which looping or
conditional logic can be placed after the
statement that it controls. Here is an example:

[% PROCESS config IF something %]

The equivalent code, writing the directive in full, would look like
this:

[% IF something;
 PROCESS config;
 END
%]

It works only when you've got one variable,
directive, or piece of text that you want to use in the block. This
isn't the case in Example 3-4,
which we looked at in the previous section. However, Example 3-5 shows how it can be rewritten to define the
block as one double-quoted string, using variable interpolation to
insert the values for person.name and
person.email in the right place.

Example 3-5. person2

[% FOREACH person IN company.employees;
 "* $person.name\n $person.email\n\n";
END
%]

With a single string as the content for the block,
FOREACH can now be used in side-effect notation,
as shown in Example 3-6.

Example 3-6. person3

[% "* $person.name\n $person.email\n\n"
 FOREACH person IN company.employees
%]

More complex content can be moved into a separate template file or
BLOCK definition that is then called using a
single PROCESS or INCLUDE
directive, as shown in Example 3-7.

Example 3-7. person4

[% PROCESS info
 FOREACH person IN company.employees
%]

[% BLOCK info %]
 * [% person.name %]
 [% person.email %]
[% END %]

3.1.8 Capturing Directive Output

The
output of a directive can be
captured by assigning it to a variable. The following example shows
this in action:

[% headtext = PROCESS header
 title = "Hello World"
%]

In the next example, it is used to capture the output of a
side-effect block:

[% people = PROCESS userinfo
 FOREACH user = userlist
%]

It can also be used in conjunction with the
BLOCK directive for defining large blocks of
text or other content:

[% quote = BLOCK %]
 'Where,' said Ford Prefect quietly,
 'does it say teleport?'

 'Well, just over here in fact,'
 said Arthur, pointing at a dark
 control box in the rear of the cabin.

 'Just under the word "emergency",
 above the word "system" and beside
 the sign saying "out of order".'
[% END %]

Note one important caveat of using this syntax in conjunction with
side-effect notation. The following directive does not behave as
might be expected:

[% # WRONG
 description = 'Mostly Harmless'
 IF planet = = 'Earth'
%]

Our intention is to set the description variable
(using the single equals assignment operator, =)
to the value Mostly Harmless if
the planet variable contains the value
Earth (tested using the double equals comparison
operator, = =):

[% # RIGHT
 IF planet = = 'Earth';
 description = 'Mostly Harmless';
 END
%]

Unfortunately, that's not how the Template Toolkit
parser sees things. The directive is interpreted as if written:

[% # WRONG
 description = BLOCK;
 IF planet = = 'Earth';
 'Mostly Harmless';
 END;
 END
%]

The variable is assigned the output of the IF
block. This returns Mostly
Harmless correctly for planet Earth, but nothing
in all other cases, resulting in the description
variable being unintentionally cleared.

To achieve the expected behavior, the directive should use the
SET keyword explicitly:

[% # RIGHT
 SET description = 'Mostly Harmless'
 IF planet = = 'Earth'
%]

3.1.9 Template Filenames

Like Perl, the
Template Toolkit treats data
differently depending on whether it is quoted. For example,
foo.bar accesses the value in a variable, but
'foo.bar' is a literal string.

The INSERT,
INCLUDE, PROCESS, and
WRAPPER directives expect a filename to be pro
vided as the first argument:

[% PROCESS header %]

You can use single or double quotes around the filename, but
they're generally not required:

[% PROCESS 'header' %]
[% PROCESS "header" %]

The Template Toolkit assumes that the first argument is a filename,
even if it includes dot characters:

[% PROCESS header.tt %]

If you do use double quotes around the string, any variable
references within it will be interpolated. For example:

[% file = 'header'
 ext = 'tt'
%]
[% PROCESS "${file}.$ext" %] # header.tt

You'll also need to explicitly quote the filename if
it contains any characters other than alphanumerics, underscores,
dots, and slashes:

[% PROCESS no/need_2_quote/this.txt %]
[% PROCESS 'My Documents/q&a.txt' %]

If you want to use a variable value to denote the name of a file, you
can interpolate it into a double-quote string:

[% file = 'header' %]
[% PROCESS "$file" %] # header

As a convenience, you can do away with the double quotes and simply
use the $ prefix to tell the parser that a
variable name follows:

[% PROCESS $file %] # header

3.2 Template Variables

The Template Toolkit's simple-to-access variables
are one of its strengths. In this section, we describe the syntax and
semantics of variables�what names are allowed, the different
types of data that can be stored in a variable, the predefined
Template Toolkit variables, and so on.

3.2.1 What's in a Name?

Variable names can contain alphanumeric
characters or underscores. They can be lowercase, uppercase, or mixed
case, although the usual convention is to use lowercase to avoid
confusion with uppercase directives. The case is
significant, however, so foo,
Foo, and FOO are all different
variables. Here are some examples of valid variable names:

foo
foo123
foo_bar
foo_bar_123
FooBar123
Foo_Bar_123

The kind of data
you
can store in a variable depends on its type. The
Template Toolkit is written in Perl and provides template authors
with access to the full range of underlying Perl variable types.
Although there are different variable types for different purposes,
you can change a Template Toolkit variable from one to the other at
any time. Both Perl and the Template Toolkit are examples of
dynamic languages that don't
require the type of variable to be set in stone.

The basic data types
are scalars, which store a single value,
arrays (or lists), which
store multiple values in order, and hash arrays
(or hashes), which store multiple values indexed
by a name. In addition to these static data
types, the Template Toolkit provides dynamic
data types that can reference Perl subroutines,
and objects that can implement any kind of
functionality you require to fetch or compute a variable value on
demand.

Unlike Perl, the Template Toolkit does not require you to use a
different leading character, or sigil, on a
variable name to denote its type�e.g.,
$item, @list,
%hash. In fact, it requires you not to do it. The
only time you ever use a leading $ on a variable
in a template is to tell the parser that a variable for interpolation
follows where it otherwise wouldn't be expecting
one�for example, in a double-quoted string such as
"Hello $planet", or following a directive keyword
that usually expects a filename, such as [% PROCESS $myfile
%].

The $ prefix should always be
used for variable interpolation,
regardless of the underlying data type. For
example, the string "$msg.greeting
$planet.0" shows how $ is used
to access a hypothetical hash value, msg.greeting,
and also a list item, planet.0. In both cases,
$ is used as the prefix.

3.2.2 Simple Data Types

The simplest variables are
scalars that hold just one value:

[% answer = 42 %]
[% author = 'Douglas Adams' %]

The values are referenced in a template by embedding the variable
name in a tag:

The answer to the Ultimate Question of Life, the
Universe and Everything is [% answer %].

 -- [% author %]

The optional SET and GET
directive
keywords can be used when defining and subsequently retrieving
variable values:

[% SET author = 'Douglas Adams' %]
[% GET author %]

However, you'll rarely see the
GET and SET keywords used
because the Template Toolkit allows you to omit them. The common use
is to update and access variables directly, as shown here:

[% author = 'Douglas Adams' %]
[% author %]

Scalar variables can contain numbers or text strings that both the
Template Toolkit and Perl treat as interchangeable. Strings are
automatically converted into numbers and numbers into strings
whenever one or the other is required.

The answer to the Ultimate Question of Life, the
Universe and Everything is 42.

 -- Douglas Adams

You can set any number of variables in the same directive:

[% answer = 42
 author = 'Douglas Adams'
%]

You don't need a semicolon between each item in a
SET list, but you will need one after the last
item if other directives follow. Semicolons are always required to
separate GET directives in the same tag:

[% answer = 42 # implicit SET..
 author = 'Douglas Adams'; # ...continued
 answer; # implicit GET
 author; # implicit GET
%]

Numbers can be specified as integers or in floating-point format:

[% answer = 42
 pi = 3.14
%]

String values can be enclosed in single
quotes or double quotes and can span several lines:

[% author = 'Douglas Adams'
 book = "The Hitch Hiker's Guide to the Galaxy"
 advice = "Don't Panic"
 about = "On thursday lunchtime the Earth gets
 unexpectedly demolished to make way
 for a new hyperspace bypass..."
%]

Using single or double quotes can be a matter of convenience, such as
in this example in which the values for book and
advice contain apostrophes that would otherwise be
mistaken for the closing single-quote character. However, the main
reason for choosing double quotes over single quotes is to allow
variable values to be embedded in the string.

In single quotes, the $ character is treated as a
literal and has no special meaning:

[% price = '$4.20' %]

In double quotes, on the other hand, the $ is used
to mark the start of a variable name:

[% summary = "$book by $author" %]
Summary: [% summary %]

The values of the $book and
$author variables will be
interpolated into the relevant places in the
string:

Summary: The Hitch Hiker's Guide to the Galaxy by Douglas Adams

You can also embed dotted variables in
double-quoted strings:

[% summary = "$book.title by $book.author" %]

The ${...} delimiters can be
used to explicitly scope a variable name. You'll
need this whenever you have a variable nestling up tight against a
dot (.) or other characters that could be mistaken
for part of the name.

[% webpage = "h2hg/chapter_${chapter.number}.html" %]

Watch out in particular for periods used to mark the end of a
sentence. Without the ${ and }
in place to scope the your.name variable in the
next example, the template fails to compile and raises a parse error:

[% greeting = "Hello ${your.name}." %] # GOOD
[% greeting = "Hello $your.name." %] # BAD - parse error!

If you want to include a literal $ character in a
double-quoted string, precede it with a \
(backslash) character to escape it from any
special meaning:

[% language = 'Perl'
 pledge = "Will hack $language for \$\$\$"
%]
I pledge: [% pledge %]

The backslash characters are removed, leaving
the dollar signs ringing:

I pledge: Will hack Perl for $$$

You can also use the backslash character to escape any occurrences in
the string of the quote character you're using,
' or ":

[% advice = 'Don\'t Panic'
 suggest = "Read \"$book\" by ${author}."
%]
1) [% advice %]
2) [% suggest %]

This is the output generated:

1) Don't Panic
2) Read "The Hitch Hiker's Guide to the Galaxy" by Douglas Adams.

One final use of the backslash is to embed special metacharacters in
a double-quoted string. For example, the \n
sequence indicates a newline, \r a carriage
return, and \t a tab character:

[% blockquote = "$advice\n\t-- $author" %]

When the value of blockquote is displayed, a
newline and tab character are printed in the correct place:

Don't Panic
 -- Douglas Adams

If you want a literal backslash character in either a single- or
double-quote string, you'll need to escape it with
another backslash:

[% dospath = "C:\\dos\\path" %]

It's ugly, but it works. The backslash is a
relatively uncommon character (except in DOS filenames, as in this
example), so it's not something you normally need to
worry about.

3.2.3 Complex Data Types

In contrast to simple
data types that hold only a single value, the Template Toolkit
supports two complex data types for storing multiple values: the
list and hash. A list is an
ordered array of other variables, indexed numerically and starting at
element 0. A hash is an unordered collection of other variables that
are indexed and accessible by a unique name or
key.

If you're using the Template Toolkit from Perl, you
can define template variables that reference any existing hash and
array data structures in your Perl program that you want to make
accessible in the templates:

my $vars = {
 primes => [2, 3, 5, 7, 11, 13],
 terms => {
 sass => 'know, be aware of, meet, have sex with',
 hoopy => 'really together guy',
 frood => 'really, amazingly together guy',
 },
};

$tt->process($input, $vars)
 || die $tt->error();

List and hash data structures can also be defined within templates
using a syntax similar to the Perl equivalents shown earlier. The
default syntax is actually a little simpler than in Perl, allowing
= to be used in place of =>
and treating commas between items as optional. However, the Template
Toolkit is also comfortable with data structures laid out
"Perl-style" using
=> and commas. This is particularly useful if
you're coming from a Perl background or trying to
merge existing Perl data definitions into template code, or vice
versa.

Let's look at the syntax for lists and hashes in
more detail.

3.2.3.1 Lists

A list
variable
is defined in a template using the
[...] construct. Individual
elements can be separated with whitespace, commas, or any combination
of the two. The following all create equivalent lists:

[% primes = [2,3,5,7,11,13] %]
[% primes = [2 3 5 7 11 13] %]
[% primes = [2, 3, 5, 7, 11, 13] %]
[% primes = [2, 3 5, 7 11, 13] %]

The elements can be literal number or string values, or can reference
other variables:

[% two = 2
 three = 3
 primes = [two, three, 5, 7, 11, 13]
%]

You can also use the .. operator to create a range
of values. Whitespace is optional on either side of it.

[% one_to_four = [1..4] %]

The values in a range can also be specified using variables:

[% start = 1
 end = 4
 items = [start .. end]
%]

List elements are accessed using the dot
operator. The list name is followed by the
. character and then the element number.

[% primes.0 %] # 2
[% primes.3 %] # 7

Like Perl, the first element of a list is element
0, not element 1, meaning that
primes.3 is the fourth
element in the list, not the third. If this is confusing, it might
help if you think of this number as an offset from the beginning of
the list, rather than as the element number.

3.2.3.2 Hashes

A hash variable is defined in a template using
the {...} construct:

[% terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 }
%]

Each entry in a hash is composed of a pair of values. The first is
the key through which the second, the value, will be indexed in the
hash. You can use either = or
=> to separate the key from the value. As with
lists, commas can be used to delimit each pair but are not required.

[% terms = {
 sass => 'know, be aware of, meet, have sex with',
 hoopy => 'really together guy',
 frood => 'really, amazingly together guy',
 }
%]

Hash items are also accessed using the dot operator. In this case,
the key for the required item is specified after the
. character:

[% terms.hoopy %] # really together guy

If you assign a value to an element in a hash that
doesn't yet exist, it will
autovivify the parent hash and any intermediate
hashes so that the variable just springs into life when you first use
it:

[% foo.bar.baz = 'hello world' %]

In this example, the foo hash and nested
bar hash will be created automatically (assuming
they didn't already exist), and
bar will contain a baz item
assigned the value hello world.

3.2.4 Dot Operator

We've already
seen some simple examples of using the dot operator to access
elements of complex variables. In the case of
a list, an integer follows the dot operator
to reference a particular item in the list. Remember that lists start
counting their elements at 0, not 1, so the following directive
fetches the fourth item in the
primes list�in this case, the number
7:

[% primes = [2, 3, 5, 7, 11, 13] %]
[% primes.3 %] # 7

For hash arrays, the dot operator is
followed by the key for the item required:

[% terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 }
%]
[% terms.hoopy %]

3.2.4.1 Compound dot operations

A variable reference can include many dot
operators chained together to access data nested deeply in a complex
data structure.

Here's an example of some nested data:

[% arthur = {
 name = 'Arthur Dent',
 planet = 'Earth',
 friends = {
 ford = {
 name = 'Ford Prefect'
 home = 'Betelgeuse'
 }
 slarti = {
 name = 'Slartibartfast'
 home = 'Magrethea'
 }
 }
 }
%]

The following compound variables access different parts of the data
structure, returning the values shown as comments to the right:

[% arthur.friends.ford.name %] # Ford Prefect
[% arthur.friends.slarti.home %] # Magrethea

3.2.4.2 Interpolated variables names

The Template Toolkit uses the
$ character to indicate that a variable should be
interpolated in position. Most frequently, you see this in
double-quoted strings:

[% fullname = "$honorific $firstname $surname" %]

or embedded in plain text when the INTERPOLATE
option is set:

Dear $honorific $firstname $surname,

The same rules apply within directives. If a variable or part of a
variable is prefixed with a $, it is replaced with
its value before being used. The most common use is to retrieve an
element from a hash where the key is stored in a variable.

We saw an example of this in Chapter 2:

[% terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 }
%]
[% key = 'frood' %]
[% terms.$key %] # really, amazingly together guy

The value for key is interpolated into the
terms.$key expression, resulting in the correct
value being displayed for terms.frood.

Curly braces can be used to delimit interpolated variable names where
necessary. For example:

[% ford = {
 name = 'Ford Prefect'
 type = 'frood'
 }
%]

[% ford.name %] is a [% terms.${ford.type} %]

3.2.4.3 Private variables

In Perl, it is common practice to use a leading
underscore before the names of variables in an object hash to
indicate those that should be considered
"private" and not for use outside
of the object methods. The Template Toolkit honors this and will not
return any item from a hash array or object whose name begins with
_ or . (which could be confused
with the dot operator).

[% stuff = {
 _private = "You won't see me"
 public = "You will see me"
 }
%]
[% stuff.public %] # You will see me
[% stuff._private %] # [nothing]

Any attempts to retrieve these values, even indirectly by use of a
variable key, will return the empty string, indicated in these
examples as [nothing]:

[% var = "_private";
 stuff.$var # [nothing]
%]

3.2.5 Dynamic Data Types

The common feature of
scalars, lists, and hash arrays is that they contain
static values. What this means in the context of
template processing is that they contain pre-defined values that
don't change from one minute to the next
unless you specifically update the variable. In
other words, the value is "there for the
taking" once set, and can be inserted directly into
a template without requiring any additional computation.

A dynamic value, on the other hand, is one that
is computed each time it is used. The Template
Toolkit allows template variables to be bound to Perl subroutines and
objects. When the variable is accessed, the subroutine or appropriate
object method is called and can perform whatever operation or
calculation is required to return a value. The value returned can be
different each time and may depend on any number of different
factors. Hence the name dynamic.

Static and dynamic variables are accessed using exactly the same
dotted notation. You don't need to change your
templates if you decide to one day switch from using a static hash
array to a dynamic subroutine that fetches some data from a database
and returns a generated hash, for example. These are the kinds of
implementation details that the Template Toolkit hides from you so
that your templates can remain simple and portable.

Using dynamic variables when calling the Template Toolkit from Perl
is as simple as passing references to subroutines or objects:

use CGI;

my $vars = {
 prime_number => sub {
 # return a random prime number from first 6
 my @primes = (2, 3, 5, 7, 11, 13);
 return $primes[rand @primes];
 },

 cgi => CGI->new(),
};

$tt->process($input, $vars)
 || die $tt->error();

There is no way to define new subroutines or objects directly in a
template without resorting to embedding Perl code using the
PERL or RAWPERL directives (and
enabling the EVAL_PERL option, of course).
However, the Template Toolkit plugin architecture allows you to
define plugins that can be loaded directly into
a template to define new subroutine and object variables. This will
be covered in detail in Chapter 6.

3.2.5.1 Subroutines

The
subroutine
bound to a template variable will be invoked each time the value is
required, in a GET directive, for example, or
perhaps for interpolating into a string:

[% prime %] # calls subroutine
[% more = "$prime $prime $prime" %] # three calls

The subroutine returns a value for the template variable, in this
case returning a random choice of one of the first six prime numbers.
Each time the variable is used, the subroutine is called and a
different value returned. Of course, the nature of random numbers is
such that the same value could actually be returned any number of
times in the example. However, the important fact is that the value
is computed each time, and any similarity between the values returned
for any particular invocations is coincidental.

3.2.5.2 Objects

A variable can also be bound to a Perl
object whose methods can be invoked using the same dotted notation as
for accessing elements in a hash array:

This CGI script is running on [% cgi.server_name %]

The use of identical syntax for accessing hash items and object
methods is an intentional and powerful feature of the Template
Toolkit language. The Uniform Access Principle
hides the implementation details behind an abstract notation that
effectively "does the right thing"
for whatever kind of data you're using. It provides
a clear separation of concerns between the
representation and
presentation of the data, allowing one to change
without affecting the other.

3.2.5.3 Passing arguments

Arguments
can be passed to
subroutines or object methods called from a template by adding them
in parentheses immediately after the variable name. The following
example shows how the literal string value docid
is passed to the param() method of the CGI object
bound to the cgi variable:

[% cgi.param('docid') %]

Here's an example of a subroutine that takes a list
of arguments and returns them joined together in a single string,
delimited by a comma and space:

my $vars = {
 join => sub {
 return join(', ', @_);
 },
};

$tt->process($input, $vars)
 || die $tt->error();

Any number of arguments can be passed to the subroutine, either as
numbers, as literal strings, or by referencing other variables. This
is shown in Example 3-8.

Example 3-8. join

[% ten = 10
 thirty = 30;
 join(ten, 20, thirty, '40')
%]

The output generated by Example 3-8 is as follows:

10, 20, 30, 40

3.2.5.4 Pointless arguments

Strictly speaking, you
can pass arguments to any
template variable, even if the variables aren't
defined as references to subroutines or objects:

[% arthur = {
 name = 'Arthur Dent',
 planet = {
 name = 'Earth',
 info = 'Mostly Harmless'
 }
 }
%]

[% arthur(6).planet(7).name(42) %] # Earth

In this example, the data structure is entirely static. There are no
subroutines or objects lurking around that might make use of the
arguments, so they are silently ignored. However, it illustrates the
basic principle that any variable component can be provided with
parenthesized parameters.

Providing arguments for variables that ignore them is not entirely
pointless. When you're designing the look and feel
of a web site, for example, you can define some simple, static data
to use as "dummy" values for the
page content. If you plan to implement some of these data items using
subroutines or objects, you can go ahead and add any relevant
parameters now so that you don't have to update your
templates when the data model changes.

3.2.5.5 Named parameters

Named parameters can also be passed to
subroutines and object methods. These are automatically collated into
a hash reference and passed as the last argument
to the subroutine or method.

my $vars = {
 join => sub {
 # look for hash ref as last argument
 my $params = ref $_[-1] eq 'HASH' ? pop : { };
 my $joint = $params->{ joint };
 $joint = ', ' unless defined $joint;
 return join($joint, @_);
 },
};

$tt->process($input, $vars)
 || die $tt->error();

Example 3-9 shows a named parameter,
joint, provided in addition to the positional
arguments, ten, 20,
thirty, and '40'.

Example 3-9. joint

[% ten = 10
 thirty = 30;
 join(ten, 20, thirty, '40', joint = '+')
%]

The output generated by Example 3-9 is as follows:

10+20+30+40

Named
parameters can be specified anywhere in the
argument list:

[% join(joint='+', ten, 20, thirty, '40') %]
[% join(ten, 20, joint='+', thirty, '40') %]

They are automatically removed from the list of positional arguments
and passed to the subroutine or object method as the last argument,
bound together in a single hash array reference. For this reason, and
for the sake of clarity, we recommend that you always specify named
parameters at the end of the list:

[% join(ten, 20, thirty, '40', joint='+') %]

In all these examples, the subroutine bound to the
join variable would be called with the following
list of arguments:

(10, 20, 30, 40, { joint => '+' })

In this subroutine, we look to see whether the last argument is a
reference to a hash array. If it is, we pop it
from the list. Otherwise, we create an empty Perl hash reference for
$params.

look for hash ref as last argument
my $params = ref $_[-1] eq 'HASH' ? pop : { };

We then look for the joint item in the named
parameter hash and provide a sensible default if it
isn't defined:

my $joint = $params->{ joint };
$joint = ', ' unless defined $joint;

The subroutine calls Perl's join
function, passing the $joint value along with the
rest of the argument list. The resulting string is then returned:

return join($joint, @_);

Arguments can be passed to any variable, even those that are set to
static values and have no use for an argument. In this case, they are
simply ignored. As such, the following code:

[% meaning_of_life = 42 %]
[% meaning_of_life("Monday") %]

produces:

42

The argument "Monday" is ignored when the value of
meaning_of_life is evaluated. The static value,
42, is simply inserted in its place.

3.2.5.6 Mixing dynamic and static data

Static and dynamic data structures can be
freely intermixed. Static lists and hash arrays can contain
references to dynamic subroutines and object methods. These can
return complex data structures, including any combination of scalars,
hash arrays, lists, subroutines, and object references.

my $vars = {
 zero => sub {
 return {
 one => sub {
 return [$obj1, $obj2, $obj3],
 },
 };
 },
};

Compound dot operations work with dynamic data items exactly as they
do for static ones. A series of dot operations can be chained
together into a single expression to fetch an item from deep within a
data structure, some or all of which might be computed on demand.

[% zero.one.2.three %]

In this example, zero is bound to a subroutine
that returns a reference to a hash array. This contains another
subroutine, one, which returns a list of objects.
We take the third object, $obj3 (yes, the third,
don't forget they start at 0), and call the
three() method against it. Other than knowing
that one returns a list (and so requires an index
number�e.g., 2) and the others are hashes or
objects (requiring index keys�e.g., one and
three), we can remain blissfully ignorant of any
of the underlying implementation details.

Furthermore, there's nothing to stop you from
changing the one subroutine to return a hash array
(or object) that contains the items (or methods)
0, 1, 2, and
so on:

my $vars = {
 zero => sub {
 return {
 one => sub {
 return {
 0 => $obj1,
 1 => $obj2,
 2 => $obj3,
 },
 },
 };
 },
};

It probably isn't something that you would want to
do that often, but it does illustrate the point that all data types
are equal as far as the dot operator is concerned. The following
fragment continues to work unmodified, with 2 now
being treated as a hash key instead of a list index:

[% zero.one.2.three %]

3.2.5.7 Returning values

A subroutine
or object method can return any kind of
value when called. Hash arrays and lists should be returned using
references rather than a list of multiple items.

my $vars = {
 moregood => sub {
 return [3.14, 2.718];
 },
 lessgood => sub {
 return (3.14, 2.718);
 },
};

If your subroutine does return multiple values, the Template
Toolkit will automatically combine them into a list reference. This
isn't the recommended usage, but it provides some
level of support for existing Perl code that wasn't
written with the Template Toolkit in mind.

both work as expected
[% moregood.0 %] [% moregood.1 %]
[% lessgood.0 %] [% lessgood.1 %]

If you're writing new subroutines and methods from
scratch, we suggest that you return a reference to a list rather than
a list of items whenever possible. Be warned that if you do return a
list of items, the first of which is undefined, the Template Toolkit
will assume an error has occurred and raise it as such:

return (undef, ...); # NOT OK: undef indicates error!

If you want to return a list of items that contains an undefined
value as the first element, you should always return it as a
reference to a list:

return [undef, ...]; # OK, returns list reference

3.2.5.8 Error handling

Errors can be reported from subroutines and
object methods by calling die(). This example
shows a subroutine that dies as soon as it is called:

my $vars = {
 barf => sub {
 die "a sick error has occurred\n";
 },
};

If we process a template containing a reference to the
barf variable, like so:

I think I'm going to [% barf %]

the Template process() method will return a false value and the
error() method will report:

undef error - a sick error has occurred

Errors raised by calling die are caught by the
Template Toolkit and converted to a
Template::Exception object that includes the error
message (a sick
error has occurred) and an
error type (undef). To throw an exception of a
type other than the default undef, Perl code
should die() with a reference to a
Template::Exception object.

use Template::Exception;

my $vars = {
 barf => sub {
 die Template::Exception->new(sick => 'feel ill');
 },
};

Now when the variable is accessed and the subroutine invoked, the
error reported will be:

sick error - feel ill

Exceptions can be caught within templates using the
TRY / CATCH directive
construct:

[% TRY;
 barf;
 CATCH sick;
 "Eeew! We just caught a sick error ($error.info)";
 END
%]

In this example, the sick error will be caught by
the CATCH block, generating the following output:

Eeew! We just caught a sick error (feel ill)

In this case, the process() method will return a
true value. The error has been caught and dealt with, and as far as
we're concerned, the template was processed
successfully. Any exceptions of other types will still be passed
through unless we add other CATCH blocks to catch
them. This ensures that anything besides a sick
exception will not be caught here.

The exception types 'stop' and
'return' are used to implement the
STOP and RETURN directives.
Throwing an exception as:

die (Template::Exception->new('stop'));

has the same effect as the directive:

[% STOP %]

See Chapter 4 for further information on error
handling and flow control directives.

3.2.6 Special Variables

The Template Toolkit
defines
a number of special variables. Some, such as
template and component, are
universally defined and can be accessed from anywhere. Others, such
as loop and content, are
available only in a particular context, such as inside a
FOREACH block (loop) and in a
template loaded into another using the WRAPPER
directive (content).

There's nothing to stop you from creating your own
variables with the same name. In that case, they will simply mask the
special variables provided by the Template Toolkit. However, if you
define your own variable called loop, for example,
it will be masked by the special variable provided in a
FOREACH loop. However, the original value for your
loop variable will be restored at the end of the
FOREACH block.

The special variables defined by the Template Toolkit are covered in
the sections that follow.

3.2.6.1 template

The template variable contains a reference to the main
template being processed. It is implemented as a
Template::Document object, described in detail in
Chapter 8. The template
variable is correctly defined within templates that are processed via
the PRE_PROCESS, PROCESS,
WRAPPER, and POST_PROCESS
configuration options. This allows standard headers, footers, and
other user interface templates to access metadata about the main page
template being processed, even before it is processed.

The name and modtime metadata
items are automatically defined, providing the template name and
modification time in seconds since January 1, 1970 (the Unix
Epoch), respectively. Any other items defined in
META tags in the template will also be available
via the appropriately named method.

For example, if the main page template defines the following:

[% META title = 'My Test Page'
 author = 'Arthur Dent'
%]

a header template, defined as a
PRE_PROCESS option, can access the
template.title and
template.author variables:

<html>
 <head>
 <title>[% template.title %]</title>
 </head>

 <body>
 <h1>[% template.title %]</h1>
 <h2>by [% template.author %]</h2>

Note that the template variable always references
the main page template, regardless of any additional template
components that may be processed.

3.2.6.2 component

The component variable is like
template but always contains a reference to the
current template component being processed.

This example demonstrates the difference:

$tt->process('foo')
 || die $tt->error(), "\n";

A F<foo> template:

[% template.name %] # foo
[% component.name %] # foo
[% PROCESS footer %]

A F<footer> template:

[% template.name %] # foo
[% component.name %] # footer

In the main page template, foo, the
template and component
variables both reference the same
Template::Document object, returning a value of
foo for both template.name and
component.name. In the footer
template, the template variable remains unchanged,
but the component now references the
Template::Document object for the
footer and returns the value of
footer for component.footer
accordingly.

3.2.6.3 loop

Inside the block of a
FOREACH directive, the loop
variable references a special object called an
iterator, which is responsible for controlling
and monitoring the execution of the loop. The following example shows
it in use:

[% FOREACH item IN items %]
 [% IF loop.first %]

 [% END %]
 [% item %] ([% loop.count %] of [% loop.size %])
 [% IF loop.last %]

 [% END %]
[% END %]

The loop variable is implemented by a
Template::Iterator object. It provides methods
such as first and last, shown
in the previous example, which return true only on the first and last
iteration of the loop. The count method returns
the current iteration count, starting at one (use
index to get the real index number, starting at
zero). The size method returns the size of the
list.

The loop iterator is covered in detail in the
discussion of the FOREACH directive in Chapter 4.

3.2.6.4 error

The Template Toolkit provides the
TRY...CATCH construct
to allow you to catch (and throw)
runtime errors in your templates. Within a CATCH
block, the error variable contains a reference to
the Template::Exception object thrown from within
the TRY block. The type and
info methods can be called against it to determine
what kind of error occurred and what (hopefully) informative error
message was reported.

[% TRY %]
 ...some template code that
 may throw an error...
[% CATCH %]
 An error occurred:
 [% error.type %] - [% error.info %]
[% END %]

For convenience, the error variable can be
referenced by itself and it will automatically be presented as a
string of the form $type error - $info:

[% TRY;
 THROW food 'cheese roll';
 CATCH;
 error; # food error - cheese roll
 END
%]

The TRY, CATCH, and other
related directives are covered in detail in Chapter 4. For further information about the
Template::Exception object, see Chapter 8 and the Template::Exception manpage.

3.2.6.5 content

The content
variable is
used by the WRAPPER directive to pass the output
generated by processing the WRAPPER content block
to the wrapping template. Example 3-10 shows it in
action.

Example 3-10. content

[% scared = 'afeared'
 beats = 'noises'
 vibes = 'sweet airs'
 chill = 'give delight'
-%]

[% WRAPPER box border=1 %]
 Be not [% scared %]; the isle is full of [% beats %],
 Sounds and [% vibes %], that [% chill %] and hurt not.
[% END -%]

[% BLOCK box -%]
<table border="[% border %]">
 <tr>
 <td>
 [%- content -%]
 </td>
 </tr>
</table>
[% END -%]

In the first section, we define some simple variables:

[% scared = 'afeared'
 beats = 'noises'
 vibes = 'sweet airs'
 chill = 'give delight'
-%]

This is a rather contrived way of illustrating how the
WRAPPER directive first processes the block
following it, and up to the corresponding END
directive, to resolve any directives embedded within. In this case,
the values for the scared,
beats, vibes, and
chill variables are substituted into their correct
places.

[% WRAPPER box border=1 %]
 Be not [% scared %]; the isle is full of [% beats %],
 Sounds and [% vibes %], that [% chill %] and hurt not.
[% END -%]

The WRAPPER directive then calls the
box template as if it were an
INCLUDE directive. In addition to any local
variables specified with the WRAPPER
(border in this example), it also sets the
content variable to contain the processed block
output. Here content contains the completed quote
from "Be not
afeard..." through
"...give delight and hurt
not".

In the BLOCK box defined at the end of the
example, the content variable is referenced like
any other, along with the border variable passed
in as an explicit argument to the WRAPPER
directive:

[% BLOCK box %]
<table border="[% border %]">
 <tr>
 <td>
 [%- content -%]
 </td>
 </tr>
</table>
[% END %]

This example generates the following output:

<table border="1">
 <tr>
 <td>
 Be not afeared; the isle is full of noises,
 Sounds and sweet airs, that give delight and hurt not.
 </td>
 </tr>
</table>

3.2.6.6 global

The global variable references a predefined hash
array, which is initially empty. It can be used to store any global
data that you want shared between templates, regardless of how they
are processed, using PROCESS,
INCLUDE, etc.

[% global.copyright = '© 2003 Arthur Dent' %]

3.2.6.7 view, item

The Template Toolkit provides an experimental
VIEW directive. It simplifies the process of
displaying complex data structures by automatically mapping different
data types onto templates designed specifically to deal with them.

In Example 3-11, a VIEW called
people_view is defined that contains three
BLOCK definitions, for hash,
list, and text data items.

Example 3-11. view

[% VIEW people_view;
 BLOCK hash;
 "$item.name is from $item.home\n";
 END;

 BLOCK list;
 view.print(person)
 FOREACH person IN item;
 END;

 BLOCK text;
 item;
 END;
END;
-%]

[% people = [
 { name = 'Arthur Dent',
 home = 'Earth' }
 { name = 'Ford Prefect',
 home = 'Betelgeuse' }
 'Slartibartfast from Magrethea'
]
-%]

[% people_view.print(people) %]

The BLOCK definitions within the scope of the
VIEW...END directives
effectively remain local to the VIEW. Each can
access the view and item
variables that respectively reference the current view object,
implemented by the Template::View module, and the
current item of data being presented by the view.

The hash block, for example, will be called
whenever the view has a hash array that needs presenting. The
item variable references the hash array in
question, allowing the block to access the
item.name and item.home values.

BLOCK hash;
 "$item.name is from $item.home\n";
END;

The list block is called whenever the view has a
list to present. In this case, we use a FOREACH
directive to iterate through the items in the list that
item now references. For each list element, we
call back to the print method of the current
view object so that it can correctly select the
appropriate template for displaying it.

BLOCK list;
 view.print(person)
 FOREACH person IN item;
END;

The final block, text, is called whenever the view
has a piece of plain text to present. All we need to do is output the
value of item. If you want to pass all your text
through a filter�to escape any HTML entities, for
example�this is where you would do it.

BLOCK text;
 item;
END;

Having defined some sample data in people, we can
then call the print method against the
people_view view, passing the
people data as an argument:

[% people_view.print(people) %]

The view will recognize that the argument is a reference to a list,
and will call the list block to handle it. This
will call the print method for each item in the
list. For the first two items, this will result in the
hash block being processed. For the last, it will
call instead to the text block. The end result is
that the right template gets called to handle the right kind of data.

Example 3-11, therefore, outputs the following:

Arthur Dent is from Earth
Ford Prefect is from Betelgeuse
Slartibartfast is from Magrethea

3.2.7 Variable Scope

Any simple
variables that you create, or any changes you make to existing
variables, will persist only while the template is being processed.
The top-level variable hash is copied before processing begins, and
any changes to variables are made in this copy, leaving the original
intact. The same thing happens when you INCLUDE
another template. The current namespace hash is cloned to prevent any
variable changes made in the included template from interfering with
existing variables. The PROCESS option bypasses
the localization step altogether, making it slightly faster but
requiring greater attention to the possibility of side effects caused
by creating or changing any variables within the processed template.

Here is an example showing the difference between
INCLUDE and PROCESS:

[% BLOCK change_name %]
 [% name = 'bar' %]
[% END %]

[% name = 'foo' %]
[% INCLUDE change_name %]
[% name %] # foo
[% PROCESS change_name %]
[% name %] # bar

Dotted compound variables behave slightly differently because the
localization process is only skin-deep. The current variable
namespace hash is copied, but no attempt is made to perform a
deep-copy of other structures within it (hashes, arrays, objects, and
so on). A variable referencing a hash, for example, will be copied to
create a new reference, but one that points to the same hash. Thus,
the general rule is that simple variables (undotted variables) are
localized, but existing complex structures (dotted variables) are
not.

This examples demonstrates this subtle effect:

[% BLOCK all_change %]
 [% x = 20 %] # changes copy
 [% y.z = 'zulu' %] # changes original
[% END %]

[% x = 10
 y = { z => 'zebra' }
%]
[% INCLUDE all_change %]
[% x %] # still '10'
[% y.z %] # now 'zulu'

If you create a complex structure such as a hash or list reference
within a local template context, it will cease to exist when the
template is finished processing:

[% BLOCK new_stuff %]
 [% # define a new 'y' hash array in local context
 y = { z => 'zulu' }
 %]
[% END %]

[% x = 10 %]
[% INCLUDE new_stuff %]
[% x %] # outputs '10'
[% y %] # outputs nothing, y is undefined

Similarly, if you update an element of a compound variable that
doesn't already exist, a hash
will be created automatically and deleted again at the end of the
block:

[% BLOCK new_stuff %]
 [% y.z = 'zulu' %]
[% END %]

However, if the hash does already exist, you
will modify the original with permanent effect. To avoid potential
confusion, it is recommended that you don't update
elements of complex variables from within blocks or templates
included by another block or template.

If you want to create or update truly global variables, use the
global namespace, described earlier.

3.2.8 Compile-Time Constant Folding

The default behavior for the Template Toolkit is to look up
the value for a variable each and every time it is used in a
template. This is what you want most of the time, but it can also be
a little wasteful if you have variables that never or rarely change.

For example, you might want to define a set of variables to specify a
particular color scheme for your web site. You want to use variables
so that you can change the colors quickly and easily at some point in
the future. However, you don't expect any of the
values to change from one page, template, or web server request to
the next. In fact, you would probably prefer it if they
couldn't be changed, to protect them from being
accidentally overwritten by a careless template author.

The solution is to use the CONSTANTS configuration
option to provide a reference to a hash array of variables whose
values are constant. The hash array can contain any kind of complex,
nested, or dynamic data structures that you would normally define as
a regular variable.

my $tt = Template->new({
 CONSTANTS => {
 version => 3.14,
 release => 'skyrocket',
 col => {
 back => '#ffffff',
 fore => '#000000',
 },
 myobj => My::Object->new(),
 mysub => sub { ... },
 joint => ', ',
 },
});

Within a template, these variables are accessed using the
constants namespace prefix:

Version [% constants.version %] ([% constants.release %])

Background: [% constants.col.back %]

When the template is compiled, these variable references are replaced
with the corresponding value. No further variable lookup is then
performed when the template is processed. This results in templates
that can be processed significantly faster by virtue of the fact that
they have less work to do in looking up variable values. This can be
an important optimization if you're using the
Template Toolkit to generate dynamic pages behind an online web
server.

Subroutines and objects can be provided as
CONSTANTS items. You can even call virtual methods
on constant variables:

[% constants.mysub(10, 20) %]
[% constants.myobj(30, 40) %]
[% constants.col.keys.sort.join(', ') %]

One important proviso is that any arguments you pass to subroutines
or methods must also be literal values or compile-time constants.

For example, these are both fine:

literal argument
[% constants.col.keys.sort.join(', ') %]

constant argument
[% constants.col.keys.sort.join(constants.joint) %]

But this next example will raise an error at parse time, complaining
that joint is a runtime variable that cannot be
determined at compile time:

ERROR: runtime variable argument!
[% constants.col.keys.sort.join(joint) %]

The
CONSTANTS_NAMESPACE option can be used to provide a
different namespace prefix for constant variables. For example:

my $tt = Template->new({
 CONSTANTS => {
 version => 3.14,
 # ...etc...
 },
 CONSTANTS_NAMESPACE => 'const',
});

Constants would then be referenced in templates as:

[% const.version %]

3.3 Virtual Methods

The Template Toolkit provides
a number of virtual methods, or vmethods, that
allow you to perform common operations on the three main types of
data: scalars, lists, and hash arrays. In many cases, they are
analogous to the Perl functions of the same name. The
length scalar virtual method, for example, is
implemented using Perl's length
function.

Some virtual methods are interchangeable between data types. For
example, you can call any list virtual method on a single scalar item
and it will be treated as if it were a single element list. In other
cases, the same virtual method is provided for different data types,
providing alternate implementations of similar functionality. The
size virtual method, for example, returns
1 for a scalar item, the number of elements in a
list, or the number of key/value pairs in a hash array.

Virtual methods are invoked using the regular dot operator syntax:

[% string.length %]
[% list.join %]
[% hash.size %]

They can be chained together in compound variables, as shown here:

[% hash.keys.sort.join(', ') %]

The majority of virtual methods compute and return a value without
modifying the underlying data (e.g., size).
However, there are a number of virtual methods that do, one of which
is pop, which removes the last item from a list.
Example 3-12 shows examples of both in use.

Example 3-12. beer

[% beers = ['Bass' 'Guinness' "Murphy's"]
 bottles = 'bottles';

 WHILE (n = beers.size)
-%]
 [% n %] [% bottles %] of beer in my list,
 [% n %] [% bottles %] of beer,
 Take one down,
 Pass it around,
[%
 beer = beers.pop
 bottles = beers.max ? 'bottles' : 'bottle'
-%]
 (a bottle of [% beer %] is hastily drunk)
 [% beers.size or 'no' %] [% bottles %] of beer in my list.

[% END %]

Example 3-12 will output the following:

3 bottles of beer in my list,
3 bottles of beer,
Take one down,
Pass it around,
(a bottle of Murphy's is hastily drunk)
2 bottles of beer in my list.

2 bottles of beer in my list,
2 bottles of beer,
Take one down,
Pass it around,
(a bottle of Guinness is hastily drunk)
1 bottle of beer in my list.

1 bottle of beer in my list,
1 bottle of beer,
Take one down,
Pass it around,
(a bottle of Bass is hastily drunk)
no bottles of beer in my list.

3.3.1 Scalar Virtual Methods

The Template Toolkit defines the following virtual methods that
operate on scalar values.

3.3.1.1 chunk(size)

This splits the input text into a
list of smaller chunks. The argument defines the maximum length in
characters of each chunk.

[% ccard_no = "1234567824683579";
 ccard_no.chunk(4).join
%]

It outputs the following:

1234 5678 2468 3579

If the size is specified as a negative number, the text will be
chunked from right to left. This gives the correct grouping for
numbers, for example:

[% number = 1234567;
 number.chunk(-3).join(',')
%]

and outputs the following:

1,234,567

3.3.1.2 defined

This
returns true if the value is defined, even if it contains an empty
string or the number zero. It returns false if the item is undefined.

foo [% foo.defined ? 'is' : 'is not' %] defined

3.3.1.3 hash

This returns a hash reference containing the
original item as the single entry, indexed by the key
value:

[% name = 'Slartibartfast' %]
[% user = name.hash %]
[% user.value %] # Slartibartfast

3.3.1.4 length

This virtual method returns the number of characters
in the string representation of the item:

[% IF password.length < 8 %]
 Your password is too short, please try again.
[% END %]

3.3.1.5 list

This returns the value as a single element
list:

[% things = thing.list %]

The list virtual method can also be called against
a list and will return the list itself, effectively doing nothing.
Hence, if thing is already a list,
thing.list will return the original list. Either
way, things ends up containing a reference to a
list.

Most of the time, you don't need to worry about the
difference between scalars and lists. You can call a
list virtual method against any scalar item and it
will be treated as if it were a single element list. The
FOREACH directive also works in a similar way. If
you pass it a single scalar item instead of a reference to a list, it
will behave as if you passed it a reference to a list containing that
one item, and will iterate through the block just once.

The list vmethod is provided for those times when
you really do want to be sure that you've got a list
reference. For example, if you are calling a Perl subroutine that
expects a reference to a list, adding the .list
vmethod to the argument passed to it will ensure that it gets a list,
even if the original argument is a scalar:

[% item = 'foo';
 mysub(item.list) # same as mysub([item])
%] # - item is a scalar

[% item = ['foo'];
 mysub(item.list) # same as mysub(item)
%] # - item is already a list

3.3.1.6 match(pattern)

The match virtual method performs a Perl regular
expression match on the string using the pattern passed as an
argument. Example 3-13 shows it being used to test
whether the value of the serial variable matches
the regular expression pattern ^\w{3}-\d{4}$. This
pattern requires the string to be composed of exactly three
alphanumeric "word" characters
(\w{3}), followed by a dash
(-), and then exactly four digits
(\d{4}). The ^ and
$ characters anchor the pattern to the start and
end of the string, respectively. Without them, the pattern could
match anywhere in what might be a much longer string. In this case,
we want to make sure that the serial number is exactly eight
characters long�no more, no less.

Example 3-13. serial

[% FOREACH serial IN ['ABC-1234', 'FOOD-4567', 'WXYZ-789'];
 IF serial.match('^\w{3}-\d{4}$');
 "GOOD serial number: $serial\n";
 ELSE;
 "BAD serial number: $serial\n";
 END;
END
%]

Example 3-13 outputs the following:

GOOD serial number: ABC-1234
BAD serial number: FOOD-4567
BAD serial number: WXYZ-789

The pattern can contain parentheses to capture parts of the matched
string. If the entire pattern matches, the vmethod returns a
reference to a list of the captured strings:

[% name = 'Arthur Dent' %]
[% matches = name.match('(\w+) (\w+)') %]
[% matches.1 %], [% matches.join('') %] # Dent, ArthurDent

In this example, the match vmethod returns a list
of the two strings matched by the parenthesized patterns,
(\w+). Here they are the values
Arthur and Dent.

Remember that match returns false if the pattern
does not match. It does not return a reference
to an empty list, which both Perl and the Template Toolkit would
treat as a true value, regardless of how many entries it contains.
This allows you to test the value returned by
match to determine whether the pattern matched.

The following example shows how the results of the
match vmethod can be saved in the
matches variable, while also testing that the
pattern matched. The assignment statement is enclosed in parentheses
and used as the expression for an IF directive.

[% IF (matches = name.match('(\w+) (\w+)')) %]
 pattern matches: [% matches.join(', ') %]
[% ELSE %]
 pattern does not match
[% END %]

Any regular expression modifiers can be embedded in the pattern using
the (?imsx-imsx) syntax. For example, a
case-insensitive match can be specified by using the
(?i) construct at the start of the pattern:

[% matched = name.match('(?i)arthur dent') %]

In the following fragment, the (?x) flag is set to
have whitespace and comments in the pattern ignored:

[% matched = name.match(
 '(?x)
 (\w+) # match first name
 \s+ # some whitespace
 (\w+) # match second name
 '
)
%]

The details of Perl's regular expressions are
described in the perlre(1) manpage. For a complete guide to learning
and using regular expressions, see Mastering Regular
Expressions by Jeffrey Friedl
(O'Reilly).

3.3.1.7 repeat(n)

This virtual method returns a string
containing the original item repeated a number of times. The repeat
value should be passed as an argument.

[% name = 'foo ' %]
[% name.repeat(3) %] # foo foo foo

3.3.1.8 replace(search, replace)

This virtual method performs a global search
and replace on the input string. The first argument provides a Perl
regular expression to match part of the text. The second argument is
the replacement value. Each occurrence of the pattern in the input
string will be replaced (hence the
"global" part of
"global search and replace").

[% name = 'foo, bar & baz' %]
[% name.replace('\W+', '_') %] # foo_bar_baz

The replace vmethod returns a copy of the string
with the appropriate values replaced. The original string is not
modified.

3.3.1.9 size

This virtual method always returns
1 for scalar values. It is provided for
consistency with the hash and
list virtual methods of the same name.

3.3.1.10 split(pattern)

This virtual method splits the input text into
a list of strings that is then returned. It uses the regular
expression passed as an argument as the delimiter, or whitespace as
the default if an explicit delimiter is not provided.

[% path = '/here:/there:/every/where';
 paths = path.split(':');
 paths.join; # /here /there /every/where
%]

3.3.2 List Virtual Methods

The following virtual
methods operate on a reference to a list and on scalar items that are
treated as if they were single item lists. They can also be called
against objects that are implemented as a blessed reference to a
list. If the object defines a method�say,
size�it will take precedence over the list
virtual method of the same name. If the object does not define that
method explicitly, the virtual method will instead be called.

[% mylistobj.size %] # object method or list virtual method

3.3.2.1 first(n)

This virtual method returns the first item in
the list without removing it from the list:

[% list = [10, 20 30] %]
[% list.first %] # 10
[% list.join(', ') %] # 10, 20, 30

A number can be provided as an argument. In this case, the vmethod
returns a reference to a list containing that many items copied from
the start of the list:

[% list.first(2).join(', ') %] # 10, 20

3.3.2.2 grep(pattern)

The grep vmethod returns a list of the items in
the list that match the regular expression pattern passed as an
argument. For example, you can use it to select all the files in a
directory listing, files, that have a
.txt ending:

[% txtfiles = files.grep('\.txt$') %]

3.3.2.3 join(delimiter)

This virtual method returns the items in the
list joined into a single string. By default it uses a single space
to join the items.

[% list = [10, 20 30] %]
[% list.join %] # 10 20 30

An alternate delimiter can be provided as an argument:

[% list.join(', ') %] # 10, 20, 30

3.3.2.4 last(n)

The last virtual method returns the last item in
the list without removing it from the list:

[% list = [10, 20 30] %]
[% list.last %] # 30
[% list.join(', ') %] # 10, 20, 30

As with first, an argument can be provided
indicating the number of items that should be returned from the end
of the list:

[% list.last(2).join(', ') %] # 20, 30

3.3.2.5 max

The max virtual method returns the index number
for the last element in the list. It is always one less than the
value returned by the size virtual method.

[% list = [10, 20 30] %]
[% list.max %] # 2

3.3.2.6 merge(list)

The merge virtual method returns a list composed of
the original items in the list plus those from any additional lists
passed as arguments:

[% list_a = [1 2 3];
 list_b = [4 5 6];
 list_c = [7 8 9];
 list_d = list_a.merge(list_b, list_c);
%]

The new list, list_d, contains the items merged
from list_a, list_b, and
list_c. The original lists are left unmodified.

[% list_a.join(', ') %] # 1, 2, 3
[% list_b.join(', ') %] # 4, 5, 6
[% list_c.join(', ') %] # 7, 8, 9
[% list_d.join(', ') %] # 1, 2, 3, 4, 5, 6, 7, 8, 9

3.3.2.7 pop

This virtual method removes the last item from the
list and returns it:

[% list = [10, 20 30] %]
[% list.pop %] # 30

3.3.2.8 reverse

The reverse virtual method returns a reference to a
new list containing the items in the original list, but in reverse
order:

[% list = [10, 20 30] %]
[% list.reverse.join(', ') %] # 30, 20, 10

3.3.2.9 shift

This vmethod removes the first item from the
list and returns it:

[% list = [10, 20 30] %]
[% list.shift %] # 10

3.3.2.10 size

This virtual method returns the number of
elements in the list:

[% list = [10, 20 30] %]
[% list.size %] # 3

3.3.2.11 slice(from, to)

This virtual method returns the items in the
list between the bounds passed as arguments. If the second argument
is not specified, it defaults to the last item in the list. The
original list is not modified.

[% list = [10, 20 30] %]
[% list.slice(0, 1).join(', ') %] # 10, 20
[% list.join(', ') %] # 10, 20, 30

The arguments can also be negative numbers, in which case they are
counted from the end of the list:

[% list.slice(-2, -1).join(', ') %] # 20, 30

3.3.2.12 sort, nsort

The sort vmethod returns a list of the items in
alphabetical order:

[% list = ['foo', 'bar', 'baz'] %]
[% list.sort.join(', ') %] # bar baz foo

The nsort vmethod is similar, but sorts the items
in numerical order. The following example illustrates the difference
between the two:

[% list = ['0.1', '1', '02', '3', '010', '11'] %]
[% list.sort.join(', ') %] # 0.1, 010, 02, 1, 11, 3
[% list.nsort.join(', ') %] # 0.1, 1, 02, 3, 010, 11

When the items in the list are references to hash arrays, an optional
argument can be used to specify a sort key. This corresponds to an
entry in each hash array, the value of which is used to sort the
items. This is shown in Example 3-14, where the
id and name keys as specified
as arguments to the sort virtual method.

Example 3-14. products

[% products = [
 { id = 'xyz789', name = 'Foo Widget' }
 { id = 'def456', name = 'Bar Widget' }
 { id = 'abc123', name = 'Baz Widget' }
]
-%]
Products sorted by id:
[% FOREACH product IN products.sort('id') -%]
 * [% product.id %] [% product.name %]
[% END -%]

Products sorted by name:
[% FOREACH product IN products.sort('name') -%]
 * [% product.id %] [% product.name %]
[% END -%]

The output generated by Example 3-14 is as follows:

Products sorted by id:
 * abc123 Baz Widget
 * def456 Bar Widget
 * xyz789 Foo Widget

Products sorted by name:
 * def456 Bar Widget
 * abc123 Baz Widget
 * xyz789 Foo Widget

3.3.2.13 splice(offset, length, list)

This virtual method behaves just like
Perl's splice function, allowing
you to selectively remove or replace part of a list. The first
argument defines the offset in the list of the part to be removed,
starting at 0 for the first item. With just one argument provided,
the vmethod removes everything from that element onward, returning
the removed items in a new list.

[% primes = [2, 3, 5, 7, 11, 13];
 others = primes.splice(2);
 primes.join(', '); # 2, 3
 others.join(', '); # 5, 7, 11, 13
%]

The offset can also be specified as a negative number, in which case
it is counted backward from the end of the list:

[% primes = [2, 3, 5, 7, 11, 13];
 others = primes.splice(-2);
 primes.join(', '); # 2, 3, 5, 7
 others.join(', '); # 11, 13
%]

A second optional argument can be provided to specify the length of
the section to be removed:

[% primes = [2, 3, 5, 7, 11, 13];
 others = primes.splice(2, 3);
 primes.join(', '); # 2, 3, 13
 others.join(', '); # 5, 7, 11
%]

A third optional argument can be used to provide a list of items that
will be inserted into the list in place of the removed section. This
can be specified as a reference to a list or as a list of items.

[% primes1 = [2, 3, 5, 7, 11];
 primes2 = [13, 17, 19];

 # pass reference to list
 primes3 = primes1.splice(1, 2, primes2);
 primes1.join(', '); # 2, 13, 17, 19, 7, 11
 primes2.join(', '); # 13, 17, 19
 primes3.join(', '); # 3, 5

 # pass list of items
 primes4 = primes1.splice(1, 3, 3, 5);
 primes1.join(', '); # 2, 3, 5, 7, 11
 primes4.join(', '); # 13, 17, 19
%]

3.3.2.14 unique

This vmethod returns a copy of the list with
any duplicate values removed:

[% mylist = [1 2 3 2 3 4 1 4 3 4 5];
 numbers = mylist.unique;
 numbers.join(', '); # 1, 2, 3, 4, 5
%]

3.3.2.15 unshift(item)

This virtual method adds an item to the start
of a list:

[% numbers = [2.718, 3.142];
 numbers.unshift(1.414);
 numbers.join(', '); # 1.414, 2.718, 3.142
%]

3.3.2.16 push(item)

The push vmethod is similar to
unshift, but adds the item to the end of the list:

[% numbers = [1.414, 2.718];
 numbers.push(3.142);
 numbers.join(', '); # 1.414, 2.718, 3.142
%]

3.3.3 Hash Virtual Methods

The following virtual
methods operate on hash references. They can also be called against
objects that are implemented as blessed hash arrays. As with list
virtual methods, any method explicitly provided by the object will
take precedence over a hash virtual method of the same name.

[% myhashobj.keys %] # object method or hash virtual method

3.3.3.1 defined(key)

The defined virtual method returns true or false to
indicate whether a particular item is defined in the hash. A key for
the item in question should be passed as an argument:

foo [% hash.defined('foo') ? 'is' : 'is not' %] defined

3.3.3.2 each

The each virtual method, as shown in Example 3-15, returns a list of the keys and values in the
hash, interleaved as key1,
value1, key2,
value2, etc.

Example 3-15. each

[% product = {
 id = 'ABC-123'
 name = 'ABC Widget #123',
 price = 7.99,
 }

 keyvals = product.each;

 WHILE (keyvals.size);
 key = keyvals.shift;
 val = keyvals.shift;
 "$key => $val\n";
 END
%]

Example 3-15 outputs the following:

id => ABC-123
price => 7.99
name => ABC Widget #123

Hash arrays do not maintain any particular order for the items in
them, so the each virtual method (and also
keys and values, covered later
in this section) returns the items in what appears to be a random
order.[2] This ensures
that key and value return their
items in a corresponding order, even if we're not
sure what that order will be.
[2] Strictly speaking, it is nondeterministic
rather than truly random, although Perl does, of course, have an idea
how to determine the "correct"
traversal order for a hash array.

3.3.3.3 exists(key)

The exists virtual method performs a similar
function to defined, but indicates whether the
item exists in the hash. If it does exist, the
exists vmethod will return true, even if it is set
to an undefined value. In contrast, the defined
vmethod returns false if an item exists in the hash but is set to an
undefined value.

foo [% hash.exists('foo') ? 'does' : 'does not' %] exist

3.3.3.4 import(hash)

The import virtual method can be called against a
hash array to have it import the elements of another hash array:

[% hash1 = {
 foo = 'Foo'
 bar = 'Bar'
 }
 hash2 = {
 wiz = 'Wiz'
 woz = 'Woz'
 }
%]

[% hash1.import(hash2) %]
[% hash1.wiz %] # Wiz

You can also call the import vmethod by itself to
import the items in a hash array into the current variable namespace.
In effect, the items in the hash array become new template variables.

[% user = { id = 'dent' name = 'Arthur Dent' } %]
[% import(user) %]
[% id %]: [% name %] # dent: Arthur Dent

3.3.3.5 item(key)

This
vmethod performs a simple lookup in the hash, returning the value for
the key passed as an argument:

[% hash.item('foo') %]

This has the same effect as retrieving an item directly:

[% hash.foo %]

The item virtual method can be used to fetch an
item from the hash that might otherwise be confused for a hash
virtual method. In the following example, the size
item is fetched from the font hash using the
item virtual method:

[% size = font.item('size') %] # hash item

If the font hash does not contain a
size key, it will return an undefined value. If
instead we access it directly using the dot operator, the
size virtual method will automatically be called
if the hash does not contain a defined value for
size.

[% size = font.size %] # hash item or vmethod

In this case, we would end up with a value defined for
size, even if the hash doesn't
contain a size item.

3.3.3.6 keys

This
virtual method performs the same task as the equivalent Perl
function. It returns a reference to a list containing the keys of the
hash. As with each, these are returned in no
particular order, although it is guaranteed to be the same order as
the corresponding values returned by the values
vmethod.

[% product = {
 id = 'widget2k'
 name = "Widget 2000"
 about = "Ultra-fast dynamic widget"
 price = 4.99
 }
%]
[% FOREACH key = product.keys -%]
 [% key %] => [% product.$key %]
[% END %]

This generates the following output:

about => Ultra-fast dynamic widget
id => widget2k
price => 4.99
name => Widget 2000

3.3.3.7 list

The list virtual method returns the contents of
the hash as a reference to a list. An argument can be passed to
indicate the desired items required in the list:
keys to return a list of the keys (same as
hash.keys), values to return a
list of the values (same as hash.values), or
each to return as list of key/value pairs (same as
hash.each). When called without an argument, it
returns a list of hash references, each of which contains a
key and value item representing
a single key/value pair in the hash.

Consider the following hash:

[% hash = {
 one = 1
 two = 2
 three = 3
 };

%]

Calling hash.list('keys'):

[% FOREACH key IN hash.list('keys') -%]
 [% key %]
[% END %]

generates this output:

one
three
two

Calling hash.list('values'):

[% FOREACH key IN hash.list('values') -%]
 [% key %]
[% END %]

generates this output:

1
3
2

Calling hash.list('each'):

[% FOREACH key IN hash.list('each') -%]
 [% key %]
[% END %]

generates this output:

one
1
three
3
two
2

Calling hash.list:

[% FOREACH keyval IN hash.list -%]
 [% keyval.key %] => [% keyval.value %]
[% END %]

generates this output:

one => 1
three => 3
two => 2

3.3.3.8 size

This virtual method returns the number of
key/value pairs in the hash.

3.3.3.9 sort, nsort

The sort virtual method
returns a list of the keys sorted alphabetically:

[% FOREACH term IN terms.sort %]
 [% term %] means '[% terms.$term %]',
[% END %]

The nsort vmethod performs a similar function but
returns the keys sorted by their numerical value. See the
sort and nsort list virtual
methods for an example.

3.3.3.10 values

The
values virtual method returns a list of the values
in a hash array. They are returned in the same apparently random
order as for each and keys.

[% keys = product.keys;
 vals = product.vals;

 WHILE keys.size;
 key = keys.shift;
 val = vals.shift;
 "$key => $val\n";
 END
%]

3.3.4 Defining New Virtual Methods

You can define your own virtual methods for
scalars, lists, and hash arrays. You might do this to add useful
functionality not provided by the Template Toolkit itself, or to add
methods specific to your data. For example, if you want to offer
template designers a way to format a number as a dollar-and-cents
string, you might do this with a new virtual method on numbers.

To add a new virtual method from Perl, manipulate package variables
yourself to add the new method to the stash:

load Template::Stash to make method tables visible
use Template::Stash;

define list method to return a new list of palindromic strings only
$Template::Stash::LIST_OPS->{ palindromes } = sub {
 my $list = shift;
 return [grep { $_ eq reverse($_) } @$list];
};

Alternatively, use the define_vmethod() method on
the Template Toolkit's context:

locate the context
use Template;
my $template = Template->new();
my $context = $tt->context();

define list method to return a new list of palindromic strings only
$context->define_vmethod('list', 'palindromes', sub {
 my $list = shift;
 return [grep { $_ eq reverse($_) } @$list];
};

3.3.4.1 Stash package variables

The Template::Stash package variables
$SCALAR_OPS, $LIST_OPS, and
$HASH_OPS are references to hash arrays that
define these virtual methods. The HASH_OPS and
LIST_OPS virtual methods are implemented as
subroutines that accept a hash or list reference as the first item,
respectively. The SCALAR_OPS virtual methods are
subroutines that accept a scalar value as the first item.

Any other arguments specified when the method is called will also be
passed to the subroutine. Any named arguments will be collated into a
single hash reference and passed as the last argument, as for any
subroutine or method call. This example, therefore:

load Template::Stash to make method tables visible
use Template::Stash;

define list method to return new list of odd numbers only
$Template::Stash::LIST_OPS->{ odd } = sub {
 my $list = shift;
 return [grep { $_ % 2 } @$list];
};

creates this template:

[% primes = [2, 3, 5, 7, 9] %]
[% primes.odd.join(', ') %] # 3, 5, 7, 9

New virtual methods can perform arbitrarily complex actions, or very
simple actions:

$Template::Stash::SCALAR_OPS->{ int } = sub { int($_[0]) };

use Digest::MD5 qw(md5_hex);
$Template::Stash::SCALAR_OPS->{ md5 } = sub { md5_hex($_[0]) };

Here is a vmethod to pick an element randomly from a list (courtesy
of Slash):

$Template::Stash::LIST_OPS->{ rand } = sub {
 my $list = shift;
 return $list->[rand @$list];
};

Implementing delete for hashes is straightforward:

$Template::Stash::HASH_OPS->{ delete } = sub {
 my ($hash, $key) = @_;
 delete $hash->{ $key } if (defined $key);
}

It can be used as you would expect:

[% hash.delete('key') %]

delete returns the deleted element, just like
Perl's delete. This can be
chained with other vmethods:

[% hash.delete('ccard_no').md5 %]

3.3.4.2 Stash and context methods

The Template::Stash and
Template::Context modules both implement
define_vmethod() methods that handle the
installation of new virtual methods into the stash package variables.
In the case of Template::Context, it simply
delegates the task to the current Template::Stash
object in use.

The internal architecture of the Template Toolkit is described in
painful detail in Chapter 7, but you
don't need to know too much about it to be able to
define your own virtual methods. The Template
object implements a context(
) method that returns the current
Template::Context object (the internal template
processing engine) that it is using:

my $template = Template->new();
my $context = $tt->context();

The define_vmethod() method can then be called
against the $context object. The first argument
denotes the data type and should be one of the values
scalar, list, or
hash. For convenience, item is
provided as an alias for scalar, and
array as an alias for list. The
second argument is the name of the virtual method. The third argument
is a reference to the subroutine implementing it.

Here is an example showing another way of adding the
odd list virtual method:

$context->define_vmethod('list', 'odd', sub {
 my $list = shift;
 return [grep { $_ % 2 } @$list];
};

This example shows a hash virtual method being added to print a Perl
representation of the hash array in sorted order. Here we are using
Perl's => operator, which acts
just like a comma but saves us from having to quote the
hash and dump values.

$context->define_vmethod(hash => dump => sub {
 my $hash = shift;
 return '{ '
 . join(', ',
 map { "$_ => '$hash->{$_}'" }
 sort keys %$hash)
 . ' }';
});

If you enable the EVAL_PERL configuration option,
you can also define virtual methods in a PERL
block from within a template. The $context
variable is automatically available for use in
PERL blocks.

[% PERL %]
$context->define_vmethod(hash => dump => sub {
 my $hash = shift;
 return '{ '
 . join(', ',
 map { "$_ => '$hash->{$_}'" }
 sort keys %$hash)
 . ' }';
});
[% END %]

It is also possible to write a plugin that defines virtual methods.
This is covered in Chapter 8.

Chapter 4. Template Directives

Templates consist of a combination of fixed text and template
directives. The template directives are recognized by the Template
Toolkit and are expanded in a processor's output. In
this chapter, we will take a close look at all of the directives that
the Template Toolkit provides. We've already seen
examples of many of them in previous chapters, but now
we'll go back and fill in all of the details.

The Template Toolkit has directives for common presentation tasks.
There are directives for accessing and setting variables, loading and
using both external and local templates, repetition, conditional
processing, flow control, and exception handling. Directives are also
provided to define macros and access template metadata. If
that's not enough for you, you can extend the
functionality of the Template Toolkit using filters, plugins, or even
inline Perl code.

4.1 Accessing Variables

The Template Toolkit allows you to define variables in your
templates. In this section, we will look at the various directives
that the Template Toolkit
provides for manipulating template variables.

4.1.1 GET

The GET directive retrieves and outputs the
value of the named variable:

[% GET foo %]

The GET keyword is optional. A variable can be
specified in a directive tag by itself:

[% foo %]

The variable name can have an unlimited number of elements, each
separated by a . (dot). Each element can have
arguments specified within parentheses:

[% foo %]
[% bar.baz %]
[% biz.baz(10) %]

See Chapter 3 for a full discussion of template
variables.

The GET directive can also take an expression as
an argument:

[% GET total + tax %]

[% GET length * breadth * height %]

Expressions can use any of the mathematical operators
+, -, *,
/, mod, div,
and %. They can be combined using the logical
operators and, or, and
not. &&,
||, and ! are provided as
aliases for and, or, and
not.

[% GET golgafrincham.answer or 42 %]

The mod, div, and
% operators carry out integer division.
div returns the result of the division and
mod returns the modulus (or remainder) from the
division:

[% SET people = 4
 pies = 10 %]

[% pies %] pies shared between [% people %] people
is [% pies div people %] pies each
(and [% pies mod people %] pies left over)

The % operator is a synonym for
mod.

The logical operator ?: is also available:

[% pies > people * 2 ? 'everyone happy' : 'not enough pies' %]

This operator works by evaluating the expression that comes before
the question mark to see if it is true or false. If it is true, the
operator returns the expression that comes before the
: character. If it is false, the operator returns
the expression that follows the : character. In
the example, status is set to either
everyone happy or not enough
pies depending on whether we have at least two pies for
everyone.

The comparison operators = =,
!=, <,
<=, >, and
>= are also provided. Note that they always
compare their operands as strings.

[% GET name = = 'Zaphod' ?
 'Greetings Mr. President' :
 'Hello Monkey' %]

4.1.2 SET

The SET directive
allows you to assign new values to existing variables or to create
new temporary variables:

[% SET title = 'Hello World' %]

The SET keyword is optional when it is unambiguous:

[% title = 'Hello World' %]

Variables may be assigned the values of other variables, unquoted
numbers (digits), literal text (single quotes), or quoted text
(double quotes). In the latter case, any variable references within
the text will be interpolated when the string is evaluated. Variables
should be prefixed by $, using curly braces to
explicitly scope the variable name where necessary.

[% foo = 'Foo' %] # literal value 'Foo'
[% bar = foo %] # value of variable 'foo'
[% cost = '$100' %] # literal value '$100'
[% item = "$bar: ${cost}.00" %] # value "Foo: $100.00"

Multiple variables may be assigned in the same directive and are
evaluated in the order specified. Thus, the previous example could
have been written:

[% foo = 'Foo'
 bar = foo
 cost = '$100'
 item = "$bar: ${cost}.00"
%]

Simple expressions can also be used, as they can with
GET:

[% ten = 10
 twenty = 20
 thirty = twenty + ten
 forty = 2 * twenty
 fifty = 100 div 2
 six = twenty mod 7
%]

You can concatenate strings together using the underscore
(_) operator. In Perl 5, the .
is used for string concatenation, but in Perl 6, as in the Template
Toolkit, the . will be used as the method-calling
operators and the underscore (_) operator will be
used for string concatenation.[1] Note that the operator must be specified
with surrounding whitespace that, as Larry says, is construed as a
feature:
[1] Larry has since
changed his mind and it looks as if the ~ will be
the Perl 6 string concat operator. As always, this is all subject to
change.

[% copyright = '(C) Copyright ' _ year _ ' ' _ author %]

You can, of course, achieve a similar effect with double-quoted
string interpolation:

[% copyright = "(C) Copyright $year $author" %]

The SET directive can also take arguments that are
expressions in exactly the same way as the GET
directive:

[% total = price + (price * tax_rate) %]

4.1.3 CALL

The CALL directive is similar to
GET in evaluating the variable named, but
doesn't print the result returned. This can be
useful when a variable is bound to a subroutine or object method that
you want to call but whose returned value you aren't
interested in.

[% CALL dbi.disconnect %]

[% CALL inc_page_counter(page_count) %]

4.1.4 DEFAULT

The DEFAULT
directive is similar to SET but updates only
variables that are currently undefined or have no
"true" value (in the Perl sense):

[% DEFAULT
 name = 'John Doe'
 id = 'jdoe'
%]

This can be particularly useful in common template components to
ensure that some sensible default is provided for otherwise undefined
variables. If a true value is provided for variables with DEFAULT
values, the provided value will be used; otherwise, the default value
will be used.

[% DEFAULT
 title = 'Hello World'
 bgcol = '#ffffff'
%]
<html>
<head>
<title>[% title %]</title>
</head>

<body bgcolor="[% bgcol %]">

DEFAULT can also take an expression as an argument
in exactly the same way as GET:

[% DEFAULT pies = 3 * people %]

DEFAULT has no effect on variables that already have values.

4.2 Accessing External Templates and Files

Variables are for storing
little bits of data. Templates are for writing larger chunks of
content. As with variables, it is often useful to be able to reuse
the contents of a template. For example, the output of a template
will often actually be composed of the output of a number of
lower-level templates. These lower-level templates can be reused in
other templates. This is very similar to the modular approach to
writing programs that encourages code reuse.

The Template Toolkit provides a number of directives for manipulating
templates. The first three of these all work in a very similar way.
INSERT, PROCESS, and
INCLUDE all insert the contents of another named
template into the current template. The basic syntax for these
directives looks like this:

[% INCLUDE filename %]

You may optionally include arguments (in a name =
value format) that define variables to use while processing
the included template:

[% INCLUDE filename title = "la la la"
 moonphase = "waxing" %]

With all of these directives, the results of processing the template
are included in the output in place of the directive. The
WRAPPER directive works a little differently. It
is a block directive and it allows you to define a template that is
wrapped around the block of content. The content of the block is made
available to the wrapper template in a special
variable called content.

[% WRAPPER layout %]
 blah blah
[% END %]

We discuss the directives for manipulating templates in the next four
sections.

4.2.1 INSERT

The INSERT directive
is used to insert the contents of an external file at the current
position:

[% INSERT myfile %]

No attempt to parse or process the file is made. The contents,
possibly including any embedded template directives, are inserted
intact.

The filename specified should be relative to one of the
INCLUDE_PATH directories. Absolute (i.e., starting
with /) and relative (i.e., starting with
.) filenames may be used if the
ABSOLUTE and RELATIVE options
are set, respectively. Both of these options are disabled by default.

my $tt = Template->new({
 INCLUDE_PATH => '/here:/there:/every/where',
});

$tt->process('myfile');

The contents of myfile are:

[% INSERT foo %] # looks for /here/foo then /there/foo
[% INSERT /etc/passwd %] # file error: ABSOLUTE not set
[% INSERT ../secret %] # file error: RELATIVE not set

For convenience, the filename does not need to be quoted as long as
it contains only alphanumeric characters, underscores, dots, or
forward slashes. Names containing any other characters should be
quoted.

[% INSERT misc/legalese.txt %]
[% INSERT 'dos98/Program Files/foobar' %]

To evaluate a variable to specify a filename, you should explicitly
prefix it with a $ or use double-quoted string
interpolation:

[% language = 'en'
 legalese = 'misc/legalese.txt'
%]

[% INSERT $legalese %] # 'misc/legalese.txt'
[% INSERT "$language/$legalese" %] # 'en/misc/legalese.txt'

Multiple files can be specified using + as a
delimiter. All files should be unquoted names or quoted strings. Any
variables should be interpolated into double-quoted strings.

[% INSERT legalese.txt + warning.txt %]
[% INSERT "$legalese" + warning.txt %] # requires quoting

4.2.2 INCLUDE

The INCLUDE
directive is used to process and include the output of another
template file or block:

[% INCLUDE header %]

If a BLOCK of the specified name is defined in the
same file or in a file from which the current template has been
called (i.e., a parent template), it will be used in preference to
any file of the same name.

[% INCLUDE table %] # uses BLOCK defined below

[% BLOCK table %]
 <table>
 ...
 </table>
[% END %]

If a BLOCK definition is not currently visible,
the template name should be a file relative to one of the
INCLUDE_PATH directories, or an absolute or
relative filename if the ABSOLUTE /
RELATIVE options are appropriately enabled. The
INCLUDE directive automatically quotes the
filename specified, as per INSERT described
earlier. When a variable contains the name of the template for the
INCLUDE directive, it should be explicitly
prefixed by $ or double-quoted:

[% myheader = 'my/misc/header' %]
[% INCLUDE myheader %] # 'myheader'
[% INCLUDE "myheader" %] # 'myheader'
[% INCLUDE $myheader %] # 'my/misc/header'
[% INCLUDE "$myheader" %] # 'my/misc/header'

Any template directives embedded within the file will be processed
accordingly. All variables currently defined will be visible and
accessible from within the included template.

[% title = 'Hello World' %]
[% INCLUDE header %]
<body>
...

Therefore, this header template:

<html>
<title>[% title %]</title>

provides the following output:

<html>
<title>Hello World</title>
<body>
...

Local variable definitions may be specified after the template name,
temporarily masking any existing variables. Insignificant whitespace
is ignored within directives, so you can add variable definitions on
the same line, on the next line, or split across several lines with
comments interspersed, if you prefer.

[% INCLUDE table %]

[% INCLUDE table title="Active Projects" %]

[% INCLUDE table
 title = "Active Projects"
 bgcolor = "#80ff00" # chartreuse
 border = 2
%]

The INCLUDE directive localizes (i.e., copies) all
variables before processing the template. Any changes made within the
included template will not affect variables in the including
template.

[% foo = 10 %]

foo is originally [% foo %]
[% INCLUDE bar %]
foo is still [% foo %]

[% BLOCK bar %]
 foo was [% foo %]
 [% foo = 20 %]
 foo is now [% foo %]
[% END %]

The preceding example produces the following output:

foo is originally 10
 foo was 10
 foo is now 20
foo is still 10

			
The localization of the stash (that is, the process by which
variables are copied before an INCLUDE to prevent
being overwritten) is only skin-deep. The top-level variable
namespace (hash) is copied, but no attempt is made to perform a
deep-copy of other structures (hashes, arrays, objects, etc.).
Therefore, a foo variable referencing a hash will
be copied to create a new foo variable that points
to the same hash array. Thus, if you update compound variables (e.g.,
foo.bar), you will change the original copy,
regardless of any stash localization. If you're not
worried about preserving variable values, or you trust the templates
you're including, you might prefer to use the
PROCESS directive, which is faster by virtue of
not performing any localization.

You can specify dotted variables as
"local" variables to an
INCLUDE directive. However, be aware that because
of the localization issues explained earlier (if you skipped the
previous Note, you might want to go back and read it, or else skip
this section too), the variables might not actually be
"local." If the first element of
the variable name already references a hash array, the variable
update will affect the original variable.

[% foo = {
 bar = 'Baz'
 }
%]

[% INCLUDE somefile foo.bar='Boz' %]

[% foo.bar %] # Boz

This behavior can be a little unpredictable (and may well be improved
upon in a future version). If you know what you're
doing with it and you're sure that the variables in
question are defined (nor not) as you expect them to be, you can rely
on this feature to implement some powerful
"global" data-sharing techniques.
Otherwise, you might prefer to steer clear and always pass simple
(undotted) variables as parameters to INCLUDE and
other similar directives.

If you want to process several templates simultaneously, you can
specify each of their names (quoted or unquoted names only, no
unquoted $variables) joined together by
+. The INCLUDE directive will
then process them in order.

[% INCLUDE html/header + "site/$header" + site/menu
 title = "My Groovy Web Site"
%]

The variable stash is localized once and then the templates specified
are processed in order, all within that same variable context. This
makes it slightly faster than specifying several separate
INCLUDE directives (because you clone the variable
stash only once instead of n times), but
it's not quite as
"safe" because any variable changes
in the first file will be visible in the second, third, and so on.
This might be what you want, of course, but then again, it might not.

4.2.3 PROCESS

The PROCESS directive is similar to
INCLUDE but does not perform any localization of
variables before processing the template. Any changes made to
variables within the included template will be visible in the
including template. For example, this code:

[% foo = 10 %]

foo is [% foo %]
[% PROCESS bar %]
foo is [% foo %]

[% BLOCK bar %]
 [% foo = 20 %]
 changed foo to [% foo %]
[% END %]

produces this output:

foo is 10
 changed foo to 20
foo is 20

Parameters may be specified in the PROCESS
directive, but these too will become visible changes to current
variable values. As such, the following code:

[% foo = 10 %]
foo is [% foo %]
[% PROCESS bar
 foo = 20
%]
foo is [% foo %]

[% BLOCK bar %]
 this is bar, foo is [% foo %]
[% END %]

produces the following output:

foo is 10
 this is bar, foo is 20
foo is 20

The PROCESS directive is slightly faster than the
INCLUDE directive because it avoids the need to
localize (i.e., copy) the variable stash before processing the
template. As with INSERT and
INCLUDE, the first parameter does not need to be
quoted as long as it contains only alphanumeric characters,
underscores, periods, or forward slashes. A $
prefix can be used to explicitly indicate a variable that should be
interpolated to provide the template name:

[% myheader = 'my/misc/header' %]
[% PROCESS myheader %] # 'myheader'
[% PROCESS $myheader %] # 'my/misc/header'

As with INCLUDE, multiple templates can be
specified, delimited by +, and are processed in
order:

[% PROCESS html/header + my/header %]

4.2.4 WRAPPER

It's not unusual to find yourself adding
common headers and footers to pages or sub-sections within a page.
For example:

[% INCLUDE section/header
 title = 'Quantum Mechanics'
%]
 Quantum mechanics is a very interesting subject which
 should prove easy for the layman to fully comprehend.
[% PROCESS section/footer %]

[% INCLUDE section/header
 title = 'Desktop Nuclear Fusion for Under $50'
%]
 This describes a simple device that generates significant
 sustainable electrical power from common tap water via the process
 of nuclear fusion.
[% PROCESS section/footer %]

The individual template components being included might look like the
folowing examples:

section/header:

<p>
<h2>[% title %]</h2>

section/footer:

</p>

The WRAPPER directive provides a way of
simplifying this a little. It encloses a block to a matching
END directive, which is first processed to
generate some output. This is then passed to the named template file
or BLOCK as the content
variable.

[% WRAPPER section
 title = 'Quantum Mechanics'
%]
 Quantum mechanics is a very interesting subject which
 should prove easy for the layman to fully comprehend.
[% END %]

[% WRAPPER section
 title = 'Desktop Nuclear Fusion for Under $50'
%]
 This describes a simple device that generates significant
 sustainable electrical power from common tap water via the process
 of nuclear fusion.
[% END %]

The single section template can then be defined
as:

<p>
<h2>[% title %]</h2>
[% content %]
</p>

Like other block directives, it can be used in side-effect notation:

[% INSERT legalese.txt WRAPPER big_bold_table %]

It's also possible to specify multiple templates to
a WRAPPER directive. The specification order
indicates outermost to innermost wrapper templates. For example,
given the following template block definitions:

[% BLOCK bold %][% content %][% END %]
[% BLOCK italic %]<i>[% content %]</i>[% END %]

the directive:

[% WRAPPER bold + italic %]Hello World[% END %]

would generate the following output:

<i>Hello World</i>

4.3 Defining Local Template Blocks

Sometimes, particularly in a project that
involves a large number of small templates, it
doesn't seem very efficient to create an external
file for every template that you need. The BLOCK
... END construct can be used
to avoid this. It allows you to define template component blocks that
can be processed with the INCLUDE,
PROCESS, and WRAPPER
directives.

[% BLOCK tabrow %]
<tr><td>[% name %]<td><td>[% email %]</td></tr>
[% END %]

<table>
[% PROCESS tabrow name='Fred' email='fred@nowhere.com' %]
[% PROCESS tabrow name='Alan' email='alan@nowhere.com' %]
</table>

A BLOCK definition can be used before it is
defined, as long as the definition resides in the same file. The
block definition itself does not generate any output.

[% PROCESS tmpblk %]

[% BLOCK tmpblk %] This is OK [% END %]

You can use an anonymous BLOCK to capture the
output of a template fragment:

[% julius = BLOCK %]
 And Caesar's spirit, ranging for revenge,
 With Ate by his side come hot from hell,
 Shall in these confines with a monarch's voice
 Cry 'Havoc', and let slip the dogs of war;
 That this foul deed shall smell above the earth
 With carrion men, groaning for burial.
[% END %]

Like a named block, an anonymous block can contain any other template
directives that are processed when the block is defined. The output
generated by the block is then assigned to the variable
julius.

Anonymous BLOCKs can also be used to define block
macros. The enclosing block is processed each time the macro is
called.

[% MACRO locate BLOCK %]
 The [% animal %] sat on the [% place %].
[% END %]

[% locate(animal='cat', place='mat') %] # The cat sat on the mat
[% locate(animal='dog', place='log') %] # The dog sat on the log

4.4 Loops

It is
very
common to want to repeat parts of a template. You might want to
produce similar output for every item in a list, or you might want to
repeat a piece of content a set number of times. The Template Toolkit
provides two loop directives that deal with both of these
situations�FOREACH (also spelled
FOR) and WHILE.

Use FOREACH in cases where you know the size of
the data set over which you are iterating, or in cases where you need
access to loop metadata, such as the next or previous element, the
index of the iteration, or the size of the data set.
WHILE is useful for performing an action until a
condition is true, for looping over a very large data set, or when
termination of the loop depends on a condition external to the data
set. Both directives are discussed in the sections that follow.

4.4.1 FOREACH

The FOREACH
directive defines a block, up to the corresponding
END tag, that is processed repeatedly for each
item in a list. The basic syntax is:

[% FOREACH item IN list %]
 # content of block
[% END %]

You can also use = in place of
IN if you find that more natural:

[% FOREACH item = list %]
 # content of block
[% END %]

FOREACH loops over each element in a list and
creates an alias to the current item:

[% numbers = [1 .. 5] %]

[% FOREACH num IN numbers %]
 * [% num %]
[% END %]

In this example, numbers is an array of five
elements, the numbers 1 through 5. In the FOREACH
loop, these elements are assigned to num, one at a
time, in the order that they occur in numbers:

* 1
* 2
* 3
* 4
* 5

4.4.1.1 Complex data

The elements of the array can be any kind of
complex data:

[% fabfour = [
 {
 name = "John Lennon"
 instrument = "guitar"
 }
 {
 name = "Paul McCartney"
 instrument = "bass guitar"
 }
 {
 name = "George Harrison"
 instrument = "lead guitar"
 }
 {
 name = "Ringo Starr"
 instrument = "drums"
 }
]
%]
[% FOREACH beatle IN fabfour -%]
 [% beatle.name %] played [% beatle.instrument %].
[% END %]

The beatle variable is aliased to each hash in the
fabfour list, and through it we can access the
various elements:

John Lennon played guitar.
Paul McCartney played bass guitar.
George Harrison played lead guitar.
Ringo Starr played drums.

The original array is not modified, but the elements of the array can
be modified within the FOREACH loop.

4.4.1.2 Importing hash array items

When the FOREACH directive
is used without specifying a target variable, any iterated values
that are hash references will be automatically imported:

[% FOREACH fabfour -%]
 [% name %] played [% instrument %].
[% END %]

This particular usage creates a localized variable context to prevent
the imported hash keys from overwriting any existing variables. The
imported definitions and any other variables defined in such a
FOREACH loop will be lost at the end of the loop,
when the previous context and variable values are restored.

4.4.1.3 Iterating over entries in a hash array

The FOREACH directive can also be used to
iterate over the entries in a hash array. Each entry in the hash is
returned in sorted order (based on the key) as a hash array
containing "key" and
"value" items.

[% users = {
 tom = 'Thomas'
 dick = 'Richard'
 larry = 'Lawrence'
 }
%]

[% FOREACH user IN users %]
 * [% user.key %] : [% user.value %]
[% END %]

The previous example generates the following output:

* dick : Richard
* larry : Lawrence
* tom : Thomas

To iterate over the keys of a hash, use the keys
virtual method on the hash:

[% FOREACH key IN hash.keys %]
 * [% key %] : [% hash.$key %]
[% END %]

4.4.1.4 The loop iterator object

The
underlying implementation of the FOREACH directive
involves the creation of a special object called an
iterator, which maintains metadata about the
data set being processed. This object can be accessed within the body
of the FOREACH using the special variable
loop:

[% FOREACH item IN items %]
 [% IF loop.first %]

 [% END %]
 [% item %] ([% loop.count %] of [% loop.size %])
 [% IF loop.last %]

 [% END %]
[% END %]

The iterator defines several useful methods that
return information about the current loop:

	size

	
Returns the size of the data set, or returns
undef if the dataset has not been defined

	max

	
Returns the maximum index number (i.e., the
index of the last element), which is equivalent to
size - 1

	index

	
Returns the number of the current item, in
the range 0 to max

	count

	
Returns the current iteration count in the range
1 to size, equivalent to
index + 1

	first

	
Returns a Boolean value to indicate whether the
iterator is currently on the first iteration of the set

	last

	
Returns a Boolean value to indicate whether the
iterator is currently on the last iteration of the set

	prev

	
Returns the previous item in the data set, or
returns undef if the iterator is on the first item

	next

	
Returns the next item in the data set, or
undef if the iterator is on the last item

An iterator plugin is available that enables you
to control how an iterator is created; if an iterator object is
passed to a FOREACH loop, it is used as is (a new
iterator is not created).

[% USE all_data = iterator(list_one.merge(list_two)) %]
[% FOREACH datum = all_data %]
 ...
[% END %]

4.4.1.5 Nested FOREACH loops

Nested loops will work as expected, with the
loop variable correctly referencing the innermost
loop and being restored to any previous value (i.e., an outer loop)
at the end of the loop:

[% FOREACH group IN grouplist;
 # loop => group iterator
 "Groups:\n" IF loop.first;

 FOREACH user IN group.userlist;
 # loop => user iterator
 "$loop.count: $user.name\n";
 END;

 # loop => group iterator
 "End of Groups\n" IF loop.last;
 END
%]

The iterator plugin can also be used to explicitly
create an iterator object. This can be useful within nested loops
where you need to keep a reference to the outer iterator within the
inner loop. The iterator plugin effectively allows
you to create an iterator by a name other than
loop. See the manpage for
Template::Plugin::Iterator for further details.

[% USE giter = iterator(grouplist) %]

[% FOREACH group IN giter %]
 [% FOREACH user IN group.userlist %]
 user #[% loop.count %] in
 group [% giter.count %] is
 named [% user.name %]
 [% END %]
[% END %]

4.4.2 WHILE

WHILE loops are
used to repeatedly process a template block. This block is enclosed
within [% WHILE (test) %] ... [% END %] blocks and
can be arbitrarily complex. The test condition follows the same rules
as those for IF blocks.

