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Preface
In the digital information age that we live in, the amount of data has grown 
exponentially, and it is growing at an unprecedented rate as we read this. Most of 
this data is language-related data (textual or verbal), such as emails, social media 
posts, phone calls, and web articles. Natural Language Processing (NLP) leverages 
this data efficiently to help humans in their businesses or day-to-day tasks. NLP has 
already revolutionized the way we use data to improve both businesses and our 
lives, and will continue to do so in the future.

One of the most ubiquitous use cases of NLP is Virtual Assistants (VAs), such as 
Apple's Siri, Google Assistant, and Amazon Alexa. Whenever you ask your VA 
for "the cheapest rates for hotels in Switzerland," a complex series of NLP tasks are 
triggered. First, your VA needs to understand (parse) your request (for example, 
learn that it needs to retrieve hotel rates, not the dog parks). Another decision the 
VA needs to make is "what is cheap?". Next, the VA needs to rank the cities in 
Switzerland (perhaps based on your past traveling history). Then, the VA might 
crawl websites such as Booking.com and Agoda.com to fetch the hotel rates in 
Switzerland and rank them by analyzing both the rates and reviews for each hotel. 
As you can see, the results you see in a few seconds are a result of a very intricate 
series of complex NLP tasks.

So, what makes such NLP tasks so versatile and accurate for our everyday tasks? The 
underpinning elements are "deep learning" algorithms. Deep learning algorithms 
are essentially complex neural networks that can map raw data to a desired output 
without requiring any sort of task-specific feature engineering. This means that you 
can provide a hotel review of a customer and the algorithm can answer the question 
"How positive is the customer about this hotel?", directly. Also, deep learning has 
already reached, and even exceeded, human-level performance in a variety of NLP 
tasks (for example, speech recognition and machine translation).
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By reading this book, you will learn how to solve many interesting NLP problems 
using deep learning. So, if you want to be an influencer who changes the world, 
studying NLP is critical. These tasks range from learning the semantics of words, to 
generating fresh new stories, to performing language translation just by looking at 
bilingual sentence pairs. All of the technical chapters are accompanied by exercises, 
including step-by-step guidance for readers to implement these systems. For all 
of the exercises in the book, we will be using Python with TensorFlow—a popular 
distributed computation library that makes implementing deep neural networks 
very convenient.

Who this book is for
This book is for aspiring beginners who are seeking to transform the world by 
leveraging linguistic data. This book will provide you with a solid practical foundation 
for solving NLP tasks. In this book, we will cover various aspects of NLP, focusing 
more on the practical implementation than the theoretical foundation. Having sound 
practical knowledge of solving various NLP tasks will help you to have a smoother 
transition when learning the more advanced theoretical aspects of these methods. In 
addition, a solid practical understanding will help when performing more domain-
specific tuning of your algorithms, to get the most out of a particular domain.

What this book covers
Chapter 1, Introduction to Natural Language Processing, embarks us on our journey 
with a gentle introduction to NLP. In this chapter, we will first look at the reasons 
we need NLP. Next, we will discuss some of the common subtasks found in NLP. 
Thereafter, we will discuss the two main eras of NLP—the traditional era and 
the deep learning era. We will gain an understanding of the characteristics of the 
traditional era by working through how a language modeling task might have 
been solved with traditional algorithms. Then, we will discuss the deep learning 
era, where deep learning algorithms are heavily utilized for NLP. We will also 
discuss the main families of deep learning algorithms. We will then discuss the 
fundamentals of one of the most basic deep learning algorithms—a fully connected 
neural network. We will conclude the chapter with a road map that provides a brief 
introduction to the coming chapters.
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Chapter 2, Understanding TensorFlow, introduces you to the Python TensorFlow 
library—the primary platform we will implement our solutions on. We will start by 
writing code to perform a simple calculation in TensorFlow. We will then discuss 
how things are executed, starting from running the code to getting results. Thereby, 
we will understand the underlying components of TensorFlow in detail. We will 
further strengthen our understanding of TensorFlow with a colorful analogy of a 
restaurant and see how orders are fulfilled. Later, we will discuss more technical 
details of TensorFlow, such as the data structures and operations (mostly related 
to neural networks) defined in TensorFlow. Finally, we will implement a fully 
connected neural network to recognize handwritten digits. This will help us to 
understand how an end-to-end solution might be implemented with TensorFlow.

Chapter 3, Word2vec – Learning Word Embeddings, begins by discussing how to solve 
NLP tasks with TensorFlow. In this chapter, we will see how neural networks can be 
used to learn word vectors or word representations. Word vectors are also known as 
word embeddings. Word vectors are numerical representations of words that have 
similar values for similar words and different values for different words. First, we 
will discuss several traditional approaches to achieving this, which include using a 
large human-built knowledge base known as WordNet. Then, we will discuss the 
modern neural network-based approach known as Word2vec, which learns word 
vectors without any human intervention. We will first understand the mechanics 
of Word2vec by working through a hands-on example. Then, we will discuss two 
algorithmic variants for achieving this—the skip-gram and continuous bag-of-words 
(CBOW) model. We will discuss the conceptual details of the algorithms, as well as 
how to implement them in TensorFlow.

Chapter 4, Advance Word2vec, takes us on to more advanced topics related to word 
vectors. First, we will compare skip-gram and CBOW to see whether a winner 
exists. Next, we will discuss several improvements that can be used to improve 
the performance of the Word2vec algorithms. Then, we will discuss a more 
recent and powerful word embedding learning algorithm—the GloVe (global 
vectors) algorithm. Finally, we will look at word vectors in action, in a document 
classification task. In that exercise, we will see that word vectors are powerful 
enough to represent the topic (for example, entertainment and sport) that the 
document belongs to.
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Chapter 5, Sentence Classification with Convolutional Neural Networks, discusses 
convolution neural networks (CNN)—a family of neural networks that excels 
at processing spatial data such as images or sentences. First, we will develop a 
solid high-level understanding of CNNs by discussing how they process data 
and what sort of operations are involved. Next, we will dive deep into each of the 
operations involved in the computations of a CNN to understand the underpinning 
mathematics of a CNN. Finally, we will walk through two exercises. First, we will 
classify hand written digit images with a CNN. We will see that CNNs are is capable 
of reaching a very high accuracy quickly for this task. Next, we will explore how 
CNNs can be used to classify sentences. Particularly, we will ask a CNN to predict 
whether a sentence is about an object, person, location, and so on.

Chapter 6, Recurrent Neural Networks, is about a powerful family of neural networks 
that can model sequences of data, known as recurrent neural networks (RNNs). We 
will first discuss the mathematics behind the RNNs and the update rules that are 
used to update the RNNs over time during learning. Then, we will discuss section 
different variants of RNNs and their applications (for example, one-to-one RNNs 
and one-to-many RNNs). Finally, we will go through an exercise where RNNs are 
used for a text generation task. In this, we will train the RNN on folk stories and ask 
the RNN to produce a new story. We will see that RNNs are poor at persisting long-
term memory. Finally, we will discuss a more advanced variant of RNNs, which we 
will call RNN-CF, which is able to persist memory for longer.

