

 [image: Access Cookbook, 2nd Edition]

 Access Cookbook, 2nd Edition

Ken Getz

Paul Litwin

Andy Baron

Editor
John Osborn

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596006785/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

What This Book Is About

This is an idea book. It's a compendium of solutions
and suggestions devoted to making your work with Microsoft Access
more productive. If you're using Access and you
aspire to create database applications that are more than
wizard-created clones of every other database application, this is
the book for you.
If, on the other hand, you're looking for a book
that shows you how to create a form, or how to write your first
Visual Basic for Applications (VBA) function, or how to use the
Crosstab Query Wizard, this may not be the book
you need. For those kinds of things, we recommend one of the many
Access books geared toward the first-time user.
Promotes Creative Use of the Product

 Rather
than rehashing the manuals, Access Cookbook
offers you solutions to problems you may have already encountered,
have yet to encounter, or perhaps have never even considered. Some of
the issues discussed in this book are in direct response to questions
posted in the Microsoft Access newsgroups online (at news://msnews.microsoft.com); others are
problems we've encountered while developing our own
applications. In any case, our goal is to show you how to push the
edges of the product, making it do things you might not even have
thought possible.
For example, you'll learn how to create a query that
joins tables based on some condition besides equality, how to size a
form's controls to match the form's
size, how to store and retrieve the locations and sizes of forms from
session to session, and how to create a page-range indicator on every
report page. You'll see how to use some of the
common Windows dialogs from your Access application, how to
internationalize your messages, how to really
control your printer, and how to store the username and date last
edited for each row. There are tips for securing your database,
filling list boxes a number of different ways, and optimizing your
applications. You'll find details on using Access in
multiuser environments, creating transaction logs, adjusting database
options depending on who's logged in, and
programmatically keeping track of users and groups. There are
instructions for using the Windows API to restrict mouse movement to
a specific area of a form, exiting Windows under program control, and
checking the status of and shutting down another Windows application.
You'll see how, using COM and Automation, you can
use Access together with other applications such as Word, Excel,
PowerPoint, and Outlook.
If you've never tried data access pages (DAPs),
you're in for a treat—this feature makes it
simple for you to display and edit data using a web browser.
You'll learn enough to really get you started with
this exciting technology, and you'll learn solutions
to common but tricky problems. You'll find tips and
techniques for using Access and SQL Server together, taking advantage
of Access Data Projects (ADPs). You'll learn how
smart tags have been implemented in Access 2003, and how to create
your own smart tags. And you'll also see how you how
Access allows you to work with XML data. You'll
explore how to work with SharePoint lists from within Access as well
as how to use SharePoint and FrontPage to publish Access data on the
Internet or an intranet. Finally, you'll discover
how easy it is to interoperate with Microsoft .NET from Access,
learning both how to call .NET programs and Web services from Access
and how to work with Access data and reports from .NET programs.

 You
won't, however, find that this book pushes you into
using new technology just because it's new. Many of
the techniques in this book are "old
chestnuts" that Access developers have used for
years to solve common problems. Most of the VBA code that performs
data manipulation chiefly uses the older technology, DAO, rather than
the newer ADO, because DAO is still the most efficient way to work
with Access data. When ADO provides a better approach to solving a
particular problem, you'll learn how to use it for
that purpose. For example, you'll learn how you can
use an ADO recordset to retrieve a list of all the users logged on to
your application—something that was never possible with DAO.

Uses the Tools at Hand

This book focuses on using the right tool for each problem. Some
solutions here require no programming, while others require a little
(or a lot) of VBA coding. Sometimes even plain VBA code
isn't sufficient, and you'll need
to use the Windows API or other available code libraries. In each
case, we've tried to make the implementation of the
technique as simple, yet generic, as possible.

 We did, however, decide to focus the
data access features of this book squarely on using the Jet database
engine (instead of SQL Server). There are several reasons why we made
this choice, but first and foremost is that most Access developers
still prefer the convenience and simplicity of using Jet. The Jet
database engine remains a cost-effective and capable solution for
database applications used by small workgroups, which make up the
vast majority of the Access user base. Most of the techniques
described in this book, however, will work just as effectively with
data from SQL Server or from other ODBC data sources, even if the
example uses a Jet database. And if you are working with non-Access
data sources, you'll find plenty of tips focused on
helping you do so more efficiently.

Follows a Problem-Solution Format

The structure of this book is simple. The chapters are arranged by
categories: queries, forms, reports, application design, printing,
data manipulation, VBA, optimization, user interface, multiuser,
Windows API, Automation, DAPs, and SQL Server applications. Each
section consists of a single problem and its solution, followed by a
discussion. Each solution contains a sample database (e.g.,
01-01.MDB) with complete construction details,
indicating which modules you'll need to import, what
controls you'll need to create, and what events
you'll need to handle. In one case, Recipe 4-10, any
MDB file used elsewhere in the chapter will do. To use certain
Chapter 14 examples, you will need to be connected to either the
Northwind or Pubs databases that ship with SQL Server. All the code,
bitmaps, sample data, and necessary tools are included with the
CD-ROM that accompanies this book. (CD content is available online at
http://examples.oreilly.com/accesscook.)

Who This Book Is For

You don't have to be a VBA whiz to use this book.
It's designed for all levels of readers: end users,
power users, and developers.
In every case, we've made the steps needed to
implement our solution as simple as possible. When VBA is involved,
we've recommended which modules to import from the
sample database and discussed the important features of the code
within the text. You shouldn't have to retype any of
the code unless you care to—in fact, you
shouldn't retype the code, since we rarely include
every single line of code here in the book. We've
pointed out the important code here but left much of the support code
on the CD-ROM (see http://examples.oreilly.com/accesscook).
What's more, you don't actually
have to understand the solutions to most of the problems covered in
this book in order to make use of them. In each case,
you'll find a sample database that demonstrates the
technique and explicit instructions on how to implement the same
technique in your own applications. Of course,
you'll learn the most by digging into the samples to
see how they work, and each solution includes comments to help you
understand the underlying technology.

What You Need to Use This Book

 To use this book,
you'll need a computer capable of running Windows 98
(or later), Windows Me, Windows NT 4.0 SP5 (or later), Windows 2000,
or Windows XP, and Microsoft Access 2003 or Microsoft Access 2002
(part of Office XP). You'll find, however, that most
of the solutions work just as effectively with prior versions of
Access, in case you are supporting mixed-user environments.
(We've provided all the solutions for the first 14
chapters in Access 2000 format, so that you can open them in Access
2000, Access 2002, or Access 2003. Some of the code will only run in
Access 2002 or later).
The final four chapters include features new to Access 2003, and the
samples there are guaranteed not to run in Access 2000, although some
may work in Access 2002. To demonstrate the topics in Chapter 12, Automation, you'll need
to have copies of Microsoft Excel, Word, PowerPoint, and Outlook.
These applications aren't strictly necessary, but
having them installed on your system will allow you to try out the
example databases. Chapter 14 uses tools that
are part of SQL Server, which you may also want to have accessible,
along with the Northwind and Pubs sample databases that ship with SQL
Server. Some of the solutions in Chapter 15
require you to own a copy of FrontPage and have access to a
SharePoint Web server. You'll need a copy of Visual
Basic 6.0 to complete the custom smart tag DLL sample shown in Chapter 16. The solutions in Chapter 17 require the Microsoft .NET Framework 1.1
and Visual Studio .NET 2003. .NET Framework 1.1 is available as a
free download through the Microsoft Developer Network (MSDN) (See
http://msdn.microsoft.com/netframework/technologyinfo/howtoget/). A
60-day Trial Edition of Visual Studio .NET 2003 that includes a copy
of SQL Server Developer Edition (MSDE) is also available (See
http://msdn.microsoft.com/vstudio/productinfo/trial/default.aspx).

How This Book Is Organized

This book is organized into 18 chapters, each of which focuses on a
particular Access programming topic.
	
 Chapter 1

	This chapter covers the many types of queries and the power you have
over the Access environment through the use of queries. From simple
select queries through parameter, crosstab, totals, and Data
Definition Language (DDL) queries, this chapter will show many
different ways to use queries in your applications. Queries are the
real heart of Access, and learning to use them intelligently will
make your work in Access go much more smoothly.

	
 Chapter 2

	Most database applications require some sort of user interface, and
in Access, that user interface is almost always centered around
forms. This chapter demonstrates some useful ways to make forms do
your bidding, whether in terms of controlling data or making forms do
things you didn't think were possible. We
demonstrate how to create multipaged forms and how to create an
incremental search list box. We also show how to create your own
pop-up forms, with a technique you can use in many situations. Forms
can do much more than you might have imagined, and this chapter is a
good place to look for some new ideas.

	
 Chapter 3

	It seems as though reports ought to be simple: just place some data
on the design surface and "let her
rip!" That's true for simple
reports, but Access's report writer is incredibly
flexible and allows a great deal of customization. In addition, the
report writer is quite subtle in its use of properties and events.
The topics in this chapter will advance your understanding of
Access's report writer, from creating snaking column
reports to printing alternating gray bars. Some of the solutions in
the chapter will require programming, but many
don't. If you need to create attractive reports (and
everyone working with Access does, sooner or later), the topics in
this chapter will make your work a lot easier.

	
 Chapter 4

	This chapter is a compendium of tips and suggestions for making your
application development go more smoothly, more professionally, and
more internationally. Rather than focusing on specific topics, this
chapter brings up a number of issues that many developers run across
as they ready their applications for distribution. How do you build a
list of objects? How do you make sure all your
objects' settings are similar? How do you translate
text in your application? How do you use the common Windows dialogs?
All these questions, and more, make up this group of tips for the
application developer.

	
 Chapter 5

	Many developers need to gain tight control over printed output, but
earlier versions of Access made this quite difficult. Starting with
Access 2002, you'll find direct support for
selecting a specific printer device, changing print layout settings,
and more. This chapter introduces the Printer object and its
properties, allowing you to perform tricks that were difficult, if
not impossible, in earlier versions. (Although many of the chapter
databases will work in Access 2000, this chapter's
examples will not. Because the functionality presented here was new
in Access 2002, the samples simply won't do anything
useful in Access 2000.)

	
 Chapter 6

	This chapter concentrates on working with data in ways that
traditional database operations don't support.
You'll learn how to filter your data, back it up,
locate it on the filesystem, calculate a median, perform sound-alike
searches, save housekeeping information, and more. Most examples in
this chapter use some form of VBA, but they are clearly explained,
and "testbed" applications are
supplied to show you how each technique works.

	
 Chapter 7

	The solutions in this chapter cover some of the details of VBA that
you might not find in the Access online help. We've
included topics on several issues that plague many Access developers,
from handling embedded quotes in strings and creating procedure
stacks and code profilers, to programmatically filling list boxes, to
working with objects and properties. We've included
code to sort an array and solutions that combine several of the
previous topics, such as filling a list box with a sorted list of
filenames. If you're an intermediate VBA programmer,
this chapter is a good place to expand your skills. If
you're already an expert, this chapter can add some
new tools to your toolbox.

	
 Chapter 8

	Access is a big application, and when designing applications you have
a number of choices to make, each of which can affect the
application's performance. Unless
you're creating only the most trivial of
applications, you'll have to spend some time
optimizing your applications. This chapter's topics
work through several different areas of optimization—steps you
can take to make your databases work as smoothly as possible. The
topics range from optimizing queries, forms, and VBA, to testing the
speed of various optimization techniques, to accelerating
client/server applications. If you want your applications to run as
quickly as possible, this chapter is a good place to look for tips.

	
 Chapter 9

	This chapter presents a compendium of user interface tips and
techniques. By implementing the ideas and techniques in this chapter,
you'll be able to create a user interface that
stands out and works well. You'll find some simple,
but not obvious, techniques for controlling the Access environment,
such as altering your global keyboard mappings as you move from one
component of your application to another and creating forms that hide
the menus and toolbars when they're active. The
chapter shows how to create combo boxes that accept new entries and
how to provide animated images on buttons. You'll
also find useful tips on working with data on your forms, using an
ActiveX control to improve your interface.

	
 Chapter 10

	Few modern database applications run on standalone machines; most
must be able to coordinate with multiple users. This chapter offers
solutions to some of the common problems of networking and
coordinating multiple simultaneous users. The most important issues
are security and locking, and this chapter has examples that cover
each. In addition, the topics in this chapter focus on replication,
transaction logging, password control, and keeping users from holding
locks on data. If you're working in a shared
environment, you won't want to miss this chapter!

	
 Chapter 11

	No matter how much you've avoided using the Windows
API in Access applications, in this chapter you'll
discover that it's really not a major hurdle.
We'll present some interesting uses of the Windows
API, with example forms and modules for each solution. In most cases,
using these examples in your own applications takes little more work
than importing a module or two and calling some functions.
You'll learn how to restrict the mouse movement to a
specific area on the screen, how to run another program from your VBA
code, and how to wait until that program is done before continuing.
We'll demonstrate a method for exiting Windows under
program control and how to retrieve information about your Access
installation and the current Windows environment. The possibilities
are endless once you start diving into the Windows API, and this
chapter is an excellent place to start.

	
 Chapter 12

	This chapter gives you examples of using Automation to interact with
most of the Microsoft Office applications. One solution uses the
statistical, analytical, and financial prowess of the Excel function
libraries, directly from Access; another shows how to
programmatically create an Excel chart. You'll learn
how to retrieve document summary information for any selected Word
document and how to perform mail merges using Access data. Other
examples demonstrate how to use Access to control PowerPoint and how
to add contacts in Outlook.

	
 Chapter 13

	Distributing Access applications normally means that your users have
to install Access (or the Access runtime version, available as part
of Microsoft Office XP Developer) on their local machines. What if
users could run your applications over a corporate intranet, without
requiring Access to be installed? That's the goal of
DAPs. This chapter introduces some of the concepts
you'll need to understand in order to take advantage
of this feature, which was added in Access 2000 and significantly
improved in Access 2002. You'll learn how to
customize the navigation controls and how to use your own controls
for navigation. You'll find tips on creating pages
that allow users to update data and valuable techniques for managing
your data connections, and you'll learn how to
adjust the default settings for the different sections of new DAPs to
give your applications a consistent look.

	
 Chapter 14

	This chapter shows you how to take advantage of the new data options
available in Access Data Projects, which connect directly to a SQL
Server database, and provides solutions that address traditional MDB
databases linked to SQL Server data. You'll learn
how to dynamically connect to SQL Server at runtime, whether you are
using an ADP or an MDB, and you'll learn how to
allow multiple users to share a single ADP. You'll
see how to make the most of the Server Filter By Form feature in ADPs
and how to pass parameters to stored procedures in both ADPs and
MDBs. You'll also discover how you can use an ADP to
connect to multiple SQL Server databases at once, even though the ADP
seems to force you to select a single one.

	
 Chapter 15

	As powerful as Data Access Pages are, they only represent one way to
gain access to your Access data from a browser. This chapter
introduces you to other Microsoft Office web technologies you can use
to "webify" your Access databases.
You'll learn how to use Microsoft FrontPage to
create a web form that posts its data to an Access database.
You'll also learn how to use the FrontPage Database
Interface Wizard to create an ASP or ASP.NET front end to an Access
database. You'll learn how to use Windows SharePoint
Services along with FrontPage to create web pages that draw data from
Access databases without writing any code. You will also learn how to
use Access as a frontend for managing SharePoint lists.

	
 Chapter 16

	Smart Tags were introduced in Office XP, but they
weren't available in Access until now. This chapter
shows you how to use the built-in smart tags in your applications,
attaching them to form controls or to fields in a table.
You'll learn to configure smart tags interactively
or by writing code. You'll also learn how to extend
smart tag functionality by creating your own custom smart tags.

	
 Chapter 17

	Microsoft .NET and Access live in two different programming worlds,
but you can use a set of interoperability tools to bridge the two
worlds. This chapter shows you how to take advantage of these tools
to call a .NET component from an Access application.
You'll also learn how to call a .NET web service
from Access, and how to manipulate the .NET objects returned by some
web services. You'll learn how to retrieve data from
an Access database using ADO.NET. And you'll learn
how to automate an Access report from a .NET application.

	
 Chapter 18

	One of the strengths of Access is its ability to work with data from
many disparate sources. XML has emerged as a dominant standard for
exchanging data between applications, and Access now enables you to
work with this data. In this chapter you'll learn
how to import and export XML data and schema, and how you can use
XSLT to reformat XML data. For example, you'll see
how to use XML technologies to export a report to an HTML or ASP Web
page, preserving the look and feel of the original Access report.

What We Left Out

To keep this book to a reasonable length, we have made some
assumptions about your skills. First and foremost, we take it for
granted that you are interested in using Microsoft Access and are
willing to research the basics in other resources. This
isn't a reference manual or a
"getting started" book, so we
assume you have access to that information elsewhere. We expect that
you've dabbled in creating Access objects (tables,
queries, forms, reports, and pages) and that you've
at least considered working with VBA (Visual Basic for Applications,
the programming language included with Access). We encourage you to
look in other resources for answers to routine questions, such as
"What does this Option
 Explicit statement do?" For
example, see Access Database Design & Programming, Third Edition,
by Steven Roman (O'Reilly) or VB & VBA in a
Nutshell by Paul Lomax (O'Reilly)
To get you started, though, following are basic instructions for what
you'll need in order to use the solutions in this
book. For example, you'll encounter requests to
"create a new event procedure."
Rather than including specific steps for doing this in each case, we
have gathered the most common techniques you'll need
into this section. For each technique we've included
a help topic name from the Access online help, so you can get more
information. The procedures here are not the
only way to get the desired results, but rather
are single methods for achieving the required goals.
How Do I Set Control Properties?

 In the steps for many of the
solutions in this book, you'll be asked to assign
properties to objects on forms or reports. This is a basic concept in
creating any Access application, and you should thoroughly understand
it. To assign properties to a control (or group of controls), follow
these steps:
	In design mode, select the control or group of controls. You can use
any of the following methods (each of the items here refers to form
controls but works just as well with reports):
	Single control
	Click on a single control. Access will mark it with up to eight
sizing handles—one in each corner, and one in the middle of
each side of the control, if possible.

	Multiple controls
	Click on a single control, then Shift+Click on each of the other
controls you want to select. Access will mark each of them with
sizing handles.

	Multiple controls
	Drag the mouse through the ruler (either horizontal or vertical).
Access will select each of the controls in the path you dragged over.
If partially selected controls don't become part of
the selection and you'd like them to, open
Tools→ Options → Forms/Reports and look at the
Selection Behavior option. It should be set to Partially Enclosed.

	Multiple controls
	If you need to select all but a few controls, select them all and
then remove the ones you don't want. To do this,
choose the Edit → Select All menu item. Then Shift+Click on
the controls you don't want included.

	Make sure the properties window is visible. If it's
not, use View → Properties (or the corresponding toolbar
button).

	If you've selected a single control, all the
properties will be available in the properties window. If
you've selected multiple controls, only the
intersection of the selected controls' properties
will be available in the properties window. That is, only the
properties all the selected controls have in common will appear in
the list. As shown in Figure P-1. Select a property group and then
assign the value you need to the selected property. Repeat this
process for any other properties you'd like to set
for the same control or group of controls.

[image: The properties window shows the intersection of available properties when you've selected multiple controls]

Figure P-1. The properties window shows the intersection of available properties when you've selected multiple controls

Tip
For more information, browse the various topics under
properties; setting in Access online help.

How Do I Create a New Module?

 VBA code is stored in containers
called modules, each consisting of a single
declarations section, perhaps followed by one or more procedures.
There are two kinds of modules in Access: global
modules and class modules. Global
modules are the ones you see in the database window, once you choose
the Modules tab. Class modules are stored with either a form or a
report and never appear in the database window. (Actually, you can
also create standalone class modules, which do appear in the database
window. The use of these types of modules, which allow you to define
the behavior for your own objects, is beyond the scope of this book.)
There are various reasons to use one or the other of the two module
types, but the most important consideration is the availability of
procedures and variables. Procedures that exist in global modules
can, for the most part, be called from any place in Access.
Procedures that exist in a class module generally can be called only
from that particular form or report and never from anywhere else in
Access.

 You'll never have to
create a form or report module, because Access creates those kinds of
modules for you when you create the objects to which
they're attached. To create a global module, follow
these steps:
	From the Database Explorer, click on the Modules tab to select the
collection of modules, then click on the New button (or just choose
the Insert ‡ Module menu item).

	

 When Access first
creates the module, it places you in the declarations section. A
discussion of all the possible items in the declarations section is
beyond the scope of this Preface, but you should always take one
particular step at this point: if you don't see
Option
 Explicit at the top of
the module, insert it yourself. Then use the Tools → Options
menu from within the VBA editor to turn on the Require Variable
Declaration option (see Figure P-2). With this option turned on, all
new modules you create will automatically include the
Option
 Explicit statement. If
you don't insert this statement and Access
encounters a reference to an unknown variable, Access will create the
variable for you. With the Option
 Explicit statement, Access forces you to declare
each variable before you use it.
Although this may seem like an unnecessary burden for a beginner,
it's not. It's an incredible time
saver for all levels of users. With the Option
 Explicit statement in place, you can let Access
check your code for misspellings. Without it, if you misspell a
variable name, Access will just create a new one with the new name
and go about its business.

[image: Use the Tools → Options dialog from within VBA to turn on the Require Variable Declaration option]

Figure P-2. Use the Tools → Options dialog from within VBA to turn on the Require Variable Declaration option

	

 If
you are asked to create a new function or subroutine, the simplest
way to do so is to use Insert → Procedure. For example, if
the solution instructs you to enter this new procedure:
Function SomeFunction(intX as Integer, varY as Variant)
you can use Insert → Procedure to help you create the
function.

	Click OK in the Add Procedure dialog, as shown in Figure P-3. Access
will create the new procedure and place the cursor in it. For the
example in Step 3, you must also supply some function parameters, so
you'll need to move back up to the first line and
enter intX
 as
 Integer, varY
 as
 Variant between the two
parentheses.

[image: The Add Procedure dialog helps you create a new function or subroutine]

Figure P-3. The Add Procedure dialog helps you create a new function or subroutine

How Do I Import an Object?

 In
this book's solutions, you'll often
be asked to import an object from one of the sample databases. Follow
these steps:
	With your database open on the Access desktop, select the database
window by pressing F11. (If you're in the VBA
editor, first press Alt+F11 to get back to Access.)

	Choose File → Get External Data → Import, or
right-click on the database window and choose Import.

	Find the database from which you want to import a module, and click
Import.

	In the Import Objects dialog, select all of the objects
you'd like to import, moving from object type to
object type. When you've selected all the objects
you want to import, click OK.

If a solution instructs you to import a module from one of the sample
databases that you've already imported (for a
different solution), you can ignore the instruction. Any modules with
matching names in the sample database contain the exact same code, so
you needn't import it again.

How Do I Create an Event Macro?

 Programming in Access often depends on
having macros or VBA procedures reacting to events that occur as you
interact with forms. You'll find that most of the
solutions in this book use VBA code rather than macros, because code
provides better control and safety. But occasionally a macro is the
right tool for the job. To create a macro that will react to a user
event, follow these steps:
	Select the appropriate object (report, form, or control) and make
sure the properties window is displayed.

	Choose the Event properties page on the properties window, or just
scroll down the list until you find the event property you need.

	
 Click on the
ellipsis (...) button to the right of the event name, as shown in
Figure P-4. This is the Build button; it appears next to properties
window items that have associated builders. In this case, clicking
the Build button displays the Choose Builder dialog, shown in Figure
P-5. Choose the Macro Builder item to create a new macro. (If you
don't often use macros, in the Tools →
Options dialog, on the Forms/Reports page, you can choose to
"Always use event procedures". The
Build button will immediately take you to the Visual Basic Editor.)

[image: Press the Build button to invoke the Choose Builder dialog]

Figure P-4. Press the Build button to invoke the Choose Builder dialog

[image: The Choose Builder dialog: choose Macro Builder for macros and Code Builder for VBA]

Figure P-5. The Choose Builder dialog: choose Macro Builder for macros and Code Builder for VBA

	Give the macro a name, so Access can save it and place its name in
the properties window. You can always delete it later if you change
your mind. Give your new macro the name suggested in the solution,
and fill in the rows as directed. When you're done,
save the macro and put it away.

	Once you're done, you'll see the
name of the macro in the properties window, as shown in Figure P-6.
Whenever the event occurs (the Change event, in this case), Access
will run the associated macro (mcrHandleChange).

[image: The properties window with the selected macro assigned to the OnChange event property]

Figure P-6. The properties window with the selected macro assigned to the OnChange event property

	If you want to call an existing macro from a given event property,
click on the drop-down arrow next to the event name, rather than the
Build button. Choose from the displayed list of available macros
(including macros that exist as part of a macro group).

Tip
For more information on attaching macros to events, see
macros; creating in Access online help.

How Do I Create an Event Procedure?

 Programming
in Access often depends on having VBA procedures react to events that
occur as you interact with forms or reports. To create a VBA
procedure that will react to a user event, follow these steps:
	Select the appropriate object (report, form, or control) and make
sure the properties window is displayed.

	Choose the Event Properties page on the properties window, or just
scroll down the list until you find the event property you need.

	Select the property, then click the down arrow button next to the
property. Select [Event Procedure] from the list of options.

	Click the "..." button to the right
of the event name, as shown in Figure P-7. This is the Build button,
and it appears next to properties window items that have associated
builders. In this case, clicking the Build button takes you to a stub
for the event procedure you need to create.

[image: Press the Build button to invoke the Choose Builder dialog]

Figure P-7. Press the Build button to invoke the Choose Builder dialog

Property Names Versus Event Names
The naming of event properties, as opposed to the events themselves,
is rather ambiguous in Access. The event properties, in general, have
an "On" prefix, as in
"OnClick" or
"OnActivate." The events
themselves, however, are named without the
"On" prefix, as in
"the Click event" or
"the Activate event."
We've tried to be consistent throughout the book,
but there are some places where the context just
doesn't indicate which is the correct usage.
You'll need to be aware that with or without the
"On" prefix, when the event occurs,
it activates the procedure whose name is listed in the properties
window for that event.

 When you create a new event procedure,
Access creates the subroutine name, fills in the parameters that it
passes, and places the subroutine into the form or
report's class module. The name of the procedure is
always the name of the object, followed by an underscore and the name
of the event. For example, had you created the Click event procedure
for the cmdClose command button, you'd see a code
skeleton like this:
Sub cmdClose_Click()

End Sub

Now follow these steps to complete the process:
	If the solution asks you to enter code into the event procedure,
enter it between the lines of code that Access has created for you.
Usually, the code example in the solution will include the
Sub and End
 Sub statements, so don't enter
them again.

	When you're done, close the module window and save
the form. By saving the form or report, you also save the
form's module.

How Do I Place Code in a Form or Report's Module?

 When a solution asks you to place a
procedure in a form or report's module that
isn't directly called from an event, follow these
simple steps:
	With the form or report open in design mode, choose View →
Code, press F7, or click on the Code button on the toolbar, as shown
in Figure P-8.

[image: Click on the Code toolbar button to view a form or report's module]

Figure P-8. Click on the Code toolbar button to view a form or report's module

	To create a new procedure, follow the steps in How Do I Create a New Module?,
starting at Step 3.

	Choose File → Save, close the module, then save the form, or
just click on the Save icon on the toolbar.

How Do I Know What to Do with Code Examples?

In most cases, the solutions suggest that you import a module (or
multiple modules) from the sample database for the particular
solution, rather than typing in code yourself. In fact, code that
isn't referenced as part of the discussion
doesn't show up at all in the body of the solution.
Therefore, you should count on importing modules as directed. Then
follow the instructions in each solution to finish working with and
studying the code.
If the solution tells you to place some code in a
form's module, follow the steps in How Do I Place Code in a Form or Report's Module?. If
you are instructed to place code in a global module, follow the steps
in How Do I Create a New Module?. In most cases, you'll just import
an existing module and won't type anything at all.

How Do I Use Data Access Objects (DAO) in New Databases?

By default, new databases that you create in Access 2000 and later
assume that you'll want to use ActiveX Data Objects
(ADO) rather than the older set of objects for accessing data, DAO.
Many of the examples in this book take advantage of DAO, because
it's simpler, more consistent with earlier
programming techniques, and is in general just as efficient (or more
efficient) than using ADO for programming against Access data (that
is, data stored in an MDB or MDE file). Both ADO and DAO are simply
ActiveX/COM components provided for you by Windows and Microsoft
Office, and before you can use either, you must set a reference to
the appropriate type library.
If you use the projects that come with this book,
you'll find that the code already includes a
reference to the necessary type library so that each example works.
If you create your own projects that use the techniques you find
here, you may need to set a reference to the DAO type library
yourself. Follow these steps to set the reference:
	Within the VBA code editor, select the Tools → References
menu to display the References dialog box, shown in Figure P-9.

[image: Set a reference to the Microsoft DAO type library, which allows you to use DAO within applications in Access 2000 and later]

Figure P-9. Set a reference to the Microsoft DAO type library, which allows you to use DAO within applications in Access 2000 and later

	Scroll down within the dialog box until you find the reference to
Microsoft DAO, and select it.

	Click OK to dismiss the dialog box.

You'll use this same technique to set a reference to
any external component (including Word, Excel, PowerPoint, and
Outlook, in Chapter 14), but
you'll need to set a reference to DAO as shown here
for many of the samples in other chapters.
Tip
You don't need to explicitly set a reference to DAO
within Access 97 or earlier versions. The change, in which the use of
DAO became optional, happened in Access 2000.

Conventions Used in This Book

Throughout this book, we've used the following
typographic conventions:
	
 Constant
 width

	Constant width in body text indicates a language construct, such as
the name of a stored procedure, a SQL statement, a VBA statement, an
enumeration, an intrinsic or user-defined constant, a structure
(i.e., a user-defined type), or an expression (e.g.,
dblElapTime
 =
 Timer
 -
 dblStartTime). Code fragments and code examples
appear exclusively in constant-width text. In syntax statements and
prototypes, text set in constant width indicates such language
elements as the function or procedure name and any invariable
elements required by the syntax.

	
 Constant width italic

	Constant width italic is used in body text for variables and
parameter names. In syntax statements or prototypes, constant width
italic indicates replaceable parameters.

	Italic
	Italicized words in the text indicate intrinsic or user-defined
function and procedure names. Example URLs are also
italicized, as are many system elements, such as paths and filenames.
Finally, italics are used the first time a new term appears.

Tip
This icon indicates a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the
publisher:
	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

 There is a web page for
this book, which lists errata, examples, or any additional
information. You can access this page at:
	
 http://www.oreilly.com/catalog/accesscook/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and
the O'Reilly Network, see the
O'Reilly web site at:
	
 http://www.oreilly.com

Acknowledgments

No book is written without some help from outside sources, and this
one is no exception. In this case, we had special help: Mary Chipman
did the bulk of the conversion work for the previous edition, making
sure each topic worked in Access 2002, creating current screen
captures, and rewriting code when necessary. We continued to rely on
Mary's work for this edition. Needless to say,
without Mary's help, this book would never have been
completed.
In addition, we'd like to thank Helen Feddema, Mike
Gunderloy, and Dan Haught for their contributions to the first
edition of this book, some of which remain (though altered for Access
2002). This book also went through a second edition, for Access 95,
but was never revised for Access 97 or Access 2000. We appreciate the
support of John Osborn and the editorial team at
O'Reilly and Associates (including our editor, David
Clark) for having the faith in the book, and in Access, to allow us
to revise and publish this edition. We would also like to thank those
fervent readers who sent many, many emails asking about Access 97 and
Access 2000 versions of the book, which were never published. You
know who you are, and we hope this revision satisfies your requests!
Special thanks also go to those who contributed suggestions and read
chapters in their early stages, including Joe Maki, Sue Hoegemeier,
and Jim Newman.
We also wish to acknowledge all the hard-working people at Microsoft
who've given us these great products. In particular,
Bill Ramos, Tim Getsch, Christina Storm, and Rita Nikas were very
helpful to us as we prepared this latest edition.
Jan Fransen did a terrific job creating the chapter covering data
access pages—we're very grateful to Jan for
this important contribution.
We'd like to thank Michael Kaplan, a technical
editor on the Access 95 edition of this book, who reviewed every word
and every byte on the CD for that edition with loving care. The
success of this book will be, in part, due to
Michael's diligence.
Finally, the authors would like to acknowledge the constant support
of their families and loved ones, especially Peter, Suzanne, and
Mary.

Chapter 1. Queries

 Access queries—the six types that can
be created on the easy-to-use query by
 example (QBE) grid, plus the three SQL-specific
queries—give you a tremendous amount of power and flexibility
in selecting, sorting, summarizing, modifying, and formatting the
data stored in your tables before presenting it to the user on forms
or printing it on reports. Access queries can be intimidating at
first, but mastering queries will give you complete control over the
appearance and functionality of your forms and reports. And Access
queries are flexible—once you learn how to control them, you
can use them in places where you might have written less efficient
program code.
In this chapter you'll learn to create parameter
queries, which allow you to control selected rows of a report at
runtime rather than at design time. You'll use this
same technique to control the available values in one combo box based
on the choice in another. You'll study the ways to
control the output of crosstab queries and will learn a handy
technique for mailing labels that lets you group labels by residence
to avoid sending duplicate mailings to family members.
You'll learn to take advantage of update queries to
alter the values in one table based on the values from another, and
you'll learn a trick that can be used to filter a
query based on the value of a Visual Basic for Applications (VBA)
variable. In case you need to pull random sets of data from a data
source, you'll see how to use a query to create a
random set of rows. And you'll examine a query that
uses a Partition function to perform an aging
analysis.
You'll also find solutions dealing with more
advanced uses of queries. You'll learn how to create
a join that's based on a non-equality comparison,
how to use union queries to horizontally splice together the data
from two tables, and how to take advantage of union queries to add an
extra choice to a combo box. You'll find out how to
create self-join queries to model powerful recursive relationships,
how to perform case-sensitive searches using a query, and how to use
data definition language (DDL) queries to create or alter the
structure of a table. You'll also examine a
suggested method for storing query information in a table, which can
be protected and made invisible in applications, giving you complete
control over which queries are run and when. Finally,
you'll learn a technique for creating recordsets in
VBA code based on parameter queries.
Many of the examples in this chapter are based on a fictional music
collection database that you could use to keep track of your favorite
musicians and your album collection.
1.1. Specify Query Criteria at Runtime

Problem

 When you design a query, you
don't always know which subset of records you would
like to see when you run the query. Instead of creating several
queries with the same basic design but slightly different criteria,
you'd like to be able to create one query that can
be used to return the same fields, but a different set of records,
each time it's run.

Solution

Use a parameter query with one or more replaceable parameters that it
will request at runtime (when you run the query). This solution
demonstrates how you can create and run parameter queries using the
default parameter prompt.
Here are the steps to create a parameter query using default prompts:
	Create any type of query in query design view.

	

 Choose a field for which you wish to
define a parameter. Create a parameter for that field by entering the
prompt you would like to see when the query is executed surrounded by
square brackets ([]) in the Criteria row for that field. For the
example query qryAlbumsPrm1, you would create a parameter for the
MusicType field by typing:
[Type of Music?]
in the Criteria row under MusicType.

	
 Select Parameters from the Query menu to
open the Query Parameters dialog, where you declare the parameter.
For this example, enter:
Type of Music?
in the Parameter column of the Query Parameters dialog, and choose:
Text
from the data type combo box to tell Access that this is a text
parameter. This step is optional in this query, but some queries
require it (see Recipe 1.1.3), so make it a habit. Steps 2 and 3 are
shown in Figure 1-1.

[image: The qryAlbumsPrm1 parameter in design view]

Figure 1-1. The qryAlbumsPrm1 parameter in design view

	Save the query and run it. Access will prompt you to enter the type
of music with a parameter dialog (see Figure 1-2).

[image: The Enter Parameter Value dialog for qryAlbumsPrm1]

Figure 1-2. The Enter Parameter Value dialog for qryAlbumsPrm1

To see how this works using the sample database, open
01-01.MDB and run the qryAlbumsPrm1 query. You
will be prompted for the type of music. Enter a music type, such as
rock, alternative rock, or jazz. The query will then execute,
returning only the records of the specified music type. For example,
if you enter "Alternative Rock" at
the prompt, you'll see the datasheet shown in Figure 1-3.
[image: The datasheet for qryAlbumsPrm1]

Figure 1-3. The datasheet for qryAlbumsPrm1

Discussion

 For
queries with simple text parameters, you can get away without
declaring the parameter using the Query → Parameters
command. If you create parameters for crosstab or action queries,
however, you must declare the parameter. We recommend that you get in
the habit of always declaring all parameters to eliminate any chance
of ambiguity. The entries you make in the Parameters dialog end up in
the Parameters clause that is added to the beginning of the
query's SQL, which you can see by selecting View
→ SQL View.
The result of a parameter query needn't be a
query's datasheet. You can base reports, forms, and
even other queries on a parameter query. When you run the object that
is based on the parameter query—for example, a
report—Access knows enough to resolve the parameters prior to
running the report.

 You can use parameters in any type of
query, including select, totals, crosstab, action, and union queries.

1.2. Using a Form-Based Parameter Query

Problem

 The default type of
parameter query is useful but has several drawbacks:
	You get one Enter Parameter Value dialog for each parameter. Since
these are sequential, you can't return to a previous
dialog to change an incorrect value.

	You can't select the value from a combo box or use a
format or input mask, which makes it likely that the user will enter
invalid data or data not found in the database.

	

 You
can't write any VBA event procedures to run behind
the Parameters dialog.

Solution

Use a form-based parameter query by creating a more user-friendly
form that collects the parameters.
Here are the steps to create a parameter query using a form-based
prompt:
	Decide how many parameters you will define for the query, in what
order you would like them to be presented to the user, and what type
of form control you would like to use for each parameter. For the
qryAlbumsPrm2 query shown later, in Figure 1-4, we
defined three parameters, as shown in Table 1-1.
(Don't worry about the last column in the table
yet—we will discuss it soon.) Note that we included two
parameters for the Year field so we could select rows based on a
range of years, such as "between 1970 and
1975."

Table 1-1. Parameters for qryAlbumsPrm2
	
 Query field

 	
 Data type

 	
 Control type

 	
 Parameter reference

	
 MusicType

 	
 Text

 	
 Combo box

 	
 Forms!frmAlbumsPrm2!cboMusicType

	
 Year

 	
 Integer

 	
 Text box

 	
 Forms!frmAlbumsPrm2!txtYear1

	
 Year

 	
 Integer

 	
 Text box

 	
 Forms!frmAlbumsPrm2!txtYear2

	

 Create
an unbound form with controls that will be used to collect the
query's parameters. For qryAlbumsPrm2, we created a
form named frmAlbumsPrm2 with three controls that will be used to
collect the parameters from Table 1-1. All three
controls are unbound; that is, they have no entry for the
ControlSource property. We named the text boxes txtYear1 and
txtYear2. We also created a combo box called cboMusicType to allow
the user to select the type of music from a list of music types. You
can use the combo box control wizard to assist you in creating this
control, or you can create it by hand. If you decide to create it by
hand, select Table/Query for the RowSourceType property and
tblMusicType for the RowSource (not the ControlSource). Leave all the
other properties at their default settings.

	
 Add one command button to the form
that will be used to execute the query and another that will be used
to close the form. For frmAlbumsPrm2, we created two buttons with the
captions OK and Cancel. To accomplish this, you can use the command
button wizard, which will write the VBA code for you.
Here's what the code in the two event procedures
looks like:
Private Sub cmdCancel_Click()
 DoCmd.Close
End Sub

Private Sub cmdOK_Click()
 DoCmd.OpenQuery "qryAlbumsPrm2", acViewNormal, acEdit
End Sub

	Create the query. You will now create the parameters that reference
the controls on the form created in Steps 2 through 4. You create
form-based parameters a little differently than default parameters.
Instead of creating a prompt surrounded by square brackets, you will
enter references to the form control for each parameter. For
qryAlbumsPrm2, create the parameters shown in Table 1-1. In the MusicType field, enter:
Forms![frmAlbumsPrm2]![cboMusicType]
Enter brackets only around each form and control reference, not
around the entire parameter. For the Year field, enter:
Between Forms![frmAlbumsPrm2]![txtYear1] And Forms![frmAlbumsPrm2]![txtYear2]

	Select Query → Parameters to declare the data types of the
parameters. Use the same parameter names you used in the previous
step. Choose the data types shown in Table 1-1.

	Save the query and close it.

	Open the parameter form in form view. Select or enter each of the
parameters. Click on the OK button to execute the parameter query,
returning only the rows selected using the parameter form.

To see how a form-based query works using the sample database, open
the frmAlbumsPrm2 form in 01-02.MDB (see Figure 1-4). This form collects three parameters for the
parameter query qryAlbumsPrm2. Choose the type of music from the
combo box and the range of years to include in the two text boxes.
Click on the OK button to execute the parameter query using the
parameters collected on the form.
[image: The form-based parameter query, qryAlbumsPrm2]

Figure 1-4. The form-based parameter query, qryAlbumsPrm2

Discussion

 When you add a parameter to the
criteria of a query, Access knows that it needs to resolve that
parameter at runtime. You must either reference a control on a form
or enter a prompt surrounded by square brackets to let Access know
you wish to use a parameter. If you don't use the
brackets, Access will interpret the entry as a text string.

 When Access runs a query, it
checks to see if there are any parameters it needs to resolve. It
first attempts to obtain the value from the underlying tables. If it
doesn't find it there, it looks for any other
reference it can use, such as a form reference. Finally, if there is
no form reference (or if you created a form-based parameter and the
form is not open), Access prompts the user for the parameter. This
means that you must open the form prior to running any parameter
queries that contain references to forms.
Tip
Parameter dialogs can sometimes be a symptom of an error in the
design of one or more objects in your database. If you ever run a
query, form, or report and are prompted for a parameter when you
shouldn't be, you probably misspelled the name of a
field or renamed a field in a table without changing the reference in
the query. Access sometimes creates queries on its own to support
subforms or sorting and grouping in reports. You may need to check
the LinkChildFields or LinkMasterFields properties of a subform or
the Sorting and Grouping dialog of a report to find the unrecognized
term that is triggering the errant Enter Parameter Value dialog.
Also, if you change a parameter in the query grid, remember to change
it in the Parameters dialog too!

1.3. Limit the Items in One Combo Box Based on the Selected Item in Another

Problem

 Sometimes in a form-based parameter
query it would be nice to limit the values in one combo box based on
the value selected in another combo box. For example, if a form has
two combo boxes, one for the type of music and the other for artists,
when you select the type of music in the first combo box,
you'd like the list of artists in the second combo
box to be limited to artists of the selected music type. But no
matter which type of music you select, you always see all the artists
in the second combo box. Is there any way to link the two combo boxes
so you can filter the second combo box based on the selected item in
the first?

Solution

When you place two combo boxes on a form, Access by default
doesn't link them together. But you can link them by
basing the second combo box on a parameter query whose criteria point
to the value of the first combo box. This solution demonstrates how
you can use a parameter query tied to one combo box on a form as the
row source for a second combo box to limit the second combo
box's drop-down list to items appropriate to the
user's selection in the first combo box.
Follow these steps to create linked combo boxes:
	

 Create a form bound to a table or
query. Make it a continuous form by setting the DefaultView property
of the form to Continuous Forms. This will be used as a subform, like
fsubAlbumBrowse in the frmAlbumBrowse example.

	Create a second form with two unbound combo boxes. In the
frmAlbumBrowse example found in 01-03.MDB, we
named the combo boxes cboMusicType and cboArtistID. Drag the subform
from the Access Forms object list in the database window onto the
main form. We dragged the icon for fsubAlbumBrowse onto
frmAlbumBrowse, underneath the combo boxes.

	Set the LinkChildFields and LinkMasterFields properties of the
subform control to keep the subform in sync with the main form. We
entered ArtistID as the LinkChildFields and cboArtistID as the
LinkMasterFields.

	Create the query that will supply rows for the first combo box. The
query that's the source of rows for cboMusicType is
a simple one-column query based on tblMusicType and sorted
alphabetically by MusicType.

	Create the query that will supply rows to the second combo box. The
query that provides rows for the cboArtistID combo box,
qryFilteredArtists, contains three columns—ArtistID,
ArtistName, and MusicType—and is sorted by ArtistName.

	Create the parameter that links this query to the first combo box.
For qryFilteredArtists, enter the following in the MusicType field:
Forms![frmAlbumBrowse]![cboMusicType]

	Select Query → Parameters to declare the data type of the
parameter. Use the exact same parameter name you used in the previous
step. For qryFilteredArtists, choose Text for the data type. This
query is shown in Figure 1-5.

[image: The qryFilteredArtists parameter query links the two combo boxes on frmAlbumBrowse]

Figure 1-5. The qryFilteredArtists parameter query links the two combo boxes on frmAlbumBrowse

	Adjust the properties of the two combo box controls so they now
obtain their rows from the queries created in Steps 3 through 6. In
the frmAlbumBrowse example, set the properties of the combo boxes as
shown in Table 1-2.

	When the value selected for the first combo box changes, you need two
things to happen:
	Blank out any value in the second combo box to avoid a mismatch.

	Requery the second combo box so that only matching values will show.
In the example, we want to see artists of only the selected music
type.

 You could use a macro to
accomplish this, but adding a VBA procedure is just as easy. To make
your code run automatically when the value in the first combo box,
cboMusicType, changes, use that combo box's
AfterUpdate property. Select [Event Procedure] on the properties
sheet, and click the "..." button
that appears to the right of the property. This brings up the VBA
Editor, with the first and last lines of your event procedure already
created. Enter an additional two lines of code, so that you end up
with this:
Private Sub cboMusicType_AfterUpdate()
 cboArtistID = Null
 cboArtistID.Requery
End Sub

Table 1-2. Key properties for the combo boxes on frmAlbumBrowse2
	
 Name

 	
 RowSourceType

 	
 RowSource

 	
 ColumnCount

 	
 ColumnWidth

 	
 BoundColumn

	
 cboMusicType

 	
 Table/Query

 	
 qryMusicType

 	
 1

 	
 <blank>

 	
 1

	
 cboArtistID

 	
 Table/Query

 	
 qryFilteredArtists

 	
 2

 	
 0 in; 2 in

 	
 1

To see a form-based query in which one drop-down combo box depends on
the value selected in another, open and run frmAlbumBrowse from
01-03.MDB. This form has been designed to allow
you to select albums by music type and artist using combo boxes, with
the selected records displayed in a subform. If you select a type of
music using the first combo box, cboMusicType—for example,
Alternative Rock—the list of artists in the second combo box,
cboArtistID, is filtered to show only Alternative Rock musicians (see
Figure 1-6). Once you pick an artist, the form
displays all the albums by that artist.
[image: The choices in cboArtistID are filtered to show only Alternative Rock artists]

Figure 1-6. The choices in cboArtistID are filtered to show only Alternative Rock artists

Discussion

The parameter query (in this example, qryFilteredArtists) causes the
second combo box's values to be dependent on the
choice made in the first combo box. This works because the criteria
for the MusicType field in qryFilteredArtists point directly to the
value of the first combo box.
This works without any macro or VBA code until you change the value
in the first combo box. To keep the two combo boxes synchronized,
however, you must create an event procedure to force a requery of the
second combo box's row source whenever the first
combo box's value changes. Any value in the second
combo box (cboArtistID) will probably become invalid if the first
combo box (cboMusicType) changes, so it is also a good idea to blank
out the second combo box when that happens. This is accomplished in
the frmAlbumBrowse example by using two simple lines of VBA code
placed in the AfterUpdate event procedure of the first combo box.

 The subform in this example
automatically updates when an artist is selected, because cboArtistID
was entered as the LinkMasterFields (the property name is plural
because you may need to use more than one field). The
LinkMasterFields property can contain the names of one or more
controls on the main form or fields in the record source of the main
form. If you use more than one field, separate them with semicolons.
The LinkChildFields property must contain only field names (not
control names) from the record source of the subform.
The example shown here uses two unbound combo boxes and a subform.
Your use of this technique for relating combo boxes, however,
needn't depend on this specific style of form. You
can also use this technique with bound combo boxes located in the
detail section of a form. For example, you might use the frmSurvey
form (also found in the 01-03.MDB database) to
record critiques of albums. It contains two linked combo boxes in the
detail section: cboArtistID and cboAlbumID. When you select an artist
using the first combo box, the second combo box is filtered to
display only albums for that artist.

 To create a form similar to frmSurvey,
follow the steps described in this solution, placing the combo boxes
in the detail section of the form instead of the header. Create an
event procedure in the AfterUpdate event of the first combo box,
cboArtistID, to blank out and requery the second combo box,
cboAlbumID. Because the artist may be different on different records
in the form, cboAlbumID also needs to be requeried as you navigate
from record to record. You can accomplish this by requerying
cboAlbumID in the Current event of the form:
Private Sub Form_Current()
 cboAlbumID.Requery
End Sub
Warning
Using related combo boxes in the detail section of a continuous form
can cause problems. Unbound combo boxes will show the same value on
every row, and bound ones may mysteriously turn blank when they lose
focus. This happens if a dependent combo box has a displayed column
that isn't also its bound column. You can
demonstrate this by changing the DefaultView property of frmSurvey
from Single Form to Continuous Forms. You'll find
that cboAlbumID appears blank on all rows that have a different
artist than the one selected on the current row.
That's because the bound column in cboAlbumID is not
the displayed column (the bound AlbumID column has a column width of
0). Access can't display a value
that's not in the current row source unless
it's in the bound column.

See Also

To fill a combo box programmatically, see
Recipe 7.5 in Chapter 7. To optimize
your combo box performance, see Recipe 8.3 in Chapter 8.

1.4. Make Formatted Date Columns Sort Correctly in a Crosstab Query

Problem

 If you have a crosstab query that
uses the built-in Format function to convert
dates into text for column headings, Access sorts them alphabetically
(Apr, Aug, and so on) rather than chronologically. For example, open
01-04.MDB and run the qryAlbumTypeByMonth1
crosstab query (see Figure 1-7). This query shows
the cross-tabulation of the number of albums purchased by album type
and the month the albums were purchased. The month columns are sorted
alphabetically instead of chronologically.
[image: The months in qryAlbumTypeByMonth1 sort alphabetically]

Figure 1-7. The months in qryAlbumTypeByMonth1 sort alphabetically

When the purpose of using the month in a crosstab query is to examine
chronological variation by month, this makes the crosstab query all
but useless. Is there some way to tell Access to sort the columns by
date rather than alphabetically?

Solution

 The query properties sheet
allows you to specify fixed column headings for a crosstab query.
This solution illustrates how to use the ColumnHeadings property to
specify column headings so that formatted dates sort chronologically.
Follow these steps to create a crosstab query with correctly sorted
formatted-date columns:
	Create a select query. Select Query → Crosstab to convert
the query into a crosstab query.

	
 Add the
columns you want to the crosstab query. Use a calculation for the
Column Heading field. This calculation should use the built-in
Format function to convert a normal date into an
alphabetic string for cross-tabulation purposes. This might be the
day of week or the month of year—in the example shown in Figure 1-7, we took the date field, DateAcquired, and
formatted it as a three-letter month string. Add the remaining fields
to qryAlbumTypeByMonth2, as shown in Table 1-3.
All crosstab queries must have at least three fields: Row Heading,
Column Heading, and Value.

Table 1-3. Field settings for the qryAlbumTypeByMonth2 crosstab query
	
 Field

 	
 Table

 	
 Total

 	
 Crosstab

	
 AlbumType

 	
 tblAlbums

 	
 Group By

 	
 Row Heading

	
 Month: Format([DateAcquired],
"mmm")

 	

	
 Group By

 	
 Column Heading

	
 Album ID

 	
 tblAlbums

 	
 Count

 	
 Value

	
 Select View → Properties if
the properties sheet is not already visible. Click on any part of the
background of the upper-half of the query screen. This will select
the properties for the query itself (as opposed to the Field or
FieldList properties). Enter the values of the formatted date, in the
order in which you want them to appear, into the ColumnHeadings
property. For the qryAlbumTypeByMonth2 query, add three-letter
strings for each month of the year (see Figure 1-8). Separate each entry with a comma.

[image: The query properties sheet for qryAlbumByMonth2]

Figure 1-8. The query properties sheet for qryAlbumByMonth2

	Save and run the query. The date columns should be ordered
chronologically.

Now run qryAlbumTypeByMonth2, which you'll also find
in 01-04.MDB. In this query, the months are
ordered chronologically (see Figure 1-9).
[image: The months in qryAlbumTypeByMonth2 sort chronologically]

Figure 1-9. The months in qryAlbumTypeByMonth2 sort chronologically

Discussion

 When you
convert a date/time field to a formatted date using the Format
function, Access converts the date into a string. This means that the
formatted date will sort alphabetically, like any other string.
Access includes a special query property, ColumnHeadings, to make it
easy to work around this unpleasant side effect of using the
Format function.
You aren't limited to using fixed column headings
with formatted date strings. This crosstab query property comes in
handy for several other situations. For example, you might use the
ColumnHeadings property to:
	Force a crosstab to always contain a column heading, even if no
values exist for that column. For example, you could use the
ColumnHeadings property to include all employee names in a crosstab
report, even if one of the employees has no sales for the reporting
period.

	Force a unique ordering for the columns of a crosstab query. For
example, if your Column Heading field is made up of the names of
regions, you can use the ColumnHeadings property to ensure that the
home region always appears as the leftmost column.

	Eliminate a column value. If the ColumnHeadings property contains any
values, any column headings in the result set that are not listed in
the property will be left out of the crosstab query. You can also
accomplish this by using query criteria.

Warning
When you use the ColumnHeadings property, you must spell the column
heading values exactly as they appear in your data. If you misspell a
column heading value, that value will not appear in the crosstab
query. For example, if you use Format(datefield,
"ddd") as the Column Heading field and create
fixed column headings of Mon, Tue, Wed, Thr, Fri, Sat, and Sun, the
Thr column will be completely blank because the
Format function returns Thu (not Thr) for day of
week.
You cannot set the ColumnHeadings property programmatically. Setting
this property in the Access user interface causes an IN clause to be
added to the SQL of the query, and the only way to accomplish this in
code is to add or modify that IN clause yourself.

1.5. Group Mailing Labels by Address

Problem

 You need to print mailing labels
intended for the general public. If your mailing list contains
multiple occurrences of the same last name at the same address, you
want to print only one label (addressed to the entire family).
Otherwise, you need to print one label for each person in the table.

Solution

 To avoid sending duplicate mailings to
multiple members of a family, you can use a totals query to group
label data so that people with the same last name who live at the
same address will make up only one row in the output query. In
addition, if you count the number of occurrences of combinations of
last name, address, and zip code, you can create the mailing-label
text with different text for mailings to a family based on that
count.

 To create this grouping in your own
data, follow these steps:
	Create a new query (qryCountNames, in this example) based on your
table. Turn this query into a totals query by choosing View
→ Totals or by clicking on the Sigma button on the toolbar.
This query will group the data using one row for each unique
combination of the grouping fields.

	Add a column to the query grid for each column in your table on which
you want to group rows. Our example uses [LastName], [Address], and
[Zip]. For each column, set the Total field to Group By. If you want
to specify column names, place those names, followed by a colon,
before the field names, as shown in Figure 1-10.

[image: The grouping query, qryCountNames, with new column aliases]

Figure 1-10. The grouping query, qryCountNames, with new column aliases

	Add a column to the query grid in which Access will count the number
of rows that it groups together to make a single row in the output.
Choose any field that won't have null values (i.e.,
a required field), place it in the query grid, and set its Total row
to Count. (This field is called [Residents] in this example.) This
instructs Access to count the number of rows in the same grouping, as
shown in Figure 1-10. You can also use the
expression Count(*) instead of using a field.

	Add any other fields that you want to show on your labels to the
query grid. For each field, set the value in the Total row to First.
For each column, add a specific title—if you
don't, Access will change each title to
FirstOf<ColumnName>. When you run
this query, its output will look something like that shown in Figure 1-11. Note that there's only one
row in the output for each unique grouping of last name, address, and
zip code.

[image: The output of the grouping query qryCountNames]

Figure 1-11. The output of the grouping query qryCountNames

	To create the text for your labels, create a new query (qryLabels, in
this example) based on the previous query (qryCountNames).
You'll base the mailing label name on the field in
which you counted rows ([Residents], in this example), along with the
[FirstName] and [LastName] fields. Pull in whatever columns you want
in your label, and add one more for the label name. In our example,
the expression for this column ([LabelName]) is:
LabelName: Iif ([Residents] > 1, "The " & [LastName] & " Family",
 [FirstName] & " " & [LastName])

	On the mailing label itself, use the [LabelName] field instead of the
[FirstName] and [LastName] fields. This field (shown in Figure 1-12) shows either the family name or the single
individual's first and last name, depending on the
value in the [Residents] column.

[image: The LabelName field showing the family name or the individual's name]

Figure 1-12. The LabelName field showing the family name or the individual's name

To see how this works, open the tblNames table in
01-05.MDB. The raw data appears as in
Figure 1-13. Note that there are several examples of
family members living at the same address, and we want to create only
one label for each of these families. There's also
an example of two people with different last names at the same
address—we don't want to combine these names
into one label. Open the rptLabels report (shown in Figure 1-14). This mailing label report groups the people
with common last names and addresses onto single labels, using the
family name instead of individual names.
[image: Sample data from tblNames that includes multiple people per address]

Figure 1-13. Sample data from tblNames that includes multiple people per address

[image: Mailing labels, grouped by last name, address, and zip code]

Figure 1-14. Mailing labels, grouped by last name, address, and zip code

Discussion

By creating a totals query that groups on a combination of fields,
you're instructing Access to output a single row for
each group of rows that have identical values in those columns.
Because you're grouping on last name and address
(the zip code was thrown in to ensure that you
wouldn't group two families with the same name at
the same address in different cities), you should end up with one
output row for each household. You included one column for counting
(the [Residents] field, in our example), so Access will tell you how
many rows collapsed down into the single output row. This way, the
query can decide whether to print an individual's
name or the family name on the label.
If the value in the counted field is greater than 1, the query builds
an expression that includes just the family name:
"The " & [LastName] & " Family"
If the count is exactly 1, the query uses the first and last names:
[FirstName] & " " & [LastName]

 The immediate If function,
IIf, does this for you, as shown in Step 5. It
looks at the value in the [Residents] field and decides which format
to use based on that value.
Access does its best to optimize nested queries, so
don't feel shy about resorting to basing one query
on another. In this case, it simplifies the work. The first-level
query groups the rows, and the second one creates the calculated
expression based on the first. Though it might be possible to
accomplish this task in a single query, splitting the tasks makes it
easier to conceptualize.
We also could have solved this problem by changing the design of the
database so that instead of having a single table, tblNames, with
repeating address information for multiple family members, we had two
tables, perhaps called tblFamilies and tblFamilyMembers, related in a
one-to-many relationship.

See Also

To include quotes inside quoted strings, see Recipe 7.1 in Chapter 7.

1.6. Use a Field in One Table to Update a Field in Another Table

Problem

You've imported a table that contains updated prices
for some of the records in a table in your database. The data in all
the other fields in the existing table is still correct. Is there any
way—short of using a complex VBA procedure—to update the
price data in the existing table based on the updated prices from the
imported table without overwriting any of the other fields in the
existing table?

Solution

You probably already know that you can use an Update query to update
the values of fields in a table, but did you know that you can use an
Update query to update the values in one table with the values from
another? This solution will show you how to do just that. If you can
join the two tables on some common field or combination of fields,
you can use an Update query to update a field in one table based on
the values found in a second table.

 Here are the steps to create an Update
query that updates values across tables:
	

 Create a standard Select
query. Add the two tables to the query and join them on the common
field or fields. In the sample database, we added the tblAlbums and
tblAlbumsUpdated tables to the query. We will refer to
tblAlbumsUpdated as the source table because it
will supply the values to be used to update the other table;
tblAlbums is the target table because it will be
the target of the updates. Access has automatically joined the two
tables on AlbumID. If the name of the common field is not the same,
you will have to join the two tables by dragging the common field
from one table to the other.

	Select Query → Update to change the type of query to an
update action query.

	Drag the field to be updated in the target table to the query grid.
In the Update To cell for the field that will be updated, specify the
fully qualified name of the field in the source table that will be
the source of the updated values. This field name should include the
name of the table surrounded by square brackets, a period, and the
name of the field surrounded by square brackets. For
qryUpdateAlbumPrices, drag the PurchasePrice field from tblAlbums to
the query grid. The field settings for PurchasePrice are shown in
Table 1-4.

Table 1-4. Field settings for qryUpdateAlbumPrices
	
 Field

 	
 Table

 	
 Update To

 	
 Criteria

	
 PurchasePrice

 	
 tblAlbums

 	
 [tblAlbumsUpdated].[PurchasePrice]

 	
 Is Null

Warning
Be careful when specifying the Update To value. If you misspell the
source field name, you run the risk of changing the values to the
misspelled string rather than to the values in the source field. If
Access surrounds the Update To value with quotes or prompts you for
an unexpected parameter when you attempt to execute the update query,
it's likely that you made a spelling mistake.

	

 Optionally
specify criteria to limit the rows to be updated. In the
qryUpdateAlbumPrices example, we used criteria to limit the updated
rows to those with null (missing) prices (see Table 1-4). This prevents Access from overwriting any
existing non-null values in tblAlbums.

	Execute the query by selecting Query → Run or by clicking on
the exclamation point icon.

Tip
You can preview the selected records in an action query by choosing
View → Datasheet or by clicking on the Datasheet icon. The
query will not be run, but you'll be able to see
which records would be updated had you run the query.

 For an example of updating a field in a
table based on the value of a field in another table, open the
tblAlbums table found in the 01-06.MDB database.
Note that most of the purchase prices are null (see Figure 1-15). Open tblAlbumsUpdated, and
you'll see that many of the purchase prices for the
same albums have been entered (see Figure 1-16).
[image: Many of the purchase values in tblAlbums are null]

Figure 1-15. Many of the purchase values in tblAlbums are null

[image: tblAlbumsUpdated contains updated purchase prices for several albums in tblAlbums]

Figure 1-16. tblAlbumsUpdated contains updated purchase prices for several albums in tblAlbums

Now run the qryUpdateAlbumPrices query found in the same database
(see Figure 1-17). This action query will take the
PurchasePrice values from tblAlbumsUpdated and copy it into the
Purchase Price field in tblAlbums for each record where the two
AlbumID fields match and the price value in tblAlbums is currently
null. When the query is finished, open tblAlbums again—you
should see that the Purchase Price field in this table has been
updated based on the values in tblAlbumsUpdated (see Figure 1-18).
[image: The qryUpdateAlbumPrices update query in design view]

Figure 1-17. The qryUpdateAlbumPrices update query in design view

[image: The updated purchase prices for albums in tblAlbums]

Figure 1-18. The updated purchase prices for albums in tblAlbums

Discussion

You can use update queries in Access to update the values in a target
table, and you can use another table to supply the values for the
update. The trick is to join the two tables using a common field and
to properly specify the name of the field from the source table in
the Update To cell.

 You can update more than one field at a
time in an update query. You can also include additional fields in
the query grid to further limit the rows to be updated. Drag these
additional fields to the query grid and specify criteria for them. As
long as you leave the Update To row blank for these columns, they
will be used for their criteria only and will not be updated. Update
queries are the most efficient way to make bulk changes to data; they
are much more efficient than using a recordset in a VBA procedure.

1.7. Use a VBA Variable to Filter a Query

Problem

 You'd like to be able
to return rows in a query that have a test score greater than a
specified value, which is stored in a VBA variable. When you try to
use the variable in the query design grid, Access thinks
it's a literal value. Is there some way to get
queries to understand VBA variables?

Solution

To use a VBA variable in a query, you need to write a VBA function
that returns the value of the variable as its return value and then
reference the VBA function either as part of a calculation or in the
criteria of a field. The only way to work with VBA in queries is to
call a function. This solution shows you how to do that.

 In the sample database
01-07.MDB you'll find
tblScores, a table of names and test scores. The goal of the sample
is to allow you to specify a cutoff value and list everyone whose
scores are greater than that value.
Open the frmScores form. This form allows you to choose between a
randomly selected cutoff value and a user-specified cutoff value. If
you choose the user-specified cutoff value, a text box is made
visible to allow you to enter the cutoff value. When you click on the
"Show the results" command button,
an event procedure runs that saves the cutoff value—either the
randomly chosen cutoff or the user-specified cutoff—to a
private variable and then runs the qryScores query.
The qryScores query references the private variable using the
GetCutoff function and then returns the rows in
tblScores in which the score is greater than the cutoff value (see
Figure 1-19).
[image: The sample form, frmScores, and its output, qryScores]

Figure 1-19. The sample form, frmScores, and its output, qryScores

Follow these steps to use a VBA variable in a query:
	Create a select query, adding the tables and fields you wish to
include in the query. The sample query, qryScores, is based on the
tblScores table and contains two fields, Name and Score.

	
 Create a VBA
function or subroutine for which you wish to pass a variable to the
query from Step 1. The sample database includes the frmScores form.
The following event procedure is attached to the cmdRunQuery command
button:
Private Sub cmdRunQuery_Click()

 Dim intCutoff As Integer

 If Me.grpCriteria = 1 Then
 ' Use a random cutoff.
 ' You generate a random number between x and y
 ' by using the formula Int((y-x+1)*Rnd+x).
 ' This example generates a number between 0 and 100.
 Randomize
 intCutoff = Int(101 * Rnd)
 MsgBox "The random cutoff value is " & intCutoff, _
 vbOKOnly + vbInformation, "Random Cutoff"
 Me.txtCutOff = intCutoff
 End If
 SetCutoff Me.txtCutOff
 DoCmd.OpenQuery "qryScores"
End Sub
Based on the user choice made using the grpCriteria option group, the
procedure will either generate its own randomly chosen cutoff or grab
the cutoff value from the txtCutoff text box. Once the value is
generated, the event procedure calls the public subroutine
SetCutoff, which stores the value in a private
variable. The SetCutoff procedure and the
variable declaration are shown here:
Private intCutoff As Integer

Public Sub SetCutoff(Value As Integer)
 ' Set the module variable to be
 ' the value passed in from externally.
 intCutoff = Value
End Sub

	
 Reference the module-global
variable intCutOff using a wrapper function that
returns the value currently stored in the variable. For the sample
query qryScores, enter the following criteria for the Score field:
>GetCutoff()
The design view for this query is shown in Figure 1-20. The code for the
GetCutoff function is:
Public Function GetCutoff()
 ' Return the value of the module variable.
 GetCutoff = intCutoff
End Function

[image: The sample query, qryScores, in design view]

Figure 1-20. The sample query, qryScores, in design view

	Execute the VBA procedure from Step 2. This causes the variable to be
set, and the query then runs. When the query is executed, it
references a function that returns the value stored in the VBA
variable.

Discussion

 A
query cannot directly reference a VBA variable. It can, however, call
a VBA function that returns the value stored in the VBA variable. To
do this, you write a VBA wrapper function for each variable you wish
to pass to a query. Because functions on form and report modules are
normally local to that form or report (although you can make these
functions public), you'll usually want to call a
function stored in a global module—a module you can see in the
database container.
In the example, we used a form to collect the values to pass to the
VBA variable, intCutoff. Another way to
solve this problem would be to use a parameter query that directly
references the text box on frmScores. The example form
frmScoresTextbox combined with qryScoresTextbox show this approach in
action.

 Using
a form to feed the values to a query will not, however, always be so
convenient. There will be times where you need to use a variable
without a form. For example, you might use global variables to store
settings that are read from an options table upon application
startup. This options table might store, for example, the complete
name of the user, her address, and other preferences. You may decide
to store these values in a set of global variables to minimize the
number of times you have to reread the values from the options table.
In this case, these variables will not be stored on any form. As
another example, you may need to base the query on some value
obtained from another application using Automation. Even in those
cases, however, you can always use a hidden form if you prefer that
approach.
Tip
You can use a variation on this technique to reference combo box
columns in a query. The query grid won't recognize
Forms!MyForm!MyCombo.Column(2), but you can use a function that grabs
the value in the desired column and delivers it to your query.

See Also

For more information on declaring variables and creating
modules, see How Do I
Create a New Module? in
the Preface.

1.8. Use a Query to Retrieve a Random Set of Rows

Problem

 You need to be able to
retrieve a random set of rows from a table or a query so you can
identify a random sample for a research study. You
can't find a way to make this happen in the normal
query design grid. What's the trick to getting a
random sample of a certain number of rows?

Solution

 The solution to this problem is not
quite as simple as it might first appear, because of the way Access
attempts to optimize the use of function calls in queries. You can
call a VBA function to generate a random value for each row, but to
ensure that your function runs for each row, and not just once, you
need to feed it a value from the row. Once you've
generated the random numbers, you can sort by that random column and
use a Top Values query to select a random group.
In 01-08.MDB, open tblRandom. This table
includes 50 rows of data. Your goal is to pull five randomly selected
rows for this set of data. To do this, follow these steps:
	Import the module basRandom from 01-08.MDB
or create your own, including this single function:
Public Function acbGetRandom(varFld As Variant)

 ' Though varFld isn't used, it's the only way to force the query
 ' to call this function for each and every row.

 Randomize
 acbGetRandom = Rnd
End Function

	Create a new select query or use an existing one. Add any fields
you're interested in.

	Add an extra column, with the following expression replacing the
reference to the State field with a single field in your
query's underlying table or query (this query
won't run correctly unless you pass one of your
field names to the function):
acbGetRandom([State])
You can clear this field's Show checkbox, because
there's not much point in viewing a continually
changing random number as part of your query output. Set the Sort
value for the newly calculated field to Ascending (see Figure 1-21).

[image: The sample query, qryRandom, set up to retrieve five random rows]

Figure 1-21. The sample query, qryRandom, set up to retrieve five random rows

	Open the query's properties sheet (make sure the
View → Properties menu item is checked, and click on the
upper area of the query design surface so the properties
sheet's titlebar says Query Properties). Fill in the
number of rows you'd like to return in the TopValues
property. Figure 1-21 shows the sample query,
qryRandom, in design view with the property filled in.

	Run the query. Your query grid should show you as many rows as you
specified in the properties sheet. If you press Shift-F9, asking
Access to requery the data, you will see a different set of rows.
Repeating the process will return a different set of rows each time.

Discussion

 The general concept behind this
solution is simple: you add a new column to your query, fill it with
a list of random numbers, sort on those random numbers, and retrieve
the top n rows, where n is
a number between 1 and the number of rows in your underlying data.
There's only one complicating factor: to create the
random number, you need to call a function for each row. Access tries
to optimize such a function call and will call it only once for the
entire set of data, unless the function call involves a field in the
data. That is, if you replace the call to acbGetRandom (in Step 3)
with a simpler call directly to Access's random
number function (Rnd), you'll find that every value
in every row will be exactly the same. Access's
query engine thinks that the function has nothing to do with data in
the query, so it calls the function only once. This makes the random
number meaningless, as the whole point of using a random number is to
generate a different one for each row.
The workaround, though, is simple: pass a field, any field, as a
parameter to the function you call. That way, Access believes that
the return value from the function is dependent on the data in each
row and so calls the function once per row, passing to it the field
you specify in the expression. The acbGetRandom
function doesn't really care about the value you
pass it, because its only goal is to get a random number and return
that back to the query. Once you successfully place a random number
in each row Access will sort the data based on that number, because
you specified Ascending for the column's sorting.

 Finally, by specifying the TopValues
property for the query, you're asking Access to
return only that many rows as the result set of the query. If you
want a certain percentage of the total rows, change it by adding the
% sign after the Top value.

 The
acbGetRandom function includes a call to the VBA
Randomize subroutine. By calling
Randomize, you're asking Access
to give you a truly random result every time you call the function.
If you omit this call, Access gives you the same series of random
numbers each time you start it up and run this query. If you want a
repeatable series of random rows, remove the call to
Randomize. If you want a different set of rows
each time you run the query, leave the Randomize
statement where it is.
Because Access will pass a field value to the
acbGetRandom function for each and every row of
data in your data source, you'll want to optimize
this function call as much as you can. If possible, use either a very
short text field (zip code, for example) or, even better, an integer.
You must pass some value, but you want it to be as small as possible
to minimize the amount of information that must be moved around for
each row of the data.

1.9. Create a Query That Will Show Aging of Receivables

Problem

 Using a crosstab query, you
need to age transactions, grouped by Account ID, into ranges of 1-30
days, 31-60 days, 61-90 days, and greater than 120 days. You know
that you can group transactions by month using the standard query
tools, but you can't find a way to group them by
30-day increments.

Solution

 Access provides the seldom-used
Partition function, which is perfect for this
task. It allows you to take a range of values and partition it into
even-sized chunks. By specifying a 30-day partition size, you can
create a crosstab query that will give you the information you need.
To create a query in your own application, follow these steps:
	Create a new query based on a table or query containing the
appropriate account, date, and amount information.

	Convert this query to a crosstab query by choosing the Query
→ Crosstab menu item or by clicking on the Crosstab button
on the Query Design toolbar.

	
 As when you create any crosstab query,
specify at least three columns in the query grid: one for the column
headings, one for the row headings, and one for the values that make
up the crosstab. In this case, choose the account number (or account
name, depending on your data) as the Row Heading and the amount
(summed) as the Value. Figure 1-22 shows the sample
query in design mode, and Figure 1-23 shows the
sample data that will be used in this example.

[image: The sample query, qryAging, in design mode]

Figure 1-22. The sample query, qryAging, in design mode

	For the column headings, group the dates in 30-day increments, using
the built-in Partition function. For this
specific example, use the following value:
Expr1:Partition(Now()-[Date],1,120,30)
for the column's expression. This tells the query to
break the information into groups based on the difference between
today and the field named Date, starting with 1 day old, ending with
120 days old, and breaking every 30 days. Set the Total item to Group
By and the Crosstab item to Column Heading.

	When you execute the query, you will see output similar to that shown
in Figure 1-24, which shows the aging data grouped
in 30-day increments. You would usually create a report based on this
query, but you can also use this raw output to get an overview of the
aging of your receivables.

To see an example of a query that shows the aging of receivables,
load the sample database, 01-09.MDB. This
database includes a simple table, tblAccounts (see Figure 1-23), containing sample data about accounts and
their activity to be used in an aging query. The query qryAging,
shown in Figure 1-24, shows the final outcome: a
crosstab query including the aging information, grouped in 30-day
increments. You may want to update this small table with dates that
are closer to the date on which you are testing it.
[image: tblAccounts contains sample data to be used in an aging query]

Figure 1-23. tblAccounts contains sample data to be used in an aging query

[image: qryAging shows the aging data grouped in 30-day increments]

Figure 1-24. qryAging shows the aging data grouped in 30-day increments

Discussion

Except for the use of the Partition function,
this crosstab query is no different from any other. It summarizes
rows of data, summing the amount column, grouped on a range of values
in various columns. The only innovation is the use of the
Partition function.

 The
Partition function returns a string indicating
where a value occurs within a calculated series of ranges. That
string (in the format
start:end)
becomes the column heading in your query and is based on the starting
value, the ending value, and the range size. You tell Access each of
these values when you call the Partition
function. Table 1-5 shows the four parameters
you'll use.
Table 1-5. Parameters for the Partition function
	
 Argument

 	
 Description

	
 number

 	
 Long integer to evaluate against specified ranges.

	
 start

 	
 A long integer: the start of the specified ranges.
Can't be less than 0.

	
 stop

 	
 A long integer: the end of the specified ranges.
Can't be less than the value specified in
start.

	
 interval

 	
 A long integer: the interval spanned by each range in the series from
start to stop.
Can't be less than 1.

For example, the following expression:
Partition(42, 1, 120, 30)
would return the value " 31:
60". This function call asks,
"Where does the number 42 occur within the range of
1 to 120, broken into 30-day ranges?" Clearly, it
falls in the 31- to 60-day range. That's
what's indicated by the return value
" 31: 60"
from the previous example. In doing its calculation, Access formats
the result for you, in the format you see in the column headings in
Figure 1-25.
[image: A simple select query, qryShowAging, using the Partition function]

Figure 1-25. A simple select query, qryShowAging, using the Partition function

If a value falls outside the requested range, Access returns an
open-ended result. For example, the previous case will return
"121: " if the value is greater
than 120 or " :
0" if the value is less than 1. Access always
includes enough space in the two halves of the result string for the
largest possible value. This way, the result strings will sort
correctly.
To see the Partition function doing its work, open the query
qryShowAging from 01-09.MDB in design mode (see
Figure 1-25). This simple select query will show the
account number, the amount due, the date on which the transaction
occurred, and the age range into which the transaction fits, using
the Partition function to calculate the ranges. Figure 1-26 shows the same query in datasheet view, using
the data as shown in Figure 1-23. The last column of
the datasheet shows the output from the Partition function. When you
group the rows on the values in this column, you end up with the
crosstab query you created earlier in this section.
[image: Rows returned by qryShowAging]

Figure 1-26. Rows returned by qryShowAging

 There are
some limitations to the Partition function. If
you want uneven partitions, you'll need to write
your own VBA function to do the work. For example, if you want your
partitions to be 0-30 days, 31-60 days, 61-90 days, and 91-120 days,
you'd be out of luck with the
Partition function: all the partitions specified
are 30 days except the first, which is 31. In addition, using
Partition in a crosstab query will omit ranges
for which no values exist. For example, if no account has
transactions between 31 and 60 days ago, there will be no column for
this range in the output query. To avoid this problem, use fixed
column headings (see the Solution in Recipe 1.4).

See Also

For more information on the Partition function, search on
"Partition Function" in
Access' online help.

1.10. Create a Join That's Based on a Comparison Other than Equality

Problem

 You
need to join together two tables in a query on the
Between operator. For example, you have a table of
students and their grades, and a table of grade ranges and the
matching letter grade. Though there are lots of ways to solve this
problem with complex expressions and VBA, you know there must be a
solution involving just queries. You need a way to join these two
tables, finding matches when a value in the first table is between
two values in the second table.

Solution

 In Access, relationships between
tables are normally based on equality, matching values in one table
with those in another. Two tables in an Access query are normally
joined in the upper half of the query design screen—the table
pane—by dragging the join field from one table or query to the
other. You can join tables this way for joins based on equality
("equijoins") that can be inner or
outer in nature.
Sometimes, though, you need to join two tables on some other
relationship. However, Access doesn't graphically
support joins between tables that are based on an operator other than
=. To perform these types of joins, you must
specify the join in the criteria of the linking field.
From 01-10.MDB, open the tblGrades and tblLookup
tables, both shown in Figure 1-27. The first table,
tblGrades, includes a row for each student and the
student's numeric grade. The lookup table,
tblLookup, contains two columns for the ranges of numeric grades and
a third for the corresponding letter grade.
[image: The two sample tables, tblGrades and tblLookup]

Figure 1-27. The two sample tables, tblGrades and tblLookup

Your goal is to create a query listing each student along with his
letter grade. To accomplish this goal, follow these steps:
	Create a new query including both the sample tables.
Don't attempt to use the standard Access methods to
create a join between the tables, because there's no
mechanism for creating the kind of join you need.

	Drag the fields you'd like to include in your query
to the query grid. Make sure to include the field that will link the
two tables together (Grade, from tblGrades, in this case).

	
 In the Criteria cell for the linking field,
enter the expression you'll use to link the two
tables, using the following syntax for any fields in the second
table:
TableName.FieldName
Because you have not related the two tables, Access needs the table
name to know what you're referring to. In the
sample, the expression is:
Between [tblLookup].[LowGrade] And [tblLookup].[HighGrade]
Your finished query should resemble Figure 1-28.

[image: The sample query, qryGrades, in design mode]

Figure 1-28. The sample query, qryGrades, in design mode

	Run the query. The output should look something like Figure 1-29. For each numeric grade, you have related the
data in tblGrades to the values in tblLookup, matching one row in
tblLookup to each numeric grade.

[image: Data returned by qryGrades]

Figure 1-29. Data returned by qryGrades

Discussion

In a normal join relating two tables, Access takes each value in the
lefthand table (imagine the two tables laid out in the query design,
one on the left and one on the right), finds the first matching value
in the related field in the righthand table, and creates a new row in
the output set of rows containing information from the two joined
rows. In this case, however, you want to match the two tables not on
equality, but rather on
"betweenness." Access
doesn't graphically support this type of join in
query design view, but you can get the same result by specifying that
you want values for the linking field in the lefthand table only when
they are between the two comparison values in the righthand table. As
it builds the output set of rows, Access looks up each value of the
linking field in the righthand table, searching for the first match.
It joins the rows in the two tables based on the value from the
lefthand table being between the two values in the righthand table.

 All queries in Access are converted
to SQL. If you select View → SQL or use the SQL icon on the
toolbar, you can view the SQL for the qryGrades query. When you do,
you'll see the following SQL:
SELECT tblGrades.Name, tblGrades.Grade,
tblLookup.LetterGrade
FROM tblGrades, tblLookup
WHERE (((tblGrades.Grade) Between [tblLookup].[LowGrade]
And [tblLookup].[HighGrade]));

 The
inequality join has been translated into the WHERE
clause of Access SQL. If you're familiar with Access
SQL, however, you may notice that the join information is not where
Access normally places it. For example, if we had created a
"normal" equijoin between these two
tables, joining Grade from tblGrades to LowGrade in tblLookup, the
SQL would look like this:
SELECT tblGrades.Name, tblGrades.Grade,
tblLookup.LetterGrade
FROM tblGrades INNER JOIN tblLookup
ON tblGrades.Grade = tblLookup.LowGrade;

 This query will not give us the desired
result. Notice that Access has placed the join information in the
FROM clause. (The joining of tables in the
FROM clause was introduced in the ANSI 92 SQL
standard, but Access also supports joins in the
WHERE clause, which is ANSI 89 SQL compatible.)
It's interesting to note that you can run queries
converted from older versions of Access that specify non-equijoins
using the FROM clause syntax, but you
can't create new queries with this syntax.
qryScoresSQL in the sample database runs fine, and you can view the
following syntax in SQL view:
SELECT DISTINCTROW tblGrades.Name, tblGrades.Grade, tblLookup.LetterGrade
FROM tblGrades INNER JOIN tblLookup ON tblGrades.Grade
BETWEEN tblLookup.LowGrade AND tblLookup.HighGrade
However, if you copy this SQL and paste it into the SQL View pane of
a new query, you'll find that Access will report a
syntax error and won't let you save it. So, if you
need to create non-equijoins, just stick to using the
WHERE clause to define them.
This technique isn't limited to the
Between operator. You can use any comparison
operator (Between, In,
>, <,
>=, <=, or
<>) to perform a search in the second table,
finding the first row that meets the required criterion. You can even
link two tables using the InStr function (which
indicates if and where one string occurs within another) to match
words in a column of the first table with messages that contain that
word in the second table.

 As with any relationship between two
tables, you'll get the best performance if the
values in the matching fields in the righthand table are indexed.
This won't always help (using
InStr, for instance, there's
really no way for an index to help Access find matches within a
string), but in many cases it will. Consider indexing any fields used
in the matching condition in either of the tables involved in your
relationships, whether you build them yourself or use
Access's primary key indexes.
Tip
The recordset produced by a query containing a non-equijoin will be
read-only.

1.11. Create a Query to Combine Data from Two Tables with Similar Structures

Problem

 You have two tables of
addresses, one for clients and one for leads. Generally you send
different mailings to these two groups, but sometimes you need to
send the same letter to both. You can always create a third table and
append to it the data from each of the two tables, but there must be
an easier way that doesn't involve the use of
temporary tables. Is there a way to combine the data from these two
tables into a single recordset, including only the U.S. addresses and
sorted by zip code?

Solution

 Access provides a
special type of query that you can use to vertically splice together
the data from two or more tables. The tables don't
even need to have the same fields or fields of exactly the same data
types. This is the union query, which can be constructed only by
using the SQL View pane in the query designer.
The following steps show you how to construct a union query to
combine data from two tables into a single recordset, limited to
addresses in the U.S. and sorted by zip code:
	Open 01-11.MDB. Open the two tables (tblClients
and tblLeads) and examine their structure and data.

	Create a new select query. Click on Close when you are prompted to
add a table.

	Select Query → SQL Specific → Union. Access will
present a blank SQL view.

	If you'd like, open tblClients in design view so you
can see the field names while typing. Then type in the first part of
the query:
SELECT Company, Address1, Address2, Address3, City, StateProvince, ZipPostalCode,
Country
FROM tblClients
WHERE Country = "U.S.A."
Yes, you must type it—there is no query by example equivalent
to a union query. However, you could create this select query first
using the query grid and then copy and paste the SQL into your new
union query.

	Type UNION, and then enter the matching fields
from tblClients in the same order in which they were entered in Step
4:
UNION SELECT LeadName, Address1, Address2, "", City, State, Zip, Country
FROM tblLeads
WHERE Country = "U.S.A."

	To sort the query's output by zip code, add an
ORDER
 BY statement using the
name of the field as it appears in the first table:
ORDER BY ZipPostalCode;
The completed query is shown in Figure 1-30.

[image: The completed union query]

Figure 1-30. The completed union query

	Switch to datasheet view to see the output of the query, as shown in
Figure 1-31. Notice that the Canadian addresses are
excluded and that all the addresses are sorted by zip code.

[image: Output of the union query]

Figure 1-31. Output of the union query

	Save the new query with a name of your choice; in the sample
database, it is called qryBothLists.

Discussion

 The
SQL UNION statement joins together the output of
two or more SELECT statements into a single result
set. The field names from the tables need not match, but they must be
entered in the same order. If matching fields in the tables appear in
different positions but have the same name, you must reorder them in
the SELECT statements because Access uses the
order of the fields—not their names—to determine which
fields' data to combine together.

 If a matching field is absent from
one of the tables—as is the case for tblLeads, which lacks an
Address3 field—you can include a constant. In the
qryCombinedLists example, we used a zero-length string constant
(""), but we could have used
another constant, such as None or
N/A.
You can also add a column called Type that contains either
"Client" or
"Lead," depending on which table it
comes from, as shown in qryCombinedListswType in the sample database.
Here's the SQL for that query:
SELECT Company, Address1, Address2, Address3, City, StateProvince, ZipPostalCode,
Country, "Client" AS Type
FROM tblClients
WHERE Country = "U.S.A."

UNION SELECT LeadName, Address1, Address2, "", City, State, Zip, Country,
"Lead" AS Type
FROM tblLeads
WHERE Country = "U.S.A."
ORDER BY ZipPostalCode;
While typing in the text of the union query, you may find it helpful
to keep the source tables open in design view so you can be sure you
are entering the field names correctly. Or you can just
"cheat" and use the query designer
to create SELECT statements that you copy and
paste into your union query.

 Some dialects of SQL require the SQL
statement to end with a semicolon. Access does not, but it
doesn't hurt to use the standard syntax, especially
if you program in other databases too.
A union query is a snapshot of the data in the underlying tables, so
it can't be updated.

 To sort a union query, add one
ORDER
 BY clause at the end of
the last SELECT statement, referring to the sort
fields using the field names from the first SELECT
clause (as in the sample query). You can't sort each
SELECT clause individually; you have to sort the
whole union query. Any criteria should be included in
WHERE clauses in the respective
SELECT statements. You can't use
one WHERE clause at the end of a union query to
filter all the records.
Tip
A union query automatically screens out duplicate records (if any);
if you want to include duplicates in the query's
result set, use UNION
 ALL in
place of the word UNION. This can also improve
performance, since Access can skip the extra work of checking for
duplicates.

1.12. Create a Combo Box That Allows a User to Select N/A

Problem

 You'd like to
be able to create a combo box that looks up items in a table and is
limited to this list of items, but with the additional choice of
<N/A>, which can be used to enter a null
value for the field. You don't want your users to be
able to enter any invalid entries, just
<N/A> (or some other special code).

Solution

 You can set the LimitToList property for
the combo box to Yes to limit entries to those that your combo box
provides and use a sorted union query to add an additional
<N/A> row to the row source for the combo
box. We suggest using <N/A> rather than
simply N/A to force the entry to sort to the top
of the combo box list. To make this work right,
you'll need to make the combo box unbound and use a
bit of VBA code to move values between the underlying table and the
combo box.
To create a combo box with an <N/A> entry on
a form of your own, follow these steps:
	

 Create an unbound combo
box that draws its records from a table. In the sample database, we
created a combo box called cboArtistID on the form frmAlbums. To
duplicate the combo box in the sample database, create a combo box
with the properties shown in Table 1-6.

 The other properties for this
control don't matter. We purposely left RowSource
blank; you will fill this in after you create the union query. The
ColumnWidths entries of "0 in;2 in"
will make the first column, which will hold the ArtistID, hidden from
the user. Only the second column, with the ArtistName (or
<N/A>), will show.

Table 1-6. Properties for the cboArtistID combo box
	
 Property

 	
 Value

	
 Name

 	
 cboArtistID

	
 ControlSource

 	

	
 RowSourceType

 	
 Table/Query

	
 RowSource

 	

	
 ColumnCount

 	
 2

	
 ColumnHeads

 	
 No

	
 ColumnWidths

 	
 0 in;2 in

	
 BoundColumn

 	
 1

	
 ListRows

 	
 8

	
 ListWidth

 	
 2 in

	
 LimitToList

 	
 Yes

	Create a new query that will supply the values for the combo box
control. Click on Close when you are prompted to add a table. Switch
to SQL view by selecting Query → SQL Specific →
Union. For the frmAlbums sample form, enter:
SELECT ArtistID, ArtistName
FROM tblArtists

UNION

SELECT "<N/A>","<N/A>"
FROM tblArtists
ORDER BY ArtistName;

	Save the query and close it. In this example, we saved the query as
qryArtists.

	Open the form again in design view, and select the name of the query
you created in Steps 2 through 3 in the RowSource property of the
combo box.

	
 Select [Event Procedure] in the combo
box AfterUpdate property, click the
"..." button, and enter the
following code:
Private Sub cboArtistID_AfterUpdate()
 If cboArtistID = "<N/A>" Then
 ArtistID = Null
 Else
 ArtistID = cboArtistID
 End If
End Sub

	
 Select [Event Procedure] in the
form's OnCurrent property, click the
"..." button, and enter the
following code:
Private Sub Form_Current()
 If IsNull(ArtistID) Then
 cboArtistID = "<N/A>"
 Else
 cboArtistID = ArtistID
 End If
End Sub

	Run the form. You should now be able to select
<N/A> from the list of values for the combo
box. Null values will be entered in the ArtistID field in the table
for those items, and as you scroll through the form they will show up
as <N/A>.

To see how this works using the sample database, open the frmAlbums
form in the 01-12.MDB database. You can use this
form to edit or add new albums to tblAlbums. Add a new album that has
no single artist. For example, enter a record for Woodstock, which is
a compilation of multiple artists. When you pull down the Artist
combo box you will see, at the top of the list, the choice
<N/A> (see Figure 1-32).
Select this item from the list and a null value will be entered into
the underlying ArtistID long integer field.
[image: The Artist combo box with an <N/A> item]

Figure 1-32. The Artist combo box with an <N/A> item

Discussion

 The key to this solution is
using a union query and an unbound combo box. You use a union
query—which was discussed in the Solution in Recipe 1.11—to splice together the data from two
tables. This union query is different from the usual variety because
it combines the values in one table with values that you are
providing in the query. This is accomplished by the union
query's second SELECT statement,
shown here:
UNION
SELECT "<N/A>","<N/A>"
FROM tblArtists

 Notice that this
SELECT statement selects two constants from a
table. These constants aren't actually stored in the
tblArtists table (or anywhere else, for that matter), but you need to
refer to some existing table in the SELECT
statement—we used tblArtists, since that table is already
referenced in the query. This part of the query creates a single row
that contains <N/A> in both the bound and
displayed columns and combines it with the first half of the union
query. Finally, the ORDER BY clause for the query
tells Access to sort the entries by ArtistName, but because <
comes before any letter in the alphabet, the
<N/A> entry will sort to the top. If you run
this query outside of the form, it will return a datasheet with a row
made up of two constants and combined with the rows from tblArtists,
as shown in Figure 1-33.
[image: Datasheet returned by the union query]

Figure 1-33. Datasheet returned by the union query

 It is
easy to see why <N/A> is entered in the
displayed column (the second column)—that's
the value you want the user to see. But why also place it in the
first column? Actually, any value would work in the first column, as
long as it doesn't match one of the actual values
that might show up in that column. We used the same
<N/A> value for simplicity. This first
column is used by the VBA code only for setting and reading the value
selected by the user. The VBA code in the Current event of the form
takes care of selecting the correct row in the combo box when a
record becomes current, and the code in the AfterUpdate event of the
combo box enters the appropriate value into the ArtistID field when a
selection is made.

 You may wonder why we
didn't use a combo box bound to the ArtistID field
in the form. You might think that we could have used our union query
to add a row with a null value in the first column and
<N/A> in the displayed column.
Unfortunately, this simple solution just won't work.
When a combo box is set to null or even to
"" it will always show a blank,
even if there is a null (or "")
value in a row in its bound column. The
<N/A> value would not show up for records
where the ArtistID was null—instead, the combo box would just
be blank. To work around this column, we needed to use an unbound
combo box and VBA code.

 The combination of using the Current
event of the form and the AfterUpdate event of a control is a common
pattern when programming Access forms. Both events are needed to keep
the user interface of a form in sync with data as the user edits the
data and scrolls through the form. This pattern is often used with
bound controls too—not just with unbound controls, as
demonstrated in this example.
Tip
With simple text boxes, you can use the Format property of the text
box to control how nulls are displayed. For example, a text box bound
to a date field could have this Format setting:
Short Date;;;"<not scheduled>"
This will automatically display the specified message for null dates.
The four optional parts of the Format setting respectively control
positive, negative, zero, and null values. But this technique
won't work for a combo box.

See Also

To fill a combo box programmatically, see
Recipe 7.5 in Chapter 7. To optimize
your combo box performance, see Recipe 8.3 in Chapter 8.

1.13. Use a Query to Show the Relationship Between Employees and Supervisors

Problem

 You have a table that includes
information on every employee in the company, including management.
You'd like to be able to store information on who
supervises each employee in this same table and then be able to
create a query to show this hierarchical relationship.

Solution

You can display an employee-supervisor hierarchical relationship,
also known as a recursive relationship, in
Access with a select query that uses a self-join to join another copy
of a table to itself. This solution shows how to create the table
that will store the necessary recursive information and then how to
create the self-join query to list each employee and his or her
supervisor.
To create the employee table and a query that displays the recursive
employee-supervisor relationship, follow these steps:
	Create the employee table. This table should contain both an
EmployeeID field and a SupervisorID field. These fields must have the
same field size. In the sample database, tblEmployees contains the
EmployeeID and SupervisorID fields. Because EmployeeID is an
AutoNumber field with the FieldSize property set to Long Integer,
SupervisorID must be a Number field with a FieldSize of Long Integer.

	Enter data into the employee table, making sure that the SupervisorID
field is equal to the EmployeeID field of that
employee's immediate supervisor.

	Create a new select query. Add two copies of the employee table. The
second copy of the table will automatically have a
"_1" appended to the end of the
table name to differentiate it from the first one. Now join the two
tables together by dragging the SupervisorID field from the first
copy of the table (the one without the _1 suffix) to the EmployeeID
field in the second copy of the table (the one with the _1 suffix).

	Drag any fields you wish to include in the query to the query grid.
The fields from the first copy of the table describe the employee;
the fields from the second copy of the table describe the supervisor.
Because the fields of the two tables have the same
names—remember they're really two copies of
the same table—you need to alias (rename) any fields from the
second table to avoid confusion. For example, in the
qryEmployeeSupervisors1 query, we included the following calculated
field, named Supervisor, which displays the name of the
employee's immediate supervisor:
Supervisor: [tblEmployees_1].[FirstName] & " " &
[tblEmployees_1].[LastName]
Notice that the fields that make up the supervisor name both come
from the second copy of the employee table.

	

 If you run the query at this
point, you will get only employees with supervisors (see Figure 1-34). That's because this version
of the query—named qryEmployeeSupervisors in the sample
database—uses an inner join. To see all employees, even those
without a supervisor (in our example this would include Shannon Dodd,
the company's president), you must change the type
of join between the two tables to a left outer join. Double-click on
the join line you created in Step 3. At the Join Properties dialog,
select choice #2 (see Figure 1-35).

[image: This self-join query uses an inner join]

Figure 1-34. This self-join query uses an inner join

[image: The Join Properties dialog allows you to create left or right outer joins]

Figure 1-35. The Join Properties dialog allows you to create left or right outer joins

	Run the query, and the datasheet will display the employee-supervisor
relationship.

Now, open tblEmployees in 01-13.MDB. This table,
which is shown in Figure 1-36, contains a primary
key, EmployeeID, and the usual name and address fields. In addition,
it contains a field, SupervisorID, which stores the EmployeeID of the
employee's immediate supervisor. Now run the query
qryEmployeeSupervisors1. This query uses a self-join to display a
recursive relationship between employee and supervisor; its datasheet
lists each employee and his or her immediate supervisor (see Figure 1-37).
[image: The SupervisorID field stores information on each employee's supervisor]

Figure 1-36. The SupervisorID field stores information on each employee's supervisor

[image: Output of qryEmployeeSupervisors1]

Figure 1-37. Output of qryEmployeeSupervisors1

Discussion

You can always model an employee-supervisor relationship as two
tables in the database. Put all supervised employees in one table and
supervisors in a second table. Then create a regular select query to
list out all employees and their supervisors. This design, however,
forces you to duplicate the structure of the employee table. It also
means that you must pull data from two tables to create a list of all
employees in the company. Finally, this design makes it difficult to
model a situation in which employee A supervises employee B, who
supervises employee C.

 A better solution is to store both the
descriptive employee information and the information that defines the
employee-supervisor hierarchy in one table. You can view the
employee-supervisor relationship using a self-join query. You can
create a self-join query by adding a table to the query twice and
joining a field in the first copy of the table to a different field
in the second copy of the table. The key to a self-join query lies in
first having a table that is designed to store the information for
the recursive relationship.
The sample query qryEmployeeSupervisors1 displays the
employee-supervisor relationship to one level. That is, it shows each
employee and his or her immediate supervisor. But you
aren't limited to displaying one level of the
hierarchy—the sample query qryEmployeeSupervisors3 displays
three levels of the employee-supervisor relationship using four
copies of tblEmployees and three left outer joins. The design of
qryEmployeeSupervisors3 is shown in Figure 1-38; the
output is shown in Figure 1-39.
[image: qryEmployeeSupervisors3 shows three levels of the employee-supervisor relationship]

Figure 1-38. qryEmployeeSupervisors3 shows three levels of the employee-supervisor relationship

[image: Output of qryEmployeeSupervisors3]

Figure 1-39. Output of qryEmployeeSupervisors3

 You can use the Access Relationships
dialog to enforce referential integrity for recursive relationships.
Select Tools → Relationships to display the Relationships
dialog and add two copies of the table with the recursive
relationship. Join the two copies of the table together as if you
were creating a self-join query. Choose to establish referential
integrity, optionally checking the cascading updates and deletes
checkboxes. Click on Create to create the new relationship. Now when
you enter a value for SupervisorID, Access will prevent you from
entering any reference to an EmployeeID that doesn't
already exist.
Although the sample database uses an employee-supervisor relationship
example, you can use the techniques discussed in this solution to
model other types of hierarchical relationships. This will work,
however, only if each "child"
record has only one "parent." In
this example, each employee has only one supervisor. For hierarchies
in which one child can have many parents—such as parts and
assemblies in a bill of materials database—a separate table is
needed to contain the multiple records needed for each child, each
one specifying a different parent.

1.14. Create a Query That Uses Case-Sensitive Criteria

Problem

 You
have a table of words, some of which appear multiple times. Each
instance of these words is spelled using a different combination of
upper- and lowercase. You'd like to create a query
that finds exact matches using case-sensitive criteria, but no matter
what you type into the criteria for the query, Access always returns
all instances of the same word, disregarding each
instance's case. Is there any way to create a query
that can select records based on case-sensitive criteria?

Solution

 Access normally performs
case-insensitive string comparisons. You can use the
Option
 Compare
 Binary statement in the declarations section of a
module to force VBA to make string comparisons that are
case-sensitive within the bounds of that module, but this affects
only string comparisons made in a VBA module, not comparisons made by
the Jet engine. Thus, even when you run the query from a VBA
Option
 Compare Binary
procedure, any comparisons made in the query are case-insensitive.
The problem is that the Jet engine doesn't know how
to make case-sensitive string comparisons using any of the standard
query operators. Fortunately, you can create your own case-sensitive
string-comparison function in an Option
 Compare
 Binary module and call
this function from the query. This solution shows you how to create
the VBA function and how to use it to perform case-sensitive
searches.
To use this technique in your own database, follow these steps:
	Import the basExactMatch module from 01-14.MDB
into your database.

	Create a query for which you wish to perform a case-sensitive search.
Add all the desired fields in the query grid.

	Create a computed field in the query grid that references the
acbExactMatch function found in basExactMatch.
For example, if you wish to compare the Word field with a
user-entered parameter, create a field like that shown in Table 1-7.
You can also use a hard-coded string instead of a parameter. We used
a parameter in the qryWordCS query, shown in design view in Figure 1-40.

Table 1-7. Settings for the acbExactMatch field
	
 Attribute

 	
 Value

	
 Field

 	
 acbExactMatch([Word], [Enter word])

	
 Table

 	
 (Blank)

	
 Sort

 	
 (Blank)

	
 Show

 	
 (Unchecked)

	
 Criteria

 	
 -1

[image: qryWordCS uses acbExactMatch to filter records using case-sensitive criteria]

Figure 1-40. qryWordCS uses acbExactMatch to filter records using case-sensitive criteria

	When you execute the query, it will return only exact, case-sensitive
matches. If you run qryWordCS in the 01-14.MDB
database and enter "SwordFish" at
the parameter prompt, you should get the datasheet shown in Figure 1-41.

[image: qryWordCS is case-sensitive, so it returns only one matching record]

Figure 1-41. qryWordCS is case-sensitive, so it returns only one matching record

Now, open the tblWords table in 01-14.MDB (see
Figure 1-42). Notice that the word
"swordfish" appears in four
records, each spelled using a different combination of upper- and
lowercase letters. Run the qryWordsCI parameter query and enter
SwordFish at the prompt. When the query executes, it returns all four
swordfish records, not the specific version you typed at the prompt.
Now run the qryWordsCS query, entering the same string at the prompt.
This time the query returns only one swordfish record, the one
that's spelled exactly as you typed it.
[image: tblWords contains four swordfish records with different capitalizations]

Figure 1-42. tblWords contains four swordfish records with different capitalizations

Discussion

This solution uses a simple VBA function to perform a string
comparison. Because this function resides in a module that contains
the Option
 Compare
 Binary statement, any string comparisons made
using procedures in this module are case-sensitive. The
acbExactMatch function is simple:
Option Compare Binary
Public Function acbExactMatch(var1 As Variant, var2 As Variant) As Boolean
 acbExactMatch = (var1 = var2)
End Function
This function returns True only when the strings
are spelled exactly the same way. The code compares the values in
var1 and var2, and returns True if the values are
equal, and False if they're not.

 Another
alternative, which provides slightly less flexibility, is to use the
VBA StrComp function. This function can compare
two strings on a binary basis (that is, it compares each character in
the strings, taking case into account) and returns 0 if the two
strings are exact matches. The syntax for calling
StrComp in qryWordsCS looks like this:
StrComp([Word], [Enter Word], 0)
and the Criteria is 0 (not -1, as shown earlier).

1.15. Use a Query to Create a New Table Complete with Indexes

Problem

 You know how to create a table from a
make-table query, but when you create a table in this way it has no
primary key or any other indexes. Furthermore, you can only create a
new table with a structure based on that of an existing table.
You'd like a way to create a table on the fly with
the data types and field sizes you want and with appropriate indexes.

Solution

 Access provides the data
definition language (DDL) query, which is used to programmatically
create or modify tables. It is one of the SQL-specific queries, which
can be created only using SQL view. This solution shows you how to
create and modify table definitions using DDL queries.
Follow these steps to create a table using a DDL query:
	Design your table, preferably on paper, deciding which fields and
indexes you wish to create. For example, before creating
qryCreateClients, we came up with the design for tblClients shown in
Table 1-8.

Table 1-8. Design for tblClients
	
 FieldName

 	
 DataType

 	
 FieldSize

 	
 Index

	
 ClientID

 	
 AutoNumber

 	
 Long Integer/Increment

 	
 Yes, primary key

	
 FirstName

 	
 Text

 	
 30

 	
 Yes, part of ClientName index

	
 LastName

 	
 Text

 	
 30

 	
 Yes, part of ClientName index

	
 CompanyName

 	
 Text

 	
 60

 	
 Yes

	
 Address

 	
 Text

 	
 80

 	
 No

	
 City

 	
 Text

 	
 40

 	
 No

	
 State

 	
 Text

 	
 2

 	
 No

	
 ZipCode

 	
 Text

 	
 5

 	
 No

	Create a new query. Click on Close at the Add Table dialog. Select
Query → SQL Specific → Data Definition. This will
place you in SQL view.

	

 Enter a
CREATE
 TABLE SQL statement. To
create the sample table tblClients, enter the following SQL:
CREATE TABLE tblClients
(ClientID AutoIncrement CONSTRAINT PrimaryKey PRIMARY KEY,
FirstName TEXT (30),
LastName TEXT (30),
CompanyName TEXT (60) CONSTRAINT CompanyName UNIQUE,
Address TEXT (80),
City TEXT (40),
State TEXT (2),
ZipCode TEXT (5),
CONSTRAINT ClientName UNIQUE (LastName, FirstName));

	Save your query and run it by selecting Query → Run or
clicking on the exclamation point icon on the toolbar. You should now
see the newly created table in the database container.

To see how this works, open 01-15.MDB. Note that
there are no sample tables in this database. Open the sample DDL
query, qryCreateClients (see Figure 1-43). Select
Query→ Run or click on the exclamation point icon on the
toolbar to execute the DDL query. The tblClients table will be
created, complete with a primary key and two other indexes.
[image: A sample DDL query and the table it creates]

Figure 1-43. A sample DDL query and the table it creates

Discussion

When you run a DDL query, Access reads through the
query's clauses and creates a table according to
your specifications. This allows you to precisely control the
structure of the table and its indexes.
A DDL query can contain only one data-definition statement. The five
types of data-definition statements are:
	
 CREATE TABLE

	
 Creates a table

	
 ALTER TABLE

	
 Adds a new field or constraint to an
existing table (a constraint creates an index on a field or group of
fields)

	
 DROP TABLE

	
 Deletes a table from a database

	
 CREATE INDEX

	
 Creates an index for a field or group
of fields

	
 DROP INDEX

	
 Removes an index from a field or group
of fields

 Note that we specified the
lengths of most of the text fields in the sample query to save space.
If you don't specify a length for a text field in a
DDL query, Access will assign it the maximum length of 255
characters, but that length won't necessarily affect
the size of the database. The field length is just a
maximum—the space is not used unless it is needed.

 If you wish to create field names with
embedded spaces, you'll need to surround the names
with brackets; otherwise, the brackets are optional.

 Like make-table queries, DDL queries do
not automatically overwrite an existing table. However, unlike
make-table queries, you aren't offered the option of
overwriting the existing table if you want to. If you need to
overwrite an existing table when running a DDL query, first execute
another DDL query containing a DROP
 TABLE statement.

 After
you create (or delete) a table with a DDL query, the new table
won't immediately appear in (or disappear from) the
database window. To refresh the display and see the change you made,
click on another object type in the database window (for example,
Forms) and then on the Table tab again.
Warning
As with other SQL-specific queries, be careful not to switch a DDL
query to another query type, such as a Select query. If you do, your
SQL statement will be discarded, because SQL-specific queries
don't have a design-view equivalent.

 You can also create tables complete
with indexes using Data Access Objects (DAO) or ADOX, using VBA code,
and you can use DAO QueryDefs or ADO commands to execute your DDL
statements in code.
Tip
New DDL syntax was added in Access 2000 (Jet 4.0), but few Access
programmers ever used it because it didn't work in
the SQL pane of the Access user interface. The only way to take
advantage of the new syntax was by executing ADO commands. In Access
2002 and Access 2003, this syntax is supported inside of Access. For
example, you can use ALTER TABLE
 ALTER
 COLUMN to change the data
type of an existing field in a table. In the past, you had to drop
the column and create a new one.

1.16. Save My Queries in a Table for Better Programmatic Access and Security

Problem

 Your application uses a lot of
queries, and you don't want these queries available
or even visible to the users of your application. Also, you call your
queries from VBA code. How can you hide the queries from users and
make them easier to retrieve, modify, and execute?

Solution

You can create a query-management table that stores the SQL string of
your queries in a memo field. Each query is named and includes a
description. This technique allows you to store your queries in a
table rather than in the Access collection of queries. You can also
create a simple VBA function that you can use to quickly retrieve the
SQL string of any of your saved queries.
Open and run frmSavedQueries from 01-16.MDB.
After a few moments of processing, the form shown in Figure 1-44 should appear. This form is based on the
tblQueryDefs table, which stores a record for each query you save. To
add a new query to the table, add a new record and enter the SQL
statement in the SQL Text control. You may find it easier to copy the
SQL from an existing query (see Step 2 for more details). Type in a
name and description. Notice that creation and modification times are
automatically updated.
[image: The saved queries form, frmSavedQueries]

Figure 1-44. The saved queries form, frmSavedQueries

To use a saved query in your code, search the tblQueryDefs table for
the name of a query and get the value from the SQLText field. To use
this technique in your application, follow these steps:
	Import the tblQueryDefs table, the frmSavedQueries form, and the
basSavedQueries module from 01-16.MDB into your
database.

	To add a query to the tblQueryDefs table using the frmSavedQueries
form, design and test the query using the Access query designer.
Then, from query design view, select View → SQL. When the
query's SQL string is displayed, highlight it and
copy it to the clipboard. Next, add a new record in the
frmSavedQueries form and paste the SQL string into the SQLText text
box. Type in a name and description.

	To get the SQL string of a saved query, use the
acbGetSavedQuerySQL function, located in the
basSavedQueries module. The syntax for this function is:
strSQL = acbGetSavedQuerySQL("queryname")
where strSQL is the string variable in which you want to store the
query's SQL string and queryname is the name of the
saved query you want to retrieve.

Discussion

 The core of this technique is a simple
function that retrieves a value from the tblQueryDefs table. The
function uses the Seek method to find the supplied value and, if it
finds a match, returns the record's SQLText field
value.
Public Function acbGetSavedQuerySQL(strName As String) As String

 ' Returns a SQL string from tblQueryDefs
 ' In : strName - name of query to retrieve
 ' Out : SQL string

 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb()
 Set rst = db.OpenRecordset("tblQueryDefs")

 rst.Index = "PrimaryKey"
 rst.Seek "=", strName

 If Not rst.NoMatch Then
 acbGetSavedQuerySQL = rst!SQLText
 End If

 rst.Close
 Set rst = Nothing
 Set db = Nothing
End Function
(If you import this module into an Access 2000 or later database,
make sure to use the Tools → References menu item to add a
reference to the Microsoft DAO type library. The code uses DAO
objects, and later versions of Access don't
reference this library by default.)

 By extending this technique, you can
create a replacement for saved queries in Access. Because you have
full programmatic access to each query, you can load, modify,
execute, and save queries at will without having to open QueryDef
objects. Additionally, because you can store the queries table in a
library database, you can completely remove a user's
access to saved queries except through your code. One drawback of
this technique is that you cannot base forms or reports on queries
saved in tblQueryDefs without using some VBA code. However, this
drawback is easily overcome by writing a function that retrieves a
saved query's SQL string from tblQueryDefs and
assigns the value to the form or report's
RecordSource property before the form or report is run.

 An obvious enhancement to this technique
would be a conversion routine that reads each of your
database's saved queries and converts them to
records in the tblQueryDefs table. Once this conversion is complete,
you can delete the queries from the database window.
Tip
Using saved queries gives you a slight performance advantage over
saved SQL strings. The Jet database engine creates and saves a query
plan the first time it runs a query after the design has been saved.
With saved queries this plan can be reused, but with ad hoc queries a
new plan must be generated each time. The time required to generate
these plans, however, probably will not noticeably impact your
performance. There are also ways to hide saved queries from
users—you can give them names that start with
"Usys" or set their Hidden
property. You can also protect their design using Access security.
Nevertheless, it is useful to understand that queries can be
encapsulated in SQL strings, since you may find it helpful to be able
to manage them yourself in a table rather than as Access objects.

1.17. Create a Recordset Based on a Parameter Query from VBA Code

Problem

 You have a parameter query that is
linked to a form by three parameters. When you open the form, enter
the information into the form's controls to satisfy
the parameters, and then run the query interactively, everything is
fine. But when you open the form, satisfy the parameters, and create
a recordset from VBA code based on the same query, you get an error
message complaining that no parameters were supplied. This
doesn't make sense, since you've
already supplied the parameters on the form. Is there any way to
create a recordset from VBA based on a parameter query?

Solution

When you run a parameter query from the user interface, Access can
find the parameters if they have already been satisfied using a form
and run the query. When you create a recordset from VBA, however, the
Jet engine isn't able to locate the parameter
references. Fortunately, you can help the Jet engine find the
parameters by opening the QueryDef prior to creating the recordset
and telling Jet where to look for the parameters.
Open the frmAlbumsPrm form found in 01-17.MDB.
This form, which is similar to a form used in the Solution in Recipe 1.1, is used to collect parameters for a
query, qryAlbumsPrm. Select a music type from the combo box, enter a
range of years in the text boxes, and click on OK. An event procedure
attached to the cmdOK command button will run, making the form
invisible but leaving it open. Now run qryAlbumsPrm from the database
container. This query, which has three parameters linked to the
now-hidden frmAlbumsPrm, will produce a datasheet limited to the
records you specified on the form.
Now open the basCreateRst module from 01-17.MDB.
Select the function CreatePrmRst1 from the Proc
drop-down list. Its source code is shown here:
Public Sub CreatePrmRst1()

 ' Example of creating a recordset based on a parameter query.
 ' This example fails!

 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb()

 ' Open the form to collect the parameters.
 DoCmd.OpenForm "frmAlbumsPrm", , , , , acDialog

 ' OK was pressed, so create the recordset.
 If IsFormOpen("frmAlbumsPrm") Then

 ' Attempt to create the recordset.
 Set rst = db.OpenRecordset("qryAlbumsPrm")

 rst.MoveLast

 MsgBox "Recordset created with " & rst.RecordCount & _
 " records.", vbOKOnly + vbInformation, "CreatePrmRst"

 rst.Close
 Else
 ' Cancel was pressed.
 MsgBox "Query canceled!", vbOKOnly + vbCritical, _
 "CreatePrmRst"
 End If

 DoCmd.Close acForm, "frmAlbumsPrm"
 Set rst = Nothing
 Set db = Nothing
End Sub
As you can see, this routine starts by opening the form in dialog
mode to collect the three parameters. When the user satisfies the
parameters and clicks OK, the form is hidden by an event procedure
and control passes back to CreatePrmRst1. The
procedure then attempts to create a recordset based on the parameter
query and display a message box with the number of records found. To
test this procedure, select View → Debug Window and enter
the following in the debug window:
Call CreatePrmRst1
The procedure will fail with error 3061—"Too
few parameters. Expected 3"—at this line:
Set rst = db.OpenRecordset("qryAlbumsPrm")
Now select the function CreatePrmRst2 from the
Proc drop-down list. This subroutine is the same as
CreatePrmRst1, except for some additional code
that satisfies the query's parameters prior to
creating the recordset. Run this version of the subroutine by
entering the following in the debug window:
Call CreatePrmRst2
You should now see a dialog reporting the number of records in the
recordset.

Discussion

The VBA code for the second version of the routine,
CreatePrmRst2, is shown here:
Sub CreatePrmRst2()

 ' Example of creating a recordset based on a parameter query.
 ' This example succeeds!

 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim rst As DAO.Recordset

 Set db = CurrentDb()

 ' Open the form to collect the parameters.
 DoCmd.OpenForm "frmAlbumsPrm", , , , , acDialog

 ' OK was pressed, so create the recordset.
 If IsFormOpen("frmAlbumsPrm") Then

 ' Satisfy the three parameters before attempting to create a recordset.
 Set qdf = db.QueryDefs("qryAlbumsPrm")

 qdf("Forms!frmAlbumsPrm!cboMusicType") = Forms!frmAlbumsPrm!cboMusicType
 qdf("Forms!frmAlbumsPrm!txtYear1") = Forms!frmAlbumsPrm!txtYear1
 qdf("Forms!frmAlbumsPrm!txtYear2") = Forms!frmAlbumsPrm!txtYear2

 ' Attempt to create the recordset.
 Set rst = qdf.OpenRecordset()

 rst.MoveLast

 MsgBox "Recordset created with " & rst.RecordCount & " records.", _
 vbOKOnly + vbInformation, "CreatePrmRst"

 qdf.Close
 rst.Close
 Else
 ' Cancel was pressed.
 MsgBox "Query cancelled!", vbOKOnly + vbCritical, "CreatePrmRst"
 End If

 DoCmd.Close acForm, "frmAlbumsPrm"
 Set qdf = Nothing
 Set rst = Nothing
 Set db = Nothing
End Sub
The main difference between the two procedures is the inclusion of
the following lines of code prior to the line that creates the
recordset:
Set qdf = db.QueryDefs("qryAlbumsPrm")

qdf("Forms!frmAlbumsPrm!cboMusicType") = Forms!frmAlbumsPrm!cboMusicType
qdf("Forms!frmAlbumsPrm!txtYear1") = Forms!frmAlbumsPrm!txtYear1
qdf("Forms!frmAlbumsPrm!txtYear2") = Forms!frmAlbumsPrm!txtYear2
The extra code opens the parameter QueryDef and then sets each of its
parameters equal to its current value. You do this using the
following syntax:
qdf("Parameter") = Parameter
Then the recordset is created based on the opened QueryDef:
Set rst = qdf.OpenRecordset()
This time the recordset is created without a problem because you
supplied the parameters prior to executing the OpenRecordset method.
You can also use this technique to satisfy parameters using VBA
variables, instead of actually going to the form. For example, if you
collected the parameters for qryAlbumPrm and stored them in three
variables—varMusicType,
varYear1, and
varYear2--you could open the QueryDef and
create the recordset using the following code:
Set qdf = db.QueryDefs("qryAlbumsPrm")

qdf("Forms!frmAlbumsPrm!cboMusicType") = varMusicType
qdf("Forms!frmAlbumsPrm!txtYear1") = varYear1
qdf("Forms!frmAlbumsPrm!txtYear2") = varYear2

Set rst = qdf.OpenRecordset()
The advantage of using this approach instead of the one demonstrated
in the Solution in Recipe 1.7, which uses a
function to satisfy a parameter, is that this technique allows you to
use the same parameter query and run it either interactively or from
VBA code.

 If
you know that all your parameters are references to controls on
forms, and if you do want to get the values from the forms, you can
use a generic shortcut for filling in the parameter values. Thus,
instead of hardcoding the parameter names, you could do this:
Dim prm as DAO.Parameter

For Each prm in qdf.Parameters
 prm.Value = Eval(prm.Name)
Next prm
If you feed a control reference to the Access
Eval function, it will give you back the value
contained in the control.

Chapter 2. Forms

As far as users of your applications are concerned, your forms
are the application. The forms are the windows
into the data that makes Access applications work. Access forms are
incredibly flexible and can take on as many different personalities
as there are Access developers. The tricks and techniques covered in
this chapter are not as complex as ones you might find in other
chapters of this book, but they will help form the foundation of your
entire application. You'll want to use these tips to
help give a consistent look to your forms and to help users find
exactly which control currently has the focus.
You'll also use them to control where users go on
your forms by restricting their movement so they
can't move to a new row until you allow them to and
by giving your forms custom navigation controls. Your understanding
of controls will grow as you learn to use option groups to collect
and display non-numeric information and to control the display of
multipage forms. You'll also learn how to resize the
controls inside your forms to match the size of the form.
You'll see how to combine controls to create new
"hybrid" controls by linking a text
box and a list box to form a combination that works like a
permanently opened combo box, and you'll find out
how to create your own pop-up forms, such as a replacement for
Access's InputBox function.
You'll learn how to save and restore program
settings or application variables to the system registry and how to
save and restore the size of your forms from one session to another.
Finally, you'll learn how to control multiple
instances of a form, allowing you to view multiple rows
simultaneously.
2.1. Make Custom Templates for Forms and Reports

Problem

 When you make a new blank
form, the form properties and the properties of any control placed on
it use the Access defaults. You've decided upon a
standard look for your forms and reports that is significantly
different from these defaults, and you spend too much time changing
control properties on every new form you create to make them match
your look. You'd like some way to change the
standard default values.

Solution

Access allows you to specify a particular form or report to use as a
template for new forms or reports that you create. This solution
lists the steps you'll need to take to create your
own template for form design. The technique is the same for form
templates and report templates.
To see the advantages of using a template to define a new
form's settings, load 02-01.MDB
and create a new form. Add controls of various types to the form.
Notice that some of them look different from the normal Access
defaults. To see where the properties are coming from, load the form
named Normal from 02-01.MDB in design mode. Each
of the controls on this form will act as a template for any new
controls on any forms you create in this database. In addition, any
new form you create will inherit its own properties from this
template form.
To create your own template form, follow these steps:
	Create a new blank form.

	

 Make any general changes you want in the
form properties, such as changing the GridX and GridY properties to
different settings—many users may prefer 24 24, the smallest
grid that will show dots. To do this, first display the properties
sheet: click on the gray in the upper-left corner of the form or
select the Edit → Select Form menu item. If you
don't want a record selector, navigation buttons,
minimize or maximize buttons, a control box, and/or scrollbars on
your form template, turn them off in the layout section of the
form's properties sheet. In addition, you can choose
to center the form automatically when it is opened by changing the
AutoCenter property to Yes.

	

 You may also wish to change the
form's background color by changing the background
color for the form's detail section (click on the
detail section bar in form design to select the section). If you want
your forms to have page headers/footers or form headers/footers,
activate them by checking Format → Page Header/Footer or
Form Header/Footer and set their colors as well.

	Once you have finished setting up the form's general
properties, repeat the process to change the default settings for
each control you want to modify. There are two ways you can do this:
	Click on the tool for that control in the toolbox and change the
properties in the control's properties sheet. Note
that when you do this, the properties sheet's
titlebar says Default Label (or whatever control you have selected),
as shown in Figure 2-1.

	Change the controls directly on your form. Add to your form each
control type you want to change, and set the properties visibly. Once
you're done, select the Format → Set
Control Defaults menu item, with all the controls selected.

[image: The Default Label properties sheet]

Figure 2-1. The Default Label properties sheet

	Save your form with any name you like.

	Finally, open the Tools → Options → Forms/Reports
dialog, as shown in Figure 2-2. (The dialog box may
appear differently in your version of Access.) Enter your
form's name in the Form Template text box.

[image: The Form/Report tab of the Options dialog]

Figure 2-2. The Form/Report tab of the Options dialog

Discussion

 Access normally uses a hidden form
named Normal for its form template (and a report of the same name for
its report template). If you don't specify your own
default properties, all your new forms will use
Access's built-in form, report, and control
properties. If you create a form named Normal and set the default
control and form properties for that form, Access will use that form
as a template (that's how the example database has
been configured). If you name your form something other than Normal,
you can instruct Access to use that form as the template by changing
the Form template value in the Tools → Options dialog.

 You may want to use different
background colors for labels attached to text boxes or combo boxes or
for unattached labels, but Access won't let you save
specific settings for different types of labels. There is just one
type of label, as far as Access is concerned. The default label has
one background color, and you must change it as needed depending on
its attachment.

 To make a report template, follow
the same procedure as for a form template (you can omit controls that
aren't useful on reports, such as combo boxes and
command buttons).

 A
form or report template only supplies styles (such as color, presence
of headers and/or footers, and grid granularity) to new forms; it
doesn't supply the controls themselves. If you would
like all your forms to contain standard controls at fixed locations,
you'll need to make a copy of a standard form and
work from that copy. If you copy the entire form, any code attached
to the control's event procedures (in the
form's module) will also be
copied—that's not true if you use templates to
create your new forms and reports.

 The template form (or report) affects only
new objects. If you create a form based on the
template and then change the template, any previously created forms
based on that template will not be affected.
You can maintain several form or report templates in your database.
If you want a specific template for dialog forms and a different one
for data-entry forms, keep them both in the database and change the
option when you want to create a new form based on a specific
template.

See Also

See How Do I Set Control Properties? in the Preface for more basic
information on control properties.

2.2. Highlight the Current Field in Data-Entry Forms

Problem

 The text cursor is too small in Access,
and you can't always tell which text box on a form
has the focus. You need some way to really
highlight the current field.

Solution

There are many visual cues you can use to tell the user which text
box contains the cursor. You can change the color of the text or the
background, change the appearance of the text box, or change the
appearance of the text box's label.

 The simplest solution, which works quite
well, is to change the BackColor and SpecialEffect properties of the
active control. This solution uses some simple VBA code, which is
attached to each control's Enter and Exit events, to
do the work. Figure 2-3 shows the sample form,
frmEffects, in use (with the City field currently selected).
[image: frmEffects in use, showing the active field]

Figure 2-3. frmEffects in use, showing the active field

Open 02-02.MDB and load frmEffects. As you move
from field to field on the form, note that the special effect and the
background color of each control change when you enter and again when
you leave the control.
Follow these steps to create a form with this same sort of
functionality:
	Create a new module and name it basSpecialEffects. In the declaration
section, create the following constants, which will represent the
controls' SpecialEffect and BackColor property
settings:
Option Compare Database
Option Explicit

Private Const conWhite = 16777215
Private Const conGray = -12632256
Private Const conIndent = 2
Private Const conFlat = 0

	Create two functions named SpecialEffectEnter
and SpecialEffectExit that will toggle the
values of the BackColor and SpecialEffects properties for the text
boxes. The completed module is shown in Figure 2-4.
Here are the code listings for the two functions:
Public Function SpecialEffectEnter()
On Error GoTo HandleErr

 ' Set the current control to be indented.
 Screen.ActiveControl.SpecialEffect = conIndent

 ' Set the current control's background color to be white.
 Screen.ActiveControl.BackColor = conWhite

ExitHere:
 Exit Function

HandleErr:
 MsgBox Err & ": " & Err.Description
 Resume ExitHere
End Function

Public Function SpecialEffectExit()
On Error GoTo HandleErr

 ' Set the current control to be flat.
 Screen.ActiveControl.SpecialEffect = conFlat

 ' Set the current control's background color to be gray.
 Screen.ActiveControl.BackColor = conGray

ExitHere:
 Exit Function

HandleErr:
 MsgBox Err & ": " & Err.Description
 Resume ExitHere
End Function

[image: The completed basSpecialEffects module]

Figure 2-4. The completed basSpecialEffects module

	

 Create your input form, if
you haven't already. In design mode, select all of
the text boxes to which you'd like to attach this
effect. (Shift-clicking with the mouse allows you to select multiple
controls.) When you select a group of controls, you can set
properties for all of them at once. Set the properties of this group
of controls as shown in Table 2-1. Figure 2-5 shows the design surface with all the text
boxes selected. (Note that once you select multiple controls, the
properties sheet's title can no longer display the
name of the selected control and it will only show
"Multiple selection," as shown in
Figure 2-5.)

[image: frmEffects in design mode, with all the text boxes selected]

Figure 2-5. frmEffects in design mode, with all the text boxes selected

Table 2-1. Property settings for selected controls on frmEffects
	
 Property

 	
 Value

	
 BackColor

 	
 12632256

	
 OnGotFocus

 	
 =SpecialEffectEnter()

	
 OnLostFocus

 	
 =SpecialEffectExit()

	
 Add the following code to the
form's Load event procedure (see the Preface for
information on creating event procedures):
Sub Form_Open (Cancel As Integer)
 Me.SetFocus
End Sub

Discussion

 The
SpecialEffectEnter and
SpecialEffectExit functions do their work by
reacting to the events that occur when you enter or leave a control
on the form. Every time you enter one of the text boxes to which
you've attached a function, Access executes that
function. Therefore, whenever you enter one of these special text
boxes, Access will cause the text box to appear sunken and will
change its background color to white. When you leave the control (by
tab or mouseclick), Access will set it back to being flat and will
reset its background color to gray.

 The pair of functions do their work for
any control by using the built-in Screen.ActiveControl object. This
object always provides a reference to the currently active control.
Therefore, when you enter a control, the function acts on that
particular control, setting the SpecialEffects and BackColor
properties.

 The only problem with this mechanism
is that, when Access first opens a form, there
isn't a current control.
Attempting to refer to Screen.ActiveControl before the form is fully
loaded results in an Access error. Because Access attempts to enter
the first control on your form when it first opens the form and there
isn't yet a current control, the code
you've attached to that first text
box's OnGotFocus event property will fail. To work
around this problem, you need to use the code attached to the Open
event, as shown in Step 4. This tiny bit of code forces Access to
load the form completely before it attempts to enter the first text
box on the form. You may find this technique useful in other
applications you create that use Screen.ActiveControl.

 The functions used in this solution
could be extended to include many other changes to the controls as
you enter and leave them. For example, you can change the font or its
size, or the foreground color. You might wonder why this example
calls functions directly from the Properties window, instead of using
the standard mechanism for setting up event handlers. In this case,
because multiple controls call the same procedures in reaction to the
same events, it's simpler to set up the function
calls directly from the Properties window. This
isn't the only solution, but it's a
quick and easy one, when you need to have multiple events of multiple
controls call the same procedure.

See Also

See How Do I Create a Module in
the Preface for information on creating a new module.

2.3. Restrict the User to a Single Row on a Form

Problem

 When you press Tab or Shift-Tab, you
can't keep Access from moving the cursor to the next
or previous row of data if you happen to be on the first or last
control in a form's tab order. The same thing
happens when you press the PgUp or PgDn key. Often, however, you want
the cursor to stay on the same row, and you want complete control
over when the user moves to a different row. Is there some way to
keep Access from moving the cursor to the next or previous row when
these keys are pressed?

Solution

 To gain complete control over row
movement, you'll need to incorporate two different
techniques. You can use your form's Cycle property
to decide whether leaving the first or last control on the row moves
you to a different row. If you want to ensure that PgUp and PgDn
don't move the cursor to a different row,
you'll need to write a bit of code that will trap
these particular keystrokes in the KeyDown event for the form and
disregard them. This solution uses both techniques to limit row
movement.
Follow these steps to add this functionality to your own form:
	

 Create your form. Set its Cycle property
(on the Other properties page) to Current Record. This causes the Tab
and Shift-Tab keys to work correctly.

	
 Set the form's
KeyPreview property (on the Event properties page) to Yes. This
causes the form to intercept keystrokes before any controls on the
form can react to them.

	
 Enter the
following code for the form's KeyDown event (see the
Preface for information on creating event procedures).
Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 Select Case KeyCode
 Case vbKeyPageUp, vbKeyPageDown
 KeyCode = 0
 Case Else
 ' Do nothing.
 End Select
End Sub

 Figure 2-6 shows the form and its properties.

[image: Use the KeyDown event to trap keystrokes and control form movement]

Figure 2-6. Use the KeyDown event to trap keystrokes and control form movement

To see how this works, open and run frmRestricted from
02-03.MDB. Press Tab to move from field to
field. When you get to the final field on the form, press Tab once
more, and your cursor will move back up to the first control, rather
than moving on to the next row, as it normally would. The same thing
occurs when you use Shift-Tab to move backward through the controls.
When you reach the first control, the cursor will wrap around and go
to the final control on the same row, rather than moving to the
previous row. Try pressing the PgUp or PgDn keys:
they're completely disregarded. The only way to move
from row to row is to use the navigation buttons on the form. Try
unchecking the Control Movement checkbox, and see how the default
behavior differs.

Discussion

 There
are actually two techniques at work in this sample form. The first
technique, using the form's Cycle property, forces
the cursor to wrap around from bottom to top if moving forward
through controls on the form, or from top to bottom if moving
backward. You can set the property to All Records (the default),
Current Record, or Current Page. This example uses the Current Record
setting, which wraps around for each full record. The Solution in
Recipe 2.5 uses the Current Page setting so
that the cursor wraps around on the current page of a multipage form.

 The second technique involves trapping
keystrokes and convincing Access to disregard specific ones. A
form's KeyDown event occurs every time you press any
key, and Access informs the event procedure exactly which key was
pressed by passing to it the KeyCode and
Shift parameters; the former contains the
keycode of the key pressed, and the latter is a flag that indicates
whether or not the Shift key was depressed when the key designated by
KeyCode was pressed. You want Access to
ignore the keystroke if you press the PgUp or PgDn key. To make that
happen, you can modify the value of the KeyCode parameter, setting it
to 0. This tells Access that you want the keystroke to be ignored.
Step 3 includes the code that performs this transformation. (Think
what fun you could have intercepting each keystroke and converting it
to something else behind the scenes, just to amuse your users!)
The sample form uses the following code, in reaction to the check
box's AfterUpdate event, to control how the form
reacts to keystrokes:
Private Sub chkMovement_AfterUpdate()
 If Me.chkMovement Then
 Me.Cycle = acbcCycleCurrentPage
 Me.OnKeyDown = "[Event Procedure]"
 Else
 Me.Cycle = acbcCycleAllRecords
 Me.OnKeyDown = vbNullString
 End If
 Me.Prefix.SetFocus
End Sub

 If
you're going to use the techniques presented in this
solution, you'll probably want to provide some
method of navigating through the rows on your form. You could use the
built-in navigation buttons, but you probably
wouldn't have gone to this much effort if you
didn't want a bit more control. The Solution in
Recipe 2.6 provides a method you can use for
placing your own navigation buttons on a form, giving you complete
control over the look and placement of the controls. Using those
controls, you can ensure that users can't move to a
different row until they've satisfied your needs in
the current one.

See Also

For more information on handling keystrokes, see
Recipe 11.3 in Chapter 11.

2.4. Use an Option Group to Collect and Display Textual Information

Problem

 Option groups are great for collecting and
displaying numeric values, but sometimes you need to use an option
group bound to a column of values that isn't
numeric. For instance, in each row you have a field that contains
just one of four different alphabetic codes. You want some way to let
the user choose from those four codes on a form.

Solution

 When you want a
control on a form bound to a column in a table that contains a few
alphabetic items, you usually can use a list or combo box to display
and collect the information. Sometimes, though, you want to be able
to use an option group, where you can have option buttons or even
toggle buttons containing pictures. But option groups, as Access
implements them, can be bound only to numeric columns.
The solution is to use an unbound option group. Rather than moving
the data directly from the form to the underlying data,
you'll make a pit stop along the way.
Open and run frmOptionExample in
02-04.MDB. This form, shown in Figure 2-7, pulls in two columns from the underlying
table, tblShipments. Each row contains a Contents field and a Shipper
field. The Shipper field can be just one of four values: UPS, Fed Ex,
US Mail, or Airborne. The form displays the Contents field in a text
box and the Shipper field in an option group. It also shows another
text-box control: the pit stop mentioned earlier. This (normally
hidden) text box is the bound control, not the option group.
[image: Example form using an option group to store character data]

Figure 2-7. Example form using an option group to store character data

To create a minimal sample form that works with the same data, follow
these steps:
	In 02-04.MDB, create a new form. Choose
tblShipments for the form's RecordSource property.

	Create controls on your new form, as shown in Table 2-2. Make sure that you've
created the option group before you attempt to place any option
buttons inside it. The option group should turn dark when you attempt
to place an option button in it.

Table 2-2. Control properties for the new sample form
	
 Control type

 	
 Property

 	
 Value

	
 Option group

 	
 Name

 	
 grpCode

	
 Option button (UPS)

 	
 Name

 	
 optUPS

	

	
 OptionValue

 	
 1

	
 Option button (Fed Ex)

 	
 Name

 	
 optFedEx

	

	
 OptionValue

 	
 2

	
 Option button (US Mail)

 	
 Name

 	
 optUSMail

	

	
 OptionValue

 	
 3

	
 Option button (Airborne)

 	
 Name

 	
 optAirborne

	

	
 OptionValue

 	
 4

	
 Text box

 	
 Name

 	
 txtShipper

	

	
 ControlSource

 	
 Shipper

	

 Create the following event procedure in
the form's OnCurrent event:
Private Sub Form_Current()
 Me.grpCode = Switch(_
 Me.txtShipper = "UPS", 1, _
 Me.txtShipper = "Fed Ex", 2, _
 Me.txtShipper = "US Mail", 3, _
 Me.txtShipper = "Airborne", 4)
End Sub

	
 Create the following procedure in the
option group's AfterUpdate event:
Private Sub grpCode_AfterUpdate()
 Me.txtShipper = Choose(_
 Me.grpCode, "UPS", "Fed Ex", "US Mail", "Airborne")
End Sub

Discussion

Using just two simple event procedures, you've
managed to make the sample form store the data as required. The
example works because of two distinct events and two distinct VBA
functions that you call from those events.

 The form's Current
event occurs every time you move from one row to another in the
underlying data. In this case, you'll need to
convert the data from its raw form (as the shipper's
code text strings) into a format that the option group on the form
can display for each row as you move to that row.
The option group's AfterUpdate event occurs whenever
you change its value. For this control, choosing any of the option
buttons within it will trigger the event. Use this event to place a
new value into the text box on the form, which is directly bound to
the correct column in the underlying data.

 When you want to convert the raw data
into an integer representation (so the option group can display the
value), use the Switch function. Its syntax is:
returnValue = Switch(expr1, value1 [,expr2, value2][, expr3, value3]...)
Access will evaluate each of the expressions but
will return the value corresponding to the first one that returns a
True value. In this example, the
Switch function assigns the value of this
expression:
Switch([txtShipper] = "UPS", 1, [txtShipper] = "Fed Ex", 2, _
 [txtShipper] = "US Mail", 3, [txtShipper] = "Airborne", 4, Null, Null)
to the option group. If the value in [txtShipper]
is "UPS," the option group gets the
value 1. If [txtShipper] is "Fed
Ex," the option group is 2, and so on. The final
pair (the two Null values) ensures that if the
value of [txtShipper] is Null,
the option group will be Null too. Access calls
this function from the form's Current event, so that
every time you move from row to row, Access assigns the appropriate
value to the option group based on what it finds in the bound text
box.

 To convert a
choice made in the option group into its appropriate text value to be
stored in the table, use the Choose function.
Its syntax is:
returnValue = Choose(index, value1 [, value2][, value3]...)
Based on the value in index, the function
will return the matching value from its list of values. In our
example, the code assigns the value of this expression:
Choose([grpCode], "UPS", "Fed Ex", "US Mail", "Airborne")
to the bound text box once you've made a selection
in the option group. If you choose item 1 from the option group,
it'll assign "UPS"
to the text box. If you choose option 2, it'll
assign "Fed Ex," and so on.
You can use the two events (After Update and Current) and the two
functions described here to handle your conversions from integers
(option group values) to text (as stored in the table), but you
should be aware of a few limitations that apply to the
Switch and Choose
functions:
	Both functions support only a limited number of options.
Switch can support up to seven pairs of
expressions/values. Choose can support up to 13
expressions. If you need more than that, you'll need
to convert your event handlers to VBA. Of course, you should avoid
putting more than seven items in an option group anyway.

	Both functions evaluate all of the expressions
they contain before they return a value. This can lead to serious
errors unless you plan ahead. The following expression details the
worst possible case:
returnVal = Choose(index, MsgBox("Item1"), MsgBox("Item2"), MsgBox("Item3"), _
 MsgBox("Item4"), MsgBox("Item5"), MsgBox("Item6"), MsgBox("Item7"), _
 MsgBox("Item8"), MsgBox("Item9"), MsgBox("Item10"), MsgBox("Item11"), _
 MsgBox("Item12"), MsgBox("Item13"))
You might assume that this expression would display the message box
corresponding only to the value of index,
but in fact it will always display 13 message boxes, no matter what
the value of index is. Because
Switch and Choose both
evaluate all of their internal expressions before they return a
value, they both execute any and all functions that exist as
parameters. This can lead to unexpected results as Access runs each
and every function used as a parameter to Switch
or Choose.

 In most cases,
you'd be better off using a list or combo box with a
separate lookup table, allowing your users to choose from a fixed
list. If you have a small number of fixed values and you need to
store those values in your table (as opposed to an
index value from a small lookup table),
the technique presented here should work fine.

 To use the
techniques outlined here in your own applications,
you'll need to modify the screen display and the
code. Once you've done that, you should be able to
use an option group to gather text information.

2.5. Display Multiple Pages of Information on One Form

Problem

 You have a large number of
fields that you need to display on a form. If you place them all on
the form at once, it looks too complicated. You need some way to
group them by category and display only the ones that correspond to
each category as the user works through all the groups.

Solution

 Access 97 introduced the native Tab
control, which is useful for organizing information into multiple
pages. Simply organize your fields into categories, creating one page
on the Tab control for each category.
Load 02-05.MDB and open frmMain. This
sample form (shown in Figure 2-8) contains a Tab
control. By clicking on a tab, you cause one of the four possible
pages of the form to be displayed in the Tab control section.
[image: The sample form, frmMain]

Figure 2-8. The sample form, frmMain

 To create
your own version of a multipage form, follow these steps:
	Create the table and/or query on which you want to base your form
(tblSample in 02-05.MDB). Make sure your
data includes a primary key (ID in tblSample).

	Open your form (frmMain in 02-05.MDB) in
design view. Insert a Tab control on the form.

	Set at least the properties shown in Table 2-3 for
the form itself.

Table 2-3. Form property values for the main form, frmMain
	
 Property

 	
 Value

	
 RecordSource

 	
 tblSample (or the name of your table or query)

	
 AllowAdditions

 	
 No

	
 ViewsAllowed

 	
 Form

	
 RecordSelectors

 	
 No

	

 Right-click
on the Tab control to add two more tabs, so that there are a total of
four. Figure 2-9 shows the Tab control with the
right-click menu options. Note the other Tab control options that are
also available from the right-click menu. Give each tab one of the
following captions: Times, Calendar, Books, and Travel.

[image: Adding tabs using the Insert Page pop-up menu option]

Figure 2-9. Adding tabs using the Insert Page pop-up menu option

	Add controls to each tab on the Tab control. Note that as you select
each tab, the background turns dark. This will cause the controls
dropped on that page to appear only on that page.

	
 To create a control that appears on all
of the pages, drag the control from the Field List to the form, not
the Tab control. If you then drag it from the form to the Tab
control, none of the tabs will be selected. This will cause the
control to appear on all of the pages. The Name text box will be
visible on every page of the Tab control.

	
 Set the Cycle property of the form to
Current Page, so that you won't move from record to
record by tabbing around the form. (See The Solution in Recipe 2.3 for more information on the Cycle property.)
To move from page to page on the Tab control, press Ctrl-Tab.
Ctrl-Shift-Tab will move you backward from page to page on the Tab
control.

	

 Use
the View → Tab Order dialog to set the tab order for the
controls on your form. To set the tab order inside of the Tab
controls, right-click on the page of the Tab control where you want
to set the tab order, and choose Tab Order. This will load the dialog
shown in Figure 2-10, where you can change the tab
order for the individual controls on that tab page.

[image: The Tab Order dialog sets the tab order for the controls on a page in the Tab control]

Figure 2-10. The Tab Order dialog sets the tab order for the controls on a page in the Tab control

Discussion

There are three other methods that you can use to create multipage
forms, but each of these methods requires more work than using the
Tab control:
	

 You can create a continuous form with page
breaks in between the pages. If you open the form in dialog view, the
user will be prevented from maximizing the form. You can write code
utilizing the GoToPage method of the form to navigate from page to
page.

	

 You can use multiple subforms,
placing each of the subforms on the main form and setting all but one
of them to be invisible. In the AfterUpdate event of the option
group, you can make the current subform invisible and the new one
visible. This method can be cumbersome because working with long
multipage forms can be awkward. This method also consumes more system
resources than the method shown in this solution.

	

 You can create one subform
control and, in reaction to pressing buttons in the option group,
change the SourceObject property of the subform control. This is a
very "neat" solution, because
there's only one subform on the main form (as
opposed to four in the previous alternative). The drawback here is
that changing the SourceObject property is quite slow.

2.6. Provide Record Navigation Buttons on a Form

Problem

 You'd
like to provide some mechanism for allowing users to move from row to
row on a form, but you think the navigation buttons Access provides
are too small and unattractive. Also, you can't
control when the user can or can't move to another
row.

Solution

Access provides navigation buttons for you to use on forms, allowing
you to move easily from row to row. However, you can neither move nor
resize these buttons, and you can't change anything
about their appearance.

 You can create your own buttons, place
them on a form, and have each button use the GoToRecord macro action.
Unfortunately, this has two drawbacks:
	If you attempt to move to the previous or next row and
you're already at the end of the recordset, the
macro will fail. The GoToRecord macro action just
isn't smart enough to work in this case.

	Your buttons will always be available, giving no indication of when
you can use them.

 To avoid errors, you
must use VBA. This solution demonstrates the
steps you can take to add the appropriate code to your application so
that navigation buttons will move you safely from row to row and
shows how to disable the navigation buttons when they are
unavailable. The form frmNav in 02-06.MDB (see
Figure 2-11) works this way. You can load it and
give it a try before attempting to build your own. Use the navigation
buttons to move from row to row (there are only a few rows in the
table so far). Note that, as you move around in the table, the
appropriate buttons become enabled and disabled. Also try using the
PgUp and PgDn keys. You'll see that the appropriate
buttons still become disabled as necessary. Try entering a row number
into the text box in the navigation controls; when you leave the text
box, you will move to the selected row number.
[image: The frmNav form]

Figure 2-11. The frmNav form

Follow these steps to include this functionality in your own
applications:
	

 Set your form's
properties as shown in Table 2-4, removing the
form's scrollbars and built-in navigation buttons.
(Because this method works only for scrolling through rows of data,
your form must also have its RecordSource property set so that the
form displays rows of data.)

Table 2-4. Property settings for forms to remove the built-in navigation buttons
	
 Property

 	
 Value

	
 ScrollBars

 	
 Neither

	
 NavigationButtons

 	
 No

	

 Copy the buttons from frmNav, or create
your own five buttons on your form. Do not use the Access Button
Wizard to create your buttons, because it will add inappropriate code
to the buttons; you want to be able to supply the code yourself. If
you create your own buttons, you can add pictures from
Access's selection of pictures. Click on the Build
button to the right of the Picture property on the properties sheet
for each button. Also, create a text box named txtCurrentRow to
display the current row number and a label named lblTotalRows to
display the total number of rows. (In these solutions, the exact
names of the controls you create usually don't
matter. In this one, however, the names do matter; make sure your
names match ours exactly.)

	

 Set the Name property for each of the
command buttons, based on the following list (the code
you'll use later depends on these particular names):
	
cmdFirst
	
cmdPrev
	
cmdNew
	
cmdNext
	
cmdLast

	
 Add the following code to
cmdFirst's Click event (for information on adding
code to a form event, see the Preface):
Private Sub cmdFirst_Click()
 acbMoveFirst Me
End Sub

	Add the following code to cmdPrev's Click event:
Private Sub cmdPrev_Click ()
 acbMovePrevious Me
End Sub

	Add the following code to cmdNew's Click event:
Private Sub cmdNew_Click ()
 acbMoveNew Me
End Sub

	Add the following code to cmdNext's Click event:
Private Sub cmdNext_Click()
 acbMoveNext Me
End Sub

	Add the following code to cmdLast's Click event:
Private Sub cmdLast_Click ()
 acbMoveLast Me
End Sub

	
 Add the following code to your
form's Current event:
Private Sub Form_Current ()
 acbHandleCurrent Me
End Sub

	
 Add the
following code to your form's KeyPress event:
Private Sub Form_KeyPress(KeyAscii As Integer)
 acbHandleKeys Me
End Sub

	
 Set the form's
KeyPreview property to True.

	
 Add the following code to
txtCurrentRow's AfterUpdate event:
Private Sub txtCurrentRow_AfterUpdate()
 acbMove Me, Me.txtCurrentRow
End Sub

	Import the basMovement module from 02-06.MDB
into your own application. (You'll need to verify
that you've also set a reference to Microsoft DAO,
using the Tools → References menu item from within the VBA
editor. This code uses the DAO library, and later versions of Access
don't add this reference by default.)

Discussion

This solution actually has three parts. The first part deals with the
record navigation (Steps 1 through 8), the second part handles
disabling the unavailable buttons (Steps 9 through 11), and the third
part controls the direct movement to a specific row (Step 12).
For each of the five buttons, you've attached code
that will call a common procedure whenever you press the button, thus
reacting to the Click event. For each button, the subroutine you call
calls a procedure that handles all the motion. Clicking on the first
button calls this code:
Public Sub acbMoveFirst(frm As Form)
 HandleMovement frm, acFirst
End Sub
which calls the HandleMovement procedure:
Private Sub HandleMovement(frm As Form, intWhere As Integer)
 ' It's quite possible that this will fail.
 ' Knowing that, just disregard any errors.
 On Error Resume Next
 DoCmd.GoToRecord , , intWhere
 On Error GoTo 0
End Sub
Every subroutine that calls HandleMovement
passes to it a reference to a form and an Access constant that
indicates to what row it wants to move (acFirst,
acPrevious, acNewRec, etc.).
HandleMovement disables error handling, so
Access won't complain if you try to move beyond the
edges of the recordset. HandleMovement then uses
the GoToRecord macro action to go to the requested row.

 The second, and most complex, part of this
solution handles enabling/disabling the buttons, depending on the
current row. In Step 9, you attached a subroutine call to the
form's Current event. This tells Access that every
time you attempt to move from one row to another, Access should call
this procedure before it displays the new row of data. This
procedure, then, can do the work of deciding where in the recordset
the current row is and, based on that information, can disable or
enable each of the five navigation buttons. It also fills in the
current row number and updates the display of the total number of
rows.

 A
discussion of the full acbHandleCurrent code is
beyond the scope of this solution (you can find the fully commented
code in basMovement). As part of its work, however, the code must
determine whether the current row is the
"new" row. The new row is the one
you get to if you press the PgDn key until you're on
the last row of data and then press the key once more (if your data
set allows you to add rows). Access's NewRecord
property tells you if you're on the new row. (See
the Solution in Recipe 6.2 for more
information on using this property.)

 To enable
cmdNew once you've entered some data on the new row,
the form's KeyPress event calls
acbHandleKeys, as shown here. This code checks
each keystroke, and if cmdNew isn't enabled and the
form is dirty, the code enables cmdNew.
Public Sub acbHandleKeys(frm As Form)

 Dim fEnabled As Boolean
 fEnabled = frm.cmdNew.Enabled
 If Not fEnabled And frm.Dirty Then
 frm.cmdNew.Enabled = True
 End If
End Sub

 To match the functionality of the
standard Access navigation controls, the sample form reacts to the
AfterUpdate event of the txtCurrentRow text box by moving to the row
you've specified. The event procedure calls the
acbMove subroutine, which does all the work.
This procedure, shown later, does the following:
	
 Retrieves a pointer to the
form's recordset, using the recordset retrieved with
the form's RecordsetClone property.

	Moves to the first row (rst.MoveFirst) and then moves the specified
number of rows from there (rst.Move).

	Makes the form display the same row that's current
in the recordset.

 By equating the
form's bookmark (a binary value, indicating the
current row, whose exact contents are of no interest) and the
recordset's bookmark, you make the form display the
row that is current in the underlying recordset. If there is no
current row (that is, if you've asked to go beyond
the final row of data), an error occurs, and the code moves you
directly to the new row on the form.
The source code for acbMove is:
Public Sub acbMove(frm As Form, ByVal lngRow As Long)

 ' Move to a specified row.
 On Error GoTo HandleErr
 Dim rst As DAO.Recordset

 ' Get a pointer to the form's recordset.
 Set rst = frm.RecordsetClone

 ' Move to the first row, and then hop to
 ' the selected row, using the Move method.
 rst.MoveFirst
 If lngRow > 0 Then
 rst.Move lngRow - 1
 End If
 ' Finally, make the form show the
 ' same row as the underlying recordset.
 frm.Bookmark = rst.Bookmark
 rst.Close
 Set rst = Nothing

ExitHere:
 Exit Sub

HandleErr:
 ' If an error occurs, it's most likely that
 ' you requested to move to the row past the
 ' last row, the New row, and there's no bookmark
 ' there. If that's the error, just move
 ' to the New row programmatically.
 Select Case Err
 Case acbcErrNoCurrentRow
 DoCmd.GoToRecord , , acNewRec
 Resume Next
 Case Else
 MsgBox Error & " (" & Err & ")"
 Resume ExitHere
 End Select
End Sub

 The
code provided in basMovement makes it easy for you to move this
functionality from one application to another just by hooking the
correct form and control events. You can get similar results by
creating your own toolbar and using the record navigation buttons
that Access provides. A toolbar you create will control whatever form
happens to be the current form. Figure 2-12 shows a
form/toolbar combination in action. You'll need to
decide for yourself which technique you like best. The toolbar
approach is simpler, but it is difficult to move toolbars from one
database to another, and they do clutter up the work area. You also
have little programmatic control over the toolbars.
[image: A record navigation toolbar can replace navigation buttons on the form]

Figure 2-12. A record navigation toolbar can replace navigation buttons on the form

 The sample form updates the display of
the total number of rows in lblTotalRows every time you move from row
to row. When you first open the form, Access may not yet know how
many rows will be in the recordset, and the value returned in the
recordset's RecordCount property may be inaccurate.
You can move to the last row when you first open the form, forcing
Access to find out how many rows there will be, but this can be slow
if your form's recordset contains a large number of
rows. Access continues to calculate as you use the form, and
eventually it will supply the correct value in the RecordCount
property of the form's recordset. The compromise is
that the total number of rows may be incorrect until you use the form
for a few seconds. If this bothers you, you can add to the
form's Open event code that works like this:
Dim rst As DAO.Recordset

Set rst = Me.RecordsetClone
rst.MoveLast
For small recordsets, this will be fast but also unnecessary, because
the RecordCount property will already be accurate. For large
recordsets, this might take a few seconds to calculate and will make
opening your form seem slower.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New Databases? in the Preface.

2.7. Size a Form's Controls to Match the Form's Size

Problem

 Windows users have become accustomed
to resizing forms on their screens. A professional-looking
application will proportionally resize the controls on a form when
you stretch or shrink that form. You'd like to be
able to resize your forms while the application is running and have
the controls on the form react appropriately. For example, the
Database Explorer window's list box expands when you
expand the window. How can you do this on your own forms?

Solution

 Because Access can notify your
application when the user resizes a form, you can attach code to the
Resize form event and react to the change in size. Access also
triggers this event when it first draws the form, so you can place
your controls correctly then, too. Base your calculations on the
form's InsideWidth and InsideHeight properties.

 Load and run the form
frmExpando in 02-07.MDB. Resize the form and
watch the size of the large text box. Also notice the positions of
the two command buttons. Figure 2-13 shows the form
in design mode, and Figure 2-14 shows the form sized
to different proportions. Though it's perfectly
reasonable to change the size of all the controls, this form does
not. It uses three different techniques:
[image: frmExpando in design mode]

Figure 2-13. frmExpando in design mode

	Do nothing
	The label above the text box doesn't change at all
as you resize the form.

	Change position only
	The two command buttons move with the right edge of the form, but
they don't change size.

	Change size
	The large text box changes its size to match the size of the form.

[image: frmExpando at runtime, with different proportions]

Figure 2-14. frmExpando at runtime, with different proportions

The code that does the work in this case is specific to the
particular form. Follow the steps below to create a form similar to
frmExpando. Once you've gone through these steps,
you should be able to expand on the concepts (pun intended) and
create your own self-sizing forms.
	Create a new form and create controls and properties as shown in
Table 2-5.

Table 2-5. Controls and their properties for frmExpando
	
 Control type

 	
 Property

 	
 Value

	
 Label

 	
 Name

 	
 lblSample

	

	
 Left

 	
 0.1 in

	

	
 Top

 	
 0.0833 in

	

	
 Width

 	
 1.7917 in

	

	
 Height

 	
 0.1667 in

	

	
 Caption

 	
 Enter some text

	
 Text box

 	
 Name

 	
 txtEntry

	

	
 Left

 	
 0.1 in

	

	
 Top

 	
 0.3333 in

	

	
 Width

 	
 1.8 in

	

	
 Height

 	
 0.8333 in

	
 Command button (OK)

 	
 Name

 	
 cmdOK

	

	
 Caption

 	
 &OK

	

	
 Left

 	
 2 in.

	

	
 Top

 	
 0.3333 in

	

	
 Width

 	
 0.6979 in

	

	
 Height

 	
 0.25 in

	
 Command button (Cancel)

 	
 Name

 	
 cmdCancel

	

	
 Caption

 	
 &Cancel

	

	
 Left

 	
 2 in.

	

	
 Top

 	
 0.6667 in

	

	
 Width

 	
 0.6979 in

	

	
 Height

 	
 0.25 in

	
 Place the
following code in the form's Resize event procedure.
You can copy this code from frmExpando's.
Private Sub Form_Resize()
 Dim intHeight As Integer
 Dim intWidth As Integer
 Dim ctl As Control
 Static fInHere As Integer

 Const acbcMinHeight = 2000
 Const acbcMinWidth = 4000

 ' Optimize a bit. If you're already executing the code in here,
 ' just get out. This can happen if you're in here because of an
 ' auto-resize (if you try and size the form too small).
 If fInHere Then GoTo ExitHere
 fInHere = True

 On Error GoTo HandleErr

 ' Get the current screen coordinates.
 intHeight = Me.InsideHeight
 intWidth = Me.InsideWidth

 ' Make sure the width and height aren't too small. If they are,
 ' resize the form accordingly. This could force Access to call
 ' this sub again, so use fInHere to avoid that extra overhead.
 If intWidth < acbcMinWidth Then
 DoCmd.MoveSize , , acbcMinWidth
 intWidth = Me.InsideWidth
 End If
 If intHeight < acbcMinHeight Then
 DoCmd.MoveSize , , , acbcMinHeight
 intHeight = Me.InsideHeight
 End If

 ' Set the detail section's height to be the same as the form's.
 ' Change this if you want to include header and footer sections.
 Me.Section(0).Height = intHeight

 ' Align all the other controls, based on the left margin of the text box.
 Set ctl = Me.txtEntry
 With ctl
 ' Make the left and bottom margins equal.
 .Height = intHeight - (.Left + .Top)
 ' The new width is the width of the form, minus the width of the
 ' buttons, minus 3 times the gap (the left margin). Two gaps are
 ' for the buttons, and one more is for the left margin itself.
 .Width = intWidth - Me.cmdOK.Width - (3 * .Left)
 End With
 ' Set the positions of the two buttons.
 With Me.cmdOK
 .Left = intWidth - .Width - ctl.Left
 End With
 With Me.cmdCancel
 .Left = intWidth - .Width - ctl.Left
 End With

ExitHere:
 Exit Sub

HandleErr:
 fInHere = False
 Resume ExitHere
End Sub

Discussion

 The code used in this solution reacts to
the Resize events that occur when you resize a form in run mode (and
when you open the form). The code retrieves the
form's current size (its InsideWidth and
InsideHeight properties) and resizes the controls accordingly.

 This example
starts out by checking a flag, fInHere, and causes the subroutine to
exit if the variable's value is
True. It's possible that the
procedure itself might cause another Resize event (if
you've sized the form smaller than the preset
minimum size); this flag ensures that the routine
doesn't do more work than it needs to do.
Using the Static Keyword
The fInHere flag was declared with the Static
keyword. This keyword indicates that Access will maintain the value
of the variable between calls to the function. You could accomplish
the same effect by making fInHere global, but making the variable
static makes it exist as long as the form is loaded, maintains its
value from one call to another, and is local to the current
procedure. The variable performs its task (as a sentry) without
possible intervention from any other procedure.

The code next retrieves the current form size and stores the values
into local variables. By placing these values into variables, Access
eliminates the need to retrieve the values of the properties every
time you need to use them. This speeds up the operation, because
retrieving property values is expensive in terms of operating speed.
' Get the current screen coordinates.
intHeight = Me.InsideHeight
intWidth = Me.InsideWidth

 Once it has
retrieved the sizes, the procedure verifies that the form
hasn't been sized too small by the user. If it has
been, it forces the form to be at least as large as the preset values
of acbcMinWidth and acbcMinHeight:
If intWidth < acbcMinWidth Then
 DoCmd.MoveSize , , acbcMinWidth
 intWidth = Me.InsideWidth
End If
If intHeight < acbcMinHeight Then
 DoCmd.MoveSize , , , acbcMinHeight
 intHeight = Me.InsideHeight
End If
Finally, the procedure sets the sizes and locations of each of the
controls based on the new width and height of the form. First, it
sets the height of the form's detail section,
Section(0), so that there will be room for all of the controls at the
new height. It then sets the width and height of the text box and
sets the left coordinates of the command buttons. This preserves
their sizes but resets their positions:
Set ctl = Me.txtEntry
With ctl
 .Height = intHeight - (.Left + .Top)
 .Width = intWidth - Me.cmdOK.Width - (3 * .Left)
End With
' Set the positions of the two buttons.
With Me.cmdOK
 .Left = intWidth - .Width - ctl.Left
End With
With Me.cmdCancel
 .Left = intWidth - .Width - ctl.Left
End With
The values used as offsets in this example were all arbitrarily
chosen. They work for this particular example, but
you'll need to vary them for your own forms.
Remember, also, that this example was quite simple.
You'll be doing many more calculations if you want
to resize a multicolumn list box, for example. In any case, the
concepts are the same: resize each of the controls based on the
current size of the form. The tricky part is finding some
"reference" on which you can base
your sizing decisions; in this example, we used the offset of the
expanding text box from the left edge of the form.

2.8. Make a Simple "Searching" List Box

Problem

 You'd like
to create a text box/list box combination like the one in Windows
Help. As you type in the text box portion of the control, you want
the list box to scroll to match whatever's been
typed so far. You know you could use a combo box for this, but the
combo box keeps closing up. You want something
that's permanently open.

Solution

Entering a portion of the value they're looking for
and seeing the matches displayed as users type is an excellent way to
find specific values in a list. You get the best of both worlds: the
functionality of a combo box and the "permanently
open" look of a list box.

 The key to implementing this
functionality is the text box's Change event. Every
time the text in the text box changes, the code
you'll use will automatically find the matching
value in the associated list box. You'll be able to
call a function that will handle all the work for you. In addition,
because searching through indexed tables is so much faster than
walking through dynasets (the results of running a query or a SQL
expression), this solution offers two solutions to this problem: one
for list boxes that are bound to tables and another for list boxes
that are bound to queries or SQL expressions. Figure 2-15 shows frmSearchFind in action.
[image: Using Incremental Search on frmSearchFind]

Figure 2-15. Using Incremental Search on frmSearchFind

The methods you'll find in this solution apply only
to bound list boxes.
To test out the functionality, open the database
02-08.MDB and then open either frmSearchFind or
frmSearchSeek. As you type in the text box, you'll
see the associated list box scroll to match what
you've typed. If you backspace to delete some
characters, the list box will still match the characters that remain
in the text box. When you leave the text box or click on an item in
the list box, you'll see the full text of the chosen
item in the text box. The functionality is the same no matter which
form you use. frmSearchSeek will look up items faster, though,
because it's guaranteed to use an index to do its
work.
Follow these steps to build a form like frmSearchFind, which will use
a query or SQL expression as the row source for the list box:
	In your own database, create a new form that contains at least a text
box and a list box. For the sake of this example, name the text box
txtCompany and the list box lstCompany.

	

 Set properties, as shown
in Table 2-6.

Table 2-6. Controls and properties for search project form
	
 Control type

 	
 Property

 	
 Setting

	
 Text box

 	
 Name

 	
 txtCompany

	

	
 OnExit

 	
 [Event Procedure]

	

	
 OnChange

 	
 [Event Procedure]

	
 List box

 	
 Name

 	
 lstCompany

	

	
 AfterUpdate

 	
 [Event Procedure]

	

	
 RowSource

 	
 qryCustomers

	

	
 ColumnCount

 	
 2

	

	
 ColumnWidths

 	
 0

	

	
 BoundColumn

 	
 2

	Import the table Customers and the query qryCustomers from
02-08.MDB.

	Put the following code in the lstCompany_AfterUpdate event procedure:
Private Sub lstCompany_AfterUpdate()
 acbUpdateSearch Me.txtCompany, Me.lstCompany
End Sub

	Put the following code in the txtCompany_Change event
procedure:
Private Sub txtCompany_Change()
 Dim varRetval As Variant

 varRetval = acbDoSearchDynaset(Me.txtCompany, _
 Me.lstCompany, "Company Name")
End Sub

	Put the following code in the txtCompany_Exit event
procedure:
Private Sub txtCompany_Exit(Cancel As Integer)
 acbUpdateSearch Me.txtCompany, Me.lstCompany
End Sub

	Import the module basSearch from 02-08.MDB. This
module contains the code that does all the work.

 Every time you change the value in
txtCompany, Access triggers txtCompany's Change
event. The code attached to that event calls down into the common
function, acbDoSearchDynaset. In general, the
syntax for calling acbDoSearchDynaset is:
varRetval = acbDoSearchDynaset(textbox, listbox, "Field to search")
where textbox is a reference to the text
box in which you're typing,
listbox is the list box in which
you're searching, and
"Field
 to
 search" is the field in
the list box's underlying record source through
which you're going to search.
The function acbDoSearchDynaset creates a
dynaset-type Recordset object, searches through it for the current
value of the text box, then sets the value of the list box to match
the value the code found in the underlying record source. Its source
code is:
Public Function acbDoSearchDynaset(ctlText As Control, _
 ctlList As Control, strBoundField As String) As Variant

 ' Search through a bound list box, given text to find from
 ' a text box. Move the list box to the appropriate row.
 ' The list box can have either a table or a dynaset (a query
 ' or a SQL statement) as its row source.
 ' In:
 ' ctlText: A reference to the text box you're typing into
 ' ctlList: A reference to the list box you're looking up in
 ' strBoundField: The name of the field in the underlying
 ' table in which you're looking for values
 ' Out:
 ' Return value: Either 0 (no error) or an error variant
 ' containing the error number

 Dim rst As DAO.Recordset
 Dim varRetval As Variant
 Dim db As DAO.Database

 On Error GoTo HandleErr

 Set db = CurrentDb()
 Set rst = db.OpenRecordset(ctlList.RowSource, dbOpenDynaset)
 ' Use the .Text property, because you haven't left the control
 ' yet. Its value (or its .Value property) isn't set until you
 ' leave the control.
 rst.FindFirst "[" & strBoundField & "] >= " & acbcQuote & _
 ctlText.Text & acbcQuote
 If Not rst.NoMatch Then
 ctlList = rst(strBoundField)
 End If
 varRetval = acbcErrNoError

ExitHere:
 acbDoSearchDynaset = varRetval
 On Error Resume Next
 rst.Close
 Set rst = Nothing
 Exit Function

HandleErr:
 varRetval = CVErr(Err)
 Resume ExitHere
End Function

 The example in this solution is also set
up so that if you leave the text box, it pulls in the currently
selected item from the list box. That means that you can use Tab to
leave the text box, and the code will place the value that matches as
much as you've typed so far in the text box.

Discussion

 Notice that the list
box's ColumnCount property is 2 and the ColumnWidths
property is 0 in this example. This occurs because the query used,
qryCustomers, contains two columns, with the first column hidden in
the list box. Because you're searching for the
second column, that must be the bound column.

 This example, as shown so far, uses a
query as the data source for the list box. This method can really
slow things down for large data sets, since it's not
guaranteed that it will be able to use an index. If possible you
should base your list box directly on a table instead, especially if
your data set is much larger than a few hundred rows. In that case,
you can use the Seek method, which is generally much faster than the
FindFirst method used in this example. On the other hand, because it
works with only a single table as its data source,
it's a lot more limiting.

 To use the Seek method,
you'll need to change a few properties. To test it
out, make a copy of frmSearchFind and call the new form
frmSearchSeek. Change the RowSource property of your list box to be
Customers, rather than qryCustomers. In addition, change the function
that txtCompany calls from its Change event procedure to the
following:
Private Sub txtCompany_Change ()
 Dim varRetval As Variant

 varRetval = acbDoSearchTable(Me.txtCompany, _
 Me.lstCompany, "Company Name", "Company Name")

End Sub
In this case, you'll be calling the
acbDoSearchTable function, which searches
through an indexed table instead of through an unindexed dynaset. In
general, you'll call
acbDoSearchTable with the following syntax:
intRetval = acbDoSearchTable(textBox, listBox, "BoundField", "IndexName")
where textbox is a reference to the text
box in which you're typing,
listbox is the list box in which
you're searching,
"BoundField"
is the field in the list box's underlying record
source through which you're going to search, and
"IndexName"
is the name of the index you're going to use.
(Usually it'll just be
"PrimaryKey," but in this example
use "Company Name". This table is
indexed both on the Customer ID field (the primary key) and the
Company Name field; you're using the Company Name
index.)

 The code for
acbDoSearchTable is almost identical to that for
acbDoSearchDynaset, except that the table search
uses the Seek method to search through an indexed recordset instead
of the FindFirst method. Because it can use the index, it should be
able to find matches much more rapidly than
acbDoSearchDynaset.
Tip
Because acbDoSearchTable requires that the list
box's record source be a table, it will trap for
that error and return a nonzero value as an error variant if you try
to use it with some other data source. In addition, the function will
not work correctly if you mismatch the bound field and the index.
That is, the bound field must be the only field in the selected
index).

 The code for
acbDoSearchDynaset,
acbDoSearchTable, and
acbUpdateSearch is in the module basSearch. If
you want to use this functionality in other applications, import that
module into your application and follow the steps outlined earlier to
set the properties for your text and list boxes. In addition, if you
import the sample code into a database created in Access 2000 or
later, make sure you use the Tools → References menu item
from within VBA to add a reference to the Microsoft DAO type library.
By default, Access applications created in those versions
don't include a reference to DAO, and the sample
code in this demonstration requires this reference in order to do its
work.

2.9. Create a Replacement for Access's InputBox

Problem

 You'd like to be able
to use Access's InputBox
function in your applications, but it's so
ugly! There doesn't appear to
be any way to modify the way it looks, so you'd like
to replace it with a standardized input form of your own.
You'd also like to be able to call into your help
file with a Help button on the input box.

Solution

The dialog you see when you run Access's
InputBox function is just a form, like any other
form, except that it's built into Access. You can
create your own form, open it as a dialog form, and have it look any
way you like. This solution demonstrates a technique you can use in
many situations: creating a pop-up form that waits for input and,
once it's done, allows the caller to retrieve the
information gathered on the form. In this case,
you'll call the acbInputBox
function instead of InputBox, but the results
will be the same.

 Load and run frmTestInputBox from
02-09.MDB. This sample form gathers information
and then calls the acbInputBox function to
display the replacement input form. Once you're done
with the input form, choose OK (to return the text
you've entered) or Cancel (to discard it). The
sample form will pop up a message box with the text you entered.
Figure 2-16 shows the two forms at work.
[image: Use frmTestInputBox to test the replacement input box]

Figure 2-16. Use frmTestInputBox to test the replacement input box

Follow these steps to include this functionality in your own
applications:
	Import frmInputBox from 02-09.MDB into your
database. Modify its appearance any way you like: change its size,
colors, fonts, or any other layout properties. Because the form
includes a module that handles its setup, you'll
want to use the form we've supplied rather than
creating your own.

	Import the module basInputBox from 02-09.MDB. If
you modified the form's name in Step 1,
you'll need to modify the code in basInputBox,
making the acbcInputForm constant match the actual
name of the form.

	To use the new input box, call the acbInputBox
function that's in basInputBox. It requires one
parameter and accepts a number of optional parameters, as shown in
Table 2-7. These parameters exactly match the
parameters used by Access's own
InputBox function. The general syntax for
acbInputBox is:
varRetval = acbInputBox(Prompt[, Title][, Default][, Xpos][, Ypos] _
 [, Helpfile, Context])
For example, to match the function call in Figure 2-16, you could use code like this:
varRetval = acbInputBox(Prompt:="Enter some text:", _
 Title:="This is the title", Default:="Default Text", _
 HelpFile:="msaccess.hlp", ContextID:=101)

Table 2-7. Parameters for acbInputBox
	
 Argument

 	
 Optional?

 	
 Description

	
 Prompt

 	
 No

 	
 String expression to be displayed as the prompt in the input box.

	
 Title

 	
 Yes

 	
 String expression for the caption of the input box. If you omit this
parameter, the caption will be empty.

	
 Default

 	
 Yes

 	
 String expression displayed in the text box when the input box first
pops up. If you omit this parameter, the text box will be empty.

	
 XPos

 	
 Yes

 	
 Numeric expression that specifies, in twips, the distance between the
left edge of the screen and the left edge of the input box. If you
omit this parameter, the input box will be centered horizontally
within the Access work area.

	
 YPos

 	
 Yes

 	
 Numeric expression that specifies, in twips, the distance between the
top edge of the screen and the top edge of the input box. If you omit
this parameter, the input box will be centered vertically within the
Access work area.

	
 Helpfile

 	
 Yes

 	
 String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog. If Helpfile is provided,
Context must also be provided.

	
 Context

 	
 Yes

 	
 Numeric expression that is the Help context number the Help author
assigned to the appropriate Help topic. If Context is provided,
Helpfile must also be provided.

	Once you've called the
acbInputBox function, type a value into the text
box on the form and press either the OK button (or the Return key) or
the Cancel button (or the Escape key). Choosing OK returns the text
you've typed, and choosing Cancel returns
Null.

Discussion

This solution presents several useful techniques: how to use optional
parameters, how to pop up a form and wait for a user response before
returning a value back to the caller, how to initialize a pop-up form
with values before presenting it to the user, and how to access
online help programmatically.
Using optional parameters

 Access allows you to declare and pass
optional parameters to procedures that you create. That way, you can
decide not to pass certain parameters and to use built-in defaults
instead. For the acbInputBox function, only one
parameter is required: the prompt. You can leave off all the rest,
and the function will assign logical defaults for you. Here are a few
comments on using optional parameters in your own procedures:
	
 Once you
use the Optional keyword in your
procedure's declaration, all the subsequent
parameters must also be optional.

	
 Optional parameters can either be
variants, or any specific data type.

	
 If a
Variant parameter is optional, use the IsMissing
function in your code to determine whether the caller supplied a
value for the parameter. If an optional parameter includes a specific
type, specify the default value in the formal declaration of the
method. See the VBA documentation for more information on this
technique.

The code in acbInputBox either checks to see if
the caller passed in a value for the optional parameters using the
IsMissing function, or simply passes along the values supplied by the
caller:
Public Function acbInputBox(Prompt As Variant, _
 Optional Title As Variant, Optional Default As Variant, _
 Optional XPos As Variant, Optional YPos As Variant, _
 Optional HelpFile As Variant, Optional Context As Variant)

 ' This parameter is not optional.
 varPrompt = Prompt

 ' Use a blank title if the caller didn't supply one.
 varTitle = IIf(IsMissing(Title), " ", Title)

 ' Put text into the text box to start with.
 varDefault = Default

 ' Specify the screen coordinates, in twips.
 varXPos = XPos
 varYPos = YPos

 ' Specify the help file and context ID.
 varHelpFile = HelpFile
 varContext = Context
 ' See the next section for the rest of the function.

Creating pop-up forms

 You want to be able to call a function
(acbInputBox) that will gather information and
then pop up a form. That form will retain the focus until you are
done with it, and then the function will return back to you the
information it gathered on that form. The key to this process is in
using acDialog as the
WindowMode argument when opening the form.
That way, the code processing in the original function waits, and the
form doesn't relinquish the focus until
you've either hidden it (which is what pressing the
OK button does) or closed it (which is what pressing the Cancel
button does). Once back in the original function, it can check to see
if the form is still loaded (indicating that you pressed the OK
button) and, if so, retrieve the information it needs directly from
the form and then close the pop-up form. Here's the
code from acbInputBox that does all that work:
 ' Open the form in dialog mode. The code will
 ' stop processing, and wait for you to either close
 ' the form, or hide it.
 DoCmd.OpenForm acbcInputForm, WindowMode:=acDialog

 ' If you get here and the form is open, you pressed
 ' the OK button. That means you want to handle the
 ' text in the textbox, which you can get as the
 ' Response property of the form.
 If IsFormOpen(acbcInputForm) Then
 acbInputBox = Forms(acbcInputForm).Response
 DoCmd.Close acForm, acbcInputForm
 Else
 acbInputBox = Null
 End If
How do you know if the form is still open? This code uses the
IsFormOpen function, as follows:
Private Function IsFormOpen(strName As String) As Boolean
 ' Is the requested form open?
 IsFormOpen = (SysCmd(acSysCmdGetObjectState, acForm, strName) <> 0)
End Function

 IsFormOpen

relies on the Access SysCmd function, which,
among other things, can tell you the current state of any object. In
this case, if there is any state for the object (that is, if
SysCmd returns anything besides 0), the form
must be open.
Finally, to retrieve the return value from the pop-up form, you can
use a user-defined property of the form. In this case, we set up
Response to be a property of the form that returns the value that you
typed into the text box on the form. You could, of course, retrieve
that value directly, but this means that the caller has to have
information about the controls on the pop-up form. This way, by
exposing a defined interface between the caller and the form, it
doesn't matter how you rename or change controls on
the form; as long as the form continues to provide the Response
property, your code will still work.

 To
provide the read-only Response property,
frmInputBox's module includes the following Property
Get procedure:
Property Get Response()
 ' Create a user-defined property, Response. This property
 ' returns the value from the text box on the form.
 Response = Me.txtResponse
End Property
This procedure allows outsiders to retrieve what appear to be
properties of the form itself. With this Property Get procedure in
place, you can use syntax like this to retrieve the property:
acbInputBox = Forms(acbcInputForm).Response

 VBA
supports Property Let, Get, and Set procedures. See the VBA online
help for more information.

Initializing pop-up forms

 You've handled the input
parameters and opened the dialog form. How do you tell that form what
those parameters were? Just as forms can expose properties, modules
can expose public variables that other modules and forms can view and
modify. In this case, acbInputBox placed the
appropriate parameters into various module public variables
(varPrompt,
varDefault,
varXPos, etc.). Code attached to the
pop-up form's Open event retrieves the values of
those public variables and uses them to initialize itself. As shown
in the following code, these variables can be accessed as properties
of the module (basInputBox.varDefault, for example). Here is the
Form_Open event procedure:
Private Sub Form_Open(Cancel As Integer)
 On Error GoTo HandleErr

 Me.txtResponse = basInputBox.varDefault
 Me.Caption = basInputBox.varTitle
 Me.lblPrompt.Caption = basInputBox.varPrompt
 If Not IsNull(basInputBox.varHelpFile) And _
 Not IsNull(basInputBox.varContext) Then
 Me.cmdHelp.Visible = True
 ' Set things up for the Help button.
 mvarContext = basInputBox.varContext
 mvarHelpFile = basInputBox.varHelpFile
 Else
 Me.cmdHelp.Visible = False
 End If
 If Not IsNull(basInputBox.varXPos) Then
 DoCmd.MoveSize basInputBox.varXPos
 End If
 If Not IsNull(basInputBox.varYPos) Then
 DoCmd.MoveSize , basInputBox.varYPos
 End If

ExitHere:
 Exit Sub

HandleErr:
 ' Disregard errors.
 Resume Next
End Sub

Programmatically accessing online help

 If you specify a help file and a
context ID when you call acbInputBox, the code
will enable a Help button on the form. When you click on that button,
Access will load the help file, opened to the appropriate page. How
did that all happen? The code attached to the Help
button's Click event, shown here, calls the
WinHelp API function, giving it a help file
name, an action (acbcHELP_CONTEXT, indicating that
the code wants to supply a context ID and have that page visible when
the file opens), and the context ID you supplied. The following is
the code that enables this functionality:
Const acbcHELP_CONTEXT = &H1&

Private Declare Function WinHelp _
 Lib "user32" Alias "WinHelpA" _
 (ByVal Hwnd As Long, ByVal lpHelpFile As String, _
 ByVal wCommand As Long, ByVal dwData As Any) As Long
Private Sub cmdHelp_Click()
 WinHelp Me.hWnd, mvarHelpFile, acbcHELP_CONTEXT, CLng(mvarContext)
End Sub

 Every page
of a Windows help file can be accessed via the unique context ID
that's assigned to it when you build the help file.
Unfortunately, this is of use only if you've built
the help file yourself or have a list of the context IDs for the
various pages. No such list is available for the Access help file;
even if it was, you cannot distribute the Access help file with your
own applications. If you provide your own help file with your Access
application, however, this technique makes it easy to have a help
topic available at the click of a button.

Miscellaneous comments

 The
techniques presented here are not limited to this particular
solution. You can use them any time you need to provide a modal
dialog that gathers information and then returns that information
once you're done with it. Once
you've mastered the concepts in the
"Creating pop-up forms" section,
you will have a technique you can use over and over (for example, to
provide a pop-up calendar form or a password input form).