[% total = 0;
 WHILE total <= 100 %]
 Total: [% total;
 total = total + 1;
 END;
%]

An assignment can be enclosed in parentheses to evaluate the assigned
value:

[% WHILE (user = next_user) %]
 [% user.name %]
[% END %]

The Template Toolkit uses a fail-safe counter to limit the number of
loop iterations to prevent runaway loops that never terminate. If the
loop exceeds 1,000 iterations, an undef exception
will be thrown, reporting the error:

WHILE loop terminated (> 1000 iterations)

This number can be adjusted from within Perl by setting the
$Template::Directive::WHILE_MAX variable.

4.4.2.1 Flow control: NEXT and LAST

The NEXT directive starts the next
iteration in a FOREACH or WHILE
loop:

[% FOREACH user IN userlist %]
 [% NEXT IF user.isguest %]
 Name: [% user.name %] Email: [% user.email %]
[% END %]

The LAST directive can be used to prematurely exit
the loop. BREAK is also provided as an alias for
LAST.

[% FOREACH match IN results.nsort('score').reverse %]
 [% LAST IF match.score < 50 %]
 [% match.score %] : [% match.url %]
[% END %]

See the section titled Section 4.11
later in this chapter for more details.

4.5 Conditionals

Often you
don't know exactly what output is required until you
process the template. Perhaps your web site should be orange on
certain days of the week, or maybe negative numbers should be
displayed in red. The Template Toolkit has a number of conditional
directives that allow your template to make decisions about what path
to take.

A conditional controls execution of a block of
code, based on the value of a variable. In the Template Toolkit,
there are two main conditional directives: IF and
SWITCH. In addition, there is the
UNLESS directive, which is a negated
IF.

4.5.1 IF, ELSIF, ELSE, and UNLESS

The primary
directive for conditional execution is the
IF statement. The basic syntax is:

[% IF test %]
 action
[% END %]

where action is executed only if
test is true (the Template
Toolkit's definition of
"truth" is explained later in this
section). IF statements allow for an optional
ELSE clause, which is executed if
test is not true. There can be multiple
test/action pairs as well; these are written
using the
ELSIF statement:

[% IF today = = "friday" %]
 Yay! It's Friday!
[% ELSIF today = = "monday" %]
 Yuck. It's Monday.
[% ELSE %]
 ...
[% END %]

There can be any number of ELSIF clauses,
including none. The ELSE clause is also
optional. Because the IF directive defines a
block, the END token is not optional.

The test clause can be any statement, even just a
single variable name; the extreme case is a test clause of
1�i.e., always true. If the result of this
statement is 0 or "" (the empty
string), test is considered to be false;
everything else is true. Variables that have not been assigned a
value, either with DEFAULT or
SET, are considered to be false (the value of an
undefined variable is an empty string).

More complex statements are possible, such as the earlier example.
test can be arbitrarily complex. Other than simple
variable value, another common test is equality or comparison: what
value does a variable contain? The notation = = is
used to compare strings because = is used for
assignment�it is an error to try to assign to a variable in an
IF statement, to prevent subtle errors and
hard-to-diagnose problems. Comparison operators include:

= = Test for equality
!= Test for inequality
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
&&, AND grouping
||, OR grouping
!, NOT negation

Some of these make sense only for numbers, such as
>, >=,
<, and <=.
NOT is used to reverse the meaning of a test:

[% IF NOT today %]
 Error! 'today' not defined!
[% END %]

There is a special version of IF that does exactly
this:
UNLESS.

[% UNLESS today %]
 ...

UNLESS is exactly equivalent to IF
NOT, and often clarifies the intent of the condition (but
can be more confusing when combined with ELSIF
clauses, even though this is a syntactically legal thing to do).

AND and OR can be used to
construct compound statements that might otherwise require nested
IF blocks:

[% IF today = = "Friday" AND time >= 1700 %]
 Go home! It's the weekend!
[% END %]

Without grouping, this would need to be:

[% IF today = = "Friday" %]
 [% IF time >= 1700 %]
 Go home! It's the weekend!
 [% END %]
[% END %]

As you can imagine, this would get very tedious for blocks with many
options.

4.5.2 SWITCH and CASE

The SWITCH directive makes writing long
IF / ELSIF /
ELSE statements easier when the
test condition needs to be compared to a number of
possible outcomes. SWITCH consists of a single
statement, which is evaluated once, and a number of
CASE statements,
against which the evaluated value is compared. For example:

[% SWITCH today %]
 [% CASE "Monday" %]
 Hi ho, hi ho, it's off to work we go.

 [% CASE "Friday" %]
 Friday's here, almost time for the weekend!

 [% CASE ["Saturday" "Sunday"] %]
 It's the weekend! Party!

 [% CASE %]
 Ho hum, just another workday...
[% END %]

The value in today is compared against each
successive CASE statement until a match is found;
the contents of the matching CASE statement are
processed, or the contents of the default CASE
statement are processed if no match is found (if there is a default
CASE statement, of course). An equivalent
IF / ELSIF /
ELSE block would look like this:

[% IF today = = "Saturday" OR today = = "Sunday" %]
 It's the weekend! Party!
[% ELSIF today = = "Monday" %]
 Hi ho, hi ho, it's off to work we go.
[% ELSIF today = = "Friday" %]
 Friday's here, almost time for the weekend!
[% ELSE %]
 Ho hum, just another workday...
[% END %]

The SWITCH statement is cleaner and there is less
syntax to maintain. Most important, however, is that if the
test statement requires computation instead of
just variable comparison, the SWITCH will be more
efficient and has less potential for side effects.

4.6 Filters

One of
the
problems with templates is that you can never be completely sure what
content will be produced at the end. This is particularly true if you
are pulling in some of your data from an external source. Perhaps you
are producing an HTML page from news stories that have been entered
into a database by reporters. You can't be sure the
stories don't contain characters such as
< or & that should be
plain text but will be interpreted as HTML. Or perhaps you have room
for only a certain number of characters and you
don't know how long a story will be.

The Template Toolkit provides filters to deal with these cases. A
filter can be applied to part of a template and will postprocess
those parts in a defined manner. For example, the
html filter converts troublesome characters to
their equivalent HTML entities, and the truncate
filter will truncate text to a given length.

The FILTER directive introduces a filter, which
operates on a block:

[% FILTER html %]
 HTML text may have < and > characters embedded
 that you want converted to the correct HTML entities.
[% END %]

The previous example produces the following output:

HTML text may have < and > characters embedded
that you want converted to the correct HTML entities.

The FILTER directive
can also follow various other nonblock directives. For example:

[% INCLUDE mytext FILTER html %]

The | character can also be used as an alias for
FILTER:

[% INCLUDE mytext | html %]

Multiple filters can be chained together and will be called in
sequence:

[% INCLUDE mytext FILTER html FILTER html_para %]

or:

[% INCLUDE mytext | html | html_para %]

A number of standard filters are provided with the Template Toolkit;
these are detailed in Chapter 5.

4.7 Plugins

It is obviously
impossible for the Template Toolkit to do everything that everyone
might want to do with it. For one thing, we haven't
heard of every possible piece of software that you might want to talk
to, and for another, no one would want a template processor that is
infinite in size! Instead, we provided the plugin mechanism, which
makes it possible to write extensions to the Template Toolkit. This
is a far saner solution.

Plugins are externally defined extensions that can be dynamically
loaded into templates to provide functionality. A plugin is a regular
Perl module that conforms to a particular object-oriented interface,
allowing it to be loaded into and used automatically by the Template
Toolkit. The next subsections discuss directives for working with
plugins.

4.7.1 USE

The
USE directive loads and initializes
"plugin" extension modules:

[% USE date %]

This makes a date plugin object available to the
template, which can be used by referencing the variable
date:

Today is [% date.format(date.now, "%A") %].

which might return:

Today is Monday.

The plugin name is case sensitive and will be appended to the
PLUGIN_BASE value (which defaults to
Template::Plugin) to construct a full module name.
Any periods (i.e., .), in the name will be
converted to ::.

[% USE MyPlugin %] # => Template::Plugin::MyPlugin
[% USE Foo.Bar %] # => Template::Plugin::Foo::Bar

Various standard plugins are included with the Template Toolkit (see
Chapter 6). These can be specified in lowercase
and are mapped to the appropriate name:

[% USE cgi %] # => Template::Plugin::CGI
[% USE table %] # => Template::Plugin::Table

Any additional parameters supplied in parentheses after the plugin
name also will be passed to the new()
constructor. A reference to the current
Template::Context object is always passed as the
first parameter. Thus:

[% USE MyPlugin('foo', 123) %]

is equivalent to:

Template::Plugin::MyPlugin->new($context, 'foo', 123);

Named parameters may also be specified. These are collated into a
hash that is passed by reference as the last parameter to the
constructor, as per the general code-calling interface. Thus:

[% USE url('/cgi-bin/foo', mode='submit', debug=1) %]

is equivalent to:

Template::Plugin::URL->new($context, '/cgi-bin/foo',
 { mode => 'submit', debug => 1 });

The plugin may represent any data type�a simple variable, hash,
list, or code reference�but in general it will be an object
reference. Methods can be called on the object (or on the relevant
members of the specific data type) in the usual way:

[% USE table(mydata, rows=3) %]

[% FOREACH row = table.rows %]
 <tr>
 [% FOREACH item = row %]
 <td>[% item %]</td>
 [% END %]
 </tr>
[% END %]

A plugin can be referenced by an alternative name:

[% USE scores = table(myscores, cols=5) %]

[% FOREACH row = scores.rows %]
 ...
[% END %]

You can use this approach to create multiple plugin objects with
different configurations. This example shows how the
format plugin is used to create subroutines bound
to variables for formatting text as per printf().

[% USE bold = format('%s') %]
[% USE ital = format('<i>%s</i>') %]

[% bold('This is bold') %]
[% ital('This is italic') %]

The previous example generates the following output:

This is bold
<i>This is italic</i>

This next example shows how the URL plugin can be
used to build dynamic URLs from a base part and optional query
parameters:

[% USE mycgi = URL('/cgi-bin/foo.pl', debug=1) %]
...
<a href="[% mycgi(mode='submit') %]"...

The previous example generates the following output:

...
...

The LOAD_PERL option (disabled by default)
provides a further way by which external Perl modules may be loaded.
If a regular Perl module (i.e., not a
Template::Plugin::* or other module relative to
some PLUGIN_BASE) supports an object-oriented interface and a
new() constructor, it can be loaded and
instantiated automatically. The following trivial example shows how
the IO::File module might be used:

[% USE file = IO.File('/tmp/mydata') %]

[% WHILE (line = file.getline) %]
 <!-- [% line %] -->
[% END %]

Chapter 6 discusses plugins in excruciating
detail.

4.8 Macros

Sometimes
Template Toolkit code can get very complicated. You can often have
complex pieces of code that get repeated a number of times throughout
your template. One solution to this problem is to extract the code
into another template and call it with PROCESS
whenever it is needed:

[% PROCESS my/gnarly/code day='Monday' %]
...later...
[% PROCESS my/gnarly/code day='Tuesday' %]

This idea works well for larger chunks of code, but it can be a
little unwieldy if used often. A far better idea is to define a
macro. A macro is a piece of arbitrary Template Toolkit code that is
given a name, enabling you to call it later in the template. For
example:

[% USE date -%]
[% MACRO now GET date.format(date.now, '%H:%M:%S') -%]
[% MACRO today GET date.format(date.now, '%Y-%m-%d') -%]

This defines two macros called now and
today that will output the current time and date
whenever they are called in the template:

[% now %] [% today %]

The following subsection introduces the directive for working with
macros.

4.8.1 MACRO

The MACRO directive
allows you to define a directive or directive block that is evaluated
each time the macro is called:

[% MACRO header INCLUDE header %]

Calling the macro as:

[% header %]

is then equivalent to:

[% INCLUDE header %]

Macros can be passed named parameters when called. These values
remain local to the macro. Therefore, calling the macro as:

[% header(title='Hello World') %]

is equivalent to:

[% INCLUDE header title='Hello World' %]

A MACRO definition may include parameter names.
Values passed to the macros are then mapped to these local variables.
Other named parameters may follow these.

[% MACRO header(title) INCLUDE header %]

[% header('Hello World') %]
[% header('Hello World', bgcol='#123456') %]

There are equivalent to:

[% INCLUDE header title='Hello World' %]
[% INCLUDE header title='Hello World' bgcol='#123456' %]

Here's another example, defining a macro for display
numbers in comma-delimited groups of three, using the
chunk and join virtual method:

[% MACRO number(n) GET n.chunk(-3).join(',') %]

[% number(1234567) %] # 1,234,567

A MACRO may precede any directive, including block
directives, but must conform to the structure of the directive:

[% terms = {
 sass = 'know, be aware of, meet, have sex with',
 hoopy = 'really together guy',
 frood = 'really, amazingly together guy'
 };

 MACRO explain(term)
 IF (explanation = terms.$term);
 "$term ($explanation)";
 ELSE;
 term;
 END;
%]

Here we define the explain(term) macro as an
IF / ELSE directive. It
consults a hash table to locate an explanation for the term passed as
an argument. It generates a string containing the term and
explanation, or the term by itself if no explanation is found.

Hey you [% explain('sass') %] that
[% explain('hoopy') %] Ford Prefect?
There's a [% explain('frood') %]
who really knows where his towel is.

This generates the following output:

Hey you sass (know, be aware of, meet, have sex with) that
hoopy (really together guy) Ford Prefect?
There's a frood (really, amazingly together guy)
who really knows where his towel is.

A MACRO can also be defined as an anonymous
BLOCK. The block will be evaluated each time the
macro is called.

[% MACRO translate(text)
 BLOCK;
 words = [];
 FOREACH word IN text.split;
 IF (explanation = terms.$word);
 words.push("$word ($explanation)");
 ELSE;
 words.push(word);
 END;
 END;
 words.join(' ');
 END
%]

This macro splits the text passed as an argument into words, attempts
to explain them, and then joins them back up into a single piece of
text:

[% translate(
 "Hey you sass that hoopy Ford Prefect?
 There's a frood who really knows where
 his towel is."
)
%]

This is the output generated by the previous template fragment:

Hey you sass (know, be aware of, meet, have sex with)
that hoopy (really together guy)
Ford Prefect? There's a frood (really, amazingly together guy)
who really knows where his towel is.

A MACRO can also be defined as a
PERL block, but will require the
EVAL_PERL option to be set:

[% MACRO triple(n) PERL %]
 my $n = $stash->get('n');
 print $n * 3;
[% END -%]

The PERL and RAWPERL directives
are covered at the end of this chapter.

4.9 Template Metadata

The Template Toolkit compiles a template
into a Perl object (an instance of the class
Template::Document). This object contains Perl
code that reproduces the required behavior of the template. You can
access the data in this object via the template
variable.

The Template::Document has access to various items
of metadata about the template that you can access via
template. This always includes the name of the
template and the last modification time, so it is always possible to
include things such as this in your template:

[% USE date(format => '%Y-%m-%d %H:%M:%S') %]
[% template.name %]
Last modified: [% date.format(template.modtime) %]

Further metadata items can be added using the META
directive, discussed next. These new items will also be available
through the template variable.

[% META moon_phase = 'first quarter' -%]
Phase of moon: [% template.moon_phase %]

4.9.1 META

The META directive allows simple metadata items
to be defined within a template. These are evaluated when the
template is parsed, and as such may contain only simple values (e.g.,
it's not possible to interpolate other variable
values into META variables).

[% META
 title = 'The Cat in the Hat'
 author = 'Dr. Seuss'
 version = 1.23
%]

The template variable contains a reference to the
main template being processed. These metadata items may be retrieved
as attributes of the template.

<h1>[% template.title %]</h1>
<h2>[% template.author %]</h2>

The name and modtime metadata
items are automatically defined for each template to contain its name
and modification time in seconds since the epoch:

[% USE date %] # use Date plugin to format time
...
[% template.name %] last modified
at [% date.format(template.modtime) %]

The PRE_PROCESS and
POST_PROCESS options allow common headers and
footers to be added to all templates. The template
reference is correctly defined when these templates are processed,
allowing headers and footers to reference metadata items from the
main template:

$tt = Template->new({
 PRE_PROCESS => 'header',
 POST_PROCESS => 'footer',
});

$tt->process('cat_in_hat');

header:

<html>
<head>
<title>[% template.title %]</title>
</head>
<body>

cat_in_hat:

[% META
 title = 'The Cat in the Hat'
 author = 'Dr. Seuss'
 version = 1.23
 year = 2000
%]

The cat in the hat sat on the mat.

footer:

<hr />
© [% template.year %] [% template.author %]
</body>
</html>

The output generated from the preceeding example is:

<html>
<head>
<title>The Cat in the Hat</title>
</head>
<body>

The cat in the hat sat on the mat.

<hr />
© 2000 Dr. Seuss
</body>
</html>

4.10 Exception Handling

No matter how careful you are, things always go
wrong. Errors are a fact of life. Your templates could contain bad
code and fail to compile. Or you could get an error thrown from the
Template Toolkit�maybe it can't find the
header file you asked for. Or your back-end code could raise an
error�you failed to connect to the required database. The
Template Toolkit wouldn't be of much use if common
errors such as these caused it to keel over and die.
That's why it provides an exception-handling
mechanism in the form of
TRY...CATCH.

Exceptions are just a fancy way of saying
errors. They're structured as objects so that an
error can have a type (just a word to identify the kind of error that
occurred, such as database,
user, or file) and an info
field that provides further information about the specifics of the
error. They get thrown just like regular errors, via
Perl's die, but rather than
saying die 'bad apple', we say THROW bad
apple.

You don't have to explicitly add code to handle
errors. If you don't and an error occurs, it gets
reported in the usual way. But if you know that errors might occur
and you have a sensible way of recovering from them,
it's good to add TRY...CATCH to
do that.

Using the exception mechanism doesn't force you to
worry about all errors that might occur. You can filter on the type
of error and just look out for your one custom error code to catch,
letting everything else pass through. Exceptions can also be nested,
so you can catch them at the most appropriate level in your template.

4.10.1 TRY / THROW / CATCH / FINAL

The Template Toolkit supports fully functional, nested exception
handling. The TRY directive
introduces an exception-handling scope that continues until the
matching END directive. Any errors that occur
within that block will be caught and can be handled by one of the
CATCH blocks defined.

[% TRY %]
 ...blah...blah...
 [% CALL somecode %]
 ...etc...
 [% INCLUDE someblock %]
 ...and so on...
[% CATCH %]
 An error occurred!
[% END %]

Errors are
raised as exceptions (objects of the
Template::Exception class) and contain two fields,
type and info. The exception
type can be any string containing letters,
numbers, "_" or
".", and is used to indicate the
kind of error that occurred. The info field
contains an error message indicating what actually went wrong. Within
a CATCH block, the exception object is aliased to
the error variable. You can access the
type and info fields directly.

[% mydsn = 'dbi:MySQL:foobar' %]
...

[% TRY %]
 [% USE DBI(mydsn) %]
[% CATCH %]
 ERROR! Type: [% error.type %]
 Info: [% error.info %]
[% END %]

The previous example generates the following output (assuming a
nonexistent database called foobar):

ERROR! Type: DBI
 Info: Unknown database "foobar"

The error variable can
also be specified by itself and will return a string of the form
$type error - $info:

...
[% CATCH %]
ERROR: [% error %]
[% END %]

The previous example generates the following output:

ERROR: DBI error - Unknown database "foobar"

Each CATCH block may be specified with a
particular exception type denoting the kind of error that it should
catch. Multiple CATCH blocks can be provided to
handle different types of exceptions that may be thrown in the
TRY block. A CATCH block
specified without any type, as in the previous example, is a default
handler that will catch any otherwise uncaught exceptions. This also
can be specified as [% CATCH DEFAULT %].

[% TRY %]
 [% INCLUDE myfile %]
 [% USE DBI(mydsn) %]
 [% CALL somecode %]
 ...
[% CATCH file %]
 File Error! [% error.info %]
[% CATCH DBI %]
 [% INCLUDE database/error.html %]
[% CATCH %]
 [% error %]
[% END %]

Remember that you can specify multiple directives within a single
tag, each delimited by ;. Thus, you might prefer
to write your simple CATCH blocks more succinctly
as:

[% TRY %]
 ...
[% CATCH file; "File Error! $error.info" %]
[% CATCH DBI; INCLUDE database/error.html %]
[% CATCH; error %]
[% END %]

or even:

[% TRY %]
 ...
[% CATCH file ;
 "File Error! $error.info" ;
 CATCH DBI ;
 INCLUDE database/error.html ;
 CATCH ;
 error ;
 END
%]

The DBI plugin throws exceptions of the
DBI type (in case that wasn't
already obvious). The other specific exception caught here is of the
file type.

A file error is
automatically thrown by the Template Toolkit when it
can't find a file, or fails to load, parse, or
process a file that has been requested by an
INCLUDE, PROCESS,
INSERT, or WRAPPER directive.
If myfile can't be found in the
previous example, the [% INCLUDE myfile %]
directive will raise a file exception, which is
then caught by the [% CATCH file %] block,
generating the output:

File Error! myfile: not found

Note that the DEFAULT option (disabled by default)
allows you to specify a default file to be used any time a template
file can't be found. This will prevent file
exceptions from ever being raised when a nonexistent file is
requested (unless, of course, the DEFAULT file
doesn't exist). Errors encountered once the file has
been found (i.e., read error, parse error) will be raised as file
exceptions as per usual.

Uncaught exceptions (i.e., the TRY block
doesn't have a type-specific or default
CATCH handler) may be caught by enclosing
TRY blocks that can be nested indefinitely across
multiple templates. If the error isn't caught at any
level, processing will stop and the Template process(
) method will return a false value to the caller. The
relevant Template::Exception object can be
retrieved by calling the error() method.

[% TRY %]
 ...
 [% TRY %]
 [% INCLUDE $user.header %]
 [% CATCH file %]
 [% INCLUDE header %]
 [% END %]
 ...
[% CATCH DBI %]
 [% INCLUDE database/error.html %]
[% END %]

In this example, the inner TRY block is used to
ensure that the first INCLUDE directive works as
expected. We're using a variable to provide the name
of the template we want to include, user.header,
and it's possible this contains the name of a
nonexistent template, or perhaps one containing invalid template
directives. If the INCLUDE fails with a
file error, we CATCH it in the
inner block and INCLUDE the default
header file instead. Any DBI errors that occur
within the scope of the outer TRY block will be
caught in the relevant CATCH block, causing the
database/error.html template to be processed.
Note that included templates inherit all currently defined template
variables, so these error files can quite happily
access the error variable to retrieve information
about the currently caught exception. For example:

database/error.html:

<h2>Database Error</h2>
A database error has occurred: [% error.info %]

You can also specify a FINAL block. This is
always processed regardless of the outcome of the
TRY and/or CATCH block. If an
exception is uncaught, the FINAL block is
processed before jumping to the enclosing block or returning to the
caller.

[% TRY %]
 ...
[% CATCH this %]
 ...
[% CATCH that %]
 ...
[% FINAL %]
 All done!
[% END %]

The output from the TRY block is left intact up to
the point where an exception occurs. For example, this template:

[% TRY %]
 This gets printed
 [% THROW food 'carrots' %]
 This doesn't
[% CATCH food %]
 culinary delights: [% error.info %]
[% END %]

generates the following output:

This gets printed
culinary delights: carrots

The CLEAR directive
can be used in a CATCH or FINAL
block to clear any output created in the TRY
block. For example, this template:

[% TRY %]
 This gets printed
 [% THROW food 'carrots' %]
 This doesn't
[% CATCH food %]
 [% CLEAR %]
 culinary delights: [% error.info %]
[% END %]

generates the following output:

culinary delights: carrots

Exception types are hierarchical, with each level being separated by
the familiar dot operator. A DBI.connect exception
is a more specific kind of DBI error. Similarly, a
myown.error.barf is a more specific kind of
myown.error type, which itself is also a
myown error. A CATCH handler
that specifies a general exception type (such as
DBI or myown.error) will also
catch more specific types that have the same prefix as long as a more
specific handler isn't defined. Note that the order
in which CATCH handlers are defined is irrelevant;
a more specific handler will always catch an exception in preference
to a more generic or default one.

[% TRY %]
 ...
[% CATCH DBI ;
 INCLUDE database/error.html ;
 CATCH DBI.connect ;
 INCLUDE database/connect.html ;
 CATCH ;
 INCLUDE error.html ;
 END
%]

In this example, a DBI.connect error has its own
handler, a more general DBI block is used for all
other DBI or DBI.* errors, and
a default handler catches everything else.

Exceptions can be raised in a template using the
THROW directive.
The first parameter is the exception type, which
doesn't need to be quoted (but can be,
it's the same as INCLUDE),
followed by the relevant error message, which can be any regular
value such as a quoted string, variable, etc.

[% THROW food "Missing ingredients: $recipe.error" %]

[% THROW user.login 'no user id: please login' %]

[% THROW $myerror.type "My Error: $myerror.info" %]

It's also possible to specify additional positional
or named parameters to the THROW directive if you
want to pass more than just a simple message back as the error
info field:

[% THROW food 'eggs' 'flour' msg='Missing Ingredients' %]

In this case, the error info field will be a hash
array containing the named arguments�in this case msg
=> 'Missing Ingredients'�and an
args item that contains a list of the positional
arguments�in this case eggs and
flour. The error type field
remains unchanged; here it is set to food.

[% CATCH food %]
 [% error.info.msg %]
 [% FOREACH item = error.info.args %]
 * [% item %]
 [% END %]
[% END %]

This produces the output:

Missing Ingredients
 * eggs
 * flour

In addition to specifying individual positional arguments as
[% error.info.args.n %], the
info hash contains keys directly pointing to the
positional arguments, as a convenient shortcut:

[% error.info.0 %] # same as [% error.info.args.0 %]

Exceptions can also be thrown from Perl code that
you've bound to template variables, or defined as a
plugin or other extension. To raise an exception,
call die() passing
a reference to a Template::Exception object as the
argument. This will then be caught by any enclosing
TRY blocks from where the code was called.

use Template::Exception;
...

my $vars = {
 foo => sub {
 # ... do something ...
 die Template::Exception->new('myerr.naughty',
 'Bad, bad error');
 },
};

Therefore, this template:

[% TRY %]
 ...
 [% foo %]
 ...
[% CATCH myerr ;
 "Error: $error" ;
 END
%]

produces the following output:

Error: myerr.naughty error - Bad, bad error

The info field can also be a reference to another
object or data structure, if required:

die Template::Exception->new('myerror', {
 module => 'foo.pl',
 errors => ['bad permissions', 'naughty boy'],
});

Later, it can be used in a template:

[% TRY %]
 ...
[% CATCH myerror %]
 [% error.info.errors.size or 'no';
 error.info.errors.size = = 1 ? ' error' : ' errors' -%]
 in [% error.info.module %]:
 [% error.info.errors.join(', ') %].
[% END %]

generating the output:

2 errors in foo.pl:
 bad permissions, naughty boy.

You can also call die() with a single string, as
is common in much existing Perl code. This will automatically be
converted to an exception of the undef type
(that's the literal string
`undef', not the undefined value).
If the string isn't terminated with a newline, Perl
will append the familiar at $file line $line
message.

sub foo {
 # ... do something ...
 die "I'm sorry, Dave, I can't do that\n";
}

If you're writing a plugin, or some extension code
that has the current Template::Context in scope
(you can safely skip this section if this means nothing to you), you
can also raise an exception by calling the context throw(
) method. You can pass it a
Template::Exception object reference, a pair of
($type, $info) parameters, or just a
$info string to create an exception of
undef type.

$context->throw($e); # exception object
$context->throw('Denied'); # 'undef' type
$context->throw('user.passwd', 'Bad Password');

4.10.2 CLEAR

The CLEAR directive can
be used to clear the output buffer for the current enclosing block.
It is most commonly used to clear the output generated from a
TRY block up to the point where the error
occurred.

[% TRY %]
 blah blah blah # this is normally left intact
 [% THROW some 'error' %] # up to the point of error
 ...
[% CATCH %]
 [% CLEAR %] # clear the TRY output
 [% error %] # print error string
[% END %]

4.11 Flow Control

Flow control is about making unexpected changes to the execution
order of a template. This can be as simple as ending a
FOREACH loop early, or as significant as ending
the entire template processing process. These are generally
exceptional cases, so you probably won't need to use
flow-control directives that often, but we discuss them here just in
case.

4.11.1 RETURN

The
RETURN directive can be used to stop processing the
current template and return to the template from which it was called,
resuming processing at the point immediately after the
INCLUDE, PROCESS, or
WRAPPER directive. If there is no enclosing
template, the Template process() method will
return to the calling code with a true value.

Before
[% INCLUDE half_wit %]
After

[% BLOCK half_wit %]
This is just half...
[% RETURN %]
...a complete block
[% END %]

The previous example produces the following output:

Before
This is just half...
After

4.11.2 STOP

The STOP directive can
be used to indicate that the processor should stop gracefully without
processing any more of the template document. This is a planned stop,
and the Template process() method will return a
true value to the caller. This indicates that the template was
processed successfully according to the directives within it.

[% IF something.terrible.happened %]
 [% INCLUDE fatal/error.html %]
 [% STOP %]
[% END %]

[% TRY %]
 [% USE DBI(mydsn) %]
 ...
[% CATCH DBI.connect %]
 <p>Cannot connect to the database: [% error.info %]</p>

 We apologize for the inconvenience. The cleaning lady
 has removed the server power to plug in her vacuum cleaner.
 Please try again later.
 </p>
 [% INCLUDE footer %]
 [% STOP %]
[% END %]

4.11.3 NEXT

The NEXT directive can be used to start the
next iteration of a FOREACH or
WHILE loop:

[% FOREACH user = userlist %]
 [% NEXT IF user.isguest %]
 Name: [% user.name %] Email: [% user.email %]
[% END %]

4.11.4 LAST

The LAST directive can be used to prematurely
exit a FOREACH or WHILE loop:

[% FOREACH user = userlist %]
 Name: [% user.name %] Email: [% user.email %]
 [% LAST IF some.condition %]
[% END %]

BREAK can also be used as an alias for
LAST.

4.12 Debugging

It's possible that you won't get
everything just right in your templates the first time you write
them. If you have problems working out what exactly is going on as
the Template Toolkit is processing your template, the
DEBUG directive can help you.

The DEBUG directive enables and disables directive
debug messages within a template. It is used with an
on or off parameter to enable
or disable directive debugging messages from that point forward. When
enabled, the output of each directive in the generated output will be
prefixed by a comment indicating the file, line, and original
directive text.

[% DEBUG on %]
directive debugging is on (assuming DEBUG option is set to true)
[% DEBUG off %]
directive debugging is off

The format parameter can be used to change the
format of the debugging message:

[% DEBUG format '<!-- $file line $line : [% $text %] -->' %]

The DEBUG configuration option must be set to
include DEBUG_DIRS for the
DEBUG directives to have any effect. If
DEBUG_DIRS is not set, the parser will
automatically ignore and remove any DEBUG
directives.

4.13 Perl Blocks

The Template Toolkit directives that we have seen
up to now together define a presentation language that allows you to
do just about anything you need to in order to control the display of
your data. This is in keeping with the Template Toolkit philosophy of
separating processing from presentation.

However, there may be times when you want to go beyond what Template
Toolkit offers you. Very occasionally you might need the power of a
full programming language within your templates. When nothing else
will do, the Template Toolkit also gives you the option of embedding
Perl directly in your templates in PERL and
RAWPERL directive blocks.

Using PERL and RAWPERL blocks
isn't something that is widely encouraged because it
tends to make templates messy and hard to read. It also leads to a
poor separation of concerns when you mix application code with
presentation templates. However, the Template Toolkit
doesn't enforce this separation, so you can embed
Perl code inside your templates if you really want to. Because we
don't encourage it, this feature is disabled by
default. You will have to enable the EVAL_PERL
configuration option to embed Perl code.

4.13.1 PERL

The PERL directive allows you to embed a block
of Perl code in a template. It looks like this:

[% PERL %]
 print "Hello world\n"
[% END %]

The EVAL_PERL configuration option must be enabled
in order to use PERL blocks. If you try to use a
PERL block when EVAL_PERL is
disabled, a perl exception will be thrown with the
message `EVAL_PERL not
set':

my $template = Template->new({
 EVAL_PERL => 1,
});

The Template Toolkit evaluates Perl code in the
Template::Perl package. A number of special
variables are predefined, providing access to various Template
Toolkit objects.

The $context package variable contains a reference
to the current Template::Context object. This can
be used to access the functionality of the Template Toolkit to
process other templates, and load plugins, filters, etc.:

[% PERL %]
 print $context->include('myfile');
[% END %]

The $stash variable contains a reference to the
top-level stash object, which manages template variables. Through
this, variable values can be retrieved and updated.

[% PERL %]
 $stash->set(foo => 'bar');
 print "foo value: ", $stash->get('foo');
[% END %]

The previous example generates the following output:

foo value: bar

Output is generated from the PERL block by calling
print. Before evaluating the code, a filehandle
called Template::Perl::PERLOUT is set up and
selected as the default output filehandle. This will be connected to
whatever output device was defined in the call to
process. Your code should use this filehandle
instead of STDOUT.

[% PERL %]
 print "foo\n"; # OK
 print PERLOUT "bar\n"; # OK, same as above
 print Template::Perl::PERLOUT "baz\n"; # OK, same as above
 print STDOUT "qux\n"; # WRONG!
[% END %]

The PERL block may contain other template
directives. These are processed before the Perl code is evaluated.

[% name = 'Fred Smith' %]

[% PERL %]
 print "[% name %]\n";
[% END %]

Thus, the Perl code in the previous example is evaluated as:

print "Fred Smith\n";

Exceptions may be thrown from within PERL blocks
via die, and will be correctly caught by enclosing
TRY blocks:

[% TRY %]
 [% PERL %]
 die "nothing to live for\n";
 [% END %]
[% CATCH %]
 error: [% error.info %]
[% END %]

The previous example generates the following output:

error: nothing to live for

4.13.2 RAWPERL

The Template Toolkit parser reads a source
template and generates the text of a Perl subroutine as output. It
then uses eval() to evaluate it into a subroutine
reference. This subroutine is then called to process the template,
passing a reference to the current
Template::Context object through which the
functionality of the Template Toolkit can be accessed. The subroutine
reference can be cached, allowing the template to be processed
repeatedly without requiring any further parsing.

For example, a template such as:

[% PROCESS header %]
The [% animal %] sat on the [% location %]
[% PROCESS footer %]

is converted into the following Perl subroutine definition:

sub {
 my $context = shift;
 my $stash = $context->stash;
 my $output = '';
 my $error;

 eval { BLOCK: {
 $output .= $context->process('header');
 $output .= "The ";
 $output .= $stash->get('animal');
 $output .= " sat on the ";
 $output .= $stash->get('location');
 $output .= $context->process('footer');
 $output .= "\n";
 } };
 if ($@) {
 $error = $context->catch($@, \$output);
 die $error unless $error->type eq 'return';
 }

 return $output;
}

To examine the Perl code generated, such as in the previous example,
set the $Template::Parser::DEBUG package variable
to any true value. You can also set the
$Template::Directive::PRETTY variable to true to
have the code formatted in a readable manner for human consumption.
The source code for each generated template subroutine will be
printed to STDERR on compilation (i.e., the first time a template is
used).

$Template::Parser::DEBUG = 1;
$Template::Directive::PRETTY = 1;

...

$tt->process($file, $vars)
 || die $tt->error(), "\n";

The PERL ...
END construct allows Perl code to be embedded into
a template (when the EVAL_PERL option is set), but
it is evaluated at "runtime" using
eval() each time the template subroutine is
called. This is inherently flexible but not as efficient as it could
be, especially in a persistent server environment where a template
may be processed many times.

The RAWPERL directive allows you to write Perl
code that is integrated directly into the generated Perl subroutine
text. It is evaluated once at compile time and is stored in cached
form as part of the compiled template subroutine. This makes
RAWPERL blocks more efficient than
PERL blocks.

The downside is that you must code much closer to the metal. Within
PERL blocks, you can call print(
) to generate some output. RAWPERL
blocks don't afford such luxury. The code is
inserted directly into the generated subroutine text and should
conform to the convention of appending to the
$output variable.

[% PROCESS header %]

[% RAWPERL %]
 $output .= "Some output\n";
 ...
 $output .= "Some more output\n";
[% END %]

The critical section of the generated subroutine for this example
would then look something like this:

...
eval { BLOCK: {
 $output .= $context->process('header');
 $output .= "\n";
 $output .= "Some output\n";
 ...
 $output .= "Some more output\n";
 $output .= "\n";
} };
...

As with PERL blocks, the
$context and $stash references
are predefined and available for use within
RAWPERL code.

Only very advanced Template Toolkit users will ever need to use a
RAWPERL block.

Chapter 5. Filters

Filters are
a powerful feature of the Template
Toolkit that allow you to
postprocess parts of the output of your template in many different
ways. A number of filters for carrying out common tasks are included
with the standard Template Toolkit distribution, and it is possible
to extend this set by writing your own.

A good example of a filter that comes with the Template Toolkit is
the html filter. In an HTML document, a number of
characters have special meanings, so if you want these characters to
appear in your document they need to be converted to HTML
Entities. The html filter converts the
characters <, >,
", and & to
<, >,
", and &,
respectively.[1]
[1] There is also another filter called
html_entity, which converts far more
characters.

Example 5-1 shows the html
filter in action. Without the filter, the JavaScript section in the example
would be treated as actual JavaScript code and executed. The filter
converts the < characters, thereby changing the
JavaScript to text that would be displayed by a browser rather than
being executed.

Example 5-1. Filtering Javascript

<p>Here is what the JavaScript should look like:</p>
<pre>
[% FILTER html %]
<script language="JavaScript" type="text/javascript">
<!--
document.writeln("Hello, world");
//-->
</script>
[% END %]
</pre>

The processed document looks like this:

<p>Here is what the JavaScript should look like:</p>
<pre>

<script language="JavaScript" type="text/javascript">
<!--
 document.writeln("Hello, world");
//-->
</script>
</pre>

This example also demonstrates a good reason for using filters. The
kinds of transformations that a filter makes might well be
appropriate only for a particular output medium. For example, the
html filter will be used only on HTML documents
that are being sent to a browser. If you were printing out the
document for some reason, the html filter would
only make it harder to follow. Having the FILTER
functionality available as a postprocessing option makes it easy to
decide whether to use it in certain circumstances, and easy to add it
to certain parts of a template without changing the way that most of
the template works.

In Example 5-1, we used the block syntax for using
the FILTER directive. This is useful for
filtering large parts of a template. If you are filtering the output
from a single tag, there is an inline version of the syntax, as shown
in Example 5-2.

Example 5-2. Formatting numbers

[% pi = 3.1415926536;
 pi FILTER format('%0.3f')
%]

This example uses the
format filter, which reformats data using
format definitions such as those used by the
printf function common in many programming
languages. In the example, we reformat a decimal number to display
only two decimal places (note also that the last digit displayed is
rounded up).

The processed output looks like this:

3.142

It is possible to abbreviate this even further. The
pipe character
(|) can be used as a synonym for
FILTER, as shown in Example 5-3.

Example 5-3. Filtering using the pipe symbol

[% pi = 3.1415926536;
 pi | format('%0.3f')
%]

These two examples also demonstrate the differences between the two
types of filters. The html filter is an example of
a static filter, whereby the filter has the same effect
each time it is used. The format filter is an
example of a dynamic
filter, whereby the exact transformation is
controlled by a parameter that is passed to the filter on each use.

In this chapter, we look at the different ways you can use filters in
your own templates, and also look at the standard filters that are
part of the Template Toolkit.

5.1 Using Filters

As we have seen, a filter is used to postprocess the text from a
template. The filter acts after any other template processing on the
text and transforms the text before the output phase. Example 5-1 shows the format filter
being used to put HTML comment characters around a piece of text.

Example 5-4. Using the format filter to add comments

[% text = "The white zone is for loading and unloading only." %]

[% FILTER format("<!-- %s -->");
 text;
END
%]

Example 5-1 generates the following output:

<!-- The white zone is for loading and unloading only. -->

Filters
can
be invoked in two different ways�either by enclosing a block of
template markup between the FILTER and
END directives, as in:

[% FILTER html %] ... [% END %]

or in side-effect notation with the
FILTER coming after the item to be filtered:

[% text FILTER html %]

In the second form, the pipe symbol
(|) can be used as an alias for the
FILTER keyword to give a more Unix-like pipeline
feel:

[% text | truncate(30) | format("<!-- %s -->") %]

As the previous example shows, a number of FILTERs
can be chained together. The filters are applied from left to right.

Filters can be applied to many Template Toolkit expressions other
than plain strings and scalar variables, including any block
directive:

[% FILTER indent("> ") %]
[% INSERT "mail.txt" %]
[% END %]

Or, more concisely:

[% INSERT "mail.txt" | indent("> ") %]

5.2 Standard Template Toolkit Filters

The Template Toolkit comes with a large number of preinstalled
filters. In this section, we will take a look at these standard
filters and see examples of their usage.

5.2.1 collapse

The collapse filter replaces any amount of whitespace
with a single space character. It uses Perl's
definition of whitespace, which includes spaces, tabs, carriage
returns, newlines, and a few more esoteric characters. Example 5-2 gives an example of using this filter.

Example 5-5. The collapse filter

[% FILTER collapse %]
You'll love
 it, it's a way
 of life.
[% END %]

The output is nice and clean:

You'll love it, it's a way of life.

5.2.2 eval / evaltt

The eval filter evaluates the block as template
text, processing any directives embedded within it. This allows
template variables to contain template fragments, or for some method
to be provided for returning template fragments from an external
source such as a database, which can then be processed in the
template as required.

my $vars = {
 fragment => "The cat sat on the [% place %]",
};
$tt->process($file, $vars);
 || die $tt->error();

The following example:

[% fragment | eval %]

is therefore equivalent to:

The cat sat on the [% place %]

The evaltt filter is provided as an alias for
eval.

5.2.3 format(fmt)

The format filter takes a
sprintf-style format string and applies it to the
input, line by line. It can be used to preface blocks with comment
markers, truncate lines, or do numeric conversions.

The format filter can be used for commenting out
sections of text, as shown in Example 5-3.

Example 5-6. The format filter used to comment out code

[% FILTER format("<!-- %s -->") -%]
<script language="VBScript" type="text/vbscript">
 // evil vbscript here...
</script>
[% END %]

Example 5-3 produces the following output:

<!-- <script language="VBScript" type="text/vbscript"> -->
<!-- // evil vbscript here... -->
<!-- </script> -->

Because format passes its arguments to
sprintf, any sprintf format
strings can be used, including the field width and padding modifiers,
as shown in Example 5-4.

Example 5-7. Left- and right-justified text

[% string = "Hello, I must be going." %]
Space padded, right justified: '[% string | format("% 32s") %]'
Space padded, left justified: '[% string | format("%- 32s") %]'

Example 5-4 produces the following output:

Space padded, right justified: ' Hello, I must be going.'
Space padded, left justified: 'Hello, I must be going. '

The format filter also handles numerical
transformations. Example 5-5 shows the same number
being displayed in a number of different formats.

Example 5-8. Number formats

[% num = 42 %]
Unfiltered: [% num %]
Decimal: [% num | format("%d") %]
Binary: [% num | format("%b") %]
Hex: [% num | format("%x") %]
Hex, 0x-padded: [% num | format("%#x") %]
Octal: [% num | format("%o") %]
Octal, 0-padded: [% num | format("%#o") %]
Floating point: [% num | format("%f") %]
Scientific Notation: [% num | format("%e") %]

Example 5-5 produces the following output:

Unfiltered: 42
Decimal: 42
Binary: 101010
Hex: 2a
Hex, 0x-padded: 0x2a
Octal: 52
Octal, 0-padded: 052
Floating point: 42.000000
Scientific Notation: 4.200000e+01

Example 5-6 demonstrates the use of the
%f format definition to control the number of
decimal places displayed by a floating-point number.

Example 5-9. Controlling the number of decimal places

[% pi = 3.1415926536 %]
[% pi | format('%3.1f') %]
[% pi | format('%4.2f') %]
[% pi | format('%5.3f') %]

Its output is shown here:

3.1
3.14
3.142

Example 5-7 shows that variable interpolation works
as you'd expect.

Example 5-10. Variable interpolation in format definitions

[% pi = 3.1415926536 %]
[% FOREACH dp = [1 .. 10] -%]
[% pi | format("%.${dp}f") %]
[% END %]

Here is its output:

3.1
3.14
3.142
3.1416
3.14159
3.141593
3.1415927
3.14159265
3.141592654
3.1415926536

In this example, the { } around
dp is required so that the Template Toolkit knows
to interpolate dp and not dpf,
which is undefined (at least from the earlier snippet).

5.2.4 html

The html filter does very basic HTML encoding: it
replaces the most commonly troublesome characters
(<, >,
&, and ") with their
encoded counterparts. This is enough for many encoding jobs, and this
filter is very lightweight. More complex encoding will need to use
the html_entity filter, which implements a more
general-purpose and extended encoding filter, but which is slower and
more involved. Example 5-8 shows this filter in
action.

Example 5-11. Using the html filter

<p>Creating an HTML anchor is simple:</p>
<pre>
[% FILTER html %]

 Read the documentation!

[% END %]
</pre>

The output from Example 5-8 is as follows:

<p>Creating an HTML anchor is simple:</p>
<pre>

 Read the documentation!

</pre>

5.2.5 html_break / html_para_break

The html_break filter looks for sequences of two or
more newlines in the text and replaces them with the HTML tag
sequence

(see Example 5-9).

Example 5-12. Using the html_break filter

[% FILTER html_break %]
The cat sat on the mat.

Mary had a little lamb.
[% END %]

This example outputs the following:

The cat sat on the mat.

Mary had a little lamb.

5.2.6 html_entity

The html filter is fast and simple, but it
doesn't encode the full range of HTML entities that
your text may contain. The html_entity filter uses
the Apache::Util module if it can be loaded (it is
written in C and is therefore faster) or the
HTML::Entities module (written in Perl but equally
as comprehensive) to perform the encoding. If the
Apache::Util or the
HTML::Entities module is installed on your system,
the text will be encoded (via the escape_html or
encode_entities subroutines, respectively) to
convert all extended characters into their appropriate HTML entities
(e.g., converting é to
é). If neither module is available on
your system, an
html_entity exception will be thrown reporting an
appropriate message.

Example 5-10 gives one example of a character that is
converted to an HTML entity by this filter. The British
£ symbol is converted to
£.

Example 5-13. Using the html_entity filter

[% price = '£19.99' -%]
<p>
 The book cost [% price | html_entity %].
</p>

Example 5-10 produces the following output:

<p>
 The book cost £19.99.
</p>

For further information on HTML entity encoding, see http://www.w3.org/TR/REC-html40/sgml/entities.html.

5.2.7 html_line_break

The
html_line_break filter replaces any newlines with

 HTML tags, thus preserving the line
breaks of the original text in the HTML output. Example 5-11 shows its use.

Example 5-14. Using the html_line_break filter

[% FILTER html_line_break -%]
The cat sat on the mat.
Mary had a little lamb.
[% END %]

The example produces the following output:

The cat sat on the mat.

Mary had a little lamb.

5.2.8 html_para

The html_para filter formats a block of text into HTML
paragraphs. A sequence of two or more newlines is used as the
delimiter for paragraphs, which are then wrapped in HTML
<p> ... </p> tags (see Example 5-12).

Example 5-15. Using the html_para filter

[% FILTER html_para -%]
The cat sat on the mat.

Mary had a little lamb.
[% END %]

This example produces the following output:

<p>
The cat sat on the mat.
</p>

<p>
Mary had a little lamb.
</p>

5.2.9 indent(pad)

The indent filter prefixes each line of input with
a fixed string or number of spaces (defaults to four). If the
supplied argument is a number, then that many spaces are used;
otherwise it is taken to be a string and used literally.

This filter can be used to create bulleted lists, as shown in Example 5-13.

Example 5-16. Creating bullet points with the indent filter

[% FILTER indent(" * ") -%]
Item one
Item two
Item three
[%- END %]

Example 5-13 produces the following output:

* Item one
* Item two
* Item three

This filter also can be used to quote emails, as shown in Example 5-14.

Example 5-17. Quoting emails with the indent filter

[% quote = "> " %]
[% FILTER indent(quote) -%]
Dear Darren, Dave, and Andy,

You guys rock. The Template Toolkit book is fantastic.

Thanks for writing it.

A Fan
[% END %]

Example 5-14 produces the following output:

> Dear Darren, Dave, and Andy,
>
> You guys rock. The Template Toolkit book is fantastic.
>
> Thanks for writing it.
>
> A Fan

It also can be used to add a prefix to debugging messages, as shown
in Example 5-15.

Example 5-18. Adding the template name to debug output

[% debug_msg | indent("[$template.name] ") | stderr %]

This example produces the following output:

[src/header] Some useful debug info (which goes to stderr)

If you give the indent filter no arguments, it
indents by four spaces, as shown in Example 5-16.

Example 5-19. Default indent

[% FILTER indent -%]
A sample piece of text
that will be indented
[%- END %]
This isn't indented

Example 5-16 produces the following output:

 A sample piece of text
 that will be indented
This isn't indented

5.2.10 latex(outputType)

The latex filter passes the text block to
LaTeX[2] and produces either PDF, DVI, or PostScript output. The
outputType argument determines the output format,
and it should be set to one of the following strings:
"pdf" (default),
"dvi", or
"ps".
[2] If you have it installed on your system.

The text block should be a complete LaTeX source file. Example 5-17 shows the latex filter in
action.

Example 5-20. Using the latex filter

[% FILTER latex("pdf") -%]
\documentclass{article}

\begin{document}

\title{A Sample TT2 \LaTeX\ Source File}
\author{Craig Barratt}
\maketitle

\section{Introduction}
This is some text.

\end{document}
[% END -%]

The output will be a PDF file. You should be careful not to prepend
or append any extraneous characters or text outside the
FILTER block because this text will wrap the
(binary) output of the latex filter. Notice the -
character placed before the %] end tag to remove
the trailing newline.

One instance in which you might prepend text is in a CGI script,
where you might include the Content-Type before the latex output, as
shown in Example 5-18.

Example 5-21. Using the latex filter in a CGI program

Content-Type: application/pdf

[% FILTER latex("pdf") -%]
\documentclass{article}
\begin{document}
...
\end{document}
[% END -%]

In other cases, you might use the redirect filter
to put the output into a file, rather than delivering it to
STDOUT. This might be suitable for batch scripts,
as shown in Example 5-19.

Example 5-22. Redirecting output from the latex filter

[% output = FILTER latex("pdf") -%]
\documentclass{article}
\begin{document}
...
\end{document}
[% END; output | redirect("document.pdf", 1) -%]

(Notice the second argument to redirect to force
binary mode.)

The latex filter runs one or two external
programs, so it isn't very fast. But for modest
documents, the performance is adequate, even for interactive
applications.

An error of type latex will be thrown if an error
is reported by latex,
pdflatex, or dvips.

5.2.11 lcfirst

The lcfirst filter folds the first character of the
input to lowercase, as shown in Example 5-20.

Example 5-23. Using the lcfirst filter

[% "FIREHOSE" FILTER lcfirst %]

Example 5-20 produces the following output:

fIREHOSE

The lcfirst filter can be chained to the
upper, ucfirst, and
lower filters (described later in this chapter).
In Example 5-21 the first letter of the sentence is
folded to uppercase, with the remaining letters folded to lowercase.

Example 5-24. Combining the lower and ucfirst filters

[% sentence = "sOmE tExT iN rAnDoM cAsE" -%]
[% sentence | lower | ucfirst %]

Example 5-21 produces the following output:

Some text in random case

This sequence of filters would make a very useful macro, as shown in
Example 5-22.

Example 5-25. The sentence_case macro

[% MACRO sentence_case(str) str | lower | ucfirst %]

The upper, lower,
ucfirst, and lcfirst filters
are subject to Perl's normal locale considerations.
The perllocale documentation, which came with your
copy of Perl, has all the details.

5.2.12 lower

The lower filter folds all the characters in the
input text to lowercase (see Example 5-23).

Example 5-26. Using the lower filter

[% "Hello World" | lower %]

Example 5-23 produces the following output:

hello world

5.2.13 null

The null filter prints nothing. This is useful
for plugins whose methods return values that you
don't want to appear in the output. You can use CALL
on each plugin method call to ignore the value returned, or you can
wrap the block in a null filter (see Example 5-24).

Example 5-27. Using the null filter

[% FILTER null;
 USE im = GD.Image(100,100);
 black = im.colorAllocate(0, 0, 0);
 red = im.colorAllocate(255,0, 0);
 blue = im.colorAllocate(0, 0, 255);
 im.arc(50,50,95,75,0,360,blue);
 im.fill(50,50,red);
 im.png | stdout(1);
END;
-%]

Notice the use of the stdout filter to ensure that
a particular expression generates output to STDOUT (in this case, in
binary mode).

5.2.14 perl / evalperl

The perl filter evaluates the block as Perl code.
The EVAL_PERL option must be set to a true value
or a perl exception will be thrown (see Example 5-25).

Example 5-28. Using the perl filter

[% my_perl_code | perl %]

In most cases, the PERL ...
END directive block should suffice for evaluating
Perl code. Thus, Example 5-25 could have been written
in the more verbose forms shown in Example 5-27.

Example 5-29. Using a PERL block in place of the perl filter

[% PERL %]
[% my_perl_code %]
[% END %]

Example 5-30. Using the perl filter in block form

[% FILTER perl %]
[% my_perl_code %]
[% END %]

The evalperl filter is provided as an alias for
perl for backward compatibility.

5.2.15 redirect(file, options)

The redirect filter redirects the output of the block
to the named file, relative to a location defined in the
OUTPUT_PATH configuration option.

The redirect() filter will throw a
file exception if the file specified cannot be
opened. The filter should be used in a TRY
... CATCH block if you want to
trap these kind of errors (see Example 5-28).

Example 5-31. Using the redirect filter

[% USE translate("src" = "en");
 FOREACH language = languages;
 file = "index.html.$language";
 TRY;
 text | $translate("dest" => language) | redirect(file);
 msg = " + Successfully translated $file to $language.";
 CATCH file;
 msg = " - Cannot open $file: $error";
 CATCH;
 msg = " - Error: $error";
 END;
 emsg | stderr;
 END;
 %]

5.2.16 remove(string)

The remove filter removes parts of the text block,
based on the regular expression specified by the string. The regular
expression is passed directly to Perl, and can contain anything
regular Perl regexes can contain. Example 5-29
removes every occurence of the letter
"e" from a string:

Example 5-32. Using the remove filter

[% string = "Hello, I must be going.";
 string | remove("e") %]

Example 5-29 produces the following output:

Hllo, I must b going.

Example 5-30 shows a more complex example that
removes all occurences of "e"
preceeded by an "H" and followed by
"ll", but without removing the
"H" or
"ll". It combines a zero-width
positive lookbehind assertion (?<=) with a
zero-width positive lookahead assertion (?=).

Example 5-33. Using the remove filter with a regular expression

[% string = "Hello, I must be going.";
 string | remove("(?x) # whitespace is not important
 (?<=H) # an 'H'
 e # strip the 'e'!
 (?=ll) # followed by 'll'
") %]

Example 5-30 produces the following output:

Hllo, I must be going.

5.2.17 repeat(iterations)

The repeat filter repeats the text
iteration number of times. The default for
iterations is 1 and the text is printed only once
(see Example 5-31).

Example 5-34. Using the repeat filter

[% FILTER repeat(5) %]
All work and no play make Jack a dull boy.
[% END %]

Example 5-31 produces the following output:

All work and no play make Jack a dull boy.

All work and no play make Jack a dull boy.

All work and no play make Jack a dull boy.

All work and no play make Jack a dull boy.

All work and no play make Jack a dull boy.

5.2.18 replace(search, replace)

The replace filter is similar to the
remove filter, but also takes a replacement
string. Example 5-32 replaces every
"e" in the input text with a
"u".

Example 5-35. Using the replace filter

[% string = "Hello, I must be going.";
 string | replace("e", "u") %]

Example 5-32 produces the following output:

Hullo, I must bu going.

5.2.19 stderr

The stderr filter, shown in Example 5-33, prints the input text to STDERR. The
binmode argument can be used as described in the
stdout filter, explained next.

Example 5-36. Using the stderr filter

[% PROCESS something/cool | stderr(binmode=1) %]

5.2.20 stdout(options)

The stdout filter prints the output generated by
the enclosing block to STDOUT. Currently, the only supported option
is binmode, which can be passed as either a named
parameter or a single argument to set STDOUT to binary mode (see
Example 5-34).

Example 5-37. Using the stdout filter

[% PROCESS something/cool
 FILTER stdout(binmode=1) # recommended %]

[% PROCESS something/cool
 FILTER stdout(1) # alternate %]

Setting binmode is mostly of use for Win32 and VMS
users; see the perlfunc(1) manpage for all the
gory details.

The stdout filter can be used to force
binmode on STDOUT, or inside
redirect, null, or
stderr blocks to make sure that particular output
goes to standard output. See Example 5-24 earlier in
this chapter for an example of this usage.

5.2.21 trim

The trim filter removes any leading and trailing
whitespace from the input text. Example 5-35 shows a
string with leading and trailing whitespace, both of which are
removed when passed through the trim filter.

Example 5-38. Using the trim filter

[% text = " some text with leading and trailing spaces " %]
+[% text | trim %]+

Example 5-35 produces the following output:

+some text with leading and trailing spaces+

This filter is particularly useful when working with
BLOCK definitions. In Example 5-36, the foo block will be
defined as \nLine 1 of foo\n. The surrounding
newlines will also be introduced whenever the template is loaded
using INCLUDE or PROCESS.

Example 5-39. Extra newlines when processing blocks

[% BLOCK foo %]
between
[% END %]

before-[% PROCESS foo %]-after

Example 5-36 produces the following output:

before-
between
-after

When run through the trim filter, leading and
trailing newlines (which count as whitespace) will be removed from
the output of the BLOCK (see Example 5-37).

Example 5-40. Using the trim filter to remove the extra newlines

[% BLOCK foo %]
between
[% END %]

before-[% PROCESS foo | trim %]-after

Example 5-37 produces the following output:

before-between-after

5.2.22 truncate(length)

The truncate filter returns the first
length characters of the input text. The default
value for length is 32. The text will actually be
truncated three characters short of this, to make room for an
ellipsis (. . .) to be appended to it. The returned text will be
exactly length characters long, or less.

Example 5-38 shows it being used in a search results
page.

Example 5-41. Using the truncate filter

[% FOREACH result = results %]
 * [% result.description | truncate(24) %]
 Read more
[% END %]

When using truncate from within HTML, there is a
danger that simply truncating the text will leave hanging HTML tags,
as demonstrated in Example 5-39.

Example 5-42. Hanging HTML tags

[%- result.description = "Hello, <blink>world</blink>!" %]
Description: [% result.description | truncate(20) %]

Example 5-39 produces the following output:

Description: Hello, <blink>wor...

Using the remove filter in conjunction with the
truncate filter, we get the desired results, as
shown in Example 5-40.

Example 5-43. Using the remove filter to fix the hanging HTML tags

[%- result.description = "Hello, <blink>world</blink>!" %]
Description: [% result.description | remove("<[^>]*?>") | truncate(20) %]

Example 5-40 produces the following output:

Description: Hello, world!

5.2.23 ucfirst

The ucfirst filter folds the first character of the
input to uppercase, as shown in Example 5-41.

Example 5-44. Using the ucfirst filter

[% "hello" | ucfirst %]

Example 5-41 produces the following output:

Hello

5.2.24 upper

The upper filter uppercases the input, similar to
Perl's uc function (see Example 5-42).

Example 5-45. Using the upper filter

[% 'do not leave it is not real' | upper %]

Example 5-42 produces the following output:

DO NOT LEAVE IT IS NOT REAL

5.2.25 uri

The uri filter performs
URI-escaping, which is the transformation of a
URI string into a specific set of characters that are guaranteed not
to cause any clients to do funny things. As defined by RFC 2396, a
URI may consist of a limited number of
"safe" characters; all others must
be escaped using hexadecimal equivalents in the format
%nn, where nn is the hex number
that represents the ASCII code for the character. This is
demonstrated in Example 5-43.

Example 5-46. Using the uri filter

[% filename = 'C:\My Documents\My Web Page.html' %]
Visit My Web Page!

Example 5-43 produces the following output:

Visit My Web Page!

Escaping a URI that doesn't need it cannot hurt,
although escaping a URI that has already been escaped can lead to
bugs that are difficult to track down. For example, the
% character by itself is always escaped because it
marks the beginning of an escaped sequence. Because an escaped URI is
not necessarily HTML-safe, many URIs will also need to be passed
through the html filter. A good rule of thumb is
to escape anything that might need escaping immediately, as shown in
Example 5-44.

Example 5-47. Using the uri filter with the html filter

[% url = "this page.cgi";
 prev = "$url?page=1&search=1" | uri | html;
 next = "$url?page=3&search=1" | uri | html;
%]
Previous
Next

Example 5-44 produces the following output:

Previous
Next

For more information about URI escaping, see RFC 2396 and 2732.

Chapter 6. Plugins

A templating system that allow only minimal interaction with the
outside world would become boring pretty quickly�most of the
interesting stuff is going to be outside our templates, not inside.
This chapter covers the Template Toolkit plugin system, designed to
make interfacing with the outside world as simple as possible.

In the Template Toolkit, a plugin provides extra
functionality that is otherwise not possible using only the core
language. Many plugins create template-facing interfaces between
external resources, such as a database or mail server, while some
plugins provide tidy interfaces for complex formatting operations.
Plugins allow developers to add functionality without having to
modify or override core Template Toolkit components.

To a large extent, plugins are what give the Template Toolkit its
power and flexibility: if the basic toolkit lacks the functionality
you desire, it is very straightforward to add the functionality by
creating plugins. External modules, designed without the Template
Toolkit in mind, can be subverted for use within templates with just
a little glue code. At the same time, however, a plugin can be used
to enforce privacy within a module, and to make methods inaccessible,
ensuring that the modules get used only as anticipated.

Unlike filters, which exist primarily to postprocess text, a plugin
is unlimited in scope. The most popular use for plugins is to
integrate other Perl modules�many, if not most, of the
thousands of modules found on CPAN can be wrapped in a plugin and
made available to a template designer.

6.1 Using Plugins

As we
saw
in Chapter 2, using plugins from a template is
done with the USE directive:

[% USE date %]

This makes a date plugin object available to the
template, which can be used by referencing the variable
date. Many plugins accept arguments as part of the
USE directive, to control the initial
configuration. For example, to tell the date
plugin to use GMT as the default time zone, instead of the local time
zone, you would use:

[% USE date(gmt = 1) %]

Once a plugin has been initialized, it can be treated like any other
variable:

Today is [% date.format %].

The preceeding example might return:

Today is 09:31:55 11-Aug-2003.

A plugin reference can be optionally assigned to a variable:

[% USE today = date %]

and accessed as today, rather than
date. This has the potential to make for less
confusing templates, but, more importantly, it means that you can
have multiple instances of a plugin in the same template:

[% USE here = Directory '.' %]
[% USE there = Directory '/etc' %]

The Template Toolkit ships with a large number of useful,
general-purpose plugins, which we will examine here, and provides a
supporting framework for creating your own plugins (see Chapter 8).

Many of the standard plugins are Template Toolkit wrappers around
general-purpose modules. In order to use these plugins, the wrapped
module must be installed. The general installation techniques
discussed in this chapter are applicable for all CPAN modules; in
particular, the CPAN shell is very useful, as it will decline to
reinstall modules that are up-do-date, and can be used to
automatically fetch new versions from your favorite CPAN mirror.

In addition to the standard plugins, a number of plugins are
available on CPAN, at
http://www.cpan.org/modules/by-module/Template.

6.2 Standard Template Toolkit Plugins

As of Version 2.10, the Template Toolkit ships with a large number of
plugins. The functionality these plugins add varies from trivial
helper wrappers to full-blown reformatting utilities.

Some of these plugins are of interest only to developers, such as the
Template::Plugin::Procedural and
Template::Plugin::Filter; these will not be
covered here (see Chapter 8 for treatment of
these).

6.2.1 Autoformat

The Autoformat plugin provides an interface
to Damian Conway's
Text::Autoformat Perl module, which provides
advanced text wrapping and formatting.
Text::Autoformat is designed to be intelligent
about wrapping lines; in addition to doing basic text wrapping, it
can handle unusual text, such as mail or news text with quoting, or
text with bullets or numbering. The Autoformat plugin provides a
simple plugin/filter interface to the module.

Configuration options may be passed to the plugin constructor via the
USE directive:

[% USE autoformat %]

The Autoformat plugin can then be called like a function, passing in
text items that will be wrapped and formatted according to the
current
configuration (see Example 6-1).

Example 6-1. Autoformatting a Martin Gardner quote

[% USE autoformat right = 42 %]
[% autoformat('
Biographical history, as taught in our public schools, is still
largely a history of boneheads: ridiculous kings and queens, paranoid
political leaders, compulsive voyagers, ignorant generals -- the
flotsam and jetsam of historical currents. The men who radically
altered history, the great scientists and mathematicians, are seldom
mentioned, if at all.

 -- Martin Gardner
')
%]

Output of Example 6-1:

Biographical history, as taught in our
public schools, is still largely a history
of boneheads: ridiculous kings and queens,
paranoid political leaders, compulsive
voyagers, ignorant generals -- the flotsam
and jetsam of historical currents. The men
who radically altered history, the great
scientists and mathematicians, are seldom
mentioned, if at all.

 -- Martin Gardner

Additional configuration items can be passed to the autoformat
subroutine and will be merged with any existing configuration
specified via the constructor.

In addition to the functional interface, the Autoformat plugin also
provides a filter interface, which works identically, as shown in
Example 6-2.

Example 6-2. Using autoformat in filter mode

[% FILTER autoformat justify = 'center' -%]
Programming is a Dark Art, and it will always be. The programmer is
fighting against the two most destructive forces in the universe:
entropy and human stupidity. They're not things you can always
overcome with a "methodology" or on a schedule.

 -- Damian Conway
[% END %]

Output of Example 6-2:

 Programming is a Dark Art, and it will
 always be. The programmer is fighting
 against the two most destructive forces in
 the universe: entropy and human stupidity.
 They're not things you can always overcome
 with a "methodology" or on a schedule.

 -- Damian Conway

Configuration options are passed directly to
Text::Autoformat; see the
Text::Autoformat documentation for all of the
available options.

The Text::Autoformat module is available from CPAN
at http://search.cpan.org/dist/Text-Autoformat/.

6.2.2 CGI

The CGI plugin is a wrapper around Lincoln
Stein's CGI module, which is
included with Perl. CGI provides a simple way of
interacting with form parameters and cookies without having to
understand the messy details of the CGI interface.

The CGI plugin provides access to all of
CGI's functionality, including
parameter and cookie support, access to file uploads, and access to
HTML generation methods.

All the usual methods of the CGI module are
available when using the CGI plugin, including the ever-popular
param:

[% USE q = CGI %]

Hello, [% q.param('name') OR 'Mr. Unnamed' %]!

When called without an argument, param returns a
list of all the defined parameter names, which can then be iterated
over in a FOREACH loop:

[% FOREACH param IN q.param %]
 [% param %] -> [% q.param(param) %]
[% END %]

The plugin adds another method, params, that
returns all CGI parameters as a hash:

[% params = q.params;
 IF params.exists('story_id');
 PROCESS story id = params.story_id;
 END;
%]

This hash can be used like any other hash. For example,
to
import this hash so that the parameters can be accessed directly, use
import:[1]
[1] This takes advantage of
the fact that the stash is a hash; see Chapter 8 for an explanation of why this
works.

[% USE q = CGI('uid=18&name=Dave+Cross&nick=davorg') %]
[% params = q.params %]
[% import(params) %]

UID: [% uid %]
Nick: [% nick %]
Name: [% name %]

Without calling import, these variables would have
to be qualified:

UID: [% params.uid %]
Nick: [% params.nick %]
Name: [% params.name # or q.param('name') -- same thing %]

Cookies are available via the aptly named cookie
method:

[% SessionID = q.cookie('SessionID') %]

The CGI module's
HTML generation methods work as
expected, for the most part:

[% q.start_ol;
 FOREACH param IN q.param;
 q.start_li;
 q.start_b;
 param;
 q.end_b;
 ": ";
 q.param(param);
 q.end_li;
 END;
 q.end_ol;
%]

CGI methods that return a list, such as
checkbox_group, need to be explicitly joined into
a string (using the join vmethod, for example), or
iterated over (using a FOREACH loop). Otherwise,
the unsightly (and most likely unintended!) stringified array
reference will be the result, as shown in Example 6-3.

Example 6-3. Stringified array

[% USE q = CGI %]
[% q.checkbox_group(name = 'modules'
 label = 'Modules to install'
 values = ['Template-Toolkit',
 'DBD::Google',
 'Calendar::Simple'
])
%]

Output of Example 6-3:

ARRAY(0x859eab4)

When joined with the join vmethod, the
results are a little more natural, as shown in Example 6-4.

Example 6-4. Joined array

[% USE q = CGI %]
[% q.checkbox_group(name = 'modules'
 label = 'Modules to install'
 values = ['Template-Toolkit',
 'DBD::Google',
 'Calendar::Simple'
]).join("\n")
%]

Output of Example 6-4:

<input type="checkbox" name="modules" value="Template-Toolkit" label="Modules to install" />Template-Toolkit
<input type="checkbox" name="modules" value="DBD::Google" label="Modules to install" />DBD::Google
<input type="checkbox" name="modules" value="Calendar::Simple" label="Modules to install" />Calendar::Simple

The CGI module is available with all recent versions of Perl, or
from
CPAN at http://search.cpan.org/dist/CGI/.

6.2.3 Datafile

The Datafile plugin provides a simple interface to
tabular file-based data, such as Comma Separated Value
(CSV) files. It provides a simple
facility to construct a list of hashes, each of which represents a
data record of known structure, from the datafile.

Pass a file to USE:

[% USE datafile(filename, delim = ':') %]

The file specified by filename will be read and
split on delim into an array of hashes.
delim is optional, and defaults to
:. Currently, no INCLUDE_PATH
search is performed for the file, so an absolute path should be used
(this may change in a future version of the plugin, however).

delim can be used to specify an alternate
delimiter character, such as the Tab or comma keys:

[% USE machines = datafile('machine-list.txt', delim = ",") %]

The format of the file is intentionally simple. The first line
defines the field names, delimited by $delim with
optional surrounding whitespace. Subsequent lines then define records
containing data items, also delimited by $delim.

The first line of the file contains the field definitions. Blank
lines and lines beginning with the comment character
(#) will be ignored.

Each line is read, split into composite fields, and then used to
initialize a hash array containing the field names as relevant keys.

The Datafile plugin is ideal for mostly static data that may need to
be reused in many places�for example, storing information about
computers, as shown in the following datafile called
machine-list.txt:

name, os, ip
apollo, RedHat 7.3, 10.100.5.100
hera, RedHat 7.2, 10.100.33.227
juno, Solaris 8, 10.100.6.41
artemis, RedHat 7.3, 10.100.6.42
hermes, Solaris 9, 10.100.55.182
zeus, RedHat 7.3, 10.100.6.78

Creating reports from this datafile is very simple, as Example 6-5 shows.

Example 6-5. Turning machine-list.txt into XML

[% USE machines = datafile('example/machine-list.txt',
 delim = ',') -%]
<machines>
[% FOREACH machine IN machines.sort('name') -%]
 <machine name="[% machine.name %]"
 os="[% machine.os %]"
 ip="[% machine.ip %]" />
[% END -%]
</machines>

When Example 6-5 is run, we get:

<machines>
 <machine name="apollo"
 os="RedHat 7.3"
 ip="10.100.5.100" />
 <machine name="artemis"
 os="RedHat 7.3"
 ip="10.100.6.42" />
 <machine name="hera"
 os="RedHat 7.2"
 ip="10.100.33.227" />
 <machine name="hermes"
 os="Solaris 9"
 ip="10.100.55.182" />
 <machine name="juno"
 os="Solaris 8"
 ip="10.100.6.41" />
 <machine name="zeus"
 os="RedHat 7.3"
 ip="10.100.6.78" />
</machines>

6.2.4 Date

The Date plugin provides an easy way to manipulate
dates and times, including generating formatted dates and times based
on the formats defined by your system's
strftime library
(see the sidebar).
The Date plugin also
provides methods to perform date calculations using
Date::Calc, and to perform general date
manipulations using Date::Manip. (These modules,
which are available from CPAN, must be installed in order to use this
functionality. The rest of the plugin will work just fine without
them, though.)

	
strftime

strftime is a system library
function that returns a formatted date according to a
format string. These format strings are a
sort of templating system on their own�they contain plain text
and format strings (which begin with %). These
format strings are like the Template Toolkit's
variables, and are replaced with the appropriate values. The
supported format strings vary from system to system, but they all
support the same basic subset, a summary of which follows:

%a The abbreviated weekday name.

%A The full weekday name.

%b The abbreviated month name.

%B The full month name.

%d The day of the month as a decimal number (range 01 to 31).

%H The hour as a decimal number using a 24-hour clock (range 00 to 23).

%I The hour as a decimal number using a 12-hour clock (range 01 to 12).

%j The day of the year as a decimal number (range 001 to 366).

%m The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

%p Either "AM" or "PM" according to the given time value,

 or the corresponding strings for the current locale.

Noon is treated as "pm" and midnight as "am".

%S The second as a decimal number (range 00 to 59).

%w The day of the week as a decimal, range 0 to 6, Sunday being 0.

%Y The year as a decimal number, including the century.

%Z The time zone, name, or abbreviation.

The plugin provides the
format method, which accepts a time value, a
format string, and a locale name. All of these parameters are
optional with the current system time, default format
(%H:%M:%S %d-%b-%Y), and current locale being
used, respectively, if undefined. Default values for the time,
format, and/or locale may be specified as named parameters in the USE
directive:

[% USE date(format = '%Y/%m/%d'
 locale = 'fr_FR')
%]

When called without any parameters, the format
method returns a string representing the current system time,
formatted by strftime according to the default
format and for the default locale (which may not be the current one,
if locale is set in the USE directive):

[% date.format %]

The plugin allows a time/date to be specified as seconds since the
epoch, as is returned by time:

File last modified: [% date.format(template.modtime) %]

The time/date can also be specified as a string of the form
h:m:s d/m/y. A space or any of the characters
:, /, or -,
may be used to delimit fields:

[% USE day = date(format = '%A' locale = 'en_GB') %]
[% day.format('09:31:56 11-08-2003') %]

The previous code generates the following output:

Monday

A format string can also be passed to the format
method, and a locale specification may follow that:

[% date.format(template.modtime, '%d-%b-%Y') %]
[% date.format(template.modtime, '%d-%b-%Y', 'en_GB') %]

A fourth parameter allows you to force output in GMT, in the case of
seconds-since-the-epoch input:

[% date.format(template.modtime, '%d-%b-%Y', 'en_GB', 1) %]

Any or all of these parameters may be named. Positional parameters
should always be in the order ($time,
$format, $locale):

[% date.format(format = '%H:%M:%S') %]
[% date.format(time = template.modtime format = '%H:%M:%S') %]
[% date.format(mytime format = '%H:%M:%S') %]
[% date.format(mytime format = '%H:%M:%S' locale = 'fr_FR') %]
[% date.format(mytime format = '%H:%M:%S' gmt = 1) %]

The now method returns the
current system time in seconds since the epoch:

[% date.format(date.now, '%A') %]

It has been [% date.now - template.modtime %] seconds since
[% template.name %] was last modified.

The calc method can be
used to create an interface to the Date::Calc
module (if installed on your system):

[% calc = date.calc %]
[% calc.Monday_of_Week(22, 2001).join('/') %]

Date::Calc provides a number of useful
date-related methods, including date math (adding dates together, for
example).

The manip method can be
used to create an interface to the Date::Manip
module (if installed on your system):

[% USE q = CGI %]
[% manip = date.manip %]
[% time = manip.UnixDate(q.param('date'), "%s") %]
[% date.format(time) %]

See the strftime sidebar for details about common
format strings. Many versions of strftime, most
notably GNU strftime, include more format strings,
so check your system's manpages for the complete
story.

Date::Calc is available from CPAN at http://search.cpan.org/dist/Date-Calc/.
Date::Manip is also available from CPAN, at
http://search.cpan.org/dist/Date-Manip/.

6.2.5 Directory

The Directory plugin provides a simple
interface to a directory and the files within it. It provides methods
for iterating over all the contained files and subdirectories. This
plugin is in cahoots with the File plugin, and in fact uses instances
of the File plugin to represent files within a directory (all the
methods available to the File plugin are also available here, such as
uid and mtime). Subdirectories
within a directory are represented by further instances of this
plugin.

The Directory plugin can be used to create an instance with a
directory name as an argument:

[% USE dir = Directory '/tmp' %]

It then provides access to the files and subdirectories contained
within the directory via the files and
dirs methods, respectively:

regular files (not directories)
[% FOREACH file = dir.files %]
 [% file.name %]
[% END %]

directories only
[% FOREACH file = dir.dirs %]
 [% file.name %]
[% END %]

files and/or directories
[% FOREACH file = dir.list %]
 [% file.name %] ([% file.isdir ? 'directory' : 'file' %])
[% END %]

The plugin constructor will throw a Directory
error if the specified path does not exist or is not a directory, or
if there is some other error at the operating system level (such as
NFS problems). Otherwise, it will scan the directory and create lists
named files, containing files,
dirs, containing directories, and
list, containing both files and directories
combined. The nostat option can be set to disable
all file/directory checks and directory scanning; this speeds up the
process of loading the plugin for large directories:

[% USE etc = directory '/etc/' nostat = 1 %]

Each file in the directory will be represented by an instance of the
File plugin, and each directory will be represented by another
Directory plugin. If the recurse flag is set,
those directories will contain further nested entries, and so on.
With the recurse flag unset, as it is by default,
each is just a place marker for the directory and does not contain
any further content unless its scan method is
explicitly called. The isdir flag can be tested
against files and/or directories, returning true if the item is a
directory or false if it is a regular file:

[% FOREACH file = dir.list %]
 [% IF file.isdir %]
 * Directory: [% file.name %]
 [% ELSE %]
 * File: [% file.name %]
 [% END %]
[% END %]

6.2.6 DBI

The DBI plugin
provides a template-level interface to Tim Bunce's
DBI module. The DBI module
provides a uniform database interface, and the DBI plugin ensures
that it plays nicely with the Template Toolkit. The DBI plugin is
covered extensively in Chapter 9.

6.2.7 Dumper

The Dumper plugin provides an interface to
the Data::Dumper module.
Data::Dumper will convert a complex variable into
a human-readable structure.

The Dumper plugin provides the dump method, which
is extremely useful for displaying the structure of a variable (see
Example 6-6).

Example 6-6. Dumping a hash

[% USE dumper %]
[% terms = {
 sass = 'know, be aware of, meet, have sex with'
 hoopy = 'really together guy'
 frood = 'really, amazingly together guy'
 } %]
[% dumper.dump(terms) %]

Coming out, terms looks almost exactly like it did
going in, except for the order:[2]
[2] Perl's hashes are not stored in the order in
which they are inserted, but rather in an order optimized for fast
lookup by name. This is called hash order, and
Data::Dumper doesn't attempt to
reorder the keys of a hash as it dumps them.

$VAR1 = {
 'hoopy' => 'really together guy',
 'frood' => 'really, amazingly together guy',
 'sass' => 'know, be aware of, meet, have sex with'
 };

Although the Dumper plugin is not so useful for a variable
we've defined ourselves, it is much more useful for
data structures that you don't have direct control
over, as Example 6-7 shows.

Example 6-7. Dumping the CGI plugin

[% USE CGI %]
[% USE dumper %]
[% dumper.dump(CGI) %]

Output of Example 6-7:

$VAR1 = bless({
 '.charset' => 'ISO-8859-1',
 '.parameters' => [],
 '.fieldnames' => { },
 'escape' => 1
 }, 'CGI');

The dump_html method takes the output of
dump and formats it for HTML. Example 6-7 is the same as Example 6-8,
except for the call to dump_html:

Example 6-8. Dumping the CGI plugin with dump_html

[% USE CGI %]
[% USE dumper %]
[% dumper.dump_html(CGI) %]

The output is very similar:

$VAR1 = bless({

 '.charset' => 'ISO-8859-1',

 '.parameters' => [],

 '.fieldnames' => { },

 'escape' => 1

 }, 'CGI');

The Data::Dumper Pad,
Indent, and Varname options are
supported as constructor arguments to affect the output generated.
Example 6-9 shows all the details.

Example 6-9. Modifying Data::Dumper's output

[% USE CGI %]
[% USE dumper(Pad = '// ', Varname = 'CGI') %]
[% dumper.dump(CGI) %]

Output of Example 6-9:

// $CGI1 = bless({
// '.charset' => 'ISO-8859-1',
// '.parameters' => [],
// '.fieldnames' => { },
// 'escape' => 1
// }, 'CGI');

Data::Dumper comes with all recent versions of
Perl, and is also available from CPAN at
http://search.cpan.org/dist/Data-Dumper/.

6.2.8 File

This plugin provides an abstraction of a file.
It can be used to fetch details about files from the filesystem, or
to represent abstract files (e.g., when creating an index page) that
may or may not exist on a filesystem.

A filename or
path should be specified as a
constructor argument:

[% USE file 'foo.html' %]
[% USE file 'foo/bar/baz.html' %]
[% USE file '/foo/bar/baz.html' nostat = 1 %]

The file should exist on the current filesystem (unless the
nostat option is set, which we discuss in a bit)
as an absolute file when specified with a leading
/ as per /foo/bar/baz.html,
or otherwise as one relative to the current working directory. The
constructor performs a stat on the file and makes
the 13 elements returned available as the plugin items:

dev ino mode nlink uid gid rdev size
atime mtime ctime blksize blocks

For example:

[% USE baz = File '/foo/bar/baz.html' %]

[% baz.mtime %]
[% baz.mode %]

In addition, the user and group
items are set to contain the user and group names as returned by
calls to getpwuid and getgrgid
for the file uid and gid
elements, respectively (see Example 6-10). On Win32
platforms on which getpwuid and
getgrid are not available, these values are
undefined.

Example 6-10. user and uid

[% USE Makefile = file 'Makefile' %]
uid: [% Makefile.uid %]
user: [% Makefile.user %]

Output of Example 6-10:

uid: 500
user: darren

This user/group lookup can be disabled by setting the
noid option, as shown
in Example 6-11.

Example 6-11. noid = 1

[% USE Makefile = file 'Makefile' noid = 1 %]
uid: [% Makefile.uid %]
user: [% Makefile.user %]

Output of Example 6-11:

uid: 500
user:

If the stat on the file fails (e.g., file
doesn't exist, bad permission, etc.), the
constructor will throw a File exception. This can
be caught within a TRY...CATCH block:

[% TRY %]
 [% USE File '/tmp/myfile' %]
 File exists!
[% CATCH File %]
 File error: [% error.info %]
[% END %]

Note the capitalization of the exception type,
File, to indicate an error thrown by the
File plugin, to distinguish it from a regular
file exception thrown by the Template Toolkit.
Like all plugins, the File plugin can be referenced by the lowercase
name file; exceptions are always thrown of the
File type, regardless of the capitalization of the
plugin name used.

The nostat option can be
specified to prevent the plugin constructor from performing a
stat on the file specified. In this case, the file
does not have to exist in the filesystem, no attempt will be made to
verify that it does, and no error will be thrown if it
doesn't. The entries for the items usually returned
by stat will be set empty.

[% USE file '/some/where/over/the/rainbow.html', nostat = 1 %]
[% file.mtime %] # nothing

All File plugins, regardless of the nostat option,
have set a number of items relating to the original path specified:

	path

	
The full, original file path specified to the constructor.

[% USE file '/foo/bar.html' %]
[% file.path %] # /foo/bar.html

	name

	
The name of the file without any leading directories.

[% USE file '/foo/bar.html' %]
[% file.name %] # bar.html

	dir

	
The directory element of the path with the filename removed.

[% USE file '/foo/bar.html' %]
[% file.name %] # /foo

	ext

	
The file extension, if any, appearing at the end of the path
following a dot operator (.) (not included in the
extension).

[% USE file '/foo/bar.html' %]
[% file.ext %] # html

	home

	
This contains a string of the form ../.. to
represent the upward path from a file to its root directory.

[% USE file 'bar.html' %]
[% file.home %] # nothing
[% USE file 'foo/bar.html' %]
[% file.home %] # ..
[% USE file 'foo/bar/baz.html' %]
[% file.home %] # ../..

	root

	
The root item can be specified as a constructor
argument, indicating a root directory in which the named file
resides. This is otherwise set empty.

[% USE file 'foo/bar.html', root='/tmp' %]
[% file.root %] # /tmp

	abs

	
This returns the absolute file path by constructing a path from the
root and path options.

[% USE file 'foo/bar.html', root='/tmp' %]
[% file.path %] # foo/bar.html
[% file.root %] # /tmp
[% file.abs %] # /tmp/foo/bar.html

In addition, the following method is provided:

	rel(path)

	
This returns a relative path from the current file to another path
specified as an argument. It is constructed by appending the path to
the
home item.

[% USE file 'foo/bar/baz.html' %]
[% file.rel('wiz/waz.html') %] # ../../wiz/waz.html

6.2.9 Format

The Format
plugin provides a simple way to format text according to a specific format.
The format is a text string, and can contain
regular text interspersed with sprintf-style
placeholders (the format string is passed to Perl's
sprintf). Each
%x token will be replaced
with successive elements of the list provided to the function call.
This plugin is very similar to the format filter,
described in Chapter 5.

USE format creates a
functionlike variable that can be used for formatting. Example 6-12 shows a simple way to wrap text in HTML
comments.

Example 6-12. HTML comments

[% USE commented = format('<!-- %s -->') -%]
[% commented('The cat sat on the mat') %]

Output of Example 6-12:

<!-- The cat sat on the mat -->

Mutiple elements can be included as well, by passing multiple items.
Format tokens of %s will be treated as strings,
but tokens of %d will be treated as numbers, as
shown in Example 6-13.

Example 6-13. image tag

[% USE img = format('') -%]
[% img('logo.png', '0088', 42) %]

Output of Example 6-13:

All of the formatting rules and tricks that apply to the
format filter also apply to the Format plugin. See
Chapter 5 for some more examples.

As with the format filter, width, precision, and
minimum and maximum lengths can be provided as part of the filter, as
Example 6-14 shows.

Example 6-14. Using precision and width with format

[% USE fmt = format("%2.8f");
 USE Math;
 fmt(Math.pi)
%]

Output of Example 6-14:

3.14159265

6.2.10 GD

Lincoln Stein's GD modules provide access to the
gd graphics library. gd is a
small, fast graphics library that allows you to create color drawings
using a large number of graphics primitives, and emits the drawings
in a number of popular graphics formats, such as PNG or JPEG.

In the following example, a new image is created with the
USE call. The plugin's contructor
takes the same arguments as GD::Image itself:

[% USE img1 = GD.Image # empty image of default size (64x64) %]
[% USE img2 = GD.Image(X, Y) # empty image (X x Y) %]
[% USE img3 = GD.Image(filename) # a preexisting image %]

To use an existing image, use the filename form of the constructor.
The GD plugin will attempt to determine the type of image based on
the first few bytes of the file, and then Do The Right Thing.

Once you have an image object, you can call methods on it. Colors are
allocated using the colorAllocate method,
which accepts a (red, green, blue) triplet as
integers:

[% orange = img.colorAllocate(255, 165, 0) %]
[% red = img.colorAllocate(255, 0, 0) %]
[% blue = img.colorAllocate(0, 0, 255) %]

The first color allocated becomes the background color,[3] so choose wisely!
[3] There are plenty of example colors in your
system's rgb.txt.

The getPixel method is
used in conjunction with the rgb method to return
the color of a particular pixel.[4]
[4] GD stores images in a bitmapped form
internally; getPixel returns the index into the
color table of the color at the specified pixel, and the
rgb method turns that back into a triplet.

To get the color at pixel (42,24), you could use this:

[% index = img.getPixel(42, 42);
 rgb = img.rgb(index)
%]

Or, more succinctly:

[% rgb = img.getPixel(42, 42).rgb(index) %]

GD supports several output types, including PNG, JPEG, WBMP, and
its own GD and GD2 formats. You are likely to use only PNG and JPEG
on a regular basis, though the GD2 format is useful for storing
images that will be manipulated primarily by GD.

Here are the GD.Image output methods:

[% img.png # emit the image as a PNG... %]
[% img.jpeg # ... or as a JPEG... %]
[% img.gd # ... or in GD %]
[% img.gd2 # ... or GD2 formats %]

When combined with the OUTPUT_PATH and
redirect filter, the GD plugins can be used to
automate image creation.

Because these plugins are used to create binary output, it is very
important that no extraneous template output appear before or after
the image. Because some methods return values that would otherwise
appear in the output, it is recommended that this plugin code be
wrapped in a null filter. The methods that produce the final output
(e.g., png, jpeg,
gd, etc.) can then explicitly make their output
appear by using the stdout filter, with a non-zero
argument to force binary mode (see Example 6-15).

Example 6-15. Strange, pointless shapes made entirely with GD

[% FILTER null;
 USE im = GD.Image(100, 100);
 USE c = GD.Constants;
 USE poly = GD.Polygon;

 # allocate some colors; white is the background
 white = im.colorAllocate(255, 255, 255);
 black = im.colorAllocate(0, 0, 0);
 orange = im.colorAllocate(255, 165, 0);
 blue = im.colorAllocate(0, 0, 255);

 # Put a black-bordered orange square in the middle
 im.filledRectangle(10, 10, 90, 90, orange);
 im.rectangle(10, 10, 90, 90, black);

 # Draw a diamond in the middle
 poly.addPt(0, 50);
 poly.addPt(50, 100);
 poly.addPt(100, 50);
 poly.addPt(50, 0);
 im.filledPolygon(poly, blue);

 # Put a smaller black-bordered white square in the middle of that
 im.filledRectangle(30, 30, 70, 70, white);
 im.rectangle(30, 30, 70, 70, black);

 # Output binary image in PNG format
 im.png | stdout(1);
 END;
-%]

The GD.Constants plugin provides templates with access to
the many GD constants that define font types, styles, and other image
attributes.