Chapter 7, Long Short-Term Memory Networks, allows us to explore more powerful 
techniques that are able to remember for a longer period of time, having found 
out that RNNs are poor at retaining long-term memory. We will discuss one such 
technique in this chapter—Long Short-Term Memory Networks (LSTMs). LSTMs 
are more powerful and have been shown to outperform other sequential models in 
many time-series tasks. We will first investigate the underlying mathematics and 
update the rules of the LSTM, along with a colorful example that illustrates why 
each computation matters. Then, we will look at how LSTMs can persist memory 
for longer. Next, we will discuss how we can improve LSTMs prediction capabilities 
further. Finally, we will discuss several variants of LSTMs that have a more complex 
structure (LSTMs with peephole connections), as well as a method that tries to 
simplify the LSTMs gated recurrent units (GRUs).

Chapter 8, Applications of LSTM – Generating Text, extensively evaluates how LSTMs 
perform in a text generation task. We will qualitatively and quantitatively measure 
how good the text generated by LSTMs is. We will also conduct comparisons 
between LSTMs, LSTMs with peephole connections, and GRUs. Finally, we will  
see how we can bring word embeddings into the model to improve the text 
generated by LSTMs.
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Chapter 9, Applications of LSTM – Image Caption Generation, moves us on to 
multimodal data (that is, images and text) after coping with textual data. In this 
chapter, we will investigate how we can automatically generate descriptions for a 
given image. This involves combining a feed-forward model (that is, a CNN) with a 
word embedding layer and a sequential model (that is, an LSTM) in a way that forms 
an end-to-end machine learning pipeline.

Chapter 10, Sequence to Sequence Learning – Neural Machine Translation, is about the 
implementing neural machine translation (NMT) model. Machine translation is where 
we translate a sentence/phrase from a source language into a target language. We 
will first briefly discuss what machine translation is. This will be followed by a section 
about the history of machine translation. Then, we will discuss the architecture of 
modern neural machine translation models in detail, including the training and 
inference procedures. Next, we will look at how to implement an NMT system from 
scratch. Finally, we will explore ways to improve standard NMT systems.

Chapter 11, Current Trends and Future of Natural Language Processing, the final 
chapter, focuses on the current and future trends of NLP. We will discuss the latest 
discoveries related to the systems and tasks we discussed in the previous chapters. 
This chapter will cover most of the exciting novel innovations, as well as giving you  
in-depth intuition to implement some of the technologies.

Appendix, Mathematical Foundations and Advanced TensorFlow, will introduce 
the reader to various mathematical data structures (for example, matrices) and 
operations (for example, matrix inverse). We will also discuss several important 
concepts in probability. We will then introduce Keras—a high-level library that uses 
TensorFlow underneath. Keras makes the implementing of neural networks simpler 
by hiding some of the details in TensorFlow, which some might find challenging. 
Concretely, we will see how we can implement a CNN with Keras, to get a feel 
of how to use Keras. Next, we will discuss how we can use the seq2seq library in 
TensorFlow to implement a neural machine translation system with much less code 
that we used in Chapter 11, Current Trends and the Future of Natural Language 
Processing. Finally, we will walk you through a guide aimed at teaching to use the 
TensorBoard to visualize word embeddings. TensorBoard is a handy visualization 
tool that is shipped with TensorFlow. This can be used to visualize and monitor 
various variables in your TensorFlow client.
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To get the most out of this book
To get the most out of this book, we assume the following from the reader:

•	 A solid will and an ambition to learn the modern ways of NLP
•	 Familiarity with basic Python syntax and data structures (for example,  

lists and dictionaries)
•	 A good understanding of basic mathematics (for example,  

matrix/vector multiplication)
•	 (Optional) Advance mathematics knowledge (for example, derivative 

calculation) to understand a handful of subsections that cover the details of 
how certain learning models overcome potential practical issues  
faced during training

•	 (Optional) Read research papers to refer to advances/details in systems, 
beyond what the book covers

Download the example code files
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files emailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.
2.	 Select the SUPPORT tab.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box and follow the on-screen 

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of one of these:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for macOS
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Natural-Language-Processing-with-TensorFlow. We also 
have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used  
in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/NaturalLanguageProcessingwithTensorFlow_
ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "Mount the downloaded WebStorm-10*.dmg disk image  
file as another disk in your system."

A block of code is set as follows:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

Any command-line input or output is written as follows:

conda --version

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
"Select System info from the Administration panel."

References: In Chapter 11, Current Trends and the Future of Natural Language Processing, 
in-text references include a bracketed number (for example, [1]) that correlates with 
the numbering in the References section at the end of the chapter.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf
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Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title 
in the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be  
grateful if you would report this to us. Please visit, http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link, 
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website 
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, please 
visit http://authors.packtpub.com.
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Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and  
use your unbiased opinion to make purchase decisions, we at Packt can understand 
what you think about our products, and our authors can see your feedback on their 
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Introduction to Natural 
Language Processing

Natural Language Processing (NLP) is an important tool for understanding and 
processing the immense volume of unstructured data in today's world. Recently, 
deep learning has been widely adopted for many NLP tasks because of the 
remarkable performance that deep learning algorithms have shown in a plethora 
of challenging tasks, such as, image classification, speech recognition, and realistic 
text generation. TensorFlow, in turn, is one of the most intuitive and efficient deep 
learning frameworks currently in existence. This book will enable aspiring deep 
learning developers to handle massive amounts of data using NLP and TensorFlow.

In this chapter, we will provide an introduction to NLP and to the rest of the book. 
We will answer the question, "What is Natural Language Processing?" Also, we'll 
look at some of its most important uses. We will also consider the traditional 
approaches and the more recent deep learning-based approaches to NLP, including 
a Fully-Connected Neural Network (FCNN). Finally, we will conclude with an 
overview of the rest of the book and the technical tools we will be using.