 The method we chose for initializing the
pop-up form (using module public variables) is not the only method we
could have used. Another popular method is to pass information to the
form in its OpenArgs property: adding an
OpenArgs parameter to the Open Form action
allows you to pass information directly to the opening form. In this
case, because there were many pieces of information to pass over (and
the OpenArgs property is limited to a single string value), we would
have had to write treacherous code to parse the string out to
retrieve the values. Using the technique we chose,
it's just a matter of reading the values from the
module where they were declared. Though this may seem a little messy,
it's a lot simpler in the long run.

See Also

To learn more about the IsMissing VBA function, search for
"IsMissing" in the Access online
help. See Recipe 7.6 in Chapter 7 to
learn another technique for handling parameters. See
Recipe 9.10 in Chapter 9 for
another example of creating a reusable form. For more examples that
call API functions, see Chapter 11.

2.10. Store the Sizes and Locations of Forms

Problem

 Your application uses a number of
forms that you can move around the screen. You'd
like to store the last location away somewhere so that the forms will
appear in the same location the next time you start the application.

Solution

 Some Windows applications are
"smart" and can save the locations
of their windows when they exit. Your application can do this, too,
using the system registry. You can store settings when you close a
form and read them back the next time you open it.

 Open and run the form frmSavePos in
02-10.MDB. Move it around the screen, and
perhaps resize it. When you close the form, code attached to the
Close event will save its coordinates in the system registry
database. When you reopen the form, if the form can find the saved
values in the registry, it will reload the last set of coordinates
and will size and position itself accordingly.
To use this technique with your own forms, follow these steps:
	Import the module basSaveSize from 02-10.MDB
into your own application. This module contains the functions
necessary to save and restore a form's size and
location in the registry.

	
 Add the following code to your
form's Load event procedure. This will restore the
form's size and location when you load the form:
Private Sub Form_Load ()
 acbRestoreSize Me
End Sub

	
 Add the
following code to your form's Unload event
procedure. This will save the size and location when you close the
form:
Private Sub Form_Unload (Cancel As Integer)
 acbSaveSize Me
End Sub

Discussion

Most of the work involved in saving and restoring the form size and
location happens in the imported module, basSaveSize. The two event
procedures, called from the form's Load and Unload
events, simply call procedures in the imported module, passing a
reference to the current form.

 This solution relies heavily on two
built-in functions: SaveSetting and
GetSetting. These two functions store and
retrieve values from the registry database that's a
part of Windows 9x, Windows ME, Windows NT, and Windows 2000. The
sample code uses SaveSetting to save each of the
four coordinates for a form and GetSetting to
retrieve the same information.

 SaveSetting

 and GetSetting
make it easy to get and put values in the registry, but
they're very limited. They work only with the path
HKEY_CURRENT_USER\Software\VB
 and
 VBA
 Program
 Settings (see Figure 2-17), and they create a new key for each value you
save (rather than storing multiple values in one key). If
you're interested, investigate their coverage in
online help, along with their companion functions,
DeleteSetting and
GetAllSettings.
[image: The registry holds the information about saved form locations]

Figure 2-17. The registry holds the information about saved form locations

 The procedures in basSaveSize also
hinge on two Windows API functions.
GetWindowRect, aliased as
acb_apiGetWindowRect, gets the coordinates of a
screen window. MoveWindow, aliased as
acb_apiMoveWindow, moves and sizes a window on
screen.
Why Use MoveWindow Rather than MoveSize?
You might wonder why you shouldn't use the Access
built-in MoveSize macro action: it requires that
you select a form first, and this causes the form to display at the
time you call the MoveSize action. This looks ugly on screen and
makes the procedure less generic. In addition, it requires some work
to convert from screen coordinates (pixels), which
GetWindowRect uses, to twips, which
MoveSize uses. To avoid all these issues, the
sample project uses the Windows API method, MoveWindow, instead.

 The
GetRelativeCoords subroutine in basSaveSize
retrieves the coordinates of a given form. Because the
MoveWindow function requires a position relative
to that of the window's parent to move a window,
GetRelativeCoords must find the coordinates of
both the requested window and its parent window. It calls the Windows
API function GetParent, aliased as
acb_apiGetParent, to find the parent and
retrieves the coordinates of both. It fills in a user-defined
structure with the relative coordinates.
' Store rectangle coordinates.
Type acbTypeRect
 lngX1 As Long
 lngY1 As Long
 lngX2 As Long
 lngY2 As Long
End Type

' Windows 95/98/NT4/2000 puts a 2-pixel
' border around the MDI client area, which
' doesn't get taken into account automatically.
' If you're using NT 3.51, you're on your own.
Private Const adhcBorderWidthX = 2
Private Const adhcBorderWidthY = 2

Private Sub GetRelativeCoords(frm As Form, rct As acbTypeRect)

 ' Fill in rct with the coordinates of the window.
 Dim hwndParent As Long
 Dim rctParent As acbTypeRect

 ' Find the position of the window in question, in
 ' relation to its parent window (the Access desktop, most
 ' likely, unless the form is modal).
 hwndParent = acb_apiGetParent(frm.Hwnd)

 ' Get the coordinates of the current window and its parent.
 acb_apiGetWindowRect frm.Hwnd, rct
 ' If the form is a popup window, its parent won't
 ' be the Access main window. If so, don't
 ' bother subtracting off the coordinates of the
 ' main Access window.
 If hwndParent <> Application.hWndAccessApp Then
 acb_apiGetWindowRect hwndParent, rctParent

 ' Subtract off the left and top parent coordinates, since you
 ' need coordinates relative to the parent for the
 ' acb_apiMoveWindow() function call.
 rct.lngX1 = (rct.lngX1 - rctParent.lngX1 - adhcBorderWidthX)
 rct.lngY1 = (rct.lngY1 - rctParent.lngY1 - adhcBorderWidthY)
 rct.lngX2 = (rct.lngX2 - rctParent.lngX1 - adhcBorderWidthX)
 rct.lngY2 = (rct.lngY2 - rctParent.lngY1 - adhcBorderWidthY)
 End If
End Sub
The acbSaveSize procedure first retrieves the
current coordinates for the requested form and then saves those
values to the registry. Figure 2-17 shows the
registry after saving the settings for the sample form. The function
creates a key named Form Sizes in the registry,
with a subkey for each form whose coordinates you save. Within each
subkey, the procedure creates a separate value entry for each of the
four coordinates. The source code related to the
acbSaveSize procedure is:
Private Const acbcRegTag = "Form Sizes"
Private Const acbcRegLeft = "Left"
Private Const acbcRegRight = "Right"
Private Const acbcRegTop = "Top"
Private Const acbcRegBottom = "Bottom"
Public Sub acbSaveSize(frm As Form)
 Dim rct As acbTypeRect

 GetRelativeCoords frm, rct
 With rct
 SaveSetting acbcRegTag, frm.Name, acbcRegLeft, .lngX1
 SaveSetting acbcRegTag, frm.Name, acbcRegRight, .lngX2
 SaveSetting acbcRegTag, frm.Name, acbcRegTop, .lngY1
 SaveSetting acbcRegTag, frm.Name, acbcRegBottom, .lngY2
 End With
End Sub
When it comes time to retrieve the saved coordinates, the
acbRestoreSize procedure retrieves the four
coordinates from the registry and then, if the width and the height
of the new form would be greater than 0, resizes the form. Its source
code is:
Public Sub acbRestoreSize(frm As Form)
 Dim rct As acbTypeRect
 Dim lngWidth As Long
 Dim lngHeight As Long

 rct.lngX1 = GetSetting(acbcRegTag, frm.Name, acbcRegLeft, 0)
 rct.lngX2 = GetSetting(acbcRegTag, frm.Name, acbcRegRight, 0)
 rct.lngY1 = GetSetting(acbcRegTag, frm.Name, acbcRegTop, 0)
 rct.lngY2 = GetSetting(acbcRegTag, frm.Name, acbcRegBottom, 0)

 lngWidth = rct.lngX2 - rct.lngX1
 lngHeight = rct.lngY2 - rct.lngY1

 ' No sense even trying if both aren't greater than 0.
 If (lngWidth > 0) And (lngHeight > 0) Then
 ' You would think the MoveSize action would work here, but that
 ' requires actually SELECTING the window first. That seemed like
 ' too much work, when this procedure will move/size ANY window.
 ' Also, MoveSize must DISPLAY the window before it can move it.
 ' It looked quite ugly.
 acb_apiMoveWindow frm.Hwnd, _
 rct.lngX1, rct.lngY1, lngWidth, lngHeight, True
 End If
End Sub
You may want to store properties other than the size and location of
the form—for instance, the current record number for a bound
form, or which control was last selected. In any case, the example in
02-10.MDB stores information in such a way that
you can store as many properties as you would like by adding to the
group describing each form in the registry.

See Also

For more examples using the Windows API, see Chapter 11.

2.11. Open Multiple Instances of a Form

Problem

 In an application, you have
a form showing information about a customer. You would like to be
able to open another copy of the form so you could move to a
different row, compare values, perhaps copy from one row to another,
or just look at more than one customer's record at
once. As far as you can tell, you can have only one open copy of a
form at a time.

Solution

 In older
versions of Access, you were limited to having only a single copy of
a form open at any time. Starting with Access 95, you can open
multiple instances of a form, under complete program control.
There's no user interface for this functionality,
however, so you must write code to make it happen. This solution
demonstrates how to create, handle, and delete multiple instances of
a form using the New keyword and user-defined
collections.
Follow these steps to convert your own forms to allow for multiple
instances:
	Add two buttons to your form, with captions like Create New Instance
(named cmdViewAnother in the example) and Delete All Extra Instances
(named cmdCloseAll in the example).

	
 Add the following code to
the Click event procedure of the Create New Instance button:
Private Sub cmdViewAnother_Click()
 Call acbAddForm
End Sub

	Add the following code to the Click event procedure of the Delete All
Extra Instances button:
Private Sub cmdCloseAll_Click()
 Call acbRemoveAllForms
End Sub

	
 Add the following code to
the Close event procedure for the form:
Private Sub Form_Close()
 Call acbRemoveForm(Me)
End Sub

	Import the module basMultiInstance from
02-11.MDB.

To see this functionality in action, load and run frmCustomers from
02-11.MDB. Once it's open,
click View Another Customer. This will create a new instance of the
original form, with its own set of properties and current row. You
can create as many new forms as you like and move from row to row on
any or all of them. When you're done, click Close
All Extra Copies, which will run code to delete all the extra forms.
Figure 2-18 shows the original form, along with
three extras.
[image: Clones of frmCustomers with their own current rows]

Figure 2-18. Clones of frmCustomers with their own current rows

Discussion

 Working with multiple instances of forms
requires three skills: creating the new forms, storing their
references, and deleting them. All three topics center around
user-defined collections. These collections allow you to add and
delete items at will, based on either their position in the
collection or a string value that uniquely identifies each element.
This example uses each form's hWnd property (its
window handle) to identify the form in the collection.

 In Access, each
form stored in the database can be viewed as its own
"class" of form:
it's an object that you can replicate in memory,
using the New keyword. The following statement
will create a new instance of the form named frmCustomers:
Set frm = New Form_frmCustomers

 Form_frmCustomers
is the object type, and its name originates from its type (Form)
concatenated with the actual class name (frmCustomers). Once
you've executed this line of code, frm refers to a
new, invisible form. You can set its properties, if you like, or make
it visible with the following statement:
frm.Visible = True

 If you want to refer to your new
form later, you'll need to store a reference to it
somewhere. In the example code, we used a user-defined collection.
When you create a new instance of the form, the code adds that form
reference to the collection so you can find the form, under program
control, when you need to refer to it again.
Life Span of a Form
The variables that refer to the newly created forms must have a life
span longer than that of the procedure that created the forms. In
this case, the form references are stored in a module-level
collection, so their lifetime is the same as the database itself.
When you create a new instance of a form, if the variable referring
to that form goes out of scope, Access destroys the new form
instance. Because you'll want your forms to hang
around longer than that, make sure your form variables have a static,
module, or global scope.

 In this example, the
acbAddForm subroutine creates and stores the new
form references. As it creates a new form (when requested to do so by
that button click on frmCustomers), it adds the form reference to the
collection of forms. A collection's Add method
allows you to add the item and optionally store a unique string value
describing the value at the same time. In this case, the code stores
the form's hWnd property, converted to a string, as
its unique identifier. The code also increments a variable that keeps
track of the number of instances and places the new form at a
convenient location before making it visible. This is the
acbAddForm subroutine:
Private colForms As New Collection
Private mintForm As Integer

Const acbcOffsetHoriz = 75
Const acbcOffsetVert = 375

Public Sub acbAddForm()
 Dim frm As Form

 Set frm = New Form_frmCustomers

 ' You have to convert the key to a string, so tack a "" onto
 ' the hWnd (which uniquely identifies each form instance)
 ' to convert it to a string.
 colForms.Add Item:=frm, Key:=frm.Hwnd & ""

 ' Build up the caption for each new instance.
 mintForm = mintForm + 1
 frm.Caption = frm.Caption & " " & mintForm

 ' The numbers used here are arbitrary and are really useful
 ' only for this simple example.
 frm.SetFocus
 DoCmd.MoveSize mintForm * acbcOffsetHoriz, mintForm * acbcOffsetVert
 ' Finally, set this form to be visible.
 frm.Visible = True
End Sub

Sub acbRemoveForm(frm As Form)
 ' All the forms call this from their Close events. Since
 ' the main form isn't in the collection at all, it'll cause
 ' an error. Just disregard that.
 On Error Resume Next
 colForms.Remove frm.Hwnd & ""
 Err.Clear
End Sub

 Eventually
you'll want to close down all the extra instances of
your form. This is quite simple: once you delete the form reference,
Access will close the form for you. Therefore, in reaction to the
Close All Instances button you created on your form, Access runs this
subroutine:
Public Sub acbRemoveAllForms()
 Dim varForm As Variant

 ' Reset the static variables.
 mintForm = 0
 For Each varForm In colForms
 colForms.Remove 1
 Next varForm
End Sub

 This
subroutine first resets the total number of instances back to 0, then
walks through the collection of form instances one at a time,
removing the first item each time. Because Access renumbers the
collection each time you remove an item, this is the simplest way to
remove all the items.

 To keep
things neat, we instructed you to attach to the
form's Close event code that removes the specific
form from the collection of forms when you close that form. Though
this example doesn't need that functionality, you
may find that in other situations you do need your collection to
reflect accurately the forms that are currently loaded (if you want
to list all the open forms, for example). There is one wrinkle here,
however: when you ask the application to close all extra instances,
Access closes each form, one by one. This, in turn, triggers the
Close event for each of those forms. The Close event calls code
attached to that event that attempts to remove the form from the
collection of forms, but that form has already been removed from the
collection. Therefore, the acbRemoveForm
subroutine, shown here, disables error handling; attempting to remove
an already removed form won't trigger an error.
Public Sub acbRemoveForm(frm As Form)
 ' All the forms call this from their Close events. Since
 ' the main form isn't in the collection at all, it'll cause
 ' an error. Just disregard that.
 On Error Resume Next
 colForms.Remove frm.hWnd & ""
 Err.Clear
End Sub
Extra instances of forms aren't really treated
exactly the same as their originals. For example, all the copies of a
form share the same name as the original, so if you attempt to use
the syntax:
Forms!frmCustomers
or:
Forms("frmCustomers")
to refer to an instance of a form, you'll be able to
access only the original form. Access does add each instance to the
Forms collection, but you can access them only by their ordinal
positions in the collection. If you loop through the Forms collection
to close all open forms, the code will close the instances, too.
Form instances have their own properties and their own current rows,
but any changes you make to a form instance are not saved. That is,
all instances of a form other than the original are read-only.
That's not to say that the data on the form is
read-only—it's the design
of the form instance that's read-only.
You'll find multiple instances of forms to be a
useful addition to your programming arsenal. They allow users to view
multiple rows with their forms in Form View (the proverbial
"have their cake and eat it, too"
situation), and from there to copy/cut/paste data from one row to
another. Your responsibility as the developer is to carefully manage
the creation, storage, and deletion of these forms, because the
Access user interface provides no help.

Chapter 3. Reports

You may devote days, weeks, or even months of work to designing
tables and queries and writing the macros and code to put an
application together, but along with your
application's forms, its reports
are the application. Because of this,
you'll want make them as clear and attractive as
possible.
The first solution in this chapter shows you how to do something that
should be (and is) easy: printing a report with line numbers. Next,
you'll learn how to print the value of query
parameters on a report based on a parameter query and how to create
an attractive multiple-column report.
The next group of solutions will teach you how to use Visual Basic
for Applications (VBA) code and macros to print a message on a report
only if certain conditions are met, how to create
telephone-book-style page-range indicators, how to print a bar graph
on a report using rectangle controls, and how to calculate page
totals.
Next, you'll employ more challenging VBA code to
work around the limitations of the CanGrow/CanShrink properties and
prevent blank rows on reports by combining an entire address into a
single expression for a mailing-label report. You'll
see how to suppress printing a report if there are no records to
print. Using an event procedure run from the
report's Format event, you'll learn
how to print one set of headers and footers on odd pages and another
(mirror-image) set on even pages. Then you will learn how to use the
Line method to draw lines or rectangles on a report—in this
case, to make a line the same height as a variable-height text box.
Next, you'll learn how to alternate gray bars on
every other row of the report.
The final three solutions in this chapter show you how to tie a
report's recordset to the filtered recordset of a
form, how to prevent your report from breaking at an inappropriate
place (such as right after a group header), and finally, in the most
complex solution in this chapter, how to modify a
report's grouping and sorting fields on the fly.
3.1. Create a Report with Line Numbers

Problem

 You
have a legal report that has a list of items in the detail section.
You're required to sequentially number each item in
the list. You thought about using an AutoNumber field, but this
won't work because you want the number to reset
itself for each group and you often want to print the items in a
different order from how you entered them. Is there an easy way to
create on the fly report line numbers that pertain only to the data
printed on the report?

Solution

 Yes, there is an easy way to do this
that makes use of an underused property of a text box, RunningSum.
This solution shows you how to add line numbers to your report by
creating an unbound text box based on a simple calculation and
adjusting the RunningSum property of this control.
To create line numbers on your own reports, follow these steps:
	Create a new report or open an existing report in design mode. Add an
unbound text box control to the detail section with the following
ControlSource setting:
=1

	For the sample report, we named the control txtLineNumber.

	Change the RunningSum property for the control from the default of No
to either Over Group or Over All. We chose Over Group for the sample
report (see Figure 3-1).

[image: The RunningSum property can be set to No, Over Group, or Over All]

Figure 3-1. The RunningSum property can be set to No, Over Group, or Over All

	Save the report and preview it to confirm that it now includes
sequential line numbers.

To see an example of this solution, open
03-01.MDB. Run the rptEvidenceByCase report in
preview view (see Figure 3-2). This report prints
out a list of all evidence items, grouped by CaseId. Notice the line
number field on the left side of the report, which resets to zero at
the start of each group.
[image: The rptEvidenceByCase report includes line numbers]

Figure 3-2. The rptEvidenceByCase report includes line numbers

Discussion

 Setting the ControlSource of the line
number control to =1 tells Access to print a
constant of 1 for all records. This is what would happen if you
didn't also adjust the RunningSum property of the
control.
Setting the RunningSum property to Over Group or Over All tells
Access to print the value of the first record as it would normally
(in this case, to print 1) but, for the second record, to take the
value of the first record and add it to the value of the second
record, printing the cumulative total instead of the value it would
normally print (in this case, 2). For the third record, Access adds
the value of the second record (which is really a sum of the first
and second records' values) to the value of the
third record (in this case, 3). This accumulation of values continues
until the end of the report (if you set RunningSum to Over All) or
until the beginning of the next group (if you set RunningSum to Over
Group).

 You can use RunningSum to accumulate
nonconstant values, too. For example, if you want a running total of
the weight of evidence items in the rptEvidenceByCase report for each
record, you can add a second Weight text box control to the right of
the existing Weight control, making the second control identical to
the first but this time setting RunningSum to Over Group.
You'll also find the RunningSum property useful for
financial reports for which you'd like to include a
cumulative year-to-date column.

3.2. Print the Value of a Parameter on a Report

Problem

 You've
created a report based on a parameter query that prompts the user for
one or more parameters when the query is run. The report works just
fine, but you'd like to be able to document
somewhere on the report what parameter values were entered by the
user. That way you'll know, for example, which
years' records are included in the report. Is there
any way to do this with Access?

Solution

You can print the values of query parameters on a report by referring
to the parameters as if they were fields in the underlying query.
This solution shows you how to create controls on a report that
document the user-entered runtime parameters.
Load the 03-02.MDB database and open the
qryAlbumsPrm query in design mode to verify that this query has three
parameters (Figure 3-3). Now open the rptAlbumsPrm
in preview view. Because this report is based on qryAlbumsPrm, you
will be prompted for the three parameters.
[image: The qryAlbumsPrm parameter query includes three parameters]

Figure 3-3. The qryAlbumsPrm parameter query includes three parameters

Enter your values at the parameter prompt. If you enter the parameter
values from Table 3-1, you should see a report
that looks similar to the one shown in Figure 3-4.
Table 3-1. Parameters and sample values for qryAlbumsPrm
	
 Parameter

 	
 Sample value

	
 Type of music?

 	
 Rock

	
 Starting year?

 	
 1960

	
 Ending year?

 	
 1979

[image: The rptAlbumsPrm report includes the parameter values in the header]

Figure 3-4. The rptAlbumsPrm report includes the parameter values in the header

Notice that the selected parameters are included in the page header
of the report. Run the report again, entering different parameters,
and verify that the new parameters are correctly printed on the
report.
Follow these steps to print the values of query parameters on your
own report:
	
 Create a query with one or more
parameters. If you aren't sure how to do this, read
the Solution in Recipe 1.1.
Don't forget to declare your parameters using the
Query → Parameters command (see Figure 3-3). In the sample database, we created a
parameter query named qryAlbumsPrm with three parameters.

	

 Create a report based on the
parameter query from Step 1. In the page header of the report (or any
other section you'd like), create text boxes that
reference the parameters as if they were fields in the underlying
query. Surround each parameter reference with square brackets. We
used two text boxes in the rptAlbumsPrm sample report, as summarized
in Table 3-2.

Table 3-2. These two text boxes reference three parameters from the underlying query
	
 Text box name

 	
 Control source

	
 txtMusic

 	
 ="Music Type: " & [Type of music?]

	
 txtYears

 	
 ="Years: " & [Starting year?] &
" to " & [Ending year?]

Warning
These parameter fields will not be listed in either the field list
window or the drop-down list of fields in a
control's ControlSource property.

Discussion

 During report design, you are free to
reference any "unknown"
you'd like as long as you put brackets around it.
(If you don't put brackets around it and
it's not a field in the underlying record source,
Access thinks you entered a string constant and forgot to surround it
with quotes, so it puts the quotes in for you.) When you run the
report, Access tries to locate the unknown references. If it locates
a query parameter or form control that satisfies the reference, it
copies the value into the control and continues running the report.
If it can't locate the unknown reference, however,
it puts up a parameter dialog, requesting help in locating that
unknown piece of data.
Tip
If you run a report and get a parameter dialog when you
didn't expect one, it's likely that
you misspelled either a field name or a reference to a
query's parameter.

 You can also create
parameters directly on reports that are independent of query
parameters. For example, you might use this type of
"report parameter" if you create a
report that requires a person's name and signature
at the bottom of a page when you know that the name will vary every
time you run the report (and cannot be obtained from the
report's record source). Simply add a text box that
references the new parameter—for example, [Enter signature
name:]. Access will prompt you for this report parameter when you run
the report, just as if you had defined the parameter in the
report's underlying query.

3.3. Create a Report with Multiple Columns

Problem

 You want to print a two-column,
phone-book-style report with large initial capital letters to set off
each alphabetical grouping. There is no Report Wizard for creating
such a report, and you don't see a Column property
to set up the number of columns you want. How can you make a
multiple-column report in Access?

Solution

 There is a way to format a report for
multiple columns, but it's not where you might look
for it, on a report's properties sheet or the report
design menu. Instead, you'll find it on the Columns
tab of the Page Setup dialog. This solution guides you through
setting up a multiple-column, phone-book-style report that includes a
large drop cap for each letter of the alphabet.
Follow these steps to create your own multiple-column report:
	Open in design view the report you want to format for multiple
columns, and select File → Page Setup. The Page Setup dialog
appears. Click on the Columns tab of the Page Setup dialog (see Figure 3-5).

[image: The Columns tab of the Page Setup dialog]

Figure 3-5. The Columns tab of the Page Setup dialog

	Enter the appropriate settings for your report.
You'll find a brief description of these settings
and the settings used for the sample report in Table 3-3. Click OK when you're done.

Table 3-3. The Page Setup dialog Layout settings
	
 Setting

 	
 Purpose

 	
 Sample

	
 Number of Columns

 	
 Number of columns.

 	
 2

	
 Row Spacing

 	
 Extra space, in inches, between rows.

 	
 0

	
 Column Spacing

 	
 Extra space, in inches, between columns.

 	
 0.25"

	
 Column Size: Width

 	
 Width of each column.

 	
 3"

	
 Column Size: Height

 	
 Height of each column.

 	
 1.0625"

	
 Same as Detail

 	
 When you check this, Access will copy the width and height of the
report's detail section into the Width and Height
controls.

 	
 Unchecked

	
 Layout Column

 	
 Select "Down, then Across" for
snaking columns or "Across, then
Down" for mailing-label-style columns.

 	
 Down, then Across

	Leave the report and page headers and footers as they are (if your
report has these sections); they will still print across the entire
report width.

	To keep each name, phone number, and address from breaking
inappropriately, set the detail section's
KeepTogether property to Yes.

	Preview the report; it should now display in two columns.

Follow these additional steps to create the first letter grouping
shown in Figure 3-7:
	

 Select View →
Sorting and Grouping to display the Sorting and Grouping window. Add
the grouping field (in rptPhoneBook, we grouped on Company) twice to
the Sorting and Grouping grid. Adjust the settings of each grouping
field as shown in Table 3-4 for the sample report.

Table 3-4. Sorting and Grouping settings for rptPhoneBook
	
 Setting

 	
 First Company field

 	
 Second Company field

	
 Field/Expression

 	
 Company

 	
 Company

	
 Sort Order

 	
 Ascending

 	
 Ascending

	
 Group Header

 	
 Yes

 	
 No

	
 Group Footer

 	
 No

 	
 No

	
 Group On

 	
 Prefix Characters

 	
 Each Value

	
 Group Interval

 	
 1

 	
 1

	
 Keep Together

 	
 No

 	
 No

	Add a text box to the header section of the grouping field. In the
rptPhoneBook report, we used the property settings in Table 3-5. The completed rptPhoneBook report is shown in
design view, with the Sorting and Grouping and properties sheets
visible, in Figure 3-6.

Table 3-5. Property settings for rptPhoneBook
	
 Property

 	
 Setting

	
 Name

 	
 txtFirstLetter

	
 ControlSource

 	
 =Left([Company],1)

	
 Width

 	
 0.4375"

	
 Height

 	
 0.4375"

	
 BackColor

 	
 12632256 (grey)

	
 ForeColor

 	
 0 (black)

	
 FontName

 	
 Arial

	
 FontSize

 	
 24

	
 FontWeight

 	
 Bold

[image: The completed rptPhoneBook report in design view]

Figure 3-6. The completed rptPhoneBook report in design view

	Save the report. Switch to print preview mode to preview how it will
look when you print it.

Now, load 03-03.MDB. The tblCompanyAddresses
table contains a list of businesses and their addresses and phone
numbers. Open rptPhoneBook in preview view. This report prints the
data in two snaking (newspaper-style) columns (see Figure 3-7).
[image: The two-column rptPhoneBook report]

Figure 3-7. The two-column rptPhoneBook report

Discussion

When you create a report, Access assumes you want only one column
unless you specify otherwise. If you want more than one column, you
must adjust the layout properties of the page using the Columns tab
of the Page Setup dialog. The key settings are Number of Columns,
Column Spacing (the extra margin between columns), Width (the width
of each column), and Column Layout (whether Access first prints an
entire column or an entire row). If you want to produce
snaking-column (newspaper-style) reports, select
"Down, then Across" for Column
Layout; for mailing-label-type reports, choose
"Across, then Down". For most
purposes, you can ignore the other settings.

 You will usually create
groups in reports that break on the value of a field itself. For
example, grouping on Company will trigger a new group for each new
unique value of the Company field. Access, however, includes two
group properties that allow you to alter the frequency of groupings:
GroupOn and GroupInterval. Depending on the data type of the grouping
field (see Table 3-6), you can use GroupOn to
group on some subset of characters (Text), a range of numbers
(Number, Currency), or a period of time (Date/Time). Using the
GroupInterval property, you can adjust the grouping further—for
example, you could break on the first two characters of a name, every
$10, or every two months.
Table 3-6. GroupOn property choices
	
 Data type of field

 	
 GroupOn choices

	
 Text

 	
 Each Value (default)Prefix Characters

	
 Number, Currency

 	
 Each Value (default)Interval

	
 Date/Time

 	
 Each Value (default)YearQtrMonthWeekDayHourMinute

 When you use the GroupOn property to
group on anything other than Each Value, you must realize that the
records within the groupings will not be sorted. This means that in
most cases you'll also need to include a second
sorted copy of the field with GroupOn set to Each Value. This is what
we did in the rptPhoneBook example.
Sorting or Grouping?
When you add a field or expression to the Sorting and Grouping
window, you may wonder what determines whether a field is a group or
merely a sort. No single property determines this—rather, a
field becomes a group field if you set either GroupHeader or
GroupFooter (or both) to Yes. You can convert an existing group field
to a sort field by setting both of these properties to No.

 There are several section,
report, and group properties that you can adjust to control whether a
group is kept together on the same column or page and whether a new
column or page is started before or after a group.

See Also

See the Solution in Recipe 3.14 for more
details on controlling page and column breaks.

3.4. Print a Message on a Report if Certain Conditions Are Met

Problem

 On a letter that you mail
to all the customers on a mailing list, you want to print a message
on only some customers' letters (depending on, for
example, the customer's zip code, credit status, or
past orders). How do you make a text box print only when certain
conditions are met?

Solution

 You can create an event procedure
that's called from the Format event of a report
section to make a single control—or an entire
section—visible or invisible depending on a condition you
specify. This solution shows you how to create a simple event
procedure that checks each report record for a certain condition and
then prints a message only if that condition is met.

 Follow these steps to add an event
procedure to your report that prints a message only for certain rows:
	Create a new report or open an existing report in design view. Add to
the page header section any controls that you wish to show for only
selected records. In the rptMailingByZipWithCondition sample, we
included three labels and a rectangle control in the page header
section.

	
 While the cursor is still located in
the page header section, select View → Properties to view
the section's properties sheet (if
it's not already open).

	Create a new event procedure for the section's
Format event. (If you're unsure of how to do this,
see the How Do I Create an Event Procedure? in the the preface of this book.)

	

 Add to the Format event procedure an
If...Then statement with the following basic
structure:
If (some condition) Then
 Me.Section(acPageHeader).Visible = True
Else
 Me.Section(acPageHeader).Visible = False
End If
For example, in rptMailingByZipWithCondition, we added an event
procedure that tests if the first two characters of the Zip Code
field are equal to 98. The complete event procedure is shown here:
Private Sub PageHeader0_Format(Cancel As Integer, _
 FormatCount As Integer)

 ' Set the visibility of the page header section,
 ' depending on whether or not the current
 ' zip code starts with "98".

 If Left(Me.ZipPostalCode, 2) = "98" Then
 Me.Section(acPageHeader).Visible = True
 Else
 Me.Section(acPageHeader).Visible = False
 End If
End Sub

	Save the report and preview it to see if the event procedure is
working properly.

Load the rptMailingByZip report from 03-04.MDB.
This sample report, which is bound to the tblCompanyAddresses table,
is used to print a letter to customers who are sorted by zip code. It
includes a message in the page header that announces the
company's booth in an upcoming conference. The
message prints for all customers, even those outside the Seattle
area. Now load rptMailingByZipWithCondition to see an example of a
report that selectively prints a message. Notice that this version of
the report prints the message only for customers whose zip codes
begin with 98 (see Figure 3-8 and Figure 3-9).
[image: An address whose zip code does not start with 98, with no message]

Figure 3-8. An address whose zip code does not start with 98, with no message

[image: An address whose zip code starts with 98, with the message]

Figure 3-9. An address whose zip code starts with 98, with the message

Discussion

 The event procedure uses the
report's Section property and the
section's Visible property to make an entire section
visible or invisible when the report is formatted. Whether the
section is visible depends on its meeting the condition in the
If...Then expression. In our example, only zip
codes starting with 98 meet this condition, so the message about the
Seattle Expo will print only on pages for customers located in or
near Seattle.

 Table 3-7 lists the values and constants you can
use in expressions to refer to the various sections on a form or
report. Group levels 3 through 10 (reports only) continue the
numbering scheme shown here, but have no corresponding VBA constants.
Table 3-7. Values used to identify form and report sections in expressions
	
 Setting

 	
 VBA constant

 	
 Description

	
 0

 	
 acDetail

 	
 Detail section

	
 1

 	
 acHeader

 	
 Form or report header section

	
 2

 	
 acFooter

 	
 Form or report footer section

	
 3

 	
 acPageHeader

 	
 Form or report page header section

	
 4

 	
 acPageFooter

 	
 Form or report page footer section

	
 5

 	
 acGroupLevel1Header

 	
 Group level 1 header section (reports only)

	
 6

 	
 acGroupLevel1Footer

 	
 Group level 1 footer section (reports only)

	
 7

 	
 acGroupLevel2Header

 	
 Group level 2 header section (reports only)

	
 8

 	
 acGroupLevel2Footer

 	
 Group level 2 footer section (reports only)

In the code, you'll find expressions like the
following:
Me.ZipPostalCode
and
Me.Section(acPageHeader)
In these expressions, the built-in object named Me always refers to
the form in which the code is running. (It's
actually slightly more complex than
this—"Me" actually refers to
the class containing the code, not the form, but
that's a topic best left for a more advanced book.)
Whenever you see code that contains
"Me." you can be assured that the
code is referring to an object on the form, or a field provided by
the form's data source. You may also find code that
uses "Me!" syntax. For all intents
and purposes, this is equivalent to the
"Me." syntax, and you should simply
treat the two syntaxes the same. At this time, the
"Me." syntax is preferred because
it provides a very slight performance edge. In addition, the
"Me." is almost always
optional—you'll see cases in this book in
which the code simply doesn't include this prefix
when referring to controls and fields provided by a form.
In the sample report, which prints one record per page, four controls
need to be turned on or off together: the label with the message, two
labels with Wingdings pointing-hand graphics, and a rectangle
surrounding the other controls. Placing all of these controls in one
section and making the section as a whole visible or invisible is
more efficient than making each control visible or invisible. Often,
however, you'll need to print a message on a report
that contains multiple records per page. For example, you might print
the word "Outstanding" alongside a
sales report when a salesperson has had more than $1 million in sales
for a year. In this case, you'll have to use code
that works with the Visible property of individual controls, such as
that shown here:
If Me.Sales >= 1000000 Then
 Me.txtOutstanding.Visible = True
Else
 Me.txtOutstanding.Visible = False
End If
If you look at rptMailingByZip or rptMailingByZipWithCondition in
design view, you may notice an odd expression as the ControlSource
property for the txtCityStateZip control in both reports:
=([City]+", ") & ([StateProvince]+" ") & [ZipPostalCode]

 Note that we have used both the +
and & concatenation operators in this expression. These two
operators have a subtle difference: When you use + and one of the
concatenated strings is Null, the whole expression
becomes Null; when you use &, the null part of
the expression is ignored. The effect caused by the + operator is
termed null propagation, which you can
short-circuit by surrounding that part of the expression in
parentheses. The net effect of all this is that in the previous
expression, if City is Null, City
and the comma and space following it will drop
out of the expression. Likewise, if StateProvince is
Null, it and the two spaces
to which it is concatenated will drop out of the expression.
Selective use of the + concatenation operator is both easier to read
and more efficient than using one or more IIf
functions.
You may find it useful to collapse an If...Then
statement down into a single expression. For example, the code in the
sample report can be collapsed down to the following single
statement:
Me.Section(acPageHeader).Visible = (Left(Me.ZipPostalCode, 2) = "98")
The second code example could be collapsed into this single statement:
Me.txtOutStanding.Visible = (Me.Sales >= 1000000)
It's up to you to decide which syntax
you'd like to use. Some developers like the full
If...Then statement. Others like the compactness
of the single expression.

3.5. Create a Page-Range Indicator on Each Page

Problem

 You're creating a
report that contains a large number of items. To make it easier to
see the range of items on each page, you'd like to
create a page-range indicator. This would show the first and last
items on the page, as in a telephone book. Is there a way to do this?

Solution

 The answer to your question is a
qualified yes. You can create such a page-range indicator, but
placing it anywhere but in the page footer is difficult. Although you
can place it in the page header, the method to do so is quite complex
and is the subject of a topic in the Microsoft Access Solutions
database (SOLUTIONS.MDB), which shipped with
Access 95 and Access 97. You can also download an Access 2000 version
of this very useful sample database, called
Solutions9.mdb. Search for that name at
http://msdn.microsoft.com to find
the download.

 Because
Access prints documents from top to bottom, by the time you know the
last item on the page it's too late to print it at
the top of the page. The Solutions database workaround involves
forcing the report to format itself twice, capturing the page ranges
for all the pages during the first pass and storing the values in an
array. When it makes the second pass, you supply the values from the
array. That solution requires VBA and is cumbersome. The solution we
present here focuses on a simpler method, placing the information you
need in the page footer. If you can live with that placement, this
solution is straightforward.
To create a page-range indicator on your own reports, follow these
steps:
	Create a new report or open an existing one in design view. Make sure
that the report includes page header and footer sections (if it
doesn't, choose Format → Page Header/Footer
to add them). In the page header section, add a text box and set its
properties, as shown in Table 3-8. This text box
will hold the first row's value when you print the
page.

Table 3-8. Property values for the hidden text box in the report's page header
	
 Property

 	
 Value

	
 Name

 	
 txtFirstItem

	
 Visible

 	
 No

	
 Add a text box in the
report's page footer section. None of its properties
are important to this technique except one, its ControlSource
property. Set the text box's ControlSource property
to be the expression:
=[txtFirstItem] & " -- " & [ProductName]
replacing the [Product Name] reference with the name of the field
you'd like to track in the page-range indicator.
This must match the field name you used in Step 1.

	
 Set the OnFormat event property for
the report's page header section to be the following
event procedure:
Private Sub PageHeader0_Format(Cancel As Integer, FormatCount As Integer)
 Me.txtFirstItem = Me.ProductName
End Sub
This tells Access to run the code every time it formats the page
header (once per page). Figure 3-10 shows the report
and the properties sheet as they will look after
you've assigned the property.

[image: The sample report, rptPageRange, after setting the OnFormat event property]

Figure 3-10. The sample report, rptPageRange, after setting the OnFormat event property

	Save and run your report. You should see the page-range indicator as
in the sample report, rptPageRange.

To view an example of this solution, load the rptPageRange report
from 03-05.MDB in preview view (see Figure 3-11). You'll see, at the bottom
of each page, a listing of the items printed on that page.
[image: rptPageRange includes a page-range indicator in the page footer]

Figure 3-11. rptPageRange includes a page-range indicator in the page footer

Discussion

 The technique presented in this
solution is based on the fact that when Access prints the page header
(or the report header or a group header), it gives you access to the
row of data it's about to print. The same goes for
footers, in reverse—there you have access to the row of data
that's just been printed.
When you call the event procedure from the Format event of the page
header, you place the data from the page's first row
into the hidden text box, txtFirstItem. The data in that text box
doesn't change until you again format the page. When
Access gets to the bottom of the page and attempts to print the page
footer, it calculates the value of the text box
you've placed there. That text box retrieves the
value you previously stored in txtFirstItem and combines it with the
data from the last row that printed on the page to create the
page-range indicator.
Though simple, this method does have a few limitations:
	The page-range indicator must go in the page footer. If you attempt
to place it in the page header, the data it prints will always be off
by a page in one direction or the other, depending on how
you're viewing the report.

	
 For this method to work, you must
include the page header section on every page. (The PageHeader
property for the report must be set to All Pages.) Because you must
fill in the hidden text box once for each page, the only place you
can do that is in the page header.

Tip
It's interesting to note that within an expression
you place within the Properties window, you must surround field names
and control references with brackets ([]). Within VBA code, the
brackets are optional, and you generally don't need
to use them unless the field or control name isn't a
valid VBA identifier (if it includes spaces in its name, for
example).

3.6. Create a Simple Bar Graph on a Report

Problem

 You need to create a simple bar graph
on a report. Microsoft Graph or the Office Web Components would
probably work, but you're hoping for a simpler
native Access solution. You need a bar for each row showing the
relative score for each student. Can't you do this
with the standard Access controls?

Solution

 You can place a rectangle control in
the detail section of your report and set its width during the Format
event that occurs as Access lays out each row of data. This solution
shows how you can create a simple bar graph, setting the width of the
rectangle control to be based on a numeric value in your data.
Open and run the report rptGraph in 03-06.MDB
(see Figure 3-12). This report shows a list of
students and their scores, along with a bar whose width represents
the value of the score.
[image: The sample report, rptGraph]

Figure 3-12. The sample report, rptGraph

To create a bar graph like this one in your own applications, follow
these steps:
	Create your report, including the text data you'd
like to show for each row. The sample report shows the Name and Score
fields from tblScores, using controls named txtName and txtScore.

	Add a rectangle control from the report toolbox and place it next to
the data in the detail section. In the sample report, the
rectangle's control name is rctBar. The
control's width isn't important,
because you'll be adjusting that programmatically
(the example report sets the width of the rectangle to be the maximum
width for the report, four inches). For appearance purposes,
you'll probably want to set its height to be the
same as the height of the text boxes you've already
placed on the report. Figure 3-13 shows the report
in design view.

[image: rptGraph in design view]

Figure 3-13. rptGraph in design view

	If you want, you can place vertical lines at regular intervals along
the maximum length of the bar. In the sample report, the vertical
lines are placed at the 25%, 50%, and 75% locations. You can place
these lines wherever you like; if they're the same
height as the detail section, they'll appear as
continuous lines on the printed report. If you've
used group headers and/or footers in your report,
you'll need to place the vertical lines in those
sections as well to make them appear continuous.

	
 To set the width of the rectangle for
each row, create the following event procedure in the OnFormat event
property of the report's detail section:
Private Sub Detail1_Format(Cancel As Integer, FormatCount As Integer)
 Me.rctBar.Width = (Me.txtScore / 100) * (1440 * 4)
End Sub
This event procedure tells Access to run your new macro each time it
formats a row of data. Figure 3-13 shows the
properties sheet for the detail section.

	Save and run the report. It should look like the report shown in
Figure 3-12.

Discussion

As Access lays out the report and prepares to print it, it formats
each row of data for presentation. As it does this, it runs the VBA
code attached to the OnFormat event property. In this case, for each
row of data, you've told Access to set the width of
the rectangle control based on the value in a numeric field. When it
prints that row, the rectangle has a width proportional to the value
in that numeric field.
In the sample report, the maximum width of the rectangle is four
inches. If a student has a score of 100%, you want the printed bar to
be 4 inches wide. Therefore, the expression:
Me.txtScore/100 * 4

 evaluates to the number of inches wide
that you'd like the bar to be. To set the width of
the bar from the Format event, however, you'll need
to specify the width in twips, not inches, because
that's what Access expects. There are 20 twips in a
point and 72 points in an inch, so there are 1,440 twips in an inch.
To convert the number of inches to twips, multiply the calculated
value by 1,440. The final expression in the sample report is:
(Me.txtScore/100) * (1440 * 4)
This expression will evaluate to be the width of the bar in twips,
which is exactly what you need. If your report needs a scaling factor
other than 100 or a maximum width other than 4,
you'll need to adjust the expression accordingly.

 Though the method presented in this
solution will work only for the simplest of cases, when it does work
it does a great job. It's quick,
it's simple, and it produces nice output. To achieve
the effect you want, experiment with different shadings, border
colors, and gaps between the rows.

3.7. Create a Page Total

Problem

 Access allows
you to create a group total in the group footer on a report or a
report total on the report footer, but you can't
find a way to create a page total in the page footer. You understand
that this problem doesn't come up too often, but for
your report you could really use this element. Is there a way to sum
up values over a single page?

Solution

 It's true that Access
allows aggregate calculations only in group or report footers. You
can, however, easily create page totals using two simple macros. This
solution demonstrates this technique and shows how to add this
capability to any of your own reports.
To create page totals for your own reports, follow these steps:
	
 Create your report, and sort and group
the data as desired. In the report's page footer
section, include a text box named txtPageTotal.

	
 Create the following event procedure in
the Format event of the page header and report header sections:
Private Sub PageHeader0_Format(Cancel As Integer, FormatCount As Integer)
 Me.txtPageTotal = 0
End Sub

Private Sub ReportHeader0_Format(Cancel As Integer, FormatCount As Integer)
 Me.txtPageTotal = 0
End Sub

	
 Create an additional event procedure
in the OnPrint event for the detail section:
Private Sub Detail1_Print(Cancel As Integer, PrintCount As Integer)
 Me.txtPageTotal = Me.txtPageTotal + Me.Freight
End Sub

	Save your report. When you run it, you will see the total of the
field you set in the OnPrint event procedure.

Now load rptPageTotals from 03-07.MDB in preview
view (see Figure 3-14). This report is used to track
orders and their freight costs. The items are grouped by month, and
each group has a total in the group footer. At the bottom of each
page, you'll see the total for all items on the
current page.

 Figure 3-15 shows the sample report in design view.
[image: Page 2 of the rptPageTotals report with page totals]

Figure 3-14. Page 2 of the rptPageTotals report with page totals

[image: rptPageTotals in design view]

Figure 3-15. rptPageTotals in design view

Discussion

 Access makes it simple to sum values in
group or report footers: use the Sum function in
the ControlSource property for a text box. For example, to sum the
freight costs in either a group footer or a report footer, you could
use an expression like this:
=Sum([Freight])
and Access would perform the sum over the range included in the
footer section (for either the group or the entire report). To create
a page total, however, you must dig a bit deeper into the way Access
prints reports.

 The report-printing engine in Access
works as a forward-marching machine: the engine formats and then
prints each section in turn, such that each section is handled in the
order in which it appears on the page. The report-printing engine
deals first with the report header, then any page header, then any
group header, then each row of the detail section, and so on. At each
point, Access allows you to "hook"
into various events, doing work alongside its work.

 The two events described in this solution
are the Format event and the Print event. Normally,
you'll attach a VBA procedure to the Format event of
a section if you want to affect the section's layout
on the page. You'll use the Print event to make
calculations based on the data as you know it's
going to print. When Access calls your macro or VBA code from the
Print event, you are guaranteed that the current row is going to be
printed. You can't assume this from the Format
event, because Access calls the code attached to the Format event
before it decides whether or not the current row will fit on the
current page. From either event, you have access to the current row
of data that's about to be printed, and you can use
that as part of your event procedure.
In this case, calculating a page total requires two steps: you must
reset the page total for each page (and before you start printing the
report), and you must accumulate the value in each row as you print
the row.

 The accumulation part is simple: every
time you print a row, the procedure attached to the detail
section's Print event adds the value in the current
row's Freight field (or whatever field
you're tracking on your own report) to the current
value in txtPageTotal. When Access needs to print the page footer,
that value is filled in and ready to print. The event procedure
should be written on the Print event, not the Format event, to ensure
that you never add a value to the page footer unless
you're sure the row will be printed on the current
page. Calling the code from the Print event guarantees this.

 You can reset the page total so it
starts from zero from the Format event of the page header section.
Because this is the first section that will print on every page,
resetting the total in the page header should work. You
could use the Print event here, but because
you're guaranteed that the page header section will
fit on its page, you might as well do the work as early as possible.
The problem here arises from the fact that, in some reports, you may
tell Access to print the page header only on pages where there
isn't a report header (see the
report's PageHeader property). If you do this,
Access won't format the page header on the first
page, and it therefore won't call the necessary
code. To make up for this, the example report (rptPageTotals in
03-07.MDB) also calls the code from the report
header's Format event. Because this event occurs
only when Access prints the first page, there's no
redundancy here. You may not need to reset the page total from the
report header, but it can't hurt.
Be wary of performing any calculations during a
section's Format event. Because you
aren't guaranteed that the section will actually
print on the current page, you could be calculating based on a value
that won't be a part of the page. Making this
mistake in the sample report, for example, would be a major error.
Because this report is set up so that Access will print a group only
if the entire group can fit on a page, it might format a number of
rows, then decide that the whole group can't fit.
Each time it attempts to format a row, it will call the code attached
to the Format event, which will add the value to the total. To avoid
this problem, perform calculations from a section's
Print event only. Use the Format event to change the layout of a
section—for example, to make a specific control visible or
invisible, depending on the data you find in the current row (see the
Solution in Recipe 3.4 for an example of
this usage).

3.8. Avoid Unwanted Blank Rows on Mailing Labels

Problem

 When you print mailing labels,
especially when you use a small font size and place the address text
boxes close together, you sometimes get unwanted blank rows in the
addresses when the labels print. You also can't seem
to use lines or graphics on your labels without causing blank rows.
How can you get your labels to print correctly—without blank
rows—in these situations?

Solution

 The CanGrow and CanShrink text box
properties for reports allow text boxes to grow or shrink vertically
as needed. These properties normally work well, but sometimes
overlapping text boxes or graphics can interfere with text
boxes' ability to shrink or grow. This solution
shows how you can avoid these problems by combining the output of
several fields into a single expression and using that expression as
the row source of a single text box.
Open the tblCompanyAddresses table from
03-08.MDB in datasheet view. You can see that
this table contains typical address data, with three address fields
(Address1, Address2, and PO Box). Some of the sample records have
blanks in at least one of these address fields.

 Close the table and open the
rptLabels report in preview mode. This is a typical mailing-label
report, as might have been produced by the Mailing Label Report
Wizard. Notice that there are no blank rows in the addresses. Now
open the rptLabelsWithImageBroken report in preview view (see Figure 3-16). We added to the left side of each label an
Image control that causes unwanted blank lines. Finally, open the
rptLabelsWithImageFixed report in preview view (see Figure 3-17). Notice that this version of the report
doesn't have any unwanted blank lines, even though
the same image appears on the left side of each label.
[image: rptLabelsWithImageBroken prints labels with unwanted blank rows]

Figure 3-16. rptLabelsWithImageBroken prints labels with unwanted blank rows

[image: A modified version of the report, rptLabelsWithImageFixed, prints fine]

Figure 3-17. A modified version of the report, rptLabelsWithImageFixed, prints fine

 Follow these steps to create a
mailing-label report, complete with a graphic on each label but
without any unwanted blank lines:
	

 Create a new mailing-label
report. The easiest way to do this is to use the Mailing Label Report
Wizard. The rptLabels sample report was created using this wizard.
Its record source is tblCompanyAddresses.

	

 Add a line, unbound object frame, or
Image control to the label. In the sample database,
rptLabelsWithImageBroken includes an Image control containing a gray
triangle (a Paintbrush image) to the left of the addresses. Here, the
Image control prevents the text boxes' CanShrink
property from working, resulting in numerous blank rows in the
addresses (see Figure 3-16).

	Import the basCrLf module from 03-08.MDB into
your database.

	Delete the multiple address-line controls (five in
rptLabelsWithImageBroken) and replace them with a single text box
that concatenates each of the address lines together. For each text
box that may be missing data, create an expression to wrap the field
in the acbMakeLine function (discussed in
Section 3.8.3). The final control-source expression should look
something like the control source for the txtWholeAddress control in
rptLabelsWithImageFixed, which is shown here:
=acbMakeLine([Address1]) & acbMakeLine([Address2]) & acbMakeLine([POBox]) &
acbMakeLine(([City]+", ") & ([StateProvince]+" ") & [ZipPostalCode]) &
acbMakeLine([Country])

Tip
Press Shift+F2 when your cursor is in the text box's
ControlSource property (or any other property) to open up the Zoom
box, which lets you see the whole expression as you work with it.

	Save the report and run it to make sure it produces the desired
output (like that shown in Figure 3-17). The
completed report is shown in design view in Figure 3-18.

[image: rptLabelsWithImageFixed in design view]

Figure 3-18. rptLabelsWithImageFixed in design view

Discussion

 When you combine several address fields
into a single expression and use that expression as the row source of
a single text box, you have only one text box to grow or shrink as
needed. The elimination of multiple text boxes prevents problems with
CanShrink/CanGrow that occur when a text box that needs to shrink is
placed on the same row as a text box or other control (such as an
Image control) that can't shrink.

 We used the
acbMakeLine function to check for nulls in a
text field and return a null value for the line if the
varValue argument is
Null; otherwise, acbMakeLine
adds carriage-return and line-feed characters after the field. Thus,
a new line is created only if the address line is non-null, giving us
essentially the same effect as using the CanShrink property. The
acbMakeLine function is shown here:
Public Function acbMakeLine(varValue as Variant)
 If IsNull(varValue) Then
 acbMakeLine = Null
 Else
 acbMakeLine = varValue & vbCrLf
 End If
End Function

 acbMakeLine uses the built-in
vbCrLf constant, which is equivalent to typing
Chr$(13)
 &
 Chr$(10).

 If you use a concatenated
expression for an address, you can accommodate more fields on a label
than you could if you placed each address text box on a separate
line. This method works fine as long as you know that each address
will be missing at least one row of address data. If your labels have
room for only four lines of data, for example, you could put five
lines of data into a concatenated expression if you know that no
address will use all five lines.
Unlike specialized label-printing programs, Access does not lock the
report size to the label's dimensions to prevent you
from accidentally changing the sizes of labels after you have created
them with the Mailing Label Report Wizard. It is very easy to
accidentally nudge the right edge or bottom edge of a mailing-label
report (by moving a control, for example) so that the report contents
overprint the labels.

 We could have used a series of
IIf functions here instead of using the
acbMakeLine function, but using
acbMakeLine is simpler and less confusing.

 Another approach would be to
take further advantage of the fact that the + operator propagates
nulls—a feature we're already using to avoid
printing commas after blank cities or extra spaces after blank
states. For example, the following expression will eliminate extra
lines, because everything inside a set of parentheses that includes a
null value will be converted to Null:
([Address1]+Chr$(13)+Chr(10)) & ([Address2]+Chr$(13)+Chr(10)) _
 & ([POBox]+Chr$(13)+Chr(10)) & (([City]+", ") & ([StateProvince]+" ") _
 & [ZipPostalCode] +Chr$(13)+Chr(10)) & ([Country])
Tip
When you first create a mailing-label report, write down its width
and detail section height so that you can quickly recover from any
accidental resizing of the report, which could result in label text
printing outside of the label's boundaries.

3.9. Suppress Printing a Report if There Are No Records to Print

Problem

 You have a report that prints records
you select from a criteria form. Sometimes there
aren't any records that match the criteria and the
report opens with #Error in the detail section,
which is unattractive and confusing. Is there any way you can prevent
the report from printing when it has no records to print?

Solution

Access includes an event, OnNoData, that fires when no records are
present in the report's underlying recordset. This
solution shows you how to use this new event to suppress printing of
the report when no records match the specified criteria.
To create a report that suppresses printing when there are no
records, follow these steps:
	Create a new report or open an existing report in design view.

	
 Create an event procedure attached to
the report's OnNoData property. (If
you're unsure of how to do this, see How Do I Create an Event Procedure?
in the the preface of this book.) Enter the following VBA code in the
event procedure:
Private Sub Report_NoData(Cancel As Integer)
 MsgBox "Sorry, no records match these criteria!", _
 vbExclamation, "No Records to Print"
 Cancel = True
End Sub

	Save and run the report. If you enter criteria that do not match any
records, you will get a message box telling you that no records meet
the criteria (like the one shown in Figure 3-21).

The following example demonstrates this solution. Load the
03-09.MDB database. Open the frmCriteria1 pop-up
criteria form. This form allows you to enter criteria for the
rptSelect1 report (see Figure 3-19).
[image: The frmCriteria1 pop-up criteria form with default values]

Figure 3-19. The frmCriteria1 pop-up criteria form with default values

When you press the traffic-light button, a simple event procedure
will execute that opens the report in print preview mode. The
rptSelect1 report is based on the qryCriteria1 parameter query, which
derives its parameter values from the controls on the frmCriteria1
form. If you accept the default values, the parameter query will
return a recordset with no records. This will produce the report
shown in Figure 3-20.
[image: rptCriteria1 prints a page of errors when no records are selected]

Figure 3-20. rptCriteria1 prints a page of errors when no records are selected

Now open the frmcriteria2 pop-up criteria form. This form is
identical to the first, except that the event procedure attached to
its command button runs the rptSelect2 report instead. If you accept
the default values, the rptSelect2 report will attempt to run, again
with no records. But this version of the report has an event
procedure attached to its OnNoData event that suppresses printing and
instead displays the message box shown in Figure 3-21.
[image: rptCriteria2 displays this message and cancels printing when there are no records]

Figure 3-21. rptCriteria2 displays this message and cancels printing when there are no records

Discussion

 The OnNoData event is triggered
whenever a report attempts to print with no records. If you attach an
event procedure to the OnNoData event, your code will run whenever
the report prints without any records. While the
MsgBox statement informs the user what has
happened, the key line of code is:
Cancel = True
This line tells Access to cancel printing of the report (by setting
the passed Cancel argument to
True).
If you use VBA code to open a report that has no data and allow the
report's OnNoData event to cancel the report, you
will get an error in the code that attempted to open the report. So,
in this solution, you'll find error-handling code in
the button-click event that opens the report in frmCriteria2. When an
error occurs, the code checks whether it's the
expected error, which has a number of 2501. If so, it ignores the
error. Here's the code behind the cmdPrint button:
Private Sub cmdPrint_Click()

 On Error GoTo HandleErr

 Me.Visible = False
 DoCmd.OpenReport "rptSelect2", acPreview

ExitHere:
 DoCmd.Close acForm, Me.Name
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case 2501
 ' The OpenReport action was canceled.
 ' There were no rows. So do nothing.
 Case Else
 MsgBox Err.Number & ": " & Err.Description
 End Select
 Resume ExitHere

End Sub
The report header contains controls to display the selection
criteria, which are picked up from the criteria form, using
expressions like this one:
=[Forms]![frmCriteria1]![txtLastOrderAfter]

 The form disappears from view when the
report opens in print preview mode because the event procedure
attached to the traffic-light button sets the form's
Visible property to False before opening the
report. Making the form invisible (rather than closing it) ensures
that the selection criteria are still available for the
report's data source.

See Also

For more information on printing query criteria on reports, see the
Solution in Recipe 3.2.

3.10. Print Different Headers or Footers on Odd and Even Pages

Problem

 Some of your reports are printed
double-sided, and you would like to have mirror-image headers and
footers on odd and even pages. How do you do this in Access?

Solution

 This technique makes use of two sets
of header and footer controls, one for odd pages and one for even
pages. An event procedure run from the section's
Format event uses the Page property and the Mod
operator to determine whether the page is odd or even and makes the
appropriate controls visible or invisible.
The following steps show you how to create your own report that
prints different headers and footers on odd and even pages:
	Open the report you want to print double-sided (or even single-sided,
with different odd and even headers and footers).

	Make a copy of the header control, and place one of the copies of the
control on the left of the header and the other on the right. Make
the lefthand control left-aligned (to print on even-numbered pages)
and the righthand control right-aligned (to print on odd-numbered
pages).

	
 Create an event procedure
attached to the OnFormat property of the report's
page header section. In the event procedure, enter code similar to
the following:
Private Sub PageHeader_Format(Cancel As Integer, FormatCount As Integer)
 On Error GoTo PageHeader_FormatError

 Dim fIsEven As Boolean

 fIsEven = acbIsEven(Me.Page)

 Me.lblTitleLeft.Visible = Not fIsEven
 Me.lblTitleRight.Visible = fIsEven

End Sub
You'll need to replace the controls in the event
procedure with the names of your controls.

	Make copies of the footer controls as well, and make a similar event
procedure for the footer's OnFormat event property,
referencing its left and right controls. In the event procedure,
enter code similar to the following:
Private Sub PageFooter_Format(Cancel As Integer, FormatCount As Integer)

 Dim fIsEven As Boolean

 fIsEven = acbIsEven(Me.Page)

 Me.txtPageLeft.Visible = Not fIsEven
 Me.txtPageRight.Visible = fIsEven
 Me.txtPrintedOnLeft.Visible = fIsEven
 Me.txtPrintedOnRight.Visible = Not fIsEven

End Sub
Again, you'll need to replace the controls in the
event procedure with the names of your controls.

	Without closing the module, add the following function to the
form's module:
Private Function acbIsEven(ByVal intValue As Integer) As Boolean
 ' Return True if intValue is even, False otherwise.
 acbIsEven = ((intValue Mod 2) = 0)
End Function

	Save and execute the report to confirm that it performs as desired.
The completed report is shown in design view in Figure 3-22.

[image: rptEvenOdd in design view]

Figure 3-22. rptEvenOdd in design view

To see the sample report, load 03-10.MDB. Open
rptEvenOdd in print preview mode; you should get a report that has
one header and footer for odd pages (see Figure 3-23) and a different header and footer for even
pages (see Figure 3-24).
[image: The footer for the odd pages of rptEvenOdd]

Figure 3-23. The footer for the odd pages of rptEvenOdd

[image: The footer for the even pages of rptEvenOdd]

Figure 3-24. The footer for the even pages of rptEvenOdd

Discussion

 The two event procedures call the
acbIsEven function to determine whether the
current page is even or odd, passing the current page number to the
function. The current page number is determined by referencing the
Page property of the report (Me.Page). acbIsEven
uses the Mod operator, which returns the remainder
when the page number is divided by 2, yielding 0 for even pages or 1
for odd pages. The following statement:
acbIsEven = ((intValue Mod 2) = 0)
returns True to the calling procedure if the page
Mod 2 is 0 (i.e., if the page is even); otherwise,
it returns False.
If you set fIsEven to the return value of
acbIsEven, you can then set the visibility of
the rest of the controls based on its value.
You can't see them in Figure 3-22,
but there are four text boxes in the footer section of the example
report. On the left side of the footer, the txtPagePrintedOnLeft
control has been placed on top of the txtPageLeft control. On the
right side of the footer, the txtPageRight control has been placed on
top of the txtPrintedOnRight control. This works because only one set
of controls (txtPagePrintedOnLeft and txtPageRight, or txtPageOnRight
and txtPageLeft) are visible at the same time.

 As an alternative to using two
controls in the header of the report, you could use just one control
that is as wide as the report and alternately set its TextAlign
property to Left or Right based on the return value of
acbIsEven. (You can't do this
in the footer because of the need for two sets of controls with
different alignments.)

3.11. Make a Vertical Line the Same Height as a CanGrow/CanShrink Control

Problem

 You have a control on a report
that has its CanShrink and CanGrow properties set to Yes so it can
grow or shrink to accommodate different amounts of text. You placed a
vertical line to the left of the control, and you want it to be the
same height as the control. Is there a way you can synchronize the
height of the two controls?

Solution

 If you
place a line on a report using the Line tool, it will always be the
same size. To make a line change its height to match the height of
another control (or group of controls), you need to use the Line
method in a procedure attached to the Print event of a report
section. This solution uses the Line method to make a line whose
height varies to accommodate the changing height of a text box that
displays a memo field.
Follow these steps to add to your own report a vertical line that
shrinks or grows to match one or more CanShrink/CanGrow controls in a
section:
	Create a report or open an existing report in design view.
Don't use the Line control to create a vertical line
in the report. If you've already created such a
line, remove it now.

	
 Create an event
procedure for the Print event of the group footer section (or the
section on your report where you'd like the line to
appear). (For more information on creating event procedures, see this
book's Preface.) In the event procedure, add code
similar to this:
Private Sub GroupFooter0_Print(Cancel As Integer, PrintCount As Integer)

 Dim sngLineTop As Single
 Dim sngLineLeft As Single
 Dim sngLineWidth As Single
 Dim sngLineHeight As Single

 Const acbcSMTwips = 1
 Const acbcDSSolid = 0

 Me.ScaleMode = acbcSMTwips
 Me.DrawStyle = acbcDSSolid

 ' Set the coordinates for the line.
 sngLineTop = Me.lblConditions.Top
 sngLineLeft = 0
 sngLineWidth = 100
 With Me.txtConditions
 sngLineHeight = .Top + .Height
 End With

 ' Draw the line.
 Me.Line (sngLineLeft, sngLineTop)-Step(sngLineWidth, sngLineHeight), , BF

End Sub
Replace the references to lblConditions and txtConditions with the
names of the controls in your own report.

	Save and preview the report to verify that the line alongside the
CanShrink/CanGrow controls changes, as in Figure 3-27. The completed sample report is shown in
design view in Figure 3-25.

[image: rptBusinessAddresses2 in design view]

Figure 3-25. rptBusinessAddresses2 in design view

To see an example of this solution, load
03-11.MDB. Open rptBusinessAddresses1 in preview
view (Figure 3-26). This report lists business
addresses and contract conditions. Notice that the line in the
company footer section is of fixed height and does not vary to match
the height of this section.
[image: This report contains a fixed-height line next to a variable-height text box]

Figure 3-26. This report contains a fixed-height line next to a variable-height text box

Now open rptBusinessAddresses2 in preview view (Figure 3-27). This version of the report contains a line
whose height matches the height of the company footer section.
[image: A report with a programmatically created variable-length line]

Figure 3-27. A report with a programmatically created variable-length line

Discussion

 The event procedure uses the Line
method to create a line that starts at the top of the lblConditions
label and extends to the bottom of the txtConditions text box,
growing and shrinking in proportion to the text box. You can use the
Line method to draw lines or rectangles on reports using the
coordinates you specify (sngLineHeight through sngLineWidth in the
sample procedure). The event procedure sets the sngLineTop argument
to the top of the lblConditions label, sngLineLeft to 0, sngLineWidth
to 100, and sngLineHeight to the bottom of the txtConditions text
box. Because Access does not provide a VBA Bottom property for
controls, this value is calculated by adding the text
box's Height property to its Top property, using the
following piece of code (which makes use of the VBA
With...End
 With construct):
With Me.txtConditions
 sngLineHeight = .Top + .Height
End With
The line itself (actually, a rectangle) is drawn by the following
line of code:
Me.Line (sngLineLeft, sngLineTop)-Step(sngLineWidth, sngLineHeight), , BF
where the variables in the first set of parentheses define the
upper-left corner of the rectangle and those in the second set of
parentheses define its width and height. The reserved word Step
allows you to use height and width values for the rectangle instead
of specifying the lower-right corner. The last argument, BF,
indicates that the line will be a rectangle (B) instead of a line and
that it will be filled with the same color as its border (F).

 The ScaleMode property specifies
the unit of measurement. Because Access uses twips as its measurement
unit, this property is generally set to twips, as in the
acbcSMTwips constant in the sample code. The
available settings are listed in Table 3-9.
Table 3-9. Available ScaleMode property settings
	
 Setting

 	
 Description

	
 0

 	
 Custom values for ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop

	
 1

 	
 Twip (default)

	
 2

 	
 Point

	
 3

 	
 Pixel

	
 4

 	
 Character

	
 5

 	
 Inch

	
 6

 	
 Millimeter

	
 7

 	
 Centimeter

 The DrawStyle property specifies the
line type; it is set to Solid in the sample code using the
acbcDSSolid constant. The available settings are
listed in Table 3-10.
Table 3-10. Available DrawStyle property settings
	
 Setting

 	
 Description

	
 0

 	
 Solid (default)

	
 1

 	
 Dash

	
 2

 	
 Dot

	
 3

 	
 Dash-dot

	
 4

 	
 Dash-dot-dot

	
 5

 	
 Invisible

	
 6

 	
 Inside solid

3.12. Alternate Gray Bars on My Reports

Problem

 You have some reports on which
you'd like to print alternate rows with gray bars in
the background. Printing these bars makes the reports easier to read,
especially when there's lots of data or the report
is very wide. Is there a way to create these bars in Access?

Solution

 There are a number of ways to print
alternate rows with gray and white backgrounds. The simplest method
is to alternate the background color of the detail section for each
new record. This solution shows you how to use this method to achieve
the desired effect on your reports.
To create your own reports with alternating gray bars in the detail
section, follow these steps:
	Create your report. Because this method will fill the entire detail
section with gray shading, the effect will work best if your detail
section is one line high. (It will work with taller detail sections,
but it won't look as good.)

	
 Make sure that every control in the
detail section has its BackStyle property set to Transparent. You can
quickly change this property for all the controls in the section by
marquee-selecting all the controls and then changing the BackStyle
property in the properties sheet, which will now have the title
Multiple Selection (see Figure 3-28).

[image: Changing all the controls' BackStyle properties in one operation]

Figure 3-28. Changing all the controls' BackStyle properties in one operation

	
 Edit the report's
module (click on the Code button on the Report Design toolbar or
choose the View → Code menu option) and enter the following
lines of code in the module's declarations area:
' Shade this row or not?
Dim blnShade As Boolean

	

 Create an event procedure attached to
the OnPrint event property of your report's detail
section and add the code that follows. This code must be attached to
the OnPrint event property because the Line method for reports will
not work when called during the Format event.
Private Sub Detail1_Print(Cancel As Integer, PrintCount As Integer)

 ' If all three color components are the same value,
 ' the result will be some shade of gray (ranging
 ' all the way from black (0, 0, 0) to white (255, 255, 255)
 Dim lngGray As Long
 lngGray = RGB(221, 221, 221)

 If blnShade Then
 Me.Detail1.BackColor = lngGray
 Else
 Me.Detail1.BackColor = vbWhite
 End If

 ' Alternate the value of blnShade
 blnShade = Not blnShade
End Sub

	
 If it matters whether the first row on
a page is shaded, create an event procedure attached to the OnPrint
property of the report's page header. Replace the
False value with True if you
want the first row on each page to be shaded.
Sub PageHeader0_Print (Cancel As Integer, PrintCount As Integer)
 ' Make sure the first row on the page isn't shaded.
 ' Use True if you want the first row on each page shaded.
 blnShade = False
End Sub

	Save and print the report. Every other row in the detail section will
be printed with a gray background, the same size as the detail
section.

Now load 03-12.MDB and open the rptGrayBar
report in preview view. This report may not look very good on your
screen (it depends on the screen resolution and the color depth of
your screen driver), but printed it will look something like the
report shown in Figure 3-29. (The exact output will
depend on your printer; you may need to modify the color setting for
the gray bar to optimize it.)
[image: A report with gray bars on alternate rows]

Figure 3-29. A report with gray bars on alternate rows

Discussion

The code shown in Step 4 relies on a module-level variable,
blnShade, that alternates between
True and False. If you followed
the instructions for Step 5, you set the value of
blnShade to a particular value every time
you print the page header (before any rows are printed on that page).
From then on, every time Access prints the detail section, it decides
what to do based on the value in blnShade.
What's more, every time it prints the detail
section, it alternates the value of
blnShade using this line of code:
blnShade = Not blnShade
That is, if blnShade was
False, now it will be True, and
vice versa.

 Once the code has decided whether to
shade the section, it sets the background color to the color value of
gray or white, based on the value of
blnShade, using the following
If...Then...Else statement:
If blnShade Then
 Me.Detail1.BackColor = acbcColorGray
 Else
 Me.Detail1.BackColor = vbWhite
End If

 We used the built-in VBA constant for
white, but there is no constant for gray, so we defined a value
corresponding to the color gray earlier in the procedure, using the
built-in VBA function, RGB. An easy way to determine the numeric
values for colors is by selecting a section or a control in design
view and using the color palette to set the desired color. Then you
can read the color value off of the properties sheet. Another option
is to use vbGreen, which looks good when
previewing the report and also results in a pleasing gray color when
printed on a black-and-white printer.

3.13. Print Only Records Matching a Form's Filter

Problem

 You have a form that you
use to view and edit your collection of record and CD albums. On the
form, you've placed a command button that you use to
print the records contained in the form's recordset.
This works fine, but you'd like to enhance the
functionality of the form so that when you filter records on the form
and then print the report, only the filtered records will print. Is
there any way to do this in Access?

Solution

 Access includes properties (Filter and
FilterOn) of forms and reports that you can use to manipulate form
and report filters programmatically. This solution shows you how to
use these properties to print on a report only those records filtered
by a form.
Load 03-13.MDB and open the frmAlbums form. When
you press the Print Records button, you should see the preview of a
report, rptAlbums, which includes all 65 records from qryAlbums.
Close the report and go back to frmAlbums, which should still be
open. Now create a filter of the form's records
using one of the Filter toolbar buttons or the Records →
Filter command. For example, you might create a filter by using the
Filter by Form facility (see Figure 3-30).
[image: Filter by Form is used to filter records on frmAlbums]

Figure 3-30. Filter by Form is used to filter records on frmAlbums

When you finish creating the filter, apply it. You should see a
filtered subset of the records (Figure 3-31).
[image: The records have been filtered, resulting in three records]

Figure 3-31. The records have been filtered, resulting in three records

Now press the Print Records button. You should see a preview of the
same report, rptAlbums, this time filtered to match the records you
filtered using frmAlbums. If you print the filtered report, you
should see a report similar to the one shown in Figure 3-32.
[image: The report includes only those records from the filtered form]

Figure 3-32. The report includes only those records from the filtered form

 To create your own report
that synchronizes its records with those of a
form's, follow these steps:
	Create a new form or edit an existing one. The sample form,
frmAlbums, is an unbound main form with an embedded subform bound to
the qryAlbums query, but you can use any style of form you like.

	Create a new report or edit an existing one that's
based on the same record source as the form (or, if you are using an
embedded subform, that's based on the same record
source as the subform) from Step 1. Save the report and give it a
name. The sample report is named rptAlbums.

	

 Switch back to the form. Add to the
form a command button with an event procedure that uses the
DoCmd.OpenReport method to open the report from Step 2 in preview
view. (For more information on creating event procedures, see the
Preface.) The code for the cmdPrint button on frmAlbums is shown
here:
Private Sub cmdPrint_Click()
 DoCmd.OpenReport "rptAlbums", View:=acPreview
End Sub
Change "rptAlbums" to the name of
the report created in Step 2. Save the form and close it.

	Switch back to the report and create an event procedure attached to
the report's Open event. Add code similar to that
shown here for rptAlbums:
Private Sub Report_Open(Cancel As Integer)

 Dim frmFilter As Form

 Const acbcFilterFrm = "frmAlbums"
 Const acbcFilterSubFrmCtl = "subAlbums"

 ' Is the the report's filtering form open?
 If SysCmd(acSysCmdGetObjectState, acForm, acbcFilterFrm) <> 0 Then

 Set frmFilter = Forms(acbcFilterFrm)

 ' Is the form currently filtered?
 If frmFilter.FilterOn Then
 ' Set the report's filter to the subform's filter.
 Me.Filter = frmFilter(acbcFilterSubFrmCtl).Form.Filter
 ' If the filter form didn't include a subform, use this
 ' (simpler) syntax instead:
 ' Me.Filter = frmFilter.Filter
 Me.FilterOn = True
 Me.Caption = Me.Caption & " (filtered)"
 End If

 End If

End Sub

	Change the value of the acbcFilterFrm constant to
the name of the form and the acbcFilterSubFrmCtl
constant to the name of the subform control created in Step 1. If
your form doesn't include an
embedded subform, either delete
"(acbcFilterSubFrmCtl).Form" from
the 11th line of code or completely delete this line of code and the
two comment lines that follow and uncomment (remove the leading
single quote from) the following line of code:
' Me.Filter = frmFilter.Filter
You should also delete the following line of code if you
aren't using a subform (although leaving it in
won't hurt):
Const acbcFilterSubFrmCtl = "subAlbums"

	If you wish to display the filter value on the report whenever the
report is based on a filtered subset of records, add a text box
control to the page footer (or any other section you prefer) and name
this control txtFilter. Next, add the following code to an event
procedure attached to the section's Format event:
Private Sub ReportFooter_Format(Cancel As Integer, FormatCount As Integer)

 ' If this report is filtered, make the txtFilter control visible
 ' and set its value to the Filter property of the report.
 If Me.FilterOn Then
 Me.txtFilter = Me.Filter
 Me.txtFilter.Visible = True
 Else
 Me.txtFilter.Visible = False
 End If
End Sub

	Save the report and close it. You can test the report by opening the
filtering form, choosing various filters, and then pressing the Print
Records button on the form.

Discussion

 This solution works by setting the
report's Filter property to the value of the
form's Filter property. The form's
and report's Filter properties contain the last
filter created for the object. Because the last filter hangs around
even after you've turned it off (by using the
Records → Remove Filter/Sort command or the equivalent
toolbar button), the code in Step 4 first checks the status of the
FilterOn property. This property is set to True
when a filter is active and False when there is no
filter or when the existing filter isn't currently
active.

 At the beginning of the
report's Open event procedure, the code checks to
see if the form associated with this report is open, using the
following code:
If SysCmd(acSysCmdGetObjectState, acForm, acbcFilterFrm) <> 0 Then

 SysCmd
 is a function that handles a number
of different chores including the following:
	Displaying a progress meter or text in the status bar.

	Returning status information about Access (such as the Access
directory, whether the runtime or retail product is running, and so
on).

	Returning the state of a database object to indicate whether it is
open, is a new object, or has been changed but not saved.

You indicate to Access which flavor of SysCmd
you want by passing it an enumerated value as the first parameter.
(See the online help topic for the SysCmd function for more
information on the possible parameter values.) The code in the Open
event procedure passes SysCmd the
acSysCmdGetObjectState constant, which tells
SysCmd that you would like information on the
open status of the frmAlbums form. SysCmd
obliges by returning one of the values listed in Table 3-11 (the value 3 is skipped so that any
combination of values added together will result in a unique number).
In this case, you care only if the SysCmd return
value is nonzero.
Table 3-11. The SysCmd object state return values
	
 SysCmd return value

 	
 Access constant

 	
 Meaning

	
 0

 	
 None

 	
 The object either doesn't exist or is closed.

	
 1

 	

 acObjStateOpen

 	
 The object is open, but not new or dirty.

	
 2

 	

 acObjStateDirty

 	
 The object is in an unsaved state.

	
 4

 	

 acObjStateNew

 	
 The object is new and in an unsaved state.

The next stretch of code does all the work:
Set frmFilter = Forms(acbcFilterFrm)

' Is the form currently filtered?
If frmFilter.FilterOn Then
 ' Set the report's filter to the subform's filter.
 Me.Filter = frmFilter(acbcFilterSubFrmCtl).Form.Filter
 ' If the filter form didn't include a subform, use this
 ' (simpler) syntax instead:
 ' Me.Filter = frmFilter.Filter
 Me.FilterOn = True
 Me.Caption = Me.Caption & " (filtered)"
End If
If the form is currently filtered (i.e., if frmFilter.FilterOn is set
to True, which in VBA is the same as just saying
frmFilterOn), the report's filter is set to the
form's filter. Because the subform control on the
form is actually being filtered, we set the report's
filter equal to the subform's filter.

 Notice that we used
"frmFilter(acbcFilterSubFrmCtl).Form.Filter"
rather than
"frmFilter(acbcFilterSubFrmCtl).Filter".
This odd-looking syntax tells Access that you want the Filter
property of the subform that the subform control contains, not the
Filter property of the subform control itself (which
doesn't have such a property).
If no subform is used on the form, you can simplify the statement to
this:
Me.Filter = frmFilter.Filter

 Next, the code sets the
report's FilterOn property to
True, which causes the report to be filtered using
the previously set Filter property. Finally, the code changes the
caption of the report so that
"(filtered)" appears in the
titlebar when you preview the report. This last statement is
optional—it provides a nice added touch.

 The optional code in Step
5—which we added to the page footer's Format
event in the sample report—documents the filter by displaying
it in a text box on the report. The syntax of the filter is the same
as that of a SQL Where clause (without the
WHERE keyword).

 You may also wish to set the
report's OrderBy property to the
form's OrderBy property. If you do this, you must
also check the status of the OrderByOn property, which is analogous
to the FilterOn property. The syntax of the OrderBy property is
similar to that of the SQL Order
 By clause (without the ORDER
 BY keyword).

3.14. Keep a Report from Breaking at an Inappropriate Place

Problem

 On some of your reports, you use
the Keep Together property to keep a whole group together or to
ensure that a group header won't print without at
least one detail item. When detail items are long, you may not want
to keep an entire detail item together; however, you do want to have
a reasonable number of lines under the header so that the header
won't be the last line on the report page. How do
you make a report start a new page instead of printing the group
header with just a single detail line at the bottom of a page?

Solution

 You can use an event
procedure called from a report's Format event to
evaluate the length of a report page before it actually prints and
take an action (in this case, activating a page break control) only
if certain criteria are met. This technique uses the
acbConditionalBreak function and a page break
control. This solution demonstrates how to use
acbConditionalBreak to force a page break if
there is not enough room to print at least one line of text from the
detail section under a group header.
Open 03-14.MDB and print the report
rptBadBreaks. This typical business-address report, which has its
detail section's KeepTogether property set to Yes,
occasionally prints a page with the Category group header as the last
line of the page, as shown in Figure 3-33.
[image: Page 2 of rptBadBreaks shows an inappropriate break for New World Communications]

Figure 3-33. Page 2 of rptBadBreaks shows an inappropriate break for New World Communications

Now print the rptConditionalBreaks report. Notice that it has avoided
the bad break by moving the New World Communications record to the
top of page 3 (see Figure 3-34).
[image: rptConditionalBreaks moves New World Communications to the top of page 3]

Figure 3-34. rptConditionalBreaks moves New World Communications to the top of page 3

Follow these steps to avoid bad breaks in your own reports:
	Import the basConditionalPageBreak module from
03-14.MDB into your database.

	
 Create a new report or open an existing
one in design view. Select the group header you want to keep together
with some text. Insert a page break control above any other controls
in this group section (you may need to move some controls down a
bit). You can see the page break control above the txtCompany text
box in the company header section of the sample report,
rptConditionalBreaks, in design view in Figure 3-35.

[image: rptConditionalBreaks in design view]

Figure 3-35. rptConditionalBreaks in design view

	
 If it's not already
open, open the group header properties sheet (View →
Properties) and set Force New Page to None and Keep Together to Yes
(this ensures that the group section itself won't be
broken up).

	
 Enter the following expression in the
OnFormat property (substituting the name of your page break control
for "PageBreak1" if it is
different):
=acbConditionalBreak ([Report], 12600, [PageBreak1])
We used 12,600 in the previous function call to indicate that we want
a break at 8.75 inches (8.75 × 1,440 = 12,600). Adjust this
argument as necessary until the report breaks appropriately (see
Section 3.14.3).

	
 Set the detail
section's Keep Together property to No to allow it
to break.

	Save and print the report, which should look like the sample report
shown in Figure 3-35.

Discussion

The acbConditionalBreak function forces a page
break if the section will print at or below the specified location on
the page. This function takes three arguments: a report object
variable, the point at which to force a new page in twips, and an
object variable pointing to the page break control that you wish to
make visible if the section's location is at or
below the specified position.
Here is the acbConditionalBreak function:
Function acbConditionalBreak(rpt As Report, intBreak As Integer, ctl As Control)

 ctl.Visible = (rpt.Top >= intBreak)

End Function

 Access evaluates the expression to the
right of the equals sign ((rpt.Top
 >=
 intBreak)) as either
True or False and then assigns
that value to the expression to the left of the equals sign. Thus,
the code makes the page break control visible or invisible, depending
on whether the current page top value has gone beyond the value in
intBreak. When the control is made
visible, a page break is forced before the section is printed.

 You may need to experiment with
different numbers for the intBreak
argument until you get it working right for your report. Start by
measuring the amount of vertical space needed to print a group
header, together with the minimum number of detail lines you want to
print with it. Add to this amount the height of the page footer. If
you are measuring in inches, multiply this sum by 1,440 to convert it
to twips; if you are measuring in centimeters, multiply the sum by
567. Subtract the resulting amount from the total height of the page
in twips (15,840 = 1,440 × 11 for a standard letter-sized
sheet in portrait orientation). This will give you a starting point;
adjust as necessary until the report starts a new page unless there
is enough room to print the number of lines you want under a group
heading.
You can determine the amount of blank space to leave between the
bottom of the last address on a page and the footer by changing the
twips value in the acbConditionalBreak function.
The current value allows a generous amount; to save space, you can
reduce the twips argument by a few hundred twips.

 Several report properties
affect how a page (or column in a multiple-column report) breaks. For
many reports, you may be able to use some combination of these
properties instead of the technique used in this solution. The
properties are listed in Table 3-12.
Table 3-12. Properties that affect where a page or column breaks
	
 Property set

 	
 Property name

 	
 Effect

	
 Report

 	
 GrpKeepTogether

 	
 Controls whether groups in a report that have their KeepTogether
property set to Whole Group or With First Detail will be kept
together by page or by column.

	
 Group

 	
 KeepTogether

 	
 When set to Whole Group or With First Detail, Access attempts to keep
all of the sections of a group (header, footer, and detail) on the
same page (or column).

	
 Section

 	
 KeepTogether

 	
 When set to Whole Group or With First Detail, Access attempts to keep
the whole section on the same page (or column).

	

	
 ForceNewPage

 	
 Tells Access to force a new page never, before, after, or before
and after the section.

	

	
 NewRow or NewCol

 	
 Similar to ForceNewPage, except this property tells Access to force a
new row or column never, before, after, or before
and after the section. If you select
"Across, then Down" in the Column
Layout option in the Layout tab of the Page Setup dialog, a new row
is started; if you select "Down, then
Across", a new column is started.

	

	
 RepeatSection

 	
 When set to Yes, Access will repeat this section at the top of the
next page (or column) when the group spans more than one page (or
column).

3.15. Customize a Report's Grouping and Sorting at Runtime

Problem

 You have a report that has several
different grouping and sorting fields that you need to rearrange
every time you run the report. To do this, you've
created five or six different versions of the same report, changing
only the order of the fields and which fields are sorted or grouped.
This is a maintenance nightmare, especially when you want to change
some aspect of the report, which means having to change all the
variants of this same report. Is there any easier way to do this in
Access?

Solution

You can manipulate most aspects of a report's design
using VBA code. This solution shows you how to programmatically open
a report in design mode and manipulate several properties of controls
and groups. Using this technique and a driving form, you can create a
single report that can be customized using different sorting and
grouping fields every time it is run.
Load 03-15.MDB and open frm_rptCompaniesSetup,
which is shown in Figure 3-36.
[image: The frm_rptCompaniesSetup form is used to set up the rptCompanies report]

Figure 3-36. The frm_rptCompaniesSetup form is used to set up the rptCompanies report

Select a grouping field and zero, one, two, or three other fields for
the report (any or all of which can be sorted). When
you're done, press the Preview or Print button and a
report matching the chosen sorting/grouping fields will be previewed
or printed for you. A sample report using the settings from Figure 3-36 is shown in Figure 3-37.
[image: The rptCompanies report is customized every time it is run]

Figure 3-37. The rptCompanies report is customized every time it is run

To create a customizable report of your own, follow these steps:
	Identify the table or query on which the report will be based. In our
example, the report is based on the tblCompanies table. Decide which
of the fields in this table or query you wish to allow to be
selected, grouped, or sorted. In the sample database, we decided to
use all of the fields from tblCompanies.

	
 Create a table
with one field, ReportFieldName, with a data type of Text. Make this
field the primary key of the table. Save the table—in the
example, we named it zstbl_rptCompaniesFields—and switch to
datasheet view, adding a record for each field identified in Step 1.

	
 Create a new unbound form. Add one
unbound combo box for each field you want to be able to customize at
runtime. For example, in the frm_rptCompaniesSetup form, we allow for
one grouping field and up to three sorting fields (see Figure 3-36). The names of the combo box fields and their
RowSource properties are listed in Table 3-13. All
other properties are set to the default values.

 Change
"zstbl_rptCompaniesFields" to the
name of the table from Step 2. Change
"frm_rptCompaniesSetup" to the name
of your form. Create additional combo boxes as needed, following the
pattern of Name and RowSource properties from Table 3-13.

Table 3-13. Combo box field settings on the sample form
	
 Name

 	
 RowSource

	
 cboField0

 	
 zstbl_rptCompaniesFields

	
 cboField1

 	
 SELECT ReportFieldName FROM zstbl_rptCompaniesFields WHERE
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField0;

	
 cboField2

 	
 SELECT ReportFieldName FROM zstbl_rptCompaniesFields WHERE
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField0 And
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField1

	
 cboField3

 	
 SELECT ReportFieldName FROM zstbl_rptCompaniesFields; WHERE
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField0 And
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField1 And
ReportFieldName <> Forms!frm_rptCompaniesSetup!cboField2;

	
 For all but the last combo box
created in Step 3, create an event procedure attached to the
AfterUpdate event of the control containing code similar to the
following:
Private Sub cboField1_AfterUpdate()
 Me.cboField2.Requery
 Call FixUpCombos(Me.cboField1)
End Sub
Replace "cboField1" with the name
of the first combo box and
"cboField2" with the name of the
next combo box. Add the following code to the end of the first combo
box's event procedure:
' Enable the buttons once you've chosen the group field.
If Not IsNull(Me.cboField0) Then
 Me.cmdPrint.Enabled = True
 Me.cmdPreview.Enabled = True
End If

 Don't create an AfterUpdate
event procedure for the last combo box.

	
 Add one option group control
alongside each combo box, as listed in Table 3-14.
If you have more than four fields, add additional option groups,
following the same naming pattern and assigning default values of 1
to each additional option group.
For each option group, add three option buttons, as listed in Table 3-15. The names of the option buttons
don't matter.

Table 3-14. Option groups for the sample form
	
 Name

 	
 Default value

	
 grpSort0

 	
 0

	
 grpSort1

 	
 1

	
 grpSort2

 	
 1

	
 grpsort3

 	
 1

Table 3-15. Option buttons
	
 Label

 	
 Option value

	
 No sort

 	
 1

	
 Ascending

 	
 0

	
 Descending

 	
 -1

	Add a command button named cmdPreview with the caption
"Preview" to the form. Attach the
following code to its AfterUpdate event:
Private Sub cmdPreview_Click()
 Call HandlePrinting(acbcReport, acPreview)
End Sub

	Add a command button named cmdPrint with the caption
"Print" to the form. Attach the
following code to its AfterUpdate event:
Private Sub cmdPrint_Click()
 Call HandlePrinting(acbcReport, acNormal)
End Sub

	
 Edit the form's module
(click on the Code button on the Report Design toolbar or choose the
View → Code menu option) and enter the following lines of
code in the module's declarations section:
Const acbcReport As String = "rptCompanies"
Const acbcTemp As String = "rptTemp"

Const acbcNoSort = 1
Const acbcMaxGroupFields = 1
Const acbcMaxSortFields = 3

	With the form's module still open, add the following
two procedures to the module (or copy them into your
form's module from the sample database):
Private Sub FixUpCombos(ctlCalling As Control)

 Dim intIndex As Integer
 Dim intI As Integer

 ' Grab the last character of the calling
 ' control's name and convert to an integer
 intIndex = CInt(Right(ctlCalling.Name, 1))

 ' Enable the next control if and only if the
 ' value of the calling control is non-null
 If intIndex < acbcMaxSortFields Then
 With Me("cboField" & intIndex + 1)
 .Value = Null
 .Enabled = (Not IsNull(ctlCalling))
 End With
 Me("grpSort" & intIndex + 1).Enabled = (Not IsNull(ctlCalling))
 End If

 ' Disable all controls after the next one
 If intIndex < acbcMaxSortFields - 1 Then
 For intI = intIndex + 2 To acbcMaxSortFields
 With Me("cboField" & intI)
 .Value = Null
 .Enabled = False
 End With
 With Me("grpSort" & intI)
 .Value = acbcNoSort
 .Enabled = False
 End With
 Next intI
 End If
End Sub

Public Sub HandlePrinting(strReport As String, ByVal intPrintOption As Integer)

 Dim intI As Integer
 Dim intFieldCnt As Integer
 Dim avarFields(0 To acbcMaxSortFields) As Variant
 Dim aintSorts(0 To acbcMaxSortFields) As Integer
 Dim rpt As Report
 Dim varGroupLevel As Variant

 On Error GoTo HandleErr

 DoCmd.Hourglass True

 ' Count up the non-null grouping/sorting fields
 ' and the sort property fields and store them in
 ' two arrays
 intFieldCnt = -1
 For intI = 0 To acbcMaxSortFields
 If Not IsNull(Me("cboField" & intI)) Then
 intFieldCnt = intFieldCnt + 1
 avarFields(intFieldCnt) = Me("cboField" & intI)
 aintSorts(intFieldCnt) = Me("grpSort" & intI)
 End If
 Next intI

 ' Delete old temp copy of report
 On Error Resume Next
 DoCmd.DeleteObject acReport, acbcTemp
 On Error GoTo HandleErr
 DoCmd.CopyObject , acbcTemp, acReport, strReport

 ' Turn off screen updating and open the report in
 ' design mode where it will be manipulated
 Application.Echo False
 DoCmd.OpenReport acbcTemp, View:=acDesign

 ' Set up a report object to point to the report
 Set rpt = Reports(acbcTemp)

 ' Always have a single grouping field.
 ' First set the properties of the group
 rpt.GroupLevel(0).ControlSource = avarFields(0)
 rpt.GroupLevel(0).SortOrder = aintSorts(0)
 ' Set the first label and text box to match
 ' the grouping properties
 rpt("txtField0").ControlSource = avarFields(0)
 rpt("lblField0").Caption = avarFields(0)

 ' Already used GroupLevel(0) for the grouping field,
 ' so now work through the remaining fields
 For intI = 1 To intFieldCnt
 ' Set the text box to be visible
 ' and bind to the chosen field
 With rpt("txtField" & intI)
 .Visible = True
 .ControlSource = avarFields(intI)
 End With

 ' Set the label to be visible with its caption
 ' equal to the name of the field
 With rpt("lblField" & intI)
 .Visible = True
 .Caption = avarFields(intI)
 End With

 ' Now create each sorting field group
 If aintSorts(intI) <> acbcNoSort Then
 varGroupLevel = CreateGroupLevel(rpt.Name, _
 avarFields(intI), False, False)
 rpt.GroupLevel(varGroupLevel).SortOrder = aintSorts(intI)
 End If
 Next intI

 ' Make any unneeded fields invisible
 For intI = intFieldCnt + 1 To acbcMaxSortFields
 rpt("txtField" & intI).Visible = False
 rpt("lblField" & intI).Visible = False
 Next intI

 ' Save changes to the new report, then open the temporary report:
 DoCmd.Save acReport, acbcTemp
 DoCmd.OpenReport acbcTemp, View:=intPrintOption

ExitHere:
 DoCmd.Hourglass False
 Application.Echo True
 Exit Sub

HandleErr:
 Resume ExitHere
End Sub
Save the form. The complete frm_rptCompaniesSetup sample form is
shown, in design view, in Figure 3-38. Close the
form.

[image: The sample form in design view]

Figure 3-38. The sample form in design view

	

 Create a new report. Add one
sorting/grouping field to the report. The actual field you choose
doesn't matter because the code behind
frm_rptCompaniesSetup will change the field name. What is important
is that you set the GroupHeader and GroupFooter properties to Yes
(which makes it a grouping field). Don't add any
additional sorting fields.

	
 Add a label control for each combo
box field from frm_rptCompaniesSetup to the group header section of
the report. Make all the labels the same size and give them names in
the following style: lblField0, lblField1, and so on.

	
 Add an unbound text box control for
each combo box field from frm_rptCompaniesSetup to the detail section
of the report. These fields should line up under the labels added in
Step 13, should all be the same dimensions, and should have names
like txtField0, txtField1, and so on.

	Add any page and report headers and footers. Save the report and
close it. The completed sample report is shown in Figure 3-39 in design view.

[image: The rptCompanies report in design view]

Figure 3-39. The rptCompanies report in design view

Discussion

The zstbl_rptCompaniesFields table holds the names of all the
possible fields in the report. This table supplies the row source for
the combo boxes on the driving form. Each record in this table
corresponds to one field that may be selected, sorted, or grouped. In
the sample database, we used all five fields from tblCompanies.

 Most of the work in this solution is done
by the driving form. This form
(frm_rptCompaniesSetup, in the sample database) drives the
report-customization process. For the person running the report to be
able to customize it, you must provide some user interface (UI)
mechanism for picking and choosing fields. The combo boxes and option
groups provide this mechanism.
Many of the solution steps (Steps 3 through 5 and the
FixUpCombos subroutine in Step 9) are used to
make the UI for the driving form as easy to use and as foolproof as
possible. For example, we created RowSource properties (listed in
Table 3-15) that make it difficult for the user to
select the same grouping/sorting field twice by refining the combo
box list for each field that eliminates any fields already chosen
from the list.

 The RowSource properties make it
difficult to select the same field twice, but the code in the
FixUpCombos procedure makes doing so next to
impossible. When the form first opens, all of the controls except the
first combo box and the first option group are disabled. After you
have selected a field from a combo box, the code enables the next
combo box/option group while keeping controls that come after that
combo box/option group disabled. This takes care of forward movement.
However, the user can always back up and change a combo box field out
of order—hence, in addition to disabling the controls, the code
also nulls out any values that may have been entered into subsequent
combo boxes.
When the cmdPrint or cmdPreview buttons are pressed, the
HandlePrinting subroutine is called. This
subroutine takes all the data entered on the form, opens the report
in design mode, and customizes it prior to printing the form to the
screen or printer.

 HandlePrinting begins by counting up the
non-null combo box controls on the form and storing their values and
the values of the associated option groups into two arrays:
intFieldCnt = -1
For intI = 0 To acbcMaxSortFields
 If Not IsNull(Me("cboField" & intI)) Then
 intFieldCnt = intFieldCnt + 1
 avarFields(intFieldCnt) = Me("cboField" & intI)
 aintSorts(intFieldCnt) = Me("grpSort" & intI)
 End If
Next intI
Next, the code opens the report in design view (after suspending
most, but not all, screen updating) and adjusts the properties of the
first field, which makes up the one and only grouping field:
' Always have a single grouping field. First set the properties
' of the group.
rpt.GroupLevel(0).ControlSource = avarFields(0)
rpt.GroupLevel(0).SortOrder = aintSorts(0)
' Set the first label and text box to match the grouping properties.
rpt("txtField0").ControlSource = avarFields(0)
rpt("lblField0").Caption = avarFields(0)

 The next stretch of code iterates
through the remaining fields, which are all sorting (or nonsorting
detail) fields. First, the unbound text box controls are made visible
and their control sources are set to the names of the fields selected
from the form. Next, the labels are made visible and their captions
are set to match the text boxes. The
CreateGroupLevel function is then called to
create any and all sorting fields based on the selection from the
option groups on the form. (The last two parameters of this function
tell Access whether you want a header or a footer. Because this code
is creating sorting fields only, both of these parameters are set to
False.) This chunk of
HandlePrinting is shown here:
For intI = 1 To intFieldCnt
 ' Set the text box to be visible and bind it to the chosen field.
 With rpt("txtField" & intI)
 .Visible = True
 .ControlSource = avarFields(intI)
 End With

 ' Set the label to be visible with its caption equal to
 ' the name of the field.
 With rpt("lblField" & intI)
 .Visible = True
 .Caption = avarFields(intI)
 End With

 ' Now create each sorting field group.
 If aintSorts(intI) <> acbcNoSort Then
 varGroupLevel = CreateGroupLevel(rpt.Name, _
 avarFields(intI), False, False)
 rpt.GroupLevel(varGroupLevel).SortOrder = aintSorts(intI)
 End If
Next intI
Next, any unneeded fields are made invisible:
For intI = intFieldCnt + 1 To acbcMaxSortFields
 rpt("txtField" & intI).Visible = False
 rpt("lblField" & intI).Visible = False
Next intI
The code creates a temporary copy of the report, earlier in the
procedure:
On Error Resume Next
DoCmd.DeleteObject acReport, acbcTemp
On Error GoTo HandleErr
DoCmd.CopyObject , acbcTemp, acReport, strReport
This is necessary because the code makes design-time changes to the
report. Making a copy eliminates the chance that the user will save
the modified report over the original, which could mess things up the
next time the report is run. The code completes its work by saving
the new report and opening the report in the requested mode:
' Save changes to the new report, then open the temporary report:
DoCmd.Save acReport, acbcTemp
DoCmd.OpenReport acbcTemp, View:=intPrintOption

 Making a temporary copy of the
report eliminates the possibility of the original report being left
in a state that makes it unusable the next time the report is run.
This is important because there is no programmatic way to remove sort
fields—you can't make a report that has been
saved with two sort fields into a report with one sort field. If the
user is allowed to save a modified version of the report, this is
exactly what might happen. Therefore, we made the decision to use a
temporary copy of the report (but only after trying numerous other
workarounds).

 The sample report and accompanying code
assume that you want only one grouping field. We did this to simplify
the example, but you could extend it by including code to make
additional grouping fields (just like the code that now makes the
sorting fields). If you do this, you'll have to deal
with creating controls and placing them in the headers of the groups.
You can create controls using the
CreateReportControl function, which is described
in the Access online help.
Any technique that relies on programmatically making changes to a
report (or a form) while it's open in design view
won't work in an Access MDE or ADE, where design
changes aren't permitted. In those cases, however,
you can use a modified version of this solution. In a
report's Open event, you can't add
new grouping and sorting levels, but you can change the control
sources of existing ones. So, as long as you have enough grouping and
sorting levels in the saved report, you can modify them at runtime
rather than at design time with code like this:
rpt.GroupLevel(0).ControlSource = avarFields(0)
If necessary, you can create
"dummy" grouping levels in your
report, using a control source like =1, to make it
possible to avoid having to open the report in design view.

Chapter 4. Applications

This chapter is a compendium of tips and suggestions for making your
application development go more smoothly and your applications look
more professional. You'll learn how to convert
queries into embedded SQL strings providing data for forms or
reports. You'll learn how to build an object
inventory so you can document your applications better, how to ensure
that properties for objects that should match up actually do, and how
to disable screen output more effectively than the methods Access
provides internally can. You'll find tips on
discerning the current language version of Access and modifying text
in error messages and on forms and reports to accommodate the current
language. You'll see how to set and restore the
Access caption and how to set startup options for your application.
You'll also see how to use the Windows File
Open/Save dialogs and how to clear out test data before shipping your
application. The final topic explains how to implement user-level
Access security.
Warning
Some of the topics in this chapter take advantage of the
MicrosoftData Access Objects (DAO) library. By default, when you
create a newapplication in Access 2000 or later, Access
doesn't includea reference to this library. Although
each of the samples for thischapter includes this reference, if you
create a new application andimport modules from the samples, your
code won't work. In order to be able to use imported
code that uses DAO objects, you'll need to select
Tools → References... to display the References dialog box,
and select the Microsoft DAO library.

4.1. Convert Queries into Embedded SQL Statements

Problem

 Access's Query
Builder makes it easy to create SQL statements as row sources for
combo boxes or as record sources for forms and reports.
You'd prefer to use SQL statements for row and
record sources because they reduce the number of unnecessary objects
in your databases. Is there an easy way to make these conversions?
What's the trade-off of using embedded SQL
statements instead of query objects to provide your data?

Solution

 There is no automatic conversion utility
to transform queries into SQL statements, but you can use the View
SQL button on the Query Design toolbar to display a
query's SQL statement, copy it to the Windows
clipboard, and then paste it into the RecordSource or RowSource
property of a form or combo box.
Open 04-01.MDB and look at the form
frmCompanyInfoQuery. This form has a simple query as its record
source; the combo box in its header also has a query as its row
source. Neither of these queries is needed elsewhere, so they are
prime candidates for conversion into SQL statements.
Take the following steps to convert a query, using the
form's record source query as an example. These
steps have already been taken for the form frmCompanyInfoSQL, both
for the form's RecordSource property and for the
combo box's RowSource property.
	Open the form whose record source you want to convert to a single SQL
statement in design view, and make sure that the properties sheet is
open (Figure 4-1).

[image: A form's properties sheet, with a query as its RecordSource property]

Figure 4-1. A form's properties sheet, with a query as its RecordSource property

	

 Click on the Build button (...) next to
the RecordSource property to open the Query Builder for the record
source query.

	

 With the Query Builder open, click on the
View SQL button on the toolbar or select View → SQL.

	The SQL window opens, displaying the query as a SQL statement, as
shown in Figure 4-2.

[image: The SQL window for a simple query]

Figure 4-2. The SQL window for a simple query

	Highlight the entire SQL statement and press Ctrl-C or select Edit
→ Copy to copy it to the clipboard.

	Close the SQL window.

	
 Highlight the query name in the
RecordSource properties sheet and press Ctrl-V or select Edit
→ Paste to replace the query name with the SQL statement.
Figure 4-3 shows the form's
RecordSource property with the SQL statement in place.

[image: A form's properties sheet with a SQL statement as its RecordSource property]

Figure 4-3. A form's properties sheet with a SQL statement as its RecordSource property

	Delete the original RecordSource query from the database container.

Discussion

Most Access queries can be converted back and forth between the
graphical representation shown in the Query Builder window and the
SQL representation of the query. The SQL window makes it easy to
extract a query's SQL statement and use it directly
as a record source or row source or in VBA code. Because all queries
in Access can be represented as SQL statements, you have a
choice—you can base a form or report on a query, or you can
supply the SQL string directly in the properties sheet.
Converting row source queries into SQL statements lets you eliminate
many trivial queries that have no purpose other than filling forms or
combo boxes. If you have a SQL statement as a record or row source,
you can open the Query Builder window to view or modify it, which
makes it easy to use SQL statements in place of queries. Access
always saves your SQL statements as hidden queries in the background,
anyway, so you still get the slight performance benefit of having the
execution plan for the query saved rather than recalculated each time
the query runs.

 We should mention a few caveats.
First, if you use the same complex query as a row source for several
different database objects, especially if you anticipate changing the
query, it may be best to leave the query as a query object rather
than converting it into a SQL statement. If you use one query as a
record source for several forms or reports, when you change the query
all the forms or reports that use it will pick up the changes.
Also, there are some query properties
that apply only to saved queries, such as the RunPermissions
property. If you need to use these properties in a secured database,
you must leave the queries as query objects.
In some cases, you may need to convert a SQL statement into a query
(for example, if you need to use it as a record source for several
forms or reports). In that case, simply reverse the steps given
earlier: open the SQL statement in the Query Builder window and then
save it as a named query, which you can use as a record source for
other database objects.

 In addition, you can use the Query
Builder to help create a row source or control source from scratch.
Simply click on the Build button and build a SQL statement as though
you were building a query. Rather than saving a query object in the
database container, Access will save the SQL string
you've created into the appropriate property.

See Also

For more information on working with queries, see Chapter 1.

4.2. Build an Object Inventory

Problem

 To document your application,
you'd like to be able to create a list of all the
objects in your databases, including their owners, date of creation,
and date of last update. You're sure you can do it
manually, but is there a better way to create a table containing all
this information?

Solution

 Access's Data Access
Objects (DAO) can give you the information you need. By
programmatically working your way through each of
Access's container collections, you can add a row to
an inventory table for each object in your application, storing
information about that object. You should be able to use the
techniques for this operation to write your own code for enumerating
other collections in Access. There are a few tricks along the way,
which this solution discusses, but in general this is a
straightforward project.
To create an object inventory for your applications, take only two
steps:
	Import the form zsfrmInventory from 04-02.MDB
into your own application.

	

 Load and run the form. As it opens, it
builds the object inventory, saving the data in zstblInventory. If
you want to rebuild the inventory once the form's
up, click the Rebuild Object Inventory button. This recreates the
inventory table and fills it with information about all the objects
in your database. Figure 4-4 shows the form once
it's been run on a sample database.

[image: The inventory-creating form once it's done its work on a sample database]

Figure 4-4. The inventory-creating form once it's done its work on a sample database

Tip
This example form includes the Access system tables, which you may
never have encountered. These tables are part of every Access
database and are not cause for alarm. You can view them in the
Database Explorer by choosing the Tools → Options menu and
turning on the Show System Objects option.

Discussion

How this solution works is a lot more interesting than the final
product. The object inventory itself can be useful, but the steps
involved in creating the inventory may be more useful to you in the
long run. All the code examples used in this section come from the
form module attached to zsfrmInventory (in
04-02.MDB).

 When the form loads, or when you click the
Rebuild Object Inventory button on zsfrmInventory, you execute the
following code. (The "zs" prefix,
by the way, reminds you that zsfrmInventory is a
"system" form, used only by your
application. The z forces this form to sort to the bottom of the
database container so you won't get it confused with
your "real" forms.)
Private Sub RebuildInventory()
 On Error GoTo HandleErr
 DoCmd.Hourglass True

 Me.lstInventory.RowSource = ""
 Call CreateInventory
 Me.lstInventory.RowSource = "SELECT ID, Container, Name, " & _
 "Format([DateCreated],'mm/dd/yy (h:nn am/pm)') AS [Creation Date], " & _
 "Format([lastUpdated],'mm/dd/yy (h:nn am/pm)') AS [Last Updated], " & _
 "Owner FROM zstblInventory ORDER BY Container, Name;"

ExitHere:
 DoCmd.Hourglass False
 Exit Sub

HandleErr:
 Resume ExitHere
End Sub

 This
code turns on the hourglass cursor and sets the main list
box's RowSource property to Null.
(It must do this because it's about to call the
CreateInventory procedure, which attempts to
delete the table holding the data. If the list box were still bound
to that table, the code couldn't delete the
table—it would be locked!) It then calls the
CreateInventory subroutine. This procedure fills
zstblInventory with the object inventory, and it can take a few
seconds to run. When it's done, the code resets the
list box's RowSource property, resets the cursor,
and exits.
Documenting all the containers

 The
CreateInventory subroutine first creates the
zstblInventory table. If CreateTable succeeds,
CreateInventory then calls the
AddInventory procedure for each of the useful
Access containers (Tables, Relationships, Forms, Reports, Scripts,
and Modules) that represent user objects. (Tables and queries are
lumped together in one container. As you'll see, it
will take a bit of extra effort to distinguish them.) Because each of
the AddInventory procedure calls writes to the
status bar, CreateInventory clears out the
status bar once it's done, using the Access
SysCmd function. The following code fragment
shows the CreateInventory subroutine:
Private Sub CreateInventory()
 If (CreateTable()) Then
 ' These routines use the status line,
 ' so clear it once everyone's done.
 Call AddInventory("Tables")
 Call AddInventory("Forms")
 Call AddInventory("Reports")
 Call AddInventory("Scripts")
 Call AddInventory("Modules")
 Call AddInventory("Relationships")

 ' Clear out the status bar.
 Call SysCmd(acSysCmdClearStatus)
 Else
 MsgBox "Unable to create zstblInventory."
 End If
End Sub

Creating the inventory table

 The CreateTable
function prepares the zstblInventory table to hold the current
database's inventory. The code in
CreateTable first attempts to delete
zstblInventory (using the Drop
 Table SQL statement). If the table exists, the
code will succeed. If it doesn't exist, the code
will trigger a runtime error, but the error-handling code will allow
the procedure to continue anyway. CreateTable
then recreates the table from scratch by using a data definition
language (DDL) query to create the table. (See the Solution in Recipe 1.15 for more information on DDL queries.)
CreateTable returns True if it succeeds or False
if it fails. The following is the complete source code for the
CreateTable function:
Private Function CreateTable() As Boolean
 ' Return True on success, False otherwise.
 Dim qdf As DAO.QueryDef
 Dim db As DAO.Database
 Dim strSQL As String

 On Error GoTo HandleErr
 Set db = CurrentDb()

 db.Execute "DROP TABLE zstblInventory"

 ' Create zstblInventory.
 strSQL = "CREATE TABLE zstblInventory (Name Text (255), " & _
 "Container Text (50), DateCreated DateTime, " & _
 "LastUpdated DateTime, Owner Text (50), " & _
 "ID AutoIncrement Constraint PrimaryKey PRIMARY KEY)"
 db.Execute strSQL

 ' If you got here, you succeeded!
 db.TableDefs.Refresh
 CreateTable = True

ExitHere:
 Exit Function

HandleErr:
 Select Case Err
 Case 3376, 3011 ' Table or Object not found
 Resume Next
 Case Else
 CreateTable = False
 End Select
 Resume ExitHere
End Function

Documenting each container

 The
AddInventory subroutine is the heart of the
inventory-creating operation. In Access, each database maintains a
group of container objects, each of which contains a number of
documents. These documents are the saved objects of the
container's type, such as tables, relationships,
forms, reports, scripts (macros), or modules.
AddInventory looks at each document in each
container, adds a new row to zstblInventory for each document, and
copies the information contained in the document into the new row of
the table. (All the code examples in this section come from
AddInventory in
zsfrmInventory's module.)

 The first
step AddInventory performs is to set up the
necessary DAO object variables:
Set db = CurrentDb
Set con = db.Containers(strContainer)
Set rst = db.OpenRecordset("zstblInventory")

 The code then loops through each
document in the given container, gathering information about the
documents:
For Each doc In con.Documents
...
Next doc
For each document in the Tables container, the code must first
determine whether the given document is a table or query. To do this,
it calls the IsTable function, which attempts to
retrieve a reference to the requested object from the
database's TableDefs collection. If this
doesn't trigger a runtime error, that table must
exist. Because attempting to retrieve a query's name
from the TableDefs collection will certainly fail, you can use
IsTable to determine if an element of the Tables
container (which contains both tables and queries) is a table. The
isTable function appears as follows:

Private Function IsTable(ByVal strName As String) As Boolean
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef

 On Error Resume Next

 Set db = CurrentDb()

 ' See the following note for information on why this
 ' is commented out.
 ' db.Tabledefs.Refresh

 Set tdf = db.TableDefs(strName)
 IsTable = (Err.Number = 0)
 Err.Clear
End Function
Tip
Normally, before retrieving information about any Access persistent
object collection (TableDefs, QueryDefs, etc.), you must refresh the
collection. Because Access doesn't keep these
collections up to date unless necessary, it's
possible that a table recently added by a user in the user interface
might not yet have been added to the TableDefs collection. In this
case, you'll be calling IsTable
repeatedly. To speed the operation of zsfrmInventory, the
IsTable function used here does not use the
Refresh method each time it's called; it counts on
the caller to have refreshed the collection. In almost any other use
than this one, you'd want to uncomment the call to
the Refresh method in the previous code example and allow the code to
refresh the collection before checking for the existence of a
particular table.

This code fragment fills a string variable,
strType, with the type of the current
document. The type is one of Tables, Relationships, Queries, Forms,
Reports, Scripts, or Modules.
If strContainer = "Tables" Then
 If IsTable(doc.Name) Then
 strType = "Tables"
 Else
 strType = "Queries"
 End If
Else
 strType = strContainer
End If

 The value of
strType will be written to zstblInventory
along with the document information.
Caching Object References
Note that the previous code sample uses an object variable,
doc, to refer to the current document. The
For
 Each...Next statement sets
up this reference for you. This construct loops through every item in
a collection, assigning a reference to each object as it loops. We
could have use a simple For...Next loop, but that
solution would have been less efficient.
Because later code will refer to this particular document a number of
times, it's more efficient to set up this direct
reference than to ask Access to parse the general reference,
con.Documents(intI), each time it needs to refer
to the document. In general, any time you need to refer to an object
more than once, you can make your code run a little better by setting
an object variable to refer to that object. This will save Access
from having to look up the object repeatedly.

 Once AddInventory
has determined the correct value for
strType, it can add the information to
zstblInventory. AddInventory retrieves the
various properties of the document referred to by
doc and copies them to the current row in
zstblInventory, referred to by rst. Once
it's done, it uses the recordset's
Update method to commit the new row. This process is illustrated in
the following code fragment from the
AddInventory procedure:
rst.AddNew
 rst("Container") = strType
 rst("Owner") = doc.Owner
 rst("Name") = doc.Name
 rst("DateCreated") = doc.DateCreated
 rst("LastUpdated") = doc.LastUpdated
rst.Update

Avoiding errors

 The list box on zsfrmInventory has
the following expression as its RowSource property:
SELECT ID, Container, Name,
 Format([DateCreated],"mm/dd/yy (h:nn am/pm)") AS [Creation Date],
 Format([lastUpdated],"mm/dd/yy (h:nn am/pm)") AS [Last Updated],
 Owner FROM zstblInventory ORDER BY Container, Name;"

 There are two issues to consider here.
First, the SQL string used as the RowSource pulls data from
zstblInventory. It's quite possible, though, that
when you load the form, zstblInventory doesn't
exist. To avoid this problem, we saved the form with the list
box's RowSource set to a null value. When the form
loads, it doesn't attempt to retrieve the data until
the code has had time to create the table, as you can see in the
RebuildInventory procedure shown earlier.
The second thing to bear in mind is that Access
doesn't always keep the collections completely
up-to-date: you may find deleted objects in the collections. (These
deleted objects have names starting with
"~TMPCLP".) You probably
won't want to include these objects in the
inventory, so the code that loops through the collections
specifically excludes objects with names that start with
"~TMPCLP". To determine which
objects are deleted, the code calls the IsTemp
function, as shown in the following code fragment:
For Each doc In con.Documents
 If Not IsTemp(doc.Name) Then
 ...
 End If
Next doc

Private Function IsTemp(ByVal strName As String)
 IsTemp = Left(strName, 7) = "~TMPCLP"
End Function

Comments

 If you want to remove system objects
from your inventory, you'll need to check each
object and, if it's a system object, skip it in the
display. You can use an object's Attributes property
to see if it's a system object. See
Access's online help for more information.

 You might wonder why this application uses
the Access containers to retrieve information about tables and
queries, since this requires more effort than if the code had just
used the TableDefs and QueryDefs collections. It makes sense to use
the containers because the TableDefs/QueryDefs collections
don't contain information about the owners of the
objects, one of the items of information this application is
attempting to track.

 You can also use the collections
provided by Access, such as AllForms, AllReports, AllTables, which
can be useful for gathering information on your objects. But these
too lack ownership information, which is part of the Jet database
engine's security system and therefore must be
accessed using the Jet Containers and Documents collections. The
AllForms and AllReports collections do contain additional useful
information, however, including an IsLoaded property for each of the
AccessObjects in the collections.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New Databases? in the Preface.

4.3. Verify That Objects Use Consistent Settings

Problem

 You've
finished your application and you're ready to
deliver it, but you notice that your use of color, fonts, alignment,
and other layout properties isn't consistent across
all your forms or reports. You know you can manually check the values
of all the properties of all the controls on your forms and reports,
but there's got to be a faster way. Is there some
method you can use to compare similar properties for all the objects
in your application?

Solution

 Access
doesn't provide a
"cross-section" of your properties,
which is really what you need—some way to look at properties
not listed by item, but by property name, across all objects.
Building on the technology introduced in the Solution in Recipe 4.2, this solution creates a group of tables
containing information about all the properties on any forms or
reports you select. Once it builds those tables, it constructs a
query that will allow you, using the Quick Sort menu items, to view
all the property settings for various objects, sorted any way
you'd like. Once you've sorted the
output by property name, for example, you'll quickly
be able to see which objects have incorrect settings for that
particular property.
The 04-03.MDB sample database includes a single
form, zsfrmVerifySettings. Figure 4-5 shows the
form after it has done its cataloging in
Northwind.MDB, ready to present property
information on three different forms. Figure 4-6
shows the output data, sorted by property name, showing that several
controls have different background colors.
To use zsfrmVerifySettings to catalog properties in your own
applications, follow these steps:
	Import zsfrmVerifySettings from 04-03.MDB into
your own database.

	Load zsfrmVerifySettings in form view. As it loads, it will build the
object property inventory, creating tables and queries as necessary.

	Once the form has presented the list of forms and reports, click on
the items you want documented. Click again on an item to remove it
from the list of selected items. In Figure 4-5, for
example, three items are to be documented. You can also use the
Select All, Select All Forms, and Select All Reports buttons to
select groups of items.

[image: zsfrmVerifySettings is ready to catalog all controls on three selected forms]

Figure 4-5. zsfrmVerifySettings is ready to catalog all controls on three selected forms

	When you've selected all the forms or reports
you'd like to manipulate, click the Document
Selected Items button. This will work its way through the list of
selected items and document all the properties of each control on
each of those items.

	When the documentation process is finished (it may take some time to
work through all the items you've selected), click
the View Results button. This will open zsqryProperties, which is
shown in Figure 4-6. It lists all the properties of
all the objects and the sections and controls on those objects.

[image: zsqryProperties allows you to sort by any categories to view your property settings]

Figure 4-6. zsqryProperties allows you to sort by any categories to view your property settings

	Use the toolbar buttons to control sorting and filtering so that you
can view only the properties you want for the objects in which
you're interested.

For example, you might want to ensure that all command buttons on all
your forms have their ControlTipText properties set. To do that,
follow these steps (assuming you've followed the
previous steps):
	Open zsfrmVerifySettings and select all the forms in your application
from the list of objects.

	Click on the Document Selected Items button. Go out for lunch while
it does its work.

	Once it's finished, click on the View Results
button, which brings up zsqryProperties, showing one row for each
property of each object you selected. For a large set of forms or
reports, this query could return tens of thousands of rows.

	Choose Records → Filter → Advanced Filter/Sort and
build a filter that sorts on Parent and limits the output to rows
with "ControlTipText" in the
PropName field and "Command Button"
in the ObjectType field. Figure 4-7 shows this
filter.

[image: This filter limits rows to the ControlTipText property of command buttons]

Figure 4-7. This filter limits rows to the ControlTipText property of command buttons

	
 Apply the filter by clicking on the
funnel button on the toolbar or by right-clicking on the filter
design area and choosing Apply Filter/Sort. You will see only the
rows for the command buttons' ControlTipText
properties. Look for the rows in which there's no
value in the PropValue column. Those are the buttons that
don't yet have a value set. Figure 4-8 shows the output of the sample query.
It's quite clear which buttons
don't yet have their ControlTipText properties set.

[image: The result query shows which buttons don't have their ControlTipText properties set]

Figure 4-8. The result query shows which buttons don't have their ControlTipText properties set

Discussion

 To build the list of forms and
reports, zsfrmVerifySettings borrows code from the example in the
Solution in Recipe 4.2. Instead of looping
through all the collections, however, it works only with the Forms
and Reports collections. Otherwise, the mechanics of creating the
list of objects are the same as in the Solution in Recipe 4.2; investigate that topic if
you'd like more information on building the object
inventory.
Creating the temporary tables and query

 The Solution in Recipe 4.2 created a single table, zstblInventory, to
hold the list of objects. In this case, however, you need three
tables (zstblInventory for main objects, zstblSubObjects for objects
on those forms or reports, and zstblProperties for property
information). You also need a query (zsqryProperties) to join the
three tables and display the output. The
CreateTables function, shown here, uses DDL
queries to create each of the necessary tables (see the Solution in
Recipe 1.15 for more information on DDL
queries) and DAO to create the query (see Chapter 6 for more information on using DAO):
Private Function CreateTables() As Boolean

 ' Return True on success, False otherwise.

 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strSQL As String

 On Error GoTo HandleErr

 Set db = CurrentDb

 db.Execute "DROP TABLE zstblInventory"
 db.Execute "DROP TABLE zstblSubObjects"
 db.Execute "DROP TABLE zstblProperties"

 ' Create zstblInventory.
 strSQL = "CREATE TABLE zstblInventory (Name Text (255), " & _
 "Container Text (50), DateCreated DateTime, " & _
 "LastUpdated DateTime, Owner Text (50), " & _
 "ID AutoIncrement Constraint PrimaryKey PRIMARY KEY)"
 db.Execute strSQL

 ' Create zstblSubObjects.
 strSQL = "CREATE TABLE zstblSubObjects (ParentID Long, " & _
 "ObjectName Text (50), ObjectType Text (50), " & _
 "ObjectID AutoIncrement Constraint PrimaryKey PRIMARY KEY)"
 db.Execute strSQL

 ' Create zstblProperties.
 strSQL = "CREATE TABLE zstblProperties (ObjectID Long, " & _
 "PropName Text (50), PropType Short, " & "PropValue Text (255), " & _
 "PropertyID AutoIncrement Constraint PrimaryKey PRIMARY KEY)"
 db.Execute strSQL

 ' Create zsqryProperties.
 strSQL = "SELECT zstblInventory.Name AS Parent, " & _
 "zstblInventory.Container, zstblSubObjects.ObjectName, " & _
 "zstblSubObjects.ObjectType, zstblProperties.PropName, " & _
 "zstblProperties.PropValue FROM zstblInventory " & _
 "INNER JOIN (zstblSubObjects INNER JOIN zstblProperties " & _
 "ON zstblSubObjects.ObjectID = zstblProperties.ObjectID) " & _
 "ON zstblInventory.ID = zstblSubObjects.ParentID;"

 db.CreateQueryDef ("zsqryProperties")
 Set qdf = db.QueryDefs("zsqryProperties")
 qdf.SQL = strSQL

 ' If you got here, you succeeded!
 CurrentDb.TableDefs.Refresh
 CreateTables = True

ExitHere:
 Exit Function

HandleErr:
 Select Case Err
 Case acbErrTableNotFound, acbErrObjectNotFound, _
 acbErrAlreadyExists
 Resume Next
 Case Else
 CreateTables = False
 End Select
 Resume ExitHere
End Function

Getting ready to document items

 When you click on the Document Selected
Items button, the form walks through the list of selected items and
then documents the object. The code in cmdDocumentSelected_Click does
the work: it looks through the ItemsSelected collection of the list
box and, for each selected item, calls either
DocumentForm or
DocumentReport, depending on the value in the
second column of the list box. Each of those procedures requires the
ID of the parent object (the form or report in question) and the name
of the object. The source code for the cmdDocumentSelected_Click
event procedure is:
Private Sub cmdDocumentSelected_Click()

 ' In the list box:
 ' ParentID == Column(0)
 ' Container == Column(1)
 ' Name == Column(2)

 Static fInHere As Boolean
 Dim varItem As Variant
 Dim strName As String
 Dim lngParentID As Long

 On Error GoTo HandleErr
 ' Don't allow recursive entry. If this routine is doing
 ' its thing, don't allow more button clicks to get you
 ' in again, until the first pass has finished its work.
 If fInHere Then Exit Sub
 fInHere = True

 With Me.lstInventory
 For Each varItem In .ItemsSelected
 strName = .Column(2, varItem)
 lngParentID = .Column(0, varItem)
 Select Case .Column(1, varItem)
 ' This will handle only forms and reports.
 Case "Forms"
 Call DocumentForm(strName, lngParentID)
 Case "Reports"
 Call DocumentReport(strName, lngParentID)
 End Select
 Next varItem
 End With

 Call SysCmd(acSysCmdClearStatus)
 Me.cmdViewResults.Enabled = True

ExitHere:
 fInHere = False
 Exit Sub

HandleErr:
 MsgBox Err.Number & ": " & Err.Description, , "DocumentSelected"
 Resume ExitHere
End Sub

Visiting all the objects

 The
DocumentForm and
DocumentReport procedures do the same things,
though in slightly different ways. They both document the properties
of the main object itself, followed by the properties of each of the
sections (forms can have up to 5 sections, reports up to 25).
Finally, both procedures walk through the collection of controls on
the main object, documenting all the properties of each control. The
following code shows DocumentForm, but
DocumentReport is almost identical:
Private Sub DocumentForm(_
 ByVal strName As String, ByVal lngParentID As Long)
 ' You must first open the form in design mode, and then
 ' retrieve the information. With forms, you can open the
 ' form in hidden mode, at least.

 Dim db As Database
 Dim rstObj As DAO.Recordset
 Dim rstProps As DAO.Recordset
 Dim lngObjectID As Long
 Dim frm As Form
 Dim ctl As Control
 Dim intI As Integer
 Dim obj As Object

 On Error GoTo HandleErr
 Call SysCmd(acSysCmdSetStatus, "Getting information on form " & _
 strName & ".")

 Set db = CurrentDb()
 ' No need to open the form if it's THIS form.
 If strName <> Me.Name Then
 DoCmd.OpenForm strName, View:=acDesign, WindowMode:=acHidden
 End If
 Set rstObj = db.OpenRecordset("zstblSubObjects", _
 dbOpenTable, dbAppendOnly)
 Set rstProps = db.OpenRecordset("zstblProperties", _
 dbOpenTable, dbAppendOnly)

 ' Handle the form properties first.
 Set frm = Forms(strName)
 AddProps rstObj, rstProps, frm, "Form", lngParentID

 ' Handle the five possible form sections.
 For intI = 0 To 4
 Set obj = frm.Section(intI)
 AddProps rstObj, rstProps, obj, "Section", lngParentID
Form_Next_Section:
 Next intI

 ' Handle all the controls.
 For Each ctl In frm.Controls
 AddProps rstObj, rstProps, ctl, GetControlType(ctl), lngParentID
 Next ctl

 ' Don't close the form that's running all this.
 If Me.Name <> strName Then
 DoCmd.Close acForm, strName
 End If

ExitHere:
 Exit Sub

HandleErr:
 Select Case Err
 Case acbErrInvalidSection
 Resume Form_Next_Section
 Case Else
 MsgBox Err & ": " & Err.Description, , "DocumentForm"
 End Select
 Resume ExitHere
End Sub
The procedure starts by opening the requested object in design mode
so it can get the information it needs. It cannot open the objects in
normal view mode, because that would run the
objects' event procedures, which might have
unpleasant side effects.

 Starting with Access 2002, you can
specify a WindowMode when you use
DoCmd.OpenReport. This allows you to hide a report when you open it,
which is nice when you are opening it in design view.
As shown in our example, if the code tries to open the current form,
it simply skips the open step. (This means, of course, that your
documentation on the current form will be different than that of
other forms: it's already open in form view, and the
rest will be opened in design view.) Skipping the current form
isn't an issue if you're
documenting reports. When it's complete,
DocumentForm/Report also closes the object (as
long as it wasn't the current form). This is shown
in the following code fragment from the
DocumentForm procedure:
' No need to open the form if it's THIS form.
If strName <> Me.Name Then
 DoCmd.OpenForm strName, View:=acDesign, WindowMode:=acHidden
End If
.
. ' All the real work happens here...
.
' Don't close the form that's running all this.
If Me.Name <> strName Then
 DoCmd.Close acForm, strName
End If

 DocumentForm next opens two recordsets, to which
it adds rows as it documents your objects. These are specified as
append-only recordsets in order to speed up the processing. The
relevant code is:
Set rstObj = db.OpenRecordset("zstblSubObjects", _
 dbOpenTable, dbAppendOnly)
Set rstProps = db.OpenRecordset("zstblProperties", _
 dbOpenTable, dbAppendOnly)
Next, the procedure documents all the properties of the main object
itself. As it will do when documenting all the objects, it calls the
AddProps procedure.
AddProps expects to receive references to the
two recordsets, a reference to the object to be documented, the text
to appear in the list box for the object's type, and
the ID value for the main, parent object. The code fragment that
calls AddProps appears as follows:
' Handle the form properties first.
Set frm = Forms(strName)
AddProps rstObj, rstProps, frm, "Form", lngParentID
The procedure then documents the properties of the sections. For
forms, there can be at most five sections (detail, form
header/footer, page header/footer). For reports, there can be up to
25: the same 5 as for forms, plus a header and footer for up to 10
report grouping sections. Note that any section may or may not exist.
Therefore, the code traps for this error and jumps on to the next
numbered section if the current one doesn't exist.
The portion of the code that documents section properties is:
 ' Handle the five possible form sections.
 For intI = 0 To 4
 Set obj = frm.Section(intI)
 AddProps rstObj, rstProps, obj, "Section", lngParentID
Form_Next_Section:
 Next intI
Finally, DocumentForm/Report visits each of the
controls on the form or report, calling AddProps
with information about each control:
' Handle all the controls.
For Each ctl In frm.Controls
 AddProps rstObj, rstProps, ctl, GetControlType(ctl), lngParentID
Next ctl

Recording property information

 The AddProps
procedure, shown here, does the work of recording information about
the selected object into zstblSubObject and about all its properties
into zstblProperties. Note the large error-handling section; several
properties of forms, reports, sections, and controls are not
available in design mode, and attempting to retrieve those property
values triggers various error messages.
Private Sub AddProps(rstObj As DAO.Recordset, _
 rstProps As DAO.Recordset, obj As Object, _
 ByVal strType As String, ByVal lngParentID As Long)

 Dim lngObjectID As Long
 Dim prp As Property

 On Error GoTo HandleErr

 rstObj.AddNew
 rstObj("ParentID") = lngParentID
 rstObj("ObjectName") = obj.Name
 rstObj("ObjectType") = strType
 ' Get the new ID
 lngObjectID = rstObj("ObjectID")
 rstObj.Update
 For Each prp In obj.Properties
 rstProps.AddNew
 rstProps("ObjectID") = lngObjectID
 rstProps("PropName") = prp.Name
 rstProps("PropType") = prp.Type
 ' Store the first 255 bytes of the
 ' property value, converted to text.
 rstProps("PropValue") = Left(prp.Value & "", 255)
 rstProps.Update
 Next prp

ExitHere:
 Exit Sub

HandleErr:
 Select Case Err.Number
 ' Some property values just aren't available in the design view.
 Case acbErrInvalidView, acbErrNotInThisView, _
 acbErrCantRetrieveProp, acbErrCantGetProp
 Resume Next
 Case Else
 MsgBox Err.Number & ": " & Err.Description, , "AddProps"
 End Select
 Resume ExitHere
End Sub

 To add a row about the object to
zstblSubObjects, AddProps uses the AddNew method
of the recordset and then fills in the appropriate fields. Just like
on an Access form, when you add a new row to a recordset, Access
fills in any autonumber values as soon as you begin editing the row.
Here, we grab that new ObjectID value and store it in the variable
lngObjectID, for use later as the object
ID in the related properties table:
rstObj.AddNew
 rstObj("ParentID") = lngParentID
 rstObj("ObjectName") = obj.Name
 rstObj("ObjectType") = strType
 ' Get the new ID
 lngObjectID = rstObj("ObjectID")
rstObj.Update

 Next, AddProps
loops through all the properties in the object's
Properties collection, adding a row for each to zstblProperties. Note
that because tables don't support Variant fields,
we've set the PropValue field to be a 255-character
text field; the code converts the property value to text and
truncates it to no more than 255 characters. Few properties require
more text than that, but some, such as the row sources of combo
boxes, could. You might want to use a memo field for these properties
instead. Memo fields are somewhat less efficient, but they are more
efficient starting with Jet 4.0 (Access 2000 or later) than they were
in previous versions.
For Each prp In obj.Properties
 rstProps.AddNew
 rstProps("ObjectID") = lngObjectID
 rstProps("PropName") = prp.Name
 rstProps("PropType") = prp.Type
 ' Store the first 255 bytes of the
 ' property value, converted to text.
 rstProps("PropValue") = Left(prp.Value & "", 255)
 rstProps.Update
Next prp
Tip
The rest of the code in zsfrmVerifySettings's module
deals with selecting items in the list box. You're
welcome to peruse that code, but it's not crucial to
understanding the object/property inventory.

Comments

 If you're
interested in working with multiselect list boxes in your
applications, take the time to work through the code that manipulates
the list box in this example. The code uses the Selected property of
the list box, setting various rows to be selected or not by setting
the value of the property. It also makes heavy use of the Column
property, allowing random access to any item stored in the list box.
More than for most of the solutions in this book, effective use of
the techniques covered here requires some of your own imagination.
Not only are the techniques for providing the object and property
inventory interesting, but the output itself can be useful as well.
Since we developed this example, we've used it in
several applications to verify that all the controls used the same
fonts, that all the command buttons had their ControlTipText
properties set, and that all the detail sections used the same
background color. You should strive for design consistency in your
applications, and this tool can help you achieve it.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New Databases? in the Preface.

4.4. Hide Access Screen Activity

Problem

 You can use a
form's Painting property to disable updates to that
form, but some activities still seem to show through or cause
flashing on the screen. Is there any way to hide screen activity?

Solution

Sometimes you need more control over screen repainting than you get
with either Form.Painting. You may also need to investigate the
Application.Echo method. By passing this method a True or a False
value, you can indicate whether you want to display updating within
the main Access window. You can also optionally pass the method a
second parameter—a string indicating text to be displayed
within the status bar while screen updating is disabled.
Load and run frmLockScreen (Figure 4-9) from
04-04.MDB. This sample form simply opens three
reports in design mode and then closes them. The form includes a
checkbox that allows you to run the test with screen updates enabled
or disabled. Try it both ways; you should see a clear difference
between the two ways of running the test. With the checkbox set, the
underlying code disables screen updates, so you
shouldn't see the reports' icons
pop up. Without the checkbox set, you will see the reports open and
minimize, in design view.
[image: The sample form, frmLockScreen, ready to run its tests]

Figure 4-9. The sample form, frmLockScreen, ready to run its tests

 To use Application.Echo to
disable screen updates in your own applications, follow these steps:
	Import the module basLockScreen from 04-04.MDB.
This module includes the simple code that's required
in order to disable updates to the Access main window.

	When you want to disable screen updates, call the
acbShowUpdates subroutine, passing it a
False value. To reenable screen updates, call the
subroutine again, passing it a True value. In
other words, your code that uses acbShowUpdates
should take the following form:
Call acbShowUpdates(False)
' Do your work in here...
Call acbShowUpdates(True)

Discussion

The Application.Echo method is simple to use, but many developers
miss it, allowing their applications to appear somewhat dizzying as
objects appear and disappear from the screen. The acbShowUpdates
method really doesn't do much besides what a direct
call to Application.Echo does:
Sub acbShowUpdates(blnShow As Boolean)
 If blnShow Then
 Application.Echo True
 Else
 Application.Echo False
 End If
End Sub
As a matter of fact, the reason this procedure exists at all is
because the techniques used in this topic work great in Access 2002
and later, but may not work correctly in earlier versions—it
may be that if you're running Access 2000 or
earlier, using Application.Echo to turn off screen updating while
opening a report in design view may not hide screen updates. In that
case, you may want to try an alternate technique, calling the
parallel acbShowUpdatesAPI method.

 The
acbShowUpdatesAPI subroutine (in basLockScreen)
does its work by calling the Windows API function
LockWindowUpdate. This function takes as its
only parameter a window handle. If that handle is nonzero, Windows
simply stops updating the contents of that window on screen. If the
handle is 0, Windows reenables screen updates to the locked window.
Because the only window you care about locking in Access is the main
Access window itself, the acbShowUpdatesAPI
routine shields you from any of the details. If you pass it a
False value, it blocks window updates. If you pass
it a True value, it reenables updates. It finds
the Access window handle for you, if necessary, and then calls
LockWindowUpdate. Its source code is simple:
Sub acbShowUpdatesAPI (blnShow As Integer)
 If blnShow Then
 acb_apiLockWindowUpdate 0
 Else
 acb_apiLockWindowUpdate Application.hWndAccessApp
 End If
End Sub
Tip
In Access 2.0, finding the window handle (the unique integer that
identifies every window) for the main Access window was difficult. It
required a good deal of work with multiple Windows API functions. In
later versions, the Application object exposes the hWndAccessApp
property, which returns the window handle of the main Access window.

You may find, depending on the version of Access
you're using, that
t
 his method of disabling screen updates
isn't perfect. Because Access has no idea that
you've turned them off, Access itself occasionally
turns on screen updates. For example, depending on how you open forms
and reports in design mode, completely hiding the properties sheet
may be difficult. In the sample application,
04-04.MDB, the reports'
properties sheet isn't showing. If you open one of
the reports, open the properties sheet, and then save the report, no
combination of Application.Echo and calls to
LockWindowUpdate will completely remove that
properties sheet from the screen when you open the report in design
view.
Hiding reports in design view

 In older versions of Access, you had
to resort to hacks to hide reports in design view. Fortunately, that
is no longer necessary in Access 2002 and later, because Microsoft
has finally supplied a WindowMode
parameter that can be used to hide a report when you open it, even if
it's opened in design view. Also, many of the
printer settings that made it necessary to open reports in design
view are no longer necessary starting in Access 2002 because of the
Printer object (see Chapter 5 for several
examples).

 If you are working in Access 97,
you can take advantage of an undocumented but effective technique for
hiding the hard-to-hide properties windows of reports that are open
in design view. Be warned, however, that this method is totally
undocumented, is unsupported by Microsoft, and
doesn't work in Access 2000 or later.

 The Application object in
Access supports the GetOption and SetOption methods, which allow you
to get and set global options. Most of these options are documented
(see the online help topics for GetOption/SetOption), while a few
items are not documented but do useful work. One such option allows
you to retrieve and set the coordinates for the form or report
properties sheet (in versions of Access prior to Access 2000) and to
set whether or not you want the properties sheet to be visible when
you open a form or report in design view.

 To retrieve the information about
the report properties sheet in Access 97 or 95, use a call like this:
strInfo = Application.GetOption("_26")

 This will retrieve a
string containing information on the report properties
sheet's location and whether or not to display it
when you open a report in design view. The string will be in this
format:
open?;left;top;width;height;
For example, it might look like this:
1;510;433;835;683;
indicating that the properties sheet will be visible when you load a
report and that when it does show up it will be at 510, 433 with a
width of 835 and a height of 683.
To make sure that your application doesn't show the
properties sheet while it does its work, you can retrieve this
property, set the first character to 0, and then save it. The code
might look like this:
Dim strInfo As String
strInfo = Application.GetOption("_26")
strInfo = "0" & Mid(strInfo, 2)
Application.SetOption "_26", strInfo
The only way this will have any influence is if you call this code
before you've loaded any reports in design mode.
Access looks at this information only once, when it loads the
properties sheet for the first time. Once it has loaded the
properties sheet, it doesn't look at these values
again. Every time you leave design mode Access stores information
about the properties sheet, so if you're going to
try to set these values for the next time you start Access, make sure
you do it when there's no report open in design
mode. Otherwise, Access will override your settings when it saves
them itself.
To use this technique for forms, use option
"_24" instead.
It's not nearly as useful with forms as it is with
reports, however, because in older versions of Access you can open
hidden forms but not hidden reports.
Never Turn off the Screen Without an Error Handler!
Though this same advice goes for using Application.Echo or
Form.Painting, it's especially true for using
LockWindowUpdate. Any time you turn off the
screen display, you absolutely must include an error handler in your
routine that will immediately reenable screen updates if an error
occurs. Sooner or later, a runtime error will
occur, and your code must react to this and clean up. Users tend to
do unpleasant things, such as rebooting their computers, when their
screens stop dead (that's what would happen if an
error occurred while you had screen updates turned off). This can be
detrimental to their data and to your application, so never consider
turning off the screen unless you also include an error handler to
turn it back on.

 As an example of an error handler that
resets screen updates, the code executed by frmLockScreen handles
errors by using the normal exit route from the routine:
Private Sub cmdOpenReports_Click()
 Dim intI As Integer
 Dim intSuccess As Integer

 On Error GoTo HandleErr

 If Me.chkHideUpdates Then
 If Me.chkUseAPI Then
 Call acbShowUpdatesAPI(False)
 Else
 Call acbShowUpdates(False)
 End If
 End If
 For intI = 1 To 3
 Call acbOpenReport("rptReport" & intI, acDesign)
 Next intI
 For intI = 1 To 3
 DoCmd.Close acReport, "rptReport" & intI
 Next intI

ExitHere:
 If Me.chkHideUpdates Then
 If Me.chkUseAPI Then
 Call acbShowUpdatesAPI(True)
 Else
 Call acbShowUpdates(True)
 End If
 End If
Exit Sub

HandleErr:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub
If an error occurs while this subroutine is active, the code will
jump to the HandleErr label and from there will
resume at the ExitHere label. The code will
re-enable screen updates and then exit the routine. Your own code may
not look exactly like this, but you must handle errors so that the
screen never remains locked up when an error occurs.

See Also

For more information on working with the Windows API, see Chapter 11.

4.5. Find out What Language Version of Access Is Installed

Problem

 You distribute your
applications in several countries, and your users have different
internationalized versions of Access installed.
You'd like your applications to be able to make
decisions based on the installed version of Access. How can you find
out which language version of Access is currently running?

Solution

 In
older versions of Access, you had to use an API call to get this
information. However, starting with Access 2000, it is possible to
retrieve language information using the Microsoft Office Object
Library. This solution demonstrates how you can gather the language
information you need.
Load and run the form frmLanguage in 04-05.MDB.
As it loads, it calls the necessary functions to determine the
currently running language version of Access. Figure 4-10 shows the form after it's
been loaded into a retail U.S. English version of Access.
[image: frmLanguage indicates the language version of Access that's running]

Figure 4-10. frmLanguage indicates the language version of Access that's running

To include this functionality in your own applications, follow these
steps:
	Import the module basFileLanguage from 04-05.MDB
into your own application. This module includes constants
representing the seven most commonly used languages and their related
intrinsic constants and values.

	Declare a long integer variable,
lngLanguage. When your application starts
up, make a call to acbAccessLanguage, which will
return a number representing the current running language version of
Access. You can assign this return value to the
lngLanguage variable, as follows:
lngLanguage = acbAccessLanguage()
You can then pass that variable to procedures in your application
that make decisions based on the current language version of Access.

 In the example application, the
language ID is stored in an option group, which will work only if you
are supporting a known, limited set of languages. The example also
includes code that detects the version of Access in use and whether
it is a runtime version.

Discussion

 Retrieving language information requires
setting a reference to the Microsoft Office Object Library. You can
then refer to the Application object's
LanguageSettings property to retrieve the language being used. Each
language has its own LanguageID property, which is an integer value.
These language IDs are represented by enumerated constants. When you
set a reference to the Microsoft Office Object Library, you can see a
complete list of constants by examining the
msoLanguageID enumeration, as shown in Figure 4-11.
[image: Each language value has a corresponding constant]

Figure 4-11. Each language value has a corresponding constant

The call to acbAccessLanguage requires a simple
variable:
lngRetval = acb_apiGetLanguage()
Or you can use a control, as we have in the example:
Me.grpLanguage = acbAccessLanguage()

 The function returns a single value,
which tells you which language version the function found. Table 4-1 lists only a few of the Windows languages and
the ID values associated with them, along with the corresponding
constants. You can see a complete list by using the Object Browser,
as shown in Figure 4-11.
Table 4-1. Windows languages and ID values
	
 Language

 	
 Constant

 	
 ID

	
 American English

 	
 msoLanguageIDEnglishUS

 	
 1033

	
 French

 	
 msoLanguageIDFrench

 	
 1036

	
 German

 	
 msoLanguageIDGerman

 	
 1031

	
 Italian

 	
 msoLanguageIDItalian

 	
 1040

	
 Russian

 	
 msoLanguageIDRussian

 	
 1049

	
 Spanish

 	
 msoLanguageIDSpanish

 	
 1034

	
 Portuguese

 	
 msoLanguageIDPortuguese

 	
 2070

	
 Swedish

 	
 msoLanguageIDSwedish

 	
 1053

	
 Zulu

 	
 msoLanguageIDZulu

 	
 1077

The simple function in basFileLanguage,
acbAccessLanguage, returns only the national
language ID number (from Table 4-1) for the
installed version of Access:
Function acbAccessLanguage() As Long
 acbAccessLanguage = _
 Application.LanguageSettings.LanguageID(msoLanguageIDUI)
End Function
Once you know the ID for the national language, you can make choices
in your application. For example, as shown in the next two solutions,
you can modify labels on forms and reports and modify the error
messages that you display.

 The example form also uses two
functions from basAccessInfo in 04-05.MDB,
acbGetVersion and
acbIsRuntime. Both are quite simple, comprising
only calls to the built-in SysCmd function. The
first, acbGetVersion, returns the version number
of the currently running copy of Access. The second,
acbIsRuntime, returns True if
your application is running in the runtime version of Access or
False if it's in the retail
version. You may find these functions useful if your application
needs to react differently to different environments.
Public Function acbGetVersion() As String
 ' Retrieve the Access version for places
 ' that can't use symbolic constants.

 acbGetVersion = SysCmd(acSysCmdAccessVer)
End Function

Public Function acbIsRuntime() As Boolean
 ' Use SysCmd() to gather the information.

 acbIsRuntime = SysCmd(acSysCmdRuntime)
End Function

4.6. Internationalize Text in Your Applications

Problem

 You'd like to be
able to pop up translated error messages in your applications, based
on the currently running language version of Access.
You'd also like other text on your forms and reports
to adjust automatically based on the current language version. You
know there are a number of ways to do this, but you
can't decide which is best. How should you store and
retrieve messages in multiple languages?

Solution

The translated version of Access handles its own error messages (in
the German version, for example, the Access error messages appear in
German). But you do need to translate your own messages if you want
your application to run smoothly in other languages. Though there are
several methods of handling text, the most generic solution uses a
table of messages, which you can look up by ID number.

 Load and run the form frmTestMessage
from 04-06.MDB. This form, shown in Figure 4-12, allows you to choose from three different
languages (English, French, and Spanish) in an option group. As you
choose each language, code attached to the option
group's AfterUpdate event changes accordingly the
captions for labels on the form and the status-bar text for text
boxes. To try a sample error message in the chosen language, click
the Test Message button.
[image: The sample form, frmTestMessage, showing the French test error message]

Figure 4-12. The sample form, frmTestMessage, showing the French test error message

In each case, the messages are coming from the table tblMessages.
This table includes a column for the message identifier (the primary
key) and one column for each of the languages your application
supports. Figure 4-13 shows the table, filled in for
the sample application.
[image: The message table, tblMessages, filled in for the sample application 04-06.MDB]

Figure 4-13. The message table, tblMessages, filled in for the sample application 04-06.MDB

To include similar functionality in your own applications, follow
these steps:
	From 04-06.MDB, import the modules
basFileLanguage (which includes the procedures from the Solution in
Recipe 4.5 for obtaining the current
language version of Access) and basGetMessages (which looks up
particular messages in tblMessages).

	From 04-06.MDB, import the table tblMessages.
This is the table you'll use to hold your messages.
Delete the existing rows, if you like. Also, you can modify the
structure and add more languages if necessary.

	Add the necessary rows to tblMessages, filling in each column with
the translated text, as shown in Figure 4-13.

	

 On any form for which
you'd like to have language-sensitive captions and
status-bar text, place the message ID (the MsgNum column from
tblMessages) in the Tag property for the control whose text
you'd like to change. For labels, the code
you'll call is set up to change the Caption
property; for text boxes, the code is set up to change the
StatusBarText property. (If you want to include other control types,
you can modify the code in the subroutine
GetInfo, as described in Recipe 4.6.3.)

	
 To set the captions for labels and
the status-bar text for text boxes when your form loads, place the
following code in the Open event procedure for your form:
Private Sub grpLanguage_AfterUpdate()
 acbSetText Me, Me.grpLanguage
End Sub

 The acbSetText
subroutine walks through all the controls on your form, searching for
ones with a numeric value in the Tag property. For any such controls,
it looks up the appropriate message and assigns it to the Caption or
StatusBarText property.

Discussion

The technique presented in this solution includes two basic pieces of
functionality: retrieving the correct messages from the table of
messages and replacing all the required property values on your form
or report. Together, these two operations accomplish the goals of
changing labels and status bar text and providing translated error
messages.
The acbGetMessage function retrieves the
messages you need from tblMessages. You pass to it, as parameters, a
long integer specifying the message number you want and an integer
specifying the correct language.
Public Function acbGetMessage(_
 ByVal lngMessage As Long, _
 ByVal lngLanguage As Long) As Variant

 ' Retrieve a message from tblMessages, given a message
 ' ID and a language.

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim varLanguage As Variant
 Dim varResult As Variant

 On Error GoTo HandleErr

 varResult = Null
 Set db = CurrentDb()
 Set rst = db.OpenRecordset("tblMessages", dbOpenTable)
 With rst
 If Not .EOF Then
 ' Set the index, which is the message number
 .Index = "PrimaryKey"
 .Seek "=", lngMessage
 If .NoMatch Then
 ' You could raise an error here,
 ' but we're just returning a null value.
 varResult = Null
 Else
 varLanguage = GetLanguageName(lngLanguage)
 If Not IsNull(varLanguage) Then
 varResult = rst(varLanguage)
 Else
 varResult = Null
 End If
 End If
 End If
 End With
ExitHere:
 If Not rst Is Nothing Then
 rst.Close
 Set rst = Nothing
 End If
 acbGetMessage = varResult
 Exit Function

HandleErr:
 varResult = Null
 MsgBox Err.Number & ": " & Err.Description, , "acbGetMessage"
 Resume ExitHere
End Function
This function starts by creating a table-type recordset based on
tblMessages:
Set rst = db.OpenRecordset(acbcMsgTable, dbOpenTable)
If there are any rows in tblMessages, the function looks for the row
you've requested. If it doesn't
find a match, you must have requested a message number
that's not in the table, so the function returns
Null:
With rst
 If Not .EOF Then
 ' Set the index, which is the message number.
 .Index = "PrimaryKey"
 .Seek "=", lngMessage
 If .NoMatch Then
 varResult = Null

 If
it does find a match, it converts the language number into the
table's column name for the language (using the
GetLanguageName function). If it finds a
language name, it retrieves the appropriate message from tblMessages:
 Else
 varLanguage = GetLanguageName(intLanguage)
 If Not IsNull(varLanguage) Then
 varResult = rst(varLanguage)
 Else
 varResult = Null
 End If
 End If
End With
If any error occurs along the way, acbGetMessage
returns Null. If things work out, it returns the
message it found in tblMessages.
You can call acbGetMessage directly (e.g., to
fill the text for a message box or to build up a more complex error
string). In addition, the acbSetText
subroutine—which does the work of replacing text when you load
a form or report—calls acbGetMessage
multiple times, once for each message.
The acbSetText procedure takes two parameters:
an object containing a reference to the form or report, and the
language ID. The procedure walks through all the controls on the
requested form or report, calling the GetInfo
function for each. The complete text of the
acbSetText procedure is:
Public Sub acbSetText(obj As Object, ByVal lngLanguage As Long)

 ' Set text for labels (caption) and text boxes (status-bar
 ' text) on the specified report or form.

 Dim ctl As Control

 For Each ctl In obj.Controls
 Call GetInfo(ctl, lngLanguage)
 Next ctl
End Sub
The GetInfo subroutine does the actual work;
this is the procedure you'll need to change if you
want to handle more than just labels' Caption
properties and text boxes' StatusBarText properties.
It checks the Tag property and, if it's numeric,
looks up the associated text string in the appropriate language. Once
it has the string, it checks the control type and places the string
in the correct property for the given control type. The complete
source code for the GetInfo subroutine is:
Private Sub GetInfo(ctl As Control, lngLanguage As Long)
 ' Given a control and a language, look up the label
 ' or status-bar text for it.

 Dim varCaption As Variant

 With ctl
 If IsNumeric(.Tag) Then
 varCaption = acbGetMessage(.Tag, lngLanguage)
 If Not IsNull(varCaption) Then
 Select Case .ControlType
 Case acLabel
 .Caption = varCaption
 Case acTextBox
 .StatusBarText = varCaption
 End Select
 End If
 End If
 End With
End Sub
If you want to support more languages than just the three used in
this example, you'll need to modify the structure of
tblMessages (adding a new column for each new language) and modify
the GetLanguageName procedure in the
basGetMessage module. As it is now,
GetLanguageName looks like this:
Private Function GetLanguageName(_
 ByVal lngLanguage As Long) As Variant
 ' Make sure to set a reference to the Office Library.
 ' Given a language identifier, get the column name in
 ' tblMessages that corresponds to it. This function
 ' expects, for lngLanguage:
 ' msoLanguageIDEnglishUS (1033),
 ' msoLanguageIDSpanish (1034), or
 ' msoLanguageIDFrench (1036).

 Dim varLang As Variant

 Select Case lngLanguage
 Case msoLanguageIDEnglishUS
 varLang = "English"
 Case msoLanguageIDFrench
 varLang = "French"
 Case msoLanguageIDSpanish
 varLang = "Spanish"
 End Select
 GetLanguageName = varLang
End Function

 Add more cases to the
Select
 Case statement, matching
the new columns in your messages table. The constants come from the
Office Library, a reference to which you must add to your project. An
alternative approach is to use the language IDs themselves as the
column headings—that way you won't need the
extra step of translating the IDs to names. You could also redesign
the solution to use three columns—MsgNum, LanguageID, and
ErrorMessage—which would make adding a language a matter of
adding records rather than modifying code.
The sample form contains only a few controls. Attempting to modify
the properties of several hundred controls would noticeably increase
load time for a form. For forms that contain many controls, you might
be better off creating one version of the form per language and
distributing translated versions of your application. Alternatively,
you could preload the form invisibly when your application starts up
so that it appears instantly when made visible.
Another problem you should consider when attempting to modify
captions on the fly is that many non-English languages take more
space to present the same information. You'll find
that some languages require twice as much space (or more) for a given
text string. This may mean that dynamic translation
isn't feasible, due to real-estate problems. Again,
the best solution is to plan the translated versions carefully and
prepare a different set of forms and reports for each language, or to
leave enough space for the most verbose language you need to support.
You could also include width values for each language and adjust the
controls as needed, but this would get complicated because you would
also need to adjust their positions and perhaps even the size of the
form. A comprehensive solution would require you to store many
property values for each control and for each form and report.

 Message boxes don't
present such a problem, of course, because Access automatically
resizes them to fit the data you send to them. The same goes for
ControlTipText. Call the acbGetMessage function
to provide the text for any message box you wish to fill, as in this
example:
Call MsgBox(acbGetText(intLanguage, 1), vbExclamation, acbGetText(intLanguage, 2))
You can use this technique to alter any messages within your
application at runtime. For example, if you want to provide different
levels of help for different users, you can keep all your messages in
a table and retrieve the correct help messages depending on who the
current user is. In this case, rather than looking up language names,
you'd be looking up user or group names.

4.7. Change and Reset the Access Caption Bar

Problem

 You'd like to be able
to change the caption of the main Access window as part of your
application. Of course, you need to be able to reset it back to its
original value when you're done.
You've found the AppTitle property in Access, but
you just can't get it to work. Is there some simple
way to retrieve and set the Access caption, as you can with any of
the windows within Access?

Solution

 This is one situation where
it's simpler to use the Windows API than it is to
use the built-in functionality. Although Access does support a
property of the current database, AppTitle, that you can use to set
and retrieve the Access titlebar, it's clumsy to use
because AppTitle is a user-defined property. If the property
doesn't yet exist in a database, you must create it.
With the Windows API, retrieving and setting the Access caption both
require just a few predictable steps, and neither process is terribly
difficult. This solution demonstrates the steps to set and retrieve
the Access caption with the Windows API. The AppTitle property is
discussed in Recipe 4.7.3.
To try changing the Access caption, load and run
frmSetTitleBarCaptionAPI from 04-07.MDB. The
form displays the current Access caption. By filling in a new value
in the New Access Caption text box and pressing the Set New Caption
button, you can change the caption on the main Access window. Figure 4-14 shows the form once it's
already done its work. Press the Reset Caption button when
you're done to reset the Access caption.
[image: frmSetTitleBarCaptionAPI after it has set the new Access caption]

Figure 4-14. frmSetTitleBarCaptionAPI after it has set the new Access caption

To include this functionality in your own applications, follow these
steps:
	Import the module basCaption (which supplies the necessary Windows
API declarations and the interface routines) from
04-07.MDB.

	To retrieve the current Access caption, call the
acbGetAccessCaption function. For example:
strOldCaption = acbGetAccessCaption()

	To set a new Access caption, call the
acbSetAccessCaption subroutine, passing to it a
string that holds your new caption, as follows (by appending an empty
string to the contents of the text box, you guarantee that the value
you pass to acbSetAccessCaption is indeed a string, even if the text
box's content is empty):
Call acbSetAccessCaption(Me.txtOldCaption & "")

	To set the caption of any window given its window handle, call the
SetWindowText API directly:
Call SetWindowText(hWnd, "Your New Caption")

Discussion

 To retrieve the Access
window caption, call the acbGetAccessCaption
function, which passes the Access window handle
(Application.hWndAccessApp) to the more generalized
acbGetWindowCaption function, which does its
work in the following three steps:
	
 It uses the
built-in Space function to size a string buffer
large enough to hold all the characters.

	
 It
calls the Windows API function GetWindowText to
fill the buffer with the actual window caption.
GetWindowText returns the number of characters
it filled in.

	
 It uses the
built-in Left function to remove extra
characters.

The code for the acbGetWindowCaption function is
as follows:
Private Function acbGetWindowCaption(ByVal hWnd As Long) As Variant

 ' Get any window's caption, given its hWnd.

 Dim intLen As Integer
 Dim strBuffer As String

 Const acbcMaxLen = 255

 If hWnd <> 0 Then
 strBuffer = Space(acbcMaxLen)
 intLen = GetWindowText(hWnd, strBuffer, acbcMaxLen)
 acbGetWindowCaption = Left(strBuffer, intLen)
 End If
End Function
To set the Access caption, call the
acbSetAccessCaption subroutine, passing to it
the new caption you'd like to use. This procedure is
much simpler than the previous one: it passes the Access window
handle and the caption to the SetWindowText API
procedure. The code for the acbSetAccessCaption
subroutine is as follows:
Public Sub acbSetAccessCaption(ByVal strCaption As String)

 ' Set the Access caption to be the value in strCaption.
 Call SetWindowText(Application.hWndAccessApp, strCaption)
End Sub

 Access does provide a built-in mechanism
for setting the caption to be used while a specific database is
loaded: the Tools → Startup dialog, shown in Figure 4-15. Using this dialog, you can set many of the
startup options you'll need to deliver any
application: the startup form, titlebar, icon, shortcut menu bar, and
global menu bar. You can control other Access behavior as well, such
as displaying the database window at startup, displaying the status
bar, using built-in toolbars, or allowing toolbar changes.
[image: Use the Tools → Startup dialog to set application startup options]

Figure 4-15. Use the Tools → Startup dialog to set application startup options

 The AppTitle property allows you to set the
database's titlebar, and the AppIcon property allows
you to set an icon for the application. Both are usually set using
the Startup dialog, but you can also modify them programmatically, as
long as you remember that they're not built-in
properties of the database. You must first create the properties and
append them to the collection of properties; then
you'll be able to use them.
The example database includes a form called
frmSetTitleBarCaptionProperty that uses the AppTitle database
property, creating the property on the fly if necessary.
Here's the code that sets a new titlebar caption:
Private Sub cmdNewCaption_Click()
 Dim prp As DAO.Property
 On Error GoTo HandleErr
 CurrentDb.Properties("AppTitle") = Me.txtNewCaption & ""

ExitHere:
 Application.RefreshTitleBar
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case 3270 'Property not found
 Set prp = CurrentDb.CreateProperty(_
 "AppTitle", dbText, Me.txtNewCaption)
 CurrentDb.Properties.Append prp
 Case Else
 MsgBox _
 Err.Number & ": " & Err.Description, , "cmdNewCaption"
 End Select
 Resume ExitHere
End Sub
To retrieve the titlebar caption when the form opens, we used error
handling that assumes the caption is "Microsoft
Access" if the AppTitle property
hasn't been used to change it:
Private Sub Form_Open(Cancel As Integer)
 On Error Resume Next
 Me.txtOldCaption = CurrentDb.Properties("AppTitle")
 If Err.Number <> 0 Then
 Me.txtOldCaption = "Microsoft Access"
 End If
End Sub

 What are the trade-offs? The Windows API
requires less code, runs faster, and works with applications other
than Access (if you can get a window handle, you can set the
caption). However, the AppTitle property actually persistently sets
the database's property, so the next time you load
the database, the title is set for you. It takes a bit more work to
use the non-API Access method, but it does allow you to preserve the
setting for your next session.

 One final note: the Windows API allows you
to set the caption to be an empty string. You cannot set the Access
AppTitle property to be an empty string; Access will reject it. If
you want to remove the text from the titlebar altogether, use the API
method.
Create Your Own Splash Screen
The Tools → Startup menu does not provide a method by which
you can supply your own startup bitmap image. If you want to supply
your own bitmap splash screen to use rather than
Access's built-in image, you can place a bitmap
(*.bmp) file in the same directory as your
application with the same name as your application. When you
double-click on your MDB file to start it, or create a shortcut that
starts it, Access will find your bitmap and use it as your startup
splash screen. If you want no splash screen at all, simply create a
single-pixel bitmap (use a light color for that single pixel). It
will be so small that no one will notice it as Access opens.

4.8. Use the Windows File Open/Save Common Dialogs

Problem

 You need to allow users to
choose filenames for opening and saving files. You know that Windows
supports a common way to get these names. How can you use this
mechanism from within Access?

Solution

Not only can you use the common File Open/Save dialogs, but you even
have three ways to do it:
	

 You
can use the ActiveX control, COMMDLG.OCX, that
ships with the some versions of the developer version of Office, and
with Visual Basic.

	In Access 2002 and later, you can use the FileDialog object.

	
 You can call the Windows API
directly.

 If you don't have the
developer version of Office, or Visual Basic, the first suggestion
won't help. In addition, distribution of
applications that use the common dialog ActiveX can get complex,
because of ActiveX versioning issues. The FileDialog object added in
Access 2002 makes it easier to select files, but
it's not available in earlier versions. Therefore,
this solution shows how to call the Windows API directly and lists
all the options you have when using these common dialogs.
Open and run the form frmTestOpenSave from
04-08.MDB. This sample form allows you to set
various flags (described later in this solution) and to see the
results. You can try both the File Save and File Open common dialogs.
Try changing some of the settings and see what happens. Figure 4-16 shows the File Open dialog—with the Read
Only checkbox hidden and allowing for multiple
selections—displayed in explorer mode (as opposed to the older
Program Manager look, which is what Windows will use if you specify
the multiselect option by itself).
[image: The sample form, frmTestOpenSave, showing the File Open dialog in use]

Figure 4-16. The sample form, frmTestOpenSave, showing the File Open dialog in use

To use this functionality within your own applications, follow these
steps:
	Import the module basCommonFile from 04-08.MDB
into your own application. This module provides the type and API
function declarations you'll need and the wrapper
functions that make it easy for you to use the common dialogs.

	

 To use the File Open or File Save
dialogs, call the acbCommonFileOpenSave
function, passing to it information indicating what you want it to
do. Table 4-2 lists the options available when you
call the function. None of the parameters is required; the table
lists the default values the function will use if you leave off each
of the parameters. As a simple example, the following function call
will ask for the name of the file to which you'd
like to save, suggesting FOO.TXT and returning
the full path of the file you choose:
varFileName = acbCommonFileOpenSave(FileName:="FOO.TXT", OpenFile:=False)

Table 4-2. Parameters for the acbCommonFileOpenSave function (all optional)
	
 Parameter name

 	
 Description

 	
 Default value

	
 Flags

 	
 A combination of zero or more flags from Table 4-1
that control the operation of the dialog. Combine them using the
OR operator.

 	
 0

	
 InitialDir

 	
 The initial directory that the dialog should use.

 	
 ""

	
 Filter

 	
 A string listing the available file filters. Use
acbAddFilter, as shown in the examples, to build
this parameter. The format of this item is important, so make sure to
use the function rather than just setting the value by hand.

 	
 ""

	
 FilterIndex

 	
 The number of the filter item to use when the dialog first opens. The
first filter is numbered 1.

 	
 1

	
 DefaultExt

 	
 A default file extension to be appended to the filename if the user
doesn't supply one. Don't include a
period.

 	
 ""

	
 FileName

 	
 The filename to use when the dialog is first displayed.

 	
 ""

	
 DialogTitle

 	
 The title for the dialog. Usually, you won't specify
this parameter.

 	
 Open/Save As

	
 hWnd

 	
 The window handle for the parent window of the dialog. This value
controls where the dialog will be placed.

 	
 Application.hWndAccessApp

	
 OpenFile

 	
 Whether it's the Open or Save dialog. (True = Open,
False = Save).

 	
 True

Tip
Because the acbCommonFileOpenSave function
accepts so many optional parameters, and you'll
generally want to set only a few of them, you may find
VBA's support for named parameters useful. That is,
rather than depending on the exact order of the parameters you send
to acbCommonFileOpenSave, use the name of the
parameter, a :=, and then the value, as
we've done in this example. This will make your code
easier to read and far less error-prone.

	
 If you also want to specify filter
choices that show up in the "Files of
type:" combo box on the dialog, call the
acbAddFilterItem function. This function accepts
three parameters: the string of filters to which you want to add
items; the description for your filter ("Databases
(*.mdb, *.mda)", for example); and the actual filter
file specifications, delimited with a semicolon
("*.mda;*.mda", to match the
previous example). The function returns the new filter string. You
can call acbAddFilterItem as many times as you
need to build up your list of filters. For example, the following
example (similar to the example in basCommonFile) sets up four filter
expressions. You can call TestIt from the debug window in Access to
test the filters:
Function TestIt()
 Dim strFilter As String

 strFilter = acbAddFilterItem(strFilter, "Access Files (*.mda, *.mdb)", _
 "*.MDA;*.MDB")
 strFilter = acbAddFilterItem(strFilter, "dBASE Files (*.dbf)", "*.DBF")
 strFilter = acbAddFilterItem(strFilter, "Text Files (*.txt)", "*.TXT")
 strFilter = acbAddFilterItem(strFilter, "All Files (*.*)", "*.*")

 MsgBox "You selected: " & acbCommonFileOpenSave(InitialDir:="C:\", _
 Filter:=strFilter, FilterIndex:=3, DialogTitle:="Hello! Open Me.")
End Function

	You may want to specify some of the available options for controlling
the common dialogs, as shown in frmTestOpenSave. You can specify any
of the options shown there, and more, when you call the function. To
specify your selected options, choose values from the items in Table 4-2, combine them together with the
OR operator, and send this value to the
acbCommonFileOpenSave function as the
Flags argument. For example, the following
statement will build up a Flags value that
tells Windows to hide the Read Only checkbox and the Network button,
and that the output path must already exist:
lngFlags = acbOFN_HIDEREADONLY Or acbOFN_NONETWORKBUTTON Or _
 acbOFN_PATHMUSTEXIST

Discussion

 When you call
acbCommonFileOpenSave, you're
actually calling the GetOpenFileName or
GetSaveFileName Windows API functions. The
acbCommonFileOpenSave function takes only the
parameters you send it, replacing missing ones with the default
values shown in Table 4-2, and fills in a
user-defined data structure that both API functions expect to
receive. The API functions actually do the work, and
acbCommonFileOpenSave returns to you the chosen
filename. Although you may find it interesting to dig into the
details of calling the API functions directly,
that's beyond the scope of this solution. The
wrapper function, acbCommonFileOpenSave, handles
a large majority of the cases in which you'll need
to use common File Open/Save dialogs.

 Table 4-3 lists all
the values you can use in the Flags
parameter of the call to acbCommonFileOpenSave.
You can skip the parameter altogether, or you can use one or more of
these values, combined with the OR operator. For
example, to hide the Read Only checkbox and allow multiple files to
be selected, use this code:
lngFlags = acbOFN_HIDEREADONLY Or acbOFN_ALLOWMULTISELECT
Table 4-3. Values to be combined in acbCommonFileOpenSave's Flags parameter
	
 Constant name

 	
 On input

 	
 On output

	
 acbOFN_ALLOWMULTISELECT

 	
 Allows you to select more than one filename (File Open only). Unless
you also select the acbOFN_EXPLORER flag, you'll get
an old-style dialog box.

 	
 The strFile member will contain the chosen path, followed by all the
files within that path that were chosen, separated with spaces, as in
C:\ResultFolder
 File1.TXT
File2.TXT.

	
 acbOFN_CREATEPROMPT

 	
 Prompts you if the selected file doesn't exist,
allowing you to go on or make a different choice.

 	

	
 acbOFN_EXPLORER

 	
 Creates an Open or Save As dialog that uses user-interface features
similar to the Windows Explorer. If you've specified
the acbOFN_ALLOWMULTISELECT flag, you'll generally
also want to include this flag.

 	

	
 acbOFN_EXTENSIONDIFFERENT

 	

	
 Set if the chosen filename has a different extension than that
supplied in the DefaultExt parameter.

	
 acbOFN_FILEMUSTEXIST

 	
 Forces you to supply only existing filenames.

 	

	
 acbOFN_HIDEREADONLY

 	
 Hides the Read Only checkbox.

 	

	
 acbOFN_LONGNAMES

 	
 Causes the Open or Save As dialog to display long filenames. If this
flag is not specified, the dialog displays filenames in 8.3 format.
This value is ignored if acbOFN_EXPLORER is set.

 	

	
 acbOFN_NOCHANGEDIR

 	

	
 Restores the current directory to its original value if the user
changed the directory while searching for files.

	
 acbOFN_NODEREFERENCELINKS

 	

	
 Returns the path and filename of the selected shortcut
(.LNK) file. If you don't use
this flag, the dialog returns the path and filename of the file
referenced by the shortcut.

	
 acbOFN_NOLONGNAMES

 	
 Specifies that long filenames are not displayed in the File Name list
box. This value is ignored if acbOFN_EXPLORER is
set.

 	

	
 acbOFN_NONETWORKBUTTON

 	
 Hides the Network button.

 	

	
 acbOFN_NOREADONLYRETURN

 	

	
 Specifies that the returned file does not have the Read Only checkbox
checked and is not in a write-protected directory.

	
 acbOFN_NOTESTFILECREATE

 	
 Normally, COMMDLG.DLL tests to make sure that
you'll be able to create the file when you choose a
filename for saving. If set, it doesn't test,
providing no protection against common disk errors.

 	

	
 acbOFN_NOVALIDATE

 	
 Disables filename validation. Normally, Windows checks the chosen
filename to make sure it's a valid name.

 	

	
 acbOFN_OVERWRITEPROMPT

 	
 Issues a warning if you select an existing file for a File Save As
operation.

 	

	
 acbOFN_PATHMUSTEXIST

 	
 Forces you to supply only valid pathnames.

 	

	
 acbOFN_READONLY

 	
 Forces the Read Only checkbox to be checked.

 	
 Set if the user checked the Read Only checkbox.

	
 acbOFN_SHAREAWARE

 	
 Ignores sharing violations. Because Access code cannot handle the
errors that occur when sharing violations occur in this code, you
should not set this flag.

 	

	
 acbOFN_SHOWHELP

 	
 Shows a Help button on the dialog. Though this option works, the
button will not, so its use in Access is limited.

 	

Not all of the flags make sense for both File Open and File Save
operations, of course. Your best bet is to experiment with the flags,
either in your own code or using the sample form frmTestOpenSave from
04-08.MDB.

 Some of the flags are useful only on
return from the function call. For example, if you select the Read
Only checkbox on the common dialog, Windows passes that fact back to
you in the Flags parameter. To retrieve
that information from your call to
acbCommonFileOpenSave, pass the Flags argument
in a variable, not directly as a literal value. Because
acbCommonFileOpenSave accepts the
Flags argument by reference, it can return
the value to your calling procedure after you've
selected a filename. To check if a particular flag value was set
during the call to acbCommonFileOpenSave, use
the AND operator with the return value, as in this example fragment
(see the Solution in Recipe 11.1 for more
information on using the AND and
OR operators):
Dim lngFlags As Long
Dim varFileName As Variant

lngFlags = 0
varFileName = antCommonFileOpenSave(Flags:=lngFlags)
If lngFlags AND acbOFN_READONLY <> 0 Then
 ' The user checked the Read Only checkbox.
End if

 If
you pass a variable to acbCommonFileOpenSave
containing the Flags information (rather
than not sending the parameter, or sending a literal value), the
function will return to the caller information about what happened
while the dialog was in use. Several of the flags listed in Table 4-3 provide information on output. That is, you
can check the state of the Flags variable,
and if it contains the flags from Table 4-3, you
know that the tested condition was true. For example, to open a file
and then check to see if the selected file is to be opened read-only,
you could use code like this:
Dim lngFlags As Long
Dim varRetval As Variant

varRetval = acbCommonFileOpenSave(Flags:=lngFlags)
If Not IsNull(varRetval) Then
 If lngFlags AND acbOFN_READONLY Then
 MsgBox "You opened the file read-only!"
 End If
End If
As you can see in this example, you can use the
AND operator to see if
Flags contains the specific flag in which
you're interested.

 The file filter (the
Filter parameter to
acbCommonFileOpenSave) has a unique format: it
consists of pairs of strings. Each item is terminated with
vbNullChar (Chr$(0)). The first
item in the pair supplies the text portion, which appears in the
combo box in the lower-left corner of the dialog. The second item
supplies the file specifications that Windows uses to filter the list
of files. Though it doesn't matter what you use in
the first item, by convention, most applications use something like
this:
Oogly Files (*.oog)
listing the file description. The conventional file specification
looks something like this:
*.oog
To simplify building these filter strings, use the
acbAddFilter function from basCommonFile. See
Step 3 for an example.
If you select the
acbOFN_AllowMultiSelect
flag, the result value may contain a null-delimited list of files,
starting with the folder containing the files. For example, if you
navigated to C:\AccessCookbook, and selected 04-04.mdb and 04-06.mdb,
the return value from acbCommonFileOpenSave would contain the
following text (we've used the vertical pipe symbol
here to represent Chr(0) within the text):
 C:\AccessCookbook|04-04.mdb|04-06.mdb
The sample form replaces the Chr(0) with a space character for you:
Private Sub cmdFileOpen_Click()
 Dim varResult As Variant
 varResult = FileOpenSave(True)

 Me.txtFileOpen = Replace(varResult, vbNullChar, " ")
End Sub
If you allow multiple file selection, it's up to you
to parse the various the file path and names yourself.
Take the time to study all the parameters in Table 4-2 and all the options in Table 4-3. There's not room here to go
into detail for each one, so your best bet is to try out all of them.
You can play with frmTestOpenSave to test the effects of some of the
flag values. See what happens when you place a value into one of
them, and then experiment from there.

 Although you have no direct control over
the placement of the common dialogs when they pop up, the choice of
the parent window can affect the location. If you pass 0,
Application.hWndAccessApp, or a normal form's hWnd
property for the hWnd argument to
acbCommonFileOpenSave (or just
don't send a value, so it uses the default value),
the dialog will appear in the upper-left corner of the Access MDI
client window. If, on the other hand, you pass it the hWnd property
of a pop-up form, Windows will place the dialog in the upper-left
corner of that pop-up form even if the form is not
visible. Therefore, for complete control over the
placement of the dialog, create a form, set its PopUp property to
True, and use that form to place the dialog.
Finally, remember that these dialogs don't actually
do anything—they just supply you with the
names of files. It's up to your application code to
open or save the requested files.

See Also

For more information on working with the Windows API, see Chapter 11.

4.9. Clean Test Data out of a Database When You're Ready to Ship It

Problem

 You're finished
designing and building a database; it's ready to
ship to your client. Before they can use it, you need to remove the
artificial data you've entered, without destroying
permanent lookup tables. Is there a simple way to do this without
running into referential-integrity problems?

Solution

One solution is to open every data table in datasheet view, select
all the records, press the Delete key, and confirm the deletion.
However, there are three problems with this simple method:
	
 You have to open tables in a
particular order (i.e., tables on the many side of a many-to-one
relationship before their related one-side tables).

	You have to remember which tables contain test data and which ones
contain production data.

	The task is tedious and repetitive.

 Instead of clearing out your
test data by hand, you can write a general-purpose routine that uses
a table of tables and a simple SQL statement to remove only the test
data, in the correct order.
Open 04-09.MDB and view the tables in the
database container. Open the tblFood table and try to delete some
records. You'll get a referential-integrity error,
because there are related records in txrefFoodRestaurant. Figure 4-17 shows the relationships set up for the sample
database. Now open frmDemo and click on the Clear button to remove
all the test data from the database without any manual intervention.
[image: Relationships in the sample database]

Figure 4-17. Relationships in the sample database

To implement this technique in your own database, follow these steps:
	Import the table zstblDeleteOrder (structure only, without data) into
your own database, or create a new table with the fields shown in
Table 4-4.

Table 4-4. Structure of zstblDeleteOrder
	
 Field name

 	
 Data type

 	
 Field size

 	
 Properties

	
 Order

 	
 Number

 	
 Integer

 	
 PrimaryKey

	
 TableName

 	
 Text

 	

	

	Import the module zsbasMaintain into your database, or create a new
module with the single function shown here:
Public Function acbClearData() As Boolean
 ' Remove all data from tables specified in zstblDeleteOrder.
 ' Data is removed in the order specified to avoid
 ' referential-integrity violations.

 On Error GoTo HandleErr

 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb()
 Set rst = db.OpenRecordset("zstblDeleteOrder", dbOpenSnapshot)

 Do Until rst.EOF
 db.Execute "DELETE * FROM " & rst("TableName")
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 acbClearData = True

ExitHere:
 Exit Function

HandleErr:
 acbClearData = False
 MsgBox "Error " & Err & ": " & Err.Description, , "acbClearData()"
 Resume ExitHere
End Function

	Open zstblDeleteOrder in datasheet view and add one record for each
table you want to clear out before shipping. These tables must be
listed in the order in which you want them cleared. Assign each table
a unique order number, with the lowest number belonging to the first
table to be cleared. Tables on the many side of a one-to-many
relationship should be listed before tables on the one side of the
relationship. Tables that you don't want to clear
(including zstblDeleteOrder) should not be entered at all. Figure 4-18 shows the sample version of zstblDeleteOrder.