The GD.Graph plugins provide an interface to
Martien Verbruggen's GD::Graph
module. This module is built on top of GD and can
generate graphs, plots, and charts.

The GD.Graph plugins are actually a group of several smaller plugins:
GD.Graph.area, GD.Graph.bars, GD.Graph.bard3d, GD.Graph.lines,
GD.Graph.lines3d, GD.Graph.linespoints, GD.Graph.mixed, GD.Graph.pie,
GD.Graph.pie3d, and GD.Graph.points. All of the plugins have the same
interface and differ mainly in the accepted arguments; see the
GD::Graph documentation for a full API guide, including the
differences between the types.

Figure 6-1 shows a pie chart generated from a
datafile containing the top 10 posters to the Template Toolkit
mailing list, generated from the single large
mbox file that the mailman maintains.[5]
[5] At http://www.template-toolkit.org/pipermail/templates.mbox/templates.mbox.

Figure 6-1. Top 10 posters

[image: figs/pttk_0601.gif]

This graph was generated using the simple template in Example 6-16.

Example 6-16. Generating a graph of the top 10 posters

[%
FILTER null;
 USE graph = GD.Graph.pie(600, 400);
 USE gdc = GD.Constants;
 USE posters = datafile('posters');

 data = [
 [] # posters
 [] # the count
];
 list = 'templates@template-toolkit.org';

 FOREACH poster IN posters;
 data.0.push(poster.name);
 data.1.push(poster.posts);
 END;

 graph.set(title = "Top 10 posters to $list"
 transparent = 0
 logo = 'tt2power.png'
 t_margin = 4
 b_margin = 4
 r_margin = 4
 l_margin = 4
 start_angle = -90 # aesthetics hack
);

 # A big font for the title
 graph.set_title_font(gdc.gdGiantFont);

 graph.plot(data).png | stdout(1);
 END;
-%]

The GD.Text,
GD.Text.Align, and GD.Text.Wrap plugins provide interfaces to the
GD::Text module. GD::Text
provides a font-independant way of dealing with text in
GD and the GD plugins. This is useful primarily
for aligning text on GD.Image objects; because
positioning strings needs to be done based on pixel offsets,
GD.Text's
get('width') and get('height')
functionality can be invaluable.

Here's an example of using GD.Text:

[%
 FILTER null;
 msg = 'Template Toolkit';
 USE gdc = GD.Constants;
 USE t = GD.Text(text = msg
 font = gdc.gdGiantFont);

 width = t.get('width'); # width of the string in pixels
 height = t.get('height'); # height of the string in pixels

 imgwidth = width * 3;
 imgheight = height * 3;

 USE img = GD.Image(imgwidth, imgheight);
 black = img.colorAllocate(0, 0, 0);
 orange = img.colorAllocate(255, 165, 0);

 img.string(gdc.gdGiantFont, width, height, msg, orange);

 img.png | stdout(1);
END;
-%]

The GD module is available on CPAN at http://search.cpan.org/dist/GD/, and the
underlying gd C library lives at http://www.boutell.com/gd/. The
GD::Graph module is available on CPAN at
http://search.cpan.org/dist/GD-Graph/, and
the GD::Text module is available on CPAN at http://search.cpan.org/dist/GD-Text/.

6.2.11 HTML

The HTML plugin
provides a simple mechanism for generating arbitrary HTML elements.
It also provides utility methods for creating attribute lists and for
HTML- and URL-escaping.

Generating a single element is done with the
element method, as shown in Example 6-17.

Example 6-17. Generating a single element

[% USE HTML %]
[% HTML.element('html') %]

Output of Example 6-17:

<html>

Not very exciting. Any named parameters provided become attribute
pairs, as shown in Example 6-18.

Example 6-18. Generating an element with attributes

[% USE HTML %]
[% HTML.element('img',
 src = 'logo.png'
 width = 88
 height = 38
 alt = 'Company Logo'
 name = 'logo')
%]

Output of Example 6-18:

If the plugin is used with the sorted option set,
then the attributes are sorted in alphabetical order when the
attribute list is produced, as shown in Example 6-19.

Example 6-19. Generating an element with sorted attributes

[% USE HTML(sorted=1) %]
[% HTML.element('img',
 src = 'logo.png'
 width = 88
 height = 38
 alt = 'Company Logo'
 name = 'logo')
%]

Output of Example 6-19:

The plugin also provides HTML- and URL-escaping utility methods,
which can be used independently of the plugin's
element generating methods. The escape method
does HTML-escaping, as shown in Example 6-20.

Example 6-20. Using escape

[% USE HTML %]
[% HTML.escape("I'd prefer that you type that tag as
") %]

Output of Example 6-20:

I'd prefer that you type that tag as

And the url method does
URL-escaping, as shown in Example 6-21.

Example 6-21. Using url

[% USE HTML %]
[% HTML.url("I'd prefer that you type that tag as
") %]

Output of Example 6-21:

I%27d%20prefer%20that%20you%20type%20that%20tag%20as%20%3Cbr%20%2F%3E

As Example 6-22 shows, the
attribute method can
be used to generate an attribute string from a hash (this method is
used internally by element).

Example 6-22. Generating a string of attributes from a hash

[% USE HTML(sorted=1);
 attr = {
 type = 'submit'
 name = 'search'
 value = 'Go!'
 };
 HTML.attributes(attr);
%]

Output of Example 6-22:

name="search" type="submit" value="Go!"

6.2.12 Image

The Image
plugin provides a wrapper for image files. This plugin makes available the
wrapped image's size, type, and modification time as
methods, and also provides methods for generating an HTML tag for the
image:

[% USE image 'tt2power.png' %]

The Image plugin will use either
the Image::Info or
Image::Size modules (both are available from
CPAN), or will throw a runtime error if neither is present on the
system. Image::Info is used in preference to
Image::Size because it provides more information
about the image.

Regardless of which underlying module is used, the name, height,
width, and modification time of the image will be available (see
Examples Example 6-23 and Example 6-24).

Example 6-23. Basic image info

[% image.name %] was last modified on [% date.format(image.modtime) %].

Output of Example 6-23:

tt2power.png was last modified on 09:29:02 11-Aug-2003.

Example 6-24. Image height and width

Height: [% image.height %]
Width: [% image.width %]

Output of Example 6-24:

Height: 47
Width: 78

In addition, if the plugin uses Image::Info,
several more methods are available, including the following:

	file_media_type

	
Returns the media type in major/minor form and
produces the following output:

Content-type: image/png

	file_ext

	
Returns the extension of the image file and produces the following
output:

png

	resolution

	
The value of this field normally gives the physical size of the image
on screen or paper. When the unit specifier is missing, this field
denotes the squareness of pixels in the image.

The syntax of this field is:

<res> <unit>
<xres> "/" <yres> <unit>
<xres> "/" <yres>

The <res>, <xres>,
and <yres> fields are numbers. The
<unit> is a string such as dpi, dpm, or dpcm
(denoting "dots per inch/meter/cm).

The previous example produces the following output:

Resolution: 1/1

In addition, several other attributes are available when using
Image::Info that depend on the image type; for
example, animated gifs have a GIF_loop attribute.

The Image plugin has two utility methods: attr,
which returns the image's height and width as XHTML
attributes; and tag, which returns a formatted
XHTML string representing the image. For instance, this code:

[% image.attr %]

would produce this output:

width="78" height="47"

The tag method creates a full XHTML tag, with
attributes (using the attr method). For instance,
this code:

[% image.tag %]

produces this output:

The tag method can also take arbitrary named
parameters, and will Do The Right Thing with them:

[% image.tag(alt = 'Powered by TT', name = 'tt2power') %]

The previous code would output the following:

6.2.13 Iterator

The Iterator plugin provides a way to create a
Template::Iterator object to iterate over a data
set. An iterator is used for walking through the
elements of a list; one is created automatically by the
FOREACH directive and is aliased to the
loop variable.

This plugin allows an iterator to be explicitly created with a given
name, or with the default plugin name, iterator.
Example 6-25 shows how to create your own iterator.

Example 6-25. Creating your own iterator

[% USE iterator(list) %]

[% FOREACH item IN iterator %]
 [% '<list>' IF iterator.first %]
 <item>[% item %]</item>
 [% '</list>' IF iterator.last %]
[% END %]

The Iterator plugin is useful when you want to use a portion of a
list in a FOREACH loop, rather than the entire list, as shown in
Example 6-26.

Example 6-26. Iterating over part of a list

[% days = ['Sunday' 'Monday' 'Tuesday' 'Wednesday'
 'Thursday' 'Friday' 'Saturday'
] %]
[% USE weekdays = iterator(days.slice(1,5)) %]
[% FOREACH weekday IN weekdays %]
 [% weekday %]
[% END %]

Because an iterator contains references to other objects and not
copies of the objects themselves, this can be more efficient than
simply creating a new list containing only the desired elements. This
is especially when the list is large, true when it contains items
other than simple data elements (such as objects), or when generating
the data is expensive (as when generating database queries). So, in
Example 6-26, weekdays persists
beyond the FOREACH loop shown and can be reused.

Unlike the transient iterators created within FOREACH loops,
specifically created iterators don't go out of scope
at the end of their enclosing loop. This means that iterators can be
reused. Example 6-27 illustrates this.

Example 6-27. Reusing iterators

[% USE iterator([1 .. 3]);
 USE fmt = format("%02d => %02d/%02d\n");
 BLOCK iterate;
 fmt(i, it.count, it.size)
 FOREACH i IN it;
 "\n";
 END;
-%]

[% PROCESS iterate it = iterator FOREACH [1 .. 3] %]

Output of Example 6-27:

01 => 01/03
02 => 02/03
03 => 03/03

01 => 01/03
02 => 02/03
03 => 03/03

01 => 01/03
02 => 02/03
03 => 03/03

6.2.14 Pod

This plugin provides an interface to the
Pod::POM module, which parses POD[6] documents into an internal object model that can then be
traversed and presented through the Template Toolkit.
[6] POD, which stands for Plain Old
Documentation, is Perl's internal
documentation format. It is intentionally simple and extensible, and
is designed to be readable without special processing.

You create a POD parser with USE:

[% USE pod %]

This parser can then be used to parse documents in POD format:

[% pom = pod.parse_file('Chapter6.pod') %]

Pod::POM presents POD documents as a tree, of
which each branch represents successive =head1
tags in the document. =head2 elements form
branches within these sections, and so on, down to the content nodes
at the end. The Pod::POM documentation describes
this Pod Object Model (that's
what POM stands for) in great detail.

For more details on using the POD plugin, and on
Pod::POM in general, please consult the
Pod::POM documentation.

Pod::POM is available from CPAN at http://search.cpan.org/dist/Pod-POM/.

6.2.15 String

This is a plugin module for object-oriented string
manipulation. A String object is created via the
USE directive, adding any initial text value as an
argument or as the named parameter text:

[% USE String %]
[% USE String 'initial text' %]
[% USE String text='initial text' %]

It's likely that there will be more than one string
in a template, so assigning the plugin to a name is wise:

[% USE greeting = String 'Hello World' %]

Once you've got a String object,
you can use it as a prototype to create other
String objects with the new
method:

[% USE String %]
[% greeting = String.new('Hello World') %]

The new method also accepts an initial text string
as an argument or the named parameter text:

[% greeting = String.new(text => 'Hello World') %]

You can also call the copy method to create a new
string as a copy of the original:

[% greet2 = greeting.copy %]

The String object has a text
method to return the content of the string:

[% greeting.text %]

However, it is sufficient to simply print the string and let the
overloaded stringification operator call the text
method automatically for you:

[% greeting %]

Thus, you can treat String objects pretty much
like any regular piece of text, interpolating it into other strings,
for example:

[% msg = "It printed '$greeting' and then dumped core\n" %]

You also have the benefit of numerous other methods for manipulating
the string:

[% msg.append("PS Don't eat the yellow snow") %]

Note that all methods operate on and mutate the contents of the
string itself. If you want to operate on a copy of the string, simply
take a copy first:

[% msg.copy.append("PS Don't eat the yellow snow") %]

These methods return a reference to the String
object itself. This allows you to chain multiple methods together:

[% msg.copy.append('foo').right(72) %]

It also means that in the previous examples, the string is returned.
This causes the text method to be called, which
results in the new value of the string being printed. To suppress
printing of the string, you can use the CALL
directive:

[% foo = String.new('foo') %]

[% foo.append('bar') %] # prints "foobar"

[% CALL foo.append('bar') %] # nothing

There are several ways to create a new String
object. Here is the "usual" way:

[% USE err = String text = 'Bad Things Happened' %]

Alternatively, calling the new method on an
already initialized String object will create a
new string:

[% msg = err.new('False alarm!') %]

Finally, copy will return a copy of the string
object:

[% urgent_error = err.copy.append(' - lp1 on fire') %]

The plugin also implements many methods to inspect or modify the
contents of the String object. Here is a list of
the methods:

	text

	
Returns the internal text value of the string. The stringification
operator is overloaded to call this method. Thus, the following are
equivalent:

[% msg.text %]
[% msg %]

	length

	
Returns the length of the string.

[% USE String("foo") %]
[% String.length %] # => 3

	search($pattern)

	
Searches the string for the regular expression specified in
$pattern, returning true if found, or returning
false otherwise.

[% item = String.new('foo bar baz wiz waz woz') %]
[% item.search('wiz') ? 'WIZZY! :-)' : 'not wizzy :-(' %]

	split($pattern, $limit)

	
Splits the string based on the delimiter $pattern
and optional $limit. Delegates to
Perl's internal split, so the
parameters are exactly the same.

[% FOREACH item.split %]
 ...
[% END %]
[% FOREACH item.split('baz|waz') %]
 ...
[% END %]

The following methods modify the internal value of the string. For
example:

[% USE str=String('foobar') %]

[% str.append('.html') %] # str => 'foobar.html'

The value of the string str is now
foobar.html. If you don't want to
modify the string, simply take a copy first.

[% str.copy.append('.html') %]

These methods all return a reference to the String
object itself. This has two important benefits. The first is that
when used as shown earlier, the String object
str returned by the append
method will be stringified with a call to its text
method. This will return the newly modified string content. In other
words, a directive such as:

[% str.append('.html') %]

will update the string and also print the new value. If you just want
to update the string but not print the new value, use
CALL:

[% CALL str.append('.html') %]

The other benefit of
these methods returning a reference to
the string is that you can chain as many different method calls
together as you like. For example:

[% String.append('.html').trim.format(href) %]

Here are the methods:

	push($suffix, ...) / append($suffix, ...)

	
Appends all arguments to the end of the string. The
append method is provided as an alias for
push.

[% msg.push('foo', 'bar') %]
[% msg.append('foo', 'bar') %]

	pop($suffix)

	
Removes the suffix passed as an argument from the end of the string.

[% USE String 'foo bar' %]
[% String.pop(' bar') %] # => 'foo'

	unshift($prefix, ...) / prepend($prefix, ...)

	
Prepends all arguments to the beginning of
the string. The prepend method is provided as an
alias for unshift.

[% msg.unshift('foo ', 'bar ') %]
[% msg.prepend('foo ', 'bar ') %]

	shift($prefix)

	
Removes the prefix passed as an argument from the
start of the string.

[% USE String 'foo bar' %]
[% String.shift('foo ') %] # => 'bar'

	left($pad)

	
If the length of the string is less than
$pad, the string is left-formatted and padded with
spaces to $pad length.

[% msg.left(20) %]

	right($pad)

	
As per left(), but
right-padding the string to a length of $pad.

[% msg.right(20) %]

	center($pad) / centre($pad)

	
As per left() and
right(), but formatting the string to be centered
within a space-padded string of length $pad. The
centre method is provided as an alias for
center to account for misspellings.

[% msg.center(20) %] # American spelling
[% msg.centre(20) %] # European spelling

	format($format)

	
Apply a format in the style of
sprintf to the string.

[% USE String("world") %]
[% String.format("Hello %s\n") %] # => "Hello World\n"

	upper()

	
Converts the string to uppercase.

[% USE String("foo") %]
[% String.upper %] # => 'FOO'

	lower()

	
Converts the string to lowercase

[% USE String("FOO") %]
[% String.lower %] # => 'foo'

	capital()

	
Converts the first character of the string to
uppercase.

[% USE String("foo") %]
[% String.capital %] # => 'Foo'

The remainder of the string is left untouched. To force the string to
be all lowercase with only the first letter capitalized, you can do
something like this:

[% USE String("FOO") %]
[% String.lower.capital %] # => 'Foo'

	chop()

	
Removes the last character from the string:

[% USE String("foop") %]
[% String.chop %] # => 'foo'

	chomp()

	
Removes the trailing newline from the string:

[% USE String("foo\n") %]
[% String.chomp %] # => 'foo'

	trim()

	
Removes all leading and trailing whitespace from
the string:

[% USE String(" foo \n\n ") %]
[% String.trim %] # => 'foo'

	collapse()

	
Removes all leading and trailing whitespace, and
collapses any sequences of multiple whitespace to a single space:

[% USE String(" \n\r \t foo \n \n bar \n") %]
[% String.collapse %] # => "foo bar"

	truncate($length, $suffix)

	
Truncates the string to $length
characters.

[% USE String('long string') %]
[% String.truncate(4) %] # => 'long'

If $suffix is specified, it will be appended to
the truncated string. In this case, the string will be further
shortened by the length of the suffix to ensure that the newly
constructed string, complete with suffix, is exactly
$length characters long.

[% USE msg = String('Hello World') %]
[% msg.truncate(8, '...') %] # => 'Hello...'

	replace($search, $replace)

	
Replaces all occurrences of $search
in the string with $replace.

[% USE String('foo bar foo baz') %]
[% String.replace('foo', 'wiz') %] # => 'wiz bar wiz baz'

	remove($search)

	
Removes all occurrences of
$search in the string.

[% USE String('foo bar foo baz') %]
[% String.remove('foo ') %] # => 'bar baz'

	repeat($count)

	
Repeats the string $count times.

[% USE String('foo ') %]
[% String.repeat(3) %] # => 'foo foo foo '

6.2.16 Table

The Table plugin allows you to format a list of
data items into a virtual table. When you create a Table plugin via
the USE directive, simply pass a list reference as
the first parameter and then specify a fixed number of rows or
columns:

[% USE table list, rows = 5 %]

The plugin then presents a table-based view of the data set. The data
isn't actually reorganized in any way, but is
available via row, col,
rows, and cols as if formatted
into a simple two-dimensional table of n rows
x n columns. Thus, if our sample
alphabet list contained the letters a to z, the preceeding
USE directives would create plugins that represent
the views of the alphabet, as shown in Examples Example 6-28 and Example 6-29.

Example 6-28. rows

[% USE table alphabet, rows = 5 %]

[% FOREACH row IN table.row;
 FOREACH cell IN row;
 "$cell ";
 END %]
[% END %]

Output of Example 6-28:

a f k p u z
b g l q v
c h m r w
d i n s x
e j o t y

Example 6-29. cols

[% USE table alphabet, cols = 5 %]

[% FOREACH col IN table.col;
 FOREACH cell IN col;
 "$cell ";
 END %]
[% END %]

Output of Example 6-29:

a b c d e f
g h i j k l
m n o p q r
s t u v w x
y z

We can request a particular row or column using the
row and col methods, as shown
in Example 6-30.

Example 6-30. row(0)

[% USE table alphabet, rows = 5 %]
[% FOREACH item IN table.row(0);
 item %]
[% END %]

Output of Example 6-30:

a
f
k
p
u
z

Data in rows is returned from left to right, and in columns from top
to bottom. The first row/column is 0. By default, rows or columns
that contain empty values will be padded with the undefined value to
fill it to the same size as all other rows or columns. For example,
the last row (row 4) in the first example would contain the values
[e j
o t y
undef]. The Template Toolkit
will safely accept these undefined values and print an empty string.
You can also use the IF directive to test whether
the value is set.

You can explicitly disable the pad option when
creating the plugin to returned shortened rows/columns where the data
is empty, as shown in Example 6-31.

Example 6-31. pad = 0

[% USE table alphabet, cols=5, pad=0 %]
[% FOREACH item = table.col(4);
 item %]
[% END %]

The rows method returns all rows/columns in the
table as a reference to a list of rows (themselves list references).
The row method, when called without any arguments
calls rows to return all rows in the table.
cols and col behave
analogously.

6.2.17 URL

The URL plugin
provides a convenient way to construct URLs from a base stem and a
hash of additional parameters, without having to worry about getting
the syntax correct.

The constructor should be passed a base URL:

[% USE siteroot = url('http://www.template-toolkit.org') %]

The constructor can optionally be passed a hash reference of default
parameters and values:

[% USE next = url('search.cgi', search = search, next = curpage + 1) %]

When the plugin is then called without any arguments, the default
base and parameters are returned as a formatted URL, including any
query parameters. Thus, one url object can be used
as the base for another:

[% USE news = url("$siteroot/news") %]

Simply calling or interpolating the plugin is enough for the Template
Toolkit to expand it, as shown in Example 6-32.

Example 6-32. url in action

[% USE tt = url('http://www.template-toolkit.org/') -%]
The Template Toolkit rules!

Output of Example 6-32:

The Template Toolkit rules!

Any parameters passed into the call are combined with parameters
specified when the plugin was created, and all become part of the
resulting URL, as shown in Example 6-33.

Example 6-33. url + parameters

[% USE article = url('http://slashdot.org/article.pl'
 mode = 'nested',
 threshold = 1) %]
[% article(sid = 'xxx') %]

Output of Example 6-33:

http://slashdot.org/article.pl?mode=nested&sid=xxx&threshold=1

6.2.18 Wrap

The Wrap plugin
provides a simple text wrapper, based on the
Text::Wrap module. Paragraphs can be formatted
using specific widths and leading indent, and can have padding
applied to each line in the output.

The plugin defines a wrap subroutine that is
called with the input text and further optional parameters to specify
the page width (which defaults to 72) and tab characters for the
first and subsequent lines (these have no defaults).

This plugin's simple wrapping is not aware of
special prefixes and so forth; for more sophisticated wrapping, use
the more complex autoformat plugin. For most
simple wrapping jobs, however, wrap is capable
enough (see Example 6-34).

Example 6-34. Basic wrapping

[% USE wrap %]

[% text = BLOCK -%]
First, attach the transmutex multiplier to the cross-wired quantum homogenizer.
[% END %]

[% wrap(text, 30) %]

Output of Example 6-34:

First, attach the transmutex
multiplier to the cross-wired
quantum homogenizer.

The plugin also registers a wrap filter that
accepts the same three optional arguments, but takes the input text
directly via the filter input (see Example 6-35).

Example 6-35. Wrap filter

[% FILTER bullet = wrap(40, '* ', ' ') -%]
First, attach the transmutex multiplier to the cross-wired quantum homogenizer.
[%- END %]

[% FILTER bullet -%]
Then remodulate the shield to match the harmonic frequency, taking care to correct the
phase difference.
[% END %]

Output of Example 6-35:

* First, attach the transmutex
 multiplier to the cross-wired quantum
 homogenizer.

* Then remodulate the shield to match
 the harmonic frequency, taking care
 to correct the phase difference.

Text::Wrap comes with recent versions of Perl, and
is also available from CPAN at http://search.cpan.org/dist/Text-Wrap/.

6.2.19 XML::DOM

The XML::DOM plugin gives access to the XML Document
Object Module via Clark Cooper and Enno Derksen's
XML::DOM module. The following synopsis gives
examples of some ways in which it can be used. See Chapter 10 for further details.

load plugin
[% USE dom = XML.DOM %]

also provide XML::Parser options
[% USE dom = XML.DOM(ProtocolEncoding => 'ISO-8859-1') %]

parse an XML file
[% doc = dom.parse(filename) %]
[% doc = dom.parse(file => filename) %]

parse XML text
[% doc = dom.parse(xmltext) %]
[% doc = dom.parse(text => xmltext) %]

call any XML::DOM methods on document/element nodes
[% FOREACH node = doc.getElementsByTagName('report') %]
 * [% node.getAttribute('title') %] # or just '[% node.title %]'
[% END %]

define VIEW to present node(s)
[% VIEW report notfound='xmlstring' %]
 # handler block for a <report>...</report> element
 [% BLOCK report %]
 [% item.content(view) %]
 [% END %]

 # handler block for a <section title="...">...</section> element
 [% BLOCK section %]
 <h1>[% item.title %]</h1>
 [% item.content(view) %]
 [% END %]

 # default template block converts item to string representation
 [% BLOCK xmlstring; item.toString; END %]

 # block to generate simple text
 [% BLOCK text; item; END %]
[% END %]

now present node (and children) via view
[% report.print(node) %]

or print node content via view
[% node.content(report) %]

6.2.20 XML::RSS

The XML::RSS plugin is a simple interface to Jonathan
Eisenzopf's XML::RSS module. A
Rich Site Summary (RSS) file is typically used to store short news
headlines describing different links within a site. This plugin
allows you to parse RSS files and format the contents accordingly
using templates.

[% USE news = XML.RSS(filename) %]

[% FOREACH item = news.items %]
 [% item.title %]
 [% item.link %]
[% END %]

See Chapter 10 for more details.

6.2.21 XML::Style

This plugin defines a filter for performing simple
stylesheet-based transformations of XML text.

Named parameters are used to define those XML elements that require
transformation. These may be specified with the
USE directive when the plugin is loaded and/or
with the FILTER directive when the plugin is used.

This example shows how the default attributes
border="0" and cellpadding="4"
can be added to <table> elements:

[% USE xmlstyle
 table = {
 attributes = {
 border = 0
 cellpadding = 4
 }
 }
%]

[% FILTER xmlstyle %]
<table>
 ...
</table>
[% END %]

This produces the output:

<table border="0" cellpadding="4">
 ...
</table>

Parameters specified within the USE directive are
applied automatically each time the xmlstyle
filter is used. Additional parameters passed to the
FILTER directive apply only to that block.

[% USE xmlstyle
 table = {
 attributes = {
 border = 0
 cellpadding = 4
 }
 }
%]

[% FILTER xmlstyle
 tr = {
 attributes = {
 valign="top"
 }
 }
%]
<table>
 <tr>
 ...
 </tr>
</table>
[% END %]

Of course, you may prefer to define your stylesheet structures once
and simply reference them by name. Passing a hash reference of named
parameters is just the same as specifying the named parameters as far
as the Template Toolkit is concerned:

[% style_one = {
 table = { ... }
 tr = { ... }
 }
 style_two = {
 table = { ... }
 td = { ... }
 }
 style_three = {
 th = { ... }
 tv = { ... }
 }
%]

[% USE xmlstyle style_one %]

[% FILTER xmlstyle style_two %]
 # style_one and style_two applied here
[% END %]

[% FILTER xmlstyle style_three %]
 # style_one and style_three applied here
[% END %]

Any attributes defined within the source tags will override those
specified in the stylesheet:

[% USE xmlstyle
 div = { attributes = { align = 'left' } }
%]

[% FILTER xmlstyle %]
<div>foo</div>
<div align="right">bar</div>
[% END %]

The output produced is:

<div align="left">foo</div>
<div align="right">bar</div>

The filter can also be used to change the element from one type to
another:

[% FILTER xmlstyle
 th = {
 element = 'td'
 attributes = { bgcolor='red' }
 }
%]
<tr>
 <th>Heading</th>
</tr>
<tr>
 <td>Value</td>
</tr>
[% END %]

The output here is as follows (notice how the end tag
</th> is changed to
</td> as is the start tag):

<tr>
 <td bgcolor="red">Heading</td>
</tr>
<tr>
 <td>Value</td>
</tr>

You can also define text to be added immediately before or after the
start or end tags. For example:

[% FILTER xmlstyle
 table = {
 pre_start = '<div align="center">'
 post_end = '</div>'
 }
 th = {
 element = 'td'
 attributes = { bgcolor='red' }
 post_start = ''
 pre_end = ''
 }
%]
<table>
<tr>
 <th>Heading</th>
</tr>
<tr>
 <td>Value</td>
</tr>
</table>
[% END %]

The output produced is:

<div align="center">
<table>
<tr>
 <td bgcolor="red">Heading</td>
</tr>
<tr>
 <td>Value</td>
</tr>
</table>
</div>

6.2.22 XML::XPath

The XML::XPath plugin provides an interface to Matt
Sergeant's XML::XPath module. The
following synopsis shows some examples of its use. See Chapter 10 and Chapter 11 for
further examples of using this plugin.

[% USE xpath = XML.XPath(xmlfile) %]
[% USE xpath = XML.XPath(file => xmlfile) %]
[% USE xpath = XML.XPath(filename => xmlfile) %]

load plugin and specify XML text to parse
[% USE xpath = XML.XPath(xmltext) %]
[% USE xpath = XML.XPath(xml => xmltext) %]
[% USE xpath = XML.XPath(text => xmltext) %]

then call any XPath methods (see XML::XPath docs)
[% FOREACH page = xpath.findnodes('/html/body/page') %]
 [% page.getAttribute('title') %]
[% END %]

define VIEW to present node(s)
[% VIEW repview notfound='xmlstring' %]
 # handler block for a <report>...</report> element
 [% BLOCK report %]
 [% item.content(view) %]
 [% END %]

 # handler block for a <section title="...">...</section> element
 [% BLOCK section %]
 <h1>[% item.getAttribute('title') | html %]</h1>
 [% item.content(view) %]
 [% END %]

 # default template block passes tags through and renders
 # out the children recursively
 [% BLOCK xmlstring;
 item.starttag; item.content(view); item.endtag;
 END %]

 # block to generate simple text
 [% BLOCK text; item | html; END %]
[% END %]

now present node (and children) via view
[% repview.print(page) %]

or print node content via view
[% page.content(repview) %]

Chapter 7. Anatomy of the Template Toolkit

Now that we've spent a great deal of time looking at
what you can do with the Template Toolkit, let's
take a look inside and get a feel for how it actually works.
We'll follow the flow of processing a template from
the frontend (such as Template or
ttree), to getting the file from disk
(Template::Provider), to compiling it
(Template::Parser,
Template::Grammar, and
Template::Directive), and to executing it
(Template::Context and
Template::Document).

We'll be using pseudocode versions of the methods to
illustrate the major thrust of each component, mainly to gloss over
tedious details of error checking, parameter handling, file opening
and closing, and syntax. Feel free to get a copy of each
.pm file and follow along with the real code;
however, the best way to understand any complex system is to look at
the innards, and the Template Toolkit is no exception.

7.1 Template Modules

The Template module
is simply a frontend that creates and uses a
Template::Service object and then pipes the output
wherever you want it to go (standard output by default, or maybe a
file, scalar variable, etc.). The Apache::Template
module is another frontend, which uses a
Template::Service::Apache object under the hood
and sends the output back to the relevant Apache
object. The now-familiar tpage and
ttree scripts are command line-based frontends;
tpage simply connects standard input and output
by way of the Template Toolkit, while ttree does
the same for source and destination files (with the intelligence to
detect when they haven't changed).

These frontend modules are really there only to handle any specifics
of the environment in which they're being used.
Apache::Template does web-specific things, such as
making form parameters and client request headers available as
template variables and allowing configuration via
httpd.conf. The ttree
program parses command-line arguments and a configuration file. The
regular Template frontend deals with standard
output and writing to files. Otherwise, it is
Template::Service (or a subclass) that does all
the work. The process method calls
$service->process and then spends most of its
time figuring out where to send the results. Example 7-1 shows the process method in
action.

Example 7-1. Template::process

sub process($name, \%vars, $output, \%options) {
 $content = SERVICE->process($name, $vars);

 if type($output) = = 'code':
 &$output($content);

 elsif type($output) = = 'filehandle':
 print $output $content;

 elsif type($output) = = 'scalar reference':
 $$output = $content;

 elsif type($output) = = 'array reference':
 push @$output, $content;

 elsif $output->can('print'):
 $output->print($content);

 else:
 open OUT, $output;
 if $options->{'binmode'}:
 binmode OUT;
 print OUT $content;

}

Apache::Template behaves a little differently, but
the basic idea is the same. Because it's an Apache
handler, the entry point is called handler, not
process (see Example 7-2).

Example 7-2. Apache::Template::handler

sub handler($r) {
 $template = SERVICE->template($r);
 $params = SERVICE->params($r);
 $content = SERVICE->process($r);

 SERVICE->headers($r, $template, $content);

 $r->print($content);

 return OK;
}

As you can see, the service object
(Apache::Template uses a
Template::Service::Apache instance, which is a
Template::Service subclass) has a few more
responsibilities: params and
header handle the Apache-specific stuff (reading
client headers and form parameters), and template
calls upon a special provider to get a compiled template based on the
filename requested (more on template later).
Let's look at these modules in more detail.

7.1.1 Template::Service

The
Template::Service module provides a consistent
template-processing environment. In addition to processing the main
template (passed by name to process), the service
object processes any additional templates
(PRE_PROCESS, PROCESS,
POST_PROCESS), wrappers
(WRAPPER), or error handlers
(ERROR) defined by the frontend. For the most
part, the job of the service object is really just one of scheduling,
dispatching, and handling runtime errors.

Actually, that's a bit of a lie: the service object
doesn't process the templates itself, but instead
makes process calls against a
Template::Context object. In pseudocode,
process looks like the code shown in Example 7-3.

Example 7-3. Template::Service::process

sub process($template, \%vars) {
 $output = '';

 $compiled_template = CONTEXT->template($template);
 $vars->{'template'} = $compiled_template;

 eval {
 foreach $name in PRE_PROCESS:
 $output += CONTEXT->process($name, $vars);

 @process = PROCESS || $compiled_template;
 foreach $name in @process:
 $output += CONTEXT->process($name, $vars);

 @wrapper = reverse WRAPPER;
 foreach $name in @wrapper:
 $output += CONTEXT->process($name, $vars);

 foreach $name in POST_PROCESS:
 $output += CONTEXT->process($name, $vars);
 }

 if $EVAL_ERROR:
 $output = CONTEXT->process(ERROR);

 return $output;
}

7.1.2 Template::Context

Template::Context is the
runtime engine for the Template Toolkit�the module that hangs
everything together in the lower levels and that does most of the
real work, albeit by crafty delegation to various other friendly
helper modules.

Given a template name, the context's
process method must first get a handle on the
compiled template that represents that name. It does this by calling
its template method.

Within template, the context calls
fetch on each member of the list of
Template::Provider objects (the contents of the
LOAD_TEMPLATES array), stopping when one of them
returns a Template::Document object. If none of
them does, the context throws a
Template::Exception
object back to
process via throw, as shown in
Example 7-4.

Example 7-4. Template::Context::template

sub template($name) {
 $template = undef;

 foreach $p in LOAD_TEMPLATES:
 $template = $p->fetch($name);
 last if $template;

 $self->throw('file', "$name not found") unless $template;

 return $template;
}

The throw method takes an
error type, such as file, and a descriptive string
($name not found), and creates a
Template::Exception object out of them. This
exception
object is first passed back to the
Template::Service object, which tries to handle it
with any ERROR handlers the user specified; if
that fails (i.e., if the user hasn't defined a
handler for this exception type), it is passed into the template,
where it is available via the error variable.
Template::Context also implements a
catch method, which attempts to handle a thrown
error. The context's
catch method ensures that
the error caught is a Template::Exception rather
than a simple string, and is primarily used within compiled
templates. We'll see catch when
we talk about Template::Directive and
Template::Document.

Once the context has a compiled template, it updates the
stash
(the data engine where template variables are managed) to set any
template variable definitions specified as the second argument by
reference to a hash array.

Then, it calls the document's
process method, passing a reference to itself
(the context) as an argument. In doing this, it provides itself as an
object against which template code can make callbacks to access
runtime resources and Template Toolkit functionality: not only does
the Template::Context object receive calls from
the outside (those originating in user code
calling the process method on a
Template object), but it also receives calls from
the inside (those originating in template
directives of the form [% PROCESS template %]).

process looks something like the code shown in
Example 7-5.

Example 7-5. Template::Context::process

sub process(\@names, \%vars) {
 foreach $name in $names:
 push @templates, $self->template($name);

 STASH->update($vars);

 eval {
 foreach $template in @templates:
 $output += &$template($self);
 }

 if $EVAL_ERROR:
 $self->throw($EVAL_ERROR);

 return $output;
}

As you can see, process can take an array of
template names, so the following:

[% PROCESS copyright + footer %]

and:

$context->process(['copyright', 'footer']);

are equivalent.

The context is also responsible for
loading plugins
and filters via the
cleverly named plugins and
filters methods. The context maintains arrays of
plugin and filter providers (stored in
LOAD_PLUGINS and LOAD_FILTERS,
respectively) that are consulted in order, until one of them returns
the requested item. plugin is very similar to
template, as you can see in Example 7-6.

Example 7-6. Template::Context::plugin

sub plugin($name, \@args) {
 $plugin = undef;

 foreach $p in @LOAD_PLUGINS:
 $plugin = $p->fetch($name, $args);
 last if $plugin;

 $self->throw('plugin', "$name not found") unless $plugin;

 return $plugin;
}

filter is slightly different; as shown in Example 7-7, the context can store filters in a local
cache, if $alias is provided.

Example 7-7. Template::Context::filter

sub filter($name, \@args, $alias) {
 $filter = undef;

 $filter = $self->filter_cache->$name;
 return $filter if $filter;

 foreach $p in @LOAD_FILTERS:
 $filter = $p->fetch($name, $args);
 last if $filter;

 return undef unless $filter;

 $self->filter_cache->$alias = $filter;

 return $filter;
}

7.1.3 Template::Stash

The Template::Stash
module defines the data engine that powers the Template Toolkit. The
stash goes out of its way to ensure that all the data it contains can
be accessed in the same way by making variable access
"magical": scalars, arrays, hashes,
subroutines, and objects are all accessed the same way, courtesy of
the dot operator (.). We'll have
a lot more to say about the stash shortly in Section 7.2.

7.1.4 Template::Provider

Template::Provider
is responsible for locating templates, compiling them with
Template::Parser, and handing
Template::Document instances back to the context,
all via the fetch method. The provider also handles the
details of template caching and hides filesystem differences.

In pseudocode, fetch looks something like the code
shown in Example 7-8.

Example 7-8. Template::Provider::fetch

sub fetch($name) {
 if $name =~ /^\//:
 if ABSOLUTE:
 $data, $error = $self->_fetch(name);
 else:
 $data = undef;
 $error = 'ABSOLUTE paths not allowed';

 elsif $name =~ /^\.+\//:
 if RELATIVE:
 $data, $error = $self->_fetch($name);
 else:
 $data = undef;
 $error = 'RELATIVE paths not allowed';

 else:
 $data, $error = $self->_fetch_path($name);

 return $data, $error;
}

There are two other helper methods here: _fetch
and _fetch_path. The primary difference between
the two is that _fetch is expecting a direct path
to a file (either absolute or relative), while
_fetch_path walks the
INCLUDE_PATH to find the template. Each checks to
see whether the user requested memory or disk-based caching, and uses
these versions in preference to recompiling the template itself. If
caching is enabled, the provider checks timestamps to ensure that the
version on disk hasn't been modified since it was
last compiled, and either hands back the cached version, or
recompiles it and hands that back (being sure to cache this new
version).

_fetch looks like Example 7-9
in pseudocode.

Example 7-9. Template::Provider::_fetch

sub _fetch($name) {
 $compiled_filename = $self->_compiled_filename;

 if CACHE_SIZE:
 $cached = $self->template_cache->$name
 if $cached:
 $self->_refresh($cached);
 $doc = $cached;
 else:
 $filedata = $self->_load($name);
 $doc = $self->_compile($filedata, $compiled_filename);
 else:
 if $compiled_filename:
 $doc = $self->_load_compiled($compiled_template);
 $self->store($name, $doc);
 else:
 $filedata = $self->_load($name);
 $doc = $self->_compile($filedata, $compiled_filename);
 $self->store($name, $doc);

 return $doc;
}

We're leaving out a lot of private methods here:
_compiled_filename concatenates
COMPILE_DIR, the template name, and
COMPILE_EXT to figure out where a compiled
template should be written to disk, and _refresh
does timestamp comparisons between $name and
$compiled_filename, calling
_load and _compile as
necessary. _load opens the file
$name on disk and reads it into a scalar variable,
and adds the special elements name and
modtime to $filedata; these are
$name and
$name's timestamp (from
(stat($name))[9]).

_compile bears a closer look because it is in
_compile that the parser comes into play (see
Example 7-10).

Example 7-10. Template::Provider::_compile

sub _compile($filedata, $compiled_filename) {
 $parsed = PARSER->parse($filedata->{'text'}, $filedata);

 $parsed->{'name'} = $filedata->{'name'};
 $parsed->{'modtime'} = $filedata->{'time'};

 if $compiled_filename:
 DOCUMENT->write_perl_file($parsed, $compiled_filename);

 return DOCUMENT->new($parsed);
}

As mentioned earlier, Template::Provider objects
are stored in an array; template iterates over
these providers, giving each one a chance to respond. This means that
it is possible to layer special-purpose providers (database-based,
HTTP-based, and so on) on top of the default provider, or even
instead of it.

Once the provider finds the template it is looking for, it passes the
contents of the file to a Template::Parser, which
tokenizes the templates, checks them for syntactical correctness, and
returns a compiled data structure, which is fed
to
Template::Document.

7.1.5 Template::Parser

Template::Parser does most
of the hard work. It accepts a string representation of a template,
which it tokenizes based on the current TAGS
settings, and uses a Template::Grammar instance to
determine the actions associated with each token.

parse is the parser's
primary interface, and looks something like the code in Example 7-11.

Example 7-11. Template::Parser::parse

sub parse($text, $info) {
 @tokens = $self->split_text($text);

 $block = $self->_parse(@tokens, $info);

 return {
 BLOCK = $block
 DEFBLOCKS = $self->DEFBLOCK
 METADATA = $self->METADATA
 }
}

split_text is the tokenizer. It uses
START_TAG and END_TAG to break
apart the text, and handles any whitespace-chomping specified by
PRE_CHOMP, POST_CHOMP, or
TRIM. _parse uses the grammar
to determine whether the stream of tokens is syntactically valid, and
if so, uses Template::Directive to generate Perl
code ($block). DEFBLOCK and
METADATA are accumulated in the parser as the
document is parsed.

7.1.6 Template::Grammar

The
Template::Grammar module
contains a big list of parser states and their associated actions,
which are generated from a yacc-like grammar using
Parse::Yapp. The grammar calls upon the
Template::Directive factory class to actually
generate the code.

Ninety-nine percent of the grammar is generated from the file
parser/Parser.py (part of the source
distribution), which we'll see in more detail later
in Chapter 8. The last 1% is part of the
grammar skeleton, parser/Grammar.pm.skel, which
defines reserved words and special tokens.

7.1.7 Template::Directive

The
Template::Directive module
defines the nitty-gritty details of the compilation process. The
grammar calls a method against a
Template::Directive instance (called a
factory), passing along the tokens the parser
found. The factory returns Perl code that implements the directives,
which is evaled into live code by
Template::Document.

By way of example, let's look at the code generated
for an anonymous block, such as the one shown in Example 7-12.

Example 7-12. An example template

[% BLOCK %]
A city is like a large, complex rabbit.
[% END %]

This relatively simple block generates a bunch of code, as shown in
Example 7-13.

Example 7-13. Code implementing an anonymous block

BLOCK
$output .= do {
 my $output = '';
 my $error;

 eval { BLOCK: {
 $output .= "\nA city is like a large, complex rabbit.\n";
 } };
 if ($@) {
 $error = $context->catch($@, \$output);
 die $error unless $error->type eq 'return';
 }

 $output;
};

The nested calls to eval are necessary because the
user can do pretty much anything in a block, such as attempt to load
nonexistent plugins or process a file with syntax errors, as shown in
Example 7-14.

Example 7-14. A malformed template

[% BLOCK %]
[% USE %]
[% END %]

Template::Directive makes use of compile-time
constants, as specified by the
CONSTANTS configuration directive. When
generating the code for GET directives, the
factory checks to see whether any constants are defined, and if so,
calls upon a Template::Namespace::Constants object
to do the interpolation then and there. This means that the compiled
templates contain static strings for these variables, and not calls
to the stash. We'll see the code generation process
in much more detail in the later Section 7.2.

7.1.8 Template::Namespace::Constants

The
Template::Namespace::Constants module is
a specialized factory class (like a slimmed-down
Template::Directive) that handles compile-time
constant folding. A Template::Namespace::Constants
object has its own stash, which is initialized with the contents of
the CONSTANTS configuration directive (if it was
specified). These variables are accessed in the templates using a
special prefix (which is constants by default, but
can be set to something else using the
CONSTANT_NAMESPACE configuration option).
We'll see when constant folding comes into play in
the Section 7.2; also see
the Appendix for more details about CONSTANTS and
CONSTANT_NAMESPACE.

7.1.9 Template::Document

A
Template::Document module is
a thin object wrapper around a compiled template subroutine. The
object implements a process method that performs a
little bit of housekeeping and then calls the template subroutine.
The object also defines template metadata (defined in [%
META ... %] directives), and has a
blocks method that returns a hash of any
additional [% BLOCK xxxx %] definitions found in
the template source.

The context processes a Template::Document
instance by invoking its process method, passing
itself as a parameter; within process, the
document executes its main subroutine (which it gets via the
block method) and returns a string of output. If
there is an error, the context intercepts it with the
catch method, which ensures that the error is a
Template::Exception object and not a string, and
then rethrows it via dia (which is caught by the
context in its own process method). Example 7-15 shows this module in action.

Example 7-15. Template::Document::process

sub process($context) {
 $output = '';

 eval {
 $block = $self->block;
 $output = &$block($context);
 }

 if $EVAL_ERROR:
 die $context->catch($EVAL_ERROR);

 return $output;
}

7.2 The Runtime Engine

All of this has been building up to one big
secret: there is no Template Toolkit runtime. The Template Toolkit
uses Perl as its runtime environment. So far, all of the modules
we've discussed have been a complex way of turning
non-Perl (the templates) into code that the Perl interpreter can
execute (compile subroutines).

To see exactly what this means, we need to see what a compiled
template looks like. In fact, a compiled template is just a regular
Perl subroutine. Here's a very simple one:

sub my_compiled_template {
 return "This is a compiled template.\n";
}

You're unlikely to see a compiled template this
simple unless you wrote it yourself, but it is entirely valid. All a
template subroutine is obliged to do is return some output (which may
be an empty string, of course). If it can't for some
reason, it should raise an error via die:

sub my_todo_template {
 die "This template not yet implemented\n";
}

If it wants to get fancy, it can raise an error as a
Template::Exception object. An
exception
object is really just a convenient wrapper for the
type and info fields.

sub my_solilique_template {
 die (Template::Exception->new('yorrick', 'Fellow of infinite jest'));
}

Templates generally need to do a lot more than just generate static
output or raise errors. They may want to inspect variable values,
process another template, load a plugin, run a filter, and so on.
Whenever a template
subroutine
is called, it gets passed a reference to a
Template::Context object. It is through this
context object that template code can access the features of the
Template Toolkit.

We described earlier how the Template::Service
object calls on Template::Context to handle a
process request from the
outside. We can make a similar request on a
context to process a template, but from within the code of another
template. This is a call from the inside:

sub my_process_template {
 my $context = shift;

 my $output = $context->process('header', { title => 'Hello World' })
 . "\nsome content\n"
 . $context->process('footer');
}

This is then roughly equivalent to a source template something like
this:

[% PROCESS header
 title = 'Hello World'
%]
some content
[% PROCESS footer %]

Template variables are stored in and managed by a
Template::Stash object. This is a blessed hash
array in which template variables are defined. The object wrapper
provides get and set methods
that implement all the magical variable features of the Template
Toolkit.

Each context object has its own stash, a reference to which is
returned by the appropriately named stash method.
So to print the value of some template variable, or, for example, to
represent the following source template:

<title>[% title %]</title>

we might have a subroutine definition something like this:

sub {
 my $context = shift;
 my $stash = $context->stash();
 return '<title>' . $stash->get('title') . '</title>';
}

The stash get method hides the details of the
underlying variable types, automatically calling code references,
checking return values, and performing other such tricks. If
title happens to be bound to a subroutine, we can
specify additional parameters as a list reference passed as the
second argument to get:

[% title('The Cat Sat on the Mat') %]

This translates to the stash get call:

$stash->get(['title' => ['The Cat Sat on the Mat']]);

Dotted compound variables can be requested by passing a single list
reference to the get method in place of the
variable name. Each pair of elements in the list should correspond to
the variable name and reference to a list of arguments for each
dot-delimited element of the variable. Therefore, this:

[% foo(1, 2).bar(3, 4).baz(5) %]

is equivalent to:

$stash->get([foo => [1,2], bar => [3,4], baz => [5]]);

If there aren't any arguments for an element, you
can specify an empty, zero, or null argument list:

[% foo.bar %]
$stash->get(['foo', 0, 'bar', 0]);

The set method works in a similar way. It
takes a variable name and a variable value that should be assigned to
it:

[% x = 10 %]
$stash->set('x', 10);

[% x.y = 10 %]
$stash->set(['x', 0, 'y', 0], 10);

So the stash gives us access to template variables and the context
provides the higher-level functionality. Alongside the
process method lies the include
method. Just as with the PROCESS and
INCLUDE directives, the key difference is in
variable localization. Before processing a template, the
process method
simply updates the stash to set any new variable definitions,
overwriting any existing values. In contrast, the
include method
creates a copy of the existing stash, in a process known as
cloning the stash, and then uses that as a
temporary variable store. Any previously existing variables are still
defined, but any changes made to variables, including setting the new
variable values passed as arguments, will affect only the local copy
of the stash (although note that it's only a shallow
copy, so it's not foolproof). When the template has
been processed, the include method restores the
previous variable state by decloning the stash.

The context also provides an insert method to
implement the INSERT directive, but
doesn't provide a wrapper method.
This functionality can be implemented by rewriting the Perl code and
calling include:

[% WRAPPER foo %]
 blah blah [% x %]
[% END %]

$context->include('foo', {
 content => "\n blah blah " . $stash->get('x') . "\n",
});

In addition to the template processing methods
process, include, and
insert, the context defines methods
for
fetching plugin objects (plugin) and
filters
(filter):

[% USE foo = Bar(10) %]

$stash->set('foo', $context->plugin('Bar', [10]));

[% FILTER bar(20) %]
 blah blah blah
[% END %]

my $filter = $context->filter('bar', [20]);
&$filter("\n blah blah blah\n");

Pretty much everything else you might want to do in a template you
can do in Perl code. Things such as IF,
UNLESS, FOREACH, and so on all
have direct counterparts in Perl.

[% IF msg %]
 Message: [% msg %]
[% END %];

if ($stash->get('msg')) {
 $output .= "\n Message: \n";
 $output .= $stash->get('msg');
 $output .= "\n";
}

The best way to get a better understanding of what's
going on underneath the hood is to set the
$Template::Parser::DEBUG flag to a
true value and start
processing templates. This will cause the parser to print the
generated Perl code for each template it compiles to STDERR.
You'll probably also want to set the
$Template::Directive::PRETTY option to have the
Perl pretty-printed for human consumption (see Example 7-16).

Example 7-16. debug.pl

use Template;
use Template::Parser;
use Template::Directive;

$Template::Parser::DEBUG = 1;
$Template::Directive::PRETTY = 1;

my $tt = Template->new();
$tt->process(*DATA, { cat => 'dog', mat => 'log' })
 || die $tt->error;

_ _DATA_ _
The [% cat %] sat on the [% mat %]

The output sent to STDOUT remains as you would expect:

The dog sat on the log

The output sent to STDERR would look something like the code shown in
Example 7-17.

Example 7-17. Compiled main template document block

sub {
 my $context = shift || die "template sub called without context\n";
 my $stash = $context->stash;
 my $output = '';
 my $error;

 eval { BLOCK: {
 $output .= "The ";
 $output .= $stash->get('cat');
 $output .= " sat on the ";
 $output .= $stash->get('mat');
 $output .= "\n";
 } };
 if ($@) {
 $error = $context->catch($@, \$output);
 die $error unless $error->type eq 'return';
 }

 return $output;
}

Different versions of the Template Toolkit produce slightly different
code. When the compiled document is written out to disk, the Template
Toolkit version is part of the compiled code, as shown in Example 7-18.

Example 7-18. A compiled document

#--
Compiled template generated by the Template Toolkit version 2.09c
#--

Template::Document->new({
 METADATA => {
 'modtime' => '1054300677',
 'name' => 'cat.tt2',
 },
 BLOCK => sub {
 my $context = shift || die "template sub called without context\n";
 my $stash = $context->stash;
 my $output = '';
 my $error;

 eval { BLOCK: {
 $output .= "The ";
 $output .= $stash->get('cat');
 $output .= " sat on the ";
 $output .= $stash->get('mat');
 $output .= "\n";
 } };
 if ($@) {
 $error = $context->catch($@, \$output);
 die $error unless $error->type eq 'return';
 }

 return $output;
 },
 DEFBLOCKS => {

 },
});

Constants defined in the CONSTANTS configuration
option are implemented by the
Template::Namespace::Constants module. If we
modify debug.pl slightly, as shown in Example 7-19, the code produced is slightly different, as
shown in Example 7-20.

Example 7-19. debug-constants.pl

use Template;
use Template::Parser;
use Template::Directive;

$Template::Parser::DEBUG = 1;
$Template::Directive::PRETTY = 1;

my $tt = Template->new(
 CONSTANTS => {
 cat => 'dog',
 },
);
$tt->process(*DATA, { mat => 'log' })
 || die $tt->error;

_ _DATA_ _
The [% constants.cat %] sat on the [% mat %]

Example 7-20. Compiled main template document block (with constant folding)

sub {
 my $context = shift || die "template sub called without context\n";
 my $stash = $context->stash;
 my $output = '';
 my $error;

 eval { BLOCK: {
 $output .= "The ";
 $output .= 'dog';
 $output .= " sat on the ";
 $output .= $stash->get('mat');
 $output .= "\n\n";
 } };
 if ($@) {
 $error = $context->catch($@, \$output);
 die $error unless $error->type eq 'return';
 }

 return $output;
}

Notice that [% constants.dog %] was turned into
'dog' at compile time, rather
than at runtime. This can be a potentially huge gain, especially for
templates that contain data that changes infrequently.

7.3 Module Interfaces

Now that our idea of how the
Template Toolkit is put together is coming into focus, we can begin
discussing the individual modules. In this section, we will describe
each core component of the Template Toolkit, as well as the public
interface the components present. Developers who wish to extend the
Template Toolkit programmatically, or who wish to replace components
with their own versions, will do well to pay close attention to the
APIs exposed by the components. Most methods are illustrated with
small replacement versions that extend the functionality of the
component, adding debugging or other simple enhancements�but
keep in mind that these are intentionally small examples. You are
limited only by your imagination.

Each Template Toolkit module knows about the other modules it needs
to do its job, and will create instances of these objects unless one
is passed explicitly. This means that modules are loaded and
instances are created on demand.

The hash containing the configuration parameters is passed to each
module's new method. For example,
Template::Service creates a
Template::Context instance like so:

In Service.pm
sub _init {
 my ($self, $config) = @_;

 # Some other configuration

 $context = $self->{ CONTEXT } = $config->{ CONTEXT }
 || Template::Config->context($config)
 || return $self->error(Template::Config->error);

 return $self;
}

In this case, if a Template::Context instance was
part of $config, a new one would not be created.
This feature is most useful for overriding settings, such as
TOLERANT, for specific instances:

my $context = Template::Context->new(TOLERANT => 1);
my $tt = Template->new({
 CONTEXT => $context,
 TOLERANT => 0
});

7.3.1 Template's process Method

The main interface to the Template Toolkit from within Perl is
through the Template module. Recall our basic
script from Chapter 6, shown again in Example 7-21.

Example 7-21. ttperl.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;

my $tt = Template->new();
my $input = 'answer.tt';
my $vars = {
 answer => 42,
 author => 'Douglas Adams',
};

$tt->process($input, $vars)
 || die $tt->error();

Chapter 6 covered the basics of this script;
let's discuss the details in more depth. The
process method is where the
action begins:

$tt->process($input, $vars)
 || die $tt->error();

We pass the name of the template file that we want processed, here
stored in the $input variable followed by template
variables defined in $vars. We could of course
pass the template filename as the literal string
'answer.tt2' and save ourselves the effort of
creating a temporary variable, but we'll continue to
use the $input variable in the examples that
follow. As we'll see when we look more closely at
the process method, the first argument
doesn't always have to be a filename, so it helps to
keep things deliberately vague.

The process method returns a true value if the
template was sucessfully processed. The output generated will be
printed to STDOUT by default, so you'll see it
scrolling up your screen when you run the program.

Suppose the source template answer.tt2 contains
the text shown in Example 7-22.

Example 7-22. answer.tt2

The answer to the Ultimate Question of Life, the
Universe and Everything is [% answer %].

 -- [% author %]

Then we can expect to see the following output generated:

The answer to the Ultimate Question of Life, the
Universe and Everything is 42.

 -- Douglas Adams

If an error occurs, the process method returns
false. In this case, we call the
error
method to find out what went wrong and report it as a fatal error
using die. An error can be returned for a number
of reasons, such as the file specified could not be found, had
embedded directives containing illegal syntax that could not be
parsed, or generated a runtime error while the template was being
processed.

7.3.1.1 The process method

The Template process method is
the gateway into the Template Toolkit for processing templates:

$tt->process($input, $vars, $output, $options)
 || die $tt->error();

process takes up to four arguments: the first
specifies the input; the second is a reference to a hash of variables
to be made available to the template; the third specifies the
destination of the output; and the fourth defines modifiers for that
output destination, such as setting binmode on
Windows platforms.

7.3.1.1.1 Input template

The first parameter to process specifies
where the input should come from. Most often this will be the name of
a file:

$tt->process('H2G2/entry/earth');

The Template Toolkit looks for the
template in the directory or
directories specified in the INCLUDE_PATH option.
If you haven't specified
INCLUDE_PATH, the Template Toolkit will look in
the current working directory.

In addition to a filename, you can pass a reference to text:

my $text = "Hello, [% name %]!";
$tt->process(\$text);

or you can pass a reference to a filehandle or a typeglob; as in:

my $fh = IO::File->new("file.tmpl") or die $!;
$tt->process($fh);

or, as in:

$tt->process(*STDIN);

Because the Template Toolkit can read from a filehandle, a quick and
easy way to pass a template to process is via a
reference to the DATA filehandle. (The DATA filehandle contains
everything in the current file after the special marker _
DATA _.) This can simplify writing single-usage scripts
and tests greatly, as shown in Example 7-23.

Example 7-23. hello.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;

my $tt = Template->new;
$tt->process(*DATA) or die $tt->error();

_ _DATA_ _
Hello, world!

7.3.1.1.2 Template variables

The second, optional argument to the
process method is a reference to a hash defining
template variables and corresponding values. The Template Toolkit
allows you to bind almost any kind of Perl data to template
variables, including scalars, arrays, hashes, subroutines, and
objects. The code in Example 7-24 contains examples
of all of these.

Example 7-24. Template variables

my $vars = {
 name => 'Arthur Dent',
 planet => 'Earth',
 friends => ['Ford Prefect', 'Slartibartfast'],
 people => {
 'Erotica Gallumbits' => {
 description => 'Triple breasted whore',
 location => 'Erotican 6',
 },
 'Bugblatter Beast' => {
 description => 'Ravenous (but stupid)',
 location => 'Traal',
 },
 'Hotblack Desiato' => {
 description => 'Dead (for tax purposes)',
 location => 'Milliways',
 },
 },
 consult_guide => sub {
 my $arg = shift;
 return "Don't panic, $arg!";
 },
 magrethea => Acme::Planet->new(name => 'Magrethea',
 edges => 'Crinkly'),
};

$tt->process($input, $vars)
 || die $tt->error();

Internally, these variables are incorporated into the
Template::Stash instance that is made available
via the Template::Context object.

7.3.1.1.3 Redirecting template output

The default behavior for the
process method is to print the output generated by
processing a template to STDOUT. The third argument to the
process method can be used to specify an alternate
destination for the output.

When a plain string is passed as the third argument, it indicates a
filename to which output should be written. The
OUTPUT_PATH option must be defined to specify a
root directory for generating output files. The file specified will
be located relative to this directory (see Example 7-25).

Example 7-25. Redirecting Template output to a file

my $tt = Template->new(OUTPUT_PATH => '/tmp');

$tt->process($input, $vars, 'output.html')
 || die $tt->error();

In this example, the output will be written to the
/tmp/output.html file.

A reference to a string can instead be passed as the third argument.
In this case, the output will be appended to the string. The
process method doesn't clear any
existing value that the string has (see Example 7-26).

Example 7-26. Redirecting Template output to a scalar

my $output;

$tt->process($input, $vars, \$output)
 || die $tt->error();

print $output;

A reference to an array can also be passed as the third argument. The
output will be added as an item to the end of the list, as shown in
Example 7-27.

Example 7-27. Redirecting Template output to an array

my @output;

for my $file (qw(header body footer)) {
 $tt->process($file, $vars, \@output)
 || die $tt->error();
}

print @output;

Another option is to pass a reference to a filehandle that is open
and ready for output, as shown in Example 7-28.

Example 7-28. Redirecting Template output to a filehandle

use File::Temp qw(tempfile);
my ($fh) = tempfile();

$tt->process($input, $vars, $fh)
 || die $tt->error();

Yet another option for the third argument is to pass a reference to a
subroutine. The subroutine will be called with the output passed to
it as the first argument (see Example 7-29).

Example 7-29. Redirecting Template output to a subroutine

sub process_to_db {
 my $content = shift;
 $dbh->do("INSERT INTO content (id, content) VALUES (NULL, ?)",
 undef, $content);
}

$tt->process($input, $vars, \&process_to_db)
 || die $tt->error();

The final option for the third argument is to pass a reference to an
object that implements a print method. This
includes the Apache::Request object and those
derived from IO::Handle, for example. The
print method will be called with the output passed
as the first argument, as per subroutines (see Example 7-30).

Example 7-30. Redirecting Template output to an object with a print method

my $fh = IO::File->new(">$tmpfile");
$tt->process($input, $vars, $fh)
 || die $tt->error();

The OUTPUT configuration option can also be used
to set the output destination for the Template
module as a whole. It can be set to any of the same values as the
third argument to process. When a third argument
is passed to process, it will override any value
defined in OUTPUT (see Example 7-31).

Example 7-31. Using the OUTPUT configuration option

my $tt = Template->new(OUTPUT => \$output);

$tt->process($input, $vars)
 || die $tt->error();

This is functionally equivalent to the code in Example 7-32.

Example 7-32. process equivalent of OUTPUT

my $tt = Template->new();

$tt->process($input, $vars, \$output)
 || die $tt->error();

7.3.1.1.4 Processing options

The fourth argument to process
is an optional reference to a hash array of processing options.
There's only one option at present,
binmode, but there's a chance
that others will be added at some later date, and this is where
they'll go. Example 7-33 shows the
code for setting processing options.

Example 7-33. Setting processing options

$tt->process($in, $vars, $out, { binmode => 1 })
 || die $tt->error();

The binmode option is typically used on
the Windows platform to ensure that line endings are correctly
preserved as \r\n instead of being transformed
into \n, which is the standard for Unix and other
platforms (except Mac OS, which uses \r just to
confuse matters). Example 7-34 shows the code for
setting binmode on a filehandle.

Example 7-34. Setting binmode on a filehandle

local *FH;
open FH, $filename;
binmode FH;

For convenience, you can also specify processing options as a list of
arguments, as shown in Example 7-35.

Example 7-35. Setting processing options using a list

$tt->process($in, $vars, $out, binmode => 1)
 || die $tt->error();

7.3.1.2 The error method

If the process method returns a false value, the
error method can be called to return a reference
to a Template::Exception object that encapsulates
information about the error. The exception object has
type and info methods that
return a short string identifying the kind of error that occurred
(e.g., parse, file, etc.), and
a message containing further information, respectively. Example 7-36 shows the code for reporting
process errors.

Example 7-36. Reporting process errors

unless ($tt->process($input, $vars)) {
 my $error = $tt->error();
 print "error type: ", $error->type(), "\n";
 print "error info: ", $error->info(), "\n";
}

The nice thing about this object is that you don't
need to do anything special with it. You can just print the object
and leave the magical stringification method
as_string to generate a printable representation
of the error. Hence the idiom should be familiar by now (see Example 7-37).

Example 7-37. Error-reporting idiom

$tt->process('no/such/page', $vars)
 || die $tt->error();

The message generated is of the form $type error -
$info (see Example 7-38).

Example 7-38. Error example

file error - no/such/page not found

7.3.2 Template::Config

Template::Config
provides a
factory method for each major component of the Template
Toolkit�context, filters, iterator, parser, plugins, provider,
service, stash, and constants (see Example 7-39). The
type of object that each method creates is, in turn, controlled by a
series of variables in the $Template::Config
namespace.

Example 7-39. Template::Config package variables

$CONTEXT = 'Template::Context';
$FILTERS = 'Template::Filters';
$ITERATOR = 'Template::Iterator';
$PARSER = 'Template::Parser';
$PLUGINS = 'Template::Plugins';
$PROVIDER = 'Template::Provider';
$SERVICE = 'Template::Service';
$STASH = 'Template::Stash';
$CONSTANTS = 'Template::Namespace::Constants';

These are set when the Template Toolkit is installed; some of them
might differ based on how the installation was performed. For
example, the fast XS-based stash
(Template::Stash::XS) might have been installed
instead of the default stash.

Each method works in basically the same way; Example 7-40 shows provider, by way of
example.

Example 7-40. Template::Config::provider

sub provider {
 my $class = shift;
 my $params = defined($_[0]) && UNIVERSAL::isa($_[0], 'HASH')
 ? shift : { @_ };

 return undef unless $class->load($PROVIDER);
 return $PROVIDER->new($params)
 || $class->error("failed to create template provider: ",
 $PROVIDER->error);
}

$PROVIDER, as we just saw, defaults to
Template::Provider, but it should be apparent that
this can be changed to another class:

use Template::Config;
$Template::Config::PROVIDER = 'TTBook::Template::Provider';

my $tt = Template->new() || die Template->error();

The provider that gets instantiated is going to be a
TTBook::Template::Provider, not a
Template::Provider.

7.3.2.1 load

Template::Config provides a general
module-loading
method, load, which takes a name (such as
TTBook::Template::Config) and loads the module,
using require. It returns undef
if there were problems loading the module; the error is available via
Template::Config->error.

7.3.2.2 preload

preload will
load all of the defined
components (based on the contents of the variables
$SERVICE, $PROVIDER, etc.),
mostly for the benefit of long-running processes, such as mod_perl.
For example, it is automatically called by the
Template frontend when
$ENV{'MOD_PERL'} is set:

Template.pm
preload all modules if we're running under mod_perl
Template::Config->preload() if $ENV{ MOD_PERL };

preload can be called with extra module names as
well, so it can be used to load custom modules:

Template::Config->preload('TTBook::Template::Provider',
 'TTBook::Template::Plugin::NNTP');

7.3.2.3 instdir

This helper
method returns the directory in which the optional components were
installed, such as /usr/local/tt2 or
C:/Template Toolkit 2. If the optional
components were not installed, instdir returns
undef and sets $ERROR.

For example, to add the Spash! templates that come with the Template
Toolkit to your INCLUDE_PATH, which are installed
in $instdir/templates/spash, use this code:

my $splash = Template::Config->instdir('templates/splash')
 || die Template::Config->error;

my $tt = Template->new(INCLUDE_PATH => [$splash]);

7.3.3 Template::Constants

Template::Constants defines the constants used and returned
by the other elements of the Template Toolkit. Symbols can be
imported into your module in the usual way:

use Template::Constants qw(:status);

7.3.3.1 :status

The status
constants are used to check the results of certain operations. The
following symbols are imported as part of :status:

STATUS_OK # ok
STATUS_RETURN # ok, block ended by RETURN
STATUS_STOP # ok, stopped by STOP
STATUS_DONE # ok, iterator done
STATUS_DECLINED # ok, declined to service request
STATUS_ERROR # error condition

Example 7-41, from the insert
method of Template::Context, illustrates how the
status codes are used; we are iterating through all available
providers until one of them successfully loads the template whose
name is stored in $name.

Example 7-41. Using ERROR constants

foreach my $provider (@$providers) {
 ($text, $error) = $provider->load($name, $prefix);
 next FILE unless $error;
 if ($error = = Template::Constants::STATUS_ERROR) {
 $self->throw($text) if ref $text;
 $self->throw(Template::Constants::ERROR_FILE, $text);
 }
}
$self->throw(Template::Constants::ERROR_FILE, "$file: not found");

7.3.3.2 :error

The ERROR_* status codes are primarily used when
things go wrong. All Template::Exception objects
are instantiated with one of these error codes as the
type field.

The error
constants are:

ERROR_RETURN # return a status code
ERROR_FILE # file error: I/O, parse, recursion
ERROR_VIEW # view error
ERROR_UNDEF # undefined variable value used
ERROR_PERL # error in [% PERL %] block
ERROR_FILTER # filter error
ERROR_PLUGIN # plugin error

7.3.3.3 :chomp

The :chomp symbol imports the
whitespace-related constants CHOMP_NONE,
CHOMP_ALL, and CHOMP_COLLAPSE.
These can be used when specifying a value for the
PRE_CHOMP and POST_CHOMP
configuration options:

use Template::Constants qw(:chomp);

my $tt = Template->new(TRIM => CHOMP_COLLAPSE);

The chomp constants are:

CHOMP_NONE # do not remove whitespace
CHOMP_ALL # remove whitespace
CHOMP_COLLAPSE # collapse whitespace to a single space

7.3.3.4 :debug

The DEBUG_* constants let you debug specific core components
and not others. These constants are imported with the
:debug tag, and include the following:

DEBUG_OFF # do nothing
DEBUG_ON # basic debugging flag
DEBUG_UNDEF # throw undef on undefined variables
DEBUG_VARS # general variable debugging
DEBUG_DIRS # directive debugging
DEBUG_STASH # general stash debugging
DEBUG_CONTEXT # context debugging
DEBUG_PARSER # parser debugging
DEBUG_PROVIDER # provider debugging
DEBUG_PLUGINS # plugins debugging
DEBUG_FILTERS # filters debugging
DEBUG_SERVICE # context debugging
DEBUG_ALL # everything
DEBUG_CALLER # add caller file/line info

These constants are binary OR-ed together to produce a bitmask that
specifies the components to debug. For example, to debug the service,
context, and provider, use the code in Example 7-42.

Example 7-42. Using constants from Perl

use Template;
use Template::Constants qw(:debug);

my $debug = DEBUG_SERVICE | DEBUG_CONTEXT | DEBUG_PROVIDER;
my $tt = Template->new(DEBUG => $debug);
$tt->process("test.tt2") || die $tt->error();

Processing a simple test template, test.tt2,
yields debugging information for the service, context, and provider
objects, as expected:

[Template::Provider] creating cache of unlimited slots for [.]
[Template::Service] process(test.tt2, <no params>)
[Template::Context] template(test.tt2)
[Template::Context] looking for block [test.tt2]
[Template::Context] asking providers for [test.tt2] []
[Template::Provider] _fetch_path(test.tt2)
[Template::Provider] searching path: ./test.tt2
[Template::Provider] _load(./test.tt2, test.tt2)
[Template::Provider] _compile(HASH(0x823cf1c), <no compfile>)
[Template::Provider] _store(./test.tt2, Template::Document=HASH(0x829f4a8))
[Template::Provider] adding new cache entry
[Template::Service] PROCESS: Template::Document=HASH(0x829f4a8)
[Template::Context] process([Template::Document=HASH(0x829f4a8)], <no params>, <unlocalized>)
[Template::Context] template(Template::Document=HASH(0x829f4a8))

Using these DEBUG flags, it is possible to debug
individual components. Adding the DEBUG_CALLER
mask causes the debugging messages to include the filename and line
number:

my $debug = DEBUG_SERVICE | DEBUG_CALLER;
my $tt = Template->new(DEBUG => $debug);
$tt->process("test.tt2") || die $tt->error();

[Template::Provider] creating cache of unlimited slots for [.] at /usr/local/lib/perl5/
site_perl/5.6.1/Template/Provider.pm line 350
[Template::Service] process(test.tt2, <no params>)
[Template::Context] template(test.tt2) at /usr/local/lib/perl5/site_perl/5.6.1/Template/
Context.pm line 81
...

7.3.4 Template::Base

Template::Base implements a common base class used by
almost all of the other Template Toolkit modules.
Template::Base implements a few important methods
that the other modules inherit, namely new,
error, and debug.
Template::Base has also made its way to CPAN, with
slight variations and enhancements, as Class::Base
(http://search.cpan.org/dist/Class-Base/).

7.3.4.1 new

When new is called on an
object, it invokes the class's
_init method, which is where instance-specific
initialization takes place. The new method handles
the folding of name => value pairs into a
single hash; a reference to this hash is passed to the other modules.
This is why objects can be created with either a series of name-value
pairs or a hashref:

my %opts = (
 INCLUDE_PATH => \@paths,
 ANYCASE => 1,
);
my $tt1 = Template->new(\%opts);
my $tt2 = Template->new(%opts);

Both invocations are valid and produce similar instances.

7.3.4.2 error

If something goes wrong, most public methods return
undef. When this happens, the error message can be
retrieved by calling the error method on the
instance:

$tt->process($template, \%vars)
 || die $tt->error;

The error method behaves analogously for classes
as well:

my $tt = Template->new(\%opts)
 || die Template->error;

If error is called with arguments, these arguments
become the current error value, and the call to
error returns undef, as shown
in Example 7-43.

Example 7-43. TTBook::Template::Plugin::LDAP

package TTBook::Template::Plugin::LDAP;

use strict;
use Net::LDAP;

sub new {
 my ($self, $context, $host) = @_;

 return $self->error("Missing required host")
 unless ($host);

 my $ldap = Net::LDAP->new($host)
 || return $self->error("Error connecting to $host: $@");

 $ldap->bind;
 return $ldap;
}

This short example implements a basic Net::LDAP
plugin, which dies if it is not passed a host to which to connect. It
also dies if there is a problem connecting to the host.

7.3.4.3 debug

debug generates a debugging
message by concatenating all arguments passed into a string and
printing it to STDERR. A prefix is added to indicate the module of
the caller. This Template::Context subclass emits
debugging information whenever a filter is defined using the
context's define_filter method.
To use these subclasses of standard modules, remember to set the
appropriate $Template::Config variable to the name
of the class to be used. In Example 7-44,
we're setting
$Template::Config::CONTEXT to be
TTBook::Template::Context::Debugging.

Example 7-44. TTBook::Template::Context::Debugging

package TTBook::Template::Context::Debugging;

use base qw(Template::Context);

sub define_filter {
 my ($self, $name, $filter, $is_dynamic) = @_;

 $self->debug(sprintf "defining %s filter '%s'",
 $is_dynamic ? "dynamic" : "static",
 $name);

 return $self->SUPER::define_filter($name, $filter, $is_dynamic);
}

Given a simple test template of:[1]
[1] We know that the
wrap plugin defines a static filter; see Chapter 8.

[% USE wrap %]

we get this on STDERR:

[Template::Context::Debugging] defining static filter 'wrap'

debug itself does not check to see whether the
module is currently in debugging mode (as specified by the caller via
the DEBUG configuration option), but
$self->{DEBUG} will be set to a true value if
debugging was requested. Our debug call should
look like this:

$self->debug(sprintf "defining %s filter '%s'",
 $is_dynamic ? "dynamic" : "static",
 $name)
 if $self->{ DEBUG };

7.3.5 Template::Context

The Template::Context module defines an object class for
representing a runtime context in which templates are processed. It
provides an interface to the fundamental operations of the Template
Toolkit processing engine through which compiled templates can
process templates, load plugins and filters, raise exceptions, and so
on.

Plugins and dynamic filters are passed a reference to the current
context when they are invoked. This reference can then be used to
invoke any of the context's methods, such as
define_filter or include.

7.3.5.1 stash

This method returns a reference to the stash
(see the sectionSection 7.1.3
earlier in this chapter):

my $stash = $context->stash;

This reference can then be used to get or set values, which are
accessible from templates in the usual way:

$stash->set('arp', "with or without is the different");

In the template:
[% arp %]

If you get access to the stash while you are within an
INCLUDEd template, the stash you get will be the
localized one; changes made to this stash will not persist to outer
scopes (unless the changes are made to nested structures).

7.3.5.2 insert, include, and process

The context provides methods such as
include,
process, and
insert, which implement the
INCLUDE, PROCESS, and
INSERT directives. For example, a
PROCESS directive such as:

[% PROCESS box quote = 'A city is like a large, complex, rabbit' %]

is translated by the Template::Directive class
into something like this:

$context->process('box', { 'quote' => 'A city is like a large complex rabbit' });

7.3.5.3 template

When a template is specified by name, the
context instance queries its internal list of
Template::Provider instances, using the
template method:

my $doc = $context->template($name)
 || die $context->error;

$doc will be a
Template::Document instance, which, as mentioned
earlier, is basically an object wrapper around a compiled subroutine
(see the Section 7.3.13,
earlier in this chapter). If a template can't be
loaded for whatever reason, template returns
undef, and the error is available via the
error method.

7.3.5.4 plugin and filter

The plugin method uses one or
more Template::Plugins objects to load plugins
specified by USE, and the
filter method uses the
Template::Filters objects to fulfill
FILTER requests. A simple USE statement, such as:

[% USE CGI %]

is transformed into something like:

$stash->set('CGI', $context->plugin('CGI'));

A more complex example, such as:

[% USE q = CGI('name=darren&title=JAPH') %]

becomes more or less what you would expect:

$stash->set('q', $context->plugin('CGI', ['name=darren&title=JAPH']));

Arguments supplied to a plugin are passed as a reference to an array.
Named arguments are passed in a hashref, as the last element in the
array:

[% USE MP3('Got the Time.mp3'
 dir = 'Joe Jackson/Look Sharp!'
 utf8 = 1) %]

Reformatted slightly, the resulting Perl code is:

$stash->set('MP3',
 $context->plugin('MP3',
 ['Got the Time.mp3',
 { 'dir' => 'Joe Jackson/Look Sharp!',
 'utf8' => 1
 }
]));

Note that if a name is not specified to USE, the name of the plugin
itelf is used.

Filters are handled similarly. The filter method
of the context fetches a filter (using the
Template::Filters instance), using the
filter method. A simple text string, filtered
through upper:

[% 'do not leave it is not real' | upper %]

turns into this Perl:

my $filter = $context->filter('upper')
 || $context->throw($context->error);

$output .= 'do not leave it is not real';

&$filter($output);

The upper filter is a static filter, so there
isn't much interesting going on there: the
filter method calls on the
Template::Filters instances to load the filter
subroutine. If this fails, the throw method
creates a new Template::Exceptions instance and
passes it up. Otherwise, the subroutine reference gets assigned to
$filter, and we invoke filter
on the text waiting to be filtered.

Dynamic filters get passed arguments, which are collected and passed
in the same way for filters as they are for plugins:

[% FILTER format("%.12f");
 PI = 22 / 7;
 radius = 14.5;
 PI * radius * radius;
 END
%]

Arguments are passed as a reference to an array:

my $filter = $context->filter('format', ['%.12f'])
 || $context->throw($context->error);

$stash->set('PI', 22 / 7);
$stash->set('radius', 14.5);
$output .= $stash->get('PI') * $stash->get('radius') * $stash->get('radius');

&$filter($output);

7.3.5.5 define_filter

Use this method to define a filter:

use Term::ANSIColor qw(colored);
$context->define_filter('red', sub { colored($_[0], "red") }, 0);

Pass the name of the filter, a reference to the filter sub, and a
boolean indicating whether the filter is a dynamic or static filter.
This filter becomes available immediately.

7.3.6 Template::Provider

The Template::Provider is used to load, parse,
compile, and cache templates. This object may be subclassed to
provide more specific facilities for loading or otherwise providing
access to templates.

The Template::Context objects maintain a list of
Template::Provider objects that are polled in turn
(via fetch) to return a requested template. Each
may return a compiled template, raise an error, or decline to serve
the request, giving subsequent providers a chance to do so.

This is the "Chain of
Responsibility" pattern. See Design
Patterns, by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (Addision-Wesley), for further information.

Template::Provider has a few interesting methods,
described in the next sections.

7.3.6.1 fetch($name)

fetch returns a compiled template for
$name. If the template cannot be found,
(undef, STATUS_DECLINED) is
returned. If an error occurs (e.g., read error, parse error),
($error, STATUS_ERROR) is returned, where
$error is the error message generated. If the
TOLERANT flag is set, the method returns
(undef, STATUS_DECLINED)
instead of returning an error.

Template::Provider can also be used as a
general-purpose file loader. Because a normal text file (without
delimiters) is a valid template, any file can be loaded via the
fetch method (see Example 7-45).

Example 7-45. Using Template::Provider for non-Template Toolkit files

my $prov = Template::Provider->new(ABSOLUTE => 1);
my $file = "/etc/passwd";

my ($doc, $error) = $prov->fetch($file);
die "Couldn't load $file" if defined $error;

As noted earlier, fetch returns a pair of values:
the Template::Document instance and an error
string. Only one of the two will be defined: if there was an error
loading the file, $error will contain
STATUS_DECLINED (from
Template::Constants), and $doc
will be undefined; if the file was loaded without incident,
$error will be undefined and
$doc will contain the
Template::Document instance, which will have
modtime and name methods, at
the very least:

printf "%s was last modified on %s.\n",
 $doc->name(), $doc->modtime();

The modtime method returns the number of seconds
since the epoch, which can be passed to localtime
to get a more meaningful value:

printf "%s was last modified on %s.\n",
 $doc->name(), localtime($doc->modtime());

More interesting formatting is possible using
POSIX::strftime:

use POSIX qw(strftime);
my @date = localtime($doc->modtime());
printf "%s was last modified on %s.\n",
 $doc->name(), strftime("%Y/%m/%d", @date);

This might return, for example:

/etc/passwd was last modified on 2002/10/18.

7.3.6.2 store($name, $template)

This method stores the compiled template,
$template, in the cache as
$name. Subsequent calls to
fetch($name) will return this template in
preference to any disk-based file.

7.3.6.3 paths

paths expands the
object's INCLUDE_PATHS and
returns a reference to an array of pathnames. Since Version 2.08 of
the Template Toolkit, elements of INCLUDE_PATH can
be subroutine references or objects, and paths
will correctly call and expand these references.

package TTBook::Template::Provider::ExpandPaths;

use strict;
use base qw(Template::Provider);

sub paths {
 my $self = shift;
 my $orig_paths = $self->SUPER::paths();
 my ($path, @paths, %unique);

 for $path (@$orig_paths) {
 my @chunks = split '/', $path;

 while (@chunks) {
 push @paths, join '/', @chunks;
 pop @chunks;
 }
 }

 # Remove duplicates from the list
 @paths = grep { ++$names{$_} = = 1 } grep { length } @paths;

 return \@paths;
}

TTBook::Template::Provider::ExpandPaths will
expand each element of @orig_paths into a list
consisting of expanded versions of @orig_paths.
For example, given an INCLUDE_PATH of
/web/www/html:/web/search/html, this provider will
return a reference to this array:

('/web/www/html',
 '/web/www',
 '/web',
 '/web/search/html',
 '/web/search')

Using this provider allows a user to situate templates anywhere along
the INCLUDE_PATH, which means that they can be
shared. For example, general headers and footers can be located in
/web, while specific subdirectories could
implement their own header and/or footer simply by placing a file
somewhere along the search path.

7.3.7 Template::Stash

The most common thing that a template needs to do is to access
variables. This is where the stash comes in. As we saw earlier, the
stash manages the variables that are available to templates and
implements the dot (.) operator.

7.3.7.1 get, set

Template variables are stored in and managed by a
Template::Stash object. This is a blessed hash
array in which template variables are defined:

my $stash = Template::Stash->new({
 planet => 'Earth',
 about => 'Mostly harmless'
 });

The object wrapper provides get and
set methods that implement all the magical
variable features of the Template Toolkit.

Each context object has its own stash, a reference to which can be
returned by the appropriately named stash method.
So to print the value of some template variable, or, for example, to
represent the following source template:

<entry>[% planet %]</entry>
<about>
[% about %]
</about>

we might have a subroutine definition something like this:

sub {
 my $context = shift;
 my $stash = $context->stash();
 return '<entry>' . $stash->get('planet') . "</entry>\n"
 . "<about>\n" . $stash->get('about') . "\n</about>\n";
}

The
get method retrieves the variable named by the
first parameter:

$value = $stash->get('planet');

Dotted compound variables can be requested by passing a single list
reference to the get method in place of the
variable name. Each pair of elements in the list should correspond to
the variable name and reference a list of arguments for each
dot-delimited element of the variable.

[% guide.entry(314159).about %]

$stash->get(['guide', 0, 'entry', [314159], 'about', 0]);

If there are no arguments for an element, you can specify an empty,
zero, or null argument list:

[% hitchhiker.name %]

$stash->get(['hitchhiker', 0, 'name', 0]);

The set method works in a similar way. It sets
the variable named in the first parameter to the value specified in
the second:

[% x = 10 %]

$stash->set('x', 10);

Dotted compound variables may be specified as per
get:

[% x.y = 10 %]

$stash->set(['x', 0, 'y', 0], 10);

If the third parameter evaluates to a true value, the variable is set
only if it did not have a true value before. This implements the
behavior of the DEFAULT directive:

$stash->set('about', 'This page intentionally left blank.', 1);

7.3.7.2 clone, declone

The stash has clone and
declone methods that are used
by the template processor to make temporary copies of the stash for
localizing changes made to variables. This localization takes place
for INCLUDE directives (but not
PROCESS). Conceptually, INCLUDE
looks like this:

$stash = $stash->clone();
$content->process($template);
$stash = $stash->declone();

The clone method creates and returns a new
Template::Stash object that represents a localized
copy of the parent stash. Variables can be freely updated in the
cloned stash; when declone is called, the original
stash is returned with all its members intact and in the same state
as they were before clone was called.

For convenience, a hash of parameters may be passed into
clone that are used to update any simple variable
(i.e., those that don't contain any namespace
elements, such as foo and bar
but not foo.bar) while cloning the stash. For
adding and updating complex variables, the set
method should be used after calling clone. This
will correctly resolve and/or create any necessary namespace hashes.

The declone method returns the original stash and
is used to restore the state of a stash as described earlier.

7.3.8 Template::Filters

The
Template::Filters module implements a provider for
creating and/or returning subroutines that implement the standard
filters. As is done with its brother
Template::Provider, the context keeps an array of
Template::Filters instances handy for fetching
filters. The filter method of the context iterates
through these instances and calls the fetch method
on them, passing the name of the desired filter, until one of them
returns a nonerror value:

Context.pm (simplified)
sub filter {
 my ($self, $name, $args) = @_;
 my ($filter, $error);

 foreach my $provider (@{ $self->{ LOAD_FILTERS } }) {
 ($filter, $error) = $provider->fetch($name, $args, $self);
 last unless $error;
 }

 return $filter;
}

7.3.8.1 new

The contructor for
Template::Filters receives the
FILTERS option, which should be a hashref of
name => filter sub pairs. These filters become
part of the instance, and calls to fetch look in
this list of filters in addition to the standard filters.

use Text::Soundex qw(soundex);
use Text::Metaphone qw(Metaphone);

my $tf = Template::Filters->new({
 FILTERS => {
 soundex => sub { soundex($_[0]) },
 metaphone => sub { Metaphone($_[0]) },
 }
});

The soundex and metaphone
filters can now be used like any other filter:

[% PROCESS page | metaphone %]

7.3.8.2 fetch

The main method that
Template::Filters implements is
fetch, as illustrated earlier.
fetch will be called with three arguments: the
name of the filter being requested (which should be either one of the
standard filters or a filter defined in the
FILTERS option passed to new);
a reference to an array of configuration parameters; and the current
Template::Context instance.

7.3.8.3 store

Use store to store a new filter:

$filters->store('soundex', sub { soundex($_[0]) });

This is what is called by the context's
define_filter method. You should probably use
define_filter if you are installing a new filter
because the context will always install the new filter in the right
place. If you are creating a replacement for
Template::Filters, you might want to implement
store differently. For example, the
Template::Filters subclass
TTBook::Template::Filters::Logging logs when a
filter is fetched or stored, as
shown in Example 7-46.

Example 7-46. TTBook::Template::Filters::Logging

package TTBook::Template::Filters::Logging;

use strict;
use base qw(Template::Filters);

use Template::Filters;

Store the filter, and store the time
sub store {
 my ($self, $name, $filter) = @_;
 my $now = time;

 $self->SUPER::store($name, $filter);
 $self->{ FILTER_TIMESTAMPS }->{ $name } = $now;

 $self->debug("store($name => $filter) at $now");

 return 1;
}

Keeps track of the difference in time between when the filter
was stored and when it was first used.
sub fetch {
 my ($self, $name, $args, $context) = @_;
 my ($filter_sub, $filter_ts, $now);

 $filter_sub = $self->SUPER::fetch($name, $args, $context);
 $filter_ts = $self->{ FILTER_TIMESTAMPS }->{ $name };
 $now = time;

 $self->debug("fetch($name) at $now");

 return $filter_sub;
}

The simple Template::Filters subclass shown in
Example 7-47 counts the number of times each filter
is fetched.

Example 7-47. TTBook::Template::Filters::Counting

package TTBook::Template::Filters::Counting;

use strict;
use base qw(Template::Filters);

sub fetch {
 my ($self, $name, $args, $context) = @_;
 my $count = $self->{ FILTERS_COUNT } ||= { };

 $count->{ $name }++;
 $self->debug("filter $name has been loaded $count->{$name} times.");

 return $self->SUPER::fetch($name, $args, $context);
}

7.3.9 Template::Plugin

The Template::Plugin module provides both an API and a base
class for plugins that implement the three basic methods that are
required for a plugin to be loaded by the
Template::Plugins module: load,
new, and error. All the
standard plugins inherit from Template::Plugin. By
default, a Template::Plugin-based module has no
functionality other than to load correctly; subclasses may override
these and of course, can implement any other methods they need to
perform their duties.