What is Natural Language Processing?
According to IBM, 2.5 exabytes (1 exabyte = 1,000,000,000 gigabytes) of data were 
generated every day in 2017, and this is growing as this book is being written. To 
put that into perspective, if all the human beings in the world were to process that 
data, it would be roughly 300 MB for each of us every day to process. Of all this data, 
a large fraction is unstructured text and speech as there are millions of emails and 
social media content created and phone calls made every day.
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These statistics provide a good basis for us to define what NLP is. Simply put, the 
goal of NLP is to make machines understand our spoken and written languages. 
Moreover, NLP is ubiquitous and is already a large part of human life. Virtual 
Assistants (VAs), such as Google Assistant, Cortana, and Apple Siri, are largely NLP 
systems. Numerous NLP tasks take place when one asks a VA, "Can you show me 
a good Italian restaurant nearby?". First, the VA needs to convert the utterance to 
text (that is, speech-to-text). Next, it must understand the semantics of the request 
(for example, the user is looking for a good restaurant with an Italian cuisine) and 
formulate a structured request (for example, cuisine = Italian, rating = 3-5, distance 
< 10 km). Then, the VA must search for restaurants filtering by the location and 
cuisine, and then, sort the restaurants by the ratings received. To calculate an overall 
rating for a restaurant, a good NLP system may look at both the rating and text 
description provided by each user. Finally, once the user is at the restaurant, the VA 
might assist the user by translating various menu items from Italian to English. This 
example shows that NLP has become an integral part of human life.

It should be understood that NLP is an extremely challenging field of research as 
words and semantics have a highly complex nonlinear relationship, and it is even 
more difficult to capture this information as a robust numerical representation. To 
make matters worse, each language has its own grammar, syntax, and vocabulary. 
Therefore, processing textual data involves various complex tasks such as text 
parsing (for example, tokenization and stemming), morphological analysis, word 
sense disambiguation, and understanding the underlying grammatical structure of 
a language. For example, in these two sentences, I went to the bank and I walked along 
the river bank, the word bank has two entirely different meanings. To distinguish 
or (disambiguate) the word bank, we need to understand the context in which the 
word is being used. Machine learning has become a key enabler for NLP, helping to 
accomplish the aforementioned tasks through machines.

Tasks of Natural Language Processing
NLP has a multitude of real-world applications. A good NLP system is that which 
performs many NLP tasks. When you search for today's weather on Google or use 
Google Translate to find out how to say, "How are you?" in French, you rely on a 
subset of such tasks in NLP. We will list some of the most ubiquitous tasks here, and 
this book covers most of these tasks:

•	 Tokenization: Tokenization is the task of separating a text corpus into atomic 
units (for example, words). Although it may seem trivial, tokenization is 
an important task. For example, in the Japanese language, words are not 
delimited by spaces nor punctuation marks.
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•	 Word-sense Disambiguation (WSD): WSD is the task of identifying the 
correct meaning of a word. For example, in the sentences, The dog barked at the 
mailman, and Tree bark is sometimes used as a medicine, the word bark has two 
different meanings. WSD is critical for tasks such as question answering.

•	 Named Entity Recognition (NER): NER attempts to extract entities (for 
example, person, location, and organization) from a given body of text or 
a text corpus. For example, the sentence, John gave Mary two apples at school 
on Monday will be transformed to [John]name gave [Mary]name [two]number apples at 
[school]organization on [Monday.]time. NER is an imperative topic in fields such as 
information retrieval and knowledge representation.

•	 Part-of-Speech (PoS) tagging: PoS tagging is the task of assigning words to 
their respective parts of speech. It can either be basic tags such as noun, verb, 
adjective, adverb, and preposition, or it can be granular such as proper noun, 
common noun, phrasal verb, verb, and so on.

•	 Sentence/Synopsis classification: Sentence or synopsis (for example, movie 
reviews) classification has many use cases such as spam detection, news 
article classification (for example, political, technology, and sport), and 
product review ratings (that is, positive or negative). This is achieved by 
training a classification model with labeled data (that is, reviews annotated 
by humans, with either a positive or negative label).

•	 Language generation: In language generation, a learning model (for 
example, neural network) is trained with text corpora (a large collection 
of textual documents), which predict new text that follows. For example, 
language generation can output an entirely new science fiction story by  
using existing science fiction stories for training.

•	 Question Answering (QA): QA techniques possess a high commercial 
value, and such techniques are found at the foundation of chatbots and 
VA (for example, Google Assistant and Apple Siri). Chatbots have been 
adopted by many companies for customer support. Chatbots can be used 
to answer and resolve straightforward customer concerns (for example, 
changing a customer's monthly mobile plan), which can be solved without 
human intervention. QA touches upon many other aspects of NLP such as 
information retrieval, and knowledge representation. Consequently, all this 
makes developing a QA system very difficult.
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•	 Machine Translation (MT): MT is the task of transforming a sentence/
phrase from a source language (for example, German) to a target language 
(for example, English). This is a very challenging task as, different languages 
have highly different morphological structures, which means that it is not 
a one-to-one transformation. Furthermore, word-to-word relationships 
between languages can be one-to-many, one-to-one, many-to-one, or  
many-to-many. This is known as the word alignment problem in  
MT literature.

Finally, to develop a system that can assist a human in day-to-day tasks (for example, 
VA or a chatbot) many of these tasks need to be performed together. As we saw in the 
previous example where the user asks, "Can you show me a good Italian restaurant 
nearby?" several different NLP tasks, such as speech-to-text conversion, semantic 
and sentiment analyses, question answering, and machine translation, need to be 
completed. In Figure 1.1, we provide a hierarchical taxonomy of different NLP tasks 
categorized into several different types. We first have two broad categories: analysis 
(analyzing existing text) and generation (generating new text) tasks. Then we divide 
analysis into three different categories: syntactic (language structure-based tasks), 
semantic (meaning-based tasks), and pragmatic (open problems difficult to solve):

Figure 1.1: A taxonomy of the popular tasks of NLP categorized under broader categories
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Having understood the various tasks in NLP, let us now move on to understand how 
we can solve these tasks with the help of machines.

The traditional approach to Natural 
Language Processing
The traditional or classical approach to solving NLP is a sequential flow of several 
key steps, and it is a statistical approach. When we take a closer look at a traditional 
NLP learning model, we will be able to see a set of distinct tasks taking place, such 
as preprocessing data by removing unwanted data, feature engineering to get good 
numerical representations of textual data, learning to use machine learning algorithms 
with the aid of training data, and predicting outputs for novel unfamiliar data. Of 
these, feature engineering was the most time-consuming and crucial step for obtaining 
good performance on a given NLP task.

Understanding the traditional approach
The traditional approach to solving NLP tasks involves a collection of distinct 
subtasks. First, the text corpora need to be preprocessed focusing on reducing the 
vocabulary and distractions. By distractions, I refer to the things that distract the 
algorithm (for example, punctuation marks and stop word removal) from capturing 
the vital linguistic information required for the task.

Next, comes several feature engineering steps. The main objective of feature 
engineering is to make the learning easier for the algorithms. Often the features 
are hand-engineered and biased toward the human understanding of a language. 
Feature engineering was of utter importance for classical NLP algorithms, and 
consequently, the best performing systems often had the best engineered features. 
For example, for a sentiment classification task, you can represent a sentence with 
a parse tree and assign positive, negative, or neutral labels to each node/subtree in 
the tree to classify that sentence as positive or negative. Additionally, the feature 
engineering phase can use external resources such as WordNet (a lexical database) to 
develop better features. We will soon look at a simple feature engineering technique 
known as bag-of-words.