[image: Sample zstblDeleteOrder]

Figure 4-18. Sample zstblDeleteOrder

	
 If you'd like a form to
control the deletion process, create a new, blank form. Place one
command button on the form and modify the command
button's Click event handler to call acbClearData:
Private Sub cmdClear_Click()
 Call acbClearData
End Sub

Discussion

The acbClearData function automates the task of
selecting the order of your tables and then deleting the data table
by table. You select the order when you build the zstblDeleteOrder
table. The function works by opening a snapshot of this table and
looping through the snapshot one line at a time. The line in the
function that does the actual work is:
db.Execute "DELETE * FROM " & rst("TableName")
This line concatenates the table name found in rstTables, using SQL
keywords to form a complete SQL statement. For example, if you
specify tblFood as one of the tables to delete, Access builds the
following SQL statement:
DELETE * FROM tblFood;

 This is the SQL equivalent of a delete
query that selects all rows from the table and deletes them. The
db.Execute statement turns this query over to the
Jet engine for execution.
The sample database has a second button, Restock, on the demo form.
This button runs a procedure that in turn runs four append queries to
take backup copies of the data and return them to the main data
tables. This lets you test the function in the sample database more
than once.

 When you use this technique in your
own database, be sure to compact the database before you distribute
it to your users. To do this, select Tools → Database
Utilities → Compact and Repair Database. There are two
reasons to compact your database at this point:
	Until you compact, the Access file won't shrink at
all. When you delete data from tables, Access marks the data pages as
empty, but it doesn't give them back to your hard
drive as free space. This occurs only when you compact the database.

	
 When you compact a database,
Access resets the next counter values for all incrementing autonumber
fields. If you remove all the data from a table with an autonumber in
it and compact the database, the next record added will have an
autonumber value of 1.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New Databases? in the Preface.

4.10. Secure Your Access Database

Problem

 You've
created an Access database that you'd like to
secure. The database contains some sensitive data to which you wish
to limit access. You'd like to be able to create
different classes of users, so that some users have no access to this
data, others can read the data but can't change it,
and still others can modify the data. How can you accomplish this?

Solution

 The
Microsoft Jet database engine, which Access uses to store and
retrieve its objects and data, employs a workgroup-based security
model that allows you to secure your Access databases, assigning
permissions to users and groups. Access supports two mechanisms for
securing your database: the database password feature and user-level
security. The database password feature is an all-or-nothing
proposition—users who know the password aren't
restricted in any way once they're in the database.
If you want to assign varying permissions to different users,
you'll need user-level security. User-level security
is fairly complex—it doesn't work if you leave
out a step. It consists of creating a new workgroup file (which holds
user, group, and password information) and then using this new
workgroup file to secure the database. There is a Security Wizard
built into Access that will help you secure your database, but you
can also manually perform the process, which will help you understand
what's happening.

 User-level security relies on a special
database, called a workgroup file, to store
users, the groups to which they belong, and their passwords. When you
install Access, you are automatically hooked up to a default
workgroup file called System.mdw. To secure your
database, you will need to create your own unique workgroup file.

 Every
Access workgroup file includes two built-in groups: the Users group,
which contains every user; and the Admins group, the members of which
automatically get permission to administer security. There is also
one built-in user, Admin. The Admin user starts out in the Admins
group, but don't let the name Admin confuse you. You
can remove Admin from the Admins group and take away all its
administrative privileges, as long as some other user is left in
Admins to act as the administrator. The Admin user has the same
identity in every Access workgroup file, so any privileges that you
give Admin will be available to anyone.
Securing a database involves adding a new member to the Admins group,
removing the Admin user from that group, removing permissions from
the Admin user and from the Users group, and assigning permissions to
the custom groups that you define. The steps that follow show you how
to implement user-level security in your Access database:
	

 Create a new, unique workgroup
file. In Access 2002 and later, this capability is built into the
product, but in older versions you must run a separate utility called
the Workgroup Administrator (Wrkgadm.exe). Write
down the Name, Organization, and Workgroup ID strings that will be
requested when you create your new workgroup file, and store them in
a safe place. These strings will be encrypted to form the unique
identity of your new workgroup file—if the original ever
becomes lost or corrupted, it can be reconstructed as long as you
input the identical strings. Each database
"knows" the workgroup file it was
secured with by this unique token (the Workgroup ID, or WID) and will
not recognize a workgroup file that has a different WID. This means
that you'll be permanently locked out of your
database if you lose these strings. Also, upgrading a secured Access
database to a newer version of Access is almost impossible if you
don't have this information, because the recommended
upgrade path is to recreate the workgroup file in the new version of
Access and then upgrade the secured database. Figure 4-19 shows the Workgroup Administrator dialog with
the new workgroup information. You can try this solution with any of
the MDB files used in this chapter, such as 04-09.MDB.

[image: The Workgroup Administrator dialog]

Figure 4-19. The Workgroup Administrator dialog

	
 The
Workgroup Administrator automatically switches you to the new
workgroup file, so you can simply close when you're
finished. The Workgroup Administrator will create the necessary
entries in the registry, making the new workgroup file the default.
Start Access and load your database.

	You will be logged on as a user named Admin. Use the Security menu
options to set a password for the Admin user. This causes Access to
prompt for a logon name and password the next time you try to open a
database using this workgroup file.

	

 Create a new user, which is the account
you will use to secure the database. Add this new user to the Admins
group, to make it the administrator. None of the user accounts has
any built-in capabilities. You also need to write down the strings
used for the Name and Personal Identifier (PID). Part of recreating a
workgroup file is recreating the key accounts stored in it. The PID
is not a password—it is encrypted along with the name string to
create a System Identifier, or SID. The SID is the token used when
assigning permissions and when distinguishing users from each other.
The name alone isn't secure, although Access
won't let you have duplicate names in the same
workgroup file.

	Quit Access entirely and restart, logging on as the new user account
that you created in Step 4. Don't type anything in
the Password dialog—you haven't set one for
this account yet.

	
 Remove the Admin user from the
Admins group so that Admin is a member of only the Users group. Every
user is automatically added to the Users group, which is similar to
Everyone in Windows. You can't delete any of the
built-in users or groups (Admin, Admins, and Users), but you can move
users in and out of various groups. Access requires that there always
be one member of the Admins group (that would be you). Later
you'll create additional groups, assigning
permissions to the groups for various database objects. Users then
inherit permissions from their group membership.
You'll probably want to remove all permissions from
the Users group, since permissions granted to Users are granted to
all.

	
 At this point you'll
want to secure the database. You can either run the Security Wizard
or manually secure it. If you manually secure it,
you'll create a new database (this is how you
transfer ownership of the database) and then import all of the
objects. Next, remove all permissions for the Users group and the
Admin user. The Admins group has full permissions by
default—only the Admins group can work with users and groups
and has irrevocable administrative permissions on the database. If
you use the Security Wizard, it will also remove all permissions from
the Admin user and the Users group and encrypt the new database (you
can do this manually if you choose).

	
 You need to create your own custom
groups and assign the desired level of permissions to these groups.
Every user is required to be a member of the Users group (otherwise,
a user would not be able to start Access), so grant to Users only
those permissions that you want everyone to have. Members of the
Admins group have irrevocable power to administer database objects,
so make sure to limit membership in the Admins group to only those
users who are administrators.

	

 Create your own users and assign them to
the groups that reflect the level of permissions you want them to
have. Do not assign permissions directly to users, because that is
extremely difficult to administer; users inherit permissions from the
groups of which they are members, and keeping track of the
permissions assigned to a group is much easier than keeping track of
the separate permissions of individuals. If a user is a member of
multiple groups, that user will have all the permissions granted to
any of those groups plus any permissions assigned specifically to the
user (this is known as the
"least-restrictive" rule). There is
no way to deny permissions to a user if that user is a member of a
group that has been granted those permissions. If you need to create
specific permissions for only a single user, create a group for that
user and assign the permissions to the group; then add the user to
the group. The reason for this becomes clear when you consider that
the user may leave unexpectedly, and you may have to set up
permissions for the replacement on short notice.

	Test security by logging on as users with varying levels of
permissions. Try to do things that a user at that level
shouldn't be able to do. The only way
you'll be able to see if your database security is
working is to bang on it and try to break it.

Discussion

 The
Microsoft Jet database engine, which Access uses to store and
retrieve its objects and data, employs a workgroup-based security
model. Every time the Jet database engine runs, it looks for a
workgroup file, which holds information about the users and groups of
users who can open databases during that session. The default
workgroup file, System.mdw, is identical across
all installations of Access. That's why
it's important not to skip the first step of
creating a new workgroup file.

 The workgroup file contains the names
and security IDs of all the groups and users in that workgroup,
including passwords. Each workgroup file contains built-in groups
(Admins and Users) and a generic user account (Admin). You
can't delete any of the built-in accounts, but you
can add your own group and user accounts.
The built-in accounts each have their own characteristics and
properties:
	The built-in Admins group is always present, and its users have
administration rights that cannot be revoked. You can remove rights
from the Admins group through the menus or through code, but any
member of Admins can assign them right back. Access ensures that
there is always at least one member in the Admins group to administer
the database. The Admins group is the only built-in account that has
any special properties.

	The default user account, Admin, is a member of the Admins group in
an unsecured database and is the only user account present in the
default System.mdw workgroup file. It has no
special properties of its own; all of its power is inherited through
membership in the Admins group.

	The Users group is a generic group to which all users belong. You can
create users in code and not add them to the Users group, but they
won't be able to start Access—internal tables
and system objects are mapped to the permissions of the Users group.
Other than the fact that all users must belong to the Users group, it
has no special properties.

 Permissions to various Access
objects can be assigned directly to users (explicit permissions) or
to groups. Users inherit permissions from the groups to which they
belong (implicit permissions). It's always a good
idea from an administrative point of view to assign permissions only
to groups, and not to users, which could become endlessly
complicated.

 Access employs the least-restrictive rule:
users have the sum total of their explicit and implicit permissions.
In other words, if a user belongs to a group that has full
permissions and you make that user a member of a group that has
restricted permissions, the user will still have full permissions
because he is a member of the unrestricted group.
User and group information, including passwords, is saved in the
workgroup file, or System.mda/mdw, which
validates user logons at startup. Permissions to individual objects
are saved in the database itself. You can give the groups and users
within a workgroup various levels of permission to view, modify,
create, and delete the objects and data in a database. For example,
the users of a particular group might be permitted to read only
certain tables in a database and not others, or you could permit a
group to use certain forms but not to modify the design of those
forms.
Most Access database applications consist of a frontend with linked
tables against a backend database. You need to secure both the
frontend and the backend using the same workgroup file.
Access user-level security works best when securing data—if you
want to secure your code, the best solution is to compile your
application as an MDE. This prevents anyone from viewing or altering
the design of forms, reports, or module code. It also prevents users
from creating new Access objects, but it has no effect on data
objects (tables and queries). You'll need to save a
backup copy of the original .mdb file if you
want to make alterations later—there's no way
to decompile an MDE to recover the source code and source objects.

 Also
bear in mind that security in an Access database is mainly good for
deterrence only. In any situation in which the physical files are
exposed, it is impossible to guard against determined hackers. An
additional weakness is that the network share where the Access
.mdb and .mdw files are
located also needs to have read, write, and delete permissions, which
means you can't prevent users from deleting or
copying the .mdb and .mdw
files. The only alternative is to create an n-tier application where
the middle-tier objects alone have access to the physical files.
However, this means that you need to write the application
"unbound," since the users will no
longer be directly connected to the database. When you get to that
point, you'll probably be considering SQL Server or
another database platform that is capable of scaling to support more
users and larger volumes of data.

Chapter 5. Printers

Printing output is a major component of any database product, and
Access gives you a great deal of control over the
"look" of your forms and reports.
Programmatic control over the printer itself, however, has always
been somewhat complex in Access. Windows provides rich and intricate
support for output devices, and Access attempts to shield you from
most of that intricacy. Sometimes, however, you do need to take
control of your output devices; for example, you may need to change a
particular device or a setting pertaining to a particular device.
Historically, Access made this possible but not easy. However,
starting with Access 2002, you can use the Printers collection with a
Printer object that makes it relatively easy to accomplish the most
common printing tasks. The sections in this chapter describe the
details of handling your output devices using these new objects.

 This chapter focuses on the Printers
collection and the associated Printer object. We'll
cover the properties of these objects in detail and show examples of
their use. You'll be able to retrieve a list of all
the installed printers and make a choice from that list, setting the
new default Access printer. You'll learn how to
modify margin settings in forms and reports, thereby avoiding the use
of Access's File → Page Setup dialog in
your applications. You'll get help on changing
printer options, such as the number of copies to print, the page
orientation, and the printer resolution. Then you'll
learn how to programmatically print the first page of a document from
one paper tray and the rest of the pages from a different paper tray.
This allows you to print the first page on letterhead paper and the
rest on normal paper.
Finally, you'll find out how to determine which
device has been selected to print a report and whether
it's the default device. If it is, you can change
the destination from your application, provide users with a choice of
output devices, and print the object to a particular device.
You'll also find a development tool that will run
through all your reports and let you know which
aren't set up to print to the default printer. By
ensuring that all your reports print to the default printer, you will
be able to send them to any output device simply by changing what
Access thinks is the default printer.
Printing in Access 2000 Versus Access 2002 and Later
Access 2002 added functionality that fundamentally changed the ways
in which you can interact with printing devices. Previously,
determining the list of available printers and retrieving printer,
layout, and device name information from individual Access objects
was quite difficult. The code to handle these tasks in previous
versions of Access was daunting, to say the least. The difference in
the amount of code for the Access 2000 version of these examples
compared to the later Access versions is astonishing—some
examples that required several hundred lines of code in Access 2000
now require as little as 10 lines of code. To enable readers to use
these techniques in Access 2000, we've provided the
code examples in both styles. If you intend to use the examples in
Access 2000, you'll need to remove the single form
in each database that's specific to the later
versions of Access. (The code in these forms simply
won't compile in Access 2000, so the demos
won't run correctly.) The Access 2000 code is far
more complex than that for Access 2002 and later, and is the subject
for a different time and place. If you intend to use that code,
you'll need to dig seriously into the Access
documentation, or find a resource that focuses on that particular
information. We've provided the code here as a
courtesy only and can neither support nor describe it in these pages.

5.1. Retrieve a List of All the Installed Output Devices

Problem

 You'd like to be
able to present your users with a list of all the installed printers.
Is there some way to fill a list box with the printer names?

Solution

 Access makes it easy to fill a list or
combo box with all the available printers. You can iterate through
the members of the Application.Printers collection, retrieving the
DeviceName and Port of each printer.
To create a list of installed printers, follow these steps:
	Add a list box to a form. Set the Name property of the list box to
lstPrinters.

	

 Place the following code in the
form's Load event procedure (see the Preface for
more information on creating event procedures):
Private Sub Form_Load()
 Dim prt As Printer

 lstPrinters.RowSourceType = "Value List"
 For Each prt In Application.Printers
 lstPrinters.AddItem prt.DeviceName & " on " & prt.Port
 Next prt
End Sub

To see an example of an application that lists a
system's installed printers, load and run the form
frmPrinterList from 05-01.MDB. Figure 5-1 shows the form displaying the installed
printers on a test machine. Recipe 5.1.3 describes in detail the
techniques used in building the list in Figure 5-1.
[image: The sample form, frmPrinterList, showing the list of installed devices]

Figure 5-1. The sample form, frmPrinterList, showing the list of installed devices

Discussion

 Access 2002 added several new objects
that make working with printers and printing easier than these
activities have been in the past. First, Access provides a Printers
collection as a property of its Application object. This collection
provides one Printer object corresponding to each output device
installed on your computer. Each Printer object provides many
properties, including DeviceName and Port, as used in this example.
Once you declare an object As
 Printer, you can iterate through the Printers
collection, working with properties of each printer, like this:
Dim prt As Printer

For Each prt In Application.Printers
 Debug.Print prt.DeviceName & " on " & prt.Port
Next prt

 The Printer object provides a
long list of available properties, each of which is discussed at some
point in this chapter. The properties can be divided into three basic
categories: printer name information (the DeviceName, Port, and
DriverName properties); device capability information (e.g., the
ColorMode, Copies, Duplex, Orientation, and PaperSize properties);
and print layout information (e.g., the BottomMargin, ItemLayout, and
RowSpacing properties). Later topics will discuss these groups of
properties and will list and describe each property and its possible
values. This example uses the DeviceName and Port properties,
indicating the printer name and its associated output port.

 There are several uses of the
term "Printer" in Access. Access
itself provides the Application.Printer object, which keeps track of
the application's default printer. You can also
declare and use a Printer object, which represents one entry in the
application's Printers collection. Finally, each
form and report in Access 2002 and later provides its own Printer
object, which represents all the printer-related properties of the
individual form or report. Later topics discuss how you can use each
of these objects.
Adding items to a list box

 The
example form, frmPrinterList, adds information about each printer to
a list box, using the new AddItem method of list and combo box
controls. Access has historically provided three techniques for
getting data into a list or combo box:
	
 Binding the control to a table or
query's output

	
 Providing a
delimited list of values in the control's RowSource
property (and setting the RowSourceType property to
"Value List")

	
 Supplying an intricately crafted
function (called a "list-filling callback
function") that Access calls to retrieve data
filling the list

None of these methods was perfect. The first option required you to
have a table from which to retrieve the data. The second option
limited your data source to a small number of characters (the size of
the property has been increased a great deal starting in Access 2002,
however). The third technique required advanced programming skills.
None of the techniques made it easy to work with individual items in
the lists.
Starting with Access 2002 this is all simpler. Modeled after the
similar controls in Visual Basic, Access's list and
combo boxes now support adding and removing individual items without
needing to use any of the older techniques. Now you can add and
remove items individually, as shown here. You can specify a location
within the list where you'd like to add an item,
like this:
' Add the new items at the top of the list.
lstPrinters.AddItem prt.DeviceName & " on " & prt.Port, 0

 You can also add items to the end of the
list by simply not specifying the location for the new item. To
remove items from the list, call the RemoveItem method, specifying
the index (starting at 0) of the item you'd like to
remove.

 If
you want to add items to a list or combo box, you must set the
RowSourceType property of the control to "Value
List" before you start. Although you could set that
property while laying out your form, we like to set these
"make or break" properties as forms
load. If you set one of these properties incorrectly, the form
won't load—setting the property in code
ensures that the form will load correctly. This is a matter of style,
but it never hurts to make sure important properties are set properly
in code.

See Also

For more information on working with list and combo boxes, see
Recipe 7.5 in Chapter 7.

5.2. Set and Retrieve the Name of the Default Output Device

Problem

 Windows allows you to install a number
of printer drivers, but one of them must always be denoted as the
default printer. Although Windows provides its own concept of its
default printer, Access maintains its own, independent default
printer. You'd like to be able to control which
printer Access thinks is the default printer, perhaps even choosing
from a list of all the installed printers. Is there a way to do this
from within Access?

Solution

 Windows
maintains its own list of available printers and stores information
about the default printer. When Access starts up, it automatically
uses Windows's default printer as its own default
printer. Access's Application object provides a
Printer property. Setting this property to refer to an item within
the Printers collection allows you to control the default printer for
all Access objects.
Tip
In Access, you always have the choice of printing an object to the
default printer or to a specific printer. None of the techniques
shown in this chapter that allow you to change the output destination
will work if you set up your reports to print to a specific printer.
In addition, printing to a specific printer will almost always lead
to trouble if you distribute your applications to end users who may
or may not have the same printer available. We suggest that, if
possible, you set your reports so that they all print to the default
printer.

 To create a combo box in your own
application that allows the user to choose a new default printer,
follow these steps:
	Add a combo box to your form and name it cboPrinters.

	Add the following procedure to your form's module:
Private Sub FillPrinterList(ctl As Control)
 ' Fill the provided control (ctl) with a list of printers. This
 ' will cause a runtime error if ctl isn't a list or combo box.
 Dim prt As Printer

 ctl.RowSourceType = "Value List"
 For Each prt In Application.Printers
 ctl.AddItem prt.DeviceName
 Next prt
End Sub

	
 Modify the form's
Open event procedure, so that it looks like this:
Private Sub Form_Load
 Call FillPrinterList(Me.cboPrinters)
 ' Select the default printer, in the combo box.
 ' This may fail, so simply disregard errors.
 On Error Resume Next
 Me.cboPrinters = Application.Printer.DeviceName
End Sub

	Modify the AfterUpdate event procedure of cboPrinters, so that it
looks like this:
Private Sub cboPrinters_AfterUpdate()
 Dim lngIndex As Long
 lngIndex = Me.cboPrinters.ListIndex
 Set Application.Printer = Application.Printers(lngIndex)
End Sub

To see a sample application that allows you to select the default
printer, load and run the form frmDefaultPrinterList from
05-02.MDB. This form, shown in Figure 5-2, includes a combo box from which you can
select a new default printer for Access. When you first load the
form, the combo box should already have the current default output
device selected. If you make a choice, the code attached to the
AfterUpdate event for the combo box will change the printer that
Access uses for its default. This change will affect any printing you
do from within Access, if the printed object has been set up to print
to the default printer.
[image: frmDefaultPrinterList allows you to choose a new Access default printer]

Figure 5-2. frmDefaultPrinterList allows you to choose a new Access default printer

Discussion

 You saw the code in the
FillPrinterList procedure in the previous
section. This time it's separated out into its own
procedure, so it will be easier for you to use in future projects.
The form's Load event procedure fills the combo box
with its list of printers and then attempts to set the value of the
combo box to match the name of the currently selected default
printer, using this code:
Me.cboPrinters = Application.Printer.DeviceName

 After you select an item from
the list of printers in the combo box, the AfterUpdate event
procedure for that control sets the application's
default printer to the printer you just selected, using this code:
Set Application.Printer = Application.Printers(lngIndex)
Access uses the default output device for printing, unless you
specify otherwise in Access's File → Page
Setup dialog. The Solution in Recipe 5.7
will combine methods from this section and others to show you how to
send a report to the printer you choose at runtime. The methods shown
there allow you to direct a report to the printer one day and to the
fax modem the next.

 If you change
Access's default printer and then determine that
you'd like to put it back to its original value, you
can. Simply set the Application.Printer value to the built-in value
Nothing, and Access will revert to its original
default printer:
Set Application.Printer = Nothing
Although setting the value to Nothing instead of
to a specific printer seems odd, Access understands the special value
and simply reverts to the original default printer it found in
Windows when it started the current session.
Although you could use the Windows API to change
Windows's understanding of its own default printer,
there's really no need to do that from within
Access. Access maintains its own default printer (assuming the
default printer from Windows when it first starts a session), and you
can easily manipulate that value using the techniques shown here.

5.3. Programmatically Change Margin and Column Settings for Reports

Problem

 You'd like to give
your applications' users some control over report
layout, especially in designating column and margin settings. You
could just let them loose in report design mode, but
you'd like to maintain a little control over their
actions. Is there some way to modify these layout settings from VBA?

Solution

 Starting with Access 2002, each
form and report object includes a Printer property. Retrieving this
property gets you an object with many properties, several of which
deal with margin and column settings for reports.
You can use properties of a report's Printer object
to retrieve and set layout properties. You'll find
properties representing the left, top, bottom, and right margins; the
number of columns; and the size, spacing, and item order of the
columns. In addition, the Printer object contains the Data Only
option in the File → Page Setup dialog. This solution
demonstrates how to use the print layout properties provided by the
Printer object.
Load and run the form frmPrintSettings from
05-03.MDB. Figure 5-3 shows
the form (which emulates Access's File →
Page Setup dialog) after the report Report1 has been selected from
the list of reports. Choose a report from the drop-down list, and the
form will load that report in preview mode. You can change the
settings for the selected report by typing new values into the text
boxes. To save the changes to the selected report, click on Save
Settings. You'll see those changes in the preview
window.
[image: frmPrintSettings provides the same functionality as the Access File → Page Setup dialog]

Figure 5-3. frmPrintSettings provides the same functionality as the Access File → Page Setup dialog

Some of the items on the form are available only if
you've specified more than one column for the Items
Across value, so you'll want to use a number greater
than 1 in that field. (Because this example opens the report in
preview mode, changes you make aren't saved with the
report. If you want to permanently save the report with the new
settings, you'll need to modify the code so that the
report opens in design view; changes you make will then be saved with
the report when you close and save it.) The following sections
explain both how to use the sample form from
05-03.MDB and how to work with these properties
and your own objects.
To use the sample form in your own applications, follow these steps:
	Import the form frmPrintSettings into your application. This form
allows you to choose from the existing reports in your database.

	Once you've chosen the report (which the form will
open in preview mode), you can alter print layout settings. Once
you're done, you can print the report.

Discussion

 The sample form for this topic
does very little work—it simply copies values from the Printer
property of the selected report to controls on the form, converting
from twips (1/1,440 inch) to inches for display purposes. When you
click Save Settings, the code writes the settings back to the
appropriate properties of the report's Printer
property.

 Access's
Printer object provides a number of properties dealing with print
layout. Table 5-1 describes the subset of Printer
object properties used in this example form.
Table 5-1. Printer object properties associated with print layout
	
 Property

 	
 Comments

	
 LeftMargin

 	
 Distance between the left edge of the paper and the object to be
printed (in twips)

	
 TopMargin

 	
 Distance between the top edge of the paper and the object to be
printed (in twips)

	
 RightMargin

 	
 Distance between the right edge of the paper and the object to be
printed (in twips)

	
 BottomMargin

 	
 Distance between the bottom edge of the paper and the object to be
printed (in twips)

	
 DataOnly

 	
 If True (-1), Access prints just data, not labels, control borders,
gridlines, and display graphics; if False (0), Access prints all
elements

	
 ColumnSpacing

 	
 Distance between detail section columns (if ItemsAcross > 1), in
twips

	
 DefaultSize

 	
 If True (-1), Access uses the width and height of the design-mode
detail section when printing; if False (0), Access uses the values
specified in the ItemSizeWidth and ItemSizeHeight properties

	
 ItemLayout

 	

 acPRHorizontalColumnLayout (Across, then Down), or
acPRVerticalColumnLayout (Down, then Across) for
multiple-columned reports

	
 ItemSizeWidth

 	
 Width of the detail section; if the DefaultSize property is False and
the ItemsAcross property is greater than 1, the width of each column
(in twips)

	
 ItemSizeHeight

 	
 Height of the detail section (read-only)

	
 ItemsAcross

 	
 Integer that specifies the number of columns across the page for
multiple-columned reports

	
 RowSpacing

 	
 Vertical distance between detail sections (in twips)

 After you select a report on the
sample form, the combo box's AfterUpdate event
procedure calls the following code, which opens the report in preview
mode, then copies the report's properties to the
controls on the form:
strReport = Me.cboReportList
DoCmd.OpenReport strReport, View:=acViewPreview
With Reports(strReport).Printer
 Me.txtLeft = ToInches(.LeftMargin)
 Me.txtRight = ToInches(.RightMargin)
 Me.txtTop = ToInches(.TopMargin)
 Me.txtBottom = ToInches(.BottomMargin)
 Me.chkDataOnly = .DataOnly
 Me.txtXFormSize = ToInches(.ItemSizeWidth)
 Me.txtYFormSize = ToInches(.ItemSizeHeight)
 Me.txtCxColumns = .ItemsAcross
 Me.txtYFormSpacing = ToInches(.ItemSizeHeight)
 Me.chkfDefaultSize = .DefaultSize
 Me.txtXFormSpacing = ToInches(.ColumnSpacing)
 Me.grpRadItemOrder = .ItemLayout
End With

 Don't forget that
all the measurements in the Printer object are stored in twips. The
ToInches function simply divides its parameter
value by 1,440 and adds the text
"in." to its output value. The
corresponding FromInches function does the
opposite—it strips off extra text and multiplies its parameter
value by 1,440 to convert back to twips. Why 1,440? A twip is defined
as 1/20 of a point. There are 72 points per inch and 20 twips per
point; therefore, 72 × 20 = 1,440 twips per inch.

 When you click Save Settings, the
command button's Click event procedure copies data
back to the properties of the report, like this:
Dim strChosen As String
Dim rpt As Report

strChosen = Me.cboReportList
With Reports(strChosen).Printer
 .LeftMargin = FromInches(Me.txtLeft)
 .RightMargin = FromInches(Me.txtRight)
 .TopMargin = FromInches(Me.txtTop)
 .BottomMargin = FromInches(Me.txtBottom)
 .DataOnly = Me.chkDataOnly
 .DefaultSize = Me.chkDefaultSize
 If Not .DefaultSize Then
 .ItemSizeWidth = FromInches(Me.txtXFormSize)
 .ItemSizeHeight = FromInches(Me.txtYFormSize)
 End If
 .ItemsAcross = Val(Me.txtCxColumns)
 .RowSpacing = FromInches(Me.txtYFormSpacing)

 .ColumnSpacing = FromInches(Me.txtXFormSpacing)
 .ItemLayout = Me.grpRadItemOrder
End With

 The
combo box containing the list of reports uses a common but
undocumented technique. The Access system tables (check Tools
→ Options → View → System Objects to see
the system tables in the database container) contain information
about the current database. One table in particular, MSysObjects,
contains a row for each object in the database. To fill the combo box
with a list of reports, you can use this SQL expression:
SELECT Name FROM MSysObjects WHERE Type = -32764 ORDER BY Name;
The Name column includes the name for each object, and the Type
column contains -32764 for reports (or -32768 for forms). Microsoft
suggests using DAO or ADO instead of querying against the system
tables to retrieve lists of items; however, our method is much faster
and much simpler for filling lists. This method has worked in every
version of Access so far; we can only assume it will continue to do
so.

 The Printer object provides one
more bit of unexpected behavior: unless you've set
the DefaultSize property to False, you cannot set
the ItemSizeWidth or ItemSizeHeight
properties—you'll trigger a runtime error if
you try. The sample code determines the value in the DefaultSize
property and attempts to change the other two properties only if
doing so won't cause an error.

5.4. Programmatically Change Printer Options

Problem

 You've tried using
SendKeys to change printing options in the File
→ Setup Page dialog, but this really isn't
satisfactory. Sometimes it works and sometimes it
doesn't, depending on the circumstances and the
printer driver that's loaded. Is there some way to
modify printer options without using SendKeys?

Solution

 Windows makes many of the
printer driver settings available to applications, including the
number of copies, page orientation, and page size. Starting with
Access 2002, it's easy to retrieve and modify these
values, using the Printer property of forms and reports. This
solution focuses on the print settings features of the Printer object
and demonstrates how to read and write values in the Printer object.
To be able to modify printer settings for reports or forms in your
own applications, follow these steps:
	Open the report in either preview or design view. (If you want to
make your changes persistent, open the report in design view. If you
want to apply changes for just this particular instance, open it in
preview mode.)

	Modify some of the properties of the Printer object provided by your
form or report. For example, the sample form works with a small
subset of the available printer-specific properties, using code like
this:
DoCmd.OpenReport strReport, View:=acViewPreview
With Reports(strReport).Printer
 Me.txtCopies = .Copies
 Me.grpOrientation = .Orientation
 Me.grpPaperSize = .PaperSize
End With

	When you're done working with the properties, write
them back to the report's Printer object, using code
like this (from the sample form):
strReport = Me.cboReportList
With Reports(strReport).Printer
 .Copies = Me.txtCopies
 .Orientation = Me.grpOrientation
 .PaperSize = Me.grpPaperSize
End With

For an example, load and run the form frmPrintSettings in
05-04.MDB. Figure 5-4 shows
the sample form in action. This form allows you to choose a report
from a combo box. Once you've made your choice, the
form loads the report in preview mode and retrieves the number of
copies, page size, and page orientation from the
report's Printer property. You can change any of
these values; once you click Save Settings, the form will write the
values back to the report's Printer property and the
changes will display immediately in the preview window.
[image: frmPrintSettings shows print information for rptReport1]

Figure 5-4. frmPrintSettings shows print information for rptReport1

Discussion

 Each form and report
has a Printer property that holds a reference to a Printer object for
that form or report. By setting the properties of a
form/report's Printer object, you can control how
the form/report will print. Table 5-2 lists the
object's properties, along with their possible
values. None of these properties is read-only. Table 5-3 shows a list of all the defined paper sizes.
You can use one of these constants in the PaperSize property to set a
new paper size. Table 5-4 shows possible values
for the PaperBin property of the Printer object.
Table 5-2. Properties of the Printer object
	
 Field name

 	
 Contains

 	
 Data type

 	
 Values

	
 Orientation

 	
 Paper orientation

 	
 AcPrintOrientation
 	

 acPRORLandscape or
acPRORPortrait

	
 PaperSize

 	
 Size of the physical page to print on

 	
 AcPrintPaperSize
 	
 A value from Table 5-3 (depending on which paper
sizes the printer supports)

	
 Copies

 	
 If the printing device supports multiple copies, the number of copies
to be printed

 	
 Long
 	

	
 PaperBin

 	
 Default bin from which paper is to be fed

 	
 AcPrintPaperBin
 	
 A value from Table 5-4

	
 PrintQuality

 	
 Printer resolution

 	
 AcPrintObjQuality
 	
 acPRPQDraft, acPRPQHigh, acPRPQLow, or acPRPQMedium

	
 ColorMode

 	
 Color usage, if the printer supports color printing

 	
 AcPrintColor
 	
 acPRCMColor or acPRCMMonochrome

	
 Duplex

 	
 Duplex usage, if the printer supports duplex printing

 	
 AcPrintDuplex
 	
 acPRDPHorizontal, acPRDPSimplex, or acPRDPVertical

Table 5-3. Constants and descriptions for the PaperSize property
	
 Constant

 	
 Value

 	
 Description

	
 acPRPS10X14

 	
 16

 	
 10 × 14 in

	
 acPRPS11X17

 	
 17

 	
 11 × 17 in

	
 acPRPSA3

 	
 8

 	
 A3 (297 × 420 mm)

	
 acPRPSA4

 	
 9

 	
 A4 (210 × 297 mm)

	
 acPRPSA4SMALL

 	
 10

 	
 A4 Small (210 × 297 mm)

	
 acPRPSA5

 	
 11

 	
 A5 (148 × 210 mm)

	
 acPRPSB4

 	
 12

 	
 B4 (250 × 354 mm)

	
 acPRPSB5

 	
 13

 	
 B5 (182 × 257 mm)

	
 acPRPSCSHEET

 	
 24

 	
 C size sheet (17 × 22 in)

	
 acPRPSDSHEET

 	
 25

 	
 D size sheet (22 × 34 in)

	
 acPRPSEnv10

 	
 20

 	
 Envelope #10 (4.125 × 9.5 in)

	
 acPRPSEnv11

 	
 21

 	
 Envelope #11 (4.5 × 10.375 in)

	
 acPRPSEnv12

 	
 22

 	
 Envelope #12 (4.25 × 11 in)

	
 acPRPSEnv14

 	
 23

 	
 Envelope #14 (5 × 11.5 in)

	
 acPRPSEnv9

 	
 19

 	
 Envelope #9 (3.875 × 8.875 in)

	
 acPRPSEnvB4

 	
 33

 	
 Envelope B4 (250 × 353 mm)

	
 acPRPSEnvB5

 	
 34

 	
 Envelope B5 (176 × 250 mm

	
 acPRPSEnvB6

 	
 35

 	
 Envelope B6 (176 × 125 mm)

	
 acPRPSEnvC3

 	
 29

 	
 Envelope C3 (324 × 458 mm)

	
 acPRPSEnvC4

 	
 30

 	
 Envelope C4 (229 × 324 mm)

	
 acPRPSEnvC5

 	
 28

 	
 Envelope C5 (162 × 229 mm)

	
 acPRPSEnvC6

 	
 31

 	
 Envelope C6 (114 × 162 mm)

	
 acPRPSEnvC65

 	
 32

 	
 Envelope C65 (114 × 229 mm)

	
 acPRPSEnvDL

 	
 27

 	
 Envelope DL (110 × 220 mm)

	
 acPRPSEnvItaly

 	
 36

 	
 Envelope (110 × 230 mm)

	
 acPRPSEnvMonarch

 	
 37

 	
 Envelope Monarch (3.875 × 7.5 in)

	
 acPRPSEnvPersonal

 	
 38

 	
 6-3/4 Envelope (3.625 × 6.5 in)

	
 acPRPSESheet

 	
 26

 	
 E size sheet (34 × 44 in)

	
 acPRPSExecutive

 	
 7

 	
 Executive (7.25 × 10.5 in)

	
 acPRPSFanfoldLglGerman

 	
 41

 	
 German Legal Fanfold (8.5 × 13 in)

	
 acPRPSFanfoldStdGerman

 	
 40

 	
 German Std Fanfold (8.5 × 12 in)

	
 acPRPSFanfoldUS

 	
 39

 	
 US Std Fanfold (14.875 × 11 in)

	
 acPRPSFolio

 	
 14

 	
 Folio (8.5 × 13 in)

	
 acPRPSLedger

 	
 4

 	
 Ledger (17 × 11 in)

	
 acPRPSLegal

 	
 5

 	
 Legal (8.5 × 14 in)

	
 acPRPSLetter

 	
 1

 	
 Letter (8.5 × 11 in)

	
 acPRPSLetterSmall

 	
 2

 	
 Letter Small (8.5 × 11 in)

	
 acPRPSNote

 	
 18

 	
 Note (8.5 × 11 in)

	
 acPRPSQuarto

 	
 15

 	
 Quarto (215 × 275 mm)

	
 acPRPSStatement

 	
 6

 	
 Statement (5.5 × 8.5 in)

	
 acPRPSTabloid

 	
 3

 	
 Tabloid (11 × 17 in)

	
 acPRPSUser

 	
 256

 	
 User-defined

Table 5-4. Constants and descriptions for the PaperBin property
	
 Constant

 	
 Value

 	
 Description

	
 acPRBNAuto

 	
 7

 	
 Automatic bin

	
 acPRBNCassette

 	
 14

 	
 Cassette bin

	
 acPRBNEnvelope

 	
 5

 	
 Envelope bin

	
 acPRBNEnvManual

 	
 6

 	
 Envelope manual bin

	
 acPRBNLargeCapacity

 	
 11

 	
 Large-capacity bin

	
 acPRBNLargeFmt

 	
 10

 	
 Large-format bin

	
 acPRBNLower

 	
 2

 	
 Lower bin

	
 acPRBNManual

 	
 4

 	
 Manual bin

	
 acPRBNMiddle

 	
 3

 	
 Middle bin

	
 acPRBNSmallFmt

 	
 9

 	
 Small-format bin

	
 acPRBNTractor

 	
 8

 	
 Tractor bin

	
 acPRBNUpper

 	
 1

 	
 Upper bin

	
 acPRBNFormSource

 	
 15

 	
 Form source

 The sample form opens reports
in preview mode and allows you to modify and view printer-specific
properties, then print the report. If you want to modify the design
properties for a report, you'll need to open it in
design view, modifying the call to the DoCmd.OpenReport method in the
code, like this:
DoCmd.OpenReport strReport, View:=acViewPreview
When you're done, save the report using code like
this:
DoCmd.Close acReport, "YourReportName", acSaveYes
Although Access makes it easy to work with printer settings, the
Printer object is missing some important features. For example,
although you can select acPRPSUser for the
PaperSize property, you cannot define your own sizes (making this
option effectively useless).

5.5. Programmatically Control the Paper Source

Problem

 You'd like to be
able to print the first page of your reports from a paper tray
containing letterhead paper and then print the rest on normal paper
stock. Is there some way in Access to switch paper trays
programmatically from within your application?

Solution

 The paper source is one of the properties
of the Printer object associated with a report (see the Solution in
Recipe 5.4 for a description of the Printer
object) that you can programmatically control. Given the information
in the Solution in Recipe 5.4,
it's relatively easy to change the paper source for
a report so that the first page prints from one paper bin and the
rest prints from another.
Load and run frmPaperSource in 05-05.MDB (Figure 5-5).
[image: frmPaperSource allows you to print from different paper sources]

Figure 5-5. frmPaperSource allows you to print from different paper sources

	With frmPaperSource loaded, choose a report. The report will load,
minimized, in preview mode.

	Choose a paper bin for the first page and a bin for the rest of the
pages. Note that the lists of paper bins contain all the possible
paper sources; your printer may not support all of the options listed
in the combo boxes. You'll need to find the bins
that work correctly with your printer driver.

	Click the Print button. Access should print the first page of the
report from the bin chosen for the first page and the rest from the
bin chosen for the other pages.

To use this technique in your own applications,
you'll need to add code that supports printing the
first page, then the rest of the pages, as the result of some action
(such as clicking a command button). In reaction to this event, call
the PrintPages procedure, shown here:
Private Sub PrintPages(strReport As String, _
 FirstPagePaperBin As AcPrintPaperBin, _
 AllPagesPaperBin As AcPrintPaperBin)

 Dim rpt As Report

 On Error GoTo HandleErrors

 DoCmd.OpenReport strReport, acViewPreview, WindowMode:=acIcon
 Set rpt = Reports(strReport)
 rpt.Printer.PaperBin = FirstPagePaperBin

 ' Unfortunately, you have to select the report in order to print it.
 ' Who wrote the PrintOut method this way, anyway?
 DoCmd.SelectObject acReport, strReport
 DoCmd.PrintOut acPages, 1, 1

 ' Define the paper source.
 rpt.Printer.PaperBin = AllPagesPaperBin

 ' Print all the rest of the pages (up to 32000).
 DoCmd.PrintOut acPages, 2, 32000

ExitHere:
 DoCmd.Close acReport, strReport, acSaveNo
 Exit Sub

HandleErrors:
 MsgBox "Error: " & Err.Description & " (" & Err.Number & ")"
 Resume ExitHere
End Sub
In the sample form, this code is called from the Click event of the
Print button, like this:
Private Sub cmdPrint_Click()
 Call PrintPages(Me.cboReportList, Me.cboFirstPage, Me.cboAllOther)
End Sub

Discussion

As you saw in the Solution in Recipe 5.4,
you can use a form or report's Printer property to
change its paper source. Printing one page of a report from one bin
and the rest from another is easy. First, open the report in preview
mode and get a reference to the open report:
DoCmd.OpenReport strReport, acViewPreview, WindowMode:=acIcon
Set rpt = Reports(strReport)

 Then set the PaperBin property of the
report's Printer object, select the report, and
print the first page, like this:
rpt.Printer.PaperBin = FirstPagePaperBin
DoCmd.SelectObject acReport, strReport
DoCmd.PrintOut acPages, 1, 1
Set the PaperBin property for the rest of the pages, and print them
(the report is already selected, so you don't need
to select it again):
rpt.Printer.PaperBin = AllPagesPaperBin
' Print all the rest of the pages (up to 32000).
DoCmd.PrintOut acPages, 2, 32000

 The PrintOut
method's implementation is somewhat unfortunate.
It's the only way you can control the specific pages
you want printed, yet it requires you to select the object to be
printed before printing it. This combination of requirements means
that you must first open the report in preview or design view and set
its properties, then select and print it. You cannot select a hidden
report (Access will unhide it before selecting it), so your best bet
is to open it with the WindowMode
parameter of the DoCmd.OpenReport method set to
acIcon. That way, the report is minimized. If this
behavior truly bothers you, you can use Application.Echo to turn off
screen display before you open the report and then turn it back on
when you're done. In addition, if you specify the
first page to be printed, you must also specify the last page.
Therefore, even if you don't know how many pages
your report contains, you must specify an upper bound (32,000, in our
example) when you print. Hopefully, your report
won't contain more than 32,000 pages. If it does,
bump up that number.
If you're going to provide this functionality in an
application to be distributed to users who have printers on which it
hasn't been tested, you'll need to
make it clear that some of the bins listed in the combo boxes may not
work with their printers. It may require some experimentation on
their part to determine which settings are correct.

5.6. Retrieve Information About a Report or Form's Selected Printer

Problem

 Access's File
→ Page Setup dialog allows you to specify either the default
printer or a specific printer for each printable object.
You'd like to be able to find out, programmatically,
which printer has been selected for an object and whether the object
is set to print to the default printer. How can you retrieve that
information?

Solution

 In addition to the properties
you've seen so far, the Printer object keeps track
of the three pieces of information that Windows must know about an
output device: the device name (for example, "HP
LaserJet 4"), the driver name
("WINSPOOL"), and the output port
("LPT1:"). Access also keeps track
of whether the report has been set to print to the default printer or
to a specific printer, in the UseDefaultPrinter property of the
report. You'll use these properties to determine the
information you need.
Load and run the form frmSelectedPrinters in
05-06.MDB. Figure 5-6 shows
the form after rptReport3 is selected and the
report's output device, driver, and port are filled
in on the form. Because this report was set up to print to the
default printer, the "Printing to Default
Printer" checkbox is selected.
[image: frmSelectedPrinters, after selecting rptReport3]

Figure 5-6. frmSelectedPrinters, after selecting rptReport3

The sample form uses this code to do its work:
Private Sub cboReportList_AfterUpdate()

 Dim strReport As String
 Dim rpt As Report

 On Error GoTo HandleErrors

 strReport = Me.cboReportList
 DoCmd.OpenReport strReport, View:=acViewPreview, WindowMode:=acHidden
 With Reports(strReport)
 With .Printer
 Me.txtDevice = .DeviceName
 Me.txtDriver = .DriverName
 Me.txtPort = .Port
 End With
 Me.chkDefault = .UseDefaultPrinter
 End With
ExitHere:
 DoCmd.Close acReport, strReport
 Exit Sub

HandleErrors:
 MsgBox "Error: " & Error & " (" & Err & ")"
 Resume ExitHere
End Sub
To retrieve printer information about forms or reports in your own
applications, follow these steps:
	Open the selected report in either preview or design view:
DoCmd.OpenReport strReport, View:=acViewPreview, WindowMode:=acHidden

	

 Use the DeviceName,
DriverName, and Port properties of the report's
Printer property to retrieve information about the
report's output location:
With Reports(strReport)
 With .Printer
 Me.txtDevice = .DeviceName
 Me.txtDriver = .DriverName
 Me.txtPort = .Port
 ' Code removed.
 End With
End With

	

 Check the
report's UseDefaultPrinter property to determine if
the report has been set to print to the default printer:
With Reports(strReport)
 ' Code removed.
 Me.chkDefault = .UseDefaultPrinter
End With

The UseDefaultPrinter property hangs off of the report itself, while
the rest of the properties discussed in this chapter are members of
the Printer object returned by the report's Printer
property. You may look for the UseDefaultPrinter property in the
wrong place—remember, it's a property of the
report.
The UseDefaultPrinter property becomes more important, as
you'll see in the next section, when you want to
change the output device at runtime. Because of the way the Printer
object was designed, you cannot change the output device from the
Open event of the report—you must change it from outside the
report. The easiest way to do this is to change
Access's default printer, then print the report,
then put Access's default printer back to what it
was. You can accomplish this only if the report has been set to print
to Access's default printer. You can look at the
UseDefaultPrinter property to determine if that's
how the report was set up. (You cannot, however, change a
report's UseDefaultPrinter property if
it's open in preview or print mode—you can
change it only when you've opened the report in
design view.)

5.7. Choose an Output Device at Runtime

Problem

 You'd like
to be able to select an output device while your application is
running without popping up the File → Page Setup dialog. Is
there a way to present a list of available printers and have the
chosen report print to the chosen device? For example, you want to
print your reports to the printer sometimes and sometimes to the fax
machine.

Solution

Though this topic sounds complex, its solution is really just a
combination of other solutions in this chapter. The Solution in
Recipe 5.2 shows how to retrieve a list of
available print devices and retrieve and set the default device. The
Solution in Recipe 5.6 shows how to
determine if a given report or form is configured to print to the
default printer. Given those two techniques, this solution shows you
how to set a new output device, print the Access object (using the
new default device), and then restore the original default device.

 Starting with Access
2002, you'll find two ways in which you can change
the output device: you can either change Access's
default printer, then print your report to the new default printer;
or you can simply change the report's selected
output device. The first solution is easier and generally works
better. The second requires an extra step (selecting the report on
screen) but gives you more flexibility.
Load and run frmDefaultPrinterList from
05-07.MDB. Figure 5-7 shows
the form in use, with the report rptReport3 selected and ready to
print. Because rptReport3 has been configured to print to the default
printer (you can open the File → Page Setup dialog to
confirm this), the "Print to Default
Printer" checkbox on the sample form is checked. You
can choose a different output device from the combo box on the bottom
of this form (of course, this will be interesting only if you happen
to have more than one output device installed). If you choose a
different output device (a fax driver, for example), the sample form
will send the selected report to that output device.
[image: frmDefaultPrinterList, ready to choose a new output device]

Figure 5-7. frmDefaultPrinterList, ready to choose a new output device

The sample form also includes a checkbox ("Change
Default Printer") that is available only if your
selected report has been set up to print to the default printer. If
so, you can elect to either change the default printer or select a
new printer for the report. If the report has been designed so that
it prints to a specific printer, you won't have the
option of changing the default Access printer.

Discussion

Previous topics have discussed all but one of the issues demonstrated
in this demo. The only outstanding issue is the code for printing the
report (setting the new printer, printing the report to the new
printer, and then resetting the original device).
When you click "Print to Chosen
Destination" on the sample form, you execute the
following code in the form's module:
Private Sub cmdChosen_Click()
 On Error Resume Next

 Dim strRptName As String
 strRptName = cboObjects.Value

 If chkChangeDefaultPrinter.Value Then
 Set Application.Printer = Application.Printers(cboDestination.ListIndex)
 DoCmd.OpenReport strRptName, View:=acViewNormal
 Set Application.Printer = Nothing
 Else
 DoCmd.OpenReport strRptName, View:=acPreview, WindowMode:=acHidden
 With Reports(strRptName)
 Set .Printer = Application.Printers(cboDestination.ListIndex)
 End With
 DoCmd.OpenReport strRptName, View:=acViewNormal
 End If
End Sub

 This code takes two different paths,
depending on the value of the "Change Default
Printer" checkbox. If it's
selected, the code sets the default printer to the printer you
selected in the combo box on the form, then prints the report.
Finally, it sets the Application.Printer property to
Nothing, resetting it back to its original value:
Set Application.Printer = Application.Printers(cboDestination.ListIndex)
DoCmd.OpenReport strRptName, View:=acViewNormal
Set Application.Printer = Nothing
If you didn't select the checkbox, you chose not to
modify the default printer but instead to modify the
report's internal printer. In this case, the code
opens the report hidden, sets the Printer property of the report to
be the report you've selected, then opens the report
again, this time in normal view (causing it to be printed):
DoCmd.OpenReport strRptName, View:=acPreview, WindowMode:=acHidden
With Reports(strRptName)
 Set .Printer = Application.Printers(cboDestination.ListIndex)
End With
DoCmd.OpenReport strRptName, View:=acViewNormal

 If you click "Print to
Current Destination", the form sends the report to
its currently selected printer by simply calling the DoCmd.OpenReport
method.
You can extract from this example just the code you need for your own
situation. If you want to modify the default Access printer, use the
first code fragment. If you want to change the
report's printer (leaving the Access printer
intact), use the second fragment.
You can make many changes to this sample application. You might, for
example, want to supply the report name without providing a combo box
for it on the form. In that case, you would use a form like the
sample form in the Solution in Recipe 5.2,
showing only the list of output devices. You would modify the
procedure described in this section to take the report name from a
variable instead of from the form's combo box.
It's unfortunate that you cannot modify the output
device from within the report's Open event. If that
was possible, you could avoid opening the report first in preview or
design view, setting its Printer property, and then printing the
report. For the most part, you'll be better off
simply changing Access's default printer.

5.8. Find Which Reports Are Not Set to Print to the Default Printer

Problem

 You are about to distribute your
application to other Access users. You want to ensure that all your
reports are set to print to the default printer so that they will
work with the users' installations of Windows. How
do you create a list of all your reports and show whether or not they
have been saved with the default printer setting?

Solution

 Building on the code examples in this
chapter, you can investigate the UseDefaultPrinter property of each
report to determine if it has the default printer selected. This
solution uses this property, along with some simple ActiveX Data
Objects (ADO) code, to get a list of reports in your database, to
check the default printer setting, and to save the results to a
table. This table feeds a report that you can print,
rptReportPrinters. Once you have this list, you can set the output
device for each report that has been set to print to a specific
printer rather than to the Windows default printer.
Open and run frmShowReports from 05-08.MDB.
Figure 5-8 shows the form once
it's done all its calculations. It will show the
name of every report in your database, along with the default printer
setting for each.
[image: The frmShowReports example form]

Figure 5-8. The frmShowReports example form

You can obtain a printout of this information by pressing the Print
Analysis button, which prints the rptReportPrinters report (Figure 5-9).
[image: The Show Report Printers example report]

Figure 5-9. The Show Report Printers example report

To use this form in your own applications, follow these steps:
	Import the objects listed in Table 5-5 from
05-08.MDB.

Table 5-5. Objects to import from 05-08.MDB, allowing the creation of output status report
	
 Object type

 	
 Object name

	
 Table

 	
 tblReportPrinters

	
 Form

 	
 frmShowReports

	
 Report

 	
 rptReportPrinters

	Once you've imported the objects, open the form
frmShowReports to create the list of reports in your application,
along with their output status.

Discussion

 To see how this technique works, open
the frmShowReports form in design view, then open the
form's module window and locate the Form_Load event
procedure. This subroutine calls the GetReports
subroutine, which does most of the actual work. Iterating through the
AllReports collection of the CurrentProject object gives
GetReports access to each report in your
database:
Private Sub GetReports()
 ' Get a list of reports from the current database and write the name,
 ' along with the default printer status, to the output table.

 Dim rst As ADODB.Recordset
 Dim doc As AccessObject

 On Error GoTo HandleErrors

 Call EmptyTable("tblReportPrinters")
 Set rst = New ADODB.Recordset
 rst.Open "tblReportPrinters", CurrentProject.Connection, _
 adOpenDynamic, adLockOptimistic

 ' Loop through all the reports in the container's documents
 ' collection, opening each report in turn and checking
 ' to see if that report is formatted to send its output
 ' to the default printer.
 With rst
 For Each doc In CurrentProject.AllReports
 DoCmd.OpenReport doc.Name, View:=acViewDesign, WindowMode:=acHidden
 .AddNew
 .Fields("ReportName") = doc.Name
 .Fields("DefaultPrinter") = Reports(doc.Name).UseDefaultPrinter
 .Update
 DoCmd.Close acReport, doc.Name
 Next doc
 End With

ExitHere:
 On Error Resume Next
 rst.Close
 Exit Sub

HandleErrors:
 Resume ExitHere
End Sub
This code needs to empty the tblReportPrinters table. It uses the
following procedure to clear the data from the table:
Private Sub EmptyTable(strTable As String)

 ' Remove all the rows from the table whose name is in strTable.
 With DoCmd
 .SetWarnings False
 .RunSQL "DELETE * FROM " & strTable
 .SetWarnings True
 End With
End Sub

 This
procedure uses a simple SQL DELETE statement to
delete all the rows from the table, first turning off
Access's warnings and then turning them back on once
it's done.

 GetReports uses ADO to write information about
each report into the tblReportPrinters table. See Chapter 6 for more information on working with data
programmatically.

Chapter 6. Data

The point of a database program is to manage data. Although Access
provides most of the tools you'll need, there are
many tasks for which you have to roll your own solution. This chapter
concentrates on working with data in ways that traditional database
operations don't support. You'll
learn how to search for records phonetically, back up your database
objects, perform lightning-fast finds on linked tables, save
housekeeping information, and more. All the examples in this chapter
use some form of Visual Basic for Applications (VBA) code, but
don't worry—they are all clearly explained,
and "testbed" applications are
supplied to show you how each technique works. We present more tips
for working with data in Chapter 14, focusing on
techniques you can use when your data is stored in SQL Server, rather
than in an Access Jet database (an .MDB or
.MDE file).
Warning
Many of the examples in this chapter take advantage of the DAO type
library, rather than the default ADO library used by Access 2002 and
Access 2003. Even though it's less
"modern," DAO provides greater
functionality, and generally better performance. In addition, using
DAO makes it possible for these demonstrations to work in earlier
versions of Access. If you want to try these techniques in your own
applications, make sure you add the DAO reference to your project
using the Tools → References menu item from within
VBA—it won't be added by default.

6.1. Save with Each Record the Name of the Last Person Who Edited It and the Date and Time

Problem

 Your application is used in a
multiuser environment with users regularly adding and editing
records. Access keeps track of when an object was created and last
modified. However, it does not track this information at the record
level. With each record, you want to log who created the record, who
last edited the record, and the date and time associated with each of
these actions. Is this possible?

Solution

Access has no built-in feature that records who edited a record and
when the edit was made, but it's fairly easy to
create your own. You'll need to add four fields to
each of your tables to hold this information. You'll
also need to create two simple procedures and attach them to the
BeforeInsert and BeforeUpdate events of your forms.
To add this functionality to your applications, follow these steps:
	Modify your table to include four new fields, as shown in Table 6-1.

Table 6-1. New fields for tblCustomer
	
 Field name

 	
 Field type

 	
 Default value

	
 DateCreated

 	
 Date/Time

 	
 =Now()

	
 UserCreated

 	
 Text (20)

 	

	
 DateModified

 	
 Date/Time

 	
 =Now()

	
 UserModified

 	
 Text (20)

 	

	Open your form in design view. Add new text box controls, as shown in
Table 6-2. You can place these controls anywhere
on the form; they needn't be visible. In the example
form, we placed these controls along the bottom of the form (see
Figure 6-2).

Table 6-2. New controls for frmCustomer1
	
 Control name

 	
 Control source

	
 txtDateCreated

 	
 DateCreated

	
 txtUserCreated

 	
 UserCreated

	
 txtDateModified

 	
 DateModified

	
 txtUserModified

 	
 UserModified

	

 Set the Enabled property of
these controls to No and the Locked property to Yes. This prevents
users from modifying the values that will be computed automatically.
You may also wish to set the TabStop property of these controls to No
to remove these fields from the normal tab sequence of the form.

	

 Create the following event
procedure in the form's BeforeInsert event, which
uses the CurrentUser function to insert the
user's name. You don't need to
insert the date because it has already been supplied as a default
value in the tblCustomers table:
Private Sub Form_BeforeInsert(Cancel As Integer)
 Me.UserCreated = CurrentUser()
End Sub

	
 Create the following event
procedure in the form's BeforeUpdate event. This
time you must insert both the username and the date and time:
Private Sub Form_BeforeUpdate(Cancel As Integer)
 Me.DateModified = Now()
 Me.UserModified = CurrentUser()
End Sub

	The event procedures should show up in the form's
properties sheet, as shown in Figure 6-1. Save and
close the form. Open the form and run it to test your new code.

[image: Referencing the event procedures for frmCustomer1]

Figure 6-1. Referencing the event procedures for frmCustomer1

To see an example, load the frmCustomer1 form from
06-01.MDB. This form, shown in Figure 6-2, allows you to enter and edit data in the
tblCustomer table. Make a change to an existing record, and the
DateModified and UserModified fields will be updated with the current
date and time and username. Add a new record, and the DateCreated and
UserCreated fields will be updated.
[image: The frmCustomer1 form]

Figure 6-2. The frmCustomer1 form

Discussion

To keep track of the username and the date and time a record is
created and updated, you must do two things:
	
 Create additional fields in the
table to hold the information.

	Create the application code to ensure that these fields are properly
updated when a record is added or modified.

We added four fields to tblCustomer: two fields to hold the username
and date/time the record was created, and another two fields to hold
the username and date/time the record was last modified. You
don't have to create all four fields, only the
fields for which you wish to log information.
We also created event procedures to update these columns whenever a
record is inserted or updated. The Now function
supplies the date and time; if you'd prefer to
record only the date of the change without a time, you can use the
Date function instead. The built-in
CurrentUser function saves the name of the
current user.

 Access doesn't support
the specification of calculated fields at the table level, so all of
the logic presented in this solution occurs at the form level. This
means that you must recreate this logic for every form that updates
the data in this table. It also means that if you add new records or
update existing records outside of a form—perhaps by using an
update query or by importing records from another database—the
fields in Table 6-1 will not all be automatically
updated.

 You can ensure that one of the fields,
DateCreated, is correctly updated for every record by adding the
following expression to its DefaultValue property:
=Now()

 Unfortunately, you can't
use the DefaultValue property for either of the updated fields,
because DefaultValue is evaluated only when the record is initially
created. You can't use this property to update the
UserCreated field, either, because DefaultValue cannot call built-in
or user-defined functions (except for the special
Now and Date functions).
You may have noticed that placing the four controls from Table 6-2 on the form takes up a considerable amount of
screen space. Fortunately, you don't need controls
to make this technique work, because Access lets you refer to a
form's record-source fields directly. In the sample
database you'll find a second version of the form,
frmCustomer2, that demonstrates this variation of the technique.
Notice that there are no txtDateCreated, txtUserCreated,
txtDateModified, or txtUserModified controls on frmCustomer2, yet
when you enter or edit a record using this form, the fields in
tblCustomer are correctly updated. Here's the
BeforeUpdate event procedure for this form:
Private Sub Form_BeforeUpdate(Cancel As Integer)
 Me.DateModified = Now()
 Me.UserModified = CurrentUser()
End Sub
Access lets you refer to fields in a form's
underlying record source (in this example, the DateModified and
UserModified fields in tblCustomer) as if they were controls on the
form, even though they're not. Because of this,
it's a good idea to name the controls on a form
differently from the underlying fields. Then you can be sure that you
are always referring to the correct object.

 Another consideration is that the
CurrentUser function is useful only if you have
implemented user-level security on your database. In an unsecured
Access database it will always return
"Admin", which is not very
informative. In that case, you can use Windows API calls to retrieve
either the computer name or the network login (or both) of the
current user, instead of the Access security account. In the sample
application, frmCustomer3 calls
acbNetworkUserName when a record is inserted or
edited. Here are the API declaration and the function, which you can
find in basNetworkID:
Private Declare Function GetUserName Lib "advapi32.dll" Alias _
 "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Function acbNetworkUserName() As String
' Returns the network login name.
Dim lngLen As Long, lngX As Long
Dim strUserName As String
 strUserName = String$(254, 0)
 lngLen = 255
 lngX = GetUserName(strUserName, lngLen)
 If lngX <> 0 Then
 acbNetworkUserName = Left$(strUserName, lngLen - 1)
 Else
 acbNetworkUserName = ""
 End If
End Function
The basNetworkID module also includes the following API call, which
you can use to obtain the name of the current user's
computer:
Private Declare Function GetComputerName _
 Lib "kernel32" Alias "GetComputerNameA" _
 (ByVal lpBuffer As String, nSize As Long) As Long

Private Const acbcMaxComputerName = 15

Public Function acbComputerName() As String
 ' Retrieve the name of the computer.
 Dim strBuffer As String
 Dim lngLen As Long

 strBuffer = Space(acbcMaxComputerName + 1)
 lngLen = Len(strBuffer)
 If CBool(GetComputerName(strBuffer, lngLen)) Then
 acbComputerName = Left$(strBuffer, lngLen)
 Else
 acbComputerName = ""
 End If
End Function
Another option is to create your own public function called
CurrentUser that returns the network name. That
way, you won't need to change any of the code that
calls CurrentUser in your forms. Access will use
your function rather than the built-in one, and if you do implement
Access security, all you need to do is rename or remove the custom
CurrentUser function to have the form code start
retrieving Access security names using the built-in
CurrentUser function.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New
Databases? in the Preface.

6.2. Determine if You're on a New Record in a Form

Problem

 Often, you need to do different things
depending on whether the current row is the
"new" row on a form. For example,
you might want to display a certain message box only when adding
records. How can you do this?

Solution

 You can use a form's
NewRecord property to determine if you are on a new record by
checking its value from an event procedure attached to the OnCurrent
event property or some other event property of the form.
Follow these steps to implement this functionality in your own forms:
	Create a new form or modify the design of an existing form.

	
 Create an event procedure for the
form's Current event. In that event procedure,
create an If...Then statement that will branch
based on the value of the form's NewRecord property.
The code of the event procedure should look like this:
Private Sub Form_Current()
 If Me.NewRecord Then
 ' Do something for a new record.
 Else
 ' Do something for an existing record.
 End If
End Sub

	
 You may wish to alter some visual
cue on the form to indicate whether you are on a new record. For
example, you might change the text of a label, the text of the
form's titlebar, or the picture of an image control.
In the sample form, we changed the picture of an image control in the
form's header, imgFlag, by copying the picture from
one of two hidden image controls that are also located on the form.
The final Current event procedure looks like this:
Private Sub Form_Current()

 ' Determine if this is a new record and change the bitmap
 ' of the imgFlag control to give the user visual feedback.

 ' See the Solution in Recipe 9.7 for an explanation of using the
 ' PictureData property.

 If Me.NewRecord Then
 Me.imgFlag.PictureData = Me.imgFlagNew.PictureData
 Else
 Me.imgFlag.PictureData = Me.imgFlagEdit.PictureData
 End If
End Sub

	
 Create any additional code that reacts
to the NewRecord property. In the sample form, we decided to remind
the user to log in the new record when saving it. Thus, we created
the following event procedure attached to the form's
BeforeUpdate event:
Private Sub Form_BeforeUpdate(Cancel As Integer)

 Dim strMsg As String

 If Me.NewRecord Then
 strMsg = "You just added a new record " & _
 "(# " & Me.ContactID & ")" & vbCrLf & _
 "Please don't forget to log it in!"
 Beep
 MsgBox strMsg, vbOKOnly + vbInformation, "New Record Added"
 End If

End Sub

To see an example, load and open frmContacts from
06-02.MDB. Notice that the picture in the
upper-left corner of the form changes to indicate whether you are
editing an existing record (Figure 6-3) or adding a
new record (Figure 6-4). In addition, when you save
a newly added record, a message box is displayed that reminds you to
log the new record (Figure 6-4). The message box
does not appear when you save changes to an existing record.
[image: The sample form indicates that you are editing an existing record]

Figure 6-3. The sample form indicates that you are editing an existing record

[image: The sample form indicates that you are adding a record]

Figure 6-4. The sample form indicates that you are adding a record

Discussion

 The NewRecord property is simple: its
value is True when adding a new record and
False otherwise. This property is
True from the moment the pending new record
becomes current until the moment the record is saved. NewRecord is
reset to False right after the BeforeUpdate event;
it is False during both the AfterUpdate and
AfterInsert events.

 The image control used to display the
add/edit icon uses a trick to change its picture quickly. Rather than
loading a bitmap image from a disk file, which would be slow, it
copies the picture from one of two hidden
"source" image controls on the
form.
To do this, set the image control's PictureData
property to the value of the PictureData property of another image
control. Chapter 9 discusses the PictureData
property in more detail.

6.3. Find All Records with Names That Sound Alike

Problem

 You enter people's
names into a table in which misspellings are a common occurrence. You
would like a way to search for a person's record
disregarding slight differences in spelling. You've
tried using the Like operator with the first
letter of the person's last name, but that produces
too many names. Is there any way to search for records that sound
alike?

Solution

 Access has no built-in sound-alike
function, but you can create one that employs a standard algorithm
called the Russell Soundex algorithm. Using this algorithm,
it's fairly easy to search for a last name
phonetically.
Run the qrySoundex query found in 06-03.MDB.
Enter a last name in the query parameter dialog, and qrySoundex will
return all records from tblStaff that sound like the name you
entered. For example, if you enter the name
"Jahnsin" at the parameter prompt,
qrySoundex will return the records shown in Figure 6-5.
[image: The records returned by searching for "Jahnsin"]

Figure 6-5. The records returned by searching for "Jahnsin"

To perform Soundex searches in your own applications, follow these
steps:
	Import the basSoundex module from 06-03.MDB into
your database.

	Create a query based on a table that contains a field that holds
people's last names. Include the LastName field and
any additional fields you wish to see in the output of the query.

	Create a calculated field that calculates the Soundex code for the
LastName field using the acbSoundex function. In
qrySoundex, we used the following calculation to create a new field
called Soundex:
Soundex: acbSoundex([LastName])

	Enter criteria for the calculated field that compare that field
against the Soundex code of a user-entered parameter. Use the
acbSoundex function to obtain the Soundex code
of the parameter. We used the following criteria in qrySoundex:
acbSoundex([Enter Last Name])
This qrySoundex query is shown in Figure 6-6.

[image: The qrySoundex query in design view]

Figure 6-6. The qrySoundex query in design view

	Declare the parameter to be of type Text using the Query →
Parameters dialog.

	Save and run the query.

Discussion

 You can find the
acbSoundex function in basSoundex in
06-03.MDB. This function takes a last name and
returns a four-digit Soundex code for the name. If you look at the
fourth column in Figure 6-5, you can see that the
Soundex code for all rows is the same. In this case—for names
sounding like "Jahnsin"—the
code is "J525". Soundex codes
always begin with the first letter of the name followed by three
digits ranging between 0 and 6 that represent the remaining
significant consonants in the name.
The acbSoundex function is shown here:
Public Function acbSoundex(_
 ByVal varSurName As Variant) As Variant

 ' Purpose:
 ' Takes a surname string and returns a 4-digit
 ' code representing the Russell Soundex code.
 ' In:
 ' varSurName: A surname (last name) as a variant
 ' Out:
 ' Return value: A 4-digit Soundex code as a variant

 Const acbcSoundexLength = 4

 On Error GoTo HandleErr

 Dim intLength As Integer
 Dim intCharCount As Integer
 Dim intSdxCount As Integer
 Dim intSeparator As Integer
 Dim intSdxCode As Integer
 Dim intPrvCode As Integer
 Dim strChar As String * 1
 Dim strSdx As String * acbcSoundexLength
 Dim strName As String

 ' We add vbNullString to take care of a passed Null
 strName = varSurName & vbNullString
 intLength = Len(strName)
 strSdx = String(acbcSoundexLength, "0")

 If intLength > 0 Then
 intSeparator = 0 'Keeps track of vowel separators
 intPrvCode = 0 'The code of the previous char
 intCharCount = 0 'Counts number of input chars
 intSdxCount = 0 'Counts number of output chars

 'Loop until the soundex code is of acbcSoundexLength
 'or we have run out of characters in the surname
 Do Until (intSdxCount >= acbcSoundexLength Or intCharCount >= intLength)
 intCharCount = intCharCount + 1
 strChar = Mid$(strName, intCharCount, 1)

 'Calculate the code for the current character
 Select Case strChar
 Case "B", "F", "P", "V"
 intSdxCode = 1
 Case "C", "G", "J", "K", "Q", "S", "X", "Z"
 intSdxCode = 2
 Case "D", "T"
 intSdxCode = 3
 Case "L"
 intSdxCode = 4
 Case "M", "N"
 intSdxCode = 5
 Case "R"
 intSdxCode = 6
 Case "A", "E", "I", "O", "U", "Y"
 intSdxCode = -1
 Case Else
 intSdxCode = -2
 End Select

 'Special case the first character
 If intCharCount = 1 Then
 Mid$(strSdx, 1, 1) = UCase(strChar)
 intSdxCount = intSdxCount + 1
 intPrvCode = intSdxCode
 intSeparator = 0

 'If a significant constant and not a repeat
 'without a separator then code this character
 ElseIf intSdxCode > 0 And _
 (intSdxCode <> intPrvCode Or intSeparator = 1) Then
 Mid$(strSdx, intSdxCount + 1, 1) = intSdxCode
 intSdxCount = intSdxCount + 1
 intPrvCode = intSdxCode
 intSeparator = 0

 'If a vowel, this character is not coded,
 'but it will act as a separator
 ElseIf intSdxCode = -1 Then
 intSeparator = 1
 End If
 Loop
 acbSoundex = strSdx
 Else
 acbSoundex = Null
 End If

ExitHere:
 Err.Clear
 Exit Function

HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "acbSoundex"
 End Select
 Resume ExitHere
End Function

 The acbSoundex function
is based on the Russell Soundex standard algorithm. Soundex is the
most commonly used sound-alike algorithm in the U.S. It works by
discarding the most unreliable parts of a name, while retaining much
of the name's discriminating power. It works best
when used with the English versions of names of people of European
descent. Its discriminating power is reduced when it is used with
very short or very long names or names with a high percentage of
vowels. Other sound-alike algorithms may work better in these
situations.
The Soundex algorithm was created to work with
people's last names. It appears to work reasonably
well with people's first names also, but not for
names of businesses. Soundex does not work well for business names
primarily because these names tend to be longer than
people's names, and Soundex encodes only the first
four significant characters. We've found that
extending the number of encoded characters to eight works better for
business names, although this is a nonstandard implementation of the
algorithm. You can easily extend the number of encoded characters by
changing the acbcSoundexLength constant found at
the beginning of acbSoundex. If you decide to do
this, however, we suggest you rename the function to something like
acbSoundex8 to distinguish it from the standard
function.
Soundex will not work satisfactorily with data other than names.

6.4. Find the Median Value for a Field

Problem

 You need to calculate the median for a
numeric field. Access provides the DAvg function
to calculate the mean value for a numeric field, but you
can't find the equivalent function for calculating
medians.

Solution

Access doesn't provide a built-in
DMedian function, but you can make one using VBA
code. This solution demonstrates a median function that you can use
in your own applications.
Load the frmMedian form from 06-04.MDB. Choose
the name of a table and a field in that table using the combo boxes
on the form. After you choose a field, the median value will be
calculated and displayed in a text box using the
acbDMedian function found in basMedian (see
Figure 6-7). An error message will be displayed if
you have chosen a field with a nonnumeric data type; the string
"(Null)" will be displayed if the
median value happens to be Null.
[image: The frmMedian form]

Figure 6-7. The frmMedian form

Follow these steps to use acbDMedian in your own
applications:
	Import the basMedian module from 06-04.MDB into
your database.

	Call the acbDMedian function using syntax
similar to that of the built-in DAvg function.
The calling syntax is summarized in Table 6-3.
Make sure each parameter is delimited with quotes. The third
parameter is optional. For example, you might enter the following
statement at the debug window:
? acbDMedian("UnitPrice", "tblProducts", "SupplierID = 1")
The function would return a median value of 18 (assuming you are
using the data in the 06-04.MDB sample
database).

Table 6-3. The acbDMedian parameters
	
 Parameter

 	
 Description

 	
 Example

	

 Field

 	
 Name of field for which to calculate median

 	
 "UnitPrice"

	

 Domain

 	
 Name of a table or query

 	
 "Products"

	

 Criteria

 	
 Optional WHERE clause to limit the rows considered

 	
 "CategoryID = 1"

	The return value from the function is the median value.

Tip
This example uses the DAO type library, and you'll
need to include the reference to the most current version of DAO in
your own applications in order to take advantage of this code. Use
the Tools → References menu to add the necessary reference
to use this code in your own database.

Discussion

The acbDMedian function in basMedian in
06-04.MDB is patterned to look and act like the
built-in DAvg domain function. The algorithm
used to calculate the median, however, is more complicated than what
you would use to calculate the mean. The median of a field is
calculated using the following algorithm:
	Sort the dataset on the field.

	Find the middle row of the dataset and return the value of the field.
If there is an odd number of rows, this will be the value in a single
row. If there is an even number of rows, there is no middle row, so
the function finds the mean of the values in the two rows straddling
the middle. You could modify the function to pick an existing value
instead.

After declaring a few variables, the acbDMedian
function creates a recordset based on the three parameters passed to
the function (strField,
strDomain, and
varCriteria), as shown in the following
source code:
Public Function acbDMedian(_
 ByVal strField As String, ByVal strDomain As String, _
 Optional ByVal strCriteria As String) As Variant

 ' Purpose:
 ' To calculate the median value
 ' for a field in a table or query.
 ' In:
 ' strField: The field
 ' strDomain: The table or query
 ' strCriteria: An optional WHERE clause to
 ' apply to the table or query
 ' Out:
 ' Return value: The median, if successful;
 ' otherwise, an error value

 Dim db As DAO.Database
 Dim rstDomain As DAO.Recordset
 Dim strSQL As String
 Dim varMedian As Variant
 Dim intFieldType As Integer
 Dim intRecords As Integer

 Const acbcErrAppTypeError = 3169

 On Error GoTo HandleErr

 Set db = CurrentDb()

 ' Initialize the return value.
 varMedian = Null

 ' Build a SQL string for the recordset.
 strSQL = "SELECT " & strField
 strSQL = strSQL & " FROM " & strDomain

 ' Use a WHERE clause only if one is passed in.
 If Len(strCriteria) > 0 Then
 strSQL = strSQL & " WHERE " & strCriteria
 End If

 strSQL = strSQL & " ORDER BY " & strField

 Set rstDomain = db.OpenRecordset(strSQL, dbOpenSnapshot)

 ' Check the data type of the median field.
 intFieldType = rstDomain.Fields(strField).Type
 Select Case intFieldType
 Case dbByte, dbInteger, dbLong, dbCurrency, dbSingle, dbDouble, dbDate
 ' Numeric field.
 If Not rstDomain.EOF Then
 rstDomain.MoveLast
 intRecords = rstDomain.RecordCount
 ' Start from the first record.
 rstDomain.MoveFirst

 If (intRecords Mod 2) = 0 Then
 ' Even number of records. No middle record, so move
 ' to the record right before the middle.
 rstDomain.Move ((intRecords \ 2) - 1)
 varMedian = rstDomain.Fields(strField)
 ' Now move to the next record, the one right after
 ' the middle.
 rstDomain.MoveNext
 ' Average the two values.
 varMedian = (varMedian + rstDomain.Fields(strField)) / 2
 ' Make sure you return a date, even when averaging
 ' two dates.
 If intFieldType = dbDate And Not IsNull(varMedian) Then
 varMedian = CDate(varMedian)
 End If
 Else
 ' Odd number of records. Move to the middle record
 ' and return its value.
 rstDomain.Move ((intRecords \ 2))
 varMedian = rstDomain.Fields(strField)
 End If
 Else
 ' No records; return Null.
 varMedian = Null
 End If
 Case Else
 ' Nonnumeric field; raise an app error.
 Err.Raise acbcErrAppTypeError
 End Select

 acbDMedian = varMedian

ExitHere:
 On Error Resume Next
 rstDomain.Close
 Set rstDomain = Nothing
 Exit Function

HandleErr:
 ' Return an error value.
 acbDMedian = CVErr(Err)
 Resume ExitHere
End Function

 The process of building the SQL
string that defines the recordset is straightforward, except for the
construction of the optional WHERE clause. Because
strCriteria was defined as an optional
parameter (using the Optional keyword),
acbDMedian checks if a value was passed by
checking that the string has a length greater than zero.
Once acbDMedian builds the SQL string, it
creates a recordset based on that SQL string.

 Next, acbDMedian
checks the data type of the field: it will calculate the median only
for numeric and date/time fields. If any other data type has been
passed to acbDMedian, the function forces an
error by using the Raise method of the Err object and then uses the
special CVErr function in its error handler to
send the error state back to the calling procedure:
' Check the data type of the median field.
intFieldType = rstDomain.Fields(strField).Type
Select Case intFieldType
 Case dbByte, dbInteger, dbLong, dbCurrency, dbSingle, dbDouble, dbDate
' ... more code follows ...
 Case Else
 ' Nonnumeric field; raise an app error.
 Err.Raise acbcErrAppTypeError
End Select

' ... more code follows ...

ExitHere:
 On Error Resume Next
 rstDomain.Close
 Set rstDomain = Nothing
 Exit Function

HandleErr:
 ' Return an error value.
 acbDMedian = CVErr(Err)
 Resume ExitHere
End Function

 If the field is numeric, the
acbDMedian function checks to see if there are
any rows in the recordset using the following
If...Then statement, returning
Null if there are no rows:
' Numeric field.
If Not rstDomain.EOF Then
 ' ... more code follows ...
Else
 ' No records; return Null.
 varMedian = Null
End If

 If there are rows, the function
moves to the end of the recordset to get a count of the total number
of records. This is necessary because the RecordCount property
returns only the number of rows that have been visited. The code is:
rstDomain.MoveLast
intRecords = rstDomain.RecordCount

 If
the number of records is even, acbDMedian moves
to the record just before the middle using the Move method, which
allows you to move an arbitrary number of records from the current
record. The number of records to move forward is calculated using the
following formula:
intRecords \ 2 - 1
This tells Access to divide the total number of records by 2 and then
subtract 1 from the result (because you are starting from the first
record). For example, if you are on the first of 500 records, you
would move (500 \ 2 - 1) = (250 - 1) = 249 records forward, which
would bring you to the 250th record. Once the function has moved that
many records, it's a simple matter to grab the value
of the 250th and 251st records and divide the result by 2. This part
of the function is shown here:
' Start from the first record.
rstDomain.MoveFirst

If (intRecords Mod 2) = 0 Then
 ' Even number of records. No middle record, so move
 ' to the record right before the middle.
 rstDomain.Move ((intRecords \ 2) - 1)
 varMedian = rstDomain.Fields(strField)
 ' Now move to the next record, the one right after
 ' the middle.
 rstDomain.MoveNext
 ' Average the two values.
 varMedian = (varMedian + rstDomain.Fields(strField)) / 2

 Because acbDMedian
supports dates, the function needs to make sure that a date value is
returned when taking the average of two dates. The following code
handles this:
' Make sure you return a date, even when
' averaging two dates.
If intFieldType = dbDate And Not IsNull(varMedian) Then
 varMedian = CDate(varMedian)
End If
The code for an even number of rows is much simpler:
Else
 ' Odd number of records. Move to the middle record
 ' and return its value.
 rstDomain.Move ((intRecords \ 2))
 varMedian = rstDomain.Fields(strField)
End If
Finally, acbDMedian returns the median value to
the calling procedure:
acbDMedian = varMedian

 The median, like
the average (or arithmetic mean), is known statistically as a measure
of central tendency. In other words, both measures estimate the
middle of a set of data. The mean represents the mathematical average
value; the median represents the middle-most value. For many
datasets, these two measures are the same or very close to each
other. Sometimes, however, depending on how the data is distributed,
the mean and median will report widely varying values. In these
cases, many people favor the median as a better
"average" than the mean.

 Calculating the median requires sorting
the dataset, so it can be rather slow on large datasets. Calculating
the mean, however, doesn't require a sort, so it
will always be faster to calculate the mean.
Tip
Microsoft Excel includes a Median function that
you can call from Access using OLE Automation. Chapter 12 shows you how to do this. Because using OLE
Automation with Excel requires starting a copy of Excel to do the
calculation, you'll almost always find it simpler
and faster to use the all-Access solution presented here.

6.5. Quickly Find a Record in a Linked Table

Problem

 You like to use the ultra-fast Seek method
to search for data in indexed fields in your table-type recordsets,
but the Seek method won't work with linked tables
because you can only open dynaset-type DAO recordsets against linked
tables. You can use the Find methods to search for data in these
types of recordsets, but Find is much slower at finding data than
Seek. Is there any way to use the Seek method on linked tables?

Solution

The Seek method works only on table-type recordsets, so you
can't perform seeks on linked tables. However,
there's no reason why you can't
open the source database that contains the linked table and perform
the seek operation there. This solution shows you how to do this.
To use the Seek method on external tables, follow these steps:
	
 Use the OpenDatabase method to open the
source database that contains the linked table. For example, in the
event procedure attached to the cmdSeek command button on the sample
form, frmSeekExternal, you'll find the following
code:
Set wrk = DBEngine.Workspaces(0)

' Directly open the external database. It will be opened
' nonexclusively, read-write, and with type = Access.
Set dbExternal = _
 wrk.OpenDatabase(acbGetLinkPath("tblCustomer"),, False, False, "")

	Create a table-type recordset based on the source table. If you
renamed the table when you linked to it, make sure you use the name
used in the source database. The sample form uses this code:
' Create a table-type recordset based on the external table.
Set rstCustomer = dbExternal.OpenRecordset("tblCustomer", dbOpenTable)

	
 Set an index and perform the
seek operation, as in this code behind the sample form:
' This index consists of last and first names.
rstCustomer.Index = "FullName"

' Perform the seek and then check if the record was found.
rstCustomer.Seek "=", ctlLName.Value, ctlFName.Value

	

 Any time you perform a seek or a
find, you must next check to see if the operation was successful. You
do this using the NoMatch property of the recordset. For example, on
the sample form, you'll find the following code:
strMsg = "The record for " & ctlFName & ctlLName & " was"
If Not rstCustomer.NoMatch Then
 strMsg = strMsg & " found!" & vbCrLf & vbCrLf
 strMsg = strMsg & "Customer# = " & rstCustomer![Customer#]
 MsgBox strMsg, vbOKOnly + vbInformation, "External Seek"
Else
 strMsg = strMsg & " not found!"
 MsgBox strMsg, vbOKOnly + vbCritical, "External Seek"
End If

	Close the recordset and the external database. The sample form uses
this code:
rstCustomer.Close
dbExternal.Close

To see an example, copy the 06-05.MDB and
06-05Ext.MDB databases to a folder on your hard
drive. The 06-05.MDB database is linked to the
tblCustomers table in 06-05Ext.MDB. Code in
frmRelink, the startup form in 06-05.MDB, takes
care of relinking to the tblCustomer table in
06-05Ext.MDB (we explain this technique later in
this chapter). Open the frmSeekExternal form from
06-05.MDB. Enter a first and last name for which
to search (you may find it helpful to browse through tblCustomer
first) and press the Use Seek command button (see Figure 6-8). Even though this table does not exist in the
06-05.MDB database, the row will be retrieved
using the fast Seek method.
[image: The frmSeekExternal form]

Figure 6-8. The frmSeekExternal form

Discussion

 The key to this technique is using the
OpenDatabase method on the workspace object to open the external
database directly where the linked table physically resides. The
OpenDatabase method takes four parameters, which are detailed in
Table 6-4.
Table 6-4. The OpenDatabase method's parameters
	
 Parameter

 	
 Description

 	
 frmSeekExternal example

	
 dbname

 	
 The name of the database, including the path

 	
 acbGetLinkPath("tblCustomer")

	
 exclusive

 	
 True to open the database exclusively

 	
 False

	
 read-only

 	
 True to open the database in read-only mode

 	
 False

	
 source

 	
 The Connect string for opening the database

 	
 "" indicates an Access database

Here's the code that opens the database in the
sample form:
Set dbExternal = _
 wrk.OpenDatabase(acbGetLinkPath("tblCustomer"), False, False, "")

 The function call,
acbGetLinkPath("tblCustomer"), retrieves the path
and filename of the linked database containing tblCustomer by parsing
the Connect property of the linked table.
The code for acbGetLinkPath is shown here:
 Function acbGetLinkPath(strTableName As String) As String
 On Error GoTo HandleErr
 Dim strConnect As String
 strConnect = CurrentDb.TableDefs(strTableName).Connect
 ' The path and filename are after ";DATABASE=".
 acbGetLinkPath = _
 Mid$(strConnect, InStr(strConnect, ";") + 10)

ExitHere:
 Exit Function
HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox Err.Number & ": " & Err.Description, , "acbGetLinkPath"
 End Select
 Resume ExitHere

End Function
The logic behind this function is simple. The Connect property of a
linked Access table always begins with ;DATABASE=
and then contains the path to the linked database file. The
Mid$ function allows you to start in the middle
of a string and retrieve the remaining characters (or, optionally,
just a specified number of those characters). We used the
Instr function to find the semicolon, rather
than assuming it is the first character of the Connect string,
because other kinds of linked tables will identify the type of link
before the semicolon. For example, the Connect property of a table
linked to an Excel spreadsheet will begin with
Excel;DATABASE=.

 You won't notice much
difference between the Seek and FindFirst or FindNext methods with
small tables, but with tables containing many thousands of records,
the difference in speed can be significant. Because there is overhead
involved with attaching to an external database, the FindFirst method
will sometimes even be faster on very small tables. Another option
for large amounts of data that offers better performance than
FindFirst or Seek is a parameterized query or a custom SQL statement
to retrieve just the single record that you need. Seeks are most
useful when you need to jump around in a table, finding many
different records that don't share any criteria.
Our example uses an API call to time how long it takes to perform
seeks and finds, but you won't notice a significant
difference on the small sample data. This method of timing database
activity is explained in Chapter 7.

 You are not limited to using the Seek
method on Access databases. It works with indexed, nonnative ISAM
databases also, and the tables needn't be linked to
the current database.

 You can't perform a seek
on text, spreadsheet, or ODBC data sources.

6.6. Get a Complete List of Field Properties from a Table or Query

Problem

 You want to get a list of fields in a
table or query and their properties. The ListFields method is fine
for certain situations, but it returns only a few of the
fields' properties. Microsoft has also made it clear
that this method will not exist in future releases of Access. How can
you create a replacement for ListFields that supplies all the
available field information?

Solution

 In Access 1.x, the ListFields method was
the only supported way to return a list of fields and their
properties. Its usefulness is limited because it returns only a few
field properties and always returns a snapshot. Using the more
flexible Data Access Objects (DAO) hierarchy, however, you can get
all the properties of field objects and create a replacement for the
outdated ListFields method that returns all of a
field's properties (or as many as
you'd like), placing the results in a readily
accessible table.
Open and run the frmListFields form from
06-06.MDB (see Figure 6-9).
Choose Tables, Queries, or Both, and whether you wish to include
system objects. Select an object from the Object combo box. After a
moment, the form will display a list of fields and their properties
in the Fields list box. Scroll left and right to see additional
properties and up and down to see additional fields.
[image: The frmListFields form]

Figure 6-9. The frmListFields form

To use this technique in your applications, follow these steps:
	Import the basListFields module into your database.

	Call the acbListFields subroutine, using the
following syntax:
Call acbListFields (strName, blnTable, strOutputTable)
The parameters are summarized in Table 6-5.

Table 6-5. The acbListFields subroutine's parameters
	
 Parameter

 	
 Example

 	
 Description

	
 strName

 	
 "Customers"

 	
 The name of the table or query

	
 blnTable

 	
 True

 	
 True if strName is a table, False if it is
a query

	
 strOutputTable

 	
 "tmpOutputFields"

 	
 The name of the table that will hold the list of field properties

	The subroutine creates a table with the name specified by
strOutputTable and fills it with one
record for every field in the specified table or query. The table is
similar in structure to the snapshot returned by the ListFields
method, except that it has new fields to hold the values of
additional field properties. Table 6-6 lists the
structure of the resulting table. Note that the first seven fields
are identical to those returned by the Access Version 1 ListFields
method. The remaining fields are additional information supplied only
by acbListFields.

Table 6-6. The acbListFields output table structure
	
 Field name

 	
 Data type

 	
 Description

	
 Name

 	
 String

 	
 The name of the field.

	
 Type

 	
 Integer

 	
 The data type of the field as represented by an integer. Search
Access help under ListFields to decode this value.

	
 Size

 	
 Integer

 	
 The size of the field.

	
 Attributes

 	
 Long Integer

 	
 The field's attributes. Search Access help under
Attributes to decode this value.

	
 SourceTable

 	
 String

 	
 The name of the field's underlying table. If the
table is an attached table, this field will contain the name of the
table as it exists in the source database.

	
 SourceField

 	
 String

 	
 The name of the field.

	
 CollatingOrder

 	
 Integer

 	
 The collating order of the table. Search Access help under
CollatingOrder to decode this value.

	
 AllowZeroLength

 	
 Integer

 	
 True if zero-length strings are allowed in the field; False
otherwise.

	
 DataUpdateable

 	
 Integer

 	
 True if the field is updateable; False otherwise.

	
 DefaultValue

 	
 Text

 	
 The field's default value.

	
 OrdinalPosition

 	
 Integer

 	
 The field's position in the table, starting at 0.

	
 Required

 	
 Integer

 	
 True if the field requires an entry; False otherwise.

	
 ValidationRule

 	
 String

 	
 The field's ValidationRule property.

	
 ValidationText

 	
 String

 	
 The field's ValidationText property.

	
 Caption

 	
 String

 	
 The field's Caption property.

	
 ColumnHidden

 	
 Integer

 	
 True if the field is hidden in datasheet view; False otherwise.

	
 ColumnOrder

 	
 Integer

 	
 The order in which the field appears in datasheet view.

	
 ColumnWidth

 	
 Integer

 	
 The width of the field as it appears in datasheet view.

	
 DecimalPlaces

 	
 Integer

 	
 The field's number of decimal places.

	
 Description

 	
 Text

 	
 The field's description.

	
 Format

 	
 Text

 	
 The field's format string.

	
 InputMask

 	
 Text

 	
 The field's input mask string.

Discussion

The acbListFields subroutine uses a table-driven
approach to populate the list fields output table with the properties
of the fields in the input table or query. Here's
the basic algorithm for acbListFields:
	Call acbMakeListTable to create the output
table. This routine either creates a new table or, if one already
exists, deletes all of its rows. If it needs to create the output
table, it uses a create table query. The names of the fields in the
output table are the same as the properties that
acbListFields will place there.

	Open a recordset based on the table created in Step 1.

	Count the fields in the input table/query.

	For each field in the input table/query, add a new row in the output
table and iterate through the fields in the output table, retrieving
the properties for the input table/query field with the same name as
the output table fields and adding them in turn to the new row in the
output table.

The acbListFields subroutine is shown here:
Public Sub acbListFields(_
 strName As String, blnTable As Boolean, _
 strOutputTable As String)
 ' Purpose:
 ' Saves a list of the most common field properties
 ' of a table or query to a table.

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim tdf As DAO.TableDef
 Dim qdf As DAO.QueryDef
 Dim fld As DAO.Field
 Dim intFieldCount As Integer
 Dim intI As Integer
 Dim intJ As Integer
 Dim strOutputField As String

 On Error GoTo HandleErr

 Call acbMakeListTable(strOutputTable)

 Set db = CurrentDb()
 Set rst = db.OpenRecordset(strOutputTable)

 ' If the input object is a table, use a TableDef.
 ' Otherwise, use a QueryDef.
 If blnTable Then
 Set tdf = db.TableDefs(strName)
 intFieldCount = tdf.Fields.Count
 Else
 Set qdf = db.QueryDefs(strName)
 intFieldCount = qdf.Fields.Count
 End If

 ' Iterate through the fields in the TableDef
 ' or QueryDef.
 For intI = 0 To intFieldCount - 1
 ' Create a new record for each field.
 rst.AddNew
 If blnTable Then
 Set fld = tdf.Fields(intI)
 Else
 Set fld = qdf.Fields(intI)
 End If
 ' Iterate through the fields in rst. The names of these fields
 ' are exactly the same as the names of the properties we wish
 ' to store in them, so we take advantage of this fact.
 For intJ = 0 To rst.Fields.Count - 1
 strOutputField = rst.Fields(intJ).Name
 rst.Fields(strOutputField) = _
 fld.Properties(strOutputField)
 Next intJ
 rst.Update
 Next intI

ExitHere:
 Set rst = Nothing
 Set qdf = Nothing
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case 3270 ' Property not found.
 ' Skip the property if it can't be found.
 Resume Next
 Case Else
 MsgBox Err.Number & ": " & Err.Description, , "acbListFields"
 End Select
 Resume ExitHere
End Sub
Once acbListFields has completed its work, you
can open the output table and use it any way you'd
like. The sample frmListFields form displays the output table using a
list box control.
This technique is easy to implement and offers more functionality
than the built-in ListFields method. Many more (although not all of
the possible) field properties are retrieved, and because
acbListFields returns a table instead of a
snapshot, you have added flexibility.

 acbListFields doesn't decide
which properties to write to the output table. Instead, it drives the
process using the names of the fields in the output table. If you
wish to collect a different set of properties, all you need to do is
modify the code in acbMakeListFields and delete
the output table (which will be recreated the next time you run
acbListFields).

 There is useful sample code behind the
frmListFields form. Look at the GetTables
function for an example of how to get a list of tables and queries
and at the FillTables function for an example of
a list-filling function (see the Solutions in Recipe 6.8 and Recipe 7.8 for
more details on list-filling functions).
Tip
In your own applications, you may want to hide the output table in
the database container. You can do this either by prefixing its name
with "USys" or by checking the
Hidden setting in the table's properties.

See Also

For more information on working with properties, see
Recipe 7.9 in Chapter 7.

6.7. Create and Use Flexible AutoNumber Fields

Problem

 You use
AutoNumber fields in your tables to ensure that you have unique
values for your key fields, but a key based on an auto-incrementing
Long Integer AutoNumber field doesn't sort your
tables in a useful order. Also, auto-incrementing AutoNumber fields
always start at 1, and you want your AutoNumber values to start at
another number. How can you create a replacement for
Access's AutoNumber fields that gets around these
limitations?

Solution

Access makes it easy to add unique value key fields to a table using
the AutoNumber data type (referred to as the Counter data type prior
to Access 95). AutoNumbers are automatically maintained by Access and
ensure a unique value for each record. Auto-incrementing AutoNumber
fields always start at 1, with 1 added for each new record. If your
only concern is changing the starting number, you can do that by
using an append query to insert a record with a specific value in the
AutoNumber field. The next record added will automatically be
assigned that value plus 1. However, you may have other good reasons
for wanting to create a replacement for the built-in AutoNumbers.
This solution shows how to create your own flexible AutoNumber fields
that are multiuser-ready. You can also combine these custom
AutoNumber values with other fields in the table to make your data
sort more intuitively.
Open and run the frmFlexAutoNum form from
06-07.MDB. Add a new record. Type in some data,
and be sure to put a value in the LastName field. Save the new record
by pressing Shift-Enter. When you save the record, a new
auto-incremented value will be placed into the ContactID field (see
Figure 6-10).
[image: The frmFlexAutoNum sample form]

Figure 6-10. The frmFlexAutoNum sample form

You can add this functionality to your own applications by following
these steps:
	Import the tblFlexAutoNum table and the basFlexAutoNum module into
your database.

	Prepare your table by adding a new field to become the key value. If
you want to store a numeric AutoNumber value, set the
field's type to Number, Long Integer. If you want to
add more information for sorting, set the new
field's type to Text and set its length long enough
to accommodate the numbers returned by the flexible AutoNumber
routine plus the number of characters you want to concatenate to the
field.

	Open the tblFlexAutoNum table and edit the CounterValue field to
start at the desired value.

	

 Open the data-entry form for your
application in design view. In the form's
BeforeUpdate event procedure, add code that calls the
acbGetCounter function, writing the returned
value to your key field. The following code shows a BeforeUpdate
event procedure that includes a call to the
abcGetCounter function:
Private Sub Form_BeforeUpdate(Cancel As Integer)
 ' Try to get a unique counter and write it
 ' to the Contact ID field.

 Dim lngCounter As Long

 If IsNull(Me.txtContactID) Then
 lngCounter = acbGetCounter()
 ' If no counter is available...
 If lngCounter < 1 Then
 ' cancel the Update event.
 Cancel = True
 Else
 ' Write the key field.
 Me.txtContactID = Left(Me.txtLastName, 5) & lngCounter
 End If
 End If
End Sub

 This code will run whenever a new record
is added to the form, before the new record is actually written to
the form's table. The
lngCounter variable is assigned to the
value returned by acbGetCounter. If the value is
greater than zero, it is written to the KeyField field. If you want
to add information to the key field, use the same technique but
concatenate the AutoNumber value with a value from another field, as
shown here:
Dim lngCounter As Long
lngCounter = acbGetCounter()
If lngCounter > 0 Then
 Me.KeyField = Left$(Me.LastName,5) & lngCounter
End If
If you are basing your key value on another field, your code should
ensure that a value exists in that field before attempting to use it.
The best way to ensure this is to set the Required property of the
field to Yes.

Discussion

The heart of this technique is the acbGetCounter
function. This function tries to open the tblFlexAutoNum table
exclusively and, if it succeeds, gets the value in the CounterValue
field and increments the stored value by some fixed number. The
retrieved value is then returned to the calling procedure.
acbGetCounter is shown here:
Public Function acbGetCounter() As Long
 ' Get a value from the counters table and
 ' increment it

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim blnLocked As Boolean
 Dim intRetries As Integer
 Dim lngTime As Long
 Dim lngCnt As Long
 Dim lngCOunter As Long

 ' Set number of retries
 Const conMaxRetries = 5
 Const conMinDelay = 1
 Const conMaxDelay = 10

 On Error GoTo HandleErr

 Set db = CurrentDb()
 blnLocked = False

 Do While True
 For intRetries = 0 To conMaxRetries
 On Error Resume Next
 Set rst = db.OpenRecordset("tblFlexAutoNum", _
 dbOpenTable, dbDenyWrite + dbDenyRead)
 If Err.Number = 0 Then
 blnLocked = True
 Exit For
 Else
 lngTime = intRetries ^ 2 * _
 Int((conMaxDelay - conMinDelay + 1) * Rnd + conMinDelay)
 For lngCnt = 1 To lngTime
 DoEvents
 Next lngCnt
 End If
 Next intRetries
 On Error GoTo HandleErr

 If Not blnLocked Then
 If MsgBox("Could not get a counter: Try again?", _
 vbQuestion + vbYesNo) = vbYes Then
 intRetries = 0
 Else
 Exit Do
 End If
 Else
 Exit Do
 End If
 Loop

 If blnLocked Then
 lngCOunter = rst("CounterValue")
 acbGetCounter = lngCOunter
 rst.Edit
 rst("CounterValue") = lngCOunter + 1
 rst.Update
 rst.Close
 Else
 acbGetCounter = -1
 End If
 Set rst = Nothing
 Set db = Nothing

ExitHere:
 Exit Function

HandleErr:
 MsgBox Err.Number & ": " & Err.Description, , "acbGetCounter"
 Resume ExitHere
End Function

 After declaring several variables,
acbGetCounter attempts to open a Recordset
object on the tblFlexAutoNum table. By specifying the
dbDenyRead and dbDenyWrite
constants as the Options argument to the
OpenRecordset method, it attempts to lock the table exclusively,
preventing other users from reading or writing to the table. You can
use the dbDenyRead and
dbDenyWrite options only with table-type
recordsets, so if the table is in an external database
you'll need to open the recordset using
OpenDatabase, as shown earlier in this chapter.

 The function attempts to obtain a lock
on the acbcAutoNumTable by using a common multiuser coding construct:
a retry loop. The retry loop from acbGetCounter
is shown here:
For intRetries = 0 To conMaxRetries
 On Error Resume Next
 Set rst = db.OpenRecordset("tblFlexAutoNum", _
 dbOpenTable, dbDenyWrite + dbDenyRead)
 If Err.Number = 0 Then
 blnLocked = True
 Exit For
 Else
 lngTime = intRetries ^ 2 * _
 Int((conMaxDelay - conMinDelay + 1) * Rnd + conMinDelay)
 For lngCnt = 1 To lngTime
 DoEvents
 Next lngCnt
 End If
Next intRetries

 Note
what happens if the lock is not immediately obtained. The procedure
calculates a long number based on the number of retries, the
acbcMaxDelay and acbcMinDelay
constants that were set at the beginning of the function, and a
random number. This calculated number, lngTime, is then used to waste
time using a For...Next loop that simply counts
from 1 to lngTime. We placed a DoEvents statement
inside the loop so that Access will process any screen activity
during this dead time.
The retry loop and the time-wasting code force the function to pause
briefly before attempting to obtain the lock again. Because this
function is meant to work in a multiuser situation,
it's important that retries are not repeatedly
attempted without waiting for the lock to be released.
acbGetCounter includes a random component to
lngTime that gets larger with each retry to separate out multiple
users who might be trying to obtain the lock at the same time.
If the function cannot lock the table after the number of retries
specified by the acbcMaxRetries constant, it
displays a message box allowing the user to retry or cancel. If the
user chooses to cancel, a value of -1 is returned; if the user
chooses to retry, the whole retry loop is restarted. If the lock
succeeds, the value of the AutoNumber field is saved and the
AutoNumber field is incremented by the value of the
acbcAutoNumInc constant.

 The tblFlexAutoNum table provides
AutoNumber values for one table only. You may wish to extend this
technique so that there is some provision for recording multiple
AutoNumber values in tblFlexAutoNum. Alternately, you could create a
separate AutoNumber table for each flexible AutoNumber value you need
in your application. You can hide these tables in the database
container either by prefixing the table names with
"USys" or by checking the Hidden
setting in the tables' properties sheets.
The example form concatenates the first five letters from the
LastName field with the AutoNumber value. Although this convention
can be helpful in sorting, it can also have a negative side effect:
the AutoNumber field will have to be changed when the LastName field
is changed. We included this functionality simply as an example of
the kind of flexibility you have with this technique. In general,
it's not good practice to combine multiple pieces of
information in one field.
If you want to create AutoNumber values in two different copies of a
database that could then be merged together at a later time, you
could use a site-specific alphanumeric prefix to your AutoNumber
field. Since each copy of the database would use a different site
prefix, you wouldn't have duplicate values. However,
you could also accomplish this goal by using a composite primary key
comprised of two fields—the AutoNumber and the site ID.

 Unlike Access AutoNumbers, the custom
AutoNumbers in this solution are retrieved only when the record is
about to be saved, in the BeforeUpdate event. If a user starts
editing a new record and then cancels, no AutoNumber will be
"wasted" on the canceled record.
This technique therefore is useful in situations in which you need
your numbers to be consecutive, such as for invoice or purchase-order
numbers.

6.8. Back Up Selected Objects to Another Database

Problem

 You use a standard backup
program to save your databases, but this works only at the database
level. This is fine for archival purposes, but you often want to back
up individual objects. How can you get Access to display a list of
objects and allow you to save selected ones to an output database you
specify?

Solution

 This
solution shows how to create a form that selectively saves Access
objects to another database. It works by using a multiselect list box
and the CopyObject action.
Open frmBackup from 06-08.MDB (Figure 6-11). You can use this form to back up selected
objects from the current database to another database. Select one or
more objects from the list box, using the Shift or Ctrl keys to
extend the selection. When you are finished selecting objects and
have specified a backup database (a default database name is created
for you), press the Backup button. The backup process will begin,
copying objects from the current database to the backup database.
[image: frmBackup backing up selected database objects]

Figure 6-11. frmBackup backing up selected database objects

To add this functionality to your own database, follow these steps:
	Import frmBackup from 06-08.MDB to your database.

	
 Call the backup procedure
from anywhere in your application by opening the frmBackup form. For
example, you might place a command button on your main switchboard
form with the following event procedure attached to the
button's Click event:
DoCmd.OpenForm "frmBackup"

Discussion

To see how it works, open frmBackup in design view. The form consists
of a list box, two text boxes (one of which is initially hidden), and
other controls. The list box control displays the list of objects.
One text box is used to gather the name of the backup database; the
other is used to display the progress of the backup operation. All of
the VBA code that makes frmBackup work is stored in the
form's module.
The MultiSelect property

 The key control on the form is the
lboObjects list box. We have taken advantage of the list
box's MultiSelect property to allow the user to
select more than one item in the list box. This property can be set
to None, Simple, or Extended (see Figure 6-12). If
you set MultiSelect to None, which is the default setting, only one
item may be selected. If you choose Simple, you can select multiple
items, and an item will be selected whenever you click on it and will
remain selected until you click on it again. If you choose Extended,
the list box will behave like most of Windows's
built-in list box controls—you select multiple items by holding
down the Shift or Ctrl keys while clicking on items.
[image: The MultiSelect property set to Extended]

Figure 6-12. The MultiSelect property set to Extended

Filling the lboObjects list box

 Unlike most list boxes, which derive
their lists of values from either a fixed list of items or the rows
from a table or query, lboObjects uses a list-filling callback
function to fill the list box with the names of the database
container objects. List-filling functions are described in detail in
the Solution in Recipe 7.5. We use a
list-filling function here because the list of database container
objects is not stored in a user-accessible table. (Actually, you can
fill a list box with a list of database container objects using a
query based on the undocumented MSysObjects system table, but this
practice is not supported by Microsoft and therefore is not
recommended.) The list-filling function for lboObjects,
FillObjectList, is shown here:
Private Function FillObjectList(ctl As Control, varID As Variant, _
 varRow As Variant, varCol As Variant, varCode As Variant) As Variant

 ' List filling function for lboObjects.
 ' Fills the list box with a list of
 ' the database container objects.

 Dim varRetVal As Variant
 Static sintRows As Integer
 Dim itemInfo As Info

 varRetVal = Null

 Select Case varCode
 Case acLBInitialize
 ' Fill mcolInfo with a list of
 ' database container objects
 Set mcolInfo = New Collection
 sintRows = FillObjCollection()
 varRetVal = True
 Case acLBOpen
 varRetVal = Timer
 Case acLBGetRowCount
 varRetVal = sintRows
 Case acLBGetColumnCount
 varRetVal = 4
 Case acLBGetValue
 ' varRow and varCol are zero-based so add 1
 Set itemInfo = mcolInfo(varRow + 1)
 Select Case varCol
 Case 0
 varRetVal = itemInfo.ObjectType
 Case 1
 varRetVal = itemInfo.ObjectName
 Case 2
 varRetVal = itemInfo.DateCreated
 Case 3
 varRetVal = itemInfo.LastUpdated
 End Select
 Case acLBEnd
 Set mcolInfo = New Collection
 End Select

 FillObjectList = varRetVal

End Function

 FillObjectList looks like most typical
list-filling functions (see the Solution in Recipe 7.5 for more details). Most of the work is done
during the initialization step, when the FillObjCollection
function is called to fill a module-level collection with
the list of database container objects:
Public Function FillObjCollection() As Integer

 ' Populates mcolInfo array with database container objects.

 Dim db As DAO.Database
 Dim con As DAO.Container
 Dim doc As DAO.Document
 Dim tdf As DAO.TableDef
 Dim qdf As DAO.QueryDef
 Dim strObjType As String
 Dim intObjCount As Integer
 Dim intItem As Integer
 Dim fReturn As Boolean

 On Error Resume Next

 Set db = CurrentDb()

 ' Setup the first row of field names
 Call SaveToCollection("Type", "Name", "DateCreated", _
 "LastUpdated")

 ' Special case TableDefs
 db.TableDefs.Refresh
 For Each tdf In db.TableDefs
 ' Only include non-system tables
 If Not (tdf.Attributes And dbSystemObject) <> 0 Then
 Call SaveToCollection("Table", tdf.Name, tdf.DateCreated, _
 tdf.LastUpdated)
 End If
 Next tdf

 ' Special case QueryDefs
 db.QueryDefs.Refresh
 For Each qdf In db.QueryDefs
 Call SaveToCollection("Query", qdf.Name, qdf.DateCreated, _
 qdf.LastUpdated)
 Next qdf

 ' Iterate through remaining containers of interest
 ' and then each document within the container
 For Each con In db.Containers
 Select Case con.Name
 Case "Scripts"
 strObjType = "Macro"
 Case "Forms"
 strObjType = "Form"
 Case "Modules"
 strObjType = "Module"
 Case "Reports"
 strObjType = "Report"
 Case Else
 strObjType = ""
 End Select

 ' If this isn't one of the important containers, don't
 ' bother listing documents.
 If strObjType <> "" Then
 con.Documents.Refresh
 For Each doc In con.Documents
 ' You can't backup the current form, since it's open.
 If Not (doc.Name = Me.Name And con.Name = "Forms") Then
 fReturn = SaveToCollection(strObjType, doc.Name, doc.DateCreated, _
 doc.LastUpdated)
 End If
 Next doc
 End If

 Next con
 FillObjCollection = mcolInfo.Count
End Function

 The purpose of
FillObjCollection is to fill a Collection object
with a list of the names of each database container object, the type
of each object, the date and time each object was created, and the
date and time each object was last modified. Each item within this
collection is an instance of the Info class, defined in the sample
database. (Although the use of user-defined classes is beyond the
scope of this book, you can investigate the Info class and see that
it's quite simple. It behaves just like any other
object available as part of Access or VBA—the only difference
is that it's defined within your project.) In order
to gather the necessary information, the code must work through all
the available objects. This is accomplished by
"walking" the Containers collection
of the current database and working with the objects in each of the
containers. There are eight different containers in the Containers
collection, which are summarized in Table 6-7.
Table 6-7. The Containers collection
	
 Container

 	
 Contains these documents

 	
 Backup documents?

	
 Databases

 	
 General information about the database

 	
 No

	
 Forms

 	
 Saved forms

 	
 Yes

	
 Modules

 	
 Saved modules

 	
 Yes

	
 Relationships

 	
 Enforced relationships

 	
 No

	
 Reports

 	
 Saved reports

 	
 Yes

	
 Scripts

 	
 Saved macros

 	
 Yes

	
 SysRel

 	
 Unenforced relationships

 	
 No

	
 Tables

 	
 Saved tables and queries

 	
 Yes

Because you are interested in backing up only the objects that appear
in the Access database container, the function should ignore any
containers in Table 6-7 for which
"Backup documents" is No.

 FillObjArray places the list box headings in the
first item of the array:
' Set up the first row of field names
 Call SaveToCollection("Type", "Name", "DateCreated", _
 "LastUpdated")
We want the information in this first row to become the headings of
the list box, so we set the ColumnHeads property of the list box to
Yes. This setting tells Access to freeze the first row of the list
box so that it doesn't scroll with the other rows.
In addition, you cannot select this special row.

 The function needs to walk the
collections storing away the information that will appear in the list
box. This should be relatively simple, but there
is one complicating factor: the Tables container includes both tables
and queries, mixed together in unsorted order. Fortunately,
there's an alternate method for getting separate
lists of tables and queries in the database. Instead of using the
Tables container, FillObjCollection walks the
TableDefs and QueryDefs collections to extract the necessary
information:
 ' Special case TableDefs
 db.TableDefs.Refresh
 For Each tdf In db.TableDefs
 ' Only include non-system tables
 If Not (tdf.Attributes And dbSystemObject) <> 0 Then
 Call SaveToCollection("Table", tdf.Name, tdf.DateCreated, _
 tdf.LastUpdated)
 End If
 Next tdf

 ' Special case QueryDefs
 db.QueryDefs.Refresh
 For Each qdf In db.QueryDefs
 Call SaveToCollection("Query", qdf.Name, qdf.DateCreated, _
 qdf.LastUpdated)
 Next qdf

 The TableDefs collection requires an
additional test to exclude the normally hidden system tables from the
list.
With the tables and queries taken care of, the function can now walk
the remaining container collections for macros, forms, modules, and
reports:
 ' Iterate through remaining containers of interest
 ' and then each document within the container
 For Each con In db.Containers
 Select Case con.Name
 Case "Scripts"
 strObjType = "Macro"
 Case "Forms"
 strObjType = "Form"
 Case "Modules"
 strObjType = "Module"
 Case "Reports"
 strObjType = "Report"
 Case Else
 strObjType = ""
 End Select

 ' If this isn't one of the important containers, don't
 ' bother listing documents.
 If strObjType <> "" Then
 con.Documents.Refresh
 For Each doc In con.Documents
 ' You can't backup the current form, since it's open.
 If Not (doc.Name = Me.Name And con.Name = "Forms") Then
 fReturn = SaveToCollection(strObjType,
 doc.Name, _ doc.DateCreated,
 doc.LastUpdated)
 End If
 Next doc
 End If

 Next con
The SaveToCollection subroutine called by
FillObjArray is shown here:
Private Function SaveToCollection(ByVal strType As String, ByVal strName As String, _
 ByVal strDateCreated As String, ByVal strLastUpdated As String) As Boolean

 ' Skip deleted objects
 Dim itemInfo As Info
 Set itemInfo = New Info

 If Left$(strName, 1) <> "~" Then
 itemInfo.ObjectType = strType
 itemInfo.ObjectName = strName
 itemInfo.DateCreated = strDateCreated
 itemInfo.LastUpdated = strLastUpdated
 mcolInfo.Add itemInfo
 SaveToCollection = True
 Else
 SaveToCollection = False
 End If

End Function

 Access doesn't
immediately remove database container objects that you have deleted.
Instead, it renames each deleted object to a name that begins with
"~TMPCLP". In addition, when you
use SQL statements for row sources or record sources, Access creates
hidden queries with names that also start with a tilde character
("~"). We don't
want these objects to appear in the list of objects to back up, so we
included code here to exclude them explicitly from the list box.

The backup process

Once you have selected one or more database objects in the lboObjects
list box, you initiate the backup process by clicking on the
cmdBackup command button. The event procedure attached to this button
calls the MakeBackup subroutine. This routine
begins by checking to see if the backup database exists. If it does,
you are warned that it will be overwritten before proceeding. Next,
MakeBackup creates the output database using the
following code:
Set dbOutput = DBEngine.Workspaces(0). _
 CreateDatabase(strOutputDatabase, dbLangGeneral)

dbOutput.Close
The output database is immediately closed, because the backup process
doesn't require it to be open.
MakeBackup then iterates through the selected
objects and calls ExportObject, passing it the
name of the output database and the name and type of the object to be
backed up:
intObjCnt = 0
ctlProgress = "Backing up objects..."

For Each varItem In ctlObjects.ItemsSelected
 intObjCnt = intObjCnt + 1
 strType = ctlObjects.Column(0, varItem)
 strName = ctlObjects.Column(1, varItem)
 ctlProgress = "Backing up " & strName & "..."
 DoEvents
 Call ExportObject(strOutputDatabase, strType, strName)
Next varItem

 The
ExportObject subroutine backs up each object
using the CopyObject action. ExportObject is
shown here:
Private Sub ExportObject(strOutputDatabase As String, _
 strType As String, strName As String)

 Dim intType As Integer

 Select Case strType
 Case "Table"
 intType = acTable
 Case "Query"
 intType = acQuery
 Case "Form"
 intType = acForm
 Case "Report"
 intType = acReport
 Case "Macro"
 intType = acMacro
 Case "Module"
 intType = acModule
 End Select

 ' If export fails, let the user know.
 On Error Resume Next

 DoCmd.CopyObject strOutputDatabase, strName, intType, strName
 If Err.Number <> 0 Then
 Beep
 MsgBox "Unable to backup " & strType & ": " & strName, _
 vbOKOnly + vbCritical, "ExportObject"
 End If

End Sub

Comments

 This
technique uses the CopyObject action instead of the more traditional
TransferDatabase action. CopyObject, which was added in Access 2.0,
provides you with the same functionality as TransferDatabase, but
because it supports only Access objects it requires fewer arguments.
The CopyObject action also allows you to specify a new name for the
object in the destination database. This is useful if you want give
the copy a name that's different from that of the
source object.

Chapter 7. VBA

 Most
applications that are distributed to users include at least some
Visual Basic for Applications (VBA) code. Because VBA provides the
only mechanism for performing certain tasks (for example, using
variables, building SQL strings on the fly, handling errors, and
using the Windows API), most developers eventually must delve into
its intricacies. The sections in this chapter cover some of the
details of VBA that you might not find in the Access manuals. First
you'll find a complete explanation of embedding
strings inside other strings, allowing you to build SQL strings and
other expressions that require embedded values. Two solutions are
devoted to creating a procedure stack, which allows you to keep track
of the current procedure at all times. The second of the two also
creates a profiling log file, which helps you document where and for
how long your code wandered. Next you'll learn about
the DoEvents statement, which gives Windows time
to handle its own chores while your code is running. A group of four
solutions covers the details of creating list-filling functions,
passing arrays as parameters, sorting arrays, and filling a list box
with the results of a directory search. The final two solutions cover
some details of working with Data Access Objects (DAO): how to set
and retrieve object properties, whether the properties are built-in,
and how to tell whether an object exists in your application.
7.1. Build Up String References with Embedded Quotes

Problem

You want to create criteria for text and data fields, but no matter
what syntax you try you seem to get errors or incorrect results. What
are you doing wrong?

Solution

 You'll face this
problem in any place in Access where you're required
to provide a string expression that contains other strings—for
example, in using the domain functions (DLookup,
DMax, DMin, etc.), in
building a SQL expression on the fly, or in using the Find methods
(FindFirst, FindNext, FindPrevious, and FindLast) on a recordset.
Because all strings must be surrounded with quotes, and you
can't embed quotes inside a quoted string, you can
quickly find yourself in trouble. Many programmers agonize over these
constructs, but the situation needn't be that
difficult. This section explains the problem and shows you a generic
solution.

 To see an
example of building expressions on the fly, load and run frmQuoteTest
from 07-01.MDB. This form, shown in Figure 7-1, allows you to specify criteria. Once you
press the Search button, the code attached to the button will build
the SQL expression shown in the text box and will set the RowSource
property for the list box at the bottom of the form accordingly.
[image: The test form, frmQuoteTest, with a subset of the data selected]

Figure 7-1. The test form, frmQuoteTest, with a subset of the data selected

To try all the features of the form, follow these three steps:
	In the First Name text box, enter A. When you press Return, the form
builds the appropriate SQL string and filters the list box. Note in
the SQL string that the value you entered is surrounded by quotes.
(This is the state in which Figure 7-1 was
captured.)

	In the Birth Date text box, enter 3/13/60. Again, the form should
filter the data (down to a single row). Note that the SQL expression
must have "#" signs around the date
value you entered.

	Press the Reset button to delete all the data from the four text
boxes. That will again fill the list box with all the rows. Enter the
value 8 in the ID text box, and then press Return. Note that the SQL
string this time has no delimiter around the value that you entered.

Discussion

 The point
of that exercise was to alert you to the fact that different data
types require specific delimiters when they become part of an
expression. For example, to use DLookup to find
the row in which the [LastName] field was Smith,
you'd need an expression like this:
[LastName] = "Smith"
Leaving off those quotes would confuse Access, because it would be
looking for some variable named
"Smith".

 Date values don't
require quotes. Instead, they require #
delimiters. To find the row in which the [BirthDate] field is May 16,
1956, you'd need an expression like this:
[BirthDate] = #5/16/56#
If you left off the delimiters, Access would think you were trying to
numerically divide 5 by 16, and then by 56.
Numeric values require no delimiters. If you were searching for the
row in which the ID value was 8, you could use this expression:
[ID] = 8
and Access would know exactly what you meant.

 Many situations in Access require
that you create strings that supply search criteria. Because the Jet
database engine has no knowledge of VBA or its variables, you must
supply the actual values before you apply any search criteria or
perform lookups. That is, you must create a string expression that
contains the value of any variable involved, not
the variable name.

 Any of the three examples in
this section could have been used as search criteria, and string
values would need to have been surrounded by quotes. The next few
paragraphs cover the steps you need to take in creating these search
criteria strings.

 To build expressions
that involve variables, you must supply any required delimiters. For
numeric expressions, there is no required delimiter. If the variable
named intID contains the value 8, you
could use this expression to create the search string you need:
"[ID] = " & intID
As part of a SQL string, or as a parameter to
DLookup, this string is unambiguous in its
directions to Access.

 To create a search criterion that includes
a date variable, you'll need to include the
delimiters. For example, if you have a variant
variable named varDate that contains the
date May 22, 1959, and you want to end up with this expression:
"[BirthDate] = #5/22/59#"
you have to insert the delimiters yourself. The solution might look
like this:
"[BirthDate] = #" & varDate & "#"
The complex case occurs when you must include strings. For those
cases, you'll need to build a string expression that
contains a string itself, surrounded by quotes, with the whole
expression also surrounded by quotes. The rules for working with
strings in Access are as follows:
	An expression that's delimited with quotes
can't itself contain quotes.

	Two quotes ("") inside a string are seen by Access
as a single quote.

	

 You can use apostrophes
(') as string delimiters.

	An expression that's delimited with apostrophes
can't itself contain apostrophes.

	

 You can use the value of
Chr$(34) (34 is the ANSI value for the quote
character) inside a string expression to represent the quote
character.

 Given these rules, you can
create a number of solutions to the same problem. For example, if the
variable strLastName contains
"Smith", and you want to create a
WHERE clause that will search for that name, you
will end up with this expression:
"[LastName] = "Smith""
However, that expression isn't allowed because it
includes internal quotes. An acceptable solution would be the
following:
"[LastName] = ""Smith"""
The problem here is that the literal value
"Smith" is still in the expression.
You're trying to replace that value with the name of
the variable, strLastName. You might try
this expression:
"[LastName] = ""strLastName"""
but that will search for a row with the last name of
"strLastName". You probably
won't find a match.
One solution, then, is to break up that expression into three
separate pieces—the portion before the variable, the variable,
and the portion after the variable (the final quote):
"[LastName] = """ & strLastName & """"
Although that may look confusing, it's correct. The
first portion:
"[LastName] = """
is simply a string containing the name of the field, an equals sign,
and two quotes. The rule is that two quotes inside a string are
treated as one. The same logic works for the portion of the
expression after the variable ("""").
That's a string containing two quotes, which Access
sees as one quote. Although this solution works,
it's a bit confusing.

 To make things simpler, you can just
use apostrophes inside the string:
"[LastName] = '" & strLastName & "'"
This is somewhat less confusing, but there's a
serious drawback: if the name itself contains an apostrophe
("O'Connor", for
example), you'll be in trouble. Access
doesn't allow you to nest apostrophes inside
apostrophe delimiters, either. This solution works only when
you're assured that the data in the variable can
never itself include an apostrophe.

 The simplest solution is to use
Chr$(34) to embed the quotes. An expression such
as the following would do the trick:
"[LastName] = " & Chr$(34) & strLastName & Chr$(34)
If you don't believe this works, go to the Immediate
window in VBA and type this:
? Chr$(34)
Access will return to you by typing the value of
Chr$(34)--a quote character.
To make this solution a little simpler, you could create a string
variable at the beginning of your procedure and assign to it the
value of Chr$(34):
Dim strQuote As String
Dim strLookup As String

strQuote = Chr$(34)
strLookup = "[LastName] = " & strQuote & strLastName & strQuote
This actually makes the code almost readable!

 Finally, if you grow weary of defining that
variable in every procedure you write, you might consider using a
constant instead. You might be tempted to try this:
Const QUOTE = Chr$(34)
Unfortunately, Access won't allow you to create a
constant whose value is an expression. If you want to use a constant,
your answer is to rely on the
"two-quote" rule:
Const QUOTE = """"
Although this expression's use is not immediately
clear, it works just fine. The constant is two quotes (which Access
will see as a single quote) inside a quoted string. Using this
constant, the previous expression becomes:
strLookup = "[LastName] = " & QUOTE & strLastName & QUOTE
To encapsulate all these rules, you might want to use the
acbFixUp function in the basFixUpValue module in
07-01.MDB. This function takes as a parameter a
variant value and surrounds it with the appropriate delimiters. Its
source code is:
Function acbFixUp(ByVal varValue As Variant) As Variant

 ' Add the appropriate delimiters, depending on the data type.
 ' Put quotes around text, #s around dates, and nothing
 ' around numeric values.
 ' If you're using equality in your expression, you should
 ' use Basic's BuildCriteria function instead of calling
 ' this function.

 Const QUOTE = """"

 Select Case VarType(varValue)
 Case vbInteger, vbSingle, vbDouble, vbLong, vbCurrency
 acbFixUp = CStr(varValue)
 Case vbString
 acbFixUp = QUOTE & varValue & QUOTE
 Case vbDate
 acbFixUp = "#" & varValue & "#"
 Case Else
 acbFixUp = Null
 End Select
End Function
Once you've included this function in your own
application, you can call it, rather than formatting the data
yourself. The sample code in frmQuoteTest uses this function. For
example, here's how to build the expression from the
previous example:
"[LastName] = " & FixUp(strLastName)

 abcFixUp
 will do the work of figuring out the
data type and surrounding the data with the necessary delimiters.
Tip
Access also provides a useful function,
BuildCriteria, that will accept a field name, a
data type, and a field value and will create an expression of this
sort:
FieldName = "FieldValue"
with the appropriate delimiters, depending on the data type.
We've used this in our example in the case where you
uncheck the Use Like checkbox. It won't help if you
want an expression that uses wildcards, but if
you're looking for an exact match, it does most of
the work of inserting the correct delimiters for you. To study the
example, look at the BuildWhere function in
frmQuoteTest's module.

7.2. Create a Global Procedure Stack

Problem

 When you're writing an
application, you often need to know the name of the current procedure
from within your code. For example, if an error occurs,
you'd like to be able to have a generic function
handle the error and display the name of the procedure in which the
error occurred (and all the procedures that have been called on the
way to get there). VBA doesn't include a way to
retrieve this information. How can you accomplish this?

Solution

By maintaining a list of active procedures, adding the current name
to the list on the way into the procedure and removing it on the way
out, you can always keep track of the current procedure and the
procedure calls that got you there. There are many other uses for
this functionality (see the next solution, for example), but one
simple use is to retrieve the name of the current procedure in a
global error-handling procedure.

 The
kind of data structure you'll need for maintaining
your list is called a stack. As you enter a new
procedure, you "push" its name onto
the top of the stack. When you leave the procedure, you
"pop" the name off the stack. Figure 7-2 shows a graphical representation of a
procedure stack in action. The arrows indicate the direction in which
the stack grows and shrinks as you add and remove items.
[image: The call stack and the sample routines to fill it]

Figure 7-2. The call stack and the sample routines to fill it

 To see the procedure stack in action,
load 07-02.MDB. Open the module basTestStack in
design mode. Open the Immediate window (choose View
‡ Immediate Window). In the Immediate window, type:
? A()
to execute the function named A. Figure 7-2 shows A
and the procedures it calls. At each step, the current procedure
pushes its name onto the procedure stack and then calls some other
procedure. Once the calling procedure regains control, it pops its
name off of the stack. In addition, each procedure prints the name of
the current procedure (using the acbCurrentProc
function, discussed later in this solution) to the Immediate window.
Once all execution has finished, you should see in the Immediate
window output like that shown in Figure 7-3.
[image: The output from running the sample procedure]

Figure 7-3. The output from running the sample procedure

Follow these steps to incorporate this functionality into your own
applications:
	Import the module basStack into your application. This includes the
procedures that initialize and maintain the procedure stack.

	

 Insert a call to the
acbInitStack subroutine into code
that's executed when your application starts up.
Consider adding this procedure call to the code in your main
form's Load event procedure. You'll
want to call acbInitStack any time you restart
your program during development, so you probably
don't want to call it from the Autoexec macro, which
is executed only when you first load the database. To call
acbInitStack, either place its name alone on a
line of code, like this:
acbInitStack
or use the Call construct, as follows:
Call acbInitStack

	For each procedure in your application, place a call to
acbPushStack as the first statement. This
procedure will place the value it's passed on the
top of the stack. As the single argument for each call, pass the name
of the current procedure. Our example places a pair of parentheses
after function names and nothing after subroutine names, as a matter
of style. As the last line in each procedure add a call to
acbPopStack, which will remove the current name
from the top of the stack.

	You can retrieve the name of the currently executing procedure at any
time by calling the acbCurrentProc function.
This function looks at the top of the stack and returns the string it
finds there. You can use this as part of an error handler or, as in
the next solution, to help track procedure performance.

Discussion

The module you imported from 07-02.MDB,
basStack, includes code for maintaining the procedure stack and a
module-local variable that is the stack itself. There are just six
entry points (nonprivate procedures) in the module. Table 7-1 lists those procedures. Since all the code for
the stack is encapsulated in that one module, you never really have
to know how it all works. However, it's quite
simple.
Table 7-1. The six entry points into basStack
	
 Procedure name

 	
 Purpose

 	
 Parameters

	
 acbInitStack

 	
 Initialize the stack.

 	

	
 acbPushStack

 	
 Add an item to the stack.

 	
 A string to push

	
 acbPopStack

 	
 Remove an item from the stack.

 	

	
 acbCurrentProc

 	
 Retrieve the name of the current procedure.

 	

	
 acbGetStack

 	
 Retrieve a specific item from the stack.

 	
 The item number to retrieve

	
 acbGetStackItems

 	
 Retrieve the number of items on the stack.

 	

basStack includes two module-level variables:
mastrStack, the array of strings that is
the stack itself; and mintStackTop, an
integer that holds the array slot into which the next stack item will
be placed. When you begin your work with the stack,
mintStackTop must be 0, so the first item
will go in the slot numbered 0. The acbInitStack
procedure does nothing other than initialize
mintStackTop:
Public Sub acbInitStack()
 ' Resets the stack top to 0.
 mintStackTop = 0
End Sub
You can add an item to the stack at any time by calling
acbPushStack. Pass to this subroutine the item
you want pushed. To push the item, the code places the item in the
array at the location stored in
mintStackTop and then increments the value
of mintStackTop. Its code is:
Public Sub acbPushStack(strToPush As String)

 ' Push a string onto the call stack.
 ' If the stack is full, display an error.
 ' Otherwise, add the new item to the call stack.

 ' Handle the error case first.
 If mintStackTop > acbcMaxStack Then
 MsgBox acbcMsgStackOverflow
 Else
 ' Store away the string.
 mastrStack(mintStackTop) = strToPush

 ' Set mintStackTop to point to the NEXT
 ' item to be filled.
 mintStackTop = mintStackTop + 1
 End If
End Sub
The only problem that might occur is that the stack might be full.
The constant acbcMaxStack is originally set to 20,
which should be enough levels. (Remember that
mintStackTop goes up one only when a
procedure calls another procedure. If you have 20 levels of procedure
calling, you might consider rethinking your application, instead of
worrying about procedure stacks!) If the stack is full,
acbPushStack will pop up an alert and will not
add the item to the stack.
When leaving a procedure, you'll want to remove an
item from the stack. To do so, call the
acbPopStack procedure:
Public Sub acbPopStack()

 ' Pop a string from the call stack.
 ' If the stack is empty, display an error.
 ' Otherwise, set the current item to be the
 ' next one to be filled in. If you're logging,
 ' send the information out to the log file.

 ' Handle the error case first.
 If mintStackTop = 0 Then
 MsgBox acbcMsgStackUnderflow
 Else
 ' Because you're removing an item, not adding one,
 ' set the stack top back to the previous row. Next time
 ' you add an item, it'll go right here.
 mintStackTop = mintStackTop - 1
 End If
End Sub
Just as in acbPushStack, this code first checks
to make sure that the stack integrity hasn't been
violated; you can't remove an item from the stack if
there's nothing to remove! If you try,
acbPopStack will pop up an alert and exit. If
the stack is intact, the procedure will decrement the value of
mintStackTop. Decrementing that value sets
up the next call to acbPushStack so that it will
place the new value where the old one used to be.
To retrieve the value at the top of the stack without pushing or
popping anything, call the acbCurrentProc
function:
Public Function acbCurrentProc() As String
 ' Since mintStackTop always points to the next item to
 ' be filled in, retrieve the item from mintStackTop - 1.
 If mintStackTop > 0 Then
 acbCurrentProc = mastrStack(mintStackTop - 1)
 Else
 acbCurrentProc = ""
 End If
End Function
This function retrieves the value most recently placed on the stack
(at the location one less than
mintStackTop, because
mintStackTop always points to the next
location to be filled). You can't look at
mastrStack yourself, because
it's local to basStack—and
that's the way it ought to be.
Since the details of how the stack works are kept private, you can
replace basStack, using a different architecture for the stack data
structure, and the rest of your code won't have to
change at all.
To retrieve more information about what's in the
stack, you can call acbGetStackItems, to find
out how many items there are in the stack, and
acbGetStack, which retrieves a specific item
from the stack. For example, write code like this to dump out the
entire stack (see subroutine D, which does just
this, in the basTestStack module):
Debug.Print "Stack items currently:"
For intI = 0 To acbGetStackItems() - 1
 Debug.Print , acbGetStack(intI)
Next intI
The acbGetStackItems function is simple: it
returns the value of mintStackTop, because
that value always contains the number of items in the stack:
Public Function acbGetStackItems() As Integer
 ' Retrieve the number of items in the stack.
 acbGetStackItems = mintStackTop
End Function
The acbGetStack function is a little more
complex. It accepts an item number (requesting item 0 returns the
item at the top of the stack) and calculates the position of the item
to retrieve. Its source code is:
Public Function acbGetStack(mintItem As Integer) As String
 ' Retrieve the item that's mintItems from the top of the
 ' stack. That is,
 ' ? acbGetStack(0)
 ' would return the same value as acbCurrentProc.
 ' ? acbGetStack(3) would return the third value from the top.
 If mintStackTop >= mintItem Then
 acbGetStack = mastrStack(mintStackTop - mintItem - 1)
 Else
 acbGetStack = ""
 End If
End Function

 For the procedure stack to
work, you have to place calls to acbPushStack
and acbPopStack on entry and exit from every
procedure call. Good coding practice supports the concept of only one
exit point from each procedure, but even the best programmer
sometimes breaks this rule. To use the call stack, however, you must
catch every exit point with a call to
acbPopStack. Keep this in mind as you retrofit
old code to use this mechanism and when you devise new code to use
it. You can always code for a single exit point, and you will find
code maintenance much easier if you do.

7.3. Create an Execution Time Profiler

Problem

 You'd like
to optimize your VBA code, but it's almost
impossible to tell how long Access is spending inside any one routine
and it's difficult to track which procedures are
called by your code most often. You'd like some way
to track which routines are called, in what order, and how much time
each takes to run. Can you do this?

Solution

As outlined in the Solution in Recipe 7.2,
you can create a code profiler using a stack data structure to keep
track of the execution order and timing of the procedures in your
application. Though the code involved is a bit more advanced than
that in the Solution in Recipe 7.2,
it's not terribly difficult to create the profiler.
Using it is simple, as all the work is wrapped up in a single module.

Steps

Open the database 07-03.MDB and load the module
basTestProfiler in design mode. In the Immediate window, type:
? A()
to run the test procedures. Figure 7-4 shows the
profile stack and the code in A. As you can see,
A calls B, which calls
C, which calls D, which
waits 100 ms and then returns to C.
C waits 100 ms and then calls
D again. Once D returns,
C returns to B, which waits
100 ms and then calls C again. This pattern
repeats until the code gets back to A, where it
finally quits. The timings in the profile stack in Figure 7-4 are actual timings from one run of the sample.
[image: The profile stack and the sample routines used to fill it]

Figure 7-4. The profile stack and the sample routines used to fill it

As the code is set up now, the profiler writes to a text file named
C:\LOGFILE.TXT. You can read this file in any
text editor. For a sample run of function A, the file contained this
text:

Procedure Profiling
8/13/2003 3:29:11 PM

+ Entering procedure: A()
 + Entering procedure: B
 + Entering procedure: C
 + Entering procedure: D
 - Exiting procedure : D 101 msecs.
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 - Exiting procedure : C 301 msecs.
 + Entering procedure: C
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 - Exiting procedure : C 300 msecs.
 - Exiting procedure : B 701 msecs.
 + Entering procedure: B
 + Entering procedure: C
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 - Exiting procedure : C 300 msecs.
 + Entering procedure: C
 + Entering procedure: D
 - Exiting procedure : D 100 msecs.
 + Entering procedure: D
 - Exiting procedure : D 101 msecs.
 - Exiting procedure : C 301 msecs.
 - Exiting procedure : B 701 msecs.
- Exiting procedure : A() 1513 msecs.
To incorporate this sort of profiling into your own applications,
follow these steps:
	Import the module basProfiler into your application. This module
includes all the procedures needed to initialize and use the profile
stack.

	

 Insert
a call to acbProInitCallStack into code
that's executed when your application starts up. In
the Solution in Recipe 7.2, you might have
gotten by without calling the initialization routine. In this
situation, however, you must call
acbProInitCallStack each time you want to
profile your code, or the profile stack will not work correctly. To
call acbProInitCallStack, you must pass it three
parameters, all of which are logical values (True
or False). Table 7-2 lists the
question answered by each of the parameters.
The procedure initializes some global variables and, if
you're writing to a log file, writes a log header to
the file. A typical call to acbProInitCallStack
might look like this:
acbProInitCallStack False, True, True

Table 7-2. Parameters for acbProInitCallStack
	
 Parameter name

 	
 Usage

	
 blnDisplay

 	
 Display message box if an error occurs?

	
 blnLog

 	
 Write to a log file or just track items in an array in memory?

	
 blnTimeStamp

 	
 If writing to the log file, also write out time values?

	For each procedure in your application, place a call to
acbProPushStack as the first statement. This
procedure places the value it's passed on the top of
the stack, along with the current time. As the single argument for
each call, pass the name of the current procedure. Our example places
a pair of parentheses after function names and nothing after
subroutine names, as a matter of style. As the last line in each
procedure, add a call to acbProPopStack, which
will remove the current name from the top of the stack and record the
current time.

	You can retrieve the name of the currently executing procedure at any
time by calling the acbProCurrentProc function.
This function looks at the top of the stack and returns the string it
finds there.

	
 To review the
outcome of your logging, view the file
LOGFILE.TXT (in your Access directory) in any
text editor. If you followed the previous steps carefully, you should
see matching entry and exit points for every routine. Nested levels
are indented in the printout, and entry and exit points are marked
differently (entry points with a
"+" and exit points with a
"-").

Discussion

The module you imported from 07-03.MDB,
basProfiler, includes all the code that maintains the profiler. There
are five public entry points to the module, as shown in Table 7-3.
Table 7-3. The five entry points into basProfiler
	
 Procedure name

 	
 Purpose

 	
 Parameters

	
 acbProInitStack

 	
 Initialize the profile stack.

 	

	
 acbProPushStack

 	
 Add an item to the profile stack.

 	
 A string to push

	
 acbProPopStack

 	
 Remove an item from the profile stack.

 	

	
 acbProCurrentProc

 	
 Retrieve the name of the current procedure.

 	

	
 acbProLogString

 	
 Add any string to the log file.

 	
 A string to log

In general, the profiler works almost exactly like the simpler
procedure stack shown in the Solution in Recipe 7.2. As a matter of fact, the code for this
solution was written first and was then stripped down for use in the
simpler example. This example includes the code necessary to write to
the file on disk as well as to gather timing information. The next
few paragraphs outline the major differences and how they work.

 Whereas the Solution in Recipe 7.2 used a simple array of strings to hold the
stack information, the profiler also needs to store starting and
ending times for each routine. To create the stack, it uses an array
of a user-defined type, acbStack, which is defined
as follows:
Type acbStack
 strItem As String
 lngStart As Long
 lngEnd As Long
End Type
Dim maStack(0 To acbcMaxStack) As acbStack

 Access provides the
Timer function, which returns the number of
seconds since midnight, but this resolution won't
give you enough information for measuring the duration of procedures
in VBA. Another option is Windows's t function,
which returns the number of milliseconds since you started Windows.
TimeGetTime resets itself to every 48 days,
whereas Timer resets once every day—if you
need to time a lengthy operation, timeGetTime
provides a mechanism for measuring time spans longer than a single
day (and makes it possible to measure time spans that cross
midnight). Of course, if you're timing an operation
that takes more than a day, you're probably not
going to care about millisecond accuracy, but that's
what you get! The code in basProfiler calls
timeGetTime to retrieve the current
"time" whenever you push or pop a
value and stores it in the stack array. You can call
timeGetTime in any application, once you include
this declaration in a global module:
Public Declare Function timeGetTime _
 Lib "Kernel32" () As Long

 The code in basTestProfiler also uses
timeGetTime in the Wait
subroutine. This procedure does nothing but wait for the requested
number of milliseconds, calling DoEvents inside
the loop and giving Windows time to do its work:
Public Sub Wait (intWait As Integer)
 Dim lngStart As Long
 lngStart = timeGetTime()
 Do While timeGetTime() < lngStart + intWait
 DoEvents
 Loop
End Sub
The code in basProfiler opens and closes the output file each time it
needs to write a piece of information. This slows down your
application, but it ensures that if your machine crashes for some
reason, your log file will always be current. Although
you'll never directly call this routine, if
you've never used Access to write directly to a text
file you may find it interesting to see how it does its work.
The acbProWriteToLog procedure first checks to
see if an error has ever occurred in the logging mechanism (that is,
if mfLogErrorOccurred has been set to True). If
so, it doesn't try to write anything to the file,
because something may be wrong with the disk. If not, it gets a free
file handle, opens the log file for appending, writes the item to the
file, and then closes it. The following is the source code for the
acbProWriteToLog routine:
Private Sub acbProWriteToLog (strItem As String)
 Dim intFile As Integer

 On Error GoTo HandleErr

 ' If an error has EVER occurred in this session,
 ' just get out of here.
 If mfLogErrorOccurred Then Exit Sub

 intFile = FreeFile
 Open acbcLogFile For Append As intFile
 Print #intFile, strItem
 Close #intFile

ExitHere:
 Exit Sub

HandleErr:
 mfLogErrorOccurred = True
 MsgBox Err & ": " & Err.Description, , "Writing to Log"
 Resume ExitHere
End Sub
As in the Solution in Recipe 7.2,
you'll find that for the procedure stack profiler
mechanism to be of any value, you must be conscientious about the
placement of your calls to acbProPushStack and
acbProPopStack. If you have multiple exit points
from routines, this is a good time to try to consolidate them. If you
can't, you'll need to make sure
that you've placed a call to
acbProPopStack before every exit point in each
procedure.
If you attempt to decipher the log file, you'll
notice that the elapsed time for each procedure must also include any
procedures it happens to call, as in the example of
A calling B, which calls
C, which calls D. The
elapsed time for function A was 1,702 ms.
That's the time that elapsed between the calls to
acbProPushStack and
acbProPopStack in function
A, including the time it took to run all the
calls to B, C, and
D. This isn't necessarily a
problem, nor is it wrong, but you should be aware that
there's no way to "stop the
clock" while in subordinate procedures.
The code for the profiler includes another public entry point,
acbProLogString. The profiler
doesn't actually call this procedure, but your own
code can. Pass it a single string, and the profile will send that
string to the log file for you. For example, the following code will
append "This is a test" to the log
file:
acbProLogString "This is a test"

7.4. Multitask Your VBA Code

Problem

 If your VBA
code includes a loop that runs for more than just a second or two,
Access seems to come to a halt. You can't move the
windows on the screen, and mouse-clicks inside Access are disregarded
until your code has finished running. Why is this happening? Is there
something you can do to relinquish some control?

Solution

You may have noticed that it's possible to tie up
Access with a simple bit of VBA code. Though 32-bit Windows is
multithreaded, this helps only if the applications running under it
are also multithreaded. It appears that the executing VBA code ties
up Access's processing, so the multithreaded nature
of Windows doesn't help. If your code contains loops
that run for a while, you should make a conscious effort to give
Windows time to catch up and do its own work. VBA includes the
DoEvents statement, which effectively yields time
to Windows so that Access can perform whatever other tasks it must.
Effective use of DoEvents can make the difference
between an Access application that hogs Access's
ability to multitask and one that allows Access to run smoothly while
your VBA code is executing.
To see the problem in action, load and run the form frmDoEvents (in
07-04.MDB). Figure 7-5 shows
the form in use. The form includes three command buttons, each of
which causes the label with the caption "Watch Me
Grow!" to change its width from 500 to 3500 twips
(in Figure 7-5, you can see only a portion of the
label), in a loop like this:
 Me.lblGrow1.Width = 500
 For intI = 0 To 3000
 Me.lblGrow1.Width = Me.lblGrow1.Width + 1
 ' Without this call to Repaint, you'll
 ' never see any changes on the screen.
 Me.Repaint
 Next intI
[image: The sample DoEvents Test form, frmDoEvents, in action]

Figure 7-5. The sample DoEvents Test form, frmDoEvents, in action

To test the effects of DoEvents, try these steps:
	Press the "Run Code Without
DoEvents" button. The code attached to this button
will change the width of the label inside a loop without yielding
time to Access. While the code is running, try to click on another
button on the form or to move or size the active window. You will
find that any of these tasks is impossible while the label is
expanding. Once the label has finished growing, Access will display
any actions you attempted to make during the process.

	Try the same loop with DoEvents inserted. Click
the second button, labeled "Run Code With DoEvents
1". This time, as the code executes, you will be
able to move or size the active window. In addition, you can click on
any of the form's buttons while the code is running.
The next step tests this capability.

	

 While the label is growing, click on
the "Run Code With DoEvents 1"
button many times in quick succession. Every time you click the
button, Access starts up another instance of the Click event
procedure, and each instance continues to make the label grow. This
is called recursion, in which multiple calls are made into the same
routine, each starting before the last instance has completed. Each
time you call the Click event, you use a bit of
Access's stack space (a memory area set aside for
each procedure's entry information and local
variables). It's possible that, with many
invocations, you will use up that memory. Using versions of Access
later than Access 95, we've never made this happen.
Using Access 2, it was easy to do. The next step offers a solution to
this recursion problem.

	Click the third button, labeled "Run Code with
DoEvents 2". While the label is expanding, try
clicking on the button again. You'll see that this
time your clicks won't have any effect. The code
attached to this button checks to see if it's
already running and, if so, exits the code. This method solves the
problem of recursive calls to DoEvents.

Discussion

The code attached to the first button does its work without any
concern for Windows or other running applications. When you press it,
it executes this code:
Private Sub cmdNoDoevents_Click()
 Dim intI As Integer

 Me.lblGrow1.Width = 500
 For intI = 0 To 3000
 Me.lblGrow1.Width = Me.lblGrow1.Width + 1
 ' Without this call to Repaint, you'll
 ' never see any changes on the screen.
 Me.Repaint
 Next intI
End Sub

 Because the code never gives Windows
time to "catch up," you must
include the call to Me.Repaint to make sure the form repaints itself
after each change. To see how this works, comment out that line and
press the first button again. You'll see that the
screen won't repaint until the entire operation is
done.

 The code attached to the second button
does the same work, but it calls DoEvents within
the loop. With that statement added, you no longer need the call to
Me.Repaint, because DoEvents allows Windows to
take care of the pending repaints. It also allows you to use the
mouse and other applications while this loop is running. The code
attached to the second button looks like this:
Private Sub TestDoEvents()
 Dim intI As Integer

 Me.lblGrow1.Width = 500
 For intI = 0 To 3000
 Me.lblGrow1.Width = Me.lblGrow1.Width + 1
 DoEvents
 Next intI
End Sub

Private Sub cmdDoEvents1_Click()
 TestDoEvents
End Sub

 The problem with this code, as
mentioned in Step 2, is that nothing keeps you from initiating it
again while it's running; if you press the same
button while the code is in the middle of the loop, Access will start
up the same procedure again. Every time Access starts running a VBA
routine, it stores information about the routine and its local
variables in a reserved area of memory, called its
"stack". The size of this area is
fixed and limits the number of procedures that can run concurrently.
If you press that button over and over again in quick succession,
it's possible that you'll overrun
Access's stack space.
It's doubtful that you'll ever be
able to reproduce this problem with this tiny example. Though the
stack space was limited to 40 KB in Access 2, it was increased to a
much larger size in Access 95 and later versions.
You'd have to press that button very fast for a very
long time to fill up that much stack space. However, in more complex
situations, if you were passing a large amount of data to a procedure
in its parameter list, this could still be a problem.
The third button on the form demonstrates the solution to this
problem. It ensures that its code isn't already
running before it starts the loop. If it's already
in progress, the code just exits. The code attached to the third
button looks like this:
Private Sub cmdDoEvents2_Click()
 Static blnInHere As Boolean

 If blnInHere Then Exit Sub
 blnInHere = True
 TestDoEvents
 blnInHere = False
End Sub

 It uses a static variable,
blnInHere, to keep track of whether the
routine is already running. If blnInHere
is currently True, it exits. If not, it sets the
variable to True and then calls cmdDoEvents1_Click
(the previous code fragment). Once cmdDoEvents1_Click returns,
cmdDoEvents2_Click sets blnInHere back to
False, clearing the way for another invocation.

 DoEvents

 is
one of the most misunderstood elements of VBA. No matter what
programmers would like
 DoEvents to do, under versions of Access later
than Access 95 it does nothing more than yield time to Access so it
can process all the messages in its message queue. It has no effect
on the Access database engine itself and can't be
used to slow things down or help timing issues (other than those
involving Windows messages). When used in VBA code,
DoEvents releases control to the operating
environment, which doesn't return control until it
has processed the events in its queue and handled all the keys in the
SendKeys queue. Access will ignore DoEvents in:
	A user-defined procedure that calculates a field in a query, form, or
report

	A user-defined procedure that creates a list to fill a combo or list
box

As you can see from the second button on the sample form, recursively
calling DoEvents can lead to trouble. You should
take steps, as in the example of the third button, to make sure that
this won't occur in your applications.

7.5. Programmatically Add Items to a List or Combo Box

Problem

 Getting
items into a list or combo box from a data source is elementary in
Access. Sometimes, though, you need to put things into a list box
that you don't have stored in a table. In Visual
Basic and other implementations of VBA-hosted environments, and in
Access 2002 and later, this is simple: you just use the AddItem
method. But Access list boxes in versions prior to 2002
don't support this method. How can you add to a list
box items that aren't stored in a table?

Solution

 Access list boxes (and combo boxes) in
versions prior to Access 2002 didn't support the
AddItem method that Visual Basic programmers are used to using. To
make it easy for you to get bound data into list and combo boxes, the
Access developers originally didn't supply a simple
technique for loading unbound data. To get around this limitation,
there are two methods you can use to place data into an Access list
or combo box: you can programmatically build the RowSource string
yourself, or you can call a list-filling callback function. Providing
the RowSource string is easy, but it works in only the simplest of
situations. A callback function, though, will work in any situation.
This solution demonstrates both methods. In addition, this solution
demonstrates using the AddItem method of ListBox and ComboBox
controls, added in Access 2002.
One important question, of course, is why you would ever need either
of the more complex techniques for filling your list or combo box.
You can always pull data from a table, query, or SQL expression
directly into the control, so why bother with all this work? The
answer is simple. Sometimes you don't know ahead of
time what data you're going to need, and the
data's not stored in a table. Or perhaps you need to
load the contents of an array into the control and you
don't need to store the data permanently. Prior to
Access 2002, you had no choice but to either create a list-filling
callback function, or modify the RowSource property of the control
yourself. Starting in Access 2002, you can also use the AddItem
method to solve many list filling requirements.
The following sections walk you through using all three of the
techniques for modifying the contents of a list or combo box while
your application is running. The first example modifies the value of
the RowSource property, given that the RowSourceType property is set
to Value List. The second example covers list-filling callback
functions. The final example shows how to use the AddItem method of
the control.
Filling a list box by calling the AddItem method

	
 Open the
form frmAddItem in 07-05.MDB.

	Change the contents of the list box by choosing either Days or Months
from the option group on the left. Try both settings and change the
number of columns to get a feel for how this method works. Figure 7-6 shows the form set to display month names in
three columns.

[image: The sample form, frmRowSource, displaying months in three columns]

Figure 7-6. The sample form, frmRowSource, displaying months in three columns

Filling a list box by modifying the RowSource property

	
 Open the
form frmRowSource in 07-05.MDB.

	Change the contents of the list box by choosing either Days or Months
from the option group on the left. Try both settings and change the
number of columns, to get a feel for how this method works. Figure 7-6 shows the form set to display month names in
three columns.

Filling a list box by creating a list-filling callback function

	
 Open the form frmListFill in
07-05.MDB.

	Select a weekday from the first list box. The second list box will
show you the date of that day this week, plus the next three
instances of that weekday. Figure 7-7 shows the
form with Wednesday, March 14, 2001, selected.

[image: Using list-filling callback functions to fill the lists on frmListFill]

Figure 7-7. Using list-filling callback functions to fill the lists on frmListFill

	
 To use this method, set the
control's RowSourceType property to the name of a
function (without an equals sign or parentheses). Functions called
this way must meet strict requirements, as discussed in the next
section. Figure 7-8 shows the properties sheet for
the list box on frmListFill, showing the RowSourceType property with
the name of the list-filling function.

[image: The properties sheet entry for the list-filling function]

Figure 7-8. The properties sheet entry for the list-filling function

Discussion

This section explains the two methods for programmatically filling
list and combo boxes. The text refers only to filling list boxes, but
the same techniques apply to combo boxes. You may find it useful to
open up the form module for each form as it's
discussed here.
Calling the AddItem method

Starting with Access 2002, you can add items to a ListBox or ComboBox
control by simply calling the AddItem method of the control. (You can
remove items from the control by calling its RemoveItem method,
specifying the item number or text to remove.) This technique is by
far the simplest and should be your first choice, given the option.
Selecting an option in the Fill Choice group runs the following code:
Private Sub grpChoice_AfterUpdate()
 Dim strList As String
 Dim intI As Integer
 Dim varStart As Variant

 lstAddItem.RowSourceType = "Value List"

 ' Clear out the list.
 lstAddItem.RowSource = vbNullString
 lstAddItem.ColumnCount = 1
 grpColumns = 1

 Select Case Me.grpChoice
 Case 1 ' Days
 ' Get last Sunday's date.
 varStart = Now - WeekDay(Now)
 ' Loop through all the week days.
 For intI = 1 To 7
 lstAddItem.AddItem Format(varStart + intI, "dddd")
 Next intI

 Case 2 ' Months
 For intI = 1 To 12
 lstAddItem.AddItem Format(DateSerial(2004, intI, 1), "mmmm")
 Next intI
 End Select

 Me.txtFillString = lstAddItem.RowSource
End Sub
This code starts by setting the RowSourceType property of the control
to the text, "Value List":
lstAddItem.RowSourceType = "Value List"
This step is crucial: unless you've set the
RowSourceType property correctly, either at design time or in your
code, you won't be able to call the AddItem or
RemoveItem methods.
Next, the code clears and resets the list's
formatting:
lstAddItem.RowSource = vbNullString
lstAddItem.ColumnCount = 1
grpColumns = 1
Then, depending on the choice you've made, the code
adds days of the week or months of the year to the ListBox control:
Select Case Me.grpChoice
 Case 1 ' Days
 ' Get last Sunday's date.
 varStart = Now - WeekDay(Now)
 ' Loop through all the week days.
 For intI = 1 To 7
 lstAddItem.AddItem Format(varStart + intI, "dddd")
 Next intI

 Case 2 ' Months
 For intI = 1 To 12
 lstAddItem.AddItem Format(DateSerial(2004, intI, 1), "mmmm")
 Next intI
End Select
In order to verify that, under the covers, the code is simply
manipulating the RowSource property for you, the example ends by
displaying the RowSource property in a TextBox control on the form:
 Me.txtFillString = lstAddItem.RowSource
Warning
Beware that even though it appears that you're
actually adding items to the control, what you're
really doing is modifying the RowSource property of the control. As
such, you're limited by the same restrictions as if
you were setting the property manually (see the next section).
Specifically, you're limited to the allowed size of
the RowSource property, which was 2048 characters in Access 2002 (the
size may be larger in your version of Access).

Modifying the RowSource property

If you're using Access 2002 or later, you
won't want to use this technique. On the other hand,
for earlier versions of Access, this can be a simple way to create
unbound lists. If you
set a list box's RowSourceType property to Value
List, you can supply a list of items, separated with semicolons, that
will fill the list. By placing this list in the
control's RowSource property, you tell Access to
display the items one by one in each row and column that it needs to
fill. Because you're placing data directly into the
properties sheet, you're limited by the amount of
space available in the properties sheet (this value varies depending
on the version of Access).

 You can modify the RowSource property of
a list box at any time by placing into it a semicolon-delimited list
of values. The ColumnCount property plays a part, in that Access
fills the rows first and then the columns. You can see this for
yourself if you modify the ColumnCount property on the sample form
(frmRowSource).
The sample form creates a list of either the days in a week or the
months in a year, based on the value and option group on the form.
The code that performs the work looks like this:
Select Case Me.grpChoice
 Case 1 ' Days
 ' Get last Sunday's date.
 varStart = Now - WeekDay(Now)
 ' Loop through all the days of the week.
 For intI = 1 To 7
 strList = strList & ";" & Format(varStart + intI, "dddd")
 Next intI

 Case 2 ' Months
 For intI = 1 To 12
 strList = strList & ";" & Format(DateSerial(2004, intI, 1), "mmmm")
 Next intI
End Select

' Get rid of the extra "; " at the beginning.
strList = Mid(strList, 2)
Me.txtFillString = strList
Depending on the choice in grpChoice, you'll end up
with either a string of days like this:
Sunday; Monday; Tuesday; Wednesday; Thursday; Friday; Saturday; Sunday
or a string of months like this:
January; February; March; April; May; June; July; August; September; October; _
 November; December
Once you've built up the string, make sure that the
RowSourceType property is set correctly and then insert the new
RowSource string:
lstChangeRowSource.RowSourceType = "Value List"
lstChangeRowSource.RowSource = strList

 If you intend to use this method, modifying
the RowSource property, make sure you understand its main limitation:
because it writes the string containing all the values for the
control into the control's properties sheet,
it's limited by the number of characters the
properties sheet can hold.
If you're using a version of Access prior to Access
2002, you can use at most 2,048 characters in the RowSource property.
If you need more data than that, you'll need to use
a different method. If you're using Access 2002 or
later you shouldn't have a problem, because the size
has been greatly expanded. On the other hand, in those versions,
you're better off using the AddItem method instead.

Creating a list-filling callback function

 This
technique, which involves creating a special function that provides
the information Access needs to fill your list box, is not well
documented in the Access help. Filling a list using a callback
function provides a great deal of flexibility, and
it's not difficult. This technique provides the
greatest flexibility, and isn't limited by the size
of the RowSource property.
The concept is quite simple: you provide Access with a function that,
when requested, returns information about the control
you're attempting to fill. Access
"asks you questions" about the
number of rows, the number of columns, the width of the columns, the
column formatting, and the actual data itself. Your function must
react to these requests and provide the information so that Access
can fill the control with data. This is the only situation in Access
where you provide a function that you never need to call. Access
calls your function as it needs information in order to fill the
control. The sample form frmFillList uses two of these functions to
fill its two list boxes.

 To communicate with Access,
your function must accept five specific parameters. Table 7-4 lists those parameters and explains the
purpose of each. (The parameter names are arbitrary and are provided
here as examples only. The order of the parameters, however, is not
arbitrary; they must appear in the order listed in Table 7-4.)
Table 7-4. The required parameters for all list-filling functions
	
 Argument

 	
 Data type

 	
 Description

	
 ctl

 	
 Control

 	
 A reference to the control being filled.

	
 varId

 	
 Variant

 	
 A unique value that identifies the control that's
being filled (you assign this value in your code). Although you could
use this value to let you use the same function for multiple
controls, this is most often not worth the extraordinary trouble it
causes.

	
 lngRow

 	
 Long

 	
 The row currently being filled (zero-based).

	
 lngCol

 	
 Long

 	
 The column currently being filled (zero-based).

	
 intCode

 	
 Integer

 	
 A code that indicates the kind of information that Access is
requesting.

 Access uses the final
parameter, intCode, to let you know what
information it's currently requesting. Access places
a particular value in that variable, and it's up to
your code to react to that request and supply the necessary
information as the return value of your function. Table 7-5 lists the possible values of
intCode, the meaning of each, and the
value your function must return to Access in response to each.
Table 7-5. The values of intCode, their meanings, and their return values
	
 Constant

 	
 Meaning

 	
 Return value

	
 acLBInitialize

 	
 Initialize the data.

 	
 Nonzero if the function will be able to fill the list; Null or 0
otherwise

	
 acLBOpen

 	
 Open the control.

 	
 Nonzero unique ID if the function will be able to fill the list; Null
or 0 otherwise

	
 acLBGetRowCount

 	
 Get the number of rows.

 	
 Number of rows in the list; -1 if unknown (see the text for
information)

	
 acLBGetColumnCount

 	
 Get the number of columns.

 	
 Number of columns in the list (cannot be 0)

	
 acLBGetColumnWidth

 	
 Get the column widths.

 	
 Width (in twips) of the column specified in the
lngCol argument (zero-based); specify -1
to use the default width

	
 acLBGetValue

 	
 Get a value to display.

 	
 Value to be displayed in the row and column specified by the
lngRow and
lngCol arguments

	
 acLBGetFormat

 	
 Get the column formats.

 	
 Format string to be used by the column specified in
lngCol

	
 acLBClose

 	
 Not used.

 	

	
 acLBEnd

 	
 End (when the form is closed).

 	
 Nothing

 You'll find that almost
all of your list-filling functions will be structured the same way.
Therefore, you may find it useful to always start with the
ListFillSkeleton function, which is set up to
receive all the correct parameters and includes a
Select
 Case statement to handle
each of the useful values of intCode. All
you need to do is change its name and make it return some real
values. The ListFillSkeleton function is as
follows:
Function ListFillSkeleton (ctl As Control, _
 varId As Variant, lngRow As Long, lngCol As Long, _
 intCode As Integer) As Variant

 Dim varRetval As Variant

 Select Case intCode
 Case acLBInitialize
 ' Could you initialize?
 varRetval = True

 Case acLBOpen
 ' What's the unique identifier?
 varRetval = Timer

 Case acLBGetRowCount
 ' How many rows are there to be?

 Case acLBGetColumnCount
 ' How many columns are there to be?

 Case acLBGetValue
 ' What's the value in each row/column to be?

 Case acLBGetColumnWidth
 ' How many twips wide should each column be?
 ' (optional)

 Case acLBGetFormat
 ' What's the format for each column to be?
 ' (optional)

 Case acLBEnd
 ' Just clean up, if necessary (optional, unless you use
 ' an array whose memory you want to release).

 End Select
 ListFillSkeleton = varRetval
End Function
For example, the following function from frmListFill,
ListFill1, fills in the first list box on the
form. This function fills in a two-column list box, with the second
column hidden (its width is set to 0 twips). Each time Access calls
the function with acLBGetValue in
intCode, the function calculates a new
value for the date and returns it as the return value. The source
code for ListFill1 is:
Private Function ListFill1(ctl As Control, varId As Variant, _
 lngRow As Long, lngCol As Long, intCode As Integer)

 Select Case intCode
 Case acLBInitialize
 ' Could you initialize?
 ListFill1 = True

 Case acLBOpen
 ' What's the unique identifier?
 ListFill1 = Timer

 Case acLBGetRowCount
 ' How many rows are there to be?
 ListFill1 = 7

 Case acLBGetColumnCount
 ' How many columns are there to be?

 ' The first column will hold the day of the week.
 ' The second, hidden column will hold the actual date.
 ListFill1 = 2

 Case acLBGetColumnWidth
 ' How many twips wide should each column be?

 ' Set the width of the second column to 0.
 ' Remember, they're zero-based.
 If lngCol = 1 Then ListFill1 = 0

 Case acLBGetFormat
 ' What's the format for each column to be?

 ' Set the format for the first column so
 ' that it displays the day of the week.
 If lngCol = 0 Then
 ListFill1 = "dddd"
 Else
 ListFill1 = "mm/dd/yy"
 End If

 Case acLBGetValue
 ' What's the value for each row in each column to be?

 ' No matter which column you're in, return
 ' the date lngRow days from now.
 ListFill1 = Now + lngRow

 Case acLBEnd
 ' Just clean up, if necessary.

 End Select
End Function
The next example, which fills the second list box on the sample form,
fills an array of values in the initialization step
(acLBInitialize) and returns items from the array
when requested. This function, ListFill2,
displays the next four instances of a particular day of the week.
That is, if you choose Monday in the first list box, this function
will fill the second list box with the date of the Monday in the
current week, along with the dates of the next three Mondays. The
source code for ListFill2 is:
Private Function ListFill2(_
 ctl As Control, varId As Variant, lngRow As Long, _
 lngCol As Long, intCode As Integer)

Const MAXDATES = 4

 Static varStartDate As Variant
 Static adtmDates(0 To MAXDATES) As Date
 Dim intI As Integer
 Dim varRetval As Variant

 Select Case intCode
 Case acLBInitialize
 ' Could you initialize?

 ' Do the initialization. This is code
 ' you only want to execute once.
 varStartDate = Me.lstTest1
 If Not IsNull(varStartDate) Then
 For intI = 0 To MAXDATES - 1
 adtmDates(intI) = DateAdd("d", 7 * intI, varStartDate)
 Next intI
 varRetval = True
 Else
 varRetval = False
 End If

 Case acLBOpen
 ' What's the unique identifier?
 varRetval = Timer

 Case acLBGetRowCount
 ' How many rows are there to be?
 varRetval = MAXDATES

 Case acLBGetFormat
 ' What's the format for each column to be?
 varRetval = "mm/dd/yy"

 Case acLBGetValue
 ' What's the value for each row in each column to be?
 varRetval = adtmDates(lngRow)

 Case acLBEnd
 ' Just clean up, if necessary.
 Erase adtmDates
 End Select
 ListFill2 = varRetval
End Function

 Note that the array this function fills,
adtmDates, is declared as a static variable. Declaring it this way
makes it persistent: its value remains available between calls to the
function. Because the code fills the array in the
acLBInitialize case but doesn't
use it until the multiple calls in the
acLBGetValue case, adtmDates must
"hang around" between calls to the
function. If you fill an array with data for your control,
it's imperative that you declare the array as
static.

 You should also consider the
fact that Access calls the acLBInitialize case
only once, but it calls the acLBGetValue case at
least once for every data item to be displayed. In this tiny example,
that barely makes a difference. If you're doing
considerable work to calculate values for display, however, you
should put all the time-consuming work in the
acLBInitialize case and have the
acLBGetValue case do as little as possible. This
optimization can make a big difference if you have a large number of
values to calculate and display.
There are three more things you should note about this second list
box example:
	

 In the acLBEnd case,
the function clears out the memory used by the array. In this small
example, this hardly matters. If you are filling a large array with
data, you'd want to make sure that the data is
released at this point. For dynamic arrays (where you specify the
size at runtime), Erase releases all the memory.
For fixed-size arrays, Erase empties out all the
elements.

	This example didn't include code for all the
possible cases of intCode. If you
don't need a specific case, don't
bother coding for it. There was no need to set the column widths
here, so there's no code handling
acLBGetColumnWidth.

	
 At the time of this writing,
there's a small error in the way Access handles
these callback functions. Although it correctly calls the
acLBInitialize case only once when you open a form
that requires a control to be filled with the function, if you later
change the RowSourceType in code, Access will call the
acLBInitialize case twice. This
doesn't come up often, but you should be aware that
there are circumstances under which Access will erroneously call this
section of your code more times than you intended. To solve this
problem, you can use a static or global variable as a flag to keep
track of the fact that the initialization has been done and opt not
to execute the code after the first pass through.

 In the list-filling callback
function method, when Access requests the number of rows in the
control (i.e., when it passes acLBGetRowCount in
intCode), you'll usually
be able to return an accurate value. Sometimes, however, you
won't know the number of rows or
won't be able to get the information easily. For
example, if you're filling the list box with the
results of a query that returns a large number of rows, you
won't want to perform the MoveLast method
you'd need to find out how many rows the query
returned—MoveLast requires Access to walk through all the rows
returned from the query and would make the load time for the list box
too long. Instead, respond to acLBGetRowCount with
a -1. This tells Access that you'll tell it later
how many rows there are. Then, in response to the
acLBGetValue case, return data until
you've reached the end. Once you return
Null in response to the
acLBGetValue case, Access understands that
there's no more data.
This method has its pitfalls, too. Although it allows you to load the
list box with data almost immediately, the vertical scrollbar
won't be able to operate correctly until
you've scrolled down to the end. If you can tolerate
this side effect, returning -1 in response to
acLBGetRowCount will significantly speed the
loading of massive amounts of data into list and combo box controls.

 To provide values for the
acLBGetColumnWidth case, you can specify a
different width for each column based on the
lngCol parameter. To convert from inches
to twips, multiply the value by 1,440. For example, to specify a
1/2-inch column, return 0.5 × 1,440.
You might wonder when you would use any of these techniques. In
Access 2002 or later, your best bet is to use the AddItem method
whenever possible. Under the covers, this method executes the same
sort of code as if you were to modify the RowSource property value
yourself. (You don't really need to ever modify the
RowSource property manually, in Access 2002 or later—calling
the AddItem and RemoveItem methods does the same sort of thing for
you.) Remember, however, that the RowSource property value is limited
in size. For large lists of values, perhaps with many columns, you
may run out of space before you run out of data. In that case,
you'll be required to use the list-filling callback
function technique. If you're using Access 2000 or
an earlier version, you'll need to use the
list-filling callback technique for complex lists, or to create the
RowSource property value in code yourself for simpler lists.

7.6. Pass a Variable Number of Parameters to a Procedure

Problem

 You need a procedure that will
work on a list of items, and you don't know ahead of
time how many there will be. You know that VBA will allow you to use
optional parameters, but this requires you to know exactly how many
items you might ever need to pass, and in your case,
it's impossible to predict that value. How can you
accomplish this?

Solution

 You have two choices in solving this
problem: you can pass an array as a parameter, or you can pass a
comma-delimited list, which Access will convert into an array for
you. An array (an ordered list of items) must contain a single data
type. By using the variant data type, though, you can pass a list of
varying types into your procedure. This solution demonstrates both
these techniques.
From 07-06.MDB, load the module basArrays
in design mode and do the following:
	Open the Immediate window (press Ctrl+G or choose the View →
Immediate Window menu item). In these steps, you will run code from
the Immediate window.

	

 If you need a procedure that will take
a list of words and convert each to uppercase, you can use the
UCaseArray procedure. To test it, type the
following in the Immediate window:
TestUCase 5
You can replace the 5 in the command line with any value between 1
and 26. The procedure will create as many strings as you request,
place them into an array, and then call
UCaseArray. This procedure will convert all the
strings in the array to uppercase. The test procedure will display
the original version, followed by the altered version of the array.
As you can see, no matter how many items you specify for the
UCaseArray procedure to work on,
it'll convert them all to uppercase. Figure 7-9 shows this procedure in use.

[image: TestUCase with five strings converted]

Figure 7-9. TestUCase with five strings converted

	Say you need a procedure that can accept any number of numeric
arguments and perform some operation on them. The sample procedure
SumThemUp accepts an array of integers,
calculates their sum, and returns the total. To try it, type:
TestSum 15
in the Immediate window (you can use any number between 1 and 20).
The sample routine, TestSum, will generate an
array full of random integers between 1 and 9 and will send the array
to SumThemUp for processing. Figure 7-10 shows TestSum working
with 15 values.

[image: TestSum summing 15 values]

Figure 7-10. TestSum summing 15 values

	
 You may
need to write a function that can accept a list of values instead of
an array. The ParamArray declaration modifier
allows you to do this. Try the MinValue function
in basArrays: pass to it a comma-delimited list of values, and the
function will return the minimum numeric value from the list you
entered. For example:
varMin = MinValue(0, -10, 15)
will return -10, which is the minimum of the three values you passed
it.

 Both UCaseArray and
SumThemUp accept a variant as a parameter. This
variant variable can hold either a single value or an array of
values. From the calling end, you can pass either a variant or an
actual array of values. To send an array as a parameter, you must add
the trailing () characters, indicating to Access
that the variable represents an array. Therefore, to pass the array
named aintValues to SumThemUp, call the function
like this, making sure to include the () in the
array name:
varSum = SumThemUp(aintValues())
To receive a parameter that is an array, the procedure declaration
can include the parentheses:
Public Function SumThemUp (aintValues() As Integer) As Variant
in which case you can pass only an array. You can also declare it
like this:
Public Function SumThemUp (varValues As Variant) As Variant
in which case you can pass it either a single variant value or an
array of values.

 Once the procedure has received the
array, it needs a way to loop through all the elements of the array.
Access provides two methods for walking the array: looping through
the items either with a For...Next loop (by index
number), or with a For
 Each...Next loop (without using the index).
UCaseArray uses the first method to loop through
all the members of its array, and SumThemUp uses
the second.

 To loop through the elements of an
array by number, you must know the bounds of the array; i.e., the
lowest and highest element numbers. Access provides two functions,
LBound and UBound, to
retrieve the lowest and highest element numbers.
UCaseArray includes code like this:
For intI = LBound(varValues) To UBound(varValues)
 varValues(intI) = UCase(varValues(intI))
Next intI
This code loops through all the elements in the array, no matter what
the starting and ending items are. In Basic, you can declare an array
with any positive integer as its start and end points. For example,
in this expression:
Dim avarArray(13 To 97) as Integer
you'd need to loop from 13 to 97 to access each
element of the array. The LBound and
UBound functions make it possible for generic
routines to loop through all the elements of an array, even though
they don't know ahead of time how many elements
there will be.

 The
UCaseArray procedure is quite simple: once it
determines that the input value is actually an array (using the
IsArray function), it loops through all the
elements of the passed-in array, converting each to uppercase. The
array is passed by reference, using the ByRef
keyword, which means that the modified array is returned to the
calling procedure. The code for UCaseArray is:
Public Sub UCaseArray(ByRef varValues As Variant)

 ' Convert the entire passed-in array to uppercase.
 Dim intI As Integer

 If IsArray(varValues) Then
 For intI = LBound(varValues) To UBound(varValues)
 varValues(intI) = UCase(varValues(intI))
 Next intI
 Else
 varValues = UCase(varValues)
 End If
End Sub

 The SumThemUp
function is no more complex. It uses the For
 Each...Next syntax to walk through all the
elements of the array, maintaining a running sum as it loops. In this
case, the variant variable varItem takes
on the value of each element of the array as it loops through the
items, and adds its value to varSum. The
source code for SumThemUp is:
Public Function SumThemUp(varValues As Variant) As Variant

 ' Find the sum of the values passed in.

 Dim varItem As Variant
 Dim varSum As Variant

 varSum = 0
 If IsArray(varValues) Then
 For Each varItem In varValues
 varSum = varSum + varItem
 Next varItem
 Else
 varSum = varValues
 End If
 SumThemUp = varSum
End Function

 Passing a list that Access converts to an
array for you is no more difficult. To use this technique, you must
declare your procedure's formal parameters so that
the list of values is the last parameter the procedure expects to
receive. Use the ParamArray keyword to indicate
that you want to treat an incoming list as an array, and declare your
array parameter as an array of variants:
Public Function MinValue(ParamArray varValues() As Variant) As Variant

 Once inside the procedure, you can
treat the array parameter like any other array. That is, you can
either loop from LBound to
UBound for the array, or use a
For
 Each...Next loop to visit
each element.

Discussion

 To
use this method effectively, be aware that unless told otherwise,
Access always creates arrays with the first element numbered 0. Some
programmers insist on starting all arrays with 1 and so use the
Option
 Base
 1 statement in their modules'
Declarations areas. Others are happy with 0 as their starting point,
and some leave the option base setting at 0 (its default) but
disregard the element numbered 0. You must never assume anything
about the lower or upper bounds on arrays, or sooner or later generic
routines won't work. If you're
writing code that will be called by other programmers, you need to be
aware of these variations on the normal usage.

 If you decide to use the
For
 Each...Next syntax to
access all of the elements of an array, both the variable you use to
loop through the elements and the array itself must be variants. In
addition, note that you cannot set the values of items in an array
using the For Each...Next syntax; it only allows
you to retrieve the values from the array. If you want to loop
through an array to set its values, you must use the standard
For...Next syntax, using a numeric value as the
loop counter.

 In Access 2000 and later, you can use
an array as the return value for a function. Thus, you could rewrite
the UCaseArray procedure as follows:
Public Function UCaseArrayFunc(ByVal varValues As Variant) As String()
 ' Convert the entire passed in array to upper case.
 Dim intI As Integer
 Dim astrWorking() As String

 If IsArray(varValues) Then
 ReDim astrWorking(LBound(varValues) To UBound(varValues))
 For intI = LBound(varValues) To UBound(varValues)
 astrWorking(intI) = CStr(UCase(varValues(intI)))
 Next intI
 UCaseArrayFunc = astrWorking
 End If
End Function
The advantage of this technique is that the function returns a second
array and the original array, varValues, is not modified. Unlike the
first example, UCaseArray, the array is passed
ByVal, which means that
UCaseArrayFunc works with a copy of the original
array. Any modifications occurring in
UCaseArrayFunc will affect only this copy,
leaving the original array in the calling procedure unchanged.

7.7. Sort an Array in VBA

Problem

 Although
it's a database product, Access
doesn't include a way to sort an array. You need to
present sorted arrays in an application, and you
can't find a reasonable way to sort them without
first saving them to a table. You know you've seen
array-sorting methods in other languages. Can you write a sorting
routine that executes quickly?

Solution

 It's true that Access
doesn't provide a built-in sorting mechanism for
arrays. Entire volumes in libraries are devoted to the study of
various sorting and searching algorithms, but it's
not necessary to dig too deep for array-sorting methods for Access.
Because you'll probably place any large data sets
into a table, most arrays in Access aren't very
large. Therefore, almost any sort will do. This solution uses a
variant of the standard quicksort algorithm. (For more information on
various sorting and searching algorithms, consult your computer
library. This is a big topic!)
To try the sorting mechanism, load the module named basSortDemo in
07-07.MDB. From the Immediate window, type:
TestSort 6
where the 6 can be any integer between 1 and 20, indicating the
number of random integers between 1 and 99 that you want the routine
to sort. The sample routine, TestSort, will
create the array of integers and send it off to
VisSortArray, a special version of the sorting
routine acbSortArray that shows what
it's doing as it works. Figure 7-11
shows the output from a sample session.
[image: The output from a sample run of TestSort]

Figure 7-11. The output from a sample run of TestSort

To use this sorting code in your own applications, follow these steps:
	Import the module named basSortArray into your application.

	Create the array you'd like to sort. This must be an
array of variants, but those variants can hold any datatype; this
solution uses an array of Integers and the Solution in Recipe 7.8 uses an array of Strings.

	Call acbSortArray, passing to it the name of the
array you'd like to sort. For example, to sort an
array named avarStates, use the following call:
acbSortArray avarStates()
After the call to acbSortArray, your array will
be sorted. Remember that acbSortArray is sorting
your array in place: once it's sorted,
there's no going back! If you don't
want to sort your only copy of the array, make a duplicate first.

Discussion

 The quicksort algorithm works by
breaking the array into smaller and smaller chunks, sorting each one,
until all the chunks are one element long. The
acbSortArray procedure calls the main sorting
routine, QuickSort, passing to it the array and
the start and end points for sorting. The
QuickSort routine breaks the array into two
chunks, then calls itself twice to sort each of the two halves.