7.3.9.1 load

This method is
called when the plugin module is first loaded. It is called as a
package method and thus implicitly receives the package name as the
first parameter. A reference to the
Template::Context object loading the plugin is
also passed. The default behavior for the load
method is to simply return the class name; the calling context then
uses this class name to call the new package
method:

package MyPlugin;

sub load { # called as MyPlugin->load($context)
 my ($class, $context) = @_;
 return $class; # returns 'MyPlugin'
}

7.3.9.2 new

This method is called to instantiate a new
plugin object for the USE directive. It is called
as a package method against the class name returned by
load. A reference to the
Template::Context object creating the plugin is
passed, along with any additional parameters specified in the
USE directive.

sub new { # called as MyPlugin->new($context)
 my ($class, $context, @params) = @_;
 bless {
 _CONTEXT => $context,
 _PARAMS => \@params,
 }, $class; # returns blessed MyPlugin object
}

7.3.9.3 error

This method, inherited from the
Template::Base module, is used for reporting and
returning errors. It can be called as a package method to set/return
the $ERROR package variable, or as an object
method to set/return the object's
_ERROR member. When called with an argument, it
sets the relevant variable and returns undef. When
called without an argument, it returns the value of the variable.

sub new {
 my ($class, $context, $dsn) = @_;

 return $class->error('No data source specified')
 unless $dsn;

 bless {
 _DSN => $dsn,
 }, $class;
}

...

my $something = MyModule->new()
 || die MyModule->error();

$something->do_something()
 || die $something->error();

The Template::Plugins object that handles the
loading and use of plugins calls the new and
error methods against the package name returned by
the load method. In pseudocode terms, it looks
something like this:

$class = MyPlugin->load($context); # returns 'MyPlugin'

$object = $class->new($context, @params) # MyPlugin->new(...)
 || die $class->error(); # MyPlugin->error()

The load method may alternately return a blessed
reference to an object instance. In this case, new
and error are then called as
object methods against that prototype instance.
Example 7-48 provides a concrete illustration: this
plugin implements a print service.

Example 7-48. TTBook::Template::Plugin::Printer

package TTBook::Template::Plugin::Printer;

use strict;
use vars qw($PRINTER $SERVER);
use base qw(Template::Plugin);

use Template::Plugin;
use Template::Exception;
use Net::Printer;

$PRINTER = "jeckyl";
$SERVER = "mr-hyde";

sub load {
 my ($class, $context) = @_;
 my $printer = Net::Printer->new(printer => $PRINTER,
 server => $SERVER);
 my $self = bless {
 _CONTEXT => $context,
 _PRINTER => $printer,
 }, $class;

 return $self;
}

sub new {
 my ($self, $context) = @_;
 return $self;
}

sub print {
 my ($self, $data) = @_;
 my ($printer, $context) = @$self{ qw(_PRINTER _CONTEXT) };

 my $result = $printer->printstring($data);
 $context->throw('printer', $result)
 unless (int($result) = = 1);

 return "";
}

1;

In this example, we have implemented a Singleton plugin. One instance
of TTBook::Template::Plugin::Printer gets created
when load is called, and it simply returns itself
for each call to new.

Because calls to print throw
printer exceptions if there is a problem, they
should be wrapped in TRY / CATCH blocks, as shown
in Example 7-49.

Example 7-49. The Printer plugin

[% USE Printer %]
[% TRY %]
 [% Printer.print(data) %]
[% CATCH printer %]
 There was an error printing: [% error %]
[% END %]

7.3.10 Template::Plugins

Template::Plugins defines a plugins provider. It is used in
almost the same way as Template::Filters and has a
similar interface. The Template Toolkit allows multiple plugin
providers, again using the "Chain of
Responsibility" pattern.

7.3.10.1 new

The new construtor method handles the
PLUGIN configuration option, which should be a
hashref of name => plugin module pairs:

my $tp = Template::Plugins->new({
 PLUGINS => {
 'css' => 'TTBook::Template::Plugin::CSS',
 'javascript' => 'TTBook::Template::Plugin::JS',
 },
});

These newly defined plugins are stored in the instance, which is
where fetch looks first when trying to load
plugins. new also stores the
PLUGIN_BASE and LOAD_PERL
options, if present. These options affect how
fetch finds plugins.

7.3.10.2 fetch

fetch is called by the
context's plugin method, in the
same way as the filter provider's
fetch method gets called from the
filter method. fetch is called
with the name of the plugin, a reference to an array of parameters,
and the current context, and is expected to return a blessed object,
which is used in the templates.

The PLUGIN_BASE configuration option defines a
relative base for loading plugins. If a plugin cannot be loaded by
name from PLUGINS, each element in
PLUGIN_BASE (which should be a reference to an
array) is prepended to the name, in turn, until the plugin is found
or the list exhausted. Template::Plugin is always
appended to this list.

The LOAD_PERL configuration option tells the
plugin's provider that standard Perl modules can be
treated as plugins, after the list of known plugins has been checked
and the PLUGIN_BASE search path exhausted. For
example, to load the WWW::Wikipedia module, set
LOAD_PERL to 1 and use:

[% USE wiki = WWW.Wikipedia %]

There is no standard WWW.Wikipedia plugin, so the
plugins provider will try to load WWW::Wikipedia.
Modules loaded this way must have a new method;
the result of calling this method is what is returned by the call to
fetch.

Given a two-element PLUGIN_BASE and
LOAD_PERL:

my $tt = Template::Plugins->new({
 PLUGIN_BASE => ['TTBook::Template::Plugin',
 'MyOrg::Template::Plugin'],
 LOAD_PERL => 1,
});

and a simple USE statement:

[% USE Monitor %]

the plugin's provider will look for
TTBook::Template::Plugin::Monitor,
MyOrg::Template::Plugin::Monitor,
Template::Plugin::Monitor, and
Monitor; it will throw a plugin
exception if none of those is found.

7.3.11 Template::Parser and Template::Grammar

Template::Parser and
Template::Grammar are closely related. The parser starts
things off by tokenizing the input template, and then refers to the
grammar to determine whether the sequence of tokens gleaned from the
template makes any sense. Template::Directive is
used to generate the Perl code that represents the template.

Template::Parser is the ultimate recipient of all
configuration parameters that affect the style of the template, such
as TAG_STYLE, START_TAG,
END_TAG, ANYCASE,
INTERPOLATE, PRE_ and
POST_CHOMP, V1DOLLAR, and
GRAMMAR (see the Appendix for all the
configuration options). The main methods of the parser are
new and parse, as shown in
Example 7-50.

Example 7-50. Creating and using parser and grammar objects

my $parser = Template::Parser->new({
 ANYCASE => 1,
 GRAMMAR => [% namespace %]::Template::Grammar->new(),
});

my $data = $parser->parse($template_string);
my $doc = Template::Document->new($data);

$data is a reference to a hash, which is in the
format expected by Template::Document.

In general, there isn't much reason to use
Template::Parser or
Template::Grammar directly. To get compiled
versions of templates, use Template::Provider
rather than Template::Parser�the version
returned by the parser is in a raw, uncompiled form, used primarily
for communication between the parser and the provider.
Template::Grammar is generated using the
parser/Parser.yp source file, which is processed
by Parse::Yapp. It consists primarily of the rules
and states used by the parser when determining whether the set of
tokens created from the input template is valid. If
you're interested in how this works, see Chapter 8.

7.3.12 Template::Directive

The Template::Directive module is a Perl factory�it exists
only to return strings of valid Perl code, based on input from the
parser. Template::Directive interacts closely with
Template::Parser and
Template::Grammar: the parser tokenizes the input,
and the grammar determines which method to call on the factory class
to produce the code that implements a directive.

The grammar also determines the arguments that get passed to the
factory method, based on the type of directive. For example, an
anonymous BLOCK definition, such as [% BLOCK %] Hello! [%
END %], receives one argument, which is the contents of the
block. (It is possible that this block contains other compiled
directives, rather than just plain text, of course; this
doesn't affect the generation of the code.) The
factory code for anonymous blocks looks like this:

#--
anon_block($block) [% BLOCK %] ... [% END %]
#--

sub anon_block {
 my ($class, $block) = @_;
 $block = pad($block, 2) if $PRETTY;

 return <<EOF;

BLOCK
$OUTPUT do {
 my \$output = '';
 my \$error;

 eval { BLOCK: {
$block
 } };
 if (\$@) {
 \$error = \$context->catch(\$@, \\\$output);
 die \$error unless \$error->type eq 'return';
 }

 \$output;
};
EOF
}

It's kind of ugly, primarily because the return
value from the method is a string containing Perl, which will be
compiled later.

The $block variable contains the results of
calling other factory methods (e.g., ident, which
handles [% GET foo %] directives). The
pad function adds leading spaces to each line in
$block if the $PRETTY variable
(actually $Template::Directive::PRETTY) is set to
a true value to indicate a human will read the generated code.

To control the code that gets written out for a given directive,
subclass Template::Directive, and implement the
appropriate method or methods. Many of these methods have names that
are similar to the directives they implement, such as
get, call,
insert, and include, but many
of the methods have unintuitive names. The easiest way to figure out
which methods are called for each directive is to examine the grammar
defined in Parser.yp (see Chapter 8).

You shouldn't need to touch most of the definitions
in this module, but you will need to subclass it to implement any
changes to the language you might want to make.

The best way to get a feel for how this module works is to set both
$Template::Parser::DEBUG and
$Template::Directive::PRETTY to 1, as noted
earlier.

Template::Directive sports the following methods:

	template($block)

	
An overall template wrapper.

	anon_block($block)

	
An anonymous block.

	block($block)

	
Any block of template directives.

	textblock($text)

	
A block of text.

	text($text)

	
A single piece of text.

	quoted($items)

	
A quoted string.

	ident($ident)

	
An identifier.

	identref($ident)

	
A reference to an identifier.

	assign($var, $val, $default)

	
An assignment.

	args($args)

	
A list of arguments.

	filenames($names)

	
A filename.

	get($expr)

	
The GET directive.

	call($expr)

	
The CALL directive.

	set($setlist)

	
The SET directive.

	default($setlist)

	
The DEFAULT directive.

	insert($nameargs)

	
The INSERT directive.

	include($nameargs)

	
The INCLUDE directive.

	process($nameargs)

	
The PROCESS directive.

	if($expr, $block, $else)

	
The IF directive.

	foreach($target, $list, $args, $block)

	
The FOREACH directive.

	next($nameargs, $block)

	
The NEXT directive.

	wrapper($nameargs, $block)

	
The WRAPPER directive when specific with a single
file.

	multi_wrapper($file, $hash, $block)

	
The WRAPPER directive when specific with multiple
files.

	while($expr, $block)

	
The WHILE directive.

	switch($expr, $case)

	
The SWITCH directive.

	try($block, $catch)

	
The TRY directive.

	throw($nameargs)

	
The THROW directive.

	return()

	
The RETURN directive.

	stop()

	
The STOP directive.

	use($lnameargs)

	
The USE directive.

	view($nameargs, $block, $defblocks)

	
The VIEW directive.

	perl($block)

	
The PERL directive.

	no_perl()

	
The PERL directive when
EVAL_PERL is disabled.

	rawperl($block, $line)

	
The RAWPERL directive.

	filter($lnameargs, $block)

	
The FILTER directive.

	capture($name, $block)

	
Generates code to capture the output of a directive into a variable.

	macro($ident, $block, $args)

	
The MACRO directive.

	debug($nameargs)

	
The DEBUG directive.

7.3.13 Template::Document

This module defines an object class whose instances
represent compiled template documents. The parser module creates a
Template::Document instance to encapsulate a
template as it is compiled into Perl code.

7.3.13.1 new

new expects a hashref containing BLOCK,
DEFBLOCKS, and METADATA items. The BLOCK item should contain a
reference to a Perl subroutine or a textual representation of Perl
code, as generated by the Template::Parser module,
which is then evaluated into a subroutine reference using
eval. The DEFBLOCKS item should be a hashref
containing further named BLOCKs, which may be defined in the
template. The keys represent BLOCK names, and the values should be
subroutine references or text strings of Perl code, such as the main
BLOCK item. The METADATA item should be a hashref of metadata items
relevant to the document.

Though Template::Document instances are usually
created by the provider as it receives parsed data from the parser,
it is possible to create standalone instances as well:

my $doc = Template::Document->new({
 BLOCK => sub { return "Hello!" },
 METADATA => { name => "greeting" },
 DEFBLOCKS => { }
});

print $doc->name();

The only required parameter in the hashref is BLOCK:

my $timer = Template::Document->new({
 BLOCK => sub { time },
});

7.3.13.2 process

The process method can then be called on the
instantiated Template::Document object, passing a
reference to a Template::Content object as the
first parameter. This will install any locally defined blocks
(DEFBLOCKS) in the contexts BLOCKS cache (via a
call to visit), so that they may be subsequently
resolved by the context. The main BLOCK subroutine is then executed,
passing the context reference on as a parameter. The text returned
from the template subroutine is then returned by the
process method, after calling the context
leave method to permit cleanup and de-registration
of named BLOCKs previously installed.

7.3.13.3 write_perl_file

The Template::Document module implements the
methods necessary to write a compiled template to disk. These methods
are as_perl and
write_perl_file. If
COMPILE_EXT and/or COMPILE_DIR are set, the provider calls
write_perl_file, supplying it with a filename.

7.3.13.4 AUTOLOAD

Template::Document has an
AUTOLOAD method that provides read-only access
to the metadata defined for that template. This includes all items
defined in the template with META:

thneed.tt2
[% META title = 'You need a thneed!'
 author = 'The Once-ler' %]

Perl
my $doc = $context->template('thneed.tt2');
print $doc->author;

7.3.14 Template::Exception

The Template::Exception module defines an object class for
representing exceptions within the template
processing life cycle.

Exceptions can be thrown from Perl code in several different ways.
The most straightforward way is to call die with a
Template::Exception object as the argument. This
will then be caught by any enclosing TRY blocks
from where the code was called:

use Template::Exception;
...
die(Template::Exception->new('bad.things',
 'Bad things happened.'));

This can be caught normally in the template:

[% USE Something %]
[% TRY %]
 ...
[% CATCH bad.things %]
 "Error: $error" ;
[% END %]

which will output:

Error: bad.things error - Bad things happened.

The info field can also be a reference to another
object or data structure, if required:

die(Template::Exception->new('bad.things', {
 module => 'foo.pl',
 errors => ['bad permissions', 'naughty boy'],
 }));

Later, in a template:

[% TRY %]
 ...
[% CATCH bad.things %]
 [% error.info.errors.size or 'no';
 error.info.errors.size = = 1 ? ' error' : ' errors' %]
 in [% error.info.module %]:
 [% error.info.errors.join(', ') %].
[% END %]

it generates this output:

2 errors in foo.pl:
 bad permissions, naughty boy.

You can also call die with a single string, as is
common in much existing Perl code. This will automatically be
converted to an exception of the undef type
(that's the literal string undef,
not the undefined value). If the string isn't
terminated with a newline, Perl will append the familiar at
$file line $line message.

sub foo {
 # ... do something ...
 die("I'm sorry, Dave, I can't do that\n");
}

Within plugins, which are passed a reference to the context as the
second argument, or some extension code that has the current
Template::Context in scope, you can also raise an
exception by calling the context throw method. You
can pass it Template::Exception object reference,
a pair of ($type, $info) parameters, or just an
$info string to create an exception of
undef type:

$context->throw($e); # exception object
$context->throw('Denied'); # 'undef' type
$context->throw('bad.things', 'Bad things happened.');

7.3.15 Template::Iterator

The Template::Iterator module provides an easy way to
create
iterators. Iterator objects can be used within
FOREACH loops, and they maintain the magic
loop variable available in
FOREACH loops.

To create a Template::Iterator instance, pass to
the constructor a reference to an array:

use Template::Iterator;
my $iter = Template::Iterator->new(\@data);

Data is retrieved by calling get_first and then
get_next until each item in the original list has
been returned.

Iterator instances can be returned by methods designed to be called
within FOREACH loops:

sub results {
 my $self = shift;
 my $iter = Template::Iterator->new($self->{ _RESULTS });

 return $iter;
}

From within a template, usage is as you would expect:

[% FOREACH result = search.results %]
 ...

Template::Iterator automatically provides the
size, max,
index, count,
first, last,
prev, and next methods, based
on the result set used to initialize the instance. These methods
correspond to the methods of the same names that can be called on
loop within a FOREACH loop:

[% FOREACH result = search.results %]
 Size: [% loop.size # $iter->size() %]
 Max: [% loop.max # $iter->max() %]
 Index: [% loop.index # $iter->index() %]
 Count: [% loop.count # $iter->count() %]
 First: [% loop.first # $iter->first() %]
 Last: [% loop.last # $iter->last() %]
 Prev: [% loop.prev # $iter->prev() %]
 Next: [% loop.next # $iter->next() %]
[% END %]

The astute reader will notice the similarity between
loop and $iter; they are in
fact the same Perl object.

A Template::Iterator instance can be created with
a reference to an array of items, as noted earlier, or with an object
that implements an as_list method. We can rewrite
the preceding example to have as_list:

sub as_list {
 my $self = shift;
 return $self->{ _RESULTS };
}

sub results {
 my $self = shift;
 return Template::Iterator->new($self);
}

The constructor will also accept a reference to a hash array and will
expand it into a list in which each entry is a hash array containing
a key and value item, sorted
according to the hash keys:

my $iter = Template::Iterator->new({
 foo => 'Foo Item',
 bar => 'Bar Item',
});

This is equivalent to:

my $iter = Template::Iterator->new([
 { key => 'bar', value => 'Bar Item' },
 { key => 'foo', value => 'Foo Item' },
]);

Chapter 8. Extending the Template Toolkit

Most of the customization you are likely to perform will fall under
one of two categories: creating new frontends and writing filters and
plugins. However, some things cannot be handled with a new frontend
or by writing a plugin, such as modifying how the provider finds
templates to process or limiting access to certain plugins. Luckily,
the Template Toolkit makes it easy to replace or extend any of the
core components; its modular design makes replacing individual
components simple. Chapter 7 gives public API
details for each component.

8.1 Using and Implementing Noncore Components

Each Template Toolkit module knows about the other
modules it needs to do its job, and will create instances of these
objects unless one is passed to it explicitly. This means that
modules are loaded and instances created on demand. The
Template::Config module provides a convenient and
centralized place to override core elements of the Template Toolkit,
in the form of factory methods for each major
component�context,
filters, iterator,
parser, plugins,
provider, service,
stash, and constants. The type
of object that each method creates is, in turn, controlled by a
series of
variables in the
$Template::Config namespace:

$CONTEXT = 'Template::Context';
$FILTERS = 'Template::Filters';
$ITERATOR = 'Template::Iterator';
$PARSER = 'Template::Parser';
$PLUGINS = 'Template::Plugins';
$PROVIDER = 'Template::Provider';
$SERVICE = 'Template::Service';
$STASH = 'Template::Stash';
$CONSTANTS = 'Template::Namespace::Constants';

These are given default values when the Template Toolkit is
installed, and some of them might differ based on how the
installation was performed. For example, the fast XS-based Stash
(Template::Stash::XS) might have been installed
instead of the default Stash.

The hash containing configuration parameters is passed around to each
module's constructor. For example,
Template::Service creates a
Template::Context instance like so:

In Service.pm
sub _init {
 my ($self, $config) = @_;

 # Some other configuration

 $context = $self->{ CONTEXT } = $config->{ CONTEXT }
 || Template::Config->context($config)
 || return $self->error(Template::Config->error);

 return $self;
}

In this case, if a Template::Context instance was
part of $config, a new one would not be created.
This feature is most useful for overriding settings, such as
TOLERANT, for specific instances:

my $context = Template::Context->new(TOLERANT => 1);
my $tt = Template->new({
 CONTEXT => $context,
 TOLERANT => 0
});

To give a feel for implementing core module replacements,
we'll illustrate a few simple ones. In most cases,
the core modules can serve as a base class, and our subclasses need
to override only a few methods.

All of the provider
classes�Template::Provider,
Template::Plugins, and
Template::Filters�are stored as arrays,
rather than as single items, specifically so that they can be
supplemented by new modules. Simply create your new module and pass
it around in the appropriate array when you create your
Template object. The PREFIX_MAP
gives the context hints as to which provider it should consult, based
on the prefix, which looks very similar to the scheme of a URI:

[% PROCESS foo:bar/baz %]

The preceding code would invoke the provider mapped to
foo to resolve the template
foo/bar:

my $tt = Template->new({
 LOAD_TEMPLATES => [
 Template::Provider::Foo->new(),
 Template::Provider->new(),
],
 PREFIX_MAP => {
 foo => 1,
 default => 0,
 },
});

8.1.1 A Provider That Can Fetch Files over HTTP

A relatively common question on the mailing
list is, "Can I fetch templates via
HTTP?" The official Template Toolkit FAQ[1] explains that, yes, you can, simply by using
Template::Provider::HTTP. The problem, though, is
that Template::Provider::HTTP does not exist.
[1] Find it at http://www.template-toolkit.org/faq.html.

Template::Provider already does most of what we
want, including caching. Template::Provider::HTTP
simply needs to add an
LWP::UserAgent instance and customize the fetching
process to use URIs rather than filesystem paths:

package Template::Provider::HTTP;

use strict;
use vars qw($VERSION);
use base qw(Template::Provider);

$VERSION = 1.00;

use File::Spec;
use HTTP::Request::Common qw(HEAD GET);
use LWP::UserAgent;
use Template::Constants qw(:status);
use Template::Provider;
use URI;
use URI::Escape qw(uri_escape);

In addition to Template::Provider and
Template::Constants (for the
STATUS constants), we need
LWP::UserAgent, with which we will do the actual
fetching, HTTP::Request::Common to create
HTTP::Request objects (the GET
and HEAD functions are very convenient shortcuts),
and the URI, URI::Escape, and
File::Spec modules to manipulate URIs and files.

When a Template::Provider::HTTP object is created,
we need to also create an LWP::UserAgent instance.
Template::Provider::_init already handles the
caching parameters, so we call it from our own
_init:

sub _init {
 my ($self, $params) = @_;
 my ($ua, %lwp_args, $lwp_arg);

 $self->SUPER::_init($params);

Now we can do the
LWP
initialization. This list contains all the constructor options that
LWP knows about, but for the sake of consistency with the Template
Toolkit's native configuration methods, we require
all uppercase option names:

for $lwp_arg (qw(agent from timeout use_eval parse_head
 max_size cookie_jar conn_cache protocols_allowed
 protocols_forbidden protocols_redirectable)) {
 my $uc_lwp_arg = uc $lwp_arg;
 $lwp_args{ $lwp_arg } = $params->{ $uc_lwp_arg }
 if defined $params->{ $uc_lwp_arg };
}

$self->{ USERAGENT } = $ua = LWP::UserAgent->new(%lwp_args);

A busy web site using this provider might want to put a
caching proxy between the application
server and the server providing the templates (even with the caching,
we still need to HEAD the URI to see if it has changed). Setting up
LWP's proxy support is simple:

if (my $proxy = $params->{ PROXY }) {
 $ua->proxy('http', $proxy);
}

if (my $no_proxy = $params->{ NO_PROXY }) {
 $no_proxy = [$no_proxy] unless ref($no_proxy) eq 'ARRAY';
 $ua->no_proxy(@$no_proxy);
}

The NO_PROXY option defines domains for which
LWP should not use the proxy.

If we're debugging the provider, we can turn on
debugging in LWP as well, using
LWP::Debug:

if ($self->{ DEBUG }) {
 require LWP::Debug;
 LWP::Debug::level('+');
}

And, for good measure, we uniquely identify this agent, so it can be
specifically picked out by the logs:

$ua->agent(sprintf "%s [%s/%.02f]",
 $ua->_agent, ref($self), $VERSION);

Because we do not have a base filename to use when contructing paths
for compiled versions of the templates, we need to have
COMPILE_DIR set if COMPILE_EXT
is set (otherwise, the provider will try to create directories in
/; we'll see this in more
detail when we discuss _fetch).

IF COMPILE_EXT is set, COMPILE_DIR must also be set
my ($cdir, $cext) = @$params{ qw(COMPILE_DIR COMPILE_EXT) };
if (length($cext) && ! length($cdir)) {
 return $self->error("COMPILE_DIR must be set if COMPILE_EXT is set");
}

 return $self;
}

The main method of our provider, fetch, can be much
simpler than the default fetch:

sub fetch {
 my ($self, $name) = @_;

 my $uri = URI->new($name, "http");
 $uri->scheme("http");

When the context determines which provider to use, based on the
PREFIX_MAP, the prefix is stripped off. The
URI module will help us put that back in. (The
other methods in Template::Provider::HTTP that are
expecting URIs will actually be expecting URI
objects.)

$self->debug("Got request for '$uri'") if $self->{ DEBUG };

 return $self->_fetch($uri);
}

Just like Template::Provider, we defer the hard
work to the _fetch method. In our case, this is
mainly for consistency with the default provider, because
fetch is so simple.

_fetch is a little more complicated�it has
to be aware of the cache and needs to know how to request a new copy
of the template if the one we have is out of date. The
LWP::UserAgent
module knows how to handle conditional requests, so we can take
advantage of that here:

sub _fetch {
 my ($self, $uri) = @_;
 my ($data, $error, $compiled, $request, $response);
 my $ua = $self->{ USERAGENT };
 my $now = time;

 $self->debug("_fetch($uri)") if $self->{ DEBUG };

_compiled_filename determines what the filename
would be if we were writing the Perl versions of the templates to the
disk-based cache. There are two reasons we do this: we need to know
where to look to see whether we already have a compiled version of
the templates, and we need to know where to write compiled versions
of the templates.

$compiled = $self->_compiled_filename($uri);

The HTTP equivalent of stat is to
HEAD the URI and check for freshness headers, such
as Expires or Last-Modified:

HEAD the URI, to see if we need to refetch it all
$request = HEAD($uri);
$response = $ua->request($request);

Once we have the headers for the request, we can check whether it is
newer than the compiled version (if we have one):

if ($compiled && -f $compiled && $response->is_fresh &&
 (stat($compiled))[9] <= $response->fresh_until) {
 # The compiled version is alright; return it;

 $data = $self->_load_compiled($compiled);
 $error = defined $data
 ? STATUS_OK
 : $self->{ TOLERANT }
 ? STATUS_DECLINED
 : STATUS_ERROR;
}

_load_compiled is a standard
Template::Provider method that reads a compiled
version of a template from disk, requires it, and
returns a compiled subroutine.

If the template fails to load, we need to set
$error appropriately. (The context will treat
$data as the error message if
$error is not undefined.) The
TOLERANT flag is a signal from the user that these
errors should not be immediately fatal, so we return
STATUS_DECLINED if TOLERANT is
set, and return STATUS_ERROR otherwise.

else {
 # The compiled version either doesn't exist or is out of date
 $request = GET($uri);
 $response = $ua->request($request);

 if ($response->is_success) {
 $data = {
 name => "$uri",
 text => $response->content,
 time => int($response->fresh_until),
 load => time,
 };
 $error = STATUS_OK;

 ($data, $error) = $self->_compile($data, $compiled);
 ($data, $error) = $self->store($compiled, $data);
 $data = $data->{ data }
 unless $error;
 }
 else {
 $data = $response->error_as_HTML();
 $error = $self->{ TOLERANT } ? STATUS_DECLINED : STATUS_ERROR;

 }
}

 return ($data, $error);
 }

_compiled_filename is pretty straightforward, and
again, we can take advantage of the superclass's
version:

sub _compiled_filename {
 my ($self, $uri) = @_;

 # This adds '/' to the list of characters not encoded; we want those
 # so that we can make nested directories in which to store cache files.
 $uri = uri_escape($uri->opaque, "^A-Za-z0-9\-_.!~*'()/");

 return File::Spec->canonpath($self->SUPER::_compiled_filename($uri));
}

This method turns an opaque (schemeless) URI such as
//templates.tt2.org/config into a filename such as
//templates.tt2.org/config.
Template::Provider::_compiled_filename appends
this to the value of COMPILE_DIR, so it ends up
somewhere we can write (because you're not running
this as the superuser, of course). Finally,
File::Spec->canonpath
canonicalizes the filename, which in this case
means removing duplicate forward slash (/)
characters. The / character had to be added to the
list of characters not escaped by uri_escape, or
we would have ended up with a filename such as
%2F%2Ftemplates.tt2.org%2Fconfig, which is
pretty ugly. With the slashes in place, we end up with a nested
filesystem structure for our cache directory, which is easily
navigable both by the curious developer and the provider as it walks
the filesystem looking for compiled files. As a side effect, because
we are not doing anything to prevent the escaping of the query string
parameters, they become part of the compiled
filename�invocations of the same URI but with different query
strings will result in different cache files.

Using this new provider is easy:

my $http = Template::Provider::HTTP->new();
my $prov = Template::Provider->new();

my $tt = Template->new({
 LOAD_TEMPLATES => [
 $prov,
 $http,
],
 PREFIX_MAP => {
 http => 1,
 default => 0,
 }
});

As mentioned earlier, PREFIX_MAP is necessary to
give the context a hint about which provider to use. We use the
normal Template::Provider object by default, but
for HTTP templates, use the HTTP provider:

[%
 PROCESS 'http://use.perl.org/journal.pl?uid=18&content_type=rss' |
 redirect('davorg.xml');
 USE davorg = XML.RSS('davorg.xml');
 FOREACH item IN davorg.items %]
 * [% item.title %]
 * [% item.link;
 END;
-%]

Example 8-1 is the complete
Template::Provider::HTTP.

Example 8-1. Template::Provider::HTTP

package Template::Provider::HTTP;

use strict;
use vars qw($VERSION);
use base qw(Template::Provider);

$VERSION = 1.00;

use File::Spec;
use HTTP::Request::Common qw(HEAD GET);
use LWP::UserAgent;
use Template::Constants qw(:status);
use Template::Provider;
use URI;
use URI::Escape qw(uri_escape);

--
fetch($name)
#
Retrieve the template identified by $name. The PREFIX_MAP ensures
that this gets called only when appropriate.
--
sub fetch {
 my ($self, $name) = @_;

 # The Context's prefix handling strips out the 'http:', so we
 # need to add it back in.
 my $uri = URI->new($name, "http");
 $uri->scheme("http");

 $self->debug("Got request for '$uri'") if $self->{ DEBUG };

 return $self->_fetch($uri);
}

--
fetch($name)
#
Uses LWP::UserAgent to fetch a template referenced via http://...,
and then uses standard Template::Provider methods to compile,
cache, and so on.
--
sub _fetch {
 my ($self, $uri) = @_;
 my ($data, $error, $compiled, $request, $response);
 my $ua = $self->{ USERAGENT };

 $self->debug("_fetch($uri)") if $self->{ DEBUG };

 $compiled = $self->_compiled_filename($uri);

 # HEAD the URI, to see if we need to refetch it all
 $request = HEAD($uri);
 $response = $ua->request($request);

 if ($compiled && -f $compiled && $response->is_fresh &&
 (stat($compiled))[9] <= $response->fresh_until) {
 # The compiled version is alright; return it;

 $data = $self->_load_compiled($compiled);
 $error = defined $data
 ? STATUS_OK
 : $self->{ TOLERANT }
 ? STATUS_DECLINED
 : STATUS_ERROR;
 }
 else {
 # The compiled version either doesn't exist or is out of date
 $request = GET($uri);
 $response = $ua->request($request);

 if ($response->is_success) {
 $data = {
 name => "$uri",
 text => $response->content,
 time => int($response->fresh_until),
 load => time,
 };
 $error = STATUS_OK;

 ($data, $error) = $self->_compile($data, $compiled);
 ($data, $error) = $self->store($compiled, $data);
 $data = $data->{ data }
 unless $error;
 }
 else {
 $data = $response->error_as_HTML();
 $error = $self->{ TOLERANT } ? STATUS_DECLINED : STATUS_ERROR;
 }
 }

 return ($data, $error);
}

--
_compiled_filename($uri)
#
Transforms the URI into a filename.
--
sub _compiled_filename {
 my ($self, $uri) = @_;

 # This adds '/' to the list of characters not encoded; we want those
 # so that we can make nested directories in which to store cache files.
 $uri = uri_escape($uri->opaque, "^A-Za-z0-9\-_.!~*'()/");

 return File::Spec->canonpath($self->SUPER::_compiled_filename($uri));
}

--
_init(\%params)
#
This is here primarily to initialize the LWP::UserAgent instance.
--
sub _init {
 my ($self, $params) = @_;
 my ($ua, %lwp_args, $lwp_arg);

 $self->SUPER::_init($params);

 for $lwp_arg (qw(agent from timeout use_eval parse_head
 max_size cookie_jar conn_cache protocols_allowed
 protocols_forbidden protocols_redirectable)) {
 my $uc_lwp_arg = uc $lwp_arg;
 $lwp_args{ $lwp_arg } = $params->{ $uc_lwp_arg }
 if defined $params->{ $uc_lwp_arg };
 }

 $self->{ USERAGENT } = $ua = LWP::UserAgent->new(%lwp_args);

 if (my $proxy = $params->{ PROXY }) {
 $ua->proxy('http', $proxy);
 }

 if (my $no_proxy = $params->{ NO_PROXY }) {
 $no_proxy = [$no_proxy] unless ref($no_proxy) eq 'ARRAY';
 $ua->no_proxy(@$no_proxy);
 }

 if ($self->{ DEBUG }) {
 require LWP::Debug;
 LWP::Debug::level('+');
 }

 $ua->agent(sprintf "%s [%s/%.02f]",
 $ua->agent, ref($self), $VERSION);

 # IF COMPILE_EXT is set, COMPILE_DIR must also be set
 my ($cdir, $cext) = @$params{ qw(COMPILE_DIR COMPILE_EXT) };
 if (length($cext) && ! length($cdir)) {
 return $self->error("COMPILE_DIR must be set if COMPILE_EXT is set");
 }

 return $self;
}

1;

8.1.2 Restricting Access to Plugins

By default, all of the
Template Toolkit's plugins are available to every
template. Sometimes it makes sense to limit the available plugins,
such as in a web-hosting or education situation. For these cases,
restricting which plugins are available is useful.

Again, we can use the chain of responsibility to our advantage. By
creating a
Template::Plugins provider that governs access to
plugins, we can ensure that only allowed plugins are loaded.

As you recall, the context interacts with the plugin providers by
calling its fetch method, which is expected to
return a plugin, or (undef, $error) if the plugin
could not be loaded. Because the purpose of this plugin is to allow
access only to specific plugins, it needs only to implement
fetch, and doesn't have to do
much more than simply decline to handle requests for allowed plugins
by returning STATUS_DECLINED. If a plugin provider
declines to handle a request, the context will move on the next
provider in line or throw an exception if no more providers are
available.

Here is the complete
Template::Plugins::Allow:

package Template::Plugins::Allow;

use strict;
use Template::Constants qw(:status);

sub new {
 my $class = shift;
 bless { map { ($_, 1) } @_ }, $class;
}

sub fetch {
 my $self = shift;
 my $name = shift;
 return $self->{ $name }
 ? (undef, STATUS_DECLINED)
 : ("access to $name not allowed", STATUS_ERROR);
}

1;

This provider is initialized with the names of the plugins that are
allowed. We also need the regular plugins provider, to actually load
the allowed plugins:

my $allow = Template::Plugins::Allow->new(qw(Date Table));
my $plugins = Template::Plugins->new();

Then we define the LOAD_PLUGINS chain of command
with the Allow provider first:

my $tt = Template->new({
 LOAD_PLUGINS => [$allow, $plugins]
});

If the plugin is allowed, the Allow provider
returns STATUS_DECLINED and control passes to the
regular plugins provider. Otherwise, the Allow
provider returns an error.

Here it is in use:

[% TRY;
 USE Date;
 "got date\n";
 CATCH;
 "not date: $error\n";
 END;

 TRY;
 USE Table([1, 2, 3]);
 "got table\n";
 CATCH;
 "not table: $error\n";
 END;

 TRY;
 USE Format;
 "got format";
 CATCH;
 "not format: $error\n";
 END;
%]

Here's the output:

got date
got table
not format: plugin error - access to Format not allowed

8.1.3 A chrooted Provider

By default, the Template Toolkit
doesn't allow inclusion of files using absolute
paths. This is to help disallow malicious or inexperienced users from
including potentially sensitive files in output:

[% INSERT /etc/aliases %]

Sometimes, however, allowing absolute files does make sense. For
example, you might want to specify the absolute path to a template to
ensure that the INCLUDE_PATH
doesn't supply you with a different template that
happens to have the same name as the one you want. In these cases, it
would be nice to be able to provide a limited directory structure for
the templates to access. Normally, an entire process would be run in
a chrooted jail, which means that the entire process (in
this case, the Perl interpreter that is processing the templates via
the Template Toolkit) would have a limited view of the underlying
filesystem. (chroot is the name of the Unix system
call that implements this functionality, and so has become synonymous
with the activity.) This can be problematic, however; because
everything that the Perl interpreter needs would need to be present
in this limited filesystem, including system libraries, this means
copying a lot of files around.

However, we can implement a Template::Provider
subclass that has a limited view of the filesystem, by superficially
emulating what chroot does: we can simply prepend
a specific root (we'll call it
CHROOT_BASE) to every absolute filename passed to
INCLUDE, PROCESS, and
INSERT. Then, a request such as:

[% INSERT /etc/aliases %]

would be translated into a request for
/var/www/etc/aliases (assuming a
CHROOT_BASE of /var/www).

We can build upon Template::Provider�we are
modifying the default behavior only slightly.
File::Spec::Functions provides a clean,
function-oriented interface to File::Spec, while
still preserving File::Spec's
"cross-platform-y" goodness:

package Template::Provider::Chroot;

use strict;
use vars qw($VERSION);
use base qw(Template::Provider);

$VERSION = 1.00;

use File::Spec::Functions qw(canonpath catfile file_name_is_absolute);

We'll pull the
CHROOT_BASE parameter out of the configuration,
and then let Template::Provider::_init take over
handling the rest of the parameters:

sub _init {
 my ($self, $params) = @_;
 $self->{ CHROOT_BASE } = $params->{ CHROOT_BASE } || "";

 return $self->SUPER::_init($params);
}

We need to override only the
fetch method,
and even then we need to do something only when the requested
template is an absolute filename:

sub fetch {
 my ($self, $name) = @_;
 my $chroot = $self->{ CHROOT_BASE };
 my $newname = $name;

 if ($chroot && file_name_is_absolute($name)) {
 $newname = canonpath(catfile($chroot, $name));
 $self->debug("Using path of '$newname' instead of '$name'")
 if $self->{ DEBUG };
 }

 return $self->SUPER::fetch($newname);
}

One happy side effect of the method this provider uses is that if a
template cannot be found, the error that the context emits references
the original template name, not the adjusted filename.

Because this provider falls through to the behavior of the default
provider, we don't need to use an array of providers
or set up a PREFIX_MAP. We can simply tell
Template::Config to use our new class instead of
the default provider:

use Template;
use Template::Config;

$Template::Config::PROVIDER = 'Template::Provider::Chroot';

and continue as normal.

Example 8-2 shows the complete
Template::Provider::Chroot.

Example 8-2. Template::Provider::Chroot

package Template::Provider::Chroot;

use strict;
use base qw(Template::Provider);

use File::Spec::Functions qw(canonpath catfile file_name_is_absolute);
use Template::Provider;

sub fetch {
 my ($self, $name) = @_;
 my $chroot = $self->{ CHROOT_BASE };
 my $newname = $name;

 if ($chroot && file_name_is_absolute($name)) {
 $newname = canonpath(catfile($chroot, $name));
 $self->debug("Using path of '$newname' instead of '$name'")
 if $self->{ DEBUG };
 }

 return $self->SUPER::fetch($newname);
}

sub _init {
 my ($self, $params) = @_;

 $self->{ CHROOT_BASE } = $params->{ CHROOT_BASE } || "";

 return $self->SUPER::_init($params);
}

1;

These few simple examples should be enough to get you started
extending the Template Toolkit to do your bidding.

8.2 Creating Filters

Chapter 5 introduced Template Toolkit filters.
This section explains how to write your own filters.

There
are
two types of filters: static and
dynamic. A static filter is one that always
operates the same way, and a dynamic filter is one that can be
configured differently for each invocation. From within templates,
they are invoked almost identically, with the exception that dynamic
filters can take arguments, while static filters cannot.

8.2.1 Static Filters

Internally, filters
are implemented as references to subroutines; when invoked, these
subroutines are passed the text to be filtered as a string, and are
expected to return a string. Defining a static filter is as simple as
creating a
subroutine
and declaring it in the FILTERS configuration
option (it can also be installed into the context with the
define_filter method). All invocations of a static
filter will use the same subroutine reference, which
won't be passed any parameters other than the text
to be filtered. Standard filters such as html and
lower are examples of static filters.

Here is a simple Perl subroutine, designed to be used as a static
filter, which rot13s
text:[2]
[2] rot13 is a simple,
well-known substitution cipher, in which each character in a string
of text is replaced by the character 13 positions away. For example,
a becomes n, b becomes o, and so on. Passing a string through
rot13 two times restores the original
string.

sub rot13 {
 my $text = shift;
 $text =~ tr/a-zA-Z/n-za-mN-ZA-M/;
 return $text;
}

Once our rot13 subroutine has been defined, it can
be installed in the processing context by passing a subroutine
reference to the Template constructor:

my $tt = Template->new({
 FILTERS => {
 'rot13' => \&rot13,
 },
});

Using our rot13 filter is easy:

[% FILTER rot13 %]
Gur juvgr mbar vf sbe ybnqvat naq haybnqvat bayl.
[% END %]

The preceding code produces, naturally:

The white zone is for loading and unloading only.

And that's most of what there is to static filters:
define a subroutine that expects one text argument, munges that
argument in some way, and returns the output. The processing can be
arbitrarily complex, and of course the text returned can be anything
at all, or even nothing.

8.2.2 Dynamic Filters

The FILTER directive is
expecting a reference to a subroutine that will be invoked with its
text. For static filters, this subroutine reference was installed by
the FILTERS or LOAD_FILTERS
options when the Template instance was created. However, because the
parameters of a dynamic filter might not be known until runtime, they
must be treated differently. Dynamic filters are installed
differently than static filters (via the FILTERS
call), and the context knows to invoke them differently. Installing
a dynamic filter at constructor time
looks like this:

my $tt = Template->new({
 FILTERS => {
 'rot13' => \&rot13, # our trusty static filter
 'censor' => [\&censor_factory, 1], # our dynamic filter
 },
});

As you can see, dynamic filters are installed as
array references, where the first element
is a code reference and the second is a flag: 1
for dynamic, 0 for static. Analogously, static
filters can be installed as:

FILTERS => {
 'rot13' => [\&rot13, 0],
},

which explicitly marks it as a static filter.

When a dynamic filter is
fetched, it is expected to return a
reference to a subroutine, which is what the
FILTER directive is expecting. The subroutine that
is called and expected to return another subroutine to
FILTER is called a factory.

Let's look at censor_factory,
referred to earlier.

sub censor_factory {
 my ($context, $letter) = @_;

 return sub {
 my $text = shift;
 $text =~ s/($letter)/"*" x length($1)/eg;
 return $text;
 }
}

When called as:

[% text FILTER censor("a") %]

each a in $text will be
replaced with *. When called as:

[% text FILTER censor("lemon") %]

each lemon in $text will be
replaced with *****, and so on. Note that the
arguments to censor�a and
lemon�need to be given to
censor_factory, which uses them to create a
closure. This closure is then passed to FILTER,
which invokes the subroutine and then discards it. If the dynamic
filter is going to be reused, with the same arguments, it can be
assigned to a variable:

[% text | no_lemons = censor("lemon") %]

[% more_text | no_lemons %]

The second invocation of no_lemons behaves
identically to the first.

censor_factory is invoked with the
Template::Context object as its first argument,
and any other arguments as the rest of @_. Named
parameters are folded into a hash reference and passed as the last
argument, as is usual for invoked subroutines within templates. The
factory subroutine should take into account the number and type of
arguments it is expecting. Filters are free to ignore any or all of
these arguments, of course.

We can redefine censor_factory to accept
configuration parameters this way:

sub censor_factory {
 my ($context, @args) = @_;
 my $args = ref($args[-1]) eq 'HASH' ? pop @args : { };
 my $repl = $args->{'replacement'} || "*";

 return sub {
 my ($text, $letter) = @_;
 $text =~ s/($letter)/$repl x length($1)/eg;
 return $text;
 }
}

The key is @args: if there are any named
parameters, they will be collected and passed, as a reference to a
hash, as the last element of @_. These are popped off @args and
assigned to hash references $args, from which we
extract the replacement key (or a default of
*, to make it backward compatible with our earlier
version of censor_factory).

Now, we can call censor with a configurable
replacement character:

[% text | censor("lemon", replacement = "#") %]

And each occurrence of the string lemon will be
replaced with #####. Because the Template Toolkit
rearranges named parameters to be passed last, our filter can be
called with replacement replacement anywhere in
the argument list, with identical results:

[% text | censor(replacement = "#", "lemon") %]

It it possible to pass arguments to static filters, but they are
ignored:

[% FILTER rot13(all_caps = 1) %]
Gur juvgr mbar vf sbe ybnqvat naq haybnqvat bayl.
[% END %]

The white zone is for loading and unloading only.

The Template Toolkit ignores parameters passed to items that are not
expecting them: because the presentation language is implementation
neutral, a template has no way of knowing whether this filter can
take arguments.

8.2.3 Template::Plugin::Filter

The
Template::Plugin::Filter
module,
which
allows for filters to be written and treated as plugins, is a bit of
an odd beast�it is actually a plugin, but is designed to be
used as a filter:

[% USE myfilt = MyFilter %]
[% FILTER $myfilt %]
 ...
[% END %]

Using Template::Plugin::Filter to write filters is
more akin to writing plugins than to writing filters, with one major
difference: when the variable is used as a filter, a method named
filter is invoked. All of our filter examples can
be turned into Template::Plugin::Filter objects by
renaming the subroutine to filter and putting it
into its own class, which inherits from
Template::Plugin::Filter:

package TTBook::Template::Plugin::Rot13;

use strict;
use base qw(Template::Plugin::Filter);

sub filter {
 my $text = shift;
 $text =~ tr/a-zA-Z/n-za-mN-ZA-M/;
 return $text;
}

Now our rot13 filter can be used like so:

[% USE encryptor = Rot13 %]
[% text | $encryptor %]

Note that you must explicitly dereference the plugin filter using the
$encryptor format; this is key!

8.2.4 Writing New Filters

As we have seen, a filter is a subroutine reference that can be
invoked from within the processing context. There are many mature and
full-featured modules on CPAN that filter text. Often, you will need
the functionality of one of these modules within your templates, and
filters are the easiest way to glue the two together. We cover some
of these modules next.

8.2.4.1 Digest::MD5

The Digest::MD5 module creates a message
digest of text or files. According to
the manpage:

The "Digest::MD5" module
allows you to use the RSA Data Security Inc. MD5 Message Digest
algorithm from within Perl programs. The algorithm takes as input a
message of arbitrary length and produces as output a 128-bit
"fingerprint" or
"message digest" of the
input.

This makes a good candidate for a filter. We could use the
MD5 filter from within ttree
to generate our checksum files:

[% USE dir = Directory(".");
 FOREACH file = dir.files;
 checksum = INSERT $file.name | md5 %]
 * [% file.name %] = [% checksum %]
[% END %]

Digest::MD5 exports a function called
md5_hex that does exactly what we are looking
for. Our md5 static filter is simple:

use Digest::MD5 qw(md5_hex);
sub md5 {
 my $text = shift;
 return md5_hex($text);
}

This static filter is so simple that it is possible to inline it with
almost no loss of clarity:

use Digest::MD5 qw(md5_hex);

my $tt = Template->new(
 FILTERS => {
 "md5" => sub { my $text = shift; return md5_hex($text); },
 },
);

8.2.4.2 Text::Bastardize

Text::Bastardize is a great little module for
manipulating text. It has methods for transformations to pig Latin,
numerical abbreviation, and k3wlt0k, among others.

Using Text::Bastardize is simple:

use Text::Bastardize;

my $bastard = Text::Bastardize->new;
$tb->charge($data);

print $tb->rev;

The various methods return arrays, which in general is appropriate
when dealing with text, but we'll need strings;
join is our friend:

print join "", $tb->rev;

The methods Text::Bastardize
makes available include the following:

	rdct

	
"Reduce" text:

$tb->charge("The white zone is for loading and unloading only.");
$tb->rdct();
the whte z1 is fr ladng nd unladng only.

	pig

	
Transform text into pig Latin:

$tb->charge("You need a thneed!");
$tb->pig();
youay eednay away eedthnay!

	rot13

	
Hey, this looks familiar:

$tb->charge("with or without is the different.");
$tb->rot13();
jvgu be jvgubhg vf gur qvssrerag

	k3wlt0k

	
Transforms your text into its
"elite" form:

$tb->charge("You'll love it, it's a way of life");
$tb->k3wlt0k();
JUR11 10V4 17, 17Z 3 W3Y 0F 11F4

	rev

	
Reverses your text:

$tb->charge("A thing of beauty is a joy forever.")
$tb->rev();
.reverof yoj a si ytuaeb fo gniht A

	n20e

	
Replaces long words (more than six characters) with numeric
equivalents:

$tb->charge("Every nonzero finite dimensional inner " .
 "product space has an orthonormal basis."
$tb->n20e();
Every n5o finite d9l inner p5t space has an o9l basis.

Turning these Text::Bastardize methods into
filters is relatively straightforward:

use Template;

my $tt = Template->new(
 FILTERS => {
 "rdct" => \&rdct,
 "n20e" => \&n20e,
 },
);

sub rdct {
 my $text = shift;

 my $tb = Text::Bastardize->new;
 $tb->charge($text);

 return join "", $tb->rdct;
}

sub n20e {
 my $text = shift;

 my $tb = Text::Bastardize->new;
 $tb->charge($text);

 return join "", $tb->rdct;
}

And so on. Each Text::Bastardize method follows
the same general pattern:

my $tb = Text::Bastardize->new;
$tb->charge($data);

return join "", $tb->METHOD;

This means that we can produce these subroutines automatically, with
a factory
function:

sub bastardize_factory {
 my $type = shift || "rot13";

 return sub {
 my $text = shift;

 my $tb = Text::Bastardize->new;
 $tb->charge($text);

 return join "", $tb->$type();
 };
}

my $tt = Template->new(
 FILTERS => {
 "rdct" => bastardize_factory("rdct"),
 "n20e" => bastardize_factory("n20e"),
 },
);

This is exactly what is needed to create dynamic filters; we can make
bastardize available to our templates as a dynamic
filter:

my $tt = Template->new(
 FILTERS => {
 "bastardize" => [\&bastardize_factory, 1]
 },
);

The bastardize dynamic filter would be used
with an argument:

[% FILTER bastardize("n20e") %]
Numeric abbreviation.
[% END %]

The filter subroutine created by calling
bastardize(TYPE) can be captured for later use, by
assigning it to a variable:

[% FILTER rot13 = bastardize("rot13") %]
Grzcyngr Gbbyxvg Ehyrf
[% END %]

[% text | rot13 %]

As you will recall, dynamic filters get called with a
Template::Context instance as their first
argument. bastardize_factory needs to deal with
this:

sub bastardize_factory {
 shift() if ref $_[0];

If the first argument is a reference, it is not the type that we are
expecting; therefore, we can shift it away.
bastardize_factory, in its entirety, is pretty
simple:

sub bastardize_factory {
 shift if ref $_[0];
 my $type = shift;
 my $tb = Text::Bastardize->new;

 return sub {
 my $text = shift;

 $tb->charge($text);
 return join "", $tb->$type;
 };
}

And, of course, we can have both the static and dynamic versions of
our bastardize filters in our Template::Filters
instance:

my $tt = Template->new(
 FILTERS => {
 rdct => [bastardize_factory("rdct"), 0],
 pig => [bastardize_factory("pig"), 0],
 k3wlt0k => [bastardize_factory("k3wlt0k"), 0],
 rot13 => [bastardize_factory("rot13"), 0],
 rev => [bastardize_factory("rev"), 0],
 n20e => [bastardize_factory("n20e"), 0],
 bastardize => [\&bastardize_factory, 1],
 },
);

8.2.4.3 Text::FIGlet

FIGlet is a program for making large letters out
of ordinary, unexpecting text, and
Text::FIGlet (http://www.figlet.org/) is a Perl
implementation. FIGlet is akin to the Unix
program banner, which formats a message for
printing on a line printer (see Figure 8-1).

Figure 8-1. "Hello world" created by the Unix program banner

[image: figs/pttk_0801.gif]

FIGlet does something similar, but adds font
capability kerning, and the ability to make your text face in the
correct direction. The default font looks like Figure 8-2.

Figure 8-2. "Hello world" created by FIGlet (using the default font)

[image: figs/pttk_0802.gif]

But there are hundreds of other fonts, such as
rozzo (see Figure 8-3).

Figure 8-3. The rozzo font in FIGlet

[image: figs/pttk_0803.gif]

The possibilities here are staggering, of course.

Using Text::FIGlet is easy:

use Text::FIGlet;
my $figgy = Text::FIGlet->new(-f => $fontname);

print $figgy->figify(-A => $text);

Turning this into a dynamic filter is straighforward: we need to
handle the various -X constructor parameters, one
of which is a scalar containing the text to be figified. Hey, we have
one of those:

sub figify_filter_factory {
 my ($context, @args) = @_;
 my $args = ref($args[-1]) eq 'HASH' ? pop @args : { };
 my $figgy = Text::FIGlet->new(%$args);

 return sub {
 my $text = shift;
 $figgy->figify(-A => $text);
 }
}

Using this figify filter feels a little unnatural,
however, mainly due to the strange-looking format of the constructor
parameters:

[% FILTER figify("-f" => "acrobatic") %]
Hello, world!
[% END %]

We can provide intuitive mappings for these in our implementation:

some nice aliases...
my %fig_params = (
 "german" => "-D",
 "fontdir" => "-d",
 "fontfile" => "-f",
 "smushmode" => "-m",
 "direction" => "-X",
 "justification" => "-x",
 "width" => "-w",
);
...and some even nicer aliases
$fig_params{'font'} = $fig_params{'fontfile'};
$fig_params{'dir'} = $fig_params{'fontdir'};

sub figify_filter_factory {
 my ($context, @args) = @_;
 my $args = ref($args[-1]) eq 'HASH' ? pop @args : { };
 my %cons_args;

 for my $a (%$args) {
 my $p = $fig_params{ $a };
 $cons_args{ $p } = $args->{ $a } if defined $p;
 }

 my $figgy = Text::FIGlet->new(%cons_args);

 return sub {
 my $text = shift;
 $figgy->figify(-A => $text);
 }
}

Now our figified templates look a little more like other templates:

[% FILTER figify(font => "cosmic") %]
Hello, world!
[% END %]

The output is shown in Figure 8-4.

Figure 8-4. "Hello world" using a dynamic filter in FIGlet

[image: figs/pttk_0804.gif]

8.2.4.4 Normalizing HTML: HTML::Clean

The HTML::Clean module encapsulates a number of common
techniques for minimizing the size of
HTML output: removing
unnecessary whitespace, comments, and META tags;
replacing longer tags with shorter ones; and removing empty
unnecessary tags. HTML::Clean normally operates in
filter mode, which makes it an ideal filter.
HTML::Clean is available from http://search.cpan.org/dist/HTML-Clean/.

The "clean level" and types of
cleaning that HTML::Clean does are controlled by
options passed to strip, so
HTML::Clean is a good candidate for a dynamic
filter:

use HTML::Clean;

sub clean {
 my ($context, @args) = @_;
 my $config = ref($args[-1]) eq 'HASH' ? pop @args : { };

 return sub {
 my $text = shift;

 my $h = HTML::Clean->new(\$text);

 $h->level($config->{'level'})
 if (defined $config->{'level'});

 $h->strip($config);

 return ${ $h->data };
 };
}

my $tt = Template->new(FILTERS => { clean => [\&clean, 1] });

This makes a good overall filter:

[% BLOCK page %]
[% FILTER clean(level = 9) %]
<html>
 <head>
 <title>[% template.title %]
 </head>
 <body>
[% content %]
 </body>
</html>
[% END %]
[% END %]

[% WRAPPER page %]
 ...

	
Using Subroutine References as Filters

Because
filters are
"just" subroutine references, and
the Template Toolkit allows for subroutine references to be passed as
values in the second parameter to process, you
might be thinking that we should be able to rephrase our filter
examples as:

my %filters = (
 'rot13' => \&rot13,
 'censor' => \&censor_factory,
);
my $t = Template->new();
$t->process($file, \%filters);

The answer, of course, is, yes, there's more than
one way to do it. However, this method requires that your filters be
called as:

[% rot13(text) %]
[% censor(text) %]

Because "real" filters can be
called using the FILTER or |
notation, you lose the ability to pipe PROCESS and
INCLUDE calls through your subroutine:

[% rot13(INCLUDE encrypted.txt) %]

Therefore, the previous code produces a parser error. Using an
intermediate variable is an option, of course:

[% enc = INCLUDE encrypted.txt; rot13(enc); %]

But that's no fun.

These examples, by the way, produce something like:

Gur juvgr mbar vf sbe ybnqvat naq haybnqvat bayl.
CODE(0x83a85c4)

which, in the second case, is not what we wanted. Dynamic filter
factories, which return subroutine references, need to be handled
differently:

$filters{'censor_a'} = censor_factory("a");
$filters{'censor_b'} = censor_factory("b");

And so on, which has obvious ramifications in the template. In these
cases, dynamic filters have to be rewritten to return text, and not a
code reference:

sub censor {
 my ($text, $letter) = @_;
 $text =~ s/($letter)/"*" x length($1)/eg;
 return $text;
}

8.3 Creating Plugins

As we saw in Chapter 6, a plugin is implemented
as an object-oriented Perl module. This module must implement a few
basic methods in order for the context to load it correctly, and all
of these methods can be inherited from the
Template::Plugin module; otherwise, a plugin can
be very free form.

8.3.1 The Template::Plugin Module

The Template::Plugin
module both defines the plugin API and serves as a base class for
plugin implementations. By default, a
Template::Plugin instance has almost no
functionality, other than to load correctly.

Template::Plugin defines three methods:
load, new, and
error. Subclasses are free to override any of
these methods, or implement any others they might need to perform
their duties.

	load($context)

	
This method is called by Template Toolkit when the plugin module is
first loaded. It is called as a package method and thus implicitly
receives the package name as the first parameter. A reference to the
Template::Context object loading the plugin is
also passed. The default behavior for the load
method is to simply return the class name; the calling context then
uses this class name to call the new package
method:

package MyPlugin;
sub load { # called as MyPlugin->load($context)
 my ($class, $context) = @_;
 return $class; # returns 'MyPlugin'
}

	new($context, @params)

	
This method is called to instantiate a new plugin object for the
USE directive. It is called as a package method
against the class name returned by load. A
reference to the Template::Context object creating
the plugin is passed, along with any additional parameters specified
in the USE directive:

sub new { # called as MyPlugin->new($context)
 my ($class, $context, @params) = @_;
 bless {
 _CONTEXT => $context,
 _PARAMS => \@params,
 }, $class; # returns blessed MyPlugin object
}

	error($error)

	
This method, inherited from the Template::Base
module, is used for reporting and returning errors. It can be called
as a package method to set/return the $ERROR
package variable, or as an object method to set/return the
object's _ERROR member. When
called with an argument, it sets the relevant variable and returns
undef. When called without an argument, it returns
the value of the variable.

sub new {
 my ($class, $context, $dsn) = @_;
 return $class->error('No data source specified')
 unless $dsn;
 bless {
 _DSN => $dsn,
 }, $class;
}
...
my $something = MyModule->new()
 || die MyModule->error(), "\n";
$something->do_something()
 || die $something->error(), "\n";

The Template::Context object that handles the
loading and use of plugins calls the new and
error methods against the package name returned by
the load method. In pseudocode terms, it might
look something like this:

$class = MyPlugin->load($context); # returns 'MyPlugin'

$object = $class->new($context, @params) # MyPlugin->new(...)
 || die $class->error(); # MyPlugin->error()

The load method may alternately return a blessed
reference to an object instance. In this case, new
and error are then called as
object methods against that prototype instance.

Example 8-3 is the complete
TTBook::Template::Plugin::Printer
plugin, which implements
a print service.

Example 8-3. TTTBook::Template::Plugin::Printer

package TTBook::Template::Plugin::Printer;

use strict;
use vars qw($PRINTER $SERVER);
use base qw(Template::Plugin);

use Template::Plugin;
use Template::Exception;
use Net::Printer;

$PRINTER = "jeckyl";
$SERVER = "mr-hyde";

sub load {
 my ($class, $context) = @_;
 my $printer = Net::Printer->new(printer => $PRINTER,
 server => $SERVER);
 my $self = bless {
 _CONTEXT => $context,
 _PRINTER => $printer,
 }, $class;

 return $self;
}

sub new {
 my ($self, $context) = @_;
 return $self;
}

sub print {
 my ($self, $data) = @_;
 my ($printer, $context) = @$self{ qw(_PRINTER _CONTEXT) };

 my $result = $printer->printstring($data);
 $context->throw('printer', $result)
 unless (int($result) = = 1);

 return "";
}

1;

In this example, we implemented a
Singleton
plugin.
One object gets created when load is called; the
object simply returns itself for each call to new.

When the plugin is loaded, a
TTBook::Template::Plugin::Printer instance is
created; each call to new is called against this
object, which instantiates and returns that same instance.

Because calls to print throw
printer exceptions if there is a problem, they
should be wrapped in TRY /
CATCH blocks:

[% USE Printer %]
[% TRY %]
 [% Printer.print(data) %]
[% CATCH printer %]
 There was an error printing: [% error %]
[% END %]

print explicitly returns an empty string so that
there is no unwanted output in the template.

8.3.2 Installing Functions into the Stash from Within a Plugin

While plugins are implemented as
object-oriented modules, there is no reason that every plugin has to
be used in an object-oriented way. Because a plugin is invoked with
$context as an argument, a plugin writer can elect
to install functions in the stash in addition to returning an object
designed to be used:

package TTBook::Template::Plugin::Red;

use strict;
use base qw(Template::Plugin);

sub new {
 my ($class, $context) = @_;
 my $stash = $context->stash;

 $stash->set('red', \&make_red);

 return sub { make_red(@_) };
}

sub make_red {
 my $text = shift;
 return qq|$text|;
}

1;

The plugin still needs to return a blessed object, but it will
probably be ignored. This plugin would be used like this:

[% USE Red %]

Hello, [% red('World') %]

However, because we've chosen to return a subroutine
reference, the plugin name can also be used, to the same effect:

[% USE colorizer = Red %]

Hello, [% red('red world!') %]
I am [% colorizer('also red') %].

This example, while silly, illustrates two important points. First,
once a plugin has a reference to the stash, arbitrary functionality
can be added to your templates. Second, a plugin need merely return
something that Perl considers true�it doesn't
have to be a blessed object.

Instead of make_red, we could have created an
incrementing counter:

my $count = 0;
$stash->set('counter' => sub { ++$count });

Each time counter is invoked, it returns the next
number:

[% FOREACH [1 .. 10] %]
 * [% counter %]
[% END %]

As such, the previous code returns:

* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10

By making new() accept an argument, we can seed
the counter:

sub new {
 my ($class, $context, $start) = @_;
 my $stash = $context->stash;

 my $count = int($start || 0);
 $stash->set('counter' => sub { ++$count });

 bless { } => $class;
}

This counter will start where we tell it to:

[% USE Counter(100) %]
[% counter %]

As such the previous code yields:

101

Example 8-4 is the complete
TTBook::Template::Plugin::Counter.

Example 8-4. TTBook::Template::Plugin::Counter

package TTBook::Template::Plugin::Counter;

use strict;
use vars qw($VERSION);
use base qw(Template::Plugin);

sub new {
 my ($class, $context, $start) = @_;
 my $stash = $context->stash;

 my $count = int $start;
 $stash->set("counter" => sub { ++$count });

 bless { } => $class;
}

1;

8.3.3 Defining Filters from Within a Plugin

Earlier, we saw how the
define_filter() method can be called against the
$context object to define new filters.
Let's look at a plugin that does this.

Let's revisit our Digest::MD5
filter and install it from within a plugin. Recall that the body of
the filter was a very simple subroutine:

use Digest::MD5 qw(md5_hex);
sub md5 {
 my $text = shift;
 return md5_hex($text);
}

Installing a plugin into the current stash is something that should
be done when the module is loaded, so load is an
ideal place for it:

sub load {
 my ($class, $context) = @_;
 $context->define_filter('md5', \&md5);
 return $class;
}

Example 8-5 is the complete
$namespace::Template::Plugin::MD5.

Example 8-5. $namespace::Template::Plugin::MD5

package TTBook::Template::Plugin::MD5;

use strict;
use vars qw($VERSION);
use base qw(Template::Plugin);

use Template::Plugin;
use Digest::MD5 qw(md5_hex);

$VERSION = 1.01;

sub md5 {
 my $text = shift;
 return md5_hex($text);
}

sub load {
 my ($class, $context) = @_;
 $context->define_filter("md5", \&md5);
 return $class;
}

1;

The Printer plugin shown earlier is another good example of a plugin
that could also work as a filter:

[% USE Printer %]
[% text | print %]

Modifying load to do what we intend is simple:

sub load {
 my ($class, $context) = @_;
 my $printer = Net::Printer->new(printer => $PRINTER,
 server => $SERVER);
 my $self = bless {
 _CONTEXT => $context,
 _PRINTER => $printer,
 }, $class;

 $context->define_filter('print', sub { $self->print(@_) });

 return $self;
}

We need to pass a closure to define_filter because
print needs access to $self
(the plugin object) when it is invoked, unlike the
MD5 filter, where md5 was
simple enough to stand on its own.

8.3.4 Defining New Virtual Methods from Within a Plugin

Virtual methods are defined within
Template::Stash, and are implemented as subroutine
references attached to package-scoped hashes within the
Template::Stash namespace:
$Template::Stash::SCALAR_OPS for scalar vmethods,
$Template::Stash::LIST_OPS for list vmethods, and
$Template::Stash::HASH_OPS for hash vmethods.
Creating a new vmethod is as simple as assigning a subroutine
reference to the appropriate package variable.

To get a feel for creating vmethods, let's add a
few. Graham Barr's
List::Util package
(shipped with Perl as of 5.8.0, available from http://search.cpan.org/dist/List-Util/ for
versions before 5.8.0) provides several very useful functions that
operate on arrays, such as shuffle, which will
randomize an array, and max, which will return the
largest numeric value in an array:

use Template::Stash;
use List::Util;

my $l_ops = $Template::Stash::LIST_OPS;

$l_ops->{'shuffle'} = \&List::Util::shuffle;
$l_ops->{'max'} = \&List::Util::max;

These new virtual methods can now be used like any other virtual
methods:

[% list = [1 2 3 4 5];
 shuflist = list.shuffle;
%]

Note that because of how virtual methods are implemented, once a
subroutine is installed as a vmethod, it is global, and available to
all templates.

8.3.5 Writing New Plugins

To help you get a feel for the real-world issues that crop up when
you build plugins, let's look closely at three
sample plugins, building from a simple wrapper to one that searches
Google.

8.3.5.1 A simple wrapper plugin

One of the simplest types of plugins is one
that acts as a factory for another object-oriented module, such as
CGI or Apache. In a case such
as this, the entire plugin can be implemented by having the
plugin's new(
) method defer to the modules
constructor. A good example is the standard CGI
plugin, the entirety of which is Example 8-6.

Example 8-6. Standard CGI plugin

package Template::Plugin::CGI;

use strict;
use base qw(Template::Plugin);
use Template::Plugin;
use CGI;

sub new {
 my $class = shift;
 my $context = shift;
 CGI->new(@_);
}

1;

_ _END_ _

Most of the time, however, plugins require a little more work. Under
mod_perl, the Apache module provides a way to
directly access the current requested object and manipulate the
request. An Apache plugin, to be used in a
template running under mod_perl, might look like Example 8-7.

Example 8-7. Apache plugin

package TTBook::Plugin::Apache;

use strict;
use vars qw($VERSION);

$VERSION = 1.00;

use Apache;
use base qw(Template::Plugin);

sub new {
 return Apache->request;
}

In the case of the Apache class, the constructor is named
request(), which returns a reference to the
current Apache request object. This plugin would be used like this:

[% USE r = Apache %]

<p>Query parameters are: '[% r.args %]'.</p>
<p>You are using [% r.header_in('User-Agent') %].</p>

Of course, most plugins are not this simple, including this one.
Because this module delegates to a regular Apache
instance, we can still call standard Apache
methods against it, including the print method,
which can have unpredictable results when invoked within a template.
Because we're dealing with a plugin, and plugins are
basically regular Perl modules, we can inherit from the
Apache module, implement a Template
Toolkit-friendly version of the print method, and
return a reference to our subclass. The Apache
module makes special allowances for subclasses: an object that is not
an Apache instance is checked to see whether it is
a hash, and whether it contains an Apache instance
or subclass as a data member named _r. Using this
information, we can rewrite our plugin to be a little more
interesting. The rewritten plugin is shown in Example 8-8.

Example 8-8. Rewritten Apache plugin

package TTBook::Template::Plugin::Apache;

use Apache;
use base qw(Template::Plugin Apache);
use vars qw($VERSION);

$VERSION = 1.01;

sub new {
 my ($class, $context) = @_;

 bless {
 '_r' => Apache->request,
 } => $class;
}

sub print {
 my ($self, @data) = @_;
 my ($str, $output);

 for $str (@data) {
 if (ref $str eq 'SCALAR') {
 $output .= $$str;
 } else {
 $output .= $str;
 }
 }

 return $output;
}

We've added a print method that
accumulates output and returns it to the context.
(Apache's
print method allows scalar references to be
passed, for efficiency; our method defeats this efficiency at the
cost of working correctly.) Now, calls to the
instance's print() method Do the
Right Thing:

[% r.print('foo') %]

The preceding code is the same as:

[% foo %]

which isn't all that useful, in and of itself,
except that it prevents unforeseen errors.

Something similar has to be done with the send_http_header(
) method, but in this case, we can discard the call,
assuming that something else will be sending the headers.
Apache's send_http_header()
takes an optional $content_type, which is used to
set the Content-Type header (this is generally optional, as the
TypeHandler usually has already set the content type). Our
send_http_header() can call the
content_type() method to set the content type if
one is provided:

sub send_http_header {
 my $r = shift;

 if (my $content_type = shift) {
 $r->content_type($content_type);
 }

 return '';
}

send_http_header() explicitly returns an empty
string, so we don't get any unexpected output.

We can make this plugin available to our templates using the
PLUGIN configuration parameter:

my $t = Template->new({
 PLUGINS => {
 'apache' => 'TTBook::Template::Plugin::Apache',
 }
});

Example 8-9 is the complete
TTBook::Template::Plugin::Apache.

Example 8-9. TTBook::Template::Plugin::Apache

package TTBook::Template::Plugin::Apache;

use strict;
use vars qw($VERSION);

use Apache;
use base qw(Template::Plugin Apache);

$VERSION = 1.02;

sub new {
 my ($class, $context) = @_;

 bless {
 '_r' => Apache->request,
 } => $class;
}

sub print {
 my ($self, @data) = @_;
 my ($str, $output);

 for $str (@data) {
 if (ref $str eq 'SCALAR') {
 $output .= $$str;
 } else {
 $output .= $str;
 }
 }

 return $output;
}

sub send_http_header {
 my $r = shift;

 if (my $content_type = shift) {
 $r->content_type($content_type);
 }

 return "";
}

1;

8.3.5.2 A more complex wrapper plugin

The next type of plugin is one that is based
on an object-oriented module, but that needs configuration or runtime
translation; a good example is LWP.
LWP provides a web useragent in the
LWP::UserAgent class, and a host of supporting
modules, representing HTTP requests
and responses, server
messages, and even robots; using these powerful modules can be
complex. We will develop a simple, easy-to-use plugin frontend for
LWP::UserAgent; most of the work that we need to
do will involve translating data that the Template Toolkit wraps up
into hashrefs back into the hashes that the
LWP::UserAgent methods are expecting:

package TTBook::Template::Plugin::LWP;

use strict;
use base qw(Template::Plugin);

use HTTP::Request;
use LWP::UserAgent;
use Template::Plugin;

We would like it to be useable in standard plugin style:

[% USE lwp %]

perhaps with some specified parameters to indicate the name of the
useragent:

[% USE lwp(agent => 'TTBook bot/1.0') %]

or proxy information:

[% USE ua = lwp(env_proxy => 1) %]

or all:

[% USE lwp(agent => 'TTBook bot/1.0',
 env_proxy => 1,
 timeout => 60) %]

The constructor for LWP::UserAgent expects a hash
of (name, value) pairs, rather than the hashref that the Template
Toolkit passes to plugin constructors, which means that we will need
to do a little translation. The new() method for
our plugin, therefore, looks like this:

sub new {
 my ($class, $context, $plugin_params) = @_;
 my ($self, $ua, %lwp_params);

 %lwp_params = %$plugin_params;
 $ua = LWP::UserAgent->new(%lwp_params);

 return bless {
 _CONTEXT => $context,
 _UA => $ua,
 } => $class;
}

Using the plugin should be simple, too;
LWP::UserAgent supports GET, POST, and HEAD
requests in the form of the get(), post(
), and head() methods, so our plugin
will inherit these, but they will require some parameter mapping to
make their calling sequence seem more natural to plugin users. These
methods take, as parameters, the request URI and then (name, value)
pairs that specify headers; the special header named
Content will be used to set the content of the
request (for POST and PUT requests), rather than to create a header.
Our plugin interface will maintain this split, but, just like the
constructor, will need to map from hashref to hash.

These methods can be accessed simply as:

[% use.perl.org = lwp.get('http://use.perl.org/') %]

The URL plugin
can be of great assistance here:

[% USE url('http://use.perl.org/journal.pl', light = 1) %]
[% use.perl.org = lwp.get(url(uid = 18)) %]

Our plugin doesn't have to do anything to get the
benefits of this; url has been dereferenced by the
Template Toolkit before, and our method is passed a string.

Our get, post, and
head wrappers would look like this:

sub get {
 my ($self, $url, $query_params) = @_;
 my %get_params = %$query_params;
 my $ua = $self->{ _UA };

 return $ua->get($url, %get_params);
}

sub head {
 my ($self, $url, $query_params) = @_;
 my %head_params = %$query_params;
 my $ua = $self->{ _UA };

 return $ua->head($url, %head_params);
}

sub post {
 my ($self, $url, $query_params) = @_;
 my %post_params = %$query_params;
 my $ua = $self->{ _UA };

 return $ua->post($url, %post_params);
}

We can use these pretty simply:

[% lwp.post(url, 'Content' = my_text) %]

We have often wished that there was a general-purpose
download method in the
LWP::UserAgent class, so let's
create one. The request method of the
LWP::UserAgent class will write the requested
content to a disk file when passed a string as a second argument, so
we can begin there:

sub download {
 my ($self, $uri, $filename) = @_;
 my ($ua, $context, $request);

 $ua = $self->{ _UA };
 $context = $self->{ _CONTEXT };

We can't just defer to the get
method of LWP::UserAgent here;
we'll need to use HTTP::Request
directly:

$request = HTTP::Request->new(GET => $uri);

(We assume a GET request; implementing download for other request
types is left as an exercise for the reader.)

$ua->request($request, $filename)
 || $context->throw('file', "Can't write $filename: $!");

Because this method is writing
to the filesystem, there is the possibility that it can fail; this
needs to be checked for success. If the write fails, we throw a file
exception using $context.

Finally, we return the content of the response:

return $response->content;
}

Making our LWP plugin available to templates can be achieved by
passing it as an element of the PLUGINS hash:

my $t = Template->new({
 PLUGINS => {
 'lwp' => 'TTBook::Template::Plugin::LWP',
 }
});

Example 8-10 is the complete
TTBook::Template::Plugin::LWP.

Example 8-10. TTBook::Template::Plugin::LWP

package TTBook::Template::Plugin::LWP;

use strict;
use vars qw($VERSION);
use base qw(Template::Plugin);

use HTTP::Request;
use LWP::UserAgent;
use Template::Plugin;

$VERSION = 1.00;

sub new {
 my ($class, $context, $plugin_params) = @_;
 my ($self, $ua, %lwp_params);

 %lwp_params = %$plugin_params;
 $ua = LWP::UserAgent->new(%lwp_params);

 return bless {
 _CONTEXT => $context,
 _UA => $ua,
 } => $class;
}

sub get {
 my ($self, $url, $query_params) = @_;
 my %get_params = %$query_params;
 my $ua = $self->{ '_UA' };

 return $ua->get($url, %get_params);
}

sub head {
 my ($self, $url, $query_params) = @_;
 my %head_params = %$query_params;
 my $ua = $self->{ _UA };

 return $ua->head($url, %head_params);
}

sub post {
 my ($self, $url, $query_params) = @_;
 my %post_params = %$query_params;
 my $ua = $self->{ _UA };

 return $ua->post($url, %post_params);
}

sub download {
 my ($self, $uri, $filename) = @_;
 my ($ua, $context, $request);

 $ua = $self->{ _UA };
 $context = $self->{ _CONTEXT };
 $request = HTTP::Request->new(GET => $uri);

 $ua->request($request, $filename)
 || $context->throw('file', "Can't write $filename: $!");

 return $response->content;
}

1;

8.3.5.3 A plugin that sends mail

Sending
mail is such a common thing to do with the
Template Toolkit, it is surprising that there is no standard plugin
to handle it. Many mail-related Perl modules are on CPAN, but the
simplest is Mail::Sendmail, which exports a single
subroutine (sendmail) that takes a hash of
arguments. We can use this as the basis for our Mail plugin.

A mail plugin would need to have
methods to get and set the
To, From,
Cc, Bcc,
Subject, and Body fields:

[% Mail.To('you@yourhost.com') %]
[% Mail.From('me@myhost.com') %]
[% Mail.Subject('Re: your mail') %]

[% body = BLOCK %]
Hello, friend!
[% END %]

[% Mail.Body(body) %]

Additionally, it would be nice to be able to reuse the plugin
instance�in a loop, for example:

[% addresses = ['one@addr.ess'
 'two@addr.ess'
 'three@addr.ess'
 'four@addr.ess'
];

 message_content = 'The system will be down blah blah blah.';

 USE Mail from => 'Administrator <admin@addr.ess>',
 subject => 'Scheduled downtime',
 body => message_content;

 FOREACH address = addresses;
 Mail.send(to => address);
 Mail.reset;
 END;
%]

Our plugin begins fairly predictably:

package TTBook::Template::Plugin::Mail;

use strict;
use base qw(Template::Plugin);
use vars qw($VERSION $AUTOLOAD);

use Mail::Sendmail;
use Net::Domain qw(hostfqdn);
use Template::Exception;
use Template::Plugin;

$VERSION = 1.00;
$AUTOLOAD = undef;

We'll be using
Template::Exception to propagate errors, so they
can be caught and handled appropriately.
Net::Domain gives us hostfqdn,
which will help us generate a Message-ID header.
We'll need $VERSION and
$AUTOLOAD later, so we declare them now.

Because we want the user to be able to invoke our plugin not only as:

[% USE Mail %]

but also with default
arguments:

[% USE Mail subject = 'Testing, testing, testing'
 from = 'admin@template-toolkit.org' %]

we can write new to accept parameters:

sub new {
 my ($class, $context, $params) = @_;
 my $self;

As you recall, named parameters are passed to subroutines as the last
element in @_, as a reference to a hash; any
parameters that the user specifies in the USE line
will be there.

$params->{ server } = 'mailhost'
 unless defined $params->{ server };

Mail::Sendmail requires the name of the SMTP relay
to be specified as one of its arguments, but we'll
take that responsibility out of the user's hands and
use a reasonable default. Savvy users can still specify a server to
use, for example:

[% USE Mail server => 'localhost' %]

In order to reuse our plugin, we'll need to keep the
default configuration values separate from values set later. To do
this, we will use two data members for parameters:

$self = bless {
 _CONTEXT => $context,
 _ORIG_PARAMS => $params,
 _PARAMS => { },
 _LOGMESSAGE => '',
} => $class;

_ORIG_PARAMS is the configuration parameters that
were specified at instance creation time and that will be used as our
defaults. We finish our new() method with:

$self->reset();
return $self;
 }

The reset() method is responsible for
copying the elements of _ORIG_PARAMS into
_PARAMS:

sub reset {
 my $self = shift;
 delete $self->{ _ORIG_PARAMS }->{ 'message-id' };
 %{ $self->{ _PARAMS } } = %{ $self->{ _ORIG_PARAMS } };
 $self->{ _LOGMESSAGE } = '';
 return $self;
}

reset() takes the precaution of deleting the
Message-ID key: because this must be unique for each outgoing email,
we don't take the chance that the user
hasn't specified it manually. We also reset the
_LOGMESSAGE string, which will contain a
transcript of the conversation with the server.

The most important method,
send, is very straightforward. It is
used like this:

[% Mail.send(params) %]

This is our last chance to specify parameters�they will be
mixed in with _PARAMS.
Mail::Sendmail provides a transcript of its
communications with the server in the
$Mail::Sendmail::log variable;
we'll store this in the
_LOGMESSAGE instance variable.

sub send {
 my $self = shift;
 my ($params, $context) = @$self{ qw(_PARAMS _CONTEXT) };
 my $mail = ref($_[-1]) eq 'HASH' ? pop @_ : { };

 %$mail = ('X-Mailer' => join('/', ref $self, $VERSION),
 %$params,
 %$mail);

 $mail->{'message-id'} = $self->generate_mid()
 unless defined $mail->{'message-id'};

 sendmail(%$mail)
 or $context->throw('mail', $Mail::Sendmail::error);

 $self->{ _LOGMESSAGE } = $Mail::Sendmail::log;

 return '';
}

Both $params and $mail are hash
references, so they can be dereferenced sequentially to produce one
hash. Because $mail is dereferenced after
$params, any keys defined in
$mail supercede those in
$params�which is to say that parameters
specified in send override those set earlier.
Finally, we add a vanity header (X-Mailer), which
also can be overridden by either $params or
$mail:

[% Mail.send('X-Mailer' => 'Micros~1 Outlook 6.6.6') %]

The send method returns an empty string so that
there is no unintentional output when it is invoked.

We need to explicitly create a Message-ID header
if one hasn't been provided by the user. Most MTAs
will add a Message-ID header if it
isn't present, but many will not, so we cannot rely
on it. The Message-ID header will be used to
uniquely identify a message in space and time; ideally, it should
consist of enough information to identify the message without giving
away too much information about the user. The
generate_mid method creates a
Message-ID based on the time, domain name, and eight characters of
randomness ($junk):

sub generate_mid {
 my $self = shift;
 my @time = localtime;
 my $junk = join '', map { ('a'..'z', 'A'..'Z')[rand 52] } (0..8);

 my $mid = sprintf '<%d%02d%02d.%s@%s>',
 $time[5] + 1900, $time[4], $time[3], $junk, hostfqdn();

 return $mid;
}

We can access the transcript using the logmessage(
) method:

sub logmessage {
 my $self = shift;
 return $self->{ _LOGMESSAGE };
}

Finally, the other methods can be handled by an
AUTOLOAD method:

my %multi = map { $_ => 1 } qw(to cc bcc);
sub AUTOLOAD {
 my $self = shift;
 my ($method, $item);

 $method = $AUTOLOAD;
 $method =~ s/.*:://;
 $method = ucfirst lc $AUTOLOAD;
 $method =~ s/_(\w)/-\u$1/g;

 # Make an alias
 $item = \$self->{ _PARAMS }->{ $method };

 if (@_) {
 if (defined $multi{ $method }) {
 my @addrs;
 if (ref $_[0] eq 'ARRAY') {
 @addrs = @{$_[0]};
 } else {
 @addrs = @_;
 }
 $$item = join ', ', @addrs;
 } else {
 $$item = shift @_;
 }
 return '';
 }

 return $$item;
}

Perl's AUTOLOAD facility catches
calls for methods that do not exist (which makes it perfect as a
catchall method for this plugin). Mail::Sendmail
will pass on any parameters passed to the sendmail(
) function as headers; we can combine these two facts to
let Perl write the rest of our methods for us. When
AUTOLOAD is invoked, the name of the invoked
method is in the variable $AUTOLOAD, with the
fully qualified package name. Mail::Sendmail takes
header names in any case, but we normalize it (by lowercasing) to
keep from storing duplicates in _PARAMS. Using
this AUTOLOAD, we can set any arbitrary header,
not just the ones mentioned earlier:

[% Mail.message_id('20030811-093159@localhost') %]
[% Mail.x_pgp_fingerprint(pgp_f) %]

To, Cc, and
Bcc can be multivalued elements (as defined in
%multi), so we accept a list of elements. This
allows us to do this:

[% Mail.To(address1, address2, address3) %]

We also explicitly check to see whether $_[0] is
an array reference, and dereference it if it is. This is because if
we pass a list created in our template, it will be an array
reference:

[% addresses = ['one@addr.ess',
 'two@addr.ess',
 'three@addr.ess'
];
 Mail.To(addresses) %]

If we are setting a value, we explicitly return the empty string, so
there are no side effects.

Because send
throws an exception if it
cannot contact the mail server, or if something else goes wrong, we
need to wrap calls to send in a
TRY...CATCH block:

[% TRY %]
 [% Mail.send %]
[% CATCH mail %]
 Error: [% error %]
[% END %]

The last thing to do is to make the plugin available to our templates:

my $t = Template->new({
 PLUGINS => {
 'mail' => 'TTBook::Template::Plugin::Mail',
 }
});

Example 8-11 is the complete
TTBook::Template::Plugin::Mail.

Example 8-11. TTBook::Template::Plugin::Mail

package TTBook::Template::Plugin::Mail;

use strict;
use base qw(Template::Plugin);
use vars qw($VERSION $AUTOLOAD);

use Mail::Sendmail;
use Net::Domain qw(hostfqdn);
use Template::Exception;
use Template::Plugin;

$VERSION = 1.00;
$AUTOLOAD = undef;

sub new {
 my ($class, $context, $params) = @_;
 my $self;

 $params->{ server } = 'mailhost'
 unless defined $params->{ server };

 $self = bless {
 _CONTEXT => $context,
 _ORIG_PARAMS => $params,
 _PARAMS => { },
 _LOGMESSAGE => '',
 } => $class;

 $self->reset();
 return $self;
}

sub reset {
 my $self = shift;
 delete $self->{ _ORIG_PARAMS }->{ 'message-id' };
 %{ $self->{ _PARAMS } } = %{ $self->{ _ORIG_PARAMS } };
 $self->{ _LOGMESSAGE } = '';
 return $self;
}

sub send {
 my $self = shift;
 my ($params, $context) = @$self{ qw(_PARAMS _CONTEXT) };
 my $mail = ref($_[-1]) eq 'HASH' ? pop @_ : { };

 %$mail = ('X-Mailer' => join('/', ref $self, $VERSION),
 %$params,
 %$mail);

 $mail->{'message-id'} = $self->generate_mid()
 unless defined $mail->{'message-id'};

 sendmail(%$mail)
 or $context->throw('mail', $Mail::Sendmail::error);

 $self->{ _LOGMESSAGE } = $Mail::Sendmail::log;

 return '';
}

sub generate_mid {
 my $self = shift;
 my @time = localtime;
 my $junk = join '', map { ('a'..'z', 'A'..'Z')[rand 52] } (0..8);

 my $mid = sprintf '<%d%02d%02d.%s@%s>',
 $time[5] + 1900, $time[4], $time[3], $junk, hostfqdn();

 return $mid;
}

sub logmessage {
 my $self = shift;
 return $self->{ _LOGMESSAGE };
}

my %multi = map { $_ => 1 } qw(to cc bcc);
sub AUTOLOAD {
 my $self = shift;
 my ($method, $item);

 $method = $AUTOLOAD;
 $method =~ s/.*:://;
 $method = ucfirst lc $method;
 $method =~ s/_(\w)/-\u$1/g;

 # Make an alias
 $item = \$self->{ _PARAMS }->{ $method };

 if (@_) {
 if (defined $multi{ $method }) {
 my @addrs;
 if (ref $_[0] eq 'ARRAY') {
 @addrs = @{$_[0]};
 } else {
 @addrs = @_;
 }
 $$item = join ', ', @addrs;
 } else {
 $$item = shift @_;
 }
 return '';
 }

 return $$item;
}

1;

8.3.5.4 GoogleSearch

Everybody loves Google, right? Since
the advent of the Google API, everybody can write their own custom
search interface. Aaron Straup Cope's
Net::Google provides a nice, simple Perl interface
to the Google SOAP API.

In order to use this plugin, you'll need to register
with Google; you can do so at http://api.google.com/.

Using the GoogleSearch plugin should be straightforward:

[% USE g = GoogleSearch('Template Toolkit') %]
[% num = g.num_results %]

[% FOREACH result = g.results %]
 [% result.title %]
 [% result.URL %]
[% END %]

The plugin starts with the usual prologue:

package TTBook::Template::Plugin::GoogleSearch;

use strict;
use vars qw($VERSION $KEY);
use base qw(Template::Plugin);

use Net::Google;
use Template::Exception;
use Template::Iterator;
use Template::Plugin;

$VERSION = 1.00;
$KEY = 'cc42973b5c5f292a7be146e1b444379e';

$KEY is your Google key. Don't
use the one in the preceding code because it isn't
real (it's the MD5 hash of the
string Template Toolkit).