Introduction to Natural Language Processing

[ 6 ]

Next, the learning algorithm learns to perform well at the given task using the 
obtained features and optionally, the external resources. For example, for a text 
summarization task, a thesaurus that contains synonyms of words can be a good 
external resource. Finally, prediction occurs. Prediction is straightforward, where 
you will feed a new input and obtain the predicted label by forwarding the input 
through the learning model. The entire process of the traditional approach is 
depicted in Figure 1.2:

Figure 1.2: The general approach of classical NLP

Example – generating football game summaries
To gain an in-depth understanding of the traditional approach to NLP, let's consider 
a task of automatic text generation from the statistics of a game of football. We 
have several sets of game statistics (for example, score, penalties, and yellow 
cards) and the corresponding articles generated for that game by a journalist, as 
the training data. Let's also assume that for a given game, we have a mapping 
from each statistical parameter to the most relevant phrase of the summary for that 
parameter. Our task here is that, given a new game, we need to generate a natural 
looking summary about the game. Of course, this can be as simple as finding the 
best-matching statistics for the new game from the training data and retrieving the 
corresponding summary. However, there are more sophisticated and elegant ways of 
generating text.

If we were to incorporate machine learning to generate natural language, a sequence 
of operations such as preprocessing the text, tokenization, feature engineering, 
learning, and prediction are likely to be performed.
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Preprocessing the text involves operations, such as stemming (for example, 
converting listened to listen) and removing punctuation (for example, ! and ;), in order 
to reduce the vocabulary (that is, features), thus reducing the memory requirement. 
It is important to understand that stemming is not a trivial operation. It might 
appear that stemming is a simple operation that relies on a simple set of rules such 
as removing ed from a verb (for example, the stemmed result of listened is listen); 
however, it requires more than a simple rule base to develop a good stemming 
algorithm, as stemming certain words can be tricky (for example, the stemmed result 
of argued is argue). In addition, the effort required for proper stemming can vary in 
complexity for other languages.

Tokenization is another preprocessing step that might need to be performed. 
Tokenization is the process of dividing a corpus into small entities (for example, 
words). This might appear trivial for a language such as English, as the words are 
isolated; however, this is not the case for certain languages such as Thai, Japanese, 
and Chinese, as these languages are not consistently delimited.

Feature engineering is used to transform raw text data into an appealing numerical 
format so that a model can be trained on that data, for example, converting text into 
a bag-of-words representation or using the n-gram representation which we will 
discuss later. However, remember that state-of-the-art classical models rely on much 
more sophisticated feature engineering techniques.

The following are some of the feature engineering techniques:

Bag-of-words: This is a feature engineering technique that creates feature 
representations based on the word occurrence frequency. For example, let's consider 
the following sentences:

•	 Bob went to the market to buy some flowers
•	 Bob bought the flowers to give to Mary

The vocabulary for these two sentences would be:

["Bob", "went", "to", "the", "market", "buy", "some", "flowers", "bought", "give", "Mary"]

Next, we will create a feature vector of size V (vocabulary size) for each sentence 
showing how many times each word in the vocabulary appears in the sentence. In 
this example, the feature vectors for the sentences would respectively be as follows:

[1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0]

[1, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1]
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A crucial limitation of the bag-of-words method is that it loses contextual 
information as the order of words is no longer preserved.

n-gram: This is another feature engineering technique that breaks down text  
into smaller components consisting of n letters (or words). For example, 2-gram 
would break the text into two-letter (or two-word) entities. For example, consider 
this sentence:

Bob went to the market to buy some flowers

The letter level n-gram decomposition for this sentence is as follows:

["Bo", "ob", "b ", " w", "we", "en", ..., "me", "e "," f", "fl", "lo", "ow", "we", "er", "rs"]

The word-based n-gram decomposition is this:

["Bob went", "went to", "to the", "the market", ..., "to buy", "buy some",  
"some flowers"]

The advantage in this representation (letter, level) is that the vocabulary will be 
significantly smaller than if we were to use words as features for large corpora.

Next, we need to structure our data to be able to feed it into a learning model. 
For example, we will have data tuples of the form, (statistic, a phrase explaining the 
statistic) as follows:

Total goals = 4, "The game was tied with 2 goals for each team at the end of the  
first half"

Team 1 = Manchester United, "The game was between Manchester United  
and Barcelona"

Team 1 goals = 5, "Manchester United managed to get 5 goals"

The learning process may comprise three sub modules: a Hidden Markov Model 
(HMM), a sentence planner, and a discourse planner. In our example, a HMM might 
learn the morphological structure and grammatical properties of the language by 
analyzing the corpus of related phrases. More specifically, we will concatenate each 
phrase in our dataset to form a sequence, where the first element is the statistic 
followed by the phrase explaining it. Then, we will train a HMM by asking it to 
predict the next word, given the current sequence. Concretely, we will first input 
the statistic to the HMM and then get the prediction made by the HMM; then, we 
will concatenate the last prediction to the current sequence and ask the HMM to 
give another prediction, and so on. This will enable the HMM to output meaningful 
phrases, given statistics.
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Next, we can have a sentence planner that corrects any linguistic mistakes  
(for example, morphological or grammar), which we might have in the phrases.  
For examples, a sentence planner outputs the phrase, I go house as I go home; it can  
use a database of rules, which contains the correct way of conveying meanings  
(for example, the need of a preposition between a verb and the word house).

Now we can generate a set of phrases for a given set of statistics using a HMM. 
Then, we need to aggregate these phrases in such a way that an essay made from the 
collection of phrases is human readable and flows correctly. For example, consider 
the three phrases, Player 10 of the Barcelona team scored a goal in the second half, Barcelona 
played against Manchester United, and Player 3 from Manchester United got a yellow card 
in the first half; having these sentences in this order does not make much sense. We 
like to have them in this order: Barcelona played against Manchester United, Player 3 
from Manchester United got a yellow card in the first half, and Player 10 of the Barcelona 
team scored a goal in the second half. To do this, we use a discourse planner; discourse 
planners can order and structure a set of messages that need to be conveyed.