 At this point, you might be grumbling
about recursive routines and how they use lots of memory. Normally,
that's true. This version of the sorting algorithm,
however, tries to be conservative about how it uses memory. At each
level, it sorts the smaller of the two chunks first. This means that
it will have fewer recursive levels: the small chunk will end up
containing a single element much more quickly than the large chunk.
By always working with the smallest chunk first, this method avoids
calling itself more often than it has to.
The code for the QuickSort procedure is:
Private Sub QuickSort(varArray As Variant, _
 intLeft As Integer, intRight As Integer)
 Dim i As Integer
 Dim j As Integer
 Dim varTestVal As Variant
 Dim intMid As Integer

 If intLeft < intRight Then
 intMid = (intLeft + intRight) \ 2
 varTestVal = varArray(intMid)
 i = intLeft
 j = intRight
 Do
 Do While varArray(i) < varTestVal
 i = i + 1
 Loop
 Do While varArray(j) > varTestVal
 j = j - 1
 Loop
 If i <= j Then
 SwapElements varArray(), i, j
 i = i + 1
 j = j - 1
 End If
 Loop Until i > j
 ' To optimize the sort, always sort the
 ' smallest segment first.
 If j <= intMid Then
 QuickSort varArray(), intLeft, j
 QuickSort varArray(), i, intRight
 Else
 QuickSort varArray(), i, intRight
 QuickSort varArray(), intLeft, j
 End If
 End If
End Sub
The following are the basic steps of the
QuickSort procedure. These steps use
intLeft to refer to the beginning sort
item and intRight for the ending item:
	If intLeft isn't less
than intRight, the sort is done.

	The sort takes the value in the middle of the subset of the array
that's being sorted as the
"comparison" value. Its value will
be the dividing factor for the two chunks. There are different
schools of thought on how to choose the dividing item. This version
of the sort uses the item that's physically in the
middle of the chosen list of items:
intMid = (intLeft + intRight) \ 2
varTestVal = varArray(intMid)

	The sort starts from the left, walking along the array until it finds
an item that isn't less than the dividing value.
This search is guaranteed to stop at the dividing value, which
certainly isn't less than itself:
Do While varArray(i) < varTestVal
 i = i + 1
Loop

	The sort starts from the right, walking backward through the array
until it finds an item that isn't greater than the
dividing value. This search is guaranteed to stop at the dividing
value, which certainly isn't more than itself:
Do While varArray(j) > varTestVal
 j = j - 1
Loop

	If the position from Step 3 is less than or equal to the position
found in Step 4, the sort swaps the elements at the two positions,
then increments the pointer for Step 3 and decrements the pointer for
Step 4:
If i <= j Then
 SwapElements varArray(), i, j
 i = i + 1
 j = j - 1
End If

	The sort repeats Steps 3 through 5 until the pointer from Step 3 is
greater than the pointer from Step 4 (i
 >
 j). At this point, every
item to the left of the dividing element is less than or equal to it,
and everything to the right is greater than or equal to it.

	Choosing the smaller partition first, the sort repeats all these
steps on each of the subsets to either side of the dividing value,
until Step 1 indicates that it's done:
If j <= intMid Then
 QuickSort varArray(), intLeft, j
 QuickSort varArray(), i, intRight
Else
 QuickSort varArray(), i, intRight
 QuickSort varArray(), intLeft, j
End If

There are probably sort algorithms that are simpler than the
quicksort algorithm, but for arrays that aren't
already sorted, quicksort's speed is hard to beat.
(For presorted arrays, it doesn't do as well as some
other sorts. But most arrays don't come to the
QuickSort subroutine in order.) As it is, the
QuickSort subroutine is capable of handling only
single-column arrays. If you need to sort multicolumn arrays,
you'll need to either modify the code to handle
those cases or move the data into a table and let Access do the
sorting for you.

See Also

See the next solution for an example of using
QuickSort.

7.8. Fill a List Box with a List of Files

Problem

 You need to present your users with a
sorted list of files with a specific filename extension in a
particular directory. You found the Dir
function, but you can't find a way to get this
information into a list box. Is there a way to do this?

Solution

 This problem provides the perfect
opportunity to use the past three solutions. It involves creating a
list-filling callback function, passing arrays as parameters, and
sorting an array. In addition, you'll fill that
array with a list of files matching a particular criterion, using the
Dir function.

 Load the form frmTestFillDirList from
07-08.MDB. Enter a file specification into the
text box (for example, c:*.exe). Once you leave
the text box (by pressing either Tab or Return), the code attached to
the AfterUpdate event will force the list box to requery. When that
happens, the list box will fill in with the matching filenames. Figure 7-12 shows the results of a search for
c:*.*.
[image: frmTestFillDirList, searching for *.* in the C:\ folder]

Figure 7-12. frmTestFillDirList, searching for *.* in the C:\ folder

To include this functionality in your own applications, follow these
steps:
	On a form, create a text box and a list box, with properties set as
shown in Table 7-6.

Table 7-6. Property settings for the controls on the directory list form
	
 Control

 	
 Property

 	
 Setting

	
 Text box

 	
 Name

 	
 txtFileSpec

	

	
 AfterUpdate

 	
 [Event Procedure]

	
 List box

 	
 Name

 	
 lstDirList

	

	
 RowSourceType

 	
 FillList

	

	
 AfterUpdate

 	
 [Event Procedure]

	
 Enter the following code in the text
box's AfterUpdate event procedure. (See the Preface
for more information on creating event procedures.) This code forces
the list box to requery itself when you enter a value in the text
box, and then move to some other control:
Sub txtFileSpec_AfterUpdate ()
 Me.lstDirList.Requery
End Sub

	Enter the following code in the list box's
AfterUpdate event. This is sample code that pops up a message box
indicating which file you chose:
Sub lstDirList_AfterUpdate ()
 MsgBox "You chose: " & Me.lstDirList.Value
End Sub

	Enter the following code into a global module so that it can be
called from any form. Though this code would work fine in a
form's module, it's general enough
that it will serve you best as part of a global module that can be
copied from one database to another. This is the function that fills
the array of files:
Public Function FillDirList(ByVal strFileSpec As String, _
 astrFiles() As String) As Integer

 ' Given the file specification in strFileSpec, fill in the
 ' dynamic array passed in avarFiles().

 Dim intNumFiles As Integer
 Dim strTemp As String

 On Error GoTo HandleErr
 intNumFiles = 0

 ' Set the filespec for the dir() and get the first filename.
 strTemp = Dir(strFileSpec)
 Do While Len(strTemp) > 0
 intNumFiles = intNumFiles + 1
 astrFiles(intNumFiles - 1) = strTemp
 strTemp = Dir
 Loop

ExitHere:
 If intNumFiles > 0 Then
 ReDim Preserve astrFiles(intNumFiles - 1)
 acbSortArray astrFiles()
 End If
 FillDirList = intNumFiles
 Exit Function

HandleErr:
 Select Case Err.Number
 Case 9
 ' The array needs to be resized
 ' Just add room for 100 more files.
 ReDim Preserve astrFiles(intNumFiles + 100)
 Resume
 Case Else
 FillDirList = intNumFiles
 Resume ExitHere
 End Select
End Function

Tip
Rather than resizing the array for each matching file name, the
FillDirList function traps the error that occurs when the array is
full, and resizes it 100 slots at a time. Using the Redim Preserve
statement is quite expensive in VBA, and you should consider looking
for ways to call it as seldom as possible. In this example, the code
resizes the array to the correct size once it's done
filling in all the file names.

	Import basSortArray from 07-08.MDB. This is the
same sorting code that we used in the Solution in Recipe 7.7.

Discussion

 The list box in this example
uses a list-filling callback function, FillList,
to supply its data. (See the Solution in Recipe 7.5 for information on callback functions.)
Here's the code:
Private Function FillList(ctl As Control, _
 varID As Variant, lngRow As Long, lngCol As Long, _
 intCode As Integer)
 Static astrFiles() As String
 Static intFileCount As Integer

 Select Case intCode
 Case acLBInitialize
 If Not IsNull(Me.txtFileSpec) Then
 intFileCount = FillDirList(Me.txtFileSpec, astrFiles())
 End If
 FillList = True

 Case acLBOpen
 FillList = Timer

 Case acLBGetRowCount
 FillList = intFileCount

 Case acLBGetValue
 FillList = astrFiles(lngRow)

 Case acLBEnd
 Erase astrFiles
 End Select
End Function
In FillList's
acLBInitialize case, it calls the
FillDirList function to fill in the astrFiles
array, based on the value in the txtFileSpec text box.
FillDirList fills in the array, calling
acbSortArray along the way to sort the list of
files, and returns the number of files it found. Given that completed
array, FillList can return the value from the
array that it needs when requested in the
acLBGetValue case. It uses the return value from
FillDirList, the number of files found, in
response to the acLBGetRowCount case.

 There's also an
interesting situation you should note in the
FillList and FillDirList
routines. FillList declares a dynamic array,
astrFiles, but doesn't give a size because it
doesn't yet know the number of files that will be
found. FillList passes the array off to
FillDirList, which adds filenames to the array
based on the file specification until it doesn't
find any more matches. FillDirList returns the
number of matching filenames, but it also has the side effect of
having set the array's size and filled it in.
Here's the code that does the work. This code
fragment uses the ReDim
 Preserve keywords to resize the array every time
it finds a matching filename:
' Set the filespec for the dir() and get the first filename.
strTemp = Dir(strFileSpec)
Do While Len(strTemp) > 0
 intNumFiles = intNumFiles + 1
 astrFiles(intNumFiles - 1) = strTemp
 strTemp = Dir
Loop

 FillDirList
 uses the Dir
function to create the list of files. This function is unusual in
that you call it multiple times. The first time you call it, you send
it the file specification you're trying to match,
and Dir returns the first matching filename. If
it returns a nonempty value, you continue to call it, with no
parameters, until it does return an empty value.
Each time you call Dir, it returns the next
matching filename.
Once FillDirList has finished retrieving the
list of filenames, it sorts the names in the array. Its return value
is the number of files it found. The following code shows how this
works:
If intNumFiles > 0 Then
 ReDim Preserve astrFiles(intNumFiles - 1)
 acbSortArray astrFiles()
End If
FillDirList = intNumFiles
Note that when Access calls the list-filling callback function,
values for the lngRow and
lngCol parameters are always zero-based.
Therefore, when you use arrays within callback functions, you should
always consider using zero-based arrays to hold the data
you'll display in the control. If you
don't, you'll always be dealing
with "off by one" errors. Using a
zero-based array will mean that the row values (sent to your code in
lngRow) will match your array indices.

7.9. Handle Object Properties, in General

Problem

 You
don't understand how to get and set property values
in Access. It seems as if there are different kinds of properties,
and what works for one object and property doesn't
work for another. Is there some way to settle this once and for all?

Solution

 There really are two kinds of
properties for objects in Access. Built-in properties are those that
always exist for an object, and user-defined properties are
properties that you or Access creates for an object when requested.
The syntax for referring to each type is different, but this solution
provides a method that works for either type. This solution uses the
user-defined Description property as an example, but the techniques
will work just as well for any other property. The interesting part
of this solution is that the Description property is not a built-in
property, and attempting to set or retrieve this property using the
standard object.property syntax will fail.

 This solution provides a sample
form, which is useful only for demonstrating the technique. The real
power of the solution comes from the module, basHandleProperties,
which provides procedures you can use to set and get any kind of
property. To try out the sample form shown in Figure 7-13, load and run frmTestProperties from
07-09.MDB. Choose a table from the list of
tables, and notice the Description property shown in the text box
below the list. If you choose a field from the list of fields,
you'll also see the description for that field in
the text box below the list. You can enter new text into the two text
boxes, and the code attached to the AfterUpdate event of either text
box will write the text back to the Description property of the
selected table or field.
[image: frmTestProperties lets you set and get the Description property of any table or field]

Figure 7-13. frmTestProperties lets you set and get the Description property of any table or field

The sample form uses two functions from basHandleProperties, as shown
in Table 7-7. These functions allow you to get or
set any property of any object, as long as the object either already
supports the property you're working with or allows
you to create new properties to add the property if it
doesn't already exist.
Table 7-7. Using the acbGetProperty and acbSetProperty functions
	
 Function name

 	
 Usage

 	
 Parameters

 	
 Returns

	
 acbGetProperty

 	
 Retrieve the value of the specified property of the specified object.

 	
 obj As Object: a reference to any existing object.

 strProperty As String: the name of the property to retrieve.

 	
 The value of the requested property, or Null if that property or
object doesn't exist.

	
 acbSetProperty

 	
 Set the value of the specified property of the specified object.

 	
 obj As Object: a reference to any existing object.

 strProperty As String: the name of the property to set.

 varValue As Variant: the value of the property;

 varPropType As Variant (optional): the data type of the new property
(if the code has to create it). One of dbBoolean, dbByte, dbInteger,
dbLong, dbCurrency, dbSingle, dbDouble, dbDate, dbText, dbLongBinary,
dbMemo, or dbGUID. If you skip this, Access will use dbText.

 	
 The old value of the property, if it existed, or Null otherwise.

 The only objects to which you
can add properties are databases, tables, queries, fields, indexes,
and relations. Attempts to add a new property to any other kind of
object will fail.
To use these new functions in your own applications, follow these
steps:
	Import basHandleProperties into your application.

	To set a property, call acbSetProperty. This
function returns the old value of the property. For example:
Dim db As DAO.Database
Dim varOldDescription As Variant

Set db = CurrentDb()
varOldDescription = acbSetProperty(db, "Description", "Sample Database")
If Not IsNull(varOldDescription) Then
 MsgBox "The old Description was: " & varOldDescription
End If

	
 To get the value of a property,
call acbGetProperty. For example:
Dim db As DAO.Database
Dim varDescription As Variant

Set db = CurrentDb()
varDescription = acbGetProperty(db, "Description")
If Not IsNull(varDescription) Then
 MsgBox "The database description is: " & varDescription
End If

Discussion

 Access provides two types of
properties: built-in and user-defined. Built-in properties always
exist and are part of the definition of the object. For example, the
Name and Type properties are crucial for the existence of most
objects. These are built-in properties. On the other hand, the Jet
engine allows you to create new properties and add them to the
Properties collection for all the objects it supports, including
TableDefs, QueryDefs, Indexes, Fields, Relations, and Containers.
These are user-defined properties.

 In addition, Access itself,
as a client of the Jet engine, creates several properties for you.
For example, when you right-click on an object in the Database
Explorer and choose Properties from the floating menu, Access allows
you to specify the Description for the object. That Description
property doesn't exist until you request that Access
create it, using that dialog or in your own VBA code. The same goes
for the Caption, ValidationRule, and DefaultValue properties of
fields: those properties don't exist until you
request that Access create them for you.

 If you attempt to retrieve or set the
value of a property that doesn't yet exist, Access
will trigger a runtime error. Your code must be ready to deal with
this problem. In addition, you may be used to working with built-in
properties, to which you can refer using the simple
object.property syntax. This syntax works only
for built-in properties. For user-defined (and Access-created
user-defined) properties, you must refer to the property using an
explicit reference to the Properties collection that contains it. For
example, to set the Format property of the City field within
tblCustomers, you'll need an expression like this
(and this expression will fail with a runtime error if the Format
property hasn't yet been set):
CurrentDb.TableDefs("tblCustomers"). _
 Fields("City").Properties("Format") = ">"

 Because you can always refer to any
property using an explicit reference to the Properties collection,
you can simplify your code, and ensure that all property references
work, by using the same syntax for built-in and user-defined
properties. For example, field objects support the AllowZeroLength
property as a built-in property. Therefore, this reference will work:
CurrentDb.TableDefs("tblCustomers"). _
 Fields("City").AllowZeroLength = False

 If you
want to refer to the same property with an explicit reference, you
can use this syntax:
CurrentDb.TableDefs("tblCustomers"). _
 Fields("City").Properties("AllowZeroLength") = False
This ability to refer to built-in and user-defined properties using
the same syntax is the secret of the code presented in this solution.

 To
create a new property, you must follow these three steps:
	
 Create a new property object, using
the CreateProperty method of an existing object.

	Set the properties of this new property, including its name, type,
and default value (you can merge this step with the previous step by
supplying the information when you call
CreateProperty).

	

 Append the new property to the
Properties collection of the host object. For example, to add a
Description property to the current database, you might write code
like this:
Dim db As DAO.Database
Dim prp As Property

Set db = CurrentDb()

' Step 1
Set prp = db.CreateProperty()

' Step 2
prp.Name = "Description"
prp.Type = dbText
prp.Value = "Sample Database"

' Step 3
db.Properties.Append prp
To combine Steps 1 and 2, you could set the properties of the new
property at the time you create it:
' Steps 1 and 2
Set prp = db.CreateProperty("Description", dbText, "Sample Database")

' Step 3
db.Properties.Append prp

 Once you've followed
these steps, you should be able to retrieve the
database's Description property with a statement
like this (note that you must use the explicit
reference to the Properties collection in this case, because
Description is a user-defined property):
Debug.Print CurrentDb.Properties!Description

To relieve you from worrying about the differences between
user-defined and built-in properties and whether or not a property
already exists for a given object, we've provided
the acbGetProperty and
acbSetProperty functions.
The acbGetProperty function is the simpler of
the two: it attempts to retrieve the requested property.
acbGetProperty may fail for two reasons: the
object itself doesn't exist, or the property
you've tried to retrieve doesn't
exist (errors acbcErrNotInCollection and
acbcErrPropertyNotFound, respectively). If either
of these errors occurs, the function returns Null.
If any other error occurs, the function alerts you with a message box
before returning Null. If no error occurs, the
function returns the value of the requested property. For an example
of calling acbGetProperty, see Recipe 7.9.2 and
07-09.MDB.
The source code for acbGetProperty is:
Public Function acbGetProperty(obj As Object, _
 strProperty As String) As Variant
 ' Retrieve property for an object.
 ' Return the value if found, or Null if not.

 On Error GoTo HandleErr

 acbGetProperty = obj.Properties(strProperty)

ExitHere:
 Exit Function

HandleErr:
 Select Case Err.Number
 Case 3265, 3270 ' Not in collection, not found.
 ' Do nothing!
 Case Else
 MsgBox Err.Number & ": " & Err.Description, , "acbGetProperty"
 End Select
 acbGetProperty = Null
 Resume ExitHere
End Function
The acbSetProperty function is more interesting.
It attempts to set the value of the property you pass to it. This
function has several interesting characteristics:
	If you ask it to set a property that doesn't
currently exist, it attempts to create that property and then sets
its value.

	
 The data
type is declared optional, using the DataTypeEnum enumerated type,
with dbText as the default value. If you don't tell
it what the data type of the new property is to be (i.e., if you
leave that parameter blank), the code will use the
dbText type by default.

	The function returns the old value of the property, if there was one,
so you can store it away and perhaps reset it once
you're done with your application.

	To make sure the code will work with either user-defined or built-in
properties, the code uses an explicit reference to the Properties
collection.

	
 To tell if it needs to try to create
the property, the function traps the
acbcErrPropertyNotFound error condition (error
3270); if that error occurs, it uses the
CreateProperty method to try to create the
necessary property.

	
 If you try to assign
an invalid property value, Access triggers the
acbcErrDataTypeConversion error condition (error
3421). In that case, there's not much
acbSetProperty can do besides alerting you to
that fact and returning Null.

The source code for acbSetProperty is:
 Public Function acbSetProperty(_
 obj As Object, strProperty As String, varValue As Variant, _
 Optional propType As DataTypeEnum = dbText)

 ' Set the value of a property.
 On Error GoTo HandleErr

 Dim varOldValue As Variant

 ' This'll fail if the property doesn't exist.
 varOldValue = obj.Properties(strProperty)
 obj.Properties(strProperty) = varValue
 acbSetProperty = varOldValue

ExitHere:
 Exit Function

HandleErr:
 Select Case Err.Number
 Case 3270 ' Property not found
 ' If the property wasn't there, try to create it.
 If acbCreateProperty(obj, strProperty, varValue, propType) Then
 Resume Next
 End If
 Case 3421 ' Data type conversion error
 MsgBox "Invalid data type!", vbExclamation, "acbSetProperty"
 Case Else
 MsgBox Err.Number & ": " & Err.Description, , "acbSetProperty"
 End Select
 acbSetProperty = Null
 Resume ExitHere
End Function

 Only objects that are maintained by the
Jet engine allow you to create new properties. That is, you can add
properties to the Properties collections of Database, TableDef,
QueryDef, Index, Field, Relation, and Container objects. You
won't be able to add new properties to any object
that Access controls, such as forms, reports, and controls. If you
attempt to use acbSetProperty to set a
user-defined property for an invalid object, the function will return
Null. You can, however, use
acbSetProperty and
acbGetProperty with any Access object, as long
as you confine yourself to built-in properties for those objects that
don't support user-defined properties. For example,
this code fragment will work as long as frmTestProperties is
currently open:
If IsNull(acbSetProperty(Forms("frmTestProperties"), "Caption", _
 "Test Properties")) Then
 MsgBox "Unable to set the property!"
End If

 User-defined
properties are persistent from session to session. That is, they are
saved in the TableDef along with the built-in and Access-defined
properties. You can, however, delete a user-defined property using
the Delete method on the property's parent
collection. For example, you could delete the user-defined property
defined earlier using the following statement:
CurrentDb.TableDefs("tblSuppliers").Fields("Address"). _
 Properties.Delete "SpecialHandling"

7.10. Detect Whether an Object Exists

Problem

 You create and delete objects as your
application runs. At some point, you need to be able to tell whether
an object exists and make decisions based on that fact. But you
can't find a function in Access that will tell you
if a specific object already exists. Are you missing something? This
ought to be a basic part of the product!

Solution

 You haven't missed
anything: Access really doesn't supply a simple
method of determining if a specific object already exists. On the
other hand, this is really quite simple, as long as you understand
two important concepts: Access's support for DAO
Container objects, and the ways you can use error handling to
retrieve information. This solution uses these two subjects to
provide a function you can call to check for the existence of any
object.
Load and run frmTestExist from 07-10.MDB. This
form, shown in Figure 7-14, lets you specify an
object name and its type and then tells you whether that object
exists. Certainly, you wouldn't use this form as-is
in any application—its purpose is to demonstrate the
acbDoesObjExist function in basExists
(07-10.MDB). To make your exploration of
frmTestExist easier, Table 7-8 lists the objects
that exist in 07-10.MDB. Try entering names that
do and don't exist, and get the types right and
wrong, to convince yourself that the
acbDoesObjExist function does its job correctly.
[image: frmTestExist lets you check for the existence of any object in the current database]

Figure 7-14. frmTestExist lets you check for the existence of any object in the current database

Table 7-8. The sample objects in 07-10.MDB
	
 Object name

 	
 Object type

	
 tblTest

 	
 Table

	
 qryTest

 	
 Query

	
 frmTest

 	
 Form

	
 frmTestExist

 	
 Form

	
 basExists

 	
 Module

Follow these steps to use acbDoesObjExist in
your own applications:
	Import the module basExists from 07-10.MDB. This
module contains the acbDoesObjExist function.

	

 To check for the existence of any
object, call acbDoesObjExist, passing to it the
name of the object to check for and a value from the AcObjectType
enumeration indicating the object's type. The type
parameter must be chosen from the values acTable,
acQuery, acForm,
acReport, acMacro, or
acModule. For example, to check for the existence
of a table named "Customers", call
acbDoesObjExist like this:
If acbDoesObjExist("Customers", acTable) Then
 ' You know the table exists.
Else
 MsgBox "The table 'Customers' doesn't exist!"
End If

Discussion

 The
acbDoesObjExist function, shown in full here,
checks for the existence of an object by attempting to retrieve that
object's Name property. Because every object that
exists exposes a Name property, this action can't
fail unless the object doesn't exist. In skeleton
format, the code works like this:
 Dim strName As String
 On Error Goto acbDoesObjExist_Err

 strName = obj.Name
 acbDoesObjExist = True

acbDoesObjectExist_Exit:
 Exit Function

acbDoesObjectExist_Err:
 acbDoesObjExist = False
 Resume acbDoesObjectExist_Exit

 That is, the code sets up an
error handler and then attempts to retrieve the Name property of the
requested object. If it succeeds, the code falls through, sets the
return value to True, and returns. If it triggers
an error, the procedure can be assured that the object
doesn't exist, and it will return
False.

 The only other issue is how to convert a
string containing the name of the object and an integer containing
its type to a real object reference. This is where the Jet
engine's Container objects come in handy. The
Container collections, supplied by Access so the Jet engine can
support security for all the Access objects, contain collections of
Document objects (one for each saved object in your database). The
Containers collection contains collections named Tables, Forms,
Reports, Scripts (that's macros
for us users!), and Modules. Except for tables and queries, the code
checks in those collections of documents, looking for the document
whose name you've supplied. For tables and queries,
it's simpler to use the TableDefs and QueryDefs
collections directly. Access lumps tables and queries together in the
Tables container, but keeps them separate in the TableDefs and
QueryDefs collections. If the code looked in the Tables container, it
would have to take an extra step to distinguish tables from queries;
that step isn't necessary if it uses the collections
instead.
The code for acbDoesObjExist is as follows:
Public Function acbDoesObjExist(_
 strObj As String, objectType As AcObjectType)
 Dim db As DAO.Database
 Dim strCon As String
 Dim strName As String

 On Error GoTo HandleErr

 Set db = CurrentDb()
 Select Case objectType
 Case acTable
 strName = db.TableDefs(strObj).Name
 Case acQuery
 strName = db.QueryDefs(strObj).Name
 Case acForm, acReport, acMacro, acModule
 Select Case objectType
 Case acForm
 strCon = "Forms"
 Case acReport
 strCon = "Reports"
 Case acMacro
 strCon = "Scripts"
 Case acModule
 strCon = "Modules"
 End Select
 strName = db.Containers(strCon).Documents(strObj).Name
 End Select
 acbDoesObjExist = True

ExitHere:
 Exit Function

HandleErr:
 acbDoesObjExist = False
 Resume ExitHere
End Function

 Note that in the
Select
 Case statement, the code
first checks to see if you're asking about a table
or a query. If so, it looks in the appropriate collection:
Select Case objectType
 Case acTable
 strName = db.TableDefs(strObj).Name
 Case acQuery
 strName = db.QueryDefs(strObj).Name
.
.
.
End Select

 If
not, it assigns to strCon the name of the
container it will need and then attempts to retrieve the Name
property of the particular document within the selected container:
Case acForm, acReport, acMacro, acModule
 Select Case objectType
 Case acForm
 strCon = "Forms"
 Case acReport
 strCon = "Reports"
 Case acMacro
 strCon = "Scripts"
 Case acModule
 strCon = "Modules"
 End Select
 strName = db.Containers(strCon).Documents(strObj).Name

See Also

If you haven't done much investigation of DAO in
Access, you may find it useful to study the appropriate chapters in
the Building Applications manual that ships with Access. Though
complete coverage of DAO is beyond the scope of this book, there are
several examples using DAO in other chapters, especially Chapter 4 and Chapter 6. In
addition, DAO Object Model: The Definitive
Reference, by Helen Feddema (O'Reilly),
provides complete documentation of the DAO object model.

Chapter 8. Optimization

 One
unavoidable fact of application design is that your application never
runs as fast as you'd like it to. Unless you and
your users are equipped with the latest and most powerful
workstations with huge amounts of memory, performance will be less
than ideal. Still, there are many techniques you can use to optimize
your application, few of which are easily found in the Access
documentation. Although your Access application may never run like
that lean and mean dBASE II application you created 15 years ago, you
certainly can make it run at an acceptable speed.
This chapter covers several optimizations that enable you to load
forms faster, add and change data faster, and speed up your Visual
Basic for Applications (VBA) code, for example. It also covers the
optimization of queries, as well as multiuser and client/server
optimization techniques. In addition, this chapter describes testing
techniques that will help you gauge the speed gains of your
optimizations.
Warning
Several of the examples in this chapter take advantage of the DAO
type library, rather than the default ADO library used by Access 2002
and Access 2003. Even though it's less
"modern," DAO provides greater
functionality, and generally better performance. In addition, using
DAO makes it possible for these demonstrations to work in earlier
versions of Access. If you want to try these techniques in your own
applications, make sure you add the DAO reference to your project
using the Tools → References menu item from within
VBA—it won't be added by default.

8.1. Accelerate the Load Time of Forms

Problem

 The first time you open a form in
your application, it seems to take forever to load. Is there any way
to accelerate this?

Solution

You can radically improve the time it takes to load a form for the
first time by preloading your forms when the database is initially
opened. You can also decrease the load time for subsequent loadings
by hiding instead of closing forms. This solution shows you how to
improve form load time using these techniques.
Load the 08-01.MDB database. Note the time it
takes for the switchboard form to appear (see Figure 8-1). Make sure that the "Preload
and keep loaded forms" checkbox is unchecked; if
it's checked, uncheck it, close the database, and
start over. Now press one of the command buttons, such as the Orders
button, and note how long it takes Access to initially load the form.
Close the form.
[image: The 08-01.MDB switchboard form]

Figure 8-1. The 08-01.MDB switchboard form

Now check the "Preload and keep loaded
forms" checkbox on the switchboard form and close
the database. Reload the database and again note the time it takes
for the switchboard form to appear. Load the Orders form, again
recording the form load time.
You'll see that the switchboard form now takes
longer to appear but that the subsequent form load time is
significantly shorter. That's because checking the
"Preload and keep loaded forms"
checkbox and reloading the database flips an internal switch that
causes the application to preload its forms (in a hidden state) as
the switchboard form is loaded by Access. This lengthens the time it
takes for the switchboard form to appear initially. However, because
the Orders form is now preloaded, it takes less time for it to appear
when you press the Orders command button.

Tip
A switchboard form (or menu form) is an unbound form used for
application navigation. Switchboard forms are usually made up of
labels and command buttons with an optional picture.

Follow these steps to set up your application to preload its forms:
	
 Create a table for storing the names of
the forms you wish to preload. This table (zstblPreloadForms in the
sample database) should have a single field, FormName, with a
datatype of Text. Switch to datasheet view (see Figure 8-2) and add a row for each form in your
application that you wish to preload.

[image: Store the list of preloaded forms in the zstblPreloadForms table]

Figure 8-2. Store the list of preloaded forms in the zstblPreloadForms table

	

 Create a switchboard form or edit your
existing one.

	Set the form's AutoCenter property to Yes.

	Add the following code to the declarations section at the top of the
form's module (replacing the values with the actual
names for your table and splash form, if you've used
different names):
Private Const acbPreloadTable = "zstblPreloadForms"
Private Const acbSplashForm = "frmSplash"

	Create a new event procedure for the form's Open
event. (If you're unsure of how to do this, see
How Do I Create an Event
Procedure? in the Preface of this book.)

	Add the following code to the event procedure:
Private Sub Form_Open(Cancel As Integer)

 ' Preload forms.

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim varFormName As Variant

 On Error GoTo HandleErr

 DoCmd.OpenForm acbSplashForm

 Set db = CurrentDb()

 ' Preload the forms listed in zstblPreloadForms.
 Set rst = db.OpenRecordset(acbPreloadTable, dbOpenSnapshot)

 Do While Not rst.EOF
 varFormName = rst("FormName")
 If Not IsNull(varFormName) Then
 DoCmd.OpenForm FormName:=varFormName, _
 WindowMode:=acHidden, OpenArgs:="StayLoaded"
 End If
 rst.MoveNext
 Loop

ExitHere:
 DoCmd.Close acForm, acbSplashForm
 If Not rst Is Nothing Then
 rst.Close
 End If
 Set rst = Nothing
 Exit Sub

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, , "Form Open"
 Resume ExitHere
End Sub
You can also copy this code from the frmSwitchboard1 form
(not the frmSwitchboard form) in
08-01.MDB. (The frmSwitchboard1 version of the
form always preloads forms, thus eliminating all the code associated
with the "Preload and keep loaded
forms" checkbox.)

	
 Create an event procedure for the
switchboard form's Close event. Add this code to the
event procedure:
Private Sub Form_Close()

 ' Unload preloaded forms

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim varFormName As Variant

 On Error GoTo HandleErr

 Set db = CurrentDb()

 ' Unload the forms listed in zstblPreloadForms
 Set rst = db.OpenRecordset(acbPreloadTable, dbOpenSnapshot)

 Do Until rst.EOF
 varFormName = rst("FormName")
 If Not IsNull(varFormName) Then
 DoCmd.Close acForm, varFormName
 End If
 rst.MoveNext
 Loop

ExitHere:
 If Not rst Is Nothing Then
 rst.Close
 End If
 Set rst = Nothing
 Exit Sub

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, , "Form Open"
 Resume ExitHere
End Sub

	

 Create the following functions in a
global module (or import the basStayLoaded module from
08-01.MDB):
Public Function acbOpenForm(strFormName As String, _
 fStayLoaded As Boolean) As Boolean

 ' Open specified form and pass it the
 ' StayLoaded argument.

 On Error GoTo acbOpenFormErr

 If fStayLoaded Then
 DoCmd.OpenForm strFormName, OpenArgs:="StayLoaded"
 Else
 DoCmd.OpenForm strFormName
 End If

acbOpenFormExit:
 Exit Function

acbOpenFormErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "acbOpenForm"
 Resume acbOpenFormExit
End Function

Public Function acbCloseForm(frmToClose As Form)

 ' If StayLoaded is True, hide the form instead of closing it.

 On Error GoTo acbCloseFormErr

 If InStr(frmToClose.OpenArgs, "StayLoaded") > 0 Then
 frmToClose.Visible = False
 Else
 DoCmd.Close acForm, frmToClose.Name
 End If

acbCloseFormExit:
 Exit Function

acbCloseFormErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "acbCloseForm"
 Resume acbCloseFormExit
End Function

	Throughout your application, when you create code that opens a form
and you wish to load that form only once, call the
acbOpenForm function from Step 8. If you wish to
open a form from code, you can use this syntax:
Call acbOpenForm("formname", True)

 You can also
call the function directly from an event property. In this case,
enter the following in the event property:
=acbOpenForm("formname", True)
For those forms that you don't wish to keep loaded,
change the second parameter of acbOpenForm to
False.

	
 For each form you are preloading or
loading with the acbOpenForm function, add a
command button with the caption
"Close". Enter the following in the
event property for the button's Click event:
=acbCloseForm(Form)
Don't place any quotes around the
Form argument.

	

 Make a copy of the form created in Step 2
and name it frmSplash. This is what's known as a
"splash form." Open frmSplash in
design view and remove all the command button controls. Also remove
all the code behind the form for this copy. In the area where the
command buttons used to be, add a label control that contains an
initialization message. For example, the label on frmSplash has the
attributes shown in Table 8-1. frmSplash is shown
in form view in Figure 8-3.

Table 8-1. Properties of frmSplash's lblMessage control
	
 Property

 	
 Value

	
 Name

 	
 lblMessage

	
 Caption

 	
 Initializing...

	
 BackStyle

 	
 Transparent

	
 BorderStyle

 	
 Transparent

	
 FontName

 	
 Arial

	
 FontSize

 	
 14

	
 TextAlign

 	
 Center

[image: The splash form, frmSplash]

Figure 8-3. The splash form, frmSplash

	Open the switchboard form created in Step 2. Open the
form's module and add the following constants to the
declarations section of the module:
Const acbcPreloadTable = "zstblPreloadForms"
Const acbcSplashForm = "frmSplash"
Change "zstblPreloadForms" to the
name of your table from Step 1. Change
"frmSplash" to the name of your
form from Step 11.

	
 Select Tools → Startup to open
the database Startup dialog (see Figure 8-4).
Select the switchboard form from Step 2 in the Display Form/Page
field.

[image: The database Startup dialog]

Figure 8-4. The database Startup dialog

	Close the database and reload it to test your startup procedure and
switchboard form.

Discussion

 Access forms are stored as binary data in
hidden system tables in your database. When you load a form, Access
reads data from the system tables to recreate and display that form.
This takes time. The solution described here improves the application
load time of forms by preloading them when the database is first
loaded. This means that the initial application load time will be
slower, but users are more tolerant of a long application load time
because it is a one-time commitment. As with most performance
optimizations, the benefits of this technique are especially
noticeable on slow machines.

 Prior to
Access 95, you had to use an AutoExec macro to
initiate some action upon database startup; in recent versionsyou can
use the Startup dialog to specify a form to be opened when the
database is loaded. This solution takes advantage of the Startup
properties, but you also could have used an
AutoExec macro.

 When the switchboard form opens, the
form's Open event is triggered and the code attached
to the Open event is executed. Unfortunately, when the Open event
procedure is called, the form has not had time to paint itself, so
users normally see nothing during the Open event procedure. To remedy
this, we created a "splash" form to
display during the potentially lengthy process. You
don't have to make the splash form the same size as
the switchboard form, but in this case, we made the two forms very
similar in appearance.
The code to preload the forms is shown here:
Set rst = db.OpenRecordset(acbcPreloadTable)

Do While Not rst.EOF
 varFormName = rst("FormName")
 If Not IsNull(varFormName) Then
 DoCmd.OpenForm FormName:=varFormName, _
 WindowMode:=acHidden, OpenArgs:="StayLoaded"
 End If
 rst.MoveNext
Loop
Each record from the zstblPreloadForms table is read and the named
form is loaded in hidden mode. In addition, the
form's OpenArgs parameter
is passed the string "StayLoaded".
You can use the OpenArgs parameter of
OpenForm to pass a custom string to a form, much as you pass
parameters to a function. This OpenArgs
parameter will be used later to decide what to do when the preloaded
form is closed.
Once the forms have been loaded in a hidden state, you
don't need to do anything special to make them
appear. Access is smart enough to make a hidden form visible when you
attempt to load it, which makes working with invisible forms easy.
However, we include wrapper functions for opening and closing your
application's forms in case you want some forms to
be treated differently. For example, you may not wish to preload and
keep all your forms loaded, because they will take up memory.

 Like the Form_Open event procedure
attached to the switchboard form, the
acbOpenForm function passes the string
"StayLoaded" to a form via its
OpenArgs argument when you pass
True as the function's second
parameter. Closing the application form is then handled by
acbCloseForm, which is called by the Click event
of each form's Close button. This function
determines whether to close or hide the form by checking its OpenArgs
property, which was passed to the form when it was opened:
If InStr(frmToClose.OpenArgs, "StayLoaded") > 0 Then
 frmToClose.Visible = False
Else
 DoCmd.Close acForm, frmToClose.Name
End If
For forms that you do not wish to preload, don't add
them to zstblPreloadForms. For forms that you wish to close normally
when the Close button is pressed, open them using the following
syntax:
=acbOpenForm("formname", False)

 If you have enough memory, you may wish to
preload all forms and not close them until the application exits. In
some situations, however, you may wish to be more selective. By using
the preload technique and the acbOpenForm and
acbCloseForm functions throughout your
application, you can easily change your mind or customize form
preloading and form hiding for different requirements.

 We did not remove from each sample form
the Close button and control box provided by the system. This means
that you can use one of these alternate mechanisms to bypass the
application-defined Close button (and the
acbCloseForm function) and close the form
instead of hiding it. Thus, you may wish to set the CloseButton and
ControlBox properties of your forms to No to prevent the use of these
mechanisms.

 You
may wish to make zstblPreloadForms a hidden table. You can adjust the
hidden property of an object by selecting View → Properties.
Benchmarking 101
Benchmarking different scenarios is a painstaking process. Because
Windows includes a hard disk cache and because Access itself caches
data, it's difficult to get fair and accurate
timings. Because of caching, the order in which you time things does
matter. Avoid jumping to conclusions without repeating the readings
several times in different orders. Also, there is no reliable
programmatic way to measure the time a form takes to load. Although
you can set timers at each of the form's events,
Access does some things internally after the last loading event has
fired. You will find that the only accurate way to test a
form's loading time is to manually test and average
the form load using a stopwatch.

8.2. Make Slow Forms Run Faster

Problem

 You are not happy with the
speed at which your forms load and display. How can you change your
forms so they will load and display faster?

Solution

Access gives you a lot of flexibility to develop dynamite-looking
forms. Unfortunately, Access also makes it easy to create forms that
run painfully slowly. The Solution in Recipe 8.1 explained how you can speed up the loading
time of all forms by preloading them. This solution discusses how to
track down and fix various performance bottlenecks, thus improving
form execution performance. We also discuss the use and misuse of
graphic elements and combo and list box controls.
You should consider several potential issues when analyzing your
forms for performance. We discuss here two common performance
bottlenecks: controls involving graphic or memo field data, and combo
and list box controls.
Graphic and memo controls

 Load the
08-02a.MDB database. Open the
frmCategoriesOriginal form (see Figure 8-5). This
form, although attractive, loads slowly and has a noticeable delay on
slower machines when moving from record to record. Now open
frmCategoriesStep3, which is the final version of the form after
various optimizations have been applied to it (see Figure 8-6). Its load and execution times should be
noticeably faster.
[image: The original form, frmCategoriesOriginal, is slow]

Figure 8-5. The original form, frmCategoriesOriginal, is slow

[image: The final form, frmCategoriesStep3, is faster]

Figure 8-6. The final form, frmCategoriesStep3, is faster

 Follow these steps to improve the
performance of forms that include unbound graphic controls or bound
controls that hold OLE or memo fields:
	Open the problem form in design view. If you have any unbound object
frame controls (also know as unbound OLE controls) that are used to
store fixed graphic images, change them to image controls by
right-clicking on the object and selecting Change To Image (see Figure 8-7). The frmCategoriesStep1 form in the
08-02a.MDB sample database is identical to
frmCategoriesOriginal except that ctlLogo has been converted from an
unbound object frame control to an image control.

[image: Changing an unbound object frame control to an image control]

Figure 8-7. Changing an unbound object frame control to an image control

	

 If
you created a watermark for the form, consider removing it. To do
this, select the word "bitmap" in
the form's Picture property, press the Del key, and
answer Yes to the confirming dialog. The frmCategoriesStep2 form in
08-02a.MDB is identical to frmCategoriesStep1,
except that we deleted the watermark.

	If your form contains any bound controls that hold either OLE or memo
fields, consider moving the controls to a second page of the form. In
the final version of the Categories form, named frmCategoriesStep3
(Figure 8-6), we moved the ctlDescription and
ctlPicture controls to a second page.

Combo and list box controls

 Load the
08-02b.MDB database. Open the frmSurveySlow
form. This form contains a combo box control, cboPersonId, that has
as its row source a SQL Select statement that
pulls in 15,000 rows from the tblPeople table. Load time for the form
is slow because Access has to run the query that supplies the 15,000
rows to cboPersonId. Tab to the cboPersonId control and type
"th" to search for the name
"Thompson, Adrian" (see Figure 8-8).
[image: The cboPersonId combo box in frmSurveySlow is very slow]

Figure 8-8. The cboPersonId combo box in frmSurveySlow is very slow

Note the long delay before the "th"
list of records appears. Now open the frmSurveyFast form (see Figure 8-9); its load time is significantly faster. Press
the ">" command button to open
the frmPersonPopup form. Type "th"
in the first field and press Tab.
[image: In frmSurveyFast, the combo box is replaced with a text box and command button]

Figure 8-9. In frmSurveyFast, the combo box is replaced with a text box and command button

After a short delay, you'll be able to select
"Thompson, Adrian" from the
drop-down list as shown in Figure 8-10. Press the OK
button, which will drop the chosen name back into the txtPersonName
text box on frmSurveyFast.
[image: Selecting a name from the drop-down list is much faster]

Figure 8-10. Selecting a name from the drop-down list is much faster

Follow these steps to improve the speed of forms containing combo or
list boxes that must display a lot of information:
	Make a copy of the problem form and open the copy in design view.
Select the slow combo or list box control. Right-click on the control
and select Change To → Text Box.

	
 Create a new unbound pop-up form
with the property settings shown in Table 8-2.
Leave the remaining property settings at their defaults. In the
sample database, this form is named frmPersonPopup.

Table 8-2. Property settings for the pop-up form
	
 Property

 	
 Setting

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 No

	
 AutoResize

 	
 Yes

	
 AutoCenter

 	
 Yes

	
 PopUp

 	
 Yes

	
 Modal

 	
 Yes

	
 MinMaxButtons

 	
 None

	Create four unbound controls on this form: a text box, a combo box,
and two command buttons. In the sample database, we created the
controls shown in Table 8-3. The text box will be
used to limit the number of items in the combo box, using the
parameter query created in Step 4.

Table 8-3. The controls on frmPersonPopup
	
 Control type

 	
 Control name

 	
 Notes

	
 Text box

 	
 txtChar

 	
 Limits the values in the row source of the combo box

	
 Combo box

 	
 cboPersonId

 	
 Uses the parameter query created in Step 4 as its row source

	
 Command button

 	
 cmdOK

 	
 Hides form

	
 Command button

 	
 cmdCancel

 	
 Closes form

	Create a new query that will serve as the row source for the combo
box of the pop-up form. If you used a query as the source for the
combo or list box on the original form, you should be able to modify
its design. Add the necessary fields to the query. Add a parameter to
the form that limits the rows based on a value typed into the text
box on the pop-up form. Choose any sort fields. In the sample
database, we created the qryPersonComboBox query with the fields
shown in Table 8-4. Save and close the query.

Table 8-4. The fields in qryPersonComboBox
	
 Query field

 	
 Sort

 	
 Criteria

	
 PersonId

 	
 (None)

 	
 (None)

	
 FullName: [LastName] & ", "
& [FirstName]

 	
 (None)

 	
 (None)

	
 LastName

 	
 Ascending

 	
 Like [Forms]![frmPersonPopup2]![txtChar] &
"*"

	
 FirstName

 	
 Ascending

 	
 (None)

	

 Reopen the pop-up form
created in Steps 2 and 3. Set the Enabled property of the combo box
to No. Set the RowSource property to point to the query created in
Step 4. In the sample database, we set the properties of the
cboPersonId combo box to the values in Table 8-5.

Table 8-5. Property settings for cboPersonId
	
 Property

 	
 Setting

	
 Enabled

 	
 No

	
 RowSourceType

 	
 Table/Query

	
 RowSource

 	
 (Blank)

	
 ColumnCount

 	
 2

	
 ColumnHeads

 	
 No

	
 ColumnWidths

 	
 0";2.5"

	
 BoundColumn

 	
 1

	
 ListRows

 	
 8

	
 ListWidth

 	
 2.5"

	
 Create a new event procedure for
the text box's Change event. (If
you're unsure of how to do this, see
How Do I Create an Event
Procedure? in the Preface of this book.) Add the
following code to the event procedure:
Private Sub txtChar_Change()

 If Not IsNull(Me.txtChar.Text) Then
 Me.cboPersonID.Enabled = True
 Else
 Me.cboPersonID.Enabled = False
 End If

End Sub
Change txtChar to the name of your text box and cboPersonId to the
name of your combo box.

	
 Create a new event procedure
for the text box's AfterUpdate event and add the
following code to it:
Private Sub txtChar_AfterUpdate()

 Dim ctlPersonId As ComboBox
 Dim ctlChar As TextBox

 Set ctlPersonId = Me.cboPersonID
 Set ctlChar = Me.txtChar

 If Not IsNull(ctlChar) Then
 ctlPersonId.RowSource = "qryPersonComboBox"
 ctlPersonId.SetFocus
 ctlPersonId.Dropdown
 End If

End Sub
Change txtChar to the name of your text box, and cboPersonId to the
name of your combo box. Change qryPersonComboBox to the name of the
query you created in Step 4.

	
 Create the following new event
procedure for the OK command button's Click event:
Private Sub cmdOK_Click()
 Me.Visible = False
End Sub

	Create the following new event procedure for the Cancel command
button's Click event:
Private Sub cmdCancel_Click()
 DoCmd.Close acForm, Me.Name
End Sub

	Save the pop-up form and close it.

	Reopen the form from Step 1 in design view. Add a button called
cmdPopup to the right of the text box. Add the following event
procedure to cmdPopup's Click event:
Private Sub cmdPopup_Click()

 Const acbcPopup = "frmPersonPopup"

 ' Open up pop-up form in dialog mode.
 DoCmd.OpenForm acbcPopup, WindowMode:=acDialog

 ' Check if form is still loaded.
 ' If yes, then OK button was used to close pop-up.
 If SysCmd(acSysCmdGetObjectState, acForm, acbcPopup) <> 0 Then
 Me.PersonID = Forms(acbcPopup)!cboPersonID
 DoCmd.Close acForm, acbcPopup
 End If

End Sub
Change frmPersonPopup to match the name of the pop-up form. Change
PersonId and cboPersonId to the names of the appropriate controls.

Discussion

When you have a form that loads and executes slowly, you need to
analyze the form and weigh the advantages and disadvantages of using
graphic features. After a careful analysis of the
frmCategoriesOriginal form in the 08-02a.MDB
database, we made several changes.

 First, we changed the unbound
object frame control to an image control. The OLE-based object frame
control can be used to hold graphic images, sound, and other
OLE-based data such as Excel spreadsheets or Word documents. But if
you need to display only an unbound bitmap, you're
better off using the more resource-conservative image control.
Second, we removed the form watermark, as this feature slows down
form execution slightly. The improvement in performance depends on
the color-depth of the removed image and the speed of your machine.

 Finally, we
created a second page and moved the text box bound to the memo field
and the bound object frame bound to the OLE field to this second
page. These field types (memo and OLE) are stored separately from the
rest of the fields in a record and thus require additional disk reads
to display. Fortunately, Access does not fetch these potentially
large fields from the database unless they are visible on the screen.
By placing them on the second page, you can quickly navigate from row
to row without having to fetch the memo or OLE data. When you need to
view the data in the fields, you can easily flip to the second page
of the form.

 The frmSurveySlow form in
08-02b.MDB contains a combo box, cboPersonId,
bound to a 15,000-row table. This makes form load and combo box list
navigation slow. Combo and list box controls are excellent for
allowing users to choose from a list of values and work well with a
small number of list rows. However, they perform poorly when the size
of the list exceeds a few thousand rows, even with very fast
hardware.
We were able to improve the load time of the survey form
significantly by limiting the rows in the person combo box. This was
done using a pop-up form containing the same combo box control, but
linked to a text box control that filtered the combo
box's rows via a parameter query. Using a little VBA
code, we disabled the combo box control until at least one character
was entered into the text box. In this way, we reduced a 15,000-row
combo box to, on average, 577 rows (15000 / 26), and
that's when only the minimum number of characters
(one) is typed into the text box. You could increase performance by
waiting for at least two or even three characters, rather than
filling the list after the user has typed only one letter.

 Besides reducing the number of rows in the
row source for cboPersonId, two other improvements were made to boost
combo box performance. On the original frmSurveySlow form, a SQL
statement was used as the row source for the combo box; the
cboPersonId combo box on the pop-up form uses a saved query instead.
Saved queries are always faster than SQL statements because the query
optimizer optimizes the query when it is saved instead of when it is
run.

 In addition, the SQL statement for
frmSurveySlow's combo box includes the following
ORDER
 BY clause:
ORDER BY [LastName] & ", " & [FirstName]
In contrast, the SQL statement for the qryPersonComboBox query used
as the row source for frmPersonPopup uses the following
ORDER
 BY clause:
ORDER BY tblPeople.LastName, tblPeople.FirstName
Although these two ORDER
 BY
clauses look similar, the first one sorts on an expression, whereas
the second sorts on two indexed fields. It's always
faster to sort on individual fields rather than expressions.
There are several other things to consider when looking for ways to
speed up your forms. You may wish to try some or all of the following
suggestions:
	Preload and keep loaded forms (see the Solution in Recipe 8.1).

	Ensure that fields used to sort or filter rows are indexed in the
underlying tables (see the Solution in Recipe 8.4 for more on indexing and its effect on query
performance).

	

 Use referential integrity throughout your
database. Besides the obvious improvements to the quality of your
data when you create enforced relationships, Access creates hidden
foreign key indexes that improve the performance of queries, forms,
and reports based on the joined tables.

	Create simpler forms with less color, fewer graphics, and fewer fonts.

	
 Limit the number of records in the
form's recordset (see the Solution in Recipe 8.6).

	

 Watch out for Tab controls with many
pages and subforms on each page. Loading all those subforms will slow
the opening of your form. One alternative is to load the subforms on
a Tab control page only when that page is selected. You can do this
by using the Change event of the Tab control to check the Value of
the control—this tells you the PageIndex of the selected page.
You can set the SourceControl property of your subforms only when the
page they appear on is selected; you can't set it in
design view.

8.3. Make Combo Boxes Load Faster

Problem

 Sometimes you need to use combo boxes that
list many items. It takes the user a long time to scroll to the
bottom of the list, because the list loads only a few rows at a time.
Is there any way to get the list to load all at once?

Solution

There is a very simple VBA technique that forces the rows of a combo
or list box to load all at once when you open the form. All you have
to do is force the code behind the form to calculate the number of
items in the list.
Load frmComboFast in 08-03.MDB. Click the down
arrow of the top combo box and scroll to the bottom of the list.
Access loads only part of the list each time you scroll, so it takes
many attempts to get to the last items on the list. Now do the same
with the second combo box. This time, you can scroll immediately to
the last item on the list.

Discussion

 The Load event procedure in
frmComboFast forces the second combo box to load the entire list, by
calling the ListCount property of the control:
Private Sub Form_Load()
 Dim lngCount As Long
 lngCount = cboFast.ListCount
End Sub
To use this code on your form, simply change the name of the control
from cboFast to the name of your combo or list box. You can handle
multiple controls by reusing the lngCount
variable to retrieve the ListCount property value for each combo or
list box that you want to load.
The form in this example loads a bit slower than it would if you
didn't use this technique, because load time is
sacrificed in order to improve the performance of the second combo
box. If you need to use combo boxes that have very long lists, this
is a price that your users probably will be quite willing to pay.

8.4. Use Jet Engine Optimizations to Speed Up Queries

Problem

 You've heard that
the Jet database engine includes optimizations you can use to improve
the performance of your queries. How do you create queries that use
take advantage of these optimizations?

Solution

The Jet engine (the database engine built into Access) can execute
certain types of queries dramatically faster that others, depending
on how you construct the queries. This solution explains how this
technology works and how you can take advantage of it. It also
introduces a technique for timing the execution of queries.

 Load the
08-04.MDB database. Open the qryOr1 query
in design view. This query, which is shown in Figure 8-11, contains criteria on two fields, Menu# and
Quantity. It returns all records from tblOrderDetailsNoIndexes where
Quantity = 13 or where Menu# = 25. If you switch to SQL view,
you'll see the following Where
clause:
WHERE (((tblOrderDetailsNoIndexes.[Quantity])=13)) OR (((tblOrderDetailsNoIndexes.
[Menu#])=25))
[image: The qryOr1 returns rows where Quantity = 13 or Menu# = 25]

Figure 8-11. The qryOr1 returns rows where Quantity = 13 or Menu# = 25

Close the query and open the tblOrderDetailsNoIndexes table to
confirm that this table has no indexes. The qryOr2 and qryOr3 queries
are identical to qryOr1, but they are based on different tables.
qryOr2 is based on tblOrderDetailsPartialIndexed, which contains an
index on the Menu# field, and qryOr3 is based on
tblOrderDetailsFullyIndexed, which contains indexes for both Menu#
and Quantity.
Run the three queries in turn. You should notice that qryOr3 is much
faster than qryOr1 or qryOr2, which are of similar speed. To get more
accurate timings, open the frmQueryTimer form in form view and create
a new test comparing the three queries, as shown in Figure 8-12. Press the Run Test button to begin executing
each query the number of times specified in the Number of Reps text
box. When the test is complete, press the Results button to view a
Totals query datasheet that summarizes the results of the test (see
Figure 8-13). When we ran this particular test on a
650-MHz Pentium III machine with 448 MB of memory, qryOr3 was 3.67
times faster than qryOr2 and almost 60 times faster than qryOr1! On a
slower machine, the results would be even more dramatic.
[image: A test comparing three queries]

Figure 8-12. A test comparing three queries

[image: The qryOr3 query is 60 times faster than qryOr1]

Figure 8-13. The qryOr3 query is 60 times faster than qryOr1

Follow these steps to take advantage of query optimization in your
own queries:
	

 Index all table fields
that are referenced in the criteria of your queries.

	Create queries with either:
	

 Two or more criteria on indexed fields in
the same underlying table connected with the And
operator

	

 Two or more criteria on indexed fields in
the same underlying table connected with the Or
operator

 In
addition, special query optimizations will be used whenever you
create Totals queries that make use of the
Count(*) expression and have either no criteria or
criteria on indexed fields only.

Discussion

The Jet database engine can combine two or more indexes
mathematically and thus execute a query using multiple indexes. The
net result is faster execution when faced with this kind of query.
This technology was originally created by the FoxBASE developers and
is used by both Jet and SQL Server.

 This
technology also speeds up Totals queries involving
Count(*). Jet is able to execute this type of
query without reading any rows of data; instead, it counts the index
rows, which is almost always faster than reading pages of data
records.
In the sample database, you'll find three tests
comparing the various optimizations using the three different
versions of the tblOrderDetails table. You may wish to run these
tests on your own computer to see what results you get. You may also
wish to import the query timer form into your own database to time
your queries in various scenarios. To use the frmQueryTimer form in
your own database, import the objects from Table 8-6.
Table 8-6. The objects used in the query timer technique
	
 Object type

 	
 Object

 	
 Description

	
 Table

 	
 zstblTests

 	
 One row for each test in frmQueryTimer

	
 Table

 	
 zstblQueries

 	
 One row for each query compared in a test

	
 Table

 	
 zstblTimes

 	
 One row for each time recorded in a test

	
 Query

 	
 zsqryTestAnalysis

 	
 Totals query used to analyze the results of a test

	
 Form

 	
 frmQueryTimer

 	
 The query timer form

	
 Form

 	
 fsubQueries

 	
 Subform used in frmQueryTimer

Once you've imported the objects from Table 8-6, you can set up and execute a new test
following these steps:
	Create and save two or more queries that you wish to compare.

	Open frmQueryTimer in form view and enter the number of times to
repeat the test in the Number of Reps text box.

	Enter a description for the test in the Test Description text box.

	Add a record to the subform for each query you wish to compare for
the test. Use the Query combo box control to select the queries
created in Step 1.

	Click on the Run Test button to run the test. When
it's done, the status text box will contain the
message "Test completed." Click on
the Results button to view a Totals query comparing the average
execution times of the queries.

 The frmQueryTimer form
executes each query repeatedly using a For...Next
statement that calls the acbTimeQuery function,
which is shown here:
Public Function acbTimeQuery(ByVal strQry As String, _
 datStart As Date, lngRecs As Long) As Variant

 Dim db As DAO.DATABASE
 Dim qdf As DAO.QueryDef
 Dim rst As DAO.Recordset
 Dim lngStart As Long
 Dim lngEnd As Long

 Set db = CurrentDb()
 Set qdf = db.QueryDefs(strQry)

 lngStart = acb_apiGetTickCount()
 datStart = Now()

 Set rst = qdf.OpenRecordset(dbOpenSnapshot)

 If Not rst.EOF Then
 rst.MoveLast
 lngRecs = rst.RecordCount
 Else
 lngRecs = 0
 End If

 lngEnd = acb_apiGetTickCount()

 acbTimeQuery = lngEnd - lngStart
End Function

 There are two interesting aspects to
this function. First, it makes use of the
GetTickCount Windows API function to get more
accurate measures of time than VBA's built-in
Timer function can provide. Second, it executes
the query by creating a snapshot recordset, not a dynaset-type
recordset. This forces the query to execute completely rather than
returning just the first page of records.

 Query
optimization can't work if you
don't create indexes. In general,
it's a good idea to create an index for every field
used in:
	Query criteria

	Query sorts

	

 Ad-hoc joins (when enforced
relationships have not been created)

Warning
Don't create indexes on fields that are part of
referential integrity relationships; Access already has indexes to
enforce these relationships. Also be aware that Access has a limit of
32 indexes per table. And finally, don't go
overboard indexing every field in every table of your database:
indexes can slow down operations that modify data.

8.5. Accelerate VBA Code

Problem

 You've optimized your
forms and queries, but now you need to look at the entire
application. Your application contains a lot of VBA code. What
optimizations can you perform to make it run faster?

Solution

 This solution demonstrates seven specific
programmatic techniques you can apply to accelerate your code. The
improvement can range from modest increases to increases of several
orders of magnitude in performance.
To see the optimizations in action, open and run frmShowOptimizations
from 08-05.MDB, shown in Figure 8-14. Click the Run Tests button, and the tests
will run one by one, displaying the results in milliseconds. The
tests compare two different methods of using VBA to achieve a result.
[image: The frmShowOptimizations form]

Figure 8-14. The frmShowOptimizations form

Follow these steps to apply the optimizations suggested by these
tests to your applications:
	

 When dividing integers, use integer
division. A majority of the division operations performed by your
application are probably done on integer values. Many developers use
the slash (/) operator to divide two numbers, but this operator is
optimized for floating-point division. If you're
dividing integers, you should use the backslash (\) integer division
operator instead. With \, Access works at the integer level instead
of the floating-point level, so computation is faster. (Of course,
this is useful only if you're assigning the results
of the division operation to an integer. If you care about the
fractional portion of the division, you'll need to
use floating-point math and the / operator after all.) For example,
instead of:
intX = intY / intZ
use:
intX = intY \ intZ

	

 Use specific data types
instead of variants. Variants offer convenience at the expense of
performance. Every time you refer to a variant, Access needs to
perform type conversion to ensure the data is in the correct format.
By using the data type that matches your variable, you eliminate the
need for this type conversion, and your code runs faster. In
addition, a variant variable is twice as large as an integer (on a
32-bit operating system) and thus takes longer to manipulate.

	

 Test for blank strings using the
Len function. You probably have code that tests
for blank strings by comparing them to an empty string
(""). However, because Access
stores the length of the string as the first byte in the string,
testing for a length of zero using the Len
function is always faster. Instead of:
If strTemp = "" Then
 MsgBox "The string is blank"
End If
use:
If Len(strTemp) = 0 Then
 MsgBox "The string is blank"
End If

	

 If
you refer to an object more than once in a section of code, assign it
to an object variable. Every time you reference
an object, Access has to perform some work to figure out which object
you are referring to. This adds overhead to your code each time the
object is referenced. But if you assign the object to an object
variable, Access "finds" the object
once and caches the reference in memory. So after the first
reference, you can refer to the object through the object variable
and your code will run faster. For example, instead of this code:
Dim strTmp As String
Dim lngCount As Long

For lngCount = 0 To acbcMaxIterations / 2
 strTmp = DBEngine.Workspaces(0).Groups(0).Name
Next lngCount
use:
Dim grp As DAO.Group
Dim strTmp As String
Dim lngCount As Long

Set grp = DBEngine.Workspaces(0).Groups(0)

For lngCount = 0 To acbcMaxIterations / 2
 strTmp = grp.Name
Next lngCount

 We
created two variations of this test. First, we changed the function
to refer to a control on an open form instead of a DAO group. The
cached reference version of the code was 2.8 times
faster—significantly improved, but not of the same magnitude as
the DAO group comparison. Second, we compared using an object
variable against using the VBA With...End
 With construct (without an object reference).
With...End
 With was slower than
using an object variable, but still much faster than using neither an
object variable nor With...End
 With.

	Don't worry about comments. In VBA the use of
comments exacts no measurable performance penalty, so
there's no excuse for omitting them!

	

 Use
If...Then...Else instead of the
IIf function. By replacing
IIf statements with the equivalent
If...Then...Else statement, your code will run
faster. For example, instead of:
MsgBox IIf(intX = 1, "One", "Not One")
use:
If intX = 1 Then
 MsgBox "One"
Else
 MsgBox "Not One"
End If

	
 When initializing a string so
that it's empty, don't use a
literal value (""). Instead, use
the built-in vbNullString constant. You'll get
better performance, as the test demonstrates.

Discussion

 Many optimizations that apply
to other languages can also apply to VBA. For example, checking for
blank strings using the Len function is a common
optimization in other languages. Don't be afraid to
try new techniques. The small performance improvements you get from
optimizing VBA code can add up if you are running code in a
repetitive loop, and many small improvements may result in a
noticeable overall difference in your application.

 Optimization
techniques for programming languages are a vital part of your
toolbox. But don't sacrifice other vital elements
for the sake of speed. First, make sure your code works correctly
before you optimize. Second, write your code so that
it's easily understood; it can be very difficult to
optimize code you don't understand. Finally,
don't break working code when optimizing it. By
optimizing code that works correctly (albeit slowly), you may
introduce bugs. Follow the three rules of optimization:
	Make it right before you make it faster.

	Make it clear before you make it faster.

	Keep it right as you make it faster.

You may find that there are no easy optimizations for a particular
piece of code. No matter what you do, it just won't
run fast enough. A favorite saying in software design is
"Don't diddle code to make it
faster; find a better algorithm." Often you need to
step back from a piece of slow code. Maybe there is a better overall
approach or a better algorithm you can employ. A good way to get over
a hurdle such as this is to ask other programmers how they handle the
same situation. Overall, you will find that code optimizations have a
much smaller impact on your application's
performance than optimizations to your data access; for example,
adding one extra index can have a greater impact than hours and hours
of time spent optimizing VBA.
Tip
As they say in the auto commercials, "Your mileage
may vary." Don't assume anything is
faster until you've proven it yourself on the
machine that will run your application!

8.6. Test the Comparative Benefits of Various Optimization Techniques

Problem

Now that you've tried the optimization techniques in
this chapter, you'd like to test some additional
optimization ideas. How can you test various VBA optimization
techniques in a standardized fashion?

Solution

 By using a Windows API call, some
simple math, and a wrapper function, you can easily compare the
performance of two optimization techniques with relatively high
accuracy. This solution shows you how to create a form to compare the
performance of two functions. It runs the functions and then displays
how long each took to execute.
Open and run frmTestOptimize from 08-06.MDB. The
form shown in Figure 8-15 allows you to enter the
names of two functions and test their performance relative to each
other. The 08-06.MDB database contains two
sample functions that show the relative performance of integer
division and floating-point division. (This optimization was
discussed in the Solution in Recipe 8.4.) To run the test, enter:
FloatDivision()
into the Function 1 text box, and enter:
IntegerDivision()
into the Function 2 text box. Press the Test button. The form will
run each function, show the time taken by each function, and tell you
which function is faster and by how much.
[image: The Test Optimizations form]

Figure 8-15. The Test Optimizations form

To use frmTestOptimize to test your own functions, follow these steps:
	Import frmTestOptimize from 08-06.MDB into your
database. This form is completely self-contained and requires no
other objects.

	Open frmTestOptimize in form view and enter the name of the two
functions you wish to test along with any required parameters. Type
the entries in the Function 1 and Function 2 text boxes exactly as if
you were calling the functions in your VBA code, but omit the
assignment operator and assignment object. For example, for a
function that is called in your VBA code like this:
intReturned = MyTestFunction ("MyTable")
type the following into the frmTestOptimize text box:
MyTestFunction ("MyTable")

Discussion

 There are two key aspects to this
technique. First, we used the Windows API
GetTickCount function.
GetTickCount returns the number of milliseconds
elapsed since Windows was started. This number is useful when
employed to compare two points in time. You may wonder if you can use
the Timer function built into Access instead, or even the Now
function; however, both of these return time values that are accurate
only to within about one tenth of a second, even though they can show
numbers that appear to have greater precision. You will lose a great
deal of accuracy with these functions. Because
GetTickCount returns time measurements in
milliseconds, it is more accurate than VBA's
Timer or Now functions.

 Second, this optimization test
technique makes use of the Eval function, which
is one of the least understood yet most powerful functions in Access.
You can use Eval to execute a function that is
named in a variable or some other expression. If you have programmed
in a lower-level language such as C or Pascal, you probably miss
Basic's absence of pointers to functions. You can
use the Eval function to simulate this by
passing a function name as a parameter to Eval.
This technique calls Eval for both functions you
type into the form.
When you are testing optimization techniques, watch out for a couple
of things that can yield false results:
	

 Both
Access and Windows use caching algorithms to reduce disk writes. Any
tests that access objects from the database must take this into
account. For example, if you are testing an optimization on form load
time, your results can be erroneous if you perform the comparison of
the two methods one after the other. The first time you load the
form, Access caches it in memory if possible; the second time, the
form invariably loads faster because Access is retrieving it from
memory rather than disk. This can skew your test results. There are
several ways to get around the effects of caching; probably the
simplest is to repeat all tests, reversing the order the second time
you perform the test.

	
 Windows is a
multitasking operating system. Because of this, your test results may
be further skewed by the fact that Windows may be performing some
other operation in the background while one of your tests is
running—for example, a word-processing document may be
automatically saved in the background in the middle of your test. The
best way to minimize this factor is to ensure that no other Windows
programs are running when you perform your tests. It is always a good
idea to run the test several times and average the results.

8.7. Accelerate Multiuser Applications

Problem

 You
have a single-user application that you just converted to run on a
network to be shared by multiple users. Your once-responsive
application is now sluggish. How can you improve the performance of
multiuser applications?

Solution

 Moving a single-user
application to a shared environment can make that application slower
for at least three reasons. First, to read or write data from the
database, the data must now travel across relatively slow network
wires. This is almost always slower than reading and writing data
directly to a local hard disk drive. Second, every time a record is
written to disk, Access must spend time obtaining, releasing, and
managing locks to make sure that two users do not write to a page of
records at the same time. Third, if multiple users are trying to
access the same records in the database, they must wait their turns
before gaining access to the records. Because of these factors, you
need to make an extra effort to optimize multiuser applications to
bring their speed to an acceptable level. This solution discusses one
way to improve performance by limiting the number of records in your
form's recordsets.
This solution employs two files, 08-07FE.MDB and
08-07BE.MDB. You'll first need
to link the data tables from 08-07BE.MDB (the
"backend" or data database) to
08-07FE.MDB (the
"frontend" or application
database). Linking a data table allows you to use a table from one
Access database within another Access database. Start Access and load
08-07FE.MDB. Choose File → Get External
Data Link Tables and select 08-07BE.MDB as the
Access link database. At the Link Tables dialog, select tblPeople and
click OK. (To appreciate the extra demands made on a multiuser
application, you may wish to move the
08-07BE.MDB database to a file server on your
local area network first.)
Splitting Multiuser Databases
This solution makes use of a common multiuser technique: splitting
the application and data into separate databases. Multiuser
application performance can be improved considerably if you place the
data (or backend database) on the file server and a copy of the
application (or frontend database) on each user's
desktop. Access includes the Database Splitter Wizard, which makes it
easy to split an existing database into data and application
databases. Select Tools → Database Utilities →
Database Splitter to run the wizard.

 Once you've fixed
up the link to tblPeople in the backend database, open the
frmPeopleFindFirst form in form view and note how long it takes to
load the form. Enter the value 60000 into the text box in the header
of the form. Press the Goto Record button to move to the record with
an ID of 60000. The time this operation takes is displayed to the
right of the command button (see Figure 8-16).
[image: The frmPeopleFindFirst form]

Figure 8-16. The frmPeopleFindFirst form

Now close the form and open the frmPeopleRSChange form in form view.
This form is similar to frmPeopleFindFirst, except that it initially
loads with only one record in its recordset. Because of this, load
time should be faster than for frmPeopleFindFirst. This form also
differs in how it searches for records. Instead of using the
potentially slow FindFirst method to navigate to a different record,
it changes the record source of the form on the fly. Enter the value
60000 into the text box in the header of frmPeopleRSChange and press
the Goto Record button. The time this operation takes should be
faster than for frmPeopleFindFirst (see Figure 8-17).
[image: The more multiuser-friendly frmPeopleRSChange form]

Figure 8-17. The more multiuser-friendly frmPeopleRSChange form

Although the performance difference between these two forms may be
noticeable with 60,000 records in the sample database,
it's not that great. With more records or across a
busy network, however, the difference will be much more significant.
Still, even without a noticeable performance improvement, this
technique significantly reduces the load you are placing on the
network.
Follow these steps to create a form that uses the record source
changing technique of frmPeopleRSChange:
	
 Create a new form or edit an
existing form in design view. Change the RecordSource property of the
form so that it initially loads no records. The most efficient way to
do this is to use a Select statement that
restricts the record source by its primary key field to a nonexistent
record. For example, we used the following record source for
frmPeopleRSChange:
SELECT * FROM tblPeople WHERE ID = 0
This will cause Access to place you on the new record
that's normally at the end of a
form's recordset. If you prefer, you can use a
Select statement that returns some small subset of
the records instead.

	Add an unbound text box named txtGoto to the form's
header. Add a command button control named cmdGoto to the right of
the text box.

	
 Create a new event
procedure for the Change event of the txtGoto text box. (If
you're unsure of how to do this, see
How Do I Create an Event
Procedure? in the Preface of this book.) Add the
following code to the event procedure:
Private Sub txtGoto_Change()

 ' Enable cmdGoto only when a character
 ' has been typed into txtGoto

 Me.cmdGoto.Enabled = (Not IsNull(Me.txtGoto.Text))

End Sub

	
 Create a new event procedure for
the Click event of cmdGoto and add code similar to the following (or
copy the cmdGoto_Click event procedure from frmPeopleRSChange;
however, that event procedure has additional code that times the
operation, which is eliminated here):
Private Sub cmdGoto_Click()

 ' Go to new record by changing the
 ' form's RecordSource property

 Dim ctlGoto As TextBox
 Dim ctlTime As TextBox
 Dim varCriteria As Variant
 Dim lngStart As Long
 Dim lngEnd As Long
 Dim dblTime As Double

 On Error GoTo HandleErr

 Const acbcQuote = """"

 ' Start the timer.
 lngStart = acb_apiGetTickCount()

 Set ctlGoto = Me.txtGoto
 Set ctlTime = Me.txtTime

 ' Create criteria based on the type of data
 ' entered into txtGoto.
 If IsNumeric(ctlGoto.Value) Then
 varCriteria = "ID = " & CLng(ctlGoto.Value)
 Else
 ' A string, so search LastName.
 varCriteria = "LastName Like " & acbcQuote & _
 ctlGoto.Value & "*" & acbcQuote
 End If

 ' Change the form's recordset based on criteria.
 Me.RecordSource = "SELECT * FROM tblPeople WHERE " _
 & varCriteria

 lngEnd = acb_apiGetTickCount()

 ' Now check the form's recordset to see if
 ' any records were found.

 With Me.Recordset
 If .EOF And .BOF Then
 MsgBox "No matching record found.", _
 vbOKOnly + vbCritical, "Goto Procedure"
 End If
 End With

 ' Post the time to txtTime.
 dblTime = (lngEnd - lngStart) / 1000
 ctlTime = "Operation took " & Format(dblTime, "##0.00") _
 & " seconds"

ExitHere:
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox "Error#" & Err.Number & ": " & Err.Description, _
 , "Goto Procedure"
 Resume ExitHere
 End Select
End Sub
See Recipe 8.7.3 for information on how to customize this code for
your particular form.

	Save the form and switch to form view to test it.

Discussion

 In a multiuser environment,
it's always important to limit the amount of data
sent across the network to your desktop. By default, however, Access
binds forms to all records in the table or query to which your form
is bound. This is fine for smaller recordsets of perhaps less than
20,000 records (the exact cutoff figure will vary based on the speed
of your PCs, the speed of your network cards and file server, and the
average network load), but it can slow things considerably for
moderately large recordsets. This solution improves the performance
of the form and reduces network traffic by carefully limiting the
records in the form's recordset.

 By using a SQL statement that
initially returns no records as the form's record
source, you can quickly open the form in append mode. When the user
enters a value in the txtGoto text box and presses the Goto Record
button, code attached to the button's Click event
changes the form's RecordSource to the correct
record.
The event procedure behind the cmdGoto command button begins by
setting up an error handler, declaring a few variables, and setting
ctlGoto to point to the txtGoto text box control:
On Error GoTo cmdGotoClickErr

Dim ctlGoto As TextBox
Dim varCriteria As Variant

Const acbQuote = """"

Set ctlGoto = Me.txtGoto

 Next,
the criteria of the SQL Select statement is
constructed using this code:
' Create criteria based on the type of data
' entered into txtGoto.
If IsNumeric(ctlGoto.Value) Then
 varCriteria = "ID = " & CLng(ctlGoto.Value)
Else
 ' A string, so search LastName
 varCriteria = "LastName Like " & acbQuote & _
 ctlGoto.Value & "*" & acbQuote
End If

 In the case of the people form, we
decided to be flexible and allow users to search on either last name
or ID. You'll want to make sure the fields you allow
the user to search are indexed. The code determines which field the
user wishes to search by using the IsNumeric
function to test if the entered value is a number. If so, the code
constructs criteria using the ID field of tblPeople. If the entered
value is non-numeric, then the code assumes the user wishes to search
on LastName. Again, we add a bit of flexibility by allowing the user
to enter partial matches—the criteria string is constructed
using the Like operator. Because this is a Text field, we must
surround the value with quotes, so we use the
acbcQuote constant that we defined earlier in the
procedure. Finally, we have added "*" (an
asterisk) before the closing quote to perform a pattern match search.

 If you wish, you can simplify this
code on your own form to use a single field. Either way,
you'll need to change the references to ID and
LastName to match the names of the fields (not
the control names) in your form's record source. If
you decide to allow a search on a date/time field, make sure you
surround the date/time value with # (pound signs)
instead of quotes.
With the criteria built, the SQL statement is easily created:
' Change the form's recordset based on criteria.
Me.RecordSource = "SELECT * FROM tblPeople WHERE " & varCriteria
Of course, you'll need to replace tblPeople with the
name of the table or query on which your form is based.
The remaining code determines if any records were found:
' Now check the form's recordset to see if
' any records were found.

With Me.Recordset
 If .EOF And .BOF Then
 MsgBox "No matching record found.", _
 vbOKOnly + vbCritical, "Goto Procedure"
 End If
End With
This portion of code is not absolutely required, because Access will
pull up the "new" record if no
matching records are found. However, you might prefer to notify the
user when no records were found.

 You can do this by using the
form's Recordset property to return a recordset
object that you can inspect. If the recordset is empty, Access sets
both the end of file (EOF) and beginning of file (BOF) flags to
True, so you can use this fact to test for the
absence of records in the form's recordset.

 A simple error handler is
included in this procedure. It's important to
include error-handling code in all multiuser procedures to handle the
cases where records are locked. See Chapter 10
for more information on developing multiuser applications.
The one negative side to using this technique is that users may find
it restrictive if they are used to navigating freely among records
using the navigation controls at the bottom of the form. The sample
form allows users to grab a subset of records from tblPeople by
entering a partial match on LastName. If you also need to return
groups of records when using numeric primary key field searches, you
can use two text boxes to allow users to search for a range of
primary key values, perhaps including code that limits the range to
some arbitrary number.
The techniques presented in this solution apply equally to
client/server applications.

See Also

Additional optimization strategies for client/server applications are
discussed in the Solution in Recipe 8.8 and
in Chapter 14.

8.8. Accelerate Client/Server Applications

Problem

 You are using Access as a front end
to linked tables stored in a client/server database.
You're not satisfied with the response time of your
client/server application. What can you do to make it run faster?

Solution

 You can apply a variety of optimization
techniques when developing client/server applications. If you are
attaching remote tables in databases such as SQL Server or Oracle,
you are accessing data through open database connectivity (ODBC)
drivers. Typically, client/server applications using ODBC require
more horsepower on the part of workstations and the network. By
knowing how data is retrieved from the server, you can make your
application run faster.

 Another
option is to create an Access Data Project (ADP). This is possible
only if your data is stored in SQL Server. Instead of using ODBC,
ADPs use a newer technology, OLE DB, to connect to the data. However,
although OLE DB is newer, it isn't necessarily
faster than linking to tables using ODBC. Chapter 14 includes several solutions related to the
use of Access project applications.
There is no sample database for this solution. Here are some
suggestions to consider when optimizing your linked-table
client/server application:
	
 Your forms should retrieve as few records
as possible when loading (fetching data is a significant bottleneck
in client/server applications). Design your form to retrieve few or
no records by using the technique demonstrated in the Solution in
Recipe 8.7.

	
 Optimize the way your application connects
to the server. When the user starts your application, log the user
into the server using the OpenDatabase method. This establishes a
connection and caches it in memory. Subsequent data access is faster
because the connection has already been established. Use code similar
to the following:
Sub PreConnectUser (strUser As String, strPass As String)
 Dim wrk As DAO.Workspace
 Dim db As DAO.Database
 Dim strConnect As Database

 strConnect = "ODBC;DSN=MyServer;DATABASE=dbCustomers;" _
 & "UID=" & strUser & ";" _
 "PWD=" & strPass & ";"
 Set wrk = DBEngine.Workspaces(0)
 Set db = wrk.OpenDatabase("", False, False, strConnect)
End Sub

	

 Reduce
connections by limiting recordsets to 100 records or fewer. Most
servers (such as SQL Server) require two connections for recordsets
of more than 100 records. By limiting the size of the recordset, you
reduce the number of connections that need to be made, speeding up
your application.

	

 Offload as much query processing as
possible to the server. Generally, your server will search and
process data faster than the local Jet engine, especially if there
are many concurrent users (this is probably the reason you moved to
client/server in the first place). Design your queries to eliminate
expressions or functionality not supported by the server. If the
server does not support an expression or function used in your query,
Access will process the query locally and performance will suffer.
Read the documentation that comes with your database server to
determine which functionality is supported, and use profiling tools
on the server (like the SQL Server Profiler) to see what is actually
being processed on the server.

	

 Add a timestamp field to a table to
improve update and deletion performance. The server automatically
updates Timestamp fields, also called Rowversion fields, when any
data in a row is modified. If a table has a Timestamp field, Access
can use it to determine quickly whether a record has changed. If the
table doesn't have this field, Access needs to
compare the contents of every field to see if the record has changed.
Obviously, checking a single field is a lot faster. To add a
Timestamp field to a table on the server, you can create and execute
a SQL-specific query in Access using the ALTER
 TABLE statement with syntax similar to the
following:
ALTER TABLE Customers ADD MyTimeStampCol TIMESTAMP

	

 Avoid using server data to fill list box
and combo box controls. The performance of these controls is
generally poor when accessing server data. Instead, consider storing
the data for the list box or combo box in a local database. This
approach works if the data does not change frequently and can be
easily copied from the server. See the Solution in Recipe 8.2 for more on list box and combo box performance
issues and alternatives to their use.

	

 For working with server data
in code, ADO is more efficient than DAO. We can't
discuss ADO coding techniques fully here, but take the time to learn
ADO if you want to fill recordsets with server data or to execute
server commands. (On the other hand, DAO recordsets tend to be more
efficient, and simpler to use, when working with Jet-based
data—data retrieved from MDB or
MDE files.) Pay special attention to the
CursorLocation property, which allows you to close a connection and
still be able to work with the data in a client-side ADO recordset.
Here is an example of opening a client-side recordset, disconnecting
from the database, and then working with the data in the cached
recordset:
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strEmployees As String

Set cnn = New ADODB.Connection
cnn.Open "Provider=SQLOLEDB.1;" _
 & "Data Source=(local);Initial Catalog=Northwind;" _
 & "User ID=username;Password=secretpwd"
Set rst = New ADODB.Recordset
rst.CursorLocation = adUseClient
rst.Open _
 Source:="SELECT EmployeeID," _
 & " LastName, FirstName" _
 & " FROM Employees" _
 & " WHERE EmployeeID = 5", _
 ActiveConnection:=cnn, _
 CursorType:=adOpenStatic, _
 Options:=adCmdText
Set rst.ActiveConnection = Nothing
cnn.Close
Set cnn = Nothing
Debug.Print rst("FirstName")
rst.Close
Set rst = Nothing

Discussion

 Understanding how client/server
applications differ from single-user and file-server applications is
crucial to optimizing their performance. The key is in deciding when
to let Access do the work and when to let the server do the work.
With a few exceptions, you want the server to perform queries and
Access to perform user-interface operations. Concentrate on
minimizing the traffic across the network by reducing the data
retrieved from and written to the server. To work with server data
programmatically, use ADO rather than DAO.
Tip
Access includes a wizard called the Performance Analyzer. You should
use this wizard to analyze the performance of all your forms (and
other database objects). Although it is somewhat limited in the
suggestions it can make, it's a nice way to check if
you've missed any obvious problems. For example,
when running the Analyzer against the queries in
08-04.MDB, it will suggest adding several
indexes.

Chapter 9. User Interface

No matter how much you do behind the scenes to create a solid and
robust application, the users of your application see only your user
interface. Certainly, perfecting the database and application design
is crucial—but once that's done, it pays to
devote considerable time to designing a user interface that is
workable, aesthetically pleasing, and helps the users get their work
done. By implementing the ideas and techniques in this chapter,
you'll be on your way to creating an interface that
has ease of use and productivity written all over it.
You'll learn how to take full advantage of special
keystrokes to help users navigate through a complex application.
You'll also learn how to create forms that have no
menus or toolbars and how to create a map-based interface that lets
users navigate by pointing to and clicking on various parts of a map.
Next, you'll learn how to ease data-entry pain with
forms that let users mark their place while they peruse other
records, and how to add shortcut menus to forms.
You'll also see how you can create forms that carry
data forward from record to record, how to hide complexity from your
users with a dialog that expands on request to reveal complex
options, and how to use a combo box not just to select from a list,
but also to maintain that list with new entries as they are needed.
Finally, you'll learn how to create and use two
generic, reusable components: a pop-up calendar form for entering
dates that makes use of an ActiveX control, and a custom-built status
meter form complete with an optional Cancel button.
Warning
Several of the examples in this chapter take advantage of the DAO
type library, rather than the default ADO library used by Access 2002
and Access 2003. Even though it's less
"modern," DAO provides greater
functionality, and generally better performance. In addition, using
DAO makes it possible for these demonstrations to work in earlier
versions of Access. If you want to try these techniques in your own
applications, make sure you add the DAO reference to your project
using the Tools → References menu item from within
VBA—it won't be added by default.

9.1. Create Context-Sensitive Keyboard Shortcuts

Problem

 You've used
Access's AutoKeys macro to create
keyboard shortcuts for your application, but you'd
like the shortcut keys to change based on the currently active form.
Is there an easy way to create context-sensitive keyboard shortcuts
in Access?

Solution

 The SetOption method of the Application
object allows you to change global database options programmatically.
This solution shows you how to combine this functionality with the
Activate and Deactivate event properties of your forms to create
custom key shortcut macros for each form of your application.
For an example of key assignments that depend on the active form,
open 09-01.MDB. This sample database contains
information on units, assemblies that make up parts, and parts that
make up assemblies. Open the frmUnit form in form view. At any time,
you can press Ctrl-D to "drill
down" to the next level of detail or Ctrl-R to
revert to the previous level of detail. When you press Ctrl-D on
frmUnit, frmAssembly is loaded; if you press Ctrl-D from frmAssembly,
frmPart is loaded (see Figure 9-1). If you press
Ctrl-D a third time while frmPart has the focus, nothing happens.
Thus, the behavior of Ctrl-D changes based on its context. The Ctrl-R
keyboard macro is similarly context-sensitive.
[image: The sample database after pressing Ctrl-D twice]

Figure 9-1. The sample database after pressing Ctrl-D twice

Tip
To keep the example simple, we have not added the additional macro
code necessary to keep the forms synchronized. You must manually use
Ctrl-R to return to the previous level/form, then navigate to the
desired record, and then use Ctrl-D to drill down if you wish to keep
the forms synchronized.

To add context-sensitive AutoKeys macros to your
own application, follow these steps:

	

 Create a key assignment macro for
each form in your application (you can use the same macro for more
than one form if you like). Follow all the design rules for an
AutoKeys macro, but give your macro a unique name
when you are done. In the sample application, for instance, the three
key assignment macros are called mcrUnitAutoKeys,
mcrAssemblyAutoKeys, and
mcrPartAutoKeys, so that the macro name reminds
you of its function. Table 9-1 shows the settings
for the mcrUnitAutoKeys macro.
You'll probably want to add comments to your macro
to make it easier to understand and maintain, as illustrated in Figure 9-2.

Table 9-1. Settings for the mcrUnitAutoKeys macro
	
 Macro name

 	
 Action

 	
 Argument

 	
 Value

	
 ^D

 	
 OpenForm

 	
 Form Name

 	
 frmAssembly

	

	

	
 View

 	
 Form

	

	

	
 Where Condition

 	
 [UnitNumber]=[Forms]![frmUnit]![UnitNumber]

	

	

	
 Data Mode

 	
 Edit

	

	

	
 Window Mode

 	
 Normal

	
 ^R

 	
 Close

 	
 Object Type

 	
 Form

	

	

	
 Object Name

 	
 frmUnit

[image: The mcrUnitAutoKeys macro]

Figure 9-2. The mcrUnitAutoKeys macro

	Import the basOptions module from 09-01.MDB into
your own database.

	

 Add a RunCode action
to your AutoExec macro (or create a new macro
named AutoExec containing this one action). Set
the action's Function Name argument to:
=acbStoreOriginalAutoKeys()

	
 In the OnActivate event property of each
of your forms, add a call to the acbSetAutoKeys
function. This function takes a single argument, the name of the key
assignment macro to use while that form is active. For example, on
the frmUnit form in the sample application, this property is set to:
=acbSetAutokeys("mcrUnitAutokeys")

	
 In
the OnClose event of the last form to be closed
in your application (typically, your main switchboard form), add a
call to the acbRestoreOriginalAutokeys function.
If there is more than one possible last form in your application,
you'll need to add this function call to
every possible last form.
acbRestoreOriginalAutokeys takes no arguments.
Figure 9-3 shows these calls in the sample
application.

[image: Event properties for frmUnit]

Figure 9-3. Event properties for frmUnit

Discussion

 The
special built-in Application object refers to your entire Access
application. The GetOption method of this object lets you read the
options stored under Tools Options, Tools Startup, and additional
options that are available only programmatically. The Key Assignment
Macro option, which was originally part of the View Options dialog in
Access 2.0, is no longer available from the Access user interface,
but fortunately it is still available programmatically.

 Because the database options are
stored in the user's registry, any changes you make
to them will affect not only the current database but also any other
database the user runs. It's best to store the
original value of any option you change and restore it when your
application is closed. The
acbStoreOriginalAutokeys function uses the
GetOption method to read the original key assignment macro name when
your application is loaded and store it in the
mstrOriginalAutokeys module-level
variable. Like the rest of the functions in this solution,
acbStoreOriginalAutokeys is very simple,
consisting of one statement, a few comments, and an error handler:
Public Function acbStoreOriginalAutokeys()

 ' Store the user's original Autokeys macro name
 ' so we can restore it when we're done.

 On Error GoTo HandleErr

 mstrOriginalAutokeys = Application.GetOption("Key Assignment Macro")

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 , "acbStoreOriginalAutokeys()"
 Resume ExitHere
End Function

 The
acbRestoreOriginalAutokeys function resets the
option to its original value. This function should be called from the
last open form. In the sample database, it is called from the Close
event of frmUnit. Its source code is:
Public Function acbRestoreOriginalAutokeys()

 ' Put the Autokeys macro setting back the way we found it.

 On Error GoTo HandleErr

 Application.SetOption "Key Assignment Macro", mstrOriginalAutokeys

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 , "acbRestoreOriginalAutokeys()"
 Resume ExitHere
End Function

 Each form passes the name of its custom
key assignment macro to the acbSetAutokeys
function when the form is activated. The Activate event of the form
calls this function. The function uses the SetOption method to take
the passed macro and make it the key assignment macro. Its source
code is:
Public Function acbSetAutokeys(strMacroName As String)

 ' Set a new Autokeys macro. Takes the name of the
 ' macro to use for keyboard reassignment.

 On Error GoTo HandleErr

 Application.SetOption "Key Assignment Macro", strMacroName

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 , "acbSetAutokeys()"
 Resume ExitHere
End Function

 You can generalize this
technique of using GetOption and SetOption to control many properties
of your application at runtime—for example, to activate the
status bar and toolbars or to allow the user to pick a new font for
datasheets from a list you supply. You should always follow the same
three basic steps:
	Use GetOption to read the current option value and save it in a
module-level variable.

	Use SetOption to set your new value. Be sure to use the name of the
option exactly as it appears in the Access online help.

	Use SetOption to restore the original value when your application is
closed.

Overlapping User Interface (UI) Methods
In a well-designed Windows application, keyboard shortcuts should not
be the only method a user can employ to accomplish a task. Because
they are hard for new users to discover or for infrequent users to
remember, keyboard shortcuts should be used only as an alternative
method of accomplishing a task. Make the task available from some
other UI method, preferably one that is more easily discovered than a
keyboard shortcut. Other UI methods include command buttons, toolbar
buttons, standard menus, and shortcut menus.

 To reduce the time delay in switching key
assignment macros, we decided to reset the user's
key assignment macro only when the last open form is closed. A safer
but perhaps slower alternative would be to reset the key assignment
macro in the Deactivate event of each form.
Detecting When a User Closes an Application
There is no built-in way to have Access always run a cleanup routine
when the user closes your application. The final event you can trap
is the last form's closing. If there are multiple
possible last forms, you must make sure to check whether the one that
has closed is actually the last form. As an alternative, you can open
a hidden form in your Startup form or AutoExec
macro and call your cleanup processing from this
form's Close event. Access will automatically close
this form when the user exits, and since this was the first form
opened, it will be the last form closed.

 The individual calls to the
acbSetAutoKeys function are attached to the
forms' Activate events instead of their GotFocus
events for a very good reason. Unless there are no controls on a form
that can get the focus, the form itself will
never receive the focus. Only forms consisting
strictly of graphic objects and disabled controls will ever trigger a
form-level GotFocus event.

It is interesting to note that AutoKeys functionality is just about
the only thing left in Access that can be done only by using macros,
not in VBA code.

9.2. Create a Form with No Menu or Toolbar

Problem

 You'd like
to completely disable menus for a form, and the toolbar too. Is there
any way to remove menus and toolbars from a form?

Solution

 If
you set the MenuBar property of a form to point to a macro in Access
that contains no macro actions, you can trick Access into not
displaying any menus. This solution demonstrates this trick and also
discusses how you can apply it to the global menus of an application.
In addition, you'll learn how to use VBA code to
remove a form's toolbar.
To create forms in your database without any menus, follow these
steps:
	Create a new macro sheet without any actions. The
mcrNoMenus macro sheet in
09-02.MDB has no macro actions.

	Create a new form or open an existing form in design view. Select the
menu macro from Step 1 as the MenuBar property for the form.

	

 Add the following Activate and
Deactivate event procedures to the form to remove the toolbar for
this form only:
Private Sub Form_Activate()
 DoCmd.ShowToolbar "Form View", acToolbarNo
End Sub

Private Sub Form_Deactivate()
 DoCmd.ShowToolbar "Form View", acToolbarWhereApprop
End Sub

	

 Optionally, you may wish to
also eliminate right-click shortcut menus for your form. To do this,
set the ShortcutMenuBar property of the form to No.

	Save the form.

To see an example, load the 09-02.MDB sample
database. Open the frmCustomerDefaultMenus form in form view and note
that the default Access menu and toolbar are available at the top of
the screen (see Figure 9-4). Close this form and
open frmCustomerNoMenus. Note the absence of any menu or toolbar for
the form (see Figure 9-5).
[image: The frmCustomerDefaultMenus form with the default Access menu bar]

Figure 9-4. The frmCustomerDefaultMenus form with the default Access menu bar

[image: The frmCustomerNoMenus form with no menu bar]

Figure 9-5. The frmCustomerNoMenus form with no menu bar

Discussion

 In early versions of Access, macros were
the only method of creating custom menus. Despite the newer Command
Bar menus and toolbars supported in recent versions of Access, you
can still create custom menus in Access by creating menu macros. When
you open a form with custom menus, Access reconstructs the custom
menus from the hierarchy of macros attached to the
form's MenuBar property. However, if you attach an
empty macro to the MenuBar property, Access creates a blank menu for
the form.

 The ShowToolbar macro
action, which you call in VBA using DoCmd.ShowToolbar, enables you to
show or hide any toolbar. The code hides the default toolbar when the
form becomes active. The Deactivate code is equally
important—without it, that toolbar will remain hidden for all
subsequent forms that you view. The Deactivate event procedure tells
Access to show that toolbar again whenever it is appropriate.

 You may want to eliminate menus for a
form to reduce the complexity of your application or to remove
potential chinks in your application's armor.
Whenever you remove built-in functionality from forms, however, you
must ensure that users of your forms can still perform essential
activities. For example, you wouldn't want to remove
menus and set the ControlBox and CloseButton properties of your form
to No unless you have added either a toolbar
button or a command button that could be used to close the form.
Another alternative is to use the View Toolbars Customize dialog to
create your own menus and toolbars containing only the commands you
want to expose.

 In addition to removing menus
for a single form, you can set the application's
default menu bar to point to an empty macro. Select Tools →
Startup to set the default menu bar. In Figure 9-6,
we set the default MenuBar property of the Startup dialog to
mcrNoMenus, thus removing menus for all forms in the application for
which custom menus were not created. Another option is to uncheck the
AllowFullMenus property, which tells Access to remove all menu
commands that allow users to switch to design view.
[image: The Startup dialog allows you to customize various default properties]

Figure 9-6. The Startup dialog allows you to customize various default properties

 You can also customize the
default shortcut menus using the Startup dialog by changing the
AllowDefaultShortcutMenus and ShortcutMenuBar properties.

9.3. Create a Geographical Map Interface

Problem

 You want to display a map and
allow users to click on regions of the map. You want the form to
react based on which region is clicked on. The regions
aren't necessarily rectangular. How can you do this?

Solution

 You can accomplish
this task using a combination of bitmaps and transparent command
buttons. Depending on how far from rectangular your shapes are, this
task may be trivial or quite involved. By making the command buttons
transparent, you make the application appear to react directly to
mouse clicks on the map.

 Open frmWesternUS in
09-03.MDB (Figure 9-7). This
form has been created with an imported bitmap file as the background.
Above each state's image on the map
there's at least one command button with its
Transparent property set to Yes. Figure 9-8 shows
the form named frmWesternUSDesign, in which the buttons are not
transparent. Here you can see the actual layout of the command
buttons.
[image: The finished map form, frmWesternUS, with transparent buttons]

Figure 9-7. The finished map form, frmWesternUS, with transparent buttons

[image: The same bitmap form with buttons showing]

Figure 9-8. The same bitmap form with buttons showing

To implement similar functionality in your own forms, follow these
steps:
	

 Create a new form. Click anywhere in the
detail section of the form, and select Insert Object (or use the form
design toolbox to place an unbound object frame control form on the
form). Once you release the mouse button, Access displays a dialog
requesting information about the object. At this point, you can
create a new object by launching an application such as Microsoft
Paint, or you can create an object from an existing file. If you
choose the latter, a Browse button will appear. Click on the Browse
button to select a file (see Figure 9-9). Choose
the appropriate image for the background. For the example form, use
USWEST.BMP.

[image: Browsing a file from the Insert Object dialog]

Figure 9-9. Browsing a file from the Insert Object dialog

	

 Set the bitmap's
SizeMode property to Clip. This disallows resizing of the bitmap, as
you'll be overlaying the bitmap with command
buttons.

Tip
Using Shift and Ctrl plus the arrow keys is helpful in achieving
exact placement of the command buttons. Use Shift-arrow to expand and
contract the size of a control one pixel at a time; use Ctrl-arrow to
move the control one pixel at a time.

	Overlay each defined area of the bitmap with a command button, naming
each as desired. Figure 9-8 shows the completed
process for the sample form. You'll find that for
odd-shaped regions, you'll need to use multiple
buttons, as demonstrated for Idaho, Texas, and Nevada on the map.

	
 Select all the command buttons (hold
down the Shift key and click on each). On the properties sheet, set
the Transparent property to Yes, making the selected controls
invisible yet active. Figure 9-10 shows the sample
form in design view; note that you can still see a faint outline of
each button.

[image: The sample map form in design view]

Figure 9-10. The sample map form in design view

	
 For each transparent command
button, call a function, passing it the name that describes the
defined area (in this example, the name of the selected U.S. state)
from the button's OnClick event property. For
example, the OnClick event property for the command button overlaying
the state of Wyoming calls the HandleStateClick
function, passing it "Wyoming":
=HandleStateClick("Wyoming")

	Create the function called in Step 5. This function can be either in
the form's module (as we have created) or in a
global module. It's up to you to decide what to do
with the information passed to the function. In the sample form, the
name of the state is passed to an unbound text box. The
HandleStateClick function is shown here:
Private Function HandleStateClick(strState As String)
 Me.txtChosenState = strState
End Function

Discussion

 Because each button has its
Transparent property set to Yes (which is very different from having
its Visible property set to No!), it's still active.
You can click on transparent buttons and they can react to events.
Each transparent button corresponds to some physical region on the
bitmap, so you can have the buttons' Click event
procedures react according to their location on the bitmap. If only
Windows supported irregularly shaped command buttons!

 The size of the bitmap is key
to the effectiveness of this technique. If you lay out the buttons
all over the bitmap and then decide to resize it, your
buttons' locations will no longer be correct. Make
sure that you've fixed the size of the bitmap before
you start laying out buttons. Although you can select all the buttons
and resize them as a group, this is not a perfect solution.
Don't spend too much time getting the transparent
buttons placed exactly. On the example form, the
buttons' placement is fairly precise, but that works
only because most of the states in the west are generally rectangular
(you'll notice that there's no
eastern seaboard on the map). Users will typically click in the
center of the region, so covering each pixel on the edge
isn't a serious concern.

9.4. Mark a Record on a Form and Return to It Later

Problem

 Sometimes
you are interrupted when you're editing a record on
a form and need to move quickly to some other record.
You'd like a way to save your place and easily
return to it later. Is there an easy way to do this in Access?

Solution

 Access forms have a Bookmark property
that is similar to the bookmark you use when you put a book down but
want to be able to quickly return to where you left off. This
solution shows how to use VBA code to store the bookmark value of a
particular record and return to it, presenting this functionality to
your users with a toggle button. The solution also shows you how to
add a custom shortcut menu to a control.
Follow these steps to add the ability to return to a designated
record in your own forms:
	
 Create a new bound form or open an
existing form in design view. Add a toggle button
(not a command button) control to the
form's header or footer section. In the frmCustomer
sample form, we named our button tglMark and added it to the header
section.

	

 Create an event procedure attached to
the Click event of the toggle button. (If you're
unsure of how to do this, see How Do I Create an Event Procedure? in the preface of this
book.) Add the following code to the event procedure:
Me.Private Sub tglMark_Click()
 ' If toggle button is depressed, then
 ' mark this record; otherwise return
 ' to previously saved record.

 If Me.tglMark Then
 Call acbHandleMarkReturn(msMark)
 Else
 Call acbHandleMarkReturn(msReturn)
 End If
End Sub

	Add the following code to the declarations area at the top of the
code associated with your new form. This enumeration supplies all the
possible values of the state of the marked row:
Public Enum MarkState
 msMark = 1
 msReturn = 2
 msDiscard = 3
End Enum

	
 Add the following public function to
the form's module:
Public Function acbHandleMarkReturn(msAction As MarkState)

 Static svarPlaceHolder As Variant

 Select Case msAction
 Case msMark
 ' Mark record position
 svarPlaceHolder = Me.Bookmark
 Me.tglMark.Caption = "Return to Saved Place"
 Case msReturn
 ' Return to marked position
 Me.Bookmark = svarPlaceHolder
 svarPlaceHolder = Empty
 Me.tglMark.Caption = "Save Place"
 Case msDiscard
 ' Reset marked position
 ' and unpress button
 svarPlaceHolder = Empty
 Me.tglMark.Caption = "Save Place"
 Me.tglMark.Value = False
 Case Else
 ' Shouldn't happen
 MsgBox "Unexpected value for intAction", _
 vbCritical + vbOKOnly, "acbHandleMarkReturn"
 End Select
End Function

	

 To create a
shortcut menu, select View → Toolbars Customize, make sure
you are on the Toolbars tab in the dialog, and click the New button.
Name your new pop-up menu popAbandon, as shown in Figure 9-11, and click OK. Note that this dialog is used
for creating both toolbars and menus.

[image: Creating a shortcut menu from the Toolbars tab of the Customize dialog]

Figure 9-11. Creating a shortcut menu from the Toolbars tab of the Customize dialog

	Click the Properties button in the Customize dialog, and select Popup
for the type property. Click OK in the message box that appears, and
click Close in the Toolbar Properties dialog.

	Scroll down in the list of toolbars in the Customize dialog, and
check Shortcut Menus. A special menu bar appears showing you all the
shortcut menus. Click the down arrow next to Custom, the last menu
item, and then click the right arrow next to popAbandon. This
displays your blank shortcut menu as a small gray box.

	In the Customize dialog, select the second tab, Commands. With the
File category selected in the list on the left, click on Custom in
the list of commands on the right, and drag a custom command over to
your blank popAbandon menu, as shown in Figure 9-12.

[image: Adding a custom item to a shortcut menu]

Figure 9-12. Adding a custom item to a shortcut menu

	
 Right-click on the new Custom item you
created in your shortcut menu, and select Properties. In the
Properties dialog, change the caption to &Abandon Saved Place.
For the OnAction property, enter
"=acbAbandonBookmark". Click the
Close button in the Properties dialog, and click the Close button in
the Customize dialog.

	In the VBA editor, insert a new module and add this public function:
Public Function acbAbandonBookmark()
 Call Form_frmCustomer.acbHandleMarkReturn(3)
End Function

	
 In the form, set the ShortcutMenuBar
property of the tblMark button to popAbandon.

	Save the form and verify that it works correctly. Mark a record to
return to, move to another record, right-click on the button, and
your pop-up menu will enable you to abandon the place you had saved.

To see how this works, load the 09-04.MDB
database and open the frmCustomer form, which contains 500 customer
records. Navigate to a record and begin to make a change to it. For
example, in Figure 9-13, we made some edits to
Margaret Woods's record before marking it. Click on
the Save Place toggle button in the form's header to
mark the current record and save your place in the recordset. The
toggle button will remain depressed and its caption will change to
Return to Saved Place (see Figure 9-14). Now
navigate to some other record. Click on the toggle button again, and
you will return instantly to the earlier
"marked" record.
[image: The frmCustomer form before marking the current record]

Figure 9-13. The frmCustomer form before marking the current record

[image: The frmCustomer form after marking the current record]

Figure 9-14. The frmCustomer form after marking the current record

Mark the record again and navigate to yet another record. Perhaps
this time you have changed your mind and wish to abandon the earlier
marked record in favor of the current one. However, if you press the
toggle button a second time, you will return to the previously marked
record, losing your new place. You can remedy this situation by
right-clicking while the mouse cursor is over the toggle button
control. A shortcut menu giving you the option to abandon the
previously marked record will appear (see Figure 9-15). Select this option, and
you'll now be able to mark the current record
instead.
[image: The toggle button's shortcut (right-click) menu]

Figure 9-15. The toggle button's shortcut (right-click) menu

Discussion

 The mark-and-return facility built
into the frmCustomer form has several interesting user interface
aspects. First, the toggle button is the main user interface element.
This control type is ideally suited for this situation because it is
able to store binary state information that visually matches the two
states you wish to represent (mark and return). Second, the shortcut
menu, although a little less easily discovered than the toggle
button, allows you to offer the extra
"abandon" functionality without
taking up a lot of screen space.

 The actual code that implements the
mark-and-return facility is small, and basically revolves around
grabbing the form's Bookmark property and storing it
between calls to the acbHandleMarkReturn
function. This is handled by the Select Case
statement in acbHandleMarkReturn:
Public Function acbHandleMarkReturn(msAction As MarkState)

 Static svarPlaceHolder As Variant

 Select Case msAction
 Case msMark
 ' Mark record position
 svarPlaceHolder = Me.Bookmark
 Me.tglMark.Caption = "Return to Saved Place"
 Case msReturn
 ' Return to marked position
 Me.Bookmark = svarPlaceHolder
 svarPlaceHolder = Empty
 Me.tglMark.Caption = "Save Place"
 Case msDiscard
 ' Reset marked position
 ' and unpress button
 svarPlaceHolder = Empty
 Me.tglMark.Caption = "Save Place"
 Me.tglMark.Value = False
 Case Else
 ' Shouldn't happen
 MsgBox "Unexpected value for intAction", _
 vbCritical + vbOKOnly, "acbHandleMarkReturn"
 End Select
End FunctionMe.

 The msMark
enumerated value case is executed when the user depresses the toggle
button, so the code stores away the bookmark in the
svarPlaceHolder static variable and
changes the caption to indicate the new state of the button. Notice
that we used a static variable rather than a module-level global
variable. A static variable is a better choice in this situation
because we are changing the value of the variable only within this
one function.
When called with the msReturn value, the code sets
the form's bookmark to the previously stored value,
clears svarPlaceHolder, and resets the
caption to the default.
Finally, when called with the msDiscard constant
value, the code clears svarPlaceHolder,
resets the caption, and sets the Value property of the toggle button
control to False. This causes the toggle button to
reset itself to the unpressed state, which is necessary because the
function was called from the shortcut menu macro without toggling the
button.
We made the acbHandleMarkReturn function public
because we needed to call it from the shortcut menu. However, you can
only call public functions that are in standard modules from toolbar
buttons or menu items, which is why we needed the additional
acbAbandonBookmark function to call the function
that is in the form. Note the syntax that
acbAbandonBookmark uses to call the public
acbHandleMarkReturn function in the form,
passing in the value msDiscard to specify that the
bookmark should be abandoned:
Public Function acbAbandonBookmark()
 Call Form_frmCustomer.acbHandleMarkReturn(msDiscard)
End Function

 An alternate way to offer this
functionality—the ability to browse other records and return to
a previous record—is to create multiple instances of the same
form. This method was demonstrated in the Solution in Recipe 2.11.
Bookmarks
A bookmark is an array of bytes that points to the current record of
an open recordset (or in the case of the form's
bookmark, the current record of a form's recordset).
Bookmarks make sense only within the lifetime of the currently open
recordset (or form). If you requery or close and rerun the query or
form, the set of bookmarks will be different. A bookmark is not a
record number; it's a dynamically created handle (or
pointer) to the current record. To store bookmarks, you can use a
variable of type Variant.

9.5. Carry Data Forward from Record to Record

Problem

 You'd like to
reduce the tedium of data entry by carrying forward selected values
from one record to the next. Ideally, this feature will be
user-selectable at runtime so that each user can indicate, on a
control-by-control basis, whether the current value of a control
should carry forward onto newly added records. Is there any way to
implement this in Access?

Solution

 There are two parts to this problem:
the mechanics of carrying a value from one record to the next, and
how best to let a user select which controls should carry forward
values. The first part of the problem can be solved with a little VBA
code to change the value of a control's DefaultValue
property at runtime, squirreling away the original DefaultValue, if
one exists, in the control's Tag property. The
second part of the problem can be handled in a variety of ways; in
this solution, we suggest using a small toggle button for each bound
control that will offer the carry-forward feature.
To see an example, load the 09-05.MDB database
and open the frmCustomer form in form view. Note that many of the
text box controls have a small, captionless toggle button located
just to their right. Navigate to the record of your choice and
depress one or more of the toggle buttons to indicate that you wish
to carry forward that text box's value to newly
added records (see Figure 9-16). Now jump to the end
of the recordset and add a new record. (A quick way to accomplish
this is to click on the rightmost navigation button at the bottom of
the form.) The values for the
"toggled" text boxes carry forward
onto the new record (see Figure 9-17). To turn off
this feature for a control, click again on its toggle button to reset
it to the unselected state.
[image: The toggle buttons to the right of several text boxes have been depressed]

Figure 9-16. The toggle buttons to the right of several text boxes have been depressed

[image: The values of the "toggled" text boxes have been carried forward]

Figure 9-17. The values of the "toggled" text boxes have been carried forward

To add this functionality to your own forms, follow these steps:
	
 Open your form in design view. Add a small
toggle button control to the right of each bound control for which
you wish to add a carry-forward feature. On the frmCustomer sample
form, we added toggle controls to the right of the Company, Address,
City, State, Zip, Phone, and Fax text boxes. Because you
can't duplicate an AutoNumber field and
you're unlikely to want to carry forward a
customer's first or last name, we did not add toggle
buttons for these controls.

	Adjust the toggle buttons' control properties to
match those in Table
9-2.
Replace Phone with the label of the bound control to the left of the
toggle button; replace txtPhone with the name of the bound control.
Replace the Width and Height values with anything that works well on
your form without unnecessarily cluttering it. We've
found that a width of 0.1" works nicely with a
height that matches the height of the bound control (on the sample
form, the height of both the text box and the toggle button controls
is 0.1667").

Table 9-2. Property settings for tglPhone on frmCustomer
	
 Property

 	
 Value

	
 Width

 	
 0.1"

	
 Height

 	
 0.1667"

	
 ControlTip

 	
 Carry forward Phone value to new records

	
 Tag

 	
 txtPhone

	
 OnClick

 	
 =acbCarry([Form], [Screen].[ActiveControl])

	Add the following function to a global module (or import
basCarryForward from 09-05.MDB):
Public Function acbCarry(frm As Form, ctlToggle As Control)

 Dim ctlData As Control
 Const acbcQuote = """"

 ' The name of the data control this toggle control serves
 ' is stored in the toggle control's Tag property.
 Set ctlData = frm(ctlToggle.Tag)

 If ctlToggle.Value Then
 ' If the toggle button is depressed, place the current
 ' carry field control into the control's DefaultValue
 ' property. But first, store the existing DefaultValue,
 ' if any, in the control's Tag property.
 If Len(ctlData.DefaultValue) > 0 Then
 ctlData.Tag = ctlData.DefaultValue
 End If
 ctlData.DefaultValue = acbcQuote & ctlData.Value & acbcQuote
 Else
 ' The toggle button is unpressed, so restore the text box's
 ' DefaultValue if there is a nonempty Tag property.
 If Len(ctlData.Tag) > 0 Then
 ctlData.DefaultValue = ctlData.Tag
 ctlData.Tag = ""
 Else
 ctlData.DefaultValue = ""
 End If
 End If
End Function

Discussion

 Although there are other ways to offer
this functionality to users, the toggle button control works best
because it stays depressed to indicate its special state. If we had
instead used a menu item or code attached to the bound
control's double-click event to indicate that a
control should be carried forward, users might find it difficult to
remember which fields they had selected to carry forward.

 Because the toggle button controls are
small and do not visually call out their purpose, we added control
tips to each button to identify them. Control tips are nice because
they don't take up any room on the form until a user
leaves the mouse cursor positioned over the control for a few
moments.

 The Tag
property—an extra property that Access allows us to use any way
we want—is used in two ways in this solution. First, the Tag
property of each toggle button indicates which bound control it
serves: for example, tglState's Tag property is set
to txtState. Second, the Tag property of each bound control stores
the existing DefaultValue property so we do not overwrite it when we
carry a value forward: for example, txtState contains an existing
DefaultValue of WA.

 All the work for this solution is done
by the acbCarry function. This function is
attached to each toggle button's Click event using
the following syntax:
=acbCarry([Form], [Screen].[ActiveControl])

 Rather than passing strings to the
function, we pass a reference to the form object and a reference to
the active control object. Passing object references instead of the
name of the form or control is efficient because back in the
function, we will have immediate access to all the
object's methods and properties without having to
create form and control object variables.
The acbCarry function does its magic in several
steps. First, it extracts the name of the bound control served by the
toggle button from the toggle button's Tag property:
Set ctlData = frm(ctlToggle.Tag)

 Second, the function checks whether the
toggle is up or down: if it's depressed, its value
will be True. This executes the following section
of code, which stores the bound control's
DefaultValue property in its Tag property and then sets the
DefaultValue equal to the current value of the bound control, adding
the necessary quotes along the way. Both DefaultValue and Tag contain
string values:
If ctlToggle.Value Then
 ' If the toggle button is depressed, place the current
 ' carry field control into the control's DefaultValue
 ' property. But first, store the existing DefaultValue,
 ' if any, in the control's Tag property.
 If Len(ctlData.DefaultValue) > 0 Then
 ctlData.Tag = ctlData.DefaultValue
 End If
 ctlData.DefaultValue = acbcQuote & ctlData.Value & acbcQuote
When the toggle button is deselected, the function resets everything
back to normal:
Else
 ' The toggle button is unpressed, so restore the text box's
 ' DefaultValue if there is a nonempty Tag property.
 If Len(ctlData.Tag) > 0 Then
 ctlData.DefaultValue = ctlData.Tag
 ctlData.Tag = ""
 Else
 ctlData.DefaultValue = ""
 End If
End If

 Although the
sample form uses only bound text boxes, this technique works equally
well for all types of bound controls, with the exception of bound
controls containing AutoNumber or OLE Object fields.

9.6. Create a Combo Box That Accepts New Entries

Problem

 You're using combo
boxes for data entry on your forms, and you want to allow users to
add a new entry to the list of values in the combo box. Can you do
this without forcing users to close the data entry form, add the
record using a different form, and then return to the original form?

Solution

 You can use the NotInList event to
trap the error that occurs when a user types into a combo box a value
that isn't in the underlying list. You can write an
event procedure attached to this event that opens a pop-up form to
gather any necessary data for the new entry, adds the new entry to
the list, and then continues where the user started. This solution
demonstrates how to create combo boxes that accept new entries by
using the NotInList event and the OpenArgs property of forms.
Load the sample database 09-06.MDB and open the
frmDataEntry form in form view. This form allows you to select a U.S.
state from the combo box, but the list is purposely incomplete for
the example. To enter a new state, type its abbreviation in the form
and answer Yes when Access asks whether you want to add a new record.
A form will pop up, as shown in Figure 9-18, to
collect the other details (in this case, the state name). When you
close the form, you'll be returned to the original
data entry form with your newly added state already selected in the
combo box.
[image: Adding a new record to the underlying table]

Figure 9-18. Adding a new record to the underlying table

To add this functionality to your own combo boxes, follow these steps:
	Import the basNotInList module from 09-06.MDB
into your application.

	

 Open your existing form in design view
and create the combo box to which you wish to add records. Set the
combo box properties as shown in Table 9-3.

Table 9-3. Property settings for combo box
	
 Property

 	
 Setting

	
 RowSourceType

 	
 Table/Query

	
 RowSource

 	
 Any table or query

	
 LimitToList

 	
 Yes

	Create an event procedure attached to the NotInList event of the
combo box control. (If you're unsure of how to do
this, see How Do I Create an Event Procedure? in the the preface of this book.) Add the
following code to the event procedure (shown here for a control named
cboState):
Private Sub cboState_NotInList(NewData As String, Response As Integer)
 Response = acbAddViaForm("frmState", "txtAbbreviation", NewData)
End Sub
Replace the arguments to acbAddViaForm with the
appropriate arguments for your own database: the name of the data
entry form used to add new records to the combo box, and the name of
the control on the data entry form that matches the first displayed
column of the combo box.

	

 Create the pop-up form that will be
used to add new combo box values. Set the form properties as shown in
Table 9-4.

Table 9-4. Property settings for the pop-up form
	
 Property

 	
 Setting

	
 RecordSource

 	
 The same table or query as the combo box's row
source

	
 DefaultEditing

 	
 Data Entry

	
 OnLoad

 	
 =acbCheckOpenArgs([Form])

	Add controls to the pop-up form for all table fields that you need
the user to fill in. One of them should be the field that corresponds
to the first visible column of the combo box; this
field's name is the one you supplied in Step 3.

	Save the pop-up form, using the name you supplied in Step 3. Now open
the main form with the combo box on it. Type a new value into the
combo box. You should be prompted with a message box asking if you
want to add a record (Figure 9-19). Click on Yes,
and the pop-up form will appear with the information you typed in the
combo box control. Fill in the rest of the required information and
close the pop-up form. The new information will be added to the combo
box list and the new value will be selected in the combo box.

[image: Prompt for new record]

Figure 9-19. Prompt for new record

Discussion

 When you have a combo box with its
LimitToList property set to Yes, Access generates the NotInList event
when the user types in a value that's not in the
list. By default, this displays an error message. However, by
creating a NotInList event procedure, you can intercept this message
before it occurs and add the record to the list yourself.

 When
you're done processing the event, set the Response
argument provided by Access to one of three possible constants:
	
 acDataErrDisplay tells Access to display the
default error message.

	
 acDataErrContinue tells Access not to display the
error message but to otherwise continue.

	
 acDataErrAdded tells Access not to display the
error message but to requery the underlying list. This is the return
value to use when you add the value yourself.

This solution uses a generic function,
acbAddViaForm, to handle the record addition. To
allow for the possibility that the user may not want to enter a new
value (perhaps he or she mistyped the entry), the function displays a
simple message box and quits if the user selects the No button. You
also have to tell the original event procedure what to do with the
data. The acDataErrContinue constant tells Access
to suppress the default error message, but not to try to add the new
value to the combo box. The code for
acbAddViaForm is:
Public Function acbAddViaForm(strAddForm As String, _
 strControlName As String, strNewData As String) As Integer

 ' Add a new record to a table by calling a form, and then
 ' requery the calling form. Designed to be called from
 ' OnNotInList event procedures.
 '
 ' strAddForm - The form to be opened to add a record
 ' strControlName - The control on the add form that matches
 ' the displayed info in the calling combo box
 ' strNewData - The data as supplied by the calling combo box

 On Error GoTo HandleErr

 ' First, confirm that the user really wants to enter a new record.
 If MsgBox("Add new value to List?", vbQuestion + vbYesNo, _
 "Warning") = vbNo Then
 acbAddViaForm = acDataErrContinue
 Exit Function
 End If

 ' Open up the data add form in dialog mode, feeding it
 ' the name of the control and data to use.
 DoCmd.OpenForm FormName:=strAddForm, DataMode:=acAdd, _
 WindowMode:=acDialog, OpenArgs:=strControlName & ";" & strNewData

 ' Before control returns to the calling form,
 ' tell it we've added the value.
 acbAddViaForm = acDataErrAdded

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 , "acbAddViaForm"
 Resume ExitHere
End Function
If the user wants to add the new record, the function opens the
pop-up form in dialog mode. This pauses the function at this point
(because a dialog-mode form won't give up the focus
until it is closed or hidden) and lets the user enter the required
data to complete the record:
' Open up the data add form in dialog mode, feeding it
' the name of the control and data to use.
DoCmd.OpenForm FormName:=strAddForm, DataMode:=acAdd, _
 WindowMode:=acDialog, OpenArgs:=strControlName & ";" & strNewData

 However, this leads to another issue.
You can't fill in controls on the form before
it's opened, and you can't fill
them in after because the form is open in dialog mode. The
acbAddViaForm function gets around this by using
the OpenArgs property of the form, which allows you to pass a text
string to the form. You'll see later in this
solution how this property is used by the form to fill in its key
field.
After the pop-up form is closed, all you have to do is set the
appropriate return value. In this case,
acDataErrAdded tells Access that
you've added the value to the underlying table and
that it can be used as the value for the combo box:
' Before control returns to the calling form,
' tell it we've added the value.
acbAddViaForm = acDataErrAdded

 When the pop-up form opens, the OnLoad
event property calls the acbCheckOpenArgs
function, which takes a form variable from the active form as its
only parameter. This function is used to process the OpenArgs
property of the form (which is where the form places the parameter
that was passed to it when it was opened). Its code is:
Public Function acbCheckOpenArgs(frm As Form)

 ' Designed to be called on loading a new form.
 ' Checks OpenArgs and, if it finds a string of
 ' the form "ControlName;Value", loads that
 ' value into that control.

 Dim strControlName As String
 Dim strControlValue As String
 Dim intSemi As Integer

 On Error GoTo HandleErr

 If IsNull(frm.OpenArgs) Then
 Exit Function
 Else
 intSemi = InStr(1, frm.OpenArgs, ";")
 If intSemi = 0 Then
 Exit Function
 End If
 strControlName = Left$(frm.OpenArgs, intSemi - 1)
 strControlValue = Mid$(frm.OpenArgs, intSemi + 1)
 ' This OpenArgs property may belong to someone else
 ' and just look like ours. Set the error handling
 ' to just ignore any errors on the next line.
 On Error Resume Next
 frm.Form(strControlName) = strControlValue
 End If

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 , "acbCheckOpenArgs()"
 Resume ExitHere
End Function
The acbCheckOpenArgs function has to be careful
to avoid errors because it's called every time the
form is opened. First, it's possible that no
OpenArgs argument was passed in. Second, the OpenArgs argument might
be there for another reason. Thus, if OpenArgs
doesn't parse out as expected (in the format
ControlName
 ;
 Value),
it's ignored.
If OpenArgs is in the correct format, the code parses out the value
to be placed in the corresponding control on the form.
This solution is designed to be generic. You may find that you need a
more specific function for a particular combo box. For example, you
could allow users to cancel out of the pop-up form in case they
decide against adding a new record, or you could use unbound text
boxes on the data entry form to display pertinent information from
the main form, adding context for data entry.

See Also

See Recipe 7.5 in Chapter 7 for more
information on working with list and combo boxes.

9.7. Create Animated Buttons

Problem

 You'd like to add some
pizzazz to your application. You've seen animated
buttons in other applications; how do you create them on your forms?

Solution

 Access command buttons have an
under-documented property called PictureData that stores the bitmap
displayed on the button face. This solution examines two ways to use
this property. First, you will learn how to create
"two-state" buttons with pictures
that change when you click on them. Next, you will learn how to
create continuously animated buttons that cycle through a set of
pictures at all times, using the form's Timer event
to display a smooth succession of bitmaps.
Load 09-07.MDB and open frmAnimateDemo in
form view (Figure 9-20). The top two buttons are
two-state buttons whose pictures change when you click them. The Copy
button (on the top left) shows a second document, and the Exit button
(on the top right) shows the door closing just before it closes the
form. The bottom two buttons are examples of animated button faces.
(Only the Exit button on this form actually does anything when you
press it.)
[image: The frmAnimateDemo form]

Figure 9-20. The frmAnimateDemo form

Two-state buttons

 To add a
two-state animated button to your form, follow these steps:
	
 Open your form in design view. Place a
pair of command buttons on the form. The first button should be sized
correctly for your pictures and be located where you want the button
to be displayed. The second button can be located anywhere and can be
any size. For example, the two-state command button in the top left
corner of frmAnimateDemo was created with cmdCopy and cmdCopy2. The
cmdCopy button is shown selected in design view in Figure 9-21; cmdCopy2, which has been reduced in size to
save space, is located just to the left of cmdCopy. Set the Visible
property of the second command button to No.

[image: The frmAnimateDemo form in design view]

Figure 9-21. The frmAnimateDemo form in design view

	

 Click on the first
command button of the pair, select the Picture property on its
properties sheet, and click the Build button (...) to the right of
the property. When the Picture Builder Wizard appears, select the
face you want your button to have in its unselected state (see Figure 9-22). You can use the Browse button to choose from
bitmap files on your disk.

[image: The Picture Builder Wizard]

Figure 9-22. The Picture Builder Wizard

	Click on the second command button of the pair, select the Picture
property, and load the face you want your button to have when it is
depressed, again using the Build button.

	
 Create an
event procedure attached to the MouseDown event of the first button.
(If you're unsure of how to do this, see Section
P.5.5 in the the preface of this book.) Add the following code to the
event procedure:
Private Sub cmdCopy_MouseDown(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 Call SwapPictures(Me.cmdCopy, Me.cmdCopy2)

End Sub
Replace cmdCopy and cmdCopy2 with the names of your buttons.

	
 Create the
following event procedure attached to the MouseUp property of the
first button:
Private Sub cmdCopy_MouseUp(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 Call SwapPictures(Me.cmdCopy, Me.cmdCopy2)

End Sub
Again, replace cmdCopy and cmdCopy2 with the names of your buttons.

	Add the following subprocedure to the form's module:
Private Sub SwapPictures(cmdButton1 As CommandButton, _
 cmdButton2 As CommandButton)

 Dim varTemp As Variant

 varTemp = cmdButton1.PictureData
 cmdButton1.PictureData = cmdButton2.PictureData
 cmdButton2.PictureData = varTemp
 Me.Repaint

End Sub

Continuously animated buttons

To add a continuously animated button to your form, follow these
steps:
	From 09-07.MDB, import tblButtonAnimation,
frmButtonFaceChooser, basAnimate, and basCommonFile into your own
database.

	
 Open frmButtonFaceChooser (Figure 9-23) and select eight images for use on your
animated button. You can type the filenames directly into the text
boxes, or click on the numbered buttons to select files from the
common file dialog. The pictures will appear on the command buttons
as you choose them. The buttons are sized for standard 32 32-pixel
icons or bitmaps, but you may use images of any size.

[image: Choosing animation bitmaps with frmButtonFaceChooser]

Figure 9-23. Choosing animation bitmaps with frmButtonFaceChooser

	When you have selected eight bitmaps, enter an animation name to
refer to this set of pictures (for example,
"clock") and click on the Save
button.

	

 Create a new blank form and place a
command button on it. Set the form's properties as
shown in Table 9-5.

Table 9-5. Property settings for animated button form
	
 Property

 	
 Value

	
 OnLoad

 	
 Event Procedure

	
 OnTimer

 	
 Event Procedure

	
 TimerInterval

 	
 250

	

 Enter the following code in the
declarations section of the form's module:
Private Const acbcImageCount = 8

Private mintI As Integer
Private abinAnimation1(1 To acbcImageCount) As Variant

	Create the following event procedure attached to the
form's Load event:
Private Sub Form_Load()

 Dim db As DAO.Database
 Dim rstAnimation As DAO.Recordset
 Dim intI As Integer

 mintI = 0

 Set db = CurrentDb()
 Set rstAnimation = db.OpenRecordset("tblButtonAnimation", _
 dbOpenDynaset)

 ' Loop through the table, and load
 ' the animation images
 With rstAnimation
 .MoveFirst
 .FindFirst "AnimationName='checkmark'"
 For intI = LBound(abinAnimation1) To UBound(abinAnimation1)
 abinAnimation1(intI) = .Fields("Face" & intI)
 Next intI
 .Close
 End With
End Sub
Replace 'checkmark' with the animation name you
used in Step 3.

	
 Create the following event procedure
attached to the form's Timer event:
Private Sub Form_Timer()

 ' mintI is 0-based, but the arrays are 1-based, so add 1.
 Me.cmdCheck.PictureData = abinAnimation(mintI + 1)

 ' Bump to the next value, wrapping around at acbcImages
 ' (8, in this example).
 mintI = (mintI + 1) Mod acbcImages
End Sub
Replace cmdCheck with the name of the command
button you created in Step 4.

	Save the form and open it in form view. You should see your animation
running on the face of the button.

Discussion

 Access stores the picture
displayed on a command button in the PictureData property. This
property is a binary representation of the bitmap displayed and is
read/write in all views. To store the bitmap elsewhere, there are
three choices: you can store it on another button, in a variable of
the Variant data type, or in a table field of the OLE Object data
type.

 In this solution, you use all three of
these techniques. The two-state buttons work by storing the normal
image on the button you can see and parking the second image in a
small, invisible button. You can still read and write the PictureData
property of an invisible button. When you click the visible button,
its MouseDown event procedure is called, which swaps the pictures on
the visible and invisible buttons. The MouseUp event code swaps the
pictures again to return the original picture to the button face.

 For
continuously animated buttons, the eight different button faces are
stored in a table as Long Binary Data (this is what Access tells you
if you open the table in datasheet view) in OLE Object fields. The
form's Load event procedure reads these button faces
into an array of variants, and its Timer event is used to fetch the
next button face every 250 milliseconds in round-robin fashion.

 In frmButtonFaceChooser,
you'll find an easy way to load bitmaps into the
tblButtonAnimation table. You can load a button's
PictureData property by setting its Picture property to the name of
any bitmap or icon file. The command buttons on this form use the
Windows API common dialog functions to invoke the common file dialog.
If you care to dig into these details, you'll find
the common file dialog code in the basCommonFile module.
You can extend the animated button technique in several directions:
	By including multiple hidden buttons on your form, you can create a
three-state button with a picture that changes when it is the
currently selected button as well as when it is pushed.

	
 You can modify the event
procedure to allow for animated buttons with more or less than eight
frames of animation. To do this, break up the table of frames into
two related tables, one holding the name of the animation and the
number of frames, and the other holding the actual picture data.

	
 The sample form shows how to use
two arrays and some additional code to have two continuously animated
buttons on the same form. You might generalize this code as well, but
watch out—forms with too many animated buttons look busy.

 If you open the sample form and hold down
any button, you'll see that the animations stop for
as long as you keep the button depressed. This prevents the
form's Timer events from firing.
Tip
To see the effects of the MouseDown event, you must call the
form's Repaint method, which tells Access to
complete any pending screen updates. On the other hand, you
don't need to do this in the MouseUp event (although
it doesn't hurt if you do)—Access
automatically repaints the screen after a MouseUp event.

9.8. Create an Expanding Dialog

Problem

 You have a dialog with a lot of
options, most of which are needed only in specific situations.
You'd like to create this form as an expanding
dialog, similar to forms that have an Advanced button revealing more
options. How can you do this with your own form?

Technique

 You can make a hidden section of the
form become visible at runtime, and use the Window | Size to Fit Form
command to force the form to expand to fit its new dimensions. This
solution shows you how to create this type of form using an expanding
form footer. You'll also learn how to minimize
screen flashing while resizing the form by manipulating the
form's Painting property.
Follow these steps to create your own expanding dialog form:
	

 Create a new form. To make the form look
like a dialog, set the properties of the form as shown in Table 9-6. Some of these property settings are optional,
since the expanding technique will work with non-dialog forms too.
The settings for the DefaultView and AutoResize properties are
required.

Table 9-6. Property settings for a dialog form
	
 Property

 	
 Value

	
 DefaultView

 	
 Single Form

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 No

	
 AutoResize

 	
 Yes

	
 AutoCenter

 	
 Yes

	
 PopUp

 	
 Yes

	
 Modal

 	
 Yes

	
 BorderStyle

 	
 Dialog

	
 MinMaxButtons

 	
 None

	

 Select View → Form Header/Footer
to add a footer section to the form. Set the Visible property of the
footer section to No. Because you're interested in
only the footer section, you may wish to grab the bar separating the
detail and header sections and drag it up so the header section has a
height of zero.

	

 Partition
the controls on your form into two groups: those you wish to display
at all times, and those you wish to display only when the form is in
the advanced (expanded) state. Place the first set of controls in the
form's detail section; place the second set of
controls in the footer section.

	
 Add a button named cmdExpand with the
caption "Advanced >>" to the
detail section of the form. Create an event procedure attached to the
Click event of the button. (If you're unsure of how
to do this, see How Do I Create an Event Procedure? in the the preface of this book.) Add
the following code to the event procedure (or copy the code from the
frmExpandingDialog form's module in
09-08.MDB):
Private Sub cmdExpand_Click()

 Dim sct As Section
 Dim blnExpanded As Boolean

 Const acbFirstBasicCtl = "txtFirstName"
 Const acbFirstAdvancedCtl = "txtOldPW"

 Set sct = Me.Section(acFooter)

 ' Keep track of the state of the form when first called.
 blnExpanded = sct.Visible

 ' If the form is in nonexpanded state, turn off
 ' form painting while expanding the form. This
 ' prevents the form from flashing.

 ' If the form is in expanded state, however, Access
 ' won't hide the expanded portion unless form
 ' painting is left on.
 If Not blnExpanded Then Me.Painting = False

 ' Expand the form if currently unexpanded, and vice versa.
 sct.Visible = Not blnExpanded

 ' Size to fit the form to expand or contract the form's
 ' borders to match the visibility of the section.
 DoCmd.RunCommand acCmdSizeToFitForm
 ' Change the button caption and repaint if necessary.
 If Not blnExpanded Then
 Me.cmdExpand.Caption = "Basic <<"
 Me.Painting = True
 Me(acbFirstAdvancedCtl).SetFocus
 Else
 Me.cmdExpand.Caption = "Advanced >>"
 Me(acbFirstBasicCtl).SetFocus
 End If

End Sub
Change the constant declarations so that
acbcFirstBasicCtl is the name of the first control
in the detail section of the form and
acbcFirstAdvancedCtl is the name of the first
control in the footer section of the form.

	Save and close the form. The final form should look like the one
shown in design view in Figure 9-24.

[image: The frmExpandingDialog form in design view]

Figure 9-24. The frmExpandingDialog form in design view

To demonstrate this new functionality, load the sample database
09-08.MDB and open frmExpandingDialog in form
view. The dialog form will display in its initial, contracted state
(see Figure 9-25). Click on the Advanced button and
the form will expand to reveal additional text boxes (see Figure 9-26). Click again on the button (now labeled
Basic) to return to the contracted state. (This sample form is for
demonstration purposes only; it doesn't do anything
with the data you enter into it.)
[image: The frmExpandingDialog form in its contracted state]

Figure 9-25. The frmExpandingDialog form in its contracted state

[image: The frmExpandingDialog form in its expanded state]

Figure 9-26. The frmExpandingDialog form in its expanded state

Discussion

 Because you set the Visible property of
the form footer section to No, the footer does not appear when the
form is first opened. In addition, because you set the AutoResize
property to Yes, Access resizes the form to show only the visible
areas of the form.

 Expansion of the form is handled by
the code attached to the cmdExpand button's Click
event. This event procedure begins by defining a few constants and
variables. The two constants will be used later in the function to
shift the focus to the first control of each section:
Dim sct As Section
Dim blnExpanded As Boolean

Const acbFirstBasicCtl = "txtFirstName"
Const acbFirstAdvancedCtl = "txtOldPW"

 Next, the procedure sets the
section variable to point to the form's footer
section, using the built-in acFooter constant. In
addition, it stores the current state of the Visible property of the
section in the Boolean variable
blnExpanded:
Set sct = Me.Section(acFooter)

' Keep track of the state of the form when first called.
blnExpanded = sct.Visible

 If
the form is currently contracted, it needs to be expanded, and vice
versa. But before this is done, the code sets the
form's Painting property to False
if (and only if) the form is being expanded. The technique will work
without performing this step, but the form will flash as it expands.
On the other hand, if the form is being contracted, you
shouldn't turn off Painting; if you do, the form
will not properly repaint itself and the nonfunctional advanced
section will remain painted on the screen. This step is accomplished
with a single line of code and six lines of comments:
' If the form is in nonexpanded state, turn off
' form painting while expanding the form. This
' prevents the form from flashing.

' If the form is in expanded state, however, Access
' won't hide the expanded portion unless form
' painting is left on.
If Not blnExpanded Then Me.Painting = False
The form is then expanded or contracted by using
Not to toggle the footer
section's Visible property to the opposite of its
current state:
' Expand form if currently unexpanded and vice versa.
sct.Visible = Not blnExpanded

 The code then resizes the form
using the RunCommand method of the DoCmd object to carry out the
Window → Size to Fit Form menu command:
' Size to fit the form to expand or contract the form's
' borders to match the visibility of the section.
 DoCmd.RunCommand acCmdSizeToFitForm

 The function then changes the
caption of the button, turns painting back on if it was turned off,
and finally moves the focus to the first control of the appropriate
section. This last step is not absolutely necessary, but
it's a nice touch because the normal tab sequence
will not jump across sections. The relevant code is:
' Change the button caption and repaint if necessary.
If Not blnExpanded Then
 Me.cmdExpand.Caption = "Basic <<"
 Me.Painting = True
 Me(acbcFirstAdvancedCtl).SetFocus
Else
 Me.cmdExpand.Caption = "Advanced >>"
 Me(acbcFirstBasicCtl).SetFocus
End If

 You can also apply this technique
to non-dialog and bound forms. Although it's not
commonly done, there's nothing to stop you from
placing bound controls in the footer section of a form. On the other
hand, it may be more appropriate to use a tabbed form for bound
forms. See the Solution in Recipe 2.5 for
more details.

9.9. Use an ActiveX Control

Problem

 Access
ships with the ActiveX Calendar control. How can you incorporate this
and other custom controls into your Access applications?

Solution

 ActiveX
controls are not as commonly used in Access as they are in
development environments such as Visual Basic, and some controls that
work in other environments don't work well in
Access. However, a number of controls have been created to work well
in Access, and Microsoft ships one such control with the product: a
very useful Calendar control. This solution shows you how to use the
Calendar control in both bound and unbound modes.
You'll also learn how to create a general-purpose
reusable pop-up calendar form.
Load the 09-09.MDB database and open
frmAppointment1 in form view (see Figure 9-27).
Create a new record, selecting a date by using the Calendar
control's Month and Year combo box controls to
navigate to the desired month and then clicking on the date on the
calendar. Complete the rest of the record and close the form. Now
open the tblAppointment table to verify that the date you selected
was stored in the ApptDate field of that record.
[image: The frmAppointment1 form]

Figure 9-27. The frmAppointment1 form

Open frmAppointment2 in form view and select a date by clicking on
the calendar button to the right of the ApptDate text box. A pop-up
form will be displayed, where you can select a date again using the
Calendar control (see Figure 9-28). Double-click on
a date to select it and close the calendar pop-up form, or click once
on a date and use the OK button. You may also wish to experiment with
the Go to Today button, the Month and Year navigation buttons, and
the Cancel button.
[image: Selecting a date using the frmPopupCal form]

Figure 9-28. Selecting a date using the frmPopupCal form

Add a bound Calendar control to your form

Follow these steps to add the Calendar control to an existing form to
replace a text box for selecting dates:
	Create a form (or edit an existing one) bound to a table that has a
date/time field formatted as a date without time.

	
 Select Insert → ActiveX
Control. The Insert ActiveX Control dialog will appear, as shown in
Figure 9-29. (The list of available controls that
appear on your screen will likely differ from the list displayed
here.)
Select the Calendar control and click OK to close the dialog. Move
and resize the control as needed. On the frmAppointment1 form, we
resized the control to a width of 2.375" and a
height of 1.8333".

[image: The Insert ActiveX Control dialog]

Figure 9-29. The Insert ActiveX Control dialog

	
 Set the control's
ControlSource property to point to the date field in the underlying
record source for the form (see Figure 9-30).

[image: The calendar control can be directly bound to a field]

Figure 9-30. The calendar control can be directly bound to a field

	
 Right-click anywhere on the embedded
custom control to display its shortcut menu. Select Calendar Control
Object → Properties from the shortcut menu, and the Calendar
control properties sheet will appear (see Figure 9-31).
Use this to customize the various properties of the control. For
example, we changed the properties shown in Table 9-7 to non-default values to make the calendar
look better at a smaller size. Use the Apply button to preview the
settings while keeping the properties sheet open. You may also wish
to use the Help button to view the custom control's
help file at this time. (Not all custom controls support the Apply
and Help buttons.) When you're done, click on the OK
button to close the custom properties sheet. These special custom
control properties are also available from the Other tab of the
control's regular properties sheet.

[image: The custom properties sheet for the Calendar control]

Figure 9-31. The custom properties sheet for the Calendar control

Table 9-7. Custom property settings for the Calendar control
	
 Tab

 	
 Property

 	
 Value

	
 General

 	
 DayLength

 	
 Short

	

	
 MonthLength

 	
 Short

	
 Fonts

 	
 TitleFont

 	
 Font: MS Sans Serif; Font Style: Bold; Size: 9.65 points

	Save the form and switch to form view to see it in action.

Create a generic unbound pop-up calendar form

 Follow these steps to create a
generic unbound pop-up calendar form:
	

 Create a new form called frmPopupCal
with the properties shown in Table 9-8.

Table 9-8. Property settings for the pop-up calendar form
	
 Property

 	
 Value

	
 DefaultView

 	
 Single Form

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 No

	
 AutoResize

 	
 Yes

	
 PopUp

 	
 Yes

	
 Modal

 	
 Yes

	
 BorderStyle

 	
 Thin

	
 MinMaxButtons

 	
 None

	
 Select Insert → ActiveX
Control. The Insert ActiveX Control dialog will appear, as shown in
Figure 9-29. Select the Calendar control and click
OK to close the dialog. Move and resize the control as needed. On the
frmPopupCal form, we resized the control to a width of
2.4167" and a height of 1.9167".
Name the control ocxCal.

	Adjust the custom properties of the control as discussed in Step 4 of
the previous section.

	Add seven command button controls to the right of the control, as
shown in Table 9-9.

Table 9-9. Command buttons for the pop-up calendar form
	
 Control name

 	
 Caption

	
 cmdToday

 	
 Goto Today

	
 cmdPrevYear

 	
 <

	
 cmdNextYear

 	
 >

	
 cmdPrevMonth

 	
 <

	
 cmdNextMonth

 	
 >

	
 cmdOK

 	
 &OK

	
 cmdCancel

 	
 &Cancel

	
 Create an event procedure attached to
the Click event of each button. (If you're unsure of
how to do this, see How Do I Create an Event Procedure? in the the preface of this book.)
Add the following event procedures to the appropriate buttons:
Private Sub cmdCancel_Click()
 DoCmd.Close acForm, Me.Name
End Sub

Private Sub cmdNextMonth_Click()
 Me.ocxCal.NextMonth
End Sub

Private Sub cmdNextYear_Click()
 Me.ocxCal.NextYear
End Sub

Private Sub cmdOK_Click()
 Me.Visible = False
End Sub

Private Sub cmdPrevMonth_Click()
 Me.ocxCal.PreviousMonth
End Sub

Private Sub cmdPrevYear_Click()
 Me.ocxCal.PreviousYear
End Sub

Private Sub cmdToday_Click()
 Me.ocxCal.Today
End Sub

	
 Add the following code to the event
procedure attached to the form's Load event:
Private Sub Form_Load()
 If Not IsNull(Me.OpenArgs) Then
 Me.CalDate = Me.OpenArgs
 End If
End Sub

	

 Add the following code to the event
procedure attached to the Calendar control's
DblClick event:
Private Sub ocxCal_DblClick()
 Call cmdOK_Click
End Sub
Note that this event will be found under the Other tab of the
control's properties sheet, not
under the Event tab.

	Add the following two property procedures to the
form's module:
Public Property Let CalDate(datDate As Date)
 Me.ocxCal = datDate
End Property

Public Property Get CalDate() As Date
 CalDate = Me.ocxCal
End Property

	Save and close frmPopupCal.

	Import the basCalendar module from 09-09.MDB
into your database.

	Create a new form with a bound date text box control. This form will
be used to test the pop-up calendar form created in Steps 1 through
10. Add a command button to the right of the text box control. Name
it cmdPopupCal and add the following code to the event procedure
attached to the command button's Click event:
Private Sub cmdPopupCal_Click()

 Dim ctlDate As TextBox
 Dim varReturn As Variant

 Set ctlDate = Me.txtApptDate

 ' Request the date.
 varReturn = acbGetDate(ctlDate.Value)

 ' Change the value only if Null is not returned; otherwise
 ' the user cancelled, so preserve the existing value.
 If Not IsNull(varReturn) Then
 ctlDate = varReturn
 End If
End Sub
Change txtApptDate to the name of the text box created in this step.

	Save the form, switch to form view, and test out the new pop-up form
by clicking on the cmdPopupCal button.

Discussion

 You insert a custom control into an
Access form using the Insert → Custom Control command. The
control can then be moved and resized as necessary. When you insert a
custom control into an Access form, Access merges the properties of
the control's container (a bound or unbound OLE
frame control) with the properties of the custom control. The custom
control's unique properties are placed on the Other
tab of the control's regular properties sheet, but
you can also manipulate these properties using the custom properties
sheet created by the control's creator. You do this
by right-clicking on the control and selecting Calendar Control
Object → Properties from the shortcut menu.
Access and Custom Control Data Binding
Access supports simple custom control data binding. This means you
can use controls (such as the Calendar control) that are bound to a
single field, but you can't use certain types of
bound controls (such as Visual Basic's Data-Bound
Grid control) that are bound to tables or queries. You can, however,
use controls such as Data-Bound Grid control in Access if they are
used in unbound mode.

In Step 3 of adding a bound Calendar control, you bound the Calendar
control directly to a field in the form's underlying
record source.

 In the
steps for creating a generic unbound pop-up calendar form, you
created code that manipulated five different methods of the Calendar
control: PreviousYear, NextYear, PreviousMonth, NextMonth, and Today.
For example, in the event procedure attached to cmdPreviousMonth, you
added the following line of code:
Me.ocxCal.PreviousMonth
Tip
To find additional information on the methods, properties, and events
of a particular custom control, you can use the Help button that
appears on some (but not all) controls' custom
properties sheets (see Figure 9-31). Alternately,
you may have to load the control's help file
separately or consult its printed documentation or electronic
README file.

 The frmPopupCal form contains two
special procedures, called property procedures, that you may not have
seen before. Using property procedures, you can create custom
properties for a form that can be called from outside the form. This
allows you to expose certain elements of the form to the outer world
while keeping all of the form's controls and
procedures—the form's inner
workings—encapsulated within the form.

 The Let property procedure creates a
user-defined property for the form, controlling what happens when a
calling routine sets the value of the form's
property. The Get property procedure controls what happens when a
calling routine requests the value of the property. The property
procedure for frmPopupCal is simple, consisting of only an assignment
statement, but you can do anything in a property procedure that you
could do in a normal event procedure. For example, you can count the
number of text box controls on a form in a Get property procedure, or
you can set all the labels on a form to a certain color in a Let
property procedure. The Solution in Recipe 9.10 contains examples of more complex property
procedures.
Tip
The data type of the parameter of the Let procedure (or of the last
parameter, if the Let procedure contains multiple parameters) must
match the data type of the return value of the Get property
procedure.

 The basCalendar module contains a
wrapper function for the frmPopupCal pop-up calendar form. The
acbGetDate wrapper function is shown here:
Function acbGetDate(varDate As Variant) As Variant

 Const acbcCalForm = "frmPopupCal"

 ' Open calendar form in dialog mode, passing it the current
 ' date using OpenArgs.
 DoCmd.OpenForm acbcCalForm, WindowMode:=acDialog, OpenArgs:=Nz(varDate)

 ' Check if the form is open; if so, return the date selected
 ' in the Calendar control, close the pop-up calendar form,
 ' and pass the new date back to the control. Otherwise,
 ' just return Null.
 If IsOpen(acbcCalForm) Then
 acbGetDate = Forms(acbcCalForm).CalDate
 DoCmd.Close acForm, acbcCalForm
 Else
 acbGetDate = Null
 End If

End Function

 acbGetDate

sends the calendar a date by using the OpenArgs property of the form
(discussed in the Solution in Recipe 9.6) and requests a date from
the form by using the CalDate user-defined property created using the
Get property procedure. The Load event procedure of frmPopupCal sets
the CalDate property to the OpenArgs property. In this case,
it's necessary to use the OpenArgs property because
you are opening the form in dialog mode, which makes it impossible to
manipulate its properties directly.
Calling the acbGetDate wrapper function whenever
you wish to use the pop-up calendar form to provide a date to your
application ensures that you are always going through a single,
consistent entry point. Thus, you never need to bother with opening
or closing the form or worry about the names of the controls on
frmPopupCal. Just use the following syntax to get a date using the
pop-up form:
variable = acbGetDate(current value)

 The pop-up calendar's
AutoCenter property has been set to Yes so it will always appear in
the center of the screen. You may wish to extend
acbGetDate with optional left and top parameters
so you can precisely position the pop-up calendar form on the screen
when it is first opened.

 The techniques
presented in this solution can be applied to other Microsoft and
third-party vendor custom controls, including controls that ship as
part of the Visual Basic development environment.

9.10. Create a Generic, Reusable Status Meter

Problem

 Access allows you to control the built-in
status meter using the SysCmd function, but you
have no control over the location or appearance of this status meter.
How do you create a status meter that you can control?

Solution

 You can create a status meter based on
an Access form and control it using VBA routines. The status meter is
composed of a Rectangle control and a Label control. By updating the
Width property of the rectangle, you can control the
meter's progress. Additionally, by updating the
Caption property of the label, you can insert messages such as
"50% complete." All the internal
workings of the control can be encapsulated (hidden) inside the form.
For an example of a programmatically controlled status bar, open and
run frmTestStatusMeter from 09-10.MDB (see Figure 9-32). To start the status meter, click the Start
button and frmStatusMeter will pop up. If you want the status meter
to include a Cancel button, check the Include Cancel button checkbox
before clicking the Start button. The status meter will slowly
advance to 100% and then close. If you've included a
Cancel button, you can click on it at any time to immediately close
the status meter and notify the calling form (frmTestStatusMeter)
that the cancel has been requested.
[image: The frmStatusMeter form]

Figure 9-32. The frmStatusMeter form

Create a generic status meter

To create a generic status meter for your own application, follow
these steps (or skip these steps entirely and import frmStatusMeter
and basStatusMeter from 09-10.MDB into your
database):
	

 Create a form and set its
properties as shown in Table 9-10.

Table 9-10. Property settings for the status bar form
	
 Property

 	
 Value

	
 DefaultView

 	
 Single Form

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 No

	
 PopUp

 	
 Yes

	
 BorderStyle

 	
 Thin

	
 Control Box

 	
 No

	
 MinMaxButtons

 	
 None

	
 Close Button

 	
 No

	
 Place a rectangle on the form, name
it recStatus, and set its Width property to 0. Set its background
color to the color of your choice.

	

 Place a label on the form, name it
lblStatus, and set its Width property to the total width you want the
status bar to be. Set its Background to Clear. In the Label property,
type in "0% Completed".

	
 Add a command button control named
cmdCancel with a caption of
"Cancel". Create an event procedure
attached to the button's Click event. (If
you're unsure of how to do this, see the Section
P.5.5 in the the preface of this book.) Add the following code to the
event procedure:
Private Sub cmdCancel_Click()
 mblnCancel = True
End Sub

	

 Add the following global declaration to
the global declarations section of the form's
module:
Dim mblnCancel As Boolean

	Add the following three procedures to the form's
module:
Private Sub cmdCancel_Click()
 mblnCancel = True
End Sub

Public Sub InitMeter(_
 blnIncludeCancel As Boolean, strTitle As String)

 Me.recStatus.Width = 0
 Me.lblStatus.Caption = "0% complete"
 Me.Caption = strTitle
 Me.cmdCancel.Visible = blnIncludeCancel

 DoCmd.RepaintObject

 mblnCancel = False

End Sub

Public Property Let Value(intValue As Integer)
 Me.recStatus.Width = CInt(Me.lblStatus.Width * (intValue / 100))
 Me.lblStatus.Caption = Format$(intValue, "##") & "% complete"

 DoCmd.RepaintObject

End Property

Public Property Get Cancelled() As Boolean
 Cancelled = mblnCancel
End Property

	Save the form as frmStatusMeter and close it.

	Create a new global module and add the following code (or import the
module basStatusMeter from 09-10.MDB).
Private Const mconMeterForm = "frmStatusMeter"

Private Function IsOpen(strForm As String)
 IsOpen = (SysCmd(acSysCmdGetObjectState, acForm, strForm) > 0)
End Function

Public Sub acbCloseMeter()

 On Error GoTo HandleErr

 DoCmd.Close acForm, mconMeterForm

ExitHere:
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox "Error#" & Err.Number & ": " & Err.Description, , _
 "acbCloseMeter"
 End Select
 Resume ExitHere
End Sub

Public Sub acbInitMeter(strTitle As String, fIncludeCancel As Boolean)

 On Error GoTo HandleErr

 DoCmd.OpenForm mconMeterForm
 Forms(mconMeterForm).InitMeter fIncludeCancel, strTitle

ExitHere:
 Exit Sub

HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox "Error#" & Err.Number & ": " & Err.Description, , _
 "acbInitMeter"
 End Select
 If IsOpen(mconMeterForm) Then
 Call acbCloseMeter
 End If
 Resume ExitHere
End Sub

Public Function acbUpdateMeter(intValue As Integer) As Boolean

 On Error GoTo HandleErr

 Forms(mconMeterForm).Value = intValue

 ' Return value is False if cancelled
 If Forms(mconMeterForm).Cancelled Then
 Call acbCloseMeter
 acbUpdateMeter = False
 Else
 acbUpdateMeter = True
 End If

ExitHere:
 Exit Function
HandleErr:
 Select Case Err.Number
 Case Else
 MsgBox "Error#" & Err.Number & ": " & Err.Description, , _
 "acbUpdateMeter"
 End Select
 If IsOpen(mconMeterForm) Then
 Call acbCloseMeter
 End If
 Resume ExitHere
End Function

	Save and close the global module.

Use the generic status meter in your application

To use the generic status meter in your own applications, follow
these steps:
	When you wish to initialize the meter, use the following syntax:
Call acbInitMeter(title, flag)
where title is the title you want the
status meter to assume, and flag is
True (or -1) to display a Cancel button or
False (or 0) to not display one. For example, this
statement creates a status meter with the title Progress and a Cancel
button:
Call acbInitMeter("Progress", True)

	To update the meter with a new progress value, use the following
syntax:
 variable = acbUpdateMeter(value)
where value is an integer between 0 and
100. acbUpdateMeter will place
True or False in the return
value. If the return value is False, the user has
pressed the Cancel button. (The return value will never be
False if you choose not to include the Cancel
button when initializing the status meter.) For example, to update
the meter with a progress setting of 50%, you might call
acbUpdateMeter like this:
blnOK = acbUpdateMeter(50)

	To close the status meter form, use this syntax:
Call acbCloseMeter

Discussion

 You can change the size of the
rectangle by manipulating its Width property. The Rectangle control
is placed behind a transparent Label control that defines the
boundaries of the status meter and contains the status text. The
status meter form is manipulated by three public wrapper functions
contained in basStatusMeter: acbInitMeter,
acbUpdateMeter, and
acbCloseMeter. These functions, in turn,
interact with frmStatusMeter through its exposed properties. The
wrapper functions know the names of the properties and how to call
them, but they know nothing of the inner workings of the form.

 acbInitMeter initializes the status meter by
opening the status meter form and calling the InitMeter method. At
the same time, a parameter is passed that determines if the Cancel
button is included on the status meter form:
DoCmd.OpenForm acbcMeterForm
Forms(acbcMeterForm).InitMeter blnIncludeCancel, strTitle

 acbUpdateMeter
 sets the value of the status
meter form's UpdateMeter property. It then checks
the Cancelled property of the form to determine whether the user has
clicked on the Cancel button. If so, it closes the status meter form
and returns False to the calling procedure;
otherwise it returns True:
Forms(acbcMeterForm).Value = intValue

' Return value is False if cancelled.
If Forms(acbcMeterForm).Cancelled Then
 Call acbCloseMeter
 acbUpdateMeter = False
Else
 acbUpdateMeter = True
End If

 acbCloseMeter closes the status meter form using
the DoCmd.Close method:
DoCmd.Close acForm, acbcMeterForm

 When the InitMeter property is set by
some external procedure, the InitMeter procedure runs the following
code:
Me.recStatus.Width = 0
Me.lblStatus.Caption = "0% complete"
Me.Caption = strTitle
Me.cmdCancel.Visible = blnIncludeCancel

DoCmd.RepaintObject

mblnCancel = False

 This code sets the Width
property of the recStatus control to 0 and the Caption property of
lblStatus to "0% complete", updates
the form's Caption property with the
strTitle parameter, and sets the cmdCancel
button's Visible property to match the
blnIncludeCancel parameter. The code then
uses the RepaintObject method to force an update of the screen and
resets the mblnCancel module-level global
variable to False.
When the UpdateMeter property of the form is set to a value, the
following code is executed by the UpdateMeter procedure:
Me.recStatus.Width = CInt(Me.lblStatus.Width * (intValue / 100))
Me.lblStatus.Caption = Format$(intValue, "##") & "% complete"

DoCmd.RepaintObject
This code updates the status meter by changing the width of the
recStatus control relative to the width of the lblStatus control.
This relative change ensures that the status meter rectangle never
exceeds the limits as defined by the width of the lblStatus control.
The routine then updates the Caption property of the lblStatus
control to a formatted percentage value concatenated to the string
"% complete". Once again, the code
uses the RepaintObject method to force an update of the screen.
The Cancelled property of the status meter form is handled by the
Cancelled Get property procedure. When called by an external
procedure, this procedure returns the value of the module-level
global mblnCancel variable. This variable,
which was initialized to 0 by the IntitMeter Let property procedure,
is set to False if the user clicks on the
cmdCancel button in the cmdCancel_Click event procedure.

 It's a good idea to
encapsulate the inner workings of a generic utility form such as
frmStatusMeter by keeping all the event procedures private and using
procedures to expose a controlled user interface to calling
procedures. Getting in the habit of thinking and coding in this
object-oriented way will allow you to create generic components that
you can reuse over and over again.

 The pop-up status meter
form's AutoCenter property has been set to Yes, so
it will always appear in the center of the screen. You may wish to
extend acbInitMeter with optional left and top
parameters so you can precisely position the form on the screen when
it is first opened.

Chapter 10. Multiuser Applications

Access offers native support, right out of the box, for
 multiuser applications. But this
additional power brings with it some additional problems, chiefly
those of coordinating multiple users who may be spread across a large
network. This chapter explores some solutions to common problems in
multiuser applications. You'll learn how to use a
shared database table to help your users communicate with one another
and see how to find out which users are logged in at any given time.
You'll also learn how to implement basic transaction
logging, how to determine who has a record locked, and how to prevent
a user from locking a record for an excessive time period. Because
multiuser applications often use Access security, we also explore the
security system in detail. For instance, you'll
learn how to properly secure your database, how to keep track of your
users and groups, and how to check if they have blank passwords.
You'll also see how you can maintain separate but
synchronized copies of a database using Access replication.
Warning
Several of the examples in this chapter take advantage of the
DAO type
library, rather than the default ADO library used by Access 2002 and
Access 2003. Even though it's less
"modern," DAO provides greater
functionality, and generally better performance. In addition, using
DAO makes it possible for these demonstrations to work in earlier
versions of Access. If you want to try these techniques in your own
applications, make sure you add the DAO reference to your project
using the Tools → References menu item from within
VBA—it won't be added by default.

10.1. Properly Secure Your Database

Problem

 The database you've
developed contains sensitive data to which you wish to limit access.
You'd like to be able to create different classes of
users so that some users have no access to this data, others can read
the data but can't change it, and still others can
modify the data. At the same time, you don't want to
secure every object in the database this way; you'd
like to apply security only to selected objects. Is this possible
with Access?

Solution

 Access supports two forms of security:
workgroup-based security and database-password security. If you use
the simpler database-password security system, you can assign only a
single password to the entire database, which is inadequate for your
purposes. Fortunately, your needs can be met by using the more
sophisticated workgroup-based security system. However, securing a
database this way can be tricky. This solution guides you through the
process, starting with a completely unsecured database and finishing
with a well-secured database that should meet your needs.
Before you can properly secure your database, you must have a
security plan. Consider who will be using the database and what
security permissions those users should have for each database
object. With a plan in place, you can go about securing your
database.
Make a security plan

 The
first step in creating a security plan is to make a list of the
people who will be using the database. Write out the names of the
users and put them into distinct groups. A user can be a member of
more than one group, but you need to assign each user a unique name.
Users will have to type in their usernames each time they log into
Access, so you may wish to keep the names as short as possible (but
still unique). In a small workgroup, you may be able to use an
individual's first name; in larger settings, you may
need to use the first name plus the first letter of the last name or
some similar scheme to ensure uniqueness. For example, if you were
charged with designing a secured database for the solution company,
you might come up with the users and groups in Table 10-1.
Table 10-1. The plan of users and groups
	
 Group

 	
 Members

	
 Employees

 	
 Tom, Pat, Bill

	
 Programmers

 	
 Paul, Peter

	
 Managers

 	
 Joan, Thomas, Paul

	
 Admins

 	
 Paul

 There are several things to note in Table 10-1. First, Paul is both a manager and a
programmer. Second, two individuals in this company are named Tom
but, to ensure uniqueness, we've assigned one of the
Toms the username Thomas. Third, we recommend using the following
convention: make usernames singular and group names plural. Finally,
you need to identify members of a special built-in group called
Admins. This group of users will have full access to all objects and
will also be able to administer the security system.

 Once you have come up with a
plan of users and groups of users, you need to inventory your
database objects and determine which groups of users can do what with
which objects. While you can assign each user a
separate set of permissions, it's better to assign
permissions to groups of users; this makes adding or subtracting
users later much easier. An object inventory for the solution company
database (10-01UNS.MDB) is shown in Table 10-2.
Table 10-2. The object inventory
	
 Object

 	
 Group

 	
 Access level

	
 tblCustomer

 	
 Employees

 	
 Read, write access to data only

	

	
 Programmers

 	
 Read, write access to data and design

	

	
 Managers

 	
 Read, write access to data only

	

	
 Admins

 	
 Full access

	
 tblEmployee

 	
 Employees

 	
 No access

	

	
 Programmers

 	
 Read, write access to data and design

	

	
 Managers

 	
 Read, write access to data only

	

	
 Admins

 	
 Full access

	
 frmCustomer

 	
 Employees

 	
 Run access

	

	
 Programmers

 	
 Run, read, write access to design

	

	
 Managers

 	
 Run, read, write access to design

	

	
 Admins

 	
 Full access

	
 frmEmployee

 	
 Employees

 	
 No access

	

	
 Programmers

 	
 Run, read, write access to design

	

	
 Managers

 	
 Run, read, write access to design

	

	
 Admins

 	
 Full access

Secure your database

 Note
that Access ships with a Security Wizard that will help you secure
your database. With a plan in hand, you can now begin to secure your
database, following these steps:
	

 Choose Tools → Security
→ User-Level Security Wizard from the menu. The first
dialog prompts you to create a new workgroup information file, and
the second dialog (shown in Figure 10-1) prompts for
the workgroup file information. The strings you enter here for the
Workgroup ID (WID), name, and company will be encrypted to form a
unique identifier. The default workgroup file,
system.mdw, is the same across all installations
of Access, and is thus not secure. At the bottom of the dialog you
can choose either to make this workgroup file the default or to
create a shortcut to open the secured database. If you choose the
first option, the workgroup file will be used with all databases. For
most environments, the second option is a better choice. Click Next
to continue the wizard.

[image: Creating a new workgroup file]

Figure 10-1. Creating a new workgroup file

	You will see a tabbed dialog for selecting the database objects you
want to secure. You'll probably want to secure all
the objects in your database. Click the All Objects tab, then click
the Select All button (see Figure 10-2). Click Next
to continue.

[image: Selecting the objects to secure]

Figure 10-2. Selecting the objects to secure

	The next dialog (see Figure 10-3) can create default
groups for you. If you click on a group, you can see the permissions
that will be granted to it. However, for this example,
you'll create your own custom groups after the
wizard has completed. Don't select any of these
items, and click Next to continue.

[image: Creating default groups]

Figure 10-3. Creating default groups

	

 The next dialog allows you to
grant the Users group selected permissions on some objects. However,
you probably don't want to do that, since
permissions granted to the Users group are granted to
everyone—all authorized users must be members of the Users
group. The best policy here is to grant permissions only to your own
custom groups, so don't select that option. Click
Next to continue.

	
 The next dialog allows you to create
additional administrators and set a password on the administrator
account that will be automatically created (see Figure 10-4). This name of this account comes from your
Windows login. So if you are logged in as Paul, as shown in Figure 10-4), then this account will be named Paul. Any
additional administrators you create here will be added to the Admins
built-in group, giving them irrevocable administrative powers in your
secured database. You will therefore want to limit the number of
administrators, as they have unlimited power. Only administrators can
manage passwords and create and delete users and groups. Set a
password for the administrator account and click the Next button.

[image: Setting a password for the Administrator account]

Figure 10-4. Setting a password for the Administrator account

	
 The next dialog allows you to add users to
any groups you have created. If you have not created any additional
groups or administrative users, only the administrator account (in
Figure 10-4, this account is named Paul) will be
displayed, as shown in Figure 10-5. If you attempt
to remove the administrator account from the Admins group, you will
receive an error message unless you've created an
additional administrator. Access requires there to be at least one
member in the Admins group and will not let you delete the last user.
Click Next to continue.

[image: Adding users to groups]

Figure 10-5. Adding users to groups

	
 The final dialog prompts you for the name
and location of the backup file (see Figure 10-6).
The default value is the name of the MDB with a
.bak extension. To revert to the unsecured
version of your database, just delete the secured MDB after the
wizard has completed and rename the extension of the backup file to
MDB. Click the Finish button to complete the wizard.

[image: Creating a backup file of the secured database]

Figure 10-6. Creating a backup file of the secured database

 The one-step Security Wizard report is
then displayed. This report lists all the security options
you've chosen, along with the settings for users,
groups, and Personal IDs (PIDs). You should save this and lock it
away in a safe place. Should you ever need to recreate your workgroup
file, you can use the same settings. Be careful: if your workgroup
file is irretrievably lost and you can't restore it
from a backup or recreate it, you could be locked out of your
database forever. The wizard will save the report in snapshot format.

 The
wizard then notifies you that the database has been encoded (prior
versions of Access refer to this as encrypted) and that you must log
onto the secured database using the new workgroup file (see Figure 10-7). This means that the database
can't be read by a text editor and
can't be compressed by file-compression utilities.
If being able to compress the database means more to you than the
remote chance that someone will use a text editor to read strings out
of the .MDB file, you can decode (decrypt) the
database using Tools → Security → Encode/Decode
Database....
[image: The wizard notifies you that the database has been encoded]

Figure 10-7. The wizard notifies you that the database has been encoded

Work with the secured database

 Once the Security Wizard has finished, you
need to shut down Access and restart. The Security Wizard creates a
shortcut that automatically connects you to the newly secured
database. Figure 10-8 shows the property settings of
the shortcut. Note that the Target includes the
/wrkgrp switch that points to the new workgroup
file.
[image: The property settings of the database shortcut]

Figure 10-8. The property settings of the database shortcut

Follow these steps to manually create your users and groups according
to the security model you've planned:
	

 Double-click the shortcut on your desktop
to open the newly secured database. Login as the administrator
account you created when running the wizard (the one with the same
name as your Windows login). Select Tools → Security
→ User and Group Accounts from the menu. This will load the
User and Group dialog. Create the groups shown in Table 10-1 by clicking the Groups tab and then the New
button. When you create a new group account, you will be asked to
enter a Name and a Personal ID (PID). For each group account, enter
the name of the group account under Name and a case-sensitive
alphanumeric string between 4 and 20 characters long under Personal
ID (see Figure 10-9).

[image: Creating custom groups and users]

Figure 10-9. Creating custom groups and users

	
 Create the users. Click the Users tab and
the New button to create each new user. The PID that you enter is not
the password—you'll need to log on as each
user to set an initial password for that user. Add each user to his
or her groups, as listed in Table 10-1. By default,
new users will be members of the built-in Users group; do not remove
users from this group.

	

 Assign
permissions to the database objects. You will now take the object
inventory in Table 10-2 and add permissions to the
groups of your security plan. Select Tools → Security
→ User and Group Permissions. Select the Permissions tab and
assign permissions to the groups according to your security plan.
In addition to the permissions listed in the object inventory, you
will need to assign the Database Open permission to each of the
groups you created. This is necessary because the Security Wizard
automatically revokes this permission for all users except those who
are members of the Admins group. To add this permission, select
Database as the Object Type and check the Open/Run permission.

	

 Log out of Access and now log in as
each new user. Select Tools → Security → User and
Group Accounts. Recall that all new user accounts start out with no
password. Choose the Change Logon Password tab and enter and confirm
a new, non-blank password for each new account.

Discussion

Access's workgroup-based security model consists of
two parts:
	A system database, which defines a workgroup and contains user and
group accounts

	
 One or more databases
associated with a workgroup, each containing objects (with their
permissions) pointing to the user and group accounts in the workgroup

 In Step 1 of this
solution, the wizard created a new securable workgroup file. Do
not use the default workgroup file that Access
installed on your system. That file, called
system.mdw, contains a null WID and is the same
across all Access installations. Therefore, someone trying to break
into your database can easily recreate it.
The wizard created the Administrator account, a new member of the
Admins group, and then removed the default Admin user account from
the Admins group. Although the Admin user and the Admins group have
similar names, they are very different in Access security.

 The Admin user
account is the default user account for all new
workgroups. Its presence in every workgroup allows you to ignore
security until you need it, because Access attempts to log you on as
Admin with a blank password whenever you start Access. By changing
the password for this account, you are unhiding security. Once you
assign a password to Admin, however, you must create a new
administrator-level user account (in the example, we used the account
Paul), since the Admin account is the same across all Access
workgroups and is thus unsecurable.

 Unlike the unsecurable Admin user
account, the Admins group account is securable.
In fact, this account is the key account in any secured Access
database and derives its PID from the workgroup's
WID. Each Admins group account is unique across Access workgroups.
Therefore, you can't use the Admins account in one
workgroup to try to break into another Access workgroup. Members of
this account are able to modify and administer every object in every
database associated with that workgroup.

 The Security Wizard secures your database
by removing all permissions to objects from all users other than the
members of the Admins group and the person who ran the wizard. While
it's certainly possible to secure your database
without using the Security Wizard, it's easy to make
a mistake and create a database with one or more security holes.
Thus, using the wizard is a very good idea!

 It's best not to
assign object permissions explicitly to individual users;
you'll find it easier to manage the security for a
workgroup by considering the security of only groups. Occasionally,
however, you may want to give a single user some special set of
permissions. The actual level of permissions users get for a
particular object is the sum of the permissions they have been
assigned plus the permissions of each group in which they have
membership.
Again, remember not to assign any permissions to
either the Admin user account or the Users group account, as these
accounts are the same in all workgroups and are thus
unsecured.

10.2. Maintain Multiple Synchronized Copies of the Same Database

Problem

 You have a database that
you'd like to distribute to mobile salespeople.
Multiple users update the central copy of the database on a daily
basis, and the salespeople also need to make updates to their own
copies of the database. Is there any way to let everyone make updates
and synchronize these copies when a salesperson returns to the office
and plugs into the network?

Solution

 Access
95 introduced a powerful feature called
replication, which allows you to keep multiple
copies of the same database synchronized. Subsequent versions of
Access have continued to improve on replication. In this solution, we
discuss how to set up a database for replication, how to synchronize
the replicas, and how to deal with synchronization conflicts.
Warning
Although it's easy to implement,
it's difficult to undo the effects of replication.
We recommend that you create a copy of your database and work with
that copy while learning about replication. Do not experiment with a
production database until you are ready to handle any problems that
may arise.

Replicating a database

The steps for replicating a database using the Access menus are as
follows:
	
 Back up the database and safely
store the backup.

	

 Select Tools → Replication...
→ Create Replica. A dialog will appear informing you that
the database must be closed before you can create a replica and that
the database will increase in size. Choose Yes to proceed. A second
dialog will ask you if you want to make a backup of the database
before replicating it. Choose Yes if you didn't make
a backup in Step 1, or No if you did. If you choose Yes, a backup of
your database will be made with the .BAK
extension. For example, the sample database
10-02.MDB will be backed up to
10-02.BAK.

	
 You
will then be prompted for the location of a replica. Access will
create a design master replica, which takes the
name of your original database, and a second replica of the design
master, the name and location of which this dialog prompts for. You
will end up with two identical databases. The dialog shown in Figure 10-10 is displayed on completion of the creation of
the replicas, to inform you of the name and location of both the
design master and the replica.

[image: The create replica progress dialog]

Figure 10-10. The create replica progress dialog

	Once you click OK, the replication process is complete, and you will
see the database container of the design master replica of the
original database, as shown in Figure 10-11.

[image: The database container of the replicated 10-02 database]

Figure 10-11. The database container of the replicated 10-02 database

	You can create additional replicas by opening an existing replica and
selecting Tools → Replication... → Create Replica.
Access allows you to create additional replicas from any member of
the replica set. However, you can make design changes only in the
design master replica.

	

 Distribute the replicas to
the salespeople's laptops. Do
not copy replicas to multiple machines using DOS
or the Windows Explorer. You must create an additional unique replica
for each user who will be using the replicated database by choosing
Tools → Replication... → Create Replica from the
menu and specifying each laptop as the destination.

Synchronizing replicas

Replicas in a replica set remain independent of each other until you
choose to synchronize them. You can synchronize only replicas that
are members of the same replica set; that is, only copies derived
from the same design master. You synchronize replicas a pair at a
time. When you are ready to synchronize a pair of replicas—for
example, when a salesperson returns to the office and plugs his
laptop into the office network—follow these steps:
	Start Access and open any of the replicas in the replica set.

	
 Select Tools → Replication...
→ Synchronize Now.

	Using the drop-down box, select the database with which you wish to
synchronize (see Figure 10-12). If you
don't see the replica you want to synchronize with,
someone has probably moved it, so you'll need to
navigate to it using the Browse button. Once you have located the
replica, press OK to start the synchronization process.

[image: The Synchronize Database dialog]

Figure 10-12. The Synchronize Database dialog

	A progress dialog will appear. If the synchronization process
completed successfully, a dialog will appear confirming this fact and
informing you that you need to close and reopen the database to see
all changes. Select Yes to let Access close and reopen the database.

Resolving conflicts

If multiple users have made updates to the same record in different
replicas, one or more users will be
informed of conflicts when they close and reopen the database to
complete synchronization. See Recipe 10.2.3 of this solution for
more details on how Access determines which change
"wins" a synchronization conflict.
If one or more of your edits
"loses" in the exchange, you will
see a dialog the next time you open the database, stating
"This member of the replica set has conflicts from
synchronizing changes with other members. Do you want to resolve
conflicts now?" To resolve the conflicts, follow
these steps:
	Choose Yes at the conflict dialog to start the resolution process.

	A second dialog will appear, summarizing the conflicts that have
occurred (see Figure 10-13). Select a table in the
list box and press the View button to see the conflicts for that
table.

[image: The Microsoft Replication Conflict Viewer dialog]

Figure 10-13. The Microsoft Replication Conflict Viewer dialog

	After a brief delay, a conflict resolution form will appear for the
table. A conflict resolution form for the tblCustomer table is shown
in Figure 10-14.

[image: A conflict resolution form for tblCustomer]

Figure 10-14. A conflict resolution form for tblCustomer

	For each conflict record, the conflict winner will appear on the
lefthand side of the form and the conflict loser will appear on the
right. Pick the version of the record that you feel is more
"correct." If
you'd like, you can edit one version, combining data
from both versions or some third source of information. To resolve
the conflicting record, press either the Keep Winning Change button,
or the Resolve With This Data button. If you want to resolve the
conflict later, choose the Postpone Resolution button. Repeat the
process for each record in the conflict table.

	Close the form and repeat Steps 2-4 for any remaining tables.

	You will then need to propagate the changes to all the other replicas
in the replica set by choosing Tools → Replication...
→ Synchronize Now.

Discussion

 To summarize,
when you replicate a database in Access, you change the database
structure so that Access can track changes made to the database and
later synchronize those changes with other copies of the database.
Copies of a replicated database are called replicas; the original
master copy is called the design master. You can make design changes
only to the design master. The design master and its replicas make up
a replica set. You can synchronize only members of a replica set.
When converting a nonreplicated database to a replicated one, Access
makes the following changes:
	
 Adds additional tables to track
changes

	
 Adds additional fields to each
table to ensure uniqueness of records across replicas and to track
changes

	
 Adds new properties to
the database

	
 Changes any sequentially
assigned AutoNumber fields to randomly assigned AutoNumber fields to
reduce the possibility of AutoNumber conflicts

 When you synchronize replicas,
Access compares records in each replica using the hidden s_Generation
field to determine if records have been updated. During
synchronization, only changed rows are exchanged between replicas.
When conflicting edits are detected during a synchronization
exchange, Access determines which edited version of a record
"wins" an exchange using the
following rules:
	If a record in one replica was changed more times than in the other
replicas, it wins.

	If all copies of a record were changed an equal number of times,
Access randomly picks a winner.

Only users with "losing" edits are
notified of conflicts.

 Replication works best when your replicas
are only loosely coupled, and it isn't critical that
all changes be synchronized as soon as they are made. It is best to
replicate only tables, and not forms, reports, or other Access
objects. Although Access supports replicating other database objects,
it doesn't always work well. You may find that in
attempting to synchronize design changes, only partial changes are
propagated to the replicas, creating additional headaches. In
addition, Access replication is suitable only when you anticipate a
small or moderate number of updates to the same records in different
replicas. If you need real-time synchronization or if you anticipate
a high number of updates to the records across replicas (conflicts),
you may wish to consider using the replication services built into
server databases such as Microsoft SQL Server or some other
system.

10.3. Create a Transaction Log

Problem

 You want to keep a permanent record of
activities in your database. With multiple users simultaneously
changing data in your application, how can you keep track of who made
which changes?

Solution

Client/server databases such as Microsoft SQL Server offer built-in
transaction-logging facilities that provide both a permanent record
and a way to recover from disasters by replaying the transaction log.
This solution demonstrates a simpler transaction log using Access
that tracks users and their edits without saving all the details that
would be necessary to recreate the edits entirely.
Start Access and load 10-03.MDB. Open frmBook
and add a few records, update some existing records, and delete some
records. Then review the information in tblLog;
you'll find a record in this table for each change
you made, as shown in Figure 10-15.
[image: Examining changed records]

Figure 10-15. Examining changed records

To add this simple logging capability to your own database, follow
these steps:
	Create a new table, tblLog, with the fields shown in Table 10-3.

Table 10-3. Fields in tblLog
	
 Field name

 	
 Data type

	
 ActionDate

 	
 Date/Time

	
 Action

 	
 Number (Byte)

	
 UserName

 	
 Text

	
 TableName

 	
 Text

	
 RecordPK

 	
 Text

	Import the module basLogging from 10-03.MDB into
your own database.