Net::Google works by creating and reusing a
Net::Google instance, which acts as a factory for
Net::Google::Search instances. The best way to
represent this is by using the singleton plugin pattern described
earlier:

sub load {
 my ($class, $context) = @_;
 my $google = Net::Google->new(key => $KEY);

 bless {
 _CONTEXT => $context,
 _GOOGLE => $google,
 } => $class;
}

We will need $context for
throwing exceptions.

new() is where we create the
Net::Google::Search instance:

sub new {
 my ($self, $context, @args) = @_;
 my ($params, $google, $search, $p);

 $params = ref $args[-1] eq 'HASH' ? pop @args : { };

 $google = $self->{ _GOOGLE };
 $search = $self->{ _SEARCH } = $google->search();

 for $p (qw/ lr ie oe starts_at
 max_results safe filter /) {
 $search->$p($params->{$p})
 if defined $params->{$p};
 }

 $search->query(join ' ', @args);

 return $self;
}

Search terms are provided as positional arguments, while other
elements of the search are provided as named arguments:

[% USE g = GoogleSearch max_results = 50
 lr = ['de' 'es']
 'perl'
 '"templating languages"' %]

This search, for perl and templating
languages, will return up to 50 results (instead of the
default 10) and will search German and Spanish pages only. (See the
Net::Google::Search manpage for what the available
parameters actually are.)

Our result set will be wrapped in a
Template::Iterator instance:

sub results {
 my $self = shift;
 my ($search, @results, $iter);

 $search = $self->{ _SEARCH } || return Template::Iterator->new([]);
 @results = @{$search->results()};
 $iter = Template::Iterator->new(\@results);

 return $iter;
}

Each element in the iterator is a Result object
(created by the Net::Google::Response object), and
has methods useable to access the elements of the result:

[% FOREACH result = g.results %]
 blah blah blah

Example 8-12 is the complete
TTBook::Template::Plugin::GoogleSearch.

Example 8-12. TTBook::Template::Plugin::GoogleSearch

package TTBook::Template::Plugin::GoogleSearch;

use strict;
use vars qw($VERSION $KEY);
use base qw(Template::Plugin);

use Net::Google;
use Template::Exception;
use Template::Iterator;
use Template::Plugin;

$VERSION = 1.00;
$KEY = "cc42973b5c5f292a7be146e1b444379e";

sub load {
 my ($class, $context) = @_;
 my $google = Net::Google->new(key => $KEY);

 bless {
 _CONTEXT => $context,
 _GOOGLE => $google,
 } => $class;
}

sub new {
 my ($self, $context, @args) = @_;
 my ($params, $google, $search, $p);

 $params = ref $args[-1] eq 'HASH' ? pop @args : { };

 $google = $self->{ _GOOGLE };
 $search = $self->{ _SEARCH } = $google->search();

 for $p (qw/ lr ie oe starts_at
 max_results safe filter /) {
 $search->$p($params->{$p})
 if defined $params->{$p};
 }

 $search->query(join " ", @args);

 return $self;
}

sub results {
 my $self = shift;
 my ($search, @results, $iter);

 $search = $self->{ _SEARCH } ||
 return Template::Iterator->new([]);
 @results = @{$search->results()};
 $iter = Template::Iterator->new(\@results);

 return $iter;
}

1;

8.3.5.5 Normalizing URLs

For some reason, many organizations find it
difficult to keep their URLs consistent. This plugin might be
helpful: given a relative URL, it will return the canonical version
of it, relative to either the main host, or to the graphics host if
the link looks like it might be an image. For example:

[% USE Link www_host = 'www.example.com' %]
...

will produce:

...

This Link plugin accepts a few arguments:
www_host, graphics_host, and
opaque. graphics_host will be
used for things that appear to be images, and
www_host will be used for everything else. If
opaque is specified, the resulting URL will not
have a scheme; this is most useful for templates that might be served
under multiple protocols�for example, http
and https. The client will assume the current
scheme if one is not provided, so the server does not have to check
whether the current page is secure.

[% USE Link www_host = 'www.tt2.org',
 graphics_host = 'graphics.tt2.org',
 opaque = 1
%]

Calls to link() would expand to full URIs:

The URI referring to an image was detected, and the host was set to
the graphics server.

It would be straightforward to modify this plugin to treat arguments
to link as keywords rather than filenames.

Example 8-13 is the complete
TTBook::Template::Plugin::Link.

Example 8-13. TTBook::Template::Plugin::Link

package TTBook::Template::Plugin::Link;

use strict;
use vars qw($VERSION $DEFAULT_WWW_HOST $DEFAULT_GRAPHICS_HOST $DEFAULT_OPAQUE);
use base qw(Template::Plugin);

use LWP::MediaTypes qw(guess_media_type);
use URI;

$VERSION = 1.00;
$DEFAULT_WWW_HOST = "www.example.com";
$DEFAULT_GRAPHICS_HOST = "graphics.example.com";
$DEFAULT_OPAQUE = 0;

sub load {
 my ($class, $context, @args) = @_;
 my $params = ref $args[-1] eq 'HASH' ? pop @args : { };

 $context->stash->set("link", link_factory($params));

 bless { } => $class;
}

Nominal new; can't inherit from Template::Plugin
sub new { return shift }

sub link_factory {
 my $params = shift;
 my $www_host = sprintf "http://%s/", $params->{ www_host }
 || $DEFAULT_WWW_HOST;
 my $graphics_host = sprintf "http://%s/", $params->{ graphics_host }
 || $DEFAULT_GRAPHICS_HOST;
 my $opaque = $params->{'opaque'} || $DEFAULT_OPAQUE;

 return sub {
 my $url = shift || return;

 my $link = URI->new($url);

 # This will be the case for URIs such as "/foo", which
 # URI will decide are of type "URI::_generic"
 $link = URI->new($link, "http")->abs($www_host)
 unless ($link->can("host"));

 $link->host($graphics_host)
 if (guess_media_type($url) =~ /^image/);

 return $opaque ? $link->opaque() : $link->canonical();
 };
}

1;

8.4 Building a New Frontend

The Template module
is the default frontend to the Template Toolkit, but there are
others. The Apache::Template module, available
from CPAN, is one, as are the familiar tpage and
ttree. Here is a description of these default
frontends:

	Template

	
The Template module is
the frontend that most users are familiar with.
Template provides the familiar
process method:

$tt->process($input, $vars, $output)
 || die $tt->error();

Template uses the underlying
Template::Service instance internally to process
$input, and then redirect that output
appropriately, based on the third argument to process(
) (see Chapter 7 for details).

	Apache::Template

	
The Apache::Template module provides a simple
interface to the Template Toolkit from Apache/mod_perl.
Apache::Template allows configuration to be
handled in an Apache-specific manner, using directives in
Apache's httpd.conf
configuration file.

Apache::Template is covered in Chapter 12. The Appendix lists valid
Apache::Template-related
httpd.conf configuration directives.

	tpage and ttree

	
We've already met tpage and
ttree in Chapter 1 and
Chapter 2; these two scripts are also Template
Toolkit frontends.

A Template Toolkit frontend manages the
Template::Service instance, and, generally,
manages input and output. In this section, we look at these standard
frontends and how to build a custom frontend for email.

8.4.1 Mail::Template

Because
email is basically text, and generating text is so simple using the
Template Toolkit, why isn't there a dedicated mail
frontend? Well, there could be; let's develop one.

Our Template Toolkit frontend module needs two user-facing methods,
new and process. The
Template::Base
module implements most of the common functionality of the modules
that ship with the Template Toolkit, so we can start there:

package Mail::Template;

use strict;
use vars qw($VERSION $MAILHOST $MAILPORT);
use base qw(Template::Base);

use Mail::Sendmail qw(sendmail);
use Template::Base;

$VERSION = 1.00;
$MAILHOST = "mailhost" unless defined $MAILHOST;
$MAILPORT = 25 unless defined $MAILPORT;

The Mail::Sendmail module provides the
sendmail function, which, well, sends mail.
$MAILHOST and $MAILPORT are
defined as package variables so that the defaults can be overridden
in client code:

use Mail::Template;
$Mail::Template::MAILHOST = "smtp.example.com";

The new method inherited from
Template::Base calls the _init
method, which Mail::Template can use to handle
specific constructor details. _init is called with
a reference to a hash containing the parameters passed to
new.

sub _init {
 my ($self, $config) = @_;

 $self->{ _MAILHOST } = $config->{ MAILHOST } || $MAILHOST;

 if (not defined $config->{ MAILPORT }) {
 if ($self->{ _MAILHOST } =~ s/:(\d+)$//) {
 $self->{ _MAILPORT } = $1;
 }
 else {
 $self->{ _MAILPORT } = $MAILPORT;
 }
 }

 # Setup a Template::Service instance
 $self->{ SERVICE } = $config->{ SERVICE }
 || Template::Config->service($config)
 || return $self->error(Template::Config->error);

 return $self;
}

Mail::Template looks for two unique parameters:
MAILHOST and MAILPORT, both of
which are assigned reasonable defaults (mailhost and
25, respectively). We can use an alternate port or
host by passing them specifically, or the two can be joined with a
colon as MAILHOST:

my $config = { MAILHOST => "smtp-server:2525" };
my $mt = Mail::Template->new($config);

The Template::Service instance is created as an
idiom that occurs in many places throughout the Template Toolkit. The
error method, which is inherited from
Template::Base, does double-duty: if called
without an argument, it returns the most recent error message, but if
called with an argument, it sets the error data field and returns
undef. The Template::Config
class defines methods for instantiating all of the major components
of the Template Toolkit in one easy-to-use, easy-to-override place.
Any other parameters specified to the
Mail::Template constructor will be passed on to
the objects that the Template::Service instance
creates.

The format of the
process method is modeled after
Template::process:

sub process {
 my ($self, $input, $vars, $addrs, @opts) = @_;
 my ($output, $error);
 my $service = $self->{ SERVICE };
 my $options = (@opts = = 1) && ref($opts[0]) eq 'HASH'
 ? shift(@opts) : { @opts };
 $addrs = ref($addrs) eq 'ARRAY' ? $addrs : [$addrs];

 return $self->error("No recipients specified")
 unless @$addrs;

 $output = $service->process($input, $vars);

 if (defined $output) {
 $options->{ To } = $addrs;
 $options->{ Message } = $output;
 $options->{ Server } ||= $self->{ MAILHOST };
 $options->{ Port } ||= $self->{ MAILPORT };

 if (sendmail(%$options)) {
 return 1;
 }
 else {
 return $self->error($Mail::Sendmail::error);
 }
 }
 else {
 return $self->error($service->error);
 }
}

Just like Template::process,
Mail::Template::process can take up to four
arguments: the template to be processed; a reference to a hash of
parameters; a reference to a list of addresses; and a reference to a
hash of mail options, which will be used to set mail-specific
headers, such as Subject and
From:

my $friends = [qw(abw@cpan.org dave@dave.org.uk)];
my $options = {
 Subject => "Testing Mail::Template",
 From => "Darren Chamberlain <darren@cpan.org>",
};

$mt->process($input, $vars, $friends, $options)
 || die $tt->error;

The processing of the template is handled by the
Template::Service instance, which was created in
_init. This leaves only the sending of the mail
for process to handle (we farm that out to
Mail::Sendmail).

Example 8-14 is the complete
Mail::Template.

Example 8-14. Mail::Template

package Mail::Template;

use strict;
use vars qw($VERSION $MAILHOST $MAILPORT);
use base qw(Template::Base);

use Mail::Sendmail qw(sendmail);
use Template::Base;

$VERSION = 1.00;
$MAILHOST = "mailhost" unless defined $MAILHOST;
$MAILPORT = 25 unless defined $MAILPORT;

sub _init {
 my ($self, $config) = @_;

 $self->{ _MAILHOST } = $config->{ MAILHOST } || $MAILHOST;

 if (not defined $config->{ MAILPORT }) {
 if ($self->{ _MAILHOST } =~ s/:(\d+)$//) {
 $self->{ _MAILPORT } = $1;
 }
 else {
 $self->{ _MAILPORT } = $MAILPORT;
 }
 }

 # Set up a Template::Service instance
 $self->{ SERVICE } = $config->{ SERVICE }
 || Template::Config->service($config)
 || return $self->error(Template::Config->error);

 return $self;
}

sub process {
 my ($self, $input, $vars, $addrs, @opts) = @_;
 my ($output, $error);
 my $service = $self->{ SERVICE };
 my $options = (@opts = = 1) && ref($opts[0]) eq 'HASH'
 ? shift(@opts) : { @opts };
 $addrs = ref($addrs) eq 'ARRAY' ? $addrs : [$addrs];

 return $self->error("No recipients specified")
 unless @$addrs;

 $output = $service->process($input, $vars);

 if (defined $output) {
 $options->{ To } = $addrs;
 $options->{ Message } = $output;
 $options->{ Server } ||= $self->{ MAILHOST };
 $options->{ Port } ||= $self->{ MAILPORT };

 if (sendmail(%$options)) {
 return 1;
 }
 else {
 return $self->error($Mail::Sendmail::error);
 }
 }
 else {
 return $self->error($service->error);
 }
}

1;

8.4.2 Custom Apache Handlers

In many ways, writing a mod_perl-based
frontend is easier than writing other types of frontends because it
doesn't need to be as flexible. There is only one
way that your handler will be called, and you know exactly what
arguments will be provided. There are a few things to keep in mind
when writing this frontend, though; a primary goal should be to avoid
recreating Template Toolkit components whenever possible, especially
expensive objects such as the parser. Providing full access to the
request object and the metadata associated with it, such as cookies
and form parameters, is also very important.

The differences between Apache 1.3 and Apache 2.0 make themselves
known only in the machinery needed to make the handler work; the
Template Toolkit aspects are identical. Let's take a
look at a simple Apache 1.3/mod_perl 1.x handler:

package TTBook::ApacheHandler;

use strict;
use vars qw($VERSION);

$VERSION = 1.00; # Apache 1.3.x handler

use Apache;
use Apache::Constants qw(OK SERVER_ERROR);
use Template::Config;
use URI::Escape qw(uri_unescape);

Preload all Template Toolkit modules
Template::Config->preload();

my $tt;

We'll need the OK,
DECLINED, and SERVER_ERROR
constants�OK for when there are no problems,
SERVER_ERROR for when there are, and
DECLINED so that we can specifically decline to
handle requests for files that don't exist (or
requests for things that aren't files, such as
directories). Using DECLINED like this means that
Apache's normal error handlers can be used for
404's and the like.

Using Template::Config and getting a service
instance through Template::Config->service
means that we can use a custom subclass without having to change our
handler code. The Template Toolkit will defer loading modules until
they are needed, but calling
Template::Config->preload will force all of
them to be loaded immediately. Under mod_perl, this is important
because modules compiled in the parent process will reside in the
segment of memory shared among all the child processes, which can
result in memory savings.

We use a package-scoped lexical variable, $tt, to
store our service instance so that it can be shared between multiple
requests by the same child:

sub handler {
 my $r = shift;
 my ($filename, $docroot, %vars, $template, $content);

 $filename = $r->filename;
 $docroot = $r->docroot;

 return DECLINED unless -f $filename;

If this is the first time the current child process has been called
up to handle a template, $tt will not be defined.
We define it here, and check for errors:

$tt ||= do {
 Template::Config->service({
 INCLUDE_PATH => [$docroot],
 });
};

unless (defined $tt) {
 # Catch errors here, and return SERVER_ERROR
 my $mod = $Template::Config::SERVICE;
 $r->log_error("Can't create $mod instance: ",
 Template::Config->error);
 return SERVER_ERROR;
}

If creating a Template::Service instance fails, we
need to report it. A well-behaved mod_perl script will write to
Apache's error_log and the best way to do that is to
use the Apache object's log_error
method. We feed it the error according to
Template::Config.

We can make query parameters available as top-level variables so that
a request for /news/2003/08/11?article=34293 makes
a variable called article available within the
templates:

[% article %]

In list context, both $r->args and
$r->content return a hash of variables, which
is, conveniently enough, what we will need to pass to
process:

%vars = $r->method eq 'POST' ? $r->content : $r->args;

Apache doesn't make the parsed cookies available,
but they can be pulled out pretty easily:

my @cookies = split /;\s*/, $r->header_in('cookie');
for my $cookie (@cookies) {
 my ($name, $value) = map { uri_unescape($_) } split /=/, $cookie;
 $vars{$name} = $value;
}

This makes cookies available as top-level variables, just like query
parameters.

The service instance uses the DocumentRoot for its
INCLUDE_PATH, so we need to strip it from the
filename. A request for something like
/news/2003/08/11 will be resolved to a filename
such as /var/www/news/2003/08/11, which we then
turn into news/2003/08/11:

($template = $filename) =~ s,^\Q$docroot\E/?,,;

We pass $template to the service instance to
process and check for errors. Again, we return
SERVER_ERROR if something goes wrong. A more
robust implementation might check whether TOLERANT
was set, and return DECLINED so that the next
content handler in line gets a shot (which might be
Apache's default-handler):

$content = $tt->process($template, \%vars) || do {
 $r->log_error("$template returned no content: ",
 $tt->error);
 return SERVER_ERROR;
};

At this point, $content contains the results of
processing our template, and control is returned to our handler. We
can add some extra header fields to the response (such as
Content-Length) call
$r->print($content) to tell Apache to send the
data to the client, and return OK to tell Apache
that we handled the request successfully:

$r->content_type('text/html');
$r->headers_out->add('Content-Length', length($content));
$r->send_http_header;

$r->print($content);

 return OK;
}

1;

You might have noticed that this handler makes no attempt to account
for virtual hosts. A reasonable way to use this module�or one
like it�with virtual hosts is to store the service instances in
a hash keyed by $r->server_name; then each
virtual host will have its own set of template objects.

Setting up TTBook::ApacheHandler within
httpd.conf is very similar to setting up
Apache::Template:

<Files *.html>
 SetHandler perl-script
 PerlHandler TTBook::ApacheHandler
</Files>

Example 8-15 is the complete
TTBook::ApacheHandler.

Example 8-15. TTBook::ApacheHandler

package TTBook::ApacheHandler;

use strict;
use vars qw($VERSION);

$VERSION = 1.00; # Apache 1.3.x handler

use Apache;
use Apache::Constants qw(OK SERVER_ERROR);
use Template::Config;
use URI::Escape qw(uri_unescape);

Preload all Template Toolkit modules
Template::Config->preload();

my $tt;

sub handler {
 my $r = shift;
 my ($filename, $docroot, %vars, $template, $content);

 $filename = $r->filename;
 $docroot = $r->docroot;

 return DECLINED unless -f $filename;

 $tt ||= do {
 Template::Config->service({
 INCLUDE_PATH => [$docroot],
 });
 };

 unless (defined $tt) {
 # Catch errors here, and return SERVER_ERROR
 my $mod = $Template::Config::SERVICE;
 $r->log_error("Can't create $mod instance: ",
 Template::Config->error);
 return SERVER_ERROR;
 }

 %vars = $r->method eq 'POST' ? $r->content : $r->args;

 my @cookies = split /;\s*/, $r->header_in('cookie');
 for my $cookie (@cookies) {
 my ($name, $value) = map { uri_unescape($_) } split /=/, $cookie;
 $vars{$name} = $value;
 }

 ($template = $filename) =~ s,^\Q$docroot\E/?,,;

 $content = $tt->process($template, \%vars) || do {
 $r->log_error("$template returned no content: ",
 $tt->error);
 return SERVER_ERROR;
 };

 $r->content_type('text/html');
 $r->headers_out->add('Content-Length', length($content));
 $r->send_http_header;

 $r->print($content);

 return OK;
}

1;

8.5 Changing the Language

The grammar for the Template Toolkit language is
generated using a YACC-like parser generator written in Perl called
Parse::Yapp
(http://search.cpan.org/dist/Parse-Yapp/).
Parse::Yapp is not distributed with or required by
the Template Toolkit, but you will need it if you want to regenerate
the grammar. Yapp is identical to YACC in all the important ways; for
a good general introduction to YACC, see lex &
yacc, Second Edition, by John R. Levine, Tony Mason, and
Doug Brown (O'Reilly), which gives a good
introduction to the principles of an LALR parser and how to define
grammars in YACC. See also the Parse::Yapp
documentation and the comments in Template::Parser
for more information. For an in-depth study of parser and compiler
theory, consult Compilers: Principles, Techniques and
Tools (a.k.a., the "Dragon
Book") by Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman (Addison Wesley).

The Template Toolkit source distribution includes the subdirectory
parser, which contains a few files, most notably
one called Parser.yp. This is the one you will
be modifying to extend the language.[3] The parser grammar is compiled by
yapp, the frontend script to
Parse::Yapp, based on the grammar skeleton
Grammar.pm.skel, which is also in the
parser directory.
[3] Be sure to have
a backup of the file handy while you are modifying the
grammar!

Changing the grammar is a simple process, in theory at least, if
you're familiar with Yapp/YACC. In practice, it also
requires some insight into the inner workings of the Template
Toolkit.

8.5.1 Building the Grammar

The Template Toolkit distribution includes a helper
script called yc, which builds the grammar. It
is a thin wrapper around yapp that sets the
appropriate options to compile, emit, and save the Perl code for the
grammar. Here it is in its entirety:

#!/bin/sh

: ${GRAMMAR:="Parser.yp"}
: ${OUTPUT:="../lib/Template/Grammar.pm"}
: ${TEMPLATE:="Grammar.pm.skel"}

echo "Compiling parser grammar (${GRAMMAR} -> ${OUTPUT})"

yapp -v -s -o ${OUTPUT} -t ${TEMPLATE} ${GRAMMAR}

yc takes the grammar defined in
Parser.yp and plugs it into the skeleton module
file, Grammar.pm.skel. The output is written to
lib/Template/Grammar.pm, clobbering anything
that was there before. A report detailing the status of the
compilation process is written to Parser.output:

$./yc
Compiling parser grammar (Parser.yp -> ../lib/Template/Grammar.pm)

yc writes the output to the
../lib/Template/Grammar.pm file by default, so
you'll need to modify the script accordingly (or set
the OUTPUT environment variable) if you want to
compile your own grammar module with it.

Be prepared to become intimately familiar with the (rather verbose)
output in the Parser.output file if
you're planning on writing your own grammar or
making major changes to the existing grammar. Often
yapp will refuse to compile grammar, or raise
warnings about conflicts that indicate
ambiguities in the grammar that it can't
automatically resolve. In these cases, you'll need
to carefully inspect the error report in
Parser.output and trace through the rules and
states listed to try and figure out where you went wrong. A good
compiler reference book will be invaluable at this stage.

8.5.2 Extending the Existing Grammar

In most cases,
you will be modifying the grammar because you have a specific feature
or syntax element in mind that you want to be part of the core
language, or your version of it. Many things can be done with plugins
or filters, but you are still bound by the syntax of the language.

The Template Toolkit display language is very rich, and lacks very
few control structures or directives. But occasionally, something
will stand out as particularly expressive or helpful. With that in
mind, let's add a feature to the language:
UNTIL. UNTIL is logically
equivalent to WHILE NOT, but can make for cleaner
templates:

[% UNTIL count = = 100 %]
 [% do.something.to(count) %]
[% END %]

Because UNTIL is a variation of
WHILE, we can probably get away with mimicking the
WHILE implementation, and simply negating the
condition test. This simple implementation will give us a chance to
poke around the grammar a bit.

We'll start in
parser/Parser.yp. Download a fresh tarball (or
get a new CVS checkout) of the Template Toolkit sources, and
let's begin.

	
Parse::Yapp

As mentioned earlier, Parse::Yapp is very similar
to yacc, and the format of the grammar file is
also very similar. It consists of three main sections, divided by
%%; the first section is the
preamble, the last section is the
postamble, and the middle section consists of
sets of rules that define the structure of the
language being represented. These rules are in the form:

rule: production1 | production2 | production3 ;

A production consists of two parts: a series of
tokens that defines what the production looks like, and an optional
action, enclosed in { and }.
Productions are defined in terms of other rules and
terminals. A terminal is a token that cannot be
reduced any further� i.e., one that doesn't
match any other rules.

For example, the grammar for Template::Simple
defines this simple rule, chunk:

chunk: TEXT { $factory->textblock($_[1]) }
 | statement ';'

The rule is chunk, and there are two productions:
TEXT { ... } and statement ';'
(the | indicates alternates). This means that the
chunk rule is defined as either
TEXT or whatever statement
expands to (followed by a literal ;). The
{ ... } block attached to the
TEXT subrule will be emitted literally into the
grammar, and is assumed to be syntactically correct Perl code (it
will become part of live code when the resulting grammar is actually
used). The statement rule is assumed to have its
own code block. The parser will pass the matching tokens to the
statement as @_, with the parser as
$_[0].

The parser will continue to reduce parsing until there are no
expandable rules left in the input stream. At this point, the data is
in its final parsed form.

The first thing to do is to modify the grammar, which means editing
parser/Parser.yp. Because
UNTIL will be based on WHILE,
we can duplicate the WHILE implementation. The
grammar defines WHILE as a type of
loop; the definition for loop
looks like this:

loop: FOR loopvar ';' { $_[0]->{ INFOR }++ }
 block END { $_[0]->{ INFOR }--;
 $factory->foreach(@{$_[2]}, $_[5]) }
 | atomexpr FOR loopvar { $factory->foreach(@{$_[3]}, $_[1]) }
 | WHILE expr ';' { $_[0]->{ INWHILE }++ }
 block END { $_[0]->{ INWHILE }--;
 $factory->while(@_[2, 5]) }
 | atomexpr WHILE expr { $factory->while(@_[3, 1]) }
;

We see that two types of loops are defined in the
language�FOR and
WHILE�and that each has a side-effect
variant (e.g., atomexpr FOR loopvar).

The WHILE actions increment and decrement the
INWHILE member of $_[0]
(we'll see $_[0] in a moment); a
quick search through the file reveals that INWHILE
is used to implement the LAST and
NEXT directives (these are atomic
directives, which the grammar calls
atomdir). If we are in a WHILE
or FOR loop, these directives jump to the next or
last occurrence of the LOOP label. Otherwise, they
simply jump to the end of the current block:

atomdir: GET expr { $factory->get($_[2]) }
 ...
 | LAST { $_[0]->{ INFOR } || $_[0]->{ INWHILE }
 ? 'last LOOP;'
 : 'last;' }
 | NEXT { $_[0]->{ INFOR }
 ? $factory->next()
 : ($_[0]->{ INWHILE }
 ? 'next LOOP;'
 : 'next;') }
 ...
 ;

So we'll need to keep INWHILE for
UNTIL.

The action for WHILE calls
$factory->while(@_[2, 5]). We know that
$factory is a
Template::Directive instance�this is what
its while method looks like:

sub while {
 my ($class, $expr, $block) = @_;
 $block = pad($block, 2) if $PRETTY;

 return <<EOF;

WHILE
do {
 my \$failsafe = $WHILE_MAX;
LOOP:
 while (--\$failsafe && ($expr)) {
$block
 }
 die "WHILE loop terminated (> $WHILE_MAX iterations)\\n"
 unless \$failsafe;
};
EOF
}

This production produces a series of five tokens:
WHILE, the expansion of expr,
;, the expansion of the block,
and END. These five elements, along with the
parser object itself, are passed to the code block as
@_. The factory's
while is only interested in
expr and block (which is
reasonable because the other tokens are static strings):

| WHILE expr ';' { $_[0]->{ INWHILE }++ }
 block END { $_[0]->{ INWHILE }--;
 $factory->while(@_[2, 5]) }

$_[0] is the parser itself, and each token in the
subrule becomes another element in the @_ array
passed to the action subroutine. The parser invokes actions for
subrules recursively, so $_[2], which is
expr, has already been passed through the
expr rule:

expr: expr BINOP expr { "$_[1] $_[2] $_[3]" }
 | expr '/' expr { "$_[1] $_[2] $_[3]" }
 | expr '+' expr { "$_[1] $_[2] $_[3]" }
 | expr DIV expr { "int($_[1] / $_[3])" }
 | expr MOD expr { "$_[1] % $_[3]" }
 | expr CMPOP expr { "$_[1] $CMPOP{ $_[2] } $_[3]" }
 | expr CAT expr { "$_[1] . $_[3]" }
 | expr AND expr { "$_[1] && $_[3]" }
 | expr OR expr { "$_[1] || $_[3]" }
 | NOT expr { "! $_[2]" }
 | expr '?' expr ':' expr { "$_[1] ? $_[3] : $_[5]" }
 | '(' assign ')' { $factory->assign(@{$_[2]}) }
 | '(' expr ')' { "($_[2])" }
 | term
;

So $_[2] contains a string of Perl code as
generated by the expr rule when the action for
WHILE gets to it. Most of these rules are defined
in terms of themselves, except for term:

term: lterm
 | sterm
;

lterm: '[' list ']' { "[$_[2]]" }
 | '[' range ']' { "[$_[2]]" }
 | '[' ']' { "[]" }
 | '{' hash '}' { "{ $_[2] }" }
;

sterm: ident { $factory->ident($_[1]) }
 | REF ident { $factory->identref($_[2]) }
 | '"' quoted '"' { $factory->quoted($_[2]) }
 | LITERAL
 | NUMBER
;

term eventually settles itself down to be a dotted
identified (ident), a quoted string
(quoted), a literal (LITERAL),
or a number (NUMBER), or a list, hash, or range of
those things.

Similarly, $_[5] contains a string of Perl code as
determined by the block rule, which is one of the
core building blocks of the grammar.

We want UNTIL to call a method with the same
signature that WHILE calls, so we can duplicate
the appropriate lines in the loop rule:

loop: FOR loopvar ';' { $_[0]->{ INFOR }++ }
 block END { $_[0]->{ INFOR }--;
 $factory->foreach(@{$_[2]}, $_[5]) }
 | atomexpr FOR loopvar { $factory->foreach(@{$_[3]}, $_[1]) }
 | WHILE expr ';' { $_[0]->{ INWHILE }++ }
 block END { $_[0]->{ INWHILE }--;
 $factory->while(@_[2, 5]) }
 | atomexpr WHILE expr { $factory->while(@_[3, 1]) }
 | UNTIL expr ';' { $_[0]->{ INWHILE }++ }
 block END { $_[0]->{ INWHILE }--;
 $factory->until(@_[2, 5]) }
 | atomexpr UNTIL expr { $factory->until(@_[3, 1]) }
;

This points to the currently nonexistent until
method of Template::Directive;
let's add it. Open
lib/Template/Directive.pm and find the
while method. Because UNTIL is
logically equivalent to WHILE NOT,
while is where we need to start looking, and in
fact, we can duplicate it almost in its entirety:

sub until {
 my ($class, $expr, $block) = @_;
 $block = pad($block, 2) if $PRETTY;

 return <<EOF;

UNTIL
do {
 my \$failsafe = $WHILE_MAX;
LOOP:
 while (--\$failsafe && !($expr)) {
$block
 }
 die "UNTIL loop terminated (> $WHILE_MAX iterations)\\n"
 unless \$failsafe;
};
EOF
}

We can copy the while method, and change the name
of the subroutine and the name of the directive (in case anyone looks
at the generated code), as well as modify the loop expression, from:

while (--\$failsafe && ($expr)) {

to:

while (--\$failsafe && !($expr)) {

And we're finished inside
Directive.pm.

The last change is one of the most important�we need to tell
the grammar that UNTIL is now a reserved word. In
parser/Grammar.pm.skel, add
UNTIL to the @RESERVED array:

@RESERVED = qw(
 GET CALL SET DEFAULT INSERT INCLUDE PROCESS WRAPPER BLOCK END
 USE PLUGIN FILTER MACRO PERL RAWPERL TO STEP AND OR NOT DIV MOD
 IF UNLESS ELSE ELSIF FOR NEXT WHILE SWITCH CASE META IN
 TRY THROW CATCH FINAL LAST RETURN STOP CLEAR VIEW DEBUG
 UNTIL
);

Now, we're ready to re-create the grammar, and start
testing!

$./yc
Compiling parser grammar (Parser.yp -> ../lib/Template/Grammar.pm)

When making any changes to the grammar, it is important to go back to
the root of the distribution and run make
test, to ensure that your changes
didn't accidentally break anything else. It is also
a good idea to write some new tests to both illustrate and test your
new functionality.

8.5.3 Replacing the Default Grammar

It is possible to completely replace the existing
grammar with something radically different. Generally, this requires
not only the appropriate Grammar.pm file, but
also a Template::Directive-style factory class
that knows how to emit the code to implement your new language.

8.5.3.1 Template::Simple

The
Template::Simple module implements
a simple template language for use with the Template
Toolkit.[4] It really is simple
compared to the regular Template Toolkit language. It allows you to
access variables and nothing else. No directives. No
INCLUDE, no IF, no
FOREACH. Nothing.
[4] Template::Simple is
available via anonymous CVS at cvs
-d:pserver:cvs@tt2.org:/Template-Simple co
Template-Simple.

However, all of the functionality for accessing variables is
available. You can use scalars, lists, hash arrays, subroutines, and
objects, and you can call virtual methods. There is no
SET directive, either implicit or explicit, so you
cannot update or create new variables.

simple vars
[% name %] is an inhabitant of [% planet %].

complex vars
[% friends.0 %] and [% friends.1 %] are his friends.

virtual methods
[% friends.join(' and ') %] are still his friends.

You can emulate existing directives by binding subroutines to
variables that make the appropriate calls to the
Template::Context object:

my $ts = Template::Simple->new();
my $tc = $ts->context();

my $vars = {
 name => 'Arthur Dent',
 planet => 'Earth',
 friends => ['Ford Prefect', 'Slartibartfast'],
 include => sub { $tc->include(@_) },
};

Then you access the subroutine via the include variable, passing the
template name and local variables as arguments:

[% include('person/summary',
 name = 'Slartibartfast'
 planet = 'Magrethea')
%]

The Template::Simple module is a very thin wrapper
around the Template module. All it does is set the
GRAMMAR configuration option to
Template::Simple::Grammar. Most of the other
Template Toolkit options can be passed to the
Template::Simple constructor. However, any options
that relate to directives that are no longer implemented will be
ignored (e.g., PLUGINS,
FILTERS, etc.).

8.5.3.2 The Template::Simple grammar

The heart of Template::Simple is the grammar,
which is built from Parser.yp.
Template::Simple's full grammar
is relatively simple, and consists of a small set of core tokens
(TEXT, IDENT, COMMA, LITERAL, NUMBER, DOT, ASSIGN) and a few more
complex rules built up from these tokens.

Example 8-16 is the complete
Template::Simple grammar. To read the grammar,
start at the top�the first rule is the implicit
"start" rule, from which the parser
commences. Thus, the main rule in this grammar is
template. $factory is the Perl
factory, Template::Directive by default, that is
used to generate Perl code that will eventually be transformed into
the Template::Document instance (refer to Chapter 7 for all
the details).

Example 8-16. Template::Simple grammar

%%

template: block { $factory->template($_[1]) }
;

block: chunks { $factory->block($_[1]) }
 | /* NULL */ { $factory->block() }
;

chunks: chunks chunk { push(@{$_[1]}, $_[2])
 if defined $_[2];
 $_[1]
 }
 | chunk { defined $_[1]
 ? [$_[1]]
 : []
 }
;

chunk: TEXT { $factory->textblock($_[1]) }
 | statement ';'
;

statement: term { $factory->get($_[1]) }
 | /* empty */
;

term: ident { $factory->ident($_[1]) }
 | '"' quoted '"' { $factory->quoted($_[2]) }
 | LITERAL
 | NUMBER
;

ident: ident DOT node { push(@{$_[1]}, @{$_[3]});
 $_[1]
 }
 | ident DOT NUMBER { push(@{ $_[1] },
 map { ($_, 0) }
 split(/\./, $_[3]));
 $_[1]
 }
 | node
;

node: item { [$_[1], 0] }
 | item '(' args ')' { [$_[1], $factory->args($_[3])] }
;

item: IDENT { "'$_[1]'" }
 | '${' term '}' { $_[2] }
 | '$' IDENT { $factory->ident(["'$_[2]'", 0]) }
;

args: args term { push(@{$_[1]}, $_[2]);
 $_[1]
 }
 | args param { push(@{$_[1]->[0]}, $_[2]);
 $_[1]
 }
 | args COMMA { $_[1] }
 | /* init */ { [[]] }
;

quoted: quoted quotable { push(@{$_[1]}, $_[2])
 if defined $_[2];
 $_[1]
 }
 | /* NULL */ { [] }
;

quotable: ident { $factory->ident($_[1]) }
 | TEXT { $factory->text($_[1]) }
 | ';' { undef }
;

param: LITERAL ASSIGN term { "$_[1] => $_[3]" }
 | item ASSIGN term { "$_[1] => $_[3]" }
;

%%

Chapter 9. Accessing Databases

In many ways, the integration of a templating system and a database
is natural. From e-commerce sites to Microsoft
Word's MailMerge, database-backed template
processing is very common. Indeed, this integration is one of the
primary selling points of many systems, such as ASP and PHP.

You can integrate the Template Toolkit with a database in several
ways. The most straightforward way is to simply use the DBI plugin.
The DBI plugin is part of the standard Template Toolkit distribution,
and provides a template-facing way to utilize Perl's
DBI module (see Programming the Perl
DBI: Database Programming with Perl, by Alligator
Descartes and Tim Bunce (O'Reilly), for details
about the DBI).

In addition to DBI, several database-related
modules are on CPAN, such as Class::DBI and
DBIx::SearchBuilder, that can be used to abstract
the database layer out of code. Using these modules from within the
Template Toolkit is the same as using them in Perl programs.

Writing your own abstraction layer is always an option as well. Many
people like to keep SQL out of application code, for the same reasons
that people prefer to keep business logic out of presentation
templates; this is the primary purpose of a database abstraction
layer. Many SQL-related helper modules are on CPAN, such as
SQL::Abstract, SQL::OrderBy,
SQL::QueryBuilder::Simple, and
SQL::AnchoredWildcards, that can be used to help
provide a non-SQL interface to a database.

9.1 Using the DBI Plugin

The DBI plugin provides direct access to the Perl DBI. The DBI
provides a generic way of connecting to a database, and is the
standard for using databases within Perl. The DBI plugin is a thin
wrapper around DBI, with some Template
Toolkit-specific modifications.

9.1.1 Simple Database Access with the DBI Plugin

In our first example of using the DBI plugin,
we'll pull some data out of a MySQL database that
contains details of a company's product range. Example 9-1 shows the template that we will use.

Example 9-1. Listing products

[% USE DBI('dbi:mysql:products', 'username', 'password') -%]
 Code Name Price Stock
 [% FOREACH product = DBI.query('select ProductID, Name, Price, Stock from products') -%]
 [% product.ProductID | format('%05d') %] [% product.Name -%]
 $[% product.Price | format('%6.2f') %] [% product.Stock | format('%5d') %]
[% END -%]

The first thing to notice is the USE
DBI directive, which is used to load the
DBI plugin and connect to the database. The
USE DBI directive takes a number of arguments. In
this case, we pass it a string that identifies the data source that
we want to connect to, together with the username and password that
are required to make the connection.

The exact syntax of the data source identifier will vary depending on
the type of the data source, but it will always start with the string
dbi followed by a colon and the name of the connection type. In this
case, as we are connecting to a MySQL database, we give it the string
mysql followed by the name of the database that we
wish to connect to (products). This usage assumes that the database
is on the same server as the template processor. If it is on a
different server, we can define that here by adding the hostname to
the end of the data source identifier�for example,
dbi:mysql:products:db.company.com would attempt
to connect to the products database on the server
db.company.com.

Having connected to the database, we can start to execute queries to
access the required data. In this example, we will use the
query function,
which executes an SQL select query and returns the data a row at a
time in a hash. The keys of the hash are the names of the columns
selected. We assign each row in turn to the variable
product, and can use that variable to access
various parts of the returned row. Here are the results of processing
the template in Example 9-1:

Code Name Price Stock
00050 Basic Widget $ 49.99 2500
00051 Cheap Widget $ 29.99 5000
00101 Super Widget $ 99.99 1000
00102 Ultra Widget $149.99 500

Example 9-2 adds another level of complexity. Each
product comes from a supplier; in this second report, we want to
produce a list of each supplier followed by a sublist of the products
that we get from the supplier.

Example 9-2. Listing products by supplier

[% USE DBI('dbi:mysql:products', 'username', 'password')
 suppliers = DBI.prepare('select SupplierID, Name from suppliers')
 products = DBI.prepare('select ProductID, Name, Price, Stock
 from products
 where SupplierID = ?')
-%]
[% FOREACH supplier = suppliers.execute -%]
[% supplier.Name %]
 [% FOREACH product = products.execute(supplier.SupplierID) -%]
 [% product.Name %]
 [% END %]
[% END -%]

For this, we will need two SQL queries to be active�one to list
the suppliers and one to list the products. Additionally, the product
query will need to take a parameter so that it returns only the
products from the current supplier. To do this, we use the
prepare method to precompile the two queries.
Notice that the product query contains a clause, where
SupplierID = ?. The ? character marks a
placeholder that will be filled in when we execute the query.

We then execute the suppliers query and process each returned row. As
part of that processing, we execute the products query. The call to
products.execute is passed the
SupplierID for the current supplier record. Any
arguments to execute are used as values to fill in
the placeholders in the original SQL.

Here are the results of processing the template in Example 9-2:

Costcutter Widgets Inc.
 Basic Widget
 Cheap Widget

Quality Widgets Inc.
 Super Widget
 Ultra Widget

9.1.2 A More Complex Example: Web Access Logs

Having taken a look at a couple of simple
templates that use the DBI plugin, it's now time to
look at a more complex example. For this section, we will be using a
table generated from a web server's access log (in
Common Log Format). For simplicity, our examples will use
DBD::SQLite�SQLite is a small, fast,
embeddable, typeless RDBMS that implements most of SQL92, and
includes advanced features such as transactions, triggers, and views.
See http://www.hwaci.com/sw/sqlite/ for details
about SQLite, and http://search.cpan.org/dist/DBD-SQLite/ for
details about DBD::SQLite.

We will be using the following table definition:

access_log.sql

CREATE TABLE access_log (
 id INTEGER PRIMARY KEY,
 hostaddr VARCHAR,
 hostname VARCHAR,
 logname VARCHAR,
 req_time VARCHAR,
 request VARCHAR,
 uri VARCHAR,
 method VARCHAR,
 http_version VARCHAR,
 status VARCHAR,
 bytes_sent VARCHAR
);

The hostname field is generated by doing a
DNS lookup of the hostaddr field (if it
doesn't look like an IP address), and the
uri, method, and
http_version fields are parsed from the
request field.

Example 9-3 shows the script that we used to get our
file-based data into the database.

Example 9-3. Parsing log file entries

#!/usr/bin/perl -w

use strict;
$|++;

use DBI;
use Net::Nslookup qw(nslookup);
use Regexp::Common qw(net);

my $dsn = shift;
my $dbh = DBI->connect($dsn)
 || die "Can't connect to '$dsn': $DBI::err\n";

my $count = 0;
my $INSERT =<<'SQL';
 INSERT INTO access_log
 (hostaddr, hostname, logname, req_time, request,
 uri, method, http_version, status, bytes_sent)
 VALUES
 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
SQL

while (<>) {
 my ($hostaddr, $logname, $remote_user, $req_time,
 $request, $status, $bytes_sent) = /^(\S+) # host address
 \s+
 (\S+) # remote logname
 \s+
 (\S+) # username
 \s+
 \[(.+?)\] # request time
 \s+
 "(.+?)" # request
 \s+
 ([\d-]+) # status
 \s+
 ([\d-]+) # bytes sent
 /x;

 next unless $hostaddr;

 my ($method, $uri, $http_version) = split /\s+/, $request;

 my $hostname;
 if ($hostaddr =~ /$RE{net}{IPv4}/o) {
 $hostname = nslookup(host => $hostaddr, type => 'PTR');
 }
 else {
 $hostname = $hostaddr;
 }

 $dbh->do($INSERT, undef, $hostaddr, $hostname, $logname,
 $req_time, $request, $uri, $method, $http_version,
 $status, $bytes_sent)
 or warn "Error inserting line $.: " . $dbh->errstr;

 $count++;
 print '.' if (($count % 10) = = 0);
 print "\n" if (($count % 700) = = 0);
}

$dbh->commit; # commit any outstanding lines
$dbh->disconnect;

Run the script with the DSN as the first argument, and an
access_log on standard input:

$ logparse.pl dbi:SQLite:dbname=access_log < /home/www/logs/access_log

The script emits a dot character (.) for each 10
lines it inserts, breaking the output lines at 70 characters, mainly
as a visual indication that it is still running (inserting thousands
of entries can take a long time, after all).

With that out of the way, we can start using the
DBI plugin. To connect to a database, pass the DSN
to the USE DBI line in the template:

[% USE DBI('dbi:SQLite:dbname=access_log') %]

Or use the connect() method on a
DBI object:

[% USE DBI %]
[% DBI.connect('dbi:SQLite:dbname=access_log') %]

Once we have a DBI object, we can use it to issue
SQL
statements:

[% log_entries = DBI.query('SELECT * FROM access_log') %]

The query method takes an SQL statement, which it
issues against the underlying database, and returns an iterator that
we can use to manipulate the data (see Example 9-4).

Example 9-4. Counting visitors

[% # Get a count of visits per address
 visitors = { };
 FOREACH log_entry IN log_entries;
 visitors.${log_entry.hostaddr} =
 visitors.${log_entry.hostaddr} + 1;
 END

 MACRO times(count)
 # "1 time" or "2 times"
 IF count = = 1;
 "$count time";
 ELSE;
 "$count times";
 END
-%]
[% FOREACH visitor IN visitors.keys %]
 [% visitor %] visited [% times(visitors.$visitor) -%]
[% END %]

The simple template in Example 9-4 might give us
something like the following:

134.174.141.2 visited 4 times
128.103.1.1 visited 1 time
206.33.106.134 visited 2 times
4.2.2.1 visited 3 times

Once we have the data, we can use one of the
graph-generating plugins�for
example, GD.Graph.pie, to generate a nice graph (see Example 9-5).

Example 9-5. Generating graphs

[% USE graph = GD.Graph.pie(400, 300);
 FILTER null;
 data = [
 [] # Array of addresses
 [] # Array of visits
];

 FOREACH visitor IN visitors.keys;
 data.0.push(visitor);
 data.1.push(visitors.$visitor);
 END;

 dclrs = ['green' 'blue' 'red' 'cyan'];
 graph.set(
 title = 'Visits per address'
 transparent = 0,

 cycle_clrs = 1
 dclrs = dclrs
);

 # plot data as a PNG, and send it to stdout
 # (recall the argument to the stdout filter
 # indicates that bindmode should be set).
 graph.plot(data).png | stdout(1);
 END;
-%]

Because the DBI plugin passes through to the underlying RDBMS, we can
use any functions or stored procedures that database offers, as shown
in Example 9-6.

Example 9-6. Using RDBMS-specific functions

[% query = DBI.query('SELECT sum(bytes_sent) as bytes_sent,
 hostaddr FROM access_log group by
 hostaddr'); %]
[% FOREACH hb = query %]
 We sent [% hb.bytes_sent %] bytes to [% hb.hostaddr %].
[% END %]

The query method returns an iterator that is
similar, though not identical, to what is created within a
FOREACH loop (the loop
variable). This means that we have access to some of
loop's methods, such as
size, index, and
max (see Example 9-7).

Example 9-7. Counting results

[% log_entries = DBI.query('SELECT hostaddr
 FROM access_log
 GROUP BY hostaddr');
-%]
There are [% log_entries.size %] unique addresses in the log.

Business folk like to have reports in CSV format so that they can
manipulate the data in a spreadsheet program such as Excel or
Gnumeric; producing a CSV file
is pretty straightforward, as shown in Example 9-8:

Example 9-8. Producing a report as a CSV file

[% log_entries = DBI.query('SELECT * FROM access_log');
 FOREACH entry IN log_entries;
 FOREACH field IN entry.keys;
 field = entry.$field;
 field.match('[,]') ? "\"$field\"" : field;
 "," UNLESS loop.last;
 END;
 "\n";
 END
-%]

If the field contains a comma (,) or a space, we
quote it, using double quotes. Otherwise, it can be emitted as is.

Generating the report in
XML format is similar, as
shown in Example 9-9.

Example 9-9. Producing a report as XML

<?xml version="1.0" standalone="yes"?>
<access-log>
 [% log_entries = DBI.query('SELECT * FROM access_log') %]
 [% FOREACH entry IN log_entries %]
 <log-entry>
 [% FOREACH field IN entry.keys %]
 <[% field %]>[% entry.$field | html %]</[% field %]>
 [% END %]
 </log-entry>
 [% END %]
</access-log>

9.2 Using Class::DBI

Class::DBI is a convenient, easy-to-use database
abstraction layer. It automates all the repetitive code that
accompanies every database wrapper�accessors, mutators,
constructors, search interfaces�and enforces efficient use of
the DBI as well.

When using Class::DBI-based objects with the
Template Toolkit, most of the work takes place in the Perl module
that implements the class; once that part is written, templates can
treat the object like any other variable. With
Class::DBI taking care of most of the details of
the database, fully functional modules can be implemented with very
little actual code.

To illustrate using Class::DBI with the Template
Toolkit, here is a very simple realestate application, based around a
few tables:

CREATE TABLE listing (
 listing INTEGER PRIMARY KEY,
 location INTEGER,
 realtor INTEGER,
 price INTEGER,
 rooms INTEGER,
 bedrooms INTEGER,
 baths INTEGER,
 body VARCHAR
);

CREATE TABLE realtor (
 realtor INTEGER PRIMARY KEY,
 name VARCHAR,
 phone VARCHAR,
 url VARCHAR
);

CREATE TABLE location (
 location INTEGER PRIMARY KEY,
 city VARCHAR,
 state VARCHAR,
 postalcode VARCHAR
);

While this schema leaves obvious room for improvements, it will
suffice for our needs. To illustrate how simple it is to integrate
Class::DBI and the Template Toolkit,
we'll start with a Class::DBI
base class, as suggested in Example 9-10.

Example 9-10. Class::DBI

package TTBook::RealEstate::DBI;

use strict;
use vars qw($VERSION);
use base qw(Class::DBI);

TTBook::RealEstate::DBI->set_db('Main', 'dbi:SQLite:dbname=realestate.db');

This very simple module will be used as the base class by the other
modules in our real-estate application. We set the main DSN here (the
Main table)�it will be inherited by our
subclasses.

The modules that sit on top of the listing,
realtor, and location tables
are almost as simple; they just need to declare the table upon which
they sit, and list the columns in that table:

package TTBook::RealEstate::Listing;

use strict;
use base qw(TTBook::RealEstate::DBI);

DB Table
TTBook::RealEstate::Listing->table('listing');

Column groups
TTBook::RealEstate::Listing->columns(All =>
 qw(listing rooms body price bedrooms baths location realtor));

Relationships with other objects
TTBook::RealEstate::Listing->has_a(location => 'TTBook::RealEstate::Location');
TTBook::RealEstate::Listing->has_a(realtor => 'TTBook::RealEstate::Realtor');

The TTBook::RealEstate::Listing table has
relationships with data in other tables, and we indicate this with
the has_a method. The
TTBook::RealEstate::Realtor and
TTBook::RealEstate::Location tables are very
simple, and as a consequence can be represented very simply:

package TTBook::RealEstate::Realtor;

use strict;
use base qw(TTBook::RealEstate::DBI);

DB Table
TTBook::RealEstate::Realtor->table('realtor');

Columns
TTBook::RealEstate::Realtor->columns(All => qw(realtor name phone));

package TTBook::RealEstate::Location;

use strict;
use base qw(TTBook::RealEstate::DBI);

DB Table
TTBook::RealEstate::Location->table('location');

Columns
TTBook::RealEstate::Location->columns(All => qw(location city state postalcode));

Notice that these modules consist almost entirely of configuration,
and not code. Such is the power of
Class::DBI�only extraordinary situations
require special-purpose code.

Using our new classes is simple. The simple CGI script in Example 9-11 either processes
listing.tt2 (if invoked with a
listing_id parameter) or presents a search form,
which will presumably call itself with a
listing_id parameter.

Example 9-11. listing.cgi

#!/usr/bin/perl

use strict;
use warnings;

use CGI;
use Template;
use TTBook::RealEstate::Listing;

my $q = CGI->new();
my $listing_id = $q->param('listing_id');
my $template = $listing_id ? 'listing.tt2' : 'form.tt2';

my $tt = Template->new() || die Template->error;

my $listing = TTBook::RealEstate::Listing->retrieve($listing_id);
$template = 'notfound.tt2' unless $listing;

my $vars = {
 'listing' => $listing,
};

print $q->header('text/html');

$tt->process($template, $vars)
 || die $tt->error;

Within listing.tt2, we can access methods of the
listing variable (which is an instance of our
Class::DBI subclass,
TTBook::RealEstate::Listing) directly, as shown in
Example 9-12.

Example 9-12. listing.tt2

[% USE wrap;
 realtor = listing.realtor;
 location = listing.location;
-%]
<h1>Look at this beautiful home in [% location.city %]!</h1>

[% PROCESS summary.tt2
 price = listing.price
 rooms = listing.rooms
 bedrooms = listing.bedrooms
 baths = listing.baths
%]

<p>
 [% listing.body | wrap %]
</p>

<p>
 For more information, contact [% realtor.name %] at
 [% realtor.phone %].
</p>

The summary.tt2 template shown in Example 9-13 creates a simple table of attributes (price
and number of rooms, bedrooms, and bathrooms). We can use the
Template::Plugin::Number::Format plugin from CPAN,[1] to format the price nicely.
[1] You can find this plugin at http://search.cpan.org/dist/Template-Plugin-Number-Format/.

Example 9-13. summary.tt2

[% USE Number.Format %]
<table>
 <tr>
 <th>Price></th><td>[% price | format_price(0) %]</td>
 </tr>
 <tr>
 <th>Rooms</th><td>[% rooms %]</td>
 </tr>
 <tr>
 <th>Bedrooms</th><td>[% bedrooms %]</td>
 </tr>
 <tr>
 <th>Baths</th><td>[% baths %]</td>
 </tr>
</table>

The format_price filter takes a precision, which
in this case we will set to 0�we probably
don't need to see fractions of a quid when dealing
with house prices.

It so happens that we can simplify our implementations even more.
Because we are using SQLite for a database, our
TTBook::RealEstate::DBI base class can subclass
Class::DBI::SQLite instead of
Class::DBI. Class::DBI::SQLite
knows how to query the underlying SQLite database to get the schema
for the appropriate tables automatically:

package TTBook::RealEstate::DBI;

use strict;
use vars qw($VERSION);
use base qw(Class::DBI::SQLite);

TTBook::RealEstate::DBI->set_db('Main', 'dbi:SQLite:dbname=realestate.db');

Using Class::DBI::SQLite enables us to simplify
all of our subclasses, using the set_up_table
method.[2] For example:
[2] This feature isn't specific
to Class::DBI::SQLite; there are also versions for
Oracle, Postgres, and MySQL.

package TTBook::RealEstate::Listing;

use strict;
use base qw(TTBook::RealEstate::DBI);

TTBook::RealEstate::Listing->set_up_table('listing');

Relationships with other objects
TTBook::RealEstate::Listing->has_a(location => 'TTBook::RealEstate::Location');
TTBook::RealEstate::Listing->has_a(realtor => 'TTBook::RealEstate::Realtor');

9.3 Using DBIx::Table2Hash

The DBIx::Table2Hash
module provides a simple way to turn a database table into a hash,
turning SQL statements into simple lookups in a prepopulated table.
DBIx::Table2Hash has methods to make this data
available in a nested form as well as in a one-dimensional lookup
table. While it doesn't allow for updates, it
provides fast, convenient access to the data of a static table, such
as a table containing postal codes and the cities to which they map.
For this example, assume a simple table that looks like this (using
SQLite again):

CREATE TABLE postal_code (
 code VARCHAR PRIMARY KEY,
 city VARCHAR
);

Using DBIx::Table2Hash, we can get a hash of our
access_log data from within Perl like so:

my %args = (dbh => $dbh,
 table_name => 'postal_codes',
 key_column => 'city',
 value_column => 'code');

my $t2h = DBIx::Table2Hash->new(%args)
my $data = $t2h->select;

Let's see how we can utilize this data.
DBIx::Table2Hash expects to be passed a hash of
items, including a connected database handle. Here's
an example, adapted from the DBIx::Table2Hash documentation:

[% args = { dbh = dbh
 table_name = 'postal_code'
 key_column = 'city'
 value_column = 'code' };

 USE t2h = Table2Hash(args);
 codes = t2h.select %]

The Template Toolkit will pass those hash values as a hashref, so
we'll need to wrap this in a plugin.

Once we USE the plugin, we can call
select, select_hashref, or
select_tree to get our data.
select returns a hash reference in which each
element is a key_column =>
value_column pair (key_column
and value_column are specified in arguments given
to the constructor).

The postal code for Plymouth is [% codes.Plymouth %].

Keys with spaces in their names must be used indirectly:

[% ey = "East Yarmouth" -%]
The postal code for East Yarmouth is [% codes.$ey %].

select_hashref returns a hash of hashrefs, keyed
by key_column:

[% codes = Table2Hash.select_hashref %]
[% FOREACH city = codes.keys %]
 [% city %] has postal code [% codes.$city.code %].
[% END %]

We've been ignoring where the dbh
in this example comes from. There are several options here; for
example, we could add code to
TTBook::Template::Plugin::Table2Hash to
accommodate a missing dbh parameter. Even simpler
would be to use the DBI plugin:

[% USE DBI('dbi:SQLite:dbname=postal_codes.db');
 USE Table2Hash(dbh = DBI.dbh
 table_name = 'postal_code'
 key_column = 'city'
 value_column = 'code');
 codes = Table2Hash.select;
%]

The complete TTBook::Template::Plugin::Table2Hash:
is shown in Example 9-14.

Example 9-14. TTBook::Template::Plugin::Table2Hash

package TTBook::Template::Plugin::Table2Hash;

use strict;
use vars qw($VERSION);
use base qw(Template::Plugin);

use DBIx::Table2Hash;

$VERSION = 1.00;

sub new {
 my ($class, $context, $args) = @_;
 my $dbix = DBIx::Table2Hash->new(%$args);

 return bless {
 _CONTEXT => $context,
 _T2H => $dbix,
 _ARGS => $args,
 } => $class;
}

sub select {
 my ($self, $args) = shift;
 return $self->{_T2H}->select(%$args);
}

sub select_hashref {
 my ($self, $args) = shift;
 return $self->{_T2H}->select_hashref(%$args);
}

sub select_tree {
 my ($self, $args) = shift;
 return $self->{_T2H}->select_tree(%$args);
}

1;

9.3.1 Writing Your Own Database Abstraction Layer

When all else fails, you can always write your
own abstraction layer. Sometimes, this is the only alternative that
makes sense. When dealing with content developers who have no
understanding of SQL, it can be easier to provide them with a
foolproof method of retrieving dynamic data from a database. Creating
an abstraction layer to handle query generation also means that you
can change the underlying database�for example, from SQLite to
Postgres�without anyone having to know, and without any of the
templates that access it having to be changed.

One of the most basic elements of a database abstraction layer is
figuring out how to turn a collection of data into SQL. Luckily,
several modules are on CPAN that do exactly that. My favorite is
Nathan Wiger's SQL::Abstract
(http://search.cpan.org/dist/SQL-Abstract/).
This powerful module takes search critera as a hash, and transforms
it into a WHERE clause.

We can create a search interface for the access_log database we
defined earlier. Recall our access_log table:

CREATE TABLE access_log (
 id INTEGER PRIMARY KEY,
 hostaddr VARCHAR,
 hostname VARCHAR,
 logname VARCHAR,
 req_time VARCHAR,
 request VARCHAR,
 uri VARCHAR,
 method VARCHAR,
 http_version VARCHAR,
 status VARCHAR,
 bytes_sent VARCHAR
);

The key to creating a useable database query module is making it
simple to use�you can't get much more powerful
than DBI, but it is unintuitive for people who don't
already know both SQL and Perl. SQL::Abstract is a
small, powerful module with methods designed to generate SQL from a
hash of parameters, such as those that might come in via a CGI form
submission.

Ideally, we'll be able to provide a robust search
interface, using only a few simple constructs in the template (see
Example 9-15).

Example 9-15. Searching with the AccessLogSearch plugin

[% # Our search plugin is called AccessLogSearch
 USE als = AccessLogSearch('dbi:SQLite:dbname=access_log');

 search.terms = {
 uri = '*/index.htm?'
 status = 404,
 };

 fields = ['hostname' 'uri' 'status'];

 results = als.query(fields, search.terms);
%]

Found [% results.size %] results for your search terms!
[% FOREACH result IN results %]
 ...
[% END %]

Given these search terms, results would contain
all requests for index.htm or
index.html pages that generated a status of 404
(Not Found). Note the * and ?
wildcards, which make globbing simpler for users who might not know
that % and _ are the SQL
wildcard characters. More importantly, it abstracts the
implementation; if we change the underlying data source to a
different database, or to something other than database, the
user-facing interface isn't coupled to an irrelevant
wildcard convention.

We begin by subclassing the DBI plugin because it does almost all of
what we want. Specifically, it handles connecting to the database and
creating an efficient iterator object so that we
don't have to read all of our results into memory.

package TTBook::Template::Plugin::AccessLogSearch;

use strict;
use vars qw($VERSION $DEBUG);
use base qw(Template::Plugin::DBI);

$VERSION = 1.00;
$DEBUG = 0 unless defined $DEBUG;

use SQL::Abstract;
use Template::Plugin::DBI;

The new method defers to the DBI
plugin's new method, but also
needs to create a SQL::Abstract instance:

sub new {
 my $class = shift;
 my $self = $class->SUPER::new(@_);
 my $sql = SQL::Abstract->new;

$self->{ _SQL } = $sql;

 return $self;
}

The AccessLogSearch plugin keeps a similar
interface to the DBI plugin, but adds a little syntactic sugar to the
query method:

[% # How many hits from Harvard's medical library this month?
 results = als.query('hostname' 'status' 'uri'
 hostaddr = '134.174.151.*'
 req_time = '%Aug%2003%);
%]

The new query method handles these criteria easily:
name => value pairs are search parameters, and
any other values are the fields to be selected:

sub query {
 my ($self, @fields) = @_;
 my $terms = ref($fields[-1]) eq 'HASH' ? pop(@fields) : { };
 my ($sql, @bind, $sth, $result, @results);

We can specify the fields that we want back, such as
hostname, uri, and
status, but if fields is empty,
we use *, which means to select all fields. If the
user passes in an array from the template, it will come to our method
as an arrayref, so we dereference it here.

@fields = ('*') unless @fields;
@fields = @{$fields[0]} if ref($fields[0]) eq 'ARRAY';

$self->expand($terms);
($sql, @bind) = $self->{ _SQL }->select('access_log', \@fields, $terms);

If we are in $DEBUG mode�for example, during
development�we emit the compiled SQL statement to the standard
error stream, via the debug method (inherited from
Template::Base, by way of
Template::Plugin::DBI). Because
SQL::Abstract generates SQL with placeholders, we
need to fill them into the debugging string:

if ($DEBUG) {
 my @local_bind = @bind;
 (my $local_sql = $sql) =~ s/\?/'"' . shift(@local_bind) . '"'/eg;
 $self->debug("Generated SQL: '$local_sql'")
}

Now that we've generated the SQL, we can pass that
to the DBI plugin's query method,
which does the right thing�executes the query and returns a
reference to an Iterator:

return $self->SUPER::query($sql, @bind);
 }

The expand method is responsible for turning
* and ? into the SQL wildcards
% and _ as shown here:

sub expand {
 my ($self, $terms) = @_;

 for my $term (keys %$terms) {
 my $like = 0;

 for ($terms->{$term}) {
 s/*/%/g && $like++;
 s/\?/_/g && $like++;
 }

 $terms->{$term} = $like ? { 'LIKE' => $terms->{$term} }
 : { '=' => $terms->{$term} }
 }

 return $terms;
}

SQL::Abstract also knows how to deal with wildcard
SQL, as long as we tell it to emit LIKE instead of
=, so we count occurrences of the wildcard
characters and use that to determine the appropriate test to use.

The complete TTBook::Template::Plugin::AccessLogSearch
is shown in Example 9-16.

Example 9-16. TTBook::Template::Plugin::AccessLogSearch

package TTBook::Template::Plugin::AccessLogSearch;

use strict;
use vars qw($VERSION $DEBUG);
use base qw(Template::Plugin::DBI);

$VERSION = 1.00;
$DEBUG = 0 unless defined $DEBUG;

use SQL::Abstract;
use Template::Plugin::DBI;

--
new($context, @args)
#
Pass @args directly to the superclass.
--
sub new {
 my $class = shift;
 my $self = $class->SUPER::new(@_);
 my $sql = SQL::Abstract->new;

 $self->{ _SQL } = $sql;

 return $self;
}

--
query(@fields, \%terms)
--
sub query {
 my ($self, @fields) = @_;
 my $terms = ref($fields[-1]) eq 'HASH' ? pop(@fields) : { };
 my ($sql, @bind, $sth, $result, @results);

 @fields = ('*') unless @fields;
 @fields = @{$fields[0]} if ref($fields[0]) eq 'ARRAY';

 $self->expand($terms);
 ($sql, @bind) = $self->{ _SQL }->select('access_log', \@fields, $terms);

 if ($DEBUG) {
 my @local_bind = @bind;
 (my $local_sql = $sql) =~ s/\?/'"' . shift(@local_bind) . '"'/eg;
 $self->debug("Generated SQL: '$local_sql'")
 }

 return $self->SUPER::query($sql, @bind);
}

--
expand(\%terms)
#
Expand * and ? wildcards into SQL wildcards % and _. Expects a
reference to a hash, and operates on each value. If a value is
expanded, use LIKE instead of =.
--
sub expand {
 my ($self, $terms) = @_;

 for my $term (keys %$terms) {
 my $like = 0;

 for ($terms->{$term}) {
 s/*/%/g && $like++;
 s/\?/_/g && $like++;
 }

 $terms->{$term} = $like ? { 'LIKE' => $terms->{$term} }
 : { '=' => $terms->{$term} }
 }

 return $terms;
}

1;

Chapter 10. XML

XML is becoming one of the most ubiquitous data formats. It is used
for both data storage and data exchange. The Template Toolkit can be
used to both create XML documents and convert them into other
formats.

In this chapter, we'll take a look at some of the
tools that the Template Toolkit provides for working with XML. We
show how to populate template variables with fields from XML, how to
generate XML, how to process RSS, how to extract information with the
Document Object Model (DOM) and XPath, and even how to use XML
transforms.

Before we get into some of the more complex tools for processing XML,
let's start simply by looking at
Template::Plugin::XML::Simple, which allows us to
take a very simple approach to our XML.

10.1 Simple XML Processsing

Example 10-1 shows an XML file that contains details of a
company's current inventory of widgets. We have each
widget's part number, name, price, and current
stock. This data might be generated by a stock control system.

Example 10-1. Stock control data

<inventory>
 <product id="0050">
 <name>Basic Widget</name>
 <price>49.99</price>
 <stock>2500</stock>
 </product>
 <product id="0051">
 <name>Cheap Widget</name>
 <price>29.99</price>
 <stock>5000</stock>
 </product>
 <product id="0101">
 <name>Super Widget</name>
 <price>99.99</price>
 <stock>1000</stock>
 </product>
 <product id="0102">
 <name>Ultra Widget</name>
 <price>149.99</price>
 <stock>500</stock>
 </product>
</inventory>

Suppose that we want to produce a
report based on this data and also
want to include the value of the stock. We can use the XML.Simple
plugin to do this. Example 10-2 shows one way that we
might do it.

Example 10-2. Template to create a stock report

[% USE inventory = XML.Simple('products.xml') -%]
[% FOREACH product = inventory.product.keys.sort;
 current = inventory.product.$product -%]
[% current.id %] [% product %]
[%- current.stock | format('%5d') %] units @
[%- current.price | format('%6.2f') -%] =
[%- current.stock * current.price | format('%10.2f') %]
[%- total = total + current.stock * current.price %]
[% END -%]
 Total value: [% total | format('%10.2f')%]

XML.Simple is given the name of an XML document and it builds a data
structure that contains all of the data from that document. The
USE directive returns a reference to this data
structure, which we can then access using standard Template Toolkit
techniques. In this case, the data structure it builds is a
multilevel hash.

At the top level, the hash has only one key,
product (representing the
<product> tags from the original document).
The value is a reference to another hash. The keys in this second
hash are the names of the products, and the values are references to
other hashes containing the details of the product. We can therefore
use the expression inventory.product.keys.sort to
get a list of the product names in alphabetical order.

To cut down on typing, we create a temporary variable,
current, which contains the hash representing the
current product. We can then access various parts of that hash to get
the data that we want. Notice that we calculate the value of the
current stock in each product and also keep a running total (in
total) that we can display in the end. We also
make use of the format filter to ensure that all
of the numbers line up neatly.

The output generated by Example 10-2 is shown in
Example 10-3.

Example 10-3. Generated stock report

0050 Basic Widget 2500 units @ 49.99 = 124975.00
0051 Cheap Widget 5000 units @ 29.99 = 149950.00
0101 Super Widget 1000 units @ 99.99 = 99990.00
0102 Ultra Widget 500 units @ 149.99 = 74995.00
 Total value: 449910.00

For many tasks, XML.Simple is a perfectly adequate approach, however
there will certainly be times when you need something that is a
little more sophisticated. We'll look at XML.DOM and
XML.XPath later in this chapter, but first we'll
take a short detour to look at how we might create XML documents
using the Template Toolkit.

10.2 Creating XML Documents

In order to demonstrate how to create XML documents using the
Template Toolkit, we will use the example of creating an XML document
that contains data about a TV show. Let's use (to
pick a show at random) Buffy the Vampire Slayer.

10.2.1 Modeling Data About a TV Show

A TV show consists of a number of
seasons. Generally, one season is made each year. Each season will
have a regular cast. A season consists of a number of episodes. We
want to create an XML file that contains all of this data.

We won't go into the details of how we access the
data about the TV show. We'll just assume the
existence of a module called TVShow.pm that will
be our interface to details about a show.
TVShow.pm has a constructor,
new, which is passed the name of a show and
returns an object that contains all of the data we need. It also has
access methods that return all of these values.

We'll further assume the existence of
Template::Plugin::TVShow, which allows us to use a
TVShow object in our templates.

10.2.2 DTD for a TV Show

When designing an XML document,
it's useful to create a Document Type
Definition (or DTD) that defines what the XML document
will look like. A DTD simply helps you to focus on the structure of
the document. None of the Template Toolkit XML tools currently makes
any use of the DTD.

Here's the DTD that we'll be using
for our XML:

<!ELEMENT show (name, creator, seasons)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT creator (#PCDATA)>
<!ELEMENT seasons (season+)>
<!ELEMENT season (cast, episodes)>
<!ATTLIST season number CDATA>
<!ATTLIST season year CDATA>
<!ELEMENT cast (regular+)>
<!ELEMENT regular (character, actor)>
<!ELEMENT character (#PCDATA)>
<!ELEMENT actor (#PCDATA)>
<!ELEMENT episodes (episode+)>
<!ELEMENT episode (name, summary)>
<!ATTLIST episode number CDATA>
<!ATTLIST episode date CDATA>

While there are a large number of elements in this DTD, it
isn't very complex. In English, the description
looks something like this:

	A TV show consists of a name, a creator, and a list of seasons.

	A list of seasons consists of one or more seasons.

	A season consists of a cast and a list of episodes. It has two
attributes�the season number and the year of broadcast.

	A cast consists of one or more regulars.

	A regular has a character name and an actor name.

	An episode list consists of one or more episodes.

	An episode has a name and a summary. It has two attributes�the
episode number and the date of first transmission.

For more information on creating and interpreting DTDs, see
XML in a Nutshell by Elliotte Rusty Harold and
W. Scott Means, or Learning XML by Eric T. Ray
(both by O'Reilly).

10.2.3 XML Template

Example 10-4 shows a simple template that will use
the TVShow module to create an XML document
conforming to our DTD.

Example 10-4. Sample template to create an XML document

[% USE show = TVShow(name) -%]
<?xml version="1.0"?>
<show>
 <name>[% show.name | html %]</name>
 <creator>[% show.creator | html %]</creator>
 <seasons>
 [%- FOREACH season = show.seasons %]
 <season number="[% loop.count %]"
 year="[% season.year %]">
 <cast>
 [%- FOREACH part = season.regulars %]
 <regular>
 <character>[% part.character | html %]</character>
 <actor>[% part.actor | html %]</actor>
 </regular>
 [%- END %]
 </cast>

 <episodes>
 [%- FOREACH episode = season.episodes %]
 <episode number="[% loop.count %]"
 date="[% episode.date %]">
 <name>[% episode.name | html %]</name>
 <summary>[% episode.summary | html %]</summary>
 </episode>
 [%- END %]
 </episodes>
 </season>
 [% END -%]
 </seasons>
</show>

This template takes one parameter, name, which can
be passed in on the command line, so we can create a document for
Buffy the Vampire Slayer using
tpage like this:

$ tpage --define name='Buffy the Vampire Slayer' show.tt > show.xml

Example 10-5 shows the XML created. Repeated sections
have been replaced with ellipses.

Example 10-5. XML document describing Buffy

<?xml version="1.0"?>
<show>
 <name>Buffy the Vampire Slayer</name>
 <creator>Joss Whedon</creator>
 <seasons>
 <season number="1"
 year="1997">
 <cast>
 <regular>
 <character>Buffy Summers</character>
 <actor>Sarah Michelle Gellar</actor>
 </regular>
 <regular>
 <character>Xander Harris</character>
 <actor>Nicholas Brendon</actor>
 </regular>

 ...

 </cast>

 <episodes>
 <episode number="1"
 date="00:00:00 10-03-1997">
 <name>Welcome to the Hellmouth</name>
 <summary>Buffy Summers moves to Sunnydale</summary>
 </episode>
 <episode number="2"
 date="00:00:00 17-03-1997">
 <name>The Harvest</name>
 <summary>The Master plans to escape by harvesting people</summary>
 </episode>

...

 </episodes>
 </season>

...

 </seasons>
</show>

The template itself doesn't do anything complex. It
simply uses access methods on the TVShow object to
get the data that it needs. Notice that it uses the Date plugin to
format the date and the loop.count variable to
create the season and episode numbers.

Notice also that anywhere we are displaying text that could possibly
include characters that have a special meaning in XML
(&, <,
>, or "), we use the
html filter to convert these characters into their
equivalent XML entity (&,
<, >,
and ",
respectively).

10.3 Processing RSS Files with XML.RSS

Before we start looking at using the
Template Toolkit to process arbitrary XML documents,
let's take a look at a plugin that can be used to
handle an industry-standard XML format: RSS.

RSS[1] is a method that web sites can use to
exchange headlines and other data with each other. Web sites can
produce RSS files that other web sites can periodically download and
process. These files contain information that the subscriber web
sites can display along with links to more detailed information on
the publisher's web site. This gives the subscribers
a relatively simple way to have frequently updated information on
their web sites. A good example of this concept are the
"slashboxes" that appear on the
front page of http://slashdot.org/. You can get more
information about RSS from Content Syndication with
RSS by Ben Hammersley (O'Reilly).
[1] RSS stands for Rich Site Summary, although exact
translations of the abbreviation seem to vary on a daily
basis.

An RSS file consists of a small number of tags that describe the web
site that produced the file, together with a list of items. Example 10-6 is a sample RSS file. It is taken from CPAN
and lists the most recent module uploads. You can see the most recent
version of this file at http://search.cpan.org/rss/search.rss.
We've removed all but two of the modules from the
file to keep the example to a manageable size.

Example 10-6. Example RSS file from CPAN

<rss version="0.91">
<channel>
 <title>search.cpan.org</title>
 <link>http://search.cpan.org</link>
 <description>The CPAN search site</description>
 <language>en</language>
 
 <item>
 <title>DateTime-Format-Builder-0.62</title>
 <link>http://search.cpan.org/author/SPOON/DateTime-Format-Builder-0.62</link>
 </item>
 <item>
 <title>VCS-Lite-0.04</title>
 <link>http://search.cpan.org/author/IVORW/VCS-Lite-0.04</link>
 </item>
</channel>
</rss>

The structure of this file is easy to understand. The
<channel> element contains a number of
details about the web site providing the file in the
<title>, <link>,
<description>, and
<language> tags. Then we see the
<image> tag, which contains details of an
image that we can use to illustrate our display of the information.
Following this are a number of <item> tags,
each of which includes information about one recently uploaded CPAN
module.

The Template Toolkit's
support
for RSS is provided by Template::Plugin::XML::RSS,
which is, in turn, a thin wrapper round Jonathan
Eisenzopf's XML::RSS.

The RSS plugin makes it very simple to use RSS files in your
templates. To use it, you need to add the line:

[% USE rss = XML.RSS(rssfile) %]

where rssfile is a variable that is set to the
filename of the RSS file you want to use. You can then access
individual items from the file using access methods on the
rss object. Here is a very simple template to
extract a list of the newest modules:

[% rss.channel.title -%]

[%- FOREACH item = rss.items %]
* [% item.title -%]
[% END %]

It's only a little more complex to build an HTML
page, as shown in Example 10-7.

Example 10-7. Template to build HTML from an RSS file

[% USE rss = XML.RSS(rssfile) -%]
<html>
 <head>
 <title>[% rss.channel.title | html %]</title>
 </head>
 <body>
 <h1>[% rss.channel.title | html%]</h1>
 <p><img
 src="[% rss.image.url | html %]"
 title="[% rss.image.title | html %]"
 alt="[% rss.image.title | html %]" /></p>

 [%- FOREACH item = rss.items %]
 [% item.title |html %]
 [% END %]

 </body>
</html>

Notice that, as with the XML document we produced in the previous
section, any text displayed is passed through the
html filter to turn dangerous characters into HTML
entities.

From processing one RSS file link, it's easy to move
to processing a number of them on one page to create your own news
page.

There is one slight complication with this scenario. You will find a
number of different versions of the RSS file on the Internet. You
will come across Versions 0.91, 0.92, 1.0, and 2.0.

The simple templates we've shown up to now will work
with all versions equally well, but Versions 1.0 and 2.0 have a
number of extensions that allow them to contain more information. The
extensions in Version 1.0 are incompatible with those in 2.0.
Luckily, the XML::RSS plugin gives us access to the version attribute
from the RSS file, so our templates can make intelligent decisions on
what data to expect to find.

For more details on support of the extensions to RSS 1.0 and 2.0, see
the documentation for XML::RSS at
http://search.cpan.org/dist/XML-RSS/.

10.4 Processing XML Documents with XML.DOM

There are a number of standards for XML
document processing. One of the most popular is the DOM. The Template
Toolkit supports this method through the plugin
Template::Plugin::XML::DOM, which is, in turn, a
thin wrapper around the XML::DOM module written by
Enno Derksen.

Because the DOM is a mature standard, there are stable
implementations of it in many languages. For this reason, it is very
popular with programmers who often switch between different
languages. XML::DOM parses the XML document into a
tree structure that you can then query using a large set of defined
method calls.

To demonstrate the use of the XML.DOM plugin, let's
go back to the TV show XML document that we created earlier in this
chapter. Example 10-8 shows a basic template that
will transform that XML into an HTML page that describes a particular
TV show.

Example 10-8. Creating HTML from XML using Template::Plugin::XML::DOM

[% USE date (format = '%d %b %Y') -%]
[% USE dom = XML.DOM;
 show = dom.parse('show.xml');
 name = show.getElementsByTagName('name').0.getFirstChild.getNodeValue
-%]
<html>
 <head>
 <title>[% name | html %]</title>
 </head>
 <body>

 [%- FOREACH season = show.getElementsByTagName('season');
 number = season.getAttribute('number') %]
 Season [% number %]
 [% END -%]

 <h1>[% name | html %]</h1>
 <p>
 Created by
 [% show.getElementsByTagName('creator').getFirstChild.getNodeValue
 | html
 %]
 </p>

 [% FOREACH season = show.getElementsByTagName('season');
 number = season.getAttribute('number') -%]
 <h2>Season [% number %]
 ([% season.getAttribute('year') %])</h2>

 <h3>Regular Cast</h3>

 [% FOREACH part = season.getElementsByTagName('regular', 1) -%]
 [% part.getElementsByTagName('actor').getFirstChild.getNodeValue
 | html %] as
 <i>[% part.getElementsByTagName('character').getFirstChild.getNodeValue
 | html %]</i>
 [%- END %]

 <h3>Episodes</h3>
 [%- FOREACH episode = season.getElementsByTagName('episode',1) %]
 <h4>[% episode.getAttribute('number') %] -
 [% episode.getElementsByTagName('name').getFirstChild.getNodeValue
 | html %]</h4>
 <p>
 <i>First broadcast
 [% date.format(episode.getAttribute('date')) %]</i>

 [% episode.getElementsByTagName('summary',1).getFirstChild.getNodeValue
 | html %]
 </p>
 [% END %]
 [% END %]
 </body>
</html>

The first thing to notice is that we parse the XML document in two
stages:

[% USE dom = XML.DOM;
 show = dom.parse('show.xml') %]

On the first line, we create a DOM parser object called
dom; on the second line, we use that object to
parse our input file and create a DOM tree that we store in the
variable show. We can then call various
XML::DOM methods on this object to extract
information about the show. You'll notice that you
will often need to string several method calls together to get the
information that you need. For example, to get the name of the show,
we use the expression:

name = show.getElementsByTagName('name').0.getFirstChild.getNodeValue

The method getElementsByTagName returns a list of
all of the elements that are children of the show
element and have the name name. We then take the
first node from that list (using the index 0) and
get the first child of that node. This will be the text node that
contains the name of the show. We can then use
getNodeValue to get the value (i.e., the text) of
that node.

As always, when we display any text extracted from the XML document,
we pass it through the html filter to convert
dangerous characters to their HTML entity equivalents.

The output from this code is shown in Example 10-9.

Example 10-9. HTML created from XML using Template::Plugin::XML::DOM

<html>
 <head>
 <title>Buffy the Vampire Slayer</title>
 </head>
 <body>

 Season 1

 <h1>Buffy the Vampire Slayer</h1>
 <p>
 Created by
 Joss Whedon
 </p>

 <h2>Season 1
 (1997)</h2>

 <h3>Regular Cast</h3>

 Sarah Michelle Gellar as
 <i>Buffy Summers</i>
 Nicholas Brendon as
 <i>Xander Harris</i>

 <h3>Episodes</h3>
 <h4>1 -
 Welcome to the Hellmouth</h4>
 <p>
 <i>First broadcast
 10 Mar 1997</i>

 Buffy Summers moves to Sunnydale
 </p>

 <h4>2 -
 The Harvest</h4>
 <p>
 <i>First broadcast
 17 Mar 1997</i>

 The Master plans to escape by harvesting people
 </p>
 </body>
</html>

You can get more details on using the DOM from the Template Toolkit
by reading the module documentation for
Template::Plugin::XML::DOM (at http://www.template-toolkit.org/docs/plain/Modules/Template/Plugin/XML/DOM.html)
and XML::DOM (at http://search.cpan.org/dist/XML-DOM/). There
is more information about the DOM standard in XML in a
Nutshell by Elliotte Rusty Harold and W. Scott Means
(O'Reilly).

As you can see, using the DOM to extract data from an XML document
can get a little long-winded. Luckily, there are other ways to handle
XML documents in the Template Toolkit. In the next section, we will
look at another.

10.5 Processing XML Documents with XML.XPath

Another common standard for
extracting data from XML documents is called
XPath. XPath is structured vaguely like a
filesystem path: consecutive elements are joined with a forward slash
(/), beginning at the root, and each element in
the path is nested below the previous. The XPath statement:

/html/head/title/text()

retrieves "Welcome to Foo.com" from
the following XML:

<html>
 <head>
 <title>Welcome to Foo.com</title>
 </head>
</html>

The Template Toolkit has support for XPath via the XML.XPath plugin,
which wraps around Matt Sergeant's excellent
XML::XPath module, available from CPAN (see
http://search.cpan.org/dist/XML-XPath/). The
XML.XPath plugin is given either the name of an XML document or a
string containing XML.

Example 10-10 shows a template that uses the XPath
plugin to create an HTML page from our XML file containing
information about Buffy the Vampire Slayer. This
is identical to the one we created in the previous section using the
DOM (see Example 10-9).

Example 10-10. Creating HTML from XML using Template::Plugin::XML::XPath

[% USE date (format = '%d %b %Y') -%]
[% USE show = XML.XPath('show.xml') -%]
[% name = show.findvalue('/show/name/text()') -%]
<html>
 <head>
 <title>[% name | html %]</title>
 </head>
 <body>

 [%- FOREACH season = show.findnodes('/show/seasons/season');
 number = season.findvalue('@number') %]
 Season [% number %]
 [% END -%]

 <h1>[% name | html %]</h1>
 <p>
 Created by
 [% show.findvalue('show/creator/text()') | html %]
 </p>

 [% FOREACH season = show.findnodes('/show/seasons/season');
 number = season.findvalue('@number') -%]
 <h2>Season [% number %]
 ([% season.findvalue('@year') %])</h2>

 <h3>Regular Cast</h3>

 [% FOREACH part = season.findnodes('cast/regular') -%]
 [% part.findvalue('actor/text()') | html %] as
 <i>[% part.findvalue('character/text()') | html %]</i>
 [%- END %]

 <h3>Episodes</h3>
 [% FOREACH episode = season.findnodes('episodes/episode') -%]
 <h4>[% episode.findvalue('@number') %] -
 [% episode.findvalue('name/text()') | html %]</h4>

 <p>
 <i>First broadcast
 [% date.format(episode.findvalue('@date')) %]</i>

 [% episode.findvalue('summary/text()') | html %]
 </p>
 [% END %]
 [% END %]
 </body>
</html>

We are basically using three methods from the XML.XPath plugin. The
line:

[% USE show = XML.XPath('show.xml') -%]

creates a new XML::XPath object based on the file
show.xml. This object is a tree structure that
models the XML structure of the XML document. We can then use the
methods findvalue and findnodes
to run XPath queries against this object.
findvalue takes an XPath expression that will
return a single value and returns the result of evaluating that
expression. For example, we use:

[% name = show.findvalue('/show/name/text()') -%]

to get the name of the show from the current document. The XPath
query translates as "get the text for contained in
the <name> element, which is a child of the
<show> element, which is a child of the
root." Any kind of XPath expression can be used. For
example, we use @number to get the number
attribute of the current node (which just happens to be an episode
node at that point).

The findnode method is used to loop over a list of
nodes. For example, we use:

[% FOREACH season = show.findnodes('/show/seasons/season') %]

to get each <season> node that is contained
in the document, and use:

[% FOREACH episode = season.findnodes('episodes/episode') %]

to get each episode in a season. Notice that as
findnodes returns a list of nodes, we use a
variable to store each node in return as we work our way across the
loop. These nodes are also XML::XPath objects and
we can therefore run XPath queries against them in exactly the same
way as we can with the original show object.

The current node that we are working from is called the
context node. Continuing the filesystem
analogy that we mentioned earlier, using a context node is like
changing your current directory. Any XPath query that
doesn't start with / is taken to
be relative to your context node in the same way as a directory path
that doesn't start with / is
taken to be relative to your current directory. Any XPath query that
starts with / is taken to be relative to the root
node in the same way as a directory path that starts with
/ is taken as relative to the root directory.

You can get more details on using XPath from the Template Toolkit by
reading the module documentation for
Template::Plugin::XML::XPath (at http://www.template-toolkit.org/docs/plain/Modules/Template/Plugin/XML/Path.html)
and XML::XPath (at http://search.cpan.org/dist/XML-XPath/).
There is more information about the XPath standard in XML
in a Nutshell by Elliotte Rusty Harold and W. Scott
Means.

10.6 Processing XML Documents with XML.LibXML

All of the XML processors that
we have seen up to now are based on the Perl module
XML::Parser, which is, in turn, based on James
Clark's expat XML parser.
However, expat doesn't have
support for newer XML features such as namespaces, so another parser
has emerged as the first choice for many XML processing tasks. It is
called libxml2, and you can find more details
about it at http://www.libxml.org/.

Perl has a module, XML::LibXML, that gives access
to the libxml2 API, and Mark Fowler has written
Template::Plugin::XML::LibXML, which allows the
API to be used from the Template Toolkit. Both of these modules can
be downloaded from CPAN at http://search.cpan.org/dist/XML-LibXML/ and
http://search.cpan.org/Template-Plugin-XML-LibXML/,
respectively.

libxml2 contains support for both DOM and XPath,
so both of the previous examples will work almost unchanged. You will
just need to alter the lines that load and parse the XML document.

10.7 Using Views to Transform XML Content

The XML processing methods that we have seen so far are very
useful for data-centric XML documents. These are
documents whose structure is very well-defined. This type of file is
commonly seen when the file is modeling some kind of data structure,
and is usually used for transferring data between different systems.
The TV show example was a good example of this, as the relationships
between the various data items in the document were well understood
and unlikely to change.

There is another type of XML file, known as
narrative-centric. In these files, the data is
less well structured. A good example of this kind of document is a
book. Although a book will have some high-level structure (table of
contents, chapters, appendixes, and index), once you get down to the
text in a chapter, the structure is much less defined. A paragraph
can contain italic text, bold text, references to footnotes, URLs,
and any number of other types of text, all of which will need to be
processed differently.

While it is possible to handle these kinds of documents using the
techniques we have seen previously, using the VIEW
directive makes it far easier to process narrative-centric XML.

Example 10-11 shows a narrative-centric XML document.