Now we can get a set of arbitrary test statistics and obtain an essay explaining the 
statistics by following the preceding workflow, which is depicted in Figure 1.3:

Figure 1.3: A step from a classical approach example of solving a language modelling task

Here, it is important to note that this is a very high level explanation that only covers the 
main general-purpose components that are most likely to be included in the traditional 
way of NLP. The details can largely vary according to the particular application we are 
interested in solving. For example, additional application-specific crucial components 
might be needed for certain tasks (a rule base and an alignment model in machine 
translation). However, in this book, we do not stress about such details as the main 
objective here is to discuss more modern ways of natural language processing.
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Drawbacks of the traditional approach
Let's list several key drawbacks of the traditional approach as this would lay a good 
foundation for discussing the motivation for deep learning:

•	 The preprocessing steps used in traditional NLP forces a trade-off 
of potentially useful information embedded in the text (for example, 
punctuation and tense information) in order to make the learning feasible 
by reducing the vocabulary. Though preprocessing is still used in modern 
deep-learning-based solutions, it is not as crucial as for the traditional NLP 
workflow due to the large representational capacity of deep networks.

•	 Feature engineering needs to be performed manually by hand. In order to 
design a reliable system, good features need to be devised. This process can 
be very tedious as different feature spaces need to be extensively explored. 
Additionally, in order to effectively explore robust features, domain expertise 
is required, which can be scarce for certain NLP tasks.

•	 Various external resources are needed for it to perform well, and there are 
not many freely available ones. Such external resources often consist of 
manually created information stored in large databases. Creating one for a 
particular task can take several years, depending on the severity of the task 
(for example, a machine translation rule base).

The deep learning approach to Natural 
Language Processing
I think it is safe to assume that deep learning revolutionized machine learning, 
especially in fields such as computer vision, speech recognition, and of course, NLP. 
Deep models created a wave of paradigm shifts in many of the fields in machine 
learning, as deep models learned rich features from raw data instead of using limited 
human-engineered features. This consequentially caused the pesky and expensive 
feature engineering to be obsolete. With this, deep models made the traditional 
workflow more efficient, as deep models perform feature learning and task learning, 
simultaneously. Moreover, due to the massive number of parameters (that is, 
weights) in a deep model, it can encompass significantly more features than a human 
would've engineered. However, deep models are considered a black box due to the 
poor interpretability of the model. For example, understanding the "how" and "what" 
features learnt by deep models for a given problem still remains an open problem.
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A deep model is essentially an artificial neural network that has an input layer, 
many interconnected hidden layers in the middle, and finally, an output layer (for 
example, a classifier or a regressor). As you can see, this forms an end-to-end model 
from raw data to predictions. These hidden layers in the middle give the power to 
deep models as they are responsible for learning the good features from raw data, 
eventually succeeding at the task at hand.

History of deep learning
Let's briefly discuss the roots of deep learning and how the field evolved to be a very 
promising technique for machine learning. In 1960, Hubel and Weisel performed an 
interesting experiment and discovered that a cat's visual cortex is made of simple and 
complex cells, and that these cells are organized in a hierarchical form. Also, these 
cells react differently to different stimuli. For example, simple cells are activated by 
variously oriented edges while complex cells are insensitive to spatial variations (for 
example, the orientation of the edge). This kindled the motivation for replicating a 
similar behavior in machines, giving rise to the concept of deep learning.

In the years that followed, neural networks gained the attention of many researchers. 
In 1965, a neural network trained by a method known as the Group Method of Data 
Handling (GMDH) and based on the famous Perceptron by Rosenblatt, was introduced 
by Ivakhnenko and others. Later, in 1979, Fukushima introduced the Neocognitron, 
which laid the base for one of the most famous variants of deep models—Convolution 
Neural Networks. Unlike the perceptrons, which always took in a 1D input, a 
neocognitron was able to process 2D inputs using convolution operations.

Artificial neural networks used to backpropagate the error signal to optimize 
the network parameters by computing a Jacobian matrix from one layer to the 
layer before it. Furthermore, the problem of vanishing gradients strictly limited 
the potential number of layers (depth) of the neural network. The gradients of 
layers closer to the inputs, being very small, is known as the vanishing gradients 
phenomenon. This transpired due to the application of the chain rule to compute 
gradients (the Jacobian matrix) of lower layer weights. This in turn limited the 
plausible maximum depth of classical neural networks.
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Then in 2006, it was found that pretraining a deep neural network by minimizing 
the reconstruction error (obtained by trying to compress the input to a lower 
dimensionality and then reconstructing it back into the original dimensionality)  
for each layer of the network, provides a good initial starting point for the weight 
of the neural network; this allows a consistent flow of gradients from the output 
layer to the input layer. This essentially allowed neural network models to have 
more layers without the ill-effects of the vanishing gradient. Also, these deeper 
models were able to surpass traditional machine learning models in many tasks, 
mostly in computer vision (for example, test accuracy for the MNIST hand-written 
digit dataset). With this breakthrough, deep learning became the buzzword in the 
machine learning community.

Things started gaining a progressive momentum, when in 2012, AlexNet (a deep 
convolution neural network created by Alex Krizhevsky (http://www.cs.toronto.
edu/~kriz/), Ilya Sutskever (http://www.cs.toronto.edu/~ilya/), and Geoff 
Hinton) won the Large Scale Visual Recognition Challenge (LSVRC) 2012 with an 
error decrease of 10% from the previous best. During this time, advances were made in 
speech recognition, wherein state-of-the-art speech recognition accuracies were reported 
using deep neural networks. Furthermore, people began realizing that Graphical 
Processing Units (GPUs) enable more parallelism, which allows for faster training of 
larger and deeper networks compared with Central Processing Units (CPUs).

Deep models were further improved with better model initialization techniques 
(for example, Xavier initialization), making the time-consuming pretraining 
redundant. Also, better nonlinear activation functions, such as Rectified Linear 
Units (ReLUs), were introduced, which alleviated the ill-effects of the vanishing 
gradient in deeper models. Better optimization (or learning) techniques, such as 
Adam, automatically tweaked individual learning rates of each parameter among 
the millions of parameters that we have in the neural network model, which rewrote 
the state-of-the-art performance in many different fields of machine learning, such 
as object classification and speech recognition. These advancements also allowed 
neural network models to have large numbers of hidden layers. The ability to 
increase the number of hidden layers (that is, to make the neural networks deep) 
is one of the primary contributors to the significantly better performance of neural 
network models compared with other machine learning models. Furthermore, better 
intermediate regularizers, such as batch normalization layers, have improved the 
performance of deep nets for many tasks.

Later, even deeper models such as ResNets, Highway Nets, and Ladder Nets were 
introduced, which had hundreds of layers and billions of parameters. It was possible 
to have such an enormous number of layers with the help of various empirically and 
theoretically inspired techniques. For example, ResNets use shortcut connections to 
connect layers that are far apart, which minimizes the diminishing of gradients, layer 
to layer, as discussed earlier.

http://www.cs.toronto.edu/~kriz/
http://www.cs.toronto.edu/~kriz/
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The current state of deep learning and NLP
Many different deep models have seen the light since their inception in early 
2000. Even though they share a resemblance, such as all of them using nonlinear 
transformation of the inputs and parameters, the details can vary vastly. For 
example, a Convolution Neural Network (CNN) can learn from two-dimensional 
data (for example, RGB images) as it is, while a multilayer perceptron model requires 
the input to be unwrapped to a one-dimensional vector, causing loss of important 
spatial information.