	Add three event procedures to each form for which you wish to track
changes. In the sample database, these event properties are attached
to frmBook, and are shown in Table 10-4. Substitute
the name of your own table for tblBook, and the primary key of the
table for [BookID].

Table 10-4. Logging properties for frmBook
	
 Property

 	
 Value

	
 AfterInsert

 	
 =acbLogAdd("tblBook", [BookID])

	
 AfterUpdate

 	
 =acbLogUpdate("tblBook", [BookID])

	
 OnDelete

 	
 =acbLogDelete("tblBook", [BookID])

Discussion

 Changing data through a form triggers a
series of events. This technique assigns code to each event that
indicates a change has been executed and uses that code to append a
record to a logging table. You can use the
CurrentUser function to keep track of who made
the change and the Now function to record when
it was made.
Since the three types of records in the logging table are similar,
the functions are just wrappers for a single general-purpose function
that actually adds the records. This function depends on enumerated
values that are defined in the declarations section of the basLogging
module:
Public Enum LogActions
 Add = 1
 Update = 2
 Delete = 3
End Enum
The acbLog function accepts as arguments all of
the information that needs to be stored, opens a recordset on the log
table, and then saves the information in a new record of that
recordset:
Public Function acbLog(_
 strTableName As String, varPK As Variant, _
 Action As LogActions) As Integer

 ' Log a user action in the log table

 Dim db As DAO.Database
 Dim rstLog As DAO.Recordset

 On Error GoTo HandleErr

 Set db = CurrentDb()
 Set rstLog = db.OpenRecordset(_
 "tblLog", dbOpenDynaset, dbAppendOnly)

 rstLog.AddNew
 rstLog("UserName") = CurrentUser()
 rstLog("TableName") = strTableName
 rstLog("RecordPK") = varPK
 rstLog("ActionDate") = Now
 rstLog("Action") = Action
 rstLog.Update

 rstLog.Close

 acbLog = True

ExitHere:
 Exit Function

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, , "acbLog()"
 acbLog = False
 Resume ExitHere
End Function

 This technique
demonstrates one reason why you should allow users to interact with
your application only via Access forms: forms alone generate events
you can trap. If you let users edit data directly via a table or
query datasheet, you can't track the edits.

 You could extend this technique to
capture additional detail about the records being added, updated, or
deleted. You might even add extra fields to the logging table to
capture the actual data instead of just the primary key that
identifies the changed record. This allows you to completely
reconstruct the table at any point in time by inspecting the log file
and making or removing changes. The drawback to enabling this
capability is that it requires substantially more storage space,
since you'll be storing a full copy of the data
every time any part of it changes.

 If you wish to log a table with a compound
primary key, just replace the last parameter when calling the
acbLog functions with a concatenation of each
field that makes up the primary key. For example, to log an addition
to the tblOrderDetail table with a primary key made up of OrderId and
OrderItem, you would use the following function call in the
AfterInsert event property:
=acbLogAdd("tblOrderDetail", [OrderId] & "; " & [OrderItem])

 acbLog opens a recordset on the logging table
with the dbAppendOnly argument. This returns an
initially blank recordset ready to receive new records instead of a
full dynaset whose existing records can be edited. This gives you a
performance boost when you are only adding new records and do not
need to pull in existing records.

See Also

For more information on using DAO in Access databases, see
How Do I Use Data Access Objects (DAO) in New
Databases? in the Preface.

10.4. Send Messages to Other Users Without Using Email

Problem

 When you have multiple users logged into
your application, you want them to be able to communicate quickly and
easily with one another. You need a simple interface for sending
notes back and forth so users can check whether anyone else is
editing a particular entry, compare notes on workflow, and so on. How
can you implement this in Access?

Solution

 You can keep your notes in a table in a
shared database to which all users have access. Whenever someone
writes a note to another user, that note is added as another record
in this table. By using a form that makes use of the Timer event, you
can monitor the status of this table from any Access application and
notify users when new messages have arrived.

 This solution employs two files,
10-04fe.MDB and
10-04be.MDB. Before you can try it,
you'll need to link the data tables from
10-04be.MDB (the
"backend" or data database) to
10-04fe.MDB (the
"frontend" or application
database). Linking a data table allows you to use a table from one
Access database within another Access database. Start Access and load
10-04fe.MDB. Choose File → Get External
Data Link Tables, and select 10-04be.MDB as the
Access link database. At the Link Tables dialog, select tblMessage
and click OK, as shown in Figure 10-16.
[image: Linking a data table]

Figure 10-16. Linking a data table

Now you can test-drive this solution by sending a message to
yourself. Open both frmSendMail and frmReceiveMail. Minimize the
Receive Mail form. Select your username from the To combo box. If you
haven't altered the default Access security
settings, your username will be Admin, which should be confirmed in
the From text box. Enter any message and click the Send Message
button. In Figure 10-17, Peter has used frmSendMail
to compose a message to Jean.
Tip
In order to send messages between multiple users,
you'll need to set up a workgroup that contains the
users, and have each user log in as him or herself. See Section 10.1
for more information on setting up a workgroup.

[image: Using frmSendMail to send a message]

Figure 10-17. Using frmSendMail to send a message

The Send Mail form will clear as soon as the message is sent. Within
10 seconds, the Receive Mail form will pop up with the message. Figure 10-18 shows how Jean would see the message from
Peter. Click on the Mark as Read button to clear the Receive Mail
form. If more than one message is waiting, you can navigate through
them.
[image: Using frmReceiveMail to receive a message]

Figure 10-18. Using frmReceiveMail to receive a message

To use this technique in your own applications, follow these steps:
	Identify the shared database you'll be using to hold
the messages. This can be an existing shared database or a new one
designed expressly for this purpose. Create a new table with the
fields shown in Table 10-5. Make MessageID the
primary key of this table, and save it as tblMessage.

Table 10-5. Fields in tblMessage
	
 Field name

 	
 Data type

	
 MessageID

 	
 AutoNumber

	
 From

 	
 Text

	
 To

 	
 Text

	
 DateSent

 	
 Date/Time

	
 DateReceived

 	
 Date/Time

	
 Message

 	
 Memo

	Close the shared database and open the database with which you want
to send and receive messages. This is the database where
you'll create the remaining objects. Import basMail
and basFillUsers from 10-04fe.MDB to this
database.

	Create a new form with the properties shown in Table 10-6.

Table 10-6. Properties for frmSendMail
	
 Property

 	
 Value

	
 Caption

 	
 Send Mail

	
 DefaultView

 	
 Single Form

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 No

	
 Add two unbound text box controls and an
unbound combo box control to the form, as shown in Figure 10-17. Name the first text box txtFrom. Set its
ControlSource property to:
=CurrentUser()

 Name the second text box
txtMessage and size it to hold the text of your
message. Set the EnterKeyBehavior property for
txtMessage to New Line in
Field.

	

 Name the combo box
cboTo and size it the same as
txtFrom. Set its combo box-specific properties to
match those in Table 10-7.

Table 10-7. Properties for the cboTo combo box
	
 Property

 	
 Value

	
 RowSourceType

 	
 acbFillUserList

	
 RowSource

 	

	
 ColumnCount

 	
 1

	
 ColumnHeads

 	
 No

	
 ColumnWidths

 	

	
 BoundColumn

 	
 1

	
 ListRows

 	
 8

	
 ListWidth

 	
 Auto

	

 Add a command button to the
form, with the properties shown in Table 10-8. The
&Send Message caption makes the button respond to the Alt-S
accelerator key shortcut.

Table 10-8. Properties for cmdSend
	
 Property

 	
 Value

	
 Name

 	
 cmdSend

	
 Caption

 	
 &Send Message

	
 OnClick

 	
 =acbSendMail()

	Save this form as frmSendMail.

	Select File → Get External Data → Link Tables and
link the tblMessage table you created in your shared database to this
frontend database.

	
 Create a new query based on tblMessage.
Drag all the fields from the field list to the query grid. Set the
query criteria as shown in Table 10-9. Save this
query as qryNewMail.

Table 10-9. Criteria for qryNewMail
	
 Field

 	
 Criteria

	
 To

 	
 CurrentUser()

	
 DateReceived

 	
 Is Null

	

 Create another new form, with
the properties shown in Table 10-10.

Table 10-10. Properties for frmReceiveMail
	
 Property

 	
 Value

	
 RecordSource

 	
 qryNewMail

	
 Caption

 	
 No mail

	
 DefaultView

 	
 Single Form

	
 AllowAdditions

 	
 No

	
 ScrollBars

 	
 Neither

	
 RecordSelectors

 	
 No

	
 NavigationButtons

 	
 Yes

	
 OnLoad

 	
 =acbCheckMail()

	
 OnTimer

 	
 =acbCheckMail()

	
 TimerInterval

 	
 10000

	
 Add three bound text box controls to the
form. Name the first one txtFrom, set the ControlSource to From, and
size it to hold the sender's address. Name the
second one txtSent, set the ControlSource to DateSent, and size it to
hold the date and time the message was sent. Name the third one
txtMessage, set the ControlSource to Message, and size it to hold the
message text.

	

 Add a watermark picture to the
form using the additional form properties found in Table 10-11.

 In the sample database,
we've used a simple bitmap created with the Windows
Paint program to display a message in the center of the form. This
bitmap, NONEW.BMP, is included on the CD-ROM.
(CD content is available online at http://examples.oreilly.com/accesscook.) You
can add this bitmap to your form or create your own.

Table 10-11. Additional properties for frmReceiveMail
	
 Property

 	
 Value

	
 Picture

 	
 bitmap file

	
 PictureType

 	
 Embedded

	
 PictureSizeMode

 	
 Clip

	
 PictureAlignment

 	
 Center

	
 PictureTiling

 	
 No

	Place a Rectangle control with the same background color as the
form's detail section behind all of the controls on
the form. After you have positioned it and sized it to take up the
entire detail section, you can move it behind the other controls by
selecting Format | Send to Back.

	

 Add a command button to the form, with
the properties shown in Table 10-12.

Table 10-12. Properties for cmdReceive
	
 Property

 	
 Value

	
 Name

 	
 cmdReceive

	
 Caption

 	
 &Mark as Read

	
 OnClick

 	
 =acbReceiveMail()

	Save this form as frmSendMail.

Discussion

 This technique works by passing messages
back and forth through tblMessage. The sending form is unbound,
because when you send a message, you don't want to
have to flip through all the previous messages. The
acbSendMail function just takes whatever you
type into the form and puts it into this table. It also uses the
CurrentUser function to put your name into the
From field of the table, and the Now function to
time-stamp the message. The acbSendMail function
is shown here:
Public Function acbSendMail() As Integer

 ' Take the message and user from the
 ' frmMailSend form and send it to the mail
 ' backend

 On Error GoTo HandleErr

 Dim db As DAO.Database
 Dim rstMail As DAO.Recordset
 Dim frmMail As Form

 Set db = CurrentDb()
 Set rstMail = db.OpenRecordset(_
 "tblMessage", dbOpenDynaset, dbAppendOnly)
 Set frmMail = Forms("frmSendMail")

 rstMail.AddNew
 rstMail("From") = CurrentUser()
 rstMail("To") = frmMail.cboTo
 rstMail("DateSent") = Now
 rstMail("Message") = frmMail.txtMessage
 rstMail.Update

 frmMail.cboTo = Null
 frmMail.txtMessage = Null

ExitHere:
 On Error Resume Next
 rstMail.Close
 Err.Clear
 Exit Function

HandleErr:
 MsgBox Err & ": " & Err.Description, , "acbSendMail()"
 Resume ExitHere
End Function
Opening the recordset with the dbAppendOnly flag
accelerates the process of adding a new record because it avoids
reading in the existing records that the send function
doesn't care about.

 The cboTo combo box uses a list-filling
function to fill the combo box with a list of current users in the
workgroup. List-filling functions were discussed in the Solution in
Recipe 7.5. This particular function fills
its list using security data access objects to iterate through the
collection of users in the workgroup. We defer discussion of this
topic to the Solution in Recipe 10.5.
The Receive Mail form is based on a query that finds all messages
directed to the current user that have nothing in their DateReceived
fields. By default, new records added from elsewhere on a network do
not show up on an already-opened form; you must explicitly requery
the form for this to happen. The acbCheckMail
function automatically performs this requery at load time and once
every 10 seconds to check for new mail. The
acbCheckMail function is shown here:
Function acbCheckMail() As Integer

 ' Check for new mail, and if there is any,
 ' restore the received mail form

 On Error GoTo HandleErr

 Dim rstClone As DAO.Recordset
 Dim frmMail As Form

 Set frmMail = Forms("frmReceiveMail")
 frmMail.Requery

 Set rstClone = frmMail.RecordsetClone
 If Not rstClone.EOF Then
 rstClone.MoveFirst
 frmMail.Caption = "New Mail!"
 If IsIconic(frmMail.Hwnd) Then
 frmMail.SetFocus
 DoCmd.Restore
 End If
 Else
 frmMail.Caption = "No mail"
 End If

ExitHere:
 Exit Function

HandleErr:
 Select Case Err.Number
 Case 3021 ' no current record, do nothing
 Case Else
 MsgBox Err & ": " & Err.Description, , "acbCheckMail()"
 End Select
 Resume ExitHere
End Function

 After the form is requeried,
acbCheckMail checks for new mail by looking at
the RecordsetClone property of the form. This property returns an
exact duplicate of the form's underlying recordset.
If there are any records to be shown, this RecordsetClone will not be
at its EOF, so the function changes the form's
caption and, if it is currently minimized, restores the form to its
full size. The function calls the Windows API function
IsIconic (declared in the declarations section
of basMail) to determine if the form is minimized.

 We have used the form's
Picture property, a rectangle, and the form's
AllowAdditions property to add one more effect to the form: when the
form's recordset is empty, all the controls on the
form disappear and a bitmap reading "There are no
new mail messages" appears on the form (see Figure 10-19).
[image: frmReceiveMail displays a special message when there is no new mail]

Figure 10-19. frmReceiveMail displays a special message when there is no new mail

This trick is accomplished by setting the form's
AllowAdditions property to No, adding a watermark picture to the
form, and adding an opaque rectangle that hides the watermark when
there are records in the form's recordset. When
there are no records in a form's recordset and you
have set AllowAdditions to No, Access hides all of the
form's controls—including the unbound
Rectangle control—and prominently displays the
form's watermark, if there is one.

 This
method uses the Access username to track mail senders and recipients.
To use it in production, you'll need to activate
Access security (otherwise, everyone is signed on as the Admin user
at all times). To activate security, simply use Security Change
Password to assign a password to the Admin user. Then you can select
Users from the Security menu and create as many new users as you
like. Security was discussed in more detail in the Solution in Recipe 10.1.
To test this solution with multiple users, you'll
need to have several machines available on a network. Make a copy of
10-04fe.MDB for each computer, and use File
→ Get External Data Link Tables to link the same copy of
tblMessage to each one. Log in as a different user at each computer,
and you'll be able to send messages back and forth.

 You can adjust the performance impact of
this technique by changing the TimerInterval property of
frmReceiveMail. This property measures the number of milliseconds
between each execution of the OnTimer event. In the sample database,
the TimerInterval property is set to 10000 milliseconds, or 10
seconds; its highest possible value is 65535, or just over a minute.
If you want a longer delay, you can add a static integer variable to
acbCheckMail and increment it more than once
before you check for new mail.

See Also

For more on working with Outlook programmatically, see
Recipe 12.8 in Chapter 12.

10.5. Programmatically Track Users and Groups

Problem

 As the database
administrator, you want to be able to track users and their groups
within your workgroup. How can you gather the information you need?

Solution

 Using Data Access Objects (DAO), you can
retrieve all the information you need about users'
names and groups. Once you have that information, you can use it in
creating your applications.
The sample form frmUserGroups in 10-05.MDB fills
tables with the information you need and presents it to you in a list
box. To test it, open and run frmUserGroups. Figure 10-20 shows the form in use for a sample workgroup.
[image: frmUserGroups shows users and groups for a sample workgroup]

Figure 10-20. frmUserGroups shows users and groups for a sample workgroup

To gather this information in your own applications, follow these
steps:
	Create the tables you'll need to hold the
information. Either import the three tables from
10-05.MDB, or use the information in Table 10-13 to create your own.

Table 10-13. Table layouts for gathering user/group information
	
 Table name

 	
 Field name

 	
 Field type

 	
 Primary key?

	
 tblGroups

 	
 Group

 	
 Text

 	
 No

	

	
 GroupID

 	
 Counter

 	
 Yes

	
 tblUserGroups

 	
 UserID

 	
 Number (Long Integer)

 	
 Yes

	

	
 GroupID

 	
 Number (Long Integer)

 	
 Yes

	
 tblUsers

 	
 UserName

 	
 Text

 	
 No

	

	
 UserID

 	
 Counter

 	
 Yes

	
 If you created your own tables in
Step 1, you'll need to add an index to tblGroups. In
the Indexes properties sheet (available by choosing View →
Indexes when tblGroups is open in design mode), add a row as
described in Table 10-14 for the index properties.
Table 10-14 also shows the primary key row that
should already exist in the Indexes properties sheet.

Table 10-14. Index settings for tblGroups
	
 Index name

 	
 Field name

 	
 Sort order

	
 Group

 	
 Group

 	
 Ascending

	
 PrimaryKey

 	
 GroupID

 	
 Ascending

	Either import the module basListUsers from
10-05.MDB, or enter the following code into a
global module. This is the code you'll use to fill
the three tables you just created:
Public Sub acbListUsers()
 ' Create tables containing all
 ' the users and groups in the current
 ' workgroup.
 '
 ' The results will be in:
 ' tblUsers, tblGroups and
 ' tblUserGroups.
 ' Run qryUserGroups to see sorted list.

 Dim db As DAO.Database
 Dim wrk As DAO.Workspace
 Dim rstUsers As DAO.Recordset
 Dim rstGroups As DAO.Recordset
 Dim rstUserGroups As DAO.Recordset
 Dim usr As User
 Dim intI As Integer
 Dim intJ As Integer

 ' Set up object variables.
 Set wrk = DBEngine.Workspaces(0)
 Set db = wrk.Databases(0)
 Set rstUsers = db.OpenRecordset("tblUsers")
 Set rstGroups = db.OpenRecordset("tblGroups")
 Set rstUserGroups = db.OpenRecordset("tblUserGroups")

 ' Refresh the Users and Groups collections
 ' so we see any recently added members
 wrk.Users.Refresh
 wrk.Groups.Refresh

 ' Clear out the old values
 db.Execute "DELETE * FROM tblUserGroups"
 db.Execute "DELETE * FROM tblUsers"
 db.Execute "DELETE * FROM tblGroups"

 ' Build up a list of all the groups in tblGroups
 For intI = 0 To wrk.Groups.Count - 1
 rstGroups.AddNew
 rstGroups("Group") = wrk.Groups(intI).Name
 rstGroups.Update
 Next intI

 ' Loop through all the users, adding
 ' rows to tblUsers and tblUserGroups.
 For intI = 0 To wrk.Users.Count - 1
 ' Add a user to tblUsers.
 Set usr = wrk.Users(intI)
 rstUsers.AddNew
 rstUsers("UserName") = usr.Name
 rstUsers.Update
 rstUsers.Move 0, rstUsers.LastModified

 ' Now loop through all the groups
 ' that user belongs to, hooking up the rows
 ' in tblUserGroups.
 For intJ = 0 To usr.Groups.Count - 1
 rstGroups.Index = "Group"
 rstGroups.Seek "=", usr.Groups(intJ).Name
 If Not rstUserGroups.NoMatch Then
 rstUserGroups.AddNew
 rstUserGroups("UserID") = rstUsers("UserID")
 rstUserGroups("GroupID") = rstGroups("GroupID")
 rstUserGroups.Update
 End If
 Next intJ
 Next intI

 rstUsers.Close
 rstGroups.Close
 rstUserGroups.Close
End Sub

	Either import the query qryUserGroups from
10-05.MDB, or create a new query, as follows.
When Access asks you to add a table, just close the dialog. In design
mode, click on the SQL button on the toolbar and enter the following
expression:
SELECT tblUsers.UserName, tblGroups.Group
FROM tblUsers INNER JOIN (tblGroups INNER JOIN tblUserGroups
ON tblGroups.GroupID = tblUserGroups.GroupID)
ON tblUsers.UserID = tblUserGroups.UserID
ORDER BY tblUsers.UserName, tblGroups.Group;
Then save the query as qryUserGroups.

	To produce the current list of users and groups, execute the code in
acbListUsers. You can call it directly, use a
button whose Click event calls the procedure, or call it from the
debug window. (The sample form calls
acbListUsers from the Click event of the
cmdRequery button on the form.) Once you've executed
that code, you'll have filled in the three tables.
You can use qryUserGroups to retrieve the information you need, or
create your own queries based on the three tables.

Discussion

 This solution relies on the DAO
object model to gather its information. The DBEngine object is at the
root (the highest level) of the DAO object hierarchy, and it has a
single collection, the Workspaces collection. Each workspace
represents a session of the Access database engine (and unless
you're writing sophisticated applications,
you'll most likely never see more than a single
concurrent workspace). The default workspace contains information
about the collection of open databases (only one is open in the user
interface—all others must be opened via VBA code) along with
the available user and group collections. These are the collections
you'll need for filling tables with the usernames
and their groups. The code in the acbListUsers
subroutine does all the work.

 The
acbListUsers function starts out by setting up
object variables to refer to several recordset objects, and refreshes
the Users and Groups collections of the workspace. This is necessary
to make sure we see any recent changes to these collections made via
the Access user interface or by another Access session. The relevant
code is:
' Set up object variables.
Set wrk = DBEngine.Workspaces(0)
Set db = wrk.Databases(0)
Set rstUsers = db.OpenRecordset("tblUsers")
Set rstGroups = db.OpenRecordset("tblGroups")
Set rstUserGroups = db.OpenRecordset("tblUserGroups")

' Refresh the Users and Groups collections
' so we see any recently added members
wrk.Users.Refresh
wrk.Groups.Refresh

 The next step entails deleting all
the existing rows in the three tables, using the Execute method of
the database object:
' Clear out the old values
db.Execute "DELETE * FROM tblUserGroups"
db.Execute "DELETE * FROM tblUsers"
db.Execute "DELETE * FROM tblGroups"
Once these lines of code have executed, the three tables will be
empty.

 The next step is to build up a
list of all the groups. This is accomplished by looping through all
the elements of the workspace's Groups collection.
Just like all other collections in Access, the Groups collection
provides a Count property indicating how many elements it contains.
These items are numbered from 0 through Count-1, and we loop through
them all, adding a row to tblGroups for each group in the collection:
' Build up a list of all the groups in tblGroups
For intI = 0 To wrk.Groups.Count - 1
 rstGroups.AddNew
 rstGroups("Group") = wrk.Groups(intI).Name
 rstGroups.Update
Next intI
Once tblGroups is filled in, we do the same for users. Just as the
workspace contains a collection of groups, it also contains a
collection of users. We can walk through the Users collection, adding
a row at a time to tblUsers, as shown here:
 ' Loop through all the users, adding
 ' rows to tblUsers and tblUserGroups.
 For intI = 0 To wrk.Users.Count - 1
 ' Add a user to tblUsers.
 Set usr = wrk.Users(intI)
 rstUsers.AddNew
 rstUsers("UserName") = usr.Name
 rstUsers.Update
 rstUsers.Move 0, rstUsers.LastModified

 ' See the next code example...

 Next intI
Once a user is added, rows are added to tblUserGroups for each group
that contains the current user. This is accomplished by enumerating
through the Groups collection for the current user. (Note that there
was a choice here. Each member of the workspace's
Users collection has its own Groups collection, listing the groups to
which it belongs, and each member of the workspace's
Groups collection has its own Users collection, listing the members
of the group. The code can either walk through the users, looking at
the Groups collection in each, or walk through the groups, looking at
the Users collection in each. This example walks through the
workspace's Users collection, one at a time,
studying the Groups collection in each one.) The following code loops
through every item in the user's Groups collection,
finding the matching name in tblGroups, and then adding a row to
tblUserGroups containing both the user's UserID
field (from tblUsers) and the GroupID field (from tblGroups). This
way, tblUserGroups contains a single row for every user/group pair.
The code is:
' Now loop through all the groups
' that user belongs to, hooking up the rows
' in tblUserGroups.
For intJ = 0 To usr.Groups.Count - 1
 rstGroups.Index = "Group"
 rstGroups.Seek "=", usr.Groups(intJ).Name
 If Not rstUserGroups.NoMatch Then
 rstUserGroups.AddNew
 rstUserGroups("UserID") = rstUsers("UserID")
 rstUserGroups("GroupID") = rstGroups("GroupID")
 rstUserGroups.Update
 End If
Next intJ
Once the code has looped through all the users and all the groups to
which each user belongs, it closes all the objects:
rstUsers.Close
rstGroups.Close
rstUserGroups.Close
Now tblUsers, tblGroups, and tblUserGroups contain information about
each user and the groups to which he or she belongs.
Once you've filled the three tables, you can easily
perform lookups in your VBA code or create reports displaying
security settings. You could also just lift pieces of the code from
acbListUsers for use in your own applications.
The next solution shows a simpler function,
acbAmMemberOfGroup, which uses a similar
technique to query on the fly if the current user is a member of a
specific group.

 The
acbListUsers procedure is not production-quality
code. To keep it simple, we left out the error-handling code, and any
procedure of this nature that manipulates tables must include
sufficient error-handling capabilities. Though it's
not likely, some other user may have locked the output tables or,
worse, deleted them, or you may not have permissions for the system
tables you need in order to gather this information. In a production
environment, it's best to trap errors and handle
them.

 In the list of users
found in tblUsers, notice that there are two users that you might not
have seen before: Creator and Engine. These two users are created by
the Jet engine itself and cannot be used or manipulated by VBA code.
As you'll see in the Solution in Recipe 10.7, you can create a Workspace object for any
normal user, allowing that user to log into a new session of the Jet
engine, but you can't use Creator or Engine to
create new workspace objects. It's a good thing,
too! Since neither can have a password (their passwords are always
blank), this would otherwise provide a security breach. Because you
can neither log on manually nor log on using the CreateWorkspace
method with either user, these two special users
don't pose a security risk.
Once you know how to enumerate through collections, as shown in this
solution, you should be able to apply the same techniques to other
database collections and their objects. For more information, see
Chapter 4.

10.6. Adjust an Application Based on Who's Logged In

Problem

 You've secured your
database so that certain classes of users can't edit
data using a particular form or run a specific report, but this
doesn't prevent them from trying to open the form or
report and receiving a permission error. You'd like
your application to adjust itself based on the current
user's security level. Is there any way to
accomplish this?

Solution

 Using VBA code, you can create
a function that determines if the current user is a member of a
security group. Based on the value this function returns, you can
change any runtime property of any form or control, thus adapting
your application to the user's security level.

 Because this solution makes use
of Access Security, you'll need to join the
workgroup you created when you secured the database before you can
try the sample database.
Now start Access. You will be prompted for a username and password.
Enter the name of a user from the Solution in Recipe 10.1s Table 10-1. With the exception of the Paul and Admin
accounts, the passwords for these are blank. (The passwords for the
built-in Admin account and the Paul account are both
"password"; note that case is
significant.)
Load 10-06.MDB and open the frmSwitchboard form.
Depending on which user you logged in as, you will see either a
Manager-, Programmer-, or Default-level form. For example,
Manager-level users will see two Manager buttons and a Close button.
In addition, a Close menu item will be included in the File menu. In
contrast, a member of the Programmers group will see two Programmer
buttons, no Close button, and no File → Close menu item.
To implement this system in your own database, follow these steps:
	Import the basGroupMember module into your database.

	
 For each form you want to customize at
runtime based on the user's group membership, attach
an event procedure to the form's Open event that
calls the acbAmMemberOfGroup function one or more times within an
If...Then statement. Because users can be members
of more than one group, you need to check for membership in the
"highest"-level groups first, in decreasing order of
security level.

Table 10-15. Customizations made to frmSwitchboard
	
 Group

 	
 Visible buttons

 	
 lblMenu caption

 	
 File Close menu available?

	
 Managers

 	
 Manager #1Manager #2Close

 	
 Manager Main Menu

 	
 Yes

	
 Programmers

 	
 Programmer #1Programmer #2

 	
 Programmer Main Menu

 	
 No

	
 (Default)

 	
 Default #1Default #2

 	
 Default Main Menu

 	
 No

	Once you have determined the security level for the currently
logged-in user, selectively hide and unhide controls on the form to
suit your application's needs. You might also want
to alter the caption of labels or other controls or customize other
aspects of the form's look and feel. Finally, you
can customize the menus for the form by changing the
form's MenuBar property to point to different sets
of menu macros. We have done all of this in the sample frmSwitchboard
form. The runtime customizations to frmSwitchboard are summarized in
Table 10-15.
The code that drives this customization process for frmSwitchboard is
shown here:
Private Sub Form_Open(Cancel As Integer)
 ' Adapt switchboard to match level of logged in user.

 ' Because users can be members of more than one group,
 ' you need to check membership in decreasing order
 ' starting with the highest-level group.
 If acbAmMemberOfGroup("Managers") Then
 Me.cmdManager1.Visible = True
 Me.cmdManager2.Visible = True
 Me.cmdProgrammer1.Visible = False
 Me.cmdProgrammer2.Visible = False
 Me.cmdDefault1.Visible = False
 Me.cmdDefault2.Visible = False
 Me.cmdClose.Visible = True
 Me.lblMenu.Caption = "Manager Main Menu"
 ElseIf acbAmMemberOfGroup("Programmers") Then
 Me.cmdManager1.Visible = False
 Me.cmdManager2.Visible = False
 Me.cmdProgrammer1.Visible = True
 Me.cmdProgrammer2.Visible = True
 Me.cmdDefault1.Visible = False
 Me.cmdDefault2.Visible = False
 Me.cmdClose.Visible = False
 Me.lblMenu.Caption = "Programmer Main Menu"
 Else
 Me.cmdManager1.Visible = False
 Me.cmdManager2.Visible = False
 Me.cmdProgrammer1.Visible = False
 Me.cmdProgrammer2.Visible = False
 Me.cmdDefault1.Visible = True
 Me.cmdDefault2.Visible = True
 Me.cmdClose.Visible = False
 Me.lblMenu.Caption = "Default Main Menu"
 End If
End Sub

Discussion

 By default, the form is saved
with the least-secure options set; if anything goes wrong, this
provides a little extra assurance. When any user opens
frmSwitchboard, the Load event procedure is
called, and the form's look and feel is customized
on the fly. Group membership is determined using the
acbAmMemberOfGroup function found in
basGroupMember:
Public Function acbAmMemberOfGroup(strGroup As String)

 Dim wrk As DAO.Workspace
 Dim usr As DAO.User
 Dim strTest As String

 Set wrk = DBEngine.Workspaces(0)

 ' Refresh collections to stay in synch with
 ' Access UI
 wrk.Users.Refresh
 wrk.Groups.Refresh

 ' Set up pointer to current user
 Set usr = wrk.Users(CurrentUser())

 ' Handle errors in line
 On Error Resume Next
 ' If any property of the Groups collection
 ' using the passed-in group works then we're
 ' a member. Otherwise an error will occur
 ' and we can assume we are not a member.
 strTest = usr.Groups(strGroup).Name
 acbAmMemberOfGroup = (Err.Number = 0)
 Err.Clear
End Function

 This function is simple: it
determines if a user is a member of a group by setting a pointer to
the Users collection of the current user and then attempts to get the
name of the group in the Groups collection of that user. If this
fails, the user is not a member of the group in question. If it
succeeds, the user must be a member of the group. See the Solution in
Recipe 10.5 for more details on the
programmatic manipulation of user and group collections.

 We could have based the form
customizations on the name of the current user using the built-in
CurrentUser function, but this requires us to consider each user
individually, which should be avoided if possible.
It's much easier to manage groups of users rather
than individual users. Still, you can always add more tests to the
If...Then statement in the Load event procedure.
Tip
Versions of Access prior to Access 95 did not allow a user to check
group membership unless the user was also a member of the Admins
group, but the recent versions of Access allow this.

 It's important that
you include an Else clause in the
If...Then statement of the Load event procedure to
handle users who are not members of any of the groups for which you
have tested. In the sample event procedure, we have tested for
membership in only the Managers and Programmers groups. Any users who
are not members of either group are handled by the
Else clause.

 You can use this technique to alter any
runtime property in response to the user's group
membership, including:
	Whether certain menu items appear.

	Whether certain controls are visible, and therefore active.

	What query a form is based on; some users can see more records than
others.

	What data entry controls are visible; some users can enter more
fields than others.

	What toolbars are shown.

10.7. List All Users with Blank Passwords

Problem

 As database administrator, you need
to ensure that every member of your workgroup has an Access password.
You can use the NewPassword method to create a new password, and you
understand why you can't retrieve the value of a
user's password, but you need a way to find out
whether a user has established a password yet. You'd
like to create a list of all users, indicating which ones
don't have passwords. How can you do this?

Solution

 You
can't retrieve users' passwords,
but there's an easy way to find out if a user has a
blank password: simply try to log onto the user's
account using a blank password. If you succeed, you know the user has
no password. With a lot of users this becomes a tiresome process, but
fortunately, you can automate it using DAO and the CreateWorkspace
method.

 The frmUserPasswords form
fills a table with a list of users and whether their passwords are
blank and then presents this information to you in a list box. To
test it, open and run frmUserPasswords from
10-07.MDB. Figure 10-21 shows
the form in use for a sample workgroup.
[image: frmUserPasswords shows users and password status for a sample workgroup]

Figure 10-21. frmUserPasswords shows users and password status for a sample workgroup

To use this information in your own applications, follow these steps:
	Create a table to hold the information. Either import the table
tblUsers from 10-07.MDB, or use the information
in Table 10-16 to create your own table. Figure 10-22 shows the table in design mode.

Table 10-16. Table layouts for gathering user/group information
	
 Field name

 	
 Field type

 	
 Primary key?

	
 UserID

 	
 AutoNumber

 	
 Yes

	
 UserName

 	
 Text

 	
 No

	
 PasswordSet

 	
 Yes/No

 	
 No

[image: The tblUsers table in design mode]

Figure 10-22. The tblUsers table in design mode

	Either import the module basFindBlank from
10-07.MDB, or enter the following code into a
global module. This is the code you'll use to fill
the table you just created.
Public Sub acbFindBlankPasswords()
 ' Fill tblUsers with list of users, and
 ' whether or not their password is blank.

 Dim intI As Integer
 Dim usr As DAO.User
 Dim db As DAO.Database
 Dim wrk As DAO.Workspace
 Dim wrkTest As DAO.Workspace
 Dim rst As DAO.Recordset
 Dim blnPwdUsed As Boolean
 Dim strUser As String

 Const acbcErrInvalidPassword = 3029

 ' Set up object variables.
 Set wrk = DBEngine.Workspaces(0)
 Set db = wrk.Databases(0)
 Set rst = db.OpenRecordset("tblUsers")

 db.Execute "DELETE * FROM tblUsers"

 On Error Resume Next
 ' Loop through all the users.
 For intI = 0 To wrk.Users.Count - 1
 Set usr = wrk.Users(intI)
 strUser = usr.Name

 ' Skip the two special users, since you can't log in
 ' as either of them via CreateWorkspace().
 If strUser <> "Creator" And strUser <> "Engine" Then
 ' Try to log in with a blank password. If this
 ' doesn't fail, the user has a blank password.
 Set wrkTest = DBEngine. _
 CreateWorkspace("Test", strUser, "")
 blnPwdUsed = (Err = acbcErrInvalidPassword)

 ' Add a new row to tblUsers, storing the user's
 ' name and whether or not they have a password.
 rst.AddNew
 rst("UserName") = strUser
 rst("PasswordSet") = blnPwdUsed
 rst.Update
 wrkTest.Close
 End If
 Next intI
 rst.Close
End Sub

	To produce a list of all users whose passwords are blank, execute the
code in acbFindBlankPasswords. You can call it
from the debug window, or from an event procedure, as in
frmUserPasswords. (If you decide to use
frmUserPasswords, you must also create a query,
qryUserPasswords, which sorts the rows in
tblUsers in ascending order on the UserName field.
This query fills the list box on the sample form.) You could create a
report that pulls its rows from tblUsers as well,
allowing you to prepare a regular report listing all users with blank
passwords.

Discussion

 acbFindBlankPasswords

 uses DAO to do most of its work. It
starts by setting up the object variables it needs to retrieve and
store the password information. It uses the Workspace object to loop
through all the users (since the Workspace object provides the Users
collection that you'll use), and the Recordset
object refers to the table into which you'll write
the new data:
Set wrk = DBEngine.Workspaces(0)
Set db = wrk.Databases(0)
Set rst = db.OpenRecordset("tblUsers")
You then need to clear out the previous contents of
tblUsers, so that later code can fill in the table
with the current list of users and their password status:
db.Execute "DELETE * FROM tblUsers"

 The next step is to
loop through the Users collection of the default Workspace object.
For each user, the code attempts to create a new workspace, as shown
here:
For intI = 0 To wrk.Users.Count - 1
 Set usr = wrk.Users(intI)
 '
 ' See the next code sample.
 '
Next intI

 The final step is the important one.
For each user, the code calls the CreateWorkspace method of the
DBEngine object. To call this method, you must supply three
parameters: the name for the new workspace (of course, since you only
need the result of attempting to create the workspace, the actual
name doesn't matter), the username, and the
user's password. An empty string
("") is passed for the password. An
error indicates that the current user has a password, since the new
workspace could not be created using the blank password. If there was
no error, then that user does not have a password.
The code checks whether an error occurred, comparing the Access
built-in Err value with the known error value that occurs when you
attempt to create a workspace with an invalid password. Regardless of
whether an error occurred, the code adds a new row to
tblUsers and stores the username along with the
password status in the table. Here is the code for these steps:
' Skip the two special users, since you can't log in
' as either of them via CreateWorkspace().
If strUser <> "Creator" And strUser <> "Engine" Then
 ' Try to log in with a blank password. If this
 ' doesn't fail, the user has a blank password.
 Set wrkTest = DBEngine. _
 CreateWorkspace("Test", strUser, "")
 blnPwdUsed = (Err = acbcErrInvalidPassword)

 ' Add a new row to tblUsers, storing the user's
 ' name and whether or not they have a password.
 rst.AddNew
 rst("UserName") = strUser
 rst("PasswordSet") = blnPwdUsed
 rst.Update
 wrkTest.Close
End If

 As discussed in the Solution in Recipe 10.5, the Users collection contains two users
that are not actually part of your workgroup: Creator and Engine.
Access creates these two users but doesn't allow you
to log on as either one, either from the command line or by creating
a new workspace. Therefore, the code just skips these special users,
since we don't really care whether their passwords
are blank.

 If you intend to use
acbFindBlankPasswords in a production environment,
you may wish to add some error-handling code to the procedure. Any
time you write to tables, you should include some method of dealing
with errors. At the least, the user (which could well be yourself)
should be alerted that an error has occurred and given some
information about the error.

10.8. Track Which Users Have a Shared Database Open

Problem

 You need better control
over a networked Access application. Is there any way you can track
which users are logged in and which machines they are using?

Solution

 Access
tracks this information in the .LDB file, but
that file sometimes lists users who have already logged out, so you
can't just open it in Notepad and take a look. This
solution opens a special ADO recordset that shows you exactly the
information you need. The sample form lists user and machine names in
a list box.

 Import frmCurrentConnections (see
Figure 10-23), which shows which users are logged
into any shared database. Note that if you are using a split
architecture, the shared database is the one that contains your
tables. Open the VBA Editor and use the Tools → References
dialog to ensure that you have a reference to Microsoft ActiveX Data
Objects, Version 2.1 or later.
[image: frmCurrentConnections shows which users are logged in]

Figure 10-23. frmCurrentConnections shows which users are logged in

You can open the form at any time to see who's
logged into the database. If you want to keep the form open, you can
click the Refresh button to update the display. If you have not
implemented security, all users will appear as Admin, but you will
see their individual machine names, as in Figure 10-23.

Discussion

 The key to this solution is the use of
a very peculiar kind of ADO recordset that retrieves metadata from
the Jet database engine. This metadata, also called schema
information, is not data that you store in your tables,
but data stored by the database engine—in this case, data about
logged-in users, which is stored in the .LDB
file. Here is the procedure that populates the list box:
Private Sub ListConnections()
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strComputerName As String

 Set cnn = CurrentProject.Connection
 Set rst = cnn.OpenSchema(adSchemaProviderSpecific, , _
 "{947bb102-5d43-11d1-bdbf-00c04fb92675}")
 lboConnections.RowSource = vbNullString
 lboConnections.AddItem "Computer Name;Login Name"

 Do While Not rst.EOF
 If rst("Connected") Then
 strComputerName = rst("Computer_Name")
 lboConnections.AddItem _
 Left(strComputerName, _
 InStr(strComputerName, vbNullChar) - 1) & _
 ";" & rst("Login_Name")
 End If
 rst.MoveNext
 Loop
 rst.Close
 Set rst = Nothing
 Set cnn = Nothing
End Sub
After using that magic GUID value in curly braces to open the
recordset, the code clears out the list box by setting its row source
to an empty string. This allows the procedure to be called repeatedly
to refresh the list as users come and go:
lboConnections.RowSource = vbNullString

 The code then fills in the first row of
data, which will become column headings because the list box
ColumnHeads property is set to Yes. The ListConnections procedure
uses a method of the list box that is new in Access 2002: AddItem.
This method makes it a little easier to work with combo or list boxes
that have a RowSourceType of Value List. You can populate such combo
and list boxes by using a list of items delimited by semicolons or
commas. Because this list box has two columns (the ColumnCount
property is set to 2), the code must insert the data for both columns
each time it calls AddItem. This is done by placing a semicolon
between the columns:
lboConnections.AddItem "Computer Name;Login Name"

 The fields of this recordset
contain data terminated by a null character (i.e., a character with
an ASCII value of 0). For the data to display correctly, you need to
extract just the portion of the Computer_Name data that comes before
the terminating null character. The following expression does this:
Left(strComputerName, InStr(strComputerName, vbNullChar) - 1)

 The ADO code in this solution will
work in Access 2000, but the AddItem method won't.
You can use string concatenation to build up the value list in Access
2000, but be aware that value lists in Access 2000 are limited to
2,048 characters; this limit was increased to over 32,000 characters
in Access 2002.

 The
ListConnections procedure is called from both
the Load event of the form and the Click event of the Refresh button:
Private Sub Form_Load()
 ListConnections
End Sub

Private Sub cmdRefresh_Click()
 ListConnections
End Sub

 In addition to the technique
used in this solution, you can monitor the users in your application
by using a utility that is available as a free download from
Microsoft at http://support.microsoft.com?kbid=1863. This
LDB viewer will work with Access 97, which used Version 3.51 of the
Jet engine. The code in this solution is supported only by Jet
Version 4.0 or later.

10.9. Determine if a Record Is Locked and by Whom

Problem

 When you use pessimistic locking
(discussed in the upcoming sidebar) in your applications, Access
informs you if another user has locked a record by displaying an icon
in the record selector of the form's detail section
(shown in the upper-left corner of Figure 10-24).
While this is nice, you may want to know who actually has the record
locked. Is there any way to determine this?
[image: A record has been locked, but by whom?]

Figure 10-24. A record has been locked, but by whom?

Solution

There is no built-in menu command or toolbar button that tells you
who has a record locked, but you can create a VBA function that
returns the username and the machine name of the user who has the
current record locked. This solution shows you how to create such a
function that you can call from any form.
Start Access and load the same copy of the
10-09.MDB database on at least two machines on
your network. (Alternately, you can use two instances of Access on a
single machine.)
Customizing the Record-Locking Method
In Access 2000, Microsoft added an important
new capability to the Jet database engine: record-level locking. In
previous versions, if you locked the record being edited, you would
also lock any other records that happened to be on the same data page
as the edited one. A data page held 2,048 characters, so it was
likely that locking would affect more than one record.
In Access 2000, Microsoft increased the size of data pages from 2,048
characters to 4,096 characters in order to support Unicode
characters, which each consume 2 bytes. With such large pages,
Microsoft decided that it needed to allow you to lock single records.
In the Advanced page of the Tools → Options dialog, you can
now choose to open the database using record-level locking. This
avoids locking entire pages when locking the edited record. That
dialog also allows you to select a default method of locking, which
is applied to data sheets and to any new forms.
To change the method of locking for a form, open the form in design
mode and modify the value of the form's RecordLocks
property. If this property is set to EditedRecord, Access uses
pessimistic locking for the form, which means
that Access locks the page of records or the single record as soon as
you change any data on the form (when the pencil icon appears in the
form's record selector). If it's
set to NoLocks, Access uses optimistic locking
for this form, which means that Access locks the page of records or
the single record only at the moment you save your changes.
For most forms, optimistic locking is the preferable setting, because
it keeps records locked for a much shorter period of time. Sometimes,
however, you'll need to employ pessimistic locking
to ensure that no more than one user is editing a record at the same
time. Record-level locking makes pessimistic locking much more
practical, as it ensures that only the record being edited will be
locked.

Open the frmEmployees form on the first machine (or instance),
changing the data in any control of the form so that the pencil icon
appears in the form's record selector.
Don't release the lock by saving the record, and
open the same form on the second machine. On the second machine,
press the button with the image of a padlock. A message box should
appear displaying the username and machine name of the user on the
first machine who has locked the record (see Figure 10-25). (To get an accurate username, both machines
should share the same system database file with security enabled. For
more information on enabling security, see the Solution in Recipe
10.1.)
[image: The username and machine name of the user who has locked the current record]

Figure 10-25. The username and machine name of the user who has locked the current record

 To add a lock identification
button to your own forms, follow these steps:
	Import the basRecordLock module from 10-09.MDB
into your database.

	
 Add a command button to each
form with the following in the command button's
OnClick property:
=acbWhoHasLockedRecord([Form])

Discussion

 The
acbWhoHasLockedRecord function's code is shown here:
Public Function acbWhoHasLockedRecord(frm As Form)
 ' Display a message box that says either:
 ' -No user has the current record locked, or
 ' -The user & machine name of the user who
 ' who has locked the current record.

 Dim rst As DAO.Recordset
 Dim blnMUError As Boolean
 Dim strUser As String
 Dim strMachine As String
 Dim strMsg As String

 On Error GoTo HandleErr

 ' Default message
 strMsg = "Record is not locked by another user."

 ' Clone the form's recordset and synch up to the
 ' form's current record
 Set rst = frm.RecordsetClone
 rst.Bookmark = frm.Bookmark

 ' If the current record is locked, then the next
 ' statement should produce an error that we will trap
 rst.Edit

ExitHere:
 ' Display either the default message or one specifying
 ' the user and machine who has locked the current record.
 MsgBox strMsg, , "Locking Status"
 Exit Function

HandleErr:
 ' Pass the error to acbGetUserAndMachine which will attempt
 ' to parse out the user and machine from the error message
 If Err.Number = 3188 Then
 ' Locked on this machine.
 strMsg = "Some other part of this application " _
 & "on this machine has locked this record."
 Else
 blnMUError = acbGetUserAndMachine(Err.Description, _
 strUser, strMachine)
 ' If the return value is True, then acbGetUserAndMachine
 ' was able to return the user and machine name of the user.
 ' Otherwise, assume the record was not locked.
 If blnMUError Then
 strMsg = "Record is locked by user: " & strUser & _
 vbCrLf & "on machine: " & strMachine & "."
 End If
 End If
 Resume ExitHere
End Function
This function accepts a single parameter: a pointer to a form. Using
this form object, acbWhoHasLockedRecord clones the
form's recordset, synchronizes the
clone's current record with that of the form, and
attempts to lock the current record. One of two things can happen as
a result of this locking attempt:
	The attempt will succeed, meaning that the record was not locked by
another user.

	The attempt will fail with an error message stating who has the
record locked.

By parsing this error message, we can determine who has locked the
record. Parsing the error message is accomplished by the
acbGetUserAndMachine function, which is shown
here:
Public Function acbGetUserAndMachine(ByVal strErrorMsg As String, _
 ByRef strUser As String, ByRef strMachine As String) As Boolean
 ' Parse out the passed error message, returning
 ' -True and the user and machine name
 ' if the record is locked, or
 ' -False if the record is not locked.

 Dim intUserPos As Integer
 Dim intMachinePos As Integer

 Const USER_STRING As String = " locked by user "
 Const MACHINE_STRING As String = " on machine "

 acbGetUserAndMachine = False

 On Error Resume Next
 intUserPos = InStr(strErrorMsg, USER_STRING)
 If intUserPos > 0 Then
 intMachinePos = InStr(strErrorMsg, MACHINE_STRING)
 If intMachinePos > 0 Then
 strUser = Mid$(strErrorMsg, _
 intUserPos + Len(USER_STRING), _
 intMachinePos - (intUserPos + Len(USER_STRING) - 1))
 strMachine = Mid$(strErrorMsg, _
 intMachinePos + Len(MACHINE_STRING), _
 (Len(strErrorMsg) - intMachinePos - _
 Len(MACHINE_STRING)))
 End If
 acbGetUserAndMachine = True
 End If
End Function

 This function accepts as its argument
the Description property of the Err object, which was generated by
acbWhoHasLockedRecord. If it can successfully
parse the error message and determine at least the username (and
hopefully the machine name), it returns a True
value to the calling routine with the names of the user and machine
as the second and third parameters of the function call.
There's nothing magic about this function—it
uses the InStr function to locate certain landmarks in the passed
error message.
Record-level locking makes the use of pessimistic locking much more
practical than it has been in the past. However, you still run the
danger of allowing a user to monopolize the record being edited. This
solution shows how you can identify the guilty user, but it
doesn't really solve the problem. The next solution
enables you to prevent users from tying up records for longer than a
set period of time.

10.10. Set a Maximum Locking Interval for a Record

Problem

 You've employed
pessimistic locking on your application's forms to
prevent two users from making changes to the same record at the same
time. Sometimes, a user will lock a record for an excessive period of
time; for example, he might start to edit a record and then get a
long phone call or leave for lunch without saving or canceling his
edits. Is there any way to limit how long a user can lock a record
and time out the user when the locking time limit has been exceeded?

Solution

 There's no built-in
database or form option for "maximum record lock
interval," but you can create your own record lock
timeout feature by making use of the form's Timer
event. This solution shows you how to create such a facility using an
event procedure attached to the form's Timer event.
To add a record lock timeout feature to your own application, follow
these steps for each form for which you wish to enable this feature:
	Open the form in design mode, and add to the form an unbound text box
named txtMessage that will be used to display the countdown message.
This control should be at least 3.45" wide and
0.1667" high. On the sample form, we have placed
txtMessage in the form's footer, but you can place
it anywhere you'd like.

	
 Change the form's
TimerInterval property to 1000. This will cause any code attached to
the form's Timer event to be executed every 1,000 ms
(or 1 second).

	Create an event procedure attached to the form's
Timer event. Figure 10-26 shows how the properties
sheet for the form should look after completing these steps.

[image: The event procedure attached to the Timer event will execute once every second]

Figure 10-26. The event procedure attached to the Timer event will execute once every second

	Add the following code to the form's event procedure:
Private Declare Function timeGetTime Lib "winmm.dll" () As Long

' Record lock timeout time in seconds
Private Const conMaxLockSeconds As Integer = 60

Sub cmdClose_Click()
 DoCmd.Close
End Sub

Private Sub Form_Timer()
 Dim intElapsed As Integer
 Dim strMsg As String
 Dim ctlmsg As Control

 Static slngTimerStart As Long
 Static sblnDirty As Boolean

 If Me.NewRecord Then
 Exit Sub
 End If

 Set ctlmsg = Me.txtMessage

 If Me.Dirty Then
 ' Record has been modified since last save
 If sblnDirty Then
 ' Elapsed time may be over one minute, so
 ' grab both the minutes and seconds portion
 ' of the elapsed time
 intElapsed = (timeGetTime - slngTimerStart) \ 1000
 If intElapsed < conMaxLockSeconds Then
 ' Update message control with remaining time
 strMsg = "Edit time remaining: " _
 & (conMaxLockSeconds - intElapsed) & " seconds."
 ctlmsg = strMsg
 If intElapsed > (0.9 * conMaxLockSeconds) Then
 ctlmsg.ForeColor = vbRed
 End If
 Else
 ' Timeout user and undo changes
 ctlmsg = ""
 ctlmsg.ForeColor = vbBlack
 Me.Undo
 sblnDirty = False
 MsgBox "You have exceeded the maximum record lock period (" & _
 conMaxLockSeconds & " seconds). " & vbCrLf & vbCrLf & _
 "Your changes have been discarded!", _
 vbCritical + vbOKOnly, "Record Timeout"
 End If
 Else
 ' Start timing the edits
 slngTimerStart = timeGetTime
 sblnDirty = True
 End If

 ' Record has not been modified since last save
 Else
 If sblnDirty Then
 ' User has saved changes, so stop timer
 sblnDirty = False
 ctlmsg = ""
 End If
 End If
End Sub
Alternately, you can import the frmEmployees sample form from
10-10.MDB, open frmEmployees in design mode,
pull up the Timer event procedure code, and copy all the lines
between Private
 Sub
 Form_Timer() and End
 Sub to the clipboard. Close the sample form, open
your own form's Timer event procedure, and paste the
code from the sample form into your event procedure. Now delete
frmEmployees from your database.

	Save your form, and open and test it.

Now load the 10-10.MDB database. Open the
frmEmployees sample form to test out the record lock timeout feature.
Make a change to an existing record and leave the record in an
unsaved state. After a brief delay, a message appears in the
form's footer informing you how many seconds of edit
time remain (see Figure 10-27). The number counts
down second by second; the message color changes to red when only a
few seconds remain.
[image: The changes to this record will be timed out unless they are saved]

Figure 10-27. The changes to this record will be timed out unless they are saved

Finally, if you haven't either saved or undone your
changes during the specified time interval, your edits will be undone
and a confirming dialog will inform you of the event (see Figure 10-28).
[image: The changes to the record have timed out]

Figure 10-28. The changes to the record have timed out

Discussion

 The technique in this solution makes
use of the form's Timer event, the
form's Dirty property, and a couple of static
variables to repeatedly check to see if the form has had unsaved
changes for an extended period of time.

 The timer procedure begins
by declaring several variables, including the following static
variables:
	
 sblnDirty

	Saves a Boolean variable that notes if the form was dirty (i.e., has
unsaved changes)

	
 slngTimerStart

	Saves the date/time the record was first dirtied

 In addition, the code uses the
NewRecord property to determine if the user is working with a new
record and exits if this is the case. Since a user adding a new
record can't lock the records of other users and
likely will need additional time to complete a new record, we decided
not to subject record additions to the timeout process.
Here's the initial code of the event procedure:
Dim intElapsed As Integer
Dim strMsg As String
Dim ctlmsg As Control

Static slngTimerStart As Long
Static sblnDirty As Boolean

If Me.NewRecord Then
 Exit Sub
End If

 The remainder of the event procedure
uses an If...Then statement to branch on the value
of the form's Dirty property and compare it against
sblnDirty (the value of the
form's Dirty property the last time we checked). The
process is summarized in Table 10-17.
Table 10-17. The state table for the Form_Timer event procedure
	
 Current Dirty value

 	
 Value of sblnDirty

 	
 Action needed

	
 True

 	
 True

 	
 Form remains dirty. Check if time limit has been exceeded and undo
edits if so.

	
 True

 	
 False

 	
 Form has just been dirtied, so set sblnDirty to True and
slngTimerStart to the current number of milliseconds since Windows
started, using the TimeGetTime API function.

	
 False

 	
 True

 	
 User has saved changes, so set sblnDirty to False.

	
 False

 	
 False

 	
 No action needed.

If the form is currently dirty (Me.Dirty
 =
 True) or was previously dirty
(sblnDirty
 =
 True), and the elapsed time is less than
conMaxLockSeconds, the following piece of code is
executed:
intElapsed = (timeGetTime - slngTimerStart) \ 1000
If intElapsed < conMaxLockSeconds Then
 ' Update message control with remaining time
 strMsg = "Edit time remaining: " _
 & (conMaxLockSeconds - intElapsed) & " seconds."
 ctlmsg = strMsg
 If intElapsed > (0.9 * conMaxLockSeconds) Then
 ctlmsg.ForeColor = vbRed
 End If
Else
 ' ... See below ...
End If
The code updates the txtMessage control with the countdown message,
changing the color of the text to red if the elapsed time is greater
than 90% of conMaxLockSeconds to call extra
attention to an impending timeout.
If the form is currently dirty (Me.Dirty
 =
 True) or was previously dirty
(sblnDirty
 =
 True), and the elapsed time is greater than or
equal to conMaxLockSeconds, the following piece of
code is executed:
ctlmsg = ""
ctlmsg.ForeColor = vbBlack
Me.Undo
sblnDirty = False
MsgBox "You have exceeded the maximum record lock period (" & _
 conMaxLockSeconds & " seconds). " & vbCrLf & vbCrLf & _
 "Your changes have been discarded!", _
 vbCritical + vbOKOnly, "Record Timeout"

 The edits to the record are undone by
using the Undo method of the form. Next, the code puts up a message
box to inform the user that the edits have been discarded.

 If the form is
currently dirty (Me.Dirty
 =
 True) but wasn't previously dirty
(sblnDirty
 =
 False), sblnDirty is
set to True and the starting time is stored away
in slngTimerStart, as the following code
shows:
' Start timing the edits.
slngTimerStart = timeGetTime
sblnDirty = True
If the form is not currently dirty (Me.Dirty
 =
 True) but was previously
dirty (sblnDirty
 =
 True), the code stops the timer by setting
sblnDirty to False and
clearing txtMessage:
' User has saved changes, so stop timer.
sblnDirty = False
ctlmsg = ""
Finally, if the form is not currently dirty
(Me.Dirty
 =
 True) and wasn't previously dirty
(sblnDirty
 =
 False), nothing needs to be done.
Although the code for this solution could have been placed in a
global module, we chose not to, since its two static variables must
be maintained between calls to the event procedure. Because this code
could be used in multiple forms within the application, we chose to
encapsulate it within each form's event procedure.
You may wish to split the code into two parts: one part that
maintains the static variables in the form's Timer
event procedure, and a second common component that lives in a global
module. To accomplish this, you'd have to pass three
variables (by reference) to the common function: a form variable
referencing the form, and the two static variables,
sblnDirty and
slngTimerStart.

Chapter 11. Windows APIs

The Windows API has a bad rap among many Access programmers who think
it's too hard to figure out, too hard to call, or
just plain mysterious. We're here to prove that none
of these is the case—even if you've never seen
the Windows API programmer's reference, you can use
the Windows API, given some help. In this chapter,
we'll present some interesting uses of the Windows
API from within Access, with example forms and modules for each
solution. In most cases, using these in your own applications entails
little more than simply importing a module or two and then calling
the functions. We've divided the solutions in this
chapter into three broad categories, as follows:
	The Windows user interface
	You'll learn how to remove a form's
system menu, how to maximize and minimize buttons at runtime, and how
to draw attention to a specific form by flashing its titlebar or
icon. We'll discuss language-independent
classification of keypresses, so you can monitor exactly what keys
have been pressed. We'll also show how to restrict
mouse movement to a specific area on the screen.

	The Windows shell
	You'll learn how to have asynchronous code run
another program and pause until the other program is done before
continuing. We'll demonstrate a method for shutting
down Windows under program control and show you all the options of
the associated API functions. You'll learn to find
and run an application, given an associated data file, and how to
determine if the application is already running.
You'll see how to retrieve a list of all open
top-level windows (generally, one per application) and how to close a
window from your VBA code.

	Files, drives, and hardware
	You'll learn how to set file date and time stamp
information, which is useful if you're moving files
around from within applications or making backups based on dates.
You'll also learn how to retrieve information about
your disk drives, hardware, and the current Windows environment as
well as how to connect and disconnect from remote network devices
programmatically or using standard dialogs.

Tip
Most of the solutions in this chapter instruct you to import one or
more modules from the example databases. In each case, the module
contains the Windows API user-defined types and function declarations
you need for the example. If you've already imported
a module with the specified name for a previous solution, you can
skip it, since all modules with matching names contain the same code.

11.1. Remove a Form's System Menu and Maximize/Minimize Buttons

Problem

 Access
makes it easy to remove the control box (often called the system
menu) and the minimize and maximize buttons when you design forms,
but there doesn't seem to be a way to do this at
runtime. You have an application for which you'd
like to be able to remove these buttons to control how users interact
with the application. Is there a way to remove these items and then
replace them later?

Solution

 Removing or replacing these window
controls requires changing the style bits for the particular window.
Every window maintains a 32-bit value that describes its physical
characteristics: for example, its border type and the existence of
scrollbars, a system menu, and the minimize and maximize buttons. The
values are stored as bit flags, in which the state of a single bit in
the 32-bit value indicates the value of some characteristic of the
window. In general, you can't change the state of
many of these flags without recreating the window; by setting or
clearing the bits in the window's style value,
however, you can force the system menu and the minimize/maximize
buttons to appear or disappear.
Load and run frmSystemItems from 11-01.MDB. This
form, shown in Figure 11-1, allows you to add or
remove the control menu, the minimize button, and the maximize button
from the current form. Select items on the form to make the
corresponding items visible, or deselect to remove them. Once
you've made your choices, click on the Execute
button, and the code will remove or replace the items
you've chosen.
[image: frmSystemItems allows you to remove or replace any of the system items]

Figure 11-1. frmSystemItems allows you to remove or replace any of the system items

To include this functionality in your own applications, follow these
steps:
	Import the module basControl from 11-01.MDB.

	To remove or replace a form's system items, call the
acbFormSystemItems subroutine, passing to it the four parameters
shown in Table 11-1.

 For example, the following statement,
called from a button's Click event in a
form's module, will show the system menu but will
hide the minimize and maximize buttons:
acbFormSystemItems Me, True, False, False

 Though Access does provide the
ControlBox, MaxButton, and MinButton properties for forms,
they're read-only once the form is in use; if you
need to alter these properties at runtime, you'll
need to use acbFormSystemItems instead of changing
the properties directly.

Table 11-1. Parameters for acbFormSystemItems
	
 Parameter

 	
 Type

 	
 Value

	
 frm

 	
 Form

 	
 Reference to the current form

	
 blnShowSystemMenu

 	
 Integer

 	
 True = Show system menu; False = Hide

	
 blnShowMaxButton

 	
 Integer

 	
 True = Show maximize button; False = Hide

	
 blnShowMinButton

 	
 Integer

 	
 True = Show minimize button; False = Hide

Old Versus New Use of Window Buttons
The behavior of the control box and minimize and maximize buttons has
changed. If you're running Windows 95 or later,
using acbFormSystemItems to remove one of the
minimize or maximize buttons leaves them both visible but disables
the one you've requested to hide. Removing them both
with acbFormSystemItems makes them both invisible.
Under Windows NT and earlier, these buttons are independent, and
using the subroutine to remove one makes it invisible. Under Windows
95 or later, removing the control box also removes the minimize and
maximize buttons. Under Windows NT or earlier, these items are
independent.

Discussion

The bulk of the work in controlling these system items takes place in
the private HandleStyles function in the basControl module. This
function accepts a window handle (the hWnd property of a form) and
three True/False values
indicating which options you want to see and which you want removed.
Like every window, the window you want to alter maintains a 32-bit
value, its style value. Within that long integer, each of the 32
positions represents one of the possible styles for the window. If
the bit is 1, the style is set on; if it's 0, the
style is set off. HandleStyles builds up two long
integers, each containing a series of 32 bits. The first,
lngStylesOn, contains all 0s, except for the bits
representing the styles you want turned on, which contain 1s. The
other, lngStylesOff, contains all 1s, except for
the bits representing the styles you want turned off, which contain
0s.

 Using the AND operator
to combine the current window style with
lngStylesOff sets each style whose bit contains 0
in lngStylesOff to be 0. Using the
OR operator to combine the current window style
with lngStylesOn sets each style whose bit
contains 1 in lngStylesOn to be 1. For example,
suppose the current window style value is this:
10001000 10001010 10101011 01101101
The value in lngStylesOff contains 1s in all
positions except the ones you want turned off, which contain 0s. If
the value of lngStylesOff is this:
11111111 11111111 11111111 11111011
the result of using the AND operator with the
original style and lngStylesOff will be this:
10001000 10001010 10101011 01101001
The value in lngStylesOn contains 0s in all
positions except the ones you want turned on, which contain 1s. If
the value of lngStylesOn is this:
00000000 00000000 00010000 10000000
the result of using the OR operator with
lngStylesOn and the result of
ANDing the original style with
lngStylesOff will be this:
10001000 10001010 10111011 11101001
This final result will have three changed values: one bit that was 1
is now 0 due to the settings in lngStylesOff, and
two bits that were are now 1 due to the settings in
lnStylesOn.

 To retrieve and replace the
window's style information, the code uses the
GetWindowLong and SetWindowLong
API functions. Given a window handle and a flag
(GWL_STYLE) indicating which 32-bit value to
retrieve or set, these functions allow you to get the current value,
do your work with it, and then set it back. This is the line of code
that does all the work:
HandleStyles = SetWindowLong(hWnd, GWL_STYLE, _
 (GetWindowLong(hWnd, GWL_STYLE) And lngStylesOff) _
 Or lngStylesOn)
It sets the window style to be the value
GetWindowLong retrieved, combined with the two
style flags the code previously built up based on your choices.
The entire HandleStyles procedure looks like this:
Private Function HandleStyles(ByVal hWnd As Long, blnShowSystemMenu As Boolean, _
 blnShowMaxButton As Boolean, blnShowMinButton As Boolean) As Long

 Dim lngStylesOn As Long
 Dim lngStylesOff As Long

 On Error GoTo HandleStylesExit

 ' Set all bits off.
 lngStylesOn = 0

 ' Set all bits on.
 lngStylesOff = &HFFFFFFFF

 ' Turn ON bits to set attribute; turn OFF bits to turn attribute off.
 If blnShowSystemMenu Then
 lngStylesOn = lngStylesOn Or WS_SYSMENU
 Else
 lngStylesOff = lngStylesOff And Not WS_SYSMENU
 End If
 If blnShowMinButton Then
 lngStylesOn = lngStylesOn Or WS_MINIMIZEBOX
 Else
 lngStylesOff = lngStylesOff And Not WS_MINIMIZEBOX
 End If
 If blnShowMaxButton Then
 lngStylesOn = lngStylesOn Or WS_MAXIMIZEBOX
 Else
 lngStylesOff = lngStylesOff And Not WS_MAXIMIZEBOX
 End If

 ' Set the attributes as necessary.
 HandleStyles = SetWindowLong(hWnd, GWL_STYLE, _
 (acb_apiGetWindowLong(hWnd, GWL_STYLE) And lngStylesOff) _
 Or lngStylesOn)

 ' The 1 in the third parameter tells the window
 ' to repaint its entire border.
 Call SendMessage(hwnd, WM_NCPAINT, 1, 0)

HandleStylesExit:
 Exit Function
End Function

 After
the style bits are set, there's still one issue
left: you must coerce the window into repainting itself so the
changes become visible. Simply changing the styles
isn't enough, because they don't
become visible until the next time the window repaints its border.

 If you resize the form, Access repaints
the border, but there's no reasonable programmatic
way to do this. To solve the problem, the procedure adds one more
line. It calls the SendMessage API, which sends a specific message to
any window (this time, it sends a message to the form itself). The
message it sends, a constant named WM_NCPAINT,
tells the form to repaint its non-client area (that is, its border):
' The 1 as the third parameter tells the window
' to repaint its entire border.
Call acb_SendMessage(hwnd, WM_NCPAINT, 1, 0)

11.2. Flash a Window's Titlebar or Icon

Problem

 With
so many windows open in your Access applications, it can be difficult
to force your user's attention to a specific form.
Is there a way to make the titlebar flash so that a form really
stands out?

Solution

 Windows
supplies a simple API call, FlashWindow, that
allows you to flash the titlebar of a form or its icon (if
it's iconized) on and off. This solution will
demonstrate how you can use the FlashWindow API call to draw
attention to a specific form.
To include this functionality in your own applications, follow these
steps:
	Add this API declaration to your code in the declarations section of
the form's module:
Private Declare Function FlashWindow Lib "User32" _
 (ByVal hWnd As Long, ByVal lngInvert As Long) As Long
In our example, the declaration is in the module for frmControlFlash.

	Create a module-level variable (mhWnd in
our example) to hold the flashed form's window
handle:
Dim mhWnd As Long

	
 Create a procedure attached to your
controlling form's Timer event, causing the form to
flash:
Private Sub Form_Timer()
 FlashWindow mhWnd, True
End Sub

	
 To turn the flashing on and off, add
code like this to react to some event (on the sample form, you
trigger the code in reaction to the Click event of the Flash button):
Private Sub cmdFlash_Click()
 Dim strCaption As String
 Dim ctl As Control

 Set ctl = Me.cmdFlash
 strCaption = ctl.Caption
 If strCaption = "Flash" Then
 ' If the form's already open, this will just
 ' set the focus to that form.
 DoCmd.OpenForm "frmFlash"
 mhWnd = Forms("frmFlash").hWnd
 ' Change the button's caption to
 ' indicate its state.
 ctl.Caption = "Stop Flashing"
 Me.TimerInterval = 500
 Else
 ctl.Caption = "Flash"
 Me.TimerInterval = 0
 FlashWindow mhWnd, False
 End If
End Sub

To see an example of a flashing form, load and run
frmControlFlash from
11-02.MDB. That form loads a second form,
frmFlash. By clicking the button on frmControlFlash, you can turn the
flashing of frmFlash's titlebar on or off (see Figure 11-2). If you iconize frmFlash, it will continue to
flash.
[image: frmControlFlash causes frmFlash's titlebar to invert (flash)]

Figure 11-2. frmControlFlash causes frmFlash's titlebar to invert (flash)

Discussion

 The FlashWindow API call takes two
values as its parameters: the handle to a window and a logical value.
When Windows creates a new window (as it does when you open a form in
Access), it supplies the window with a unique 32-bit value, its
handle, that any program can use to work directly with that window.
Access gives you a form's handle in its hWnd
property. Given that handle and a Boolean value
(True or False) indicating
whether you want the window to invert or not,
FlashWindow takes the requested action with the
window you've indicated. For example:
FlashWindow Forms("frmFlash").hWnd, True
would make the titlebar of frmFlash look like it
is selected, even if it isn't the currently active
form. Sending False for the second parameter would
revert to the form's original state (selected or
deselected). Calling FlashWindow, passing
True in the second parameter, is what makes the
window look like it's flashing; this is where the
Timer event comes in.

 By reacting to a form's
Timer event, you can have your code take effect at a set interval. In
this case, you set the timer interval to be 500, or 1/2 of a second
(the TimerInterval property measures time in milliseconds, or 1/1,000
of a second):
Me.TimerInterval = 500
To make it so that the code attached to the Timer event never runs,
set the TimerInterval property to 0. That's how you
control the flashing in this example: to turn flashing on, set the
TimerInterval property to the rate at which you'd
like the flashing to occur; to turn it off, just set the
TimerInterval property to 0.
This example takes one extra step: when it turns off the flashing, it
also makes sure that the caption bar of the flashed form is no longer
inverted. That is, it calls FlashWindow one more
time, forcing the flashing off:
Me.TimerInterval = 0
FlashWindow mhWnd, False
This ensures that no matter where in the cycle you turn off the
flashing, the flashed form reverts to its normal appearance.
You can control the speed of the flashing by changing the
TimerInterval property value. Currently, it's set at
500; you may want to speed that up. Be aware, though, that flashing
is not a normal Windows mechanism; it goes against the Windows design
standards, and should be used only for brief periods of time and in
special circumstances.
Because FlashWindow accepts the handle to any
window as its parameter, you could use this same technique to cause
an application's main window to flash as well. For
example, The Solution in Recipe 11.9 shows
how to retrieve a list of all open top-level windows, and you could
use the hWnd properties from that list with
FlashWindow as well.
Note that even though the form's Timer event is set
to do its work every 500 ms, it may take longer for your flashing
form to start flashing. The code in the form's Timer
event sends a message to Windows, telling it to flash the other
form's titlebar, but that may take a few
milliseconds on a slower machine. For the same reason, your form may
not flash at exactly regular intervals. The form's
timer handler is non-preemptive, meaning that it must wait for
keyboard, mouse, and screen events to be handled first.

11.3. Classify Keypresses in a Language-Independent Manner

Problem

 You
need to be able to classify a keypress as a character, a digit, or
neither. You also need to know if a character is uppercase or
lowercase. You know you can write code to handle this, but if you do
that, you're limiting yourself to a single national
language, since languages classify their characters differently.
Since Windows knows about various character sets, is there some way
you can use Windows to do this work for you?

Solution

 You could write VBA code to
classify characters, but it wouldn't be
language-independent. For example, the ANSI character 65 is an
uppercase character in the standard multinational character set, but
it may be different in another character set. If you want your
applications to work in various languages, you must not assume
specific character ranges. The Windows API includes a number of
functions you can call to categorize characters based on their ANSI
values. The isCharAlpha and isCharAlphaNumeric functions both are
faster than the built-in VBA functions and are able to deal with
international issues. Luckily, an ANSI value is exactly what the
KeyPress event procedure in Access sends you, so you can use these
functions from within KeyPress event procedures that you write.
In addition to the necessary function declarations, the sample
database 11-03.MDB includes a demonstration form
showing all the ANSI characters and their classifications. Load and
run frmCharClasses from
11-03.MDB, and you'll see a
display like that in Figure 11-3. By scrolling
through the form, you'll be able to see all 255 ANSI
characters and their classifications.
[image: frmCharClasses shows all the ANSI characters and their classifications]

Figure 11-3. frmCharClasses shows all the ANSI characters and their classifications

To use this functionality in your own applications, follow these
steps:
	Import the module basClassifyChars from
11-03.MDB into your application.

	To classify an ANSI value, call one or more of the functions in Table 11-2. Each of these functions takes as its
parameter a value between 1 and 255. Each function returns a nonzero
value if the character code you passed is a member of the
function's tested group, or 0 if
it's not. (As you can see from Table 11-2, some of the functions come directly from the
Windows API and others return values based on those functions.) These
functions will return correct values no matter which language version
of Windows is running.

Table 11-2. The character classification functions in basClassifyChars
	
 Function

 	
 API?

 	
 Inclusion class

	

 acb_apiIsCharAlphaNumeric

 	
 Yes

 	
 Language-defined alphabetic or numeric characters

	

 acb_apiIsCharAlpha

 	
 Yes

 	
 Language-defined alphabetic characters

	

 acbIsCharNumeric

 	
 No

 	
 Alphanumeric, but not alphabetic

	

 acbIsSymbol

 	
 No

 	
 Not alphanumeric

	

 acb_apiIsCharUpper

 	
 Yes

 	
 Language-defined uppercase characters

	

 acb_apiIsCharLower

 	
 Yes

 	
 Language-defined lowercase characters

For example, imagine that you need to limit the number of characters
typed into a text box, and the number of allowable characters
isn't known until runtime. In addition, you want to
allow only alphabetic or numeric values, but that
isn't known until runtime either. Although you could
programmatically control the input masks, creating a new one each
time conditions change, it is simpler to handle this problem using
the KeyPress event and some code that checks the state of the current
keypress. The sample form, frmInputTest (Figure 11-4), shows a simple test form. The text box
labeled "Enter some characters"
allows you to enter up to as many characters as shown in the
"Maximum number of characters" text
box, and you can enter only characters whose type
you've chosen in the character type option group.
[image: frmInputTest uses character classifications to disallow keypresses]

Figure 11-4. frmInputTest uses character classifications to disallow keypresses

The code attached to txtCharTest's KeyPress event
looks like this:
Sub txtCharTest_KeyPress (KeyAscii As Integer)

 ' Always allow a backspace.
 If KeyAscii = vbKeyBack Then Exit Sub

 ' If txtChars is non-null and greater than 0, and txtCharTest
 ' is non-null and has too many characters, set KeyAscii to 0.
 If Not IsNull(Me.txtChars) Then
 If Me.txtChars > 0 Then
 If Not IsNull(Me.txtCharTest.Text) Then
 If Len(Me.txtCharTest.Text) >= Me.txtChars Then
 KeyAscii = 0
 End If
 End If
 End If
 End If
 ' In any case, if the keypress isn't the correct type,
 ' set KeyAscii to 0.
 If Me.grpCharType = 1 Then
 If (acb_apiIsCharAlpha(KeyAscii) = 0) Then KeyAscii = 0
 Else
 If (acbIsCharNumeric(KeyAscii) = 0) Then KeyAscii = 0
 End If
End Sub
In the KeyPress event, Access sends you the parameter
KeyAscii, which contains the ANSI value of
the key that was just pressed. To tell Access to disregard this key,
modify its value to 0 during the event procedure. In this case, if
there's no room left in the field (based on the
number in Me.txtChars) or if the character is not the right type
(based on calls to acb_apiIsCharAlpha and
acbIsCharNumeric), the code sets the value of
KeyAscii to 0, causing Access to disregard
the keypress. Play with the sample form, changing the values, to see
how the code works.

Discussion

 Windows internally maintains
information about the currently selected language and character set.
For each language, certain characters are treated as uppercase and
others aren't. Some characters in the character set
represent alphabetic characters and others don't. It
would be impractical to maintain this information for each language
your application might use. Luckily, you don't have
to manage this. The Access UCase and
LCase functions handle case conversions for you,
but Access doesn't include case-testing functions.
That's the role of the functions introduced in this
solution: they allow you to test the classification of characters, no
matter what the language. Attempting to perform this task in VBA will
cause you trouble if you plan on working internationally.
You may not need these routines often, but when you do, the API
versions are both faster and more reliable than handwritten code
would be. Don't count on specific ANSI values to be
certain characters, uppercase or lowercase, because these values
change from version to version of internationalized Windows.

11.4. Restrict Mouse Movement to a Specific Region

Problem

 You'd like to be able to
restrict mouse-cursor movement to certain areas of the current form.
You think it would help users of your application if the mouse stays
where it needs to be until they're done with it. How
can you limit mouse movement in Access?

Solution

 The Windows API's
ClipCursor subroutine will limit the movement of
the mouse to a single form or region on a form, as
you'll see in this solution.
To try out this technique, load and run the frmClip form from
11-04.MDB. This form, shown in Figure 11-5, limits the mouse movement to the area of the
form once you click the large button. If you click the button again
or close the form, code attached to either event frees the mouse
cursor to move anywhere on the screen. If you move the form, Windows
frees the mouse cursor for you.
[image: frmClip limits mouse movement to the area of the form]

Figure 11-5. frmClip limits mouse movement to the area of the form

To use this technique in your own applications, follow these steps:
	Import the module basClipCursor from
11-04.MDB. This module contains the function
declarations and user-defined types that you'll
need.

	To limit the mouse to a single form, you'll need to
get the form coordinates and tell Windows to use those coordinates as
limits for the mouse. To do this, you'll need code
something like the following (because this code fragment uses
Me, it must be in a form's
module, not a global module):
Dim typRect as acb_tagRect

Call acb_apiGetWindowRect (Me.Hwnd, typRect)
Call acb_apiClipCursor(typRect)

	To free the mouse cursor, use code like this:
Call acb_apiClipCursor(ByVal vbNullString)

See Recipe 11.4.3 for an example.

Discussion

 The
ClipCursor API routine (aliased as
acb_apiClipCursor in the code) expects as its only
parameter a user-defined data type consisting of four long integers
representing coordinates of a rectangle. This data type has been
declared for you in basClipCursor as
acb_tagRect. This is a common data structure, used
often with API routines that interact with the screen or printer. It
is defined as follows:
Type acb_tagRect
 lngLeft As Long
 lngTop As Long
 lngRight As Long
 lngBottom As Long
End Type

 When
you want to restrict mouse movement, you'll need to
retrieve the coordinates of the current form. You can accomplish this
by calling the GetWindowRect API function (aliased as
acb_apiGetWindowRect in the code), which will fill
in an acb_tagRect structure with the left, top,
right, and bottom coordinates of the window whose handle you pass it.
Therefore, by calling acb_apiGetWindowRect with
the handle of the current form, you'll retrieve the
coordinates of that form in pixels:
Dim typRect as acb_tagRect
Call acb_apiGetWindowRect (Me.hWnd, typRect)
Once you've got a structure containing the
coordinates of the current form, you can call
ClipCursor and pass that filled-in structure to
it. The sample form combines these API calls, as shown here:
Private Sub cmdClip_Click()
 Dim typRect As acb_tagRect
 Static sstrCaption As String

 ' Static variable to keep track of clipping
 Static blnClip As Boolean

 If blnClip Then
 Me.cmdClip.Caption = sstrCaption
 Call acb_apiClipCursor(ByVal vbNullString)
 Else
 sstrCaption = Me.cmdClip.Caption
 Me.cmdClip.Caption = "Free the Mouse!"
 Call acb_apiGetWindowRect(Me.hWnd, typRect)
 Call acb_apiClipCursor(typRect)
 End If
 blnClip = Not blnClip
End Sub
In the sample routine, which is executed each time you click the
large button on frmClip, blnClip alternates
between True and False, keeping
track of whether mouse clipping is currently in effect. If it is, the
routine calls acb_apiClipCursor to disable
clipping and resets the button's caption. If
clipping is not in effect, the routine stores away the original
caption, sets a new one ("Free the
Mouse!"), retrieves the form's
coordinates, and finally calls acb_apiClipCursor
to restrict the cursor's movement.

 To end
the mouse-cursor restrictions, send a null value to
acb_apiClipCursor. To do that, pass the
vbNullString intrinsic constant by value. Because
the acb_apiClipCursor procedure has been declared
to accept any type of parameter, you can send it a structure in one
call and a null value in another.
The method presented in this solution is not foolproof in Access.
You're taking control of a feature that Access
normally controls itself, and sometimes the interaction may be
unpredictable. In this case, if you restrict the mouse movement to a
single form, but then use the mouse to move or resize the form,
Access will free the mouse for you. Therefore, if you want to
force users to stay on a single form,
you're better off using a modal form instead. If, on
the other hand, you're just trying to ensure that
the mouse remains in the area of the form where the users need it to
be, the method described here is appropriate. Restricting the mouse
movement is not meant for every application, but if you want to help
your users out a little, try it.

11.5. Run Another Program and Pause Until It's Done

Problem

 From
within your application, you sometimes need to run another Windows
application, or a DOS batch file or utility program that requires
some time to do its job. You'd like your Access
application to pause until this other program has finished its work.
Every time you try it, though, the code starts up the other
application but then keeps on going. Is there a way to make Access
wait until the other application has completed before moving on?

Solution

 The Shell function
in VBA (and the ShellExecute function we will mention in the Solution
in Recipe 11.7) returns a unique long integer value representing the
running task. You can use this value—the instance
handle for the running application—to track the
state of the application. Given an instance handle, you can use the
OpenProcess API function to retrieve the process handle for the
process. Armed with that process handle, you can then call the
GetExitCodeProcess function continually until it sees that the
process has shut down. Because this happens automatically once a DOS
application has finished running, you can use this technique to wait
until a DOS window has closed before moving on in your application.
The sample form in 11-05.MDB,
frmTestWait, allows you to try starting both a DOS
application and a Windows application, and wait for either to
complete. There's also a button that allows you to
start a DOS application but continue the attached code. In each of
these cases, the sample code attempts to load the text file
C:\ACBTEST.TXT (choosing either of the first two
buttons sends the output of CHKDSK to
C:\ACBTEST.TXT for you) into a text box on the
form once the application you've started finishes
its work, as shown in Figure 11-6. (In the case
where the code doesn't wait for the other
application, of course, there's nothing to load.)
Use frmTestWait, try each command button to test the functionality
demonstrated in this solution. The first button runs CHKDSK, waits
until it has written its output to
C:\ACBTEST.TXT, and then loads the text file.
The second button runs CHKDSK and immediately loads the text file.
The final button, Run Notepad, loads a Windows application, Notepad,
and waits until you've closed it before loading the
text file.
[image: frmTestWait after it has run an application]

Figure 11-6. frmTestWait after it has run an application

To use this functionality in your own applications, follow these
steps:
	Import the module basRunApp from 11-05.MDB into
your application.

	
 To run
another application and wait for it to finish before going on with
your code, call the acbRunAppWait subroutine, passing it two
parameters: a command string telling it what to run, and an integer
designating the window mode you'd like to use (see
Table 11-3). These are essentially the same values
you use when calling the ShellExecute Windows API function, as shown
in the Solution in Recipe 11.7.

Table 11-3. Window display options using Shell
	
 Value

 	
 VBA constant

 	
 Description

	
 0

 	
 vbHide

 	
 Hidden

	
 1

 	
 vbNormalFocus

 	
 Restored to its previous state (neither minimized nor maximized)

	
 2

 	
 vbMinimizedFocus

 	
 Made visible and minimized

	
 3

 	
 vbMaximizedFocus

 	
 Made visible and maximized

	
 4

 	
 vbNormalNoFocus

 	
 Displayed, but doesn't gain the input focus

	
 6

 	
 vbMinimizedNoFocus

 	
 Minimized (as an icon) when started

For example, to start the Windows calculator maximized, use a
statement like this:
acbRunAppWait "CALC.EXE", vbMaximizedFocus
MsgBox "Done with the calculator."
You won't see the message box until you finish with
the calculator.

Discussion

 The secret to the acbRunAppWait
subroutine is its use of the Windows API function
GetExitCodeProcess. This function takes as a
parameter the process handle of an application, which you can
retrieve by calling the OpenProcess API function
with the instance handle returned by the call to
Shell. GetExitCodeProcess
monitors a running process and retrieves that
process's exit code. As long as the process
continues to run, GetExitCodeProcess returns the
value STILL_ACTIVE (defined in basRunApp).
Consider the following code, which checks for the existence of a
running application:
Do
 ' Attempt to retrieve the exit code, which will
 ' not exist until the application has quit.
 lngRetval = GetExitCodeProcess(hProcess, lngExitCode)
Loop Until lngExitCode <> STILL_ACTIVE

 Though this will almost do what you need,
it won't quite succeed. You've left
Access running a tight loop, waiting for the new application to
finish. Unfortunately, this loop grabs all of
Access's clock cycles, looping and waiting for the
other application to be done. While this loop is active, Access is
effectively dead. All the rest of Windows continues to work
perfectly, but Access's only thread of execution is
completely tied up. You'll see that Access simply
can't update its screen, for example, while
you're running Notepad.
The solution, then, is to be a good citizen, allowing Access its
processing time. To do this, you must add a
DoEvents statement inside the loop. This allows
Access to continue working while this code loops, waiting for the
application you started to finish. (See the Solution in Recipe 7.4 for more information on
DoEvents.) Thus, the
acbRunAppWait subroutine looks like this:
Public Sub acbRunAppWait(strCommand As String, intMode As Integer)
 ' Run an application, waiting for its completion
 ' before returning to the caller.

 Dim hInstance As Long
 Dim hProcess As Long
 Dim lngRetval As Long
 Dim lngExitCode As Long

 On Error GoTo acbRunAppWait_Err
 ' Start up the application.
 hInstance = Shell(strCommand, intMode)
 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION Or SYNCHRONIZE, _
 True, hInstance)
 Do
 ' Attempt to retrieve the exit code, which will
 ' not exist until the application has quit.
 lngRetval = GetExitCodeProcess(hProcess, lngExitCode)
 DoEvents
 Loop Until lngExitCode <> STILL_ACTIVE

acbRunAppWait_Exit:
 Exit Sub

acbRunAppWait_Err:
 Select Case Err.Number
 Case acbcErrFileNotFound
 MsgBox "Unable to find '" & strCommand & "'"
 Case Else
 MsgBox Err.Description
 End Select
 Resume acbRunAppWait_Exit
End Sub

 To use the Shell command, you must
specify an executable file. If you need to run a DOS internal command
or redirect the output from a program to a text file,
you'll need to load a copy of
COMMAND.COM to do your work. In addition,
you'll need to use the /C switch,
indicating to COMMAND.COM that you just want a
temporary instance that should quit when the program you run
finishes. For example, to run the CHKDSK.EXE
program directly, you could use the following function call (all
these examples assume that the necessary programs are available in
the DOS PATH):
hInstance = Shell("CHKDSK.EXE", vbMinimizedNoFocus)
To run DIR, on the other hand,
you'll need to start COMMAND.COM
first:
hInstance = Shell("COMMAND.COM /C DIR C:*.BAT", vbMinimizedNoFocus)
To redirect the output from a program to a text file,
you'll also need to use
COMMAND.COM:
hInstance = Shell("COMMAND.COM /C CHKDSK C: > C:\ACBTEST.TXT", _
 vbMinimizedNoFocus)
Tip
You may also want to study the FileRead
subroutine in the sample form's module, which
demonstrates how to open a text file and read its contents directly
into a control on a form.

11.6. Exit Windows Under Program Control

Problem

 You'd like to be able
to control what happens once you quit your applications: you may want
to shut down Windows at the same time, or perhaps even reboot the
machine. How can you do that from within Access?

Solution

 The Windows API provides
an ExitWindowsEx function that grants you control over exiting
Windows, and you have a choice of three different things you can do:
log off and await a new login; shut down to the point at which
it's safe to turn off the
computer's power; or reboot the computer. This
solution demonstrates these simple functions.
To try closing Windows under program control, load and run
frmExitWindows from
11-06.MDB. This sample form, shown in Figure 11-7, allows you to choose from the three options.
Make your choice and click on the Go button, which will execute the
code necessary to quit in the manner you've
specified.
[image: frmExitWindows presents three options]

Figure 11-7. frmExitWindows presents three options

To use this functionality within your own applications, follow these
steps:
	Import the module basExitWindows from 11-06.MDB.

	Call the function from Table 11-4 that best suits
your needs. In each case, if the function returns at all, it
indicates that some Windows process wasn't able to
shut down and that your function call failed. This
won't happen often.
For example, to reboot your computer:
intRetval = acbReboot()

Table 11-4. Available functions for exiting Windows
	
 Function

 	
 Description

	

 acbLogOff

 	
 Shuts down all processes running in the security context of the
process that called the function, then logs off the user. Depending
on the operating system, you may find that all applications get the
shutdown message except the one that called this function. Check the
behavior of your target operating system.

	

 acbReboot

 	
 Reboots the computer.

	

 acbShutDown

 	
 Shuts down the system to a point at which it is safe to turn off the
power. All file buffers are flushed to disk, and all running
processes are stopped.

Discussion

Normally, when you shut down Windows, it sends a message to check
with every running application before shutting down. If other
applications have any unsaved data files that require user
intervention, you'll usually be asked if
it's okay to save the files. Once all the
applications have agreed to shut down, Windows shuts itself down.
Windows follows the same shutdown procedures when you use any of the
functions listed in Table 11-4. The only difference
is what happens after Windows shuts down.

 The basExitWindows module is simple: it
merely calls directly into the ExitWindowsEx API function. The entire
module looks like this:
Declare Function acb_apiExitWindowsEx Lib "user32" Alias "ExitWindowsEx" _
 (ByVal uFlags As Long, ByVal dwReserved As Long) As Long

' EWX_FORCE
' Forces processes to terminate. Instead of bringing up the
' "application not responding" dialog for the user, this value
' forces an application to terminate if it does not respond.
' EWX_LOGOFF
' Shuts down all processes running in the security context
' of the process that called the ExitWindowsEx function, then
' logs off the user.
' EWX_REBOOT
' Shuts down the system, then restarts the system.
' EWX_SHUTDOWN
' Shuts down the system to a point at which it is safe to turn off
' the power. All file buffers have been flushed to disk, and all
' running processes have stopped.

Const EWX_LOGOFF = 0
Const EWX_SHUTDOWN = 1
Const EWX_REBOOT = 2
Const EWX_FORCE = 4

Public Function acbReboot()
 acbReboot = acb_apiExitWindowsEx(EWX_REBOOT, 0)
End Function

Public Function acbShutDown()
 acbShutDown = acb_apiExitWindowsEx(EWX_SHUTDOWN, 0)
End Function

Public Function acbLogOff()
 acbLogOff = acb_apiExitWindowsEx(EWX_LOGOFF, 0)
 ' This is actually necessary only in some operating systems,
 ' but it can't hurt.
 Application.Quit acExit
End Function
Each function listed in Table 11-4 has its own
role. You're most likely to use
acbShutDown when your application is meant for
users who use only Access. When
they're done with your application,
they're done with Windows. The other functions are
more useful in utility applications other than Access; use your
imagination! There may be reasons why you'd need to
reboot; for example, perhaps you've changed a
setting in the Windows registry for the user and you want it to take
effect immediately.
Certainly, these are not functions that every application will need
or that you will use every day. But if you need to control what
happens once your application has done its work, they are valuable
indeed.

11.7. Run the Application Associated with a Data File

Problem

 You'd
like to find a way to provide a list of existing files, allow users
to select a file, and run the appropriate application for that file.
Windows knows how to do this—for instance, when you
double-click on a file with a .TXT extension in
Explorer, Windows runs Notepad with that file. How can you provide
this sort of functionality in your own applications?

Solution

 Windows provides two API functions,
FindExecutable and
ShellExecute, that make running a related
application possible from within Access. Both functions rely heavily
on the Windows registry, which tracks the relationships between
filename extensions and related executable programs. Figure 11-8 shows the results of running the
REGEDIT.EXE program, which ships as part of
Windows. REGEDIT allows you to add, edit, modify, or delete file
associations. (The registry editor is named
REGEDT32.EXE under Windows NT and, though it
looks different, it functions in a similar manner.)
[image: REGEDIT.EXE, showing file types registered on a typical system]

Figure 11-8. REGEDIT.EXE, showing file types registered on a typical system

Warning
Be sure not to change any of the entries in the registry when looking
through REGEDIT.

 In this solution, you use the
FindExecutable function to get the name of the executable file
associated with a selected data file. You also use the ShellExecute
function to run the executable file, with the selected data file
opened and ready to edit.
Load and run frmTestExecute, shown in Figure 11-9. To use this form, select a path (it defaults
to your Windows directory when it first loads). Once the list box
fills with all the files in the specified directory, click on one
with the mouse. If there's an active file
association for the selected file, the form will display that
executable filename in a text box. If there's an
associated executable file, you can run it and load your chosen file
by double-clicking on the list box or clicking on the checkmark
button.
[image: The sample form, frmTestExecute, from 11-07.MDB]

Figure 11-9. The sample form, frmTestExecute, from 11-07.MDB

To use this functionality in your own applications, follow these
steps:
	Import the module basShellAPI from 11-07.MDB
into your application.

	To find the executable file associated with a given document, use the
FindExecutable API function (aliased as
acb_apiFindExecutable in the code). Call it with
the three parameters described in Table 11-5.

Table 11-5. Parameters for the FindExecutable API function
	
 Parameter

 	
 Type

 	
 Description

	
 strFile

 	
 String

 	
 The filename that has an association in the registration database

	
 strDir

 	
 String

 	
 The drive letter and path for the default directory (you can use
"." to indicate the current
directory)

	
 strResult

 	
 String

 	
 A buffer to contain the returned executable name

 The FindExecutable function
returns an integer error code. If the value is greater than 32, the
function has succeeded. Otherwise, it returns one of the error codes
in Table 11-6 (note that these error codes are
shared by several functions). If the function succeeded,
strResult will be a null-terminated string
containing the associated executable file. You'll
need to trim off that trailing null character. One easy way to do
this is by using the TrimNull function in
basShellAPI, as follows:
Private Function TrimNull(strValue As String)

 ' Trim strValue at the first
 ' null character you find.

 Dim intPos As Integer
 intPos = InStr(strValue, vbNullChar)
 If intPos > 0 Then
 TrimNull = Left$(strValue, intPos - 1)
 Else
 TrimNull = strValue
 End If
End Function
Table 11-6. Some shared error codes for FindExecutable and ShellExecute
	
 Value

 	
 Meaning

	
 0

 	
 System error occurred

	
 2

 	
 File not found

	
 3

 	
 Path not found

	
 5

 	
 Sharing violation occurred

	
 8

 	
 Not enough memory to start the task

	
 27

 	
 Association incomplete

	
 31

 	
 No association in the Registration Database for the file extension

	
 32

 	
 DLL not found

For example, the following code will find the executable file
associated with MyFile.OOG:
Dim strBuffer As String
Dim strResult As String

strBuffer = Space(128)
strResult = ""

intRetval = acb_apiFindExecutable("MyFile.OOG", ".", strBuffer)
If intRetval > acbcHinstanceErr Then
 ' Use the TrimNull function in basShellAPI
 ' to remove the trailing null character.
 strResult = TrimNull(strBuffer)
End If
' Now, strResult holds either "" or the name
' of the executable you need.
To make this simpler, basShellAPI includes the acbFindExecutable
function. This function requires the same parameters and returns the
same values as acb_apiFindExecutable, but it
handles the details of initializing the string buffer and trimming
off the trailing null character for you. You'll want
to use this function instead of calling the Windows API directly, as
it will ensure that you use the correct methods for sending and
receiving strings.

 Once you know the name of
the executable file associated with the selected document,
you'll want to execute it with the ShellExecute API
function. You could, of course, use the Shell command, but
ShellExecute gives you a bit more flexibility, as
a comparison of the two shows:
	
 ShellExecute returns an error code if something
goes wrong, but Shell requires that you write
error-handling code to trap and deal with errors. In the long run,
using ShellExecute is simpler.

	
 ShellExecute allows you to specify the default
drive/directory for your application. Shell does
not.

	
 ShellExecute provides a few more options than
Shell; see Table 11-8 for
details.

	Not that you'll use it often, but
ShellExecute allows you to specify the action to
take on opening a file. If you want to print the file rather than
open it, specify the "print"
operation for the second parameter.

Tip
If your only intent is to run the executable associated with a file,
you don't need to call
FindExecutable explicitly. Instead, you can pass
the file name to ShellExecute, and it will find
the executable for you. In this example, we wanted to display the
associated executable, so we divided the task into two API function
calls.

To use the ShellExecute function, call it with the six parameters
shown in Table 11-7.
Table 11-7. Parameters for the ShellExecute API function
	
 Parameter

 	
 Type

 	
 Description

	
 hWnd

 	
 Integer

 	
 The handle of the window to be used as the parent for message boxes
that may appear.

	
 strOp

 	
 String

 	
 The operation to perform. Normally, can only be
"open" or
"print".

	
 strFile

 	
 String

 	
 The name of the program to start.

	
 strParams

 	
 String

 	
 Command-line arguments for the executable program. Normally, the name
of the file to load into the application.

	
 strDir

 	
 String

 	
 The default drive/directory for the application when it starts up.

	
 intShowCmd

 	
 Integer

 	
 Specification of how to show the new window when the application
starts up. For a list of values, see Table 11-8.

 Table 11-8 lists all the possible values for the
intShowCmd parameter. These values control
how the new application's window appears on the
Windows desktop.
Table 11-8. Window display options for the intShowCmd parameter to ShellExecute
	
 Constant

 	
 Value

 	
 Meaning

	
 acbSW_HIDE

 	
 0

 	
 The window is hidden when started.

	
 acbSW_SHOWNORMAL

 	
 1

 	
 The window is restored to its previous state (neither minimized nor
maximized).

	
 acbSW_SHOWMINIMIZED

 	
 2

 	
 The window is made visible and minimized.

	
 acbSW_SHOWMAXIMIZED

 	
 3

 	
 The window is made visible and maximized.

	
 acbSW_SHOWNOACTIVATE

 	
 4

 	
 The window is displayed, but doesn't gain the input
focus.

	
 acbSW_MINIMIZE

 	
 6

 	
 The window is minimized (as an icon) when started.

	
 acbSW_SHOWMINNOACTIVE

 	
 7

 	
 The window is made visible and minimized, but
doesn't receive the input focus.

	
 acbSW_SHOWNA

 	
 8

 	
 The window is displayed without any change to the
window's state (remains minimized, normal, or
maximized).

	
 acbSW_RESTORE

 	
 9

 	
 The window is restored to its previous state (neither minimized nor
maximized). (Same as acbSW_SHOWNORMAL.)

For example, to run the program
C:\OOGLY\MKOOGLE.EXE (which created
MyFile.OOG) maximized on the screen, you could run
code like this from a form's module:
intRetval = acb_apiShellExecute(Me.hWnd, "open", "C:\OOGLY\MKOOGLE.EXE", _
 "MyFile.OOG", "C:\OOGLY", acbSW_SHOWMAXIMIZED)

Discussion

 You
can call the FindExecutable function to retrieve an associated
executable file for a given document, and then pass both the
executable name and the document name to
ShellExecute to load them. For example, you might
use code like this in your application:
Dim intRetval As Integer
Dim strBuffer As String

intRetval = acbFindExecutable("MyFile.XXX", ".", strBuffer)
If intRetval <= acbHInstanceErr Then
 MsgBox "Unable to find executable. Error " & intRetval & "."
Else
 ' You're only here if you found the executable.
 intRetval = acb_apiShellExecute(Me.hWnd, "open", strBuffer, _
 "MyFile.XXX", "C:\NewDocs", acbSW_SHOWMAXIMIZED)
 If intRetval <= acbHInstanceErr Then
 MsgBox "Unable to load application. Error " & intRetval & "."
 End If
End If
You may find it interesting to work your way through the sample form
frmTestExecute. It uses the AddItem method of the
ListBox control (added in Access 2002) to add file names retrieved
from a Collection object. The code fills the collection by calling
the FillDirlist method, in the basFillList module.
The methods presented in this solution rely heavily on the Windows
registry. It may be useful to dig through the file associations in
the registry (as discussed in the earlier sidebar) and see how
Windows finds applications itself when you double-click on data
files.
Tip
If you're using Windows 98 or Windows Me,
you'll need to take into consideration file and path
names that include embedded spaces. Windows 2000, Windows XP, and
later operating systems handle spaces in file names without any
trouble. For earlier operating systems, make sure you surround file
and path names that include spaces with quote marks (Chr$(34)) in
order to ensure proper handling when you call the ShellExecute API
function.

11.8. Check to See if an Application Is Already Running

Problem

 You need to start up other Windows
programs from within your Access application—for instance, to
send data to Excel or to format a report in Word. If you just use the
Shell command to start these programs, you may end up with multiple
instances of the application. How can you tell if an application is
already running before you attempt to start it?

Solution

There are a number of solutions to this problem, and none,
unfortunately, are as easy as you might like. To ask Windows whether
Excel is currently running and receive an answer, you must know the
Windows class name for the main window of the application. This
solution explains the format of the question and how to ask it. In
addition, it demonstrates how to switch to a running application from
your Access application.

 If you have code that interacts
with applications external to Access, it is often useful to be able
to determine whether the application is running. The sample form,
frmAppsRunning (Figure 11-10), asks Windows the
question, "Is this app running?"
for each of six predefined window classes, and you can add one more
of your own. For each application that frmAppsRunning finds, it fills
in the window handle (hWnd) column and the window caption column on
the form. The AppActivate command in Access requires that you know
the exact title of the window, so this form uses code from Chapter 4 (in basAccessCaption) to retrieve the
caption for each running application. Finally, you can click on any
of the enabled buttons in the righthand column to switch to the
running application.
[image: frmAppsRunning shows the state of certain applications]

Figure 11-10. frmAppsRunning shows the state of certain applications

Try the sample form with Microsoft applications you have installed.
Press F1 to bring up Help, and then switch back to Access and click
on the Search button on the sample form. This will reinitiate the
search for active applications, and it will find
WINHELP.EXE running. Click on the question-mark
icon to switch back to WinHelp.
Follow these steps to include this functionality in your own
applications:
	Import the modules listed in Table 11-9 from
11-08.MDB into your application.

Table 11-9. Modules to import from 11-08.MDB
	
 Module

 	
 Contains

	
 basCaption

 	

 acbGetAccessCaption,
acbGetWindowCaption,
acbSetAccessCaption

	
 basUsage

 	

 acbIsAppLoaded

	

 To be able to ask Windows the
question, "Is some application
running?", you'll need to know the
Windows class name for the main window of the application. Table 11-10 lists the names for several Windows
applications.

Table 11-10. Windows application class names
	
 Application

 	
 Class name

	
 Access (all versions)

 	
 OMain

	
 Excel (all versions)

 	
 XLMain

	
 Explorer

 	
 ExploreWClass

	
 Outlook (all versions)

 	
 rrctrl_renwnd32

	
 Notepad

 	
 Notepad

	
 PowerPoint 2003

 	
 PP11FrameClass

	
 WordPad

 	
 WordPadClass

	
 Microsoft Word (all versions)

 	
 OpusApp

	The class names are somewhat arbitrary. Because
they're assigned by the development staff, not by
the marketing or documentation departments, class names often reflect the
project's code name or the state of mind of the
developer.

Finding Class Names
There are many ways to find the class names for
applications' main windows. The simplest is to use
the sample form for the Solution in Recipe 11.9, which displays a list of open windows and
their class names. If you want to know the class name for a specific
application, open it and run the sample form. The second column will
list the class name for you.

	To check whether a given application is currently running, use the
acbIsAppLoaded function in basUsage. Pass a class
name to this function as a parameter, and it returns the window
handle of the application if it's running, or 0 if
it's not. For example, this will return a nonzero
value if Microsoft Word is currently running (note that the class
names are not case-sensitive):
hWnd = acbIsAppRunning("opusapp")

	
 Once you know the window handle for the
application, you can use the AppActivate command in Access to make
that application active. To do this, you'll need to
know the exact window caption. To make that easier, you can call the
acbGetWindowCaption function in basCaption before attempting to
activate the application. For example, this code will switch to
Excel, if it's running:
Dim hWnd as Integer

hWnd = acbIsAppLoaded("XLMain")
If hWnd <> 0 Then
 AppActivate acbGetWindowCaption(hWnd)
End If

	

 If the application you want to
activate isn't currently running
(acbIsAppLoaded returned 0), use the
Shell command to start it. In this case,
you'll need to know the DOS executable filename for
the given application (EXCEL.EXE, for example).
The example form doesn't attempt to load the
applications if they aren't already loaded, but your
own application can load the program as needed.

Discussion

The acbIsAppLoaded function couldn't be simpler: It
calls a single Windows API function. The entire routine looks like
this:
Function acbIsAppLoaded (ByVal varClassName As Variant) As Long
 If IsNull(varClassName) Then
 acbIsAppLoaded = 0
 Else
 acbIsAppLoaded = acb_apiFindWindow(CStr(varClassName), 0&)
 End If
End Function

 This routine allows you
to pass in a class name. If the class name isn't
null, the function calls the FindWindow API function (aliased as
acb_apiFindWindow), which takes a class name and
returns the window handle of the first instance of that class it
finds. acbIsAppLoaded returns that handle to its
caller.

 This example uses the following code
from basCaption to determine the caption of a
window, given its window handle. Although this code
isn't the focus of this section,
you'll need to include it if you want to find a
window's caption.
Declare Function acb_apiSetWindowText Lib "user32" _
 Alias "SetWindowTextA" (ByVal hwnd As Long, _
 ByVal lpString As String) As Long
Declare Function acb_apiGetWindowText _
 Lib "user32" Alias "GetWindowTextA" (ByVal hwnd As Long, _
 ByVal lpString As String, ByVal aint As Long) As Long

Public Function acbGetWindowCaption(ByVal hwnd As Long) As Variant

 ' Get any window's caption, given its hWnd.

 Dim strBuffer As String
 Dim intLen As Integer

 Const acbcMaxLen = 128

 If hwnd <> 0 Then
 strBuffer = Space(acbcMaxLen)
 intLen = acb_apiGetWindowText(hwnd, strBuffer, acbcMaxLen)
 acbGetWindowCaption = Left$(strBuffer, intLen)
 End If
End Function
Don't expect acbIsAppLoaded to
distinguish between multiple copies of the same application. That is,
if you have two copies of Notepad running, you can't
count on acbIsAppLoaded to return the handle to a
specific instance of Notepad: it will return the handle of the first
instance it comes across. But that shouldn't bother
you, as you're simply trying to find out if
any copy of the application is currently
running.

11.9. Retrieve a List of All Top-Level Windows

Problem

 You know you can determine if
specific applications are currently running (as shown in the Solution
in Recipe 11.8), but now you'd like to obtain a list
of all the running applications. That way, you could decide, as part
of your application, what to present to your users. Is there a way to
walk through all the open main windows and build up a list?

Solution

Windows includes API functions that allow you to walk down and around
the tree of open windows, starting with the main desktop window. This
solution provides a function that will do that for you, filling an
array with information on each top-level window. You can then use
that array to list applications, switch to them, or close them (see
the Solution in Recipe 11.10 for information
on closing other windows).

 Load and run frmListWindows from
11-09.MDB. This sample form fills a list box
with all the top-level windows and provides a button that uses the
VBA AppActivate command to display the selected window. In addition,
the "Show visible windows only"
checkbox allows you to add invisible windows to the list. Of course,
attempting to use AppActivate to switch to an
invisible window will fail. Figure 11-11 shows the
sample form in action.
[image: frmListWindows allows you to select and display any of the top-level windows]

Figure 11-11. frmListWindows allows you to select and display any of the top-level windows

To include this functionality in your own applications, follow these
steps:
	Import the module basWindowList from
11-09.MDB. This module includes the API
declarations, constants, and wrapper functions that
you'll need to list and select top-level windows.

	In your code, declare an array of type
acb_tagWindowInfo to hold the list of open
windows, like this:
Dim atypWindowList() As acb_tagWindowInfo

	Call acbWindowList, passing the array to be filled
in and a Boolean value indicating whether to show visible windows
only. The function returns the number of windows it finds. After the
function call, your array will have
intCount rows, with each row containing
information about a specific top-level window. For example, this call
will fill the array with information about all the visible top-level
windows:
intCount = acbWindowList(atypWindowList(), True)

	In your application, decide which (if any) window
you'd like to display, perhaps by looping through
all the elements of the array. Use the
AppActivate command, along with the window
name, to activate the selected window:
AppActivate atypWindowList(intI).strCaption

Discussion

 This example uses several functions for
navigating through the hierarchy of windows. Table 11-11 describes the functions.
Table 11-11. Windows API navigation functions
	
 Function

 	
 Purpose

	

 GetDesktopHWnd

 	
 Retrieve the window handle for the main desktop window. All
applications are children of this window.

	

 GetWindow

 	
 Find a window in a specified relation to a specified window. In this
case, you'll be looking for the first child window
of the desktop window.

	

 GetWindowLong

 	
 Retrieve one of the 32-bit pieces of information stored with a
window's structure in memory.
You'll need to retrieve the style information (using
the GWL_STYLE constant) so you can tell whether a window is visible.

	

 GetClassName

 	
 Retrieve the window class name for the specified window.

 The acbWindowList function first
retrieves a handle to the main desktop window, using
GetDesktopHWnd. Once it knows that, it can find
the handle for the desktop's first child window,
using GetWindow. From then on, as long as the
handle for the current window isn't 0, the code
loops, filling in the array with information about the current window
and then moving on to the next window with the
GetWindow function. You'll note
that the loop skips windows without captions (of which there are
quite a few). Windows maintains a number of top-level hidden windows
without captions for its own use. In addition, by specifying the
blnVisibleOnly parameter for
acbWindowList, you can include or exclude
invisible windows. Windows sets up a number of invisible windows, and
you probably won't want them to show up in your
list. If you're interested, however, pass in
False for this parameter to add all the hidden
windows to your list. The code for the
acbWindowList function is as follows:
Type acb_tagWindowInfo
 strCaption As String
 hWnd As Long
 strClass As String
End Type

Public Function acbWindowList(aWI() As acb_tagWindowInfo, _
 ByVal blnVisibleOnly As Boolean) As Integer

 ' Fill an array with a list of all the currently
 ' open top-level windows.

 Dim hWnd As Long
 Dim strCaption As String
 Dim intCount As Integer
 Dim lngStyle As Long

 ' Get the desktop window and, from there, the first
 ' top-level window.
 hWnd = acb_apiGetDesktopWindow()
 hWnd = acb_apiGetWindow(hWnd, GW_CHILD)

 ' Loop through all the top-level windows.
 Do While hWnd <> 0
 strCaption = acbGetCaption(hWnd)
 If Len(strCaption) > 0 Then
 ' If you got a caption, add one element to the output
 ' array, and fill in the information (name and hWnd).
 lngStyle = acb_apiGetWindowLong(hWnd, GWL_STYLE)
 ' The Imp operator (Implies) returns True unless
 ' the first condition is True and the second is False,
 ' so this condition will be true unless you're
 ' showing visible only and the window is not visible.
 If blnVisibleOnly Imp (WS_VISIBLE And lngStyle) Then
 ReDim Preserve aWI(0 To intCount)
 aWI(intCount).strCaption = strCaption
 aWI(intCount).hWnd = hWnd
 aWI(intCount).strClass = CalcClassName(hWnd)
 intCount = intCount + 1
 End If
 End If
 ' Move to the next top-level window.
 hWnd = acb_apiGetWindow(hWnd, GW_HWNDNEXT)
 Loop

 ' Return the number of windows.
 acbWindowList = intCount
End Function

 You may find it instructive to
study the code in the sample form's module. It calls
acbWindowList and then uses a list-filling
callback function to fill the list box on the form with window
captions, classes, and handles. This is a perfect example of when
you'd use such a function: you need to fill a
control with data from an array that can't be
gathered until the application is running, and the array might be too
large to fit within the character limit imposed when you call the
control's AddItem method.
Some of the windows on the list exist at the time the form is filling
its list, but are not available (the Access Immediate window, for
example). You can attempt to switch to them, but the attempt will
fail. The code attached to the checkmark button's
Click event disregards errors, so it just keeps going if an error
occurs when it tries to switch the active window. See the Solution in
Recipe 11.10 for information on deleting
windows in this list.

11.10. Close a Running Windows Application

Problem

 As part of some of your large
Access applications, you often allow users to start other Windows
tools (Notepad, Calculator, Calendar, etc.); once those tools are
open, your application doesn't touch them. Some
users have complained about all the
"junk" left over once your
application closes. Is there some way you can close another window
from your Access application? That way, on the way out you can close
any tools your application has opened.

Solution

 The Solution in Recipe 11.9 demonstrated the retrieval of a list of all
the running Windows applications' captions, class
names, and window handles. Once you know that information,
it's easy to close an application: given a window
handle, simply tell it to close. Using the Windows API PostMessage
function, you can close any window at any time. Of course, some
applications (those that support Automation; see Chapter 12 for more information) allow themselves to
be closed programmatically without using the Windows API. Other
applications that don't support Automation will
require either the API method described here, or
SendKeys, which is unreliable at best.
Load and run frmListWindows from 11-10.MDB. This
form, shown in Figure 11-12, is similar to the sample
form in the Solution in Recipe 11.9 with the
addition of the Stop App button, which lets you close the selected
window. Try a few; you can even close Access this way, if you want.
[image: frmListWindows includes a Stop App button]

Figure 11-12. frmListWindows includes a Stop App button

Warning
Some top-level windows shouldn't be closed—you
should never include a form like this as part of an end-user
application. On the other hand, given an array of window captions and
handles, you could programmatically decide which window to close and
close it yourself from within your application. This form is a
demonstration of the power of the method, not a tool
you'd actually use.

To use this functionality in your own applications, follow these
steps:
	Import the modules basWindowList (if you
haven't already for the Solution in Recipe 11.9) and
basCloseWindows.

	Follow the steps listed in the Solution in Recipe 11.9 to create and fill in the array of top-level
windows.

	Decide which window you want to close. Windows sometimes appends
document names to the application name (e.g.,
"Microsoft Word—11-10.DOC"),
so check against just the first portion of the window name in your
array. For example:
For intI = 0 To intCount - 1
 If Left$(atypWindowList(0).strCaption, 14) = "Microsoft Word" Then
 ' You found a match. Do something.
 End If
Next intI

	When you've found the item you want to close, use
the acbCloseWindow function, passing to it the handle of the window
you care about:
If acbCloseWindow(atypWindowList(intI).hWnd) = 0 Then
 ' If you got 0 back, it got the message!
End If

Discussion

 The acbCloseWindow function calls the
PostMessage API function. By posting a message to a particular
window, you are telling it to do something, but you
don't bother waiting for a response. (The
corresponding API function, SendMessage,
does cause you to wait for a response. You can
use SendMessage if you want to stop and wait for
the other application to close, but we don't
recommend it.) The acbCloseWindow function sends the
WM_CLOSE message to your chosen window, telling it
to shut down. It's as if you quit your Windows shell
program with some applications running. Your shell sends a message to
each main application window to shut down because Windows is shutting
down. The acbCloseWindow function, then, looks like this:
Function acbCloseWindow (ByVal hWnd As Long)

 Const WM_CLOSE = &H10

 acbCloseWindow = PostMessage(hWnd, WM_CLOSE, 0, vbNullString)
End Function
The purpose of this wrapper function that calls
PostMessage is to prevent you from having to
remember how to post a message to a window. It's a
lot simpler to call acbCloseWindow than to call
PostMessage directly.
Sending a WM_CLOSE message to a window
doesn't necessarily close it. If that application
has an unsaved document, it will pop up its own dialog asking what
you want to do with that unsaved document. In the sample form, if
this happens, the list box won't be updated
correctly. Once you return from your duties with the foreign
application, press the Requery button on the form to force it to
search again for all open applications.

11.11. Set File Date and Time Stamps

Problem

 Access makes it easy to
retrieve the modification date and time for files on disk, using the
FileDateTime function. In one application, though, you need to be
able to reset the last-modification date of files manually; the
Access FileCopy function doesn't reset file date and
time stamps, and you'd like copied files to have the
current time. Is there a Windows API call that allows you to set file
date and time stamps?

Solution

 Windows provides the GetFileTime and
SetFileTime API functions. Both work with three different date/time
values: date of creation, date of last access, and date of last
write. You want to preserve the date of creation and update the dates
of last access and update. The code shown in this example will allow
you to do this.
The sample form, frmTimeStamp, allows you to
select a filename. The function then displays the date and time of
last modification for the file, as shown in Figure 11-13. In addition, you can set a new file date,
time, or both (the function retains whichever setting you
don't change, if you just change one).
[image: frmTimeStamp shows a selected file's modification date and time]

Figure 11-13. frmTimeStamp shows a selected file's modification date and time

To set file date and time information in your own applications,
follow these steps:
	Import the module basTimeStamp from
11-11.MDB. This module includes the type
definitions and Windows API declarations you'll
need, as well as a VBA function to convert dates and times as
retrieved from the API call into date/time values that Access can
understand. If you want to use this sample form in your own
applications, you'll also need to import
basFillList, which includes functions to retrieve
the list of files.

	To set the modification-date information for a specific file, call
the acbSetFileDateTime function, passing it a filename and a
date/time value as parameters. For example, the following code will
change the last-modification time and date for
C:\AUTOEXEC.BAT to the current date and time:
blnOK = acbSetFileDateTime("C:\AUTOEXEC.BAT", Now)

Discussion

The acbSetFileDateTime function consists of
three basic steps. Its source code is:
Public Function acbSetFileDateTime(_
 strFileName As String, varDate As Date) As Boolean
 Dim hFile As Long
 Dim of As OFSTRUCT
 Dim st As SYSTEMTIME
 Dim ftCreation As FILETIME
 Dim ftLastAccess As FILETIME
 Dim ftLastWrite As FILETIME
 Dim ftLocal As FILETIME
 Dim blnOK As Boolean

 st.wYear = Year(varDate)
 st.wMonth = Month(varDate)
 st.wDay = Day(varDate)
 st.wHour = Hour(varDate)
 st.wMinute = Minute(varDate)
 st.wSecond = Second(varDate)

 hFile = OpenFile(strFileName, of, OF_READWRITE)
 If hFile > 0 Then
 blnOK = GetFileTime(hFile, ftCreation, ftLastAccess, ftLastWrite)
 If blnOK Then blnOK = SystemTimeToFileTime(st, ftLastWrite)
 If blnOK Then blnOK = LocalFileTimeToFileTime(ftLastWrite, ftLocal)
 If blnOK Then blnOK = SetFileTime(hFile, ftCreation, ftLocal, ftLocal)
 CloseHandle hFile
 End If
 acbSetFileDateTime = blnOK
End Function
The first step the function takes is to copy the date information
from the Access Date-type variable into a structure that the API can
use:
' In the declarations section:
Private Type SYSTEMTIME
 wYear As Integer
 wMonth As Integer
 wDayOfWeek As Integer
 wDay As Integer
 wHour As Integer
 wMinute As Integer
 wSecond As Integer
 wMilliseconds As Integer
End Type

' In the function:
Dim st As SYSTEMTIME

st.wYear = Year(varDate)
st.wMonth = Month(varDate)
st.wDay = Day(varDate)
st.wHour = Hour(varDate)
st.wMinute = Minute(varDate)
st.wSecond = Second(varDate)
Next, the function must open the requested file with read/write
access so that it can write to the file's time
stamp:
hFile = OpenFile(strFileName, of, OF_READWRITE)
If this succeeds, the function then retrieves the current time
stamps, converts the system time structure to a file time structure,
converts that time from local time to the internal generalized time
that Windows uses, and finally sets the file time:
blnOK = GetFileTime(hFile, ftCreation, ftLastAccess, ftLastWrite)
If blnOK Then blnOK = SystemTimeToFileTime(st, ftLastWrite)
If blnOK Then blnOK = LocalFileTimeToFileTime(ftLastWrite, ftLocal)
If blnOK Then blnOK = SetFileTime(hFile, ftCreation, ftLocal, ftLocal)
CloseFileHandle hFile
The function sets both the time of last access and the time of last
write to be the date and time you've specified.
When you select the Set button on the sample form, Access executes
the following procedure:
Private Sub cmdSetTime_Click()
 Dim varDate As Date
 Dim strDate As String
 Dim strTime As String

 strDate = IIf(IsNull(Me.txtNewDate), Me.txtDate, Me.txtNewDate)
 strTime = IIf(IsNull(Me.txtNewTime), Me.txtTime, Me.txtNewTime)
 varDate = CVDate(strDate & " " & strTime)
 If Not acbSetFileDateTime(GetPath(), varDate) Then
 MsgBox "Unable to set the file date!"
 Else
 Me.txtDate = Format(varDate, "Short Date")
 Me.txtTime = Format(varDate, "Short Time")
 End If
End Sub
This procedure retrieves the dates you've typed on
the form, converts them to an Access date/time value, and then sets
the date for the file you've selected. Note that the
example uses the existing date or time for any value you
didn't enter. Because the Set button
isn't enabled unless you enter at least the date or
the time, there's no need to worry about when
they're both null.

 Unless you take the extra step of
converting the passed-in date/time value from local time to the
internal time Windows uses (Greenwich Mean Time), the time you set
will be off by the difference in time zones between your time and the
standardized time. The call to LocalTimeToFileTime
takes care of this for you. Of course, this counts on the local time
having been set correctly on the local system.

11.12. Retrieve Information About Available Drives

Problem

 You'd like to be
able to gather specific information about the disk drives in your
computer: for example, how large they are, how much space is free,
whether they're local or remote, and whether
they're removable or not. Access does not provide
this information. Is it available using a Windows API function?

Solution

 The Windows API provides three
functions that you can use to extract information about the drives in
your computer: GetLogicalDriveStrings, which
returns a string containing a list of all the logical drives;
GetDriveType, which returns information about the
specified drive; and GetDiskFreeSpace, which
returns information about the total and free disk space for a
specified drive.
Load and run frmDiskSpace from
11-12.MDB. This form, shown in Figure 11-14, contains a list box with information about
all the logical drives in your system. To fill the list box, the
example code walks through all the drives returned from a call to
GetLogicalDriveStrings, calling the other two
functions for each drive.
[image: frmDiskSpace shows information about all the installed drives]

Figure 11-14. frmDiskSpace shows information about all the installed drives

To use these functions in your own applications, follow these steps:
	Import the modules basDiskInfo and
basToken from 11-12.MDB.

	To call the functions, use the information in Table 11-12. Each function takes only a single parameter,
the drive to be interrogated.

Table 11-12. The functions in basDiskInfo
	
 Function

 	
 Purpose

 	
 Return value

 	
 Example

	

 acbGetFreeSpace

 	
 Retrieve the amount of free space on the specified drive.

 	
 Variant (the amount of free disk space, in bytes), or Null if the
function failed

 	
 lngFree = acbGetFreeSpace("C")

	

 acbGetTotalSpace

 	
 Retrieve the total amount of space on the specified drive.

 	
 Variant (the amount of total disk space, in bytes), or Null if the
function failed

 	
 lngTotal = acbGetTotalSpace("C")

	

 acbIsDriveCDROM

 	
 Verify that a drive is a CD-ROM.

 	
 True if CD-ROM, False otherwise

 	
 fCD = acbIsDriveCDROM("D")

	

 acbIsDriveFixed

 	
 Verify that a drive is a hard disk.

 	
 True if a hard disk, False otherwise

 	
 fFixed = acbIsDriveFixed("C")

	

 acbIsDriveLocal

 	
 Verify that the specified drive is local.

 	
 True if local, False if remote

 	
 fLocal = acbIsDriveLocal("C")

	

 acbIsDriveRAMDisk

 	
 Verify that a drive is a RAM disk.

 	
 True if RAM disk, False otherwise

 	
 fRAM = acbIsDriveRAMDisk("F")

	

 acbIsDriveRemote

 	
 Verify that the specified drive is a network drive.

 	
 True if remote, False if local

 	
 fNetwork = acbIsDriveRemote("E")

	

 acbIsDriveRemovable

 	
 Verify that the specified drive is for removable media.

 	
 True if removable, False otherwise

 	
 fRemovable =
acbIsDriveRemovable("A")

Discussion

The sample form doesn't actually use any of the
acbIs functions listed in Table 11-12; these
functions are supplied only for your own applications. Instead, it
calls the acbGetDrives function in basDiskInfo,
which fills an array of acb_tagDriveInfo
structures directly with information about each of the installed
drives, physical or logical.
The structure looks like this:
Type acb_tagDriveInfo
 strDrive As String
 varFreeSpace As Variant
 varTotalSpace As Variant
 fRemovable As Boolean
 fFixed As Boolean
 fRemote As Boolean
 fCDROM As Boolean
 fRamDisk As Boolean
End Type

 It stores all the information that
the sample form displays. The sample form then uses a list-filling
callback function to display the information in a list box. (For more
information on list-filling callback functions, see Chapter 7.)

 The acbGetDrives function starts out by
calling the Windows API function
GetLogicalDriveStrings. This function returns a
string containing all the logical drives on your machine, in this
format:
C:0D:0G:0H:0

 where the 0s indicate null characters,
Chr$(0). (VBA provides the
vbNullChar constant that's
equivalent to Chr$(0).) The acbGetDrives function
loops through this string, using the acbGetToken function in
basTokens to pull out the drive names, one at a
time, and then gathering information about each. The source code for
acbGetDrives is:
Public Function acbGetDrives(astrDrives() As acb_tagDriveInfo, _
 fIncludeFloppies As Boolean)
 ' Fill astrDrives() with all the available logical drive letters.

 Dim strBuffer As String
 Dim intCount As Integer
 Dim intI As Integer
 Dim varTemp As Variant
 Dim lngType As Long

 Const conMaxSpace = 1024

 strBuffer = Space(conMaxSpace)

 intCount = GetLogicalDriveStrings(conMaxSpace - 1, strBuffer)
 strBuffer = Left(strBuffer, intCount)
 intI = 1
 intCount = 0
 Do
 varTemp = acbGetToken(strBuffer, vbNullChar, intI)
 If Len(varTemp & "") > 0 Then
 ' The next statement will be true except in the
 ' case where the drive < C and you DON'T want
 ' to include floppies. Then it'll skip the drive.
 If (UCase(Left(varTemp, 1) < "C")) Imp fIncludeFloppies Then
 intCount = intCount + 1
 ' Get the drive name.
 astrDrives(intCount).strDrive = varTemp

 ' Get the drive type, and set the flags accordingly.
 lngType = GetDriveType(varTemp)
 Select Case lngType
 Case DRIVE_REMOVABLE
 astrDrives(intCount).fRemovable = True
 Case DRIVE_FIXED
 astrDrives(intCount).fFixed = True
 Case DRIVE_REMOTE
 astrDrives(intCount).fRemote = True
 Case DRIVE_CDROM
 astrDrives(intCount).fCDROM = True
 Case DRIVE_RAMDISK
 astrDrives(intCount).fRamDisk = True
 End Select

 ' Get the drive space information.
 astrDrives(intCount).varTotalSpace = acbGetTotalSpace(varTemp)
 astrDrives(intCount).varFreeSpace = acbGetFreeSpace(varTemp)
 End If
 intI = intI + 1
 End If
 Loop Until Len(varTemp & "") = 0
 acbGetDrives = intCount
End Function

 The acbGetTotalSpace and
acbGetFreeSpace functions both call the private GetDiskSpace
function, which in turn calls the GetDiskFreeSpace API function.
GetDiskSpace takes the four pieces of information
returned from
GetDiskFreeSpace
 —sectors
per cluster, bytes per sector, free clusters, and total
clusters—and returns the calculated value that
you've requested:
Private Function GetDiskSpace(ByVal strDrive As String, _
 fTotal As Boolean) As Variant

 ' Input:
 ' strDrive: String representing drive letter
 ' fTotal: True for total space on drive, False for free space on drive
 ' Output:
 ' Free or Total space, if no error. Null, otherwise.

 Dim lngSectorsPerCluster As Long
 Dim lngBytesPerSector As Long
 Dim lngFreeClusters As Long
 Dim lngTotalClusters As Long

 ' Force the string into the correct format.
 strDrive = Left(strDrive, 1) & ":\"
 If GetDiskFreeSpace(strDrive, lngSectorsPerCluster, lngBytesPerSector, _
 lngFreeClusters, lngTotalClusters) Then
 GetDiskSpace = lngSectorsPerCluster * lngBytesPerSector * IIf(fTotal, _
 lngTotalClusters, lngFreeClusters)
 Else
 GetDiskSpace = Null
 End If
End Function

 If you want to dig a bit further,
investigate the GetVolumeInformation API function. This function
retrieves even more information about the specified drive, including
its volume name, serial number, whether or not compression is
enabled, the filesystem type (FAT, HPFS, NTFS), and other information
about how data is stored on that drive. This information is of less
importance to Access developers than to system application
developers, so we don't discuss it here.

11.13. Collect and Display Information on the System and the Access Installation

Problem

 Your application really needs to
know some information about the computer on which
it's running. In addition, you'd
like to add some professional polish and an About... box that shows
information about the computer, the resources, and the user. Access
doesn't provide any way to find this information.
How can you gather it?

Solution

 You can use
the Windows API to retrieve information about the system on which
your program is running. By using these various functions as the
control sources for unbound controls, you can present a selection of
system information to your user.
Load 11-13.MDB and open
frmSystemInfo in regular form view (see Figure 11-15). This form includes five
"pages" of information about the
current computer and its resources. If you like the look of this
form, use it as-is in your own applications. (You'll
need to import the form, frmSystemInfo, its
subform, fsubInfo, and the module,
basSystemInfo, into your application, as directed
in Step 1.)
[image: frmSystemInfo shows memory status information]

Figure 11-15. frmSystemInfo shows memory status information

To create a similar form in your own application, follow these steps:
	Import the module basSystemInfo from
11-13.MDB into your own application. This module
contains all the constants, API declarations, and wrapper functions
that you'll need.

	Create a new form. Place an unbound text box (or checkbox, or option
group; see fsubInfo for hints) on the form for
each piece of information you wish to display. Set the control
sources as shown in Table 11-13. The sample form,
frmSystemInfo, uses an option group that lets you choose which page
of the subform, fsubInfo, you'd
like to see. This has nothing to do with the functionality of the
sample beyond cosmetics; it just makes it easier to group the
information.

Table 11-13. Control sources for text boxes on frmSystemInfo
	
 Item

 	
 Control source

	
 Screen resolution

 	
 =acbGetScreenX() & " x " &
acbGetScreenY()

	
 Mouse installed

 	
 =acbMouseInstalled()

	
 Keyboard type

 	
 =acbKeyboardType()

	
 Memory load

 	
 =acbGetMemoryStatus(0)

	
 Total physical memory

 	
 =acbGetMemoryStatus(1)

	
 Available physical memory

 	
 =acbGetMemoryStatus(2)

	
 Total page file

 	
 =acbGetMemoryStatus(3)

	
 Available page file

 	
 =acbGetMemoryStatus(4)

	
 Total virtual memory

 	
 =acbGetMemoryStatus(5)

	
 Available virtual memory

 	
 =acbGetMemoryStatus(6)

	
 Operating system version

 	
 =acbGetOSInfo(0) & "." &
acbGetOSInfo(1)

	
 Build number

 	
 =acbGetOSInfo(2)

	
 Platform

 	
 =acbGetOSInfo(3)

	
 Windows directory

 	
 =acbWindowsDirectory()

	
 System directory

 	
 =acbSystemDirectory()

	
 Temp path

 	
 =acbTempPath()

	
 Access directory

 	
 =acbAccessDirectory()

	
 OEM ID

 	
 =acbGetSystemStatus(0)

	
 Page size

 	
 =acbGetSystemStatus(1)

	
 Lowest memory address

 	
 =acbGetSystemStatus(2)

	
 Highest memory address

 	
 =acbGetSystemStatus(3)

	
 Active processor mask

 	
 =acbGetSystemStatus(4)

	
 Number of processors

 	
 =acbGetSystemStatus(5)

	
 Processor type

 	
 =acbGetSystemStatus(6)

Discussion

 The functions used here employ
a variety of techniques to return the requested information. In
general, they query the low-level Windows API to retrieve hardware
and Windows environment information. We've wrapped
each low-level function in an Access function to handle data type
conversions from the dynamic link libraries (DLLs) used by Windows
into the format that Access can understand.

 frmSystemInfo uses several functions to return
information about the current computer:
	Screen resolution
	

 The
acbGetScreenX and acbGetScreenY functions use the GetSystemMetrics
API function to return the size of the screen in pixels. This API
function can return many other details about your system, including
the width of the window borders, the size of the icons, and whether a
mouse is installed. To call it, just pass it one of the constants
shown later, in Table 11-14; it will return the
requested value to you. For example:
Public Function acbGetScreenX()
 ' Retrieve the screen width in pixels.
 acbGetScreenX = GetSystemMetrics(SM_CXSCREEN)
End Function

	Mouse installed
	Again, the GetSystemMetrics function does the
work:
Public Function acbMouseInstalled() As Boolean
 ' Is a mouse installed?
 acbMouseInstalled = CBool(GetSystemMetrics(SM_MOUSEPRESENT))
End Function

	Keyboard type
	
 The
GetKeyboardType function provides the answers:
Public Function acbKeyboardType()
 ' Retrieve information about the keyboard.
 ' Call GetKeyboardType with
 ' 0 Keyboard Type
 ' 1 Keyboard SubType (depends on the manufacturer)
 ' 2 Number of function keys
 acbKeyboardType = GetKeyboardType(0)
End Function

	Memory information
	

 The GlobalMemoryStatusEx function fills
in a user-defined data structure with information about the current
memory load, available and total real and virtual memory, and paging
space. We've wrapped all this information up in the
acbGetMemoryStatus function:
Public Function acbGetMemoryStatus(intItem As Integer) As Variant

 ' Retrieve system memory information
 ' In:
 ' intItem: Which piece of information to retrieve
 ' 0: Memory load (0 to 100)
 ' 1: Total physical memory in bytes
 ' 2: Available physical memory in bytes
 ' 3: Total size in page file in bytes
 ' 4: Available page file in bytes
 ' 5: Total virtual memory in bytes
 ' 6: Available virtual memory in bytes
 ' Out:
 ' Return Value: The requested information

 Dim MS As MEMORYSTATUSEX

 ' Set the length member before you call GlobalMemoryStatus.
 MS.dwLength = Len(MS)
 GlobalMemoryStatusEx MS
 Select Case intItem
 Case 0
 acbGetMemoryStatus = MS.dwMemoryLoad * 10000 / 1024
 Case 1
 acbGetMemoryStatus = MS.dwTotalPhys * 10000 / 1024
 Case 2
 acbGetMemoryStatus = MS.dwAvailPhys * 10000 / 1024
 Case 3
 acbGetMemoryStatus = MS.dwTotalPageFile * 10000 / 1024
 Case 4
 acbGetMemoryStatus = MS.dwAvailPageFile * 10000 / 1024
 Case 5
 acbGetMemoryStatus = MS.dwTotalVirtual * 10000 / 1024
 Case 6
 acbGetMemoryStatus = MS.dwAvailVirtual * 10000 / 1024
 Case Else
 acbGetMemoryStatus = 0
 End Select
End Function

Tip
Although it seems odd, the code in
acbGetMemoryStatus is performing an important
conversion. Because the values filled in by the GlobalMemoryStatusEx
method are so large, you must use Currency values to contain the
results. In order to store large values, VBA scales the contents of
Currency variables by a factor of 10,000. Therefore, when you want to
use the values here, you must multiply them by 10,000. In addition,
to convert from bytes to KB, the code divides the totals by the
number of bytes in a kilobyte, 1024.

	Operating system information
	

 The GetVersionEx API function does the
work here. To simplify its use, we've provided the
acbGetOSInfo function, as follows. Note that the Platform ID value
simply indicates whether you're running a Windows
95-based operating system (such as Windows 98 or Windows ME) or a
Windows NT-based operating system, such as Windows 2000, Windows XP,
or Windows Server 2003. You can definitely retrieve more detailed
results than this—see the documentation at http://msdn.microsoft.com for more
information.
Public Function acbGetOSInfo(intItem As Integer) As Variant

 ' Retrieve operating system information
 ' In:
 ' intItem: Which piece of information to retrieve
 ' 0: Major Version
 ' 1: Minor version
 ' 2: Build Number
 ' 3: Platform ID
 ' 0 = Win32s (not going to happen!)
 ' 1 = Win95
 ' 2 = WinNT
 ' Out:
 ' Return Value: The requested information

 Dim OSInfo As OSVERSIONINFO

 ' Set the length member before you call GetVersionEx.
 OSInfo.dwOSVersionInfoSize = Len(OSInfo)
 If GetVersionEx(OSInfo) Then
 Select Case intItem
 Case 0
 acbGetOSInfo = OSInfo.dwMajorVersion
 Case 1
 acbGetOSInfo = OSInfo.dwMinorVersion
 Case 2
 ' Get just the low word of the result.
 acbGetOSInfo = OSInfo.dwBuildNumber And &HFFFF&
 Case 3
 acbGetOSInfo = OSInfo.dwPlatformId
 End Select
 Else
 acbGetOSInfo = 0
 End If
End Function

	Directories
	

 To retrieve the Windows
directory, call acbWindowsDirectory, shown in the
following code. For the Windows System directory, call
acbSystemDirectory; for the temporary storage
path, call acbTempPath; and to find out which
directory Access is running from, call
acbAccessDirectory. (Note that
acbAccessDirectory doesn't
actually use the Windows API to find the location of Access; the
SysCmd function in Access makes that information available.)
Public Function acbWindowsDirectory()
 ' Retrieve the Windows directory.
 Dim strBuffer As String
 Dim intCount As Integer

 strBuffer = Space(MAX_PATH)
 intCount = GetWindowsDirectory(strBuffer, MAX_PATH)
 acbWindowsDirectory = CleanPath(Left(strBuffer, intCount))
End Function

	System information
	

 The GetSystemInfo API function provides
all the information. To make this easier for you,
we've provided the acbGetSystemStatus function,
shown in the following code. Call this function with a number
representing the piece of information you want.
Public Function acbGetSystemStatus(intItem As Integer) As Variant

 ' Retrieve system status information
 ' In:
 ' intItem: Which piece of information to retrieve
 ' 0: Computer identifier, specific to OEM
 ' 1: Returns page size and specifies the granularity of page
 ' protection and commitment
 ' 2: Lowest memory address accessible to applications and
 ' dynamic link libraries (DLLs)
 ' 3: Highest memory address accessible to applications and DLLs
 ' 4: Mask representing the set of processors configured into
 ' the system
 ' Bit 0 is processor 0; bit 31 is processor 31
 ' 5: Returns the number of processors in the system
 ' 6: Type of the current processors in the system
 ' 7: Allocation granularity in which memory will be allocated
 ' on (usually 64K)
 ' Out:
 ' Return Value: The requested information

 Dim SI As SYSTEM_INFO

 GetSystemInfo SI
 Select Case intItem
 Case 0
 acbGetSystemStatus = SI.dwOemID
 Case 1
 acbGetSystemStatus = SI.dwPageSize
 Case 2
 acbGetSystemStatus = SI.lpMinimumApplicationAddress
 Case 3
 acbGetSystemStatus = SI.lpMaximumApplicationAddress
 Case 4
 acbGetSystemStatus = SI.dwActiveProcessorMask
 Case 5
 acbGetSystemStatus = SI.dwNumberOrfProcessors
 Case 6
 acbGetSystemStatus = SI.dwProcessorType
 Case 7
 acbGetSystemStatus = SI.dwAllocationGranularity
 Case Else
 acbGetSystemStatus = 0
 End Select
End Function

Table 11-14. Subset of the options for GetSystemMetrics
	
 Constant name

 	
 Value

 	
 Meaning

	
 SM_CXSCREEN

 	
 0

 	
 Width of screen.

	
 SM_CYSCREEN

 	
 1

 	
 Height of screen.

	
 SM_CXVSCROLL

 	
 2

 	
 Width of arrow bitmap on a vertical scrollbar.

	
 SM_CYHSCROLL

 	
 3

 	
 Height of arrow bitmap on a horizontal scrollbar.

	
 SM_CYCAPTION

 	
 4

 	
 Height of window title. This is the title height plus the height of
the window frame that cannot be sized
(SM_CYBORDER).

	
 SM_CXBORDER

 	
 5

 	
 Width of window border.

	
 SM_CYBORDER

 	
 6

 	
 Height of window border or dimensions of a single border, in pixels.

	
 SM_CXFIXEDFRAME

 	
 7

 	
 Width of frame when window has the WS_DLGFRAME
style.

	
 SM_CYFIXEDFRAME

 	
 8

 	
 Height of frame when window has the WS_DLGFRAME
style.

	
 SM_CYVTHUMB

 	
 9

 	
 Height of scroll box on vertical scrollbar.

	
 SM_CXHTHUMB

 	
 10

 	
 Width of scroll box (thumb) on horizontal scrollbar.

	
 SM_CXICON

 	
 11

 	
 Width of icon.

	
 SM_CYICON

 	
 12

 	
 Height of icon.

	
 SM_CXCURSOR

 	
 13

 	
 Width of cursor.

	
 SM_CYCURSOR

 	
 14

 	
 Height of cursor.

	
 SM_CYMENU

 	
 15

 	
 Height of single-line menu bar.

	
 SM_CXFULLSCREEN

 	
 16

 	
 Width of window client area for a full-screen window.

	
 SM_CYFULLSCREEN

 	
 17

 	
 Height of window client area for a full-screen window (equivalent to
the height of the screen minus the height of the window title).

	
 SM_CYKANJIWINDOW

 	
 18

 	
 Height of Kanji window.

	
 SM_MOUSEPRESENT

 	
 19

 	
 Nonzero if the mouse hardware is installed.

	
 SM_CYVSCROLL

 	
 20

 	
 Height of arrow bitmap on a vertical scrollbar.

	
 SM_CXHSCROLL

 	
 21

 	
 Width of arrow bitmap on a horizontal scrollbar.

	
 SM_DEBUG

 	
 22

 	
 Nonzero if the Windows version is a debugging version.

	
 SM_SWAPBUTTON

 	
 23

 	
 Nonzero if the left and right mouse buttons are swapped.

	
 SM_CXMIN

 	
 28

 	
 Minimum width of window.

	
 SM_CYMIN

 	
 29

 	
 Minimum height of window.

	
 SM_CXSIZE

 	
 30

 	
 Width of bitmaps contained in the titlebar.

	
 SM_CYSIZE

 	
 31

 	
 Height of bitmaps contained in the titlebar.

	
 SM_CXFRAME

 	
 32

 	
 Width of window frame for a window that can be resized. (Obsolete;
use SM_CXFIXEDFRAME instead.)

	
 SM_CYFRAME

 	
 33

 	
 See SM_CXFRAME (height, instead). (Obsolete; use
SM_CYFIXEDFRAME instead.)

	
 SM_CXMINTRACK

 	
 34

 	
 Minimum tracking width of window.

	
 SM_CYMINTRACK

 	
 35

 	
 Minimum tracking height of window.

	
 SM_CXDOUBLECLK

 	
 36

 	
 Width of the rectangle around the location of the first click in a
double-click sequence. The second click must occur within this
rectangle for the system to consider the two clicks a double-click.

	
 SM_CYDOUBLECLK

 	
 37

 	
 See SM_CXDOUBLECLK (height, instead).

	
 SM_CXICONSPACING

 	
 38

 	
 Width of rectangles the system uses to position tiled icons.

	
 SM_CYICONSPACING

 	
 39

 	
 Height of rectangles the system uses to position tiled icons.

	
 SM_MENUDROPALIGNMENT

 	
 40

 	
 Alignment of pop-up menus. If this value is zero, the left side of a
pop-up menu is aligned with the left side of the corresponding
menu-bar item. If this value is nonzero, the left side of a pop-up
menu is aligned with the right side of the corresponding menu-bar
item.

	
 SM_PENWINDOWS

 	
 41

 	
 Handle of the Pen Windows DLL if Pen Windows is installed.

	
 SM_DBCSENABLED

 	
 42

 	
 Nonzero if current version of Windows uses double-byte characters;
zero otherwise.

	
 SM_CMOUSEBUTTONS

 	
 43

 	
 Number of buttons on the mouse, or zero if no mouse is present.

	
 SM_SECURE

 	
 44

 	
 Nonzero if security is present; zero otherwise.

	
 SM_CXMINSPACING

 	
 47

 	
 With SM_CYMINSPACING, dimensions of a grid cell
for minimized windows, in pixels. Each minimized window fits into a
rectangle this size when arranged. These values are always greater
than or equal to SM_CXMINIMIZED and
SM_CYMINIMIZED.

	
 SM_CYMINSPACING

 	
 48

 	
 See SM_CXMINSPACING.

	
 SM_CXSMICON

 	
 49

 	
 With SM_CYSMICON, recommended dimensions of a
small icon, in pixels. Small icons typically appear in window
captions and in small icon view.

	
 SM_CYSMICON

 	
 50

 	
 See SM_CXSMICON.

	
 SM_CXSMSIZE

 	
 52

 	
 With SM_CYSMSIZE, dimensions of small caption
buttons, in pixels.

	
 SM_CYSMSIZE

 	
 53

 	
 See SM_CXSMSIZE.

	
 SM_CXMENUSIZE

 	
 54

 	
 Width of menu bar buttons (such as multiple document (MDI) child
Close), in pixels.

	
 SM_CYMENUSIZE

 	
 55

 	
 Height of menu bar buttons (such as multiple document (MDI) child
Close), in pixels.

	
 SM_ARRANGE

 	
 56

 	
 Flags specifying how the system arranges minimized windows.

	
 SM_CXMINIMIZED

 	
 57

 	
 Width of a normal minimized window, in pixels.

	
 SM_CYMINIMIZED

 	
 58

 	
 Height of a normal minimized window, in pixels.

	
 SM_CXMAXTRACK

 	
 59

 	
 Default maximum width of a window that has a caption and sizing
borders. The user cannot drag the window frame to a size larger than
these dimensions.

	
 SM_CYMAXTRACK

 	
 60

 	
 See SM_CXMAXTRACK (height, instead).

	
 SM_CXMAXIMIZED

 	
 61

 	
 Default width of a maximized top-level window, in pixels.

	
 SM_CYMAXIMIZED

 	
 62

 	
 Default height of a maximized top-level window, in pixels.

	
 SM_NETWORK

 	
 63

 	
 The least significant bit is set if a network is present; otherwise,
it is cleared. The other bits are reserved for future use.

	
 SM_CLEANBOOT

 	
 67

 	
 Value that specifies how the system was started: 0 (Normal boot), 1
(Fail-safe boot), 2 (Fail-safe with network boot). Fail-safe boot
(also called SafeBoot) bypasses the user's startup
files.

	
 SM_SHOWSOUNDS

 	
 70

 	
 Nonzero if the user requires an application to present information
visually in situations where it would otherwise present the
information only in audible form; zero otherwise.

	
 SM_CXMENUCHECK

 	
 71

 	
 Width of the default menu checkmark bitmap, in pixels.

	
 SM_CYMENUCHECK

 	
 72

 	
 Height of the default menu checkmark bitmap, in pixels.

	
 SM_SLOWMACHINE

 	
 73

 	
 Nonzero if the computer has a low-end (slow) processor, zero
otherwise.

	
 SM_CMETRICS

 	
 75

 	
 Number of system metrics and flags.

 Some of the flags supported by
GetSystemMetrics behave differently under
different operating systems. Make sure you check the documentation
(online at http://msdn.microsoft.com) for
operating-system dependencies. You'll also find
other options that you can add to this form; we
didn't include every available option here.

 In addition to the functions listed
here, you may find the SystemParametersInfo API function useful. It
allows you to set and retrieve many system parameters, but calling it
is a bit more difficult than calling
GetSystemMetrics. If you have access to a Windows
API reference, you may want to dig into this useful function.

11.14. Create and Cancel Network Connections Programmatically

Problem

 You'd like to
be able to connect to remote network devices from within your own
Access applications. You know that you could do this manually, using
Explorer or File Manager, but there must be some internal API for
controlling these connections. Is there some way you can manage
connections from within Access?

Solution

Windows provides a rich interface to its networking subsystem through
its API. Many of the function calls are difficult, if not impossible,
to call from VBA because of the language's lack of
pointer variable types. Some important calls, however, are quite
simple to use, as you'll see in this solution. The
example form will demonstrate connecting to and disconnecting from
remote devices (printers and drives) using common dialogs or using
code with no user interface.
Load and run frmNetworkSample from
11-14.MDB. Figure 11-16 shows
the form in use on a small Windows 2000 network. This sample form,
demonstrating all the capabilities covered in this solution, does the
following:
	
 Retrieves the current username and
computer name.

	Walks through all 26 possible drive letters and displays any drive
mappings connected to those drives.

	Allows you to delete any of the displayed drive connections.

	Provides a method for adding new connections, where you supply the
four necessary parameters.

	

 Uses the common dialogs for adding
and canceling drive and printer connections.

[image: frmNetworkSample allows you to add and cancel connections manually or by using the common dialogs]

Figure 11-16. frmNetworkSample allows you to add and cancel connections manually or by using the common dialogs

Though you would never use this exact form in an application, it
allows you to experiment with all the functionality covered in this
solution. To use these API calls in your own applications, follow
these steps:
	Import the module basNetwork from
11-14.MDB. This module contains all the API
function declarations, wrapper functions, data type declarations, and
error constants you'll need.

	The sample form, frmNetworkSample, displays the
current username. To retrieve this information in your own code, call
the acbGetUser function from basNetwork. Its
return value is the name of the currently logged-in user. For
example:
Debug.Print acbGetUser()

	The sample form also displays the current computer name. To retrieve
this information yourself, call the acbGetComputerName function from
basNetwork. Its return value is the name of the
current computer. For example:
Debug.Print acbGetComputerName()

	The list box on the form displays all the current connections. You
can choose one and delete it (see Step 5). To retrieve a list of all
26 possible drives and their connections in your own application,
call acbListConnections, a function that takes as
a parameter an array of 26 acbConnectionInfo
structures. The following example fills the list with drive
information, then prints it out to the Immediate window:
Dim aci(0 To 25) As acbConnectionInfo
intCount = acbListDriveConnections(aci())
For intI = 0 To intCount
 Debug.Print aci(intCount).strDrive, aci(intCount).strConnection
Next intI

	To delete a drive connection once you've selected a
drive from the list box, click on the Delete button to the right of
the drive list box. When you do, the code calls the
acbCancelConnections function, deleting the connection for the drive
selected in the list box:
blnOK = (acbCancelConnection(Me.lstConnections.Column(0), True) = 0)

	To manually add a new printer or drive connection, first select
Printer or Drive from the option group on the form, then enter the
four pieces of information that the acbAddDriveConnection and
acbAddPrintConnection functions need: local name (e.g.,
"LPT1:"), remote name (e.g.,
"\\GATEWAY\HPLJ4"), username, and
password. The remote name is the only required value. Once
you've entered the values, click on the Add button
to the right of the text boxes. This calls the following code:
If Me.grpDeviceType = 1 Then
 ' The '& ""' below converts from null values to strings.
 '
 ' Drive
 blnOK = (acbAddDriveConnection(Me.txtLocalName & "", _
 Me.txtRemoteName & "", Me.txtUserName & "", Me.txtPassword & "") = 0)
 Else
 ' Printer
 blnOK = (acbAddPrinterConnection(Me.txtLocalName & "", _
 Me.txtRemoteName & "", Me.txtUserName & "", Me.txtPassword & "") = 0)
 End If
End If

	To use the common dialogs for adding or canceling connections, click
on any of the four buttons at the bottom of the form. Each calls a
single line of Windows API code that pops up the appropriate dialog.
The next section describes these function calls in detail.

Discussion

 The following sections describe
all you need to know to use the networking functionality demonstrated
on the sample form. Though you could call the API functions directly,
in each case we've provided a wrapper function to
shield you from as much detail as possible. For each of the various
wrapper functions, we provide information on how to call them, what
parameters to send, and what values to expect back.

 Most of the functions either return or
set an error value, indicating the outcome of the function call.
Though there are too many possible errors to list them all here,
Table 11-15 lists most of the common ones that
you'll receive when making these function calls.
Table 11-15. Common networking errors
	
 Value

 	
 Constant

 	
 Description

	
 0

 	
 NO_ERROR

 	
 No error occurred.

	
 5

 	
 ERROR_ACCESS_DENIED

 	
 Access is denied.

	
 66

 	
 ERROR_BAD_DEV_TYPE

 	
 The network resource type is not correct.

	
 67

 	
 ERROR_BAD_NET_NAME

 	
 The network name cannot be found.

	
 85

 	
 ERROR_ALREADY_ASSIGNED

 	
 The local device name is already in use.

	
 86

 	
 ERROR_INVALID_PASSWORD

 	
 The specified network password is not correct.

	
 170

 	
 ERROR_BUSY

 	
 The requested resource is in use.

	
 234

 	
 ERROR_MORE_DATA

 	
 More data is available.

	
 1200

 	
 ERROR_BAD_DEVICE

 	
 The specified device name is invalid.

	
 1201

 	
 ERROR_CONNECTION_UNAVAIL

 	
 The device is not currently connected, but it is a remembered
connection.

	
 1202

 	
 ERROR_DEVICE_ALREADY_REMEMBERED

 	
 An attempt was made to remember a device that had previously been
remembered.

	
 1203

 	
 ERROR_NO_NET_OR_BAD_PATH

 	
 No network provider accepted the given network path.

	
 1204

 	
 ERROR_BAD_PROVIDER

 	
 The specified network provider name is invalid.

	
 1205

 	
 ERROR_CANNOT_OPEN_PROFILE

 	
 Unable to open the network connection profile.

	
 1206

 	
 ERROR_BAD_PROFILE

 	
 The network connection profile is corrupt.

	
 1208

 	
 ERROR_EXTENDED_ERROR

 	
 An extended error has occurred.

	
 1222

 	
 ERROR_NO_NETWORK

 	
 The network is not present or not started.

	
 1223

 	
 ERROR_CANCELED

 	
 The user canceled a dialog.

	
 2250

 	
 ERROR_NOT_CONNECTED

 	
 This network connection does not exist.

Retrieving information

 To retrieve the current
user's name, call the acbGetUser function:
Public Function acbGetUser(Optional varErr As Variant) As String

 Dim strBuffer As String
 Dim lngRetval As Long
 Dim lngSize As Long

 lngSize = conMaxPath
 Do
 strBuffer = Space(lngSize)
 lngRetval = WNetGetUser(0&, strBuffer, lngSize)
 Loop Until lngRetval <> ERROR_MORE_DATA
 If lngRetval <> NO_ERROR Then
 acbGetUser = ""
 Else
 acbGetUser = TrimNull(strBuffer)
 End If
 varErr = lngRetval
End Function
The acbGetUser function calls the Windows API to retrieve the
currently logged-in user's name. Note that there are
several ways for the Windows API and Access to communicate the length
of data to be returned. In this case, the code sets up a buffer of
arbitrary length and calls the Windows API. If the buffer was large
enough, it fills it in with the requested name. If not, it returns
the value ERROR_MORE_DATA, indicating that it
needs more space. It then passes back in the
lngSize variable the actual number of
characters it does need, and the code loops around, trying again with
the specified size.
If you want to know the exact error that occurred in the attempt to
retrieve the current user's name, you can pass a
variant variable in as a parameter to acbGetUser.
It's optional, but if you supply the value, the
function will pass back the error code to you in that variable. For
example:
Dim varErr as Variant
' If you care about the error:
Debug.Print acbGetUser(varErr)
Debug.Print "The error was: "; varError
' If you don't care about any errors:
Debug.Print acbGetUser()

 To
retrieve the current computer's name, call the
acbGetComputerName wrapper function. Windows stores the current
computer's name in the registry database and reads
it from there when necessary. To shield your code from having to know
exactly where that piece of information is stored, Windows provides
the GetComputerName API function.
The following function, acbGetComputerName,
handles the passing of data between Access and Windows for you:
Public Function acbGetComputerName() As String

 ' Retrieve the network name of the current computer.

 Dim strBuffer As String
 Dim lngSize As Long
 Dim blnOK As Integer

 lngSize = conMaxComputerNameLength+ 1
 strBuffer = Space(lngSize)

 blnOK = GetComputerName(strBuffer, lngSize)
 acbGetComputerName = Left$(strBuffer, lngSize)
End Function
Note that in this case, the API function gives you no second chance.
If the buffer wasn't large enough, it just returns
as much as it could fit into the buffer you passed.
To retrieve the name of the remote device connected to a named local
device, call the acbGetConnection function. Pass to it the local
device name and an optional variable in which to receive the error
code. It will return to you the remote device name connected to the
requested local name. For example:
Debug.Print acbGetConnection("LPT1:")
might return a value like this (a
\\server\share name):
\\WOMBAT\HPLJ4
The function works the same way for drive connections.
The acbGetConnection function works the same way as the acbGetUser
function: it calls the API function once with an arbitrarily sized
buffer. If that isn't enough room,
it'll try again with the buffer resized to fit. Its
source code is:
Public Function acbGetConnection(_
 strLocalName As String, Optional varErr As Variant) As String

 Dim strBuffer As String
 Dim lngRetval As Long
 Dim lngSize As Long

 lngSize = acbcMaxPath

 Do
 strBuffer = Space(lngSize)
 lngRetval = WNetGetConnection(strLocalName, strBuffer, lngSize)
 Loop Until lngRetval <> ERROR_MORE_DATA

 If lngRetval <> NO_ERROR Then
 acbGetConnection = ""
 Else
 acbGetConnection = TrimNull(strBuffer)
 End If
 varErr = lngRetval
End Function

Adding and canceling connections using common dialogs

 Adding or canceling a connection
with a common dialog in Windows is easy: just make a single function
call, as shown in Table 11-16. Each wrapper function
expects a single parameter: a window handle for the parent of the
dialog window. Most of the time, this will just be
Me.hWnd or
Screen.ActiveForm.hWnd.
Table 11-16. Wrapper functions for common dialog connections
	
 Function name

 	
 Action

	

 acbConnectDriveDialog

 	
 Add a drive connection.

	

 acbDisconnectDriveDialog

 	
 Cancel a drive connection.

	

 acbConnectPrintDialog

 	
 Add a printer connection.

	

 acbDisconnectPrintDialog

 	
 Cancel a printer connection.

For example, to pop up the common drive connection dialog,
you'd call:
blnOK = acbConnectDriveDialog(Me.hWnd)
The code in each of the wrapper functions is similar and quite
trivial. In each case, the code just calls a single Windows API
function. We've provided the wrappers only to
provide a consistent interface for all the API functions;
there's no real reason not to call the API functions
directly, except for a tiny bit of convenience. For example, the
acbConnectPrintDialog function looks like this:
Public Function acbConnectPrintDialog(hWnd As Long) As Long
 ' Use the common print connection dialog to create a new connection.
 acbConnectPrintDialog = WNetConnectionDialog(hWnd, RESOURCETYPE_PRINT)
End Function

Adding and canceling connections with no user intervention

Adding or canceling a connection
"silently" requires a bit more
work, but it's not a problem. Table 11-17 lists the available wrapper functions, and the
information they require.
Table 11-17. Functions to manually add and cancel connections
	
 Function name

 	
 Action

 	
 Parameters

 	
 Description

	

 acbAddDriveConnection

 	
 Add a drive connection.

 	

 strLocalName As String

 	
 Local name, like "LPT1:" or
"G:".

	

	

	

 strRemoteName As String

 	
 Remote name, like "\\SERVER\SHARE".

	

	

	

 strUserName As String

 	
 Username to be used. If empty, uses default user's
name.

	

	

	

 strPassword As String

 	
 Password for the user specified. If empty, uses the default
user's password.

	

 acbAddPrintConnection

 	
 Add a printer connection.

 	

 strLocalName As String,
strRemoteName As String,
strUserName As String,
strPassword As String

 	
 See parameters for acbAddDriveConnection.

	

 acbCancelConnection

 	
 Cancel any connection.

 	

 strLocalName As String

 	
 Local name of resource to disconnect.

	

	

	

 blnForce As Boolean

 	
 If True, forces disconnection even if the device is in use. If False,
the function returns an error if it tries to disconnect an active
device.

For example, the following code fragment adds a new printer
connection for LPT2: to the CanonColor printer on server
Bart, set up for the current user and password:
blnOK = acbAddPrintConnection("LPT2:", "\\BART\CanonColor", "", "")

 Each of these functions will
return an error value (NO_ERROR (0)) if there was
no error, or return some other error from Table 11-15 if an error occurs. Functions that add
connections call the private function
AddConnection, which in turn calls the Windows API
to create that connection, as shown here:
Public Function acbAddDriveConnection(_
 strLocalName As String, strRemoteName As String, _
 strUserName As String, strPassword As String)

 acbAddDriveConnection = AddConnection(_
 RESOURCETYPE_DISK, strLocalName, _
 strRemoteName, strUserName, strPassword)
End Function

Private Function AddConnection(intType As Integer, _
 strLocalName As String, strRemoteName As String, _
 strUserName As String, strPassword As String)

 ' Internal function, provided for adding new connections.
 ' Call acbAddPrinterConnection or acbAddDriveConnection instead.

 Dim nr As NETRESOURCE
 Dim lngRetval As Long

 nr.lpLocalName = strLocalName
 nr.lpRemoteName = strRemoteName
 nr.dwType = intType
 lngRetval = WNetAddConnection2(nr, strPassword, _
 strUserName, CONNECT_UPDATE_PROFILE)
 AddConnection = lngRetval
End Function
The acbCancelConnection function is simple. It calls directly to the
Windows API, canceling the connection for the named local device:
Public Function acbCancelConnection(_
 strName As String, blnForce As Boolean) As Long
 acbCancelConnection = WNetCancelConnection2(_
 strName, CONNECT_UPDATE_PROFILE, blnForce)
End Function
You may find it interesting to work through all the code in
basNetwork. There are some interesting twists
involved in transferring information between Access and the Windows
API, especially since it seems that every API function that involves
strings uses a different mechanism for indicating how much space it
needs.
It would be useful to have a function that could enumerate all
network resources, and of course Windows itself provides functions to
do this. Unfortunately, calling these functions from Access requires
a great deal of effort, because VBA just doesn't
support the necessary mechanisms (specifically, pointers) to make it
possible. It's possible, but it's
beyond the scope of this book.

Chapter 12. Automation

 No Access application exists in
isolation. Because Windows is a multitasking operating system, you
will often want to be able to link Access with other Windows
applications. Windows provides two mechanisms for communicating
between applications: Object Linking and Embedding (OLE), which has
been renamed ActiveX, and Dynamic Data Exchange (DDE), an older
technology that is supported primarily for backward compatibility.
ActiveX is easy for users and application programmers to work with
and allows for the creation of custom controls. It also accommodates
Automation, making it possible for Access to control various
applications using VBA.
This chapter presents examples of using Automation with several
Microsoft Office products. You'll also find an
example of using DDE to perform a task with the Windows shell.
You'll learn to activate an embedded ActiveX object
(a sound file), and you'll learn how to control
Access itself via Automation. You'll see how to use
the statistical, analytical, and financial prowess of the Excel
function libraries directly from Access, as well as how to retrieve
Word Summary Info for any selected document. Then
you'll dig into Automation, creating a form that
allows you to alter properties of Microsoft Graph objects on the
form. Finally, you'll delve into PowerPoint, which
in previous incarnations didn't support Automation,
and you'll see an example of automating tasks in
Outlook. These examples will show how you can manipulate and create
objects in these applications directly from Access.
Tip
Almost all of the examples in this chapter ask you to set a reference
within VBA, using the Tools → References menu item. Because
this book supports multiple versions of Office,
we've selected the Office 11 type libraries in each
example. You'll need to modify the instructions to
set a reference to the correct type library in each case, based on
the version of Office you have installed. Besides these version
numbering differences, all the examples should behave the same, no
matter which version of Office you're using.

12.1. Play an Embedded Sound File from Within an Application

Problem

 Your application stores WAV files
as OLE objects within a table, and you'd like to be
able to play them on demand. You know that users can double-click on
the icon in a form to play the sounds, but you'd
like some control over this. Is there a way to play one of these
embedded sounds when you need to?

Solution

 Access
gives you substantial control over the use of OLE objects. Using the
Action property of the control that's displaying the
OLE object, you can tell the object to activate itself, copy itself
to or paste itself from the Windows clipboard, update its data, and
close or delete itself. The Action property can be used for bound or
unbound OLE objects and graphs, too. You can also call up the Insert
Object or Paste Special dialog to place data into the control. This
solution uses a bound OLE field, but it works just as well with an
unbound object on a form.
Load and run frmOLE (shown in Figure 12-1) from
12-01.MDB. This is a continuous form, pulling the data from the table
tblOLE. If you click on an Activate button, the form activates that
OLE object, which is stored in the OLEObject field of the table. The
sample table includes a few WAV files, one Microsoft Graph object,
and a MIDI file. Clicking on the Activate button will either play the
sound or activate Microsoft Graph so you can edit the tiny graph
object. Click on the Insert button to call up the Insert Object
dialog, which allows you to insert any OLE object you like into the
table. Click on the Open button to open the object in its own editing
window rather than activating it in place.
[image: frmOLE allows you to play or insert OLE objects]

Figure 12-1. frmOLE allows you to play or insert OLE objects

Follow these simple steps to create such a form:
	
 Create a new table or modify an
existing table, adding a column (named OLEObject in the sample) with
its Data Type set to OLE object. Note that you cannot index on an OLE
field, and therefore it can't be your primary key
for the table.

	

 Create a new form. To emulate the sample
form, the only property you need to set is the DefaultView property.
Set it to Continuous Forms so that you'll see
multiple rows at the same time. This isn't
necessary, but it will make your form look like the sample.

	Create a bound OLE object (the cactus picture with the XYZ across the
top on the toolbar) on the form. The code in this example is based on
a control named objOLE; adjust the code
appropriately if you name your control something else. The sample
form includes the description field from tblOLE as
a text box, but this isn't used in the sample code.

	
 Add three buttons:
cmdOpen, cmdActivate, and
cmdInsert, with captions Open, Activate, and
Insert, respectively. Attach the following code to the Activate
button's Click event (see the Preface for more
information on creating event procedures):
Private Sub cmdActivate_Click()
 Dim ctl As Control

 On Error Resume Next
 Set ctl = Me.objOLE
 ctl.Verb = acOLEVerbPrimary
 ctl.Action = acOLEActivate
 Err.Clear
End Sub
Attach the following code to the Insert button's Click event:
Private Sub cmdInsert_Click()
 On Error Resume Next
 Me.objOLE.Action = acOLEInsertObjDlg
 Err.Clear
End Sub
Attach the following code to the Open button's Click
event:
Private Sub cmdOpen_Click()
 Dim ctl As Control

 On Error Resume Next
 Set ctl = Me.objOLE
 ' Open, rather than just activate in place.
 ctl.Verb = acOLEVerbOpen
 ctl.Action = acOLEActivate
 Err.Clear
End Sub

	

 Save your form and run it. When you click
on the Insert button, you'll see the Insert Object
dialog (Figure 12-2). This dialog allows you to
create a new object or to insert one from an existing file. Once you
make your choice, Access places the object into the table and
displays it on the form. When you want to activate the object, click
on the Activate button. For a WAV or MIDI file, this causes your
sound to play; for a Microsoft Graph object, it activates Microsoft
Graph. To open an editing window for the object, click on the Open
button.

[image: The Insert Object dialog]

Figure 12-2. The Insert Object dialog

Discussion

 The Action property for OLE objects in
Access is different from almost any other property, in that setting
its value causes an action to take place. Normally, properties
describe characteristics of an object, and methods cause actions to
take place. In this case, however, when you set the Action property
to the constant acOLEActivate, Access activates
the control at the time you set the property. If you set the Action
property to the constant acOLEInsertObjDlg, Access
displays the modal Insert Object dialog at the time you change the
property. By changing the OLE control's Action
property, the code tells Access what action to take at that point. By
changing the Verb property from acOleVerbPrimary
(to activate the object) to acOleVerbOpen, you
control how the object is opened: in place, or in its own window.

 Table 12-1 lists the values that
you're likely to use for the Action property. Others
are available, but this list will get you started. For more
information, see the online help topics on the Action and Verb
properties.
Table 12-1. Possible values of the Action property
	
 Constant

 	
 Value

 	
 Description

	
 acOLECopy

 	
 4

 	
 Same as choosing the Edit Copy menu item. Copies the OLE object onto
the Windows clipboard.

	
 acOLEPaste

 	
 5

 	
 Same as choosing the Edit Paste menu item. Pastes the OLE object from
the Windows clipboard into your control.

	
 acOLEUpdate

 	
 6

 	
 Retrieves the most current data for the OLE object from the
application that created it and displays it as a graphic.

	
 acOLEActivate

 	
 7

 	
 Same as double-clicking the control. You must set the
control's Verb property before you can use this
Action.

	
 acOLEClose

 	
 9

 	
 Closes the OLE object and ends the active connection with the
application that provided the object.

	
 acOLEInsertObjDlg

 	
 14

 	
 Displays the Insert Object modal dialog, allowing the user to insert
an object.

 This technique works just as well
for unbound objects on forms. For example, if you have an embedded
Word document, you could use code to activate the OLE object (named
Embedded0 in the following example), set its first
paragraph to bold, and then close the object:
Dim objWord As Object
' Activate the OLE object, using the primary verb.
Me.Embedded0.Verb = acOLEVerbPrimary
Me.Embedded0.Action = acOLEActivate
Set objWord = Me.Embedded0.Object.Application.WordBasic

objWord.StartOfDocument
objWord.ParaDown 1, 1
objWord.Bold 1
Set objWord = Nothing
' Close the OLE object.
Me.Embedded0.Action = acOLEClose

 By the way, if you need to play a WAV
file but don't want to embed an OLE object or use
OLE at all, you can use the Windows API sndPlaySound function to do
your work. (This function is aliased as
acb_apiSndPlaySound in
12-01.MDB.) Just insert the following
declarations and constants in a form's module:
Private Declare Function sndPlaySound Lib "winmm.dll" _
 Alias "sndPlaySoundA" (ByVal lpszSoundName As String, _
 ByVal uFlags As Long) As Long
Private Const SND_SYNC = &H0
Private Const SND_ASYNC = &H1
Private Const SND_NODEFAULT = &H2
Private Const SND_LOOP = &H8
Private Const SND_NOSTOP = &H10

 Table 12-2 describes the possible flag values for
the sndPlaySound function call.
Table 12-2. Possible values for the intFlags parameter to sndPlaySound
	
 Constant

 	
 Value

 	
 Description

	
 SND_SYNC

 	
 0

 	
 Plays the sound synchronously and does not return from the function
until the sound ends.

	
 SND_ASYNC

 	
 1

 	
 Plays the sound asynchronously and returns from the function
immediately after beginning the sound. To terminate a sound once
it's started, call
acb_apiSndPlaySound, passing
vbNullChar as the first parameter.

	
 SND_NODEFAULT

 	
 2

 	
 Doesn't play the default sound if the requested
sound can't be found.

	
 SND_LOOP

 	
 8

 	
 The sound continues to play repeatedly until you call
acb_apiSndPlaySound with the first parameter set
to vbNullChar. You must also specify the
SND_ASYNC flag to loop sounds.

	
 SND_NOSTOP

 	
 16

 	
 Returns immediately with a value of FALSE without
playing the requested sound if a sound is currently playing.

 Normally, you'll call
the sndPlaySound function to play the WAV file. If you use the
SND_ASYNC or SND_LOOP flags,
you'll need to call the sndPlaySound function again,
passing the vbNullChar constant as the first
parameter. The following code example is the simplest way to play a
WAV file using the Windows API. You can try this out by loading the
form frmSndPlaySound from
12-01.MDB and pressing the button on the form,
which executes the following code:
Private Sub Button0_Click()
 Dim varSound As Variant
 Dim intFlags As Integer
 Dim intResult As Integer
 Dim strWinDir As String
 Dim intCount As Integer

 Const conMaxLen = 255

 ' Find the Windows directory.
 strWinDir = Space(conMaxLen)
 intCount = GetWindowsDirectory(strWinDir, conMaxLen)
 strWinDir = Left(strWinDir, intCount)

 ' Get the file name, using the common file open dialog.
 varSound = acbCommonFileOpenSave(InitialDir:=strWinDir, _
 Filter:=acbAddFilterItem("", "WAV Files", "*.WAV"), _
 DialogTitle:="Choose a WAV File")
 If Not IsNull(varSound) Then
 intFlags = SND_ASYNC Or SND_NODEFAULT
 intResult = sndPlaySound(varSound, intFlags)
 If intResult = 0 Then
 MsgBox "Unable to play sound."
 End If
 End If
End Sub
This example is complicated by the fact that it uses the Windows File
Open dialog to request the name of the WAV file that
you'd like to play (the folder named Media is a good
place to look), but the heart of the routine is quite simple.

See Also

For more information on working with the Windows API, see Chapter 11.

12.2. Print an Access Report from Excel

Problem

 You keep and work with your data
in Excel, but you'd like to print reports using
Access. You know you can use the Access Report Wizard directly from
Excel, but you'd like more control over the process.
Can you do this using VBA?

Solution

 Access allows you to control its actions
using Automation. Anything you can do directly from Access, you can
also do from Excel. This solution uses Automation to link your Excel
worksheet to an Access database, use that data as the data source for
a report, and then remove the linked table. Because you can directly
link to an Excel worksheet from Access, this process
doesn't need to involve importing the data—you
can use it as-is, live, in your Excel environment.
To try out the sample database, first load
12-02.XLS into Excel. This workbook includes the
data (shown in Figure 12-3) and the VBA code that
controls the sample. Next, click the Open Access Report button, which
causes Excel to load a copy of Access and then load
12-02.MDB, link the current data to that
database, and display the report in print preview mode.
[image: Use data in Excel to print a report in Access]

Figure 12-3. Use data in Excel to print a report in Access

To use this technique in your own applications, follow these steps:
	Create a database, including a report that you'd
like to print. You may want to link the Excel data
that's going to be the data source now, so that
it's easier to create the report. You can leave it
linked (in which case you'll want to modify the
example code in your spreadsheet to not relink the table) or you can
delete the link once you've created the report.

	
 In Excel, create a new workbook or use an
existing one. Add a new module (choose Tools Macro Visual Basic
Editor, and then Insert Module) and enter the following code (or copy
it from 12-02.XLS):
Option Explicit

Const conXLS = "12-02.xls"
Const conMDB = "12-02.mdb"
Const conTableName = "CustomersXLS"
Const conReportName = "Customers"

Private Sub HandleAccessReport()
 ' This sample assumes that the database and
 ' the spreadsheet are in the same directory.
 ' It doesn't HAVE to be that way, of course,
 ' but it makes this simple example much simpler.
 Dim accApp As Access.Application

 Dim strPath As String
 Dim strDatabase As String
 Dim strXLS As String

 On Error GoTo HandleErr

 ' Get the location of the files.
 strPath = FixPath(ActiveWorkbook.Path)
 strDatabase = strPath & conMDB
 strXLS = strPath & conXLS

 ' Launch a new instance of Access.
 Set accApp = New Access.Application

 ' Open the database.
 With accApp
 .OpenCurrentDatabase filepath:=strDatabase, Exclusive:=True

 ' Link the spreadsheet to Access.
 With .DoCmd
 .TransferSpreadsheet _
 TransferType:=acLink, _
 SpreadsheetType:=acSpreadsheetTypeExcel9, _
 TableName:=conTableName, _
 Filename:=strXLS, _
 HasFieldNames:=True

 ' Open the report in preview mode.
 .OpenReport conReportName, acViewPreview
 ' Delete the attached table.
 .DeleteObject acTable, conTableName
 End With
 End With

ExitHere:
 Set accApp = Nothing
 Exit Sub

HandleErr:
 MsgBox Err & ": " & Err.Description, , _
 "Error in HandleAccessReport"
 Resume ExitHere
End Sub

Private Function FixPath(strPath As String) As String
 If Right(strPath, 1) = "\" Then
 FixPath = strPath
 Else
 FixPath = strPath & "\"
 End If
End Function

	Choose the Tools → References... menu item and, from the
list of references, check the Microsoft Access 11.0 Object Library
item, as shown in Figure 12-4. (Select the object
library corresponding to the version of Access that
you're using—if you're using
Office 2002, for example, select Access 10.0 Object Library in this
dialog box.) This will add an explicit reference to the Access type
library to your project, making Access's object
model and constants available to your code.

[image: Use the References dialog to set a reference to Access in Excel]

Figure 12-4. Use the References dialog to set a reference to Access in Excel

	
 In the code you've
just entered, modify the constants conXLS and
conMDB to match the names of your spreadsheet and
database, respectively. Also modify the
conTableName and conReportName
constants to match the data source for your report (its RecordSource
property) and the name of the report itself.

	The example code expects three conditions to be true:
	The spreadsheet and the database are in the same directory.

	The spreadsheet data includes the field names in the first row.

	The path that contains the files is not the drive's
root directory.

Make sure that all these assumptions are met. You could code around
all three of these, but these reflect the way the example was set up.

	
 Add a
command button to your worksheet. Place the following code in its
OnClick event:
Private Sub cmdAccess_Click()
 Call HandleAccessReport
End Sub

	Save your spreadsheet. When you click the button
you've created, it will start Access, link the
table, print the report, delete the link, close the database, and
quit Access.

Discussion

This example uses Automation to control Access directly from Excel.
The process of printing the report can be broken down into four
steps:
	Get the reference to Access and open the database.

	Link the Excel worksheet to the database.

	Print the report.

	Clean up.

The next few paragraphs discuss these items. The HandleAccessReport
procedure in Step 2 includes all the code for this process.

 To retrieve a reference to Access, you
can use the Access Application object. The line of code that does the
work looks like this:
Dim accApp As Access.Application
Set accApp = New Access.Application

 To
open the database, use the OpenCurrentDatabase method of the
Application object:
With AccApp
 .OpenCurrentDatabase filepath:=strDatabase, Exclusive:=True
Access provides three methods that work with the current database
from Automation:
	

 OpenCurrentDatabase
(not to be confused with the DAO method,
OpenDatabase) opens a database in the Access user
interface. If a database is already open, you'll get
a runtime error.

	

 CloseCurrentDatabase
closes the current database. This method will generate a runtime
error if there's no current database.

	

 NewCurrentDatabase
creates a new database altogether. Once you've done
this, you can use OLE Automation to create all the objects you need
in that database as well.

 In addition to these three
methods, the Access Application object provides two useful
properties: UserControl and
Visible. The UserControl property returns
True if you opened Access under your own power, or
False if Automation started Access. The property
is read-only and lets your code work differently depending on how the
database was loaded. The Visible property allows you to control
whether an instance of Access started via Automation is visible or
not. If UserControl is True,
you cannot change the Visible property. If
UserControl is False, the
default value for Visible is False, but you can
set it to be True with code like this:
' Set the Application's Visible property to True
' if OLE Automation initiated the session.
With accApp
 If Not .UserControl Then
 .Visible = True
 End If
End With

 To link the Excel spreadsheet to the
Access database, use the TransferSpreadsheet method of the DoCmd
object. This method allows you to import or link a spreadsheet to the
database, depending on the parameters you set. In this example, the
code specifies that the spreadsheet is of type
acSpreadsheetTypeExcel9 (this applies to Excel
2000 and later), includes field names in the top row, and is to be
linked, not imported:
With .DoCmd
 .TransferSpreadsheet _
 TransferType:=acLink, _
 SpreadsheetType:=acSpreadsheetTypeExcel9, _
 TableName:=conTableName, _
 Filename:=strXLS, _
 HasFieldNames:=True
Once you've executed the TransferSpreadsheet method,
your database will include an attached table, with the name stored in
strTableName, that retrieves data from the
spreadsheet whose name is in strXLS.