Example 10-11. A narrative-centric XML document

<faq>
 <qna id="q1">
 <question>
 What is the ultimate answer to life, the universe and everything?
 </question>

 <answer author="Deep Thought">
 <para>42</para>
 <note>The problem may well be that you don't <i>actually</i>
 know what the question is!</note>
 </answer>
 </qna>

 <qna id="q2">
 <question>
 Where shall we have lunch?
 </question>

 <answer author="Milliways Marketing Dept.">
 <para>Have you considered <froody>Milliways</froody>, the restaurant
 at the end of the universe.</para>

 <quote>If you've done six impossible things today then why
 not top it off with dinner at Milliways?</quote>
 </answer>
 </qna>
</faq>

Notice that while the higher levels of the document are well
structured, once you get into the answer tag, the
text is unstructured. The para,
note, and quote tags are used
interchangeably, and other tags are used as well�you can see
i and froody.

To process this file, we will create a VIEW called
faq_html that will convert the FAQ to HTML. For
our first attempt, we will create a "do
nothing" view that will simply pass the document
through unchanged. This view is shown in Example 10-12.

Example 10-12. faq_view1

[% VIEW faq_html
 notfound='passthru';

 BLOCK text;
 item;
 END ;

 BLOCK passthru;
 item.starttag;
 item.content(view);
 item.endtag;
 END;
END
%]

The [% VIEW %] directive defines a block that can
contain other named blocks. In this VIEW, we
defined two blocks. The first is called text. This
is the default name for a block that will be called to process text
nodes from the document. Our text block is simple and just displays
the current item. Note that from within a VIEW template, the current
node is available in the item variable and the
current view is in the view variable.

The other block we defined is the block that is called if no matching
block is found for a node. This is defined using the
notfound parameter to the VIEW
directive. Our passthru block displays the start and end tags for the
node, and between them it calls the current node's
content method, passing it the current view. The
content method finds all of the current
node's child nodes and displays them using the given
view. This is an important method. If you want child nodes to be
processed, your template must call it.

In order to use this template, we need to have a parsed XML document.
VIEWs work well with any of the XML modules that we have seen before,
but support for the XPath plugin is the most advanced. We can create
and process an XML::XPath object with code like
this:

[% USE doc=XML.XPath(file => 'faq.xml');
 node = doc.findnodes('/faq');
 faq_html.print(node) %]

Calling the print method on the VIEW and passing
it the starting node starts the VIEW processing the document. Each
type of node in the document is handled by the block with the same
name. Any type of node that doesn't match a block in
the VIEW is handled by the notfound block.

Currently our template has no named blocks, so all nodes are handled
by the notfound block. We can add blocks that
handle any nodes that need more than this default processing. Example 10-13 fills in processing for a number of tags.

Example 10-13. A more complex view

[% VIEW faq_html notfound='xmlstring' %]

[% BLOCK faq -%]
<h1>Frequently Asked Questions</h1>
[%- item.content(view) %]
[%- END %]

[% BLOCK question -%]
<h2>[% item.content(view) %]</h2>
[%- END %]

[% BLOCK answer %]
[% item.content(view) %]
<p>Answer by [% item.getAttribute('author') %]</p>
[% END %]

[% BLOCK para -%]
<p>[% item.content(view) %]</p>
[%- END %]

[% BLOCK note -%]
<p>Note: [% item.content(view) %]</p>
[%- END %]

[% BLOCK quote -%]
<blockquote><i>[% item.content(view) %]</i></blockquote>
[%- END %]

[% BLOCK qna;
 item.content(view);
 END;

 BLOCK text;
 item;
 END;

 BLOCK xmlstring;
 item.starttag;
 item.content(view);
 item.endtag;
 END
%]
[% END %]

[% USE doc = XML.XPath(file => 'faq.xml');
 node = doc.findnodes('/faq');
 faq_html.print(node)
%]

We should note a couple of points. First, we have created a block for
the qna node, which does nothing but process its
children. This is because if we left it to the default block, the
opening and closing qna tags would be displayed,
and we don't want that. Second, we
haven't defined a block for the i
tag. This is because we are happy for it to pass through unchanged,
so it becomes part of the HTML page that is created.

Our input document also contains a froody tag.
Currently this tag is passed through untouched (and presumably is
ignored by the browser that displays the finished page). But when the
management of Milliway's complain that their text
should be displayed in a certain manner, it will be simple for us to
add a block that handles it. For example:

[% BLOCK froody -%]
<i>[% item.content(view) %]</i>
[%- END %]

It is this extensibility that makes VIEW a perfect
tool for processing narrative-centric XML documents. It is very
simple to add processing for new tags, and it
doesn't matter where they appear in the document
structure.

Chapter 11. Advanced Static Web Page Techniques

In Chapter 2, we looked at some simple examples
of using the Template Toolkit to generate web content. In this
chapter, we will look at some more advanced techniques for building
web sites and manipulating HTML page content. We will start out with
a minimal setup that illustrates some useful techniques that can
easily be adapted and applied to any web site. The basic system will
be extended throughout the chapter as we add functionality to address
more complex requirements and provide more advanced features.

The emphasis in this chapter will be on generating static HTML web
content. The examples will be loosely based around the Template
Toolkit web site, http://template-toolkit.org/. However,
we're not going to be looking at content of any of
the individual pages in any great detail, so the subject matter is
largely immaterial.

Most of the techniques demonstrated are equally applicable to web
sites delivering dynamically generated content and running web
applications. More generally, this chapter shows how a
general-purpose presentation framework can be
built using the Template Toolkit. This can then be used to apply a
consistent look and feel to all pages in a site, including static
HTML pages (as discussed later in this chapter) and dynamic content
(described in Chapter 12).

11.1 Getting Started

A few basic tasks need
to be done when starting out a project for a Template Toolkit-driven
web site. The first thing is to create somewhere for the project
files to go. It's a good idea to keep everything
related to the project in one place. If all the files are located in
subdirectories of one common parent directory, the entire project can
easily be relocated to another server, or perhaps to another
directory on the same machine. It is much harder to keep track of
files when they are dotted around a filesystem.

For this project, we will generate static HTML pages from templates.
All the output files will be written to an html
subdirectory of the project directory. From here they can be accessed
via an appropriately configured web server. We'll be
looking at a simple configuration for the Apache web server that
demonstrates this.

The tool of choice for this kind of project is
ttree. It also needs a configuration file
detailing the various directories and other Template Toolkit options
in effect. In this file, we can also specify which templates should
be used as headers, footers, or wrappers to be automatically applied
to each generated page. With these configuration files and standard
templates in place, we can then begin to generate HTML pages.

So let's walk through the complete process, from
creating the project directory to generating the first HTML page.

11.1.1 Directory Structure

The first task is to create a directory
structure for the web site project. We'll be using
/home/dent/web/ttbook as the base directory in
these examples:

$ mkdir /home/dent/web/ttbook
$ cd /home/dent/web/ttbook

Some
further subdirectories
are required underneath the new project directory:

$ mkdir bin etc templates html images

The directories follow a fairly standard naming convention. Here
bin will be used
to store executable programs or scripts to assist in building the
site or performing other housekeeping tasks. The
etc directory is
for configuration and other miscellaneous files. The
templates directory is for source
templates from which HTML pages are generated. These are written to
the html directory from where they are ready to
be accessed by a web server, along with any images or other binary
files for the site, stored under the
images directory.

Two more subdirectories are required under the
templates directory:

$ mkdir templates/src templates/lib

The templates directory is where most of
the action takes places. The
templates/src
directory contains the source templates for the pages of the web
site, or more generally, the site content. The
templates/lib directory alongside it contains the
library of general-purpose template components: headers, footers,
menus, and so on. These typically relate to the user interface or
presentation aspects.

You'll need to create further directories for
content and component templates as we progress through the examples
in this chapter. We'll assume from now on that you
can do that without us having to tell you.

One final thing to note is that the names of
templates cited in
INCLUDE, PROCESS, and
WRAPPER directives in these examples relate to
files in the templates/lib directory, as defined
in the lib option in
etc/ttree.cfg. So a directive such as
[% PROCESS menu/item %], for example, refers to
the templates/lib/menu/item template.

11.1.2 Web Server Configuration

The Template Toolkit isn't
tied into any particular web server. At the simplest level, it is
just a tool for generating content that can be read directly by a
file editor or web browser, or can be served across a network by a
web server. It operates independent of any delivery mechanism.

We will be using the Apache web server in these examples. A sample
configuration file for Apache is shown in Example 11-1. This file should be created in the project
etc directory.

Example 11-1. etc/httpd.conf

Alias /ttbook/images/ /home/dent/web/ttbook/images/
Alias /ttbook/ /home/dent/web/ttbook/html/

<Directory /home/dent/web/ttbook/>
 Options MultiViews Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

You will also need to edit your main Apache
httpd.conf file (typically
/usr/local/apache/conf/httpd.conf or
/etc/httpd.conf) to Include
the project configuration file. Example 11-2 shows
the relevant line that is added for our configuration file,
/home/dent/web/ttbook/etc/httpd.conf.

Example 11-2. Addition to Apache httpd.conf configuration file

Include /home/dent/web/ttbook/etc/httpd.conf

You will need to restart Apache for these changes to take effect. For
an Apache installation in /usr/local/apache, the
command would be as follows:

/usr/local/apache/bin/apachectl restart

Another approach is to use symbolic links from an existing location
that is already visible to the web server. For example, if the
directory /home/dent/public_html/ can be
accessed via the URL http://localhost/~dent/, you can create a
symbolic link from here to the project html
directory. On a Unix machine, the relevant command would be something
like this:

$ cd /home/dent/public_html
$ ln -s /home/dent/web/ttbook/html ttbook

The html directory would then be accessible via
the web server URL http://localhost/~dent/ttbook/.

Be warned that Apache doesn't follow symbolic links
by default, so you'll need to add
FollowSymLinks to
the relevant section of the httpd.conf
configuration file if you choose this approach:

<Directory /home/*/public_html>
 ...
 Options FollowSymLinks
 ...
</Directory>

With this directive in place, you can also use a symbolic link in the
html directory to make the
images directory accessible:

$ cd /home/dent/web/ttbook/html
$ ln -s ../images images

If you're not using Apache, you'll
need to consult the documentation for your own web server to find out
how to make the contents of the html and
images directories accessible.

We'll assume in the following examples that the root
document URL is /ttbook/ and the
root images URL is /ttbook/images/, in both cases assuming the
default host, http://localhost/.

11.1.3 ttree Configuration

We need to provide a configuration file to
tell ttree everything it needs to know to build
the site content. Example 11-3 shows the complete
file.

Example 11-3. etc/ttree.cfg

directories
src = /home/dent/web/ttbook/templates/src
lib = /home/dent/web/ttbook/templates/lib
dest = /home/dent/web/ttbook/html

copy images and other binary files
copy = \.(png|gif|jpg|pdf)$

ignore CVS, RCS, and Emacs temporary files
ignore = \b(CVS|RCS)\b
ignore = ^#

misc options
verbose
recurse
recursion

TT options
pre_process = config/main
wrapper = site/wrapper

define some location variables
define rootdir = /home/dent/web/ttbook
define rooturl = /ttbook
define debug = 0

The
configuration file is very similar to the
example we saw in Chapter 2. The first section
defines the three important template directories:

directories
src = /home/dent/web/ttbook/templates/src
lib = /home/dent/web/ttbook/templates/lib
dest = /home/dent/web/ttbook/html

The src directory contains the source
templates for HTML pages. Each is processed by
ttree, and the output is written to the
corresponding file in the dest directory. The
lib directory contains the library of various
template components that don't comprise complete
page templates in their own right. This directory is added to the
INCLUDE_PATH option that
ttree passes to the Template Toolkit. You can
specify multiple lib directories in the
configuration file, and each will be added to the
INCLUDE_PATH in the order defined.

For now we plan to keep all images under the
images directory, separate from the source
templates in templates/src. However, there may
be occasions when we want to put an image or other binary file in the
same directory as an HTML page. To accommodate this, we set the
copy option to a regular expression matching any
filename extensions that indicate files that should be copied
directly from templates/src to
html without being processed through the
Template Toolkit:

copy images and other binary files
copy = \.(png|gif|jpg|pdf)$

We can also tell tree to look out for certain
files that should be completely
ignored�in this case, any CVS or RCS files that we may be using
for version control, and also any temporary files that our favorite
editor may have left lying around:

ignore CVS, RCS, and Emacs temporary files
ignore = \b(CVS|RCS)\b
ignore = ^#

The next section sets some basic ttree flags:

misc options
verbose
recurse
recursion

The first is verbose, which enables
various useful messages so that we can see what's
going on as ttree is doing its work. The second
is recurse, which tells ttree
to recurse into any directories it finds under the
src directory and process any templates and
further subdirectories it finds therein. The last option,
recursion, is confusingly similar to
recurse but serves a slightly different purpose.
This tells the Template Toolkit that it's OK for a
template to recursively process itself. Don't worry
if you're not sure what that means right now.
We're going to be using this feature later on when
it comes to building a menu for the site, so all will become clear.

The next section defines two options that are passed to the Template
Toolkit as the PRE_PROCESS and
WRAPPER options:

TT options
pre_process = config/main
wrapper = site/wrapper

The pre_process option denotes that
the config/main template should be preprocessed
before each source page template. The
wrapper option gives the name of a
template that is used to provide a wrapper around the generated page
output�in this case, to add HTML headers, footers, and any
other user interface elements common to all pages in the site.

The final section defines two template variables that indicate the
root directory for the project and the root URL for accessing the
pages. The third defines a debug flag, which
we'll leave disabled for now:

define some location variables
define rootdir = /home/dent/web/ttbook
define rooturl = /ttbook/index.html
define debug = 0

It is common (and sensible) practice to develop and test a web site
offline, uploading it to its final URL only when it is finished and
ready for public consumption. The only drawback to this is that the
URLs you use to access pages under
development will be different from those you use when the site goes
live. One workaround to this problem is to use relative URLs when
linking between pages. This approach works fine for small and simple
sites but doesn't scale very well to larger, more
complex sites, which can become more fragile when held together by
relative links.

A better approach is to use a variable such as
rooturl to define a root URL from which all other
relative URLs in the site are constructed. If we need to relocate our
site to be served under a different URL, we need only change this
value and have ttree rebuild the site.

We'll see how this works in practice when we define
some URLs a little later on in this chapter.

11.1.4 Simple pre_process and wrapper Templates

We now need to provide the
pre_process and wrapper
templates that were named in the etc/ttree.cfg
configuration file.

For now we can just use some simple templates to get started and test
that everything is working. The configuration template is shown in
Example 11-4. It sets a single variable,
msg. We will be displaying this value in a test
page later on to demonstrate that the template is being preprocessed
and the value correctly set.

Example 11-4. templates/lib/config/main

[% message = 'Hello World' -%]

The wrapper template displays the content inside a
minimal set of HTML elements required for a valid HTML page (see
Example 11-5).

Example 11-5. templates/lib/site/wrapper

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>[% template.title %]</title>
 </head>
 <body>
 [% content %]
 </body>
</html>

We'll start off by defining a title for each page in
a META tag in the source template. In the
wrapper template, this value is accessed as the
template.title variable.

11.1.5 Creating the Build Script

Building the site is now a simple
matter of invoking ttree using the
-f option to tell it where to find the
configuration file:

$ ttree -f /home/dent/web/ttbook/etc/ttree.cfg

The configuration file can be specified using an absolute filename as
shown earlier, or a relative filename as shown in the following
examples. Note the leading dot character (.) on
the first example, which is required.

$ cd ~/web/ttbook
$ ttree -f ./etc/ttree.cfg # OK
$ cd src
$ ttree -f ../etc/ttree.cfg # OK

This can get a little tiresome when you have to type it several dozen
times in a day, especially if the path to the configuration file is
long and complicated. So to make life a little easier, we create a
simple build script that calls ttree with the
right -f option along with any other command-line
arguments we specify, as shown in Example 11-6.

Example 11-6. bin/build

 ttree -f /home/abw/web/ttbook/etc/ttree.cfg $@

The build script is just a thin wrapper of convenience around
ttree (for now). You can continue to use any of
the usual ttree command-line options. For
example:

$ bin/build # build any modified pages
$ bin/build -a # build all pages
$ bin/build index.html # build just this page
$ bin/build -h # show help

See Chapter 2 for further examples of using a
build script.

11.1.6 A First HTML Page

With our basic presentation system
in place, we can now start to create content for the web site. Each
HTML page starts off as a source template in
templates/src. All the headers, footers, menus
and other user interface components are added automatically, so these
templates need to provide only the core content for the page.

It is traditional to begin any demonstration such as this with the
universal greeting to all of humanity. Example 11-7
shows a page template that displays the familiar
"Hello World" message.

Example 11-7. templates/src/index.html

[% META title = 'Template Toolkit Test' %]

<p>
 This is the index page. Testing! Testing!

 The message is '[% message %]'.
</p>

The page contains two directives. The first defines a
title in a META tag. This value
will then be displayed in the HTML head tag by the
templates/lib/site/wrapper template that we
defined earlier. The title is accessed, as are all
META items, through the
template variable�e.g.,
template.title.

The second directive prints the value of the
message variable that we defined in the
preprocessed config/main template.

Run bin/build to process the source template and
generate the HTML page:

$ bin/build

ttree 2.63 (Template Toolkit version 2.10)

 Source: /home/dent/web/ttbook/templates/src
 Destination: /home/dent/web/ttbook/html
Include Path: [/home/dent/web/ttbook/templates/lib]
 Ignore: [\b(CVS|RCS)\b, ^#]
 Copy: [\.(png|gif|jpg|pdf)$]
 Accept: [*]

 + index.html

The + to the left of index.html
on the last line indicates that the file was processed successfully.
This creates an index.html file in the
html directory that looks like Example 11-8.

Example 11-8. html/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Template Toolkit Test</title>
 </head>
 <body>
 <p>
 This is the index page. Testing! Testing!

 The message is 'Hello World'.
 </p>
 </body>
</html>

The source template has been processed and the [% message
%] directive resolved to provide the familiar Hello World
greeting. The page content has also been enclosed in the HTML wrapper
template with the title of the page template
(template.title) correctly inserted.

If your web server configuration is working as expected, you should
now also be able to view this page as index.html
under the root URL you specified (e.g., /ttbook/index.html).

11.1.7 Automating the Project Configuration Process

If you take a look back over the files that
we've created for the purposes of project
administration�bin/build,
etc/ttree.cfg, and
etc/httpd.conf�you'll
notice that all three reference the project root directory,
/home/dent/web/ttbook, and two use the base URL,
/ttbook. As when we want to move the project to
another directory or URL, we need only edit these three files, and
everything else should fall into place as part of the build process.

Three files may not sound like many, but that number will most likely
grow as you add more functionality to your system. Sooner or later
you'll relocate the site and forget to update one of
the critical files. Much head scratching will ensue while you try to
figure out why the site isn't building properly or
the pages aren't being displayed.

If alarm bells aren't already ringing in your head,
they should be because this is a perfect application area for some
template processing. We said earlier that the Template Toolkit
wasn't just for processing HTML, and this is a great
example of what we mean. Rather than hardcoding a directory and URL
in several configuration files, we can define them as templates, and
have these and any other project-related
variables inserted automatically to
construct the build script and configuration files for us.

Here's how we do it. First, we create a directory
for storing the skeleton templates for our project
files. We'll call this directory
skeleton to avoid confusing it with our HTML
templates in templates. Under this directory, we
also add bin and etc
sub-directories.

$ cd /home/dent/web/ttbook
$ mkdir skeleton
$ mkdir skeleton/bin skeleton/etc

Copy the files bin/build,
etc/ttree.cfg, and
etc/httpd.conf (if you're using
it, that is) into the relevant skeleton
directories:

$ cp bin/build skeleton/bin
$ cp etc/ttree.cfg skeleton/etc
$ cp etc/httpd.conf skeleton/etc

Now use your favorite text editor to peform a global search for the
project directory (e.g., /home/dent/web/ttbook)
and replace it with the Template Toolkit directive [% dir
%]. Similarly, replace the base URL (e.g.,
/ttbook) with [% url %].
Finally, replace the 0 for the
debug value defined in
skeleton/etc/ttree.cfg with [% debug
%]. You can use Perl to do this if you prefer, using
something like the following incantation:

$ perl -pi -e 's{/home/dent/web/ttbook}{[% dir %]}g; \
> s{/ttbook}{[% url %]}g; \
> s{(debug\s*=)\s*0}{$1 [% debug %]}' \
> skeleton/*/*

The files should now look like those shown in Examples Example 11-9, Example 11-10, and Example 11-11.

Example 11-9. skeleton/bin/build

ttree -f [% dir %]/etc/ttree.cfg $*

Example 11-10. skeleton/etc/ttree.cfg

directories
src = [% dir %]/templates/src
lib = [% dir %]/templates/lib
dest = [% dir %]/html

copy images and other binary files
copy = \.(png|gif|jpg|pdf)$

ignore CVS, RCS, and Emacs temporary files
ignore = \b(CVS|RCS)\b
ignore = ^#

misc options
verbose
recurse
recursion

TT options
pre_process = config/main
wrapper = site/wrapper

define some location variables
define rootdir = [% dir %]
define rooturl = [% url %]
define debug = [% debug %]

Example 11-11. skeleton/etc/httpd.conf

Alias [% url %]/images/ [% dir %]/images/
Alias [% url %]/ [% dir %]/html/

<Directory [% dir %]/>
 Options MultiViews Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Now all we need is a configuration
script to figure out what the right values should be and process the
templates. Another wrapper around ttree will do
the job nicely, as shown in Example 11-12.

Example 11-12. bin/configure

#!/usr/bin/perl -w # -*- perl -*-
#
configure

This script determines the correct root directory
for the project (the parent of the 'bin' directory
in which it is located), prompts for some configuration
values if not set via command-line options, and then
calls ttree to process all files under the skeleton
directory, storing output relative to the project root
directory (e.g., skeleton/bin/build => bin/build).
#
Copyright 2003 Andy Wardley.
#
This is free software distributed under the same terms as Perl.
#

use strict;
use warnings;
use FindBin qw($Bin);
use Getopt::Std;
local $|=1;

defaults
my $URL = '/ttbook';

get options
our ($opt_d, $opt_u, $opt_y, $opt_h);
getopts('yhdu:');

display usage and exit on -h
die <<END_USAGE if $opt_h;
usage: configure [options]

options:
 -u url url for HTML pages (default: $URL)
 -d debug set debug flag (default: 0)
 -y Accept defaults
 -h This help
END_USAGE

work out where we are in the filesystem
my @dirs = File::Spec->splitdir($Bin);
pop @dirs; # remove 'bin'
my $dir = File::Spec->catdir(@dirs);
my $skel = File::Spec->catfile($dir, 'skeleton');

prompt for root URL
my $url = prompt('root page URL', $opt_u || $URL);
my $dbg = prompt('enable debugging?', $opt_d ? 'yes' : 'no')
 =~ /^y(es)?/ ? 1 : 0;

hand over to ttree
my @args = ('ttree',
 '-r', '-p', '-v', '-a',
 '-s', $skel,
 '-d', $dir,
 '--ignore', '\b(CVS|RCS)\b',
 '--define', "dir=$dir",
 '--define', "url=$url",
 '--define', "debug=$dbg",
 @ARGV);

system(@args) = = 0
 or die "ttree failed: $?\n";

#--
prompt($message, $default)
#
Prompt user to input value or accept default.
#--

sub prompt {
 my ($msg, $def) = @_;
 my $ans = '';
 $def = '' unless defined $def;

 print "$msg [$def] ";

 if ($opt_y) { # accept default
 print "$def\n";
 }
 else { # read user input
 chomp($ans = <STDIN>);
 }

 return length($ans) ? $ans : $def;
}

The script first determines the root directory of the project and
then prompts the user for the base URL, defaulting to
/ttbook.

$ bin/configure
root page URL [/ttbook]

It also prompts the user to confirm the debugging option. Answer
y or yes to set the debugging
option, or press Enter to accept the default, leaving debugging
disabled:

enable debugging? [no]

This flag doesn't have any effect on the Template
Toolkit, although there are plenty of others that do.
We're just defining another template variable, this
time called debug, which we'll be
using later.

The script then calls ttree, passing the various
options required to have it process the files under the
skeleton directory and copy the generated output
into place under the project root directory:

ttree 2.63 (Template Toolkit version 2.10)

 Source: /home/dent/web/ttbook/skeleton
 Destination: /home/dent/web/ttbook
Include Path: []
 Ignore: [\b(CVS|RCS)\b]
 Copy: []
 Accept: [*]

 + bin/build
 + etc/ttree.cfg
 + etc/httpd.conf

The output files generated�bin/build,
etc/ttree.cfg, and
etc/httpd.conf�will contain exactly the
same content as they did before. However, we can now easily move the
project to a new directory or locate it under a different URL.
Instead of editing the configuration files by hand, we let the
bin/configure script take care of it.

An illustration of this is shown in the first line of the following
example. Command-line options are used to define the new root URL
(-u) and to accept all defaults
(-y). The bin/configure
script then regenerates the configuration files for the project. The
second command then calls on the bin/build
script to rebuild all the pages in the site (-a)
using the new values defined.

$ bin/configure -u /newtturl -y
$ bin/build -a

Even the Apache configuration file,
etc/httpd.conf, has been updated to account
for the new URL, as shown in Example 11-13.

Example 11-13. etc/httpd.conf

Alias /newtturl/images/ /home/abw/web/ttbook/images/
Alias /newtturl/ /home/abw/web/ttbook/html/

<Directory /home/abw/web/ttbook/>
 Options MultiViews Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

All you need to do is to restart Apache to have it read the new
configuration. The web site will then be accessible via the
URL http://localhost/newtturl/.

11.2 Library Templates

The templates for this project fall into two categories. Each HTML
page has a corresponding source template in
templates/src such as that shown in Example 2-1 in Chapter 2. These are
referred to as page templates and generally
map one-to-one with each static page in the site.

The other templates are library
templates, also
known as template
components. Rather than
defining complete HTML pages, these templates encode smaller chunks
of HTML markup or Template Toolkit code to perform one task.
We've also seen some simple examples of these in
Examples Example 2-3 and Example 2-4. We're going to be looking at
these in more detail now.

11.2.1 Configuration Templates

The purpose of the
PRE_PROCESS configuration template,
config/main, is to define any sitewide variables
required to specify URLs, colors, images, and anything that we
don't want to hardcode in the HTML page content or
user interface components.

Rather than define everything in one monolithic configuration file,
something that would quickly lead to a poor separation of concerns, a
separate config directory will be used to
contain various different configuration templates, each one
representing one particular aspect of the site. These templates are
loaded by one master template, config/main,
shown in Example 11-14, using the
PROCESS directive.

Example 11-14. templates/lib/config/main

[% PROCESS config/page
 + config/site
 + config/url
 + config/col
 + config/images
-%]

This approach allows you to easily change one configuration file
without affecting the others. This is particularly useful when you
want to customize a web site to provide different presentation
styles, a process known as branding or
skinning, which we will be covering later in
this chapter.

Now let us look at each
configuration file in turn to find out what they do. The first,
config/page, defines a page
data structure containing various bits of information relating to the
current page (i.e., source template) being processed. This is shown
in Example 11-15.

Example 11-15. templates/lib/config/page

[% USE Date;

 # define page data structure
 page = {
 file = template.name
 title = template.title
 about = template.about
 type = template.type or 'html'
 date = template.date or Date.format(template.modtime)
 };

-%]

We're using the
template variable here that references the
Template::Document object for the current page
template being processed (or about to be processed, given that this
is all happening during the preprocess phase). Through the
template variable we can access details about the
template file itself, including the filename,
template.name (specified relative to the
templates/src directory in this case) and the
modification time, template.modtime. Any metadata
items defined in META tags within the template are
also made available through the template
variable�here we look specifically for
title, about, and
type. We also look for a date
item, and otherwise construct human-readable data from the template
modification time (template.modtime) formatted
using the Date plugin.

The remaining templates define configuration data that relates to the
site as a whole. The config/site
template, shown in Example 11-16, defines a
site data structure that contains some
miscellaneous items.

Example 11-16. templates/lib/config/site

[% site = {
 name = 'Template Toolkit Web Site'
 server = 'http://template-toolkit.org'
 admin = 'webmaster@template-toolkit.org'
 copyright = '1996-2003 Andy Wardley'
 }
-%]

Example 11-17 shows the
config/url
template. This uses the rooturl variable to
construct a set of page and section URLs that are stored in the
site.url hash. Recall that the value for
rooturl is defined as a ttree
configuration option in the etc/ttree.cfg file.

Example 11-17. templates/lib/config/url

[% site.url = {
 root = rooturl
 home = "$rooturl/index.html"
 images = "$rooturl/images"
 logo = "$rooturl/images/logo"
 css = "$rooturl/css"
 }
-%]

The config/col
template defines an rgb hash mapping color names
to RGB hex triplets in the format required for HTML pages. This is
also aliased to site.rgb. The template then
defines a site.col hash that maps various style
names to specific rgb colors. This is shown in
Example 11-18.

Example 11-18. templates/lib/config/col

[% rgb = {
 white = '#FFFFFF'
 black = '#000000'
 red = '#ED2328'
 orange = '#F08900'
 skyblue = '#00AAF0'
 paleblue = '#80C0F0'
 midblue = '#6080C0'
 darkblue = '#202060'
 misty = '#C0C0F0'
 ltgrey = '#E0E0E0'
 vltgrey = '#F0F0F0'
 }

 site.rgb = rgb
 site.col = {
 back = rgb.white
 text = rgb.black
 link = rgb.skyblue
 vlink = rgb.midblue
 alink = rgb.red
 mlink = rgb.orange
 line = rgb.skyblue
 head = rgb.darkblue
 }
-%]

The color names being used here are entirely arbitrary. It should be
obvious that you can extend and adapt these and all the other data
structures for your own use.

The config/images
template, shown in Example 11-19, defines a
site.image data structure containing some useful
information about the logos that we're using in the
site in various sizes.

Example 11-19. templates/lib/config/images

[% site.image = {
 logo = {
 large = {
 src = "$site.url.logo/tt2_180x60.gif"
 alt = "TT2 Logo"
 width = 180
 height = 60
 }
 small = {
 src = "$site.url.logo/tt2_120x40.gif"
 alt = "TT2 Logo"
 width = 120
 height = 40
 }
 }
 name = {
 src = "$site.url.logo/ttdotorg.gif"
 alt = "template-toolkit.org"
 width = 180
 height = 24
 }
 }

 site.logo = site.image.logo.large

-%]

The configuration templates collectively define two data structures:
site and page. It is a good
idea to define as few "top-level"
variables like this as possible. The more variables
you have, the harder it is to keep track of them, and the more likely
you are to overwrite an important piece of predefined configuration
data with a temporary or "local"
variable of the same name.

Another benefit to this approach is that it allows us to replace the
site or page data structures at
a later date with alternate implementations. For example, we might
decide to define the site data in an XML file, in an SQL database, or
as a Perl module. All we have to do is arrange the data in the right
format and make it available as the site and
page variables, and it will integrate seamlessly
into the existing structure.

Finally, defining all your sitewide data in a single
site variable makes it easy to use
compile-time constant folding at a later date if you need to optimize
your templates for efficiency. As described in Chapter 3, the constant folding feature allows you to
provide a set of variables in a namespace
(constants by default, but you can easily change
it to site, for example), which should be resolved
once when the template is compiled instead of being resolved each
time the template is processed. This can be particularly benefical
when generating large amounts of template-driven dynamic content
through a web server. It effectively gives each template less work to
do each time it is processed by doing some of the work when the
template is compiled.

11.2.2 Layout Templates

Now we can start to define the overall look and feel of the web site,
using the same techniques that we introduced in Chapter 2.

11.2.2.1 Page wrappers

The wrapper option
is used in the etc/ttree.cfg file to denote the
name of a template that is used to automatically enclose the content
generated from each page template. In this, the template is
site/wrapper, shown in Example 11-20.

Example 11-20. template/lib/site/wrapper

[% content WRAPPER site/html + site/layout -%]

Two templates are being used to wrap the generated page content. The
first and outermost wrapper in this case is
site/html, shown in Example 11-21.

Example 11-21. templates/lib/site/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>[% page.title %]</title>
 <link rel="stylesheet" href="[% site.url.css %]/tt2.css" />
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 <meta name="robots" content="all" />
 </head>

 <body bgcolor="[% site.col.back %]"
 text="[% site.col.text %]" link="[% site.col.link %]"
 vlink="[% site.col.vlink %]" alink="[% site.col.alink %]">
 [% content %]
 </body>
</html>

It adds the standard
headers and footers required to
construct a valid HTML page, interpolating a number of variables
along the way. These include the page title from
page.title and several colors from
site.col.

Example 11-22 shows the second and innermost template,
site/layout. It defines an overall layout for
the page content and other sitewide user interface components.

Example 11-22. templates/lib/site/layout

<table width="100%" border="0" cellpadding="0" cellspacing="5">

 <tr valign="middle">
 <td width="[% site.logo.width + 10 %]" align="center">
 [% PROCESS site/logo %]
 </td>
 <td>
 [% PROCESS site/header %]
 </td>
 </tr>

 <tr>
 <td></td>
 <td>[% PROCESS misc/line %]</td>
 </tr>

 <tr valign="top">
 <td align="center">
 [% PROCESS site/menu %]
 </td>
 <td>
 [% content %]
 </td>
 </tr>

 <tr>
 <td></td>
 <td>[% PROCESS misc/line %]</td>
 </tr>

 <tr valign="bottom">
 <td></td>
 <td align="center">
 [% PROCESS site/footer %]
 </td>
 </tr>

</table>

It does this by combining them in an HTML table to define the overall
layout, but leaves the implementation specifics of each element to be
handled by other template components. This approach allows you to get
a clear overview of the layout without the distraction of too much
messy detail. Each component does just one thing, making it easy to
understand, modify, or replace.

11.2.2.2 Layout components

Example 11-23 shows the other user interface
components that we're using in the overall layout
for the site.

Example 11-23. templates/lib/site/logo

[%- INCLUDE misc/image image=site.logo | trim -%]

The site/logo
template shown in Example 11-23 uses
misc/image to generate an appropriate image tag.
This has leading and trailing whitespace removed with the
trim filter and is enclosed in an element making
it a link to the site home page. The misc/image
template in Example 11-24 simply generates an HTML
image tag.

Example 11-24. templates/lib/misc/image

<img src="[% image.src %]" alt="[% image.alt %]"
 width="[% image.width %]" height="[% image.height %]" border="0" />

The misc/line template in
Example 11-25 is so simple that you might wonder why
we're using it at all. It contains only an
hr element to create a horizontal rule (i.e.,
line) across the page.

Example 11-25. templates/lib/misc/line

<hr />

This example is rather trivial but it illustrates the principle of
creating a library of reusable presentation components. They define a
particular look and feel for the site that can easily be changed at a
later date. Although it is slightly more tedious in this case to
write [% PROCESS misc/line %] than to embed the
<hr/> HTML element directly in a template,
it has the benefit of allowing us to make it more complicated
later.[1]
[1] As indeed we will, later on in this
chapter.

Using a template component from the start to generate this feature
means that we will have to make changes in only one place. When we do
make a change, all the templates that use the component will get the
benefit of the update. You don't have to generate
your entire user interface like this, only the parts that you think
you might want to do differently at a later date.

When you're designing the look and feel for a site,
you'll probably want to try out a few different
combinations of user interface elements in various styles, colors,
positions, and so on. If you create each as a separate template
component, you can easily switch between them to find something that
you like. This is also ideal for showing different possibilities to
your customer, manager, or whoever has the ultimate responsibility
for how the site should look. They may not care too much about how
the bike shed was built, but you can be sure they will have some
opinion on what color it should be painted.[2]
[2] See
http://www.unixguide.net/freebsd/faq/16.19.shtml
for the origins of this analogy.

The site/header template is also
very simple. It displays the page title and any information about the
page, defined in page.title and
page.about, respectively. This is shown in Example 11-26.

Example 11-26. templates/lib/site/header

<h1 class="title">[% page.title %]</h1>
[% IF page.about -%]
<div class="info">
 [% page.about %]
</div>
[% END -%]

We will be looking at generating menus and other navigation
components later in this chapter. For now we'll
start with something simple such as the template in Example 11-27, which provides a basic menu linking to
various pages in the site.

Example 11-27. templates/lib/site/menu

[% menu = {
 index = 'Home'
 about = 'About'
 news = 'News'
 };

 order = ['index' 'about' 'news'];

 FOREACH item IN order;
-%]
[% menu.$item %]

[% END -%]

Last but not least we have the
site/footer template in
Example 11-28. This adds a standard copyright message
and some general information about the page.

Example 11-28. templates/lib/site/footer

<p class="info">
 © Copyright [% site.copyright %].
 All Rights Reserved.

 [% page.file %] last modified [% page.date %]
</p>

11.3 Content Templates

We now have a library of template components in place that defines a
common configuration and presentation for our web site content. This
is applied automatically by ttree for each page
template it processes so that we don't have to worry
about it. Our page templates can concentrate on defining core page
content without being obscured by elements of the user interface.

11.3.1 HTML Pages

In Example 11-7, we
saw how a title
for a page can be defined in a META directive. In
addition to this, we can now also provide an about
item, as shown in Example 11-29.

Example 11-29. templates/src/index.htm

[% META title = 'Template Toolkit Home'
 about = 'Home page for the Template Toolkit'
%]

<p>
 Welcome to the Template Toolkit web site.
</p>

<p>
 This page would have more content but the editor
 is currently out enjoying an extended lunch break.
</p>

<p>
 We expect him back before the end of the year.
</p>

The title and about items are
extracted automatically and displayed by the
site/header template, along with the logo, menu,
and footer. The rest of the template provides the page content, clean
and simple.

Now you can run the bin/build script to generate
the HTML output page:

$ bin/build

The output file html/index.html is generated.
Figure 11-1 shows what it looks like when viewed
using a web browser.[3]
[3] In the screenshots in this
chapter, we have deliberately increased the size of the user
interface in proportion to the page content. On the real site, the
logo, menu, and other navigation components are much smaller, leaving
more room for the core page content, which is of course the most
important thing.

Figure 11-1. The generated HTML index page

[image: figs/pttk_1101.gif]

The benefits of separating the common user interface elements from
the core page content should by now be obvious. Adding a new page to
the web site is a simple matter of adding a page template to the
templates/src directory. These templates contain
only the core content of the page, and authors don't
need to concern themselves with adding headers, footers, menus, or
anything else that is common to the site as a whole. The only
requirement is that they define the title and
about values in a META tag,
although both of these are strictly optional. If they
don't define either the title or
about, the relevant page.title
or page.about values will be empty. If we want to
be more strict, we could easily modify our
config/page template to throw an error if one or
another was undefined.

You will of course need to run the bin/build
script whenever you add new pages. Assuming they process without
error, the generated HTML output pages will then be accessible via
the relevant URL for your web server. When you're
happy with the new pages, you can then go and update your
site/menu template to make them accessible via
the menu. Remember that you'll need to rebuild the
entire site when you make a change to a sitewide component such as
site/menu, so invoke
bin/build with the -a option.

11.3.2 CSS and Other Non-HTML Pages

With the wrapper and
layout templates in place, we can enjoy
the benefits of having the user interface elements added
automatically. However, there may be pages for which we
don't want this window dressing automatically added.
We're going to look at a Cascading Style Sheet (CSS)
as an example of such a page, but the principle applies equally well
to JavaScript libraries, text files, XML files, and so on.

We could just define these files outside of the
templates/src directory so that they bypass the
regular build process. We would of course need to manually copy them
into the html directory or configure the web
server to locate them correctly. Or we could store them in the
templates/src directory along with all the other
page templates, but add css, js, txt, and any
other relevant file extensions to the copy option
in the etc/ttree.cfg configuration file,
indicating the files that should be copied into place rather than
processed.

However, these approaches bypass the Template Toolkit processing
stage, which isn't what we want in this case. We
have already defined various colors in the pre-processed
configuration template templates/lib/config/col,
and we would like to use these values in the CSS file. Assuming then
that we are going to process the CSS file through the Template
Toolkit, we can take advantage of this by adding any other directives
that will simplify the job of maintaining the document�for
example, by defining font information in one place at the start of
the file and then using it by variable reference in numerous
different places throughout the file.

Example 11-30 shows the start of the CSS file to
illustrate the principle. For a detailed discussion of CSS, see
Cascading Style Sheets: The Definitive Guide
by Eric Meyer (O'Reilly). As far as the Template
Toolkit is concerned, it is just another text format.

Example 11-30. templates/src/css/tt2.css

[% META type = 'text' %]

[% font = {
 text = 'Verdana, Arial, Helvetica, sans-serif'
 mono = '"Courier New", Courier, monospace'
 }
-%]

body {
 font-family: [% font.text %];
 font-size: 12px;
}

.info {
 font-size: 10px;
}

.title {
 font-family: [% font.text %];
 font-size: 24px;
 line-height: 30px;
 font-weight: bold;
 color: [% site.col.text %];
 margin-top: 0px;
 margin-bottom: 2px;
}

a {
 font-family: [% font.text %];
 font-size: 12px;
 line-height: 14px;
 text-decoration: none;
 color: [% site.col.link %];
}

a:hover {
 color: [% site.col.alink %];
}

a.menu {
 white-space:nowrap;
}

a.menu:hover {
 color: [% site.col.alink %];
}

a.menuselect {
 font-weight: bold;
 color: [% site.col.mlink %];
 white-space:nowrap;
}

a.menuselect:hover {
 font-weight: bold;
 color: [% site.col.alink %];
}

...etc...

The META directive in the first line
declaring a text template type is the key to
bypassing the usual wrapper mechanism. You may recall it was one of
the items that the config/page template
examined, in this case copying it into the
page.type variable. The default value, if not
explicitly set in a META directive, is
html.

All that needs to be done is a quick change to the
site/wrapper template to handle different values
for page.type. This is shown in Example 11-31.

Example 11-31. templates/lib/site/wrapper

[% SWITCH page.type;
 CASE 'text';
 content;

 CASE 'html';
 content WRAPPER site/html
 + site/layout;
 CASE;
 THROW page.type "Invalid page type: $page.type";
 END;
-%]

If the page type is text, the page content is
passed through unaltered. If the page type is
html, we apply the usual wrappers. Otherwise we
throw an error reporting that we can't handle pages
of whatever unknown type they claim to have.

You can achieve the same effect in other ways without using a
META item. For example, the
config/page template could examine the template
path or file extension to determine the file type, or consult a
lookup table or database mapping filenames to type.

11.3.3 Content Components

As you develop more content for
your site you'll undoubtedly find yourself doing the
same kinds of things over and over again. At this point it might be a
good idea to see whether you can isolate what you're
doing and create a template component or components that do it for
you.

We're going to look at an example of laying out
information in a table. The HTML table element is
a complex beast with many options, but we're not
going to try and emulate or replicate it. Instead,
we're going to define one particular table style and
a few different cell styles according to the look and feel of our
site.

The first thing we need to do is to define some colors for our table.
Example 11-32 shows the definition of a
site.col.table data
structure, added to the bottom of the config/col
template.

Example 11-32. templates/lib/config/col

[%
 .
 .
 .
 site.col = {
 .
 .
 .
 line = rgb.skyblue
 head = rgb.darkblue
 table = {
 edge = rgb.skyblue
 back = rgb.white
 head = rgb.misty
 cell = rgb.ltgrey
 }
 }
-%]

The table/edge template shown
in Example 11-33 generates a table
element nested inside another. This provide us with a colored border
(site.col.table.edge) around the table. The
template is designed to be used with the WRAPPER
directive, so it expects the contents of the table to be defined in
the content variable.

Example 11-33. templates/lib/table/edge

<table border="0" cellspacing="1" cellpadding="0"
 bgcolor="[% site.col.table.edge %]">
 <tr>
 <td>
 <table border="0" bgcolor="[% site.col.table.back %]"
 cellspacing="2" cellpadding="4">
 [%- content -%]
 </table>
 </td>
 </tr>
</table>

Here's a simple way in which you would use the
template defined in Example 11-33:

[% WRAPPER table/edge %]
<tr>
 <th>Forename</th>
 <td>Arthur</td>
</tr>
<tr>
 <th>Surname</th>
 <td>Dent</td>
</tr>
[% END %]

The table/row template, also
designed for use with WRAPPER, generates an HTML
tr element with the content embedded inside. This
is shown in Example 11-34.

Example 11-34. templates/lib/table/row

<tr valign="top">
 [% content %]
</tr>

The table/head and
table/cell templates both
generate HTML td elements, but use different
background colors from the site.col.table hash
(see Examples Example 11-35 and Example 11-36).

Example 11-35. templates/lib/table/head

<td bgcolor="[% site.col.table.head %]">
 [% content %]:
</td>

Example 11-36. templates/lib/table/cell

<td bgcolor="[% site.col.table.cell %]">
 [% content %]
</td>

Now we can use these different components to do the hard work of
generating HTML tables in a consistent style.

11.3.4 Debugging Pages

When you're creating components
such as these you'll want somewhere to test them and
get them working just right. It's a good idea to
create a separate directory in your site for doing this, but
don't throw the test pages away when
you're done. If you create a page for debugging a
component or set of components in isolation, you can use it to check
that the components are working as expected right now, as well as in
the future, when you decide to change the layout style and modify the
template components.

So let's start by creating a page for debugging the
table components that
we've just created. Example 11-37
shows three different examples of tables created using these
components.

Example 11-37. templates/src/debug/table.html

<h2>Table 1</h2>

[% WRAPPER table/edge %]
 <tr>
 <th>Forename</th>
 <td>Arthur</td>
 </tr>
 <tr>
 <th>Surname</th>
 <td>Dent</td>
 </tr>
[% END %]

<h2>Table 2</h2>

[% WRAPPER table/edge %]
[% WRAPPER table/row %]
 <th>Forename</th>
 <td>Arthur</td>
[% END %]
[% WRAPPER table/row %]
 <th>Surname</th>
 <td>Dent</td>
[% END %]
[% END %]

<h2>Table 3</h2>

[% WRAPPER table/edge;
 WRAPPER table/row;
 INCLUDE table/head content='Forename';
 INCLUDE table/cell content='Arthur';
 END;
 WRAPPER table/row;
 INCLUDE table/head content='Surname';
 INCLUDE table/cell content='Dent';
 END;
 END
%]

Figure 11-2 shows the page generated by Example 11-37. Everything seems to be working as expected.

Figure 11-2. Debugging page for table components

[image: figs/pttk_1102.gif]

Now let's add a page showing the contents of the
site data structure. Or rather,
let's write a generic template
component that displays the contents of any hashlike data structure
(see Example 11-38).

Example 11-38. templates/lib/debug/hash

[% WRAPPER table/edge;
 FOREACH key = hash.keys;
 val = hash.$key;
 WRAPPER table/row;
 INCLUDE table/head content=key;
 WRAPPER table/cell;
 IF val.keys;
 INCLUDE debug/hash hash=val;
 ELSE;
 val;
 END;
 END;
 END;
 END;
 END;
-%]

Then all we need to do is to call the component passing the
site data structure as the hash
variable (see Example 11-39).

Example 11-39. templates/src/debug/site.html

[% META title = 'Debug Site'
 about = 'Debugging page for the site data'
-%]

[% INCLUDE debug/hash hash=site %]

Figure 11-3 shows part of the page generated by the
template in Example 11-39.

Figure 11-3. Debugging page for site data

[image: figs/pttk_1103.gif]

It is a good idea to create a few debugging pages such as this that
test any nontrivial template components you create. Whenever you make
any changes to a component, you can check the relevant test page to
ensure that it is still working as expected. Think of these pages as
your test suite, designed to alert you quickly to any problems that
may arise.

11.4 Navigation Components

Good navigation components are critical to
making your web site accessible and allowing your visitors to find
what they're looking for. A good general rule of
user interface design is that a menu should have between three and
seven items. Any more, and the user is faced with a daunting list of
options to read through. Any fewer, and it's hardly
a menu at all.

Given that a typical web site is likely to have more than seven
pages, we need to consider how the pages and menus will be organized
into some kind of structure. We'll look first at how
a configuration file can be used to predefine this structure,
automatically compute certain parts of it such as the URL for each
page, and then make it accessible as part of the global
site data. Then we'll create some
template components that use this data structure to generate a menu
and other navigation components.

We'll be keeping this example fairly simple so that
we can concentrate on how the menus are constructed without getting
bogged down in too much detail. Nevertheless, we will show how the
site structure can be nested to any depth (within a reasonable
limit), and also how it can be extended at runtime based on certain
conditions, such as the value of the debug
variable we set earlier in the etc/ttree.cfg
file.

11.4.1 Adding Site Structure

The first rule of navigation is to have a good map.

Mapmaking is generally a
laborious and time-consuming task, so we're going to
get the Template Toolkit to do as much of the tedious work as
possible. The map will be defined in the
config/map template, so we
need to modify the config/main template to
PROCESS it, as shown in Example 11-40.

Example 11-40. Additions to templates/lib/config/main

[% PROCESS config/page
 + config/site
 + config/url
 + config/col
 + config/images
 + config/map # add this line
-%]

The config/map template is shown in Example 11-41.

Example 11-41. templates/lib/config/map

[% # define map of pages in site
 map = {
 name = 'template-toolkit.org'
 menu = ['index', 'about', 'news', 'docs']
 page = {
 index = { name = 'Home' }
 about = { name = 'About' }
 news = { name = 'News' }
 docs = {
 name = 'Documentation'
 menu = ['index', 'faq', 'manual']
 page = {
 index = { name = 'Introduction' }
 faq = { name = 'FAQ' }
 manual = {
 name = 'Manual'
 menu = ['index', 'syntax', 'directives']
 page = {
 index = { name = 'Introduction' }
 syntax = { name = 'Syntax' }
 directives = { name = 'Directives' }
 }
 }
 }
 }
 }
 };

 IF debug;
 # add debugging pages
 map.page.debug = {
 name = 'Debug'
 menu = ['site' 'table']
 page = {
 site = { name = 'Site' }
 table = { name = 'Table' }
 }
 };

 # add debug item to main menu
 map.menu.push('debug');
 END;

 # save map in site
 site.map = map;

 # expand map recursively...
 PROCESS config/expand;

-%]

11.4.1.1 Map nodes

The first section defines a nested map
data structure:

map = {
 .
 .
 .
}

Each node in the map is represented by a hash array. This corresponds
to a section or page in the site that has a unique location and a
page associated with it. For example, the syntax
page toward the bottom of the map correponds to the path
docs/manual/syntax.html relative to the
templates/src directory, and hence also to the
/ttbook URL or equivalent.

The one item that each node must contain is a
name. This provides a short, readable name
suitable for use in a menu.

syntax = { name = 'Syntax' }

If a node is a container for other pages, such as the
manual node that contains the
syntax page, the pages should be defined in a
page hash:

manual = {
 name = 'Manual'
 menu = ['index', 'syntax', 'directives']
 page = {
 index = { name = 'Introduction' }
 syntax = { name = 'Syntax' }
 directives = { name = 'Directives' }
 }
}

The final addition is the
menu item, also
shown in this example. This defines the order in which the pages
should be displayed in a menu. Remember that hash arrays
don't retain the order of the items they contain, so
we need to add this to make it explicit.

What we end up with is a complete page node that can be added to the
page hash of a parent container:

docs = {
 name = 'Documentation'
 menu = ['index', 'faq', 'manual']
 page = {
 index = { name = 'Introduction' }
 faq = { name = 'FAQ' }
 manual = {
 .
 . [the manual node]
 .
 }
 }
}

That node can then be added to another, which is added to another,
and so on, until the complex site structure, or the part that is
currently relevant to you, is defined.

11.4.1.2 XML site map

For a large
site, the map could
quickly become complex and difficult to maintain. However, you
don't have to define it all at once, or all in the
same place. You can just as easily store the information in an
external XML file or SQL database and use one of the XML or DBI
plugins to load it into place.

Example 11-42 shows how the same data information
could be defined in an XML file.

Example 11-42. xml/sitemap.xml

<map>
 <name>template-toolkit.org</name>
 <menu>index</menu>
 <menu>about</menu>
 <menu>news</menu>
 <menu>docs</menu>
 <page id="index" name="Home" />
 <page id="about" name="About" />
 <page id="news" name="News" />
 <page id="docs" name="Documentation">
 <menu>index</menu>
 <menu>faq</menu>
 <menu>manual</menu>
 <page id="index" name="Introduction" />
 <page id="faq" name="FAQ" />
 <page id="manual" name="Manual">
 <menu>index</menu>
 <menu>syntax</menu>
 <menu>directives</menu>
 <page id="index" name="Introduction" />
 <page id="syntax" name="Syntax" />
 <page id="directives" name="Directives" />
 </page>
 </page>
</map>

Example 11-43 shows a variation of the
lib/map template from Example 11-42. It uses the XML::Simple plugin to load the
XML file and define the map variable. The
KeyAttr parameter tells it to use the
id attribute to index items.

Example 11-43. templates/lib/config/mapx

[% USE map = XML.Simple(
 "$rootdir/xml/sitemap.xml"
 KeyAttr = ['id']
);

 IF debug;
 # as before
 .
 .
 .

-%]

11.4.1.3 Selective mapmaking

Another approach to making a complex
sitemap easier to maintain is to add bits in stages�for
example, by defining the structure of each major section of the site
in separate files. These can then be loaded via
PROCESS and merged into a single map, much in the
same way that we use several different configuration templates to
build up the site data structure.

The next section of the site/map template shows
one way this can be done. Here we define a submenu for our debugging
pages, but only if the debug variable is set to
true.

IF debug;
 # add debugging pages
 map.page.debug = {
 name = 'Debug'
 menu = ['site' 'table']
 page = {
 site = { name = 'Site' }
 table = { name = 'Table' }
 }
 };

 # add debug item to main menu
 map.menu.push('debug');
END;

If you want to enable the debugging pages, run
bin/configure with the -d
command-line option, or answer yes when prompted.
Then run bin/build -a to rebuild the site with the
debugging menu enabled.

The final part of the file saves the map structure
in site.map and then calls
config/expand to walk the map structure and
expand it with additional items:

save map in site
site.map = map;

expand map recursively...
PROCESS config/expand;

11.4.2 Walking the Structure

The config/expand template is where all the deep magic
behind our navigation system takes place. We're
cramming a lot into a small space, and the template is rather complex
as a result. In fact, this is probably the most complicated template
that we're using to build the site.

Templates such as this often start simple and grow more complex as
you develop the site further. For a real web site, we would probably
implement this complex functionality as a Perl subroutine or plugin
module. More likely, we would prototype it as a template and later
implement it in Perl when we have a better idea about exactly what we
want.

Nevertheless, we'll continue to use this as an
example of the kind of complicated task that can be undertaken using
the Template Toolkit, should you choose to do so.

Example 11-44 shows what the
config/expand template looks like.

Example 11-44. templates/lib/config/expand

[% # page.trail tracks path to the current page
 DEFAULT page.trail = [];

 # list of menu items we're constructing
 map.items = [];

 # walk through item names in map.menu
 FOREACH id IN map.menu;
 # fetch page from map.page
 THROW map "Invalid menu item in $map.name: $id"
 UNLESS (item = map.page.$id);

 # add location data
 item.id = id;
 item.path = path ? "$path/$id" : id;
 item.file = item.page
 ? "${item.path}/index.html"
 : "${item.path}.html";
 item.url = "$site.url.root/$item.file";

 # is this item on the path to the current page?
 item.hot = page.file.match("^$item.path");
 item.subs = item.hot and item.menu;
 item.here = (item.file = = page.file);

 # set next/last if this is the actual page
 IF item.here;
 page.prev = map.page.${loop.last};
 page.next = map.page.${loop.next};
 END;

 # add item to map items list
 map.items.push(item);

 # also to the trail if the page is hot
 page.trail.push(item) IF item.hot;

 # expand any submenu for this item
 IF item.subs;
 INCLUDE config/expand
 map = item
 path = item.path;
 END;
 END;

-%]

It expects to be passed a map variable referencing
a page node in the format defined in config/map.
It walks through each page element defined within
it in the order specified in the menu item. It
calls itself recursively to process all the pages within pages within
pages, to ensure that each node in the map is visited.

The purpose of visiting each node is to define additional data items
that we are too lazy to add by hand. It's not just
that we can't be bothered to go to the effort of
adding relative paths, full URLs, and so on to each page. The real
reason is that there is so much repetition of the same values that
it's going to be tedious, time-consuming, and
error-prone work that can be much better handled by a machine.
Furthermore, some of these items are based on values that we will
want to change from time to time (such as the base URL), so it makes
sense to compute them at runtime.

Another reason for visiting each node is to construct an
items list within the map that contains references
to the pages in page in the order defined by
menu. This will allow us to iterate directly
through the page items in a map node in the correct order, without
having to explicitly reference the page using an identifier each
time. In other words, we're making life easier for
ourselves later on.

The final reason is to determine which nodes are on the path to the
current page and which pages, if any, come before or after the page
in the menu. We'll be using this later to create a
"bread-crumb trail" and links to
the previous and next pages.

The list of page nodes on the path to the current file will be stored
in page.trail, so the first thing
config/expand does is to make sure it exists:

DEFAULT page.trail = [];

Then it creates a new items list in the current
map node:

map.items = [];

Then it iterates through each page identifier, id,
in the menu, map.menu:

FOREACH id IN map.menu;
 # fetch page
 THROW map "Invalid menu item in $map.name: $id"
 UNLESS (item = map.page.$id);
 .
 .
 .

END

It uses the identifier to index into the page map,
map.page.$id, to fetch a page hash. This is then
stored in the item variable, or an error is thrown
if an invalid identifier is used. The id,
path, file, and
url items are then computed and added to
item.

add location data
item.id = id;
item.path = path ? "$path/$id" : id;
item.file = item.page
 ? "${item.path}/index.html"
 : "${item.path}.html";
item.url = "$site.url.root/$item.file";

Notice how the path variable is being used to
construct the item.path, which is then used in
item.file and item.url.
We'll see how this works when we look at how the
config/expand template calls itself recursively.
But first, we should look at the other values that are added to each
item.

is this item on the path to the current page?
item.hot = page.file.match("^$item.path");
item.subs = item.hot and item.menu;
item.here = (item.file = = page.file);

The item.hot flag is set if the path to the item
matches the beginning (or all) of the path for the current page being
processed. In other words, it indicates that the node is on the path
to the current page. For example, if the page.file
variable contains the value
docs/manual/index.html, the nodes marked as hot in
the map would be docs, manual,
and index, whose paths are
docs, docs/manual, and
docs/manual/index, respectively.

The item.subs flag goes a little further,
indicating that the node is hot and also has further items contained
within it. The last flag, item.here, indicates
that the item is the actual node for the current page being
processed.

If the item.here flag is set,
we've found the node for the page
we're processing, in which case we can set
page.prev and page.next to
point to the data structures for the previous and next pages:

set next/last if this is the actual page
IF item.here;
 page.prev = map.page.${loop.last};
 page.next = map.page.${loop.next};
END;

The loop.last and loop.next
variables provide us with the identifiers for the previous and next
pages in the FOREACH loop. We use these to key
into the map.page structure to fetch references to
the hash arrays for the pages, if they exist.

Now that we've got a complete item we can add it to
the map.items list:

add item to list
map.items.push(item);

If the item is hot, we also add it to page.trail:

also to the trail if the page is hot
page.trail.push(item) IF item.hot;

Then if the item.subs flag is set, the
config/expand template recursively processes
itself to expand the children and further descendants of the item:

expand any submenu for this item
IF item.subs;
 INCLUDE config/expand
 map = item
 path = item.path;
END;

The current item variable is passed as
map and a new value for path is
provided so that all the paths generated within it will be relative
to the path for the current item.

As we already mentioned, this is perhaps the most complicated
template in the site, so don't be surprised if you
find it daunting. It can take a little time and patience to get
something as complicated as this working properly, but it is usually
something you have to do only once and can then forget.

It is also worth reiterating that when things start getting
complicated, you can always recode in Perl and load the functionality
in using a plugin, for example. That would certainly be the approach
we would adopt if this template needed to become any more complex
than it already is.

11.4.3 Building a Nested Menu

Now that we have a complete map
defined, we can write a template that builds a menu from this data
structure. Example 11-45 shows one way this can be
done.

Example 11-45. templates/lib/menu/nest

[% DEFAULT pad = '';

 FOREACH item = menu.items;
 pad;

 INCLUDE menu/text
 link = {
 text = item.name
 url = item.url
 class = item.hot ? 'menuselect' : 'menu'
 };

 IF item.subs;
 "
\n";
 INCLUDE menu/nest
 menu = item
 pad = pad ? " $pad"
 : " - ";
 END;

 "
\n";
 END
-%]

The menu/nest template also calls itself recursively
to generate nested menus representing the structure of the site. For
each invocation, the menu variable references the
current site map node being processed. The pad
variable contains a string used to indent each item by an amount
appropriate to the current nesting depth.

The template iterates through each item in the
menu.items list that now contains references to
complete page structures, thanks to the work of the
config/expand template:

FOREACH item = menu.items;
 .
 .
 .
END

Inside the loop, it prints the current pad string
and then calls menu/text to generate a text link
for the menu item:

pad;

INCLUDE menu/text
 link = {
 text = item.name
 url = item.url
 class = item.hot ? 'menuselect' : 'menu'
 };

The menu/text
template is passed a link hash that contains
values extracted from the current menu item. The
class value is set to correspond to one of the
styles defined in the templates/src/css/tt2.css
file, according to whether the item is hot and on the path to the
current page. Example 11-46 shows the
menu/text template.

Example 11-46. templates/lib/menu/text

<a href="[% link.url %]"
[%- " class=\"$link.class\""
 IF link.class
-%]
>[%- link.text -%]

The final task of the menu/nest template is to
process any nested items if the item.subs flag is
set:

IF item.subs;
 "
\n";
 INCLUDE menu/nest
 menu = item
 pad = pad ? " $pad"
 : " - ";
END;

When the menu/nest template is called recursively, the
item is passed as the new menu
target and the pad is set to provide a deeper
level of indenting.

Now all we need to do is to modify the
site/menu template to use the new
menu/nest component, passing the top-level site
map node, site.map, as the starting value for
menu. While we're at it,
we'll also add a title bar for the menu. Example 11-47 shows the changes made to
site/menu.

Example 11-47. Changes made to templates/lib/site/menu

<table border="0" cellpadding="0" cellspacing="0">
 <tr>
 <td align="left" class="menutitle">
 Site Menu
 </td>
 </tr>
 <tr>
 <td>[% PROCESS misc/line %]</td>
 </tr>
 <tr valign="top">
 <td align="left">
 [% INCLUDE menu/nest
 menu = site.map
 -%]
 </td>
 </tr>
</table>

Figure 11-4 shows a screenshot containing the new
menu.

Figure 11-4. Page with nested menu

[image: figs/pttk_1104.gif]

Notice how the hot items in the menu are shown in bold
orange[4]
text as defined by the menuselect CSS style. Other
menu items are displayed in the normal menu style.
[4] Not that you can tell in a grayscale image,
but trust us, they're orange.

11.4.4 A Stacked Menu

The nested menu style
works well when we need to nest menus that are only two or perhaps
three levels deep. Any more than that and the menu will start to
occupy more horizontal space that will cut into the page content.

We can easily create a new menu component that stacks menus on top of
each other instead of nesting them. This is shown in Example 11-48.

Example 11-48. templates/lib/menu/stack

[% pending = [menu];

 WHILE pending.size;
 menu = pending.shift;

 "<p>\n";
 FOREACH item = menu.items;
 PROCESS menu/text
 link = {
 text = item.name
 url = item.url
 class = item.hot ? 'menuselect' : 'menu'
 };

 "
\n";

 pending.push(item)
 IF item.subs;
 END;
 "</p>\n";
 END;
-%]

The pending variable is used to keep a
list of the menus that require processing, starting with the
menu passed in as an argument, as per
menu/nest:

pending = [menu];

The WHILE block repeats while there are menus in
the pending list, removing the first menu in the list each time
around:

WHILE pending.size;
 menu = pending.shift;

 .
 .
 .

END;

Other than adding a few HTML elements, the main part of the body of
the WHILE block simply iterates over the items in
the current menu, calling menu/text to process
each:

FOREACH item = menu.items;
 PROCESS menu/text
 link = {
 text = item.name
 url = item.url
 class = item.hot ? 'menuselect' : 'menu'
 };

 "
\n";

 pending.push(item)
 IF item.subs;
END;

When an item is found that has the subs flag set,
it is added to the list of pending items. It will be processed after
the current menu is complete, and will appear underneath it.

A quick change in site/menu from
menu/nest to menu/stack is all
that is required to use the new menu, as shown in Example 11-49.

Example 11-49. Changes to templates/lib/site/menu

 .
 .
 .
 <tr valign="top">
 <td align="left">
 [% INCLUDE menu/stack
 menu = site.map
 -%]
 </td>
 </tr>
</table>

Figure 11-5 shows a page with stacked menus.

Figure 11-5. Page with stacked menus

[image: figs/pttk_1105.gif]

11.4.5 Bread-Crumb Trail

The name bread-crumb
trail is borrowed by web developers from the story of
Hansel and Gretel. They left a trail of bread-crumbs through the
woods to help them find their way back from the wicked
witch's edible house.[5] In the context of a web site, it
refers to a commonly used navigation component that shows the steps a
visitor has taken from the site home page down to the current page
location.
[5] Alas, the
hungry birds ate the bread-crumbs, but things turned out alright for
them in the end.

The config/expand template has already stored the
list of hot page nodes in the page.trail list. All
we need is a template to display the information. This is shown in
Example 11-50.

Example 11-50. templates/lib/menu/trail

<table border="0" cellpadding="0" cellspacing="2">
 <tr valign="middle">
[% FOREACH item IN trail %]
 <td class="info"></td>
 <td>[% PROCESS menu/text
 link = {
 text = item.name
 url = item.url
 class = 'menu'
 };
 %]</td>
[% END %]
 </tr>
</table>

Then we can update the site/layout to include it in an appropriate
place, as shown in Example 11-51.

Example 11-51. Adding the bread-crumb trail to templates/lib/site/layout

.
 .
 .
 <td width="100%">
 [% PROCESS site/header %]
 </td>
 </tr>

 <!-- new section added -->
 <tr>
 <td align="center">
 [% PROCESS site/name %]
 </td>
 <td>
 [% PROCESS site/navigate %]
 </td>
 </tr>
 <!-- end of new section -->

 <tr>
 <td></td>
 <td>[% PROCESS misc/line %]</td>
 .
 .
 .

Two new templates are being added,
site/name and
site/navigate. The first
adds a nameplate underneath the logo (see Example 11-52).

Example 11-52. templates/lib/site/name

[%- INCLUDE misc/image image=site.image.name | trim -%]

This is purely for aesthetic reasons to help keep the layout balanced
when we add the bread-crumb trail. The
site/navigate component does nothing more than
display the bread-crumb trail (see Example 11-53).
However, we will be adding more to this template shortly.

Example 11-53. templates/lib/site/navigate

[% PROCESS menu/trail trail=page.trail %]

Now you can run bin/build -a to
rebuild the entire site and see the pages with the bread-crumb trail
added. Figure 11-6 shows a screenshot of a page
containing the new bread-crumb trail.

Figure 11-6. Bread-crumb trail

[image: figs/pttk_1106.gif]

11.4.6 Previous and Next Pages

We can also add
a navigation component to add links to the
previous and next pages relative to the current one. These were also
determined by the config/expand template and set
in the page.prev and page.next
variables. Either of these values could be undefined, so we need to
be sure to cover those cases. Example 11-54 shows the
menu/prevnext
template component that generates these
links.

Example 11-54. templates/lib/menu/prevnext

<table border="0" cellpadding="2" cellspacing="2">
 <tr valign="middle">
 [% IF page.prev -%]
 <td align="right">
 [% PROCESS menu/text
 link = {
 text = page.prev.name
 url = page.prev.url
 class = 'menu'
 };
 -%]
 </td>

 [% IF page.next -%]
 <td>|</td>
 [% END -%]
 [% END %]

 [% IF page.next %]
 <td align="left">
 [%- PROCESS menu/text
 link = {
 text = page.next.name
 url = page.next.url
 class = 'menu'
 };
 %]
 </td>
 [% END %]
 </tr>
</table>

Once again, menu/text is being used to generate
the individual text links. This template is mostly just providing the
layout logic.

The site/navigate template can now be modified
to incorporate the new navigation component, as shown in Example 11-55.

Example 11-55. Adding menu/prevnext to templates/lib/site/navigate

<table width="100%" border="0" cellpadding="0" cellspacing="0">
 <tr valign="middle">
 <td align="left">
 [% PROCESS menu/trail trail=page.trail %]
 </td>
 <td align="right">
 [% PROCESS menu/prevnext %]
 </td>
 </tr>
</table>

Figure 11-7 shows a page with the bread-crumb trail
on the left, with links to the previous and next pages on the right
of the page header.

Figure 11-7. Previous and next pages

[image: figs/pttk_1107.gif]

11.5 Structuring Page Content

We've looked at different ways that template
components can be used to generate shared user interface components
such as headers, menus, and footers. Now we are going to turn our
attention to the page content itself, showing how the Template
Toolkit can be used to help structure and present content in
different ways.

11.5.1 Defining Sections

Web pages containing
any more than a few paragraphs will typically be organized into
sections, subsections, or some other kind of logical division. A
simple HTML page may use nothing more than
<h1> and <h2>
elements to break up a document into small chunks. A more complex
page might add all manner of fancy HTML markup to indicate section
breaks or other structural parts of a document. You might also want
to include a table of contents at the top of the page, linking to
sections of the document below.

Needless to say, all this involves extra work that requires a lot of
repetition. We want to make it easy to add and update site content,
and don't want to burden page authors with the task
of adding presentation markup, generating and maintaining tables of
contents, and so on. Furthermore, we want to keep the presentation
aspects separate so that we can restyle the site at a later date
without having to rewrite all the content.

The solution is of course to use templates to define the presentation
elements, which are then automatically applied to the page content.
We will also show how a table of contents can be automatically
generated from the structure of the content.

11.5.1.1 Section headers

Adding a standard
block of HTML markup at the start of each section in a page is as
easy as calling a template component. Example 11-56
shows a page that uses the INCLUDE directive to
add a section header in two places.

Example 11-56. Adding section headers

[% META title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

[% INCLUDE section/header
 title = 'Overview'
%]
<p>
 The Template Toolkit is a fast,
 powerful, and easily extensible template
 processing system written in Perl...
</p>

[% INCLUDE section/header
 title = 'Mailing Lists'
%]
<p>
 A number of mailing lists are provided for discussing
 the Template Toolkit...
</p>

A simple template for generating each section header is shown in
Example 11-57. Here we are using the
misc/line template component to add a line
across the page, followed by the section title in a
<h1> element.

Example 11-57. templates/lib/section/header

[% PROCESS misc/line %]

<h1>[% title %]</h1>

You might also want to define macros to make using these components
as easy as possible. These can be defined at the top of the page or,
better still, in a preprocessed configuration template. For example:

[% MACRO Section(title) INCLUDE section/header %]

With this macro defined, the page content can be simplified, as shown
in Example 11-58.

Example 11-58. Using a section macro

[% META title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

[% Section('Overview') %]
<p>
 The Template Toolkit is a fast,
 powerful, and easily extensible template
 processing system written in Perl...
</p>

[% Section('Mailing Lists') %]
<p>
 A number of mailing lists are provided for discussing
 the Template Toolkit...
</p>

11.5.1.2 Section wrappers

If you want to add some markup at the start
of a section and some more at the end, you could use separate
section/header and
section/footer templates. But as we know from
looking at page headers and footers, a better approach is to create a
single wrapper template.

Let's say that we want to add the title at the start
of the section, but move the line generated by
misc/line to come after the
content for the section. Example 11-59 shows a wrapper
template to do this.

Example 11-59. templates/lib/section/wrapper

<h1>[% title %]</h1>
[% content %]
[% PROCESS misc/line %]

To use this component, the page template should use the
WRAPPER directive, enclosing the content for each
section between WRAPPER and
END. This can be seen in Example 11-60.

Example 11-60. Using a section wrapper

[% META title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

[% WRAPPER section/wrapper
 title = 'Overview'
%]
<p>
 The Template Toolkit is a fast,
 powerful, and easily extensible template
 processing system written in Perl...
</p>
[% END %]

[% WRAPPER section/wrapper
 title = 'Mailing Lists'
%]
<p>
 A number of mailing lists are provided for discussing
 the Template Toolkit...
</p>
[% END %]

11.5.1.3 Sections and subsections

You can create as many different
components as you require for sections, subsections, subsubsections,
and any other page elements. Example 11-61 shows a
page with a more complex structure, including subsections nested
within sections.

Example 11-61. Sections and subsections

[% META title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]
[% MACRO Section(title) INCLUDE page/section;
 MACRO Subsection(title) INCLUDE page/subsection
%]

[% Section('Overview') %]
<p>
 The Template Toolkit is a fast,
 powerful, and easily extensible template
 processing system written in Perl...
</p>

[% Subsection('Features') %]

 Fast, powerful, and extensible...
 Powerful presentation language...
 And so on...

[% Section('Mailing Lists') %]
<p>
 A number of mailing lists are provided for discussing
 the Template Toolkit.
</p>

[% Subsection('templates') %]
<p>
 The templates mailing list exists
 for reporting information, asking questions, and
 discussing development or any other topic
 relevant to the Template Toolkit.
</p>

[% Subsection('templates-announce') %]
<p>
 The templates-announce mailing list
 is a low-volume list used for announcing
 new versions of the Template Toolkit
 or other related information.
</p>

Example 11-62 shows the
page/section template and Example 11-63 shows the page/subsection
template.

Example 11-62. templates/lib/page/section

<table width="100%" border="0" cellpadding="0" cellspacing="4">
 <tr>
 <td align="left">

 <h2 class="section">[% title %]</h2>

 </td>
 <td align="right">
 [% UNLESS no_top -%]
 Top
 [% END -%]
 </td>
 </tr>
</table>

Example 11-63. templates/lib/page/subsection

<h3 class="subsection">[% title %]</h3>

The template in page/section is a little more
involved than the simpler page/subsection
template. Both templates generate an HTML anchor around the title
using an optional id variable as the identifier.
We'll be looking at this in the next section when we
build a table of contents to link down to the different sections and
subsections in a document.

11.5.2 A Table of Contents

We now have the page content defined in
terms of sections and subsections. From this, we can generate a table
of contents to help the reader navigate around the document
structure.

11.5.2.1 Anchor points

We saw
in the previous section how the page/section and
page/subsection templates in Examples Example 11-62 and Example 11-63,
respectively, generate an HTML <a> element
to create an anchor point in the document. To use this feature, a
value must be provided for the id variable:

[% INCLUDE page/subsection
 title = 'Testing 123'
 id = 'testing'
%]

This generates the following HTML:

<h3 class="subsection">Testing 123</h3>

This subsection can now be linked to by appending
#testing to the end of the page URL�e.g.,
http://localhost/ttbook/about.html#testing.

11.5.2.2 Better page macros

The first task is to enhance the
Section and Subsection macros.
We'll define these in a separate
config/macros template, shown in Example 11-64.

Example 11-64. templates/lib/config/macros

[% page.items = [];

 MACRO Section(title) BLOCK;
 id = title.replace('\W+', '_');
 item = {
 url = "#$id"
 name = title
 items = []
 };
 CALL page.items.push(item);
 PROCESS page/section;
 END;

 MACRO Subsection(title) BLOCK;
 id = title.replace('\W+', '_');
 item = {
 url = "#$id"
 name = title
 };
 CALL page.items.last.items.push(item);
 PROCESS page/subsection;
 END;
-%]

The first line creates a reference to an empty list and assigns it to
page.items. This will be used to keep track of
each section in the page.

page.items = [];

The Section expects a title
argument, as before. The body of the macro is defined as a
BLOCK continuing down to the corresponding
END directive.

MACRO Section(title) BLOCK;
 # macro body
END;

The title is used to generate an HTML-compliant
identifier for the section by replacing all sequences of one or more
nonword characters with a single underscore:

id = title.replace('\W+', '_');

The item variable is then defined as a hash array
containing values for url and
name. It also defines an items
list for storing information about any subsections contained within
this section.

item = {
 url = "#$id"
 name = title
 items = []
};

The new item is added to the
page.items list:

CALL page.items.push(item);

Finally, the page/section template is processed
to generate the appropriate HTML markup for the section heading:

PROCESS page/section;

The Subsection macro differs in a few minor
details. To keep things simple for this example, we are not providing
any support for nesting subsubsections within subsections, although
it would be easy to add. As a result, there is no need for an
items list in the item hash.

item = {
 url = "#$id"
 name = title
};

Instead of being pushed onto the page.items list,
the new item is added to the items list for the
current section�that is, the last item on the
page.items list:

CALL page.items.last.items.push(item);

Of course it uses the page/subsection template
rather than the page/section template to
generate the subsection header.

To make these MACRO definitions visible, we need
to update the config/main template to add
config/macros to the list of templates in the
PROCESS directive. Example 11-65
shows the relevant change.

Example 11-65. Addition to config/main

[% PROCESS config/page
 + config/site
 + config/url
 + config/col
 + config/images
 + config/map
 + config/macros # add this line
-%]

11.5.2.3 Generating the table of contents

These macros
build up information about the structure of the page content and
store it in the page.sections list. Generating a
table of contents is then a simple matter of iterating through this
data and presenting it nicely as a set of formatted links.

Given that this data isn't complete until the page
is processed in its entirety, you may be wondering how we can
generate a table of contents to be inserted at the top of the page.
The answer is that we use a WRAPPER around the
page, as shown in Example 11-66. For the sake of
clarity, we removed the page content to show only the directives in
question.

Example 11-66. Page layout wrapper

[% META title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

[% WRAPPER page/tocpage %]

[% Section('Overview') %]
 ...

[% Subsection('Features') %]
 ...

[% Section('Mailing Lists') %]
 ...

[% Subsection('templates') %]
 ...

[% Subsection('templates-announce') %]
 ...

[% END %]

The page content is enclosed in a WRAPPER ...
END block. The content is processed first, thereby
triggering the Section and
Subsection macros, and is then passed off to the
page/tocpage template for presentation (see
Example 11-67).

Example 11-67. templates/lib/page/tocpage

<h2>Contents</h2>

[% FOREACH section IN page.items -%]
[% section.name %]
[% PROCESS subs IF section.items.size -%]
[% END -%]

[% BLOCK subs -%]

[% FOREACH sub IN section.items -%]
[% sub.name %]
[% END -%]

[% END %]

[% content %]

The first section generates the main table of contents using a
FOREACH loop to iterate through each
section in the page.items list:

[% FOREACH section IN page.items -%]
[% section.name %]
[% PROCESS subs IF section.items.size -%]
[% END -%]

If a section contains subsections, the subs block
is called to create a nested menu. This works in an identical way to
the main body, but iterates over the items in
section.items rather than
page.items.

[% BLOCK subs -%]

[% FOREACH sub IN section.items -%]
[% sub.name %]
[% END -%]

[% END %]

The page content then follows after the table of contents:

[% content %]

11.5.2.4 Reusing menu components

You may have noticed that
page.items data defined by the
Section and Subsection macros
has the same basic structure as for our site menu. Each item has a
name, a url, and a list of
nested items. This choice was deliberate. It
allows us to reuse our menu template components to generate the table
of contents.

Example 11-68 shows a different version of the
page/tocpage template from what we saw in Example 11-67.

Example 11-68. Table of contents generated using menu/nest

[% FOREACH section IN page.items;
 SET section.subs = 1
 IF section.items.size;
 END
-%]

<h2>Contents</h2>

[% INCLUDE menu/nest menu=page %]

[% content %]

There is one modification we need to make to the data. The
menu/nest template is programmed to descend
into nested items if the subs
value is set. The first block of the template in Example 11-68 uses a FOREACH directive to
iterate through each item, setting the subs value
to 1 if it contains any items:

[% FOREACH section IN page.items;
 SET section.subs = 1
 IF section.items.size;
 END
-%]

This ensures that the menu/nest template will
display the entire table of contents, including nested subsections.
The menu/nest template is called, passing
page as the local value for the
menu variable. It will then walk through the
entries in the page.items list, and also through
any nested items within them.

<h2>Contents</h2>

[% INCLUDE menu/nest menu=page %]

As before, we display the page content after the table of contents.
Figure 11-8 shows an HTML page built this way.

Figure 11-8. HTML page with table of contents

[image: figs/pttk_1108.gif]

11.5.2.5 Adding the table of contents automatically

To make life as easy as possible, we can
modify the site/wrapper template to
automatically wrap the page in the
page/tocpage template. So that we have some control
over which pages this is applied to, we will add a new page type,
tocpage. Example 11-69 includes a
new CASE for this page type that adds
page/tocpage to the list of wrappers for the page.

Example 11-69. Adding a tocpage page type to site/wrapper

[% SWITCH page.type;
 CASE 'text';
 content;

 CASE 'html';
 content WRAPPER site/html
 + site/layout;

 CASE 'tocpage';
 content WRAPPER site/html
 + site/layout
 + page/tocpage;

 CASE;
 THROW page.type "Invalid page type: $page.type";
 END;
-%]

With this in place, there is no need for a page to explicitly wrap
itself in the page/tocpage template. Instead, it
should define a type of tocpage
in a META directive and leave it to
site/wrapper to add the table of contents:

[% META type = 'tocpage'
 title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

[% Section('Overview') %]
 ...etc...

11.5.3 Declarative Markup Using XML

The Template Toolkit allows you to decouple
your core content from any particular presentation style. However,
the techniques that we've shown in this section are
very much specific to the Template Toolkit and to a particular way of
generating pages.

That isn't going to be a problem in many cases, but
you might prefer to define your content in a format that can be read
and manipulated by other tools as well as by the Template Toolkit.
XML is of course the perfect example of an open format that you might
like to use.

XML allows you to write declarative markup instead of the more
procedural markup of the Template Toolkit. Rather than embedding a
set of instructions in the document that say "add a
section header here" or "generate a
table of contents over there," XML simply states
things for the record. It says "this is a
section" or "this is a
subsection," and allows you to do what you like with
the information.

The Template Toolkit is quite happy working with XML. It will do the
hard work of transforming it into HTML, using template components to
apply the current presentation style for your site along the way.

11.5.3.1 XML page content

Example 11-70 shows
a page template that uses XML to define
the core content.

Example 11-70. XML page template

[% META type = 'xml'
 title = 'About the Template Toolkit'
 about = 'A brief overview of and introduction
 to the Template Toolkit'
%]

<page>
 <section title="Overview">
 <p>
 The Template Toolkit is a fast,
 powerful, and easily extensible template
 processing system written in Perl...
 </p>

 <subsection title="Features">

 Fast, powerful, and so on...

 </subsection>
 </section>

 <section title="Mailing Lists">
 <p>
 A number of mailing lists are provided for discussing
 the Template Toolkit.
 </p>

 <subsection title="templates">
 <p>
 The templates mailing list...
 </p>
 </subsection>

 <subsection title="templates-announce">
 <p>
 The templates-announce mailing list...
 </p>
 </subsection>
 </section>
</page>

The page content is enclosed within a <page>
element. Sections and subsections are declared using the appropriate
<section> and
<subsection> elements. We can include any
kind of valid XHTML markup within these elements.

11.5.3.2 XML page wrapper

A minor change is required to our
presentation framework for it to handle XML files.
We've declared the page type for Example 11-70 to be xml in the
META tag. We must therefore add the appropriate
handler to the
site/wrapper template, as shown in Example 11-71.

Example 11-71. Adding an XML page type to site/wrapper

[% SWITCH page.type;
 CASE 'text';
 content;

 CASE 'html';
 content WRAPPER site/html
 + site/layout;

 CASE 'tocpage';
 content WRAPPER site/html
 + site/layout
 + page/tocpage;

 CASE 'xml';
 content WRAPPER site/html
 + site/layout
 + site/xmlpage;

 CASE;
 THROW page.type "Invalid page type: $page.type";
 END;
-%]

The site/xmlpage template is used as an additional
wrapper to process XML page content. Example 11-72 shows how it
works.

Example 11-72. templates/lib/site/xmlpage

[% USE xmldoc = XML.XPath(text = content);
 USE xmlview = view(
 prefix = 'xmlpage/'
 notfound = 'xmltag'
);

 FOREACH xnode = xmldoc.findnodes('/page');
 xmlview.print(xnode);
 END;
-%]

It uses the XML.XPath plugin, passing the XML content
of the page as the text variable. The plugin then
returns an object through which we can query the XML document,
assigned to the xmldoc variable:

USE xmldoc = XML.XPath(text = content);

It then creates a VIEW plugin object called
xmlview. This will be used to map XML elements to
corresponding templates in the xmlpage/
subdirectory of templates/lib. The
xmltag template will be used to render any XML
elements for which no template is defined:

USE xmlview = view(
 prefix = 'xmlpage/'
 notfound = 'xmltag'
);

The final section iterates through each page
node,[6] calling on the xmlview view to print
it using the appropriate template:
[6] There's only one in this case,
but findnodes returns a list anyway.

FOREACH xnode = xmldoc.findnodes('/page');
 xmlview.print(xnode);
END;

11.5.3.3 XML view templates

The view first calls the
xmltag/page template to process the outermost
page XML node. It calls the
item.content method passing the current
view as an argument. This generates the
view-specific content for the page that can then be wrapped using the
existing page/tocpage template to add a table of
contents (see Example 11-73).

Example 11-73. templates/lib/xmlpage/page

[% item.content(view)
 WRAPPER page/tocpage
-%]

The call to item.content(view) causes the view to
iterate over the content of the page XML node. In
this case, it will find section nodes, which are
sent off to the xmlpage/section for processing
(see Example 11-74).

Example 11-74. templates/lib/xmlpage/section

[% Section(item.getAttribute('title'));
 item.content(view)
-%]

This template calls the Section macro, fetching
the value for the title from the XML title
attribute. The section content is then displayed, again by calling
the item.content method.

The xmlpage/subsection template is called
whenever a subsection XML element is encountered.
It is almost identical to xmlpage/section, as
shown in Example 11-75.

Example 11-75. templates/lib/xmlpage/subsection

[% Subsection(item.getAttribute('title'));
 item.content(view)
-%]

Whenever the view finds an XML element that it
doesn't have a template for, it calls on
xmlpage/xmltag, which regenerates the original XML
element. This allows us to pass XHTML content through without it
requiring any further transformation (see Example 11-76).

Example 11-76. templates/lib/xmlpage/xmltag

[% item.starttag;
 item.content(view);
 item.endtag
-%]

We also need a simple template to reproduce any plain-text parts as
they are (see Example 11-77).

Example 11-77. templates/lib/xmlpage/text

[% item -%]

That's all there is to it. Any time you want to
define some specific handling for an XML element, simply add the
appropriately named template to the
templates/lib/xmlpage directory. The view will
take care of the rest.

These simple templates don't do much in themselves.
They just provide the glue between XML.XPath nodes
and our existing Section and
Subsection macros. We get to reuse all of our
existing presentation framework, but can now define content in XML,
HTML, and various other formats, all of which can be freely
intermixed with Template Toolkit directives.

11.6 Creating a New Skin

In the final section of
this
chapter, we are going to show how a new set of template components
can be created to rebrand, or skin, the site.
Rather than modify our existing components, we will create a new set
in a different directory. For these examples, the directory will be
templates/skin/droplet, relative to the current
project directory of /home/dent/web/ttbook. We
can create as many different skins as required as long as each has
its own unique name and corresponding component directory. The name
we are using for this skin is droplet, for no
reason in particular.

11.6.1 Creating a Skin

First, we must create
a directory for the skin-specific templates:

$ cd /home/dent/web/ttbook
$ mkdir templates/skin
$ mkdir templates/skin/droplet

The INCLUDE_PATH configuration option and the
corresponding lib option for
ttree allow multiple
directories to be specified for the location of template files. The
templates/skin/droplet directory should be added
to etc/ttree.cfg as a new lib
option coming before the existing one. Example 11-78
shows the new line added to the first block of the
etc/ttree.cfg file.

Example 11-78. Adding a lib option to etc/ttree.cfg

src = /home/dent/web/ttbook/templates/src
add lib option for new skin
lib = /home/dent/web/ttbook/templates/skin/droplet
lib = /home/dent/web/ttbook/templates/lib
dest = /home/dent/web/ttbook/html

You may also want to update the corresponding skeleton template,
skeleton/etc/ttree.cfg. Or you can update the
skeleton file and then run the bin/configure
script to have it regenerate etc/tree.cfg.

We will need to define some
configuration data for the new skin, so
we create a
config/skin template and add it to the list in
config/main (see Example 11-79).

Example 11-79. Adding config/skin to config/main

[% PROCESS config/page
 + config/site
 + config/url
 + config/col
 + config/images
 + config/map
 + config/macros
 + config/skin # add this line
-%]

The config/skin configuration template for the
droplet skin is shown in Example 11-80. It defines a URL, some colors, and other
information relating to a set of icons that will be used by various
template components.

Example 11-80. templates/skin/droplet/config/skin

[% site.url.icon = "$site.url.images/icon"
 site.col.icon = {
 on = 'orange'
 off = 'blue'
 roll = 'red'
 dead = 'gray'
 }
 site.image.icon = {
 large = {
 url = "$site.url.icon/large"
 src = "$site.url.icon/large/blue/dot.png"
 alt = 'dot icon'
 width = 36
 height = 36
 }
 small = {
 url = "$site.url.icon/small"
 src = "$site.url.icon/small/blue/dot.png"
 alt = 'dot icon'
 width = 24
 height = 24
 }
 tiny = {
 url = "$site.url.icon/tiny"
 src = "$site.url.icon/tiny/blue/dot.png"
 alt = 'dot icon'
 width = 18
 height = 18
 }
 }
-%]

In case we later decide to generate the site without this skin, we
must also provide a dummy config/skin template
in the default templates/lib directory (see
Example 11-81).

Example 11-81. templates/lib/config/skin

[%# hook for skins to perform any
 # additional extra configuration
-%]

11.6.2 Custom Navigation Components

Now we can add our own custom
components to the templates/skin/droplet
directory. They will be used in preference to those in the default
templates/lib directory.

We can start by defining a new misc/line
component, as shown in Example 11-82.