When processing text, as one of the most intuitive interpretations of text is to 
perceive it as a sequence of characters, the learning model should be able to do time-
series modelling, thus requiring the memory of the past. To understand this, think 
of a language modelling task; the next word for the word cat should be different 
from the next word for the word climbed. One such popular model that encompasses 
this ability is known as a Recurrent Neural Network (RNN). We will see in Chapter 
6, Recurrent Neural Networks how exactly RNNs achieve this by going through 
interactive exercises.

It should be noted that memory is not a trivial operation that is inherent to a learning 
model. Conversely, ways of persisting memory should be carefully designed.  
Also, the term memory should not be confused with the learned weights of a  
non-sequential deep network that only looks at the current input, where a sequential 
model (for example, RNN) will look at both the learned weights and the previous 
element of the sequence to predict the next output.

One prominent drawback of RNNs is that they cannot remember more than few 
(approximately 7) time steps, thus lacking long-term memory. Long Short-Term 
Memory (LSTM) networks are an extension of RNNs that encapsulate long-term 
memory. Therefore, often LSTMs are preferred over standard RNNs, nowadays. 
We will peek under the hood in Chapter 7, Long Short-Term Memory Networks to 
understand them better.
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In summary, we can mainly separate deep networks into two categories: the  
non-sequential models that deal with only a single input at a time for both training 
and prediction (for example, image classification) and the sequential models that 
cope with sequences of inputs of arbitrary length (for example, text generation 
where a single word is a single input). Then we can categorize non-sequential (also 
called feed-forward) models into deep (approximately less than 20 layers) and very 
deep networks (can be greater than hundreds of layers). The sequential models are 
categorized into short-term memory models (for example, RNNs), which can only 
memorize short-term patterns and long-term memory models, which can memorize 
longer patterns. In Figure 1.4, we outline the discussed taxonomy. It is not expected 
that you understand these different deep learning models fully at this point, but it 
only illustrates the diversity of the deep learning models:

Figure 1.4: A general taxonomy of the most commonly used deep learning methods,  
categorized into several classes

Understanding a simple deep model – a  
Fully-Connected Neural Network
Now let's have a closer look at a deep neural network in order to gain a better 
understanding. Although there are numerous different variants of deep models,  
let's look at one of the earliest models (dating back to 1950-60), known as a  
Fully-Connected Neural Network (FCNN), or sometimes called a multilayer 
perceptron. The Figure 1.5 depicts a standard three-layered FCNN.
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The goal of a FCNN is to map an input (for example, an image or a sentence) to 
a certain label or annotation (for example, the object category for images). This is 
achieved by using an input x to compute h—a hidden representation of x—using a 
transformation such as h = sigma (W * x + b); here, W and b are the weights and bias of 
the FCNN, respectively, and sigma is the sigmoid activation function. Next, a classifier 
(for example, a softmax classifier) is placed on top of the FCNN that gives the ability to 
leverage the learned features in hidden layers to classify inputs. Classifier, essentially 
is a part of the FCNN and yet another hidden layer with some weights, Ws and a 
bias, bs. Also, we can calculate the final output of the FCNN as, output = softmax (Ws * 
h + bs). For example, a softmax classifier provides a normalized representation of the 
scores output by the classifier layer; the label is considered to be the output node with 
the highest softmax value. Then, with this, we can define a classification loss that is 
calculated as the difference between the predicted output label and the actual output 
label. An example of such a loss function is the mean squared loss. You don't have 
to worry if you don't understand the actual intricacies of the loss function. We will 
discuss quite a few of them in later chapters. Next, the neural network parameters, 
W, b, Ws, and bs, are optimized using a standard stochastic optimizer (for example, the 
stochastic gradient descent) to reduce the classification loss all the inputs. Figure 1.5 
depicts the process explained in this paragraph for a three-layer FCNN. We will  
walk-through the details on how to use such a model for NLP tasks, step by step in 
Chapter 3, Word2vec – Learning Word Embeddings.

Figure 1.5: An example of a Fully Connected Neural Network (FCNN)
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Let's look at an example of how to use a neural network for a sentiment analysis task. 
Consider that we have a dataset where the input is a sentence expressing a positive 
or negative opinion about a movie and a corresponding label saying if the sentence 
is actually positive (1) or negative (0). Then, we are given a test data set, where we 
have single sentence movie reviews, and our task is to classify these new sentences 
as positive or negative.

It is possible to use a neural network (which can be deep or shallow, depending on 
the difficulty of the task) for this task by adhering to the following workflow:

1.	 Tokenize the sentence by words
2.	 Pad the sentences with a special token if necessary, to bring all sentences  

to a fixed length
3.	 Convert the sentences into a numerical representation (for example,  

Bag-of-Words representation)
4.	 Feed the numerical inputs to the neural network and predict the output 

(positive or negative)
5.	 Optimize the neural network using a desired loss function

The roadmap – beyond this chapter
This section delineates the details of the rest of the book; it's brief, but has 
informative details about what each chapter of the book covers. In this book, we 
will be looking at numerous exciting fields of NLP, from algorithms that find word 
similarities without any sort of annotated data, to algorithms that can write a story 
by themselves.

Starting from the next chapter, we will dive into the details about several popular 
and interesting NLP tasks. In order to gain an in-depth knowledge and to make 
the learning interactive, various exercises are also provided. We will use Python 
and TensorFlow, an open-source library for distributed numerical computations, 
for all the implementations. TensorFlow encapsulates advance technicalities such 
as optimizing your code for GPUs using Compute Unified Device Architecture 
(CUDA), which can be challenging. Furthermore, TensorFlow provides built-in 
functions for implementing deep learning algorithms, for example, activations, 
stochastic optimization methods, and convolutions, making everyone's life easier.
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We will embark on a journey that covers many hot topics of NLP and how they 
perform, while using TensorFlow to see the state-of-the-art algorithms in action.  
This is what we will look at in this book:

•	 Chapter 2, Understanding TensorFlow, provides you with a sound guide to 
understand how to write client programs and run them in TensorFlow. This 
is important especially if you are new to TensorFlow, because TensorFlow 
behaves differently from a traditional coding language such as Python. 
This chapter will first offer an in-depth explanation about how TensorFlow 
executes a client. This will help you to understand the TensorFlow execution 
workflow and feel comfortable around TensorFlow terminology. Next, the 
chapter will walk you through various elements of a TensorFlow client such 
as defining variables, defining operations/functions, feeding inputs to an 
algorithm, and obtaining the results. We will finally discuss how all this 
knowledge of TensorFlow can be used to implement a moderately complex 
neural network to classify images of hand-written images.