 To print the report, use the OpenReport
method of the DoCmd object, as shown in the following code fragment,
which opens the report in print preview mode using the
acViewPreview constant:
.OpenReport conReportName, acViewPreview
If you want the report to be sent directly to the printer, use the
acViewNormal constant.

 To clean up once your
report has finished printing, the code first deletes the linked
table, then closes the database, and finally shuts down the instance
of Access that it initiated. To delete the table, it uses the
DeleteObject method of the DoCmd object. To close the current
database, it uses the CloseCurrentDatabase method of the Application
object. Finally, to shut down Access, it uses the Quit method of the
Application object. The cleanup code is:
 With DoCmd
 ' Do all the work here...
 .DeleteObject acTable, strTableName
 End With
 ' This isn't necessary, but it's neat.
 .CloseCurrentDatabase
 ' Quit Access now.
 .Quit
End With
Set obj = Nothing
You aren't limited to running Access from
Excel—you can have any Automation client (including Access
itself) start up a new copy of Access to accomplish Access tasks from
that host.

12.3. Use Excel's Functions from Within Access

Problem

 Excel offers an amazing
array of statistical, analytical, and financial functions that
you'd like to be able to use in Access. You know you
can control embedded Excel worksheets, but is there some way to call
Excel functions from within Access?

Solution

Access users often ask how they can use Excel functions directly from
Access. Using OLE Automation, you can actually request Excel to use
its built-in functions to perform calculations and return a value
back to your Access application. This requires starting Excel,
however, and that can take time, so you wouldn't
normally do this for a single calculation. But for a number of
calculated values or a single calculation that would be too difficult
or time-consuming in Access, it's worth tapping into
the connections between Access and Excel.
There are many ways to use Automation to link Excel and Access. You
can embed an Excel spreadsheet or chart object into an Access form
and control the Excel objects programmatically, as in the example
shown in the Solution in Recipe 12.6. You can
also use OLE Automation from Access to create and manipulate Excel
objects without using an embedded spreadsheet or
chart. These methods are detailed in both the Access and Excel
manuals. This solution uses the Excel application engine without
creating any other specific Excel objects.
To test the OLE communication between Access and Excel, load
frmTestExcel from 12-03.MDB and click the button
on the form to start the test. The code attached to the button will
start up Excel and run a series of tests, calling Excel to retrieve
the results for a number of function calls. After all the tests, the
sample form will look like Figure 12-5. You can run
the tests either by writing directly to spreadsheet cells to test the
multiple-value functions or by using arrays. The checkbox on the form
lets you try both methods.
[image: frmTestExcel after its function calls are completed]

Figure 12-5. frmTestExcel after its function calls are completed

The sample form tests two different types of function calls you can
make to Excel from Access: functions that accept simple parameters,
and functions that require multiple values (ranges) as parameters.
The following steps describe how set up the example form:
	Create a new form containing a single text box (named
txtResults on the sample form) and a command
button to run the Excel tests (as in Figure 12-5).

	Import the module basExcel from
12-03.MDB. This module contains a function that
copies data from a column in Access to a spreadsheet column in Excel.
The module also includes a function that copies data from a column in
Access to an array, which OLE Automation can use in place of a range.

	Enter the following code into the form's module
(click on the Build button on the toolbar or choose View →
Code):
Private Sub AddLine(strLabel As String, varValue As Variant)
 Me.txtResults = Me.txtResults & vbCrLf & _
 " " & Left(strLabel & Space(20), 20) & varValue
 DoEvents
End Sub

Private Function TestExcel()
 Dim obj As Excel.Application
 Dim intCount As Integer
 Dim blnUseArrays As Boolean

 Me.txtResults = Null
 blnUseArrays = Nz(Me.chkUseArrays)

 DoEvents
 AddLine "Starting Excel:", "Please wait..."

 ' If you know Excel is open, you could use GetObject()
 Set obj = CreateObject("Excel.Application")

 ' Clear out the results text box.
 Me.txtResults = Null
 DoEvents

 ' String functions
 AddLine "Proper:", obj.Proper("this is a test")
 AddLine "Substitute:", obj.Substitute("abcdeabcdeabcde", "a", "*")

 ' Simple math functions
 AddLine "Median:", obj.Median(1, 2, 3, 4, 5)
 AddLine "Fact:", obj.Fact(10)

 ' Analytical functions
 AddLine "Kurt:", obj.Kurt(3, 4, 5, 2, 3, 4, 5, 6, 4, 7)
 AddLine "Skew:", obj.Skew(3, 4, 5, 2, 3, 4, 5, 6, 4, 7)
 AddLine "VDB:", obj.VDB(2400, 300, 10, 0, 0.875, 1.5)
 AddLine "SYD:", obj.SYD(30000, 7500, 10, 10)

 If blnUseArrays Then
 ' Using arrays
 Dim varCol1 As Variant
 Dim varCol2 As Variant
 ' Copy two fields to columns
 Call acbCopyColumnToArray(varCol1, "tblNumbers", "Number1")
 Call acbCopyColumnToArray(varCol2, "tblNumbers", "Number2")

 ' Print out calculations based on those ranges
 AddLine "SumX2PY2:", obj.SumX2PY2(varCol1, varCol2)
 AddLine "SumSQ:", obj.SumSQ(varCol1)
 AddLine "SumProduct:", obj.SumProduct(varCol1, varCol2)
 AddLine "StDev:", obj.STDEV(varCol1)
 AddLine "Forecast:", obj.ForeCast(5, varCol1, varCol2)
 AddLine "Median:", obj.Median(varCol1)
 Else
 ' Using ranges
 Dim objBook As Workbook
 Dim objSheet As Worksheet

 Dim objRange1 As Range
 Dim objRange2 As Range

 ' Create the workbook.
 Set objBook = obj.Workbooks.Add
 Set objSheet = objBook.WorkSheets(1)

 ' Copy two fields to columns
 intCount = acbCopyColumnToSheet(objSheet, "tblNumbers", "Number1", 1)
 intCount = acbCopyColumnToSheet(objSheet, "tblNumbers", "Number2", 2)

 ' Create ranges
 Set objRange1 = objSheet.Range("A1:A" & intCount)
 Set objRange2 = objSheet.Range("B1:B" & intCount)

 ' Print out calculations based on those ranges
 AddLine "SumX2PY2:", obj.SumX2PY2(objRange1, objRange2)
 AddLine "SumSQ:", obj.SumSQ(objRange1)
 AddLine "SumProduct:", obj.SumProduct(objRange1, objRange2)
 AddLine "StDev:", obj.STDEV(objRange1)
 AddLine "Forecast:", obj.ForeCast(5, objRange1, objRange2)
 AddLine "Median:", obj.Median(objRange1)
 ' Convince Excel that it needn't save that
 ' workbook you created.
 obj.ActiveWorkbook.Saved = True
 Set objRange1 = Nothing
 Set objRange2 = Nothing
 Set objSheet = Nothing
 End If

ExitHere:
 ' Quit and clean up.
 obj.Quit
 Set obj = Nothing
End Function

	
 In the properties sheet for the
command button, enter the value:
=TestExcel()
in the OnClick event property.

	
 With a
module open in design mode, choose the Tools → References...
menu item. Choose Microsoft Excel 11.0 Object Library from the list
of choices (this item will be on the list if you installed Excel
correctly—select the version that you have installed, which may
be something besides Excel 11.0). This provides your VBA code with
information about the Excel object library, properties, methods, and
constants.

	Open the form in run mode and click the command button. This will
call the TestExcel function and fill the text box with the results.

Discussion

 Excel obligingly
exposes all of its internal functions to external callers via the
Application object. The following sections describe the necessary
steps to call Excel functions directly from Access.
Tip
No matter which Excel function you call, the return value will be a
variant. Declare a variable as a variant if it will contain the
return value from an Excel function. In the examples, the return
values went directly to a text box, so you didn't
need to select a data type.

Setting up communication with Excel

 Before you can call any Excel
function, you must start Excel and create an object variable in
Access to link the two applications. You'll always
use code like this to create this linkage:
Dim objExcel As Excel.Application
Set objExcel = CreateObject("Excel.Application")

 By
linking with Excel's Application object, you can
request Excel to evaluate any of its internal functions for you.
Creating the object will take a few seconds, as Excel needs to be
started. Calling CreateObject will start a new
hidden instance of Excel, even if Excel is already running.

 You have
two other choices. If you know Excel is already running, you can use
GetObject to retrieve a reference to an object
within Excel or to the Excel Application object. The following code
will retrieve a reference to the Application object if Excel is
already running:
Set objExcel = GetObject(, "Excel.Application")
If you've set up a reference to Excel using the
Tools References... menu item (this is necessary for this example to
run), you should be able to use the following code to retrieve a
reference to the Excel Application object:
Set objExcel = New Excel.Application

Calling simple Excel functions

 Once you've created
your Access object that refers to the Excel Application object, you
can ask Excel to perform simple calculations for you. For example, to
use the Excel Product function, use code like this:
Dim varProd As Variant
varProd = obj.Product(5, 6)
After this call, the variable varProd will
contain the value 30.

 For example,
TestExcel, in
frmTestExcel's module, uses the
following code fragment to call four Excel functions:
Proper, Substitute,
Median, and Fact. Each of these
functions requires one or more simple parameters and returns a single
value. (The AddLine function calls just add the value returned by the
function call to the text box on the sample form. These four
functions are the first four in the output text box.) The relevant
code fragment is:
' String functions
AddLine "Proper:", obj.Proper("this is a test")
AddLine "Substitute:", obj.Substitute("abcdeabcdeabcde", "a", "*")

' Simple math functions
AddLine "Median:", obj.Median(1, 2, 3, 4, 5)
AddLine "Fact:", obj.Fact(10)

 Excel
supplies many simple functions like these that Access
doesn't have. Some of these functions
(Proper, for example) are easy enough to replicate
in VBA (the StrConv function will convert strings to proper case),
but if you already have a connection to Excel, it makes sense to use
Excel to retrieve these sorts of values rather than writing the code
yourself.

 To call analytical or statistical
functions in Excel, use the same technique. With the reference to the
Excel Application object, call any function that takes simple
parameters and returns a single value. The next four examples on the
sample form call the Kurt, Skew, VDB, and SYD functions:
' Analytical functions
AddLine "Kurt:", obj.Kurt(3, 4, 5, 2, 3, 4, 5, 6, 4, 7)
AddLine "Skew:", obj.Skew(3, 4, 5, 2, 3, 4, 5, 6, 4, 7)
AddLine "VDB:", obj.VDB(2400, 300, 10, 0, 0.875, 1.5)
AddLine "SYD:", obj.SYD(30000, 7500, 10, 10)
Sometimes you'll need to call Excel functions that
require a variable number of values, or you'll want
to use the data in a table as the input to an Excel function. In
these cases, you have two choices: you can either call the Excel
function using a spreadsheet range as the input, or you can pass a
VBA array directly to the function, which will convert the array and
treat it as a built-in range of values. In either case,
you'll need a method of getting the Access data into
the spreadsheet or into an array so you can use that data as input to
the function.

Calling Excel functions using ranges

To copy a column of data from an Access table or query into an Excel
spreadsheet column, call the acbCopyColumnToSheet function, found in
the basExcel module in 12-03.MDB:
Public Function acbCopyColumnToSheet(_
 objSheet As Excel.Worksheet, strTable As String, _
 strField As String, intColumn As Integer)

 ' Copy a column from a table to a spreadsheet.
 ' Place the data from the given field (strField) in
 ' the given table/query (strField) in the specified
 ' column (intColumn) in the specified worksheet object
 ' (objSheet).
 ' Return the number of items in the column.

 Dim rst As DAO.Recordset
 Dim db As DAO.Database
 Dim intRows As Integer
 Dim varData As Variant

 Set db = CurrentDb()
 Set rst = db.OpenRecordset(strTable)
 Do While Not rst.EOF
 intRows = intRows + 1
 objSheet.Cells(intRows, intColumn).Value = rst(strField).Value
 rst.MoveNext
 Loop
 rst.Close
 acbCopyColumnToSheet = intRows
End Function
Given a reference to an Excel sheet, a table or query name, a field
name, and a column number for the Excel sheet,
acbCopyColumnToSheet walks down all the rows of
Access data, copying them to the Excel sheet. The function returns
the number of rows that it copied over to Excel. For example, to copy
the Unit Price field values from the tblProducts table to the first
column of the open spreadsheet in Excel, use:
intCount = acbCopyColumnToSheet(objSheet, "tblProducts", "Unit Price", 1)
Tip
To keep it simple, this version of the acbCopyColumnToSheet function
doesn't include error checking, but any code used in
real applications should check for errors that might occur as you
move data from Access to Excel.

 Once
you've copied the data to Excel, you can create an
object that refers to that range of data as a single entity. Most
Excel functions will accept a range as a parameter if they accept a
group of values as input. For example, the Median function used
previously accepts either a list of numbers or a range.

 To
create a range object in Access, use the Range method, passing a
string that represents the range you want. The following example,
used after the form copies the data from a table over to Excel,
calculates the median of all the items in the column:
Dim objRange1 As Excel.Range

Set objRange1 = objSheet.Range("A1:A" & intCount)
AddLine "Median:", obj.Median(objRange1)
Some Excel functions require two or more ranges as input. For
example, the SumX2PY2 function, which returns the sum of the squares
of all the values in two columns (that is, x^2
 +
 y^2), takes two ranges as its
parameters. The following code fragment, also from the sample form,
copies two columns from tblNumbers to the open
sheet in Excel and then performs a number of calculations based on
those columns:
' Copy two fields to columns.
intCount = acbCopyColumnToSheet(objSheet, "tblNumbers", "Number1", 1)
intCount = acbCopyColumnToSheet(objSheet, "tblNumbers", "Number2", 2)

' Create ranges.
Set objRange1 = objSheet.Range("A1:A" & intCount)
Set objRange2 = objSheet.Range("B1:B" & intCount)

' Print out calculations based on those ranges.
AddLine "SumX2PY2:", obj.SumX2PY2(objRange1, objRange2)
AddLine "SumSQ:", obj.SumSQ(objRange1)
AddLine "SumProduct:", obj.SumProduct(objRange1, objRange2)
AddLine "StDev:", obj.STDEV(objRange1)
AddLine "Forecast:", obj.ForeCast(5, objRange1, objRange2)
AddLine "Median:", obj.Median(objRange1)

Calling Excel functions using arrays

 Rather than writing to a spreadsheet
directly, you might find your work faster if you load a column of
data into an array and send it to Excel that way. This avoids
multiple Automation calls to Excel (each time you place a value into
a cell in Excel, you're going through a
lot of internal Automation code). The drawback,
of course, is that you're loading all your data into
memory. On the other hand, if you're working with so
much data that it won't fit into memory, Automation
will be too slow to be of much use, anyway!

 To copy a column of data to an array, call
the acbCopyColumnToArray function (from basExcel in
12-03.MDB), shown in the following code. Pass a
variant variable (variants can hold entire arrays in VBA), a table
name, and a field name to the function, and it will return the number
of rows it placed into the array. This function walks through all the
rows in your recordset, copying the values from the specified column
into the array:
Public Function acbCopyColumnToArray(_
 varArray As Variant, strTable As String, strField As String)

 ' Copy the data from the given field (strField) of the
 ' given table/query (strTable) into a dynamic array (varArray)

 ' Return the number of rows.

 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim intRows As Integer

 Set db = CurrentDb()
 Set rst = db.OpenRecordset(strTable)
 rst.MoveLast
 ReDim varArray(1 To rst.RecordCount)
 rst.MoveFirst
 Do While Not rst.EOF
 intRows = intRows + 1
 varArray(intRows) = rst(strField).Value
 rst.MoveNext
 Loop
 rst.Close
 acbCopyColumnToArray = intRows
End Function
Once you've copied the data into arrays, you can
call functions in Excel, passing those arrays as if they were ranges.
Excel understands that it's receiving multiple
values and returns the same results as the tests involving ranges:
' Copy two fields to columns.
Call acbCopyColumnToArray(varCol1, "tblNumbers", "Number1")
Call acbCopyColumnToArray(varCol2, "tblNumbers", "Number2")

' Print out calculations based on those ranges.
AddLine "SumX2PY2:", obj.SumX2PY2(varCol1, varCol2)
AddLine "SumSQ:", obj.SumSQ(varCol1)
AddLine "SumProduct:", obj.SumProduct(varCol1, varCol2)
AddLine "StDev:", obj.STDEV(varCol1)
AddLine "Forecast:", obj.ForeCast(5, varCol1, varCol2)
AddLine "Median:", obj.Median(varCol1)
This method is both simpler and faster than writing to a spreadsheet.
However, if you're working with large volumes of
data, you'll want to copy the data to a spreadsheet
for Excel to process instead of copying it all into an array.

Closing Excel

 Once you're done with
your Access/Excel session, you must close the Excel application. If
you don't, OLE will continue to start new instances
of Excel every time you attempt to connect with Excel.Application
(using CreateObject), eating up system resources
each time.
To close Excel, use its Quit method:
obj.Quit

 Finally,
release any memory used by Access in maintaining the link between
itself and Excel. The following code releases any memory that the
reference to Excel might have been using:
Set obj = Nothing

Comments

 Because it takes time to start Excel
once you call the CreateObject function, build your applications so
that all work with Excel is isolated to as few locations in your code
as possible. Another alternative is to make your object variables
global; then, you can have your application start Excel if it needs
to and leave it open until it's done.
Don't forget to close Excel, however, to avoid using
up your system memory and resources.
When you're done with the Automation application,
you'll need some way of closing down. As with the
CreateObject function, each application reacts differently to your
attempts to shut it down. You'll need to know how
each application you use expects to be closed. Excel
won't quit unless you explicitly order it to, using
the Quit method. If you just set the object variable that refers to
Excel.Application to the value Nothing without
executing the Quit action, the hidden copy of Excel will continue
running, chewing up memory and resources.

 Excel exposes rich and varied inner
workings via Automation, but taking advantage of those capabilities
is nearly impossible without reference materials. This solution
barely scratches the surface of what's available to
you in Access from Excel. If you need to use the two products
together, use the Object Browser in the Visual Basic Editor to
explore the objects in the Excel object model. You can bring up the
help topic for each object from within the Object Browser.

See Also

A good reference book for Excel programming is Writing
Excel Macros by Steven Roman (O'Reilly).
The Solution in Recipe 12.6 will give you a
chance to explore a few of the more interesting corners of the Excel
object model. For more information on sorting, using VBA, see
Recipe 7.7 in Chapter 7.

12.4. Perform a Mail Merge from Access to Word

Problem

 You'd like to be able to
do a mail merge to Word using Access data, without having to launch
the mail merge from Word using its mail merge features.

Solution

 Access allows you to output data
directly to any format using the DoCmd.OutputTo functionality. You
can then run a mail merge from Word to a predefined Word template
that contains the merge codes.

 First you must
create the Word template that holds your merge codes; then you can
write the code in Access that performs the merge. The sample
application 12-04.MDB contains a table and a
query that retrieves the data to be sent to Word.
To perform a mail merge from Access to Word, follow these steps:
	In Access, create the query that you will use for your data. Copy the
rows from the datasheet view of the query and paste them into a Word
document.

	Save the Word document in the same folder as the Access database. The
sample application uses the name
qryCustomers.doc.

	
 In Word, create a template by choosing
File New Template from the menu. Fill in the plain text for your main
merge document.

	Choose Tools → Mail Merge from the menu to add the merge
fields to the template. Use the Active Document option and select the
Word document you created in Step 2. This will add the merge toolbar
to your application.

	Insert the merge codes for the fields in your template, then save the
template in the same folder as qryCustomers.doc
and the Access database.

	In Access, write the code to perform the mail merge. Declare two
module-level constants for the name of the template and the name of
the query:
Private Const conTemplate As String = "acbMailMerge.dot"
Private Const conQuery As String = "qryCustomers"

	
 Set
a reference to the Word library by choosing Tools →
References... and selecting the Word library from the list of
objects, as shown in Figure 12-6.

[image: Set a reference to the Word library]

Figure 12-6. Set a reference to the Word library

	Create a procedure to perform the mail merge. Here's
the complete listing:
Public Sub MailMerge()
 Dim strPath As String
 Dim strDataSource As String

 Dim doc As Word.Document
 Dim wrdApp As Word.Application

 On Error GoTo HandleErrors
 ' Delete the rtf file, if it already exists.
 strPath = FixPath(CurrentProject.Path)
 strDataSource = strPath & conQuery & ".doc"
 Kill strDataSource

 ' Export the data to rtf format.
 DoCmd.OutputTo acOutputQuery, conQuery, _
 acFormatRTF, strDataSource, False

 ' Start Word using the mail merge template.
 Set wrdApp = New Word.Application
 Set doc = wrdApp.Documents.Add(strPath & conTemplate)

 ' Do the mail merge to a new document.
 With doc.MailMerge
 .OpenDataSource Name:=strDataSource
 .Destination = wdSendToNewDocument
 .SuppressBlankLines = True
 With .DataSource
 .FirstRecord = wdDefaultFirstRecord
 .LastRecord = wdDefaultLastRecord
 End With
 If .State = wdMainAndDataSource Then
 .Execute
 End If
 End With

 ' Display the mail merge document.
 wrdApp.Visible = True

ExitHere:
 Set doc = Nothing
 Set wrdApp = Nothing
 Exit Sub

HandleErrors:
 Select Case Err.Number
 Case 53 ' File not found.
 Resume Next
 Case Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End Select
End Sub

	

 Create the FixPath procedure to
handle any backslashes in the pathname:
Private Function FixPath(strPath As String) As String
 If Right(strPath, 1) = "\" Then
 FixPath = strPath
 Else
 FixPath = strPath & "\"
 End If
End Function

	Test the procedure by positioning your cursor anywhere in the
MailMerge procedure and pressing the F5 key.

Discussion

 Microsoft Word exposes an Application
object, which you can use to launch Word, and a Document object,
which you can use to open a new Word document. Once
you've launched Word, you can use all its
capabilities from your Access application. The following sections
outline the steps involved in communicating with Word via Automation.
Starting the connection with Word for Windows

 To be able to work with Word from
Access, you must create an object variable to refer to the Word
Application object. You also need a Document variable to work with a
specific Word document. The following code fragment defines these
variables:
Dim doc As Word.Document
Dim wrdApp As Word.Application
The next step is to delete any previously existing data source
documents:
strPath = FixPath(CurrentProject.Path)
Kill strPath & conQuery & ".doc"

 If the document
doesn't exist, the error handler will simply resume
on the next statement and create a new document containing the data
from the query using the OutputTo method of the DoCmd object:
DoCmd.OutputTo acOutputQuery, conQuery, _
 acFormatRTF, strPath & conQuery & ".doc", False

Performing the mail merge

 To
launch Word and create a new document based on the mail merge
template, set the Application object to a new instance of
Word.Application. Set the Document object to
create a new document using the Application's Add
method, basing it on your template:
Set wrdApp = New Word.Application
Set doc = wrdApp.Documents.Add(strPath & conTemplate)

 Once the document is open, use the
Document object's MailMerge method to merge the data
to a new document:
With doc.MailMerge
 .OpenDataSource Name:=strDataSource
 .Destination = wdSendToNewDocument
 .SuppressBlankLines = True
 With .DataSource
 .FirstRecord = wdDefaultFirstRecord
 .LastRecord = wdDefaultLastRecord
 End With
 If .State = wdMainAndDataSource Then
 .Execute
 End If
End With

 In Access 2002 and later you must
use the .OpenDataSource method in your code, but this
isn't required in Access 2000.

Finishing the mail merge

 To
display the Word documents, set the Application
object's Visible property to
True:
wrdApp.Visible = True
Once the Word document is displayed, clean up by setting the Word
object variables to Nothing. This frees up the
memory and system resources:
Set doc = Nothing
Set wrdApp = Nothing
You'll see both the new document, named Document1
(based on the template), and the actual merge documents. You can save
the merge documents or print them from Word.

12.5. Add an Item to the Startup Group

Problem

 As part of your application, you would like
to be able to allow users to add an application to the Startup menu
so that your application will start up when Windows does. You just
can't figure out how to put the information into the
Startup group. Is there a way to communicate between Access and the
Windows shell so you can do this?

Solution

 This is a case where the old technology
called DDE comes in handy. The Windows shell accepts commands using
DDE that allow you to create and delete groups and items. You can
also retrieve lists of existing groups and items within those groups.
This solution explains most of the Windows shell's
DDE interface.

 To test out the DDE interface, load and
run the form frmShell from 12-05.MDB. This form,
shown in Figure 12-7, allows you to view groups and
their items, create and delete groups and items, and display a
particular group. It will decide whether to use the group/item or the
folder/shortcut terminology after determining whether you are using
the Windows 9x shell or the Windows NT/Windows 2000 Program Manager,
respectively.
Tip
You'll find several references to Program Manager
and PROGMAN throughout this solution, as well as the use of the
group/item notation rather than folder/shortcut, but the effect is
the same either way: you can create groups and items in the Program
Manager or in the Windows shell, depending on your environment.

[image: frmShell allows you to communicate with the Windows shell via DDE]

Figure 12-7. frmShell allows you to communicate with the Windows shell via DDE

 Once you select a group from the list on
the left in Figure 12-7, the form will display the
group's items in the list on the right. If you
select the first item in the righthand list—the group
itself—the form will display the information Windows stored
about that group. Once you've selected a group in
the righthand list box, you can click the Show button to have Windows
display that group. The code attached to the Show button requests
Windows to open the group window using style 3 (see Table 12-8 for a list of window styles). As described
later, in the sidebar Switching Focus," Windows may
grab the focus, depending on the previous state of the group window
you've selected.
Tip
The shell DDE interface does not support long filenames, and attempts
to enter long filenames will fail with an error. The example form
displays long filenames using the 8.3 short version of the
name—usually six characters, followed by a
"~1" (or a higher digit).

Select an item in the group (any row except the first in the
righthand list box), and the form will display all the information
that Windows stores about that item. Figure 12-8
shows frmShell with an item selected.
[image: frmShell with a group selected and its information displayed]

Figure 12-8. frmShell with a group selected and its information displayed

With either a group or an item selected, you can create or delete a
group or an item. If you've selected a group,
pressing the Delete button will instruct Windows to delete that
group; if you've selected an item, Windows will
delete that item. Regardless of what's selected,
pressing the Create button will pop up a dialog asking whether you
want to create a new item or a new group. Either choice will pop up
the appropriate dialog requesting the necessary information.
The following sections describe how to use the sample forms in your
own applications, and then explain most of the DDE interface to the
Windows shell. Although more DDE options are available, the most
useful tasks can be accomplished with the tools provided here.
Using the sample forms

To include the sample forms from 12-05.MDB in
your own applications, follow these steps:
	Import the objects shown in Table 12-3 into your
application.

Table 12-3. Objects to import from 12-05.MDB
	
 Object

 	
 Name

 	
 Purpose

	
 Form

 	
 frmNew

 	
 Choose new group or new item.

	
 Form

 	
 frmNewGroup

 	
 Enter new group information.

	
 Form

 	
 frmNewItem

 	
 Enter new item information.

	
 Form

 	
 frmShell

 	
 Main form.

	
 Module

 	
 basShell

 	
 Perform DDE conversations with Windows shell.

	
 Module

 	
 basSortArray

 	
 Sort arrays (list of program groups).

	
 Module

 	
 basToken

 	
 Pull apart strings (item and group information on frmShell).

	Load and run frmShell.

 As described previously, you can use
the form to manipulate shell groups and items from your Access
application. If you want to use only some parts of frmShell in your
application instead of the whole thing, that's fine
too. If you use the group list (lstGroups), you'll
also need to include the function that fills it,
FillGroups. If you want the item list (lstItems),
you'll also need FillItems. In addition, place code
in lstGroup's AfterUpdate event
that requeries lstItems once
you've made a selection in
lstGroups. You'll end up with an
event procedure like this:
Private Sub lstGroups_AfterUpdate ()
 Me.lstItems.Requery
End Sub
To use other bits and pieces of the functionality of
frmShell, you'll need to
investigate its form module.

Using DDE with the Windows shell

 If your main interest is simply to use DDE
to control the Windows shell, follow these steps:
	Import the module basShell from
12-05.MDB into your own application. This module
is completely self-contained and includes a number of functions that
will set up the DDE conversation, do the work or retrieve the
information you need, and then terminate the conversation. Because
we've hidden all the details of the DDE, you
needn't worry about getting all the syntax and
parameters correct.

	Depending on your needs, call one or more of the wrapper procedures
described in Table 12-4. All of these functions are
covered in detail in Recipe 12.4.3 (see Table 12-9).

Table 12-4. Procedures in basShell to aid in using DDE between Access and Windows shell
	
 Procedure

 	
 Purpose

	

 acbPMCreateGroup

 	
 Create a group, given a group name and a pathname for the group file.

	

 acbPMCreateItem

 	
 Create a new item, given the group name, the item name, the command
line, the default directory, and whether or not to run the
application minimized.

	

 acbPMDeleteGroup

 	
 Delete a group, given the name of the group to delete.

	

 acbPMDeleteItem

 	
 Delete an item from a group, given the name of the group and the name
of the item.

	

 acbPMGetGroups

 	
 Fill a dynamic array with all the groups.

	

 acbPMGetItems

 	
 Fill a dynamic array with all the items for a particular group.

	

 acbPMShowGroup

 	
 Show a particular group, given the name of the group and the window
mode to use.

	

 acbPMShowMessages

 	
 Allow callers outside this module to show or hide messages. Pass in
True to show messages, False to hide them (no DDE involved).

Discussion

 The Windows shell supports two
operations: you can either request information using the DDERequest
function (Table 12-5 lists the DDERequest items) or
execute actions using the DDEExecute subroutine (Table 12-6 lists the most useful subset of the
shell's DDEExecute command-string interface). DDE
conversations between Access and the shell involve three steps:
	Initiate the conversation.

	Perform the necessary tasks.

	Terminate the conversation.

Retrieving information from the Windows shell

 Table 12-5 describes the two groups of information
you can request from Windows. The sample form,
frmShell, uses both to fill its two list boxes.
Table 12-5. DDERequest topics for the Windows shell
	
 To retrieve

 	
 Program

 	
 Topic

 	
 Item

 	
 Returns

	
 List of groups

 	
 PROGMAN, or Folders

 	
 PROGMAN, or AppProperties

 	
 PROGMAN

 	
 List of existing groups, separated with CR/LF pair

	
 List of items in a group

 	
 PROGMAN, or Folders

 	
 PROGMAN, or AppProperties

 	
 <Group Name>

 	
 List of items in the specified group, separated with CR/LF pair

 To retrieve a list of groups from
Windows using the Access DDERequest function, you must first initiate
a conversation with the PROGMAN program on the
PROGMAN topic, requesting information on the
PROGMAN item; even if you use the undocumented
"Folders" program name and
"AppProperties" topic, it still
expects you to request information on the PROGMAN
item. The DDERequest call returns a carriage-return/line-feed (CR/LF)
delimited string of group names. It's up to your
code to pull apart the list of groups and place them into whatever
data structure is most convenient for you. To simplify this task, you
can use the acbPMGetGroups function in basShell.
It accepts, as a parameter, a dynamic array to fill in with the list
of groups. This function performs the DDERequest
for you and calls the private CopyToArray function to break apart the
returned stream of groups and fill the array you've
sent it. It returns the number of items in the array. Its source code
is:
Public Function acbPMGetGroups(avarGroups() As Variant)

 ' Fill a dynamic array with all the Program Manager groups.

 Dim lngChannel As Long
 Dim strGroups As String
 Dim intCount As Integer

 On Error GoTo HandleErr
 ' Most replacement shells will start PROGMAN for you if you attempt
 ' to start up a DDE conversation with it. That is, you won't need
 ' to Shell() PROGMAN if you're using a replacement shell.
 lngChannel = DDEInitiate("PROGMAN", "PROGMAN")
 strGroups = DDERequest(lngChannel, "PROGMAN")
 intCount = CopyToArray(strGroups, avarGroups())

ExitHere:
 acbPMGetGroups = intCount
 On Error Resume Next
 DDETerminate lngChannel
 Err.Clear
 Exit Function

HandleErr:
 MsgBox Err.Number & ": " & Err.Description, , "acbGetProgmanItems"
 Resume ExitHere
End Function
To call this function from your own code, use code like this:
Dim avarGroups() as Variant
Dim intCount as Integer

intCount = acbPMGetGroups(avarGroups())
' If you want the list sorted, call acbSortArray, in basSortArray.
acbSortArray avarGroups()
To retrieve a list of items within a selected group, use the
acbPMGetItems function, which works almost exactly as
acbPMGetGroups does. This time, however, pass in a
group name along with the dynamic array to be filled in; the function
uses the group name as the topic, instead of
PROGMAN (see Table 12-5). It
calls the CopyToArray function to move the items into the dynamic
array. You generally won't sort the array, however,
unless you store the first item; this first item returns information
about the group window itself. The rest of the rows contain
information about the individual items. To use
acbPMGetItems, you might use code like this:
Dim avarGroups() as Variant
Dim avarItems() as Variant
Dim intCount as Integer

intCount = acbPMGetGroups(avarGroups())
intCount = acbPMGetItems(avarGroups(0), avarItems())
' List all the item information for the specified group.
For intI = 0 To intCount - 1
 Debug.Print avarItems(intI)
Next intI

Executing tasks

 The Windows shell includes a
command-string interface, which you can access via DDE, that allows
you to execute tasks involving groups and items within those groups.
Table 12-6 lists the functions addressed in this
solution. Other commands are available (they're
documented in the Windows SDK documentation), but
they're not as useful for Access programmers.
Table 12-6. DDEExecute commands for the Windows shell
	
 Function

 	
 Parameters

 	
 Comments

	

 AddItem

 	
 See Table 12-7

 	
 Uses CreateGroup first to select the group.

	

 CreateGroup

 	
 GroupName[, GroupPath]

 	
 Selects the group if it exists; otherwise, creates it.

	

 DeleteGroup

 	
 GroupName

 	

	

 DeleteItem

 	
 ItemName

 	
 Uses CreateGroup first to select the group.

	

 ShowGroup

 	
 GroupName, ShowCommand

 	
 See Table 12-8 for ShowCommand
values.

 In each
case, you use the Access DDEExecute procedure to communicate with the
shell. You must construct a string containing the function name,
parentheses, and any arguments for the function. For example, to
create a group from within Access, you can use code like this:
Dim intChannel as Integer
intChannel = DDEInitiate("PROGMAN", "PROGMAN")
DDEExecute intChannel, "[CreateGroup(My Group, MYGROUP.GRP)]"

 The command string must be surrounded by
square bracket delimiters ([]). Luckily, the
Windows shell is far more relaxed about the use of embedded quotes
than almost any other DDE-enabled application. For example, WinFax
Pro's implementation of DDE requires quotes embedded
in command strings you send to it; the Windows shell accepts embedded
quotes but doesn't require them.

 Some functions, such as
AddItem, allow quite a few parameters, almost all
of which can be left blank (see Table 12-7). To use
the AddItem command to add a new item, you must first select a group
in which to add the item. To do this, use the CreateGroup command,
which creates a group if necessary or selects it if it already
exists. The only required AddItem parameter is the command line. Note
that both X- and Y-coordinates are necessary if you choose to specify
coordinates for the icon. For example, to create a new icon to run
C:\EDIT\MYEDIT.EXE with the description My
Editor minimized in the My New Group group, use code like this
(you'd normally include error-handling code, too):
Dim intChan As Integer
intChan = DDEInitiate("PROGMAN", "PROGMAN")
' First select the group (or create it).
DDEExecute intChan, "[CreateGroup(My New Group)]"
' Use commas to delimit parameters (even missing ones).
DDEExecute intChan, "[AddItem(C:\EDIT\MYEDIT,My Editor,,,,,,1)]"
Table 12-7. Parameters for the AddItem function
	
 Parameter

 	
 Required?

 	
 Used in sample?

 	
 Description

	
 CmdLine

 	
 Yes

 	
 Yes

 	
 Command line to run the application. Must be at least the executable
filename, but can also include parameters as necessary.

	
 Name

 	
 No

 	
 Yes

 	
 Name that appears below the icon in the group.

	
 IconPath

 	
 No

 	
 No

 	
 Name and path of the icon file to use. If an executable file is
specified, use the first icon in that file. If left blank, use the
first icon in the executable file specified in the
CmdLine parameter.

	
 IconIndex

 	
 No

 	
 No

 	
 Index of the icon in the specified
IconPath file (or the specified
executable). Otherwise, if missing, use the first icon specified.

	
 Xpos

 	
 No

 	
 No

 	
 X-position of the icon within the group, as an integer. Both this and
Ypos are required to set the specific
position. If left blank, use the next available position.

	
 Ypos

 	
 No

 	
 No

 	
 Y-position of the icon within the group, as an integer.

	
 DefDir

 	
 No

 	
 Yes

 	
 Default (or working) directory for the application.

	
 HotKey

 	
 No

 	
 No

 	
 Hot key for this application, stored as an integer.

	
 fMinimize

 	
 No

 	
 Yes

 	
 Run Minimized (1 = True, 0 = False).

	
 fSeparateMemSpace

 	
 No

 	
 No

 	
 In Windows NT only, run the application in a separate memory space
(applies to 16-bit applications only).

Switching Focus
Using the ShowGroup command sometimes moves the focus to the shell
but usually does not. Whether the focus switches depends on the state
you request for the program group and on its current state. Though
you could make a matrix of options, comparing current states
(minimized, normal, or maximized) against the new window state (1-8,
as in Table 12-8), the rules are quite simple. If
you change the state of a group that's currently
minimized, the focus will switch to the shell. That means that if you
choose actions 1, 3, or 4 for a group that is currently minimized,
the shell will grab the focus. You can try this yourself, calling the
acbPMShowGroup function and passing it the name of a group and a new
window style.

Table 12-8. Window style command values for the ShowGroup function
	
 Window style value

 	
 Action

	
 1

 	
 Activate and display the group window. If it was minimized or
maximized, restore it to its original position (normalized).

	
 2

 	
 Activate the group window and display it as an icon.

	
 3

 	
 Activate the group window and display it maximized.

	
 4

 	
 Display the group window normalized and leave the current group
selected.

	
 5

 	
 Activate the group window and display it in its current placement.

	
 6

 	
 Minimize the group window.

	
 7

 	
 Minimize the group window and leave the current group selected.

	
 8

 	
 Display the group window in its current placement and leave the
current group selected.

Using the wrapper procedures

 To make your DDE programming simpler,
the module basShell includes wrapper procedures
that handle all the details for you. (Table 12-4
provides a description of each of the wrapper procedures; Table 12-9 lists the parameters.) The module also
provides functions that handle each of the commands described in
Table 12-6. In some cases
(AddItem, for example), the wrapper functions
don't allow you to specify all the possible
parameters for the command string. If you find these wrapper
functions too limiting, you can modify them so they allow you to pass
in whatever parameters you like.
All the wrapper procedures (except
acbPMShowMessages) in Table 12-9
perform the same set of steps to communicate with the Windows shell.
To simplify the code and centralize error handling, those steps have
been pulled into a single private procedure in
basShell, DDEExecutePM, which
is shown in the following code example:
Private Function DDEExecutePM(strCommand As String) As Boolean

 ' DDEExecute with the passed-in command. If it succeeds,
 ' return True. If it fails, return False.

 ' At this point, this function handles error messages itself.
 ' You could move this out of here to a higher level, if you
 ' want, by setting the SHOW_MESSAGES constant to False.

 Dim lngChannel As Long

 On Error GoTo HandleErr

 lngChannel = DDEInitiate("PROGMAN", "PROGMAN")
 DDEExecute lngChannel, strCommand
 DDEExecutePM = True

ExitHere:
 On Error Resume Next
 DDETerminate lngChannel
 Err.Clear
 Exit Function

HandleErr:
 If Not mfHideMessages Then
 MsgBox Err.Number & ": " & Err.Description, , "DDEExecutePM"
 End If
 DDEExecutePM = False
 Resume ExitHere
End Function

 Given a string to execute,
this code initiates the DDE channel, uses
DDEExecute to execute the command, and then
terminates the connection. If all goes according to plan, the
procedure returns a True value. If an error
occurs, it displays a message box (unless you've
used the acbPMShowMessages procedure to disable warning messages) and
then returns False.

 Table 12-9 lists the parameters for the wrapper
procedures in basShell. Each of these procedures
(except acbPMShowMessages) returns
True if the function succeeded, or
False if it failed. Unless you've
called the acbPMShowMessages subroutine to disable messages, a
message will appear before deleting a group or item or if any error
occurs.
Table 12-9. Parameters for the wrapper procedures in basShell
	
 Procedure

 	
 Parameter

 	
 Data type

 	
 Parameter description

	

 acbPMCreateGroup

 	
 varName

 	
 Variant

 	
 Name of the new group.

	

	
 varGroupPath

 	
 Variant

 	
 Name of the group file (can be Null, in which case Windows uses a
name of its own choosing).

	

 acbPMCreateItem

 	
 varGroup

 	
 Variant

 	
 Name of the group in which to create the new item.

	

	
 varName

 	
 Variant

 	
 Descriptive name for the new item; appears under the icon.

	

	
 varCommandLine

 	
 Variant

 	
 Command line to execute when this icon is chosen. Cannot be Null.

	

	
 varDirectory

 	
 Variant

 	
 Default (working) directory when the application starts up.

	

	
 varMinimized

 	
 Variant

 	
 Logical value: run the app minimized?

	

 acbPMDeleteGroup

 	
 varName

 	
 Variant

 	
 Group to delete.

	

 acbPMDeleteItem

 	
 varGroup

 	
 Variant

 	
 Group from which to delete the item.

	

	
 varName

 	
 Variant

 	
 Name of the item to delete.

	

 acbPMShowGroup

 	
 varName

 	
 Variant

 	
 Name of the group to show.

	

	
 intMode

 	
 Integer

 	
 Window mode, as listed in Table 12-8.

	

 acbPMShowMessages

 	
 fShow

 	
 Integer

 	
 Logical value: display messages during DDE wrapper functions? If
True, functions use message box if errors occur and when deleting
items. This subroutine sets a module global variable, so you need to
call it only once per session.

For example, to use the wrapper functions to add an icon to the My
Group group that will run C:\EDIT\MYEDIT.EXE
minimized with the description My Editor (as in the example that
called AddItem directly), you could use code like
this:
Dim fSuccess As Boolean

' Disable error messages.
acbPMShowMessages False
fSuccess = acbPMCreateItem("My Group", "My Editor", _
 "C:\EDIT\MYEDIT.EXE", Null, True)
If Not fSuccess Then MsgBox "Unable to create new item!"
This example also calls acbPMShowMessages to
disable error messages from within acbCreateItem,
so the code fragment itself can handle them.
For examples of each of the wrapper functions, check out the code in
frmShell's module.

Comments

Though this solution covers a great deal more than the original
question required, all the information here will be useful to Access
programmers working with the DDE interface to the Windows shell.
The sample form, frmShell, is not only a good example of using DDE to
converse with Windows, it's also a useful tool on
its own. Because it allows you to see what's in each
group without having to open and close each group's
window, it's a quick and easy way to clean out your
groups. Of course, some extra work would be required for it to be a
really useful tool, but it's a good start.

 In
16-bit applications, DDEInitiate returns a short
integer (16-bit) handle. In Access 95 and later (and other 32-bit
applications), this function returns a long integer (32-bit) handle.
If you have existing code that uses DDE, you'll want
to convert the variables containing the return values into long
integers.
The Windows shell has an undocumented DDE application →
topic pair that is not supported by the original Program Manager or
any of the major third-party shell substitutes: Folders →
AppProperties. This syntax seems to be just an alias for the
regularly documented DDE interface, because the item name syntax and
all the operations are identical in both cases.

 This undocumented syntax can be of some
benefit. If you are going to add the functionality to interact with
the shell, you can use code like the following to determine if your
user is running the Windows 9x shell:
Public Function acbNewShell () as Boolean
 Dim lngChannel as Long
 On Error Resume Next
 lngChannel = DDEInitiate("Folders","AppProperties")
 acbNewShell = (lngChannel <> 0)
 DDETerminate lngChannel
End Function
You'll notice that the example uses this function
(as well as a public flag) to decide whether to call the various
shell objects "groups" and
"items" (as in the Windows NT
Program Manager) or "folders" and
"shortcuts" (as in the Windows 9x
shell).

 To
shield you from the details of the DDE conversation and to isolate
the DDE code in one routine, each of the command-string replacement
functions calls the DDEExecutePM function. This makes the code neat
and easy to understand, but it does have a potential disadvantage:
calling DDEInitiate and
DDETerminate every time you call a wrapper
function adds substantial time and overhead to your application. If
you make many calls to Window via DDE, you'll want
to reconsider this design. For most applications, though, this
shouldn't be a problem.

12.6. Send Access Data to Excel and Create an Excel Chart

Problem

 You want to export data from Access to
Excel and create a chart programmatically.

Solution

 You can use an ADO Recordset object to
export data to Excel programmatically, then use Automation with Excel
to create a chart based on the exported data.
Load and run frmExcel from 12-06.MDB. This form
calls out to Excel, passing in the values from a recordset to create
an Excel spreadsheet and chart based on sales data from the Northwind
sample database (see Figure 12-9).
[image: The finished Excel worksheet and chart]

Figure 12-9. The finished Excel worksheet and chart

Here's how you can create Excel charts in your own
Access applications:
	Create the query that will hold your data. In the sample database,
you'll find qryTopTenProducts,
which calculates the top 10 products by dollar amount sold. There are
two columns: the product name and the total dollar amount. The
datasheet view of the query is shown in Figure 12-10.

[image: qryTopTenProducts in datasheet view]

Figure 12-10. qryTopTenProducts in datasheet view

	Set a reference in your project to the Microsoft Excel object library
and the ADO library, as shown in Figure 12-11.

[image: References needed to make the code work]

Figure 12-11. References needed to make the code work

	Create the procedure that exports the data to Excel and creates a
sample chart. Here's the complete listing:
Private Const conQuery = "qryTopTenProducts"
Private Const conSheetName = "Top 10 Products"

Public Sub CreateExcelChart()

 Dim rst As ADODB.Recordset

 ' Excel object variables
 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet
 Dim xlChart As Excel.Chart

 Dim i As Integer

 On Error GoTo HandleErr

 ' Create Excel Application object.
 Set xlApp = New Excel.Application

 ' Create a new workbook.
 Set xlBook = xlApp.Workbooks.Add

 ' Get rid of all but one worksheet.
 xlApp.DisplayAlerts = False
 For i = xlBook.Worksheets.Count To 2 Step -1
 xlBook.Worksheets(i).Delete
 Next i
 xlApp.DisplayAlerts = True

 ' Capture reference to first worksheet.
 Set xlSheet = xlBook.ActiveSheet

 ' Change the worksheet name.
 xlSheet.Name = conSheetName

 ' Create recordset.
 Set rst = New ADODB.Recordset
 rst.Open _
 Source:=conQuery, _
 ActiveConnection:=CurrentProject.Connection

 With xlSheet
 ' Copy field names to Excel.
 ' Bold the column headings.
 With .Cells(1, 1)
 .Value = rst.Fields(0).Name
 .Font.Bold = True
 End With
 With .Cells(1, 2)
 .Value = rst.Fields(1).Name
 .Font.Bold = True
 End With

 ' Copy all the data from the recordset
 ' into the spreadsheet.
 .Range("A2").CopyFromRecordset rst

 ' Format the data.
 .Columns(1).AutoFit
 With .Columns(2)
 .NumberFormat = "#,##0"
 .AutoFit
 End With
 End With

 ' Create the chart.
 Set xlChart = xlApp.Charts.Add
 With xlChart
 .ChartType = xl3DBarClustered
 .SetSourceData xlSheet.Cells(1, 1).CurrentRegion
 .PlotBy = xlColumns
 .Location _
 Where:=xlLocationAsObject, _
 Name:=conSheetName
 End With

 ' Setting the location loses the reference, so you
 ' must retrieve a new reference to the chart.
 With xlBook.ActiveChart
 .HasTitle = True
 .HasLegend = False
 With .ChartTitle
 .Characters.Text = conSheetName & " Chart"
 .Font.Size = 16
 .Shadow = True
 .Border.LineStyle = xlSolid
 End With
 With .ChartGroups(1)
 .GapWidth = 20
 .VaryByCategories = True
 End With
 .Axes(xlCategory).TickLabels.Font.Size = 8
 .Axes(xlCategoryScale).TickLabels.Font.Size = 8
 End With

 ' Display the Excel chart.
 xlApp.Visible = True

ExitHere:
 On Error Resume Next
 ' Clean up.
 rst.Close
 Set rst = Nothing
 Set xlSheet = Nothing
 Set xlBook = Nothing
 Set xlApp = Nothing
 Exit Sub

HandleErr:
 MsgBox Err & ": " & Err.Description, , "Error in CreateExcelChart"
 Resume ExitHere
End Sub

Discussion

Two constants are declared in this procedure—one for the name
of the query used to export data, and one for the name of the
worksheet in Excel:
Private Const conQuery = "qryTopTenProducts"
Private Const conSheetName = "Top 10 Products"
You need to declare an ADO Recordset variable as well as Excel
Application, Workbook, Worksheet, and Chart object variables:
Dim rst As ADODB.Recordset

' Excel object variables
Dim xlApp As Excel.Application
Dim xlBook As Excel.Workbook
Dim xlSheet As Excel.Worksheet
Dim xlChart As Excel.Chart

Dim i As Integer

 The
Application object variable is needed to launch Excel; the Workbook
variable is needed to create a new workbook; the Worksheet variable
is needed to work with the worksheet when exporting the data; and the
Chart variable is needed for creating and manipulating the chart.
The first section of code launches Excel, creates a new workbook,
removes all but one worksheet, and renames the worksheet:
Set xlApp = New Excel.Application
Set xlBook = xlApp.Workbooks.Add
xlApp.DisplayAlerts = False
For i = xlBook.Worksheets.Count To 2 Step -1
 xlBook.Worksheets(i).Delete
Next i
xlApp.DisplayAlerts = True
Set xlSheet = xlBook.ActiveSheet
xlSheet.Name = conSheetName
Next, the ADO recordset is created based on the saved query:
Set rst = New ADODB.Recordset
rst.Open _
 Source:=conQuery, _
 ActiveConnection:=CurrentProject.Connection
Once the recordset is opened, the field names are copied into the
Excel worksheet and formatted:
With xlSheet
 With .Cells(1, 1)
 .Value = rst.Fields(0).Name
 .Font.Bold = True
 End With
 With .Cells(1, 2)
 .Value = rst.Fields(1).Name
 .Font.Bold = True
 End With
Only a single line of code is needed to copy the data from the ADO
recordset to the Excel worksheet:
.Range("A2").CopyFromRecordset rst

 Next, the columns are formatted one
at a time, using Autofit to size the rows to the
widest entry, and assigning a number format to the second column:
 .Columns(1).AutoFit
 With .Columns(2)
 .NumberFormat = "#,##0"
 .AutoFit
 End With
End With

 The chart is
then created and formatted using the Chart object:
Set xlChart = xlApp.Charts.Add
With xlChart
 .ChartType = xl3DBarClustered
 .SetSourceData xlSheet.Cells(1, 1).CurrentRegion
 .PlotBy = xlColumns
 .Location _
 Where:=xlLocationAsObject, _
 Name:=conSheetName
End With

 Setting the
location loses the references, so you must retrieve a new reference
to the Chart object. The chart is then formatted using the methods
and properties of the Chart object:
With xlBook.ActiveChart
 .HasTitle = True
 .HasLegend = False
 With .ChartTitle
 .Characters.Text = conSheetName & " Chart"
 .Font.Size = 16
 .Shadow = True
 .Border.LineStyle = xlSolid
 End With
 With .ChartGroups(1)
 .GapWidth = 20
 .VaryByCategories = True
 End With
 .Axes(xlCategory).TickLabels.Font.Size = 8
 .Axes(xlCategoryScale).TickLabels.Font.Size = 8
End With

 The worksheet and chart are then
displayed by setting the Application object's
Visible property to True:
xlApp.Visible = True
Finally, the cleanup code runs, shutting down all the objects that
have been used and reclaiming memory:
rst.Close
Set rst = Nothing
Set xlSheet = Nothing
Set xlBook = Nothing
Set xlApp = Nothing

 The examples shown here barely scratch
the surface of the capabilities of Excel Automation. Excel has a
complex object model that is very easy to get lost in!
Tip
If you can't figure out the proper syntax for
working with an Excel Automation object, launch Excel and choose
Tools → Macro → Record new macro from the menu,
then record the actions that you are having problems with. Once you
stop the macro recorder, you can examine the code that was created by
pressing Alt-F11 and expanding the Modules node. You may then be able
to figure out how to plug the code into your Access code.

12.7. Create a PowerPoint Presentation from Access Data

Problem

 You
need to create similar Microsoft PowerPoint presentations over and
over. You currently take an existing presentation, copy it to a new
location, and modify it as necessary, resulting in a number of copies
of the same text littering your hard disk. It seems that you could
just store all the text and its formatting information in an Access
table and then create the presentation programmatically when
necessary. Then, you could choose just the slides you need, make
modifications as necessary, and have only one place where you store
the data. Is this possible?

Solution

Microsoft PowerPoint (part of Microsoft Office) offers an amazingly
rich set of objects, methods, and properties. Even though
it's not a developer's tool, its
object model is spectacularly deep, especially in comparison to
Access's. It appears that you can do anything
programmatically from an Automation client (such as Access) that you
can do manually, using PowerPoint as an Automation server—so
the answer to the original question is
"Yes!" You can definitely create
presentations programmatically from Access using tables to store all
the information about your presentation.
This solution involves two major activities: setting up the data in
tables and using the interface to create your presentation. This
section demonstrates both activities.
To try out the sample application, load and run frmPowerPoint from
12-07.MDB. First choose a template from the
combo box's list of templates; then enter a filename
to which to save your presentation (click on the
"..." button to use the common File
Open/Save dialog). Click the Create Presentation button to start
PowerPoint and create the presentation. Figure 12-12
shows the sample form in action.
[image: Use frmPowerPoint to create PowerPoint presentations from within Access]

Figure 12-12. Use frmPowerPoint to create PowerPoint presentations from within Access

To use this technique to create your own presentations, follow these
steps:
	
 Import from
12-07.MDB the tblParagraphs, tblSlides,
tlkpLayouts, and tlkpOptions tables.

	Import the frmPowerPoint, zfrmParagraphs, and zsfrmSlides forms (the
last two are for setting up your slides only and are not part of the
sample's user interface).

	Import the basCommonFile, basGetTemplate, basPowerPoint, and
basRegistry modules.

	

 Open one of the modules in design
mode and choose the Tools → References... menu item. For the
code to work, your database must include an explicit reference to the
DAO and PowerPoint type libraries. Find the options labeled Microsoft
DAO Type Library and PowerPoint Object Library (select the most
current version of each product), and make sure
they're both checked. Figure 12-13
shows the References dialog as it might appear on your machine once
you've found and selected the references.

[image: Use the Tools > References... dialog to add library references]

Figure 12-13. Use the Tools > References... dialog to add library references

	

 Open the basGetTemplate module. Modify the
first constant (conTemplates) so that it reflects
the version of PowerPoint you have installed. The sample is
configured for Office 2003; if you're using Office
XP, change the "11.0" in the string
to "10.0"; if using Office 2000,
change it to "9.0".

Tip
You can skip Steps 1 through 5 if you want to use
12-07.MDB as it is.

	Plan your presentation carefully. You may want to play around in
PowerPoint for a while, browsing the slide layouts, before you begin
adding data to tables. Or you may want to take an existing
presentation and enter it into Access (this is how we originally
created this example set of data).

	Delete all the rows from tblSlides and
tblParagraphs, the two tables containing the
presentation information (you may want to make copies of the
originals first, in case you need to refer back to them). Leave the
two tables whose names start with
"tlkp" alone: these tables are
necessary for the application to run and contain information about
enumerations provided by the PowerPoint object model.

	Using zsfrmSlides or editing the table directly,
add one row to tblSlides for each slide in your
presentation. The SlideNumber field is used for sorting the slides in
the presentation (you can enter them in the table in any order you
like, but make sure the SlideNumber field reflects the desired output
order). The SlideLayout field tells PowerPoint which of its layouts
you want to use for the slide: choose its value from the combo box,
which pulls its values from tlkpLayouts. It may
take some experimentation to find the layout you want. The Include
field tells the application whether or not to create a slide in
PowerPoint; this way, you can create all your slides in Access but
export only selected slides to PowerPoint. Figure 12-14 shows zsfrmSlides gathering
slide information.

[image: Use zfrmSlides to add new slides to your presentation]

Figure 12-14. Use zfrmSlides to add new slides to your presentation

	Using zsfrmParagraphs or editing the table
directly, add one row to tblParagraphs for each
paragraph on each slide in your presentation. Table 12-10 lists the fields with comments about each.
This table is linked to tblSlides on the
SlideNumber field and should include one row for each output
paragraph that you need. The three fields,
SlideNumber, ObjectNumber, and
ParagraphNumber, together make up the primary key;
the combination of the three must be unique (none of these fields can
be left blank for a given paragraph). Figure 12-15
shows zsfrmParagraphs gathering paragraph
information.

[image: Use zsfrmParagraphs to add or edit paragraph text and properties]

Figure 12-15. Use zsfrmParagraphs to add or edit paragraph text and properties

Table 12-10. Field values allowed in tblParagraphs
	
 Field

 	
 Values

 	
 Description

	
 SlideNumber

 	
 Any valid slide number.

 	
 Slide number for this paragraph.

	
 ObjectNumber

 	
 Any valid object number, depending on the slide layout. This example
app does not support adding new objects.

 	
 Object number on the selected slide. All text boxes and other items
count as objects.

	
 ParagraphNumber

 	
 A contiguous, incrementing number, based on previous paragraphs in
the selected object.

 	
 Paragraph within the object.

	
 IndentLevel

 	
 An integer between 1 (no indent) and 5.

 	
 Number of levels to indent this paragraph.

	
 Text

 	
 Any text, up to a reasonable length (six or sevenwords).

 	
 Text for the selected paragraph.

	
 FontName

 	
 Any valid installed font. Leave blank to use the default font for the
style you've selected.

 	
 Name of the font for this paragraph.

	
 FontSize

 	
 Any valid font size (1 to 127). 0 indicates that you want to use the
default font size for the style you've selected

 	
 Font size for this paragraph.

	
 Color

 	
 Numeric value representing the color you want to use for your
paragraph. 0 indicates that you want to use the default color for the
style you've selected.

 	
 Color for this paragraph.

	
 Shadow

 	
 Select from Yes (-1), No (0), or Use Slide Default (1).

 	
 Shadow for this paragraph?

	
 Bold

 	
 Select from Yes (-1), No (0), or Use Slide Default (1).

 	
 Make this paragraph bold?

	
 Italic

 	
 Select from Yes (-1), No (0), or Use Slide Default (1).

 	
 Make this paragraph italicized?

	
 Underline

 	
 Select from Yes (-1), No (0), or Use Slide Default (1).

 	
 Underline this paragraph?

	
 Bullet

 	
 Select from the values provided in the lookup table, tlkpBulletTypes.

 	
 Type of bullet to use.

	Before creating your presentation, peruse the data in
tblSlides, making sure that the Include field is
set the way you want it (i.e., to include or exclude each slide).

	Using frmPowerPoint as previously described,
create your presentation in PowerPoint.

Discussion

Creating the presentation boils down to four basic steps:
	
 Start PowerPoint (and shut it down once
you're finished).

	Create the presentation.

	Loop through tblSlides, creating the slides one at
a time.

	For each slide, loop through the appropriate rows of
tblParagraphs, placing and formatting text.

You'll find all the necessary code in
basPowerPoint in 12-07.MDB.
The following sections describe in detail how these steps work.
Starting and stopping PowerPoint

 To create the presentation, you must
first retrieve a reference to the PowerPoint Application object. If
PowerPoint is already running, the GetObject function will be able to
retrieve the object reference. If not, the code will jump to an error
handler, which will try the CreateObject method. Once the procedure
has created and saved the slide presentation, if the code started
PowerPoint, it will try to close PowerPoint; if not, it will leave
the application running. The following skeleton version of the
CreatePresentation function (shown later in its entirety) handles the
application startup and shutdown:
Public Function CreatePresentation(blnShowIt As Boolean, _
 ByVal varTemplate As Variant, varFileName As Variant)

 Dim app As PowerPoint.Application
 Dim blnAlreadyRunning As Boolean

 On Error GoTo HandleErrors

 ' Assume that PowerPoint was already running.
 blnAlreadyRunning = True

 Set app = GetObject(, "PowerPoint.Application")

 ' Do the work, creating the presentation.
 If Not blnAlreadyRunning Then
 app.Quit
 End If
 Set app = Nothing

ExitHere:
 Exit Function

HandleErrors:
 Select Case Err.Number
 Case conErrCantStart
 Set app = New PowerPoint.Application
 blnAlreadyRunning = False
 Resume Next

 ' Handle other errors...
 End Select
 Resume ExitHere
End Function

Creating the presentation

 To create the presentation, you must
add a new presentation to the application's
collection of open presentations. To add a new item to the
collection, use the Add method of the Presentations collection of the
Application object:
' Get a reference to that new presentation.
Set pptPresentation = app.Presentations.Add(WithWindow:=False)
Tip
The Add method of the Presentations collection allows you to create
the new presentation with or without a window. If you want PowerPoint
to be visible while it's creating the presentation,
you can set this parameter to True instead of
False. However, if it's set to
True, the code that creates the slides runs
noticeably slower, and you'll have to contend with
other user-interface issues (PowerPoint will request confirmation on
overwriting existing presentations when you save this one, for
example). We suggest leaving this parameter set to
False unless you have some overriding reason to
change it.

 Once you've created the
presentation, the code uses the ApplyTemplate method of the new
Presentation object, given the name of the template
you've chosen from frmPowerPoint:
If Len(varTemplate & "") > 0 Then
 pptPresentation.ApplyTemplate varTemplate
End If
The code then calls the user-defined CreateSlides function, passing
to it the new Presentation object, to create all the slides for the
presentation.
This section and the previous one draw their code from the
CreatePresentation function in basPowerPoint.
Here's the function in its entirety:
Public Function CreatePresentation(blnShowIt As Boolean, _
 ByVal varTemplate As Variant, varFileName As Variant)

 ' Highest-level routine. Actually create the
 ' presentation, and set up the slides.

 Dim pptPresentation As PowerPoint.Presentation
 Dim lngResult As Long
 Dim app As PowerPoint.Application
 Dim blnAlreadyRunning As Boolean

 On Error GoTo HandleErrors

 ' Assume that PowerPoint was already running.
 blnAlreadyRunning = True

 Set app = GetObject(, "PowerPoint.Application")

 ' If the caller wants to see this happening, make the
 ' application window visible and set the focus there.
 If blnShowIt Then
 app.Visible = True
 AppActivate "Microsoft PowerPoint"
 End If

 ' Get a reference to that new presentation.
 Set pptPresentation = app.Presentations.Add(WithWindow:=False)
 If Len(varTemplate & "") > 0 Then
 pptPresentation.ApplyTemplate varTemplate
 End If

 lngResult = CreateSlides(pptPresentation)
 pptPresentation.SaveAs FileName:=varFileName
 If Not blnAlreadyRunning Then
 app.Quit
 End If
 Set app = Nothing

ExitHere:
 Exit Function

HandleErrors:
 Select Case Err.Number
 Case conErrCantStart
 Set app = New PowerPoint.Application
 blnAlreadyRunning = False
 Resume Next

 Case conErrFileInUse
 MsgBox "The output file name is in use." & vbCrLf & _
 "Switch to PowerPoint and save the file manually.", _
 vbExclamation, "Create Presentation"

 Case Else
 MsgBox "Error: " & Err.Description & " (" & Err.Number & ")", _
 vbExclamation, "Create Presentation"
 End Select
 Resume ExitHere
End Function

Creating each slide

 Once you've created
the presentation, the next step is to loop through all the rows in
tblSlides, creating the slide described by each row. The code in
CreateSlides, shown next, does the work. It boils
down to a single line of code: you must call the Add method of the
Slides collection for the current presentation to add each slide:
Set objSlide = obj.Slides.Add(intCount, rstSlides("SlideLayout"))
As you can see, you must provide the Add method with the index of the
slide you're creating and the layout type for the
slide. (See the table tlkpLayouts for all the
possible layouts and the associated enumerated value for each.) The
CreateSlides function walks through tblSlides one
row at a time, creating the slide and calling the user-defined
CreateSlideText function for each slide whose Include flag is set to
True.
The complete source code for the CreateSlides function is:
Private Function CreateSlides(obj As Presentation)
 ' obj is the PowerPoint presentation object.
 ' It contains slide objects.

 Const acbcDataSource = "qrySlideInfo"

 Dim rstSlides As DAO.Recordset
 Dim db As DAO.Database
 Dim objSlide As PowerPoint.Slide

 Dim intSlide As Integer
 Dim intObject As Integer
 Dim intParagraph As Integer
 Dim intCount As Integer
 Dim strText As String
 Dim blnDone As Boolean

 On Error GoTo HandleErrors

 Set db = CurrentDb()
 Set rstSlides = db.OpenRecordset(_
 "Select * from tblSlides Where Include Order By SlideNumber")
 blnDone = False
 Do While Not rstSlides.EOF And Not blnDone
 If rstSlides("Include") Then
 intCount = intCount + 1
 ' Add the next slide.
 Set objSlide = obj.Slides. _
 Add(intCount, rstSlides("SlideLayout"))
 If Not CreateSlideText(_
 objSlide, rstSlides("SlideNumber")) Then
 blnDone = True
 End If
 End If
 rstSlides.MoveNext
 Loop

ExitHere:
 If Not rstSlides Is Nothing Then
 rstSlides.Close
 End If
 Exit Function

HandleErrors:
 Select Case Err.Number
 Case Else
 MsgBox "Error: " & Err.Description & " (" & Err.Number & ")", _
 vbExclamation, "Create Slides"

 End Select
 Resume ExitHere
End Function

Creating the text

 Creating the slide text can be broken
down into these small steps:
	Retrieve the list of pertinent paragraphs from
tblParagraphs.

	Loop through all the rows, adding a paragraph to the specified object
for each.

	Loop through the rows again, setting the formatting for each
paragraph.

Tip
Why loop through the rows for each slide twice? Because of the way
PowerPoint handles inserted text, you must first insert the rows, and
then go back and format those rows. Otherwise, each new paragraph
will "inherit" the formatting of
the previous paragraph. To work around this in the simplest manner
possible, the code inserts each of the paragraphs and sets the indent
and bullet, then makes a second pass through the paragraphs and sets
the necessary formatting. Although this may take a bit longer, it
simplifies the code.

 The following paragraphs
describe each step from the CreateSlideText function, which is shown
in its entirety later in this section.
To retrieve the list of paragraphs that apply to the current slide,
CreateSlides passes the slide object and its index
as arguments to CreateSlideText. Given that index,
CreateSlideText can request just the paragraphs
associated with that slide from tblParagraphs:
Set db = CurrentDb()

' Go get the text that applies to this slide.
Set rst = db.OpenRecordset("SELECT * FROM tblParagraphs " & _
 "WHERE SlideNumber = " & intSlideNumber & _
 " ORDER BY ObjectNumber, ParagraphNumber")

Call InsertText(rst, objSlide)
The next step is to insert the slides, text, indents, and bullets
into the presentation. The InsertText procedure takes care of this
task, given a reference to the recordset and to the slide. This code
retrieves various fields from the recordset (which contains
information for this one slide only), inserts the text it finds in
the table into the shape, and then sets the indent level and bullet
type based on information from the recordset:
Private Sub InsertText(rst As DAO.Recordset, sld As PowerPoint.Slide)
 Dim pptShape As PowerPoint.Shape
 Dim intParagraph As Integer

 Do Until rst.EOF
 ' Insert all the paragraphs and indents, to get them right first.
 ' Then we'll go back and insert the formatting. This is required
 ' because of the way PowerPoint carries fonts forward from one
 ' paragraph to the next when inserting paragraphs.

 Set pptShape = sld.Shapes(rst("ObjectNumber"))
 pptShape.TextFrame.TextRange.InsertAfter rst("Text") & vbCrLf
 With pptShape.TextFrame.TextRange. _
 Paragraphs(rst("ParagraphNumber"))
 If Not IsNull(rst("IndentLevel")) Then
 .IndentLevel = rst("IndentLevel")
 End If
 .ParagraphFormat.Bullet.Type = rst("Bullet")
 End With
 rst.MoveNext
 Loop
End Sub
Next, the code in CreateSlideText moves back to the beginning of the
recordset and begins a loop that updates the formatting for each
paragraph on the slide. For each row in the recordset,
CreateSlideText retrieves a reference to the
necessary slide object. Each object on the slide that can contain
text is numbered, and the recordset contains an index
(intObject) indicating which object you want to
place your text into. If the value of the index in the recordset does
not equal the current object index on the slide, the code retrieves a
reference to the correct shape on the slide:
If intObject <> rst("ObjectNumber") Then
 intObject = rst("ObjectNumber")
 Set pptShape = objSlide.Shapes(intObject)
End If
The code then retrieves a reference to the correct paragraph so that
it can work with the various properties of that paragraph:
Set pptTextRange = pptShape.TextFrame.TextRange. _
 Paragraphs(rst("ParagraphNumber"))
Next, CreateSlideText sets the formatting
properties corresponding to each field in
tblParagraphs:
With pptTextRange.Font
 If Not IsNull(rst("FontName")) Then
 .Name = rst("FontName")
 End If
 If rst("FontSize") > 0 Then
 .Size = rst("FontSize")
 End If
 If rst("Color") > 0 Then
 .Color = rst("Color")
 End If

 ' Set Yes/No/Use Default properties.
 If rst("Shadow") <> conUseDefault Then
 .Shadow = rst("Shadow")
 End If
 If rst("Bold") <> conUseDefault Then
 .Bold = rst("Bold")
 End If
 If rst("Italic") <> conUseDefault Then
 .Italic = rst("Italic")
 End If
 If rst("Underline") <> conUseDefault Then
 .Underline = rst("Underline")
 End If
End With
Once CreateSlideText has set all the necessary
properties, it moves on to the next row. If at any point it
encounters an error setting the properties of a given paragraph, it
moves on to the next paragraph. (You might consider beefing up this
error handling, but for the most part, it works fine.) Here, then, is
the complete source for CreateSlideText:
Private Function CreateSlideText(_
 objSlide As PowerPoint.Slide, intSlideNumber As Integer)
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim pptShape As PowerPoint.Shape
 Dim intObject As Integer
 Dim intParagraph As Integer
 Dim pptTextRange As PowerPoint.TextRange
 Dim objFormat As PowerPoint.TextEffectFormat
 Dim strFontName As String
 Dim fnt As PowerPoint.Font

 On Error GoTo HandleErrors

 Set db = CurrentDb()

 ' Go get the text that applies to this slide.
 Set rst = db.OpenRecordset("SELECT * FROM tblParagraphs " & _
 "WHERE SlideNumber = " & intSlideNumber & _
 " ORDER BY ObjectNumber, ParagraphNumber")

 ' Now walk through the list of text items, sticking
 ' them into the objects and applying properties.

 Call InsertText(rst, objSlide)

 rst.MoveFirst
 Do Until rst.EOF
 ' Update the status information on the form.
 With Forms("frmPowerPoint")
 .UpdateDisplay rst("SlideNumber"), rst("Text")
 .Repaint
 End With

 ' No need to grab a reference to the shape each
 ' time through. Cache this value for later use.
 If intObject <> rst("ObjectNumber") Then
 intObject = rst("ObjectNumber")
 Set pptShape = objSlide.Shapes(intObject)
 End If

 ' Get a reference to the paragraph in question,
 ' then set its paragraph properties.
 Set pptTextRange = pptShape.TextFrame.TextRange. _
 Paragraphs(rst("ParagraphNumber"))

 With pptTextRange.Font
 If Not IsNull(rst("FontName")) Then
 .Name = rst("FontName")
 End If
 If rst("FontSize") > 0 Then
 .Size = rst("FontSize")
 End If
 If rst("Color") > 0 Then
 .Color = rst("Color")
 End If

 ' Set Yes/No/Use Default properties.
 If rst("Shadow") <> conUseDefault Then
 .Shadow = rst("Shadow")
 End If
 If rst("Bold") <> conUseDefault Then
 .Bold = rst("Bold")
 End If
 If rst("Italic") <> conUseDefault Then
 .Italic = rst("Italic")
 End If
 If rst("Underline") <> conUseDefault Then
 .Underline = rst("Underline")
 End If
 End With

CreateSlideTextNext:
 rst.MoveNext
 Loop
 CreateSlideText = True

ExitHere:
 On Error Resume Next
 rst.Close
 Set rst = Nothing

 Set db = Nothing
 Exit Function

HandleErrors:
 CreateSlideText = False
 Select Case Err.Number
 Case conErrInvalidObjectIndex
 Resume CreateSlideTextNext

 Case Else
 MsgBox "Error: " & Err.Description & " (" & Err.Number & ")",_
 vbExclamation, "Create Slides Text"

 End Select
 Resume ExitHere
End Function

Comments

 This solution uses only a small subset
of the PowerPoint Automation interface. A great deal more
functionality is available to you if you dig deep enough to find it.
For example, you might want to support more of the text or bullet
attributes than we've chosen, or dig into slide
transitions, builds, and animation. Use the Object Browser (press F2
in a module window), shown in Figure 12-16, to help
dig through the PowerPoint object model. You can work your way down
through the hierarchy in an orderly fashion. For example, find the
Application object in the left window, then browse through the right
window until you find the Presentations collection. On the left, find
the Presentations collection, and on the right, find the Add method.
That's how we wrote this solution: by digging
through the various objects, collections, methods, and properties
that the Object Browser displays.
[image: The Object Browser makes it possible to dig around in object models]

Figure 12-16. The Object Browser makes it possible to dig around in object models

 You may also want to look at
basGetTemplate, which includes a substantial
amount of code dedicated to retrieving a list of all of
PowerPoint's design templates. As
it's installed, PowerPoint places the location of
these templates in your registry. Two interesting issues are involved
here: finding the name of the directory where the templates have been
installed, and creating an array containing the names of the
templates. Once the code creates the array, it uses the standard
list-filling callback function mechanism, described in Chapter 7, to populate the combo box on the sample
form. Though these topics are beyond the scope of this solution, you
may find it useful to dig into the code, which has comments to help
you through it.

12.8. Add a Contact and Send Email Through Outlook

Problem

 You
maintain an Access database full of contact information.
You'd like to be able both to add contact
information to your Outlook address book and to send email messages
easily, using the email address stored in a particular row. How can
you add these features to your form without forcing your users to
load Outlook and work there?

Solution

Outlook provides a rich programming model, and it's
easy for you to programmatically create contacts and send email.
You'll find that solving these problems requires
little more than creating an object in memory, setting some
properties, and calling the correct methods. This sample provides a
form that demonstrates code you can use.
Warning
Because of the serious threat of email viruses, the Outlook team has
"locked down" the programmability
features of Microsoft Outlook. The level of the virus support may be
different depending on which version of Outlook you have installed
and what service release you've added. In testing
this demonstration, you may see an alert warning you that someone is
attempting to modify your address book. You can safely dismiss that
dialog for this demonstration, but you should never take it lightly
in real use.

 Load and
run frmContacts from
12-08.MDB. This form, shown in Figure 12-17, allows you to edit contact information within
Access. You can click on Send Email to create a new email message to
the address you've provided in the contact record.
Click on Add Contact to copy the contact information to a new contact
item within Outlook. Note that the Send Email button
isn't available unless you've
specified an email address, and the Add Contact button
isn't available unless you've
specified a LastName value.
[image: frmContacts allows you to work with Outlook contacts and send email]

Figure 12-17. frmContacts allows you to work with Outlook contacts and send email

Follow these steps to create a form like
frmContacts:
	Import the module basAutomateOutlook from
12-08.MDB.

	Open basAutomateOutlook and use the Tools
→ References... menu item to add a reference to the
Microsoft Outlook Type Library. (Select the most current version of
the library, or the version you're intending to
target.)

	Import tblContacts from
12-08.MDB.

	Either import frmContacts from
12-08.MDB, or create your own form. (If you
import the existing form, you can skip to Step 8.) You can create a
new form based on your tblContacts. You can add
fields and modify field names as necessary in the underlying table
(tblContacts), but you'll need to
modify the code that follows to match, if you do.

	Add the following procedure to the form's module to
handle enabling and disabling the two command buttons:
Private Sub HandleEnabling(varEmail As Variant, _
 varFirstName As Variant)
 Me.cmdEmail.Enabled = Len(varEmail & "") > 0
 Me.cmdContact.Enabled = Len(varFirstName & "") > 0
End Sub

	

 Add
event procedures to call HandleEnabling from the
form's Current event and from the two important text
boxes' Change events:
Private Sub Email_Change()
 Call HandleEnabling(Me.Email.Text, Me.FirstName)
End Sub

Private Sub FirstName_Change()
 Call HandleEnabling(Me.Email, Me.FirstName.Text)
End Sub

Private Sub Form_Current()
 Call HandleEnabling(Me.Email, Me.FirstName)
End Sub

Tip
Note that in the Email text box's Change event, you
must use the Text property (not the default Value property) if you
want to refer to the current value in the control. This is a
confusing area in Access forms: while in the middle of editing a
control on an Access form, the Text property contains the actual,
current text. The Value property (which is the default property, so
you needn't explicitly specify it) contains the
original text in the control, before you began editing it. In this
example, the Change event procedures must refer to the Text property
of the current control (the one being changed) but the Value property
of the other control.

	

 In the Click event procedures for the two
command buttons, add code to call the appropriate procedures in
basAutomateOutlook:
Private Sub cmdContact_Click()
 Call AddContact(Me.FirstName, Me.LastName, Me.Address, _
 Me.City, Me.State, Me.PostalCode, Me.Email)
End Sub

Private Sub cmdEmail_Click()
 Call SendEmail(Me.Email)
End Sub

	Run your form, add some data, and try out the two buttons on the
form. Clicking Send Email should bring up the Outlook email editor.
Clicking Add Contact should copy data to the contact editor in
Outlook and leave the editor available for you to continue editing.

Discussion

All the power of this example is buried in
basAutomateOutlook's code. This
section will work through each of the procedures
you'll find in that module.
Tip
Although this section gives you a good start working with Outlook
programmatically, you'll find that Outlook has an
extremely rich and powerful object model, allowing you to work with
contacts, mail items, and schedule items, as well as the entire
Outlook user interface.

The first block of code in basAutomateOutlook
looks like this:
Private ola As Outlook.Application
Private nsp As Outlook.NameSpace

Public Sub InitOutlook()
 ' Initialize a session in Outlook.
 Set ola = New Outlook.Application

 ' Return a reference to the MAPI layer.
 Set nsp = ola.GetNamespace("MAPI")

 ' Let the user log into Outlook with the Outlook
 ' Profile dialog, then create a new session.
 nsp.Logon , , True, False
End Sub

Public Sub CleanUp()
 ' Clean up public object references.
 Set nsp = Nothing
 Set ola = Nothing
End Sub

 This code
block includes module-level variables that refer to the Outlook
Application and Namespace objects. Each example (and any code you
write that works with Outlook) will probably need these variables as
well, so it made sense to simply make them module-level, available to
all procedures in the module.
Each procedure in this example calls the InitOutlook procedure, which
instantiates a new copy of Outlook if it's not
already running, or grabs onto the existing instance if it is already
running. (Outlook does not allow itself to start up multiple times,
so you'll never have multiple copies concurrently
running in memory.) After this code runs, you can use the variable
ola to refer to the running instance of Outlook:
Set ola = New Outlook.Application

 Next, the code creates a new
Workspace object. You're required to log in whenever
you work with data within the Outlook data store, and the Namespace
object provides this capability. Since you pass in the parameter
MAPI to the GetNameSpace method, it might appear
that there are other namespaces you might want to use, but
that's not the case; Outlook uses only the MAPI
namespace, and you'll always pass that parameter to
the GetNameSpace method:
' Return a reference to the MAPI layer.
Set nsp = ola.GetNamespace("MAPI")

 Finally, the InitOutlook procedure
calls the Logon method of the Namespace object, allowing you to log
into Outlook. If Outlook is already running, you
won't see a dialog. If not, you'll
see the standard dialog shown in Figure 12-18.
[image: This familiar dialog appears when you log into Outlook]

Figure 12-18. This familiar dialog appears when you log into Outlook

The portion of the code that handles logon is:
' Let the user log into Outlook with the Outlook
' Profile dialog, then create a new session.
nsp.Logon , , True, False
Tip
You might want to investigate the Namespace object's
Logon method in Outlook's online help—it has
several options that allow you to pass authentication information
within the method call. You can control whether to show the dialog,
as well.

Next in the sample module, the CleanUp procedure releases the
module-level variables. If your code started up Outlook (that is, it
wasn't already running), releasing those variables
should allow Outlook to shut down.
The AddContact method, shown here, simply creates a new Outlook
contact, given the information you pass to it:
Public Sub AddContact(varFirstName As Variant, varLastName As Variant, _
 varAddress As Variant, varCity As Variant, varState As Variant, _
 varPostalCode As Variant, varEmail As Variant)
 Dim cti As Outlook.ContactItem

 InitOutlook
 Set cti = ola.CreateItem(olContactItem)
 cti.FirstName = varFirstName & ""
 cti.LastName = varLastName & ""
 cti.HomeAddressStreet = varAddress & ""
 cti.HomeAddressCity = varCity & ""
 cti.HomeAddressState = varState & ""
 cti.HomeAddressPostalCode = varPostalCode & ""
 cti.Email1Address = varEmail & ""
 cti.Display

 Set cti = Nothing
 CleanUp
End Sub
This procedure accepts parameters containing all the fields you
gathered on your Access form. (Look back at the call to the
AddContact method to see that you're passing in all
the values from the original form.) It starts by initializing
Outlook, calling the InitOutlook procedure you've
already seen. It then calls the CreateItem method, creating a new
Outlook ContactItem object, and sets properties of the contact:
Set cti = ola.CreateItem(olContactItem)
cti.FirstName = varFirstName & ""
cti.LastName = varLastName & ""
cti.HomeAddressStreet = varAddress & ""
cti.HomeAddressCity = varCity & ""
cti.HomeAddressState = varState & ""
cti.HomeAddressPostalCode = varPostalCode & ""
cti.Email1Address = varEmail & ""

 Finally,
the procedure calls the Display method of the ContactItem object to
display the unsaved item. (If you want to save the item before
displaying it, call the Save method before calling the Display
method.) The Display method isn't
synchronous—that is, the code continues running, releases the
ContactItem object from memory, and cleans up the module-level
variables created earlier.
Tip
You may wonder why releasing the cti,
ola, and nsp variables
doesn't close the contact editor and shut down
Outlook. That would happen only if you never displayed the contact
within an editor for the user to see. Once you do that, though,
Outlook is effectively "owned" by
the user, and unless you explicitly call the Quit method of the
Outlook Application object, it's now up the user to
close the contact editor. When that happens, Outlook will shut down
because no other references to it exist. Of course, if Outlook had
been running before you ran the code, it would continue to run
afterwards, since the variables used within the procedures here are
simply additional references to the running copy of Outlook.

The SendEmail procedure shown here works much like the AddContact
procedure:
Public Sub SendEmail(varTo As Variant)
 Dim mli As Outlook.MailItem

 InitOutlook
 Set mli = ola.CreateItem(olMailItem)
 mli.To = varTo & ""
 mli.Subject = "Message for Access Contact"
 mli.Display

 Set mli = Nothing
 CleanUp
End Sub

 SendEmail receives the email address of the
recipient and creates a new email message addressed to that recipient
in Outlook. (You could, of course, gather and pass more information
for the email message, such as the subject, in this procedure call.
The sample merely sends the recipient.) SendEmail
sets the To field of the new email message, creates a subject for
you, and then displays the new, unsent email message in Outlook.
It's up to the user to complete and send the email
message.
Tip
If you wanted to actually send a message programmatically, you could
supply the Subject and Body fields (and any others
you'd like to supply) in your code, and then call
the Send method of the MailItem object. For this example,
we've simply created the message and dumped you into
the email editor in Outlook.

 Of course, there's much
more to the Outlook object model than we've been
able to show here. Start by exploring the data provided by the VBA
Object Browser (press F2 from within a VBA module, select Outlook
from the list of libraries in the upper-left corner of the window,
and start digging). You can find several good books on programming
the Outlook object model, and don't forget to check
out the online help.

 Make sure to try out various versions of
Outlook if you're shipping an application to end
users. The Outlook security patch and the various versions of
security models are sure to hamper your applications if you intend to
work with contacts or send email to contacts in the address book
programmatically.

See Also

If you want to "fake" sending
email, using Access only, see Recipe 10.4 in Chapter 10.

Chapter 13. Data Access Pages

 When
data access pages (DAPs) were introduced in Access 2000, they drew a
lot of attention from Access developers who were looking for easy
ways to move their data to the Web. DAPs promised to provide an
Access-based designer that would allow developers to create web pages
based on data, just as forms and reports were. Unfortunately, because
of the limitations of the DAP design tools, the often-crippled
functionality of the resulting pages (such as the inability to update
data), and the requirement that users of the pages must have Office
2000 licenses, DAPs were not widely used.
In Access 2002, DAPs were greatly enhanced. The designer is now on
par with Access's form and report designers. Data on
pages can be updated under most circumstances, and users without
Office XP licenses can legally work with DAPs in the browser, albeit
with a limited feature set. However, you'll still
need to use Microsoft Internet Explorer 5 and later to view and work
with DAPs, and users will still need to have the Office Web
Components installed locally.

Perhaps the biggest limitation to DAPs is the way they connect to
data. DAPs use ADO recordsets behind the scenes to retrieve and
update data. These ADO recordsets are opened on your
users' machines, which means that your users must
have direct access to the data. The only workaround—using
recordsets that are opened on a web server—requires that you
set up a complicated technology called Remote Data Services (RDS),
which goes beyond the scope of this book. Without RDS, you
can't use DAPs to work with data over the Internet,
even though you can view the data in a browser.
Still, the Access 2002 implementation has made DAPs a feasible and
welcome choice for displaying and editing data, particularly on an
intranet (because of the IE and local processing requirements).
Database developers may also find that DAPs provide a good starting
point in acquiring web database skills.

 DAPs are quite different from Access forms
and reports. In this chapter, we'll address issues
that you are likely to encounter as you begin to use DAPs. Many of
these issues involve getting the page to look the way you want it to
look. We'll also talk about how you can keep your
pages and data properly linked together, and we'll
show you how you can use VBScript to add new functionality to your
pages.
In order to use any of the existing samples in your own environment,
you will need to update the ConnectionString property for each page.
Within Access, when you attempt to open the existing pages in the
page designer, you'll receive a warning indicating
that the connection is invalid. Right-click on the page within the
designer, select the Page Properties item from the context menu, and
select the Data tab in the Properties window. Select the
ConnectionString property, and click the build button (...) to the
right of the property. On the Connection page of the Data Link
Properties dialog box, browse to the appropriate location of the
sample database. The Solutions in Recipe 13-5 and Recipe 13-6 show
techniques to avoid this extra step.
Tip
DAPs in Access 2002 and Access 2003 are very different from DAPs in
Access 2000. Not only did Microsoft greatly enhance the functionality
of pages designed in Access, but the designer itself also includes
many more features. Therefore, we have not addressed the Access 2000
version of DAPs in this chapter.

13.1. Replace Navigation Button Images with Your Own Images

Problem

 The navigation section in a DAP uses
button images that are different from the rest of the pages on your
intranet. How can you use your own images on the navigation buttons
of a DAP?

Solution

 The image on a navigation button is
named in the button's Src property. By default, the
Src property for each navigation button is set to an image stored
within the Office Web Component library. You can change the
property's value to name an image of your own
choosing. You can (and should) also provide an
"inactive" version of the image
that can be displayed when the button is not relevant to the current
context. For example, the First and Previous navigation buttons
should be disabled when the user is viewing the first record. The
code to change the image based on context has already been written
for you; you need only supply an image in the same location and with
the same name as the active version of the button, but with the
string "Inactive" appended to the
name. That is, you might have one image named
MyFirstButton.gif and another named
MyFirstButtonInactive.gif.
Tip
In order to try out the sample provided for this section, please see
the introduction to this chapter, which describes how you can update
the connection information and connect the DAP to the sample
database.

To add your own images to the navigation buttons on a DAP, follow
these steps (or open 13-01.mdb to see the completed sample):
	Create the images you want to use for the navigation buttons. The
Previous and Next buttons for our sample page are shown in Figure 13-1.

[image: Active and inactive versions of the Previous and Next buttons]

Figure 13-1. Active and inactive versions of the Previous and Next buttons

	Create a DAP and add whatever controls you'd like.
Once you've added fields from tables or queries,
you'll see a default navigation section like the one
shown in Figure 13-2.

[image: The default navigation section includes several buttons]

Figure 13-2. The default navigation section includes several buttons

	Eliminate any buttons you don't want. For our simple
example, we eliminated all buttons except the Previous and Next
buttons. To get rid of a button, either select it and press the
Delete key, or right-click the navigation control, select Navigation
Buttons from the context menu, and toggle off the buttons you
don't want.

	Select a navigation button and display its properties sheet.

	
 Find
the Src property (in the Other page of the properties sheet). Change
the property's value to the name of the image you
want displayed, as shown in Figure 13-3. Note that
the properties sheet seems to insist on storing the full path to the
image, even when it is entered as a relative path.

[image: Specify the image you want displayed in the Src property]

Figure 13-3. Specify the image you want displayed in the Src property

	Repeat Step 5 for each button you need to change.

	Test the resulting page. Our sample page looks like Figure 13-4.

[image: The look of our page is now consistent with the rest of our intranet]

Figure 13-4. The look of our page is now consistent with the rest of our intranet

Discussion

 All the functionality for a
navigation button is contained within the DataSourceControl Office
Web Component. The name of the image to use, though, is stored in the
HTML source of the page. The component itself checks for the name
with the "Inactive" string to
adjust the appearance of the button relative to the context.

 The properties sheet appears to store a
full path to the image. That is, you might type in the following
text:
Images\ArrowLeft.tif
But when you leave the property, the value will be adjusted to show a
full path and filename:
c:\MyPages\Images\ArrowLeft.tif

 Internally,
however, the HTML source is storing a relative path. If the path to
the page changes but it retains an Images
subfolder, the page will not break; the image in the relative path
will still be found. (The same can't necessarily be
said of your data, of course.)

13.2. Use Labels or Other Controls for Record Navigation

Problem

 You
don't want to use images for the navigation buttons
on your pages; you'd prefer to simply use labels
that say "Previous",
"Next", and so forth.

Solution

 The default navigation images
function as they do because each is a member of a particular class.
You can use another type of control for navigation by adding the
correct class name to the control's ClassName
property.
Our solution, found in the Custom Nav Text DAP in the sample
database, uses labels to create the look shown in Figure 13-5.
[image: This page uses navigation labels instead of images]

Figure 13-5. This page uses navigation labels instead of images

Tip
In order to try out the sample provided for this section, please see
the introduction to this chapter, which describes how you can update
the connection information and connect the DAP to the sample
database.

 To use labels as
navigation controls, follow these steps (or open
13-02.MDB to see the completed sample):
	Create a new page and add whatever data you'd like.

	Delete all navigation control buttons from the navigation section.

	Place labels in the navigation control section for each navigation
function (First, Previous, Next, Last).

	Select the "First" label and view
its properties sheet. The ClassName property should read:
MSTheme-Label

	
 Change the ClassName property so that
it includes the appropriate class for the first navigation button,
msoNavFirst. The ClassName property should now
read:
MSTheme-Label msoNavFirst

	
 Change the ClassName properties for
each navigation control to include the class name for its function.
Table 13-1 lists all the classes for navigation
controls.

Table 13-1. Navigation functions and their class names
	
 Function

 	
 Class name

	
 First

 	
 msoNavFirst

	
 Previous

 	
 msoNavPrevious

	
 Next

 	
 msoNavNext

	
 Last

 	
 msoNavLast

	
 New

 	
 msoNavAddNew

	
 Delete

 	
 msoNavDelete

	
 Save

 	
 msoNavSave

	
 Undo

 	
 msoNavUndo

	
 Sort Ascending

 	
 msoNavSortAsc

	
 Sort Descending

 	
 msoNavSortDesc

	
 Filter by Selection

 	
 msoNavFilter

	
 Filter Toggle

 	
 msoNavToggleFilter

	
 Help

 	
 msoNavHelp

	
 Recordset Label

 	
 msoNavRecordsetLabel

	
 Run
the page and test the navigation labels. You should notice that
although the labels function properly, the cursor turns into an
I-beam when you move the mouse over it. You can fix this by changing
the Cursor property of each label, as described in Steps 8-9.

	Return to design view. Select all of the navigation labels and view
the properties sheet.

	Change the Cursor property to hand for the labels.

	
 Run the page again. Now the cursor
should change to a pointing finger when you move the mouse over one
of the labels.

13.3. Change the Text Displayed with a Navigation Control

Problem

 The DAP designer provides
a recordset label in the navigation section of the page that includes
record counts, the location of the current set within the total, and
some text. You want to change the text displayed in the navigation
section to something else. You can see the name of the table or query
that's being navigated, but you
don't know how to change the way the record counts
are displayed.

Solution

 Don't let the
InnerText property fool you. The recordset label control also
includes a RecordsetLabel property that controls how the record count
is displayed. You'll need to use its special syntax,
though, to get the exact display you want.
We've started with a simple page, shown in Figure 13-6 with its default recordset label. By default,
a tabular page's recordset label shows the table
name, number of records, and range of records currently displayed.
[image: A page with its default recordset label]

Figure 13-6. A page with its default recordset label

We'd like to change the page so that the recordset
label looks like the one shown in Figure 13-7.
[image: Use the RecordsetLabel property to change the format of record counts]

Figure 13-7. Use the RecordsetLabel property to change the format of record counts

 To change the default recordset
label, follow these steps (or open 13-03.mdb to see the completed
sample):
	Open the page you want to change in design view.

	Select the recordset label. If you're using the
mouse to select the control, you'll need to click
twice: the first click selects the navigation control and the second
click selects the recordset label.

	
 Display the properties sheet for
the recordset label. Select the Data page to see the RecordsetLabel
property.

	Notice the default value for the property. In our example, it looks
like this:
Customers |0 of |2;Customers |0-|1 of |2

 The format has two portions, separated by
a semicolon. The first portion determines what the label will look
like when only one record is displayed on the page; the second
portion determines what the label will look like if more than one
record is displayed on the page.

 Within each portion, the pipes followed
by a 0, 1, or 2 are placeholders for the different record counts:
	
 |0 represents the number of the current record or
of the first record in the displayed group.

	
 |1 represents the number of the last record in the
displayed group.

	
 |2 represents the total number of records in the
entire recordset.

	Change the RecordsetLabel property to look like this:
|2 Customers found. Viewing |0.;|2 Customers found. Viewing |0-|1.

	Switch to page view. The recordset label should now look like the one
shown in Figure 13-7.

	

 If you're
using our sample data for your page and displaying 10 records at a
time, move to the last record. Because only one record is shown on
the last page, the recordset label will use the first portion of the
RecordsetLabel property's value to define the
label's text, as shown in Figure 13-8. In fact, the first portion of the
RecordsetLabel property is used both for pages where the DataPageSize
property is 1 and for multirecord pages that show a single record
under some circumstances.

[image: The recordset label when only one record is displayed]

Figure 13-8. The recordset label when only one record is displayed

13.4. Create a DAP that Allows You to Update Data

Problem

 Most of the time, the pages you create
are updateable; that is, the user can change the underlying data.
Occasionally, though, the data can't be changed, and
it isn't clear to you why not.

Solution

 DAPs in Access 2000 were almost never
updateable. Since Access 2002, however, most of the limitations have
gone away, and you can nearly always edit the underlying data. If
each group on your page is based on a single table or table query,
the data is always updateable. If you base a group on a multitable,
one-to-many query, the table on the
"many" side of the join (or
"most-many," if there are several
tables) is editable only if the key field of that table is placed on
the page and the UniqueTable property for the group is set to that
table.
There are two ways to create an updateable page based on a multitable
query. The careful way requires that the key field of the table you
want to update be the first field placed in the group. Follow these
steps (exactly) to create an updateable page the careful way:
	Create a new page and find the query you want to use in the field
list window. We'll use
qryProductCategory in the sample database.

	Add the key field of the table you want to edit to the page. In our
example, the table is Products and its key field
is ProductID.

	
 Add whatever other fields
you'd like and switch to page view. You should be
able to edit fields from the Products table (except
ProductID, which is an AutoNumber field).

The second way to create an updateable page is to place fields in
whatever order you like, but include the key field and remember to
set the UniqueTable property. To experiment with this technique,
first follow these steps to create a page that isn't
updateable:
	Create a new page and find the query you want in the field list.

	Add fields from the query to the page, but leave off the key field,
ProductID.

	Add the ProductID field to the page.

	Switch to page view. You won't be able to edit any
fields on the page.

 At this point, the page is not
updateable because the DataSource control doesn't
support the ability to update both sides of a one-to-many query, and
it needs more information to figure out which table is on the
"many" side of the join. To make
this page updateable, follow these steps (or open
13-04.MDB to see the completed sample):
	Return to design view.

	
 Display the properties sheet for the
header section, and find the UniqueTable property (in the Data page
of the properties sheet). The UniqueTable property tells the
DataSource control which of the tables is on the
"many" side of the relationship.

	Select Products from the drop-down list, as shown in Figure 13-9.

[image: Selecting the "many" table in a relationship]

Figure 13-9. Selecting the "many" table in a relationship

	Switch to page view. You will now be able to edit fields from the
Products table.

To make the page read-only again, just delete the ProductID from the
page. The key field of the "many"
table must be displayed on the form, although you can hide it by
changing the Visibility property of the control.

 Sometimes you may want to restrict the
user from updating data on a page. To do so, look for the
AllowAdditions, AllowDeletions, and AllowEdits properties on the
Group Level properties sheet. If you want to keep the user from
editing only certain controls, keep the AllowEdits property set to
True, but change the ReadOnly property of the
individual controls to True as necessary.

13.5. Create One File to Store Connection Information for All DAPs in an Application

Problem

 You have many DAPs that
all use the same data source. The data source's name
and location are subject to change; for example, the pages point to a
sample data source when you're working on their
design and to a production data source when you deploy them. But if
you move the data source to a different folder or change the name of
the data source, the links your DAPs use will probably break.
You'd like to be able to change the data source in
one place, rather than making the change on every page.

Solution

Starting with

 Access 2002, you can use a
connection file, rather than a hardcoded string, to define the source
of the data for each page. Microsoft provides two types of files for
storing data connection information: Microsoft Data Link (also called
Universal Data Link, or .udl) files, and Office
Data Connection (.odc) files. You can create a
data connection file that points to the test data, create and test
your pages, and then switch to live data by editing the data
connection file.
Essentially, both .udl and
.odc files store an ADO connection string.
We'll walk you through the steps to create and edit
each type of file, and then talk about how to reference a connection
file in your DAPs.

 The .udl format has
been around longer, so we'll discuss it first. A
.udl file is a text file that stores the same
provider and data source information you would use to set up an ADO
connection. To create a .udl file, follow these
steps:
	Open Windows Explorer and browse to the folder where
you'd like to create the file.

	Right-click in the file list and select New from the context menu.

	If you don't see the Microsoft Data Link option,
skip to Step 4. You'll see the dialog shown in Figure 13-10. Move on to Step 6.

	Select New Text Document. Give the text document any name you like,
but be sure to use the .udl extension instead of
.txt. (Disregard the warning from Windows
Explorer about changing the file extension.)

	Double-click the .udl file.
You'll see the dialog box shown in Figure 13-10.

[image: The .udl file format uses a simple wizard to create a connection string]

Figure 13-10. The .udl file format uses a simple wizard to create a connection string

	Use the dialog to set up the connection you want. The instructions
given here describe how to set up a connection to an Access database.

	Select the Provider page and choose Microsoft Jet 4.0 OLE DB Provider.

	Select the Connection page and enter the database name in the first
text box. Click the Test Connection button to verify your settings.

	Click OK to save the .udl file.

Tip
If you need to change a .udl file and modify its
connection settings, just right-click on it in Windows Explorer and
choose Open from the context menu. You'll see the
same dialog as before, and you can use it to change any aspect of the
connection.

 The .odc format was new
with Office XP. It stores information about the connection in an HTML
format and uses the Office Web Components to display information
about the database when you view the .odc file
in Internet Explorer. To create an .odc file,
follow these steps:
	Open any DAP in Access.

	
 Display the properties sheet for the
page and find the ConnectionFile property (on the Data page).

	Click the Browse button next to the property. You'll
see the dialog shown in Figure 13-11.

[image: By default, .odc files are stored in My Data Sources, a subfolder of My Documents]

Figure 13-11. By default, .odc files are stored in My Data Sources, a subfolder of My Documents

	Click the New Source button next to the "File
name" drop-down list. You'll see
the dialog shown in Figure 13-12.

[image: The Jet provider falls into the Other/Advanced category]

Figure 13-12. The Jet provider falls into the Other/Advanced category

	To create an .odc file that points to an Access
database, select Other/Advanced from the list box and click the Next
button. You'll see a dialog like the one used for
Microsoft Data Links, as shown in Figure 13-13.

[image: The .odc wizard looks just like the .udl wizard at this point]

Figure 13-13. The .odc wizard looks just like the .udl wizard at this point

	Select Microsoft Jet 4.0 OLE DB Provider and click the Next button.

	Type in the name of the database you want to point to and click the
OK button. You'll see the dialog shown in Figure 13-14. The dialog shows you the tables in the
database, but you can't actually make a selection
here. You're defining a file to point to the
database, not a particular table or query.

[image: You can't select a table at this point]

Figure 13-14. You can't select a table at this point

	Click the Next button. You'll see the final wizard
page shown in Figure 13-15.

[image: Provide a meaningful name and description]

Figure 13-15. Provide a meaningful name and description

	Type a name and description for the .odc file
and click the Finish button. At this point, you can choose your new
connection file as the connection file for the DAP with which
you're working.

Tip
Although Access' user interface is extremely
confusing on this point, if you modify the ConnectionFile property
and select a connection file that isn't in the My
Data Connections folder, you must supply a full path. The dialog box
you'll use in order to select the file
doesn't allow you to supply the full path, however.
Therefore, if you want to specify a .udl or
.odc file that isn't in the My
Data Connections folder, you must type the full path and file name by
hand, in the ConnectionFile property.

 If you want to change an
.odc file to point to a different location,
you'll need to open it in a text editor. Follow
these steps to make the change quickly:
	
 The easiest way to open the file in Notepad
is to right-click on the .odc file in Windows
Explorer and choose Edit in Notepad from the context menu. The text
file will look something like Figure 13-16.

[image: A portion of the text file in Notepad]

Figure 13-16. A portion of the text file in Notepad

	Select Edit → Find from the Notepad menu and type:
source=
into the text box. Click the Find Next button.

	The cursor should be on the
"Source=" string that precedes the
path and filename of the .mdb file. You can
modify the path directly, then select File → Save from the
menu.

	Close Notepad.

 To use either type of data connection
file to supply the data source for your page, simply set the
ConnectionFile property of each page to the name of the connection
file. When you set the ConnectionFile property, Access automatically
adds the ConnectionString property as well, but the ConnectionFile
takes precedence. That is, if the ConnectionFile's
information changes, the ConnectionString property will be updated
automatically the next time the page is opened.
You can use the Pages page of the Tools → Options dialog to
set a default ConnectionFile property. Then, all new pages will use
your connection file as the ConnectionFile property value.

13.6. Programmatically Change the Connection String for All Pages in a Database

Problem

 You
don't want to rely on yet another extra file, such
as the data connection file, to determine how your application is
supposed to work. But you also don't want to
manually change the ConnectionString property of each page every time
you need to point to a different data source.

Solution

 As long as you can count on having
Access available every time you need to point to a different data
source, it's easy to change the ConnectionString
property of every page programmatically. You'll need
to iterate through the collection of pages and change the
ConnectionString property. Note that ConnectionString is a property
of the DataSource control for the page; you can refer to the
DataSource object as MSOSDC.
We've supplied sample code in the database for this
item. Take a look at the ChangeConnectString
function in basResetConnectionString.
To see how the code works, follow these steps:
	Close the database and open Windows Explorer. Change the name of the
sample database, 13-06.MDB, to
13-06-test.MDB.

	Open Customers.htm in Internet Explorer.
You'll receive two messages: one informs you that
the data provider could not be initialized, and the other tells you
that the database could not be found. After you close the message
boxes, the browser window will look like Figure 13-17. The #Name? syntax will be familiar to most
Access developers; it means the data source couldn't
be found.

[image: The browser window after renaming the sample database]

Figure 13-17. The browser window after renaming the sample database

	Close the browser window.

	Open 13-06-test.MDB. Open the
basResetConnectionString module.

	If the Immediate window is not displayed, press Ctrl-G to open it.
Type ?ChangeConnectString(), as shown in Figure 13-18. Press Enter.

[image: Running the ChangeConnectString function from the Immediate window]

Figure 13-18. Running the ChangeConnectString function from the Immediate window

	As the code runs, you'll see two alerts that look
like Figure 13-19 (one for each DAP in the database).
There's no apparent way to get around these alerts;
even the SetWarnings method has no effect on them. Close each dialog
to move on.

[image: Alerts like this will appear as the code runs]

Figure 13-19. Alerts like this will appear as the code runs

	Return to Windows Explorer and double-click
Customers.htm to open it in the browser. The
page will be displayed with no error messages, as shown in Figure 13-20. The code
"fixed" the connection string so
that it points to the database in which the data access page object
is located.

[image: The browser window after running ChangeConnectString]

Figure 13-20. The browser window after running ChangeConnectString

Discussion

The complete ChangeConnectString function looks like this:
Public Function ChangeConnectString() As Boolean

' Code sets the connection string for all pages so that the data source
' is the database in which the data access page object is stored.
' Run this function whenever there is a chance that the database name
' has changed.

On Error GoTo HandleErr

 Dim objDAP As AccessObject
 Dim dapPage As DataAccessPage
 Dim strConnectionDB As String

 ' This code assumes that the connection string should point to the
 ' current database. You could make the solution more generic by
 ' making strConnectionDB an input parameter, perhaps set with a
 ' custom form that includes a Browse button.

 ' It would be great if you could simply supply the
 ' relative path to the database, but that doesn't work.
 ' You must supply the full name, including the path.
 strConnectionDB = CurrentProject.FullName

 ' Turn off warnings and screen painting.
 DoCmd.Hourglass True
 Application.Echo False, "Updating pages"
 DoCmd.SetWarnings False

 ' AllDataAccessPages contains AccessObjects, not DataAccessPage objects.
 ' You must open the data access page in design view to change the
 ' connection string. Note that you will get a message notifying you
 ' that the connection is broken. SetWarnings False should probably
 ' suppress this, but it doesn't.
 For Each objDAP In CurrentProject.AllDataAccessPages
 DoCmd.OpenDataAccessPage objDAP.Name, acDataAccessPageDesign
 Set dapPage = DataAccessPages(objDAP.Name)
 dapPage.MSODSC.ConnectionString = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strConnectionDB
 DoCmd.Close acDataAccessPage, dapPage.Name, acSaveYes
 Next objDAP

 ChangeConnectString = True

ExitHere:
 ' Turn on warnings and screen painting.
 DoCmd.Hourglass False
 DoCmd.SetWarnings True
 Application.Echo True
 Exit Function

HandleErr:
 MsgBox Err.Number & ": " & Err.Description, "ChangeConnectString"
 Resume ExitHere
End Function
The code begins by setting up three variables:
Dim objDAP As AccessObject
Dim dapPage As DataAccessPage
Dim strConnectionDB As String
We need both objDAP and
dapPage because the collection of all
pages in a project returns a collection of AccessObject objects, but
only DataAccessPage objects support a property to get at the
DataSource control object, which in turn supports the
ConnectionString property.
The code sets the value of the string variable to the name of the
current project:
strConnectionDB = CurrentProject.FullName
It then turns on the hourglass and turns off warnings and screen
updates:
DoCmd.Hourglass True
Application.Echo False, "Updating pages"
DoCmd.SetWarnings False
If you ran the test we described, you have seen that
SetWarnings has no effect on the message box that
notifies you that the data link is broken.

 The code uses the AllDataAccessPages
collection of the CurrentProject object to iterate through the pages:
 For Each objDAP In CurrentProject.AllDataAccessPages
.
.
.
 Next objDAP
The ConnectionString property can't be changed
unless the page is in design view, so the code opens each page in
turn and sets a DataAccessPage object variable to the open page:
DoCmd.OpenDataAccessPage objDAP.Name, acDataAccessPageDesign
Set dapPage = DataAccessPages(objDAP.Name)

 It's the
OpenDataAccessPage method that triggers the message box regarding the
broken link.
The next line of code does the work:
dapPage.MSODSC.ConnectionString = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strConnectionDB

 ConnectionString is
a property of the DataSource control that is automatically included
on every bound DAP. In code, the DataSource control is called MSODSC.
Once the string has been changed, the code saves and closes the DAP
and moves on to the next page object:
DoCmd.Close acDataAccessPage, dapPage.Name, acSaveYes
Finally, after the code has iterated through all the pages, the
cleanup work is done. The code turns the hourglass off, sets warnings
on, and turns screen painting on:
' Turn on warnings and screen painting.
DoCmd.Hourglass False
DoCmd.SetWarnings True
Application.Echo True
If any part of the code fails, the function returns a
False value.
Tip
It would seem that you could simply use the name of the database
(without its path) if it was in the same folder as the page file (the
.htm file). Unfortunately, this
doesn't work. Therefore, you'll
need to update the connection string information any time you move
your database and page files to a new location.

13.7. Change the Default Settings for New DAPs

Problem

 You don't like the
default colors for the background of the caption and footer section,
or for the alternate row in a tabular page. You also wish you
didn't have to change the ConnectionFile property
for every page you create to point to the same
.udl file.

Solution

 Access's Tools
→ Options dialog now includes a Pages page where you can set
defaults for any new pages you create. Changing the defaults will
have no effect on existing pages.

 To
see how the color options affect the look of your new pages, follow
these steps:
	Create a new DAP. Add a table to the page and request a Tabular
layout.

	Switch to page view. Unless your defaults have already been changed,
you'll see a caption with a steelblue background,
and every other row will have a whitesmoke background.

	Close the page.

	Select Tools Options from the main Access menu. Click the Pages tab.
You'll see the dialog shown in Figure 13-21.

[image: The default Pages options]

Figure 13-21. The default Pages options

	Change the alternate row color to thistle.

	Edit the Caption Section Style text box to use plum instead of
whitesmoke as the background color. The dialog will now look like
Figure 13-22.

[image: The Pages options after editing]

Figure 13-22. The Pages options after editing

	Click the OK button to accept the changes and close the dialog.

	Create a new page. Add a table to the page and request a Tabular
layout.

	Switch to page view. You'll now see a caption with a
thistle background, and every other row will have a plum background.

Discussion

 We used the
Options dialog to change the look of two sections. All the options
for pages are listed in Table 13-2. You can play
around with these until you find the look you want.
Table 13-2. Page options
	
 Option

 	
 Description

	
 Section Indent

 	
 Defines the distance between the section and the page margin.

	
 Alternate Row Color

 	
 Defines the color for every other row in a tabular page.

	
 Caption Section Style

 	
 Uses standard HTML syntax to define the style for the caption
section, where it exists.

	
 Footer Section Style

 	
 Uses standard HTML syntax to define the style for the footer section,
where it exists.

	
 Use Default Page Folder

 	
 Specifies whether to store all pages (the actual
.htm files) in a folder other than the folder of
the current database.

	
 Default Page Folder

 	
 If Use Default Page Folder is checked, specifies the folder where
.htm files should be stored.

	
 Use Default Connection File

 	
 Specifies whether to use a connection file (.udl
or .odc) for all new pages.

	
 Default Connection File

 	
 If Use Default Connection File is checked, specifies the connection
file to be used.

13.8. Use Parameters Set in One DAP to Open Another

Problem

 In Access, every report your users
run starts with a dialog prompting them for input parameters, such as
the requested timeframe for the report. How can you do the same thing
with DAPs? You'd like the user to fill in start and
end dates in the browser, and then open the page using those dates as
a "where condition."

Solution

 There
are several ways to handle this issue; we'll show
you two. Both solutions discussed here require that you base your DAP
on a query that uses input parameters in the criteria. The first
solution allows the DataSource control to do the work for you, much
like allowing Access to display the Input Parameter dialog when you
run a query that requires parameters. The second solution requires
you to create another page that asks the user to enter the criteria,
much like using a form to feed the query on which a report is based.
This solution provides more flexibility but requires you to write
some code in VBScript. The VBScript code uses cookies to pass
information between the two pages.
The first solution requires no extra work on your part—it
simply takes advantage of the DataSource component's
built-in functionality. To test it out with our sample database,
follow these steps:
	Open our sample query from 13-08.MDB,
qryOrdersByDate, in design view. The query is
shown in Figure 13-23. Note the input parameters,
[
 Start
 Date
] and
[
 End
 Date
], used as
criteria.

[image: The data source for our pages uses parameters in the criteria]

Figure 13-23. The data source for our pages uses parameters in the criteria

	Run the sample query. You'll be prompted for start
and end dates with the built-in Input Parameter dialog shown in Figure 13-24. Enter any dates between July 1996 and May
1998 to see the query result.

[image: The Input Parameter dialog]

Figure 13-24. The Input Parameter dialog

	Close the query.

	Create a DAP based on the query. Add whatever fields
you'd like. You can also use our sample page, Sample
with No Code, if you'd prefer.

	Run the page. Before the page is displayed, you'll
see the Enter Parameters dialog shown in Figure 13-25.

[image: The Enter Parameters dialog]

Figure 13-25. The Enter Parameters dialog

	Enter start and end dates and click the OK button.
You'll see the page, filtered to show only orders
between those dates.

The second solution allows you to show the user your own parameter
request dialog as an HTML page. To do this, you'll
need to create a page to collect the parameters and then add code to
both that page and the data page to use the values entered in the
parameter page as the parameters of the query.
First, try out our sample by following these steps:
	The sample won't work if you run it from within
Access. Switch to Internet Explorer.

	Open Param OrdersByDate.htm in the sample
folder. The page is shown in Figure 13-26. It simply
prompts for the criteria to be used in another DAP.

[image: Param OrdersByDate.htm in a browser window]

Figure 13-26. Param OrdersByDate.htm in a browser window

	Enter start and end dates and click the OK command button. The
OrdersByDate.htm DAP will open in the browser.
You'll see only orders between the dates you
specified.

Discussion

 Param OrdersByDate.htm and
OrdersByDate.htm work by using VBScript code to
read and write information to a cookie that stays available for only
one browser session.

 Cookies, as you
probably know, are bits of text that store information about what you
are doing during a browser session. They are sometimes written out to
disk so that the code used on a web site
"remembers" what you were doing
from one browser session to the next. In our case, the cookie will be
available only in memory; it won't be written out to
disk, and it will be deleted once the data page is displayed.

 If your background
is in database development, VBScript may be new to you. You can use
scripts written in VBScript to enhance your DAPs, just as you can use
VBA to enhance your forms and reports. If you already know VBA, you
won't find VBScript particularly difficult to write.
We won't attempt to teach you about VBScript or the
document object model you'll use to control your
page; we'll just touch on the key concepts for this
sample. There are two key differences between VBA and VBScript that
you should be aware of before we review the code:
	

 You won't be working in
the VB Editor when you write VBScript. You'll
probably use the Microsoft Script Editor, but you can use any text or
HTML editor, including Notepad.

	Variables cannot be typed in VBScript. All variables are variants.

To get started with VBScript, take a look at the code
we've written for this sample. Follow these steps to
look at the code:
	In Access, open the Param
 OrdersByDate.htm data access page. Note that the
two text box controls are named txtStartDate and
txtEndDate. The command button is named
cmdOK.

	
 Select View → HTML Source from
the menu. The Microsoft Script Editor will be launched, and
you'll see the HTML code the browser uses to display
the page.

	Press Ctrl-F to do a search. Search for the string
"script". The cursor should land on
the script containing the event procedure for the cmdOK
button's onclick event:
<SCRIPT language=vbscript>
Sub cmdOK_onclick()

 Document.cookie = "startdate=" & txtStartDate.value
 Document.cookie = "enddate=" & txtEndDate.value

 window.navigate("OrdersByDate.htm")

End Sub
</SCRIPT>
The first two lines of code use the document's
Cookie property to record the parameters entered in the text boxes.
Each time the code sets the cookie to a new
variable
 =
 value, that string is appended to whatever
the string already contains, with a semicolon separating the
variable
 =
 value pairs. That is, if the start date is
6/1/97 and the end date is 6/30/97, the cookie will look like this:
startdate=6/1/97;enddate=6/30/97
The third line of code causes the browser to open
OrdersByDate.htm.

	Close the Microsoft Script Editor and the Param
OrdersByDate.htm data access page.

	Open the OrdersByDate.htm data access page in
design view.

	Select View → HTML Source to launch the Microsoft Script
Editor. Search for the word
"script".

	There are two custom scripts in this data access page. The first
contains a general-use function named
ReadVarInCookie. The code looks like this:
<SCRIPT language=vbscript>

 Function ReadVarInCookie(strVariable)

 Dim varSplit
 Dim intCount
 Dim intFind

 varSplit = split(document.cookie,"; ")
 for intCount = lbound(varSplit) to ubound(varSplit)
 if left(varSplit(intCount),len(strVariable)) = strVariable then
 ' Figure out what's on the other side of the equals sign.

 intFind = instr(varSplit(intCount),"=")
 ReadVarInCookie = mid(varSplit(intCount),intFind + 1)
 exit function
 end if
 next

 ReadVarInCookie = "NOT_FOUND"

 End Function

</SCRIPT>
The function takes an argument of the variable names for which
we're searching (startdate and
enddate, in our case). It returns the value
associated with that variable name. Remember, it's
the cookie that is being searched for the variable and value, and the
cookie looks like this:
startdate=6/1/97;enddate=6/30/97
The first line following the variable declarations uses the built-in
Split function to parse the document's cookie into
an array of variable
 =
 value pairs. That is, it looks for
semicolons and creates an array element for each string between the
semicolons:
varSplit = split(document.cookie,"; ")
The for loop iterates through each element in the
resulting array and checks the first part of the element to see if
the string matches the name of the variable sent:
for intCount = lbound(varSplit) to ubound(varSplit)
 if left(varSplit(intCount),len(strVariable)) = strVariable then
If the if statement evaluates to
True, the code looks for the value on the other
side of the equals sign and returns that value:
intFind = instr(varSplit(intCount),"=")
ReadVarInCookie = mid(varSplit(intCount),intFind + 1)
If the variable name is not found, the function returns the value
NOT_FOUND.

	Scroll down to the second script. This script is not tied to an
event, nor is it even contained in a procedure. Rather, the script
runs when the page loads:
<SCRIPT language=vbscript>

dim strStart
dim strEnd

strStart = ReadVarInCookie("startdate")

strEnd = ReadVarInCookie("enddate")

MSODSC.RecordsetDefs("qryOrdersByDate").parametervalues.Add "[Start Date]",
strStart
MSODSC.RecordsetDefs("qryOrdersByDate").parametervalues.Add "[End Date]", strEnd

 document.cookie = "startdate=NULL;expires=Monday, 01-Jan-95 12:00:00 GMT"
 document.cookie = "enddate=NULL;expires=Monday, 01-Jan-95 12:00:00 GMT"
</SCRIPT>
The script calls the ReadVarInCookie function to find the values of
startdate and enddate:
strStart = ReadVarInCookie("startdate")
strEnd = ReadVa1fp found, the code uses the DataSource component's object model
to set parameter values for the query on which the page is based:
MSODSC.RecordsetDefs("qryOrdersByDate").parametervalues.Add "[Start Date]",
strStart
MSODSC.RecordsetDefs("qryOrdersByDate").parametervalues.Add "[End Date]", strEnd
Finally, the code clears the cookie by setting the variable values to
Null and providing an expiration date in the past:
document.cookie = "startdate=NULL;expires=Monday, 01-Jan-95 12:00:00 GMT"
document.cookie = "enddate=NULL;expires=Monday, 01-Jan-95 12:00:00 GMT"

 We've only
just touched the surface of coding DAPs. To go farther,
you'll need to learn more about the document object
model that Internet Explorer supports, and also about the Microsoft
Office Data Source Control (MSODSC), the object model used in DAPs
for retrieving and updating data.

Chapter 14. SQL Server

 Microsoft has always made it easy to
connect to SQL Server data from Access by allowing you to create
linked tables using Open Database Connectivity (ODBC). You have also
been able to create pass-through queries in Access that use ODBC to
send commands to SQL Server for processing.

 In Access 2000, Microsoft
introduced a new way of using Access to work with SQL Server. Instead
of creating regular MDB databases and using ODBC, you could create a
new kind of application called an Access Data Project (ADP). ADPs
don't use the Jet database engine and ODBC; instead,
they use an OLE DB connection to a SQL Server database. In ADPs, you
have the ability to view and modify SQL Server objects, and you can
create forms, reports, and data access pages based on your SQL Server
data.
In this chapter, we present a range of tips for using both
traditional MDBs and the new ADPs to create Access applications that
read and manipulate data stored in a SQL Server database. Several of
the examples make use of the Northwind and Pubs sample databases that
ship with SQL Server.
14.1. Dynamically Link SQL Server Tables at Runtime

Problem

 Your Access SQL Server
database uses linked tables and views in SQL Server. You have set up
security and permissions in SQL Server and want to make sure that
each user's linked tables are attached under their
own permissions, not another user's permissions. In
addition, you don't want the users to be prompted
for an additional login ID and password each time they use a table.

Solution

 If you link SQL Server tables from an
Access database using the File Get External Data menu commands, you
will be prompted to use or create a Data Source Name (DSN). The main
drawback to DSNs is that they need to be installed on every
user's machine. A better solution is to use VBA code
to link or relink tables. You can supply connection information in
the Connection string without having to create a DSN.

 This technique uses DAO to create new
TableDef objects in each database when the application starts up. The
startup form for the application has a dialog where the user can
supply a login and password to be used to connect to SQL Server. The
list of table names is stored in a local Access (Jet) database.
To add this technique to your application, follow these steps:
	Create a table to hold the names and properties of the SQL Server
tables to which your application will link. In the
14-01.MDB sample database, the local table is
named tblSQLTables. The column definitions are
listed in Table 14-1.

Table 14-1. Column definitions for tblSQLTables
	
 Column name

 	
 Data type

 	
 Primary key?

 	
 Required?

	
 SQLTable

 	
 Text 50

 	
 Yes

 	
 Yes

	
 SQLDatabase

 	
 Text 50

 	
 No

 	
 Yes

	
 SQLServer

 	
 Text 50

 	
 No

 	
 Yes

	Enter data in the table. Figure 14-1 shows the
datasheet view of the table used to store data about the tables that
are linked from the Northwind database on the local SQL Server.

[image: tblSQLTables has entries to link to the tables in the Northwind database]

Figure 14-1. tblSQLTables has entries to link to the tables in the Northwind database

	
 Create the startup form. The
example shown in Figure 14-2 uses an option group to
determine whether integrated security (Windows XP, Windows 2000, or
Windows NT authentication) or a SQL Server login and password is
being used. If a SQL Server login is selected, users can enter their
logins and passwords in the text boxes.

[image: The startup form allows users to supply login information for the linked tables]

Figure 14-2. The startup form allows users to supply login information for the linked tables

	
 Once you've created
the form and the necessary controls, you'll need to
write the code to set up the links. In design view, select the
OnClick event of the Connect command button and choose Event
Procedure. This will open the VBA code window.

	

 You'll
need to set a reference to the DAO 3.6 Object Library by choosing
Tools → References... and checking the Microsoft DAO 3.6
Object Library, as shown in Figure 14-3.

[image: Setting a reference to the DAO object library]

Figure 14-3. Setting a reference to the DAO object library

	Here's the complete code listing for the
cmdConnect_Click event procedure:
Private Sub cmdConnect_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim rst As DAO.Recordset
 Dim strServer As String
 Dim strDB As String
 Dim strTable As String
 Dim strConnect As String
 Dim strMsg As String

On Error GoTo HandleErr

 ' Build base authentication strings.
 Select Case Me.optAuthentication
 ' Windows/NT login
 Case 1
 strConnect = "ODBC;Driver={SQL Server};Trusted_Connection=Yes;"
 ' SQL Server login
 Case 2
 strConnect = "ODBC;Driver={SQL Server};UID=" _
 & Me.txtUser & ";PWD=" & Me.txtPwd & ";"
 End Select

 ' Get rid of any old links.
 Call DeleteLinks

 ' Create a recordset to obtain server object names.
 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblSQLTables", dbOpenSnapshot)
 If rst.EOF Then
 strMsg = "There are no tables listed in tblSQLTables."
 GoTo ExitHere
 End If

 ' Walk through the recordset and create the links.
 Do Until rst.EOF
 strServer = rst!SQLServer
 strDB = rst!SQLDatabase
 strTable = rst!SQLTable
 ' Create a new TableDef object.
 Set tdf = db.CreateTableDef(strTable)
 ' Set the Connect property to establish the link.
 tdf.Connect = strConnect & _
 "Server=" & strServer & _
 ";Database=" & strDB & ";"
 tdf.SourceTableName = strTable
 ' Append to the database's TableDefs collection.
 db.TableDefs.Append tdf
 rst.MoveNext
 Loop

 strMsg = "Tables linked successfully."

 rst.Close
 Set rst = Nothing
 Set tdf = Nothing
 Set db = Nothing

ExitHere:
 MsgBox strMsg, , "Link SQL Tables"
 Exit Sub

HandleErr:
 Select Case Err
 Case Else
 strMsg = Err & ": " & Err.Description
 Resume ExitHere
 End Select
End Sub

The completed application is shown in 14-01.MDB,
which contains the local table used to store data about the tables
that are linked from the Northwind SQL Server database. A startup
form contains the relinking code.

Discussion

The first step in linking SQL Server tables is to build the ODBC
Connection string that will be used to link the tables. You could use
a DSN, but you'd have to create the DSN if it
didn't exist. We find it easier to simply build a
dynamic string with all the required information. The first part of
the string contains connection information that will be the same for
every table:
Select Case Me.optAuthentication
 ' Windows/NT login
 Case 1
 strConnect = "ODBC;Driver={SQL Server};Trusted_Connection=Yes;"
 ' SQL Server login
 Case 2
 strConnect = "ODBC;Driver={SQL Server};UID=" _
 & Me.txtUser & ";PWD=" & Me.txtPwd & ";"
End Select
The next step is to delete any old linked SQL Server tables by
calling the DeleteLinks procedure:
Call DeleteLinks
The DeleteLinks procedure walks through the current
database's TableDefs collection, deleting only
linked ODBC tables. Here's the complete listing:
Private Sub DeleteLinks()
 ' Delete any leftover linked tables from a previous session.

 Dim tdf As DAO.TableDef

 On Error GoTo HandleErr
 For Each tdf In CurrentDb.TableDefs
 With tdf
 ' Delete only SQL Server tables.
 If (.Attributes And dbAttachedODBC) = dbAttachedODBC Then
 CurrentDb.Execute "DROP TABLE [" & tdf.Name & "]"
 End If
 End With
 Next tdf

ExitHere:
 Set tdf = Nothing
 Exit Sub

HandleErr:
 MsgBox Err & ": " & Err.Description, , "Error in DeleteLinks()"
 Resume ExitHere
 Resume
End Sub

 The
next step is to create a recordset that lists the table names, the
SQL Server database name, and the SQL Server itself. If no tables are
listed, the procedure terminates. This portion of code is as follows:
Set db = CurrentDb
Set rst = db.OpenRecordset("tblSQLTables", dbOpenSnapshot)
If rst.EOF Then
 strMsg = "There are no tables listed in tblSQLTables."
 GoTo ExitHere
End If

 Next, walk through the recordset,
creating a new TableDef object for each table listed. The Connect
property is set to the base connection string, with the server and
database name concatenated. The TableDef object's
SourceTableName is set to the table name in the database, and the
TableDef object is appended to the TableDefs collection. This portion
of code resides in the following Do
 Until loop:
Do Until rst.EOF
 strServer = rst!SQLServer
 strDB = rst!SQLDatabase
 strTable = rst!SQLTable
 ' Create a new TableDef object.
 Set tdf = db.CreateTableDef(strTable)
 ' Set the Connect property to establish the link.
 tdf.Connect = strConnect & _
 "Server=" & strServer & _
 ";Database=" & strDB & ";"
 tdf.SourceTableName = strTable
 ' Append to the database's TableDefs collection.
 db.TableDefs.Append tdf
 rst.MoveNext
Loop
Once the TableDefs are appended, the cleanup code runs and the user
is notified that the tables have been successfully linked:
 strMsg = "Tables linked successfully."

 rst.Close
 Set rst = Nothing
 Set tdf = Nothing
 Set db = Nothing

ExitHere:
 MsgBox strMsg, , "Link SQL Tables"
 Exit Sub

 The
technique discussed here for relinking tables works well in any
version of SQL Server and is not specific to any version of Access.
Any time you use DAO in your code, you need to open the Tools
→ References... dialog in the Visual Basic editor and make
sure that a reference is set for the Microsoft DAO library: the
version of DAO used in Access 2000 or later is 3.6.
Tip
Although you can link SQL Server tables using ADOX, the SQL Server
tables are then read-only in Access.

14.2. Dynamically Connect to SQL Server from an ADP

Problem

 When you create a new ADP, you are
prompted for connection information that is saved with the ADP. If
you want to change it later, you need to choose File →
Connection from the menu and manually input new connection
information in the Data Link dialog. Since the users of your ADP may
not know how to do that, they would be connecting to SQL Server using
your security credentials, not their own. You'd like
to create a project that automatically opens the Data Link dialog and
prompts the users for their own connection information instead of
displaying your connection information.

Solution

This solution involves creating an unbound ADP (an ADP that is not
yet connected to a SQL Server database) and prompting the user to
fill in the connection information by displaying the Data Link
dialog.
Since connection information is saved with the ADP, you need to
create a new ADP with no connection information.
Follow these steps to implement this functionality in your ADPs:
	Create a new ADP by choosing File → New and clicking on
Project (Existing Data), as shown in Figure 14-4.

[image: Creating a new ADP]

Figure 14-4. Creating a new ADP

	Designate a location for the new project when prompted. When the
Connection dialog opens, press Cancel. Do not fill in any connection
information.

	You will now have an empty project. You want to create a startup form
like the one shown in Figure 14-5.

[image: The startup form for the ADP]

Figure 14-5. The startup form for the ADP

	This form has a button that allows users to change their connection
information. However, you want to prompt them to connect to the SQL
Server database the first time they connect, so place the following
code in the Form_Load event:
Private Sub Form_Load()
 If Not CurrentProject.IsConnected Then
 DoCmd.RunCommand acCmdConnection
 End If
End Sub

	The code for the Connect button simply executes the same line of code
a second time:
Private Sub cmdConnect_Click()
 DoCmd.RunCommand acCmdConnection
End Sub

Discussion

 The DoCmd.RunCommand statement
allows you to execute almost any item that appears in the built-in
Access menus, as shown in the Object Browser in Figure 14-6. In this case, you are invoking the Data Link
dialog by using the acCmdConnection constant.
[image: Constants used with the DoCmd.RunCommand statement]

Figure 14-6. Constants used with the DoCmd.RunCommand statement

 When the form loads, the
CurrentProject's IsConnected property is checked.
The first time the form loads, you want to prompt for connection
information before proceeding. Once users type in their credentials,
this information will be saved. Should the users ever want to change
their connection information, the Connect button on the form will
allow them to do so.

 If you need to
dynamically connect at runtime and don't want to
save connection information, you can connect and disconnect in code
by taking advantage of the CurrentProject.OpenConnection and
CurrentProject.CloseConnection methods. To open a project, use
OpenConnection, passing in your connection
information as a string:
CurrentProject.OpenConnection strConnect
The connection string, strConnect, looks like this
for integrated security against the Northwind database on the local
server:
PROVIDER=SQLOLEDB.1;INTEGRATED SECURITY=SSPI;PERSIST SECURITY INFO=FALSE;INITIAL
CATALOG=Northwind;DATA SOURCE=(local)
The following connection string works for a SQL Server user named
Dudley with a password of
"password":
PROVIDER=SQLOLEDB.1;PERSIST SECURITY INFO=TRUE;USER
ID=Dudley;PASSWORD=password;INITIAL CATALOG=Northwind;DATA SOURCE=(local)
The sample project, 14-02code.adp, demonstrates
this technique.

14.3. Share an ADP from a Shared Network Folder

Problem

 You want to share an ADP on a network.
However, the second user who attempts to open the ADP gets an error
message.

Solution

This solution involves opening the ADP using the
/runtime switch.
Follow these steps to create a shared ADP:
	Create a shortcut on each user's desktop. In the
Properties dialog, enter information using the format shown in Figure 14-7.

[image: Properties for creating a shortcut for a shared ADP]

Figure 14-7. Properties for creating a shortcut for a shared ADP

	Copy the shortcut to each user's machine.

Discussion

 ADPs are intended for single-user
activity. Using the /runtime switch allows you to
get around this limitation by opening the ADP as read-only.

 In Access MDB databases, the
Jet database engine allows multiple users to share a frontend
database containing forms, reports, queries, and code, just as they
can share backend databases that contain data. If necessary, the Jet
engine can lock resources in the database to prevent multiple users
from interfering with each other.
ADPs don't have the benefit of the Jet database
engine, so Access has no way to handle multiple users of a single
project file. Users can share SQL Server data, but usually each user
needs her own ADP. You can get around this by using the
/runtime command-line option to force the ADP to
be read-only. In this case, Access detects that there is no danger of
users interfering with each other because they can't
change anything, so it allows multiple users to work with the same
ADP.

14.4. Fill the Drop-Down Lists When Using ServerFilterByForm in an ADP

Problem

 You have turned on the
ServerFilterByForm property. However, when users open the form and
select from the combo boxes, the only choices are
Is
 Null and
Is
 Not
 Null.
How do you get the combo boxes to show a list of valid values for
that field?

Solution

 If you turn on the ServerFilterByForm
property, your form will open in a special view that turns text boxes
into combo boxes. This allows users to define their own server
filters at runtime, which are then processed by SQL Server before the
record source data is returned to the form. However,
you'll often see only the values shown in Figure 14-8 when you expand one of the combo boxes.
[image: Combo boxes with only Is Null and Is Not Null options]

Figure 14-8. Combo boxes with only Is Null and Is Not Null options

 Each text box on the form has a
FilterLookup property that has three settings:
	Never
	A combo box list will contain only two items: Is
 Null and Is
 Not
 Null.

	Always
	A combo box with a full list of values will be created for that text
box.

	Database Default
	Access will populate the list either with all the values or with only
Is Null/Is Not Null, depending on the settings in the Edit/Find tab
of the Tools → Options dialog shown in Figure 14-9.

[image: Database options that affect ServerFilterByForm]

Figure 14-9. Database options that affect ServerFilterByForm

Follow these steps to change the database defaults to always show a
list of available items when using
ServerFilterByForm:
	Open the database whose options you want to change.

	Choose Tools → Options from the menu.

	Check the "Records at server"
option shown in Figure 14-9.

If you don't want to change this option globally,
followthese steps to set the list of values on a form-by-form basis:
	In design view, open the form in which you want to enable a full list
of values for ServerFilterByForm. Select all the text boxes you want
to enable.

	Set the FilterLookup property on the Data tab in the properties sheet
to Always, as shown in Figure 14-10.

[image: Set the FilterLookup property for the control on a form]

Figure 14-10. Set the FilterLookup property for the control on a form

When you open the form to filter records now, you'll
see some real data in the combo boxes, as shown in Figure 14-11.
[image: The combo boxes now display real data]

Figure 14-11. The combo boxes now display real data

Discussion

 The data to populate the combo boxes
must, of course, come from the server. Setting the FilterLookup
property for the controls or setting the "Records at
server" option for the entire project runs
additional queries that populate each combo box with a domain of real
values from which the user can choose.
Tip
When you set the ServerFilter property on a form, regular filtering
with the form's Filter property is unavailable.

 Because populating combo boxes with real
values entails extra round trips to the server to retrieve the data
for the lists, it defeats the purpose of using the ServerFilter
property in the first place, so don't overuse this
feature. The benefit is that the interface is more user-friendly when
the user can select from actual values instead of guessing.
You'll have to evaluate your own applications to
determine whether or not the extra data filtering is worth the extra
load on the server. If the form would otherwise load a lot of
records, and if the lists you are loading aren't too
big, you would probably improve performance by using
ServerFilterByForm. To be safe, adjust the
ServerFilterByForm setting at the control level
rather than by setting the database default for the entire project.

14.5. Pass Parameters to Stored Procedures from Pass-Through Queries in an MDB

Problem

 You are calling stored procedures
that require parameters by using pass-through queries. How can you
pass parameters to the pass-through query from your form? If you
include a reference to the form in the pass-through query, you get an
error message from SQL Server.

Solution

Pass-through queries are not processed in the same way as regular
Access queries against linked tables. The SQL syntax you type in a
pass-through query is passed directly to SQL Server. Any references
to forms or controls on forms in a pass-through query are meaningless
to SQL Server, so you must pass the actual values for your
parameters.

 A pass-through query has three important
properties:
	SQL
	
 The
SQL property contains the textual content of the pass-through query.
This must be a valid Transact-SQL statement.

	ODBCConnectStr
	
 The connection string contains
information that the query uses to connect to SQL Server. You can
specify a DSN, or use a string containing all the requisite
connection information, as shown in the Solution in Recipe 14.1.

	ReturnsRecords
	
 The ReturnsRecords property specifies
whether or not the query returns records. An action query that just
modifies data without retrieving anything would have this property
set to No or False.

 Figure 14-12 shows the properties sheet for a
pass-through query to the pubs sample database in
SQL Server.
[image: Pass-through query properties]

Figure 14-12. Pass-through query properties

 The most
versatile way to set these properties is to write a procedure that
sets them at runtime by using a DAO QueryDef object.
You'll then need to set parameter values to the
procedure for connection information, the SQL string that comprises
the pass-through query, and whether or not the query returns records.

 To
modify a pass-through query at runtime, follow these general steps:
	Open a new module and set a reference to the DAO object library.

	Create a new public procedure. Here is the complete code listing:
Public Sub acbPassThrough(_
 ByVal QueryName As String, _
 ByVal SQLStatement As String, _
 Optional ConnectStr As Variant, _
 Optional ReturnsRecords As Boolean = True)

 Dim qdf As DAO.QueryDef
 Dim strConnect As String

 Set qdf = CurrentDb.QueryDefs(QueryName)

 ' If no connection information is supplied,
 ' connection information from the query is used.
 If IsMissing(ConnectStr) Then
 strConnect = qdf.Connect
 Else
 strConnect = CStr(ConnectStr)
 End If

 ' Set query properties to parameter values.
 qdf.Connect = strConnect
 qdf.ReturnsRecords = ReturnsRecords
 qdf.SQL = SQLStatement

ExitHere:
 Set qdf = Nothing
 Exit Sub

HandleErr:
 MsgBox Err & ": " & Err.Description, , "Error in acbPassThrough"
 Resume ExitHere
End Sub

	To test the procedure, create a new query and choose Query
SQL-Specific Pass-through from the menu.

	Save the query, naming it qryPassThrough.

	Create a form with text boxes and optionally a combo box to test the
procedure. The sample form in 14-05.MDB uses the
byroyalty stored procedure from the
pubs sample database. It takes an input parameter
for the royalty percentage. You can change the values on the form
shown in Figure 14-13 to adjust any of the arguments
needed to call the acbPassThrough procedure.

[image: The sample form used to test the acbPassThrough procedure]

Figure 14-13. The sample form used to test the acbPassThrough procedure

	
 Write the following code in the
Click event of the command button to pass the parameters to
acbPassThrough:
Private Sub cmdExecute_Click()
 Dim strQuery As String
 Dim strSQL As String
 Dim strConnect As String
 Dim fReturnsRecs As Boolean

 strQuery = Me.lblQuery.Caption
 strConnect = Me.lblConnection.Caption
 fReturnsRecs = CBool(Me.ckReturnsRecords)
 strSQL = "EXEC byroyalty " & Me.cboParameter

 Call acbPassThrough(strQuery, strSQL, strConnect, fReturnsRecs)
 Me.RecordSource = strQuery
 Me.txtAuID.Visible = True
End Sub

	Test the procedure by clicking the "Execute
byroyalty" command button on the form.

Discussion

The acbPassThrough procedure can modify any saved pass-through query
by using the DAO QueryDef object:
Dim qdf As DAO.QueryDef
Dim strConnect As String

Set qdf = CurrentDb.QueryDefs(QueryName)
There is an optional parameter for the ConnectStr argument. If a
connection string is not supplied, the one saved with the QueryDef
object is used:
If IsMissing(ConnectStr) Then
 strConnect = qdf.Connect
Else
 strConnect = CStr(ConnectStr)
End If
The properties for the query are then set to the values passed into
the procedure:
qdf.Connect = strConnect
qdf.ReturnsRecords = ReturnsRecords
qdf.SQL = SQLStatement
This actually permanently saves changes to the query—if you
open the query in design view after executing the procedure,
you'll see the last properties that were set.
The values on the form are simply collected from the relevant text
boxes and combo boxes, and passed to the procedure. Then the form is
requeried and the new results of the pass-through query are loaded as
the record source of the form.

 Access lets you create ad hoc queries by
using the CreateQueryDef syntax and specifying an
empty string for the parameter name. However, using a previously
saved query eliminates the overhead of creating a new object from
scratch and then discarding it.
Tip
The result set returned from a pass-through query is always read-only.

14.6. Pass Parameters to Stored Procedures from an ADP

Problem

You have a form that is based on a stored procedure. How do you pass
parameter values from a combo box to the stored procedure?

Solution

 The InputParameters property
allows you to pass parameters to the form's record
source. The InputParameters property can be used with stored
procedures or with direct Transact-SQL statements. If you use the
InputParameters property with a SQL statement, you must formulate the
SQL statement with a question mark as the parameter placeholder:
SELECT * FROM MyTable WHERE Price > ?
You then need to set the InputParameters property of the form,
specifying the parameter name and data type, and where the value can
be obtained. In the case of a SQL statement using question marks, the
name you choose for the parameter is not important:
Price money = Forms!frmOrderInputParameter!txtSearch

 Here's how to set
up your forms to supply input parameters to stored procedures:
	
 The example form in
14-06.adp has a combo box for the user to select
a royalty percentage. Set the form's RecordSource
property to the byroyalty stored procedure, as
shown in Figure 14-14.

[image: Set the form's RecordSource property to the byroyalty stored procedure]

Figure 14-14. Set the form's RecordSource property to the byroyalty stored procedure

	Set the InputParameters property to the following expression:
@percentage int=Forms!frmParameters!cboParameter

	
 Type the following code in
the combo box's AfterUpdate event:
Me.Requery

	Run the form. The form opens, but no data is displayed because no
value has been specified for the @percentage parameter and there are
no records with a blank percentage. Select an item from the combo box
and the form will be requeried, picking up the value from the combo
box and reexecuting the stored procedure.

 Although this technique eventually
works, it's not an ideal solution because it
involves a wasted round trip to the server the first time the form
opens. The stored procedure executes with a null value in the place
of a valid parameter value that would return records. No error is
returned—there simply weren't any matching
records.
A more efficient solution is to write code that sets the record
source only when a royalty percentage has been selected:
	Open the form in design view and delete the form's
RecordSource property setting (byroyalty) and the
InputParameters property setting.

	Delete the existing code in the AfterUpdate event of the combo box
and replace it with the following:
Private Sub cboParameter_AfterUpdate()
 Me.RecordSource = "EXEC byroyalty " & Me.cboParameter.Value

 ' Run this code only the first time the combo box
 ' is requeried.
 If Me.txtAuID.Visible = False Then
 Me.txtAuID.Visible = True
 DoCmd.RunCommand acCmdSizeToFitForm
 End If
End Sub

	Test the form by opening it in form view. The byroyalty stored
procedure will be executed only when the user selects an item from
the combo box.

Discussion

The form opens in unbound mode, with no record source set. The text
box that displays the au_id value is hidden. When the AfterUpdate
event of the combo box occurs, the form is automatically requeried:
Me.RecordSource = "EXEC byroyalty " & Me.cboParameter.Value
Then the text box is unhidden so that the result set can be displayed:
If Me.txtAuID.Visible = False Then
 Me.txtAuID.Visible = True
 DoCmd.RunCommand acCmdSizeToFitForm
End If

 Figure 14-15 shows the form with all of the records
displayed.
[image: A form that passes a value to a stored procedure]

Figure 14-15. A form that passes a value to a stored procedure

 Although you could leave the form
with the original property settings specifying the stored procedure
name in the RecordSource property and the parameter value in the
InputParameters property on the properties sheet, it wastes a round
trip across the network in a request for records that will always
fail.
Whenever you are creating applications against server data, it is a
good idea to minimize your use of network and server resources as
much as possible. You will then be able to support a larger number of
users and provide better performance.

14.7. Use Controls as Parameters for the Row Source of Combo and List Boxes in an ADP

Problem

 Cascading combo boxes—where the list
in the second combo box changes based on the selection in the
first—can provide an effective way to limit the number of
records returned from SQL Server. You have a series of cascading
combo boxes that are based on stored procedures that have parameters.
The value that the user selects in the first combo box should
determine the contents of the list in the second combo box. How do
you pass the parameter values from one combo box to another?

Solution

 You can easily use a stored
procedure as the row source for a combo box in Access 2002 or later,
as long as the stored procedure doesn't have a
parameter. Figure 14-16 shows the properties sheet
for the Country combo box on frmCustomer in
14-07.adp that lets a user select from a list of
countries.
[image: A combo box based on a stored procedure with no parameter]

Figure 14-16. A combo box based on a stored procedure with no parameter

The stored procedure definition simply selects a distinct list of
countries from the Customers table in the Northwind database:
CREATE PROC procCountryList
AS
SELECT DISTINCT Country
FROM Customers
ORDER BY Country
However, the Select Customer combo box is based on the
procCustomersByCountry stored procedure, which has
an input parameter called @Country.
It's designed to filter customers by country, so
that a user can pick a country before selecting a single customer to
edit. The code for the procCustomersByCountry
stored procedure is:
CREATE PROC procCustomersByCountry
 @Country nvarchar(15)
AS
SELECT CustomerID, CompanyName
FROM Customers
WHERE Country = @Country
ORDER BY CompanyName

 The Select Customer combo box does
not get its RowSource property assigned unless a user selects a
country first. In the AfterUpdate event of the Country combo box, a
SQL string is constructed that executes the stored procedure with the
selected parameter:
Private Sub Country_AfterUpdate()
 Dim strCountry As String
 Dim strSQL As String

 strCountry = Me.Country & ""
 strSQL = "EXEC procCustomersByCountry " & strCountry
 If Len(strCountry) > 0 Then
 Me.cboCustomer.RowSource = strSQL
 End If
End Sub

 In the AfterUpdate event of the
Customer combo box, the form's RecordSource property
is then set:
Private Sub cboCustomer_AfterUpdate()
 Dim strSQL As String
 strSQL = "EXEC procCustomerSelect " & Me.cboCustomer
 Me.RecordSource = strSQL
 If Not Me.Detail.Visible Then
 Me.Detail.Visible = True
 DoCmd.RunCommand acCmdSizeToFitForm
 End If
End Sub
Here is the stored procedure being used for the record source:
CREATE PROC procCustomerSelect
 @CustomerID nchar(5)
AS
SELECT *
FROM Customers
WHERE CustomerID = @CustomerID
ORDER BY CompanyName
Here's how you can implement this functionality in
your forms:
	Create the necessary stored procedures for your combo boxes and forms.

	For the first combo box based on a stored procedure that is not
parameterized, simply assign the name of the stored procedure to the
row source.

	

 In the OnEnter or the OnGotFocus
event of the second combo box, pick up the value from the first combo
box and concatenate it to execute the stored procedure on which the
second combo box is based:
Me.cboCustomer.RowSource = "EXEC MyProc " & Me.FirstComboBox

Discussion

Not assigning a row source at design time allows you to dynamically
execute a parameterized stored procedure by concatenating the
parameter value to an EXECUTE statement. Every
time the parameter value changes, you create a new row source for the
dependent combo box.

 If this seems like a lot of work,
there is an easier way that isn't documented in the
Access help file. This technique is illustrated in frmSimple in
14-07.adp. You can name the first combo box with
the same name as the parameter (without the @ sign). Base the second
combo box on the first combo box by using a query with a parameter
that has the same name as the first combo box, and requery the second
combo box in the AfterUpdate event of the first combo box. Figure 14-17 shows the properties in the second combo box.
[image: Setting the properties of the second combo box]

Figure 14-17. Setting the properties of the second combo box

The code in the AfterUpdate event of the first combo box is simply to
requery the second combo box:
Me.SecondCombo.Requery

 In the example shown in
14-07.adp, the form itself is not a bound form.
In other words, its record source is assigned at runtime in the
AfterUpdate event of the combo box, which selects an individual
customer. If you were using this example on a bound form to filter
records, you would need to call the code in the AfterUpdate event in
the OnCurrent event as well.

14.8. Reference Data from More than One SQL Server Database in an ADP

Problem

 You'd like to have
your ADP connect to multiple SQL Server databases at one time.
However, the Data Link dialog allows room for only one SQL Server
database.

Solution

 Although at first glance this seems to
be a problem, the solution is readily at hand with SQL
Server's three-part naming convention. You are
probably already familiar with the
OwnerName.ObjectName syntax for referring to SQL
Server objects, which is needed when users other than the owner (or
creator) of that object wish to use the object. The three-part naming
syntax is:
DatabaseName.OwnerName.ObjectName
To refer to another SQL Server database in your ADP, follow these
steps:
	Create a new project and link it to the Northwind database. You can
look at the list of tables and see only the tables from Northwind.

	
 Create a new form. Type the following
statement into the RecordSource property of the form:
SELECT * FROM pubs.dbo.authors

	You will then see the Field List for the authors
table in the pubs database. Figure 14-18 displays the Field List from the sample form,
frmPubsAuthorsSQL, and shows that the form is now
bound to data in the pubs database, not the
Northwind database.

[image: The Field List from frmPubsAuthorsSQL]

Figure 14-18. The Field List from frmPubsAuthorsSQL

	Alternately, you can create a view in the Northwind database that
selects data from the pubs.authors table:
CREATE VIEW vwPubsAuthors
AS
SELECT au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract
FROM pubs.dbo.authors
You can then base forms and reports in your Northwind project on the
view.

Discussion

SQL Server allows users to access other databases residing on the
same server when the three-part naming syntax is used. However, users
must have been granted permissions in the source database if data is
to be accessed with a direct SQL statement. SQL Server will return a
permissions error message if those permissions have not been granted.
Working with data from multiple databases is easy in ADPs, even
though you see the objects from only one database listed in the
database window. Just remember to use the three-part naming syntax.

 If the data you need is not just in
another database but on another server, it gets a little more
complicated. In this case, you need to set up a linked server in SQL
Server to access the data. Linked servers in SQL Server use OLE DB
providers, which means you are not limited to only SQL Server data.
Linked servers allow you to use SQL Server as a gateway to many
different data sources, just as you may use Access databases to link
to multiple data sources.

14.9. Use Views to Update Data in an ADP When Users Don't Have Permissions on Tables

Problem

 You have secured your SQL Server 2000
database and removed all permissions for users to directly interact
with tables. You have created views and granted users permissions to
update data through the views instead. However, users normally are
not allowed to update data through views when they
don't have access to the underlying tables. How can
you allow them to update tables through views?

Solution

 Whenever you secure your database
in SQL Server, you have the option of denying permissions on tables
and granting permissions for users to work with the data only through
secondary objects such as views, stored procedures, or user-defined
inline functions. As long as both the underlying table and the
secondary object have the same owner, SQL Server does not check
permissions on the underlying table, and simply executes the action
based on user permissions granted on the secondary object. For
example, you can deny permissions for users to select data from a
table, and then create a view that selects data from the table. Then
grant users permissions to use the view, as shown in Figure 14-19.
[image: Using SQL Server Enterprise Manager to grant permissions for views]

Figure 14-19. Using SQL Server Enterprise Manager to grant permissions for views

You can then update data through the view instead of the table, as
long as you have permissions granted on the view. This allows you to
control which rows and columns in the table your users can access.
However, in an ADP, Access doesn't use the view to
update the data even if the view is the record source of a form. A
peek at a Profiler session in SQL Server shows that when you update
the form, Access creates an update statement directly against the
base tables.

 You
can solve this problem by adding an option to the view that will
force Access to run its updates against the view rather than against
the base tables. If you use the WITH
 VIEW_METADATA option when you create (or alter)
your view, SQL Server will send Access metadata (column names and
data types) from the view rather than from the underlying tables, and
Access will use the view to update data. If you use Access to create
the view, you can set this option by setting the
"Update using view rules" property,
as shown in Figure 14-20.
[image: The "Update using view rules" property]

Figure 14-20. The "Update using view rules" property

Tip
If you are using Access 2000, you need to type in the
WITH
 VIEW_METADATA option
manually, since it doesn't show up in the Properties
dialog. This option wasn't supported in SQL Server
7.0.

 Use the following steps to allow your
users to update data through views when they don't
have permissions on the underlying tables:
	Revoke or deny all permissions to the public role for the table (or
tables) on which the view will be based.

	
 Create a view that selects data from the
table by using the VIEW_METADATA option or
selecting the "Update using view
rules" checkbox. This example selects data from the
Shippers table:
CREATE VIEW vwShipperList
WITH VIEW_METADATA
AS
SELECT ShipperID, CompanyName, Phone
FROM Shippers

	Grant INSERT and UPDATE permissions on the view.

	To test the view, use it as the record source of a form. Make sure to
fully qualify your references with the
ownername.objectname syntax.

	Log on as another user who does not have permission on the underlying
tables. You should now be able to update data or insert data, but not
delete an existing shipper.

Discussion

When Access requests data for a view in browse mode, it also
retrieves metadata that it uses to construct update, insert, and
delete statements. The VIEW_METADATA option
specifies that SQL Server returns enough metadata information about
the view for Access to implement updateable client-side cursors that
work with the view instead of the base tables.

 This technique is not available in
SQL Server 7.0 or earlier because the
VIEW_METADATA option did not exist prior to the
release of SQL Server 2000. This new feature makes it possible to
take advantage of bound Access forms without having to sacrifice
security. Few SQL Server database administrators are willing to give
users unrestricted permissions to update tables. Views offer more
control, but the most control comes from using stored procedures,
and, unfortunately, there is nothing like the
VIEW_METADATA option for stored procedures.

Chapter 15. Office Web and SharePoint

Data Access Pages represent just one of several options for creating
web pages connected to Access databases. You can also use FrontPage
2003, with or without Windows SharePoint Services, to create
Access-connected web pages.
Windows
 SharePoint Services, a server component
that is part of Windows 2003 Server, is a great system for easily
creating collaborative, team-based web sites consisting of various
lists and documents. Access 2003 can work with SharePoint in two
ways. First, you can use Access as a frontend to your SharePoint list
and documents. That is, you can create a SharePoint management
interface using Access forms and reports to help manage your
SharePoint sites. In addition, you can use SharePoint to create
data-driven web sites that draw their data from Access databases and
display the data using the Data View Web Part.

 FrontPage 2002 and 2003 also allow you to
connect web sites to Access databases without using Windows
SharePoint Services. You can use FrontPage to create an HTML form
that sends its results to an Access database. You can also use the
FrontPage Database Interface Wizard to quickly create a frontend to
an Access table.
15.1. Work with SharePoint Data from Access

Problem

Windows SharePoint Services makes it easy to
create
 collaborative, team-based
web sites consisting of various lists and documents. Is it possible
to use Access as a frontend to SharePoint data?

Solution

Tip
This solution requires Access 2003 and a web server running Windows
SharePoint Services.

Access 2003 supports the linking to (and importing of) SharePoint
lists and document libraries. To link to a
SharePoint data source, follow
these steps:
	Select File → Get External Data → Link Tables... to
open the Link dialog box. Under the Files of Type dropdown control,
select Windows SharePoint Services (WSS). Access starts the Link to
Windows SharePoint Services wizard as shown in Figure 15-1.

[image: Selecting the SharePoint site to which you wish to connect on the first page of the Link to Windows SharePoint Services wizard]

Figure 15-1. Selecting the SharePoint site to which you wish to connect on the first page of the Link to Windows SharePoint Services wizard

	Enter the URL of a Windows SharePoint Services (WSS) site into the
site textbox and click Next. At this point you may be prompted to
login to the site.

	At the second page of the wizard you will be prompted to select a
list as shown in Figure 15-2. Some SharePoint lists,
such as the Events and Tasks lists, provide multiple views of the
list. If you wish to link to each of these views, then select
"Link to one or more views of a
list" and select the list from the Lists listbox.
Otherwise, if you wish to link to several lists, select
"Link to one or more lists" and
hold down the SHIFT or CTRL key to select multiple lists in the Lists
listbox.

[image: Selecting the SharePoint lists on the second page of the wizard]

Figure 15-2. Selecting the SharePoint lists on the second page of the wizard

	If you checked "Retrieve IDs for lookup
columns," then the next page of the wizard will
present a set of related lists that you will need to include in order
to update the lists. You can deselect the related lists at this
point, but if you do you will be unable to update data in the linked
lists.

	Click Finish to complete the link process and create the linked
tables.

Once you've linked to a list you can open the list
within Access to view or edit existing list items or create new
items. You can, of course, also create queries, forms, and reports
based on the linked lists.

 Figure 15-3 shows a linked list in datasheet view.
You can modify data directly in Access or click on a
row's Edit hyperlink to edit the row using a
SharePoint web page.
[image: The Announcements list in datasheet view]

Figure 15-3. The Announcements list in datasheet view

Discussion

You can use Access to create various reports on usage of your
SharePoint site. Link to each of the SharePoint lists and create
reports based on the linked lists. This way there is no need to
master some other reporting package; use the reporting tool with
which you are most comfortable: Access.
You can also import SharePoint list data into an Access database by
selecting File → Get External Data → Import...
Tip
Versions of Access prior to Access 2003 cannot be used to link to
SharePoint lists. In addition, you can only link to sites using
Windows SharePoint Services 2.0 or later.

15.2. Create a SharePoint Data View Web Part Based on Access Data

Problem

 FrontPage 2003 makes it easy to extend
SharePoint sites to include data from databases, web services, XML
documents, and other sources and display that data using the Data
View Web Part. You can easily link to SQL Server data and display that
within a Data View Web Part but
it's not clear how you link to data in an Access
database. Is this possible?

Solution

Tip
This solution requires FrontPage 2003 and a web server running
Windows SharePoint Services.

It's not totally obvious, but by hand-coding an
OLEDB connection string you can
create a Data View Web Part based on an Access database connection.
To create an Access database connection, follow these steps:
	Startup FrontPage 2003 and either open an existing SharePoint site or
create a new SharePoint site.

Tip
A SharePoint site can only be created on a Windows 2003 Server
machine running Windows SharePoint Services.

	Select Data → Insert Data View... to display the FrontPage
Data Source Catalog task pane.

	Under the Database Connections section of the Data Source Catalog,
click the Add to Catalog... hyperlink. FrontPage displays the Data
Source Properties dialog box.

	From the Data Source Properties dialog box, click the Configure
Database Connection... button.

	At the Configure Database Connection dialog box, select
"Use custom connection string"
option, and click on the Edit... button as shown in Figure 15-4.

[image: In order to connect to an Access database, you must select the "Use custom connection string" option and click on the Edit button]

Figure 15-4. In order to connect to an Access database, you must select the "Use custom connection string" option and click on the Edit button

	FrontPage presents the Edit Connection String dialog box. At this
point you are on your own—FrontPage offers absolutely no help
in building the OLEDB connection string. Fortunately,
it's not that difficult to create a connection
string.

	At the Edit Connection String dialog box, enter a connection string
that points to the 15-02.MDB sample database as
shown in Figure 15-5 and click Next.
The connection string needs to follow this basic syntax:
 Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=path_to_database;
 User Id=user_name;Password=password;
If you are not using a secured database, as in this example, you can
leave the User Id and Password portions of the connection string out.

[image: Enter a Jet connection string into the Edit Connection String dialog box]

Figure 15-5. Enter a Jet connection string into the Edit Connection String dialog box

Tip
More than likely, you will need to modify the path to the database
shown in Figure 15-5 to reflect the location of the
sample database on your computer.

	At the next page of the dialog, select the name of a table—for
this example, select the tblRunners table—and click Finish.

	FrontPage 2003 returns you to the Data Source Properties dialog box.
Click on General tab of the dialog box and enter the following name
into the Name textbox:
RunnersTable

	Click OK to dismiss the dialog box and create the connection.

To place a Data View Web Part on a web page that
connects to an Access database connection, follow these steps:
	Add a new page to the site by selecting File → New... On the
New task pane, click on "More page
templates..." under New page.

	Click on the Web Part Pages tab of the Page Templates dialog box,
select one of the Web Part page templates, and click OK.

	FrontPage adds a new page to the site containing one or more Web Part
zones. Click one of the Web Part zones, and select Data →
Insert Data View... to open the Data Source Catalog.

	Click on the RunnersTable database connection and select Insert Data
View from the popup menu.

	FrontPage adds a Data View Web Part to the page.

	Select File → Save to save the new page and select File
→ Preview in Browser to display the page in your browser.
The page should look similar to the one shown in Figure 15-6.

[image: This page displays data from an Access database using a Data View Web Part]

Figure 15-6. This page displays data from an Access database using a Data View Web Part

Discussion

If you look at the HTML behind the Data
View Web Part you will see that the Data View performs its magic
using XML and XSLT. In fact, if you look closely, you will see that
the Data View doesn't copy the data into the page.
Instead, it sets up a link back to the original Access database. This
way, the web page is never out of sync with the data in the database.
While Access works well in small workgroup scenarios, it is not a
good choice if you expect a moderate number (over a dozen or so) of
simultaneous users. In these cases, you'd be better
off moving the data into SQL Server or MSDE.

See Also

See Building XML Data-Driven Web Sites with

 FrontPage 2003. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_fp2003_ta/html/odc_fpbldgxmlwebs.asp

15.3. Conditionally Format a Data View Web Part

Problem

You'd like to be able to highlight certain values or
rows within a table of data. Is this possible if you are displaying
the data on a web page using a Data View Web Part?

Solution

Not only is it possible to conditionally format the data in a
Data View Web Part, but you can do
it without any programming. For example, let's say
you wished to highlight the runners listed in the Data View Web Part
from the Solution in Recipe 15.2 that were running races of 10 or
more miles. Follow these steps to highlight the rows where distance
is greater than or equal to 10 miles:
	Startup FrontPage 2003 with the existing Data View Web Part you
created in the Solution in Recipe 15.2.

	Click anywhere on the Data View Web Part. FrontPage will display the
Data View Options icon as shown in Figure 15-7.
Click on the icon, and select Conditional Formatting... from the
dropdown menu. FrontPage opens the Conditional Formatting task pane.

[image: Clicking on the Data View Options icon displays a dropdown menu from which you can select Conditional Formatting]

Figure 15-7. Clicking on the Data View Options icon displays a dropdown menu from which you can select Conditional Formatting

	Back on the Data View, select a row in the grid by clicking in the
left-hand margin of the row.

	Click on the Create button in the Conditional Formatting task pane
and select Apply Formatting from the dropdown menu. FrontPage
displays the Condition Criteria dialog box.

	In the Condition Criteria dialog box, click on the top row to create
a new condition. Under Field Name select GoalDistance. Select Greater
Than Or Equal under Comparison and enter
"10" under Value. The completed
condition should look similar to the one shown in Figure 15-8. Click OK to finalize the condition.

[image: The Condition Criteria dialog box]

Figure 15-8. The Condition Criteria dialog box

	FrontPage displays the Modify Style dialog box. Click the Format
button and select Border... from the dropdown menu.

	At the Borders and Shading dialog box, click the Shading tab and
select a yellow background color and click OK twice to dismiss the
dialog box.

	FrontPage should highlight the rows where goal distance is greater
than or equal to 10 miles.

	Select File → Save to save the new page and select File
→ Preview in Browser to display the page in your browser.
The page should look similar to the one shown in Figure 15-9.

[image: The completed page highlights all runners with goal distances of 10 or more miles]

Figure 15-9. The completed page highlights all runners with goal distances of 10 or more miles

Discussion

If you look at the code behind the conditionally formatted Data View,
you will see that the conditional formatting is applied using the
following XSLT transformation:
<xsl:if test="@GoalDistance >= '10'">background-color: #FFFF00;</xsl:if></xsl:
attribute>
If you are savvy in XSLT you can tweak the XSLT code directly.

See Also

See Building XML Data-Driven Web Sites with FrontPage 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_fp2003_ta/html/odc_fpbldgxmlwebs.asp

15.4. Create a Master/Detail Page using Data View Web Parts

Problem

You'd like to create a page that displays two Data
Views based on an Access database, with the Data Views linked to each
other so that if you select a row in the master Data View, it will
filter the rows in the detail Data View so that only related rows are
displayed. Is this possible to set up using FrontPage?

Solution

You can link two Data View Web Parts together by creating a
Web Part
connection. For example, you might create one Data View that
retrieves rows from the tblRunners table located in the
15-04.MDB database and another Data View that
displays the related rows from the tblRaces table. Follow these steps
to create a web page that displays this master/detail relationship
between the two tables:
	Following the steps from the Solution in Recipe 15.2, add an additional database connection to the
FrontPage Data Source Catalog task pane that retrieves rows from the
tblRaces table located in the 15-04.MDB sample
database. Name the database connection
"RacesTable".

	Add a new page to the site by selecting File → New... On the
New task pane, click on "More page
templates..." under New page.

	Click on the Web Part Pages tab of the Page Templates dialog box,
select one of the Web Part page templates that contains at least two
Web Part zones, and click OK.

	FrontPage adds a new page to the site. Click on one of the Web Part
zones, and select Data → Insert Data View... to open the
Data Source Catalog.

	Click on the RunnersTable database connection and select Insert Data
View from the popup menu. FrontPage adds a Data View Web Part based
on the RunnersTable database connection to the page.

	Click on a second Web Part zone on the page and select
Data‡Insert Data View... to open the Data Source
Catalog.

	Click on the RaceTable database connection and select Insert Data
View from the popup menu. FrontPage adds a Data View Web Part based
on the RacesTable database connection to the page.

	Click anywhere on the Data View Web Part based on the RunnersTable
database connection. FrontPage displays the Data View Options icon.
Click on the icon and select Web Part Connections... from the
dropdown menu. FrontPage starts the Web Part Connections wizard.

	At the first wizard page, select "Provide Data
Values To" from the dropdown control.

	On the second wizard page, select "Connect to a Web
Part on this page".

	On the third wizard page, shown in Figure 15-10,
select "RacesTable" for the target
Web Part and "Provide Data Values
To" for the target action.

[image: On this page of the Web Part Connections wizard you indicate what action to take on the target Web Part]

Figure 15-10. On this page of the Web Part Connections wizard you indicate what action to take on the target Web Part

	On the fourth wizard page you need to specify the relationship used
to link the two Data Views together. Select the MemberId column in
both tables as shown in Figure 15-11.

[image: On this page of the Web Part Connections wizard you must tell FrontPage how to relate the data behind the two Web Parts]

Figure 15-11. On this page of the Web Part Connections wizard you must tell FrontPage how to relate the data behind the two Web Parts

	On the fifth page of the wizard you must choose which column in the
master Web Part (the RunnersTable Data View) on which FrontPage
should create a hyperlink to the detail part (the RacesTable Data
View). You can also indicate which column FrontPage should render in
boldface to indicate the currently selected master Web Part row.
Select LastName for both of these fields as shown in Figure 15-12.

[image: On this page of the Web Part Connections wizard you indicate how to link the two Web Parts]

Figure 15-12. On this page of the Web Part Connections wizard you indicate how to link the two Web Parts

	On the sixth page of the wizard, click Finish to create the
connection.

	Select File → Save to save the new page and select File
→ Preview in Browser to display the page in your browser.
The page should look similar to the one shown in Figure 15-13.

[image: When the LastName field in the upper Data View is selected, the lower Data View is filtered to only show matching rows]

Figure 15-13. When the LastName field in the upper Data View is selected, the lower Data View is filtered to only show matching rows

Discussion

When adding a Data View Web Part to a page,
FrontPage selects the first five fields to display. However, you can
customize which fields are included in the Data View by following
these steps:
	Click on the database connection and select Show Data instead of
Insert Data View. FrontPage displays the Data View Details task pane.

	From the Data View Details task pane, click the mouse while holding
down the SHIFT or CTRL key to select the fields you wish to include
in the Data View.

	Click on the Insert Data View hyperlink to create a new Data View
using the custom set of fields.

See Also

See Building XML Data-Driven Web Sites with FrontPage 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_fp2003_ta/html/odc_fpbldgxmlwebs.asp

15.5. Post Web Form Data to an Access Database

Problem

You want to be able to collect

 data
from a user of your web site and post the data to an Access database.
You are not using a SharePoint server and you'd
prefer to accomplish this task with little or no programming. Is
there a way to use FrontPage to collect form data and
send it to an Access database?

Solution

You can use Form Page Wizard to help you create a web page that
collects information from a user using an HTML form and posts it to
one of a number of different choices. A database, however, is not one
of the choices. Fortunately, with a little post-wizard wizardry, you
can change the form so it points its data to an Access database.
Follow these steps to create a form that posts to an Access database:
Warning
This solution will not work with a SharePoint-enabled web site.

	Startup FrontPage 2003.

	Select Select File → New... to create a new web site. On the
New task pane, click on "One page Web
site..." under New Web site.

	At the Web Site Templates dialog box click on Empty Web Site and
enter the following location for the web site:
http://localhost/15-05
FrontPage creates a new empty web site on the current machine. If you
do not have a Microsoft web server running on the current machine,
you will need to change localhost to the name or address of a
Microsoft web server for which you have site creation privileges.

	Select File → Import. Click on Add File... from the Import
dialog box.

	Navigate to the 15-05.MDB sample database and
click Open. Click OK to add the database to the site.

	When you click OK, FrontPage recognizes that you are importing a
database and asks you if you wish to create a database connection for
the database as shown in Figure 15-14.

[image: FrontPage displays this dialog box when you attempt to import a database]

Figure 15-14. FrontPage displays this dialog box when you attempt to import a database

	Enter "15-05" for the database
connection name and click Yes to import the database and create the
database connection.

	FrontPage displays an additional dialog box suggesting that the
database be moved to the fpdb folder. This is a good practice, so you
should click Yes.

	Select File → New... to create a new page. On the New task
pane, click on "More page
templates..." under New page.

	Click on the General tab of the Page Templates dialog box, select the
Form Page Wizard template, and click OK.

	FrontPage starts the Form Page wizard. Click Next at the first page
of the wizard which merely tells you about the wizard.

	At the second page of the wizard, click Add to add a new question to
the form. The questions you will add to the form are listed in Table 15-1.
After adding the four fields, the wizard should look like Figure 15-15.

Table 15-1. Adding questions to the form
	
 Type

 	
 Prompt

 	
 Variable name

 	
 Additional information

	
 String

 	
 First Name:

 	
 txtFirstName

 	
 Maximum length = 20

	
 String

 	
 Last Name:

 	
 txtLastName

 	
 Maximum length = 20

	
 Number

 	
 Age

 	
 txtAge

 	
 Maximum length = 3

	
 One of several options

 	
 Sex:

 	
 txtSex

 	
 Radio buttons = Male, Female

[image: The Form Page wizard after adding four questions]

Figure 15-15. The Form Page wizard after adding four questions

	Click Next. FrontPage displays the Presentation Options page of the
wizard. The default responses should be fine, so click Next.

	FrontPage displays the Output Options page as shown in Figure 15-16. Notice that there isn't any
option to save the results to a database. This is an obvious
oversight on the part of the FrontPage team, but you will be able to
remedy this problem later. For now, select "save
results to a text file" and click Finish.

[image: The Form Page wizard doesn't give you the option to save the results to a database, but this can be fixed later]

Figure 15-16. The Form Page wizard doesn't give you the option to save the results to a database, but this can be fixed later

	Select File → Save to save the page, naming it
"register.asp".

	Select File → New... to create a new page. On the New task
pane, click on "Blank Page" under
New page to create a new blank page.

	On the new page, enter the text "Thank you for
registering".

	Select File → Save to save the page, naming it
"confirm.asp".

	When the wizard is complete, click the mouse anywhere within the
form. Right-click on the form and select Form Properties from the
popup menu.

	At the Form Properties dialog box, under Where to store results,
select the Send to database option and click on the Options...
button.

	At the Options for Saving Results to Database dialog box, select the
"15-05" database connection under
Database Connection to Use and tblRegister under Table to hold form
results.

	Under URL of confirmation page (optional), enter
"confirm.asp".

	Click the Saved Results tab and modify each field so that it maps to
the fields in tblRegister according to Table 15-2:

Table 15-2. Mapping the form fields to tblRegister fields
	
 Form field

 	
 Database column

	
 txtAge

 	
 Age

	
 txtFirstName

 	
 FirstName

	
 txtLastName

 	
 LastName

	
 txtSex

 	
 Sex

	Click OK to dismiss the Options for Saving Results to Database dialog
box and OK to dismiss the Form Properties dialog box.

	Change the heading of the page to "Registration
Form" and replace the introductory text on the form
with "Please register by completing the following
form."

	Select File → Save to save the changes you have made to the
register.asp page.

	Select File → Preview in Browser to display the page in your
browser. The page should look similar to the one shown in Figure 15-17. Enter data into each of the fields and click
Submit Form.

[image: The completed registration page]

Figure 15-17. The completed registration page

	Open the 15-05.MDB database to verify that the
data was added to the tblRegister table.

Discussion

You don't need to use the Form Page wizard to connect a form
to an Access database. If you'd prefer to setup the
form yourself, go ahead and create the form, skipping steps 9-15 of
the solution. The remainder of the solution, however, should still
apply.
If you don't have an existing Access database to
work with, you can have

 FrontPage create a new one for
you. From the Options for Saving Results to Database dialog box (see
Step 21), click on the Create Database... button to create a new
database. FrontPage creates a new database and hooks the form up to a
table in the database named Results.
The steps in this solution apply when using FrontPage 2003. However,
except for some trivial differences, the steps are virtually
identical when using FrontPage 2002.

See Also

See Database Power with Microsoft FrontPage version 2002. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_fp2003_ta/html/odc_fpbldgxmlwebs.asp

15.6. Create a Web Frontend to an Access Table Using FrontPage

Problem

While SharePoint
is amazing, it has several limitations. First, it requires a server
running Windows 2003 server and Windows SharePoint Services. In
addition, the Data View Web Part is read-only and provides no
mechanism for updating the data. Is there a way to use FrontPage to
create a web frontend to your Access data without employing
SharePoint?

Solution

You can use the FrontPage Database Interface Wizard to
create a complete web site that lets you view and edit data from a
database table. The trick in this solution is to create the database
connection before running the wizard. Follow
these steps to create a web site based on the tblAlbums table from
the 15-06.MDB database:
Warning
This solution will not work with a SharePoint-enabled web site.

	Startup FrontPage 2003.

	Select Select File → New... to create a new web site. On the
New task pane, click on "One page Web
site..." under New Web site.

	At the Web Site Templates dialog box click on Empty Web Site and
enter the following location for the Web site:
http://localhost/15-06
FrontPage creates a new empty Web site on the current machine. If you
do not have a Microsoft web server running on the current machine,
you will need to change localhost to the name or address of a
Microsoft web server for which you have site creation privileges.

	Select File → Import. Click on Add File... from the Import
dialog box.

	Navigate to the 15-06.MDB sample database and
click Open. Click OK to add the database to the site.

	When you click OK, FrontPage recognizes that you are importing a
database and asks you if you wish to create a database connection for
the database.

	Enter "15-06" for the database
connection name and click Yes to import the database and create the
database connection.

	FrontPage displays an additional dialog box suggesting that the
database be moved to the fpdb folder. This is a good practice so you
should click Yes.

	Select File → New... to create a new web site. On the New
task pane, click on "One page Web
site..." under New Web site.

	At the Web Site Templates dialog box, select Database Interface
Wizard, making sure to check the "Add to current Web
site" checkbox before clicking on the OK button.

	FrontPage starts the Database Interface Wizard, the first page which
is shown in Figure 15-18.

[image: The first page of the FrontPage Database Interface Wizard]

Figure 15-18. The first page of the FrontPage Database Interface Wizard

	On the first page of the wizard, under "FrontPage
has detected that your page will display best
using:", select
"ASP.NET" unless
you'd prefer to use the older ASP technology.

Tip
You will need to choose ASP instead of ASP.NET if your web server is
not configured to support ASP.NET.

	Under "This wizard will connect your site to a
database. What would you like to do?", select
"Use an existing database
connection", select
"15-06" from the dropdown control,
and click Next.

	On the second page of the wizard, under "Select the
table or view you would like to use for this database
connection", select the
"tblAlbums" table. Accept the
default location for the new files and click Next.

	On the third page of the wizard you are given the opportunity to
modify the columns to be displayed. There's no need
to modify the columns, so click Next.

	On the fourth page of the wizard, you are asked which pages you wish
to include. For this example, check all three checkboxes as shown in
Figure 15-19.

[image: On the fourth page of the Database Interface Wizard you can select which pages you wish for the wizard to create]

Figure 15-19. On the fourth page of the Database Interface Wizard you can select which pages you wish for the wizard to create

	On the fifth wizard page, you are asked to supply a user name and
password to protect the database editor. Enter a user name and
password or check the "Don't
protect my submission page or my database editor with a username and
password" checkbox.

	Click Finish to complete the wizard.

	The wizard creates a number of pages. Under the
15-06_interface\tblAlbums folder you should find the
results_page.aspx page. Select File‡Preview in
Browser to display this page in your browser.

	Click on the Database Editor hyperlink to bring up the database
editor, which should look similar to the page shown in Figure 15-20.

[image: The database editor page created by the FrontPage Database Interface Wizard]

Figure 15-20. The database editor page created by the FrontPage Database Interface Wizard

Discussion

You aren't limited to one database interface per web
site. You can rerun the FrontPage Database Interface Wizard
as many times as you like, creating set of pages for either different
tables within the same Access database or different databases. Just
remember to check the "Add to current Web
site" checkbox before clicking on the OK button when
selecting the Database Interface Wizard template.
The steps in this solution apply when using FrontPage 2003. However,
except for a few differences, the steps are virtually identical when
using FrontPage 2002. (One big difference: FrontPage 2002
doesn't give you the choice of creating the site
using ASP or ASP.NET; it always uses the older ASP technology.)
Alternatives to FrontPage

There are a number of technologies you can use to create a web
frontend to an
Access database, including:
Data Access Pages, SharePoint,
ASP.NET,
Active Server Pages (ASP),
Cold Fusion,
PHP, and
Java
Server Pages (JSP). Data Access Pages are discussed in detail in
Chapter 13. In addition, an ASP.NET example is
included in Chapter 17.
With a wealth of options, you may be wondering which solution will
work best for you. Ultimately, a number of factors will help you
arrive at a decision. Do you want a solution that you can create
quickly with little or no programming? If so, then you probably will
want to use the FrontPage Database Interface Wizard (as demonstrated
in this solution), Data Access Pages, or SharePoint. Use SharePoint
(along with FrontPage) if you need to create a workgroup-based
portal. One disadvantage of the SharePoint approach is that you
cannot modify the Access data. You can use the FrontPage Database
Interface Wizard, as demonstrated in this solution, to quickly create
an ASP- or ASP.NET-based frontend to Access that you can then modify
and extend using Visual InterDev (if you are using ASP), or Visual
Studio .NET (if you are using ASP.NET). Finally, you can also use
Data Access Pages, but only for smaller intranet-based sites.
If you're not averse to programming, you may want to
use Visual Studio .NET to create an
ASP.NET-based web site, or Visual InterDev to create an ASP-based
site. In most cases, ASP.NET is the better choice because it provides
a programming object model that is more similar to Access than ASP.
Other, non-Microsoft options include Cold Fusion, PHP, and Java
Server Pages (JSP). You can also use Macromedia's
Dreamweaver MX to create Cold Fusion, PHP, and JSP web sites (as well
as ASP- and ASP.NET-based sites).

When Access won't do the job

Keep in mind that Access might not be the most appropriate database
to use in many Internet-based scenarios. As mentioned in the Solution
in Recipe 15.2, Access works well in small
workgroup settings, but if you expect a moderate number (over a dozen
or so) of simultaneous users, you'd be better served
with a server-based database such as SQL Server.