Example 11-82. templates/skin/droplet/misc/line

<table border="0" width="100%" cellpadding="0" cellspacing="0">
 <tr>
 <td height="1" bgcolor="[% site.col.line %]"><img
 width="1" height="1" /></td>
 </tr>
</table>

The design of this skin is based around some simple icons. Example 11-83 shows a template component to generate the
HTML for the various icons we are using.

Example 11-83. templates/skin/droplet/misc/icon

[% # misc/icon - generate image tag for icon

 DEFAULT
 size = 'small'
 icon = 'dot'
 col = 'blue';

 IF (image = site.image.icon.$size);
 PROCESS misc/image
 image.src = "$image.url/$col/${icon}.png"
 image.alt = "$icon icon";
 ELSE;
 THROW logo "invalid icon size: $size";
 END;
-%]

11.6.2.1 Nested menu

The
misc/icon template can be used to spice up
the menu/nest template that we introduced in Example 11-68. The new version can be seen in Example 11-84.

Example 11-84. templates/skin/droplet/menu/nest

[% DEFAULT
 global.linkno = 0
 icon = site.image.icon.tiny;

 colroll = site.col.icon.roll;

 WRAPPER menu/table;
 FOREACH item = menu.items;
 linkno = (global.linkno = global.linkno + 1);
 colicon = item.hot ? site.col.icon.on
 : site.col.icon.off;

 INCLUDE menu/link
 link = {
 name = "menu_$linkno"
 text = item.name
 url = item.url
 icon = "$icon.url/$colicon/right.png"
 rollover = "$icon.url/$colroll/right.png"
 size = icon.width
 class = item.hot ? 'menuselect' : 'menu'
 };

 INCLUDE menu/submenu menu=item
 IF item.subs;
 END;
 END;
-%]

Figure 11-9 shows a screenshot of a page containing
the droplet-style nested menu.

Figure 11-9. Droplet-style nested menu

[image: figs/pttk_1109.gif]

11.6.2.2 Menu elements

Various HTML table elements and other components are used to generate
the menu in this style. They have been moved into the templates shown
in Examples 11-85 through 11-93 to promote modularity and to help
keep the menu/nest template clutter-free.

Example 11-85. templates/skin/droplet/menu/table

<table border="0" cellpadding="0" cellspacing="2">
[%- content -%]
</table>

Example 11-86. templates/skin/droplet/menu/row

<tr valign="middle">
[%- content -%]
</tr>

Example 11-87. templates/skin/droplet/menu/blank

<tr>
 <td></td>
 <td> </td>
</tr>

Example 11-88. templates/skin/droplet/menu/line

<tr>
 <td colspan="2">[%- PROCESS misc/line -%]</td>
</tr>

Example 11-89. templates/skin/droplet/menu/name

[% PROCESS menu/blank -%]
<tr>
 <td colspan="2" class="menutitle">[% menu.name %]</td>
</tr>
[% PROCESS menu/line -%]

Example 11-90. templates/skin/droplet/menu/link

<tr valign="middle">
 <td align="middle" width="[% item.size %]" height="[% item.size %]">
[%- PROCESS menu/icon -%]</td>
 <td align="left">
[%- PROCESS menu/text -%]</td>
</tr>

Example 11-91. templates/skin/droplet/menu/submenu

<tr>
 <td></td>
 <td>
 [% PROCESS menu/nest %]
 </td>
 </tr>

Example 11-92. templates/skin/droplet/menu/icon

<a href="[% link.url %]"
[% IF link.target -%]
 target="[% link.target %]"
[% END -%]
[% IF link.rollover -%]
 onmouseover="[% link.name %].src = '[% link.rollover %]';"
 onmouseout="[% link.name %].src = '[% link.icon %]';"
[% END -%]
><img
 name="[% link.name %]" src="[% link.icon %]"
 width="[% link.size %]" height="[% link.size %]" border="0" />

Example 11-93. templates/skin/droplet/menu/text

<a href="[% link.url %]"
[% IF link.class -%]
 class="[% link.class %]"
[% END -%]
[% IF link.target -%]
 target="[% link.target %]"
[% END -%]
[% IF link.rollover -%]
 onmouseover="[% link.name %].src = '[% link.rollover %]';"
 onmouseout="[% link.name %].src = '[% link.icon %]';"
[% END -%]
>
[%- link.text -%]

11.6.2.3 Stacked menu

We can
also create a new version of the stacked menu by reusing these menu
components, as shown in Example 11-94.

Example 11-94. templates/skin/droplet/menu/stack

[% DEFAULT
 global.linkno = 0
 icon = site.image.icon.tiny;

 pending = [menu];
 colroll = site.col.icon.roll;

 WRAPPER menu/table;
 WHILE pending.size;
 menu = pending.shift;

 FOREACH item = menu.items;
 linkno = (global.linkno = global.linkno + 1);
 colicon = item.hot ? site.col.icon.on
 : site.col.icon.off;

 INCLUDE menu/link
 link = {
 name = "item_$linkno"
 text = item.name
 url = item.url
 icon = "$icon.url/$colicon/right.png"
 rollover = "$icon.url/$colroll/right.png"
 size = icon.width
 class = item.hot ? 'menuselect' : 'menu'
 };

 pending.push(item)
 IF item.subs;
 END;

 PROCESS menu/name menu=pending.first
 IF pending.size;
 END;

 END;
-%]

Figure 11-10 shows the end result.

Figure 11-10. Nested menu

[image: figs/pttk_1110.gif]

11.6.2.4 Other page components

To complete the set, we can also define new templates for the
bread-crumb trail, the next and previous page menu, and the page
sections and subsections (see Examples 11-95 through 11-98).

Example 11-95. templates/skin/droplet/menu/trail

[% DEFAULT
 icon = site.image.icon.tiny;
 page.linkno = 0;

 colicon = site.col.icon.off;
 colroll = site.col.icon.roll;

 WRAPPER menu/table
 + menu/row;

 FOREACH item IN trail;
 INCLUDE menu/trail/crumb
 link = {
 name = "trail_$loop.count"
 text = item.name
 url = item.url
 icon = "$icon.url/$colicon/right.png"
 rollover = "$icon.url/$colroll/right.png"
 size = icon.width
 class = 'menu'
 };
 END;
 END;
-%]

[%- BLOCK menu/trail/crumb -%]
 <td align="middle" width="[% item.size %]" height="[% item.size %]">
[%- PROCESS menu/icon -%]</td>
 <td align="left">
[%- PROCESS menu/text -%]</td>
[%- END -%]

Example 11-96. templates/skin/droplet/menu/prevnext

[% size = 'tiny'
 icon = site.image.icon.$size
 width = icon.width;

 colicon = site.col.icon.off;
 colroll = site.col.icon.roll;

 WRAPPER menu/table
 + menu/row;
%]

[% # is there a previous page?
 IF page.prev;
 link = {
 name = "prev"
 text = page.prev.name
 url = page.prev.url
 icon = "$icon.url/$colicon/left.png"
 rollover = "$icon.url/$colroll/left.png"
 size = icon.width
 class = 'menu'
 };
-%]
 <td align="right">
 [%- PROCESS menu/text -%]
 </td>
 <td width="[% width %]">
 [%- PROCESS menu/icon -%]
 </td>
[% ELSE %]
 <td></td>
 <td width="[% width %]">
 [%- INCLUDE misc/icon
 size = 'tiny'
 col = site.col.icon.dead
 icon = 'left'
 %]
 </td>
[% END %]

 <td width="[% width %]">
 [%- INCLUDE misc/icon
 col = site.col.icon.on
 icon = 'dot'
 size = 'tiny'
 -%]
 </td>

[% # is there a next page?
 IF page.next;
 link = {
 name = "next"
 text = page.next.name
 url = page.next.url
 icon = "$icon.url/blue/right.png"
 rollover = "$icon.url/red/right.png"
 size = icon.width
 class = 'menu'
 };
-%]
 <td width="[% width %]">
 [%- PROCESS menu/icon -%]
 </td>
 <td align="left">
 [%- PROCESS menu/text -%]
 </td>
[% ELSE %]
 <td width="[% width %]">
 [%- INCLUDE misc/icon
 col = site.col.icon.dead
 icon = 'right'
 size = 'tiny'
 %]
 </td>
 <td></td>
[% END %]

[% END # WRAPPER %]

Example 11-97. templates/skin/droplet/page/section

[% size = 'small';
 imgsize = site.image.icon.$size;
-%]
<p>
<table width="100%" border="0" cellpadding="0" cellspacing="4">
 <tr valign="middle">
 <td width="[% imgsize.width %]">
 [%- PROCESS misc/icon %]</td>
 <td align="left" width="100%">
 <b class="section">[% title %]
 </td>
 <td align="right">
 [%- UNLESS no_top %]
 [%
 INCLUDE misc/icon
 size = 'small'
 icon = 'up'
 col = site.col.icon.off
 %]
 [% END %]
 </td>
 </tr>
 <tr>
 <td></td>
 <td colspan="2">
 [% PROCESS misc/line %]
 </td>
 </tr>
 <tr valign="top">
 <td></td>
 <td colspan="2">
 [% content %]
 </td>
 </tr>
</table>
</p>

Example 11-98. templates/skin/droplet/page/subsection

[% size = 'tiny';
 imgsize = site.image.icon.$size;
-%]
<p>
<table width="100%" border="0" cellpadding="0" cellspacing="4">
 <tr valign="middle">
 <td width="[% imgsize.width %]">
 [%- PROCESS misc/icon %]</td>
 <td align="left">
 <b class="subsection">[% title %]
 </td>
 </tr>
 <tr valign="top">
 <td></td>
 <td>
 [% content %]
 </td>
 </tr>
</table>

Figure 11-11 is what it looks like when it is all put
together. Remember that none of the core content has changed, only
the template components that handle the presentation.

Figure 11-11. Complete page in the droplet style

[image: figs/pttk_1111.gif]

Chapter 12. Dynamic Web Content and Web Applications

In Chapter 2 and Chapter 11, we looked at some basic, and then some
more advanced techniques for generating static web content. The
fundamental limitation of static web pages is, rather obviously, that
they are static. The Template Toolkit allows you to incorporate any
kind of dynamic data into a template as it is being processed. But
once the page has been generated, the data is fixed. If you want to
use different data, you must process the template again.

Most web content is static. The page is
generated offline from a template, using a page design tool, or
perhaps just typed in at a text editor. It is then uploaded to the
web server where it is delivered time and time again without
changing. Simple, fast, and efficient.

Some web content is dynamic. The results from
a search engine are a perfect example of a dynamically generated
page. There's no way of generating the page in
advance because you don't know what search terms the
user is going to enter. There are many other examples of dynamically
generated web content to be found at news sites, in bulletin boards
and chat rooms, and of course in e-commerce applications, where pages
showing the latest offers or the contents of a
user's shopping cart must be generated dynamically
to incorporate the latest live data.

In this chapter, we will look at generating dynamic web pages using
the Template Toolkit. We will start with some simple CGI scripts to
illustrate the basic principles, and then move up to Apache and
mod_perl. We'll be working toward a complete (but
minimal) web application, concentrating particularly on achieving a
clear separation of concerns between different functional aspects of
the system: presentation, application, and storage.

12.1 CGI Scripts

The Common Gateway
Interface (CGI) provides a simple mechanism for generating dynamic
web content and running web applications. The web server receives a
request and maps it to a CGI program, which is then run. These are
often located in a special cgi-bin directory or
have a particular file extension such as .cgi.
Various parameters relating to the CGI request are passed to the
program as environment variables. Additional data may be piped in
through the program's standard input in the case of
a POST request. The program does whatever it needs to do in the way
of application processing, and then prints a simple header and then
the content of the page to standard output. The web server sends this
back to the client's browser as the response.

Perl is a very popular language for writing CGI scripts. The CGI
module provides a wealth of functionality for CGI programming. For a
full tour of CGI programming and the CGI module, see CGI
Programming with Perl by Scott Guelich, Shishir
Gundavaram, and Gunther Birznieks (O'Reilly).

12.1.1 Simple CGI Script

Using the Template Toolkit in a CGI script
is easy. The Template process() method prints its
output to STDOUT by default. For simple cases, very little work is
required on our part to turn any Perl program using the Template
Toolkit into a CGI script. Example 12-1 shows such a
script.

Example 12-1. ttcgi1.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;

$| = 1;
print "Content-type: text/html\n\n";

my $tt = Template->new();
my $input = 'destruction1.html';
my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
};

$tt->process($input, $vars)
 || die $tt->error();

The only lines that are specific to CGI programming are these:

$| = 1;
print "Content-type: text/html\n\n";

The first of these lines disables buffering on standard output. This
ensures that any content printed is sent back to the client right
away. The second line prints a standard CGI header, telling the browser that
we're sending it an HTML page. The other difference
between this example and the simple text version that we first saw in
Chapter 1 is that our template must now be
marked up as valid HTML, as
shown in Example 12-2.

Example 12-2. destruction1.html

<html>
 <head>
 <title>Destruction of [% planet %] is Imminent!</title>
 </head>
 <body>
 <p>
 People of [% planet %], your attention please.
 </p>
 <p>
 This is [% captain %] of the
 Galactic Hyperspace Planning Council.
 </p>
 <p>
 As you will no doubt be aware, the plans
 for development of the outlying regions
 of the Galaxy require the building of a
 hyperspatial express route through your
 star system, and regrettably your planet
 is one of those scheduled for destruction.
 </p>
 <p>
 The process will take slightly less than
 [% time %].
 </p>
 </body>
</html>

12.1.1.1 Using standard templates

The Template Toolkit provides
a set of standard templates for adding HTML headers and footers to
pages. On Unix systems, they are typically installed in
/usr/local/tt2/templates. On Windows platforms,
they are installed in C:\Program Files\Template Toolkit
2\templates. The Template::Config
module provides the instdir(
) method to determine the location in
a portable way. By adding this directory to the
INCLUDE_PATH configuration option, we can then use
the standard html/page template as a
WRAPPER for the page, as shown in Example 12-3.

Example 12-3. ttcgi2.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;
use Template::Config;

$| = 1;
print "Content-type: text/html\n\n";

my $tdir = Template::Config->instdir('templates');
my $tt = Template->new({
 INCLUDE_PATH => ['.', $tdir],
 WRAPPER => 'html/page'
});
my $input = 'destruction2.html';
my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
 html => {
 head => {
 title => "Destruction of Earth is Imminent!",
 },
 },
};

$tt->process($input, $vars)
 || die $tt->error();

The location of the templates directory is
determined by the following line and stored in the
$tdir variable:

my $tdir = Template::Config->instdir('templates');

The $tdir directory is then added to the
INCLUDE_PATH, along with the current working
directory (.):

my $tt = Template->new({
 INCLUDE_PATH => ['.', $tdir],
 WRAPPER => 'html/page'
});

The html/page wrapper template adds the
<html>, <head>, and
<body> elements around the generated page
content. It inserts the value of the
html.head.title variable in the
<title> of the
<head> element, to set the page title.
Accordingly, we define an appropriate title in the
$vars hash:

my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
 html => {
 head => {
 title => "Destruction of Earth is Imminent!",
 },
 },
};

The destruction2.html template can now be made
much simpler, as shown in Example 12-4. The HTML
headers and footers are all added automatically, leaving us to
concentrate on the content. We're also using the
html_para filter to add the
<p> and </p> tags
around each paragraph.

Example 12-4. destruction2.html

[% FILTER html_para %]
People of [% planet %], your attention please.

This is [% captain %] of the
Galactic Hyperspace Planning Council.

As you will no doubt be aware, the plans
for development of the outlying regions
of the Galaxy require the building of a
hyperspatial express route through your
star system, and regrettably your planet
is one of those scheduled for destruction.

The process will take slightly less than
[% time %].
[% END %]

If you've been working through the examples in Chapter 11, you'll probably have
developed your own wrappers and other user interface templates
that you can use in place of
html/page.

12.1.2 Using the DATA Section

You can also define the main page template in
a DATA section following the main part of the CGI
script, as shown in Example 12-5.

Example 12-5. ttcgi3.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;

$| = 1;
print "Content-type: text/html\n\n";

my $tt = Template->new({
 INCLUDE_PATH => '/home/dent/vogon/templates',
 WRAPPER => 'vogon/page'
});
my $vars = {
 planet => 'Earth',
 captain => 'Prostetnic Vogon Jeltz',
 time => 'two of your earth minutes',
};

$tt->process(*DATA, $vars)
 || die $tt->error();

_ _DATA_ _
[% FILTER html_para %]
People of [% planet %], your attention please.

This is [% captain %] of the
Galactic Hyperspace Planning Council.

As you will no doubt be aware, the plans
for development of the outlying regions
of the Galaxy require the building of a
hyperspatial express route through your
star system, and regrettably your planet
is one of those scheduled for destruction.

The process will take slightly less than
[% time %].
[% END %]

The _ _DATA_ _ (or _ _END_ _)
marker indicates the point where the script stops and the template
starts. Perl provides the DATA filehandle to read
the text from this block. We pass a reference to the filehandle as
the first argument to the process() method and
leave it to do the rest:

$tt->process(*DATA, $vars)
 || die $tt->error();

The approach is great for small and simple CGI scripts. It allows you
to keep everything together and contained in one file. You can see
both the Perl code and the main page template in the same place, but
they are still kept nicely separate from each other. Other components
or layout templates such as html/page or the
hypothetical vogon/page wrapper used in this
example can be kept out of the way in separate files so that they
don't obstruct the core content and can be reused
between different CGI scripts.

Be warned that you can't use the
DATA section if you want to run your CGI scripts
under Apache::Registry. Apache:Registry allows you to run unaltered
CGI scripts under mod_perl for a significant speedup. Instead of
being loaded and compiled each time a request is made, the script is
kept in compiled form in the memory space of the web server. It can
then be executed quickly and repeatedly on demand.

However, a CGI script gets only one chance to read the
DATA section. When it has been read once, there is
no going back to read it again. If you plan to use Apache::Registry,
you should use separate page template files rather than embedding
them in a DATA section.

12.1.3 Using the CGI Module

The CGI module does everything
you'll ever need to in CGI programming and a whole
lot more. Example 12-6 shows how we create a CGI
object and pass it to the template as the cgi
variable.

Example 12-6. ttcgi4.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;
use CGI;

$| = 1;

my $cgi = CGI->new();
my $tt = Template->new();
my $input = 'cgiparams.html';
my $vars = {
 cgi => $cgi,
};

print $cgi->header;

$tt->process($input, $vars)
 || die $tt->error();

The template processed by the script,
cgiparams.html, is shown in Example 12-7. It calls the param()
method of the CGI object first to fetch a list of
request parameters, and then
again to fetch the value for each parameter within the
FOREACH loop.

Example 12-7. cgiparams.html

<h1>CGI Parameters</h1>

[% FOREACH p = cgi.param -%]
 [% p %] [% cgi.param(p) %]
[% END -%]

Example 12-8 shows some typical output generated by
the CGI script. In this case, the request URL used was /cgi-bin/ttcgi4.pl?pi=3.14&e=2.718&message=Hello%20World.
We didn't add any HTML page wrapper in this example
to keep things simple. But that would of course be required for any
CGI script operating in the real world.

Example 12-8. Output of cgiparams.html

<h1>CGI Parameters</h1>

 pi 3.14
 e 2.718
 message Hello World

If you want to use the CGI object to manipulate headers, cookies, or
anything else outside of generating content, you'll
probably need to do it in the calling CGI script.

12.1.3.1 Setting cookies

Let's look at an example of how cookies can be set
using values supplied from within a template. We start by defining a
cookies template variable in the CGI script as a
reference to an initially empty list. This will be used to store any
cookies that should be added to the CGI header.

my @cookies;
my $vars = {
 cgi => $cgi,
 cookies => \@cookies,
};

The CGI object provides the cookie method for
creating cookies. We call this from within the template to create a
cookie object.

[% cookie = cgi.cookie(
 name = 'SessionID',
 value = 12345678,
 expires = '+1m'
)
%]

The newly created cookie is then pushed onto the
cookies list:

[% cookies.push(cookie) %]

Back in the CGI script, we need to process the template first and
then check to see whether any cookies have been added to the list.
Cookies must be added to the response header before any content is
sent back to the client. Rather than let the Template
process() method print its output directly to
standard output, we provide it with a reference to an
$output variable. This is used to store the
generated HTML page until we have set the cookie headers and are
ready to send a response back to the client.

my $output;

$tt->process($input, $vars, \$output)
 || die $tt->error();

Then we check for any cookies and provide them as an option to the
CGI header() method before printing the page
content stored in $output:

if (@cookies) {
 @cookies = ("-cookie", [@cookies]);
}
print $cgi->header(@cookies), $output;

The complete CGI script is shown in Example 12-9.

Example 12-9. ttcgi5.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;
use CGI;

$| = 1;

my $cgi = CGI->new();
my $tt = Template->new();
my $input = 'cgicookie.html';
my @cookies;
my $vars = {
 cgi => $cgi,
 cookies => \@cookies,
};
my $output;

$tt->process($input, $vars, \$output)
 || die $tt->error();

if (@cookies) {
 @cookies = ('-cookie', [@cookies]);
}

print $cgi->header(@cookies), $output;

The cgicookie.html template is listed in Example 12-10.

Example 12-10. cgicookie.html

[% IF (cookie = cgi.cookie('SessionID')) %]

 <h1>Got Cookie</h1>

 <p>
 Your SessionID is [% cookie %].
 </p>

[% ELSE %]
 [% cookie = cgi.cookie(
 name = 'SessionID',
 value = 12345678,
 expires = '+1m'
);
 cookies.push(cookie)
 %]

 <h1>Set Cookie</h1>

 <p>
 Cookie has been set. Please reload page.
 </p>

[% END %]

Figure 12-1 shows the cookie being set the first
time we access the page. We've enabled a feature on
our browser that displays the details of each cookie being set so
that we can confirm that the CGI script is working as expected.

Figure 12-1. cookieset.png

[image: figs/pttk_1201.gif]

When the page is reloaded, the cookie is read and the value for
SessionID printed, as shown in Figure 12-2.

Figure 12-2. cookieget.png

[image: figs/pttk_1202.gif]

12.1.4 CGI Script Web Application

Now we're going to look at an example of a more
complete CGI script that provides a simple web interface to a
database containing entries for a fictional travel guide. Each entry
has a name (e.g., Earth) as well as a unique numerical identifier
(e.g., 42). We would like to be able to display an entry from the
guide by specifying either the name or
id. We would also like to be able to search the
database to help find entries of interest. We'll be
using MySQL in this example, but the techniques apply to any
relational database.

12.1.4.1 CGI script

Let's start by walking through the CGI script to
explain what each section of code does.

12.1.4.1.1 Preparation

The CGI script
starts with the usual preamble. We first load the various modules
that we are going to use:

#!/usr/bin/perl

use strict;
use warnings;

use DBI;
use CGI;
use CGI::Carp qw(fatalsToBrowser);
use Template;
$| = 1;

Then we define some configuration data:

my $ROOTDIR = '/home/dent/web/guide';
my $ROOTURL = '/~dent/guide';
my $ROOTCGI = '/cgi-bin/dent/guide.pl';
my $DBDSN = 'DBI:mysql:guide';
my $DBUSER = 'dent';
my $DBPASS = 'ruhtra';

More preparation follows as we create a CGI object, make a connection
to the database, and declare some variables, including the
$vars hash containing template variables. The
$template variable is used to store the name of
the template that is processed to generate the page content.
We'll be setting it shortly.

my $cgi = CGI->new();
my $dbh = DBI->connect($DBDSN, $DBUSER, $DBPASS)
 || die "failed to connect to database: $DBI::errstr";

my ($param, $template);
my $vars = {
 rootdir => $ROOTDIR,
 rooturl => $ROOTURL,
 rootcgi => $ROOTCGI,
};

12.1.4.1.2 Application

Now we can get down to the application
processing phase. The flow of control is determined by one of the
request parameters being provided�name,
id, or search. The
if ... elsif ...
else construct selects the right block of code
accordingly.

if ($param = $cgi->param('name')) {
 # ...
}
elsif ($param = $cgi->param('id')) {
 # ...
}
elsif ($param = $cgi->param('search')) {
 # ...
}
else {
 # ...
}

If a name parameter is provided, the appropriate
SELECT query is sent to the database. The entry is
returned as a reference to a hash array, hopefully without
error,[1] and is added to the
$vars hash as the entry
template variable. The $template variable is then
set to entry.html.
[1] Note the use of the
CGI::Carp module. This will catch our calls to
die and generate an HTML page for sending back to
the browser.

if ($param = $cgi->param('name')) {
 my $entry = $dbh->selectrow_hashref(
 "SELECT id, name, author, about, date
 FROM entry WHERE name=?", { }, $param)
 || die $DBI::errstr;
 $vars->{ entry } = $entry;
 $template = 'entry.html';
}

The handling of the id parameter is much the same
as it is for name:

elsif ($param = $cgi->param('id')) {
 my $entry = $dbh->selectrow_hashref(
 "SELECT id, name, author, about, date
 FROM entry WHERE id=?", { }, $param)
 || die $DBI::errstr;
 $vars->{ entry } = $entry;
 $template = 'entry.html';
}

The search parameter requires a slightly different
process to allow for the multiple entries that can be returned. Here
the entries template variable is set to contain
the list of entries returned, each of which is a hash reference, and
the $template is set to
entries.html:

elsif ($param = $cgi->param('search')) {
 $vars->{ search } = $param;
 $param =~ s/*/\%/g; # change '*' to '%'
 my $sth = $dbh->prepare(
 'SELECT id, name, author, about, date
 FROM entry WHERE name LIKE ?')
 || die $DBI::errstr;
 $sth->execute($param) || die $sth->errstr();
 $vars->{ entries } = $sth->fetchall_arrayref({ });
 $template = 'entries.html';
}

This application allows the user to specify wildcards in a pattern
using the * character�e.g.,
ear*. MySQL, on the other hand, uses
% to denote wildcards. To cater for this, the
appropriate transformation is made to the search term in
$param before it is used in the query. A copy of
the original search term is saved as the search
template variable.

$vars->{ search } = $param;
$param =~ s/*/\%/g; # change '*' to '%'

If none of the name, id, or
search parameters is provided, the index page is
displayed:

else {
 $template = 'index.html';
}

12.1.4.1.3 Presentation

At this point, the
$template variable tells us which template needs
to be processed, and $vars contains any variables
required to process it. We create a Template object specifying
various options indicating the location of templates, and naming a
template for preprocessing (config) and another
for wrapping around the page content (wrapper).

my $tt = Template->new({
 INCLUDE_PATH => [
 "$ROOTDIR/templates/cgi",
 "$ROOTDIR/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
});

Then we print the CGI header and process the template to generate the
dynamic HTML page content:

print $cgi->header();

$tt->process($template, $vars)
 || die $tt->error();

All done! The complete CGI script is shown in Example 12-11.

Example 12-11. guide/cgi-bin/guide.pl

#!/usr/bin/perl

use strict;
use warnings;

use DBI;
use CGI;
use CGI::Carp qw(fatalsToBrowser);
use Template;
$| = 1;

#--
configuration
#--

my $ROOTDIR = '/home/dent/web/guide';
my $ROOTURL = '/~dent/guide';
my $ROOTCGI = '/cgi-bin/dent/guide.pl';
my $DBDSN = 'DBI:mysql:guide';
my $DBUSER = 'dent';
my $DBPASS = 'ruhtra';

my $cgi = CGI->new();
my $dbh = DBI->connect($DBDSN, $DBUSER, $DBPASS)
 || die "failed to connect to database: $DBI::errstr";

my ($param, $template);
my $vars = {
 rootdir => $ROOTDIR,
 rooturl => $ROOTURL,
 rootcgi => $ROOTCGI,
};

#--
application
#--

if ($param = $cgi->param('name')) {
 my $entry = $dbh->selectrow_hashref(
 "SELECT id, name, author, about, date
 FROM entry WHERE name=?", { }, $param)
 || die $DBI::errstr;
 $vars->{ entry } = $entry;
 $template = 'entry.html';
}
elsif ($param = $cgi->param('id')) {
 my $entry = $dbh->selectrow_hashref(
 "SELECT id, name, author, about, date
 FROM entry WHERE id=?", { }, $param)
 || die $DBI::errstr;
 $vars->{ entry } = $entry;
 $template = 'entry.html';
}
elsif ($param = $cgi->param('search')) {
 $vars->{ search } = $param;
 $param =~ s/*/\%/g; # change '*' to '%'
 my $sth = $dbh->prepare(
 'SELECT id, name, author, about, date
 FROM entry WHERE name LIKE ?')
 || die $DBI::errstr;
 $sth->execute($param) || die $sth->errstr();
 $vars->{ entries } = $sth->fetchall_arrayref({ });
 $template = 'entries.html';
}
else {
 $template = 'index.html';
}

#--
presentation
#--

my $tt = Template->new({
 INCLUDE_PATH => [
 "$ROOTDIR/templates/cgi",
 "$ROOTDIR/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
});

print $cgi->header();

$tt->process($template, $vars)
 || die $tt->error();

12.1.4.2 Template components

The preprocessed
config template, shown in Example 12-12, loads the Date plugin, defines a
date MACRO that uses it, and
then defines site and page
data. See Chapter 11 for a full discussion on
writing and using configuration templates.

Example 12-12. guide/templates/lib/config

[% USE Date;

 MACRO date(d) BLOCK;
 # entry dates contain both date and
 # time, but we just want the date
 items = d.split('-');
 Date.format(
 "0:00:00 $items.2/$items.1/$items.0"
 format = '%d-%B-%Y'
);
 END;

 site = {
 title = "TT Hitch Hiker's Guide"
 admin = 'webmaster@template-toolkit.org'
 copyright = '2003 Andy Wardley'
 }

 site.url = {
 guide = rootcgi
 index = "$rooturl/index"
 images = "$rooturl/images"
 css = "$rooturl/css/tt2.css"
 }

 site.col = {
 back = '#FFFFFF' # white
 text = '#000000' # black
 line = '#00AAF0' # sky blue
 }

 site.logo = {
 src = "$site.url.images/logo/tt2_120x40.gif"
 alt = "TT2 Logo"
 width = 120
 height = 40
 }

 page = {
 name = template.name
 file = template.name
 title = template.title
 about = template.about
 type = template.type or 'html'
 date = template.date or Date.format(template.modtime)
 }
-%]

Example 12-13 shows the
wrapper template, which applies the
html and layout templates
as further wrappers around the generated page content. The use of
wrapper templates is also discussed in Chapter 11.

Example 12-13. guide/templates/lib/wrapper

[% SWITCH page.type;
 CASE 'text';
 content;

 CASE 'html';
 content WRAPPER html
 + layout;
 CASE;
 THROW page.type "Invalid page type: $page.type";
 END;
-%]

The html and
layout
templates are shown in Examples Example 12-14 and Example 12-15,
respectively.

Example 12-14. guide/templates/lib/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>
 [% site.title %]
 [% ": $page.title" IF page.title %]
 </title>
 <link rel="stylesheet"
 href="[% site.url.css %]" />
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 </head>

 <body bgcolor="[% site.col.back %]"
 text="[% site.col.text %]">
 [% content %]
 </body>
</html>

Example 12-15. guide/templates/lib/layout

[% MACRO line BLOCK -%]
 <tr>
 <td colspan="3">
 [% PROCESS line %]
 </td>
 </tr>
[%- END %]

<table width="100%" height="70%" border="0" cellpadding="4" cellspacing="4">
 <tr valign="middle">
 <td width="150" align="center">
 [% PROCESS logo %]
 </td>
 <td align="left">
 [% PROCESS header %]
 </td>
 <td align="right">
 [% PROCESS form %]
 </td>
 </tr>

 [% line %]

 <tr valign="top" height="100%">
 <td colspan="3">
 <!-- page content -->
 [% content %]
 <!-- end of page content -->
 </td>
 </tr>

 [% line %]

 <tr valign="bottom">
 <td colspan="3" align="center">
 [% PROCESS footer %]
 </td>
 </tr>
</table>

The header template uses the values defined in the
page data structure to generate a page header, as
shown in Example 12-16.

Example 12-16. guide/templates/lib/header

<h1 class="title">[% page.title %]</h1>
[% IF page.about -%]
<div class="info">
 [% page.about %]
</div>
[% END -%]

The form template, shown in Example 12-17, provides the search form. Any current value
for the search template variable is displayed in
the input field.

Example 12-17. guide/templates/lib/form

<form action="[% site.url.guide %]"
 method="POST" enctype="application/x-www-form-urlencoded">
 <table border="0">
 <tr valign="middle">
 <td>
 <input type="submit"
 name="submit"
 value=" Search " />
 </td>
 <td>
 <input type="text"
 name="search"
 size="30"
 value="[% search %]" />
 </td>
 </tr>
 <tr valign="middle">
 <td></td>
 <td class="info">
 e.g., <i>earth</i>, <i>magrethea</i>, <i>ear*</i>, <i>*th*</i>
 </td>
 </tr>
 </table>
</form>

The logo and
footer
templates, shown in Examples Example 12-18 and Example 12-19, respectively, also do what their names
suggest.

Example 12-18. guide/templates/lib/logo

[% image = site.logo -%]
<img
 src="[% image.src %]" alt="[% image.alt %]"
 width="[% image.width %]" height="[% image.height %]"
 border="0" />

Example 12-19. guide/templates/lib/footer

<p class="info">
 © Copyright [% site.copyright %].
 All Rights Reserved.

 [% page.name %] last modified [% page.date %]
</p>

12.1.4.3 Page templates

The entry.html page template is used to display a
single entry. The template source is shown in Example 12-20. It sets the appropriate
page values from the entry
returned from the database. This allows the
header template to display appropriate values
when it is automatically added by the wrapper templates. In this
simple example, the only real page content comes from the
about.entry field.

Example 12-20. guide/templates/cgi/entry.html

[% # set various page items
 page.title = entry.name;
 page.name = "Entry for $entry.name";
 page.date = date(entry.date);
 page.about = "by $entry.author on $page.date"
%]

[% entry.about %]

Figure 12-3 shows a screenshot of an HTML page
generated from this template.

Figure 12-3. earth.png

[image: figs/pttk_1203.gif]

The entries.html page template, shown in Example 12-21, displays a list of the entries returned by a
search.

Example 12-21. guide/templates/cgi/entries.html

[% page.title = 'Search Results' %]

[% n = entries.size or 'no' %]

<h3>There [% n = = 1 ? 'is' : 'are' %] [% n %]
[% n = = 1 ? 'entry' : 'entries' %] matching your search.</h3>

[% IF entries.size %]

 [%- FOREACH entry IN entries -%]
 [% entry.name %]

 by [% entry.author %] on [% date(entry.date) %].

 [%- END -%]

[% END %]

Figure 12-4 shows the results of a search for
th.

Figure 12-4. search.png

[image: figs/pttk_1204.gif]

12.2 CGI Templates

Often dynamic content is generated as a response to a web query. The
user types something into a form and a CGI program runs to extract
the parameters, search the database, and generate the response. The
easiest way to do this is to have the CGI program generate the HTML
response. In this section we show a more maintainable way: use the
CGI plugin from within a template to access query parameters.

12.2.1 Using the CGI Plugin

The
Template Toolkit provides the CGI plugin as a simple wrapper around
the CGI module. If you don't have any particular
need to use a CGI object in the calling Perl program�say, to
read request parameters or set headers�don't
create one. Instead, use the CGI plugin to create a CGI object from
within any templates that require access to it. Example 12-22 shows a template identical to that in Example 12-7, with the exception of the first line, which
loads the CGI plugin.

Example 12-22. cgiplugin.html

[% USE cgi %]

<h1>CGI Parameters</h1>

[% FOREACH p = cgi.param -%]
 [% p %] [% cgi.param(p) %]
[% END -%]

The plugin name can be specified in upper- or lowercase. The CGI
object will be assigned to the variable of the same name in matching
case. In Example 12-22, the lowercase
cgi variable is used in keeping with Example 12-7. We could just as easily use the uppercase
CGI name when the plugin is loaded:

[% USE CGI %]

and then again whenever the plugin is used:

[% FOREACH p = CGI.param %]

You cannot instantiate more than one CGI per request. If you create a
CGI request in the controlling Perl script, you should pass it as a
variable to the template instead of using a plugin. The plugin will
create a second CGI object with unpredictable results.

12.2.2 Web Programming in Templates

The Template Toolkit
gives you access to plugins and allows you to call out to subroutines
and other objects from template code. This means that you can do a
large amount of web programming entirely within the templates.

This is the style of popular web programming languages such as PHP
and Microsoft's ASP. It is how HTML::Mason works,
albeit by embedding Perl code rather than using a custom web
programming language. It is a useful technique, particularly for
small applications where you want to keep things together in one
place, and don't want the overhead of a complex
application framework that will only distract you from the task at
hand.

The problem with this approach is that it often
doesn't scale well to larger applications.
HTML::Mason is perhaps the exception here, being very much based
around a component architecture that naturally promotes modularity
and scalability. However, it suffers from the same problem as PHP and
ASP in binding the application code too tightly to presentation
aspects, making it hard to change one without affecting the other.

The Template Toolkit approaches the problem from a different angle.
Whereas PHP, ASP, and HTML::Mason are designed primarily for web
programming, the Template Toolkit is more focused on web
presentation. It deals mostly with making the generated pages look
pretty (which may involve all manner of complex presentation logic)
but doesn't worry itself too much about application
programming issues. That is best left to a real programming language,
namely Perl.

But as we have said, the technique is useful for smaller
applications, and with a little careful organization can scale
reasonably well. The Template Toolkit isn't
fanatical about enforcing strict disciplines on anyone, and provides
what you need to get the job done quickly, if that's
what you want.

12.2.2.1 Dispatching CGI script

To illustrate this, we will take the Perl CGI script
from Example 12-11 and implement the body of it in a
template, making use of the CGI and DBI plugins. We still require a
Perl CGI script to dispatch the template, as shown in Example 12-23.

Example 12-23. guide/cgi-bin/ttguide.pl

#!/usr/bin/perl

use strict;
use warnings;
use Template;

$| = 1;

my $ROOTDIR = '/home/dent/guide';
my $ROOTURL = '/~dent/guide';
my $ROOTCGI = '/cgi-bin/dent/ttguide.pl';
my $DBDSN = 'DBI:mysql:guide';
my $DBUSER = 'dent';
my $DBPASS = 'ruhtra';

my $input = 'guide.html';
my $vars = {
 rootdir => $ROOTDIR,
 rooturl => $ROOTURL,
 rootcgi => $ROOTCGI,
 dbdsn => $DBDSN,
 dbuser => $DBUSER,
 dbpass => $DBPASS,
};

my $tt = Template->new({
 INCLUDE_PATH => [
 "$ROOTDIR/templates/cgi",
 "$ROOTDIR/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
});

print "Content-type: text/html\n\n";

$tt->process($input, $vars)
 || die $tt->error();

The script does little more than define some variables and create a
Template object to process the guide.html file,
located in the templates/cgi directory, relative
to the $ROOTDIR, which in this example is
/home/dent/guide.

12.2.2.2 Main control template

The application processing has now been moved into
the guide.html template,
shown in Example 12-24.

Example 12-24. guide/templates/cgi/guide.html

[% USE cgi;
 USE dbi(dbdsn, dbuser, dbpass);

 # main control loop
 IF (param = cgi.param('name'));
 PROCESS entry/name;
 ELSIF (param = cgi.param('id'));
 PROCESS entry/id;
 ELSIF (param = cgi.param('search'));
 PROCESS entry/search;
 ELSE;
 PROCESS index.html;
 END;
%]

It first loads the CGI plugin, then the DBI plugin, passing the
relevant configuration parameters for it to make a database
connection. For both plugins, the lowercase names are used:

USE cgi;
USE dbi(dbdsn, dbuser, dbpass);

Then the control block follows. The request parameters are inspected
and one of the relevant templates, entry/name,
entry/id, or
<entry/search>, is processed. If none of
the parameters is provided, the index.html
template is used.

IF (param = cgi.param('name'));
 PROCESS entry/name;
ELSIF (param = cgi.param('id'));
 PROCESS entry/id;
ELSIF (param = cgi.param('search'));
 PROCESS entry/search;
ELSE;
 PROCESS index.html;
END;

12.2.2.3 Additional control templates

The entry/name template, shown in Example 12-25, dispatches a database request to fetch an
entry by name.

Example 12-25. guide/templates/cgi/entry/name

[% entries = dbi.query(
 "SELECT id, name, author, about, date
 FROM entry WHERE name='$param'"
);

 # entries is an iterator, so get first item
 entry = entries.get;

 IF entry;
 PROCESS entry.html;
 ELSE;
 PROCESS notfound.html;
 END;
%]

The query method of the DBI plugin returns a
reference to an iterator object, which is assigned to
entries. We're expecting only one
item to be returned from this query, so we call the
get method to fetch the first item from
entries:

entry = entries.get;

If an entry is returned, the entry.html template
is processed to present it. Otherwise, the
notfound.html template is used to inform the
user that the entry could not be found.

The entry/id template
is very similar (see Example 12-26).

Example 12-26. guide/templates/cgi/entry/id

[% entries = dbi.query(
 "SELECT id, name, author, about, date
 FROM entry WHERE id=$param"
);
 entry = entries.get;
 IF entry;
 PROCESS entry.html;
 ELSE;
 PROCESS notfound.html;
 END;
%]

Example 12-27 shows the
entry/search template.

Example 12-27. guide/templates/cgi/entry/search

[% search = param.replace('*', '%');
 entries = dbi.query(
 "SELECT id, name, author, about, date
 FROM entry WHERE name LIKE '$search'"
);
 PROCESS entries.html
 entries = entries.get_all;
%]

As before, we change any occurrences of * to
% so that the user's idea of what
constitutes a wildcard expression (e.g., ear*)
matches the format that MySQL is expecting (e.g.,
ear%). This time, however, we do it using the
replace virtual method:

search = param.replace('*', '%');

We are expecting a list of items to be returned from the search. The
entries.html template generates an appropriate
response even if no matches are found and the
entries list is empty. We call the
get_all method on the entries
iterator to return a list of all matches found and then assign it
back to entries. This effectively turns the
iterator into a regular list so that the
entries.html template can use the
size list virtual method to determine whether
there are any entries to display.

12.2.2.4 Perl or template?

We don't normally recommend putting too much
application logic in templates as a general rule. But we do recognize
that it can be useful from time to time, particularly when you have a
small job to get done quickly and would rather have something basic
working today than something elegant working next week.

In the example that we have just looked at, we created a CGI Perl
script specifically to dispatch a single template. Given that we have
gone to the effort of writing a Perl script, it would make more sense
on this occasion to encode the application logic in Perl, leaving the
templates to handle only presentation issues. This is the approach
that we showed you in Example 12-7.

On the other hand, you may be using a generic template dispatcher
such as Apache::Template. We saw an example in Chapter 11 where it was configured to process any
.tt2 that it finds before being returned to the
client. It means you can simply drop a new .tt2
file into your web directory to have Apache::Template automatically
process it as a dynamically generated web page. There is no need to
write a calling CGI script or custom mod_perl handler to cater for
it. In cases such as this, the benefit of being able to perform some
basic web programming tasks entirely within a template is more
apparent.

So even though hardcore web programming in templates
isn't usually encouraged, it certainly can be done.
Furthermore, it is still possible to maintain a clear separation of
concerns by using different templates for different parts of the
system. In this example, we used one template for the main control
loop and one for handling each query. All the presentation templates
were borrowed without change from the previous example.

12.3 Apache and mod_perl

The biggest problem with CGI programming is
that it is slow. Each request fires off a CGI script from scratch.
Perl must first parse and compile the script and any modules you use
(including the Template Toolkit, of course) before it can even start
to generate content.

The mod_perl extension to Apache makes these problems go away. Rather
than writing Perl CGI scripts, you write Perl handlers that sit
"inside" the web server. The
handlers and any modules they use are loaded and compiled when the
server starts. Once Perl has compiled them into an internal
"opcode" tree, they can be executed
quickly, efficiently, and repeatedly with minimal overhead.

A second important benefit comes from using the Template Toolkit in a
mod_perl-enabled Apache server. It allows you to create one Template
object that is reused for all requests. When a template is first
used, it is parsed by the Template Toolkit and converted to the
equivalent Perl code. This is then passed to Perl, which compiles it
into an opcode tree.

The Template Toolkit caches these compiled templates so that you can
process them as many times as you like but only have to go through
the relatively slow process of compiling them once. However, to get
the benefit of this, you must use one Template object that remains
persistent from one request to the next. The examples that follow all
adopt this technique.

For a complete discussion of mod_perl and related topics, see
Practical mod_perl by Stas Bekman and Eric
Cholet (O'Reilly).

12.3.1 Apache::Template

Way back in Chapter 1, we looked at using
Apache::Template to dispatch templates from a
mod_perl-enabled Apache server. Example 12-28 shows an
Apache/mod_perl configuration that uses
Apache::Template to dispatch the web application
template from Example 12-24.

Example 12-28. Apache::Template configuration

PerlModule Apache::Template

TT2IncludePath /home/dent/guide/templates/cgi
TT2IncludePath /home/dent/guide/templates/lib
TT2PreProcess config
TT2Process process

TT2Variable rooturl /~dent/guide
TT2Variable rootcgi /ttguide
TT2Variable dbdsn DBI:mysql:guide
TT2Variable dbuser dent
TT2Variable dbpass ruhtra

Alias /ttguide /home/dent/guide/templates/cgi

<Location /ttguide>
 SetHandler perl-script
 PerlHandler Apache::Template
</Location>

The Apache::Template module is loaded and then
various TT2* parameters are set. At the time of
this writing, Apache::Template is a version behind
the Template Toolkit and doesn't yet support the
TT2Wrapper (i.e., WRAPPER)
configuration option. For now, we can emulate the behavior of
TT2Wrapper with the TT2Process
option. We tell Apache::Template to process the
process template, shown in Example 12-29, in place of each main page template.

Example 12-29. templates/lib/process

[% PROCESS $template WRAPPER wrapper -%]

The process template processes the original page
template.[2] The
template variable contains a reference to the
original page template (or rather, the
Template::Document object used to represent it).
The original template is processed and the output is wrapped in the
wrapper template, thereby providing the
equivalent functionality to the WRAPPER
configuration option.
[2] The leading $ on
$template indicates that it is the
template variable we want processed, rather than a
template with the literal name
"template."

The rooturl, rootcgi,
dbdsn, dbuser, and
dbpass template variables are set to their
appropriate values using the TT2Variable
directive. We also define an Apache Alias that
maps the /ttguide URL to the appropriate
template files in the
/home/dent/guide/templates/cgi directory.

Alias /ttguide /home/dent/guide/templates/cgi

Finally, we indicate that all files in this location and
corresponding directory should be processed by
Apache::Template:

<Location /ttguide>
 SetHandler perl-script
 PerlHandler Apache::Template
</Location>

The guide.html page template can now be accessed
via the URL /ttguide/guide.html. No changes to
the template are required.

12.3.2 Custom Apache Handler

The Apache::Template module is good for simple things. If
you want to do anything that doesn't count as
simple, you will probably need to write your own custom
mod_perl handler.

Example 12-30 shows an example of a module that
defines such a handler.

Example 12-30. lib/TTBook/Apache/Handler.pm

package TTBook::Apache::Handler;

use strict;
use warnings;

use Template;
use Apache;
use Apache::Constants qw(OK SERVER_ERROR DECLINED);

our $VERSION = 1.00;
our $TT;

sub handler {
 my $r = shift;
 my $output;

 my %params = $r->method() eq 'POST'
 ? $r->content()
 : $r->args();

 my $template = $r->path_info()
 || 'index.html';

 $template =~ s[^/][]g;

 $TT ||= do {
 my $rootdir = $r->dir_config('rootdir')
 || return error($r, "'rootdir' not defined");

 Template->new({
 INCLUDE_PATH => [
 "$rootdir/templates/cgi",
 "$rootdir/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
 ERROR => 'error.html',
 });
 };

 $r->content_type('text/html');
 $r->send_http_header();

 $TT->process($template, \%params, $r)
 || return error($r, $TT->error());

 return OK;
}

sub error {
 my $r = shift;
 $r->log_error(@_);
 return SERVER_ERROR;
}

1;

The interesting part is the
handler method. It is called by mod_perl and
passed a reference to an Apache::Request object.
Through this, we can fetch the request parameters by calling the
content() method for POST requests, or the
args() method for GET (and other) requests:

sub handler {
 my $r = shift;
 my $output;

 my %params = $r->method() eq 'POST'
 ? $r->content()
 : $r->args();

In this handler, we are using PATH_INFO to determine which template
to process. If the handler is bound to a URL of /tthandler, for example, calling it with a
URL of /tthandler/help/index.html
would result in a value of /help/index.html for
PATH_INFO. In this case, we would then process the
help/index.html template in the
$rootdir/templates/cgi directory, having removed
the leading / from the path:

my $template = $r->path_info()
 || 'index.html';

$template =~ s[^/][]g;

The next block of code creates a Template object and assigns it to
the $TT package variable. If
$TT already contains an object, it is reused
instead. This ensures that the same Template object is used from one
request to the next and thus benefits from the caching of compiled
templates.

$TT ||= do {
 my $rootdir = $r->dir_config('rootdir')
 || return error($r, "'rootdir' not defined");

 Template->new({
 INCLUDE_PATH => [
 "$rootdir/templates/cgi",
 "$rootdir/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
 ERROR => 'error.html',
 });
};

The root directory, $rootdir, from which the
INCLUDE_PATH directories are built, is defined in
the Apache configuration file that we will be looking at shortly. To
fetch this value, the dir_config() method is
called against the request object.

The content type is declared and the HTTP headers are sent to the
client's browser:

$r->content_type('text/html');
$r->send_http_header();

Then the page template, $template, is processed,
passing the current request parameters as template variables. The
request object, $r, is passed to the
process() method as the third argument. Rather
than printing the generated HTML page to standard out, the
process() method will pass it to the request
object by calling its print() method:

$TT->process($template, \%params, $r)
 || return error($r, $TT->error());

return OK;

}

Example 12-31 shows the relevant directive for an
Apache configuration file to use this handler.

Example 12-31. etc/tthandler.conf

<perl>
 use lib qw(/home/dent/guide/lib)
</perl>

PerlModule TTBook::Apache::Handler
PerlSetVar rootdir /home/dent/guide

<Location /myhandler>
 SetHandler perl-script
 PerlHandler TTBook::Apache::Handler
</Location>

The <perl> ...
</perl> block allows Perl code to be
embedded in the configuration. In this example, we are using it to
add the location of our custom handler module to
Perl's search path. The module is then loaded with
the PerlModule directive. The
PerlSetVar directive is used to set a value for
the rootdir variable. Finally, a
<Location> ...
</Location> block is used to bind the
handler to the URL /myhandler.

12.4 A Complete Web Application

We are now going to build a complete mod_perl- and Template
Toolkit-enabled, database-driven web application, based on our
earlier examples. Although this is a relatively simple example as web
applications go, we will nevertheless concentrate on making a clear
separation between the different functional concerns.

Presentation will of course be handled by the Template Toolkit. The
application-specific processing will be implemented in one module,
using another separate module to manage the storage layer (i.e., the
database). A third module will then provide the interface between
Apache and the application.

12.4.1 Storage

To best understand how the complete
application is built, it is perhaps easiest to start from the inside
and work out. Or at the bottom and work up. Well, whatever direction
it is, we're going to start with the storage module.

This provides a wrapper around a database to hide as much of the
nitty-gritty detail as possible. This allows our different
applications to use the same storage module, or for an application to
use different storage modules as requirements change. In this
example, we're using a MySQL database through the
DBI module, but next week we might decide to use XML files instead.

In other words, it provides an abstraction that allows applications
to work independently of any particular storage mechanism.

12.4.1.1 TTBook::H2G2::Database

This module
begins in the usual way for any Perl module by declaring its package
and then loading some external Perl modules:

package TTBook::H2G2::Database;

use strict;
use DBI;
use Class::Base;
use base qw(Class::Base);

The DBI module is of course required to access the
MySQL database. We're also using
Class::Base and defining it to be the base class
of the TTBook::H2G2::Database module.

The three SQL queries that we will be using are defined in the
$SQL package variable. They use
? placeholder characters to indicate positions
where parameters to the query will be inserted.

our $SQL = {
 get_entry_id => 'SELECT id, name, author, about, date
 FROM entry WHERE id=?',
 get_entry_name => 'SELECT id, name, author, about, date
 FROM entry WHERE name=?',
 entry_search => 'SELECT id, name, author, about, date
 FROM entry WHERE name LIKE ?',
};

The Class::Base module defines a default
new() constructor method. This calls the
init() method to initialize the object using any
configuration parameters passed.

sub init {
 my ($self, $config) = @_;
 @$self{ keys %$config } = values %$config;
 $self->{ sql } = $SQL;
 $self->connect() || return;
 return $self;
}

The contents of the $config hash array are copied
into $self and the sql item is
set to reference the $SQL package hash. The
connect() method is then called to make a
connection to the database.

Here is the connect() method. Notice how the
database handle is cached internally in the object as the
dbh item.

sub connect {
 my $self = shift;

 return $self->{ dbh } ||= do {
 my $dsn = $self->dsn()
 || return $self->error("No DSN available");

 DBI->connect($dsn, $self->{ user }, $self->{ pass },
 { RaiseError => 0, PrintError => 0 })
 || $self->error($DBI::errstr);
 };
}

The dsn() method returns a connection string (in
Data Source Notation, hence DSN) for the connect(
) method. If a dsn is already defined,
either by a configuration option or a previous call to dsn(
), it is returned as is. Otherwise, it is generated using
some or all of the values for name,
host, port, and
driver, which should be provided as configuration
options to the new() constructor.

sub dsn {
 my $self = shift;
 return $self->{ dsn } ||= do {
 my ($name, $host, $port) = @$self{ qw(name host port) };
 $host .= ":$port" if $host && $port;
 $name .= "@$host" if $host;
 join(':', 'DBI', $self->{ driver }, $name);
 };
}

The prepare() method is used to fetch a named SQL
query from the sql hash (e.g.,
get_entry_name, get_entry_id,
etc.) and prepare it for execution. The prepared query is cached in
the internal sql_query hash table for subsequent
use.

sub prepare {
 my $self = shift;
 my $sql = shift
 || return $self->error("no SQL");
 my $dbh = $self->{ dbh }
 || return $self->error("DBI not connected");
 my $query;

 if ($query = $self->{ sql }->{ $sql }) {
 my $cache = $self->{ sql_query } ||= { };

 return $cache->{ $sql } ||= $dbh->prepare($query)
 || $self->error("DBI prepare failed: $DBI::errstr");
 }
 else {
 return $dbh->prepare($sql)
 || $self->error("DBI prepare failed: $DBI::errstr");
 }
}

The query() method calls prepare(
) to prepare a query, and then executes it:

sub query {
 my $self = shift;
 my $sql = shift
 || return $self->error("no SQL");
 my $dbh = $self->{ dbh }
 || return $self->error("DBI not connected");
 my $sth = $self->prepare($sql)
 || return;
 $sth->execute(@_)
 || return $self->error($sth->errstr());
 return $sth;
}

The item() method first calls query(
) to execute a query. It then calls
fetchrow_hashref() on the returned DBI statement
handle to fetch the first (or only) record returned.

sub item {
 my $self = shift;
 my $sth = $self->query(@_) || return;
 return $sth->fetchrow_hashref()
 || $self->error($DBI::errstr || "not found");
}

The list() method is similar, but calls
fetchall_arrayref() to return a list of all
records returned by the query:

sub list {
 my $self = shift;
 my $sth = $self->query(@_) || return;
 return $sth->fetchall_arrayref({ })
 || $self->error($DBI::errstr || "not found");
}

The one other method that is worth mentioning is
DESTROY. This calls the disconnect(
) method to ensure that the database
connection is closed when the object is destroyed.

sub DESTROY {
 my $self = shift;
 $self->disconnect('object destroyed') if $self->{ dbh };
}

We haven't shown you disconnect(
) yet, but you can probably guess what it does. It is
included in the complete listing of the
TTBook::H2G2::Database module that follows in
Example 12-32.

Example 12-32. lib/TTBook/H2G2/Database.pm

#= =
 = = = = =
 = = =
#
TTBook::H2G2::Database
#
DESCRIPTION
Backend database module for the H2G2 web application.
#
AUTHOR
Andy Wardley <abw@wardley.org>
#
COPYRIGHT
Copyright (C) 2003 Andy Wardley. All Rights Reserved.
#
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
#
REVISION
#= =
 =
 =

package TTBook::H2G2::Database;

use strict;
use DBI;
use Class::Base;
use base qw(Class::Base);

our $VERSION = sprintf("%d.%02d", q$Revision: 1.6 $ =~ /(\d+)\.(\d+)/);
our $ERROR = '';
our $SQL = {
 get_entry_id => 'SELECT id, name, author, about, date
 FROM entry WHERE id=?',
 get_entry_name => 'SELECT id, name, author, about, date
 FROM entry WHERE name=?',
 entry_search => 'SELECT id, name, author, about, date
 FROM entry WHERE name LIKE ?',
};

#--
init(\%config)
#
Initialization method called by Class::Base new() constructor.
#--

sub init {
 my ($self, $config) = @_;
 @$self{ keys %$config } = values %$config;
 $self->{ sql } = $SQL;
 $self->connect() || return;
 return $self;
}

#--
dsn()

Generate a DSN string from the database
connection parameters.
#--

sub dsn {
 my $self = shift;
 return $self->{ dsn } ||= do {
 my ($name, $host, $port) = @$self{ qw(name host port) };
 $host .= ":$port" if $host && $port;
 $name .= "@$host" if $host;
 join(':', 'DBI', $self->{ driver }, $name);
 };
}

#--
connect()
#
Connect to the backend database.
#--

sub connect {
 my $self = shift;

 return $self->{ dbh } ||= do {
 my $dsn = $self->dsn()
 || return $self->error("No DSN available");
 DBI->connect($dsn, $self->{ user }, $self->{ pass },
 { RaiseError => 0, PrintError => 0 })
 || $self->error($DBI::errstr);
 };
}

#--
disconnect()
#
Disconnect the database.
#--

sub disconnect {
 my $self = shift;
 my $msg = shift || '';
 $msg = " ($msg)" if length $msg;

 delete $self->{ sql_query };

 $self->{ dbh }->disconnect()
 if $self->{ dbh };
 delete $self->{ dbh };

 return 1;
}

#--
prepare($sql)
#
Prepare a query and store the live statement handle internally for
subsequent execute() calls.
#--

sub prepare {
 my $self = shift;
 my $sql = shift
 || return $self->error("no SQL");
 my $dbh = $self->{ dbh }
 || return $self->error("DBI not connected");
 my $query;

 if ($query = $self->{ sql }->{ $sql }) {
 my $cache = $self->{ sql_query } ||= { };

 return $cache->{ $sql } ||= $dbh->prepare($query)
 || $self->error("DBI prepare failed: $DBI::errstr");
 }
 else {
 return $dbh->prepare($sql)
 || $self->error("DBI prepare failed: $DBI::errstr");
 }
}

#--
query($sql, @params)
#
Prepares and executes an SQL query.
#--

sub query {
 my $self = shift;
 my $sql = shift
 || return $self->error("no SQL");
 my $dbh = $self->{ dbh }
 || return $self->error("DBI not connected");
 my $sth = $self->prepare($sql)
 || return;
 $sth->execute(@_)
 || return $self->error($sth->errstr());
 return $sth;
}

#--
item($sql, @args)
#
Executes the $sql query, passing @args and calls fetchrow_hashref() on
the returned statement handle to fetch a single row as a hash.
#--

sub item {
 my $self = shift;
 my $sth = $self->query(@_) || return;
 return $sth->fetchrow_hashref()
 || $self->error($DBI::errstr || "not found");
}

#--
list($sql, @args)
#
Executes the $sql query, passing @args and calls fetchall_arrayref() on
the returned statement handle to fetch all rows as a list of hashes.
#--

sub list {
 my $self = shift;
 my $sth = $self->query(@_) || return;
 return $sth->fetchall_arrayref({ })
 || $self->error($DBI::errstr || "not found");
}

#--
insert_id()
#
Returns the identity of the record most recently inserted into the
database.
#--

sub insert_id {
 my $self = shift;
 return $self->{ dbh }->{ mysql_insertid };
}

#--
quote($value [, $data_type])
#
Returns a quoted string (correct for the connected database) from the
value passed in.
#--

sub quote {
 my $self = shift;
 my $dbh = $self->{ dbh } || return $self->error("DBI not connected");
 return $dbh->quote(@_);
}

#--
dbh()
#
Internal method that retrieves the database handle belonging to the
instance or attempts to create a new one using connect.
#--

sub dbh {
 my $self = shift;
 return $self->{ dbh } || $self->connect();
}

#--
DESTROY()
#
Destructor method called automatically when the object goes out of
scope. Disconnects any active database.
#--

sub DESTROY {
 my $self = shift;
 $self->disconnect('object destroyed') if $self->{ dbh };
}

1;

12.4.2 Configuration

The database storage module expects
to be provided with various configuration options to define the
parameters for connecting to the database. Rather than littering this
information around in several different places (something that makes
it hard to find and change), we will create a single configuration
module, as shown in Example 12-33.

Example 12-33. lib/TTBook/H2G2/Config.pm

#= =
 =
 = =
#
TTBook::H2G2::Config
#
DESCRIPTION
Configuration module for the Hitch-Hiker's Guide to the Galaxy web
application.
#
AUTHOR
Andy Wardley <abw@wardley.org>
#
COPYRIGHT
Copyright (C) 2003 Andy Wardley. All Rights Reserved.
#
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
#
REVISION
#= =
 =
 = =

package TTBook::H2G2::Config;

use strict;
use warnings;

our $VERSION = 1.00;
our $ROOTDIR = '/home/dent/web/guide';
our $ROOTURL = '/H2G2';
our $ROOTCGI = '/H2G2/guide';
our $DATABASE = {
 driver => 'mysql',
 name => 'guide',
 user => 'dent',
 pass => 'ruhtra',
 host => '',
 port => '',
};
our $TEMPLATE = {
 INCLUDE_PATH => [
 "$ROOTDIR/templates/cgi",
 "$ROOTDIR/templates/lib",
],
 PRE_PROCESS => 'config',
 WRAPPER => 'wrapper',
 VARIABLES => {
 rooturl => $ROOTURL,
 rootcgi => $ROOTCGI,
 }
};
our $TEMPLATES = {
 index => 'index.html',
 entry => 'entry.html',
 entries => 'entries.html',
 error => 'error.html',
};

1;

It defines $ROOTDIR, $ROOTURL,
and $ROOTCGI to indicate the root directory, the
root URL for documents, and the URL to access the application
handler, respectively. The $DATABASE hash array
defines the connection parameters for the
TTBook::H2G2::Database module. The
$TEMPLATE hash provides the familiar set of
options for the Template module. Finally, the
$TEMPLATES hash (note the plural) maps application
actions (e.g., fetch entry, fetch list of entries, etc.) to
presentation templates for displaying the outcome of the operation.

12.4.3 Application

Now that we have a storage module and the means
to configure it, we can start to build our main application module:

package TTBook::H2G2;

use strict;
use Template;
use TTBook::H2G2::Config;
use TTBook::H2G2::Database;
use Class::Base;
use base qw(Class::Base);

The TTBook::H2G2 module is also a subclass of
Class::Base and uses the configuration and
database modules that we have already defined. We will be making
several references to the $ROOTURL and
$TEMPLATES items in the
TTBook::H2G2::Config module, so we create local
package variables to alias them, to save us from typing them
repeatedly, if nothing else:

our $ROOTURL = $TTBook::H2G2::Config::ROOTURL;
our $TEMPLATES = $TTBook::H2G2::Config::TEMPLATES;

The init() method, called by the
new() constructor method in
Class::Base, looks for three different
configuration options. The first, database, can be
used to provide a reference to a storage object other than the
default. The second, template, allows the default
template processing engine to be replaced. We'll not
be using either of these in this example, but they illustrate how
easy it is to use different modules to handle storage or presentation
issues. The third option, templates, allows a
different set of template mapping to be provided. These are merged
with the default set, $TEMPLATES.

sub init {
 my ($self, $config) = @_;

 # user can provide custom database object
 $self->{ database } = $config->{ database };

 # same for template object
 $self->{ template } = $config->{ template };

 # merge user-supplied templates with defaults
 my $templates = $config->{ templates } || { };
 $self->{ templates } = {
 map { defined $templates->{ $_ }
 ? ($_ => $templates->{ $_ })
 : ($_ => $TEMPLATES->{ $_ })
 } keys %$TEMPLATES
 };

 return $self;
}

The database() method creates a
TTBook::H2G2::Database object using the
$DATABASE connection parameters defined in
TTBook::H2G2::Config and caches it internally as
the database item. If an object is already defined
for database, either by being passed to
new() as a configuration option or by being
created by a previous call to the database()
method, it is instead returned.

sub database {
 my $self = shift;

 return $self->{ database } ||= do {
 my $params = @_ && UNIVERSAL::isa($_[0], 'HASH') ? shift : { @_ };
 my $config = $TTBook::H2G2::Config::DATABASE;
 $config = {
 %$config,
 %$params,
 };
 TTBook::H2G2::Database->new($config)
 || $self->error(TTBook::H2G2::Database->error());
 };
}

The template() method is a factory
method similar to database(). In this case, it
creates a Template object for processing templates
for the application.

sub template {
 my $self = shift;

 return $self->{ template } ||= do {
 my $params = @_ && UNIVERSAL::isa($_[0], 'HASH') ? shift : { @_ };
 my $config = $TTBook::H2G2::Config::TEMPLATE;
 $config = {
 %$config,
 %$params,
 };
 Template->new($config)
 || return $self->error(Template->error());
 };
}

Now we can define some application-processing methods. The first is
entry(). It expects either a
name or id parameter and then
makes a call to the database item method to fetch
the entry in question.

sub entry {
 my $self = shift;
 my $args = @_ && ref $_[0] eq 'HASH' ? shift : { @_ };
 my $database = $self->database() || return;
 my $entry;

 if (defined $args->{ id }) {
 return $database->item(get_entry_id => $args->{ id })
 || $self->error($database->error());
 }
 elsif (defined $args->{ name }) {
 return $database->item(get_entry_name => $args->{ name })
 || $self->error($database->error());
 }
 else {
 return $self->error("entry() expects 'name' or 'id' parameter");
 }
}

The search() method expects a search term
as an argument. It calls the database list method
to fetch a list of items returned by the
entry_search query, forwarding the search term
(modified as before) as an argument.

sub search {
 my ($self, $search) = @_;
 my $database = $self->database() || return;

 # change '*' to '%'
 $search =~ s/*/\%/g;

 return $database->list(entry_search => $search)
 || $self->error($database->error());
}

The run() method ties it all together. It is
passed a reference to a hash array of request parameters. It inspects
the parameters and dispatches the appropriate method to handle it:
entry() or search(). The
entry or entries returned are added to the $params
hash as template variables. The $template variable
is also set to indicate the correct page template for the action.

sub run {
 my ($self, $params) = @_;
 my $templates = $self->{ templates };
 my ($tt, $template, $output);

 if (defined $params->{ name } || defined $params->{ id }) {
 # fetch entry if 'name' or 'id' specified
 my $entry = $self->entry($params);
 if ($entry) {
 $params->{ entry } = $entry;
 $template = $templates->{ entry };
 }
 else {
 $params->{ error } = $self->error();
 $template = $templates->{ error };
 }
 }
 elsif (defined $params->{ search }) {
 # search for entries if 'search' specified
 my $entries = $self->search($params->{ search });
 if ($entries) {
 $params->{ entries } = $entries;
 $template = $templates->{ entries };
 }
 else {
 $params->{ error } = $self->error();
 $template = $templates->{ error };
 }
 }
 else {
 return [redirect => "$ROOTURL/index.html"];
 }

If none of the parameters is set, a reference to a list is returned,
indicating that the application should redirect to the
index.html page relative to the
$ROOTURL. We will be looking at the meaning of
these return values shortly.

The final section of the run() method uses the
Template object returned by the template(
) method ($tt) to process the page
template named in the $template variable. The
$params hash defines the template variables and
the output is saved to the $output variable.

$tt = $self->template()
 || return [error => $self->error()];

$tt->process($template, $params, \$output)
 || return [error => $tt->error()];

Whatever happens the method returns a reference to a list. The first
item in the list is a string indicating the required action to be
undertaken. A value of redirect should trigger a
redirect to the URL specified as the second item in the list. A value
of error denotes an error, with the second item in
the list being an appropriate error message.

A value of output indicates that the page was
successfully processed and that it has generated output that should
be sent back to the client's browser. In this case,
the second item in the list is a reference to
the variable containing the output.

return [output => \$output];

The complete TTBook::H2G2 module is shown in Example 12-34.

Example 12-34. lib/TTBook/H2G2.pm

#= =
 =
 = = = = = = =
#
TTBook::H2G2
#
DESCRIPTION
A web application for a guide such as the Hitch Hiker's Guide to the
Galaxy.
#
AUTHOR
Andy Wardley <abw@wardley.org>
#
COPYRIGHT
Copyright (C) 2003 Andy Wardley. All Rights Reserved.
#
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
#
REVISION
#= =
 =
 = = = = = = =

package TTBook::H2G2;

use strict;
use Template;
use TTBook::H2G2::Config;
use TTBook::H2G2::Database;
use Class::Base;
use base qw(Class::Base);

our $VERSION = sprintf("%d.%02d", q$Revision: 1.6 $ =~ /(\d+)\.(\d+)/);
our $DEBUG = 0 unless defined $DEBUG;
our $ERROR = '';
our $ROOTURL = $TTBook::H2G2::Config::ROOTURL;
our $TEMPLATES = $TTBook::H2G2::Config::TEMPLATES;

#--
init(\%config)
#
Initializer method called by Class::Base new() method.
#--

sub init {
 my ($self, $config) = @_;

 # user can provide custom database object
 $self->{ database } = $config->{ database };

 # same for template object
 $self->{ template } = $config->{ template };

 # merge user-supplied templates with defaults
 my $templates = $config->{ templates } || { };
 $self->{ templates } = {
 map { defined $templates->{ $_ }
 ? ($_ => $templates->{ $_ })
 : ($_ => $TEMPLATES->{ $_ })
 } keys %$TEMPLATES
 };

 return $self;
}

#--
database()
#
Create or reuse existing database object.
#--

sub database {
 my $self = shift;

 return $self->{ database } ||= do {
 my $params = @_ && UNIVERSAL::isa($_[0], 'HASH') ? shift : { @_ };
 my $config = $TTBook::H2G2::Config::DATABASE;
 $config = {
 %$config,
 %$params,
 };
 TTBook::H2G2::Database->new($config)
 || $self->error(TTBook::H2G2::Database->error());
 };
}

#--
template()
#
Create or reuse existing template processing object.
#--

sub template {
 my $self = shift;

 return $self->{ template } ||= do {
 my $params = @_ && UNIVERSAL::isa($_[0], 'HASH') ? shift : { @_ };
 my $config = $TTBook::H2G2::Config::TEMPLATE;
 $config = {
 %$config,
 %$params,
 };
 Template->new($config)
 || return $self->error(Template->error());
 };
}

#--
entry(id => 12345)
entry(name => 'Earth')
#
Fetch an entry from the database.
#--

sub entry {
 my $self = shift;
 my $args = @_ && ref $_[0] eq 'HASH' ? shift : { @_ };
 my $database = $self->database() || return;
 my $entry;

 if (defined $args->{ id }) {
 return $database->item(get_entry_id => $args->{ id })
 || $self->error($database->error());
 }
 elsif (defined $args->{ name }) {
 return $database->item(get_entry_name => $args->{ name })
 || $self->error($database->error());
 }
 else {
 return $self->error("entry() expects 'name' or 'id' parameter");
 }
}

#--
search($term)
#
Search for items in the database based on a search term.
#--

sub search {
 my ($self, $search) = @_;
 my $database = $self->database() || return;

 # change '*' to '%'
 $search =~ s/*/\%/g;

 return $database->list(entry_search => $search)
 || $self->error($database->error());
}

#--
run(\%params)
#
Run web application.
#--

sub run {
 my ($self, $params) = @_;
 my $templates = $self->{ templates };
 my ($tt, $template, $output);

 if (defined $params->{ name } || defined $params->{ id }) {
 # fetch entry if 'name' or 'id' specified
 my $entry = $self->entry($params);
 if ($entry) {
 $params->{ entry } = $entry;
 $template = $templates->{ entry };
 }
 else {
 $params->{ error } = $self->error();
 $template = $templates->{ error };
 }
 }
 elsif (defined $params->{ search }) {
 # search for entries if 'search' specified
 my $entries = $self->search($params->{ search });
 if ($entries) {
 $params->{ entries } = $entries;
 $template = $templates->{ entries };
 }
 else {
 $params->{ error } = $self->error();
 $template = $templates->{ error };
 }
 }
 else {
 return [redirect => "$ROOTURL/index.html"];
 }

 # process template and return output or error
 $tt = $self->template()
 || return [error => $self->error()];

 $tt->process($template, $params, \$output)
 || return [error => $tt->error()];

 return [output => \$output];
}

1;

12.4.4 Apache mod_perl Interface Module

Finally we can add a module to provide the
Apache-specific interface to the web application. This is shown in
Example 12-35.

Example 12-35. lib/TTBook/H2G2/Apache.pm

#= =
 =
 = =
#
TTBook::H2G2::Apache
#
DESCRIPTION
Apache/mod_perl handler for the H2G2 web application.
#
AUTHOR
Andy Wardley <abw@wardley.org>
#
COPYRIGHT
Copyright (C) 2003 Andy Wardley. All Rights Reserved.
#
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
#
REVISION
#= =
 =
 = =

package TTBook::H2G2::Apache;

use strict;
use Apache;
use Apache::Constants qw(OK SERVER_ERROR);
use TTBook::H2G2;

our $VERSION = 1.00;
our $H2G2APP;

sub handler {
 my $r = shift;
 my %params = $r->method() eq 'POST'
 ? $r->content() : $r->args();

 # create or reuse existing application object
 $H2G2APP ||= TTBook::H2G2->new()
 || return error($r, "Can't create webapp instance: ",
 TTBook::H2G2->error());

 # run the application
 my $result = $H2G2APP->run(\%params)
 || return error($r, "Can't run webapp",
 $H2G2APP->error());

 # handle the result
 my $action = shift @$result;

 if ($action eq 'output') {
 my $content = shift @$result;
 $r->content_type('text/html');
 $r->headers_out->add('Content-Length', length($$content));
 $r->send_http_header();
 $r->print($$content);
 return OK;
 }
 elsif ($action eq 'redirect') {
 my $url = shift @$result;
 $r->internal_redirect($url);
 }
 elsif ($action eq 'error') {
 return error($r, @$result);
 }
 else {
 return error($r, "cannot handle action: $action");
 }
}

sub error {
 my $r = shift;
 $r->log_error(@_);
 return SERVER_ERROR;
}

1;

The $H2G2APP package variable is used to store a
persistent reference to a TTBook::H2G2 application
object. Inside the handler() method, we call the
application run() method, passing the current set
of request parameters as arguments. The result returned in stored in
the $result variables.

my $result = $H2G2APP->run(\%params)
 || return error($r, "Can't run webapp",
 $H2G2APP->error());

Then all that is left to do is to examine the first item in the
$result list reference and perform the appropriate
action: return content to the client, perform a redirect, or log an
error.

my $action = shift @$result;

if ($action eq 'output') {
 my $content = shift @$result;
 $r->content_type('text/html');
 $r->headers_out->add('Content-Length', length($$content));
 $r->send_http_header();
 $r->print($$content);
 return OK;
}
elsif ($action eq 'redirect') {
 my $url = shift @$result;
 $r->internal_redirect($url);
}
elsif ($action eq 'error') {
 return error($r, @$result);
}
else {
 return error($r, "cannot handle action: $action");
}

12.4.5 Apache Configuration

All that remains
to deploy our web application under mod_perl is to write an Apache
configuration file and restart the web server. Example 12-36 shows a typical configuration that should be
copied into the main httpd.conf file or loaded
through an Include directive.

Example 12-36. etc/ttguide.conf

Alias /H2G2/images/ /home/dent/guide/images/
Alias /H2G2/ /home/dent/guide/html/

<perl>
 use lib qw(/home/dent/guide/lib)
</perl>

PerlModule TTBook::H2G2::Apache

<Location /H2G2/guide>
 SetHandler perl-script
 PerlHandler TTBook::H2G2::Apache
</Location>

Appendix A. Appendix: Configuration Options

The Template Toolkit is extremely configurable, and mastery of the
many options takes time and practice, and requires that you read a
lot of documentation. This appendix will help with the third
requirement, as it contains a complete list of the Template Toolkit
configuration options.

A.1 Template Toolkit Configuration Options

The options listed here can be used from a Perl program as part of
the configuration hash that is passed to the
Template->new() method. In many cases, an
equivalent option is available for ttree users.
In those cases, the ttree version is mentioned
in the description. Finally, each option identifies the Template
Toolkit module that is the primary consumer of that option.

A.1.1 ABSOLUTE

The ABSOLUTE flag is used to indicate
whether templates specified with absolute filenames (e.g.,
/foo/bar) should be processed. It is disabled by
default, and any attempt to load a template by such a name will cause
a file exception to be raised.

my $tt = Template->new({
 ABSOLUTE => 1,
});

this is why it's disabled by default
[% INSERT /etc/passwd %]

On Win32 systems, the regular expression for matching absolute
pathnames is tweaked slightly to also detect filenames that start
with a drive letter and colon, such as:

C:/Foo/Bar

The ttree equivalent of this option is
--absolute.

ABSOLUTE is used by Template::Provider.

A.1.2 ANYCASE

By default, directive keywords should be expressed in uppercase. The
ANYCASE option can be set to allow
directive keywords to be specified in any case.

ANYCASE => 0 (default)
[% INCLUDE foobar %] # OK
[% include foobar %] # ERROR
[% include = 10 %] # OK, 'include' is a variable

ANYCASE => 1
[% INCLUDE foobar %] # OK
[% include foobar %] # OK
[% include = 10 %] # ERROR, 'include' is reserved word

One side effect of enabling ANYCASE is that you cannot use a variable
of the same name as a reserved word, regardless of case. The reserved
words are currently as follows:

GET CALL SET DEFAULT INSERT INCLUDE PROCESS WRAPPER
IF UNLESS ELSE ELSIF FOR FOREACH WHILE SWITCH CASE
USE PLUGIN FILTER MACRO PERL RAWPERL BLOCK META
TRY THROW CATCH FINAL NEXT LAST BREAK RETURN STOP
CLEAR TO STEP AND OR NOT MOD DIV END

The only lowercase reserved words that cannot be used for variables,
regardless of the ANYCASE option, are these operators:

and or not mod div

The ttree equivalent of this option is
--anycase.

ANYCASE is used by Template::Parser.

A.1.3 AUTO_RESET

The AUTO_RESET option is set by default and
causes the local BLOCKS cache for the
Template::Context object to be reset on each call
to the Template process() method. This ensures
that any BLOCKs defined within a template will persist only until
that template is finished processing. This prevents BLOCKs defined in
one processing request from interfering with other independent
requests subsequently processed by the same context object.

The BLOCKS item may be used to specify a default set of block
definitions for the Template::Context object.
Subsequent BLOCK definitions in templates will override these but
they will be reinstated on each reset if AUTO_RESET is enabled
(default), or if the Template::Context reset()
method is called.

AUTO_RESET is used by Template::Service.

A.1.4 BLOCKS

The BLOCKS option can be used to predefine a
default set of template blocks. These should be specified as a
reference to a hash array mapping template names to template text,
subroutines, or Template::Document objects.

my $tt = Template->new({
 BLOCKS => {
 header => 'The Header. [% title %]',
 footer => sub { return $some_output_text },
 another => Template::Document->new({ ... }),
 },
});

BLOCKS is used by Template::Context.

A.1.5 CACHE_SIZE

The Template::Provider module caches compiled
templates to avoid the need to re-parse template files or blocks each
time they are used. The CACHE_SIZE option is used
to limit the number of compiled templates that the module should
cache.

By default, the CACHE_SIZE option is undefined and all compiled
templates are cached. When set to any positive value, the cache will
be limited to storing no more than that number of compiled templates.
When a new template is loaded and compiled and the cache is full
(i.e., the number of entries = = CACHE_SIZE), the
least recently used compiled template is discarded to make room for
the new one.

CACHE_SIZE can be set to 0 to disable caching altogether:

my $tt = Template->new({
 CACHE_SIZE => 64, # only cache 64 compiled templates
});

my $tt = Template->new({
 CACHE_SIZE => 0, # don't cache any compiled templates
});

CACHE_SIZE is used by Template::Provider.

A.1.6 COMPILE_EXT

From Version 2 onward, the Template Toolkit has the ability to
compile templates to Perl code and save them to disk for subsequent
use (i.e., cache persistence). The COMPILE_EXT option
may be provided to specify a filename extension for compiled template
files. It is undefined by default and no attempt will be made to read
or write any compiled template files.

my $tt = Template->new({
 COMPILE_EXT => '.ttc',
});

If COMPILE_EXT is defined (and COMPILE_DIR, covered next,
isn't) compiled template files with the
COMPILE_EXT extension will be written to the
same directory from which the source template files were loaded.

Compiling and subsequent reuse of templates happens automatically
whenever the COMPILE_EXT or COMPILE_DIR options are set. The Template
Toolkit will automatically reload and reuse compiled files when it
finds them on disk. If the corresponding source file has been
modified since the compiled version was written, it will load and
recompile the source and write a new compiled version to disk.

This form of cache persistence offers significant benefits in terms
of time and resources required to reload templates. Compiled
templates can be reloaded by a simple call to Perl's
require(), leaving Perl to handle all the parsing
and compilation. This is a Good Thing.

The ttree equivalent of this option is
--compile_ext.

A.1.7 COMPILE_DIR

The COMPILE_DIR option is used to specify an
alternate directory root under which compiled template files should
be saved:

my $tt = Template->new({
 COMPILE_DIR => '/tmp/ttc',
});

The COMPILE_EXT option may also be specified to have a consistent
file extension added to these files:

my $tt1 = Template->new({
 COMPILE_DIR => '/tmp/ttc',
 COMPILE_EXT => '.ttc1',
});

my $tt2 = Template->new({
 COMPILE_DIR => '/tmp/ttc',
 COMPILE_EXT => '.ttc2',
});

When COMPILE_EXT is undefined, the compiled template files have the
same name as the original template files, but reside in a different
directory tree.

Each directory in INCLUDE_PATH is replicated in full beneath the
COMPILE_DIR directory. This example:

my $tt = Template->new({
 COMPILE_DIR => '/tmp/ttc',
 INCLUDE_PATH => '/home/abw/templates:/usr/share/templates',
});

would create the following directory structure:

/tmp/ttc/home/abw/templates/
/tmp/ttc/usr/share/templates/

Files loaded from different INCLUDE_PATH directories will have their
compiled forms saved in the relevant COMPILE_DIR directory.

On Win32 platforms, a filename may by prefixed by a drive letter and
colon. For example:

C:/My Templates/header

The colon will be silently stripped from the filename when it is
added to the COMPILE_DIR value(s) to prevent illegal filenames being
generated. Any colon in COMPILE_DIR elements will be left intact. For
example:

Win32 only
my $tt = Template->new({
 DELIMITER => ';',
 COMPILE_DIR => 'C:/TT2/Cache',
 INCLUDE_PATH => 'C:/TT2/Templates;D:/My Templates',
});

This would create the following cache directories:

C:/TT2/Cache/C/TT2/Templates
C:/TT2/Cache/D/My Templates

The ttree equivalent of this option is
--compile_ext=STRING.

COMPILE_EXT and COMPILE_DIR are used by
Template::Provider.

A.1.8 CONSTANTS

The CONSTANTS option can be used to
specify a hash array of template variables that are compile-time
constants. These variables are resolved once when the template is
compiled, and thus don't require further resolution
at runtime. This results in significantly faster processing of the
compiled templates, and can be used for variables that
don't change from one request to the next.

my $tt = Template->new({
 CONSTANTS => {
 title => 'A Demo Page',
 author => 'Joe Random Hacker',
 version => 3.14,
 },
};

CONSTANTS is used by Template.

A.1.9 CONSTANT_NAMESPACE

Constant variables are accessed via the constants
namespace by default:

[% constants.title %]

The CONSTANTS_NAMESPACE option can be set to
specify an alternate namespace:

my $tt = Template->new({
 CONSTANTS => {
 title => 'A Demo Page',
 # ...etc...
 },
 CONSTANTS_NAMESPACE => 'const',
};

In this case, the constants would then be accessed as:

[% const.title %]

CONSTANTS_NAMESPACE is used by Template.

A.1.10 NAMESPACE

The constant-folding mechanism just described
is an example of a namespace handler. Namespace handlers can be
defined to provide alternate parsing mechanisms for variables in
different namespaces.

Under the hood, the Template module converts a
constructor configuration such as:

my $tt = Template->new({
 CONSTANTS => {
 title => 'A Demo Page',
 # ...etc...
 },
 CONSTANTS_NAMESPACE => 'const',
};

into one like:

my $tt = Template->new({
 NAMESPACE => {
 const => Template:::Namespace::Constants->new({
 title => 'A Demo Page',
 # ...etc...
 }),
 },
};

You can use this mechanism to define multiple constant namespaces, or
to install custom handlers of your own.

my $tt = Template->new({
 NAMESPACE => {
 site => Template:::Namespace::Constants->new({
 title => "Wardley's Widgets",
 version => 2.718,
 }),
 author => Template:::Namespace::Constants->new({
 name => 'Andy Wardley',
 email => 'abw@andywardley.com',
 }),
 voodoo => My::Namespace::Handler->new(...),
 },
};

Now you have two constant namespaces, for example:

[% site.title %]
[% author.name %]

You also have your own custom namespace handler installed for the
voodoo namespace.

[% voodoo.magic %]

NAMESPACE is used by Template::Directive and
Template::Parser.

A.1.11 CONTEXT

A reference to a Template::Context
object is used to define a specific environment in which templates
are processed. A Template::Context object is
passed as the only parameter to the Perl subroutines that represent
"compiled" template documents.
Template subroutines make callbacks into the context object to access
Template Toolkit functionality�for example, to INCLUDE or
PROCESS another template (include() and
process() methods, respectively), to USE a plugin
(plugin()) or instantiate a filter
(filter()) or to access the stash
(stash()) that manages variable definitions via
the get() and set() methods.

my $tt = Template->new({
 CONTEXT => MyOrg::Template::Context->new({ ... }),
});

CONTEXT is used by Template::Service.

A.1.12 DEBUG

The DEBUG
option can be used to enable debugging within the various different
modules that comprise the Template Toolkit. The
TemplateConstants module defines a set of
DEBUG_XXXX constants that can be combined using
the logical OR operator (|).

use Template::Constants qw(:debug);

my $tt = Template->new({
 DEBUG => DEBUG_PARSER | DEBUG_PROVIDER,
});

For convenience, you can also provide a string containing a list of
lowercase debug options, separated by any nonword characters:

my $tt = Template->new({
 DEBUG => 'parser, provider',
});

The following DEBUG_XXXX flags can be used:

	DEBUG_SERVICE

	
Enables general debugging messages for the
TemplateService module.

	DEBUG_CONTEXT

	
Enables general debugging messages for the
TemplateContext module.

	DEBUG_PROVIDER

	
Enables general debugging messages for the
TemplateProvider module.

	DEBUG_PLUGINS

	
Enables general debugging messages for the
TemplatePlugins module.

	DEBUG_FILTERS

	
Enables general debugging messages for the
TemplateFilters module.

	DEBUG_PARSER

	
Causes the TemplateParser to generate debugging
messages that show the Perl code generated by parsing and compiling
each template.

	DEBUG_UNDEF

	
Causes the Template Toolkit to throw an undef
error whenever it encounters an undefined variable value.

	DEBUG_DIRS

	
Causes the Template Toolkit to generate comments indicating the
source file, line, and original text of each directive in the
template. These comments are embedded in the template output using
the format defined in the DEBUG_FORMAT configuration item, or a
simple default format if unspecified.

For example, the following template fragment:

Hello World

would generate this output:

input text line 1 :
Hello
input text line 2 : World
World

	DEBUG_ALL

	
Enables all debugging messages.

	DEBUG_CALLER

	
Causes all debug messages that aren't
newline-terminated to have the filename and line number of the caller
appended to them.

A.1.13 DEBUG_FORMAT

The DEBUG_FORMAT option can be used to
specify a format string for the debugging messages generated via the
DEBUG_DIRS option described earlier. Any occurrences of
$file, $line, or
$text will be replaced with the current filename,
line, or directive text, respectively. Notice how the format is
single-quoted to prevent Perl from interpolating those tokens as
variables:

my $tt = Template->new({
 DEBUG => 'dirs',
 DEBUG_FORMAT => '<!-- $file line $line : [% $text %] -->',
});

The following template fragment:

[% foo = 'World' %]
Hello [% foo %]

would then generate this output:

<!-- input text line 2 : [% foo = 'World' %] -->
Hello <!-- input text line 3 : [% foo %] -->World

The DEBUG directive can also be used to set a
debug format within a template:

[% DEBUG format '<!-- $file line $line : [% $text %] -->' %]

The ttree equivalent of this option is
--debug (or -dbg).

DEBUG_FORMAT is used by Template::Context.

A.1.14 DEFAULT

The DEFAULT option can be used to specify
a default template that should be used whenever a specified template
can't be found in INCLUDE_PATH:

my $tt = Template->new({
 DEFAULT => 'notfound.html',
});

If a nonexistent template is requested through the Template
process() method or by an
INCLUDE, PROCESS, or
WRAPPER directive, the DEFAULT template will
instead be processed, if defined. Note that the DEFAULT template is
not used when templates are specified with absolute or relative
filenames, or as a reference to an input filehandle or text string.

The ttree equivalent of this option is
--default=TEMPLATE.