•	 Chapter 3, Word2vec – Learning Word Embeddings. The objective of this chapter 
is to introduce Word2vec—a method to learn numerical representations of 
words that reflects semantic of the words. But before diving straight into 
the Word2vec techniques, we will first discuss some classical approaches 
used to represent word semantics. One of the early approach was to rely 
on WordNet—a large lexical database. WordNet can be used to measure 
the semantic similarity between different words. However, maintaining 
such a large lexical database is costly. Therefore, there exist other simpler 
representation techniques, such as one-hot-encoded representations, and 
the term-frequency inverse document frequency method, that doesn't rely 
on external resources. Following this, we will move onto the modern way of 
learning word vectors known as Word2vec, where we use a neural network 
to learn word representations. We will discuss two popular Word2vec 
techniques: skip-gram and continuous bag-of-words (CBOW) model.

•	 Chapter 4, Advanced Word2vec. We will start this chapter with several 
comparisons including a comparison between the skip-gram and CBOW 
algorithms to see if there is a clear-cut winner. Then we will discuss several 
extensions that have been introduced to the original Word2vec techniques 
over the course of the past few years. For example, ignoring common words 
in the text, such as "the" and "a", that have a high probability, improves the 
performance of the Word2vec models. On the other hand, the Word2vec 
model only considers the local context of a word and ignores the global 
statistics of the entire corpus. Consequently, a word embedding learning 
technique known as GloVe, which incorporates both global and local 
statistics in finding word vectors will be discussed.
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•	 Chapter 5, Sentence Classification with Convolution Neural Networks, introduces 
you to convolution neural networks (CNNs). Convolution networks are a 
powerful family of deep models that can leverage the spatial structure of 
an input to learn from data. In other words, a CNN can process images in 
their two-dimensional form, where a multilayer perceptron needs the image 
to be unwrapped to a one-dimensional vector. We will first discuss various 
operations that undergoes in CNNs, such as the convolution and pooling 
operations, in detail. Then we will see an example where we will learn to 
classify hand-written digit images with a CNN. Then we will transition into 
an application of CNNs in NLP. Precisely, we will be investigating how to 
apply a CNN to classify sentences, where the task is to classify if a sentence is 
about a person, location, object, and so on.

•	 Chapter 6, Recurrent Neural Networks, focuses on introducing recurrent neural 
networks (RNNs) and using RNNs for language generation. RNNs are different 
from feed-forward neural networks (for example, CNNs) as RNNs have 
memory. The memory is stored as a continuously updated system state. We 
will start with a representation of a feed-forward neural network and modify 
that representation to learn from sequences of data instead of individual data 
points. This process will transform the feed-forward network to a RNN. This 
will be followed by a technical description about the exact equations used 
for computations within the RNN. Next, we will discuss the optimization 
process of RNNs that is used to update the RNN's weights. Thereafter we 
will iterate through different types of RNNs such as one-to-one RNNs and 
one-to-many RNNs. We will then walkthrough an exciting application of 
RNNs, where the RNN will learn to tell new stories by learning from a 
corpus of existing stories. We achieve this by training the RNN to predict the 
next word given the preceding sequence of words of the story. Finally, we 
will discuss a variant of standard RNNs, which we call RNN-CF (RNN with 
contextual features), and will compare it with the standard RNN to see which 
one performs better.
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•	 Chapter 7, Long Short-Term Memory Networks, discusses LSTMs by initially 
providing a solid intuition to how these models work and progressively 
diving into the technical details adequate to implement them on your own. 
Standard RNNs suffer from the crucial limitation of the inability to persist 
long-term memory. However, advanced RNN models (for example, long 
short-term memory cells (LSTMs) and gated recurrent units (GRUs)) have 
been proposed, which can remember sequences for large number of time 
steps. We will also examine how exactly does the LSTMs alleviate the 
problem of persisting long-term memory (this is known as the vanishing 
gradient problem). We will then discuss several improvements that can be 
used to improve LSTM models further such as predicting for several time 
steps ahead at once and reading sequences both forward and backward. 
Finally, we will discuss several variants of LSTM models such as GRUs and 
LSTMs with peephole connections.

•	 Chapter 8, Applications of LSTM – Generating Text, explains how to implement 
LSTMs, GRUs, and LSTMs with peephole connections discussed in Chapter 
7, Long Short-Term Memory Networks. Furthermore, we will compare the 
performance of these extensions both qualitatively and quantitatively. 
We will also discuss how to implement some of the extensions examined 
in Chapter 7, Long Short-Term Memory Networks such as predicting several 
time steps ahead (known as beam search) and using word vectors as inputs 
instead of one-hot-encoded representations. Finally, we will discuss how we 
can use the RNN API, which is a sub library of TensorFlow that simplifies the 
implementation of recurrent models.

•	 Chapter 9, Applications of LSTM – Image Caption Generation, looks at another 
exciting application, where the model learns how to generate captions (that 
is, descriptions) for images using an LSTM and a CNN. This application is 
interesting because it shows us how to combine two different types of models 
as well as how to learn with multimodal data (for example, images and text). 
The specific way to achieve this is to first learn image representations (similar 
to word vectors) with the CNN and train the LSTM by feeding that image 
vector followed by the words of the description of the image as a sequence. 
We will first discuss how we can use a pretrained CNN to obtain the image 
representations. Then we will discuss how to learn the word embeddings. 
Next we will discuss how to feed the image vectors along with word 
embeddings to train the LSTM. This is followed by a description of different 
evaluation metrics that exist for evaluating image captioning systems. 
Afterwards, we will evaluate the captions generated by our model, both 
qualitatively and quantitatively. We will conclude the chapter with a guide 
of how to implement the same system using the TensorFlow RNN API.
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•	 Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation. 
Machine Translation has gained a lot of attention both due to the necessity of 
automating translation and the inherent difficulty of the task. We will start 
the chapter with a brief historical flashback of how machine translation was 
implemented in the early days. This discussion ends with an introduction 
to neural machine translation (NMT) systems. We will see how well current 
NMT systems are doing compared to old systems (such as statistical machine 
translation systems), which will motivate us to learn about NMT systems. 
Afterwards, we will discuss the intuition behind the design of NMT systems 
and continue with the technical details. Then we will discuss the evaluation 
metric we use to evaluate our system. Following this, we will investigate 
how we can implement a German to English translator from scratch. Next, 
we will learn about ways to improve NMT systems. We will look at one of 
those extensions in detail, called attention mechanism. Attention mechanism 
has become an essential in sequence to sequence learning problems. Finally, 
we will compare the performance improvement obtained with attention 
mechanism and analyze reasons behind the performance gain. This chapter 
concludes with a section on how the same concept of NMT systems can be 
extended to implement chatbots. Chatbots are systems that can communicate 
with humans and are used to fulfill various customer requests.