See Also

See Database Power with Microsoft FrontPage Version 2002.http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfp2k2/html/fp_dbpower.asp

Chapter 16. Smart Tags

Have you noticed that in recent versions of Excel some cells have
little purple triangles in the lower left corner? When you move the
mouse over these cells a symbol appears that you can click to reveal
a menu of actions related to the contents of that cell. Similar
behavior is available in Word for words with a special purple dotted
underline. These special features are smart
tags
 .
Smart tags are a way for applications to provide users with
context-sensitive actions related to the data appearing on screen.
These actions can be available across multiple applications for the
same pieces of data. Smart tags were introduced in Office XP, where
you could use them in Word, Excel, and Outlook (with Word as the
Outlook email editor or when reading HTML mail). In Office 2003 smart
tag capabilities have been extended and now Access developers can
also incorporate smart tags into their applications.
If you're already familiar with smart tags from
working in Word or
Excel, you'll find that
the implementation of smart tags in Access is a little different.
Unlike the implementation of smart tags found in Word and Excel,
Access does not support recognizers. In Word or Excel, special code
components called recognizers must be created to distinguish which
words provide smart tag actions. Access 2003 allows you to attach
smart tags to database fields or form controls. The smart tags appear
for any text appearing in datasheet views or forms containing those
fields, or in the designated controls.
For added control, the View Forms/Reports tab in the Tools →
Options dialog box allows you to toggle on or off a setting to
Show Smart Tags on Forms.
There are three built-in smart tags that ship with Access 2003:
	
 Person Name

 , which enables users to send email to a
contact, schedule a meeting, or edit contact information stored in
Microsoft Outlook.

	
 Financial
Symbol

 , which enables users to look
up information about a company on MSN MoneyCentral based on the
company's stock symbol.

	
 Date

 , which enables users to schedule a meeting
or display the Outlook calendar based on a particular date.

You can attach one or more of these smart tags to a field or control
via the Properties windows in the table designer or the forms
designer.
In addition to working with the smart tags that ship with Access
2003, you can also create your own custom smart tags by using a
specially formatted XML list or by writing your own
smart tag DLL.
Smart tag DLLs can be written in Visual Basic 6.0 or in managed code
(Visual Basic .NET or C#). By using code to create custom smart tags,
you can also take advantage of new features that were added in Office
2003, like dynamic captions, temporary smart tags, and smart tags
that expire.
In this chapter you'll learn how to use the smart
tags that ship with Access to look up financial data and to access
Outlook contacts and scheduling. You'll also learn
how to create your own custom smart tags and how to deploy them with
your application.
16.1. Use the Built-in Smart Tags

Problem

How can I enable a user to scroll through a list of names on a form
and launch Outlook's Contacts dialog box, so that
the user can add the selected person as a contact?

Solution

You can use the built-in
 Person smart tag to add or change
contact information stored in Microsoft Outlook. The
Person smart tag allows you to take
the following actions:
	Send an email message to a contact.

	Schedule a meeting with a contact.

	Open and edit a contact's information.

	Add the name in the control to your list of contacts.

It's very easy to add the Person smart tag to a
label, text box, or combo box control on a
form by following these steps:
	Open frmEmployees in 16-01.mdb in design view, select the FullName
text box, and press F4 to bring up the Properties window. Click the
Data tab and click to the right of the Smart Tags option to load the
Smart Tags dialog box.

	Select the Person Name checkbox, as shown in Figure 16-1, and click OK. This will add the following
text to the SmartTags option in the dialog box:
"urn:schemas-microsoft-com:office:smarttags#PersonName"

[image: Adding the Person smart tag to a control on a form]

Figure 16-1. Adding the Person smart tag to a control on a form

	Display the form in form view and click the control where you added
the smart tag. The sample application contains a form, frmEmployees,
with a smart tag on the Name text box. When you click in the text
box, the smart tag icon is displayed, as shown in Figure 16-2.

[image: The Person smart tag displayed in form view]

Figure 16-2. The Person smart tag displayed in form view

	Selecting the Add to Contacts option will launch
Outlook's new contact window, as shown in Figure 16-3. You can then enter the new contact
information for that person.

[image: The name displayed in Access is automatically entered for the new contact]

Figure 16-3. The name displayed in Access is automatically entered for the new contact

Discussion

When you use a smart tag to enter a new contact in Outlook, the
entire contents of the control are automatically copied to Outlook.
If the form control that has the associated smart tag contains only
the last name, then that is what will be copied to Outlook. If you
want both the last name and first name copied, then create an
expression for the Control Source property:
=[FirstName] & " " & [LastName]
Tip
If you are attaching a smart tag to a combo box control, then the
data displayed in the combo box will be used, not the data in the
bound column.

You can add smart tags to label, text box, and combo box form
controls. Smart tags are not supported for

 reports. In addition, you can add smart
tags to the following controls on a Data Access Page:
	Label

	Bound Span

	Text Box

	Scrolling Text

	Drop-down List

	Hyperlink

See Also

For more coverage of working with smart tags in Access 2003, see this
MSDN article: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_wd2003_ta/html/odc_wdov.asp

To learn other techniques for working with Outlook, see
Recipe 12.8 in Chapter 12.

16.2. Display Multiple Smart Tags on Multiple Forms

Problem

I have a table in my

 database that is used for many forms.
I'd like to use the Person Name smart tag as well as
the Date smart tag on the LastName field. I have already created the
forms. How can I create multiple smart tags on LastName without
having to create them separately on each form?

Solution

It's understandable that you might want to use the
Date smart tag in conjunction with the Person smart tag. Fortunately,
Access easily supports assigning multiple smart tags to a control on
a form or a field in a table.
You can take two actions with the built-in Date smart tag:
	Schedule a meeting.

	Display your calendar.

If you create a smart tag on a field in a table, then any forms you
create subsequently will inherit the smart tag. The documentation
states that previously existing forms will not inherit a smart tag
created on a table field if the smart tag is created after the forms.
However, the help file was apparently written before additional
functionality was added that does allow for forms to inherit smart
tags, as you'll see in this recipe.
Follow these steps to add the Person and Date smart tags to the
LastName field in the Employees table:
	Open the Employees table in the sample application in design view.

	Select the LastName Field and click the builder button to the right
of the Smart Tags property at the bottom of the General tab.

	Select the Person Name and Date checkboxes in the Smart Tags dialog
box and click OK. This will create the following entry in the Smart
Tags property, where the smart tags are listed in a
semicolon-delimited string:
"urn:schemas-microsoft-com:office:smarttags#date";
"urn:schemas-microsoft-com:office:smarttags#PersonName"

	Click to the left of the Smart Tags property, and you will see
another smart tag, which when expanded includes the option Update
Smart Tags everywhere LastName is used. Select this option, and
select any existing forms you wish to inherit the new smart tags. In
this example, frmEmployees can inherit the smart tags.

	Save the table and view it in datasheet view. Figure 16-4 shows the Date smart tag menu displayed for
the Last Name field.

[image: Multiple smart tags are displayed with flyout menus]

Figure 16-4. Multiple smart tags are displayed with flyout menus

	Open frmEmployees. You should see both smart tags displayed when you
click in the LastName control.

	Click the New Object: AutoForm button on the toolbar to create a new
form based on the table. Note that the Last Name TextBox has
inherited the smart tag. Open the existing form and note that the
smart tag property is also displayed.

Discussion

When you create a smart tag on a table, Access gives you
the ability to propagate the smart tag to any new forms that you may
create. You can also propagate the smart tag to any forms that you
may have created prior to creating the smart tag.
If you delete the smart tag from the table and do not
select the "Update Smart Tags
everywhere" option, then form smart tags that were
inherited from table smart tags will not be deleted. Make sure that
you select the "Update Smart Tags
everywhere" option if you want inherited smart tags
to be removed from the forms as well as the table.

16.3. Display Smart Tags when Application Starts

Problem

My application makes extensive use of smart tags. Since this is a
global setting, some users may have turned off the display of smart
tags. How can I ensure that smart tags are displayed when my
application starts up?

Solution

The display of smart tags is controlled by a checkbox
in the Tools → Options dialog box under the Forms/Reports
tab. These settings apply to Access as a whole, and once changed,
take effect for all running applications. Figure 16-5 shows the dialog box with the display of smart
tags turned on.
[image: Setting smart tag viewing options]

Figure 16-5. Setting smart tag viewing options

The best place to set options for your application is in a
startup form, which can run code to ensure that settings are the way
you need them to be. The sample application is configured to use a
form named frmStartup, by setting the Display/Form Start Page
property in the Tools → Startup dialog box, as shown in
Figure 16-6.
[image: Configuring a startup form]

Figure 16-6. Configuring a startup form

Follow these steps in your startup form to ensure that smart tags are
displayed for your application:
	Create a variable in the declarations section of the form that you
will use to retrieve and store the user's current
settings. Options controlled by checkboxes return either True or
False. However, retrieving and setting options in code requires the
Variant data type, not a Boolean, as you might expect.
Option Explicit

Private varSmartTagOn As Variant

	In the form's Open event, retrieve the
user's current settings using the GetOption method.
If smart tags are not turned on, then use SetOption to turn them on.
The sample application collects the user's name
using the InputBox function and displays it in a label control that
has the Person Name smart tag attached:
Private Sub Form_Open(Cancel As Integer)
 ' Retrieve user's SmartTag settings
 varSmartTagOn = Application.GetOption(_
 "Show Smart Tags on Forms")

 ' Display smart tags if needed
 If Not varSmartTagOn Then
 SetOption "Show Smart Tags on Forms", True
 End If

 lblName.Caption = InputBox(_
 "Type your name:", "Welcome Message", "")
End Sub

	In the form's Close event, reset the
user's smart tag options to their original values:
Private Sub Form_Close()
 ' Restore user's smart tag option setting
 Application.SetOption "Show Smart Tags on Forms", varSmartTagOn
End Sub

Discussion

By saving the smart tag settings in a variable, you
can ensure that your application behaves in a polite way, only
changing the user's global settings that are needed
for your application to function properly. In the sample application,
the code in the Close button event handler closes the form and resets
the user's smart tag options to whatever they were
when the application opened. You could elect to simply hide the form
instead:
Private Sub cmdClose_Click()
 Me.Visible = False
End Sub
The code in the form's Close event will not execute
if the form is hidden and not closed. When the application shuts
down, the form closes and the code in its Close event runs and resets
the user's smart tag options to their original
values.
The frmStartup form in the sample database also contains a Toggle
Smart Tags button that toggles the display of the smart tags option.
The ToggleShowSmartTags procedure reverses the current option
settings for displaying smart tags and stores the new setting in the
varSmartTagOn variable:
Private Sub ToggleShowSmartTags()
 ' Toggle smart tag settings
 varSmartTagOn = Not varSmartTagOn
 Application.SetOption "Show Smart Tags on Forms", varSmartTagOn
 MsgBox "Application Settings = " & varSmartTagOn, , "Show Smart Tags"
End Sub
You can test the code by opening frmStartup and frmTest side by side.
You can see the smart tags on both forms enabled or disabled as you
click the Toggle Smart Tags button on frmStartup.

16.4. Execute a Smart Tag Action Without Displaying the Smart Tag

Problem

In my application I would like to use the
 Financial Symbol smart tag so that users
will be directed to the Stock Quote on MSN MoneyCentral. I
don't want to display the smart tag, which also
presents two additional actions—this might confuse the user.
How can I configure a combo box control so that when the user selects
a symbol, the Stock Quote on MSN MoneyCentral is
automatically displayed in a browser window?

Solution

The built-in smart tags that ship with Access are somewhat limited in
that they do not allow you to configure them by adding or removing
actions. The Financial Symbol smart tag looks up
information about a financial symbol on MSN MoneyCentral, allowing
you to take the following actions:
	Obtain a stock quote on MSN MoneyCentral.

	Obtain a report about the company on MSN MoneyCentral.

	Obtain recent news about the company on MSN MoneyCentral.

In Access, you enable the Financial Symbol smart tag on a field or
control that contains a financial symbol—the familiar
abbreviations seen on stock tickers.
To execute only a single action—obtaining a stock
quote—you need to enable smart tags in code by setting a
control's
SmartTags property. Once
you've enabled the smart tag in your code, you can
then execute a smart tag action. Once the action executes, you can
then disable the smart tag so that it is never displayed to the user.
Follow these steps to configure a combo box to use the Financial
Symbol smart tag to display a stock quote when the user selects an
item:
	Create a combo box control on a form. In the sample application, the
Row Source property is set to a query that selects the ticker symbol
and company name from the Companies table. The Bound Column is set to
the ticker symbol since that is the value that will be used for the
Financial Symbol smart tag.

	Create an event procedure for the AfterUpdate event. This event runs
after the user selects an item in the combo box. The code turns off
screen painting so that setting the smart tag property will not cause
screen flashing:
Private Sub cboTickers_AfterUpdate()
 On Error GoTo HandleErr

 Me.Painting = False

	The code then sets the financial symbol smart tag for the control:
 Me.cboTickers.Properties("SmartTags").Value = _
 "urn:schemas-microsoft-com:office:smarttags#stockticker"

	The code then executes the first action of the smart tag. The
SmartTags collection represents the smart tags assigned to the
control, and SmartTagActions is the collection of available actions.
You refer to them by their ordinal position in the list:
 Me.cboTickers.SmartTags(0).SmartTagActions(0).Execute

	Once the action has executed, remove the smart tag control so that it
will never be displayed to the user:
 Me.cboTickers.Properties("SmartTags").Value = ""

	Whenever you turn off painting on the form, you should implement an
error handler and exit label to ensure that painting gets turned back
on again, even if an error occurs:
ExitHere:
 Me.Painting = True
 Exit Sub

HandleErr:
 MsgBox Err.Number & " " & Err.Description
 Resume ExitHere
End Sub
Here is the complete code listing:
Private Sub cboTickers_AfterUpdate()
 On Error GoTo HandleErr

 Me.Painting = False

 ' Set the financial symbol smart tag
 Me.cboTickers.Properties("SmartTags").Value = _
 "urn:schemas-microsoft-com:office:smarttags#stockticker"

 ' Execute the first action listed
 Me.cboTickers.SmartTags(0).SmartTagActions(0).Execute

 ' Remove the financial symbol smart tag
 Me.cboTickers.Properties("SmartTags").Value = ""

ExitHere:
 Me.Painting = True
 Exit Sub

HandleErr:
 MsgBox Err.Number & " " & Err.Description
 Resume ExitHere
End Sub

Discussion

The SmartTags collection contains one or more
SmartTag
objects. You can refer to a single SmartTag object in the collection
by using the Item method or the index. The collection is zero-based,
so the following code fragment refers to the first SmartTag for the
ctl control:
ctl.SmartTags(0)
Tip
Unlike in Access, the SmartTags collections in Microsoft Excel and
Microsoft Word are one-based.

The SmartTag object has several properties, such as Application,
IsMissing, Name and Property. The SmartTagActions property represents
a collection of actions for an individual smart tag. These actions
are processes that are programmed into a smart tag as individual
SmartTagAction objects. The SmartTagAction object has several
properties and a single method, Execute. In this example, the first
SmartTagAction in the SmartTagActions collection is executed:
SmartTagActions(0).Execute
By dynamically assigning a smart tag in code, executing an action,
and then removing the smart tag, you can take advantage of built-in
smart tag functionality without presenting unnecessary options to the
user.

16.5. Create a Smart Tag on a Table in an Access Project

Problem

I would like to create a
 smart tag on a table in my Access
Project (.adp). When I open the SQL Server table in the table
designer in my Access project, I do not see the smart tag property,
although it is listed for controls in the Forms designer.

Solution

In
 SQL Server, the smart tag property
has to be set as an extended property since it is not one of the
standard SQL Server table properties. This requires that you run SQL
Server's built-in sp_addextendedproperty system
stored procedure to add it as an extended property. The syntax shown
in SQL Server Books Online for sp_addextendedproperty is not that
easy to figure out, as you can see from this listing:
sp_addextendedproperty
 [@name =] { 'property_name' }
 [, [@value =] { 'value' }
 [, [@level0type =] { 'level0_object_type' }
 , [@level0name =] { 'level0_object_name' }
 [, [@level1type =] { 'level1_object_type' }
 , [@level1name =] { 'level1_object_name' }
 [, [@level2type =] { 'level2_object_type' }
 , [@level2name =] { 'level2_object_name' }
]
]
]
]
Follow these steps to add the PersonName smart tag to the LastName
column in the Employees table in the NorthwindCS SQL Server database:
	Launch the SQL Server Query Analyzer and connect to your SQL Server
as a system administrator.

	Type the following code in the query window or load it from
16-05.SQL in the sample directory:
USE NorthwindCS
GO
EXEC sp_addextendedproperty 'MS_SmartTags',
 'urn:schemas-microsoft-com:office:smarttags#PersonName',
 'user', dbo, 'table', Employees, 'column', LastName
GO

	Click the Execute Query button on the toolbar or press F5 to run the
query.

	Open the 16.05.adp sample project and open the Employees table in
datasheet view. You will see the PersonName smart tag displayed for
every entry in the LastName column in the Employees table.

Discussion

In order to execute sp_addextendedproperty, the minimum permissions
required are membership in the db_owner and db_ddladmin fixed
database roles. The code listing here assumes that you are running it
as a system administrator (the dbo user).
Unlike creating a smart tag in an Access/Jet
database, there is no way to propagate the new extended property to
any previously existing forms automatically. However, new forms that
you create on the Employees table will inherit the new Person Name
smart tag set on the LastName column. You can test to see if the code
executed correctly by creating a new AutoForm on the Employees table,
as shown in Figure 16-7.
[image: A new form created after running sp_addextendedproperty inherits the smart tag extended property]

Figure 16-7. A new form created after running sp_addextendedproperty inherits the smart tag extended property

Tip
Access does not itself have a full-featured development environment
for creating SQL Server applications. There are
many features missing, such as the ability to administer SQL Server
security. It is highly recommended that you purchase the Developers
Edition of SQL Server, which Microsoft has made available for a
nominal price. Even if you are using MSDE, you can install the client
tools, which include the SQL Server Enterprise Manager, Query
Analyzer, and Profiler. You can find more information about the
Developers Edition version of SQL Server at http://www.microsoft.com/sql/howtobuy/development.asp.

See Also

For more information on working with extended properties in SQL
Server, see the SQL Server help topic, "Using
Extended Properties on Database Objects."

16.6. Create a Custom Smart Tag to Get a Weather Report

Problem

I have a call list of customer names. I'd like to
use a

 smart tag on the postal code field to
retrieve a weather report for that postal code so that when I make
the call, I can talk about the weather. How can I create a custom
smart tag that retrieves the weather forecast from the Internet for a
given postal code?

Solution

There are two different approaches to creating your own smart tags:
you can create an XML file or you can create a dynamic-link library
(DLL). Using an XML file is the best solution when you want to create
a
 smart tag that simply navigates to a
location on the Internet (or an intranet). Creating a
DLL is the preferred approach when your
smart tag is more complex and you need more flexibility or
conditional logic. In this example you'll learn how
to create an XML-based smart tag.
The first step is to create the XML file. This example will navigate
to the weather forecasting section of the MSNBC Web site at http://www.msnbc.com. It takes multiple mouse
clicks and typing in a zip code to find local weather conditions if
you obtain the weather forecast for a given zip code manually. Once
you get there, if you look at the URL of the local weather page after
typing in the zip code 96708, you'll see that the
URL looks like the following:
http://www.msnbc.com/news/wea_front.asp?tab=oth&czstr=96708&ta=y&accid=96708
You can create your own XML smart tag (this example is called
Weather.XML) by creating an XML file using the following format. Note
that the FL:url tag contains the revised URL with the literal zip
code replaced by {TEXT} placeholders:
<FL:smarttaglist xmlns:FL="urn:schemas-microsoft-com:smarttags:list">
 <FL:name>Local Weather</FL:name>
 <FL:description>Your local weather report on MSNBC.</FL:description>
 <FL:moreinfourl>http://msdn.microsoft.com/office</FL:moreinfourl>
 <FL:smarttag type="urn:schemas-microsoft-com:office:smarttags#weather">
 <FL:caption>Local Weather Report</FL:caption>
 <FL:terms>
 </FL:terms>
 <FL:actions>
 <FL:action id="LocalWeather">
 <FL:caption> -- Get Weather</FL:caption>
 <FL:url>http://www.msnbc.com/news/wea_front.asp?tab=oth&
 czstr={TEXT}&ta=y&accid={TEXT}</FL:url>
 </FL:action>
 </FL:actions>
 </FL:smarttag>
</FL:smarttaglist>
Once you've created the Weather.XML smart tag,
deploy it by copying or saving it to the following location:
\Program Files\Common Files\Microsoft Shared\Smart Tag\LISTS\
Follow these steps to use the Weather.XML smart tag in Access:
	Shut down any running copies of Access that may have been active when
you saved Weather.XML to the \Smart Tag\LISTS\ folder. This is
necessary to restart the smart tag engine.

	Open the Access application (16-06.MDB).

	Open the frmCustomers form in design view. Select the PostalCode text
box and press F4 to bring up the Properties window.

	Click the builder button (...) to bring up the Smart Tag dialog box
and select the Local Weather Report option, as shown in Figure 16-8. Click OK.

[image: Attaching the custom Weather.XML smart tag]

Figure 16-8. Attaching the custom Weather.XML smart tag

	Display the form in form view, scroll through the records, and select
the smart tag as shown in Figure 16-9. Select the
Get Weather option and you will be redirected to the msnbc.com
weather forecast for that zip code.

[image: The deployed Weather.XML smart tag]

Figure 16-9. The deployed Weather.XML smart tag

Discussion

Here's how the Weather.XML smart tag file works:
The first line of the XML file defines a smart tag and the smart tag
list namespace. In this example, the urn:schemas-microsoft-com
namespace is used, but this is not required. You can provide any
unique namespace name that you want. You must enclose the entire
smart tag within the FL:smarttaglist element:
<FL:smarttaglist xmlns:FL="urn:schemas-microsoft-com:smarttags:list">
The next three lines define the name, description, and a URL to get
more information about the smart tag by using the <FL:name>,
<FL:description>, and <FL:moreinfourl> elements:
<FL:name>Local Weather</FL:name>
<FL:description>Your local weather report on MSNBC.</FL:description>
<FL:moreinfourl>http://msdn.microsoft.com/office</FL:moreinfourl>
The FL:smarttag element's type attribute defines a
smart tag type, which is a unique, arbitrary identifier for a smart
tag on a user's computer. The smart tag type has two
parts: the namespace URI and a tag name:
<FL:smarttag type="urn:schemas-microsoft-com:office:smarttags#weather">
The URI is conventionally some derivation of your
company's name (microsoft-com is used here), and the
tag name must consist of the "#"
symbol and some unique string (#weather). You could have the same URI
with a different tag, say #directions, the combination of which would
create a second smart tag type.
The following lines consist of the caption and terms. The caption
shows up on the smart tag (see Figure 16-9), and the
terms are not needed for Access since it does not require or support
the recognizers that are needed when working with smart tags in Word
or Excel:
<FL:caption>Local Weather Report</FL:caption>
<FL:terms>
</FL:terms>
The next text block defines the set of actions, or verbs, for the
smart tag, which is fully enclosed with an actions element. The
actions element contains one or more action child elements. This
example has a single action element consisting of a caption element
(Get Weather) and a url element, which provides the associated URL
for the action, navigating to the www.msnbc.com Web site:
<FL:actions>
 <FL:action id="LocalWeather">
 <FL:caption> -- Get Weather</FL:caption>
 <FL:url>http://www.msnbc.com/news/wea_front.asp?tab=oth&
 czstr={TEXT}&ta=y&accid={TEXT}</FL:url>
 </FL:action>
</FL:actions>
The last two lines in the Weather.XML file close out the FL:smarttag
and FL:smarttaglist elements:
 </FL:smarttag>
</FL:smarttaglist>
Although easy to create, the XML file approach can't
do much other than open a web site. One advantage of this technique
is that you can update the XML file on the user's
computer without having to rewrite your application or reinstall any
components.

16.7. Create a Custom Smart Tag DLL

Problem

Users of my application
prefer to use datasheet view for browsing data. I'd
like to provide a smart tag that will enable them to open forms and
reports. How can I create a custom smart tag that will allow users to
open a form that shows all orders for a customer as well as open a
report that shows total sales for a customer?

Solution

If you want to provide conditional processing for
smart tag actions then you must
create a smart tag DLL, using Visual Basic 6.0 or Visual Basic .NET.
In this solution, you'll see how you can use

 Visual Basic 6.0 to accomplish this.
Tip
If you prefer, you can use Visual Basic .NET to create the smart tag
DLL. In Chapter 17 you'll learn
how to create .NET programs that can be called by Access. For smart
tags, there is no particular advantage to using Visual Basic .NET and
Visual Basic 6.0 will be more familiar to Access programmers who have
worked with VBA, so we have chosen to use Visual Basic 6.0 for this
example.

Setting up the DLL project

Follow these steps to create the DLL project using Visual Basic 6.0:
	Launch Visual Basic 6.0 and create a new DLL project. The sample
application is named AccessSmartTag, and it includes one class,
stActions. The stActions class provides the Actions interface that
defines the smart tag actions you want to take.

	Add the references shown in Figure 16-10. The
reference to the Microsoft Smart Tags 2.0 Type Library is required.
This example also has a reference to the Microsoft Access 11.0 Object
Library so that you can work with Access objects from your smart tag
code and the Microsoft DAO 3.6 Object Library so that you can work
with data objects.

[image: Setting references to the Microsoft Smart Tags 2.0 Type Library, the Access 11.0 Object Library, and the Microsoft DAO 3.6 Object Library]

Figure 16-10. Setting references to the Microsoft Smart Tags 2.0 Type Library, the Access 11.0 Object Library, and the Microsoft DAO 3.6 Object Library

	Place the following statements in the Declarations of the stActions
class. You do not need a Recognizer interface for a smart tag
that is designed to work exclusively with Access:
Option Explicit

Implements ISmartTagAction
Implements ISmartTagAction2

	The next step is to implement the smart tag action interface by
creating properties and methods that describe the smart tag action
DLL. Most of these properties are fairly straightforward and just
return a requested string. The ISmartTagAction_ProgId() is the
language-independent unique identifier that corresponds to the ProgID
of the DLL class. In this example, the name of the project is
AccessSmartTag, and the class name is stActions:
Private Property Get ISmartTagAction_ProgId() As String
 ISmartTagAction_ProgId = "AccessSmartTag.stActions"
End Property

	The ISmartTagAction_Name property is a short phrase that describes
the DLL:
Private Property Get ISmartTagAction_Name(ByVal lcid As Long) As String
 ISmartTagAction_Name = "Demo Smart Tag Actions"
End Property

	The ISmartTagAction_Desc property is a longer description of the DLL:
Private Property Get ISmartTagAction_Desc(ByVal lcid As Long) As String
 ISmartTagAction_Desc = _
 "This is a Sample SmartTag used to open Forms and Reports."
End Property

	The ISmartTagAction_SmartTagCount property reflects the number of
smart tag types. This example contains one smart tag, so the count is
1:
Private Property Get ISmartTagAction_SmartTagCount() As Long
 ISmartTagAction_SmartTagCount = 1
End Property

	Each smart tag type is defined by a namespace to keep it unique,
which is defined in the ISmartTagAction_SmartTagName property.
SmartTag type names are always in the format of namespaceURI#tagname.
In this example, the (ismarttag = 1) condition isn't
strictly necessary since there is only one smart tag type defined,
but this shows a pattern you could use for handling multiple types:
Private Property Get ISmartTagAction_SmartTagName(ByVal ismarttag As Long) As String
 If (ismarttag = 1) Then
 ISmartTagAction_SmartTagName = _
 "schemas-microsoft-com/smarttag/northwind#openform"
 End If
End Property

	The ISmartTagAction_SmartTagCaption property allows you to specify
the caption that will be used:
Private Property Get ISmartTagAction_SmartTagCaption(_
 ByVal ismarttag As Long, ByVal lcid As Long) As String
 ISmartTagAction_SmartTagCaption = "Access Smart Tag Demo"
End Property

	The ISmartTagAction_VerbCount is where you specify the number of
verbs in the smart tag. In this example, there are two actions that
the smart tag can take: opening a form or opening a report:
Private Property Get ISmartTagAction_VerbCount(ByVal bstrName As String) As Long
 If (bstrName = "schemas-microsoft-com/smarttag/northwind#openform") Then
 ISmartTagAction_VerbCount = 2
 End If
End Property

	Smart tag action clients will first ask action DLLs for a unique ID
integer for each of the verbs it wants to support, passing in the
name and ordinal number for each one. Generating the unique ID is
totally up to the action DLL, which gives the action DLL more
flexibility. For example, a smart tag action DLL can specify the same
VerbID value for the same action across smart tag types, or it can
use the same VerbID for similar variants of an action. In this
example, the ISmartTagAction_VerbID property returns iVerb (the same
ordinal number passed in) back to the action client as the unique ID:
Private Property Get ISmartTagAction_VerbID(_
 ByVal bstrName As String, ByVal iVerb As Long) As Long
 ISmartTagAction_VerbID = iVerb
End Property

	The ISmartTagAction_VerbNameFromID property is used internally to
represent the verb ID:
Private Property Get ISmartTagAction_VerbNameFromID(ByVal idVerb As Long) _
 As String
 Select Case idVerb
 Case 1
 ISmartTagAction_VerbNameFromID = "openCustomers"
 Case 2
 ISmartTagAction_VerbNameFromID = "openReport"
 Case Else
 ISmartTagAction_VerbNameFromID = ""
 End Select
End Property

	The code in the ISmartTagAction2_VerbCaptionFromID2 property checks
the VerbID and then uses the "///"
syntax to get cascading menus in the smart tag. Figure 16-11 shows the results when the smart tag is
accessed in the client application:
Private Property Get ISmartTagAction2_VerbCaptionFromID2(_
 ByVal VerbID As Long, ByVal ApplicationName As String, _
 ByVal LocaleID As Long, ByVal Properties As SmartTagLib.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String, ByVal Target As Object) As String
 If (VerbID = 1) Then
 ISmartTagAction2_VerbCaptionFromID2 = _
 "Smart Tag Actions///Open Customer Form"
 ElseIf (VerbID = 2) Then
 ISmartTagAction2_VerbCaptionFromID2 = _
 "Smart Tag Actions///Open Customer Report"
 End If
End Property

[image: Displaying a fly-out smart tag]

Figure 16-11. Displaying a fly-out smart tag

	The ISmartTagAction2_InvokeVerb2 method provides code to perform the
actions that the smart tag takes. The first section of the code sets
a variable to point to the Target, which is the Access control object
passed in. If the smart tag is defined on a Table object instead of a
form control, then Access creates a control under the covers that
gets passed to the smart tag DLL:
Private Sub ISmartTagAction2_InvokeVerb2(_
 ByVal VerbID As Long, ByVal ApplicationName As String, _
 ByVal Target As Object, ByVal Properties As SmartTagLib.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String, ByVal LocaleID As Long)

On Error GoTo HandleErr:
 Dim cb As Access.Control
 Set cb = Target

	The next block of code validates that the control source is
CustomerID. If not, a MsgBox statement provides feedback to the user
that the smart tag only works when attached to the CustomerID. If the
smart tag is attached to CustomerID, the code gets a reference to the
Access.Application object from the Target's
Application property:
 If cb.ControlSource <> "CustomerID" Then
 MsgBox "This action only works if you run it on the Customer ID field.", _
 vbOKOnly, "Smart Tag Error"
 GoTo ExitHere
 Else
 Dim app As Access.Application
 Set app = cb.Application
 End If

	The code then branches based on VerbID. If the VerbID is 1, then the
code sets a reference to the Application object's
CurrentDb property to gain access to DAO objects. This allows the
code to execute a query to obtain the total number of orders for a
given CustomerID. This is then retrieved into a DAO Recordset, and
passed to the Customers form as an OpenArgs argument:
 If VerbID = 1 Then
 Dim db As DAO.Database
 Dim rs As DAO.Recordset
 Set db = app.CurrentDb

 Dim strQry As String
 Dim strOrders As String
 strQry = "SELECT Count(*) AS NumOrders FROM Orders WHERE CustomerID='" _
 & cb.Value & "';"
 Set rs = db.OpenRecordset(strQry)
 If Not rs.EOF Then
 strOrders = "Total number of orders: " & rs!NumOrders
 Else
 strOrders = "No orders for this customer"
 End If
 rs.Close

 app.DoCmd.OpenForm "Customers", _
 WhereCondition:="[CustomerID] = '" & cb.Value & "'", _
 OpenArgs:=strOrders

	If the second action is chosen, then the code opens rptCustomers
report, passing the CustomerID as the WhereCondition argument
(without this WhereCondition, the report would open displaying all
the customers):
 ElseIf VerbID = 2 Then
 app.DoCmd.OpenReport "rptCustomers", _
 View:=acViewPreview, _
 WhereCondition:="[CustomerID] = '" & cb.Value & "'"
 End If

	The error handling code is mainly useful for debugging. It displays
any error information in a MsgBox statement:
ExitHere:
 Exit Sub

HandleErr:
 MsgBox Err.Number & " " & Err.Description, _
 vbCritical, "Error in AccessSmartTag.ISmartTagAction2_InvokeVerb2"
 Resume ExitHere
End Sub

Compiling and registering the DLL project

Once you've written the code, build the
DLL project by choosing File
→ Make AccessSmartTag DLL from the menu. This will create
the correct registry entries. Launch regedit from the Windows Start
→ Run menu. To obtain the CLSID for the action handler,
navigate to the following node in the Registry:
HKEY_CLASSES_ROOT\AccessSmartTag.stActions\Clsid
Double-click the Clsid node to obtain the value, as shown in Figure 16-12. Copy it to the clipboard and close the
regedit window without saving.
[image: Obtaining the Clsid from the AccessSmartTag.stActions]

Figure 16-12. Obtaining the Clsid from the AccessSmartTag.stActions

You can then edit the registry directly or create a reg file to
update the registry entries. Use Notepad to create a new file and
name it Reg_AccessSmartTag.reg. The file should contain the following
text. However, you will need to replace the value shown in the curly
braces with the value that you copied to the Clipboard from the
Registry in the previous step:
Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions\
{9F7503BB-4BBA-4A4A-B1A5-A0DF0A0187F5}]
In case you ever need to unregister the smart
tag, create a second file named Unreg_AccessSmartTag.reg. The file
should contain the following text. Again, replace the value shown
here in the curly braces with the value copied to the Clipboard:
Windows Registry Editor Version 5.00

[-HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions\
{9F7503BB-4BBA-4A4A-B1A5-A0DF0A0187F5}]
Save both files and double-click Reg_AccessSmartTag.reg. This will
create the entries in the registry so that Access can recognize the
smart tag actions.
Open the 16-07.MDB sample database and open the
Customers form in design view. View the code in the
form's Open event, which displays anything passed in
the OpenArgs event in the form's Caption property:
Private Sub Form_Open(Cancel As Integer)
' Display any OpenArgs in the Caption
 Dim str As String
 str = Me.OpenArgs & ""
 If Len(str) > 0 Then
 Me.Caption = str
 End If
End Sub
Close the form and open the Customers table in design view. Assign
the smart tag to the CustomerID field, as shown in Figure 16-13.
[image: Assigning the smart tag to the CustomerID field in the Customers table]

Figure 16-13. Assigning the smart tag to the CustomerID field in the Customers table

Save the table and view it in datasheet view. When you choose the
first smart tag action, the Customers form will open with the total
number of orders for the selected customer displayed in the
form's Caption. If you choose the second smart tag
action, then the rptCustomers report will open displaying sales data
for the selected customer.

Discussion

You can write a smart tag DLL in any language that supports writing
COM add-ins. You can also write a smart tag DLL in managed (.NET)
code.
There are two interfaces involved in implementing smart tag actions:
the ISmartTagAction interface and the ISmartTagAction2 interface.
These interfaces provide the client application with the information
needed to support smart tag actions. The ISmartTagAction interface is
compatible with Office XP, and the ISmartTagAction2 interface is
specific to Office 2003, and allows you to tap into new
functionality.
Tip
You do not need to implement the ISmartTagRecognizer and
ISmartTagRecognizer2 interfaces in a smart tag DLL targeted
specifically for Access because Access does not use recognizers.

The role of an ISmartTagAction interface is to provide actions for
individual smart tag types. Each smart tag type is defined by a
namespace URI plus its tag name to keep it unique. A
"#" character is appended to the
namespace URI and is used to separate the namespace URI from its tag
name, as shown in this example, where
"schemas-microsoft-com/smarttag/northwind"
is the namespace URI and "openform"
is the tag name. The combination results in the fully qualified name
of the smart tag type. The URI portion of the property name ensures
that it is globally unique and unambiguous, so that two tags with the
same tag name (openform) can be differentiated:
Private Property Get ISmartTagAction_SmartTagName(_
 ByVal ismarttag As Long) As String
 ISmartTagAction_SmartTagName = _
 "schemas-microsoft-com/smarttag/northwind#openform"
End Property
Working with the Access object model

The most interesting part of the sample smart tag DLL is that it
shows you how you can work with the Access object model as well as
DAO. The code in the
ISmartTagAction2_InvokeVerb2 method has an input parameter, Target As
Object, which Access uses to pass in the control that has the smart
tag attached. The code then creates an Access.Control variable that
references the Target:
Dim cb As Access.Control
Set cb = Target
Once you have the
Access Control object, you can then set a
variable to point to the Access Application object, giving you full
access to any part of your application:
Dim app As Access.Application
Set app = cb.Application
From there, you can work with the data in your application by
creating a DAO Database object using the Application
object's CurrentDb property:
Dim db As DAO.Database
Set db = app.CurrentDb
The code goes on to open a Recordset based on a query that counts the
total number of orders for the selected customer, writing it to a
String variable. It then opens the form to display the selected
customer and passes that count value in the OpenArgs argument of the
Application object's DoCmd.OpenForm method:
app.DoCmd.OpenForm "Customers", _
 WhereCondition:="[CustomerID] = '" & cb.Value & "'", _
 OpenArgs:=strOrders
When the Customers form opens, the code in the Open event evaluates
whether any data has been passed in the OpenArgs argument, and then
displays that information in the form's Caption
property. If the form is opened normally without any OpenArgs data
being passed to it, then the default caption is displayed:
Private Sub Form_Open(Cancel As Integer)
 Dim str As String
 str = Me.OpenArgs & ""
 If Len(str) > 0 Then
 Me.Caption = str
 End If
End Sub
The code for opening a report uses similar techniques. Creating a
smart tag DLL allows you full access to the entire Access object
model, and allows you to create conditional logic for your smart tag.
Smart tags can be a good way to provide extra functionality for users
who prefer working in datasheet view.

See Also

See the Preface for more information on working with DAO to access
data
 .

Chapter 17. .NET

In the beginning of 2002, Microsoft introduced a new initiative
called .NET
that radically changed the Microsoft programming world. Microsoft
.NET programs run on top of a runtime environment called the
Common Language Runtime. Microsoft .NET
provides a consistent programming model across desktop and web
applications and across development languages. In this new
development world, many of the old ways of programming have been
thrown out the window. Microsoft .NET minimizes "DLL
hell" and no longer uses the registry to install
programs. All languages that run under .NET share common systems for
data types, accessing data, security, garbage collection, and
exception handling.
Access 2003 and earlier versions of Access, however, do not live in
the world of .NET. Instead, they live in the world of the Component
Object Model, or COM. By default, a COM-based program does not know
how to talk to a .NET-based program. Fortunately, Microsoft created a
mechanism for .NET to interoperate with the older COM-based world.
In this chapter you will find various examples that demonstrate how
.NET and Access can coexist. You'll learn how to
call a .NET component from Access, even when there are potentially
incompatible features present in the component.
You'll explore how to connect to an Access database
to retrieve and update data. You'll see how to call
.NET web services from Access. You'll learn how to
call .NET web services that return both simple data types and complex
data types. Finally, you'll learn how to automate
Access from a .NET application in order to print an Access report.
Warning
The topics in this chapter all require the presence of the
.NET
Framework 1.1 and Visual Studio .NET 2003. If you do not have
Visual Studio .NET 2003 (or a later version
of Visual Studio .NET) installed on your system you will be unable to
work through the topics in this chapter. See the Preface for advice
on where to find free or evaluation editions of both tools.

17.1. Call a .NET Component from Access

Problem

Access makes it easy to call code inside a component built using
Visual Basic 6.0 or another COM-based programming language (see Chapter 12). By default, however, Access
can't normally call code in a .NET component. Is
there some way that Access can call a .NET component created using Visual
Basic .NET, Visual C# .NET, or another .NET language?

Solution

By default, .NET components can't be called by
Access and other
 COM programs for at
least two reasons. First, .NET components are not installed into the
registry. In order to automate a component, however, certain registry
entries must be present. Second, .NET components
aren't COM components; they aren't
structured to look and behave like a COM component and they have
separate and distinct type systems.
Fortunately, the Microsoft .NET SDK includes a utility, RegAsm.exe, that you can use to create a
COM-callable wrapper for a .NET component. RegAsm.exe also registers
the .NET component so that it can be called from a COM program such
as Access.
One nice feature of .NET is that it only takes a single line of code
to determine the current Windows user name. Trying to do this from
Access requires at the very least a cumbersome Windows API call.
Follow these steps to create a simple .NET component,
UserNameVB, that contains a single class named
UserName with a single method,
GetUserName, which returns the current user name:
	Start Visual Studio .NET.

	Create a new VB .NET Class Library project named
UserNameVB.

	Delete the initial Class1.vb file from the project.

	Select Project → Add Class... to add a new class file to the
project named UserName.cls.

	Add a method named GetUserName to the class that
returns the Environment.UserName property. The complete code for the
UserName class should look like the following:
Public Class UserName
 Public Function GetUserName() As String
 Return Environment.UserName
 End Function
End Class

	Compile the project by selecting Build → Build Solution. If
all goes well, the status bar will display "Build
succeeded."

At this point you could easily create a .NET Windows Form or Web Form
application that calls the .NET component. To make it callable from
Access, however, you need to use the RegAsm utility to create a
COM-callable wrapper component that will call
UserNameVB on your behalf.
RegAsm also takes care of making the necessary
registry entries as well so that Access and other COM programs can
see your component.
Follow these steps to make the UserNameVB component callable from
Access:
	From the Microsoft Visual Studio .NET 2003 Start menu, select Visual
Studio .NET Tools → Visual Studio .NET Command Prompt to
create a Visual Studio .NET command prompt.

Tip
Do not use the Command Prompt menu entry found under Accessories.
This command prompt will not have the needed path settings that allow
you to run the .NET command line tools.

	Navigate to the folder containing the compiled assembly by using the
CD command. By default, the assembly should be found in the following
location:
C:\Documents and Settings\<yourusername>\My Documents\Visual Studio Projects\
UserNameVB\bin

	Use the .NET registration assembly utility (RegAsm.exe) to register
the UserNameVB.dll by entering the following into the command prompt
window:
regasm UserNameVB.dll /tlb:UserNameVB.tlb /codebase

 RegAsm will display a warning about this being an
unsigned assembly but you can safely ignore the warning.

Now you are ready to create the Access application that will call the
UserNameVB component. Follow these steps to create an Access form
that calls the .NET component:
	Create a new Access form named frmGetUserName.

	Add a command button to the form named
cmdGetUserName and a label named
lblUserName.

	From the VBA IDE, select Tools → References. At the
References dialog, select the UserNameVB component (see Figure 17-1).

[image: Setting a reference to the UserNameVB component from the Tools References dialog]

Figure 17-1. Setting a reference to the UserNameVB component from the Tools References dialog

	Attach the following code to the Click event of the cmdGetUserName
command button to instantiate the UserNameVB.UserName class and call
its GetUserName method:
Private Sub cmdGetUserName_Click()
 Dim objUN As UserNameVB.UserName

 Set objUN = New UserNameVB.UserName

 lblUserName.Caption = objUN.GetUserName()
End Sub

	Load and run the form, clicking on the cmdGetUserName command button
to return the current user name as show in Figure 17-2.

[image: This form calls a .NET component to determine the current Windows user name]

Figure 17-2. This form calls a .NET component to determine the current Windows user name

Tip
Note: The steps for the solution are virtually identical if using
another .NET programming language such as C#. The only differences
would be in the type of project (you would choose to create a Visual
C# .NET class library) and the source code of the component. In
addition to the VB version of the component, you can find a C#
version of the component, named UserNameCS, in
this chapter's sample code.

Discussion

An alternate solution

There is an alternate technique for creating a .NET
component that can be called from
Access and other COM programs that requires a bit less work than the
solution presented here. This solution, however, only works with
Visual Basic .NET.
The basic difference with this version of the solution is to create a
special type of class library, called a COM Class, that automatically
enables it to be called from a COM application. Here are the steps:
	Follow Steps 1-3 of the solution.

	Select Project → Add → Add New Item.... At the Add
New Item dialog box, select the COM Class template and name the file
UserName.cls.

	Follow Steps 5-6 of the solution.

	Skip Steps 7-9 of the solution. They are no longer necessary.

	Follow the remaining steps of the solution.

Tip
Note: this version of the solution will only work with a Visual Basic
.NET project.

Not all .NET components are callable

Not all .NET
components can be called from Access and other COM programs. The main
limitation is that you can't instantiate any objects
for classes containing parameterized constructors. A
constructor

is code that executes when an instance of a class is created.
Constructors are similar in concept to the
Class_Initialize event handler within a
Visual Basic 6 class. .NET, however, allows you to create
constructors that can accept parameters, so-called
parameterized
constructors
 . COM, however, has no way to call
a class containing a parameterized constructor. If you attempt to
create an object from a .NET class that contains a parameterized
constructor, you will get a runtime error. A workaround for this
issue is presented in topic 17.2.
Another limitation of calling .NET components from Access is that you
won't be able to access any properties, methods, or
events marked as static (also know as shared). A static member of a
.NET class is a member that applies across all instances of a class.
Static members cannot be called from Access or other COM programs.

See Also

Microsoft Office and .NET Interoperability (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnofftalk/html/office11012001.asp).

17.2. Call a .NET Component Containing a Parameterized Constructor

Problem

Attempting to call a .NET class containing a

 parameterized constructor generates
the compile error "Invalid use of New
keyword". Is there some sort of workaround so that I
can call a .NET class containing a parameterized constructor?

Solution

To see the problem, you will need to follow these steps:
	Start a Visual Studio .NET command prompt and run the
RegAsm
utility program on the Geometry.dll file found in the Geometry\bin
folder of this chapter's sample files using the
following syntax (see topic 17.1 for more details on the Visual
Studio .NET command prompt and running the RegAsm utility):
regasm Geometry.dll /tlb: Geometry.tlb /codebase
RegAsm will display a warning about this being an unsigned assembly
but you can safely ignore the warning.

	Load the 17-02.MDB database and open the
frmCircleDirect form in Design view.

	From the VBA IDE, select Tools → References. At the
References dialog, select the Geometry component.

	Close and save the form.

	Open frmCircleDirect in form view. Enter a numeric
value into the Radius textbox and click the Calculate button. Access
should respond with the error shown in Figure 17-3.

[image: This compile error is triggered when you attempt to instantiate a .NET class containing a parameterized constructor]

Figure 17-3. This compile error is triggered when you attempt to instantiate a .NET class containing a parameterized constructor

	Click OK. Select Run → Reset and close the form.

The Circle class is shown here:
 Public Class Circle
 ' NOTE: This class contains a
 ' parameterized constructor which
 ' prevents it from being called
 ' by a COM program.

 Private RadiusVal As Double

 Public Sub New(ByVal Radius As Double)
 ' This constructor takes a parameter
 RadiusVal = Radius
 End Sub

 Public Property Radius() As Double
 Get
 Return RadiusVal
 End Get
 Set(ByVal Value As Double)
 RadiusVal = Value
 End Set
 End Property

 Public Function Area() As Double
 Return Radius ^ 2 * System.Math.PI
 End Function

 Public Function Circumference() As Double
 Return 2 * Radius * System.Math.PI
 End Function
 End Class
This class is inaccessible from Access because its constructor (the
New subroutine) contains a parameter. The trick to being able to call
the

 inaccessible class from Access is to
create a helper class that you can use to call the unavailable class.
To create a helper class that you can use to call the Circle class,
follow these steps:
	Exit Access completely. This is necessary because otherwise Access
may place a lock on the existing Geometry.tlb type library.

	Start Visual Studio .NET and load the Geometry project.

	Open Geometry.vb and add the following class after the Circle
class's End Class statement:
Public Class CircleCOM
 Inherits Circle

 Sub New()
 ' Call base class' constructor
 ' with dummy radius value.
 MyBase.New(1)
 End Sub

End Class
Notice that the new class, CircleCOM, inherits
from the original inaccessible Circle class.

	Compile the project by selecting Build → Build Solution.

	Start a Visual Studio .NET command prompt and run the RegAsm utility
program on the updated Geometry.dll file found in the Visual Studio
Projects\Geometry\bin folder of this chapter's
sample files using the following syntax (see topic 17.1 for more
details on running the RegAsm utility):
regasm Geometry.dll /tlb: Geometry.tlb /codebase
RegAsm will display a warning about this being an unsigned assembly
but you can safely ignore the warning.

	Restart Access and load the 17-02.MDB database.
Open the frmCircleUsingHelper form in design view.

	From the VBA IDE, select Tools → References. Verify that the
Geometry component is selected.

	Note the source code behind the Calculate command button:
Private Sub cmdCalculate_Click()
 Dim cirCOM As Geometry.CircleCOM
 Set cirCOM = New Geometry.CircleCOM

 cirCOM.Radius = txtRadius

 lblMsg.Caption = "Area of circle: " & cirCOM.Area()
End Sub

	Close and save the form.

	Open frmCircleUsingHelper in form view. Enter a
numeric value into the Radius textbox and click the Calculate button.
Access should display the result as shown in Figure 17-4.

[image: frmCircleUsingHelper instantiates a helper class, CircleCOM, which calls the inaccessible class, Circle]

Figure 17-4. frmCircleUsingHelper instantiates a helper class, CircleCOM, which calls the inaccessible class, Circle

Discussion

The helper class could have been constructed in a number of ways.
Although we chose to use a derived class, the helper class could also
have been independent of the original class. The helper class could
live within the same component or in a separate component. In this
example, we chose to make the helper class a derived class that lives
in the same component as the inaccessible class.
In this example, you were able to use the CircleCOM class to call the
Circle class. In instantiating the Circle class,
CircleCOM passed a dummy radius value to the
constructor. Because Circle also included a Radius property, you were
able to specify the radius value prior to calling the Area method.
There may be some classes where properties that duplicate the
constructor parameters are not available. In these cases, it may be
difficult if not impossible to create a helper class that is able to
instantiate the inaccessible class for you.
Many of the built-in classes of the .NET Framework contain
parameterized constructors. This means that you will need to create a
lot of helper classes in order to work with these classes.

17.3. Retrieve Access Data from an ASP.NET Application

Problem

Your ASP.NET web site needs to access data from one of your Access
databases. How do you retrieve Access data using
 ADO.NET?

Solution

Follow these steps to create an ASP.NET page,
AltRock.aspx, which displays a list of alternative
rock albums from the 17-03.MDB database using a
DataGrid control:
	Start Visual Studio .NET.

	Create a new Visual Basic .NET ASP.NET Web Application project.

	Under location, enter
"http://localhost/Music" and click
OK.

	Delete the initial WebForm1.aspx file from the project.

	Select Project → Add Web Form... to add a new web form page
to the project named AltRock.aspx.

	With the Web Forms toolbox tab visible, drag a DataGrid control to
the page.

	Using the Property sheet, change the ID of the new DataGrid control
to dgrAltRock.

	Right-click on the DataGrid control and select Auto Format... from
the popup menu. Select a format of your liking and click OK.

	Select View → Code to jump to the code editor.

	Add the following code to the very top of the page (above the Class
statement) to import the System.Data.OleDb namespace:
Imports System.Data.OleDb

	Add the following code to the Page_Load event handler to establish a
connection to the 17-03.MDB database:
 ' You will need to edit the Data Source value to correspond
 ' to the location of the 17-03.mdb database on your system.
 Dim cnx As OleDbConnection = _
 New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=D:\Books\AccessCookBook2003\ch17\17-03.mdb")
 cnx.Open()
As noted by the comment in the code you will need to edit the path to
the 17-03.MDB database to match where the
database is located on your system.

	Add the following code to retrieve the rows returned by the
database's qryAlternativeAlbums query as a
OleDbDataReader:
 ' Constuct a OleDbCommand to execute the query
 Dim cmdAltRock As OleDbCommand = _
 New OleDbCommand("qryAlternativeAlbums", cnx)

 ' Odd as it may seem, you need to set the CommandType
 ' to CommandType.StoredProcedure.
 cmdAltRock.CommandType = CommandType.StoredProcedure

 ' Run the query and place the rows in an OleDbDataReader.
 Dim drAltRock As OleDbDataReader
 drAltRock = cmdAltRock.ExecuteReader

	Add the following code to bind the drAltRock OleDbDataReader to the
dgrAltRock DataGrid control on the page:
 ' Bind the OleDbDataReader to the DataGrid
 dgrAltRock.DataSource = drAltRock
 dgrAltRock.DataBind()

	Save the page and preview it in your browser by right-clicking on the
file name (AltRock.aspx) in the Solution Explorer window and
selecting View in Browser from the popup menu. The resulting page
should look similar to the one shown in Figure 17-5.

[image: The data behind this DataGrid was retrieved from the 17-03.MDB database using the .NET OleDb provider]

Figure 17-5. The data behind this DataGrid was retrieved from the 17-03.MDB database using the .NET OleDb provider

Discussion

Probably the trickiest part of retrieving data from an Access
database using
ADO.NET is in
creating the connection string. The basic syntax of the connection
string is as follows:
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=path_to_database"
If you are using a workgroup-secured database, you will need to add
User Id and Password items to the connection string:
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=path_to_database;" & _
 "User Id=user_name;Password=password;"
If the database is password-protected, you will need to use the
following connection string:
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=path_to_database;" & _
 "Jet OLEDB:Database Password=database_password;"
Tip
If the database is stored in an Access 97 database, you should
specify the Jet 3.51 provider (Microsoft.Jet.OLEDB.3.51) instead of
the Jet 4.0 provider.

The steps for constructing a Windows Forms-based application that
accesses an Access database are fairly similar.
This example binds the DataGrid to an OleDbDataReader object.
You can also bind a DataGrid to a DataSet object.
It's more efficient to use an OleDbDataReader;
however, its usage is more limited. For example, if you wished to
enable paging for the DataGrid, you would have to use a DataSet
instead.

See Also

The following link provides a walkthrough for working with Access
data from ADO.NET: Walkthrough: Editing an Access Database with
ADO.NET (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadonet/html/adon_wtaccessdb.asp).
Another helpful article on ADO.NET is Unlocking Microsoft Access Data
with ADO.NET (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnofftalk/html/office12062001.asp).
The following article discusses how to create a pageable DataGrid
using a DataSet: (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/aspnet-pageablesortable.asp).
If you're having trouble creating ADO.NET connection
strings, check out Able
Consulting's Connection Strings page (http://www.able-consulting.com/ADO_Conn.htm).

17.4. Call a Web Service from Access

Problem

A web service is a specially constructed
component that you can access over standard web protocols. To call a
web service, however, you must pass it messages encoded using
Simple Object Access Protocol (SOAP).
Access does not directly support the SOAP protocol. Is there any way
to call a web service from Access?

Solution

Microsoft has released several toolkits that can be used by Microsoft
Office programmers to call web services. This solution assumes you
are using Access 2003 with Microsoft Office 2003 Web
Services Toolkit. See the discussion section of this topic on calling
web services from earlier versions of Access.
The RunnerCalculator web service contains a
number of methods that provide pacing calculations for long distance
running. This web service can be found at www.deeptraining.com/webservices. One of the
RunnerCalculator methods, GetPaceDouble, can be
used to calculate the pace in minutes per mile for a given distance
and total time. Follow these steps to create an Access 2003 form that
uses this web service to calculate pace for a user-entered distance
and time:
	If you haven't yet done so, download and install the
Microsoft Office 2003 Web Services Toolkit.

	Start Access 2003 and create an unbound form named
frmPaceCalculator.

	Add the controls to the form listed in Table 17-1:

Table 17-1. Controls for frmPaceCalculator
	
 Control

 	
 Name

	
 TextBox

 	
 txtDistance

	
 TextBox

 	
 txtHours

	
 TextBox

 	
 txtMinutes

	
 TextBox

 	
 txtSeconds

	
 CommandButton

 	
 cmdCalculatePace

	
 Label

 	
 lblPace

	From the VBA editor, select Tools → Web Service →
References.... This menu item is added to the VBA editor by the
Microsoft Office 2003 Web Services Toolkit.

	At the Microsoft Office 2003 Web Services Toolkit dialog box, select
the Web Service URL radio button and enter the following address into
the URL textbox:
www.deeptraining.com/webservices/runnercalculator.asmx

	The RunnerCalculator service and its methods should be displayed in
the SearchResults box. Check the checkbox to the left of
RunnerCalculator and click the Add button at the bottom of the dialog
box to add a reference to the RunnerCalculator service. The Microsoft
Office 2003 Web Services Toolkit dialog box is shown in Figure 17-6.

[image: You use the Microsoft Office 2003 Web Services Toolkit dialog box to locate a web service and set a reference to it]

Figure 17-6. You use the Microsoft Office 2003 Web Services Toolkit dialog box to locate a web service and set a reference to it

	The toolkit adds a new class module to the Access project with the
name clsws_RunnerCalculator. This class serves as
a proxy for making calls to the web service. The code in this class
will take care of speaking to the web service using the SOAP
protocol.

	Attach the following code to the cmdCalculatePace
button's Click event to use the proxy class to call
the RunnerCalculator web service:
Private Sub cmdCalculatePace_Click()
 Dim prxRunnerCalc As clsws_RunnerCalculator
 Dim strResult As String

 On Error GoTo HandleErr
 DoCmd.Hourglass True

 ' Instantiate proxy class
 Set prxRunnerCalc = New clsws_RunnerCalculator

 If Len(txtDistance) > 0 And Len(txtHours) > 0 And _
 Len(txtMinutes) > 0 And Len(txtSeconds) > 0 Then
 ' Call GetPaceString method via proxy class
 strResult = prxRunnerCalc.wsm_GetPaceString(txtDistance, _
 txtHours, txtMinutes, txtSeconds)
 lblPace.Caption = "Average Mile Pace: " & strResult
 Else
 MsgBox "You must enter values for each text box.", _
 vbOKOnly + vbCritical, "Pace Calculator"
 End If

ExitHere:
 On Error GoTo 0
 DoCmd.Hourglass False
 Exit Sub

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "Pace Calculator"
 Resume ExitHere
End Sub

	Save the form and open it in form view. Enter values into each of the
textboxes and click on the Calculate Pace button. The form should
look like the one shown in Figure 17-7.

[image: When you click on the Calculate Pace button, code behind the button calls the proxy class, which calls the RunnerCalculator web service]

Figure 17-7. When you click on the Calculate Pace button, code behind the button calls the proxy class, which calls the RunnerCalculator web service

Discussion

When you set a reference to a web service using the Microsoft Office
2003 Web Services Toolkit, the toolkit creates a proxy class with the
name clsws
 _webservice,
where webservice is the name of the web
service. The proxy class takes care of calling
the web service using SOAP and processing the response, again using
the SOAP protocol.
For every method of a web service, the Microsoft Office 2003 Web
Services Toolkit creates a corresponding method of the proxy class
with the name wsm_method,
where method is the name of the web service
method. Thus, calling the web service is as simple as instantiating
the proxy class and calling the proxy method corresponding to the
method in the web service.

Calling web services from earlier versions of Access

If you wish to call a web service from Access XP or an
earlier version of Access the solution steps will differ from those
shown here. If you're using Access 2002, you need to
download and install the Microsoft Office XP Web Services Toolkit
2.0. The steps to use the Office XP toolkit are fairly similar to
using the Office 2003 toolkit. If you need to call a web service from
Access 2000 or an earlier version of Access, you'll
need to use the Microsoft SOAP Toolkit 3.0. This toolkit is geared
more towards Visual Studio 6.0 developers, but can also be used from
VBA code.

Locating the toolkits

The Microsoft Office 2003 Web Services
Toolkit can be found at http://www.microsoft.com/downloads/details.aspx?FamilyID=fa36018a-e1cf-48a3-9b35-169d819ecf18&DisplayLang=en.
The Microsoft Office XP Web Services Toolkit 2.0
can be found at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxpwst2/html/odc_offxpwstoolkit2.asp.
The Microsoft SOAP Toolkit 3.0 can be found at
http://msdn.microsoft.com/library/default.asp?URL=/downloads/list/websrv.asp.

See Also

Integrating XML Web Services Into Microsoft
Office Solutions (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnofftalk/html/office09062001.asp).

17.5. Work with a Web Service that Returns a DataSet

Problem

Some

 web services return complex objects
that are not readily understood by Access. For example, you might
wish to call a web service that returns a .NET DataSet. Is it
possible to call such a web service from Access?

Solution

Web services communicate using the text-based protocols HTTP and
SOAP. Thus, any complex objects must be converted from the normal
binary format into text. This process is known as
serialization.
.NET automatically serializes many of its built-in objects, including
the DataSet, into XML. Thus, a .NET-based web service that returns a
DataSet, in reality returns an XML document that represents the
DataSet.
When possible, the Microsoft Office 2003 Web Services
Toolkit maps complex object return values into compatible types. The
serialized XML representation of a DataSet returned by a web service
is mapped by the toolkit into an MSXML2.IXMLDOMNodeList object. This
object is part of the MSXML component that you can use to navigate
through XML documents from Access.
The RunningCalculator
web service introduced in the Solution in Recipe 17.4 contains the GetMileSplits method which
returns a DataSet filled with mile splits for a given distance and
total time. Follow these steps to create an Access form that calls
the GetMileSplits method, navigates through the XML returned by the
web service, and populates an unbound listbox control on the form
with the mile splits:
	If you haven't yet done so, download and install the
Microsoft Office 2003 Web Services Toolkit.

	Start Access 2003 and create an unbound form named
frmSplitCalculator.

	Add the controls listed in Table 17-2 to the form.
Size the controls to your liking.

Table 17-2. Controls for frmSplitCalculator
	
 Control

 	
 Name

	
 TextBox

 	
 txtDistance

	
 TextBox

 	
 txtHours

	
 TextBox

 	
 txtMinutes

	
 TextBox

 	
 txtSeconds

	
 CommandButton

 	
 cmdCalculateSplits

	
 ListBox

 	
 lstSplits

	From the VBA editor, select Tools → Web Service →
References.... This menu item is added to the VBA editor by the
Microsoft Office 2003 Web Services Toolkit.

Tip
If you've already completed the Solution in Recipe 17.4 and are working within the same
database, you can skip Steps 4-7.

	At the Microsoft Office 2003 Web Services Toolkit dialog box, select
the Web Service URL radio button and enter the following URL into the
URL textbox:
www.deeptraining.com/webservices/runnercalculator.asmx

	The RunnerCalculator service and its methods should be displayed in
the SearchResults box. Check the checkbox to the left of
RunnerCalculator and click the Add button at the bottom of the dialog
box to add a reference to the RunnerCalculator service.

	The toolkit adds a new class module to the project with the name
clsws_RunnerCalculator. This class serves as a proxy for making calls
to the web service. The code in this class will take care of speaking
to the web service using the SOAP protocol.

	Attach the following code to the cmdCalculateSplits
button's Click event to use the
clsws_RunnerCalculator proxy class to call the GetMileSplits method:
Private Sub cmdCalculateSplits_Click()
 Dim prxRunnerCalc As clsws_RunnerCalculator
 Dim nlDS As MSXML2.IXMLDOMNodeList
 Dim i As Integer

 ' Clear any existing items from the listbox
 For i = lstSplits.ListCount - 1 To 0 Step -1
 lstSplits.RemoveItem (i)
 Next

 ' Add the headings to the list
 lstSplits.ColumnWidths = "0.35"";1"""
 lstSplits.ColumnHeads = True
 lstSplits.AddItem ("Mile;Split")

 On Error GoTo HandleErr
 DoCmd.Hourglass True

 ' Instantiate proxy class
 Set prxRunnerCalc = New clsws_RunnerCalculator

 If Len(txtDistance) > 0 And Len(txtHours) > 0 And _
 Len(txtMinutes) > 0 And Len(txtSeconds) > 0 Then
 ' Call GetMileSpilts method via proxy class
 ' This method returns a .NET DataSet which gets
 ' serializedd into XML.
 ' XML is returned by the proxy as the type
 ' MSXML2.IXMLDOMNodeList.
 Set nlDS = prxRunnerCalc.wsm_GetMileSplits(txtDistance, _
 txtHours, txtMinutes, txtSeconds)

 Call ProcessSplits(nlDS)
 Else
 MsgBox "You must enter values for each text box.", _
 vbOKOnly + vbCritical, "Splits Calculator"
 End If

ExitHere:
 On Error GoTo 0
 DoCmd.Hourglass False
 Exit Sub

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "Splits Calculator"
 Resume ExitHere
End Sub

	Add the following code to the module to use the MSXML component to
process the returned XML data and add the split values to the
lstSplits listbox:
Private Sub ProcessSplits(nlDS As MSXML2.IXMLDOMNodeList)
 Dim nlPace As MSXML2.IXMLDOMNodeList
 Dim nodData As MSXML2.IXMLDOMNode
 Dim nodRow As MSXML2.IXMLDOMNode
 Dim nodField As MSXML2.IXMLDOMNode
 Dim strItem As String

 On Error GoTo HandleErr

 ' Grab the second node -- the data -- from the
 ' returned node list
 Set nodData = nlDS.Item(1)

 ' Get the Pace nodes (rows)
 Set nlPace = nodData.selectNodes("//MileSplits/Pace")
 ' For each Pace node
 For Each nodRow In nlPace
 ' Get the child nodes of Pace, i.e., the fields
 For Each nodField In nodRow.childNodes
 Select Case nodField.nodeName
 Case "Mile"
 ' Grab the Mile value
 strItem = nodField.nodeTypedValue
 Case "SplitString"
 ' Grab the SplitString value
 strItem = strItem & ";" & nodField.nodeTypedValue
 ' Add the strItem value to the listbox
 lstSplits.AddItem strItem
 End Select
 Next
 Next

ExitHere:
 On Error GoTo 0
 DoCmd.Hourglass False
 Exit Sub

HandleErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description, _
 vbOKOnly + vbCritical, "Process Splits"
 Resume ExitHere
End Sub

	Save and open the form to test it out. Enter values into each of the
textboxes and click on the Calculate Splits button. The form should
look similar to the one shown in Figure 17-8.

[image: The code behind the Calculate Splits button calls the RunningCalculator service's GetMileSplits method, processes the returned serialized DataSet, and adds the splits to the listbox]

Figure 17-8. The code behind the Calculate Splits button calls the RunningCalculator service's GetMileSplits method, processes the returned serialized DataSet, and adds the splits to the listbox

Discussion

When you establish a reference to a web service using the Microsoft
Office 2003 Web Services Toolkit, the toolkit, among other things,
sets a reference to the Microsoft XML v 5.0 type library, which
allows you to use
MSXML without having
to manually set a reference to the type library.
Processing the returned XML

The MSXML component contains a number of objects, properties, and
methods for working with XML documents. You can find online
documentation for MSXML at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/htm/xml_obj_
ixmldomnodelist_4kvo.asp
In order to create the code that processes a
serialized DataSet using MSXML you need to
understand the layout of the XML returned by the web service method.
For .NET web services, you can obtain basic documentation about the
web service and its methods by directly navigating to the web service
(the asmx file) using Internet Explorer. Thus, for the
RunnerCalculator service, you could obtain information about the web
service at this address:
www.deeptraining.com/webservices/runnercalculator.asmx
When you do this you should see a screen that looks similar to the
one shown in Figure 17-9.
[image: .NET web services supply a basic set of documentation when you navigate to them]

Figure 17-9. .NET web services supply a basic set of documentation when you navigate to them

You may find it helpful to take a look at the web
services'
 Web
Services Description Language (WSDL) document, which you can get to
by clicking on the Service Description link (see Figure 17-9). You can think of the WSDL as the equivalent
of a type library for a web service.
If the web service was
created with Microsoft .NET 1.0 you can also use a special
automatically-generated test form to call a web service method
interactively from Internet Explorer. This test form is available by
clicking on the name of a method you wish to test (see Figure 17-9). In Microsoft .NET 1.1 (Visual Studio .NET
2003), by default, you no longer get the test form when calling the
web service remotely. If you're using a .NET 1.1 web
service, the test form is disabled when used from a remote client
(anything other than localhost), so you can't depend
on the test form for help.
Of course, neither the .NET 1.0 test form nor the WSDL for a web
service takes the place of good documentation. If you are using a web
service in a production environment, you're going to
need for the web service's creator to supply you
with documentation that should include a thorough discussion of the
web services input parameters and return value.

See Also

Working with ADO.NET Datasets in Microsoft Office (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnofftalk/html/office08012002.asp).
MSXML documentation (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/htm/xml_obj_ixmldomnodelist_4kvo.asp).

17.6. Print an Access Report from .NET Windows Form Application

Problem

The Solution in Recipe 12.2 illustrates how
to print an Access report from Excel. Is it also possible to print an
Access
 report from
a .NET Windows Form application?

Solution

Printing an Access report from another application requires you to
automate the Access application. The Solution in Recipe 12.2 shows how to do this from Excel, which like
Access is a COM-based program. The process for automating Access from
a .NET application is very similar. The only difference is that a
.NET application cannot directly call a COM program (or component).
To call a COM-based program from .NET, you must obtain a

 runtime callable wrapper that calls the
COM-based program on your behalf. (This process is the reverse of
calling a .NET component from a COM-based program as discussed in the
Solution in Recipe 17.1.) Runtime callable wrappers are also known as
interop assemblies.
Using the Office 2003 setup program, you can install the
interop assemblies
for various Office applications, including Access. Depending on the
path you take through the Office 2003 setup program, you may or may
not have installed the interop assemblies. Fortunately, you can
modify an existing Office 2003 installation to add one or more
interop assemblies. The interop assemblies are listed under each
product in the Office 2003 setup program under the heading
". NET Programmability Support."
If you have installed the interop assemblies, when you set a
reference to Access 2003 or another Office application from Visual
Studio .NET, your code will automatically use the installed interop
assembly.
Follow these steps to create a Windows Form application named
AccessReporter that automates Access 2003, opens the
17-06.MDB database, and runs the rptArtistAlbum
report:
	Start Visual Studio .NET.

	Create a new VB .NET Windows Application project named
AccessReporter.

	Delete the initial Form1.vb file from the project.

	Select Project → Add Windows Form... to add a Windows Form
file to the project named PrintArtistReport.vb.

	Add the controls listed in Table 17-3 to the form.
Size the controls to your liking.

Table 17-3. Controls for the Windows Form file for the project PrintArtistReport.vb
	
 Control

 	
 Name

 	
 Text

	
 Label

 	
 lblArtist

 	
 Artist:

	
 ComboBox

 	
 cboArtist

 	
 n/a

	
 Button

 	
 cmdRunReport

 	
 Run Report

	
 Checkbox

 	
 chkPreview

 	
 Preview report before printing

	Double-click the cmdRunReport button control to jump to the code
editor window.

	Select Project → Add Reference... to display the Visual
Studio .NET Add Reference dialog box.

	Click the COM tab, select "Microsoft Access 11.0
Object Library" from the upper listbox, and click
the Select button as shown in Figure 17-10. Click OK
to dismiss the dialog box.

Tip
If you do not see Microsoft Access 11.0 Object Library
listed in the upper listbox of the COM tab of the Visual Studio .NET
Add Reference dialog box, then you have not installed the Access 2003
interop assembly. To install the interop assembly, start the Add or
Remove Programs Control Panel applet. Choose to change the Microsoft
Office 2003 installation. From the setup program, choose Add or
Remove Features. On the next page of the setup wizard, ensure that
the Access and "Choose advanced customization of
applications" checkboxes are selected and click
Next. Under the Microsoft Office Access node, make sure the
".NET Programmability Support"
entry is enabled and click Update.

[image: The Visual Studio .NET Add Reference dialog box]

Figure 17-10. The Visual Studio .NET Add Reference dialog box

	Add the following line of code at the top of the code window before
the Class statement to import the Microsoft.Office.Interop namespace:
Imports Access = Microsoft.Office.Interop.Access

	You also need to add the following Imports statement (below the other
Imports statement) to import the System.Data.OleDb namespace:
Imports System.Data.OleDb

	Add the following code to the PrintArtistReport class module, just
beneath the Inherits statement to define two module-level constants:
 Private Const strDb As String = "D:\Books\AccessCookBook2003\ch17\17-06.mdb"
 Private Const strRpt As String = "rptArtistAlbums"
You will need to edit the path to the 17-06.MDB
database to match the location of the database on your system.

	Add the following code to the form's load event
handler to populate the cboArtists combobox control with a list of
Artists from the tblArtists table in the
17-06.MDB database:
 Private Sub PrintArtistReport_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' This code populates the cboArtists control
 ' with the list of artists from the 17-06.mdb database.

 Dim cnx As OleDbConnection = New OleDbConnection(_
 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & strDb)

 Dim strSql As String = "SELECT ArtistId, ArtistName " & _
 "FROM tblArtists ORDER BY ArtistName"

 Dim daArtists As OleDbDataAdapter = New OleDbDataAdapter(strSql, cnx)

 Dim dsArtists As DataSet = New DataSet
 daArtists.Fill(dsArtists, "Artists")

 cboArtist.DataSource = dsArtists.Tables("Artists").DefaultView
 cboArtist.DisplayMember = "ArtistName"
 cboArtist.ValueMember = "ArtistId"
 End Sub

	Add the following code to the cmdRunReport's Click
event handler to open the report:
 Private Sub cmdRunReport_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRunReport.Click
 Dim accApp As Access.Application
 Dim strWhere As String

 ' Construct where clause
 strWhere = "ArtistId = " & cboArtist.SelectedValue

 ' Instantiate the Access application
 accApp = New Access.Application

 'Open database
 accApp.OpenCurrentDatabase(strDb)

 If chkPreview.Checked Then
 ' Make Access visible and open report
 ' in print preview.

 ' Display report in Print Preview.
 accApp.DoCmd.OpenReport(strRpt, Access.AcView.acViewPreview, , _
 strWhere)

 ' Make Access visible so you can see the report.
 ' It will be up to the user to shut down Access.
 ' However, Access will not be released from memory until
 ' this application shuts down.
 accApp.Visible = True
 Else
 ' Go ahead and print directly. No need
 ' to make Access visible or to leave open.

 ' Print report to printer and quit Access.
 accApp.DoCmd.OpenReport(strRpt, Access.AcView.acViewNormal, , _
 strWhere)
 accApp.DoCmd.Quit()

 ' Force Access to shutdown now.Unless you include this code,
 ' Access won't be removed from memory until this app shuts down.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(accApp)
 End If
 End Sub

	Select Project → AccessReporter Properties to display the
Project Properties Pages dialog box. On the
Common Properties, General page of the dialog box, select the
PrintAccessReport form as the startup object and click OK to close
the dialog box.

	Select File → Save All to save the open files.

	Select Debug → Start to run the application. Select an
artist from the combobox control, ensure that the
"Preview report before printing"
checkbox is selected, and click on Run Report to open the
rptArtistAlbums report in Print Preview view. The AccessReporter
application is shown in Figure 17-11.

[image: The AccessReporter Windows Form application is shown in front of the Access report it has previewed]

Figure 17-11. The AccessReporter Windows Form application is shown in front of the Access report it has previewed

	Close Access and quit the AccessReporter application.

Discussion

Here's the basic process followed by the
AccessReporter application to run the
Access report:
	When AccessReporter starts it calls the startup
form, PrintArtistReport.

	As the PrintArtistReport form is loaded it
executes the form's Load event handler, which
populates the cboArtists combobox with data from the
17-06.MDB database using ADO.NET.

	When the cmdRunReport button is clicked by the user, the code
attached to the cmdRunReport_Click event handler automates Access,
and uses the OpenReport method to open the rptArtistAlbum report,
passing it the selected Artist as a parameter.

Shutting down Access

The PrintArtistReport form includes a checkbox control to determine
if the report is to be previewed or printed. If the report is to be
previewed, then it is necessary to make Access visible to allow the
user to view the report. In this case, it will be up to the user to
close down Access:
accApp.DoCmd.OpenReport(strRpt, Access.AcView.acViewPreview, , _
 strWhere)
accApp.Visible = True
If the report is to be sent to a printer, the code takes a different
path. There's no need to make Access visible. In
fact, Access is shut down after the printing is complete:
accApp.DoCmd.OpenReport(strRpt, Access.AcView.acViewNormal, , _
 strWhere)
accApp.DoCmd.Quit()
This code alone, however, will not remove Access from memory. That
feat is accomplished with this additional line of code:
System.Runtime.InteropServices.Marshal.ReleaseComObject(accApp)
If you do not call the ReleaseComObject method, Access will not be
removed from Memory until the AccessReporter application is closed.

Communicating parameters to Access

When automating Access 2003, you have no way to supply parameters to
a
 parameter query, thus you must devise
some other technique to pass parameters from your .NET application to
Access. In many situations, you can construct a
WHERE clause and pass it
to the report using the fourth parameter of the call to the
OpenReport method. This is the technique that was used in this
solution.
There may be some situations where constructing a WHERE clause is too
cumbersome. For example, if you used a listbox control that allowed
for multiple rows to be selected, the WHERE clause could be
inordinately long. In this case, another option would be to use a
"parameters" table to which you
would add the selected rows. You could then create a query that
joined to this parameters table and base the report on this query.
Before running the report your code would need to iterate through the
rows in the listbox and, using ADO.NET, insert a row into the
"parameters" table for each row of
the selected listbox rows.

Interop assemblies

There are two types of interop assemblies: primary interop
assemblies and alternate interop assemblies. Anyone can generate an
alternate interop assembly (AIA) for any
component by setting a reference to a COM component from Visual
Studio .NET (which generates the AIA by calling the tlbimp utility
that ships with the .NET Framework). A primary interop assembly
(PIA) is the official interop assembly that has been produced and
signed by the component's author. While the tlbimp
utility usually does a good job in generating the AIA for a
component, there may be situations where the types are not mapped
properly. PIAs, on the other hand, are usually hand-optimized beyond
the code automatically generated by tlbimp. Whenever it is available
it's preferable to use the PIA rather than an AIA.
Tip
When setting a reference to a COM component or program from Visual
Studio .NET, it will always use the PIA if one has been installed on
the system. Otherwise, it will create an AIA and use that instead.

As mentioned in the solution, Office 2003 ships with PIAs for each of
its applications. You can download the PIAs for Access 2002 and the
other Office XP applications from the following URL:
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/office.asp
Microsoft has no plans to supply PIAs for Office 2000 or Office 97,
so you will have to generate and use AIAs for these applications.

See Also

See A Primer to the Office XP Primary Interop Assemblies (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnofftalk/html/office10032002.asp).

Chapter 18. XML

Support for Extensible Markup
Language (XML) in Access 2003 has been greatly expanded from the
XML
support available in Access 2002. As you may be aware, Microsoft has
chosen XML as the backbone for all of their .NET technologies. Access
2002 included XML support for importing and exporting data as well as
for presenting data, but there was little support for transforming
data by using XSLT stylesheets or for describing the structure if
data using XML schemas. These capabilities were added in Access 2003,
which provides very full-featured support for working with XML
documents and technologies when importing or exporting data.
XML Overview

If you're not already familiar with working with
XML,
you may find all of the acronyms a bit confusing at first. However,
XML syntax itself is fairly easy to understand.
The XML file

The first line of an
XML
file is the XML declaration, which specifies that the file is an XML
document, that it conforms to the XML version 1.0 specification, and
that it uses the UTF-8 character set. Most XML documents have this
declaration, but Access is also capable of importing XML documents
that do not:
<?xml version="1.0" encoding="UTF-8" ?>
The body of the XML file consists of tags similar to the tags used in
HTML. Start tags begin with open angle brackets and end with closing
angle brackets:
<Car>
End
tags
begin with an open angle bracket and a slash, and end with a closing
angle bracket:
</Car>
The Car tag is also the name of the element.
While HTML works with a limited set of elements, XML allows you to
create your own, as long as you conform to some basic rules:
	Names can contain only alphanumeric characters, the underscore
character (_), hyphens (-), or a period (.).

	Element names cannot contain white space and must start with a letter
or the underscore character.

The values in XML elements are found between the start tag and end
tag, similarly to the way that text is represented in HTML. In this
example, the Car element has a value of Mini Cooper:
<Car>Mini Cooper</Car>

 XML
elements can be nested, but they can't overlap. The
Car element can have sub-elements, such as Make, Model and Price:
<Car>
 <Make> Mini Cooper</Make>
 <Model>S</Model>
 <Price>$20,000</Price>
</Car>
Tip
Note that spaces, tabs and line feeds are ignored by the XML parser.
They are used to make XML documents more readable.

You can also have multiple nested sets of elements in the same XML
file, and elements can be repeated:
<Car>
 <Make> Mini Cooper</Make>
 <Model>S</Model>
 <Price>$20,000</Price>
</Car>
<Car>
 <Make> Lexus</Make>
 <Model>LS430</Model>
 <Price>$60,000</Price>
</Car>
Root elements and namespaces

The above sample alone would not comprise a valid

 XML file. Each valid XML document
must have a single root, or top-level, element. This allows the XML
file to be represented as a tree, with all of the elements as
branches off of the main root element. In this example, the starting
tag is named dataroot, and has a namespace
declaration:
<?xml version="1.0" encoding="UTF-8" ?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata">
 <Car>
 <Make> Mini Cooper</Make>
 <Model>S</Model>
 <Price>$20,000</Price>
 </Car>
 <Car>
 <Make> Lexus</Make>
 <Model>LS430</Model>
 <Price>$60,000</Price>
 </Car>
</dataroot>
There are three parts to the namespace declaration:
	
 xmlns: identifies the dataroot element as
containing an XML namespace.

	
 od: identifies the prefix assigned to the
namespace.

	"urn:schemas-microsoft-com:officedata" is the
 Uniform Resource
Identifier, or URI, which uniquely identifies the namespace. This
particular namespace is generated whenever you save Access data in
XML format.

In this example, all of the elements in the document are part of one
namespace, but multiple namespaces can be used in a single XML
document. In that case, the prefix assigned to each namespace is used
with the element names to identify which namespace they belong to.
This allows differentiation between identically named elements from
different namespaces.
When you view an XML file in a browser, you can see the hierarchy of
data, as shown in Figure 18-1.
[image: Viewing the XML file in a browser window]

Figure 18-1. Viewing the XML file in a browser window

Clicking the plus sign (+) expands the tree view so that you can view
the data in the nested elements.

Attributes

Another option is to represent the data using
attributes

in addition to elements. Each attribute has a name and a value, as
shown in this example where each Car element has a Make, Model, and
Price attribute:
<?xml version="1.0" encoding="UTF-8" ?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata">
 <Car Make="Mini Cooper" Model="S" Price="$20,000" />
 <Car Make="Lexus" Model="LS430" Price="$60,000" />
</dataroot>
You can represent the data as either elements or attributes. However,
when you import or export XML data with Access, you have no
choice—you must use elements, not attributes, for Access to
be able to correctly parse the XML file. One major problem is that if
your XML input is not structured using elements, then you may not
like the way that Access imports the data. To get around this
problem, you need to convert your XML to the element-based format
that Access expects. To get around this limitation, you can use an
XML technology named Extensible Stylesheet Language Transformations,
or XSLT.

Extensible Stylesheet Language Transformations (XSLT)

XSLT
 is an
XML-based language for transforming an XML document into another
form. The result can be another XML document or any type of text
document. XSLT combines some procedural language features along with
rule-based language features. XSLT stylesheets are XML documents that
define templates and how to apply them. The templates in XSLT
documents contain rules for matching XML elements and attributes in
the document that is being transformed and instructions for
reformatting those elements and attributes. You will often hear XSLT
stylesheets referred to as "XSLT
transforms," or simply
"transforms." In Access 2003, you
can use XSLT for transforming XML both when importing and when
exporting data.

XML Schema Definition (XSD)

XSD
 provides a way of describing the
structure of data contained in an XML file, as well as constraints
applied to the data, including data types. This is similar to the
table definitions and relationships you use to define data structure
in Access.
When you export data, you can have Access generate a schema, or XSD,
file that describes the data. When importing XML, you can import an
XSD file to define the structure and data types of the data being
imported. When you import XSD files, Access creates tables based on
the definitions in the files.

18.1. Import XML Structured as Elements

Problem

You need to import simple XML data into a new
table.

Solution

You can import XML into a new table from the File menu when the
Tables category is selected in the Objects pane by following these
steps:
	Open 18-01.MDB.

	Choose File → Get External Data → Import to bring
up the Import dialog box.

	In the Files of type drop-down list at the bottom of the dialog box,
select XML (*.xml, *.xsd).

	In the File name dialog box, navigate to the XML file you want to
import, and click Import, which will load the XML Import dialog box.
The samples include an XML file named 18-01.XML that you can use.

	Expand the plus sign (+) to show the structure of the XML file and
click the Options button to expand the dialog box, as shown in Figure 18-2.

[image: Viewing the structure of an XML file when importing into Access]

Figure 18-2. Viewing the structure of an XML file when importing into Access

	The Options button shown in Figure 18-2 enables you
to specify how you'd like the XML imported. If you
choose Structure and Data as shown here, a new table will be created.
Click OK twice to confirm the import.

A new table named Car has been created.

Discussion

When importing an XML file that has the structure Access expects,
containing a hierarchical set of nested elements, the table name is
derived from the first element after the root, in this case
Car. The Make, Model and Price elements become
columns in the table. The source XML file looks like this:
<?xml version="1.0" encoding="UTF-8" ?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata">
 <Car>
 <Make>Mini Cooper</Make>
 <Model>S</Model>
 <Price>20,000</Price>
 </Car>
 <Car>
 <Make>Lexus</Make>
 <Model>LS430</Model>
 <Price>60,000</Price>
 </Car>
 <Car>
 <Make>Porsche</Make>
 <Model>Boxter</Model>
 <Price>43,000</Price>
 </Car>
 <Car>
 <Make>Ford</Make>
 <Model>Mustang</Model>
 <Price>25,000</Price>
 </Car>
 <Car>
 <Make>Toyota</Make>
 <Model>Camry</Model>
 <Price>20,000</Price>
 </Car>
</dataroot>
When you open the Car table in Datasheet view, it looks like Figure 18-3, with the data organized by column (element),
with each row representing a single Car element in the XML file.
[image: The Car table in Datasheet view]

Figure 18-3. The Car table in Datasheet view

Tip
If you import the same file a second time, choosing the same options,
then a second table named Car1 will be created.
Rows will not be appended to the first Car table unless you
explicitly select that option.

See Also

The following MSDN article gives a good explanation of XML
namespaces: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml05202002.asp?frame=true

18.2. Import XML into Existing Tables

Problem

When you import
 XML into a new
table, the data is read as Text, regardless of whether some elements
contain numeric values. You need the XML data to conform to certain
data types for each element.

Solution

The simplest way to solve the problem is to create a table structure
prior to importing the data. In Recipe 18.1,
all of the columns in the new table are created as Text with a
maximum size of 255, as shown in Figure 18-4 where
the Price column is selected.
[image: The numeric data for Price is imported as Text]

Figure 18-4. The numeric data for Price is imported as Text

Follow these steps to create a
table structure that
better matches your XML data:
	Open the 18-02.MDB database.

	Create a new table named Car (to match the name of the first element
that follows the root element in the XML file). It's
important that the name of the table match this element.

	Create the columns and data type shown in Table 18-1.

Table 18-1. Columns and data types for Car
	
 Column name

 	
 Data type

	
 Make

 	
 Text 20

	
 Model

 	
 Text 20

	
 Price

 	
 Currency

	Save the table and close the Table Designer.

	Choose File → Get External Data → Import to display
the Import dialog box.

	In the Files of type drop-down list at the bottom of the dialog box,
select XML (*.xml, *.xsd).

	In the File name dialog box, navigate to the XML file you want to
import, and click Import, which will load the XML Import dialog box.
Select the 18-02.xml file and click Import.

	Click Options and choose Append Data to Existing Table(s) as shown in
Figure 18-5. Click OK and then OK again.

[image: Appending XML data to an existing table]

Figure 18-5. Appending XML data to an existing table

	Open the Car table in datasheet view. You will see that the XML data
has been appended to the table correctly.

Discussion

This example works because there is an exact mapping between the
element names in the XML file and the table and field names in the
Access Car table, so Access can figure out where the data is supposed
to go. As long as the data in the XML file does not have any
anomalies, then this solution will work nicely.
Access will be unable to import the data in certain rows if there is
a data type mismatch. Consider the following XML file, 18-02-bad.xml:
<?xml version="1.0" encoding="UTF-8" ?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata">
 <Car>
 <Make>Mini Cooper</Make>
 <Model>S</Model>
 <Price>20,000</Price>
 </Car>
 <Car>
 <Make>Ford</Make>
 <Model>Edsel</Model>
 <Price>unknown</Price>
 </Car>
</dataroot>
The Price element for the second car, the Edsel, is unknown. The
Price column in the Car table is expecting a currency value. When you
perform the insert, appending to the existing table,
you'll see the error message shown in Figure 18-6.
[image: Error message appending bad XML to an existing table]

Figure 18-6. Error message appending bad XML to an existing table

If you open the ImportErrors table, you'll see the
information shown in Figure 18-7.
[image: The ImportErrors table shows error information for data that failed to be appended to the table]

Figure 18-7. The ImportErrors table shows error information for data that failed to be appended to the table

If you open the Car table as shown in Figure 18-8,
you'll see that the Make and Model for the Edsel row
of data imported correctly. However, the Price for that row is set to
0, the default value.
[image: Access fails to import data from an XML file where it can't convert the data to the correct data type]

Figure 18-8. Access fails to import data from an XML file where it can't convert the data to the correct data type

If there is no default value specified for the Price column, then no
value will be entered for Price, but Make and Model will be imported
successfully. If the Required property for Price is set to Yes, then
the entire row will be skipped, and you'll have an
additional row in the ImportErrors table with the following data in
the Error Message column:
Microsoft JET Database Engine: The field
`Car.Price' cannot contain a Null
value because the Required property for this field is set to True.
Enter a value in this field.

18.3. Import XML Using a Schema (XSD)

Problem

You need to import an

 XML file that has a certain
schema. but don't know ahead of time what the schema
will be. You need to create a table that has the correct data types,
and then generate a new AutoNumber primary key for each row appended
to the table.

Solution

If you want to apply a particular schema when you import an XML file,
you need to import the schema file, or XSD, before importing the
data. If you have already created a table with the desired structure,
you can have Access save the schema for you by exporting the table
and saving the schema as a separate file. This is an easy way to use
Access to create schema files. You can also manually create a schema
file by using a text editor, and save it with an XSD file extension.
You also can use a schema file that has been provided to you by your
company or by a partner. Follow these steps to import a schema file
and then an XML file:
	Open the 18-03.MDB sample database.

	Choose File → Get External Data → Import from the
menu to load the Import dialog box.

	In the Files of type drop-down list at the bottom of the dialog box,
select XML (*.xml, *.xsd).

	In the File name dialog box, navigate to 18-03.xsd, and click Import,
which will load the XML Import dialog box shown in Figure 18-9. Note that the Options button is disabled.
When you import a schema, there is no data involved. Click OK and
then OK again.

[image: Importing an XSD file]

Figure 18-9. Importing an XSD file

	Open the Car table in design view. Note that the table includes a
column named ID for a primary key as well as the columns for the data
contained in the XML source file. Close the table.

	To import the XML data, Choose File → Get External Data
→ Import from the menu to load the Import dialog box.

	In the Files of type drop-down list at the bottom of the dialog box,
select XML (*.xml, *.xsd).

	In the File name dialog box, navigate to 18-03.xml, and click Import,
which will load the XML Import dialog box. Expand the plus sign and
note that the same three columns, Make, Model and Price are
displayed. Click the Options button and select Append Data to
Existing Table(s). Click OK and OK again.

	Open the Car table in datasheet view. Note that an Autonumber value
has been inserted for each row. Close the table.

Discussion

Once you have a schema file, you can view its structure using
Internet Explorer, which indents all of the schema information for
you, as shown in Figure 18-10.
[image: The XSD file used to create the Car table]

Figure 18-10. The XSD file used to create the Car table

Tip

 Visual Studio .NET provides an excellent
tool for viewing and modifying XSD schema files. When you open a
schema file in Visual Studio .NET, you get a graphical designer very
similar to the Access Relationships window.

The file references two schemas. The xsd namespace references the
XML
Schema standard at the W3C's web site. The od
namespace references the Office data schema developed by Microsoft
for Office data types:
- <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:od="urn:schemas-microsoft-com:officedata">
The dataroot element is defined using a
complexType XML Schema element, which
enables it to contain other elements—in this case, Car
elements. The maxOccurs="unbounded" attribute value
means that the contents of the dataroot element, in this case
Car, can occur an unlimited number of times. The
xsd:element ref attribute indicates that Car is defined elsewhere in
this XSD file:
<xsd:element name="dataroot">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Car" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="generated" type="xsd:dateTime" />
 </xsd:complexType>
</xsd:element>
The Car element is defined next, which comprises the table
definition. Application-specific information is stored in the
<xsd:annotation> and <xsd:appinfo> tags, which Access
uses to describe indexes defined on the table. This allows Access to
define characteristics that aren't part of the W3C
schema definition vocabulary. These Access-specific items defined by
the Office data schema are referenced by the od namespace. The
<xsd:complexType> tag means that the Car data type itself is a
complex type that contains other types:
<xsd:element name="Car">
<xsd:annotation>
 <xsd:appinfo>
 <od:index index-name="PrimaryKey" index-key="ID" primary="yes"
 unique="yes" clustered="no" />
 <od:index index-name="ID" index-key="ID" primary="no"
 unique="no" clustered="no" />
 </xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
The next section of the XSD file defines the columns of the table,
their data types, sizes, and properties. Note that the ID element is
tagged with both the od:jetType="autonumber" and the
od:sqlSType="int" attributes:
 <xsd:sequence>
 <xsd:element name="ID" minOccurs="1" od:jetType="autonumber"
 od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int" />
 <xsd:element name="Make" minOccurs="0" od:jetType="text"
 od:sqlSType="nvarchar">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Model" minOccurs="0" od:jetType="text"
 od:sqlSType="nvarchar">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Price" minOccurs="1" od:jetType="currency"
 od:sqlSType="money" od:nonNullable="yes" type="xsd:double" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
All of the columns are defined with both
 Jet and equivalent SQL Server data types.
This allows you to import the XSD file into an Access Project (.adp).
One step you would have to perform manually for SQL Server is setting
the Identity property of the SQL Server table after you have imported
the XSD file and prior to importing the XML file.

See Also

The World Wide Web Consortium (W3C) site contains the following
primer on
 XML Schema:

 http://www.w3.org/TR/xmlschema-0/

The following MSDN article gives a good overview of XML Schema:

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/understandxsd.asp?frame=true

18.4. Export XML

Problem

You need to export Access data to an
 XML file so that it can be used
in another application.

Solution

There are several different approaches to exporting XML data from
Access, depending on the results that you want. The
18-04.MDB sample database has three tables,
Car, Customer, and
Preferences. The Car and Customer tables contain
information about cars and customers, and the Preferences table
contains information about which cars a customer prefers. The
Preferences table is related to both the Car and Customer tables.
Exporting all of the data in related tables

If you wish to export all of the
data in related tables, you can do so
easily from the File menu. Follow these steps to export data as XML
from the Preferences table:
	Select the Preferences table in the database window. Right-click and
select Export, and choose XML in the Save as type drop-down list at
the bottom of the dialog box. Type a name for the XML file and click
the Export button.

	Leave the default options selected, and click the More Options button
to expand the Lookup Data node. Check the two check boxes for Car and
Customer, as shown in Figure 18-11. Since Car and
Customer are both related to Preferences, Access allows you to select
them here.

[image: The Export XML dialog box allows you to select related tables]

Figure 18-11. The Export XML dialog box allows you to select related tables

	Click the OK button. Figure 18-12 shows the XML that
is generated, with one element each of Preferences, Car, and Customer
data displayed.

[image: Exporting related tables generates XML for the data in each table]

Figure 18-12. Exporting related tables generates XML for the data in each table

Exporting the data from a query

You can create a query to
generate XML that displays data from the
Preferences table along with the associated lookup data for the Car
and Customer line items. Follow these steps to create the query and
output the results to XML:
	Create a query in the query designer that displays the results you
wish to export to XML. The 18-04.MDB sample
database contains qryCustomer, which selects the
Customer name and Car make and model. Here is the SQL for the query:
SELECT [CustLname] & ", " & [CustFname] AS Name, Preferences.Ranking,
Car.Make, Car.Model
FROM Customer INNER JOIN (Car INNER JOIN Preferences
ON Car.CarID = Preferences.CarID) ON Customer.CustID = Preferences.CustID
ORDER BY [CustLname] & ", " & [CustFname], Preferences.Ranking;

	Save the query and close the query designer. Right-click on the query
in the database window and choose Export. Then select XML in the Save
as type drop-down list at the bottom of the dialog box. Type a name
for the XML file and click the Export button.

	Click the Export button and then click the More Options button.
Select the Schema tab and note that the default options include
exporting schema information in a separate schema document, as shown
in Figure 18-13. Click OK.

[image: You can create a separate XSD schema document or embed the schema along with data in one XML document]

Figure 18-13. You can create a separate XSD schema document or embed the schema along with data in one XML document

This time the generated XML document contains an element for each row
that the query returns, as shown in Figure 18-14.
[image: Exporting a query to XML produces an element for each row of data returned by the query]

Figure 18-14. Exporting a query to XML produces an element for each row of data returned by the query

Discussion

When you use the Access Export menu to export XML data,
Access reads the table relationships and allows you to select related
tables. The Schema tab on the Export dialog box allows you to select
whether to create a separate schema file or to embed the schema
information along with the data in one XML file. If you want to
export data showing lookup data from related tables, you can export a
query to XML—this also allows you to select the rows and
columns to include or to export data based on expressions.

18.5. Exporting Selected Columns to an HTML Table

Problem

You'd like to export
data from a table as XML and display it in an HTML table. However, you only want to
display selected columns from the table, not the entire table.

Solution

If you wish to export data using only selected columns, you can do so
with a query, but you can also accomplish this by using an
 XSLT transform. Using a transform has
the added benefit of allowing you to format the data as HTML. Follow
these steps to export only the Make and Model data from the Car table
and to format the data as an HTML table:
	Select the Car table in the database window, right-click and select
Export, and choose XML in the Save as type drop-down list at the
bottom of the dialog box.

	Type a name for the XML file ending with an htm suffix and click the
Export button. This example assumes that the output file is named
Cars.htm.

	Click the More Options button to load the Export XML dialog box shown
in Figure 18-15. You can change the output file name
here if you didn't change it in the previous dialog
box.

[image: Selecting the output location and filename]

Figure 18-15. Selecting the output location and filename

	Click the Transforms button. If the transform
doesn't show up in the list, click the Add button to
browse to it. This example uses a transform named 18-05.xsl. Click OK
and OK again. Access will create a Car.htm and a Car.xsd file in the
destination directory.

Discussion

The 18-05.xsl file used to transform the data contains two templates.
The dataroot template contains code for creating an HTML document
with an HTML table. The Car template creates the rows in the HTML
table and cells containing only the Make and Model data. This
transform works against a hidden XML document that is created from
all the data in the table:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0" >
<xsl:output method="html" version="4.0" indent="yes" />

<xsl:template match="dataroot">
 <html>
 <body>
 <table>
 <xsl:apply-templates select="Car" />
 </table>
 </body>
 </html>
</xsl:template>

<xsl:template match="Car">
 <tr>
 <td><xsl:value-of select="Make" /></td>
 <td><xsl:value-of select="Model" /></td>
 </tr>

</xsl:template>

</xsl:stylesheet>
When you view Car.htm in a browser, you can see that the data is
displayed in an HTML table, as shown in Figure 18-16.
[image: The output generated by the XSL transform when viewed in a browser]

Figure 18-16. The output generated by the XSL transform when viewed in a browser

Choose View > Source from the menu and you'll see
the following HTML:
<html>
 <body>
 <table>
 <tr>
 <td>Mini Cooper</td>
 <td>S</td>
 </tr>
 <tr>
 <td>Lexus</td>
 <td>LS430</td>
 </tr>
 <tr>
 <td>Porsche</td>
 <td>Boxter</td>
 </tr>
 <tr>
 <td>Ford</td>
 <td>Mustang</td>
 </tr>
 <tr>
 <td>Toyota</td>
 <td>Camry</td>
 </tr>
 </table>
 </body>
</html>
This example is very simple and creates just a bare-bones table. You
can modify the HTML sections of the XSLT to specify colors, borders,
fonts, and so on to create whatever custom formatting you
need.

See Also

The following W3C page contains links to many resources on XSLT:

 http://www.w3.org/Style/XSL/

18.6. Export Unrelated Tables

Problem

You want to
 export Access data
to a single XML file, but the tables you wish to export are not
related to each other. How do you select tables and create a single
XML output file?

Solution

You must write VBA
code to export multiple unrelated tables to a single XML file. The
Access object model provides the ExportXML method, which has an
AdditionalData parameter that takes an object of type AdditionalData.
The 18-06.MDB sample database contains three
unrelated tables: Car,
Customer, and Dealer. There is
a single module, basExport, which contains the function
ExportUnrelated. The code creates an AdditionalData object, and adds
the Customer and Dealer tables to it. The ExportXML method uses the
Car table as the DataSource, and uses the AdditionalData object to
add the Customer and Dealer data to the output:
 Dim adTables As AdditionalData
 Set adTables = Application.CreateAdditionalData
 adTables.Add "Customer"
 adTables.Add "Dealer"
 Application.ExportXML _
 ObjectType:=acExportTable, _
 DataSource:="Car", _
 DataTarget:="c:\test\Unrelated.xml", _
 AdditionalData:=adTables

 Figure 18-17 shows the XML file in a browser, with
only one element from each table expanded. All of the data from all
of the tables has been exported.
[image: The XML output for unrelated tables]

Figure 18-17. The XML output for unrelated tables

Discussion

A number of enhancements were added to the Access object model to
facilitate importing and exporting XML data programmatically. The
full syntax and all of the optional arguments for the
ExportXML
method are shown here:
 ExportXML (ObjectType As AcExportXMLObjectType, Datasource As String,
 [DataTarget As String], [SchemaTarget As String], [PresentationTarget as String],
 [ImageTarget As String], [Encoding As AcExportXMLEncoding], [OtherFlags As Long],
 [WhereCondition As String], [AdditionalData as AdditionalData])
The OtherFlags optional argument, which was not used in the example,
allows you to specify the following self-descriptive options, which
are exposed as AcExportXMLOtherFlags enumerations:
	acEmbedSchema

	acExcludePrimaryKeyAndIndexes

	acRunFromServer

	acLiveReportSource

	acPersistReportML

Tip
When you need to apply a transform programmatically for either
importing or exporting XML, use the TransformXML method. The ImportXML and
ExportXML methods do not have DataTransform parameters.

18.7. Export Using a Where Clause

Problem

You want to

 export a subset of rows in
a table that match cartain search criteria instead of exporting the
entire table.

Solution

There are two different approaches you can take, depending on how you want the output
to look. The first approach is to design a query, and export the
query to XML, as shown in the Solution in Recipe 18.5. The second is to use the ExportXML method. (You also could use
an XSLT transform, but that would be inefficient unless you also need
to format the data.)
The 18-07.MDB sample application has a saved
query named qryCarsLessThan40. The SQL Select
statement looks like this:
SELECT Car.CarID, Car.Make, Car.Model, Car.Price
FROM Car
WHERE (((Car.Price)<40000));
When you export the query to an XML file by following the steps in
the Solution in Recipe 18.5, the XML
generated looks like that shown in Figure 18-18.
[image: XML generated by a query with a WHERE clause]

Figure 18-18. XML generated by a query with a WHERE clause

The 18-07.MDB sample application also has a
function named ExportWhere located in
basExportXML. Instead of using a query, this code
exports the Car table and programmatically applies a WhereCondition
of "Price < 40000":
Application.ExportXML _
 ObjectType:=acExportTable, _
 DataSource:="Car", _
 DataTarget:="c:\test\Where.xml", _
 WhereCondition:="Price < 40000"

 Figure 18-19 shows the output that is generated.
[image: XML generated using ExportXML with a WhereCondition]

Figure 18-19. XML generated using ExportXML with a WhereCondition

Discussion

When you create a saved query with a Where clause and export it, each
element is named with the query name,
qryCarsLessThan40, as shown in Figure 18-18. When you use the ExportXML method and supply
the optional WhereCondition argument, then the name of the table,
Car, is used. Although you could rename the query
to something less cumbersome than
qryCarsLessThan40, you cannot name it
Car since there already is a table by that name in
the database.
Using the WhereCondition parameter rather than relying on a query
also provides extra flexibility. You can use code to construct
whatever criteria are needed for the
WhereCondition at runtime, rather than having to
hard-code the criteria into a
 query.

18.8. Export a Report

Problem

You want to export a report that can be displayed on your web site.
You'd like to preserve the formatting of the
original report.

Solution

One of the new features in

 Access 2003 is the ability to export
reports to XML, preserving formatting and displaying aggregates
(totals, counts, averages, and so on). You can export formatted
reports to ASP or to HTML.
The 18-8.MDB sample database contains a report
named rptCustomer that displays customer
preferences, as shown in Figure 18-20. The report has
an aggregate function that counts the number of cars ranked, and
displays the make and model for each. The following sections show you
how you can export the report to HTML and to ASP.
[image: The rptCustomer report displaying customer preferences and rankings]

Figure 18-20. The rptCustomer report displaying customer preferences and rankings

Exporting to HTML

Follow these steps to export the report to HTML:
	Right-click on the rptCustomer report in the
18-8.MDB database window and choose Export from
the menu.

	Select XML from the Save as type drop-down at the bottom of the
dialog box.

	Name the output file CustomerPreferencesHTM and click OK.

	Select all three checkboxes on the Export XML dialog box, and click
the More Options button.

	Specify the output folder where the output files will be located and
click the Presentation tab. Make sure that HTML is selected, as shown
in Figure 18-21. Click OK.

[image: Choosing the presentation format for the report]

Figure 18-21. Choosing the presentation format for the report

	Using Windows Explorer, browse to the location where you saved the
files. You should see four files listed: CustomerPreferencesHTM.htm,
CustomerPreferencesHTM.xml, CustomerPreferencesHTM.xsd, and
CustomerPreferencesHTM.xsl.

	Double-click the CustomerPreferencesHTM.htm file to load it into your
browser. It should look like that shown in Figure 18-22.

[image: The results of saving a report to HTML]

Figure 18-22. The results of saving a report to HTML

Exporting to ASP

Follow these steps to export the report to ASP:
	Right-click on the rptCustomer report in the
18-8.MDB database window and choose Export from
the menu.

	Select XML from the Save as type drop-down at the bottom of the
dialog box.

	Name the output file CustomerPreferencesASP and click OK.

	Select all three checkboxes on the Export XML dialog box, and click
the More Options button.

	Specify the output folder where the output files will be located
(this can be an IIS application folder) and click the Presentation
tab. Select the ASP option and click OK (see Figure 18-23).

[image: Specifying ASP output for the report]

Figure 18-23. Specifying ASP output for the report

	In order to display the report, you will need to copy the four files
created—CustomerPreferencesASP.asp, CustomerPreferencesASP.asp,
CustomerPreferencesASP.asp, and CustomerPreferencesASP.asp—to
your web server, unless you had the wizard place them there.

	Launch CustomerPreferencesASP.asp using the HTTP protocol. The report
should look like that shown in Figure 18-24:
http://localhost/TestApps/CustomerPreferencesASP.asp

[image: Loading the report as ASP]

Figure 18-24. Loading the report as ASP

Discussion

Dissecting the HTML

When you export a report to HTML, Access does a lot of work under the
covers to ensure that the output looks almost identical to the output
of the report when rendered in Access. Access generates quite a bit
of VBScript code to achieve these results.
Open the CustomerPreferencesHTM.htm file in Notepad or another text
editor to see how the code applies a transform on the
CustomerPreferencesHTM.xml file by invoking the
CustomerPreferencesHTM.xsl:
<HTML xmlns:signature="urn:schemas-microsoft-com:office:access">
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=UTF-8"/>
</HEAD>
<BODY ONLOAD="ApplyTransform()">
</BODY>
<SCRIPT LANGUAGE="VBScript">
 Option Explicit

 Function ApplyTransform()
 Dim objData, objStyle

 Set objData = CreateDOM
 LoadDOM objData, "CustomerPreferencesHTM.xml"

 Set objStyle = CreateDOM
 LoadDOM objStyle, "CustomerPreferencesHTM.xsl"

 Document.Open "text/html","replace"
 Document.Write objData.TransformNode(objStyle)
 End Function

 Function CreateDOM()
 On Error Resume Next
 Dim tmpDOM

 Set tmpDOM = Nothing
 Set tmpDOM = CreateObject("MSXML2.DOMDocument.5.0")
 If tmpDOM Is Nothing Then
 Set tmpDOM = CreateObject("MSXML2.DOMDocument.4.0")
 End If
 If tmpDOM Is Nothing Then
 Set tmpDOM = CreateObject("MSXML.DOMDocument")
 End If

 Set CreateDOM = tmpDOM
 End Function

 Function LoadDOM(objDOM, strXMLFile)
 objDOM.Async = False
 objDOM.Load strXMLFile
 If (objDOM.ParseError.ErrorCode <> 0) Then
 MsgBox objDOM.ParseError.Reason
 End If
 End Function

</SCRIPT>
</HTML>
The CustomerPreferencesHTM.xsl file contains all of the formatting
for the report, and is quite complex. Figure 18-25
shows just a fragment of the file.
[image: The xsl contains the formatting instructions for rendering the XML]

Figure 18-25. The xsl contains the formatting instructions for rendering the XML

After the formatting instructions, the file contains more VBScript
code that has been generated to handle reporting engine features such
as evaluating expressions, running sums, sorting and grouping and so
on. The code is commented, so you can examine it and see what
it's doing.

Dissecting the ASP

When you choose to output the XML to ASP, the page is intended to run on
the server, and different code is generated. If you attempt to load
the ASP page from the file system, you will get an error.
If you open CustomerPreferencesASP.asp in Notepad or another text
editor, you will see the following code which invokes the .xml and
.xsl files:
<%
Set objData = CreateDOM
objData.async = false

if (false) then
 Set objDataXMLHTTP = Server.CreateObject("Microsoft.XMLHTTP")
 objDataXMLHTTP.open "GET", "", false
 objDataXMLHTTP.setRequestHeader "Content-Type", "text/xml"
 objDataXMLHTTP.send
 objData.load(objDataXMLHTTP.responseBody)
else
 objData.load(Server.MapPath("CustomerPreferencesASP.xml"))
end if

Set objStyle = CreateDOM
objStyle.async = false
objStyle.load(Server.MapPath("CustomerPreferencesASP.xsl"))
Session.CodePage = 65001

Response.ContentType = "text/html"
Response.Write objData.transformNode(objStyle)

Function CreateDOM()
 On Error Resume Next
 Dim tmpDOM

 Set tmpDOM = Nothing
 Set tmpDOM = Server.CreateObject("MSXML2.DOMDocument.5.0")
 If tmpDOM Is Nothing Then
 Set tmpDOM = Server.CreateObject("MSXML2.DOMDocument.4.0")
 End If
 If tmpDOM Is Nothing Then
 Set tmpDOM = Server.CreateObject("MSXML.DOMDocument")
 End If

 Set CreateDOM = tmpDOM
End Function
%>
The CustomerPreferencesASP.xsl file is structured similarly to the
CustomerPreferencesHTM.xsl file, with formatting instructions for how
the report is to be rendered at the bottom of the page.
These built-in export capabilities for Access reports show that
outputting the data as XML and formatting it using XSLT is a powerful
approach. With the proper XSLT transformations, your Access reports
can be exported to any text-based document format.

See Also

The \Program Files\Microsoft Office\OFFICE11\AccessWeb directory,
which is created when you install Access, contains additional
transforms to assist you in creating your own XSL stylesheet. See
Rpt2HTM4.xsl, used to transform Access reports into ReportML, which
describes the presentation-specific attributes of a report. The
Rpt2DAP.xsl transform also found in the folder can be used to
transform ReportML into a data access page (DAP).

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	" (quotes), Discussion
		combo boxes
and, Discussion

	# (number
sign), Discussion, Discussion
	#Error
message, Problem
	&
(ampersand), Discussion
	'
(apostrophe), Discussion, Discussion
	()
(parentheses), Solution
	*
(asterisk), Discussion
	+ (plus
sign), Discussion, Discussion
	.NET, .NET, See Also, Problem, See Also
		DataSet, Problem, See Also

	.NET component, An alternate solution
		calling in
Access, An alternate solution
		Visual Basic .NET only
solution, An alternate solution

	.NET
components, Problem, See Also, Solution, Solution, Not all .NET components are callable, Problem, Discussion
		calling from COM
programs, Solution
	calling in
Access, Problem, See Also
	containing parameterized
constructors, Problem, Discussion
	creating
simple, Solution
	restrictions, Not all .NET components are callable

	.NET Framework 1.1, .NET
	.NET
SDK, Solution
	/ (slash)
operator, Solution
	/wrkgrp
switch, Work with the secured database
	;
(semicolon), Discussion, Discussion, Solution
		multiple columns
and, Discussion
	RecordsetLabel property
and, Solution
	SQL statements
and, Discussion

	>= (greater than or equal to)
operator, Discussion
	? (question
mark), Solution
	[] (square
brackets), Solution, Discussion, Discussion, Solution, Executing tasks
		Access
interpretation, Discussion
	as
delimiters, Executing tasks
	embedded spaces
and, Discussion
	parameters
and, Solution
	printing query
parameters, Solution

	\
(backslash), Solution, Solution
	|
(pipes), Solution
	~
(tilde), Filling the lboObjects list box, Solution
	~TMPCLP
prefix, Filling the lboObjects list box

 A
	Able Consulting's
Connection Strings, See Also
	Access, Problem, Solution, Solution, Problem, Problem, Discussion, Alternatives to FrontPage, Working with the Access object model, Problem, Discussion
		data,
exporting to XML file, Problem, Discussion
	databases,
creating in
FrontPage, Discussion
	databases, creating
web frontend, Alternatives to FrontPage
	default
printer
considerations, Solution
	determining
language version, Problem
	installations, Problem
	object model, working
with, Working with the Access object model
	using
Excel functions within, Problem
	Windows
class name for, Solution

	Access 11.0 Object
Library, Solution
	Access 2, Solution, Discussion
		recursion problems
and, Solution
	stack space
limitations, Discussion

	Access
2000, Solution, Discussion, Data Access Pages, Discussion
		ADPs as
single-user, Discussion
	data access pages
in, Data Access Pages
	ODE availability
in, Solution
	record-level
locking, Discussion

	Access
2002, Visiting all the objects, Solution, Printers, Discussion, Performing the mail merge, Data Access Pages, Discussion
		ADPs as
single-user, Discussion
	data access pages
in, Data Access Pages
	FileDialog object
and, Solution
	interactions with
printers, Printers
	OpenDataSource
method and, Performing the mail merge
	printer
features, Discussion
	specifying
WindowMode, Visiting all the objects

	Access
2003, Solution, See Also
		exporting
reports, Solution, See Also

	Access
7.0, Documenting each container
	Access 95, Hiding reports in design view, Discussion, Solution
		replication and, Solution
	retrieving report
properties, Hiding reports in design view
	stack space
limitations, Discussion

	Access 95
Developer's Toolkit, Discussion
	Access 97, Hiding reports in design view, Hiding reports in design view
		hiding properties
windows in, Hiding reports in design view
	retrieving report
properties, Hiding reports in design view

	Access Button
Wizard, Solution
	Access Data Project
(ADP), Solution, SQL Server, Problem, Problem, Problem, Problem, Problem, Problem, Problem, Problem, See Also
		client/server
applications, Solution
	creating smart tag on table
in, Problem, See Also
	dynamic
connections, Problem
	passing
parameters, Problem
	reference
data, Problem
	ServerFilterByForm
property, Problem
	sharing
projects, Problem
	SQL
Server and, SQL Server
	updating with
views, Problem

	Access Database Splitter
Wizard, Discussion, Solution
	Access Export
menu, Discussion
	Access Mailing Label Report
Wizard, Solution, Solution
	Access
newsgroup, Promotes Creative Use of the Product
	Access
Performance
Analyzer, Discussion
	Access Picture
Builder Wizard, Two-state buttons
	Access Query
Builder, Problem, Solution, Discussion
	Access
Report Wizard, Problem
	Access Security
Wizard, Solution, Solution, Secure your database, Secure your database, Work with the secured database
		built-in, Solution
	features of, Secure your database
	reports
in, Secure your database
	securing databases
with, Solution
	shortcut to secured
databases, Work with the secured database

	Access
Solutions database, Solution
	Access/Jet
database, creating smart tag in, Discussion
	AccessReporter application, process to run Access
report, Discussion
	Action property (OLE
object), Solution
	action
queries, Discussion, Solution
	Activate event
(forms), Solution, Discussion, Discussion, Solution
	active
controls, Discussion
	Active Server Pages
(ASP), Alternatives to FrontPage
	ActiveX
controls, Solution, Problem, Automation
		COMMDLG.OCX, Solution
	renamed from
OLE, Automation
	using, Problem

	ActiveX Data Objects
(ADO), Discussion, Solution, Discussion, Solution, Discussion, Data Access Pages
		accessing DDL
syntax, Discussion
	client/server applications
and, Solution, Discussion
	recordsets, Discussion, Data Access Pages
		data access
pages and, Data Access Pages
	metadata
and, Discussion

	tracking open shared
databases, Solution

	ad hoc
queries, Discussion
	Add method
(collections), Discussion, Performing the mail merge, Creating the presentation, Creating each slide
	AddItem function
(Windows shell), Executing tasks, Executing tasks
	AddItem method (list
boxes), Adding items to a list box, Problem, Discussion
	AddNew method
(recordsets), Recording property information
	Admin user
account, Solution, Discussion, Discussion
		Admin
group versus, Discussion
	as generic
account, Discussion
	features of, Solution

	Admins group
account, Solution, Discussion, Make a security plan, Secure your database, Secure your database, Discussion
		Admin
user versus, Discussion
	administrators
and, Secure your database, Secure your database
	built-in
group, Discussion
	identifying members
in, Make a security plan
	workgroup file
and, Solution

	ADO, Solution
	ADO.NET, Problem, See Also, Discussion
		creating connection
string to Access database, Discussion
	retrieving
Access data using, Problem, See Also

	ADOX, Discussion, Discussion
	ADP, Problem (see Access
Data Project)
	AfterInsert event
(forms), Discussion
	AfterUpdate event, Solution, Solution, Discussion, Solution, Discussion, Solution, Discussion, Solution, Solution, Discussion, Discussion, Discussion, Solution, Solution, Solution, Combo and list box controls, Solution, Solution, Discussion
		<N/A>
entry, Solution
	choosing
default printer, Discussion
	combo
boxes, Discussion
	controls as
parameters, Solution, Discussion
	creating
multipage
forms, Discussion
	customizing
report grouping, Solution
	determining if new
record, Discussion
	handling
properties, Solution
	improving
form performance, Combo and list box controls
	internationalizing
messages, Solution
	navigation
buttons, Solution, Discussion
	option
groups, Solution
	running
code automatically, Solution
	setting
margins, Discussion
	sorted list
of files, Solution, Solution
	supplying
input parameters, Solution

	AfterUpdate
property (list boxes), Solution
	aging analysis,
creating queries for, Problem
	algorithms, Solution, Discussion, Solution, Discussion, Discussion
		caching, Discussion
	quicksort, Solution, Discussion
	Russell
Soundex, Solution, Discussion

	AllDataAccessPages
collection, Discussion
	AllForms
collection, Comments
	AllowAdditions
property (forms), Solution, Solution, Discussion, Solution
		communicating without
email, Solution, Discussion
	multipage
forms, Solution
	restricting data
updates, Solution

	AllowDefaultShortcutMenus
property (forms), Discussion
	AllowDeletions
property
(forms), Solution
	AllowEdits
property
(forms), Solution
	AllowFullMenus
property (forms), Discussion
	AllowZeroLength property
(fields), Discussion
	AllReports
collection, Comments, Discussion
	AllTables
collection, Comments
	ALTER TABLE (SQL)
statement, Discussion, Solution
		for DDL
queries, Discussion
	Timestamp fields
and, Solution

	alternate interop assembly
(AIA), Interop assemblies
	ampersand
(&), Discussion
	analytical
functions, Calling simple Excel functions
	AND
operator, Discussion, Solution, Discussion
		checking flag values
with, Discussion
	Rushmore query optimization
and, Solution
	window styles
and, Discussion

	animated
buttons, Problem
	ANSI 89
SQL, Discussion
	ANSI 92
SQL, Discussion
	ANSI
values, Discussion, Discussion, Solution
	apostrophe
('), Discussion, Discussion
	AppActivate
command (VBA), Solution, Solution, Solution
	AppIcon
property
(applications), Discussion
	Application
objects, Problem, Hiding reports in design view, Hiding reports in design view, Discussion, Solution, Discussion, Discussion, Discussion, Solution, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion
		Echo
method, Problem
	Excel
functions
and, Discussion
	features
of, Discussion
	GetOption
method and, Hiding reports in design view
	language
settings
and, Discussion
	mail
merges, Discussion
	Outlook, Discussion
	Printer
property, Discussion
	resetting
default printer, Discussion, Discussion
	retrieving printer information
from, Solution
	retrieving reference to
Access, Discussion
	SetOption method
and, Hiding reports in design view, Solution
	variables, Discussion

	applications, Solution, Discussion, Problem, Problem, Discussion, Multiuser Applications, Discussion, Problem, Discussion, Problem, Problem, Problem, Problem, Problem, Problem
		based
on login, Problem, Discussion
	checking
if running, Problem
	client/server, Problem
	closing
Windows, Problem
	detecting
closing of, Discussion
	embedded
sound files, Problem
	multiuser, Problem, Multiuser Applications, Discussion
	pausing, Problem
	preloading
forms, Solution
	running, Problem
	storing
connection
information, Problem

	ApplyTemplate method (Presentation
object), Creating the presentation
	AppTitle property
(databases), Problem, Solution, Discussion, Discussion
		changing Access
caption, Problem
	empty strings
and, Discussion
	limitations
of, Solution
	purpose
of, Discussion

	arrays, Creating a list-filling callback function, Solution, Solution, Problem, Discussion, Discussion, Calling Excel functions using arrays
		dynamic
arrays, Creating a list-filling callback function, Discussion
	Excel functions
and, Calling Excel functions using arrays
	extended animated
technique and, Discussion
	passed
by reference, Solution
	passing
parameters, Solution
	sorting, Problem

	ASP, Solution, See Also, Dissecting the ASP, Dissecting the ASP
		exporting
reports to, Solution, See Also, Dissecting the ASP, Dissecting the ASP
		dissecting the
ASP, Dissecting the ASP, Dissecting the ASP

	ASP.NET, Alternatives to FrontPage, Problem, See Also
		applications,
retrieving data from, Problem, See Also

	asterisk
(*), Discussion
	Attributes property
(objects), Comments
	AutoCenter
property (forms), Solution, Solution, Technique, Discussion, Discussion
		Calendar control
and, Discussion
	centering forms
with, Solution
	creating dialog
forms, Technique
	status meters
and, Discussion
	switchboard forms
and, Solution

	AutoExec
macro, Discussion, Solution, Discussion
		database startup
and, Discussion
	RunCode action
and, Solution
	trapping form
closing, Discussion

	Autofit property (Excel
worksheets), Discussion
	AutoKeys
macro, Solution
	AutoNumber
fields, Problem, Discussion, Problem, Problem, Solution, Solution, Discussion, Solution, Discussion, Discussion, Solution
		BeforeUpdate event
and, Solution, Discussion
	compacting
databases and, Discussion
	concatenation
and, Solution
	converting
databases and, Discussion
	flexible, Problem
	limitations of, Problem, Solution, Discussion, Solution
	sorting
and, Problem

	AutoNumber primary
key, Problem
	AutoResize property
(forms), Technique, Discussion, Create a generic unbound pop-up calendar form

 B
	BackColor property
(text boxes), Solution
	background colors, Solution, Discussion, Discussion, Solution
		alternating gray bars on
reports, Solution
	for forms,
changing, Solution
	for
labels, Discussion
	for text
boxes, Discussion

	Background property
(forms), Create a generic status meter
	backslash
(\), Solution, Solution
	BackStyle property
(controls), Solution
	backups, Problem, Secure your database, Replicating a database
		of
selected objects, Problem
	prior to replicating
databases, Replicating a database
	Security Wizard
and, Secure your database

	BAK
extension, Replicating a database
	bar
graphs, Problem
	bars,
gray, Problem
	BeforeInsert
event (forms), Solution
	BeforeUpdate event, Solution, Solution, Solution
		AutoNumber
fields and, Solution
	determining if new
record, Solution
	retaining
editing information, Solution

	benchmarking, Discussion
	Between
operator, Solution
	binary
data, Discussion
	binding, Adding items to a list box, Discussion, Discussion
		controls to
output, Adding items to a list box
	custom
controls, Discussion
	forms
to records, Discussion

	bit
flags, Solution
	bitmaps, Discussion, Solution, Solution, Continuously animated buttons, Discussion, Solution
		animated
buttons, Continuously animated buttons
	communicating without
email, Solution
	creating
geographical map interfaces, Solution
	SizeMode
property, Solution
	startup
images, Discussion
	storing, Discussion

	BOF
function, Discussion
	Bookmark property
(forms), Solution
	bookmarks, Discussion, Problem
	borders, Discussion, Discussion
		collecting
information, Discussion
	repainting, Discussion

	BorderStyle
property (forms), Technique, Create a generic unbound pop-up calendar form, Create a generic status meter
		creating dialog
forms, Technique
	pop-up calendars
and, Create a generic unbound pop-up calendar form
	status meters
and, Create a generic status meter

	BottomMargin
property (Printer
object), Discussion, Discussion
	BoundColumn property
(combo boxes), Solution, Solution
	BoundColumn property
(list boxes), Solution
	buffers, levels of
undo, Discussion
	Build button, How Do I Create an Event Macro?
	BuildCriteria
function, Discussion
	built-in
properties, Solution, Discussion, Discussion
	Button Wizard
(Access), Solution
	buttons, Discussion, Problem, Discussion, Discussion, Discussion, Discussion, Problem, Discussion, Discussion, Solution, Problem, Problem
		changing
captions, Discussion
	control
tips, Discussion
	creating
animated, Problem
	enabling/disabling, Discussion
	lock
identification, Solution
	maximizing/minimizing, Problem
	navigation, Discussion, Problem, Problem
	resizing
considerations, Discussion

 C
	caching, Documenting each container, Discussion, Discussion, Solution
		algorithms, Discussion
	client/server
applications
and, Solution
	considerations, Discussion
	object
references, Documenting each container

	Calendar control, Solution, Create a generic unbound pop-up calendar form, Discussion
	Call
construct, Solution
	callback functions, Adding items to a list box, Filling the lboObjects list box, Solution, Filling a list box by creating a list-filling callback function, Creating a list-filling callback function, Creating a list-filling callback function, Creating a list-filling callback function, Solution, Discussion, Discussion, Discussion, Discussion, Comments
		adding
items, Adding items to a list box, Solution
	cautions
with, Creating a list-filling callback function
	communicating without
email, Discussion
	creating, Creating a list-filling callback function
	filling
list boxes via, Filling a list box by creating a list-filling callback function
	PowerPoint
presentations, Comments
	required
parameters for, Creating a list-filling callback function
	retrieving
information, Discussion, Discussion
	selecting backup
database, Filling the lboObjects list box
	sorted list of
files, Solution, Discussion

	Cancelled
property (forms), Discussion
	CanGrow property
(text boxes), Solution, Discussion, Problem
		changing lines to
match, Problem
	resizing
with, Solution
	suggestions
for, Discussion

	CanShrink property (text
boxes), Solution, Solution, Problem
		changing lines to
match, Problem
	conflict with Image
control, Solution
	resizing
with, Solution

	Caption
property (buttons), Solution, Solution
	Caption property
(combo boxes), Solution
	Caption property
(fields), Discussion
	Caption property
(forms), Discussion
	Caption property
(labels), Solution, Solution
		creating status
meters, Solution
	internationalizing
messages, Solution

	captions, Problem, Discussion, Discussion
		changing
Access, Problem
	changing
on buttons, Discussion
	determining
window, Discussion

	carry-forward
feature, Solution
	case
conversions, Solution, Discussion
	case sensitivity, Problem, Solution, Problem
		converting to
uppercase, Solution
	determining
keypresses, Problem
	in
queries, Problem

	centimeters,
conversions, Discussion
	Change event, Solution, Solution, Combo and list box controls, Discussion, Solution, Solution
		accelerating
multiuser applications, Solution
	improving form
performance, Combo and list box controls
	searching list
boxes and, Solution, Solution
	sending email, Solution
	Tab control
and, Discussion

	characters,
keypresses as, Problem
	Chart
object, Discussion, Discussion, Discussion
	charts
(Excel), Problem
	Choose function, Discussion
	Chr$(0)
value, Discussion
	Chr$(34)
value, Discussion, Discussion
	class
modules, How Do I Create a New Module?
	class
names, Solution, Discussion
		FindWindow
function and, Discussion
	for Windows
applications, Solution

	classes, Solution, Discussion, Solution, Discussion
		helper, Solution, Discussion
	inaccessible, Solution, Discussion

	ClassName property
(controls), Solution, Solution
	Class_Initialize event
handler, Not all .NET components are callable
	Click event, Solution, Programmatically accessing online help, Solution, Discussion, Solution, Solution, Solution, Discussion, Combo and list box controls, Solution, Discussion, Discussion, Solution, Solution, Solution, Discussion, Technique, Discussion, Create a generic unbound pop-up calendar form, Create a generic status meter, Discussion, Solution, Solution, Solution, Solution
		backing up
selected objects, Solution
	bookmarking
records, Solution
	Calendar
control, Create a generic unbound pop-up calendar form
	carrying data
forward, Discussion
	creating geographical map
interfaces, Discussion
	creating status
meters, Create a generic status meter
	dialog
forms, Technique
	displaying system
menu, Solution
	embedding sound
files, Solution
	flashing
titlebars, Solution
	handling form
expansion, Discussion
	improving form
performance, Combo and list box controls
	multiuser
applications, Solution, Discussion
	navigation
buttons, Solution
	online
help, Programmatically accessing online help
	opening multiple
instances of form, Solution
	passing
parameters, Solution
	preloading
forms, Solution, Discussion
	recursion
and, Solution
	setting
margins, Discussion
	tracking open
shared databases, Discussion

	client/server
applications, Problem
	ClipCursor subroutine (Windows
API), Solution
	Close event, Solution, Solution, Discussion, Solution, Discussion, Discussion
		form
closing, Discussion
	keyboard
shortcut, Discussion
	multiple
instances of forms, Solution, Discussion
	preloaded
forms, Solution
	saving settings
with, Solution

	CloseButton property
(forms), Discussion, Discussion
	CloseConnection method (CurrentProject
object), Discussion
	CloseCurrentDatabase method (Application
object), Discussion, Discussion
	Cold Fusion, Alternatives to FrontPage
	collaborative,
team-based web sites, Problem
	collections, Discussion, Discussion, Discussion, Discussion
		multiple form
instances, Discussion, Discussion
	renumbering, Discussion
	tracking
users/groups, Discussion

	ColorMode property
(Printer object), Discussion, Discussion
	colors, Discussion, Discussion, Solution, Discussion, Solution
		built-in constants
for, Discussion
	highlighting
current field, Discussion
	previewing, Solution
	supplied
with template style, Discussion

	Column property (list
boxes), Comments
	ColumnCount property (combo
boxes), Solution, Solution
	ColumnCount property
(forms), Modifying the RowSource property
	ColumnCount property
(list boxes), Solution, Solution, Discussion, Discussion
	ColumnHeadings
property (queries), Solution
	ColumnHeads property
(combo boxes), Solution, Solution
	ColumnHeads property
(list boxes), Discussion
	columns, Discussion, Solution, Solution, Problem, Problem, Discussion
		bound
columns, Discussion
	changing
settings, Problem
	creating reports with
multiple, Problem
	crosstab query
minimum, Solution
	formatted
dates, Solution
	semicolon
and, Discussion

	Columns tab (Page Setup
dialog), Solution
	ColumnSpacing
property (Printer
object), Discussion
	ColumnWidths
property (combo
boxes), Solution, Solution
	ColumnWidths property
(list boxes), Solution, Solution, Discussion
	COM programs
calling .NET components, Solution
	combo boxes, Problem, Problem, Discussion, Solution, Discussion, Discussion, Adding items to a list box, Solution, Problem, Combo and list box controls, Problem, Solution, Problem, Solution, Problem
		accepting new
entries, Problem
	adding
items, Adding items to a list box, Problem
	allowing N/A
option, Problem
	changing text boxes
into, Solution
	choosing default
printer with, Solution
	choosing from
fixed
lists, Discussion
	client/server
applications and, Solution
	controls as
parameters, Problem
	customizing report
grouping, Discussion
	displaying and
collecting
information, Solution
	faster loading
of, Problem
	linking
values, Problem
	omitting from
templates, Discussion
	performance
bottlenecks, Combo and list box controls

	command buttons, Solution, Discussion, Solution, Solution, Discussion, Solution, Solution, Solution, Solution, Solution, Solution
		achieving exact
placement, Solution
	as UI
method, Discussion
	communicating
without email, Solution, Solution
	creating geographical map
interfaces, Solution
	Name property
and, Solution
	omitting from
templates, Discussion
	parameter
queries, Solution
	PictureData
property and, Solution
	resizing
forms and actions of, Solution
	transparent, Solution

	COMMAND.COM, Discussion
	COMMDLG.OCX (ActiveX
control), Solution
	Common Language
Runtime, .NET
	common Windows
File Open/Save dialogs, Problem
	communication, Problem, Setting up communication with Excel
		setting up with
Excel, Setting up communication with Excel
	without
email, Problem

	comparisons, Problem, Solution
		case-sensitive
string, Solution
	non-equality, Problem

	complexType XML Schema
element, Discussion
	concatenation, Discussion, Solution, Discussion
		accommodating
more fields with, Discussion
	AutoNumber
fields and, Solution
	string
limitations, Discussion

	concatenation
operators, Discussion
	Connect property
(tables), Discussion
	ConnectionFile property
(pages), Solution, Solution
	connections, Solution, Solution, Problem, Starting the connection with Word for Windows, Problem, Problem
		client/server
applications and, Solution, Solution
	creating
and canceling, Problem
	dynamic
to SQL Server, Problem
	mail
merges, Starting the connection with Word for Windows
	storing
information in DAPs, Problem

	ConnectionString
property (DataSource control), Problem
	constants, Discussion, Discussion, Discussion, Solution, Solution
		for
colors, Discussion
	intrinsic
Access, Solution, Solution
	two-quote rule
and, Discussion
	zero-length
string, Discussion

	constructor, Not all .NET components are callable
	constructors, Problem, Discussion
		parameterized,
calling .NET components containing, Problem, Discussion

	contacts,
adding, Problem
	Container
objects, Discussion, Solution
	Containers
collection, Comments, Filling the lboObjects list box, Discussion
		list-filling function
and, Filling the lboObjects list box
	ownership
information, Comments
	saved
objects and, Discussion

	containers,
documenting, Documenting all the containers, Documenting each container
	continuous forms, Solution, Discussion, Discussion, Solution
		creating multipage forms
as, Discussion
	DefaultView
property, Solution, Discussion, Solution

	control
sources, Discussion, Solution
	ControlBox property
(forms), Discussion, Discussion, Solution
		cautions
using, Solution
	eliminating menus for
forms, Discussion
	preloading forms
and, Discussion

	controls, How Do I Set Control Properties?, Discussion, Discussion, Discussion, Solution, Solution, Solution, Problem, Solution, Solution, Solution, Solution, Discussion, Discussion, Graphic and memo controls, Graphic and memo controls, Technique, Technique, Discussion, Discussion, Solution, Automation, Solution, Problem, Problem, Solution
		active, Discussion
	as
parameters, Problem
	assigning
properties, How Do I Set Control Properties?
	bound
controls, Graphic and memo controls, Discussion, Discussion
	creating on all
pages, Solution
	creating simple bar
graphs, Solution
	creating status
meters, Solution
	for page
breaks, Solution
	label
controls, Discussion, Solution
	limitations of
adding properties
to, Discussion
	navigation, Problem
	omitting
on reports, Discussion
	partitioning, Technique, Technique
	performance
bottlenecks, Graphic and memo controls
	placing
data in, Solution
	setting tab order
for, Solution
	sizing in
forms, Problem
	SmartTags
property, Solution

	ControlSource
property (combo boxes), Solution
	ControlSource
property (controls), Discussion, Add a bound Calendar control to your form
		Calendar
control, Add a bound Calendar control to your form
	concatenation
operators, Discussion

	ControlSource property (text
boxes), Discussion, Solution, Discussion, Solution
		communicating without
email, Solution
	creating page-range
indicator, Solution
	reports with line
numbers, Discussion
	Sum function
and, Discussion

	ControlSourceTimerInterval property (text
boxes), Solution
	ControlTipText property
(buttons), Solution
	ControlTipText property (message
boxes), Discussion
	cookies, Solution, Discussion
	Copies property (Printer
object), Discussion, Discussion
	CopyObject
action, Solution, The backup process
	Count property (Groups
collection), Discussion
	Count(*) expression, Solution
	CREATE INDEX (SQL)
statement, Discussion
	CREATE TABLE
(SQL) statement, Solution, Discussion
	CreateGroup
function (Windows
shell), Executing tasks, Executing tasks
	CreateGroupLevel
function, Discussion
	CreateObject function, Setting up communication with Excel, Comments, Starting and stopping PowerPoint
	CreateProperty method
(objects), Discussion, Discussion
	CreateReportControl
function, Discussion
	CreateWorkspace
method (DBEngine object), Discussion, Solution, Discussion
	Creator
user, Discussion, Discussion
	crosstab queries, Discussion, Problem, Solution
		aging
analysis, Solution
	correct
sorting, Problem
	parameters
in, Discussion

	Current
event, Discussion, Discussion, Solution, Discussion, Discussion, Solution, Solution
		combo boxes, Discussion
	determining if
new record, Solution
	enabling/disabling buttons
and, Discussion
	navigation
buttons, Solution
	option
groups, Discussion
	sending
email, Solution

	CurrentProject
object, Discussion, Discussion
	CurrentUser
function, Solution, Discussion, Discussion, Discussion, Discussion
		communicating without
email, Discussion
	form
customization and, Discussion
	retaining editing
information, Solution
	tracking changes
with, Discussion
	user-level security
and, Discussion

	Cursor property (labels), Solution
	CursorLocation property
(recordsets), Solution
	cursors, Problem, Discussion
	Cycle property
(forms), Solution, Solution, Discussion, Solution
		control over row movement
with, Solution
	creating multipage forms
and, Solution
	features of, Discussion
	restricting cursor movement
with, Solution

 D
	DAO, Discussion, Working with the Access object model
		and smart tag
DLL, Working with the Access object model

	DAO 3.6 Object
Library, Solution
	DAO type library, Multiuser Applications
	DAPs, Data Access Pages (see Data Access
Pages)
	data, Discussion, Problem, Problem, Problem, See Also
		binary, Discussion
	collecting
from user and posting to Access database, Problem, See Also
	PowerPoint presentations
and, Problem
	sending to
Excel, Problem

	Data Access Objects (DAO), Promotes Creative Use of the Product, Discussion, Solution, Creating the temporary tables and query, Solution, Solution, Discussion, Solution, Solution, Discussion, Solution, Discussion
		as
older technology, Promotes Creative Use of the Product
	client/server applications
and, Solution, Discussion
	coding
recommendations, Discussion
	consistent
settings, Creating the temporary tables and query
	creating indexed tables
using, Discussion
	creating TableDef
objects, Solution
	listing users, Solution, Discussion
	object inventory
and, Solution
	obtaining field properties
with, Solution
	retrieving information
with, Solution

	Data
Access Pages
(DAPs), Promotes Creative Use of the Product, Data Access Pages, Data Access Pages, Problem, Solution, Problem, Problem, Problem, Problem, Alternatives to FrontPage, Discussion
		Access version
differences, Data Access Pages, Solution
	background, Data Access Pages
	changing connection strings
for, Problem
	changing default
settings, Problem
	features, Promotes Creative Use of the Product
	parameters across
multiple, Problem
	smart tags
and, Discussion
	storing connection
information, Problem
	updating data
on, Problem

	data definition
language (DDL) queries, Solution, Creating the inventory table, Creating the temporary tables and query
		creating tables
with, Creating the temporary tables and query
	object
inventory, Creating the inventory table
	table manipulation
with, Solution

	Data Link Properties
dialog, Problem
	data manipulation, Queries, Solution, Discussion, Problem, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Discussion, Problem, Solution, Solution, Solution, Problem, Problem
		accelerating multiuser
applications, Discussion
	collecting
information, Problem
	combining
data across tables, Problem
	converting raw
data, Discussion
	creating page-range
indicators, Discussion
	DoCmd.OutputTo
and, Solution
	grouping data for mailing
labels, Solution
	importance
of synchronization, Discussion
	OLE-DB
and, Solution
	placing data in
controls, Solution
	programmatically exporting
data, Solution
	queries
and, Queries
	transaction
logging and, Discussion
	update queries
and, Discussion
	updates on data access
pages, Problem
	using views
for, Problem

	Data Source Name
(DSN), Solution, Solution
	data sources, Discussion, Solution, Problem
		Excel worksheet
as, Solution
	seek operations
and, Discussion
	storing connection
information, Problem

	data
types, Solution, Solution, Discussion, Discussion, Solution
		setting to OLE
object, Solution
	string, Discussion
	Text, Solution
	usage
recommendations, Solution
	user-defined, Discussion

	Data View Web
Parts, Problem, See Also, Solution, Discussion, Problem, See Also, Problem, See Also, Discussion
		conditionally
formatting, Problem, See Also
	creating master/detail
page, Problem, See Also
	fields Front Page
displays, Discussion
	HTML behind, Discussion
	placing on web
page, Solution

	Database
Explorer, Solution
	Database
objects, Discussion
	Database Splitter
Wizard (Access), Discussion, Solution
	databases, Problem, Problem, Discussion, Discussion, Discussion, Problem, Solution, Solution, Solution, Solution, Solution, Discussion, Problem, Discussion, Problem, Discussion, Problem, See Also, Discussion, Discussion, Problem, Problem, Discussion
		adding
properties to, Solution
	attaching remote
tables, Solution
	backups of selected
objects, Problem
	changing
global options, Solution
	changing
options, Discussion
	cleaning
out test data, Problem
	creating in
FrontPage, Discussion
	external, Discussion, Discussion
	multiple
users and sharing, Discussion
	opening, Discussion
	passing
parameters, Problem
	reference
data from multiple, Problem
	securing, Problem, Problem, Discussion
	Seek method
and, Discussion
	splitting
multiuser, Solution, Solution
	synchronized
copies of, Problem, Discussion
	transaction
logs, Problem, See Also

	Databases
container, Filling the lboObjects list box
	DataGrid,
binding, Discussion
	DataOnly property
(Printer
object), Discussion
	DataPageSize
property (pages), Solution
	dataroot element
(XSD), Discussion
	DataSet,
returning, Problem, See Also
	Datasheet
icon, Solution
	DataSource control, Solution, Solution, Solution
		as
MSOSDC, Solution
	DAPs
and, Solution
	updating
DAPs and, Solution

	DataSourceControl (Office Web
Component), Discussion
	DataTransform
parameters, Discussion
	Date
function, Discussion
	Date smart
tag, Smart Tags, Problem, Discussion, Solution
		allowable
actions, Solution
	using with Person smart
tag, Problem, Discussion

	date/time
values, Problem, Discussion, Discussion, Discussion, Discussion, Discussion
		as
variables, Discussion
	converting, Discussion
	median value
and, Discussion
	quotes and, Discussion
	search
delimiters, Discussion
	sorting columns
correctly, Problem

	DAvg
function, Problem
	DBEngine
object, Discussion, Discussion
	DblClick
event, Create a generic unbound pop-up calendar form
	DCount
function, Discussion
	DDE, Using DDE with the Windows shell
	DDEExecute
procedure, Discussion, Executing tasks
	DDEInitiate function, Comments
	DDERequest
function, Discussion, Retrieving information from the Windows shell
	DDETerminate function, Comments
	DDL queries
queries), Solution
	Deactivate
event, Solution, Discussion, Solution, Discussion
	debugging, Discussion, Discussion, Discussion, Solution
		subforms
and
reports, Discussion
	unexpected
parameter dialog, Discussion
	viewing debug
window, Solution

	declarations
(module), How Do I Create a New Module?, Continuously animated buttons, Create a generic status meter
		animated
buttons, Continuously animated buttons
	creating status
meters, Create a generic status meter
	Option Explicit statement
and, How Do I Create a New Module?

	default
printers, Solution, Solution, Solution, Problem
		controlling, Solution
	finding reports not set
to, Problem
	selecting
runtime printers and, Solution
	UseDefaultPrinter property
and, Solution

	DefaultEditing
property
(forms), Solution
	DefaultSize property
(Printer object), Discussion, Discussion
	DefaultValue
property (controls), Solution, Discussion, Discussion
		carrying data
forward, Solution
	Tag property
and, Discussion, Discussion

	DefaultValue property
(fields), Discussion, Discussion
	DefaultView
property (forms), Solution, Discussion, Technique, Create a generic unbound pop-up calendar form, Create a generic status meter, Solution, Solution
		communicating without
email, Solution
	continuous forms
and, Solution, Discussion, Solution
	creating expanding
dialogs, Technique
	creating pop-up
calendars, Create a generic unbound pop-up calendar form
	creating status
meters, Create a generic status meter

	DELETE (SQL) statement, Discussion
	Delete method (Property
object), Discussion
	delete
queries, Discussion
	DeleteGroup function
(Windows shell), Executing tasks
	DeleteItem
function (Windows
shell), Executing tasks
	DeleteObject method
(DoCmd object), Discussion
	DeleteSetting
function, Discussion
	delimiters, Discussion, Discussion, Discussion, Retrieving information from the Windows shell, Executing tasks
		apostrophes
as, Discussion
	CR/LF, Retrieving information from the Windows shell
	in string
expressions, Discussion
	null
characters, Discussion
	square
brackets
as, Executing tasks

	Description
property (objects), Discussion, Discussion
	design master, Discussion
	design master replica, Replicating a database
	design-view
queries, Discussion
	device
names, Solution
	DeviceName
property (Printer
object), Discussion, Solution
	dialogs, Problem, Problem, Adding and canceling connections using common dialogs
		adding/canceling
connections via, Adding and canceling connections using common dialogs
	creating
expanding, Problem
	File
Open/Save, Problem

	Dir
function, Problem, Discussion
	directories,
collecting information, Discussion
	dirty
forms, Discussion, Discussion
	Dirty property
(forms), Discussion, Discussion
	division
operators, Solution
	DLLs (dynamic link
libraries), Discussion, Solution, See Also, Compiling and registering the DLL project
		compiling and registering DLL
project, Compiling and registering the DLL project
	creating smart tag DLL with Visual
Basic 6.0, Solution, See Also

	DLookup
function, Solution, Discussion
	DMax
function, Solution
	DMin
function, Solution
	Do Until
statement, Discussion
	DoCmd
objects, Solution, Visiting all the objects, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Starting the connection with Word for Windows, Discussion
		DeleteObject
method, Discussion
	DoMenuItem
method, Discussion, Discussion
	OpenReport
method, Solution, Visiting all the objects, Discussion, Discussion, Discussion, Discussion
	OutputTo
method, Solution, Starting the connection with Word for Windows
	PrintOut
method, Discussion
	RepaintObject
method, Discussion
	RunCommand
statement, Discussion
	ShowToolbar macro
action, Discussion
	TransferSpreadsheet
method, Discussion

	Document
objects, Discussion
	documentation, Documenting all the containers, Documenting each container, Getting ready to document items, Visiting all the objects, Discussion
		for
containers, Documenting all the containers, Documenting each container
	for
items, Getting ready to document items
	for
operating system
dependencies, Discussion
	of
properties, Visiting all the objects

	Documents
collection, Comments
	DoEvents
statement, Discussion, Discussion, Discussion, Discussion
		features of, Discussion
	looping and, Discussion
	multitasking
and, Discussion
	profiler
and, Discussion

	domain
functions, Solution
	DoMenuItem method
(DoCmd object), Discussion, Discussion
	DOS, Replicating a database, Solution
		cautions
copying replicas, Replicating a database
	starting
and stopping applications, Solution

	DrawStyle property
(lines), Discussion
	DriverName
property (Printer
object), Discussion, Solution
	drives, Problem, Solution
		adding/canceling
connections, Solution
	retrieving
information, Problem

	driving
forms, Discussion
	DROP INDEX (SQL)
statement, Discussion
	DROP TABLE (SQL)
statement, Discussion, Discussion, Creating the inventory table
		for DDL
queries, Discussion
	object
inventory, Creating the inventory table
	overwriting tables
and, Discussion

	DSN (Data Source
Name), Solution
	Duplex property
(Printer object), Discussion, Discussion
	duplicate
records, Solution, Discussion
		eliminating with totals
query, Solution
	UNION ALL clause
and, Discussion

	dynamic
arrays, Creating a list-filling callback function, Discussion
	Dynamic Data Exchange
(DDE), Automation, Solution, Solution, Using DDE with the Windows shell
		adding items to Startup
group, Solution
	communication
mechanism, Automation
	filenames
and, Solution
	using with Windows
shell, Using DDE with the Windows shell

	dynamic link
libraries (DLLs), Discussion
	dynasets, Solution, Solution

 E
	Echo method (Application
object), Problem
	Else
clause, Discussion
	email, Problem
	empty strings, Solution, Discussion, Discussion, Discussion
		ad hoc queries
and, Discussion
	clearing list boxes with, Discussion
	listing users with blank
passwords, Discussion
	testing
for, Solution

	Enabled
property (controls), Solution, Combo and list box controls
	encryption, Solution, Secure your database
	Engine
user, Discussion, Discussion
	Enter
event, Solution
	EnterKeyBehavior property (text
boxes), Solution
	EOF
function, Discussion
	equijoins, Solution, Discussion
	Erase
function, Creating a list-filling callback function
	Err
objects, Discussion
	error
handling, Discussion, Discussion, Avoiding errors, Recording property information, Hiding reports in design view, Problem, Discussion, Discussion, Discussion, Solution, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Discussion, Adding and canceling connections with no user intervention, Using the wrapper procedures
		accessing properties that don't
exist, Discussion
	adding items
to Startup group, Using the wrapper procedures
	adding/canceling
connections, Adding and canceling connections with no user intervention
	assigning
invalid property values, Discussion
	avoiding
errors, Avoiding errors
	cleaning out test
data, Problem
	common network
errors, Discussion
	determining
object existence
and, Solution
	disabling, Discussion
	documenting
properties, Recording property information
	FindExecutable
function and, Solution
	listing users
with blank passwords, Discussion
	LockWindowUpdate
and, Hiding reports in design view
	multiuser
procedures
and, Discussion
	Raise method
and, Discussion
	referring to
Screen.ActiveControl, Discussion
	retrieving
Name property and, Discussion
	tracking
users/groups, Discussion

	Eval function (Access), Discussion, Discussion
	event
macros, How Do I Create an Event Macro?
	event
procedures, How Do I Create an Event Procedure?, Problem, Solution, Discussion, Solution, Solution, Discussion
		conditional
printing, Solution
	creating, How Do I Create an Event Procedure?
	extending
animated technique, Discussion
	option
groups, Solution
	parameter
query limitations
and, Problem
	sample for
passing variable to queries, Solution
	templates and, Discussion

	Excel, What You Need to Use This Book, Discussion, Solution, Problem, Problem, Problem, Problem, Smart Tags
		creating
charts, Problem
	Median function
and, Discussion
	printing
Access report from, Problem
	smart
tags, Smart Tags
	system
requirements, What You Need to Use This Book
	using
within
Access, Problem
	Windows class name
for, Solution

	Excel Object Library, Solution
	Execute method
(databases), Discussion
	execution time
profiler, creating, Problem
	Exit event
(controls), Solution
	ExitWindowsEx
function (Windows API), Solution, Discussion
	explicit
reference, Discussion, Discussion, Solution
		Description property
and, Discussion
	example, Discussion
	PowerPoint
presentations, Solution

	Explorer (Windows
application), Solution
	exporting, Problem, Discussion, Exporting all of the data in related tables, Exporting the data from a query, Problem, See Also, Problem, Discussion, Problem, Discussion, Problem, Discussion
		Access
data to XML file, Problem, Discussion, Exporting all of the data in related tables, Exporting the data from a query
		all data in related
tables, Exporting all of the data in related tables
	data from a
query, Exporting the data from a query

	data
using where clause, Problem, Discussion
	subset
of rows in table, Problem, Discussion
	table
data to HTML, selected columns only, Problem, See Also
	unrelated
tables to single XML file, Problem, Discussion

	ExportXML method, Discussion, Solution, Discussion
		optional WhereCondition
argument, Solution, Discussion

	Extensible Markup
Language, XML (see XML)
	Extensible
Stylesheet Language Transformations (XSLT), Extensible Stylesheet Language Transformations (XSLT)
	extensions, Problem, Problem, Solution
		file, Solution
	running
applications associated
with, Problem
	sorting
filename, Problem

 F
	Fact function
(Excel), Calling simple Excel functions
	FAT
filesystem, Discussion
	Field
objects, Discussion
	fields, Solution, Discussion, Solution, Discussion, Problem, Problem, Discussion, Discussion, Problem, Problem, Discussion, Problem, Problem, Solution, Discussion, Solution, Discussion
		adding
properties
to, Solution
	allowing
null values in, Problem
	bound
fields, Discussion
	converting databases
to replicated, Discussion
	current
fields, Problem
	date/time
search
delimiters, Discussion
	finding
median values for, Problem
	indexing, Discussion
	joining
tables on common, Solution
	listing
properties, Problem
	multiple fields in
update queries, Discussion
	numeric
fields, Problem, Discussion
	retaining editing
information, Discussion
	Rowversion and
Timestamp, Solution
	specifying joins
in, Solution

	File
Open/Save dialogs, Problem
	FileCopy
function
(Access), Problem
	FileDateTime
function (Access), Problem
	FileDialog
object, Solution
	filenames, Problem, Problem, Solution, Solution
		choosing when
opening/saving, Problem
	DDE
interface and, Solution
	Shell
command and, Solution
	sorting, Problem

	files, Problem, Problem, Problem, Problem, Secure your database, Problem, Problem, Problem, Problem, Solution
		choosing
filenames, Problem, Problem
	compression
utilities, Secure your database
	connection
files, Solution
	filling
list boxes with, Problem
	playing
sound
files, Problem
	running
applications, Problem
	setting time
stamps, Problem
	storing
connection
information, Problem

	Filter property
(forms), Solution, Discussion, Discussion
	filtering, Problem, Problem, Solution
		File Open/Save
dialog and, Solution
	printing
matching records only, Problem
	using
VBA variables in
queries, Problem

	FilterLookup property (text
boxes), Solution, Discussion
	FilterOn property
(reports), Solution, Discussion, Discussion
	Financial
Symbol smart tag, Smart Tags, Problem, Discussion, Solution
		allowable
actions, Solution

	Find method
(recordsets), Problem, Solution
	FindExecutable
function, Solution, Solution, Discussion
	FindFirst method
(recordsets), Discussion, Discussion, Solution
	FindLast
method
(recordsets), Solution
	FindNext method
(recordsets), Discussion, Solution
	FindPrevious
method (recordsets), Solution
	FindWindow
function (Windows API), Discussion
	flags, Discussion, Discussion, Discussion, Solution
		bit
flags, Solution
	BOF
function, Discussion
	EOF
function, Discussion
	File Open/Save
dialog, Discussion

	FlashWindow call, Solution, Discussion
	floating-point
math, Solution
	focus, Discussion, Using the wrapper procedures
		forms
receiving, Discussion
	switching, Using the wrapper procedures

	folders,
shared, Problem
	fonts, highlighting current
field, Discussion
	footers, Solution, Discussion, Solution, Solution, Problem, Technique, Discussion, Discussion
		Access calculations
in, Solution
	acFooter
constant and, Discussion
	adding to
forms, Technique
	bound
controls in, Discussion
	for
forms, Solution
	page-range
indicators in, Solution
	printing
different, Problem
	supplied
with template
style, Discussion

	For Each...Next
statement, Documenting each container, Documenting each container, Solution, Solution, Discussion
		array looping
with, Solution
	array processing
and, Solution
	arrays as variants
and, Discussion
	object
inventory, Documenting each container, Documenting each container

	For...Next
statement, Documenting each container, Solution, Discussion, Discussion
		array looping
with, Solution
	listing
users with blank passwords, Discussion
	object
inventory, Documenting each container
	Rushmore
query optimization and, Discussion

	ForceNewPage property
(reports), Discussion
	foreground
colors, Discussion
	foreign
keys, Discussion
	Form
Page wizard, Discussion
	Format event, Solution, Solution, Discussion, Discussion, Solution, Discussion, Solution, Solution, Discussion, Solution
		adding If...Then statement
to, Solution
	controlling
report page breaks, Solution
	different
headers/footers, Solution
	filtering
reports, Discussion
	Line method
limitations, Solution
	page
totals, Solution
	printing based
on conditions and, Solution
	section layout
and, Discussion
	setting row width
with, Discussion

	Format function, Solution, Discussion
	Format property
(fields), Discussion
	Format property (text
boxes), Discussion
	forms, How Do I Place Code in a Form or Report's Module?, Solution, Solution, Discussion, Solution, Problem, Solution, Discussion, Problem, Problem, Problem, Solution, Initializing pop-up forms, Problem, Problem, Problem, Discussion, Documenting each container, Solution, Discussion, Problem, Discussion, Problem, Solution, Discussion, Problem, Solution, Solution, Discussion, Problem, Discussion, Problem, Technique, Discussion, Discussion, Create a generic status meter, Discussion, Problem, Problem, See Also, Solution
		accelerating
load time, Problem
	adding
footer sections to, Technique
	adding Person smart
tag, Solution
	as
container
objects, Documenting each container
	bookmarking
records, Problem
	building generic status
meter, Create a generic status meter
	calculated fields logic
and, Discussion
	centering, Solution
	comparing
performance, Solution
	controls upon
opening, Discussion
	creating
continuous, Solution
	creating
custom templates
for, Problem
	creating key assignment
macros for, Solution
	determining if new
record
in, Problem
	disabling
menus or toolbars, Problem
	displaying
multiple pages on, Problem
	driving
forms, Discussion
	eliminating
menus for, Discussion
	faster
performance of, Problem
	filtering
records, Problem
	handling
expanding, Discussion
	limitations
of adding properties
to, Discussion
	opening
multiple instances, Problem
	parameter
queries and, Discussion
	placing
code in, How Do I Place Code in a Form or Report's Module?
	posting
web form data to Access database, Problem, See Also
	Printer
property and, Solution
	providing navigation
buttons, Problem
	receiving
focus, Discussion
	removing
system
menu, Problem
	replacing InputBox
function, Solution
	resizing
with DoMenuItem
method, Discussion
	restricting
user to single
row, Problem
	splash
forms, Solution, Discussion
	storing size and
location of, Problem
	unbound, Solution
	user
interaction recommendations, Discussion

	Forms
collection, Discussion, Discussion
	Forms
container, Filling the lboObjects list box
	FROM
clause, Discussion
	FrontPage, Problem, See Also, Discussion, Problem, See Also
		collecting
from data and sending to Access
database, Problem, See Also
	creating
Access database, Discussion
	creating
web front-end to Access table, Problem, See Also

	FrontPage 2002 and
2003, Office Web and SharePoint
	FrontPage
2003, Problem, See Also, See Also, Solution, See Also
		building XML data-driven web sites
with, See Also
	Data View Web Part
and, Problem, See Also, Solution, See Also
		conditionally
formatting, Solution, See Also

	FrontPage Database Interface
Wizard, Solution, Discussion
	functions, How Do I Create a New Module?, Solution, Discussion, Discussion, Filling the lboObjects list box, Discussion, Solution, Solution, Problem, Calling simple Excel functions, Solution
		arrays as return
values, Discussion
	bookmarking
records, Solution
	called
directly from event properties, Solution
	class names for
navigation, Solution
	creating with
Insert ->
Procedure, How Do I Create a New Module?
	Excel, Problem
	executing upon
enter/exit of
controls, Discussion
	Rnd
function, Discussion
	statistical
functions, Calling simple Excel functions
	VBA variables in
queries, Solution

 G
	Get property
procedure, Discussion, Discussion, Discussion
		Calendar
control, Discussion
	features
of, Discussion
	status
meters, Discussion

	GetAllSettings
function, Discussion
	GetClassName
function, Discussion
	GetComputerName function, Retrieving information
	GetDesktopHWnd
function, Discussion, Discussion
	GetDiskFreeSpace
function, Solution, Discussion
	GetDriveType
function, Solution
	GetExitCodeProcess
function, Solution, Discussion
	GetFileTime
function, Solution
	GetKeyboardType function, Discussion
	GetLanguageName function, Discussion
	GetLogicalDriveStrings
function, Solution, Discussion
	GetNameSpace method
(Namespace object), Discussion
	GetObject function, Setting up communication with Excel, Starting and stopping PowerPoint
	GetOpenFileName
function, Discussion
	GetOption method
(Application object), Hiding reports in design view, Discussion, Discussion
	GetParent
function, Discussion
	GetSaveFileName
function, Discussion
	GetSetting
function, Discussion
	GetSystemInfo
function, Discussion
	GetSystemMetrics
function, Discussion, Discussion
	GetTickCount
function, Discussion, Discussion
	GetVersionEx
function, Discussion
	GetVolumeInformation
function, Discussion
	GetWindow
function, Discussion, Discussion
	GetWindowLong
function, Discussion, Discussion
	GetWindowRect
function, Discussion, Discussion
	GetWindowText function, Discussion
	global
modules, How Do I Create a New Module?, How Do I Create a New Module?, Solution
	global variables, Discussion, Discussion
	GlobalMemoryStatus
function, Discussion
	GotFocus event
(forms), Discussion
	GoToPage method
(forms), Discussion
	GoToRecord macro action, Solution
	graphic
controls, Graphic and memo controls
	greater than or equal to (>=)
operator, Discussion
	grids, granularity supplied with
styles, Discussion
	GridX property
(forms), Solution
	GridY property
(forms), Solution
	GroupFooter
property
(fields), Discussion
	GroupFooter property
(reports), Solution
	GroupHeader
property (fields), Discussion
	GroupHeader
property (reports), Solution
	grouping, Solution, Discussion, Problem
		customizing, Problem
	in
reports, Discussion
	mailing
labels, Solution

	Grouping dialog
(report), Discussion
	GroupInterval
property (reports), Discussion
	GroupOn
property (reports), Discussion, Discussion
	groups, Discussion, Solution, Solution, Make a security plan, Work with the secured database, Problem, Discussion, Using the sample forms
		creating
custom, Solution
	group
footers, Solution
	group
properties, Discussion
	manipulating shell
groups, Using the sample forms
	manually
creating, Work with the secured database
	securing
users
into, Make a security plan
	tracking
programmatically, Problem, Discussion

	Groups
collection, Discussion, Discussion
	GrpKeepTogether
property
(reports), Discussion

 H
	headers, Solution, Discussion, Solution, Problem
		for
forms, Solution
	page-range indicators
in, Solution
	printing
different, Problem
	supplied
with template
style, Discussion

	Height property (text
boxes), Discussion
	Help
button, Programmatically accessing online help
	helper
classes, Solution, Discussion
	Hidden
property (queries), Discussion
	Hidden
property (tables), Discussion, Discussion
	HPFS
filesystem, Discussion
	HTML, Solution, See Also, Dissecting the HTML, Dissecting the HTML
		exporting
reports to, Solution, See Also, Dissecting the HTML, Dissecting the HTML
		dissecting the
HTML, Dissecting the HTML, Dissecting the HTML

	HTML source, Discussion
	HTML
tables, Problem, See Also
		exporting data
to, Problem, See Also
		selected columns
only, Problem, See Also

	hWnd property
(forms), Discussion, Discussion, Discussion, Discussion
	hWndAccessApp property (Application
object), Discussion

 I
	icons, Discussion, Problem, Discussion
		collecting
information, Discussion
	flashing, Problem
	setting, Discussion

	If...Then...Else
statement, Solution, Discussion, Solution, Discussion, Solution, Solution, Discussion
	image controls, Solution, Discussion, Discussion
		determining if new
record, Discussion
	mailing labels
and, Solution
	usage
recommendations, Discussion

	images,
customized, Problem
	immediate If function
(IIf), Discussion, Discussion, Discussion, Solution
		+
concatenation operator instead
of, Discussion
	grouping mailing
labels, Discussion
	mailing labels
and, Discussion
	usage
recommendations, Solution

	inaccessible classes,
calling, Solution, Discussion
	inches, twips
and, Discussion, Discussion, Discussion, Discussion, Creating a list-filling callback function
	Index
objects, Discussion
	indexes, Discussion, Problem, Discussion, Solution, Solution, Discussion, Solution, Discussion, Solution
		adding
properties
to, Solution
	creating
tables
with, Problem
	fields
and, Discussion
	finding records in
linked tables, Solution
	improving
form performance
and, Discussion
	recommendations, Discussion
	Rushmore
query optimization and, Solution
	search example
and, Discussion
	tracking
users/groups, Solution

	indicators, creating
page-range, Problem
	inequality
join, Discussion
	information, Problem, Discussion, Miscellaneous comments, Solution, Problem, Problem
		collecting, Problem, Miscellaneous comments
	displaying, Problem
	retrieving, Problem
	retrieving with
DAO, Solution

	inner
join, Discussion, Solution
	Input Parameter
dialog, Solution
	InputBox
function, Problem
	InputParameters
property (forms), Solution
	Insert
menu, How Do I Create a New Module?, Solution, Add a bound Calendar control to your form, Create a generic unbound pop-up calendar form, Discussion, Solution
		ActiveX Control
dialog, Add a bound Calendar control to your form, Create a generic unbound pop-up calendar form
	Custom Control
dialog, Discussion
	Object
dialog, Solution, Solution
	Procedure dialog, How Do I Create a New Module?

	InsideHeight property
(forms), Solution, Discussion
	InsideWidth property
(forms), Solution, Discussion
	installations,
collecting
information, Problem
	instance
handles, Solution
	instances, Problem, Problem
	InStr
function, Discussion
	integer
division, Solution
	interfaces, Problem, Executing tasks
		command-string, Executing tasks
	creating
geographical map, Problem

	interop assemblies, Solution, Interop assemblies
		for
various Office applications, Solution

	inventory,
building, Problem
	IsArray
function, Solution
	isCharAlpha
function, Solution
	isCharAlphaNumeric
function, Solution
	IsConnected property (CurrentProject
object), Discussion
	IsFormOpen function, Creating pop-up forms
	IsIconic
function, Discussion
	IsLoaded property
(AccessObjects), Comments
	IsMissing function, Using optional parameters, Discussion
	IsNumeric
function, Discussion
	ItemLayout
property (Printer
object), Discussion, Discussion
	ItemsAcross property
(Printer
object), Discussion
	ItemSizeHeight
property (Printer
object), Discussion, Discussion
	ItemSizeWidth
property (Printer
object), Discussion, Discussion

 J
	Java Server Pages (JSP), Alternatives to FrontPage
	Jet data
types, Discussion
	Jet database engine, Uses the Tools at Hand, Discussion, Comments, Discussion, Solution, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion
		Container
objects, Discussion
	creating new properties, support
for, Discussion
	Creator
and Engine users, Discussion
	db.Execute statement
and, Discussion
	metadata
and, Discussion
	multiple
users and shared
databases, Discussion
	ownership information
and, Comments
	record-level
locking, Discussion
	saved
queries and, Discussion
	security model, Solution, Discussion
	SQL
Server and, Uses the Tools at Hand

	Join Properties
dialog, Solution
	joins, Problem, Solution, Discussion, Discussion, Solution
		equijoins, Solution, Discussion
	inequality
joins, Discussion
	not based on equality
comparisons, Problem
	outer
and inner joins, Solution

 K
	KeepTogether property
(reports), Problem, Solution, Discussion
	Key Assignment Macro option, Discussion
	key
strokes, Discussion, Problem
	keyboard
shortcuts, Problem
	KeyDown
event, Solution, Solution, Discussion
	KeyPress event, Solution, Discussion, Solution
	KeyPreview property
(forms), Solution, Solution
	keys, Discussion, Discussion
		compound primary
keys, Discussion
	improving
form performance, Discussion

	Kurt function
(Excel), Calling simple Excel functions

 L
	Label property
(forms), Create a generic status meter
	labels, Discussion, Discussion, Solution, Solution, Solution, Solution, Solution
		background
colors for, Discussion
	changing
default, Solution
	internationalizing
messages, Solution
	limitations
linking to text box, Discussion
	using
as navigation controls, Solution, Solution

	language, Problem, Problem, Discussion, Discussion, Solution
		classifying
characters, Solution
	determining
version, Problem
	importance
of optimizing techniques, Discussion
	internationalizing
messages, Problem

	LanguageSettings
property (Application
object), Discussion
	LBound
function, Solution, Solution
	LCase
function, Discussion
	LDB file
extension, Solution, Discussion
	least-restrictive
rule, Solution, Discussion
	Left function, Discussion
	left outer
join, Solution
	LeftMargin property
(Printer object), Discussion
	Len
function, Solution
	Let property
procedure, Discussion, Solution, Discussion, Discussion
	LimitToList property (combo
boxes), Solution, Solution, Solution, Discussion
	Line method (reports), Solution, Discussion, Solution
	line
numbers, Problem
	LinkChildFields
property
(subforms), Discussion, Discussion
	linked
tables, Problem, Solution, Solution, Problem
		finding records
in, Problem
	linking data
tables, Solution
	linking
dynamically, Problem
	options for, Solution

	linking, Solution, Setting up communication with Excel, Problem, Discussion
		Access
and Excel, Setting up communication with Excel
	Excel worksheet to
database, Solution
	servers in SQL
Server, Discussion
	SQL
Server tables
dynamically, Problem

	LinkMasterFields
property
(subforms), Discussion, Discussion
	list boxes, Problem, Solution, Discussion, Adding items to a list box, Solution, The MultiSelect property, Problem, Problem, Combo and list box controls, Solution, Problem
		adding items, Adding items to a list box, Problem
	bound to
queries, Solution
	client/server applications
and, Solution
	controls as
parameters, Problem
	creating
permanently open, Problem
	filling with lists of
files, Problem
	multiselect, Solution
	performance
bottlenecks, Combo and list box controls
	restrictions with
binding, Discussion
	selecting multiple
items, The MultiSelect property

	ListCount
property (controls), Discussion
	ListFields
method
(fields), Problem
	ListRows
property (combo
boxes), Solution, Solution
	lists, Solution, Discussion, Discussion, Problem
		choosing
from fixed lists, Discussion
	displaying
and collecting information, Solution
	filling
drop-down, Problem
	obtaining
tables/queries, Discussion

	ListWidth property
(combo boxes), Solution, Solution
	Load event, Solution, Solution, Solution, Solution, Discussion, Solution, Discussion, Discussion, Create a generic unbound pop-up calendar form, Discussion, Discussion, Discussion
		adjusting
applications, Discussion
	animated
buttons, Discussion
	Calendar
control, Create a generic unbound pop-up calendar form, Discussion
	choosing default
printer, Discussion
	faster loading of
combo boxes and, Discussion
	highlighting
current field, Solution
	printer names
list, Solution
	procedure stack
and, Solution
	retrieving setting
with, Solution
	tracking open shared
databases, Discussion

	local
variables, Solution
	LocalTimeToFileTime
function, Discussion
	Locked
property (controls), Solution
	locks, Discussion, Discussion, Problem, Discussion, Problem, Discussion
		considerations, Discussion
	error
handling and, Discussion
	records
and, Problem, Discussion
	setting
maximum intervals, Problem, Discussion

	LockWindowUpdate
function, Discussion, Hiding reports in design view
	LOGFILE.TXT, Steps
	Logon method
(Namespace), Discussion
	Long Binary
Data, Discussion
	looping, Documenting each container, Discussion, Discussion, Discussion, Discussion, Creating the text
		importance of
optimizing when, Discussion
	object
inventory, Documenting each container
	pausing applications
and, Discussion
	PowerPoint
presentations, Creating the text
	retry
loops, Discussion

	lowercase, Problem

 M
	macros, How Do I Create an Event Macro?, Solution, Discussion, Documenting each container, Discussion, Problem, Solution, Solution, Solution, Discussion, Discussion, Discussion, Discussion, Discussion
		as
container
objects, Documenting each container
	AutoExec, Discussion, Solution, Discussion
	AutoKeys
macro, Solution
	creating custom menus
with, Discussion
	event
macros, How Do I Create an Event Macro?
	GoToRecord macro
action, Solution
	key
assignment, Solution, Discussion
	keyboard
shortcuts, Problem
	MoveSize macro
action, Discussion
	pointing
to empty, Discussion
	ShowToolbar macro
action, Discussion

	mail
merges, Problem
	Mailing Label Report
Wizard (Access), Solution, Solution
	mailing labels, Problem, Solution, Problem, Solution
		avoiding
unwanted blank
rows, Problem
	graphics
on, Solution
	preventing
duplicate, Problem
	union
queries, Solution

	MailMerge method (Document
object), Performing the mail merge
	make-table
queries, Problem
	margin
settings, Problem
	mark-and-return
feature, Discussion
	MaxButton property
(forms), Solution
	mean value, Discussion
	Median function
(Excel), Discussion, Calling simple Excel functions, Calling Excel functions using ranges
	median
values, Problem
	memo
fields, Recording property information, Discussion
	memory, Creating a list-filling callback function, Discussion, Discussion, Discussion, Closing Excel
		collecting
information, Discussion
	preloading forms
and, Discussion
	releasing, Creating a list-filling callback function, Closing Excel
	sorting algorithm and
use of, Discussion

	menu
forms, Solution
	MenuBar property (forms), Solution, Discussion
	menus, Problem, Problem
	merge codes, Solution
	messages, Solution, Problem, Problem, See Also, Discussion
		condition-based
printing, Solution
	internationalizing, Problem
	sending
without
email, Problem, See Also
	SendMessage
function, Discussion

	metadata, Solution
	Microsoft DAO 3.6
Type Library, Solution
	Microsoft Data
Link, Solution
	Microsoft
Graph, Discussion, Solution
	Microsoft
Paint, Solution
	Microsoft Script
Editor, Discussion
	Microsoft SOAP Toolkit
3.0, Locating the toolkits
	Microsoft XML v 5.0 type
library, Discussion
	MIDI
files, Solution
	MinButton property
(forms), Solution
	MinMaxButtons
property (forms), Technique, Create a generic unbound pop-up calendar form, Create a generic status meter
	Mod
operator, Solution, Discussion
	Modal property
(forms), Technique, Create a generic unbound pop-up calendar form
	modules, How Do I Create a New Module?, How Do I Create a New Module?, How Do I Place Code in a Form or Report's Module?, Documenting each container, Solution, Continuously animated buttons, Create a generic status meter, Solution
		adding
new, Solution
	as
container
objects, Documenting each container
	creating, How Do I Create a New Module?
	declarations, How Do I Create a New Module?, Continuously animated buttons, Create a generic status meter
	placing procedures
in, How Do I Place Code in a Form or Report's Module?
	preloaded
forms, Solution

	Modules
collection, Discussion
	Modules
container, Filling the lboObjects list box
	mouse, Problem, Discussion
		checking
if
installed, Discussion
	restricting movement
of, Problem

	MouseDown event, Two-state buttons, Discussion, Discussion
	MouseUp event, Two-state buttons, Discussion, Discussion
	Move method (recordsets), Discussion
	MoveLast method
(recordsets), Creating a list-filling callback function
	MoveWindow
function, Discussion
	MsgBox
statement, Discussion
	MSNBC
web site, Solution
	MSODSC (Microsoft Office Data Source
Control), Discussion, Discussion
	MSXML, Discussion
	MSysObjects system
table, Discussion, Filling the lboObjects list box
	multipage forms, Solution
	MultiSelect property
(list boxes), The MultiSelect property
	multitasking, Problem, Discussion
	multiuser
applications, Multiuser Applications, Discussion

 N
	Name property
(buttons), Solution, Solution, Solution
	Name
property (combo boxes), Solution, Solution
	Name
property (list
boxes), Solution, Solution
	Name property (objects), Discussion, Discussion
	Name property
(reports), Solution
	Name property (text
boxes), Solution, Solution
	named
parameters, Solution
	names, finding
sound-alike, Problem
	namespace
declaration (XML), Root elements and namespaces
	Namespace
object, Discussion
	naming conventions, How Do I Create an Event Procedure?, Discussion, Discussion, Discussion, Make a security plan
		event
properties, How Do I Create an Event Procedure?
	labels and
controls, Discussion
	Soundex
code, Discussion
	system tables
and, Discussion
	usernames, Make a security plan

	navigation buttons, Discussion, Problem, Problem
	navigation
controls, Problem
	NavigationButtons property
(forms), Solution, Technique, Create a generic unbound pop-up calendar form, Create a generic status meter, Solution
		communicating without
email, Solution
	creating dialog
forms, Technique
	creating pop-up
calendars, Create a generic unbound pop-up calendar form
	creating status
meters, Create a generic status meter
	navigation
buttons, Solution

	NET Windows Form application,
printing reports from, Problem, See Also
	network
applications, Problem
	network
connections, Problem
	New keyword, Solution, Discussion
	NewCol
property (reports), Discussion
	NewCurrentDatabase method (Application
object), Discussion
	NewRecord property
(forms), Discussion, Solution, Discussion, Discussion
		determining if new
record, Solution, Discussion
	maximum locking
intervals, Discussion
	purpose of, Discussion

	NewRow
property (reports), Discussion
	newsgroups, Promotes Creative Use of the Product
	NoMatch property
(recordsets), Solution
	Normal form
(template), Discussion
	Notepad, Solution, Solution, Discussion
		editing ODC files
in, Solution
	VBScript
and, Discussion
	Windows
class name for, Solution

	NotInList
event, Solution, Discussion
	Now
function, Discussion, Discussion, Discussion, Discussion
		communicating
without email, Discussion
	DefaultValue property
and, Discussion
	GetTickCount
function, Discussion
	tracking changes
with, Discussion

	NTFS
filesystem, Discussion
	null
values, Problem, Discussion, Discussion, Discussion, Avoiding errors, Discussion, Discussion, Discussion
		allowing input
of, Problem
	as
terminator, Discussion
	checking text
fields for, Discussion
	Chr$(0), Discussion
	median values
and, Discussion
	plus sign
and, Discussion
	RowSource property
and, Discussion, Avoiding errors

	number sign
(#), Discussion, Discussion
	numeric
fields, Problem, Discussion

 O
	Object Browser
(VBA), Comments, Comments, Discussion
	Object
Linking and Embedding (OLE), Graphic and memo controls, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Problem
		fields, Discussion, Discussion, Discussion
	form performance
and, Discussion
	limitations
of, Discussion
	optimizing
performance, Graphic and memo controls
	storing bitmaps
as, Discussion
	usage
recommendations, Discussion
	WAV files
as, Problem

	object
variables, Documenting each container, Documenting each container, Solution, Discussion, Discussion
		DAO, Documenting each container
	listing users with blank
passwords, Discussion
	recommendations, Solution
	tracking
users/groups, Discussion
	usage
recommendations, Documenting each container

	objects, How Do I Import an Object?, Discussion, Problem, Problem, Problem, Problem, Problem, Problem
		backup
of
selected, Problem
	building
inventory of, Problem
	determining existence
of, Problem
	handling properties
for, Problem
	importing, How Do I Import an Object?
	security for
selected, Problem
	templates
and, Discussion
	verifying
consistent settings, Problem

	ODBC, SQL Server
	ODBCConnectStr property
(queries), Solution
	ODC, Solution
	ODE (Office Developer's
Edition), Solution
	od\:
element, Root elements and namespaces, Discussion
	Office
2000, Solution
	Office 2003 Web
Services Toolkit, Solution, Locating the toolkits, Solution
		serialized
objects, Solution

	Office
Data Connection (ODC), Solution, Solution, Solution
		changing to different
locations, Solution
	creating
files, Solution
	ODC file
extension, Solution

	Office Data Source
Control
(MSODSC), Discussion, Discussion
	Office
Developer's Edition
(ODE), Solution
	Office Object Library, Solution, Discussion
	Office Web
Components, Discussion, Solution
	Office
XP, Solution, Solution
	Office XP Web Services Toolkit
2.0, Locating the toolkits
	OLE, Graphic and memo controls
	OLEDB connection string,
hand-coding, Solution
	OnAction property
(forms), Solution
	OnActivate property
(forms), Solution
	OnChange
property (text boxes), Solution
	OnClick property
(buttons), Solution, Solution, Solution, Solution, Solution, Solution, Solution, Solution
		adding lock
identification, Solution
	automation, Solution
	cleaning out test
data, Solution
	communicating without
email, Solution, Solution
	creating geographical map
interfaces, Solution
	dynamically linking SQL Server
tables, Solution
	Excel
functions, Solution

	OnClose property (forms), Solution
	OnCurrent property
(forms), Solution, Solution, Solution, Discussion
		combo boxes with <N/A>
entry, Solution
	controls as
parameters, Discussion
	determining if new
record, Solution
	option
groups, Solution

	OnEnter property
(combo boxes), Solution
	OnExit property (text
boxes), Solution
	OnFormat property
(reports), Solution, Solution, Solution, Solution
		controlling page
breaks, Solution
	creating page-range
indicator, Solution
	different
headers/footers, Solution
	setting widths
with, Solution

	OnGotFocus
property (controls), Solution, Discussion, Solution
	online help, accessing
programmatically, Programmatically accessing online help
	OnLoad property
(forms), Solution, Discussion, Continuously animated buttons, Solution
		accepting new
entries, Solution, Discussion
	animated
buttons, Continuously animated buttons
	communicating without
email, Solution

	OnLostFocus property
(controls), Solution
	OnNoData property
(reports), Solution, Discussion
	OnPrint property
(reports), Solution, Solution, Solution
	OnTimer property
(buttons), Continuously animated buttons
	OnTimer property
(forms), Solution, Discussion
	Open Database
Connectivity (ODBC), Discussion, Solution, SQL Server
		client/server applications
and, Solution
	linked tables
and, SQL Server
	seek operations
and, Discussion

	Open
event, Discussion, Discussion, Initializing pop-up forms, Discussion, Solution, Solution, Solution, Discussion
		choosing default
printer, Solution
	filtering
reports, Discussion
	initializing pop-up forms
and, Initializing pop-up forms
	internationalizing
messages, Solution
	obtaining correct record
count, Discussion
	OnGotFocus event
and, Discussion
	switchboard
form, Solution, Discussion

	OpenArgs property
(forms), Miscellaneous comments, Discussion, Solution, Discussion, Discussion
		accepting new
entries, Solution, Discussion
	Calendar control, Discussion
	passing information
via, Miscellaneous comments
	preloading
forms, Discussion

	OpenConnection
method (CurrentProject object), Discussion
	OpenCurrentDatabase method (Application
object), Discussion, Discussion
	OpenDataAccessPages method (CurrentProject
object), Discussion
	OpenDatabase method (Workspace
object), Solution, Discussion, Discussion, Solution
		client/server applications
and, Solution
	external databases
and, Discussion
	finding records in linked
tables, Solution, Discussion

	OpenProcess
function, Solution, Discussion
	OpenRecordset method (Recordset
object), Discussion
	OpenReport method (DoCmd
object), Solution, Visiting all the objects, Discussion, Discussion, Discussion, Discussion, Discussion
		changing printer
options, Discussion
	disabling screen display
with, Discussion
	filtering
reports, Solution
	hiding
reports, Visiting all the objects
	printing
reports, Discussion, Discussion
	selecting printer at
runtime, Discussion

	operating
systems, Discussion, Discussion
	operators, Solution, Discussion, Solution, Discussion, Discussion, Discussion, Solution, Solution, Solution, Discussion, Discussion
		>= (greater
than or equal to) operator, Discussion
	AND
operator, Discussion, Solution, Discussion
	Between
operator, Solution
	concatenation
operators, Discussion
	division
operators, Solution
	Mod
operator, Solution, Discussion
	OR
operator, Solution, Discussion

	optimization, Creating a list-filling callback function, Optimization
		applications, Optimization
	list-filling
function code, Creating a list-filling callback function

	Option Base 1 statement, Discussion
	Option Compare Binary
statement, Solution
	Option Explicit
statement, How Do I Create a New Module?
	option
groups, Problem, Solution, Solution, Solution
		customizing
report grouping, Solution
	language
version and, Solution
	security
considerations, Solution
	textual information
and, Problem

	Optional keyword, Using optional parameters
	Options dialog, Discussion
	OR
operator, Solution, Discussion
		Rushmore query optimization
and, Solution
	window styles
and, Discussion

	ORDER BY (SQL) clause, Discussion, Discussion, Discussion, Discussion
		improving form performance
and, Discussion
	similarity to OrderBy
property, Discussion
	union
queries, Discussion, Discussion

	OrderBy property
(reports), Discussion
	OrderByOn property
(reports), Discussion
	Orientation
property (Printer
object), Discussion, Discussion
	outer
join, Solution
	Outlook, What You Need to Use This Book, Problem, Solution, See Also
		adding
or editing contact information using smart
tags, Solution, See Also

	Outlook
2002, Solution
	output
devices, Problem, Problem, Problem, Problem
		choosing at
runtime, Problem
	retrieving list of
installed, Problem
	setting
default, Problem

	OutputTo method (DoCmd
object), Solution, Starting the connection with Word for Windows

 P
	page
breaks, Problem
	Page property
(reports), Solution, Discussion
	page
ranges, Problem
	page totals, Problem
	PageHeader property
(reports), Discussion, Discussion
	pages, Problem, Problem
		different
headers/footers, Problem
	displaying
multiple, Problem

	Painting property
(forms), Problem, Technique, Discussion
	paper sources, controlling, Problem
	PaperBin
property (Printer
object), Discussion, Discussion, Discussion
	PaperSize property
(Printer object), Discussion, Discussion, Discussion
	ParamArray keyword, Solution, Solution
	parameter
queries, Problem, Problem, Problem, Problem, Communicating parameters to Access
		creating recordsets based
on, Problem
	printing values, Problem
	specifying criteria at
runtime, Problem
	using
form-based prompts, Problem

	parameterized
constructors, Not all .NET components are callable, Problem, Discussion
		calling .NET components
containing, Problem, Discussion

	parameters, Solution, Using optional parameters, Problem, Solution, Problem, Solution, Problem, Problem, Problem
		controls
as, Problem
	named
parameters, Solution
	passed to
procedures, Problem
	passing arrays
as, Solution
	passing variable
number
of, Problem
	printing
values, Problem
	square brackets
and, Solution
	using across
multiple DAPs, Problem
	using
optional, Using optional parameters

	Parent
property
(labels), Discussion
	parentheses
(), Solution
	Partition
function, Solution, Discussion, Discussion
	pass-through
queries, Solution, Solution
	passwords, Solution, Work with the secured database, Problem, Discussion
		for new
accounts, Work with the secured database
	retrieving
all blank, Problem, Discussion
	security
model and, Solution

	Paste Special
dialog, Solution
	pattern
matching, Discussion
	Performance
Analyzer
(Access), Discussion
	performance
considerations, Discussion, Problem, Problem, Solution, Solution, Discussion, Solution, Discussion, Discussion, Solution, Discussion
		accelerating load
time, Problem
	caching algorithms
and, Discussion
	calculating median
and, Discussion
	comparing
techniques, Solution
	forms
execution, Problem
	linked tables
and, Solution
	supplying input
parameters, Solution, Discussion
	TimeInterval property
and, Discussion
	tracking user
changes, Discussion
	VBA
code, Solution

	permissions, Solution, Solution, Discussion, Make a security plan, Secure your database, Work with the secured database, Discussion, Problem, Problem
		assigning, Work with the secured database
	attaching
linked tables and, Problem
	granted to Users
group, Secure your database
	inheriting
through groups, Solution
	recommendations
for
assigning, Solution, Discussion, Make a security plan
	Security Wizard
and, Discussion
	updating
data with
views, Problem

	persistence,
user-defined properties and, Discussion
	Person Name smart
tag, Smart Tags
	Person smart
tag, Solution, See Also, Solution, Problem, Discussion
		adding or editing contact information in
Outlook, Solution, See Also
	allowable
actions, Solution
	using with Date smart
tag, Problem, Discussion

	Personal Identifier
(PID), Solution, Secure your database, Work with the secured database, Discussion
	pessimistic
locking, Problem, Discussion, Problem, Discussion
		setting maximum locking interval for
record, Problem, Discussion

	PgDn
key, Problem
	PgUp
key, Problem
	PHP, Alternatives to FrontPage
	Picture
Builder Wizard (Access), Two-state buttons
	Picture property
(buttons), Solution, Two-state buttons, Discussion
		animated
buttons, Two-state buttons, Discussion
	Build button
and, Solution

	Picture property
(forms), Graphic and memo controls, Solution, Discussion
		communicating without
email, Solution, Discussion
	removing form
watermarks, Graphic and memo controls

	PictureAlignment
property
(forms), Solution
	PictureData
property (buttons), Solution, Discussion
	PictureData property
(controls), Discussion
	PictureSizeMode
property (forms), Solution
	PictureTiling
property (forms), Solution
	PictureType
property
(forms), Solution
	pipes
(|), Solution
	pixels, Discussion, Discussion
	plus sign
(+), Discussion, Discussion
	points, compared with
twips, Discussion
	pop-up
forms, Creating pop-up forms, Initializing pop-up forms, Initializing pop-up forms, Discussion, Combo and list box controls, Solution, Create a generic unbound pop-up calendar form
		accepting new
entries, Solution
	creating, Creating pop-up forms
	creating generic
calendar, Create a generic unbound pop-up calendar form
	hWnd property
and, Discussion
	improving
performance, Combo and list box controls
	initializing, Initializing pop-up forms, Initializing pop-up forms

	PopUp property
(forms), Discussion, Technique, Create a generic unbound pop-up calendar form, Create a generic status meter
		creating dialog
forms, Technique
	creating pop-up
calendars, Create a generic unbound pop-up calendar form
	creating status
meters, Create a generic status meter
	window placement
and, Discussion

	Port property
(Printer object), Discussion, Solution
	PostMessage
function, Solution, Discussion
	PowerPoint, What You Need to Use This Book, Problem
	PowerPoint
10.0 Object
Library, Solution
	PowerPoint
2002, Solution
	Presentations
collection, Creating the presentation
	presentations,
creating, Solution, Discussion, Creating the presentation
	Preserve
keyword, Discussion
	primary
interop assembly (PIA), Interop assemblies
	primary
keys, Discussion
	Print
event, Discussion, Solution
	PrintArtistReport
form, Discussion
	Printer
objects, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Solution, Solution
		Access 2002
feature, Discussion
	ColumnSpacing
property, Discussion
	DataOnly
property, Discussion
	information
in, Solution
	ItemLayout
property, Discussion, Discussion
	output ports
and, Solution
	paper source
and, Solution
	Printer property
and, Discussion

	Printer property (Application
object), Solution, Discussion
	Printer property
(forms/reports), Solution, Solution, Discussion
	printing, Problem, Solution, Solution, Problem, Problem, Printers, Problem, Problem, Problem, Problem, Problem, Problem, Problem, Solution
		adding/canceling
connections, Solution
	based on
conditions, Problem
	changes in Access
2002, Printers
	changing
options, Problem
	choosing output
device at runtime, Problem
	documents, Solution
	margin and column
settings, Problem
	matching records
only, Problem
	obtaining list of
installed printers, Problem
	paper sources,
controlling, Problem
	retrieving
information about selected
printer, Problem
	setting default
printer, Problem
	suppressing, Problem

	PrintOut method
(DoCmd object), Discussion
	PrintQuality property (Printer
object), Discussion
	procedure stacks, Problem, Discussion
		creating
global, Problem
	profiler
and, Discussion

	procedures, How Do I Create a New Module?, How Do I Create an Event Procedure?, Discussion, Problem, Discussion, Problem, Solution, Solution, Discussion
		class
modules and, How Do I Create a New Module?
	creating to react
to events, How Do I Create an Event Procedure?
	exit point
recommendations, Discussion
	passing
parameters to, Problem, Problem
	property
procedures, Discussion
	stored
procedures, Solution, Solution, Discussion

	Product function
(Excel), Calling simple Excel functions
	profile stack, Steps
	profilers, creating execution
time, Problem
	PROGMAN
program, Solution, Retrieving information from the Windows shell
	Program
Manager, Solution
	Project Properties Pages dialog
box, Solution
	Proper function
(Excel), Calling simple Excel functions
	properties, How Do I Set Control Properties?, How Do I Create an Event Procedure?, Solution, Discussion, Discussion, Solution, Visiting all the objects, Hiding reports in design view, Problem, Problem, Solution, Discussion, Technique, Discussion, Solution, Discussion, Discussion
		calling functions
directly
from, Solution
	changing based on
security level, Solution
	converting
databases to replicated, Discussion
	documenting, Visiting all the objects
	example storing, Discussion
	for
dialog forms, Technique
	group membership
and, Discussion
	handling, Problem
	hidden, Discussion
	naming
conventions, How Do I Create an Event Procedure?
	obtaining
list of, Problem
	purpose
of, Discussion
	query
restrictions, Discussion
	retrieving
for reports, Hiding reports in design view
	steps in
assigning, How Do I Set Control Properties?
	viewing across
objects, Solution
	viewing for
queries, Solution

	Properties
collection, Recording property information, Discussion, Discussion, Discussion
	properties
sheets, Solution, Solution, Hiding reports in design view, Modifying the RowSource property, Two-state buttons, Discussion
		animated
buttons, Two-state buttons
	Build button
and, Solution
	customizing
images, Discussion
	displaying, Solution
	limitations
of, Modifying the RowSource property
	retrieving
report information and, Hiding reports in design view

	Property Get procedure, Creating pop-up forms
	Property Let procedure, Creating pop-up forms
	property
names, How Do I Create an Event Procedure?