DEFAULT is used by Template::Provider.

A.1.15 DELIMITER

This is used to provide an alternative delimiter character sequence
for separating paths specified in INCLUDE_PATH. The default value for
DELIMITER is :.

my $tt = Template->new({
 DELIMITER => '; ',
 INCLUDE_PATH => 'C:/HERE/NOW; D:/THERE/THEN',
});

On Win32 systems, the default delimiter is a little more intelligent,
splitting paths only on : characters that
aren't followed by a /. This
means that the following should work as planned, splitting
INCLUDE_PATH into two separate directories,
C:/foo and C:/bar:

on Win32 only
my $tt = Template->new({
 INCLUDE_PATH => 'C:/Foo:C:/Bar'
});

However, if you're using Win32,
it's recommended that you explicitly set the
DELIMITER character to something else (e.g., ;)
rather than rely on this subtle magic.

DELIMITER is used by Template::Service and
Template::Provider.

A.1.16 ERROR

The ERROR (or ERRORS if you prefer)
configuration item can be used to name a single template or specify a
hash array mapping exception types to templates that should be used
for error handling. If an uncaught exception is raised from within a
template, the appropriate error template will instead be processed.

If specified as a single value, that template will be processed for
all uncaught exceptions:

my $tt = Template->new({
 ERROR => 'error.html'
});

If the ERROR item is a hash reference, the keys are assumed to be
exception types and the relevant template for a given exception will
be selected. A "default" template
may be provided for the general case. Note that ERROR can be
pluralized to ERRORS if you find it more appropriate in this case.

my $tt = Template->new({
 ERRORS => {
 user => 'user/index.html',
 dbi => 'error/database',
 default => 'error/default',
 },
});

In this example, any user exceptions thrown will
cause the user/index.html template to be
processed. dbi errors are handled by
error/database and all others by the
error/default template. Any
PRE_PROCESS and/or
POST_PROCESS templates will also be applied to
these error templates.

Note that exception types are hierarchical, and a
foo handler will catch all
foo.* errors (e.g., foo.bar,
foo.bar.baz) if a more specific handler
isn't defined. Be sure to quote any exception types
that contain periods to prevent Perl from concatenating them into a
single string (i.e., user.passwd is parsed as
'user'.'passwd').

my $tt = Template->new({
 ERROR => {
 'user.login' => 'user/login.html',
 'user.passwd' => 'user/badpasswd.html',
 'user' => 'user/index.html',
 'default' => 'error/default',
 },
});

In this example, any template processed by the $tt
object, other templates, or code called from within can raise a
user.login exception and have the service redirect
to the user/login.html template. Similarly, a
user.passwd exception has a specific handling
template, user/badpasswd.html, while all other
user or user.* exceptions cause
a redirection to the user/index.html page. All
other exception types are handled by
error/default.

Exceptions can be raised in a template using the
THROW directive:

[% THROW user.login 'no user id: please login' %]

or by calling the throw() method on the current
Template::Context object:

$context->throw('user.passwd', 'Incorrect Password');
$context->throw('Incorrect Password'); # type 'undef'

or from Perl code by calling die() with a
Template::Exception object:

die (Template::Exception->new('user.denied', 'Invalid User ID'));

or by simply calling die() with an error string.
This is automatically caught and converted to an exception of
undef type, which can then be handled in the usual
way:

die "I'm sorry Dave, I can't do that";

The ttree equivalent for this option is
--error=TEMPLATE.

ERROR is used by Template::Service.

A.1.17 EVAL_PERL

This flag is used to indicate whether PERL and/or RAWPERL blocks
should be evaluated. By default, it is disabled, and any PERL or
RAWPERL blocks encountered will raise exceptions of type
perl with the message EVAL_PERL
not set. Note, however, that
any RAWPERL blocks should always contain valid Perl code, regardless
of the EVAL_PERL flag. The parser will fail to
compile templates that contain invalid Perl code in RAWPERL blocks,
and will throw a file exception.

If EVAL_PERL is set when a template is compiled, all PERL and RAWPERL
blocks will be included in the compiled template. If EVAL_PERL
isn't set, Perl code will be generated, which
always throws a perl
exception with the message EVAL_PERL
not set
whenever the compiled template code is run.

Thus, you must have EVAL_PERL set if you want your compiled templates
to include PERL and RAWPERL blocks.

At some point in the future, using a different invocation of the
Template Toolkit, you may come to process such a precompiled
template. Assuming the EVAL_PERL option was set at the time the
template was compiled, the output of any RAWPERL blocks will be
included in the compiled template and will get executed when the
template is processed. This will happen regardless of the runtime
EVAL_PERL status.

Regular PERL blocks are a little more cautious, however. If the
EVAL_PERL flag isn't set for the
current context�that is, the one that is
trying to process it�it will throw the familiar
perl exception with the message
EVAL_PERL not
set.

Thus you can compile templates to include PERL blocks, but optionally
disable them when you process them later. Note, however, that it is
possible for a PERL block to contain a Perl BEGIN
{ # some
code } block that is always get
run regardless of the runtime EVAL_PERL status. Thus, if you set
EVAL_PERL when compiling templates, it is assumed that you trust the
templates to Do The Right Thing. Otherwise, you must accept the fact
that there's no bulletproof way to prevent any
included code from trampling around in the living room of the runtime
environment, making a real nuisance of itself if it really wants to.
If you don't like the idea of such uninvited guests
causing a bother, you can accept the default and keep EVAL_PERL
disabled.

The ttree equivalent of this option is
--eval_perl.

EVAL_PERL is used by Template::Directive,
Template::Context, and
Template::Filters.

A.1.18 FACTORY

FACTORY defines the class used by
Template::Parser to generate Perl code for
elements of the grammar, which defaults to
Template::Directive.

FACTORY is used by Template::Parser.

A.1.19 FILTERS

The FILTERS option can be used to specify
custom filters that can then be used with the
FILTER directive like any other. These are added
to the standard filters, which are available by default. Filters
specified via this option will mask any standard filters of the same
name.

The FILTERS option should be specified as a reference to a hash array
in which each key represents the name of a filter. The corresponding
value should contain a reference to an array containing a subroutine
reference and a flag that indicates whether the filter is static (0)
or dynamic (1). A filter may also be specified as a solitary
subroutine reference and is assumed to be static.

$tt = Template->new({
 FILTERS => {
 'sfilt1' => \&static_filter, # static
 'sfilt2' => [\&static_filter, 0], # same as above
 'dfilt1' => [\&dynamic_filter_factory, 1],
 },
});

Additional filters can be specified at any time by calling the
define_filter() method on the current
Template::Context object. The method accepts a
filter name, a reference to a filter subroutine, and an optional flag
to indicate whether the filter is dynamic.

my $context = $template->context();
$context->define_filter('new_html', \&new_html);
$context->define_filter('new_repeat', \&new_repeat, 1);

In static filters, a single subroutine reference is used for all
invocations of a particular filter. Filters that
don't accept any configuration parameters (e.g.,
html) can be implemented statically. The
subroutine reference is simply returned when that particular filter
is requested. The subroutine is called to filter the output of a
template block that is passed as the only argument. The subroutine
should return the modified text.

sub static_filter {
 my $text = shift;
 # do something to modify $text...
 return $text;
}

The following template fragment:

[% FILTER sfilt1 %]
Blah blah blah.
[% END %]

is approximately equivalent to:

&static_filter("\nBlah blah blah.\n");

Filters that can accept parameters (e.g.,
truncate) should be implemented dynamically. In
this case, the subroutine is taken to be a filter factory that is
called to create a unique filter subroutine each time one is
requested. A reference to the current
Template::Context object is passed as the first
parameter, followed by any additional parameters specified. The
subroutine should return another subroutine reference (usually a
closure) that implements the filter.

sub dynamic_filter_factory {
 my ($context, @args) = @_;

 return sub {
 my $text = shift;
 # do something to modify $text...
 return $text;
 }
}

The following template fragment:

[% FILTER dfilt1(123, 456) %]
Blah blah blah
[% END %]

is approximately equivalent to:

my $filter = &dynamic_filter_factory($context, 123, 456);
&$filter("\nBlah blah blah.\n");

FILTERS is used by Template::Context.

A.1.20 GRAMMAR

The GRAMMAR configuration item can be used
to specify an alternate grammar for the parser. This allows a
modified or entirely new template language to be constructed and used
by the Template Toolkit.

Source templates are compiled to Perl code by the
Template::Parser using the
Template::Grammar (by default) to define the
language structure and semantics. Compiled templates are thus
inherently "compatible" with each
other, and there is nothing to prevent any number of different
template languages from being compiled and used within the same
Template Toolkit processing environment (other than the usual time
and memory constraints).

The Template::Grammar file is constructed from a
YACC-like grammar (using Parse::YAPP) and a
skeleton module template. These files are provided, along with a
small script to rebuild the grammar, in the
parser subdirectory of the distribution. You
don't have to know or worry about these unless you
want to hack on the template language or define your own variant. A
README file in the same directory provides some small guidance, but
it is assumed that you know what you're doing if you
venture herein. If you grok LALR parsers, then you should find it
comfortably familiar.

By default, an instance of the default
Template::Grammar will be created and used
automatically if a GRAMMAR item isn't specified:

use MyOrg::Template::Grammar;

my $tt = Template->new({
 GRAMMAR = MyOrg::Template::Grammar->new();
});

GRAMMAR is used by Template::Parser.

A.1.21 INCLUDE_PATH

INCLUDE_PATH is used to specify one or
more directories in which template files are located. When a template
is requested that isn't defined locally as a BLOCK,
each INCLUDE_PATH directory is searched in turn to locate the
template file. Multiple directories can be specified as a reference
to a list or as a single string where each directory is delimited by
:.

my $tt = Template->new({
 INCLUDE_PATH => '/usr/local/templates',
});

my $tt = Template->new({
 INCLUDE_PATH => '/usr/local/templates:/tmp/my/templates',
});

my $tt = Template->new({
 INCLUDE_PATH => ['/usr/local/templates',
 '/tmp/my/templates'],
});

On Win32 systems, a little extra magic is invoked, ignoring
delimiters that have : followed by a
/ or \. This avoids confusion
when using directory names such as C:\Blah Blah.

When specified as a list, the INCLUDE_PATH path can contain elements
that dynamically generate a list of INCLUDE_PATH directories. These
generator elements can be specified as a reference to a subroutine or
an object that implements a paths() method.

my $tt = Template->new({
 INCLUDE_PATH => ['/usr/local/templates',
 \&incpath_generator,
 My::IncPath::Generator->new(...)],
});

Each time a template is requested and the INCLUDE_PATH examined, the
subroutine or object method will be called. A reference to a list of
directories should be returned. Generator subroutines should report
errors using die(). A generator object should
return undef and make an error available via its
error() method.

For example:

sub incpath_generator {

 # ...some code...

 if ($all_is_well) {
 return \@list_of_directories;
 }
 else {
 die "cannot generate INCLUDE_PATH...\n";
 }
}

or:

package My::IncPath::Generator;

Template::Base (or Class::Base) provides error() method
use Template::Base;
use base qw(Template::Base);

sub paths {
 my $self = shift;

 # ...some code...

 if ($all_is_well) {
 return \@list_of_directories;
 }
 else {
 return $self->error("cannot generate INCLUDE_PATH...\n");
 }
}

1;

The ttree equivalent of this option is
--lib=DIR (or -l DIR).

INCLUDE_PATH is used by Template::Provider.

A.1.22 INTERPOLATE

The INTERPOLATE flag, when set to any true
value, will cause variable references in plain text (i.e., not
surrounded by START_TAG and
END_TAG) to be recognized and interpolated
accordingly:

my $tt = Template->new({
 INTERPOLATE => 1,
});

Variables should be prefixed by a $ to identify
them. Curly braces can be used in the familiar Perl/shell style to
explicitly scope the variable name where required.

INTERPOLATE => 0

[% myorg.name %]

INTERPOLATE => 1

$myorg.name

explicit scoping with { }

Note that a limitation in Perl's regex engine
restricts the maximum length of an interpolated template to around 32
kilobytes or possibly less. Files that exceed this limit in size will
typically cause Perl to dump core with a segmentation fault. If you
routinely process templates of this size, you should disable
INTERPOLATE or split the templates in several smaller files or blocks
that can then be joined backed together via PROCESS or INCLUDE.

The ttree equivalent for this option is
--interpolate.

INTERPOLATE is used by Template::Parser.

A.1.23 LOAD_FILTERS

The LOAD_FILTERS option can be used to
specify a list of provider objects (i.e., they implement the
fetch() method) that are responsible for
returning and/or creating filter subroutines. The
Template::Context filter()
method queries each provider in turn in a "Chain of
Responsibility" as per the template(
) and plugin() methods.

my $tt = Template->new({
 LOAD_FILTERS => [
 MyTemplate::Filters->new(),
 Template::Filters->new(),
],
});

By default, a single Template::Filters object is
created for the LOAD_FILTERS list.

LOAD_FILTERS is used by Template::Context.

A.1.24 LOAD_PERL

If a plugin cannot be loaded using the PLUGINS or PLUGIN_BASE
approaches, the provider can make a final attempt to load the module
without prepending any prefix to the module path. This allows regular
Perl modules (i.e., those that don't reside in
Template::Plugin or some other such namespace) to be loaded and used
as plugins.

By default, the LOAD_PERL option is set to 0 and no
attempt will be made to load any Perl modules that
aren't named explicitly in the PLUGINS hash or that
don't reside in a package as named by one of the
PLUGIN_BASE components.

Plugins loaded using the PLUGINS or PLUGIN_BASE receive a reference
to the current context object as the first argument to the
new() constructor. Modules loaded using LOAD_PERL
are assumed to not conform to the plugin interface. They must provide
a new() class method for instantiating objects,
which will not receive a reference to the context as the first
argument. Plugin modules should provide a load()
class method (or inherit the default one from the
Template::Plugin base class) that is called the
first time the plugin is loaded. Regular Perl modules need not
provide a load() method. In all other respects,
regular Perl objects and Template Toolkit plugins are identical.

If a particular Perl module does not conform to the common, but not
unilateral, new() constructor convention, a
simple plugin wrapper can be written to interface to it.

The ttree equivalent of this option is
--load_perl.

LOAD_PERL is used by Template::Plugins.

A.1.25 LOAD_PLUGINS

The LOAD_PLUGINS options can be used to
specify a list of provider objects (i.e., they implement the
fetch() method) that are responsible for loading
and instantiating template plugin objects. The
Template::Content plugin()
method queries each provider in turn in a "Chain of
Responsibility" as per the template(
) and filter() methods.

my $tt = Template->new({
 LOAD_PLUGINS => [
 MyOrg::Template::Plugins->new({ ... }),
 Template::Plugins->new({ ... }),
],
});

By default, a single Template::Plugins object is
created using the current configuration hash. Configuration items
destined for the Template::Plugins constructor may
be added to the Template constructor.

my $tt = Template->new({
 PLUGIN_BASE => 'MyOrg::Template::Plugins',
 LOAD_PERL => 1,
});

LOAD_PLUGINS is used by Template::Context.

A.1.26 LOAD_TEMPLATES

The LOAD_TEMPLATE option can be used to
provide a reference to a list of
Template::Provider objects or subclasses thereof
that will take responsibility for loading and compiling templates.

my $tt = Template->new({
 LOAD_TEMPLATES => [
 MyOrg::Template::Provider->new({ ... }),
 Template::Provider->new({ ... }),
],
});

When a PROCESS, INCLUDE, or
WRAPPER directive is encountered, the named
template may refer to a locally defined BLOCK or a file relative to
the INCLUDE_PATH (or an absolute or relative path if the appropriate
ABSOLUTE or RELATIVE options are set). If a BLOCK definition
can't be found (see Example 7-4 in
the Section 7.3.5 for a
discussion of BLOCK locality), each LOAD_TEMPLATES provider object is
queried in turn via the fetch() method to see
whether it can supply the required template. Each provider can return
a compiled template or an error, or can decline to service the
request, in which case the responsibility is passed to the next
provider. If none of the providers can service the request, a
not found error is returned.
The same basic provider mechanism is also used for the
INSERT directive, but it bypasses any BLOCK
definitions and doesn't attempt to parse or process
the contents of the template file.

This is an implementation of the "Chain of
Responsibility" design pattern as described in
Design Patterns, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addision-Wesley).

If LOAD_TEMPLATES is undefined, a single default provider will be
instantiated using the current configuration parameters. For example,
the Template::Provider INCLUDE_PATH option can be
specified in the Template configuration and will
be correctly passed to the provider's constructor
method:

my $tt = Template->new({
 INCLUDE_PATH => '/here:/there',
});

LOAD_TEMPLATES is used by Template::Context.

A.1.27 OUTPUT_PATH

OUTPUT_PATH allows a directory to be
specified into which output files should be written. An output file
can be specified by the OUTPUT option, or passed by name as the third
parameter to the Template process() method.

my $template = Template->new({
 INCLUDE_PATH => "/tmp/src",
 OUTPUT_PATH => "/tmp/dest",
});

my $vars = {
 ...
};

foreach my $file ('foo.html', 'bar.html') {
 $template->process($file, $vars, $file)
 || die $template->error();
}

This example will read the input files
/tmp/src/foo.html and
/tmp/src/bar.html, and write the processed
output to /tmp/dest/foo.html and
/tmp/dest/bar.html, respectively.

The ttree equivalent of this option is
--dest=DIR (or -d DIR).

OUTPUT_PATH is used by Template and
Template::Filters.

A.1.28 OUTPUT

This is the default output location or handler. This
may be specified as a filename (relative to OUTPUT_PATH, if defined,
or the current working directory if not specified absolutely); a
filehandle (e.g., GLOB or
IO::Handle) opened for writing; a reference to a
text string to that the output is appended (the string
isn't cleared); a reference to a subroutine that is
called, passing the output text as an argument; a reference to an
array onto which the content will be push()ed; or
a reference to any object that supports the print(
) method. This latter option includes the
Apache::Request object which is passed as the
argument to Apache/mod_perl handlers (see Example A-1 through Example A-6).

Example A-1. Filename

my $tt = Template->new({
 OUTPUT => "/tmp/foo",
});

Example A-2. Text string

my $output = '';

my $tt = Template->new({
 OUTPUT => \$output,
});

Example A-3. Filehandle

open (TOUT, "> $file") || die "$file: $!\n";

my $tt = Template->new({
 OUTPUT => *TOUT,
});

Example A-4. Subroutine

sub output { my $out = shift; print "OUTPUT: $out" }

my $tt = Template->new({
 OUTPUT => \&output,
});

Example A-5. Array reference

my $tt = Template->new({
 OUTPUT => \@output,
})

Example A-6. Apache/mod_perl handler

sub handler {
 my $r = shift;

 my $tt = Template->new({
 OUTPUT => $r,
 });
 ...
}

The default OUTPUT location can be overridden by passing a third
parameter to the Template process() method. This
can be specified as any of the following argument types:

$tt->process($file, $vars, "/tmp/foo");
$tt->process($file, $vars, "bar");
$tt->process($file, $vars, *MYGLOB);
$tt->process($file, $vars, \@output);
$tt->process($file, $vars, $r); # Apache::Request
...

OUTPUT is used by Template.

A.1.29 PARSER

The Template::Parser module implements a parser
object for compiling templates into Perl code, which can then be
executed. A default object of this class is created automatically and
then used by Template::Provider whenever a
template is loaded and requires compilation. The
PARSER option can be used to provide a
reference to an alternate parser object.

my $tt = Template->new({
 PARSER => MyOrg::Template::Parser->new({ ... }),
});

PARSER is used by Template::Provider.

A.1.30 PLUGIN_BASE

If a plugin is not defined in the PLUGINS hash,
PLUGIN_BASE is used to attempt to
construct a correct Perl module name that can be successfully loaded.

PLUGIN_BASE can be specified as a single value or as a reference to
an array of multiple values. The default PLUGIN_BASE value,
Template::Plugin, is always added to the end of
the PLUGIN_BASE list (a single value is first converted to a list).
Each value should contain a Perl package name to which the requested
plugin name is appended. For example:

my $tt = Template->new({
 PLUGIN_BASE => 'MyOrg::Template::Plugin',
});

[% USE Foo %] # => MyOrg::Template::Plugin::Foo
 or Template::Plugin::Foo

or:

my $tt = Template->new({
 PLUGIN_BASE => ['MyOrg::Template::Plugin',
 'YourOrg::Template::Plugin'],
});

[% USE Foo %] # => MyOrg::Template::Plugin::Foo
 or YourOrg::Template::Plugin::Foo
 or Template::Plugin::Foo

The ttree equivalent for this option is
--plugin_base=PACKAGE.

PLUGIN_BASE is used by Template::Plugins.

A.1.31 PLUGINS

The PLUGINS option can be used to provide a
reference to a hash array that maps plugin names to Perl module
names. A number of standard plugins are defined (e.g.,
table, cgi,
dbi, etc.) that map to their corresponding
Template::Plugin::* counterparts. These can be
redefined by values in the PLUGINS hash:

my $tt = Template->new({
 PLUGINS => {
 cgi => 'MyOrg::Template::Plugin::CGI',
 foo => 'MyOrg::Template::Plugin::Foo',
 bar => 'MyOrg::Template::Plugin::Bar',
 },
});

The USE directive is used to create plugin objects
and does so by calling the plugin() method on the
current Template::Context object. If the plugin
name is defined in the PLUGINS hash, the corresponding Perl module is
loaded via require(). The context then calls the
load() class method, which should return the
class name (default and general case) or a prototype object against
which the new() method can be called to
instantiate individual plugin objects.

If the plugin name is not defined in the PLUGINS hash, the
PLUGIN_BASE and/or LOAD_PERL options come into effect.

PLUGINS is used by Template::Plugins.

A.1.32 PRE_CHOMP, POST_CHOMP

Anything outside a directive tag is considered plain text and is
generally passed through unaltered (but see the INTERPOLATE option
for text that's altered as it is passed through).
This includes all whitespace and newline characters surrounding
directive tags. Directives that don't generate any
output will leave gaps in the output document.

For example, this:

Foo
[% a = 10 %]
Bar

will output this:

Foo

Bar

The PRE_CHOMP and
POST_CHOMP options can help to clean up
some of this extraneous whitespace. Both are disabled by default.

my $tt = Template->new({
 PRE_CHOMP => 1,
 POST_CHOMP => 1,
});

With PRE_CHOMP set to 1, the newline and whitespace preceding a
directive at the start of a line will be deleted. This has the effect
of concatenating a line that starts with a directive onto the end of
the previous line.

 Foo <----------.
 |
 ,---(PRE_CHOMP)----'
 |
 `-- [% a = 10 %] --.
 |
 ,---(POST_CHOMP)---'
 |
 `-> Bar

With POST_CHOMP set to 1, any whitespace after a directive up to and
including the newline will be deleted. This has the effect of joining
a line that ends with a directive onto the start of the next line.

If PRE_CHOMP or POST_CHOMP is set to 2, instead of removing all the
whitespace, the whitespace will be collapsed to a single space. This
is useful for HTML, where (usually) a contiguous block of whitespace
is rendered the same as a single space.

You may use the CHOMP_NONE, CHOMP_ALL, and CHOMP_COLLAPSE constants
from the Template::Constants module to deactivate
chomping, remove all whitespace, or collapse whitespace to a single
space.

PRE_CHOMP and POST_CHOMP can be activated for individual directives
by placing a dash (-) immediately at the start
and/or end of the directive:

[% FOREACH user = userlist %]
 [%- user -%]
[% END %]

The - character activates both PRE_CHOMP and
POST_CHOMP for the one directive [%-
name -%]. Thus, the template
will be processed as if written:

[% FOREACH user = userlist %][% user %][% END %]

Note that this is the same as if PRE_CHOMP and POST_CHOMP were set to
CHOMP_ALL; the only way to get the CHOMP_COLLAPSE behavior is to set
PRE_CHOMP or POST_CHOMP accordingly. If PRE_CHOMP or POST_CHOMP is
already set to CHOMP_COLLAPSE, using - will give
you CHOMP_COLLAPSE behavior, not CHOMP_ALL behavior.

Similarly, + characters can be used to disable
PRE_CHOMP or POST_CHOMP (i.e., leave the whitespace/newline intact)
options on a per-directive basis:

[% FOREACH user = userlist %]
User: [% user +%]
[% END %]

With POST_CHOMP enabled, the previous example would be parsed as if
written:

[% FOREACH user = userlist %]User: [% user %]
[% END %]

The ttree equivalents of these options are
--pre_chomp and --post_chomp.

PRE_CHOMP and POST_CHOMP are used by
Template::Parser.

A.1.33 PRE_DEFINE, VARIABLES

The PRE_DEFINE option (or
VARIABLES; they're
equivalent) can be used to specify a hash array of template variables
that should be used to preinitialize the stash when it is created.
These items are ignored if the STASH item is defined:

my $tt = Template->new({
 VARIABLES => {
 title => 'A Demo Page',
 author => 'Joe Random Hacker',
 version => 3.14,
 },
};

or:

my $tt = Template->new({
 PRE_DEFINE => {
 title => 'A Demo Page',
 author => 'Joe Random Hacker',
 version => 3.14,
 },
};

The ttree equivalent of this option is
--define var=value.

PRE_DEFINE is used by Template::Context.

A.1.34 PRE_PROCESS, POST_PROCESS

These values may be set to contain the
name(s) of template files (relative to INCLUDE_PATH) that should be
processed immediately before and/or after each template. These do not
get added to templates processed into a document via directives such
as INCLUDE, PROCESS,
WRAPPER, etc.

my $tt = Template->new({
 PRE_PROCESS => 'header',
 POST_PROCESS => 'footer',
};

$tt->process('mydoc.html')
 || die $tt->error();

Multiple templates may be specified as a reference to a list. Each is
processed in the order defined.

my $tt = Template->new({
 PRE_PROCESS => ['config', 'header'],
 POST_PROCESS => 'footer',
};

Alternately, multiple templates may be specified as a single string,
delimited by the : character. This delimiter
string can be changed via the DELIMITER option.

my $tt = Template->new({
 PRE_PROCESS => 'config:header',
 POST_PROCESS => 'footer',
};

The PRE_PROCESS and POST_PROCESS templates are evaluated in the same
variable context as the main document and may define or update
variables for subsequent use.

The Template::Document object representing the
main template being processed is available within PRE_PROCESS and
POST_PROCESS templates as the template variable.
Metadata items defined via the META directive may be accessed
accordingly.

Example A-7 through Example A-10
show the config, header,
footer, and mydoc.html
files.

Example A-7. config

[% # set some site-wide variables
 bgcolor = '#ffffff'
 version = 2.718
%]

Example A-8. header

[% DEFAULT title = 'My Funky Web Site' %]
<html>
<head>
<title>[% title %]</title>
</head>
<body bgcolor="[% bgcolor %]">

Example A-9. footer

<hr />
Version [% version %]
</body>
</html>

Example A-10. mydoc.html

[% META title = 'My Document Title' %]
blah blah blah
...

The ttree equivalents for these options are
--pre_process=TEMPLATE and
--post_process=TEMPLATE.

PRE_PROCESS and POST_PROCESS are used by
Template::Service.

A.1.35 PROCESS

The PROCESS option may be set to contain the
name(s) of template files (relative to INCLUDE_PATH) that should be
processed instead of the main template passed to the Template
process() method. This can be used to apply
consistent wrappers around all templates, similar to the use of
PRE_PROCESS and POST_PROCESS templates.

my $tt = Template->new({
 PROCESS => 'content',
};

processes 'content' instead of 'foo.html'
$tt->process('foo.html');

A reference to the original template is available in the
template variable. Metadata items can be inspected
and the template can be processed by specifying it as a variable
reference (i.e., prefixed by $) to an
INCLUDE, PROCESS, or
WRAPPER directive.

Example A-11, Example A-12, and Example A-13 show the
content, foo.html, and
output files.

Example A-11. content

<html>
<head>
<title>[% template.title %]</title>
</head>

<body>
[% PROCESS $template %]
<hr />
© Copyright [% template.copyright %]
</body>
</html>

Example A-12. foo.html

[% META
 title = 'The Foo Page'
 author = 'Fred Foo'
 copyright = '2000 Fred Foo'
%]
<h1>[% template.title %]</h1>
Welcome to the Foo Page, blah blah blah

Example A-13. output

<html>
<head>
<title>The Foo Page</title>
</head>

<body>
<h1>The Foo Page</h1>
Welcome to the Foo Page, blah blah blah
<hr />
© Copyright 2000 Fred Foo
</body>
</html>

The ttree equivalent of this option is
--process=TEMPLATE.

PROCESS is used by Template::Service.

A.1.36 RECURSION

The template processor will raise a file exception if it detects
direct or indirect recursion into a template. Setting this option to
any true value will allow templates to include each other
recursively.

The ttree equivalent of this option is
--recursion.

RECURSION is used by
Template::Context and
Template::Document.

A.1.37 RELATIVE

The RELATIVE flag is used to indicate
whether templates specified with filenames relative to the current
directory (e.g., ./foo/bar or
../../some/where/else) should be loaded. It is
also disabled by default, and will raise a file
error if such template names are encountered.

my $tt = Template->new({
 RELATIVE => 1,
});

[% INCLUDE ../logs/error.log %]

The ttree equivalent of this option is
--relative.

RELATIVE is used by Template::Provider.

A.1.38 SERVICE

This provides a reference to a Template::Service
object, or subclass thereof, to which the Template module should
delegate. If unspecified, a Template::Service
object is automatically created using the current configuration hash.

my $tt = Template->new({
 SERVICE => MyOrg::Template::Service->new({ ... }),
});

SERVICE is used by
Template.

A.1.39 STASH

This provides a reference to a
Template::Stash object or subclass that will take
responsibility for managing template variables.

my $stash = MyOrg::Template::Stash->new({ ... });
my $tt = Template->new({
 STASH => $stash,
});

If unspecified, a default stash object is created using the VARIABLES
configuration item to initialize the stash variables. These may also
be specified as the PRE_DEFINE option for backward compatibility with
Version 1.

my $tt = Template->new({
 VARIABLES => {
 id => 'abw',
 name => 'Andy Wardley',
 },
};

STASH is used by Template::Context.

A.1.40 START_TAG, END_TAG

The START_TAG and END_TAG options are used to specify
character sequences or regular expressions that mark the start and
end of a template directive. The default values for START_TAG and
END_TAG are [% and %],
respectively, giving us the familiar directive style:

[% example %]

Any Perl regex characters can be used and therefore should be escaped
(or use the Perl quotemeta function) if they are
intended to represent literal characters:

my $tt = Template->new({
 START_TAG => quotemeta('<+'),
 END_TAG => quotemeta('+>'),
});

For example:

<+ INCLUDE foobar +>

The TAGS directive can also be used to set the START_TAG and END_TAG
values on a per-template file basis:

[% TAGS <+ +> %]

The ttree equivalents for these options are
--start_tag=STRING and
--end_tag=STRING.

START_TAG and END_TAG are used by Template::Parser.

A.1.41 TAG_STYLE

The TAG_STYLE option can be used to set both
START_TAG and END_TAG according to predefined tag styles.

my $tt = Template->new({
 TAG_STYLE => 'star',
});

Available styles are as follows:

template [% ... %] (default)
template1 [% ... %] or %% ... %% (TT version 1)
metatext %% ... %% (Text::MetaText)
star [* ... *] (TT alternate)
php <? ... ?> (PHP)
asp <% ... %> (ASP)
mason <% ... > (HTML::Mason)
html <!-- ... --> (HTML comments)

Any values specified for START_TAG and/or END_TAG will override those
defined by a TAG_STYLE.

The TAGS directive may also be used to set a TAG_STYLE:

[% TAGS html %]
<!-- INCLUDE header -->

The ttree equivalent for this option is
--tag_style=STRING.

TAG_STYLE is used by Template::Parser.

A.1.42 TOLERANT

The TOLERANT
flag is used by the various Template Toolkit provider modules
(Template::Provider,
Template::Plugins,
Template::Filters) to control their behavior when
errors are encountered. By default, any errors are reported as such,
with the request for the particular resource (template, plugin,
filter) being denied and an exception raised. When the TOLERANT flag
is set to any true values, errors will be silently ignored and the
provider will instead return STATUS_DECLINED. This allows a
subsequent provider to take responsibility for providing the
resource, rather than failing the request outright. If all providers
decline to service the request, either through tolerated failure or a
genuine disinclination to comply, a
<resource> not
found exception is raised.

TOLERANT is used by Template::Provider,
Template::Plugins, and
Template::Filters.

A.1.43 TRIM

The TRIM option can be set to have any
leading and trailing whitespace automatically removed from the output
of all template files and BLOCKs. The possible values, CHOMP_ALL,
CHOMP_COLLAPSE, and CHOMP_NONE, are available from
Template::Constants:

use Template::Constants qw(:chomp);
my $tt = Template->new(TRIM => CHOMP_ALL);

The TRIM option is disabled (CHOMP_NONE) by default.

The ttree equivalent for this option is
--trim.

TRIM is used by Template::Context.

A.1.44 VARIABLES, PRE_DEFINE

VARIABLES is a synonym for
PRE_DEFINE.

A.1.45 V1DOLLAR

In Version 1 of the Template Toolkit, an optional
leading $ could be placed on any template variable
and would be silently ignored:

VERSION 1
[% $foo %] = = = [% foo %]
[% $hash.$key %] = = = [% hash.key %]

To interpolate a variable value, the
${' ...
`} construct was used. Typically,
one would do this to index into a hash array when the key value was
stored in a variable.

For example:

my $vars = {
 users => {
 aba => { name => 'Alan Aardvark', ... },
 abw => { name => 'Andy Wardley', ... },
 ...
 },
 uid => 'aba',
 ...
};

$template->process('user/home.html', $vars)
 || die $template->error(), "\n";

This is what goes in user/home.html:

[% user = users.${uid} %] # users.aba
Name: [% user.name %] # Alan Aardvark

This was inconsistent with double-quoted strings and also the
INTERPOLATE mode, where a leading $ in text was
enough to indicate a variable for interpolation, and the additional
curly braces were used to delimit variable names where necessary.
Note that this use is consistent with Unix and Perl conventions,
among others.

double quoted string interpolation
[% name = "$title ${user.name}" %]

INTERPOLATE = 1

For Version 2, these inconsistencies have been removed and the syntax
clarified. A leading $ on a variable is now used
exclusively to indicate that the variable name should be interpolated
(e.g., subsituted for its value) before being used. The earlier
example from Version 1:

VERSION 1
[% user = users.${uid} %]
Name: [% user.name %]

can now be simplified in Version 2 as:

VERSION 2
[% user = users.$uid %]
Name: [% user.name %]

The leading $ is no longer ignored and has the
same effect of interpolation as ${'
... '} in Version 1. The curly
braces may still be used to explicitly scope the interpolated
variable name where necessary. For example:

[% user = users.${me.id} %]
Name: [% user.name %]

The rule applies for all variables, both within directives and in
plain text if processed with the INTERPOLATE option. This means that
you should no longer (if you ever did) add a leading
$ to a variable inside a directive, unless you
explicitly want it to be interpolated.

One obvious side-effect is that any Version 1 templates with
variables using a leading $ will no longer be
processed as expected. Given the following variable definitions:

[% foo = 'bar'
 bar = 'baz'
%]

Version 1 would interpret them as:

VERSION 1
[% $foo %] => [% GET foo %] => bar

whereas Version 2 interprets it as:

VERSION 2
[% $foo %] => [% GET $foo %] => [% GET bar %] => baz

In Version 1, the $ is ignored and the value for
the variable foo is retrieved and printed. In
Version 2, the variable $foo is first interpolated
to give the variable name bar, whose value is then
retrieved and printed.

The use of the optional $ has never been strongly
recommended, but to assist in backward compatibility with any Version
1 templates that may rely on this
"feature," the V1DOLLAR option can
be set to 1 (default: 0) to revert the behavior and have leading
$ characters ignored.

my $tt = Template->new({
 V1DOLLAR => 1,
});

V1DOLLAR is used by Template::Parser.

A.2 Apache::Template Configuration Options

Most of the Apache::Template
configuration directives relate directly to their Template Toolkit
counterparts, differing only in having a TT2
prefix, mixed capitalization, and lack
of underscores to space individual words. This is to make sure
Apache::Template configuration directives keep
with the preferred Apache/mod_perl style. For example:

Apache::Template => Template Toolkit

TT2Trim TRIM
TT2IncludePath INCLUDE_PATH
TT2PostProcess POST_PROCESS
...etc...

In some cases, the configuration directives are named or behave
slightly differently to optimize for the Apache/mod_perl environment
or domain-specific features. For example, the
TT2Tags configuration directive can be used to set
TAG_STYLE and/or START_TAG and END_TAG, and as such is more akin to
the Template Toolkit TAGS directive. For example:

TT2Tags html
TT2Tags <!-- -->

See Section 12.3.1 in Chapter 12
for more details about configuring
Apache::Template.

A.2.1 TT2Tags

This is used to set the tags used to indicate Template Toolkit
directives within source templates. A single value can be specified
to indicate a TAG_STYLE:

TT2Tags html

A pair of values can be used to indicate a START_TAG and END_TAG:

TT2Tags <!-- -->

Note that, unlike the Template Toolkit START_TAG and END_TAG
configuration options, these values are automatically escaped to
remove any special meaning within regular expressions:

TT2Tags [* *] # no need to escape [or *

By default, the start and end tags are set to [%
and %], respectively. Thus, directives are
embedded in the form [% INCLUDE my/file %].

A.2.2 TT2PreChomp

This is equivalent to the PRE_CHOMP configuration item. This flag can
be set to remove any whitespace preceding a directive, up to and
including the preceding newline. Default is Off.

TT2PreChomp On

A.2.3 TT2PostChomp

This is equivalent to the POST_CHOMP configuration item. This flag
can be set to automatically remove any whitespace after a directive,
up to and including the following newline. Default is
Off.

TT2PostChomp On

A.2.4 TT2Trim

TT2Trim is equivalent to the TRIM configuration item. This flag can
be set to have all surrounding whitespace stripped from template
output. Default is Off.

TT2Trim On

A.2.5 TT2AnyCase

This is equivalent to the ANY_CASE configuration item. This flag can
be set to allow directive keywords to be specified in any case. By
default, this setting is Off, and all directives
(e.g., INCLUDE, FOREACH, etc.) should be specified in uppercase only.

TT2AnyCase On

A.2.6 TT2Interpolate

TT2Interpolate is equivalent to the INTERPOLATE configuration item.
This flag can be set to allow simple variables of the form
$var to be embedded within templates, outside of
regular directives. By default, this setting is
Off, and variables must appear in the form
[% var %], or more explicitly, [% GET var
%].

TT2Interpolate On

A.2.7 TT2IncludePath

This is equivalent to the INCLUDE_PATH configuration item, and can be
used to specify one or more directories in which templates are
located. Multiple directories may appear on each
TT2IncludePath directive line, and the directive
may be repeated. Directories are searched in the order defined.

TT2IncludePath /usr/local/tt2/templates
TT2InludePath /home/abw/tt2 /tmp/tt2

Note that this affects only templates that are processed via
directives such as INCLUDE, PROCESS, INSERT, WRAPPER, etc. The full
path of the main template processed by the Apache/mod_perl handler is
generated (by Apache) by appending the request URI to the
DocumentRoot, as per usual. For example, consider the following
configuration extract:

DocumentRoot /usr/local/web/ttdocs
[...]
TT2IncludePath /usr/local/tt2/templates

<Files *.tt2>
 SetHandler perl-script
 PerlHandler Apache::Template
</Files>

A request with a URI of /foo/bar.tt2 will cause
the handler to process the file
/usr/local/web/ttdocs/foo/bar.tt2 (i.e.,
DocumentRoot + URI). If that file should include a directive such as
[% INCLUDE foo/bar.tt2 %], that template should
exist as the file
/usr/local/tt2/templates/foo/bar.tt2 (i.e.,
TT2IncludePath + template name).

A.2.8 TT2Absolute

TT2Absolute is equivalent to the ABSOLUTE configuration item. This
flag can be enabled to allow templates to be processed (via INCLUDE,
PROCESS, etc.) that are specified with absolute filenames.

TT2Absolute On

With the flag enabled, a template directive of the form:

[% INSERT /var/log/maillog %]

will be honored. The default setting is Off, and
any attempt to load a template by absolute filename will result in a
file exception being thrown with a message
indicating that the ABSOLUTE option is not set. See the Template(1)
manpage for further discussion on exception handling.

A.2.9 TT2Relative

This is equivalent to the RELATIVE configuration item, and is similar
to the TT2Absolute option, but relates to files
specified with a relative filename�that is, starting with
./ or ../.

TT2Relative On

Enabling the option permits templates to be specifed as per this
example:

[% INCLUDE ../../../etc/passwd %]

As with TT2Absolute, this option is set
Off, causing a file exception
to be thrown if used in this way.

A.2.10 TT2Delimiter

TT2Delimiter is equivalent to the DELIMTER configuration item, and
can be set to define an alternate delimiter for separating multiple
TT2IncludePath options. By default, it is set to
:, and thus multiple directories can be specified
as:

TT2IncludePath /here:/there

Note that Apache implicitly supports space-delimited options, so the
following is also valid and defines three directories,
/here, /there, and
/anywhere:

TT2IncludePath /here:/there /anywhere

If you're unfortunate enough to be running Apache on
a Win32 system and you need to specify a : in a
pathname, set the TT2Delimiter to an alternate
value to avoid confusing the Template Toolkit into thinking
you're specifying more than one directory:

TT2Delimiter ,
TT2IncludePath C:/HERE D:/THERE E:/ANYWHERE

A.2.11 TT2PreProcess

This is equivalent to PRE_PROCESS. This option allows one or more
templates to be named that should be processed before the main
template. This can be used to process a global configuration file,
add canned headers, etc. These templates should be located in one of
the TT2IncludePath directories, or specified
absolutely if the TT2Absolute option is set.

TT2PreProcess config header

A.2.12 TT2PostProcess

This is equivalent to POST_PROCESS. This option allows one or more
templates to be named that should be processed after the main
template�e.g., to add standard footers. As per
TTPreProcess, these should be located in one of
the TT2IncludePath directories, or specified
absolutely if the TT2Absolute option is set.

TT2PostProcess copyright footer

A.2.13 TT2Process

This is equivalent to the PROCESS configuration item. It can be used
to specify one or more templates to be processed instead of the main
template. This can be used to apply a standard
"wrapper" around all template files
processed by the handler.

TT2Process mainpage

The original template (i.e., whose path is formed from the
DocumentRoot + URI, as explained in the
TT2IncludePath item earlier) is preloaded and
available as the template variable. A typical
TT2Process template might look like this:

[% PROCESS header %]
[% PROCESS $template %]
[% PROCESS footer %]

Note the use of the leading $ on
template to defeat the auto-quoting mechanism that
is applied to directives such as INCLUDE, PROCESS, etc. The directive
would otherwise by interpreted as:

[% PROCESS "template" %]

A.2.14 TT2Default

TT2Default is equivalent to the DEFAULT configuration item. This can
be used to name a template to be used in place of a missing template
specified in a directive such as INCLUDE, PROCESS, INSERT, etc. Note
that if the main template is not found (i.e., that which is mapped
from the URI), the handler will decline the request, resulting in a
404 - Not
Found. The template specified should exist in one
of the directories named by TT2IncludePath.

TT2Default nonsuch

A.2.15 TT2Error

This is equivalent to the ERROR configuration item. It can be used to
name a template to be used to report errors that are otherwise
uncaught. The template specified should exist in one of the
directories named by TT2IncludePath. When the
error template is processed, the error variable
will be set to contain the relevant error details.

TT2Error error

A.2.16 TT2EvalPerl

This is equivalent to the EVAL_PERL configuration item. It can be
enabled to allow embedded [% PERL %] ... [% END %]
sections within templates. It is disabled by default, and any PERL
sections encountered will raise Perl exceptions
with the message EVAL_PERL not set.

TT2EvalPerl On

A.2.17 TT2LoadPerl

This is equivalent to the LOAD_PERL configuration item, which allows
regular Perl modules to be loaded as Template Toolkit plugins via the
USE directive. It is set Off by default.

TT2LoadPerl On

A.2.18 TT2Recursion

This is equivalent to the RECURSION option, which allows templates to
recurse into themselves either directly or indirectly. It is set
Off by default.

TT2Recursion On

A.2.19 TT2PluginBase

This is equivalent to the PLUGIN_BASE option. It allows multiple Perl
packages to be specified that effectively form a search path for
loading Template Toolkit plugins. The default value is
Template::Plugin.

TT2PluginBase My::Plugins Your::Plugins

A.2.20 TT2AutoReset

TT2AutoReset is equivalent to the AUTO_RESET option and is enabled by
default. It causes any template BLOCK definitions to be cleared
before each main template is processed.

TT2AutoReset Off

A.2.21 TT2CacheSize

This is equivalent to the CACHE_SIZE option. It can be used to limit
the number of compiled templates that are cached in memory. The
default value is undefined and all compiled templates will be cached
in memory. It can be set to a specified numerical value to define the
maximum number of templates, or set to 0 to disable caching
altogether.

TT2CacheSize 64

A.2.22 TT2CompileExt

This is equivalent to the COMPILE_EXT option. It can be used to
specify a filename extension that the Template Toolkit will use for
writing compiled templates back to disk, thus providing cache
persistence.

TT2CompileExt .ttc

A.2.23 TT2CompileDir

TT2CompileDir is equivalent to the COMPILE_DIR option. It can be used
to specify a root directory under which compiled templates should be
written back to disk for cache persistence. Any
TT2IncludePath directories will be replicated in
full under this root directory.

TT2CompileDir /var/tt2/cache

A.2.24 TT2Debug

This is equivalent to the DEBUG option, which enables Template
Toolkit debugging. The main effect is to raise additional warnings
when undefined variables are used, but it is likely to be expanded in
a future release to provide more extensive debugging capabilities.

TT2Debug On

A.2.25 TT2Headers

This allows you to specify which HTTP headers you want added to the
response. Current permitted values are: modified
(Last-Modified), length (Content-Length),
etag (E-Tag) or all (all of the
above).

TT2Headers all

A.2.26 TT2Params

TT2Params allows you to specify which parameters you want defined as
template variables. Current permitted values are
uri, env (hash of environment
variables), params (hash of CGI parameters),
pnotes (the request pnotes hash),
cookies (hash of cookies),
uploads (a list of
Apache::Upload instances), or
all (all of the above).

TT2Params uri env params uploads

When set, these values can then be accessed from within any template
processed:

The URI is [% uri %]

Server name is [% env.SERVER_NAME %]

CGI params are:
<table>
[% FOREACH key = params.keys %]
 <tr>
 <td>[% key %]</td> <td>[% params.$key %]</td>
 </tr>
[% END %]
</table>

A.2.27 TT2ServiceModule

The modules have been designed in such a way as to make it easy to
subclass the Template::Service::Apache module to
create your own custom services.

For example, the regular service module does a simple 1:1 mapping of
URI to template using the requested filename provided by Apache, but
you might want to implement an alternative scheme. You might prefer,
for example, to map multiple URIs to the same template file, but to
set some different template variables along the way.

To do this, you can subclass
Template::Service::Apache and redefine the
appropriate methods. The template() method
performs the task of mapping URIs to templates, and the
params() method sets up the template variable
parameters. Or if you need to modify the HTTP headers,
headers() is the one for you.

The TT2ServiceModule option can be set to indicate
the name of your custom service module. The following trivial example
shows how you might subclass
Template::Service::Apache to add an additional
parameter, in this case as the template variable
message:

<perl>
package My::Service::Module;
use base qw(Template::Service::Apache);

sub params {
 my $self = shift;
 my $params = $self->SUPER::params(@_);
 $params->{ message } = 'Hello World';
 return $params;
}
</perl>

PerlModule Apache::Template
TT2ServiceModule My::Service::Module

Colophon

Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Perl Template Toolkit
 is a badger. The badger (Meles meles) is the largest member of the weasel family, and is found extensively throughout the northern hemisphere. Badgers are the best diggers of all carnivores, and can be found in the sandy or clay soils of dry open fields, parklands, and pastures where there are few large tree roots in their way as they digs.

Badgers are completely covered in gray or black fur except for on the head, where white stripes (or badges) run from the nose to the shoulders. Adult males can weigh as much as 26 pounds in autumn as, to prepare for winter, badgers tend to consume large amounts of food. Although they do not hibernate, badgers sleep in their burrows during winter and live off of their body fat.

The bones and muscles are large for an animal of the badger's size. The forefeet are armed with long, wide claws for digging. The claws on the hind legs are short and shovel-like for scooping away dirt. The flattened body easily slips into small burrows. A badger can dig itself into a hole in a few minutes.

Badgers are nocturnal, foraging for food at night. They eat everything from earthworms, insects, fruits, and berries to squirrels, mice, rabbits, and snakes. If attacked by a person or coyote--its main enemies--the badger acts quickly. The badger digs itself into a hole, throwing dirt and dust into its attacker's face. The badger turns with its powerful claws and terrible bite to face its enemy. The badger then starts to fill the hole in front of it with loose dirt to hide itself. Coyotes usually leave to find less dangerous prey. Few other animals will attack a badger.

Often hunted for their pelts, many countries now have laws protecting badgers. Badgers have been known to live for up to 14 years in the wild, but are likely to die or be killed before they reach this age.

Darren Kelly was the production editor, Audrey Doyle was the copyeditor, and Mary Brady was the proofreader for Perl Template Toolkit. Mary Anne Weeks Mayo and Colleen Gorman provided quality control. Tom Dinse wrote the index. Jamie Peppard, Matt Hutchinson, and Mary Agner provided production assistance.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is an original engraving from the 19th century. Emma produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was written by Darren Kelly.

The online edition of this book was created by the Safari
production group (John Chodacki, Becki Maisch, and Ellie Cutler)
using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff
Liggett.

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

" (double quotes)
 inserting variable values
		
 META variables
		
(pound symbol), comments
		 2nd
		
$ (dollar sign prefix), variable interpolation
		
$input variable
		
' (single quote), literal variable values
		
+ (plus sign) character, combining directives
		
; (semicolon), variable lists
		
= (equal sign) assignment operator
		
== (double equal sign) equality comparison operator
		
?: operator
		
[%...%] (template tag characters)
		
\ (backslash character)
 escaping special characters
		
 literal characters
		
| (pipe character), filters and
		 2nd
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-a option (ttree command)
		
ABSOLUTE flag (configuration option)
		
abstraction layer (database access), creating
		
accessing variables, virtual methods
		
AccessLogSearch plugin
		
Allow provider, creating
		
anchor points, tables of contents
		
ANYCASE option (configuration option)
		
Apache handlers, creating
		
Apache plugin, example
		
Apache web applications, deploying
		
Apache web server, configuration
		
Apache::ASP module
		
Apache::Template module
 configuration options
		
 configuring
		
 dispatching web applications
		
 overview
		 2nd
		
append method, String plugin
		
application processing template (web applications)
		
application processing, web application (CGI script)
		
arguments
 bastardize filter
		
 dummy values, usefulness of
		
 email sending plugin
		
 named parameters
		
 passing to methods
		
 process method
		
arrays
 dynamic filters and
		
 hash array data type
		
as_perl method, Template::Document module
		
assignment operator
		
attribute method, HTML plugin
		
AUTO_RESET option (configuration option)
		
Autoformat plugin
		
AUTOLOAD method
 email sending plugin
		
 Template::Document module
		
automation, web site configuration
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

backslash character (\)
 escaping special characters
		
 literal characters
		
bin directory, contents
		
binmode option (process method)
		
BLOCK directive
 capturing output
		
 component libraries
		
 template components
		
BLOCK...END construct, template component definition
		
BLOCKS option (configuration option)
		
branding
		 [See skins]
bread crumb trail navigation
		
 skins (web site branding) and
		
BREAK directive
		
bugs, submitting fixes for inclusion
		
build scripts
 running
		
 ttree command, calling
		
 ttree configuration
		
 web site development
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

CACHE_SIZE option (configuration option)
		
caching proxy, LWP proxy support
		
caching, templates
		
calc method, Date plugin
		
CALL directive, accessing variables
		
capital method, String plugin
		
capturing directive output
		
CASE statement
		
CATCH blocks
		
catch method, Template::Context module
		
center method, String plugin
		
CGI header
		
CGI module
 overview
		
 setting cookies
		
CGI plugin
		 2nd
		
 example
		
 overview
		
CGI scripts
 config template
		
 footer template
		
 form template
		
 header template
		
 html template
		
 html/page template
		
 layout template
		
 logo template
		
 overview
		
 real estate database example
		
 simple example
		
 templates, defining in DATA section
		
 web application example
		
 web interface
 application processing
		
 configuration
		
 presentation considerations
		
 wrapper template
		
CGI, fetching request parameters
		
characters
 escaping special
		
 sigil
		
chomp method, String plugin
		
CHOMP_COLLAPSE constants
		
chomping whitespace
		 2nd
		
 chomping constants
		 2nd
		
 options
		
 overview
		
 pre- and postchomping
		
 TAGS directive
		
Chroot provider, creating
		
CHROOT_BASE parameter
		
chrooted jail
		
Class::DBI module, database access
		
CLEAR directive
		
 exception handling
		
clone method, Template::Stash module
		
collapse filter
		
collapse method, String plugin
		
colorAllocate method
		
command-line arguments
 installing Template Toolkit
		
 tpage command
		
comments, inserting
		 2nd
		
_compile helper method
		
COMPILE_DIR option (configuration option)
		
COMPILE_EXT option (configuration option)
		
compiling, templates
		
complex data
 displaying
		
 FOREACH loops
		
 overview
		
 passing to templates
		
complex variables, scope
		
component libraries, template components
		
component templates, menu
		
component variables
		
compound variables
		
 virtual methods and
		
conditional logic, IF directive
		
conditionals
		
 variables and
		
config template, CGI scripting and
		
config/col template, web site configuration
		
config/expand template, principles of operation
		
config/images template, web site configuration
		
config/main template, web site configuration
		
config/map template, site map creation
		
config/page template, web site configuration
		
config/site template, web site configuration
		
config/skin template
		
config/url template, web site configuration
		
configuration
 Apache web server
		
 Apache::Template module
		
 Autoformat plugin
		 2nd
		
 mod_perl-enabled web application, storage module
		
 Template module
		
 ttree command
		
 build scripts for
		
 configuration directory
		
 web application (CGI script)
		
 web site skins
		
 web sites, automating
		
configuration files
 ttree requirements
		
 ttreerc file
		
configuration script, automating web site configuration
		
configuration templates
 config/col
		
 config/images
		
 config/main
		
 config/page
		
 config/site
		
 config/url
		
 layered
		
 loading
		
 variables, sitewide definition of
		
connect() method
		
constants
 chomping whitespace
		
 variables as
		
CONSTANTS configuration directive
		 2nd
		
 compile-time constants
		
CONSTANTS_NAMESPACE option
		 2nd
		
content (web pages)
 defining sections
 headers
		
 overview
		
 section wrappers
		
 nesting sections
		
 tables of contents
		
 adding automatically
		
 anchor points
		
 creating
		
 menu components and
		
 section macros
		
content creation, simple HTML page
		
content variable
		
content, XML page template
		
CONTEXT option (configuration option)
		
context() method, defining virtual methods
		
contributing bug fixes
		
cookie method, CGI plugin
		
cookies, setting (CGI module)
		
core modules
 principles of operation
		
 replacing
		
count method, loop iteration
		
Counter plugin
		
CPAN Web site, downloading Template Toolkit
		
CSV files
 Datafile plugin and
		
 generating
		
Cygwin (Unix environment simulator)
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-d option (ttree command)
		
data engine module
		
DATA section, main page template definition
		
data structures, complex
 layered configuration templates
		
 overview
		
 passing to templates
		
 structured configuration templates
		
data types
 defined
		
 dynamic
 overview
		
 subroutines
		
 hash array
		
 list
		
database access
 abstraction layer, creating
		
 Class::DBI module
		
 DBI plugin
		
 access log example
		
 hashing tables
		
 queries
		
Database module
		
database() method, web applications
		
databases, Datafile plugin
		
Datafile plugin
		
Date plugin
		
DBI plugin
		
 database access
		
 access log example
		
DBIx::Table2Hash module
		
debug constants
		
DEBUG directive
		
debug method, Template::Base module
		
DEBUG option
		
 undefined variables, processing
		
DEBUG_FORMAT option (configuration option)
		
debugging
 components
		
 LWP, enabling in
		
 printing generated Perl code
		
declarative markup (XML), overview
		
declone method, Template::Stash module
		
DEFAULT directive
		 2nd
		
 accessing variables
		
default variables, defining
		
--define option
		
define_filter method
		 2nd
		 3rd
		
define_vmethod() method
		
defined virtual method
		 2nd
		
defining
 variables
 configuration templates
		
 expressions
		
 META directive
		
 overview
		
 virtual methods
		
DELIMITER option (configuration option)
		
developer version
		
die method
		
 raising exceptions
		
Digest::MD5 module, filters
		
directives
 accessing variables
		
 combining
		
 exception handling
		
 external templates and files, accessing
		
 filename argument
		
 flow control
		
 loops and
		
 macros
		
 multiple, readability and
		
 nesting
		
 output
 assigining to variables
		
 capturing
		
 overview
		
 plugins
		
 side-effect notation
		
 syntax
		
 template processor handling
		
 variable directives
		
 XML processing, VIEW
		
directories
 input template location
		
 project directory structure
		
 project files
 directory structure
		
 overview
		
 required
		
 skin components (web site branding)
		
 template, locating
		
 ttree configuration
		
Directory plugin
		
disconnect() method
		
documentation
 contents
		
 viewing
		
dollar sign ($), variable interpolation
		
DOM, processing XML documents
		
domain-specific language defined
		
dot operator
		
 compound operations
		
 creating complex variables
		
 overview
		
 virtual methods, invoking
		
dotted variables
 embedding in strings
		
 scope
		
double equal sign (==) equality comparison operator
		
double quotes (")
 inserting variable values
		
 META variables
		
download method, creating
		
downloading
 Apache::Template module
		
 CPAN web site
		
 versions available
		
dsn() method
		
DTD (Document Type Definition), creating XML documents
		
Dumper plugin
		
dynamic data types
 mixing with static data structures
		
 overview
		
 subroutines
		
dynamic filters
		 2nd
		
dynamic variables
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

each virtual method
		
ELSE clause
		
ELSIF directive
		
ELSIF statement
		
email, plugin for sending
		
embedding
 dotted variables in strings
		
 Perl in templates
		
 variables in plain text
		
END directive
		
end tags, custom
		
end-of-file (EOF) character
		
END_TAG option
		
 regular expressions and
		
entry.html page template
		
entry/id template, web application processing
		
entry/name template, web application processing
		
entry/search template, web application processing
		
equal sign (=) assignment operator
		
equality comparison operator
		
error constants
		
error handling
		
error messages, generating
		
error method
		 2nd
		 3rd
		
 template processing
		
 Template::Base module
		
 Template::Plugin module
		
ERROR option (configuration option)
		
error variable
		 2nd
		
errors
 Allow provider
		
 catching, email sending plugin
		
 parse errors
		
 relationship to exceptions
		
 template processing
		
 writing to filesystem, checking for
		
escape method, HTML plugin
		
escaping special characters
		
etc directory, contents
		
eval filter
		
EVAL_PERL option (configuration option)
		
evaltt filter
		
exception handling, directives
		
exception object
		
 defined
		
exceptions
 error variable
		
 module for
		
 provider objects
		
 relationship to errors
		
 throwing, GoogleSearch plugin
		
exists virtual method
		
expand method
		
explicit braces, explicit scoping
		
EXPOSE_BLOCKS option
		
expressions
		
 defining variables
		
extensibility
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-f option (ttree command)
		
factory functions, Text::Bastardize methods, creating filters
		
factory methods, overriding core components
		
FACTORY option (configuration option)
		
factory, defined
		
_fetch helper method
		
fetch method
		
 overriding
		
 Template::Filters module
		
 Template::Plugins module
		
 Template::Provider module
		 2nd
		
fetching
 dynamic filters
		
 filters
		
 plugin objects
		
 request parameters, CGI
		
 templates via HTTP
		
file errors
		
file formats, GD plugin support
		
File plugin
		
filenames
 directive arguments
		
 FIle plugin arguments
		
files
 absolute paths, allowing inclusion
		
 accessing external, directives for
		
 ignoring, ttree configuration
		
filesystem, writing to, checking for errors
		
FILTER directive
		
 block syntax
		
filter method, Template::Context module
		
filters
		
 defining within plugins
		
 Digest
		
 Digest::MD5 module
		
 dynamic
		
 fetching
		
 HTML::Clean module
		
 invoking
		
 loading, Template::Context module
		
 overview
		 2nd
		
 pipe character (|) and
		 2nd
		
 principles of operation
		
 standard
		
 static
		
 Template::Plugin::Filter
		
 Text::Bastardize module
		
 Text::FIGlet module
		
FILTERS option (configuration option)
		
FINAL blocks
		
first method, loop iteration
		
first() virtual method
		
flow control, directives for
		
FollowSymLinks directive, Apache web server configuration
		
footer component
		
footer templates
 adding automatically
		
 CGI scripts
		
footers, page wrapper template and
		
FOREACH directive
		
 complex data and
		
 hash array items
 importing
		
 iterating over
		
 menu generation
		
 overview
		
FOREACH loops
 iterator objects
		
 nested
		
form letter example template
		
form template, CGI scripting
		
format filter
		 2nd
		
format method
 Date plugin
		
 String plugin
		
Format plugin
		
format strings, strftime function
		
formatting
 dates, strftime function
		
 text, Autoformat plugin
		
frontend modules, defined
		
frontend plugin, LWP::UserAgent
		
frontends
 creating, Mail::Template
		
 mod_perl based, creating
		
 overview
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

GD plugin
		
GD.Constants plugin
		
GD.Graph plugins
		
GD.Text plugins
		
generate_mid method, email sending plugin
		
GET directive
 accessing variables
		
 omitting
		
get method
		 2nd
		
getPixel method
		
global variables
		
 organizing
		
 overwriting, preventing
		
grammar (template language)
 building
		
 extending
		
 replacing default
		
GRAMMAR option (configuration option)
		
graph-generating plugins
		
graphics
		 [See image files]
graphics libraries, GD plugin
		
grep() virtual method
		
guide.html template, web application processing
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-h option, ttree option summary
		
handler method, mod_perl
		
handlers
 Apache, creating
		
 mod_perl, creating
		
hash array variables
 defined
		
 syntax
		 2nd
		
 testing
		
hash arrays
 dot operator and
		
 importing items, FOREACH directive
		
 iterating over items, FOREACH directive
		
 menu generation
		
hash virtual methods
		 2nd
		
header templates
		
 adding automatically
		
 CGI scripting
		
 example
		
headers
 page section headers, defining
		 2nd
		
 page section wrappers, template components
		
 page wrapper template and
		
help
 documentation, viewing
		
 mailing list
		
hostname field, database access
		
HTML
 example web page code
		
 example web page template
		
 generation, CGI plugin
		
 marking up templates for CGI functionality
		
 menu generation
		
 output, minimizing size of
		
 page generation
		
 tables, debugging
		
 tables, web site development
		
 web site development, simple content page creation
		
html directory, contents
		
html filter
		 2nd
		 3rd
		
HTML pages, defining sections
 headers
		
 nesting sections
		
 overview
		
 section wrappers
		
HTML plugin
		
html template
 CGI scripting
		
 example
		
html/page template, CGI scripts
		
HTML::Clean module, filters
		
HTML::Embperl
		
HTML::Mason
		
HTML::Template
		
html_break filter
		
html_entity filter
		
html_line_break filter
		
html_para filter
		
HTTP
 fetching templates via
		
 request and response handling, plugin for
		
httpd.conf file
 Apache web server configuration
		
 automating web site configuration
		
- (hyphen) chomping flag
		
hyphen (-), chomping flag
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

IF directive, conditional logic and
		
IF statement
		
image files, plugin for
		
Image plugin
		
images directory, contents
		
images, storing, ttree configuration
		
import method, CGI plugin
		
import virtual method
		
INCLUDE directive
 filename argument
		
 processing templates
		
 variable scope
		
include method
 stash and
		
 Template::Context module
		
INCLUDE_PATH configuration option
		
 multiple template directories and
		
indent filter
		
index method, loop iteration
		
init() method, web applications
		
input templates (process method)
		
INSERT directive
 bypassing template processing
		
 external files and
		
 filename argument
		
insert method, Template::Context module
		
installation
		
 dynamic filters
		
 functions into the stash
		
instdir method
		
 template directories, locating
		
interfaces, modules, overview
		
INTERPOLATE option
		
 embedding variables in text
		
interpolating variables
		
item virtual method
		
item() method
		
iteration, NEXT directive
		
iterator objects
		
 creating
		
Iterator plugin
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

join method, CGI plugin
		
join() virtual method
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

k3wlt0k method (Text::Bastardize module)
		
keys virtual method
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

language
		 [See template language]
LAST directive
		
last method, loop iteration
		
last() virtual method
		
latex filter
		
layout templates
 CGI scripting
		
 example
		
 overview
		
 page wrappers
		
 separating layout elements
		
 user interface components
		
lcfirst filter
		
left method, String plugin
		
length virtual method
		
lib directory, contents
		
libraries (graphics), GD plugin
		
library templates
		 [See also template components]
 defined
		
 location
		
LibXML, processing XML documents
		
Link plugin
		
links, web site development, previous and next page
		
list variables
 defined
		
 dot operator and
		
 returning values and
		
 syntax
		 2nd
		
 testing
		
list virtual method
		 2nd
		
list virtual methods
		
list() method
		
List::Util package, defining virtual methods
		
literal strings, indicating
		
load method
		 2nd
		 3rd
		
LOAD_FILTERS option (configuration option)
		
LOAD_PERL option (configuration option)
		
LOAD_PLUGINS option (configuration option)
		
LOAD_TEMPLATE option (configuration option)
		
local scope, variables, INCLUDE directive
		
logmessage() method, email sending plugin
		
logo template, CGI scripts
		
loop variable
		
loops
 FOREACH directive
		
 iteration, NEXT directive
		
 iterator methods
		
 iterator objects
		
 overview
		
 WHILE
		
lower filter
		
lower method, String plugin
		
LWP
 initialization
		
 proxy support
		
LWP::UserAgent
 conditional request handling
		
 instances, creating
		
 plugin frontend for
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

MACRO directive
		 2nd
		
macros, directives for
		
mail
		 [See email]
Mail plugin
		
Mail::Template frontend, creating
		
mailing list, template toolkit
		
makefile (installing Template Toolkit), command-line options
		
manip method, Date plugin
		
match() virtual method
		
max method, loop iteration
		
max() virtual method
		
md5_hex function
		
menu elements
 skins (web site branding) and
		
 tables of contents and
		
menu templates
		
 example
		 2nd
		
 FOREACH enhancement
		
menu variable
		
menu/nest template
		 2nd
		 3rd
		
 tables of contents
		
menu/prevnext template
		
menu/text template
		
menus
 creating
		
 design considerations
		
 FOREACH directive
		
 generating
		
 menu item definition
		
merge() virtual method
		
message digest, creating from text and files
		
META directive
		
 variables, defining
		
 wrapper mechanism, bypassing
		
metadata, templates
		
methods
 email sending plugin
		
 Image plugin
		
 loop iteration
		
 overriding core components
		
 String plugin
		
 Text::Bastardize module
		
 virtual
 hash
		
 list
		
 overview
		
 scalar
		
 Stash package
		
 variable manipulation
		
 virtual, defining
		
misc/icon template, nested menus
		
misc/line template, web site development
		
mod_perl, creating handlers
		
mod_perl-based frontends, creating
		
mod_perl-enabled web applications
 Apache interface module
		
 application module
		
 deploying
		
 storage considerations
		
 storage module configuration
		
modeling data, creating XML documents
		
modules
 Apache::Template
 configuration options
		
 configuring
		
 overview
		
 CGI, overview
		
 Class::DBI, database access
		
 Database
		
 HTML::Clean, filters
		
 installation test failure and
		
 interfaces, overview
		
 Parse::Yapp
		
 principles of operation
		
 replacing
		
 Template
 configuring
		
 overview
		 2nd
		
 principles of operation
		
 Template::Base
		
 Template::Plugin, creating plugins
		
 Template::Plugin::Filter
		
 Template::Simple, replacing template language
		
 Text::Bastardize, filters and
		
 Text::FIGlet, filters
		
 XML::LibXML
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

n20e method (Text::Bastardize module)
		
named parameters, passing to methods
		
names, variables
		
NAMESPACE option (configuration option)
		
namespace, constant variables
		
naming conventions, project directories
		
narrative-centric XML documents, processing
		
navigation
 bread crumb trail
		
 stacked menus
		
navigation components
 config/expand template
		
 map nodes
		
 previous and next pages
		
 site maps
		
 XML
		
 skins (web site branding)
		
 bread crumb trail
		
 menu elements
		
 nested menus
		
 previous/next page links
		
 stacked menus
		
 web site development
		
nesting
 directives
		
 FOREACH loops
		
 menus
 creating nested menus
		
 web site skins and
		
 tables
		
 web page sections
		
new method
 implementing plugins
		
 Template::Base module
		
 Template::Document module
		
 Template::Filters module
		
 Template::Plugin module
		 2nd
		
 Template::Plugins module
		
newline characters
 chomping
 options
		
 overview
		
 pre- and postchomping
		
 chomping constants
		
 removing
		
next and previous pages, creating
		
NEXT directive
		
 loop iteration
		
next method, loop iteration
		
noid option, File plugin
		
non-HTML page generation
		
normalizing URLs, Link plugin
		
nostat option, File plugin
		
now method, Date plugin
		
nsort virtual method
		 2nd
		
null filter
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

objects
 binding variables to
		 2nd
		
 methods
 error handling
		
 passing arguments
		
 passing named parameters
		
output
 directives, capturing
		
 HTML, minimizing size of
		
 redirecting
		
 process method and
		
OUTPUT option (configuration option)
		
OUTPUT_PATH option (configuration option)
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

page generation
 non-HTML pages
		
 web site development
		
page templates
		
 loading component templates into
		
 location
		
page wrappers, web site configuration
		
page/section template
		
page/tocpage template
		
pageinfo template example
		
param method, CGI plugin
		
params method, CGI plugin
		
parse errors
		
parse interface
		
Parse::Yapp module
		
parser
 overview
		
 syntax flexibility and
		
PARSER option (configuration option)
		
paths method, Template::Provider module
		
paths, File plugin argument
		
pending variable, menu components and
		
PERL directive
		 2nd
		
perl filter
		
Perl, embedding in templates
		
PerlHandler directive
		
pig method (Text::Bastardize module)
		
pipe character (|), filters and
		 2nd
		
piped input, tpage
		
plugin method, Template::Context module
		
PLUGIN_BASE option (configuration option)
		
pluging (XML.Simple), overview
		
plugins
		
 access, restricting
		
 CGI
		
 Counter
		
 creating
		
 simple wrapper plugin
		
 directives
		
 email sending
		
 fetching
		
 filters, defining
		
 functions, installing into the stash
		
 GoogleSearch
		
 implementing
		 2nd
		
 Link
		
 loading, Template::Context module
		
 LWP::UserAgent, frontend for
		
 Printer
		
 Singleton
		
 virtual methods, defining
		
 XML::DOM
		
 XML::RSS
		
 XML::XPath
		
PLUGINS option (configuration option)
		
plus sign (+) character, combining directives
		
POD plugin
		
pop method, String plugin
		
pop() virtual method
		
post-process (ttree), footer templates
		
POST_CHOMP option
		
POST_CHOMP option (configuration option)
		
POST_PROCESS option (configuration option)
		
postchomping
		
pound symbol (#), comments
		 2nd
		
pre-process option (ttree), header templates
		
PRE_CHOMP option
		 2nd
		
PRE_DEFINE option (configuration option)
		 2nd
		
PRE_PROCESS option (configuration option)
		
pre_process option, ttree configuration
		
pre_process template, web site development
		
prechomping
		
preinstalled filters
		
preload method (Template::Config module)
		
prepare() method
		
prepend method, String plugin
		
presentation consideration (web application)
		
prev method, loop iteration
		
previous and next pages, creating
		
previous/next page navigation links, skins (web site branding)
		
Printer plugin
		
printer service, Printer plugin
		
printing, generated Perl code
		
private variables, syntax
		
PROCESS directives
 combining
		
 filename argument
		
 loading component templates into page templates
		
 processing external files
		
process method
		 2nd
		 3rd
		
 Mail::Template frontend
		
 overview
		
 principles of operation
		
 stash and
		
 Template::Context module
		 2nd
		
 Template::Document module
		
PROCESS option (configuration option)
		
processing
 RSS files
		
 XML
 DOM
		
 LibXML
		
 VIEW directive
		
 XPath
		
processing options (process method)
		
programming
 compared to templates
		
 in templates
 application processing template
		
 dispatching CGI script
		
 overview
		
programming language
		 [See template language]
programming style, catching errors
		
project directories
 directory structure
		
 overview
		
 structure
		
providers
 Allow, creating
		
 Chroot
		
 including files with absolute paths
		
 templates, fetching via HTTP
		
proxies, LWP proxy support
		
push method, String method
		
push() virtual method
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

query method
		
query() method
		
querying databases
		
quoting strings
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

RAWPERL directive
		
rdct method (Text::Bastardize module)
		
RECURSION option (configuration option)
		
redirect filter
		
redirecting output, process method and
		
references (subroutines), using as filters
		
regular expressions
 match virtual method
		
 START_TAG and END_TAG options
		
RELATIVE option (configuration option)
		
remove filter
		
remove method, String plugin
		
repeat filter
		
repeat method, String plugin
		
repeat() virtual method
		
replace filter
		
replace method, String plugin
		
replace() virtual method
		
request handling, conditional, LWP::UserAgent module
		
request parameters, CGI, fetching
		
reset() method, email sending plugin
		
RETURN directive
		
returning values
		
rev method (Text::Bastardize module)
		
reverse virtual method
		
right method, String plugin
		
rot13 method (Text::Bastardize module)
		
RSS files, processing
		
run() method, web applications
		
runtime engine, Template::Context module
		
runtime, template principles of operation
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-s option (ttree command)
		
scalar variables
		
 overview
		
scalar virtual methods
		
scope
 INCLUDE directive
		
 variables
		 2nd
		
 explicit braces
		
search engines, GoogleSearch plugin
		
search() method, web applications
		
section headers (web pages), defining
		
section macros, tables of contents
		
section wrappers (web pages), template components and
		
semicolon (;) character
 combining directives
		
 variable lists
		
send() method, email sending plugin
		
service object
		
SERVICE option (configuration option)
		
SET directive
		
 accessing variables
		
 omitting
		
set method
 stash
		
 Template::Stash module
		
SetHandler directive
		
shift method, String plugin
		
shift virtual method
		
side-effect blocks, capturing output
		
side-effect notation
		
 invoking filters
		
 WRAPPER directive
		
sigil characters, variables
		
simple data types
		
single quote ('), literal variable values
		
Singleton plugin
		
site data structure
		
site variable, web site configuration
		
site.col.table data structure, web site development
		
site/footer template, web site development
		
site/header template, web site development
		
site/logo template, web site development
		
site/menu template
		
site/name template, bread crumb navigation
		
site/navigate template, bread crumb navigation
		
site/wrapper template, XML and
		
site/xmlpage template
		
sitemaps
 creating from small parts
		
 map nodes
		
 user interface design considerations
		
 XML
		
size method, loop iteration
		
size virtual method
		 2nd
		 3rd
		
skeleton directory, web site configuration
		
skins (web site branding)
 navigation components
		
 bread crumb trail
		
 menu elements
		
 nested menus
		
 previous/next page links
		
 stacked menus
		
 template directory
		
slice() virtual method
		
sort virtual method
		 2nd
		
sorted option, HTML plugin
		
special characters, escaping
		
special variables
 component
		
 content
		
 error
		
 global
		
 loop
		
 overview
		
 template
		
splice() virtual method
		
split() virtual method
		
split_text tokenizer
		
SQL statements, issuing
		
src directory
 contents
		
 ttree configuration
		
stable version
		
stacked menus
 creating
		
 skins (web site branding) and
		
standard filters
		
start tags, custom
		
START_TAG option
		
 regular expressions and
		
stash
 defined
		
 get method
		
 installing functions into
		
 set method
		
stash method, Template::Context module
		
STASH option (configuration option)
		
static data structures, combining with dynamic data structures
		
static filters
		 2nd
		
status constants
		
stderr filter
		
stdout filter
		
STOP directive
		
store method
 Template::Filters module
		
 Template::Provider module
		
strftime function
		
String plugin
		
strings
 dotted variables, embedding
		
 quoting
		
subroutines
 binding variables to
		
 error handling
		
 filters
		
 methods
 passing arguments
		
 passing named parameters
		
 operation
		
 overview
		
 references, using as filters
		
SWITCH directive
		
syntax
 directives
		
 dot operator, compound operations
		
 FILTER directive
		
 hash array variable
		
 hash variables
		
 interpolating variables
		
 list variables
		 2nd
		
 parser flexibility and
		
 private variables
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

table of contents
		
 adding automatically
		
 anchor points
		
 creating
		
 menu components and
		
 section macros
		
Table plugin
		
table/cell template, web site development
		
table/edge template, web site development
		
table/head template, web site development
		
table/row template, web site development
		
tables
 debugging
		
 nesting
		
 template components
		
TAG_STYLE configuration option
		 2nd
		
TAGS directive, custom start and end tags
		
tags, syntax and usage
		
template components
		 [See also library templates]
 BLOCK directive
		
 component libraries
		
 configuration templates
		
 configuration templates, loading
		
 debugging
		
 defined
		
 defining, BLOCK...END construct
		
 header and footer
		
 loading into page templates
		
 section wrappers
		
 tables
		
 uses for
		
template language
 changing grammar, overview
		
 grammar
 building
		
 extending
		
 replacing default
		
 overview
		
 simplicity of
		
Template man pages
		
template method, Template::Context module
		
Template module
 configuring
		
 overview
		 2nd
		 3rd
		
 principles of operation
		
 process method, overview
		
 process method, principles of operation
		
template names, relationship to directory names
		
template processing
 bypassing, INSERT directive
		
 directives
		
 error method
		
 filters
 overview
		
 parse errors
		
 Template::Service module
		
 text handling
		
 tpage command
		 2nd
		 3rd
		
 ttree command
		
 unmodified templates, forcing
		
 variables
		
 preventing lookup
		
template processors
		
 types of
		
template tags
		 [See tags]
Template Toolkit
 extensibility of
		
 frontends
 creating
		
 overview
		
 installation
		
 overview
		
 principles of operation
		 2nd
		
 strengths of
		
 usefulness of
		
Template Toolkit mailing list
		
template variables
		 2nd
		
 config/page template
		
template variables (process method)
		
template() method, web applications
		
template.modtime variable
		
Template::Base module
		 2nd
		
Template::Config module
 methods
		
 overview
		
Template::Constants module
		
 chomping whitespace
		
Template::Context module
		
 overview
		
Template::Directive module
		
 overview
		
Template::Document module
		
 overview
		
Template::Exception module
		
Template::Filters module
		
Template::Grammar module
		
 overview
		
Template::Iterator module
		
Template::Namespace::Constants module
 overview
		
Template::Parser module
		
 overview
		
Template::Plugin module
		
 creating plugins
		
Template::Plugin::Filter module, overview
		
Template::Plugins module
		
Template::Plugins:Allow provider, creating
		
Template::Provider module
		
 overview
		
Template::Provider::HTTP, creating
		
Template::Service module, template processing
		
Template::Simple module, replacing template language
		
Template::Stash module
		
 virtual methods
		
templates
 accessing external, directives for
		
 advantages of
		
 caching
		
 compared to programming
		
 compiling
		
 configuration, loading
		
 creating XML documents
		
 embedding Perl
		
 fetching via HTTP
		
 form letter example
		
 HTML markup for CGI functionality
		
 layout
 example
		
 overview
		
 main page, defining in DATA section
		
 metadata
		
 organizing
		
 plugin access, restricting
		
 principles of operation
		
 types of
		
 unmodified
 forcing processing
		
 skipping
		
 usefulness of
		
 web programming in
 application processing template
		
 dispatching CGI script
		
 overview
		
 XML page
		
 XML, view templates
		
templates directory, contents
		 2nd
		
testing
 components
		
 installation
		
 variables, list and hash
		
 web sites, offline
		
text formatting
		
 Autoformat plugin
		
text handling, template processing
		
Text::Bastardize module, filters
		
Text::FIGlet module, filters
		
Text::Template
		
THROW directive
		
throw method, Template::Context module
		
time, Date plugin
		
TOLERANT option
		
 generating errors and
		
tpage command
		
 overview
		
 template processing
		
trim filter
		
trim method, String plugin
		
TRIM option (configuration option)
		
troubleshooting installation problems
		
truncate filter
		
truncate method, String plugin
		
TRY directive
		
TRY...CATCH construct, error variable
		
TT2 prefix configuration options (Apache::Template module)
		
TT2Headers option (Apache::Template module)
		
TT2Params option (Apache::Template module)
		
ttree command
 build script
 running
		
 web site development
		
 calling
		
 configuration
		
 configuration directory
		
 configuration template requirements
		
 multiple template directories and
		
 option summary
		
 overview
		
 template organization, importance of
		
 unmodified templates
 forcing processing
		
 skipping
		
 web pages, generating multiple
		
ttreerc file
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

ucfirst filter
		
undefined variables, processing
		
unique virtual method
		
UNLESS clause
		
unmodified templates
 forcing processing of
		
 skipping
		
unshift method, String plugin
		
unshift() virtual method
		
upper filter
		
upper method, String plugin
		
uri filter
		
url method, HTML plugin
		
URL plugin
		 2nd
		
URLs
 normalizing, Link plugins
		
 testing web sites offline
		
USE DBI directive
		
USE directive
 implementing plugins
		
 plugins
		 2nd
		
use strict pragma, importance of
		
use warnings pragma, importance of
		
user interface components
 menus
 creating
		
 stacked
		
 navigation
		
 bread crumb trail
		
 config/expand template
		
 map nodes
		
 previous and next pages
		
 site map
		
 skins (web site branding)
		
 XML sitemaps
		
 preventing automatic generation
		
 web site configuration
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-v option (ttree command)
		
V1DOLLAR option (configuration option)
		
values virtual method
		
values, returning
		
variable directives
		
variables
		 [See also data types]
 accessing, directives for
		
 complex data structures, passing to templates
		
 complex data types, overview
		
 compound
		
 conditionals and
		
 default scope
		
 defining
 assigning from directive output
		
 configuration templates
		
 default
		
 expressions
		
 META directive
		
 overview
		
 directives, capturing output
		
 dot operator
 compound operations
		
 overview
		
 referencing elements
		
 dynamic
		
 dynamic data types
 overview
		
 subroutines
		
 embedding in plain text
		
 global, organizing
		
 hash array
		
 hash, syntax
		
 INSERT directive and
		
 inserting values into strings
		
 interpolating
		
 interpolation, $ prefix
		
 list
		
 syntax
		
 literal values, indicating
		
 management of
		
 names
		
 objects, binding to
		
 overriding core modules
		
 overview
		
 overwriting, preventing
		
 passing arguments to methods
		
 private, syntax
		
 process method and
		
 processing undefined
		
 returning values
		
 scalar, overview
		
 scope
		
 setting as constant
		
 sigil characters
		
 simple data types
		
 special
 component
		
 content
		
 error
		
 global
		
 loop
		
 overview
		
 template
		
 template processing
		
 types, variable names and
		
 virtual methods
		
 web site configuration
 automation issues
		
 top-level variables and
		
VARIABLES option (configuration option)
		 2nd
		
verbose flag, ttree configuration
		
VIEW directive
 complex data structures and
		
 processing XML documents
		
view templates, XML
		
virtual methods
 chunk()
		
 defining
		
 within plugins
		
 hash
		
 list
		
 overview
		
 scalar
		
 Stash package
		
 variable manipulation
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

-w command-line argument, importance of
		
web applications
 config template
		
 dispatching, Apache::Template module and
		
 entry.html page template
		
 footer template
		
 form template
		
 header template
		
 html template
		
 layout template
		
 logo template
		
 mod_perl handlers, creating
		
 mod_perl-enabled Apache web servers, advantages
		
 processing
 entry/id template
		
 entry/name template
		
 entry/search template
		
 wrapper template
		
web applications (CGI scripts), configuration
		 2nd
		 3rd
		
web applications (mod-perl-enabled)
 Apache interface module
		
 application module
		
 deploying
		
 storage layer considerations
		
 storage module configuration
		
web pages
 content generation, web site development
		
 example HTML code
		
 example HTML template
		
 generating multiple
 overview
		
web programming, in templates
 application processing template
		
 dispatching CGI script
		
 overview
		
web server (Apache) configuration
		
web sites
 Apache::Template module
		
 configuration, automating
		
 downloading Template Toolkit
		
 plugins
		
 support documentation
		
 testing offline
		
WHILE loops
		
whitespace, chomping
		
 chomping constants
		
 options
		 2nd
		
 overview
		
 pre- and postchomping
		
 TAGS directive and
		
Wrap plugin
		
WRAPPER directive
 automatic templates
		
 common template element processing
		
 filename argument
		
 overview
		
 side-effect notation
		
 tables of contents, creating
		
wrapper option, ttree configuration
		
wrapper plugin, creating
		
wrapper template
 CGI scripting
		
 web site development
		
wrappers
 XML and
		
write_perl_file method, Template::Document module
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

XML
 database access, generating reports
		
 declarative markup
		
 page template
		
 page wrapper
		
 report generation
		
 RSS files, processing
		
 sitemaps
		
 view templates
		
XML documents, creating
 DTDs
		
 modeling data
		
 XML template
		
XML template
		
XML.Simple plugin, overview
		
XML.XPath plugin
		
XML::DOM plugin
		 2nd
		
XML::LibXML module
		
XML::RSS plugin
		 2nd
		
XML::Style plugin
		
XML::XPath module
		
XML::XPath plugin
		
XPath, processing XML documents
		

	[Team LiB]	

	[Team LiB]	

	
 [SYMBOL]

 [A]

 [B]

 [C]

 [D]

 [E]

 [F]

 [G]

 [H]

 [I]

 [J]

 [K]

 [L]

 [M]

 [N]

 [O]

 [P]

 [Q]

 [R]

 [S]

 [T]

 [U]

 [V]

 [W]

 [X]

 [Y]

yc script, template language grammar, building
		

	[Team LiB]	

Brought to You by

[image: Team LiB]

Like the book? Buy it!

warning_yellow.gif
=

pttk_0301.gif
Tagstyle Starttag Endtag
template | [% %]
template1 | [% or % %] or %t
netatext | %% %

htl - -
nason & >

asp & %

php < »

star & S

pixel.gif

tip_yellow.gif

perltt_xs.gif

btn_start.gif
Start Reading »

pttk_0601.gif

pttk_0801.gif
e

S

ALY

o
fy
i

'
#

i
P

cover.jpeg
Scalable Templating for the Web

[—

O'REILLY" David Cross & Andy W

pttk_0802.gif

pttk_1109.gif
\U"U’E Template Toolkit Syntax

template-toolkitorg »

Syntax, sehmyntaxt

pttk_1108.gif
ST

UE} About the Template Toolkit

Kbt i v o o Tl ot

template-toolkitorg > < -
Contents
Overview

The Template Toolkit i fast, powertul and easly extensivie tempate
processing System wiitten n per.

Features

 Fast, powerful and extensible tempiate processing system,
 Powertul presentaion anguage.
<andsoon...

Mailing Lists

pttk_0804.gif
T,

i,

8

whessbasy

.
858

VU
355 sasssse

1
35

OO M e

pttk_0803.gif
B8 RS
8585355 438 §3b §53 389 4988 aEH

39 ass sas | ass ass vass assp dso
°
i
a8
S Y8 VAP 4933 9335 $33 ¢ 688 ds8s

Y8 Y8b " YESs S4P 883 458 YESE 483 o

pttk_1102.gif
T

Debug Table

Table 1

Forenama Arthur
Sumame Dent

Table 2

Forename Arthur

Table 3

Forename: Ahur

e i 45t modiied 10:35:48 Yo Mey 2503

pttk_1101.gif
U U Template Toolkit Home

This page would have more content bt the ditor s currently out
enjoying an extended fnch break.
e expect him back befor the end of th year

pttk_1104.gif
WE Template Toolkit FAQ

ste menu Tobe o not 1o be.

it was the question”

pttk_1103.gif
?\j—:, Debug Site

it ot

Copyighs 1596 203 sy Wy

o] e
s ok 1204000

P —
P eer—
b 26

pttk_1106.gif
W@ Template Toolkit Manual

template-toolkitorg > st »

site Menu This s the manal ot automatic. Manual

pttk_1105.gif
LU«‘U«E Template Toolkit Manual

ste ens T i the manual, o automatic. Manual

oot 190203 Aty Vo, A i et
o e et em et L4 35 55 e 3o

pttk_1107.gif
“TJ’L_U’E Template Toolkit FAQ

template-toolkit org > B «
site menu Tobe ornot to be.

it was the question”

pttk_1111.gif
’-F»—U»E) About the Template Toolkit

template-toolkitorg »

as
spestone o contents

@ overview
The Template ToolKit s fast, ponestul and easly extensivie
template processing System wikten n Pert

4 Features

 Powertul presentation langusge.
Andsoon,

@ Mailing Lists

A umber of maling lists are provided for discussing the Template.

pttk_1110.gif
J" J’) Template Toolkit Syntax

template-toolkitorg & o ae
sitemenw Syotar, scrmyntant

L e o s e e s

pttk_1202.gif
Qo

Your SessionlD is 12345678,

pttk_1201.gif
L

s

Set Cookie

ool has been s Pl reoad e

pttk_1204.gif
=] Search Results S

pttk_1203.gif

lib.gif
TEAMILED.

lib_bgr.gif