 Q
	queries, Problem, Discussion, Discussion, Discussion, Problem, Problem, Discussion, Problem, Solution, Solution, Solution, Solution, Problem, Problem, Problem, Solution, Solution, Discussion, Problem, Discussion, Problem, Problem, Solution, Discussion, Problem, Problem, Solution, Problem, Problem, Creating the inventory table, Solution, Discussion, Problem, Filling the lboObjects list box, Solution, Discussion, Problem, Discussion, Solution, Discussion, Solution, Solution, Solution, Problem, Communicating parameters to Access
		action, Discussion, Solution
	adding
properties
to, Solution
	aging
analysis, Problem
	basing DAPs
on, Solution
	client/server
applications and, Discussion
	communicating without
email, Solution
	creating
tables with, Problem
	crosstab, Discussion, Problem, Solution
	data definition
language (DDL), Solution, Creating the inventory table
	delete, Discussion
	design-view, Discussion
	filtering with VBA
variables, Problem
	improving form
performance and, Discussion
	list
boxes bound to, Solution
	obtaining
field properties
with, Problem
	offloading
processing, Solution
	parameter, Problem, Problem, Problem
	pass-through, Problem
	passing parameters
to, Communicating parameters to Access
	prefix for
hidden, Filling the lboObjects list box
	processing
steps, Discussion
	retrieving
random samples from, Problem
	Rushmore
and, Problem
	saving
in tables, Problem
	select, Discussion, Solution, Problem
	self-join, Discussion
	to
embedded SQL
statements, Problem
	totals, Problem, Solution, Discussion
	union, Problem, Solution, Discussion
	update, Solution
	updating
DAP
data, Solution
	using
case-sensitive
criteria, Problem
	viewing
property settings, Solution

	Query Builder
(Access), Problem, Solution, Discussion
	query by example (QBE)
grid, Queries
	Query Parameters
dialog, Solution, Discussion, Solution
	QueryDef
objects, Discussion, Solution
	QueryDefs
collection, Documenting each container, Comments, Filling the lboObjects list box, Discussion
		as persistent
object, Documenting each container
	containers instead
of, Comments
	Document objects
and, Discussion
	lists of
queries, Filling the lboObjects list box

	question mark
(?), Solution
	quicksort
algorithm, Solution, Discussion
	Quit method
(Application object), Discussion, Closing Excel, Discussion
	quotes, Discussion, Discussion, Discussion, Problem, Discussion, Discussion, Discussion, Executing tasks
		Access
assumptions, Discussion
	as zero-length string
constant, Discussion
	combo boxes
and, Discussion
	date/time values
and, Discussion
	embedded, Problem
	listing users with
blank passwords, Discussion
	WinFax
Pro and, Executing tasks

 R
	Raise method (Err
object), Discussion
	random
samples, Problem
	Randomize subroutine, Discussion
	Range method (Excel), Calling Excel functions using ranges
	RDS (Remote
Data Services), Data Access Pages
	ReadOnly property
(controls), Solution
	Recognizer interface and
smart tags, Setting up the DLL project
	record
locks, Problem, Discussion, Solution
		customizing, Solution

	record
sources, Problem, Discussion
	RecordCount property
(recordsets), Discussion, Discussion
	RecordLocks
property (forms), Discussion
	records, Solution, Discussion, Problem, Problem, Problem, Problem, Problem, Solution, Problem, Problem, Problem, Discussion, Problem
		bookmarking
on
forms, Problem
	carrying data
forward, Problem
	controls for
navigation
through, Problem
	determining
if
new, Problem
	duplicate, Solution, Discussion
	finding
in linked tables, Problem
	finding
sound-alike, Problem
	limiting number in
recordsets, Solution
	maximum
locking intervals, Problem, Discussion
	printing
only
matching, Problem
	saving with editing
information, Problem

	RecordSelectors property
(forms), Solution, Technique, Create a generic unbound pop-up calendar form, Create a generic status meter, Solution
		communicating without
email, Solution
	creating dialog
forms, Technique
	creating multipage
forms, Solution
	creating pop-up
calendars, Create a generic unbound pop-up calendar form
	creating status
meters, Create a generic status meter

	Recordset
objects, Discussion, Solution
	RecordSet property
(forms), Discussion
	RecordsetClone property
(forms), Discussion, Discussion
	RecordsetLabel property
(recordsets), Solution, Solution, Solution
	recordsets, Discussion, Solution, Problem, Documenting each container, Problem, Solution, Discussion, Solution, Discussion, Solution, Solution, Discussion, Solution, Solution, Discussion
		as
read-only, Discussion
	bookmarks
and, Discussion
	changing
default labels, Solution
	client/server
applications
and, Solution
	combining
data with union queries, Solution
	creating, Problem, Discussion
	improving form
performance, Discussion
	linked
tables
and, Problem
	locking
options
and, Discussion
	multiuser
applications and, Solution
	NoMatch property
and, Solution
	recordsets), Solution
	Update
method, Documenting each container
	using
Find methods on, Solution

	RecordSource
property (forms), Discussion, Solution, Solution, Solution, Solution, Solution, Discussion, Solution, Solution, Solution, Solution, Solution
		accepting new
entries, Solution
	communicating without
email, Solution
	controls as
parameters, Solution
	converting
queries, Solution
	creating multipage
forms, Solution
	multiple databases
and, Solution
	multiuser
applications, Solution, Discussion
	navigation
buttons, Solution
	saving queries in
tables, Discussion
	SQL statements
and, Solution
	supplying input
parameters, Solution

	RecordSource
property
(reports), Discussion, Solution
	recursive
relationships, Problem
	ReDim
statement, Discussion
	references, Discussion, Discussion, Discussion, Discussion, Documenting each container, Discussion, Discussion, Solution, Solution, Solution
		creating, Discussion
	deleting, Discussion, Discussion
	internationalizing
messages, Discussion
	locating
unknown, Discussion
	object
references, Documenting each container, Discussion
	setting, Solution, Solution

	referencing data from multiple
databases, Problem
	referential
integrity, Discussion, Problem, Discussion, Discussion
		cleaning out test data
and, Problem
	improving form performance
and, Discussion
	indexes
and, Discussion
	recursive relationships
and, Discussion

	RegAsm
utility, Solution, Solution, Solution
	REGEDIT.EXE, Solution
	REGEDT32.EXE, Solution
	registry, Solution, Solution
	Relation
objects, Discussion
	relationships, Problem, Documenting each container, Solution, Solution
		adding
properties
to, Solution
	as
container
objects, Documenting each container
	cleaning out
test data and, Solution
	recursive, Problem

	Relationships
container, Filling the lboObjects list box
	Remote Data
Services (RDS), Data Access Pages
	RemoveItem method (Print
object), Adding items to a list box
	Repaint method
(forms), Discussion, Discussion
	RepaintObject
method (DoCmd object), Discussion
	RepeatSection
property (reports), Discussion
	replicas/replication, Solution, Discussion, Resolving conflicts
		resolving
conflicts, Resolving conflicts

	Report
Wizard (Access), Problem
	reports, Discussion, Problem, Problem, Problem, Problem, Problem, Discussion, Discussion, Problem, Problem, Problem, Problem, Documenting each container, Hiding reports in design view, Hiding reports in design view, Problem, Discussion, Problem, Discussion, Problem, Discussion, Problem, See Also
		alternating
gray bars on, Problem
	as
container
objects, Documenting each container
	bar
graphs, Problem
	changing
paper source, Discussion
	changing
settings, Problem
	controlling
page breaks, Problem
	custom templates
for, Problem
	customizing
grouping, Problem
	debugging, Discussion
	hiding in design
view, Hiding reports in design view
	limitations
of adding properties
to, Discussion
	line
numbers, Problem
	multiple
columns, Problem
	printing
based on conditions, Problem
	printing
from .NET Windows Form application, Problem, See Also
	printing
from
Excel, Problem
	processing
order, Discussion, Discussion
	retrieving
properties
of, Hiding reports in design view
	set to default
printer, Problem
	smart tags
and, Discussion
	suppressing
printing, Problem

	Reports
collection, Discussion, Discussion
	Reports
container, Filling the lboObjects list box
	reports, exporting to ASP or
HTML, Solution
	Resize
event, Solution, Solution, Discussion
	resizing, Discussion, Solution, Discussion, Discussion, Technique, Discussion
		buttons, Discussion
	disabling for
bitmaps, Solution
	DoMenuItem method
and, Discussion
	forms and screen
flashing, Technique
	recovering
from accidental, Discussion

	Response argument, Discussion
	restrictions
(forms), Problem
	ReturnsRecords property
(queries), Solution
	RightMargin property
(Printer object), Discussion
	Rnd (random
number) function, Discussion
	row
sources, Problem, Discussion, Discussion
		building from
scratch, Discussion
	caveats for using
queries in, Discussion
	SQL statements
for, Problem

	rows, Solution, Solution, Problem, Problem, Recording property information, Problem, Discussion, Discussion
		AddNew
method, Recording property information
	alternating gray
bars, Problem
	avoiding
unwanted, Problem
	control
over movement, Solution
	determining
if new, Problem
	form performance and
number of, Discussion
	manipulating
buttons, Solution
	replication
and exchange of, Discussion

	RowSource property (combo
boxes), Solution, Solution, Solution, Solution, Combo and list box controls, Solution, Solution, Solution
		accepting new
entries, Solution
	communicating without
email, Solution
	controls as
parameters, Solution
	customizing report
grouping, Solution
	improving form
performance, Combo and list box controls
	selecting
<N/A>, Solution
	SQL statements
and, Solution
	unbound form with controls
and, Solution

	RowSource
property (list
boxes), Solution, Discussion, Discussion, Avoiding errors, Avoiding errors, Adding items to a list box, Solution, Filling a list box by calling the AddItem method, Filling a list box by modifying the RowSource property, Modifying the RowSource property
		filling, Adding items to a list box, Filling a list box by calling the AddItem method, Filling a list box by modifying the RowSource property
	modifying, Modifying the RowSource property
	object
inventory, Avoiding errors, Avoiding errors
	searching, Solution
	setting, Solution
	to
Null, Discussion
	using with Seek
method, Discussion

	RowSource property
(reports), Discussion
	RowSourceType property
(combo boxes), Solution, Solution, Solution, Solution
		accepting new
entries, Solution
	communicating without
email, Solution
	selecting
<N/A>, Solution
	unbound form with controls
and, Solution

	RowSourceType property
(controls), Filling a list box by creating a list-filling callback function
	RowSourceType property (list
boxes), Adding items to a list box, Discussion
		adding items and, Adding items to a list box
	tracking open shared
databases, Discussion

	RowSpacing property
(Printer object), Discussion, Discussion
	Rowversion
fields, Solution
	RunCode
action, Solution
	RunCommand
statement, Discussion
	RunnerCalculator web
service, Solution, Discussion
	RunningCalculator web
service, Solution
		DataSet, Solution

	RunningSum property
(reports), Solution, Discussion
	RunPermissions property
(queries), Discussion
	runtime callable
wrapper, Solution
	Rushmore, speeding up
queries with, Problem
	Russell Soundex
algorithm, Solution, Discussion

 S
	SaveSetting
function, Discussion
	ScaleMode property
(reports), Discussion
	schema
information, Discussion
	schemas, Problem, See Also
		importing
XML using XSD, Problem, See Also

	screens, Discussion
	scripts, Documenting each container
	Scripts
collection, Discussion
	Scripts
container, Filling the lboObjects list box
	scrollbars, Solution
	ScrollBars
property (forms), Solution, Technique, Create a generic unbound pop-up calendar form, Create a generic status meter, Solution
		communicating without
email, Solution
	dialog
forms, Technique
	navigation
buttons, Solution
	pop-up
calendars, Create a generic unbound pop-up calendar form
	status
meters, Create a generic status meter

	search criteria, Discussion, Discussion, Discussion
		asterisk
in, Discussion
	date variables
as, Discussion
	string
expressions and, Discussion

	Section property
(reports), Discussion
	sections,
report, Discussion
	security
considerations, Discussion, Discussion, Problem, Discussion, Discussion, Problem, Discussion, Discussion, Solution, Discussion, Problem, Problem
		activating, Discussion
	adjusting
applications, Solution
	attaching linked
tables, Problem
	cautions, Discussion
	CurrentUser function
and, Discussion
	for
databases, Problem, Problem, Discussion
	Hidden property
and, Discussion
	removing user access to
queries, Discussion
	sending
email, Discussion
	views to update
data, Problem

	Security
Wizard, Secure your database, Work with the secured database
	Seek method
(recordsets), Discussion, Discussion, Problem, Discussion
		linked tables
and, Problem
	recommendations on
usage, Discussion
	saving queries in
tables, Discussion
	small tables
and, Discussion

	SELECT (SQL)
statement, Discussion, Discussion, Discussion
	Select Case
statement, Discussion, Creating a list-filling callback function, Discussion, Discussion, Discussion
		bookmarking
records, Discussion
	internationalizing
messages, Discussion
	list-filling functions
and, Creating a list-filling callback function
	object
existence and, Discussion

	select
queries, Discussion, Solution, Problem
		cautions using Update To
value, Solution
	parameters in, Discussion
	recursive
relationships and, Problem

	Selected property
(list boxes), Comments
	self-join
queries, Discussion
	semicolon (;), Discussion, Discussion, Solution
		multiple columns
and, Discussion
	RecordsetLabel
property and, Solution
	SQL statements
and, Discussion

	SendKeys
queue, Discussion, Solution
	SendMessage
function, Discussion, Discussion
	serialization, Solution
	serialized DataSet using
MSXML, Processing the returned XML
	ServerFilter property
(forms), Discussion
	ServerFilterByForm
property (forms), Problem
	SetFileTime function (Windows
API), Solution
	SetOption method
(Application object), Hiding reports in design view, Solution, Discussion, Discussion
		changing global
options, Solution
	keyboard
shortcut, Discussion, Discussion
	support
for, Hiding reports in design view

	settings, Solution, Problem, Problem, Problem
		changing
defaults, Problem
	changing
margin settings, Problem
	consistent for
objects, Problem
	storing, Solution

	SetWindowLong
function, Discussion
	shared
databases, Solution, Problem, Discussion
		communicating
via, Solution
	tracking
open, Problem, Discussion

	SharePoint
Services, Office Web and SharePoint, When Access won't do the job, Problem, Discussion, Solution, Problem, Problem
		Data View Web Part, Problem (see Data
View Web Part)
	limitations, Problem
	linking
to data source, Solution
	working with data from
Access, Problem, Discussion

	Shell
function, Solution, Discussion, Discussion, Solution, Solution
	ShellExecute function (Windows
API), Solution, Solution, Solution, Solution
	Shift-Tab keys, cursor
movement and, Problem
	shortcut menus, Solution, Solution, Discussion, Add a bound Calendar control to your form
		bookmarking
records, Discussion
	Calendar
control, Add a bound Calendar control to your form
	creating, Solution
	disabling on
forms, Solution

	ShortcutMenuBar
property (forms), Solution, Discussion, Solution
	Show Smart Tags on Forms
setting, Smart Tags
	ShowGroup function
(Windows shell), Executing tasks, Using the wrapper procedures, Using the wrapper procedures
	ShowToolbar macro
action, Discussion, Discussion
	Simple Object Access Protocol
(SOAP), Problem
	SizeMode property
(bitmaps), Solution
	sizing, Problem, Discussion, Discussion
		form
controls, Problem
	screen
windows, Discussion

	Skew function
(Excel), Calling simple Excel functions
	slash (/)
operator, Solution
	slides, Creating each slide, Creating the text
		creating, Creating each slide
	creating
text, Creating the text

	Slides
collection, Creating each slide
	smart tags, Smart Tags, See Also, Smart Tags, Smart Tags, Smart Tags, Smart Tags, Smart Tags, Problem, Discussion, Discussion, Discussion, Solution, Discussion, Solution, Discussion, Problem, Discussion, Problem, See Also, Solution, Problem, Discussion, Problem, Discussion, Solution, Discussion, Solution, Problem, See Also, Solution, Compiling and registering the DLL project
		conditional
processing for, Solution
	creating
custom, Problem, Discussion, Problem, See Also
		DLL, Problem, See Also
	XML, Problem, Discussion

	creating
DLLs, Solution
	creating on
table, Discussion, Problem, See Also
	creating XML
files, Solution, Discussion
	Date, Smart Tags (see Date smart
tag)
	deleting from
table, Discussion
	displaying when application
starts, Solution, Discussion
	DLLs, Smart Tags
	executing action without displaying smart
tag, Problem, Discussion
	Financial Symbol, Smart Tags (see Financial
Symbol smart tag)
	obtaining weather report
with, Problem, Discussion
	Person Name, Smart Tags (see Person Name
smart tag)
	saving settings in
variable, Discussion
	setting viewing
options, Solution
	SQL Server
and, Solution
	that ship with Access
2003, Smart Tags
	unregistering, Compiling and registering the DLL project
	using
multiple, Problem, Discussion

	SmartTag objects, Discussion
	sndPlaySound
function, Discussion, Discussion
	sorting, Discussion, Problem, Problem, Problem
		arrays, Problem
	AutoNumber
fields and, Problem
	ORDER
BY clause, Discussion
	reports
at runtime, Problem

	Sorting
and Grouping dialog, Solution
	Sorting dialog
(report), Discussion
	sound
files, Problem
	sound-alike
records, Problem
	Soundex, Solution
	SourceControl property
(subforms), Discussion
	SourceObject
property (subforms), Discussion
	Space function, Discussion
	SpecialEffects property (text
boxes), Solution
	splash
forms, Solution, Discussion
	splash
screens, Discussion
	SQL property
(queries), Solution
	SQL
Server, Uses the Tools at Hand, Solution, Solution, Discussion, Discussion, Problem, Problem, Solution, Solution, Solution, Discussion, Discussion
		ADP
and, Solution
	client/server applications
and, Solution
	compared with Jet database
engine, Uses the Tools at Hand
	data
types, Discussion
	development
environment, Discussion
	dynamic
connections, Problem
	multiple
databases, Problem
	replication services
and, Discussion
	smart tag
properties, Solution
	using views to
update data, Solution
	WITH VIEW_METADATA
option, Solution

	SQL Server
Profiler, Solution
	SQL
statements, Discussion, Discussion, Discussion, Solution, Problem, Solution, Discussion, Discussion
		accelerating
multiuser
applications, Discussion
	cleaning out
test data with, Solution
	converting
queries to, Discussion, Problem
	improving form performance
and, Discussion
	inequality joins
and, Discussion
	viewing
query's, Discussion

	square brackets [
], Solution, Discussion, Discussion, Solution, Executing tasks
		Access
interpretation, Discussion
	as
delimiters, Executing tasks
	embedded
spaces and, Discussion
	parameters
and, Solution
	printing query
parameters, Solution

	Src property
(buttons), Solution, Solution
	stacks, Solution, Solution, Steps, Solution, Discussion
		Click
events
and, Solution
	profile, Steps
	VBA routines
and, Discussion

	Startup
dialog, Discussion, Discussion
	Startup
form, Discussion
	Startup group, adding items
to, Problem
	Static keyword, Discussion
	static
variables, Discussion, Discussion, Creating a list-filling callback function, Discussion, Discussion
		bookmarking records
and, Discussion
	capabilities
of, Creating a list-filling callback function
	maximum
locking intervals, Discussion
	multitasking
and, Discussion
	tracking form instances
with, Discussion

	statistical
functions, Calling simple Excel functions
	status meters,
creating, Problem
	StatusBarText property
(controls), Solution
	Stock Quote on MSN
MoneyCentral, Problem
	StrComp function, Discussion
	StrConv function, Calling simple Excel functions
	string
expressions, Discussion, Problem, Solution, Discussion, Discussion, Discussion
		concatenation
limitations, Discussion
	embedded
quotes and, Problem
	terminating characters
for, Discussion
	using
fixed length, Solution

	subforms, Discussion, Discussion, Discussion, Discussion, Discussion
		debugging, Discussion
	filtering
reports, Discussion
	form performance
and, Discussion
	multipage
forms with, Discussion
	SourceObject
property and, Discussion

	Substitute function
(Excel), Calling simple Excel functions
	Sum
function, Discussion
	Switch
function, Discussion
	switchboard
forms, Solution, Discussion
	SYD function
(Excel), Calling simple Excel functions
	synchronization, Problem, Solution, Problem, Discussion
		height
of two controls, Problem
	multiple
databases, Problem, Discussion
	report
records with form, Solution

	syntax, Solution, Discussion, Comments, Discussion, Solution
		Excel Automation
object, Discussion
	object
and property, Solution, Discussion
	SQL Server
objects, Solution
	Windows 9x
shell, Comments

	SysCmd
function, Creating pop-up forms, Discussion, Discussion, Problem, Discussion
		collecting
information, Discussion
	filtering
reports, Discussion
	language
version and, Discussion
	purpose of, Creating pop-up forms
	status meter
and, Problem

	SysRel
container, Filling the lboObjects list box
	System Identifier
(SID), Solution
	system
objects, Comments
	system
registry, Solution
	system tables, Discussion, Discussion, Filling the lboObjects list box, Filling the lboObjects list box, Discussion
		excluding from
lists, Filling the lboObjects list box
	forms as binary
data
in, Discussion
	MSysObjects
and, Discussion, Filling the lboObjects list box
	naming
conventions for, Discussion

	System.mdw, Solution, Discussion, Secure your database, Discussion
	SystemParametersInfo
function, Discussion
	s_Generation
field, Discussion

 T
	Tab controls, Solution, Solution, Discussion
		capabilities
of, Solution
	form performance
and, Discussion
	multipage
forms, Solution

	Tab
key, Problem, Solution, Solution
		cursor movement
and, Problem
	Cycle property
and, Solution
	searching
with, Solution

	TableDef
objects, Discussion, Solution
	TableDefs collection, Documenting each container, Comments, Filling the lboObjects list box, Discussion
		as
persistent
object, Documenting each container
	Document objects
and, Discussion
	getting separate lists of tables
with, Filling the lboObjects list box
	using containers instead
of, Comments

	tables, Solution, Solution, Problem, Problem, Solution, Discussion, Documenting each container, Recording property information, Problem, Problem, Problem, Solution, Solution, Discussion, Discussion, Solution, Discussion, Problem, Problem, See Also, Problem, Discussion, Solution, Problem, Discussion, Problem, Discussion
		adding
properties
to, Solution
	as
container objects, Documenting each container
	building structures
that match XML data, Solution
	converting databases
to replicated, Discussion
	creating with
queries, Problem
	exporting
subset of rows, Problem, Discussion
	exporting
unrelated tables to single XML file, Problem, Discussion
	field
properties, Problem
	importing
XML data, Problem, See Also, Problem, Discussion
		into existing
tables, Problem, Discussion

	index
limitations, Discussion
	joining on common
fields, Solution
	list
boxes bound to, Solution
	locked, Discussion
	relationships
between, Solution
	Rushmore query
optimization
and, Solution
	saving queries
in, Problem
	TableDef objects
for, Discussion
	updating
data, Solution, Problem
	variant
fields, Recording property information

	Tables
collection, Discussion
	Tables
container, Filling the lboObjects list box, Filling the lboObjects list box
	TabStop
property (controls), Solution
	Tag property
(controls), Solution, Solution, Discussion
		carrying data
forward, Solution
	internationalizing
messages, Solution
	usage, Discussion

	templates, Problem, Solution
		for
forms and reports, Problem
	for mail
merges, Solution

	test data,
cleaning out, Problem
	text
boxes, Discussion, Discussion, Discussion, Solution, Solution, Discussion, Solution, Solution, Solution, Discussion, Solution
		background colors
and, Discussion
	carrying data
forward, Discussion
	Change event
and, Solution
	changing into
combo boxes, Solution
	Format property
and, Discussion
	growing or
shrinking, Solution
	internationalizing
messages, Solution
	limitations of linking labels
and, Discussion
	page
footers, Solution
	page
totals, Discussion
	report
grouping, Solution

	text fields, Discussion, Discussion
		checking for null
values, Discussion
	default lengths
in DDL queries, Discussion

	Text property (text
boxes), Solution
	text
strings, Discussion, Solution, Discussion, Discussion, Problem
		captions as
empty, Discussion
	changing for
navigation controls, Problem
	Option Compare Binary
statement, Solution
	parameters, Discussion

	TextAlign property
(controls), Discussion
	tilde
(~), Filling the lboObjects list box, Solution
	time
stamps, Solution, Discussion, Problem
		client/server applications
and, Solution
	communicating without
email, Discussion
	setting, Problem

	TimeGetTime
function, Discussion
	timeout
feature, Solution
	Timer
event, Solution, Solution, Continuously animated buttons, Discussion, Solution, Discussion, Solution, Discussion, Solution
		animated
buttons, Continuously animated buttons, Discussion
	capabilities
of, Solution
	communicating without
email, Solution, Discussion
	flashing
titlebars, Solution
	maximum locking
intervals, Solution, Discussion

	Timer
function, Discussion, Discussion
		comparing
performance, Discussion
	features
of, Discussion

	TimerInterval property
(forms), Continuously animated buttons, Solution, Discussion, Solution, Discussion
	titlebars, Discussion, Problem
	toggle buttons, Solution, Discussion, Discussion, Solution, Discussion
		bookmarking
records, Solution, Discussion, Discussion
	carrying data
forward, Solution, Discussion

	toolbars, Discussion, Discussion, Discussion, Problem
		allowing changes
to, Discussion
	buttons as UI
methods, Discussion
	creating, Discussion
	disabling on
forms, Problem

	toolkits that can
be used by Microsoft Office programmers to call web
services, Solution
	Tools menu, Solution, Discussion, Discussion, Discussion, Discussion, Solution, Solution, Discussion, Discussion, Discussion, Secure your database, Work with the secured database, Work with the secured database, Work with the secured database, Replicating a database, Synchronizing replicas, Solution, Discussion, Solution
		bitmap splash screens
and, Discussion
	Compact and Repair
Database, Discussion
	Create Replica
dialog, Replicating a database
	Database Splitter
dialog, Solution
	GetOption method
and, Discussion
	Options
dialog, Solution, Discussion, Discussion, Discussion, Solution
	preloading
forms, Solution
	References
dialog, Solution
	setting caption
with, Discussion
	setting default
menu
bars, Discussion
	Synchronize Now
dialog, Synchronizing replicas
	User and Group Accounts
dialog, Work with the secured database, Work with the secured database
	User and Group
Permissions
dialog, Work with the secured database
	User-Level
Security Wizard
dialog, Secure your database

	Top property (text
boxes), Discussion
	TopMargin
property (Printer
object), Discussion
	TopValues property
(query), Solution, Discussion
	totals
queries, Discussion, Solution, Discussion
		parameters
in, Discussion
	preventing
duplicate mailing labels, Solution
	Rushmore query
optimization
and, Discussion

	Transact-SQL statements, Solution, Solution
	transaction
logs, Problem, See Also
	TransferDatabase action, Comments
	TransferSpreadsheet method (DoCmd
object), Discussion
	transform
(XSLT), Solution, Discussion
	TransformXML
method, Discussion
	Transparent property
(buttons), Solution, Solution, Discussion
	twips, Discussion, Discussion, Discussion, Discussion, Discussion, Creating a list-filling callback function
		converting
from inches, Discussion, Discussion, Discussion, Creating a list-filling callback function
	ScaleMode
property and, Discussion
	size
equivalents, Discussion

	two-quote
rule, Discussion
	two-state
buttons, Solution, Two-state buttons

 U
	UBound
function, Solution, Solution
	UCase
function, Discussion
	UCaseArray
procedure, Solution
	undo
buffer, Discussion
	Uniform
Resource Identifier (URI), Root elements and namespaces
	UNION (SQL) statement, Discussion
	UNION ALL
clause, Discussion
	union
queries, Discussion, Solution, Discussion
		allowing null
values, Discussion
	combining
data, Solution
	parameters
in, Discussion

	UniqueTable property
(pages), Solution
	UniqueTable
property
(tables), Solution
	Universal Data Link
(UDL)
files, Solution, Solution
	Unload event (forms), Solution
	Update method
(recordsets), Documenting each container
	update
queries, Solution
	Update Smart
Tags everywhere option, Discussion
	Update To value (select
queries), Solution
	uppercase, Solution, Problem
	URI (Uniform
Resource Identifier), Root elements and namespaces
	urn\:
element, Root elements and namespaces
	UseDefaultPrinter
property (reports), Solution, Solution
	user interface
(UI), Discussion, Discussion
	user-defined
properties, Solution, Discussion, Discussion
	UserControl property
(Application object), Discussion
	usernames, Make a security plan, Discussion, Solution, Solution, Retrieving information
		communicating
without email, Discussion
	considerations, Make a security plan
	listing users with
blank passwords, Solution
	retrieving
current, Solution, Retrieving information

	users, Problem, Make a security plan, Work with the secured database, Discussion, Discussion, Problem, Discussion, Problem, Discussion, Problem, Discussion, Problem, Discussion
		adjusting
applications based on, Problem, Discussion
	cautions for assigning
permissions, Discussion
	classes
of, Problem
	creating security plans
for, Make a security plan
	interaction via
forms, Discussion
	manually
creating, Work with the secured database
	retrieving
blank passwords, Problem, Discussion
	tracking
open shared databases, Problem, Discussion
	tracking
programmatically, Problem, Discussion

	Users
collection, Discussion, Discussion, Discussion
	Users
group, Solution, Discussion, Secure your database, Work with the secured database
		built-in
group, Discussion
	cautions
for, Work with the secured database
	granting selected
permissions, Secure your database
	workgroup file
and, Solution

	USys
prefix, Discussion, Discussion

 V
	ValidationRule property
(fields), Discussion
	Value property (text
boxes), Solution
	values, Solution, Problem
		carrying
data forward, Problem
	obtaining for
properties, Solution

	variables, How Do I Create a New Module?, Problem, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Creating a list-filling callback function, Solution, Solution, Discussion, Discussion, Discussion
		delimiters
in string expressions, Discussion
	filtering
queries
with, Problem
	global, Discussion, Discussion, Discussion
	information
requested by Access in, Creating a list-filling callback function
	local, Solution
	Option
Explicit statement and, How Do I Create a New Module?
	passing, Discussion
	releasing, Discussion
	values in string
expressions, Discussion
	Workbook
variables, Discussion

	variants, Using optional parameters, Recording property information, Solution, Solution, Discussion, Solution, Discussion, Discussion, Discussion, Calling Excel functions using arrays
		arrays
and, Solution, Discussion, Calling Excel functions using arrays
	bookmarks
as, Discussion
	Excel
function return values as, Discussion
	parameters
and, Using optional parameters, Solution
	storing
bitmaps as, Discussion
	table
support for, Recording property information
	usage
recommendations, Solution

	VBA, Discussion
	VBA code, writing to export
multiple unrelated tables to single XML file, Solution, Discussion
	VBA
Editor, Solution
	VBA Object
Browser, Comments, Comments, Discussion
	vbNullChar
constant, Discussion, Discussion, Discussion
	vbNullString constant, Discussion
	VBScript, Discussion
	VDB function
(Excel), Calling simple Excel functions
	Verb property (OLE
object), Discussion
	version
(language), Problem
	View
menu, Solution, Solution, Solution, Solution, Solution, Solution, Solution, Solution, Discussion, Discussion, Discussion, Solution, Technique, Discussion
		Code
dialog, Solution, Solution
	Datasheet
dialog, Solution
	Debug Window
dialog, Solution
	Form Header/Footer
dialog, Technique
	HTML Source
dialog, Discussion
	Options dialog, Discussion
	Properties
dialog, Solution, Solution, Discussion
	Sorting and
Grouping dialog, Solution
	Tab Order dialog, Solution
	Toolbars and Customize
dialog, Discussion, Solution

	View SQL
button, Solution, Solution, Solution
	ViewsAllowed
property
(forms), Solution
	viruses, threat of, Solution
	Visible property (Application
object), Discussion, Finishing the mail merge, Discussion
		mail merges, Finishing the mail merge
	purpose
of, Discussion
	sending data to
Excel, Discussion

	Visible property
(buttons), Discussion, Two-state buttons, Discussion
		animated
buttons, Two-state buttons
	creating geographical map
interfaces, Discussion
	creating status
meters, Discussion

	Visible property
(forms), Discussion, Discussion, Technique, Discussion, Discussion
		acFooter constant
and, Discussion
	footer section
and, Technique, Discussion
	suppressing printing
and, Discussion
	syntax, Discussion

	Visible property
(reports), Discussion
	Visual Basic
4.0, Discussion
	Visual Basic 6.0, creating smart
tag DLL, Solution, See Also
	Visual Basic
Editor, Comments
	Visual Basic for Applications
(VBA), Discussion, Problem, VBA, Discussion, Problem, Solution
		accelerating
code, Problem
	capabilities of, VBA
	creating
recordsets, Problem
	stacks
and, Discussion
	VBA constants, Solution
	wrapper
functions, Discussion

	Visual
InterDev, Alternatives to FrontPage
	Visual Studio
.NET, Alternatives to FrontPage, Solution, Discussion
		XSD schema files
and, Discussion

	Visual Studio .NET
2003, .NET
	vowels, Soundex algorithm
and, Discussion

 W
	watermarks, Graphic and memo controls, Solution
	WAV
files, Problem, Solution, Discussion
		as OLE
objects, Problem
	embedding sound
files, Solution
	playing, Discussion

	weather
report, creating smart tags to obtain, Problem, Discussion
	Weather.XML smart
tag, Discussion, Discussion
	web, Office Web and SharePoint, When Access won't do the job, Problem, See Also
		Access-connected
web pages, Office Web and SharePoint, When Access won't do the job
	posting
web form data to Access database, Problem, See Also

	Web Part connection, Solution
	web
services, Problem, See Also, Calling web services from earlier versions of Access, Problem, See Also, Processing the returned XML
		calling from
Access, Problem, See Also
	calling from earlier versions of
Access, Calling web services from earlier versions of Access
	created
with Microsoft .NET 1.0, Processing the returned XML
	returning a
DataSet, Problem, See Also

	Web
Services Description Language (WSDL), Processing the returned XML
	web sites, Comments and Questions, Solution, Discussion, Discussion, Problem, See Also
		building XML data-driven web sites with
FrontPage 2003, See Also
	collaborative,
team-based, Problem
	download for
monitoring users, Discussion
	examples and
additional information, Comments and Questions
	Microsoft Access Solutions
database, Solution
	operating system
dependencies, Discussion

	WHERE (SQL)
clause, Discussion, Discussion, Discussion, Discussion, Discussion, Solution, Communicating parameters to Access
		inequality
joins, Discussion
	obtaining
median values, Discussion
	passing
parameters to queries, Communicating parameters to Access
	Rushmore
query optimizations and, Solution
	similarity
to report filtering
syntax, Discussion
	string
expressions and, Discussion
	union query
restrictions, Discussion

	WhereCondition
argument, Solution, Discussion
	Width property
(controls), Solution, Create a generic status meter, Discussion
	Width property
(labels), Create a generic status meter
	window
handles, Discussion, Discussion, Discussion, Solution
		changing
Access caption and, Discussion
	checking if
applications are
running, Solution
	flashing
titlebars, Discussion

	WindowMode
parameter, Creating pop-up forms, Visiting all the objects, Hiding reports in design view
	windows, Discussion, Problem, Discussion, Discussion, Technique, Solution, Discussion, Discussion, Discussion, Problem, Discussion
		collecting
information, Discussion
	hiding
Access activity, Problem
	hWnd property
and, Discussion
	minimizing
flashing, Technique
	moving
and sizing, Discussion
	repainting, Discussion, Discussion
	retrieving list of
top-level, Problem
	splash
screens, Discussion
	style
bits for, Solution
	styles, Discussion

	Windows, Discussion, Problem, Solution, Solution, Problem, Automation
		class
names for
applications, Solution
	closing
applications, Problem
	communication
mechanisms, Automation
	exiting, Solution
	languages
supported, Discussion
	under program
control, Problem

	Windows
API, Discussion, Solution, Solution, Discussion, Solution, Discussion, Discussion, Discussion, Discussion, Discussion, Discussion
		changing Access
caption, Solution
	disabling screen
updates with, Solution
	File Open/Save
dialogs and, Solution
	GetParent
function, Discussion
	GetTickCount
function, Discussion, Discussion
	IsIconic
function, Discussion
	navigation
functions, Discussion
	retrieving
information via
calls, Discussion
	trade-offs of
using, Discussion
	window
styles, Discussion

	Windows
Explorer, Replicating a database
	Windows help file, Programmatically accessing online help
	Windows
registry, Solution
	Windows
shell, Using DDE with the Windows shell, Executing tasks
	WinFax
Pro, Executing tasks
	WinHelp API
function, Programmatically accessing online help
	WITH VIEW_METADATA
option, Solution, Solution
	With...End With
construct, Discussion, Solution
	WM_CLOSE
message, Discussion
	WM_NCPAINT
message, Discussion
	Word, Solution, Discussion, Problem, Problem, Smart Tags
		embedded
documents, Discussion
	mail
merges from Access to
Word, Problem
	smart
tags, Smart Tags
	Windows
class name for, Solution

	WordPad,
Windows class name
for, Solution
	Workgroup
Administrator, Solution, Solution
	workgroup
files, Solution, Discussion, Secure your database, Secure your database
		consequences of
losing, Secure your database
	default, Secure your database
	security and, Discussion
	user-level security
and, Solution

	Workgroup ID
(WID), Solution, Secure your database, Discussion
	workgroups, Solution, Discussion
		database
association with, Discussion
	security based
on, Solution

	Workspace
objects, Discussion, Discussion, Discussion
	Workspaces
collection, Discussion
	wrapper functions, Solution, Discussion, Solution, Discussion, Discussion, Adding and canceling connections using common dialogs, Using the wrapper procedures
		adding items to Startup
group, Using the wrapper procedures
	adding/canceling
connections, Discussion, Adding and canceling connections using common dialogs
	Calendar
control, Discussion
	returning
variable value, Solution
	status
meters, Solution, Discussion

	wrappers, runtime
callable, Solution
	Wrkgadm.exe, Solution
	WSDL (Web Services
Description Language), Processing the returned XML

 X
	XML, See Also, Solution, Discussion, See Also, XML, See Also, XML Overview, XML Schema Definition (XSD), The XML file, The XML file, The XML file, Root elements and namespaces, Root elements and namespaces, Attributes, Problem, See Also, Problem, Discussion, Problem, See Also, Problem, Discussion
		attributes, Attributes
	building XML data-driven
web sites with FrontPage
2003, See Also
	elements, The XML file
	files, Solution, Discussion, The XML file, Problem, Discussion
		creating
with smart tags, Solution, Discussion
	exporting
Access data to, Problem, Discussion

	importing
data into existing tables, Problem, Discussion
	importing
simple data into new table, Problem, See Also
	importing
with schema (XSD), Problem, See Also
	integrating
web services into Microsoft Office
solutions, See Also
	namespaces, Root elements and namespaces
	overview, XML Overview, XML Schema Definition (XSD)
	root
elements, Root elements and namespaces
	tags, The XML file

	XML
Schema, See Also, See Also
		(see also XSD)
	primer, See Also

	XML Schema standard, Discussion
	xmlns\:
element, Root elements and namespaces
	XSD (XML Schema
Definition), XML Schema Definition (XSD), XML Schema Definition (XSD), Problem, See Also, Discussion
		schema files and Visual Studio
.NET, Discussion
	using to import
XML, Problem, See Also

	XSLT (Extensible Stylesheet Language
Transformations), Extensible Stylesheet Language Transformations (XSLT)
	XSLT
transform, Solution

 About the Authors
Ken Getz is a senior consultant with MCW Technologies and splits his time between programming, writing, and training. He specializes in tools and applications written in Visual Studio .NET and Visual Basic. Ken is co-author of best-selling several books, including Access 2002 Developer's Handbooks with Paul Litwin and Mike Gunderloy, Visual Basic Language Developer's Handbook with Mike Gilbert, and VBA Developer's Handbook with Mike Gilbert (Sybex). He co-wrote several training courses for Application Developer's Training Company (www.appdev.com), including VB.NET, ASP.NET, Access 2000 and 97, Visual Basic 6, and Visual Basic 5 seminars.He has also recorded video training for AppDev covering VB.NET, ASP.NET, VB6, Access 2000, and Access 97. Ken is a frequent speaker at technical conferences and spoken often at Microsoft's Tech-Ed conference. Ken's also a technical editor for Access-VB-SQL Advisor magazine and a columnist for Informant Publications' asp.netPRO magazine.
Paul Litwin is the president of Litwin Consulting, providing development, mentoring, and training in ASP, ASP.NET, Visual Basic, SQL Server, XML, Microsoft Access, and related technologies. Paul was the founding editor of the Smart Access Newsletter and recently became the editor-in-chief of asp.netPRO Magazine(www.aspnetpro.com). He is the author of a number of books, articles, and training materials on Access, VBA, Web development, ASP, and ASP.NET. Paul is one of the founders of Deep Training, a developer-owned training company providing training on Microsoft.NET (www.deeptraining.com). He is the conference chair of Microsoft ASP.NET Connections (www.asp-connections.com) and Office Developer Connections (www.msofficeconnections.com) and speaks regularly at other industry events, including Microsoft TechEd and Microsoft Office Deployment and Development Conference.
Andy Baron is a senior consultant at MCW Technologies, a Microsoft MVP (Most Valuable Professional) since 1995, and a contributing editor for Advisor Media and Pinnacle Publications. Andy is co-author of the Microsoft Access Developers Guide to SQL Server (Sams), and he writes and presents courseware for Application Developers Training Co.

Colophon
Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.
The animal on the cover of Access Cookbook, Second
Edition is a northern tamandua. The tamandua is also known
as the collared, or lesser, anteater. There are two species of
tamandua: the northern tamandua (Tamandua
mexicana), found in Central America and the northwestern
part of South America; and the southern tamandua (Tamandua
tetradactyla), which can be found further south. Tamanduas
have coarse, yellowish, or brownish fur with black markings and are
about half the size of their rarer relatives, the giant anteaters
(Myrmecophaga tridactyla). They can grow to be
about 60 centimeters long, with a prehensile tail of approximately the
same length, and reach weights of 6 to 13 pounds.
Tamanduas are occasionally found on the ground, but they prefer
living in the trees, where they hunt for ant and termite nests. Like
all anteaters, tamanduas have long snouts and extremely long tongues
that they use to collect and eat their prey. Since no teeth are
necessary for this kind of meal, anteaters' teeth have been reduced
during their evolution. However, unlike the completely toothless giant
anteaters, tamanduas still have some small teeth remaining (which are
useful for consuming the fruits that supplement their diets). They use
the sharp claws on their front paws to open ant and termite nests, but
they are careful to not destroy the nests completely and take just a
small portion of the colony before they go for the next nest. This
strategy preserves the colonies for future feedings. Tamanduas are
primarily active during the night and sleep through the day in hollow
trees or the forks of trees, securing themselves by wrapping their
tails around branches.
Reg Aubry was the production editor and copyeditor for
Access Cookbook, Second Edition. Darren Kelly,
Genevieve d'Entremont, and Claire Cloutier provided quality
control. Julie Hawks wrote the index.
Ellie Volckhausen designed the cover of this book, based on a
series design by Edie Freedman. The cover image is a 19th-century
engraving from Cuvier's Animals. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font. David Futato designed the CD-ROM label.
David Futato designed the interior layout. Julie Hawks converted
the files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher
Bing. This colophon was written by Rachel Wheeler.
The online edition of this book was created by the Safari
production group (John Chodacki, Becki Maisch, and Madeleine Newell)
using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
Liggett.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Upgrade this ebook today for
 $4.99 at oreilly.com and get access to additional DRM-free formats, including PDF and EPUB,
 along with free lifetime updates.

OEBPS/httpatomoreillycomsourceoreillyimages100472.png
romat | cua Bt | oer | 0|
cnGuen

S

Moot

et i

o e
pirks
Cnirds
cnders
e Dl
o 00 ot
oncpen
iy
iy
Cntsiont
oy

OEBPS/httpatomoreillycomsourceoreillyimages101214.png
<?wmi vérsion=1.0° encoding=1ITF-8 >
cadiscnama hRtp/ fenes.2.0r/2001 /XL Schemat i o
Slistcangiextypes
st sequences
Cra mont rof=Gar”rinoccur
<uscsoquances
P r—
<hsiconplortypes
st appinfo>
o escnm
<ascappio>
st soquences
Sk et 10" ez
‘o0 autoumaquen-yes" o3 norhuab
<o it e Make’ rinCce =
S smpiTypes
S e xstisting -
s masiangth vaes 20 /o
<fuscsingiet o
sk lamont nae="Model rinoccurs="0" o jet Ty
S sy

= unbounded -

e wsddatarima -

imaryKay” 1=, 1Dy i yes e o
D" k= priay=mo' reraaeenat 1

e autonumibor o6 <= e Tnt
yos L wsdint -
G e e varchar

@Rt o1 nverchar

</isc s o
p—
5 norvisa- yes' o
<pusasoquences
et siaments
I

e mnoccur
—

OEBPS/httpatomoreillycomsourceoreillyimages100562.png
e
Tate:
Sor
s
e

o

e s o] (e Wod)

s

i

2]

2

n]

OEBPS/httpatomoreillycomsourceoreillyimages100748.png
L-IDIx]
Contacts

ContactD: [SEEIN

-

Lot Name: [5ep5

L o e—

[New Record Addet

Yo st o a e ecord (1 504426085)
Plass don Forge o oa &

Record: 1a |«

OEBPS/httpatomoreillycomsourceoreillyimages100662.png
W\“-Im\w—,\
e
el
Soo e 1111111
P
o o

i

e

OEBPS/httpatomoreillycomsourceoreillyimages101150.png
Name [EEEEEE
N
o | —
B
PosalCode [BTZ

N —
Home Prere: [RORTEESET
e
L —
Heebse TR

Employees [-[C[x]

Person Name: Nancy Davolio
Send Mail

Schedule a Meeting

Open Contact

Add to Contacts

recart 14| I T > [mloaor s

OEBPS/httpatomoreillycomsourceoreillyimages101040.png
Erovar | Caonecion | Advanced| 41|

Seect e dat you wantto comnect 0

GLE 08 Proviers

OEBPS/httpatomoreillycomsourceoreillyimages101236.png
Data | Schema Presentatin |

1% B rsetaion (T4 Sl 53)

o

© Glrt ()

 sener 67)

ekt e s

[

= ——

 Dont e s

B ocson

T

o |] oo

OEBPS/httpatomoreillycomsourceoreillyimages100982.png
e e

e

© osafrnFie

™ Dilay a5 ko

Reak

@)

rcerts o Wove Soundcjc ity dcumar.

OEBPS/httpatomoreillycomsourceoreillyimages100652.png
Coffee Bean Emporium
[Ee——
Boston, Ma 02210

David's Dry Goods
500 ViaRmdio
SanJose, Ca 34115

Paget Firted 0762003

OEBPS/httpatomoreillycomsourceoreillyimages101242.png
Address | £ htip://lacalhost/Testapps CustomerPrefirencesaSP asp

Customer Preferences

Name “Make & bodel Ranking
Fouguer, George,
PorscnsBoer '
Fortstory 2
i Cooper s 3

Meister, Frederika

et osprs '
[r—— 2
2

Smathers, Millicent
Lo 50 '
Foramstans 2

Wumber rnked: 2

Monday, November 17, 2003 Fage fof 1

OEBPS/httpatomoreillycomsourceoreillyimages100846.png

OEBPS/httpatomoreillycomsourceoreillyimages101070.png
£ Link SQL Server Tables. [-[o[x]

atbentication:
e
st Sorer comnect
et

OEBPS/httpatomoreillycomsourceoreillyimages100540.png
Nems | Grads
¥ioe B6
on e
02y 99 A
[rom 6
ave s F
[Cpau mc
Than s
Paa 5F

Records WLJ[1 DIl 8

OEBPS/httpatomoreillycomsourceoreillyimages100642.png
=[Company]

coake o Ak &
avkeLne(Adiess2) 3

actNaeL OB &

acohaeLra(CHy,) 8

OEBPS/httpatomoreillycomsourceoreillyimages101036.png
T — - |
o [Zvosos o] &+ G| @ X O - Tek

3

i +Connect to New Dt Source.ode.
S S i

rstary
CrestngDats fecss Pages
o [Emcomeasndc
My ozt
(==

Flogsne: [] tewsouce.. o

Flesoftype: [alata sources (“odo o) 7]

OEBPS/httpatomoreillycomsourceoreillyimages100638.png
e

Comepemtrenn
cremsiea

At moraon

v 151
s
e ran

FemedEsaRnaebE—n

o

Usa
G aporten

s 1558
Usa
ot Sveetty meete.

e et e
150 Thes

et

Soturetins

ven
e

Can im0 20
usa
e

OEBPS/httpatomoreillycomsourceoreillyimages101202.png
Car : Table

St Tagz

i ey Sesootn
e szx
o =
e i
JHm—
st |
s =
s
e
o
C e
Cioen ot
vk Tt o s
ket - e
Mowtwoterah Ve FS
pider -
e ——
i ot
TS o

OEBPS/httpatomoreillycomsourceoreillyimages100920.png
close

[T
Reco 14l (1 > Inloefor ¢

OEBPS/httpatomoreillycomsourceoreillyimages101234.png
Customer Preferences

Meister, Froderika
s Coopees

Smathers, Millcent
Lo L0
Forabusto

poge: 1| T o i) o

Name “Make & Model Ranking
Fouquet, George
persrn Bt '
FortMust 2
ik Cooper S 3

Warber ket 3

[e—_—

Worber ket 2

OEBPS/httpatomoreillycomsourceoreillyimages101194.png
T o]
B pou Dok Wodow teb = - [0[x]
"
PREEICE) e .
@ o g ot e
vt s
[T [

o

=

OEBPS/httpatomoreillycomsourceoreillyimages101244.png
[Adkess [A) F\Data\Test\CustomerProferancesASP st

[e cPropEprossions($GiobalGropL 11, $GlabalGraup)
41 BORDER-STVLE nono; WIDTH: 5.2916in; BACKGROUND-COLOR: 4T
VISIBILITY: visible
42 BORDER-STYLE: none; WIOTH: 5,20 16in; BACKGROUND-COLOR: #AT;
(SIBILITY: visibie; EIGHIT: . 375in; POSITION: relaive’
o “Gtylot 1 LEFT- 004160 TOW: 0.1 666in; WIDTH: 3
0.2053in; OVERFLOW: hiddon; POSITION: absolute:
eExpr romiSL. 0

OEBPS/httpatomoreillycomsourceoreillyimages100782.png

OEBPS/httpatomoreillycomsourceoreillyimages100570.png
e T —

Desatpton ’—W‘ﬂyoﬁﬂslwlhumpwm

SuTet [FEECTOBHICTION odt [roduet D], ot froduct
e, Prcucts. ol Nae, Supplrs. CongnyHane] AS
e
[frohcts e s0m4 supplers Ot products. Fuppler 9] =
[oper. iepter 0],

CrestedBy: [En on [Fmms TR
-————

Lt 5y

st MU 710 Do fosf or 2

OEBPS/httpatomoreillycomsourceoreillyimages100756.png
B Extermal Seck Example =10l

St e et e

e
oo T BE

ey Gt recrd o found 0,035 secndes

RS | N i

E

OEBPS/httpatomoreillycomsourceoreillyimages100962.png
[-1o0x]

Ty e s
(SJoeat) L s MORFIe 10

OEBPS/httpatomoreillycomsourceoreillyimages100738.png
Reprts n Curtet Dot

Fopoiore (EITATTD
pieperL it Ve
nepet e
fepnt? ver
pfcpet No

Bt oy

OEBPS/httpatomoreillycomsourceoreillyimages100720.png
M=l E

Oudsr | Tabllams
> T i sodRestaurart
| 2 1biFood

3 thRestaurant
O Lioprcng
£l
s I —T sl

OEBPS/httpatomoreillycomsourceoreillyimages100484.png
| —
T =
e
e “a =

fauer rarameters

T
oot e Text

OEBPS/httpatomoreillycomsourceoreillyimages100948.png
system item Test Form Ai= 3|

7 SystemMenu

¥ Masimize Buton
7 Minimizs Buton

Exeeite

OEBPS/httpatomoreillycomsourceoreillyimages100884.png
insert ActiveX Control [=[21x]

[——
=

iz At G
[eateetan Oas Convel
e

(Eomn besan Tme Conrl o s
(oot i
(Gomtato ce

{nsers anen Calndar Consdl 110 0 your document

OEBPS/httpatomoreillycomsourceoreillyimages100514.png
“AbumD_| Puchase Price =/
D 1 e
| 2 500
3 109
| 1 5500
5 0
| 5 s1209
7 1209
| 8 s11ea
9 00
| 10 8%
1 7.0
| 2 0
3 95
| 1 39
15 9%
| ® 500
i $1209
| 8 s1259
19 3900
| 2 00 .|
Records 10 T > [ni]p?

OEBPS/httpatomoreillycomsourceoreillyimages100608.png
Case: case [Client

¢ cossorooer

P

OEBPS/httpatomoreillycomsourceoreillyimages100630.png
Students’ Test Scores

Name Score 100%
Aexandet 18

AntonyA 75

AnhonyM. 45

By o]
Carl 6

Carm o]
CoslaA 66

CocsliaC. 100

Chares El

Chistin 7

David o

Diane El

e @

Gregory E

Hostherc. 53

HestherZ 18

OEBPS/httpatomoreillycomsourceoreillyimages100678.png
ompanies Report Setup =1 E3)
Companies Report Setup

Fields Sorting options

p— 3 © dadey £ Dy

mavsiree

sdvemines

ozt @ saaendng C Descendg
@ Nosrt C Ascendng Descandg

Crosrt C hacendng © Bescendng |

OEBPS/httpatomoreillycomsourceoreillyimages100894.png
The by efk vefles the seurty o sty
databac chjocts and 3 o byt rotod fe i
the izard. Toleavt ancbject'ssecury o5 . 5,
oot tho it

What databas objacts doyou wak o hop seure?

other B8 Al Objects

8 ot | 9 cume | 5 rorms | B et | 3 s

Dessect

ks

st Al

¥ @ o Tabosiurss
¥ 8 <tion Fare>

¥ @ cion Roporen

% @ <o Mocros>

coest <ak | hew> i

OEBPS/httpatomoreillycomsourceoreillyimages101102.png
(Fopen b pesn tew

0 E0@E L0

Database Digrans
Forms

Reprts

EEEEERELEEEEEE!

Cresatate

Catogures
Cumners
Ercioyess
ErcioyesT
pr——
s

Produas
Regon
Shipers
Supshers
Tentoris

OEBPS/httpatomoreillycomsourceoreillyimages101188.png
Hours

Feutes

Secont:

e Togi

8
a
S

OEBPS/httpatomoreillycomsourceoreillyimages100694.png
Form and Report Inventory (=] E3

b it vroy_| s socithns_| |

oo

Castone Lok Do 105 an) TS B n)
o Custonar G 01375 1051 an] 208 53 pm)
Foe il OuenSbom) 0772456627 il 1172475153)
o Oders Stk DVISS(05 o) TI4B (53 g
Cusione: Phons Lt 03/13/% (1051 an) e TeE
o Cuicn 05/1-/5 1051 an. Y
Erclyee: s llopr /2B 5 o)
s 03/13/%5 (1051 anl____11/24/38 533 0m)

[Fome. Ol Sibion 0155 1 o BED) 724/% (5.3 pm)

Solctal Seoctalfoms | _Slect Al Bopots

OEBPS/httpatomoreillycomsourceoreillyimages101226.png
Address (¢ FpawTesticar him

i Cooper §
Lems — LS430
Porsche Bower
Ford Mistang
Toyota Camy

OEBPS/httpatomoreillycomsourceoreillyimages101172.png

OEBPS/httpatomoreillycomsourceoreillyimages101126.png
web! d

onnections

rest e conctionbween th sutc e targe Wl Pt
Source WebParts RunnersTable
Soascaatin Provide Data Values To
Target Web Pt RacesTable
Torget action: Fiker View Using Data Values From

s thetarge WPt st ot comecton:
Tacot o ot [T ~|
Target atlon: [Pk iow Usng baxa vakes From =

Desation
it the DtV b o he conents o ncehe W Pt

OEBPS/httpatomoreillycomsourceoreillyimages101140.png
fo G Yen Fawies Lok teb B

- | | s o roens s D) (-
ress [] e focabost] 1505 pegster =p 8
ks CJiCH CASPAET Loeep CDewcr ClEwedn 4Gonde] cotbaret =

Registration Form
Please register by completing the followng form.

Fisst Name

[P

Sex

& Mile
© Ferile

SibriFom | FesstFom

2] 0one R Locainiranet

OEBPS/httpatomoreillycomsourceoreillyimages101212.png
import XML
= o

» Concd
ke —
vicel Heb

pe

OEBPS/httpatomoreillycomsourceoreillyimages100706.png
[anvbraiess <] of | Be|n| @]

=]

Cisseee smoers f soL angusgeC

2 sortocms sl msotsnouaosiDEnalsngonesia

P MeoSraaanColT, |2 mioLsnauazaOERaiN SN

2 wsosrasusti maoLanouagOEngiaNmac)

2 sororaataancho | moLanousseDERSISNENZeiand

P MSOHTULPISIOP | maoLanguaseOEngSNPNippnes

P MSOHTULPIORCSTS | msoLanauepeiDEnSnSOuTAnca

B sospeiniTpe | maoLanguageDEnRgsNTincagTabags

pp miatsnguageiOEnginUK
meaLnguageOEngienS

maoLanguagaOE ISR

msoLanpuagaDEsknan

macLanguacuDFawotse

maoLanpuaguFas!

macLanguaceF ipine

maotanguss

maoLanguagaiFrench

maoLsnguagaiFancncamerocn

msoLanguagalF ancaCanadian

2 HsoLastiostes
1 WsoLieDasnctve

2 acLinestie

2 weoerunmanon

2 solieTpe

P WeoloceTve

P sollcRon

2 iso0L Eerucrosn
5 soorgchaniaau =)

e}
e}
m
el
B

EnpEerT

OEBPS/httpatomoreillycomsourceoreillyimages100730.png
Bepoc

G —

Nanberofcaies: [10
Oieision

& post
© Lancspn
Pagesis

© asam
& a5

Sive s

OEBPS/httpatomoreillycomsourceoreillyimages101130.png
web! rd

onnections

rests e conction b th sutc e targe Wl Pt
Sourca WebParts RunnersTable
Soascoatin Provide Data Values To
Target Web Pt RacesTable
Torge acion: Fiker View Using Data Values From

T e ————
e s on the conisnes e Pt

Gt shperiicon: [

¥ ndete caren sebcton s Lastome

]

OEBPS/httpatomoreillycomsourceoreillyimages100574.png
optwons. [=x]

socet | imemsters | Ereccrading | Soeiog | Tabescueres |
ven | Gl | edepd | Kejooars | Dotresr FomsReports | pages |

seecsonbenser
@ ataly ancosed
ez

I Baysuse eventroceires
¥ Snon St Tags o Ferms
9 Use s Thaned Contoi n Ferms

o

OEBPS/httpatomoreillycomsourceoreillyimages101016.png
= =]
e

@

Arronteftinactive.of ArromRiohtinactive.of

OEBPS/httpatomoreillycomsourceoreillyimages100942.png
romet | s Bt |oter | a0 |

onriter

on gy Fiter

onTier (vt Procedre]
T ke 200

Befoo Saeen T

OEBPS/httpatomoreillycomsourceoreillyimages100946.png
) ™o e et i

Yourchanges havebesn dcarded

OEBPS/httpatomoreillycomsourceoreillyimages100820.png
Dvdeworissuirs [75 Didetomeguiung [52

odingportdvse (1 rizgndin ()

Sdtnnnbessosdne [10 Addvworumbes scedinan [6

Ve risge

Tedlozbinkstigueng [105 Tealoblksinguie [H

g~ L) =0

Wi leerces toan [T0T% Wulplerlemncsstoan [172

abect wihout g anciect kit uingon ot vasotle

et

[—— [= owmommens [3

UsngIForetunavabe [65 Ushalt.Then Ebetorstana [30
v

Use™oriozeanenpy [157 UsevolSuingtomtissan [91

e ey g

d

e Cioe

OEBPS/httpatomoreillycomsourceoreillyimages100566.png
[e

T swordieh
2 salmon

3 beef

4 chickan

5 Swardfsh

6 otk

7 SwrdFish

8 Potato

9 Potal0

10 broceali

11 Beel

12 BROCCOU
13 SWORDFISH

OEBPS/httpatomoreillycomsourceoreillyimages100998.png
aryTop A= B

Product Name_ [Sales

[¥]Cote a0 Biaye 11398420

Thinnger Rostbratwurst 58773640
[|Raclete Coudanaut 575,295 00

Camembert Pienct $50265.00
[rarte au suere si9527.90

Grocchi dinomna Alce $45,12120
[Manjimup Died Agpies. s1471260

|Alce Muiton 340220
] camanon Tigers 531307 50

Rossls Saverraut §26865 60
Fecord: 4L | T oDl Jo

OEBPS/httpatomoreillycomsourceoreillyimages101012.png
[
potisebyave
[prascn@eanrdgecon

Sendined_ | add coneot

Records 14l (7T > [oiloofof 1

OEBPS/httpatomoreillycomsourceoreillyimages101028.png
Custom Record Count Text

Customer D Company hame Contact Name
nt s P ks
[R Vo Empraidis o
i [t oo [
[rwur [oraparon rmarivey
5 [it et
[echus” [Biauer Ses Delkatessen [Hannaoss’
=3 [rorameaih Frediam e
[eotn [Bido Comidas preparades [Mertin Sommer
oo [oo et
frorm Faam ot it =

91 o Fund. Ve 10,

YU Y YUYV E

OEBPS/httpatomoreillycomsourceoreillyimages100488.png
=

Music Type | st Name

[Year [Tl

[Aematne Rosk 10900 Maniecs
[[Atemtive Rock <08
[[Atemative Rock Barenakod Ladiss
| Atemstive Rock Counting Crows
[[atomaive Rock Dot Fio

[[Atemtie Rock Depeche bade

[ecords 14l 7T 2 Inloaf o 38

1553 T g
1560 The Biggest Prize n Spot

1962 Gordon

1604 August and Evrything Aer

1561 Soa the Whit
1560 Vicstor

[LabelName -
EZ

Polydor
see
Gefn
Charema

See

OEBPS/httpatomoreillycomsourceoreillyimages100778.png
[il with a Collbock Function.

The cutert ek sateg The retfou weeks, g
i iodsy i ioday.

Fled ih Lol Fild vt iaFie

T
o/
a7z
oe/277s

Thusy

Sekctd 063

OEBPS/httpatomoreillycomsourceoreillyimages101164.png
Customers [-[O[x]

Name [Bteven Buchanan
Address: [1426 Lynwood Ave.
City [Froenx
Regon: [pz
Postal Code: 5007 @
Cose Local Weather Report: 85007

recorts 14| 5 b [mioafor s Get Weather

OEBPS/httpatomoreillycomsourceoreillyimages100772.png
SeprinACSk Tue Toe e

A

sivg0
promee
Gilc
Watioo
ailc
aaPopsack
[y

49048 49157
48828 49212
48388 49267
47290 49322

s

bpmubstac €

Gy
Vo1
aid
atppopsack
[k

sl
Py
i Top
Ptk
e

OEBPS/httpatomoreillycomsourceoreillyimages101072.png
U =

=

somse

o

MrosoR DAD 3.6 bjectLirary
Locaton: C1program s Comon Fles AgesoR shired DAD Aac35C
Lanpusge: Standcd

OEBPS/httpatomoreillycomsourceoreillyimages100606.png
g
| o 5
M csmen am
-
a
Fan
ot ot
— P 5
e N—
| =
e
=

Vot Cotoms | Cons 1 EsCoes

Recart 22l)7 2 [nlos] o 1

OEBPS/httpatomoreillycomsourceoreillyimages100790.png
[E——

OEBPS/httpatomoreillycomsourceoreillyimages101082.png
plo b 101

M emsoresrs
O I ——
Fuatars (G0
T e

L —
aowe [

weowe [

e [
ay |
Regon ————
L e —
Country .
Honeprone [
L —

tookfor (7

OEBPS/httpatomoreillycomsourceoreillyimages101032.png
Fomst 090 | tber | 1 |
Recosance

ResycConnan
Uiueratle

Recordat: ayProdutCategy

Producs

OEBPS/httpatomoreillycomsourceoreillyimages101204.png
tnpor optons
 swnctrs iy

St ood0sta

% Asperd DatatoExsting Talts)

Tersfrm,

OEBPS/httpatomoreillycomsourceoreillyimages100486.png
Thpe of muscr
[T ——

|

OEBPS/httpatomoreillycomsourceoreillyimages101206.png
Microsoft Office Access

OEBPS/httpatomoreillycomsourceoreillyimages100978.png
& Network Operations Sample.

e ———

Curent ConputrNane: MAGGIEGS
Lol et
Drve Comectane Tore T
5 ipomerscoveiqueoots

Vst 2 Coectins
©ope | locltone [

Remoternes [
€ bt

[
s feem

Vit Comsctons 1t Camn Do

ComectOreviog | _ Dcomect e iy

Comecptroasy | _Dissoonecterntr Doy

[-5x]

OEBPS/httpatomoreillycomsourceoreillyimages101128.png
web! rd

onnections

rest e conctionbeween th sutc e trge Wb Pt
Sourca Wb Parts RunnersTable
Sasceatin Provide Data Values To
Targt Web Pt RacesTable
Torget acion: Fiker View Using Data Values From

s o cons thet contan ki o
Colrrs o FunnersTatle ol nRacesTotle

OEBPS/httpatomoreillycomsourceoreillyimages100786.png

OEBPS/httpatomoreillycomsourceoreillyimages100992.png
'DOE With Windows Shell HEE

Program Foldrs: Program shortaus:
e Tecemr DD E TR SRR A o
Foczoncge e Vindons Expere” D WIDONS exrer.exe” SHOHEDR] —————!
cuaen Tour Vindons 6", D- DOV 6 Stn 32 TOLRST~1. B
Synevon’ DIPDOVS e naba c ent s BT
Toreoss’, D HTIDONS ayten T noteast ne . HOHEDR
e Conmand reet, DAVIO0NS ystemaziond.ene o0 — |
‘AvessBoo DiPROGRA- JOUTLO0- Tvsh.exe oM pore
cpse
o
o o Eistes
e
e ie01D s s
ot
e

st 12T Framerork
[

OEBPS/httpatomoreillycomsourceoreillyimages100732.png
& Choose Paper Source

Choose o epart

Er—
LT e — |
Mot psges o [t =]

et

OEBPS/httpatomoreillycomsourceoreillyimages100824.png
Form O[]

Gotorccrds s Frweiret maro of ecorseecore

s arunee 1 or. o

Opeaionteck

oneor more s of st . 06500 seconds.
o [——
Ftars [Leavne Fammm

e e ——
Company e S e
P T
P —
ay Frme | se X zocom [

oy
Frone o
EecteDte

e ——

Records 141« | &0 > o1 ve] of 6000

OEBPS/httpatomoreillycomsourceoreillyimages100564.png
d Qu... P[] E3
0 [wes |
v 7 Swerdrish

(] qautatumben)

[T | ST}

OEBPS/httpatomoreillycomsourceoreillyimages100832.png
ffon]

Fomat | Data Event | Gtber | a1 |
onesze

onroad
onGose
omacinate
nDescnats
onat o

scfestoreOrgnlutsieys)
St kokey o men Ay)

OEBPS/httpatomoreillycomsourceoreillyimages100744.png
ustomers Form [-5[x]

Customers Form

Fa
[EO . T
e
B T ——
O o e

Phoee [AREE Fa

meore il Al = o Inlve]of 5

OEBPS/httpatomoreillycomsourceoreillyimages101068.png
=10}

Recods L[T > Dibelo 6

SLTable |_SOLDatabase | S0LSewer |

¥ [Categories Norfrwing Gocal)
[Customers Nertrwind (ocal)
[lEmployess Nortrwing Coca)
[|Order Details Nertrwind (ocal)
[Jorders Norimwind Cocal)
[|Products Nertrwind (ocal)
[shopers Normwing Cocal)
[suppiers Nerthwind (ocal)

+

OEBPS/httpatomoreillycomsourceoreillyimages100710.png
P[= E3

Meghiom | Englsh [Spanish [French
7 The disk drve s o ready. 1 060 1o estd hsto Disaue non prét

| 2 Name: Nombre: Nom:
| 3oty Cludas: Vil
| 4 Enter your name Tecle sunomore Tapez votre nom
i 5 Enter the adress Tecle suciudad Tapez vote vile
| (AutoNumoer)
Recod: 14| [T 3 [nlvefof 5

OEBPS/httpatomoreillycomsourceoreillyimages100718.png
Restaratn = oo
Rezarariane Resarmi

.

KT)

OEBPS/httpatomoreillycomsourceoreillyimages100950.png
Stop s

Make my
caption or icon
flash!

OEBPS/httpatomoreillycomsourceoreillyimages100686.png
]
Fomt Oats | et | ot | |

oot Sarcs - aycomponadgesssihs
e

oty

Ao Fhers v

Howzar: o

o et vor

Jrayervid ver

oaany w

e T Dt

Recdiods oo

Foth Dk e

OEBPS/httpatomoreillycomsourceoreillyimages100620.png
Business Fhone Book

A CheckMaster Limited, Incorporated
0999179

Ackerman Recreation Corporation 6315 57 Street

209 951-1720 Buiding 132, Room 456

367 Buttemut Way Miners Cut, MY 8953

Pitshusgh, PA 33904 City Alternatives, Inc.
@1 104550

Ackerman, Limited 2412215 Lane

009 4723401 Rice Lake, CT 23444

10110 5th Lane

Suite 392 D

Adamswille, AK 97238

AVANCO Specialties, Ltd. Dolphin Software, Incorporated
(402) S14.6571 ©s7 288385

12532 36th Blvd. 3832 67h Lane

Lost Lake, AR 09999 Suite 511

Wallace, M1 65544

OEBPS/httpatomoreillycomsourceoreillyimages100582.png

OEBPS/httpatomoreillycomsourceoreillyimages100476.png
[Text Bow: txtveart

romst | e Ewet |oter | a0 |
ot Ut

it

onny.

Ot .

onGouris tdschane
onene

e

s

on ot e

oneuss Do

OEBPS/httpatomoreillycomsourceoreillyimages100960.png

OEBPS/httpatomoreillycomsourceoreillyimages101024.png
wr

Custom Navigation Text
| costomer _compary tame _______contoctrame _____|

e Funerite

B Tl Enparsdacos y el

[rm—

Braundthe o
Borgrcs smakthop

Bl SeeOslkctessen

e g ot s

[sn—

oon
Botom ol Marets

v ders
Boa T
Thames Hordy
[E——
Horea Moos
i Cresse
vt Sonmer
LoserceLebhan
Esbh Licsn

OEBPS/httpatomoreillycomsourceoreillyimages101052.png
Cannt et o s tabs o e i g s o, et the connsction ot
g, o teefcrces o o g G oot

o

OEBPS/httpatomoreillycomsourceoreillyimages100840.png

OEBPS/httpatomoreillycomsourceoreillyimages100794.png
icasaied | supiens

Bt s

NORTHWINT) - prudsvony

TRADERS oaedtons

OEBPS/httpatomoreillycomsourceoreillyimages100856.png
Customers Form =

Customers Form {Ftinto Saved Place

Cusomett [T

Fis. L
N - T —

Conpery [FmaCamamen @
e RO
o [see [T Ze [T
Phos. [T Fx [

fecods 1L I T Lo o] of 50

OEBPS/httpatomoreillycomsourceoreillyimages101010.png
Cinsses
2 snapes

Em

& SlideRange

@ sians

2 Staeshonsetings
2 SidesnowTransior
° siamsnowew

2 stassrowvmaon

I-|

Pomeipom =] «| 0| Bl
T

2l

Wembers of Side'
e Appicaton

s Backarouna

& Colorscheme

e Comments

e Dosign

& Oisplayastershapes
& FollowNasteraacigioung
e HeauersFooters

23 Sldsshowiinoows (68 Hyperinks.
& soundfect & Lovout

2 Tabie e Master

23 Tanstop e Name

& Tabstops & NotesPage
&0 e Parent

S ToErecomal e Prinsteps
& Tedrrame e surpts

& TerRange & shapes
Clase Side

vereerof

OEBPS/httpatomoreillycomsourceoreillyimages100736.png
eergots e 3]

9 Prot o Data i

Pt Carrt Dostton

Comentostnmien: w5
Prntta Crosen Destranen

¥ Change Dt Prier

OEBPS/httpatomoreillycomsourceoreillyimages100956.png
sor Test Form

| close
it Moiise

Movement to This Form|

3

OEBPS/httpatomoreillycomsourceoreillyimages100850.png
e P am e o e oy rwie g Tl Yo e -

[— -

maon s A v -

OEBPS/httpatomoreillycomsourceoreillyimages100632.png

OEBPS/httpatomoreillycomsourceoreillyimages100740.png
Date w150

s ot
ot
sy
frsart
fay

poges L AT L] 4

OEBPS/httpatomoreillycomsourceoreillyimages101062.png
[Enter Parameter Value

St oo
s

|

OEBPS/httpatomoreillycomsourceoreillyimages100610.png
Evidence Report i

Case: 1 Liar, Jamba

Doer_evaee S s Camies Vieat
TR — P T
P [T
3 Bt peste o somy s tes
PR ——— P nanes tes
ERE e ——— s e 2ms
[RRESer————ry poons nsnem ik
LR —— wom e tes
T otene 7 Tt 19t

pages 1L AT 2 Il <

OEBPS/httpatomoreillycomsourceoreillyimages100548.png
a o -10[x]

AtstD | Anciane [~
EZS—TT
5 1000 Mriacs
O £
3 Bates
st B0t Dylan
7 Bt Jamee
] Eruce Sprngete
I8 Chuck Mangion
comerk =]
W Wl T T dnl

OEBPS/httpatomoreillycomsourceoreillyimages100696.png
Parent

Propame | _PropValue j
|_Container | ObjectName | ObjectType [R,m:s'w“ s
R -

H eores Forms. Categories. Fom fRe - o
s Forms. Categories. Fn i S
e —lrome Caonios Fom T -
s Forms. Categories. an [Pyt [T .
s Forms. Categories. Fn"" e e
e Forms. Categories. Fn"" T
s —Trame Caonies_ Fom .

s Forms. Categories. Fn"" [sastoned_ [
e Fom Aloubtschas T
e Forms. Categories. fFom

s Foms. Categories.

[

[Record: 141 |1 3 [n]] of 5082

CTr T —-
|

OEBPS/httpatomoreillycomsourceoreillyimages100624.png
&= Visit our booth at the Seattle Expo this September! —&

Pawer Software
200 Eighth Avenue S
Kent, WA 95035

Dear Custorer
1 amn enclosing a copy of ur ltest catalog, which lists mmany excling aew products i o netwnrking
ine. W carry products for Windows 2000, Netware, Banyan and other eading networks See the
special Summmer Promations i the rénge pages secion a the beginning ofthe catalog.

Thank you

Sincerdly,

Ned Zone
Net Works Uslmited

OEBPS/httpatomoreillycomsourceoreillyimages100672.png
1535 Vista Ave.
Dept. 905
Magle Lakes MN 111111111

GWA Softvare, Lt
1163 24t Way
Oceanside, NH 111111111

New World Communications, Limited

Page2 Printed on 31112001

OEBPS/httpatomoreillycomsourceoreillyimages100656.png
T T
Business Addresses with Conditions.

=(C) & (Satebronmeels”) & [ZipP:

sicoic
e —]

Fonat | o e ot [0 |
e (et rcndze]

OEBPS/httpatomoreillycomsourceoreillyimages100986.png
JRR =

=

ome

Miosot Access 11 ObjectLirary

Locaton: Ciprogram Fs iosof Ofce OFFICELIMSACE. X8
Lanpusge: standcd

OEBPS/httpatomoreillycomsourceoreillyimages101064.png

OEBPS/httpatomoreillycomsourceoreillyimages101054.png
Chl 9 DN Qe rwte gram S 38 -

s [s o oo a6 oo i 3 0w
Customers
CamomerD Compytime Contc ame
[apa [WPedskuekise [Massnders
[RATR [Aoa oo Erparedodos [AnaTralo
[mon [adonoMosnoTeguers [AmtorioMeorsre

g [ordtherin [Tonerady
[i66Gs [oegwemttion [Gvsimbegnd

A (B et [ramavos
| e
w0 [0 Comisprepwods [Frtmsonmmr
o [[t
orm [l e r—

" —— P NG

ETbore T Ay oty

OEBPS/httpatomoreillycomsourceoreillyimages100830.png
e 1 b ; et
e e e s
- i, e oy o
& et et |
gt
e ity
e
Vi cockin ithnbe{Foremy
ottt a SrHEITmE S,
Vindow tode. MNormal e g Dttt v

P o o s,

OEBPS/httpatomoreillycomsourceoreillyimages100498.png
cenerl |
Descton. ...

oot 1111 et

Con s S b e o S
i prnsers " s

SocoDmatne et

e ks otods

Rt Ty ot

oooc oo w

Crensin ot

Sibduasest e

k.

kst ki

St g

Subdtashect Expanded. . o

OEBPS/httpatomoreillycomsourceoreillyimages100836.png
(I ricrosoft Offioe Access 2003 E M

e

Customers Form

Form vew

OEBPS/httpatomoreillycomsourceoreillyimages100512.png
Bi=1E3

A0 | Tt

[Date Purchased | Purchase Prce|

26ish
3 August and Everything After

5 Paradiso
6 Mgty Like a Rose

7 With The Beaties

8 Whats Hisl?

5 Tne Unpiugged Callction
10 Rock N Roll

12 Gardon
13 Classics Volune 6
14 Spike

15 Outlandos DAmaur

17 Grsen
18 Lst of the Indspendsrts
13 Live the BEC

20 Dookie

Records 141 [T » [npe o 65

7 The VeryJBest o Evs Costllo andth 2

4 Uit Pearts of Czoch Classics.

11 What | Like About You (and Other Roma

16 Stone Free: A Trouta to Jim Handrix

212501555
121519934
251995
1511991
12151932
5161991
s
B9
EEED
111611985
sz
9511994
S35
1490
S35
S804
Bl
10251994
121151995
as/1994

5000

500
5200

5200

5200

OEBPS/httpatomoreillycomsourceoreillyimages100626.png
e
Product Listing with Page Footer Range

| [l sous

[Product Hame.

s B

| 1] € pagerece
[FPage -2 Pagel

ToxtFirstiter) & * * & [Product Namé

£l
== F |

8 Fomat | Data | et | cther A
o o5

B ekl 1oz
Specalfea Fa

: onFomat [Evrt pocsve]

OEBPS/httpatomoreillycomsourceoreillyimages100698.png
s [Farene e e
sor: [fscendng |
e KT T

OEBPS/httpatomoreillycomsourceoreillyimages100892.png
tep

Wt namoand ooy 10 (WID) do o wan o your wkgro
forman e The WID s+ i sohsnunerc g 20
Eraars o

e e [emmCoaB IO mows.
o T
Your name (ptnsly e Cootbod
ompony(optons). i Tedooms

The erd can ks i e et orkcroup frmaion e for o
iiabese, o R can rete AE B Opn e scuthy-snencad
atsbas it the wotoreup. Wich o you sk 1o 67

€ Lart o make tis o defok workreup nformten e

@ it tosse s ik o coan my st sebanced

ol <o | mee> Erih

OEBPS/httpatomoreillycomsourceoreillyimages101138.png
OUTRUT OPTIONS
Hon oy wart oo the s errted b s
Wbty ke o

.
e ST
 usecuron 031 st

Eriethe base nane o e sl

fomt

[Iper——

OEBPS/httpatomoreillycomsourceoreillyimages101180.png
s

Srenof rd: 254, 565004540773

OEBPS/httpatomoreillycomsourceoreillyimages101230.png
omEmEne L -

- <dataroot smins:od="urn:sc crosoft-comiofficedatar

(SI="hULp:/ /v W30/ 2001/ XMLSChema-instance®
‘WhereQuery xsd’ oo it

<qryCarsLase Thands
<CarlD>1</CarlD>
1154~ Mini Gooper< /1151 -
<Model>8</Model>
<110 20000< e
</aryCarsLessThan<o>
- <gryCarsLessThando>
CarlD>d</CarlD>
<MakesFord</lake>
Mo Mustangode -
<F1120>25000</ 1o
</aryCarsLessThani0>
- <aryCarstessThand0>
<Carlo>8</CariD>
“Hiake-Toyata< el
<Model>Gamry</Model>
P11 200007 71
</arycarsLossThand0>
</dataroot>

OEBPS/httpatomoreillycomsourceoreillyimages101050.png

OEBPS/httpatomoreillycomsourceoreillyimages100680.png
Companies Report

Company city Officeld FirstOrder
ety Erepies Otana 231003 5385260
ety s Ot 10109 2052000
Ay s Ot 16093 w22130

o 1o 14520

Aty Erepris
Ay

OEBPS/httpatomoreillycomsourceoreillyimages100880.png
£ Appointments.

-[51x]

[
Jan 2000 [ian 2njo -

S [won] Tue [wea | T

SopiTine S0
Custones (ra—|

Tak frasimesing

Records 14l ([T > [iloaof 4

OEBPS/httpatomoreillycomsourceoreillyimages100598.png

OEBPS/httpatomoreillycomsourceoreillyimages101060.png
{e§R

ek

2

[rgas foas ot
ez

e B Oe AR O]

T

[t o] Doertie
(CELER

o] oo

OEBPS/httpatomoreillycomsourceoreillyimages101092.png
Pass:through query name.

meter values

Connection information to
pubs database on ocal

Returns Records

Definition of byroyalty
stored procedue i pubs.
database

asenh -
e -y [y

coecomertsal
Servr) Sorver—cal)Dasbase—pubs Trsted
@

CREATE PROCEDURE byroyaty @pecortage -
St rom euthor

e Eathor royaype = Bpercertaoe

OEBPS/httpatomoreillycomsourceoreillyimages100852.png
Customers Form =1E3

Customers Form (S Pl

¥
Cusomett [T
Fist L
D - - —

Conpary. [t e
B L —
Oy [swe [T ze [
Phors [T Fac e

fecodi 14l I3 » I los] of 520

OEBPS/httpatomoreillycomsourceoreillyimages101190.png
[8 RumnerColculator we Acrosoht Intemet Explorer - S[x]
o G e oot G :
OO 11 B Q| o @ B2 52 KL D
At [i g st e J0e
e 1AM AT oy o &)k B b E

RunnerCalculator

roviesvarios caeuaton for ang dtanc rners (o wekers.

« Getbacebnuble

OEBPS/httpatomoreillycomsourceoreillyimages100926.png
Fom o
CR N T —

Nessage.

Records 14l ([T o Iilefof 1

OEBPS/httpatomoreillycomsourceoreillyimages100542.png
[-[O[x]

Quer

ISELECT Compony, Adtess, Adktess2, Ahess3, iy, SttoProvnce, pposzalcode, Coiry
PR ticiens
WERE Couriry

usa®

LSION SELECT Loodame, Adesst, Adess, , Chy, Stae, 2, Coutry
From teads

OEBPS/httpatomoreillycomsourceoreillyimages100780.png
Flod i s
[end

OEBPS/httpatomoreillycomsourceoreillyimages100862.png
Swe T =

Chaces s st ot o ypa e
tbievlon then e e Tab eyt 5043 rew
S ek

OEBPS/httpatomoreillycomsourceoreillyimages100524.png
s ramacs o s
e
ot
o i
s = T o
i

OEBPS/httpatomoreillycomsourceoreillyimages100714.png
BHE
oss Fompage =
= e
% Des ssmsee s

[_some ¥ Dspley St

ol

Srartten s
=] [enn

% slow Pl Verus ¥ Alow 8t Toabrs

9 sion Defout sherastvencs ¥ Ao Tocseeny Changes

e

(S Database Vindow, Shom Inmedte
Cindon, oo 1 Voo s e Evacn)

OEBPS/httpatomoreillycomsourceoreillyimages101148.png
avalale s Toas

Coae
™ Francal Syl
St Tag0stals

Mo St Togs o Gonce

OEBPS/httpatomoreillycomsourceoreillyimages101152.png
File Edit View Insert Format Tools Actions Help

ASavo and Closo k1 4 4 * £ e EY |
o | otk | s | Cottnes | sarens |

nate.. | i o ol A
o [|| v I

cxgpany | st [

rew s 5| e [

L

aran. ’7
ppeara

OEBPS/httpatomoreillycomsourceoreillyimages100800.png
p— Deply Farnge: =
f Frrswezboudr
Aopation con ¥ Oy Dtabe e Coed

e [t

Shorcut Menu e

= fn
7 Alow Pl ¥ o e Tookes
¥ Alowefotshorct Nerwss 9 Alow TocbogMen Changes

9 Use fcess Specil s
(Show Databse Windon, o Innedite
Windon, Show 15 Wi, and P Execten)

OEBPS/httpatomoreillycomsourceoreillyimages101210.png
Mot Price
520000 10

[¥] 500

wecod 14| I 7 > [nafor 2

OEBPS/httpatomoreillycomsourceoreillyimages100922.png
Link Tables [71x]

Taes |
cancel

sekatst

oesektat

OEBPS/httpatomoreillycomsourceoreillyimages101216.png
. 2
g 5
=
==
. 1 e []
P
Fosestietersnces m Brovse.
o] o

OEBPS/httpatomoreillycomsourceoreillyimages100702.png
™ HideScren Updtn
™ Use LockWindonelpdste

g i i e

OEBPS/httpatomoreillycomsourceoreillyimages100590.png
5 T T T P
o] e oot st r—
e e s
B [y

mutiple fows, Drag. | Seatpreference.

el
e

s e o
Seal Preference ——
@ e | @ o

o] cnm #uko Order

OEBPS/httpatomoreillycomsourceoreillyimages101066.png
Microsoft Internet Exj

3 Pacam OrdersByDate
Tl £ Vot Tk i =

Gk e o - Q[A Oseach Cigravortes Shstory

Adress [5] C\cces How-tolDAP O Poren OrderByDte i =] 0G0,

Enter the startng and ending dates for the data page

swmone [
e

e

G} |y Compater

OEBPS/httpatomoreillycomsourceoreillyimages100742.png
& frmCustomer1 : Form

e

Custoniers Forn |
oo

romt| oa vt | tvr | a1
OnCue
Bt [Evet Procadas]
ey

oo Ut (eveepcedae]
it

ony

oninda..

OEBPS/httpatomoreillycomsourceoreillyimages100848.png
2]
o | G | ot |

Tookars:

ol o

OEBPS/httpatomoreillycomsourceoreillyimages100600.png
Unindexed Incremental Search =)

L T —

P picaie:
e Conies clisicss
Fecon vt ot

[

OEBPS/httpatomoreillycomsourceoreillyimages100722.png
[Workgroup Owner Information

The new kot formston e s deefied by th s,
Crgencton, S e SEnee WL D 2ty

st the rameand organzaton fomtion bow, of eter o
iforent i o crganzcon. I yau i o arre that you
VD b e S e B 10 020
e e,

ione: E—
Qs [FowTerobges
wotgawi [aeom

o |

OEBPS/httpatomoreillycomsourceoreillyimages100492.png
= s FreiTize
Tale: ity (e biists
Sor Ascenin

o

Formel rasburvovee o eTyee]

OEBPS/httpatomoreillycomsourceoreillyimages100622.png
wofiee Hean Emporium
One Orange Street
Boston, MA 02210

Dear Customer.
1 amn enclosing 2 copy ofour latest catlog, which lits many euciing new products n our networking
ine. We carry products for Windows 2000, Netware, Banyan and other leading networks. See the.
speial Summer Fromotions in the or nge pages sechon 2t the begring of the catslog

Tharks you

Sincerely,

Ned Zone
Net Works Unlicited

OEBPS/httpatomoreillycomsourceoreillyimages100536.png
Name Grade D
oo ® T
cen s 2
02y 9 3
[Tom o 3
oare » 5
Paul @ 5
Then @ 7
Paa 5 o
(Autohumber)
@ thanckn M=
LowGrade | Hightrade | LatirGrade
O 0 L
@ GE
& 7o
7 a@c
& aie
S 004

Recods WL][1 s Dibel o 5

OEBPS/httpatomoreillycomsourceoreillyimages100586.png
Tines | Calndr | socks Trael

Peter Mason
Travel Prafarences

s Prtoence: [orerean =]

-
€ pide C Coner C Window

Recodi 14l | T > [nbsfof 2

OEBPS/httpatomoreillycomsourceoreillyimages100572.png
[« Defoutt Label BE3|

femt | 0w | et | Ot

v -
Daglay when L1111 s
= Do

e *oonw
Hegnt. nons'
Basiye =
g2k Coar

Specalffect

Border sty Trempent
Border o o

Border it s
ForeCor s
Fone e 15 Sane et
Fonesae sy
[e

Fone e =
Fontncerine =
Textslon o
Coneop Text

Resang e Comert
Nomers Sheses Syaten
Jrotmeny o
Topagn ot
Rentuegn. 1111110

Botm argn . o

Lo Sosen o
ey

OEBPS/httpatomoreillycomsourceoreillyimages101220.png
Duto Schema | Preseition].
% B sons
¥ I iy oy o cex famstin
Extiscaon:
 enbodshemainexoatod . s damerk
© Crost seprots sremn doument

e

e | ==

OEBPS/httpatomoreillycomsourceoreillyimages100708.png
<} =19l

Language
© g
€ Spuith
& Feh

Teaneae
- et

i —

[

OEBPS/httpatomoreillycomsourceoreillyimages101080.png
14-03.adp Properties HE)

G ot | secuy|

] e

Togetupe Micosoh Acces Pt
Tt ocatn: CH14

N B ey

P [

sein [Feeen

stanesey [l
B I a—
e [

ErTot | _Dowgolen

o] s |_aw

OEBPS/httpatomoreillycomsourceoreillyimages100868.png
[—
romet | owa | bt | o A |
ane., o
canen

et i)
Petwe e 1111111 Erbedde
T e

Otk I

e i
Asorases. . 13

S ot

Fypak s

ek siaess

iy

DeplyYhen

OEBPS/httpatomoreillycomsourceoreillyimages100936.png
& Current Connections. [-[C[x]

(ANGELFIsA
Saitrsii

Refresh

OEBPS/httpatomoreillycomsourceoreillyimages101208.png
=1 E3

WMLTed | EmorMessge | Reswt | Tmestamp [4]
[Car. unknown _ Supplied data does not Data was not inserted 102472008 —
math ths datstype of eld s1935 P |

et 14| AT o [otDosfor 1

OEBPS/httpatomoreillycomsourceoreillyimages101186.png
[Pace Cakculator O[]
Oanca sy [72
oz —i
Heutes =

Secon [—

OEBPS/httpatomoreillycomsourceoreillyimages100500.png
M= B3

Musi Typo | Jan | Fe | Mar | Agr | My | Jun | Ju | Aun | Sep | Oct | hov] Dsc]
S[AteraweRock 1 5 5 2 4 3 & 3 5 3 1 1
[chssica i
Camady 1
[ozz i 2
Furi 2
ok 2 FI I I PRI B

ecord: WL LI Tl we

OEBPS/httpatomoreillycomsourceoreillyimages100906.png
10-01uns.mdb1 Properties [71x]
[p—

S ot

Togelpe Aopicaton
Taiget ol OFFICETT

Tegs [FKGRPDACoRBooRIOSeu nd

Sotin [eboanen®
Swekey fioee
B Wl i -

OEBPS/httpatomoreillycomsourceoreillyimages100668.png
Albums

ToscTyps | Ve | Ansilams

T

e T

Rock 1993 Ehis Costal]
Rock 1991 Ebs Costelo
Rock 1939 EMs Costello

JETEN s S YIS

The Vry Bestof Elis Costelo r R
Mighty Like 3 Rose

OEBPS/httpatomoreillycomsourceoreillyimages100984.png
Q"
Dot s

o ——

CECETIEN e c-lez-nlwn 2 W
B
x 5 13 T 3
1 Customerd ComparyName. Comactame ContactTite _ Addr
S A e o pers Sl Raprasenta Obere S 67
3 ANATR ana Trjlo Emparecados y holad naToglo Owmer A de a Constucisn 27
4 ANTON nloo Moreno Taguers | rioni oren Over Mataderos 2312
5 AROUT sround the o omas Koty Sales Represerta 120 Hanover g
6 BERSS Gerghncs snabbicy Crecina Bergrs Onte Acmevsvsor Bergavvien 0
7 BLAS DiaueSes Defitesssn Hanaoos S Reprsenia Forstersy 57
S RO S pereetac Frecénqus Croa. Varitng Manager 24, lace Kieber
5BOLD oo Comidaspreparades Mari Sommer Owner /a7
0o sonapp Laurerce Lebhar Ovner 12,0 doe Bouchers
11 EOTIM Gotom Dol Markes Elz3beth Lncain Accouning Monage 23 Tsawassen S
2 ESGEV 55 Beverages it Aot Saes Represenia Fauners Cicus
3 CACTU Coet Comgas pvalier Paten Sipeon Saks At Cermt 850
1 centc Franiscn Crang Varietng Manager Sers de Gansca 0003
03
i
3 Open Access Report

OEBPS/httpatomoreillycomsourceoreillyimages101218.png
<dataroot «ins:od="urn:schemas-microsoft-com:officedata®
in csi="http:/ /vyowt.w3.0rg/ 2001/ XMLSchema-instance"
RO P S L= Preferences.xsd” oot
11-16T10:08:44"
<Prefarances>
<Custip>1</custio>
<CarlD>2</CanD>
<Rarking>1</Ranking>
</preferances>
<Preferences>
<Preferencess
<Preferances>
<Preferences>
- <car>
<Carlo>1e/Carins
<1242 Mini Gooper</ /512>
<Model>8</Model>
<P11020000< 71
+ <Car>
+ <Cars

<cars

<cars

<Customer>
<CustiDs 1</Custin>
CUstinzre Smathers </CustLames
<Custrames Millicent</Cus o

</Customer>

+ <Customers

+ <Customer>

/dotaroots

OEBPS/httpatomoreillycomsourceoreillyimages100788.png
8 Directory st [-[51X]

St 005 Respe:

e
(et i
e
ooy
e o e Serves - acsston =]

OEBPS/httpatomoreillycomsourceoreillyimages101098.png
'Combo Box: Country

A |

romet Ou |t | over | W |
Canvosoace

Tutves
Row Soucs Tyoe
Ron sorce
Sons o !
UneTots 5
KnoEias.
Oefat e

TacasR

Jronsdont

s
toses Iy
snat o

OEBPS/httpatomoreillycomsourceoreillyimages100918.png
Rossn for crric
Cpdasipdr i ot

e o et e [—

e i ok o o o ke

gt

o eors sowlis
o1t on: o m—_—
[care wever 3] [
[fi
e B
Lostrame i vy
Coroory e Coaiig

frcre o

s [i s eais | e e e A

Eomp i e

sl it e Dt

EostpensReschton

|- Legthe et o s con bt
e

o

OEBPS/httpatomoreillycomsourceoreillyimages100592.png
Feane. [
[S —
[—
sue [
B e
L —
L
L —
L

7 bilpsf o

OEBPS/httpatomoreillycomsourceoreillyimages101048.png
Fo c Ve Fates Took Hob
s D Qe Girewss P | B 38 - o
Aatess [£] s om0 6t e ERD)

Customers

Customer > Company Name Contact hame.
= [T —
W > ey 8l E

OEBPS/httpatomoreillycomsourceoreillyimages101046.png
[-Io1x]

[neta hep-equivacontent Type contente"text/x-ms-odc; charsetautf-as

[SReta nunb-brogta content Sbc. batabizes

[cneca Mime-sourceryps contentoocoe:

[ecar et S o
e Chamss ot o cont

e e e

on oneca n- oeTypeL oL £08 "

B SEonmect janSer ik o dar -icrosoft. Jet. 0LEDR. 4,03 User To-admingos

B oAt ypes T sb e ot aman e

<Jodc Comece 12

oocatasource

behavior: url(dataconn. htc);
¥

OEBPS/httpatomoreillycomsourceoreillyimages101058.png
- |
P pr—

Pooes | adveced | ieematondl | Spelog | Tabesiouenes |
stk Cesrer Fropats

Section Indent P

. |

Coptonseton i [BACKGROUND-COLOR: s COLOR: white FONTWEIGHT: b

Foser Sectin S [FORCER-TCP: pr okt FONT WEIGT B

I Uso Dofouk PogeFlder

| Ko=)

I Use ek Coonectin e

| Hoemr)

o] o | o

OEBPS/httpatomoreillycomsourceoreillyimages100640.png
Ann’s Kitchen

Coffea Bean Emporium

o e Syt
B 20

Applied Data Integration
102 Szt e
G Gy Y 11531

Lany's Sofa Factory
Dot v 3556
UsA

)
4
4
)

Pentacle Software Desi

Garishes Inc.
100wt Sacd St

ik

Xylox Corporation
GrsEneyone
Soma P 150

Assaciated Specialty Imports
St 00
Geroens,Ca 52714

OEBPS/httpatomoreillycomsourceoreillyimages100838.png
Stortup. HE

Aupaten e Deploy Farnpge: =
[frecey
Aopatin con ¥ Oy Dtabe e Coed

7 Oty St -

€
Co—]
ot R
s et
Pt

(Show Dakabase Windon, o Innedite
Windon, Show 15 Wi, and P Exeaten)

OEBPS/httpatomoreillycomsourceoreillyimages100954.png
Wi ot of Chasctees |5 | Chascte Tpe:

Ertrsme chovct [T © Achabelc
© Numeic

OEBPS/httpatomoreillycomsourceoreillyimages100490.png
Chooso tho type ofalbums and o range of

Sokct try

AnstNams | Voar
Beses 1594 Ly o1 e BBC =)
(=3 805 Dyan 1975 Dasie Coumbia
ke Buce Sprngten 1575 Bom o Fun Caurbia
ke Buce Sprngsten 1561 Bom n he US A Colurbis
ke Comptaton 1963 Store Fraa: A Tobute to i Repre

oo 14l [T s (ot ol of 19 al |

OEBPS/httpatomoreillycomsourceoreillyimages100870.png
 Pictur

You canchoosea e frmthe st o brows or 3
cistomptre.

Builder

At s

OEBPS/httpatomoreillycomsourceoreillyimages100854.png
Customers Form =1E3

Customers Form {Ftinto Saved Place

¥
Customete [T
it Lo
e P P

Copory [ommsCopommn 0d
=

on [sae [T Ze [
Phocs [SREEE fac [

fecods 14l |55 I loe] of 520

OEBPS/httpatomoreillycomsourceoreillyimages100628.png
raERane hamEy e
Gty Unt. 24- 12020t
Unrce a0

Chef Anton's Cajun Seasoning

EngienNene: ChetorsCan Sesonng
Gty int -5
Untpree sz

Chocolade

Engiontane: Ot crnsae
vty tne 10k
Untrce. swars

s cargots de Bourgogne

Engiontiome. Escas o By
Gty Pt 24 s
Unrce s

Flstemysost

Engionane. FutenysCrm Cresse
Gty tnt 10.500g ke
Untpre s2150

page 1

e
Gustyperure

e e
7 copaens
s000

Chef Anton's Gumbo Hix

Ergin e
Guntyerurn.

Céte de Blayo

g tione:
Curttperure.
e

Filo Mix

Eruin e
Gustyperure

Geitost

Ergin e
Gurtyerurn.

Caodotia (Fodeoronscrs
12 Tttt
smsa

ik Ok Pl Donah
15-2igboes
0

e

Alice Mutton -- Geitost

OEBPS/httpatomoreillycomsourceoreillyimages100990.png
U =

=

somse

o

Miosot ierd 110 Cect Lbrary

Locaton: Ciprogram P Mizosof Ofce OFFICELWSHORD. X8
Lanpusge: Standcd

OEBPS/httpatomoreillycomsourceoreillyimages100664.png
Company

Anbeley e L5,
sersithen

AosletDats nkgraton
Sascste Soscaty mps
At Hensgenent Capareten
o sean Emponum

D o Goods:

Ganshes

Fdogaghync

Lars cfe Facary

Vioe < Pz Sods Fortan
[,
P sste

ey Buidas

Sofvr Unimited
Suprtsnice

Xyl Corparzton

city
.
ey
Gsdencty
Gaens
sete
formn
S
Fancne
Sescostic
Dosgele
sy
[

et

Gaon o
s
Saasatae
Aens

Lastorder

sz
asiisnd
sz
PET:
i
sriisss
sii7jess
s2n99
e
12198
Tsese
ey
21983
rises
e
81155
s

OEBPS/httpatomoreillycomsourceoreillyimages100658.png
Amberley Enterprises Lic
50 Ficst Stvest

Suite 150
Ottawa, Cutario AIZ 3R7

INSTALLATION: The conractor shal furnhand sl theprembes of e sbserier catd at
— e i larmsystem andlor ey upment:

| Contract Conditions:

Ann's Kitchen
28 Souta Sireer
Boston, MA 02211

| Contract Conditions:

. Payment hallbe made e

PRICE: Theprie forthepurclase and intalain s
follows: S thall male 2 ane. e dewn paymer 1 B i o uchas of

and " subsequentpamens of ona monhlyhase. There shallves T pex

‘monih penaly fo e payment. The sk o agres Tt wll ot e e the shem syt and o
jrrsiony

OEBPS/httpatomoreillycomsourceoreillyimages101004.png
P — =
e =
—

K}

fo
-

Ly

T oo)

Miosoft Foverpeint 11 bject irary

Locaton: Ciprogam s izosof Ofce OFFICE L nappt
Langusge: standcd

OEBPS/httpatomoreillycomsourceoreillyimages100798.png
Initilizing...

TRADERS

OEBPS/httpatomoreillycomsourceoreillyimages100700.png
i e it S i
- S ——
SR
e 2
B e
e e
e e
S s
R e e
B e T § o

OEBPS/httpatomoreillycomsourceoreillyimages100970.png

OEBPS/httpatomoreillycomsourceoreillyimages100866.png

OEBPS/httpatomoreillycomsourceoreillyimages101108.png
Select asite.
Specy the st ha st ot thak you okt

P e

OEBPS/httpatomoreillycomsourceoreillyimages100908.png
user and Group Accounts EIES|

Users Grup | Chang Looon Pasovrd |

Nt e =
]
[
E—
Percns ol
[—

o Cacel

OEBPS/httpatomoreillycomsourceoreillyimages100674.png
Lomputer

New World Communications, Limited
16390 Deat Ead Terr
Miners Cut, HI 111111111

Pentacle Softwars Design
23 Circle Drive

Sute 25

Denver. CO 82364

OEBPS/httpatomoreillycomsourceoreillyimages100752.png
e
Tate
Son.
s

(Erioyeets {rustone —{lostlsme {Sardor s (atbone] ||
Ez EEra =
17 2

121
e e el

OEBPS/httpatomoreillycomsourceoreillyimages100712.png
My Access Apphication
S e
K-ldB ST) B 51 &l
.
e

e acces o [e
]

OEBPS/httpatomoreillycomsourceoreillyimages100882.png
= =10l

AppDate e

S Jan 2000 —]] [

o o o Yoo e T F []

Reorss sl ST [0 [T2 [5 [0 i

OEBPS/httpatomoreillycomsourceoreillyimages100716.png
e
il gave | Séto [
.

BT P A
P HEATIRONT o

e SR L
s sLEwRTEET P
AR Pt

LS T she

DTS

o s v
LSRN T o
i psrmstens e

S T s e IEI
I —

OEBPS/httpatomoreillycomsourceoreillyimages101184.png
5 Microsolt office 2003 Web
o ervice Serch U ———————
eroet
S Resuks: 1
= 2 RrverCaasr
T Getesphs
Getpacedoutie
Gepacesnig

[GeTaamnepactie

GataaTinesiong

oo

oot

R f—

BRI DN | || e e e |
e

I

[comfebserveesfucercalsto s
et =l

= Goncel teb

OEBPS/httpatomoreillycomsourceoreillyimages100876.png
& Application Customi;

alog

Ussa

Fatane

[P S —

atode [o
—

Phocatt

Advancod>y

OEBPS/httpatomoreillycomsourceoreillyimages101122.png
Specty a0 et vhen condtonl Fornatng vl be appe.

T [_reidname | conpersen | Ve [andior |
O Te——— B
Cickbare o acda e e,

==

OEBPS/httpatomoreillycomsourceoreillyimages100646.png
Last Order Afier: §11612000 State: NY Last Crder Over: $1,000

—

OEBPS/httpatomoreillycomsourceoreillyimages100544.png
TpPosscods]|__Comgan | Addwss) | Asduss2 | Addross3|__cty | Sttabrowre | county]

ME0T Joen Congitr T4 et Wan S S e UsA
0200 Cof Basn g Cne Crnge St B e usa
020 Gamines e 100 et Secne € Frrcens 104 usa
054k 1672 Scbwars Unlindad 25 an Svset [usa
e oy Comrsios Dison of Dt Con F— usa
s ol 0 ey 02 Second e ol 180 Gudanay 1Y usa
20 ik & bios 1 et Lamur A Coend Y usa
2 N Compa 10 Ext Wison i Sue 20 Sonefidse 1Y usa
095 Aer ichen R0 2, Bon S Sutis Y usa
s EoSnnEureps 1201 Rass 108 Funan Ny usa
105 %jon Coportion 25 Emery O Sute 0 s PA usa
2052 s g, e 1456 S Washagen 00 usa
16 Ouery Butdrs PO o 100 Cabmoin WO usa
£ Systams Sl H25 Rt 123 Moo Plssat 5 usa
37764006 s Rpar 1 100 e O g A G T usa
k55 Langs Som R D 2 Bor 0 Doggts W usa
@70 Syt e 2000 ey e Sute 200 s 1L usa
A D O usa
9625 Cose e 25 Ocam Boan Cotetisas Ca usa
osiis " Da Dy Gosos 100 Vi Rancho Sufe 20 s Ca usa
0035 PoverSatar 25 Eighh A S Sute 150 PO, Box 1 ke s s
560735717 et O Fashic 100 G vt Remons W usa

D TS L]

OEBPS/httpatomoreillycomsourceoreillyimages100924.png
Nessage:

’7@“ o a3 Capabies Horn e you7

OEBPS/httpatomoreillycomsourceoreillyimages101100.png
romat Du |t | over | W |

Contolource | =
Ipuvesk

Row e Tise Tebe e Steespree
Rowsorce proctustmersd Caunt
Boun Counn v

LmtTotat.... e

AsoEs || e

[

Tt fue

(st

enaved v

Loged o

SrartTegs

OEBPS/httpatomoreillycomsourceoreillyimages100808.png
£ Original Survey Form M= e
7]

pres
Custmer:
At
Thorgon Advana
Thopeon Agnes
B Thorpeon Abet
Thorpeon lownder
Thorpon Alled
Conmens | Thompson Al

Records 141 [T > [ibsl o

OEBPS/httpatomoreillycomsourceoreillyimages100976.png
System Information -]

corouter [

Henery Loas ercant
7ol sl
avlaepryscal verary
Tosl e e
sinepage e

Tot v venary

Bvaiate Venalamary: [153 7E

(a1 5225 iy s)

OEBPS/httpatomoreillycomsourceoreillyimages100834.png
(I8 #icrosoft Office Access 2003 B BEIE |
e Dt e Dwwt Famat Gads Lok wreow b -
K-dB P2V 8D INFURA R YSr-F=1

[CustomersForm

Customers Form

et 14l I b Ionbalof e

OEBPS/httpatomoreillycomsourceoreillyimages101174.png
AvatatoReferences

el ot
Ulooncer 10 Toe Lerry
LEn® 1.0 Typa Ubrary

e 10T e

im0 e ey +
P 5]
5 s Coamert o et Py
bt arbid

V8 o i ‘
oty e i =]
Vo6 ety e

e
iyt
Lof

[—

*

Caeal

Location; Ciocunents s Setogs Paulpty Docurents Ve o)

Langusge: Stondrd

OEBPS/httpatomoreillycomsourceoreillyimages101146.png
Ome-0- 12) e S e OIS

Database Editor - tblAlbums

- e

) R N N o ey R R W e -
B e - o [

S S N =il === (] D

JEETENET]

OEBPS/httpatomoreillycomsourceoreillyimages101196.png
Addess| FveqCars.xenl

<?xml version="1.0" encoding="UTF-
- <dataroot xmins:od="urn:schemas-m
- <car>
<Make>Mini Cooper</ake>
<Model>$</Model>
<Price>$20,000</price>
</car>
+ <Car>
</dataroot>

:officedata”>

OEBPS/httpatomoreillycomsourceoreillyimages100994.png
Program Foldrs:

'DOE With Windows Shell

Program shortaus:

(Qudten

S 1098

ot

st 1ETFronenak

Heest e e

St

e oz

e oo

Command e
s

S
sty

TSR TR s
D WHDOAS xorer exe SHOUEDR]
DADIOOHS eytenTTOLRST1 O

e

e s
D:PROGRA~10UTLOO b exe
0:PROSRANIOUTLC0pad exe
=

OEBPS/httpatomoreillycomsourceoreillyimages100930.png
& Users and Groups. .10

Requery User and Group List

I — e —
i i

8il Employees -
o ks

icon e

e U

i Erplees

Fa ik

Fs s

P [

OEBPS/httpatomoreillycomsourceoreillyimages100636.png
¢ vt ot i

“Ordered:"& Format([Order Date], mmmm yy) [

o
v EZe Sty et
¢ oo e
recoemn | __soto T
D
[Sonane Sy —
e ol
coprte
piaduali Tomriot]
Gopmend 1

OEBPS/httpatomoreillycomsourceoreillyimages100812.png
8 o] x)
o, I S—

Ente oo et ot s
¢

Selsct pron

Thonpeon, Advara
Thonpion. Agnes
Thonpaon Aber
Thompson, Aonder
Thonpron Alred
Thonpion, Al

Recod 14l |7 > [nbsf o 8

OEBPS/httpatomoreillycomsourceoreillyimages101182.png
|3 AtRock.aspx - Microsot Intemet Explorer
B ok Yen raciss Do teb

o 1] ot e =
ks £)5AUM £1APIET £lomm £]omr]Eeds)Gl] Gtootler 5] beahos
Arist T a Albu Ty
10000 Masacs TV Uophigged 1993 Compact Disk
959 ‘The Bigget Brze i Sport 1980 LP Record
Countig Crows v and Everyihing Afler 1994 Compact Disk
DeliFiee See the Whil 1981 LP Record
DepecheMode Viator 1990 Compact Disk
Borcupe 1983 LP Record
1989 Cassene Tape
Mighty Like a Rose 1991 Compact Disk.
B Co “The Very Best of i el ané the Atactions 1994 Compact Dik
Green Day Doskis 1994 Compact Disk
Toe Tackson Lock Sty 1979 EP Record
Toe Jackson Nght wad Dy 1982 LP Record
Mideigh O Dieseland Dit 1587 LP Record
Mdsight O Blae Sky Miiog. 1990 Compict Disk
Nicke Losee Bure Pop for How Pecple 1978 Compact Disk
PestJam Vialogy 1994 Compact Disk
Poice Outanos Dt 1978 Compact Disk
Breteniers Last of e Tndependens 1994 Compact Disk
oo N iscirenst

OEBPS/httpatomoreillycomsourceoreillyimages100750.png
EmployeelD | FirstName | LastName | Soundex | Title [BitnDate | HireDate =]
Dandew Jonsen 26 Vice Prasident, Sales 0-Febd2 15167
| 11 Phi lohnson 525 Temp 05-Mardd 134033
| 13Andew Jonssn 25 Vice President, Sales 1S-Feb2 1507
| 2 Phil lohnsen 25 Temp 05Mard3 13423
19 Neda Jamison 25 Temp
Dt danice lohnson 25 Temp
] (autohumben
Record: 1| J[T s Inbafof 6

o

OEBPS/httpatomoreillycomsourceoreillyimages100466.png
[Multiple selecti

I |

ot | o | et |t 4|
el sonee a
= =
oo o

[rrieatioi

DoV

fram e

ey ocoba
DS | P e
Vadsenh

VadsenTon

ey o

Blow Aot ves
jores ves

Digloy When 111 Aaays

Vel D

ensed . ver

Lucad I

Fier Lo, Databasocefauk
vy e

Tab st ves

Scrolsas

CenGow o

OEBPS/httpatomoreillycomsourceoreillyimages100588.png
TP

ol Page
Poge e
Tahorder.

OEBPS/httpatomoreillycomsourceoreillyimages100602.png
e [
L —
wor [

ez e —

e

Cocel

OEBPS/httpatomoreillycomsourceoreillyimages100760.png
ContsetlD: [FoeT

Fesbiane: [T Latlme [Fom

Conpory oot
O
o oo swe A zo [E

P [FEROTE Fax e
Recod 14l I 7 > Inlosf o 4

OEBPS/httpatomoreillycomsourceoreillyimages100560.png
=l E3

Employeed | Frihsma | Lasiams | 1tLovel Supanisor | néLovel Supenior | v evl Supersor

T Shannon Do

Lan
4 Clfors

Shakin Koach
6 hiax Povall
7 Sum 208

B ik Gularte

OWilm Man
10 Goofiey Lavin

(uroNumbey

Records 4| J[T s il 10

BITTTTTTTTT]

2 Ancsina Satercoun Shannon Dads

Gaotey Lin
Gaofy Livin
Sharnon Dodd
Gaofey Livin
Gaofy Livin
Gaofy Livin
ik Gulae

Shannon Dodd

Shannon Dadd
Shannon Dodd

Shannon Dodd
Shannon Dodd
Shannon Dodd
ooy Lt

Sharnon Dodd

OEBPS/httpatomoreillycomsourceoreillyimages100676.png
N

Business Addresses by Category

Py

Category

¢ oy s

=

hddresiT Fomt| vaa Bt |obr | a1 |

ddressz onforma =acbCchenares Repot] 2600 FozerediL
- || PoBox P

(Ce5]+.) & (Sitere
J pram——

Srpage”srage
|l ermasreon

Pt on* 8 Oste

OEBPS/httpatomoreillycomsourceoreillyimages100666.png
| Albums Form: Filter by Form-

Albums

e e

wookforf o7 « o
Nuook for 7

OEBPS/httpatomoreillycomsourceoreillyimages101160.png
Employees [x]

¥ enptrees — =
Lot o p—
Frsane ey Person Name: Davolio
e o —
e Fomsremesmian o Yl
B —
Schedule a Meeti
wose e "
Hedste [Onen Contact
s Frmaet s AddtoContacts

Records 14| [T o D pal Lo s

OEBPS/httpatomoreillycomsourceoreillyimages101090.png
00C Comect 31
Retus Recrcs
LogMessages

M et
Sitdnhent e
Crkchiaris
kst Pkl
St it
St £

Lt

o

OEBPS/httpatomoreillycomsourceoreillyimages100764.png
ist Bos: IboObjects.

foobeas]

Fomst | oot | et O | |

e 2 sotiects
e bd T

e o o Corr
fr—— P e
Sttus B Tt st the St snd Contc syt
st Extendea
TSt

Tobindex

Shonc Mo B

CoopTon.. ...

Heb Comtent 1. 0

T2y !

OEBPS/httpatomoreillycomsourceoreillyimages100516.png
e
Tate
tpdte To
s

i] Prchasebee]

e

OEBPS/httpatomoreillycomsourceoreillyimages101192.png
Conperent e

[Typeti Yer.. | Poth

Messenger Extensons Type Lrary
Weesenger ruate Type Lbvery

Miercat Ao 5.0 G Lcary
Proseft ACT Aplcaion bt o
Firocft ACT st CbjctHosel 10T
Mieroet Acve Savet Pages Oopet L
MerosettAcive Sever Pages OOt
Wicroet:ActvetloveCorsrl

icrosct: ActvesData Obcts (i

Sl

10

1o
10
30
20
27

Cprogan Flosesser
C Frogan Ficiiese

progan Flesacosc
Cprogan Flestaosc
Cprogn Fleifaosc
CWIDOwS Sstancc
CwOONSIStenc:
CwmoOwSIspten:

Cprogan n.s\ij

Sekced Conperenis:

Conpenent Nane. Tie

[soure. |

Fcrosof Acess 11,0 bjot .. COM

progan Fls st A,

OEBPS/httpatomoreillycomsourceoreillyimages101124.png
A New Page.
Ee G Yen Fotes Ioks teb

) D - %] 2] D sewh [Favortes @@hmods)] [2- L
T T e e p———— EIE

Liks]LCHal] ASPAET jDssp |Devcrx] Eeds] Googo] Gotbalter

osoft Internet Explorer

% Home Documents and Lists Create Site Settings Help

Web Part Page

Vodity Shared page +

paul Liwin %2 H 2
Suzanne white 2 o B
petar Gerard a1 o 2
sl Lawence 62 : Y
3oon Kunzingor 262 2 s
Thomas Heney 11 131 1 2
Patric sone a1 o 2
aons Esben 131 1 2
Geott Comstock 31 o 2
Matthen paul 22 2 o

Gtoms 140 10) iz

] avascrptielpWindonkeyhahone) @ resrret. P

OEBPS/httpatomoreillycomsourceoreillyimages100688.png

OEBPS/httpatomoreillycomsourceoreillyimages101166.png
[References - AccessSmart Ta

oo e e = =

v i potes S]

S S

¥ OLE Automstion Eromse.

M-

St e et o
T |

LRSRADILS ratacd 11 yps Loy
Actne 03 1 Eaarcon O ol
Ao 05 IS NarospacsProvider

Aie 0 TypeLixary

e Satup ot Leary Jj

Miroscft St Tos 20 Type brary

Locaton; Ciprsyam P\ Cormon Pl ot shediSne Tag

Langusge: Standed

OEBPS/httpatomoreillycomsourceoreillyimages100482.png
Referonces 1301

Jr— =

Cacal

Vo DI T 555 Corpa ity Ty
o2 30 5 1 Gt v

| cosot Data Acces Comperents stted ersin erose
| coao cata Adsprr orary €.0 573
oot Data S Colecton 18 6.0 629)
[aoaot cate Enannent 10,653

1ictosft Dta Enionment xtersbity Cbiects 10 Preny
Mcrosatt bsa Enionnent e 10 6h5. Hep
oot Data FormatngObject Ubrry 6.0 (54 +
| accaot aia meport Oesnsr 6.0 525)
I cosohData ReportDesrer 6.0 554}
[coaot Data Serce neraces _ﬁ'

coscf 005

MirosoRtDAD 3.6 bjectibrary
Locaton: C1program s Cormon Fes ccsotshard DAD dac35¢.

Longusge: Standecd

OEBPS/httpatomoreillycomsourceoreillyimages101014.png
[Choose

Pt e

T

OEBPS/httpatomoreillycomsourceoreillyimages100766.png
S=1ES|

Bl
Lot [
P
arnose [

==
P e i

o Tone] Frariond] B
Lia i

T G

OEBPS/httpatomoreillycomsourceoreillyimages101078.png
[-[o[x]

3 | Bl 2
.1k
Ciassos Wermbersof AcCommand
& suom 4 accmaCompieLoadehodues
@ suRepon 5 2ccmaCompistevions
& Tabconta 4 ScCmaconatonaFomating
2 Tehox

& ToggleButon
2 webopons
2 Constants

& OlaConstants
o AcClosesave
o AcColoringer
alAeCommang.
o AcContolTyse
o2 Accurentiow
o AcDstaccassPagel
o AcDataOteciType
2 AcDataTransterTye
P AcDstviow

o AcExporbOMLEncod
P ACEs9OIAILOBECT
o2 AcEspoMLSehem:

cCmContoWeardsTogsle
acCmeComenDatabase
acCmeComenacrosTovisualgask:
acCmicopy
acCmicCopDatabazerie
acCmacopyHpetink
acCmaCreatelenuFomiacro
acCmaCreateRelatonshio
accmeCreataRepica
acCmaCreatashorut
acCmaCreateShorcuienuFromita:
acCmaCreateToolbarFromMacro
accmcu
acCmDatahscessPageAddToPage
acCmiDatshicesspageBionse
acCmDatasccossPageDesianiow

o AcFleFomat acCmuDatahccossPageFloLisiRef
2 AcFierTpe acCmDatabssePropettes

2 AcFingField acCmaDatabasespiter

P Ackinawaten accmopataErity

o AckormatCondiion.
o AcFormaCondtionT
o AcFormOpenDatahe
o AcFormiew

‘ConstacCimComnection = 383 (6H17F)
Mk o Acc2 A< ot

acCmaDataoutine
acCmDatashestviow
acCméDatesndTime

acCmsDetugtindow

CEUECCCEEEEEEEEEEEEEEEERE

OEBPS/httpatomoreillycomsourceoreillyimages101154.png
Enplogee D | Last Name | Fist e | Tie [Tile O1]_Bith e | e
Toaoid Oy Sals Repesertae Me. 05Dac1569 01
loming | Date *| Date: Davolio 7
4 Peacock Bersonhamell Schedule aMeeting 2
5 Buchanan | Stown Selos g z
©Suams Mchsl Sees Regecer SNOW My Calendar o
7Kg [Robel. |Sales Represeniaiive [Mr. | Z2Wiay- 1950 02e

OEBPS/httpatomoreillycomsourceoreillyimages100914.png
[Synchronize D

Simdvonize
& Drecty with Repikca

e —
I Mok . Replca o 10.02.05' theDesn Moster

1

cancal

OEBPS/httpatomoreillycomsourceoreillyimages100916.png
St bl then ik Vi 360 B3 corflets.

Tates vt confts

st o

OEBPS/httpatomoreillycomsourceoreillyimages100532.png
e ez = o T T o
Tl [ot ez
s = = =)

al

OEBPS/httpatomoreillycomsourceoreillyimages100974.png
ETT [-o[x]

Teeree (oo [

T e Foooes

OEBPS/httpatomoreillycomsourceoreillyimages101112.png
0 [T | Mosted | Catos | CrosedBy | Modeaby |
% Dacout (05200 105200 P e FE
frtlemoers s 37624 A0 31624 A Lo G
2 TS GnENS PaiE FalE
L BG02 A 104350 A0 Lt G
1" 3T 300D STSRETAS STSBETAH
L TR0 M 10501 M sedminseet ssomnset
O

(Atahumben)

| —T

OEBPS/httpatomoreillycomsourceoreillyimages101076.png

OEBPS/httpatomoreillycomsourceoreillyimages100504.png
w0l | _Grupadsr | Groaz [Resie | st

Fratians | pdese | Cry |Sia] Zp

Mol P o 6 2ol Cak 7 Fete K ks O
lones Lot Towers 18000 Tdnes Aeis LuhurTowers Anoan kS 19000

ecord: el [T s lnlofar s

OEBPS/httpatomoreillycomsourceoreillyimages100858.png
(-]

are: = e
Company: [Poresie, . [
D e —
o T sae o [

frane:

fecocs 1l I 555 » Lol of 501

OEBPS/httpatomoreillycomsourceoreillyimages100494.png
Album Browser (rmAlbumbrowse) A=

B —
i
M e

st

e [Fanaovid o

e Dl
T3k Head:

T (L P L

L —

Vear [T P
i e 532+ e onhry Ry Pl

ecords L AT o [oalpafof 4

OEBPS/httpatomoreillycomsourceoreillyimages100966.png

OEBPS/httpatomoreillycomsourceoreillyimages100596.png
(]

Entersome ot

=

| o[e————

OEBPS/httpatomoreillycomsourceoreillyimages100758.png
P

P

Coon
Coes Coes

T sponsysmos

OEBPS/httpatomoreillycomsourceoreillyimages100878.png
Userito
[T —
[—

[13
Phocei [
Pasowad Change

OPant [
NewPasswod [
[—

OEBPS/httpatomoreillycomsourceoreillyimages100468.png
€ | EorFemal| Generl| Dok |

Cote st

¥ Ao yrtae Check ¥ Autondene
AT
Phuto s erkrs L

W Atoguickrfo
¥ mzonzates

Windo settngs
¥ Draganecrop Test Edting

¥ Detait toFul o vin
¥ procedure Separter

Crca |t

OEBPS/httpatomoreillycomsourceoreillyimages101020.png
Image

Fomat | Oata

tomersNavP
o | a1 |
L

DiConbooChIS 131 magaslamoe. of
1

OEBPS/httpatomoreillycomsourceoreillyimages100792.png
[Does This Obgect bast?

jectrame:

ﬂ Yes!

OEBPS/httpatomoreillycomsourceoreillyimages101134.png

OEBPS/httpatomoreillycomsourceoreillyimages100670.png
Bingo's Music Shop Album Report

Artist Name Yaar Title Label Name
e 199 Sphe [——
[E— 159 Mty ke aee [rmr—

Total Nomber of Albuns:

OEBPS/httpatomoreillycomsourceoreillyimages101144.png
[Database Interface Wizard

Solct th dtahase irace oges o wld o the wzad
Tocieste oy

¥ Besks Page
A page that et i conent o s dtbace

© SimssonFam
Attt st o o s

© g
sl poge o sl st iew, 2 okt and
it oo s oot U s web e

ol <ok

it

OEBPS/httpatomoreillycomsourceoreillyimages101168.png
Customers : Table
Custonm 10 Company Nomme Contat Nare Conact e
- Fumaste o Anders S Rapresentae

Access Smart Tag Demo: ALFKI Quer

[et Tog Actons | Gpen Gustomer Farm
4 Bintar 300 Deliatocase e 8 Open Customer Report

OEBPS/httpatomoreillycomsourceoreillyimages101104.png
t Properties - Northwind

Penisirs |
Object: |6 vwiShipperList (dbo) B

s defed datsbase e pic
losJpubl. it parmisions o s cbct.

Lt
€ Lit oy sersusercofid dabase

[ees/D b Fces/Pubi SELECT WSERT UPDATE DELETE EVEC DRI

€ SALFsHang

O T O T O TTo -

Cobmes

|

OEBPS/httpatomoreillycomsourceoreillyimages100496.png
= 3

Music Type | Apr [Aug [Dec | Feb [Jan [Jul [Jun | Mar | ay | Nov] Ot Sep
FemaeRok 2 3 1 5 1 4 3 5 4 1 3 B
Ciassicat b

[comeay T

iz 2 f

ek 2

Rock s ' 2 1 113 2 14

[Record: LT Tl os

OEBPS/httpatomoreillycomsourceoreillyimages101176.png

OEBPS/httpatomoreillycomsourceoreillyimages100510.png
The Diller Family
4567 Planet Road
Kansas City KS 19284

Aleis Jonas.
Luthor Towers
Anytown, KS 19000

[T EN | gyt CITRT

Lex Diler
Luthor Towers
Anytown, KS 19000

The Stevens Family
Kent Lane.
Smalville, AK 87623

OEBPS/httpatomoreillycomsourceoreillyimages101170.png
istry Editor - alx

Registry _Edit_View Favorites _Help

= O ccesartie [Name s Ds
= D pcresssmartTag stictors || B(Defat) REG_ST (750058 4B0A 444N BIAS ACDFOAC
o

© L) sccessherpiste
o D AecSyne AccSubhtrtander | Ymrene,
= D ectyne Accsbhitronder || O

reranieigg| LAY
L1 T —
My Corrputer\-KEY_CLASSES ROOT\AccessSI e s

o | o

NE

OEBPS/httpatomoreillycomsourceoreillyimages100928.png
[- O[]

Record: —

OEBPS/httpatomoreillycomsourceoreillyimages101002.png
1K)

Teplatiane [t <]
TenploPat K\Progan ks s Ofce\Dfcel 0, \Tonples Preseraier
SevePresngints [Foeem

CooingSide. [

sy Test yinmubwuumnmu

OEBPS/httpatomoreillycomsourceoreillyimages100934.png
[oot | ezt B
Tt BT
oo o R —
m o Yoo et ors poseed 7
[p—
Gt | ok |
Fedsee rgvee
o vaes i,
&= id name.
i o i)
sy

anfat e

OEBPS/httpatomoreillycomsourceoreillyimages100644.png
Lot Okt [ORREEREE .t

o
LestOdesOver [0

OEBPS/httpatomoreillycomsourceoreillyimages100690.png
R e S |

romat ooa | eert | er | 0 |

RecordScrce - SELECTticompanyidrossos.” RO Corpanys
Fier

iy

ow Fers ves

oweats ves

ow oeleters ves

o A ves

Datany 1o

Recordet Type . Dset

RecordLoks talods

Foth Dk e

OEBPS/httpatomoreillycomsourceoreillyimages100822.png
-

OEBPS/httpatomoreillycomsourceoreillyimages100660.png
Amberley Enterprises Lic
50 Ficst Stvest

Suite 150
Ottawa, Cutario AIZ 3R7

Contract Conditions:

INSTALLATION: The conractor shal furnhand sl theprembes of e sbserier catd at
— e i larmsystem andlor ey upment:

Ann's Kitchen
28 Souta Sireer
Boston, MA 02211

Contract Conditions:

PRICE: Theprie forthepurclase and intalain s . Paymen shallbe made s
follows: S thall male 2 ane. e dewn paymer 1 B i o uchas of
and " subsequentpamens of ona monhlyhase. There shallves T pex

‘monih penaly fo e payment. The sk o agres Tt wll ot e e the shem syt and o
jrrsiony

OEBPS/httpatomoreillycomsourceoreillyimages100634.png
rdered: August 1992
jon Tl Enporsisiony A ol Carsthicn 22

Ordered: September 1992
i Camsdsprpmacs il 67

oo 12,um B
- [e——.

Wesa0F

s
sl
e

et
Srer

sma
5010
s

S

Pa— ey

OEBPS/httpatomoreillycomsourceoreillyimages101030.png
Custom Record Count Text

oz ek 2328

W PIEe——p—

OEBPS/httpatomoreillycomsourceoreillyimages100594.png

OEBPS/httpatomoreillycomsourceoreillyimages100604.png
Regsy e o rovates o

EET o o o
© Cyadie |y e (abororse)
S Spaton e B
+ 21 e ey e B
= S e B
& Qe Er s >
Pt = .
© Do comntrs
+ Dome
& Dpoves
£ 21 e ey s
2 Ll remees
SITE Al

iy Compuber | KEY_CLBRENT USERScfiware V0 rd VEA Program SeiragiFern SaesfmorePos B

OEBPS/httpatomoreillycomsourceoreillyimages100860.png
[l Customers Form (-]

Qstomertts [T

T s
L

addess: [J
an T see T o [T
o [.

Recods 14l I > I boe] of 502

OEBPS/httpatomoreillycomsourceoreillyimages100580.png

OEBPS/httpatomoreillycomsourceoreillyimages100904.png
§) To Sy W hs encoded o b, Tor<pan o b, you it us th o werkrous e
1 o e create, b dosng Acces andrecperig .

OEBPS/httpatomoreillycomsourceoreillyimages100776.png
= Fill by Changing RowSource.

PR
C ou cicaeq
© ot

oy Fobury Vorch
honosere [[
jrascans) i i Sepenber

SanuaFaryMascr: | Qoo
Ay
it Soptonbor it
NovenbeDecentr

Novenber Decerter

OEBPS/httpatomoreillycomsourceoreillyimages100546.png
sk Type
Rocording Label

-

AbunType

L b P —

ot h s

Record: 141 |7 » [nve] of 65

OEBPS/httpatomoreillycomsourceoreillyimages100648.png
Sory, o ecds mch these kel

OEBPS/httpatomoreillycomsourceoreillyimages101118.png
Do - © B B P g rees Brots @ 3 i 3]+
e [ez st ore et 0=
s ichal J]APNT sy D) Soeds J)Guook oGt leshot >

1) Web Part Page

P e 500 2 =
Suzonne hte a0 o w0
e Gerard 200 o 2
Thomas [1300 1 =
sans Eissbotn 1300 1 S
Geart Comteck a0 o a

toms 11010) 1ot

&l 9 emet 7

OEBPS/httpatomoreillycomsourceoreillyimages101074.png
Openafile
oL
a5t
12
ey
B e e,
e
1] Bk Datbose
5] Bk oo cces o

B3] roecyEestng D)
b (e Sy

New from existin e
) roos e

New from tempiate

] Gerera Temples,
[[———

) AP,
[EReS—
¥ stomat sty

OEBPS/httpatomoreillycomsourceoreillyimages100534.png
0]

Account | Amourt | Date | Aging [+]
»|200 5000 1220200 130
200 $000 1220200 130

100 85000 1260200 130
oo $29000 1115000 31 8

200 00 1050200 51 0
200 $29000 1032000 91120

200 B0 920200 91120
e $000 7280000 121

100 45000 1872000 121

100 S0 B2 |

[Recorss 1l 77 » Inloe]of 10

OEBPS/httpatomoreillycomsourceoreillyimages100968.png
9 Snom vtde wndows crly

OEBPS/httpatomoreillycomsourceoreillyimages101088.png
Ervioyest>
Losthame
Fratare

e
THofcaesy
athoate
advess

a

Regon
Poatacade

Cautry
Fonephors

o
oo
Gl
oty
i

ko
Leveng

OEBPS/httpatomoreillycomsourceoreillyimages100530.png
iryAging : Crosstab Query
Account | 1:30 | 3160 | 6.9 | 91120 | 121

[3]i00 000525000

e s se0 00

oo $3000 535000

[amo 0w

Recod WL [T 2o s

OEBPS/httpatomoreillycomsourceoreillyimages100682.png
Compa

Fields

iowrari

ties Report ’Se(up

Sorting options

o][&

@ lnscaring & [Doscendng] | _

. a|
c &l
e e

o

OEBPS/httpatomoreillycomsourceoreillyimages100470.png
tane: [Soverzon %

Ty >
Cab e
 Funcien

 propary
Scope

e
Pt

I AlLoc varaios s Sttes

OEBPS/httpatomoreillycomsourceoreillyimages100802.png
eveanes

ol ks, cfes, e,

O]

ocor and o)
= (6
=, :
Product Name: (Cha: I Discontinued]
Guaniiy Per Unit. 10boves x20bogs 1800
Product Nome: Chrg T Discontinued
Quaniity Por Unit: 24 12czbotles Unit Price: | $180

Recordi 141 || 1 > [ibsloie

OEBPS/httpatomoreillycomsourceoreillyimages101106.png
View | ke | Lookee| Dt |

on: o

optins r
] 2}
| -

-

™ BindTo shema
[T

P oo | o————
-

— rmer -

pesepton: [

S0t Compent

=

OEBPS/httpatomoreillycomsourceoreillyimages100724.png
£ Available Printers

sl P ot

OEBPS/httpatomoreillycomsourceoreillyimages100940.png
Rcordis kb user: ki
o SALFIH-

OEBPS/httpatomoreillycomsourceoreillyimages100964.png

OEBPS/httpatomoreillycomsourceoreillyimages100874.png
& Fomreader
€ e

Uselo

Pt e unb

Coone | [bend
| eacossi: | [irbos o

Frevet [oreses Adancad s
€ Foam reer

Posanrd Coore T

T

[v

ot —

OEBPS/httpatomoreillycomsourceoreillyimages100952.png

OEBPS/httpatomoreillycomsourceoreillyimages101110.png
Select ists
‘Seect he b that contain ths it vt k.

Uk optens
 rkto oo o mere s
& Unkto o o mere s o a1t

ERT— ¥ Setieve 0sfor o cobarns
= i ot dply vaes -
D% Sl thscpn £y werk
o 2kt the ochup e,

o | <o

OEBPS/httpatomoreillycomsourceoreillyimages100810.png
£ Survey F

»

M= e

s [T
L |
L L —
Rating Worst

w

cacq 64
1020364 8

[— liw o

Records 141 [T > [ibsf o

OEBPS/httpatomoreillycomsourceoreillyimages100522.png
e

=

=

e

KIN

SGCE)

OEBPS/httpatomoreillycomsourceoreillyimages100902.png
tep

Thas sl th formation the v e t vt your
secrty-rhanced dsbee

What e o youlke o the b copy of you unsecured
ey

e —

tmprtant
orcorelatig 5 ok, the waard il ey reprt o the
Setings Lo crete the it and rous 1 Your kYO
hamatn . Keep e fomasen, b vl noed
Vo vt e recrests ot o e

™ Dipoy Hob on custoriz searty.

ol <o Erih

OEBPS/httpatomoreillycomsourceoreillyimages100480.png

OEBPS/httpatomoreillycomsourceoreillyimages100506.png
iryLabels : Select Query [=1E3)
Rosidenis | __LabeName | Adivess | ity | State[Zp |
D 2 The Diler Famiy 4567 Planel Road _ Kansas Cit K5 19264
| 1 Lox Diler Luthor Towers Anytown KS 19000
1 Alxis Jones Lithor Towers Anyfown KS 19000
2 The Stevens Family _ Kent Lane Smaliile_AK__ 87623

[Fecords Wl il 7 s nbfors

OEBPS/httpatomoreillycomsourceoreillyimages100890.png
Start

P Include

Cancelbuton
[roccompieE

Sance|

OEBPS/httpatomoreillycomsourceoreillyimages100770.png

OEBPS/httpatomoreillycomsourceoreillyimages101116.png
Ths dtabos ses aclom OLEDS comnecion 2ng Ener ot
et cerect o e d3abaca.
Cornecion g

Prondeciicos 10 OLEDR £ 0D s Soucer
el Bonk A5 02 i

Thooks

OEBPS/httpatomoreillycomsourceoreillyimages100474.png

OEBPS/httpatomoreillycomsourceoreillyimages101178.png
Sprion Compare tavabaze T

privae s comcelcuieee Click)

Ibitsg.Captton = "hves of cirele: ® ¢ oir.real)

OEBPS/httpatomoreillycomsourceoreillyimages100576.png
[e

OEBPS/httpatomoreillycomsourceoreillyimages100806.png
Buld er

o e hezo et »

e To 3

| Taporor,

=%
pae

o

Pl Coor

Speslfect

properties

OEBPS/httpatomoreillycomsourceoreillyimages100816.png
B8 Query Timer

L e

Tet [Eoreare oes i mear o FunTest
Decrpton:[dencrsts o esechen cpimasion —

Recods 10l (7T > [iloa of 5

oumy Desipion
¥ Javinan] [TestAnd Mo rdeees = 2
EIE]
o oo oo v
o et
sects WL I s lubafors

OEBPS/httpatomoreillycomsourceoreillyimages100618.png
Company
Phone
- | adsesst

adgens =]

(e & (s) & 28]

n ot oo |t [ove W |
pr— [R A
= S AR
i e
epage sPa Decnd oz

sty
N e
et

oy
R

OEBPS/httpatomoreillycomsourceoreillyimages101008.png
nter Paragraph Information =13

»

Sida b
Otiectunber
Possgaphiumbes
ndert Lol

Tou

FontNare
Fontsie

Color

Shadon

Bt

™

Ui

B

=
| —
| —
| —
—_—
| —
| —
o =

Record: 4L [T > [n1ve] o 53

OEBPS/httpatomoreillycomsourceoreillyimages101162.png
avaiaie st Toas

I Francel syntel
7 Locs estrr Rt
T pecsntiame

St TagOetals

st s | o |

OEBPS/httpatomoreillycomsourceoreillyimages251695.jpg
Solutions to User Interface
and Programming Problems

O’REILLY* Ken Getz, Paul Litwin & Andy Baron

OEBPS/httpatomoreillycomsourceoreillyimages100864.png
By SRS
2D adtrewvabe ot

OEBPS/httpatomoreillycomsourceoreillyimages100938.png
& Employees

Employees

Ld
Erpeel [T

Fesane E—
LostNare. Er—

i [emeseiane

VokPhoe [TETEEEET Euenden [
Recod: 141 ([T 3 [nlro] o 5

OEBPS/httpatomoreillycomsourceoreillyimages101000.png
A e =
T =
e =
R s B
SR -

! 20Te oy 3

encaptre 10Tyoe Lo
encapure £ Togbar Favartes 10Ty

oo oo

Nerozsft Bl 110 Opect Lbrary

Locaton: Ciprogram P izosof Ofce OFPICELLXCEL BXE
Lanpusge: standcd

OEBPS/httpatomoreillycomsourceoreillyimages100996.png
etk Bl - Rosla,
Db oo g e Dok
EECELIE Iy
Ot Aa

TS

R

Productam

R AT

[Cite 6 s
Mirge st
Rachts Coutoratt
Comaber P
ot s s

(rocchi sinuers e
eninip Ored opos
4 et

10 o T

11 e Sasmhons

2

)

in

s

i

T
2
3
i
i
]

[Top 10 Products Chart

Caransn s
Wesntros s

OEBPS/httpatomoreillycomsourceoreillyimages101018.png
Customers 1-10.0F 91 DTS HUYY R

OEBPS/httpatomoreillycomsourceoreillyimages100768.png
s m

.

3 [}

2 4

! 8

a0 LU

ina) sws) N S0
ey Sonmsady Stasaacc
e & s

St e S
ke Eita it

OEBPS/httpatomoreillycomsourceoreillyimages101232.png
<Carlo>1</CariD>
1154 Mini Gooper< /1754 -
<Model>8</Model>
<110 20000< P
</car>
Carlo>d</CarlD>
<MakesFord</Iake>
o Mustang- el
P10 25000/ 1o
</car>
Epics
<Carlo>S</CariDs
sk Toyata< el
<Model>Gamry</Model>
P10 200007 P
</car>
</dataroot>

OEBPS/httpatomoreillycomsourceoreillyimages100888.png
(el Font | cotr |
P—

B0y [orm]| avreusssoin
Dalensh [Sramomm =] | Dayecteck
MoahLengh [Saenovomm <] | HoreenalGid
T e A

o e

o X

0

OEBPS/httpatomoreillycomsourceoreillyimages100614.png
Bingo's Music Shop Album Report
Music Type: Rock
Years: 1960 to 1979
i e Soar Tt Labet s
v o T cata
R e
pesron o e cxta
P - =
oo o15 e camin
[— s somtn coma
samieren pE— cuta
pager 1L AT 2 L] s J

OEBPS/httpatomoreillycomsourceoreillyimages100558.png
N e s T (S v e e
o B (e i
- = z z z z

OEBPS/httpatomoreillycomsourceoreillyimages100804.png
& Categories. [-[C[x]

Catogoy Name: [Pabrito
B —— £
= doscition
nd

Product Name: [Chi I i ,4j

Quaniity Por Unit10bores x20bags Unit Price: | $1800
Product Name: Charg ™ Discontinued
Quaniiy Per Unit 2412z bl Uni Price: | $13%0

Recordi 14l ([T > Inbslois

OEBPS/httpatomoreillycomsourceoreillyimages101158.png
Startup [2]x]
Appkcaten e Ceploy Frnoge: =
i =

Soscten con: Oty Dotase Wedow

| ——— T ¥ Dy Stasr
=

Cance

et sttt
Tt 2

P Monritbns i T

7 ot Bt 5 o T e hors

¥ Use AcessSpecil oy

(show Daabase Windon, o Innedits
Windon, Show V5 Wi, and P Exeatn)

OEBPS/httpatomoreillycomsourceoreillyimages100552.png
Join Properties [Z1x]

Lt T s Rt TateNane
[gees] [SEnpbeest -
et Coba e Rt Colrn e

[|
11 Crly ke rows e the ined fildsrom bth tals re e
& 2: oo AL roords o Wnvioyee! ad ly thosa recods fom

WiEnoloyess 1 sber he e e 0 sl
€ 3 Inchae AL rcords rom WEloyees. ' and oy toserecords rom
WiErcloyess vhre the ined s o o35

[

OEBPS/httpatomoreillycomsourceoreillyimages100556.png
a =101

EmplyselD | Firstams | LasiNama | Supaniaor
T Shamen Doad
il 2Anssima Batencout Shannon Dodd
m Jlaws Fems Geofiey L
i ACHod Felds Guofiey Livn
m SMebin Knecht Shamnon Dodd
i 6 Max Powsll Geofiay Liwin
m 7Sim Red Geofiey Liwin
m 81k Gulate ooty Liwin
7 9Wilm Max KikGulate
i 10 Geoftey Livin Shannon Dodd
| (AutoNumber)
ol | WINPT}

OEBPS/httpatomoreillycomsourceoreillyimages101142.png
[Database Interface Wizard

FrortPage s datcted thtyour page wideply bost
Goog:

i wiead il comnact your st . dtsbase Wk
voud youlletodo7

 Createanew Microsct ccess® dtabass i your Web s
& U gt das e

I —

 Connectaan e desbase

U anple dt s cornection (orthwind)
bt s ot hizhose

ol it

OEBPS/httpatomoreillycomsourceoreillyimages100612.png
aryAlbumsbrm ; Select Query

e |

v et T 1o
[statng o) e
[erarmeact e

et
T

i i s ™
7 2
amse] — Eavem(aotrayes

(TN}

OEBPS/httpatomoreillycomsourceoreillyimages101120.png
me Documents and Lists Cre

Web Part Page

Sortnd Group..
Bor..

Congeional Formatog.
e Part Connectins..
s Pt Fropertes.
Refresh D

Hatthen

Gterms 3 to 30710

OEBPS/httpatomoreillycomsourceoreillyimages101044.png
Data Connection Wizard _Finish

‘Save Data Connection File and Finish

Enter e s descrption o yur e Dt Corpecton l, and prs i

i
eady o

oo,
™ savepasswordnle

it

Searh Kepwords

& concel | <ok et

OEBPS/httpatomoreillycomsourceoreillyimages100972.png

OEBPS/httpatomoreillycomsourceoreillyimages101136.png
The lowing et shows the questons curecty deved or
i e Yo may e Guesions, of ek e s
by slctng n e o e ad e esie e
v .

T e
2 Lahione
380
=

OEBPS/httpatomoreillycomsourceoreillyimages100568.png

OEBPS/httpatomoreillycomsourceoreillyimages100980.png
nsert | Open Actvate N
Msert| open | Acovate | @B LY
weet| open | Aot [
5

OEBPS/httpatomoreillycomsourceoreillyimages100578.png
= =] [spenectan

option Compare Database
option Explicit

Private Const conwhite = 16777215
Private Const conGray = 12632256
Private Const conIndent = 2
Private Const conFlat = 0

Public Function Specialeffectenter ()
on Error GoTo HandleErr

Set the current control to be inder
Screen.Activecontrol.specialEffect = conIndent

nitrol's background color to be
ctivecontrol.Backcolor = conshite

Exithara:
Exit Function

Handlerr:
MsgBox Err &
Resume ExitHere

End Function

& Err.Description

Public Function SpecialEffectexit()
on Error GoTo HandleErr

|= «

OEBPS/httpatomoreillycomsourceoreillyimages100650.png
ot
Business Addresses Business Addresses

Adiess!
| gz

=(Ci) & (el) & 25]
¢ conony

T
Prwiod on” 8 D) g £ Page)

OEBPS/httpatomoreillycomsourceoreillyimages100538.png
tercrade

o

e
Tae
shon

e

T

Ceteraaie

ader

Elosie

2]

o)
oo (B o0 A (B o]

OEBPS/httpatomoreillycomsourceoreillyimages100910.png
Microsot Access has converted D:\Cookbuok\CHIO\10-02mdb (o the Design Maste or the
@ TcrEIm e A

vyt Dasin Mt et changes o th dtabse st ovsar, i chianesc b s 1
Dosnasr o s e,

OEBPS/httpatomoreillycomsourceoreillyimages100900.png
Howyou can s usrsto raups o werkroD
oo e

D0 youuantto chooe which grups s blons 5, or chcse
[viich sers belong o 5 7057
P (© Skct s i e e 0 1o,
€ Selct o and assign users o the grup

Goporusnmefar]

E s | _cws | we> | _ow |

OEBPS/httpatomoreillycomsourceoreillyimages100762.png

OEBPS/httpatomoreillycomsourceoreillyimages100896.png
These cptiona seurty grup accunts e define specic perissies s the
usrsyou w5550 3 e roup.Cck 1o 050 1t 8 o'
o

What groups o youwant o nchein v woraroup dernatonle?

e oo e
” DECTETNN o o
I Byruspemissions ol

I~ Bewotataes Gouppernsies:

I~ By esoners T g sl s o e dta bt
I~ Byreaony virs o dign of e s cos,

I~ Do vt Users

Each roup i ricusy et by ecoded vk generatedrom the conbinton o 5 e and
£5 G100 I, i = o s shanuer 19 423 chradors o

o consl <ok | mee> et

OEBPS/httpatomoreillycomsourceoreillyimages100898.png
4

i o o

Eachuser s riquely erefed by an ncoded v generatedrom the s e and PD. The PO

Mo you can ad users o your werkgroup ot e and s oach usor
pasonord and e el 0 (D) T ek & pasomard o I, ek e

Fim oo the e,

Whatusrs do o went n your wsbgroupformston I

e
passord
[CrEr—
[
(Crrrar—

a4 e User

s sphanimork srng 420 haracters .

tep

ol <o | mee>

Erih

OEBPS/httpatomoreillycomsourceoreillyimages100872.png
=] £

@ Binep i Binspie
[EPraeas Co o CHI I £ I
Birspti Bimsptie
—T —T
Birep i Bimepfie
3 7
—T T
Binsp i Binsplie
4

8

Nametossveunder [e

OEBPS/httpatomoreillycomsourceoreillyimages101222.png
e
dataroot i="urn:schemas- microsoft-c
="hitp:/ /vuvive. w3.0rg/ 2001/ XMLSchema-instance’
LSl o= qryCustomerPreferences.xsd
~'2003-11-16T18:20:33

<fxmi version="1.0" encodin(

12me- Fouquet, Gearge </ zric-
king>1-
Porsche /17
Viodel-Boxter- 1o
JaryCustomerPrsfersncess

<qryCustomerpreference:
- Melster, Frederika</1 2z
anking> 1</Ranking;
V124~ Mini Cooper-/11:4=-
Model8</Mor
/aryCustomerPraferances:
<aryCustomer
- Mister, Fraderika /11
anking>2</Ranking:
ok Lewus <13
Model>L8430/ Mol
/aryCustomerpref
aryCustomerPrefer
{2 Smathers,
Ranking>1</Rankin:
Lowus <112
L8430/ Vodel>

OEBPS/httpatomoreillycomsourceoreillyimages101034.png
[® Data Link Properties

i Coontin | cnced | A1 |

Spocyth o o connect o 0DEC dte
1 Specty the souce of gl
© s o serce s

—

© Usocornacionsirg

2 Enterlomation oo ot he s
e[
e

I Bk passwod [~ Alon saving pasvend

e p—
[|

e Comectin

o Concel Heo

OEBPS/httpatomoreillycomsourceoreillyimages100478.png
ot | oeta
ontote
e
OncaFoc
CntosFocs
o
Cnon ik
Coase down
pitiomatis
oney oo
oo
s

et i)

OEBPS/httpatomoreillycomsourceoreillyimages100704.png
Language Version M[=] E3|

AccessVordon. 110
Acosss Pt Foke

Longusge Vetion ——
AnedcanEngish

OEBPS/httpatomoreillycomsourceoreillyimages100886.png
ActiveX Controk ocxCab
|

fomst O | v | O | o0 |
priy

ok ases Caendr
ey s Cends
Enatid ves

Locad o

OEBPS/httpatomoreillycomsourceoreillyimages100988.png
T Usearays ater than
g e

e

e

Automation
=

OEBPS/httpatomoreillycomsourceoreillyimages101198.png
Inport optons
 stucursOnly

© Stnctre o Oata

* hopend DattoExstng Taias)

OEBPS/httpatomoreillycomsourceoreillyimages100844.png
i =

© Costatin Pt ————
& ossfonEle Tk L e |

™ Dilay a5 ko

Reak

et otk o e a2 cec ity
et 5 tht youmay ot te ks he
appication which st £

OEBPS/httpatomoreillycomsourceoreillyimages101094.png
Record Scurca G
Fier

oy

ow phers

oweats

o Deetirs

ow sdnses ..
Datanty

RecordScrca b = :I

Rocordset Type - Updotalesnapshc
Wahacars 10000
Servr Fier

OEBPS/httpatomoreillycomsourceoreillyimages100502.png
e e e e
Tk gty s i a3 e |
S = = =

Kl

OEBPS/httpatomoreillycomsourceoreillyimages100520.png
Query Criteria HE=IES

Choose Crrs
€ b oot

@ e speciied ot

custtiabe: [58
Show the resuts

a Bz
Name | Score
DET] 0
Theodore 99
Cecela 100
=

Rewoh 1l [1 o Inbafo

OEBPS/httpatomoreillycomsourceoreillyimages100508.png
-10[]

© [LosiNams | FraName | __Address | City _[Stte|_Zp
TOer Gk 4567 Planel Road Kansas Gy kS TG94
2Sieens Manna KentLane Smalile AK 87623

m 3Sieens Jonathon Kert Lans Smalle AKX 7623
ADler Lois 457 Planet Road Kansas Ciy KS 19284

m 5Dl L LutorTowss Antown kS 13000
Gunes Aexs LuhorTowers Anytown KS 19000

5] utonumben

[recorts el JT —+ s Dbslar 6

OEBPS/httpatomoreillycomsourceoreillyimages100818.png
a 0 M=

Cuorylame T Reps | Avrme]

ananat Ed 02185
Casns2 = o0z
ayanss = o006
Rocords 1l [1 2 ()l 3

OEBPS/httpatomoreillycomsourceoreillyimages101240.png
Data | Schema Presentatin |

1% B rsetaon (T4 Sl 53)

o

 Glrt)

 sener ()

ke e s

e

=

 Dont e s

R

[t e

i |] oo

OEBPS/httpatomoreillycomsourceoreillyimages101228.png
| Adchess | :\est\.rwelsted xml-

<ot version="1" ancoding="UTF-8° 2>
Sataroot s oomums chames-microsoR-comoficedat
<Can>1</carn>
1M Goaper-/15
CHoden Bl
20000
provs
<can
<Catoars.
ComtlbaA/cuatins
S Smathers
“Custenana: Millcant < CustEnames
SCostomars
oaler>
<Deslerin>1</osslens>
<00 Flaom Ford< £
<naers
D

009-11-16721:51:29"

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages100584.png
Option Group To Text -0
Conents G *
o ups,
o fedts
2 Usmal

2 bitrre

Records 14l (T > Inlbsfof 4

OEBPS/httpatomoreillycomsourceoreillyimages100654.png
Software Unlimited
Mn Sueet

Suppon Services
Sama Barbara CA 5301

Pined o0 7120

OEBPS/httpatomoreillycomsourceoreillyimages100746.png
ustomers Form- [-[o1x]

Customers Form

Fan

[
L R
L
e FEE
o [St VA 2 @

P [T e | —

Reco 14l I 5 > Inlbef o 6

OEBPS/httpatomoreillycomsourceoreillyimages101224.png
Data | chene| Presnisin|

 eportons
P [P ——
~Ee o
Es NP Hrdepiet
3 .
T soe
e,
T/ | Eoteg: [oFo <]
et e
Friwatesico i -
o o carcn

OEBPS/httpatomoreillycomsourceoreillyimages100728.png
= Report and Change Print Layout Settings

Choose asport
[fepeet = [Eaeseiina
Mg) e Lyt

T [0

Bt [T00m

Lk [0 © Down ben hciss
gt [(0m C coss tenDown
Gid Sotng: e S

N R
FowSprcng [T77ie e [Tm
Compucing [1507 [Samessbeal

[

OEBPS/httpatomoreillycomsourceoreillyimages100616.png
s | e oz |
em—
e FE—
L —
R [—

o sze
w3 e [los
I Sane Dot

ot Loyt

@ Dow, then s
 oss, then Do

OEBPS/httpatomoreillycomsourceoreillyimages101156.png
advacod | ntomatiosl | Ercr Cracing | Spele

Vew | General | EFod | Keybosrd | Databeet
Seactonbehaer
Bty endesad

 Fulyendosed
Eormtenpiste:
Cr—
Ropert onpltes
| —
(R ——
¥ S St Togs onFomd
¥ Use Windows Thmed Crtks on Forrs

o

Coree

| robscumes |
Foetrepons |

OEBPS/httpatomoreillycomsourceoreillyimages101084.png
options. BHE
T I r—
ven | ol EOtFd | kejooars | Dotarent | Femsiepors | pages |
Osfet fepectbesevr Gt
e ¥ Becord ranges
€ gereszenss ¥ ooumentceesne
© gt e searcn

Fiter by frm efes fr 120

Sronlatof vaues i oortamr s e o e
[
 Recrde s s fonmeel

» ey

e

OEBPS/httpatomoreillycomsourceoreillyimages101238.png
Address [F\pata\Test\CustomerPreferencesHTM.htm

Customer Preferences

Name Make & Model Ranking,
Fouguet, George

Ford st 2

i cooper s 3

Womber anked: 3

Meister, Frederika

i oper s '
Smathers, Millicent

Lenatsen |

Ford st 2

Womber ranked: 2

ondy, Novamber 17, 2003 rage 1651

OEBPS/httpatomoreillycomsourceoreillyimages100912.png
Figen bl pesgn tew X %o

Gecs

Tates

queres
Regarts
Pages
ooz

Hosies

A0S 006D

Grows
1 Fvorees

ccess 2000 file o

7] createatlo mDesgn vien
2] createtatlo by sig izard
2] Creste e by g e
& ticusoner

2y trcioree

o

OEBPS/httpatomoreillycomsourceoreillyimages101096.png
Passing Parameters [-[o[x]
Select royaly percentage: 7 =]

eosz7166
4e 205
TR

OEBPS/httpatomoreillycomsourceoreillyimages101038.png
[Data Connection Wizard [2]x]

Welcome to the Data Connection Wizard
i weard il bl you cornec o3 renote dk sce

E = o>

OEBPS/httpatomoreillycomsourceoreillyimages100526.png
e
Tate
Tas
Cuostab
S
s

oo s Partiorou oL L[t
(ecosiz ez
Goup Goxt, n

o beadeg ST Ve
[scenng

OEBPS/httpatomoreillycomsourceoreillyimages100734.png
Bepors
frepots

|

Devics [FPLIETEN

Over. [P Lee S S LS

Pot [P
7 Fintng o et et

OEBPS/httpatomoreillycomsourceoreillyimages100826.png
change Record Source Version of People Form. [-[C[x]

otoracoxds by chacging th forms Recrssource

st rumre 5 or. s Opsaionteck
oneor more s of st . 5160 seconds

© ——1
Frsne [-
e e ——
Conpany e S e
P L
P —
ay Freme s X zocom [

oy
Frone o
EecteDte

e ——

Records 141 [T > [ilbsfof 1

OEBPS/httpatomoreillycomsourceoreillyimages100796.png
FormMame

[FmCategories

s

[imProducts

i Supplers

+

Records 1l [1 b Inlsfor 4

OEBPS/httpatomoreillycomsourceoreillyimages101114.png
Comnectto 2 Database Server
Entrth sfomatin roqured o corvect o th dabase server.

e ST

B my-server
2 autenteaton:
" Sa i ornameand password inthe dta carnaction

= s
—

T
s Sl Sn-Cn sthantcaten requres Sarsboet ortal Server)

e astom cornectkn st [

e

OEBPS/httpatomoreillycomsourceoreillyimages100550.png
M=l E3

EmployeelD | FirstName | LastName | _ Supenisor
D 2 Ansolmo_ Bettencourt Shannon Dodd
| 5 Laa Farie Gaoffey Litwin
ACHord Fields Geoffey Liin
| SMebn Knecht Shannon Dodd
6 ax Powsll Geoffey Litwin
| 7 Sam Reid Geofay Linwin
8 Kk Gularte Geoffey Litwin

| 9wilam M Kk Gulane
10Geofrey Liwin Shannan Dodd

] (autobumber)

Record WL |l 1 o il o5

OEBPS/httpatomoreillycomsourceoreillyimages100726.png
P —
[PLIaze0n

OEBPS/httpatomoreillycomsourceoreillyimages100828.png
= units. =K}

Units e

U Gt "

Cand o oo
UrkNombee [
uritians L3V Assemblies R

s Corted o o
Connebtorenanto e || EE2 P - =1
Asntipunber [T | parts
P = I
Ui [T | Coue ks e

D —
R LI
e e L R

Recrds | [

PO —
Record: 14T _» [t ool o 2 Ftoec

OEBPS/httpatomoreillycomsourceoreillyimages100842.png
& The Western United States. HIEIE)

Moo e | e
13 e
o
=5

=
e
B

23| Arizons

OEBPS/httpatomoreillycomsourceoreillyimages100554.png
M= E3

Employeaid | Firsilame | Lasiama |

Stato | SuperssorD

] (uotumber)

1 Shannan
2 Anselmo
3Lam
1 Cifors
5 Melin
& hax
7 Sam
8 i
9 Witiam

10 Gaofiey

263 Skyine B

7927 Oceanside L. ilers Falls:
5205 Johnson B, Moss Hil

[racorts 0| |7 s [otlosfof 10

D
A
N
w
v
[
s
W
o1
s

1
10
1o
1
10
1)
1o

8

1

OEBPS/httpatomoreillycomsourceoreillyimages100754.png
Eee

i — |
ModanVae:

s

OEBPS/httpatomoreillycomsourceoreillyimages100518.png
-[0[x]

Album 10| Title [Date Purchased Purchase Price |
> 1 The Very Best of Ehis Costello and the £ 20511995 559
| 2Gish 12511991 5000
3 August and Everything After 2051195 $1039
| 4 Lite Pests of Czach Classics B9t 3500
5 Paradiso 12181992 5000
| 6 Mighty Like a Rose srB/aat §1299
7 With Tre Beaties ansoa $1299
| 8 Whats Hisl? 6771923 §1199
9 Tro Unplugged Collction a1t 5000
10 Rock N Roll 1/16/1985 5898
11 What | Like About You (and Other Romar 3/15/1980 700
12 Gordon 9671994 5000
| 13 Classics Volums & snansas 5350
14 Spike 71141990 5899
| 15 Outlandos DAmaur snansas 539
16 Stone Free: A Trbute to Jimi Hendrix 9671994 5000
| 17 Green airigan s1239
18 Last of the Independents 102561994 1299
| 19 Lv at the BEC 121511995 00
20 Dookie 96/1994

Record; 14| ¢

[~ 1o lubsloes

50 nnJ;l

OEBPS/httpatomoreillycomsourceoreillyimages100944.png
Employees s

[—
FestNane o —
Lasthane. Cr —

e e e —
WokPhone [FOEEEET Edersion [

[Tr———

Records 141 [T > [ibel o 6

OEBPS/httpatomoreillycomsourceoreillyimages100692.png
Comorer—iane Toesim s TCar Updaed

Foms ——— zsminvoiay, 01722701 (205 01722101 (5205
Tabes NSpihcconObicts e 9 480m O/ (548)
[Ve 017220 @136 01722701 (313)
Tobe: NSyi0bects 017220 (6195 01722701 13pm)
Tabes MerQuees 0172701 @196 01722101 (813)
Tobe: Neyimasmnstios 0172270 @136 01722101 15 5m)

Tobes zubinvericn I F59pn /11701 3pm)

OEBPS/httpatomoreillycomsourceoreillyimages101042.png
[Data Connection Wizard _ Choose Dat

‘Select Database and Table
‘el th Database and Tale|Cube i contans the di you went

St th dtabasethat contans th st you want

Bl

Name. Desarption adhed
E Cstomrs Custoers s, adksses, nd hone runbers. /1202001 111354
D sysaccassobcts prensynes

o) el | <o [

Eneh

OEBPS/httpatomoreillycomsourceoreillyimages101056.png
Vew | Gevers | Edrd | Kepowd | Ootasbest | FarmsRepons |
Pooes | adveced | ieematondl | Spelog | Tobesiouenes |

otk Coner e
sconnd: B
Mt RonCor: e]

Gopton Secton e [BACKGROUND-COLOR: tocble; COLCR: e FONT-WEIGH

Foser Sectin S [FORCER.TP teebhe 1o sl FONT WELGHT o

7 Uso Dofouk PogeFlder

| Ko=)

I Use Defauk Coonectin e

——

o] oo |

OEBPS/httpatomoreillycomsourceoreillyimages100774.png
B8 Do vents Test. =1E3

IEE

Run Code Without DoEverts

OEBPS/httpatomoreillycomsourceoreillyimages100684.png
£

Fiold) Fiold1
Felopresin | Sotorder |
=== Corpen Facendrg =
S i eupPrspertos
Gapteakr e
& ConparyFoote, Gaprosr e
et T Gupon Exhvae
o Supmev 1
SromADeO] s D 87 P KepTogether o

—

OEBPS/httpatomoreillycomsourceoreillyimages101086.png
" Text Box: Lasthome

romat Ow |t | over | 4 |
Canvoisoace Lstire
utves:

cefit e

jroien

Jrovsitat

ool

tosed, o

FierLoges. =
SrartTag

OEBPS/httpatomoreillycomsourceoreillyimages100784.png
[-Io1x]

<] [Testsum

aoprenar

ey

OEBPS/httpatomoreillycomsourceoreillyimages101026.png
Il
B [[Fatsre
o owr [
[el ey

« Customers 1-100F 91 YUY WY NGV

OEBPS/httpatomoreillycomsourceoreillyimages101132.png
[-5[x]

2a-)i 3

O=-0

N D o e B 37

e [okt st pone vt urversaace. . LY
ks LILCHA LIAPIET LD LlOwon L) cads L]Gone L Gasomet Ljbaben Ljmen

o 22 H £l
s et i =
St o o H
snarzeos coool iy orsnon 202 s K3
5072003 werer s ol v 1 B .
1872003 Haskacharss Hok st B1 H B

N

OEBPS/httpatomoreillycomsourceoreillyimages100814.png
e T [0 ORI

=

i

=

(ST G ey

=

o

r]

OEBPS/httpatomoreillycomsourceoreillyimages101200.png
18-01 : Database (Access 2000 file format) __MIEEIE)
~Open “Design New &
Obects [l Create table in Design view

T Tables | &l Create table by using weard

s @l Create table by enterng data

2 Queres | 5 o

3 Foms

4 Reports

N Make | Model | Pice
'3 Pages ¥ [N Cooper & 000
= Macros Loxus L5t &0
s Posche Eortar 4300
&3 D Ford Mustang 2500
Gows Toyeta Camry 200

OEBPS/httpatomoreillycomsourceoreillyimages100958.png
& Run and Wait Test

Run CHKDSK C:
Wait)

[

Run CHKDSK C:
No Wail)

R NotePad
|

OEBPS/httpatomoreillycomsourceoreillyimages100528.png
x]

o [Account Date | Amount |
> 7100 BEVZI0 §15000
| 210 1115200 $250.00
3100 12730200 §35000
| 4100 18200 45000
5200 9202000 $55000
| 520 1082000 325000
7200 1270200 §35000
| 830 7280000 §350.00
9300 10702000 $350.00
| 10,400 120200 45000
*]_(autohumben) 3000
Fecord; 140 [T [nlef o 10

OEBPS/httpatomoreillycomsourceoreillyimages101022.png
& Custom Nav Buttons BEIE)

Steamlined Navigation
| costomerio_company rame_____comactrome]

ara e Futttits i nrs
. oo T Enpereddsy blas A Tl
seour Brondte o s Hardy
s — [En—
s [SE— Hornatioos
o Bordepre s [R—
oo B Conidsprepardes vt sonner
s oo [res———
sorm [— Esehneon

Guarers 1100691

OEBPS/httpatomoreillycomsourceoreillyimages100932.png
& Users/Password Status___AI[a] E3|

Requery User List

—
£ Ve
o1 o
[izan Ho
Fa He
o Yo
P to
Thamas He
Tom Mo

OEBPS/httpatomoreillycomsourceoreillyimages101006.png
SideLajou

Inchake

Records 14l [T 5 » [iba of 10