•	 Chapter 11, Current Trends and the Future of Natural Language Processing. 
Natural language processing has branched out to a vast spectrum of 
different tasks. Here we will discuss some of the current trends and future 
developments of NLP we can expect in the future. We will first discuss 
various word embedding extensions that have emerged recently. We will 
also look at the implementation of one such embedding learning technique, 
known as tv-embeddings. Next, we will examine various trends growing 
in the field of neural machine translation. Then we will look at how NLP 
is combined with other fields such as computer vision and reinforcement 
learning to solve some interesting problems such as teaching computer 
agents to communicate by devising their own language. Another booming 
area these days is artificial general intelligence, which is about developing 
systems that can do multiple tasks (classify images, translate text, caption 
images, and so on) with a single system. We will investigate several such 
systems. Afterwards, we will talk about the introduction of NLP into mining 
social media. We will conclude this chapter with some of the new tasks 
emerging (for example, language grounding – developing common sense 
NLP systems) and new models (for example, phased LSTMs).
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•	 Appendix, Mathematical Foundations and Advanced TensorFlow, will introduce 
the reader to various mathematical data structures (for example, matrices) 
and operations (for example, matrix inverse). We will also discuss several 
important concepts in probability. We will then introduce Keras—a 
high-level library that uses TensorFlow underneath. Keras makes the 
implementing of neural networks simpler by hiding some of the details in 
TensorFlow, which some might find challenging.  Concretely, we will see 
how we can implement a CNN with Keras, to get a feel of how to use Keras. 
Next, we will discuss how we can use the seq2seq library in TensorFlow to 
implement a neural machine translation system with much less code that 
we used in Chapter 11, Current Trends and the Future of Natural Language 
Processing. Finally, we will walk you through a guide aimed at teaching to 
use the TensorBoard to visualize word embeddings. TensorBoard is a handy 
visualization tool that is shipped with TensorFlow. This can be used to 
visualize and monitor various variables in your TensorFlow client.

Introduction to the technical tools
In this section, you will be introduced to the technical tools that will be used  
in the exercises of the following chapters. First, we will present a brief introduction 
to the main tools provided. Next, we will present a coarse guide on how to  
install each tool along with hyperlinks to detailed guides provided by the official 
websites. Additionally, we will share tips on how to make sure that the tools were 
installed properly.

Description of the tools
We will use Python as the coding/scripting language. Python is a very versatile 
easy-to-set-up coding language that is heavily used by the scientific community. 
Additionally, there are numerous scientific libraries floating around Python, catering 
to areas ranging from deep learning to probabilistic inference to data visualization. 
TensorFlow is one such library that is well-known among the deep learning 
community, providing many basic and advanced operations that are useful for deep 
learning. Next, we will use Jupyter notebooks in all our exercises as it provides a 
more interactive environment for coding compared to using an IDE. We will also 
use scikit-learn—another popular machine learning toolkit for Python—for various 
miscellaneous purposes such as data preprocessing. Another library we will be 
using for various text related operations is NLTK—Python natural language toolkit. 
Finally, we will use matplotlib for data visualization.
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Installing Python and scikit-learn
Python is hassle-free to install in any of the commonly used operating systems such 
as Windows, macOS, or Linux. We will use Anaconda to set up Python, as it does all 
the laborious work for setting up Python as well as the essential libraries.

To install Anaconda, follow these steps:

1.	 Download Anaconda from https://www.continuum.io/downloads
2.	 Select the appropriate OS and download Python 3.5
3.	 Install Anaconda by following the instructions at https://docs.

continuum.io/anaconda/install/

To check whether Anaconda was properly installed, follow these steps:

1.	 Open a Terminal window (Command Prompt in Windows)
2.	 Now, run the following command:

conda --version

If installed properly, the version of the current Anaconda distribution should be 
shown in Terminal.

Next, install scikit-learn by following the instructions at http://scikit-learn.
org/stable/install.html, NLTK from https://www.nltk.org/install.html 
and Matplotlib from https://matplotlib.org/users/installing.html.

Installing Jupyter Notebook
You can install Jupyter Notebook by following the instruction at http://jupyter.
readthedocs.io/en/latest/install.html.

To check whether Jupyter Notebook is properly installed, follow these steps:

1.	 Open a Terminal window
2.	 Run this command:

jupyter notebook

https://www.continuum.io/downloads 
https://docs.continuum.io/anaconda/install/ 
https://docs.continuum.io/anaconda/install/ 
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
https://www.nltk.org/install.html
https://matplotlib.org/users/installing.html
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html
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You should be presented with a new browser window that looks like  
Figure 1.6:

Figure 1.6. Jupyter Notebook installed successfully

Installing TensorFlow
Follow the instructions given at https://www.tensorflow.org/install/ under 
the Installing with Anaconda subsection to install TensorFlow. We will use TensorFlow 
1.8.x throughout all the exercises.

When providing the tfBinaryURL as asked in the instruction, make sure that you 
provide a TensorFlow 1.8.x version. We stress this as the API has undergone many 
changes compared to the previous TensorFlow versions.

To check whether TensorFlow installed properly, follow these steps:

1.	 Open Command Prompt in Windows or Terminal in Linux or macOS.
2.	 Type python to enter the Python environment. You should now see the 

Python version right below. Make sure that you are using Python 3.
3.	 Next, enter the following commands:

import tensorflow as tf
print(tf.__version__)
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If all went well, you should not have any errors (there might be warnings if your 
computer does not have a dedicated GPU, but you can ignore them) and the 
TensorFlow version 1.8.x should be shown.

Many cloud-based computational platforms are also available,  
where you can set up your own machine with various customization 
(operating system, GPU card type, number of GPU cards, and so on). 
Many are migrating to such cloud-based services due to the  
following benefits:

•	 More customization options
•	 Less maintenance effort
•	 No infrastructure requirements

Several popular cloud-based computational platforms are as follows:
•	 Google Cloud Platform (GCP): https://cloud.google.com/
•	 Amazon Web Services (AWS): https://aws.amazon.com/
•	 TensorFlow Research Cloud (TFRC): https://www.

tensorflow.org/tfrc/

Summary
In this chapter, we broadly explored NLP to get an impression of the kind of tasks 
involved in building a good NLP-based system. First, we explained why we need 
NLP and then discussed various tasks of NLP to generally understand the objective 
of each task and how difficult it is to succeed at these tasks.

Next, we looked at the classical approach of solving NLP and went into the details 
of the workflow using an example of generating sport summaries for football games. 
We saw that the traditional approach usually involves cumbersome and tedious 
feature engineering. For example, in order to check the correctness of a generated 
phrase, we might need to generate a parse tree for that phrase. Next, we discussed 
the paradigm shift that transpired with deep learning and saw how deep learning 
made the feature engineering step obsolete. We started with a bit of time-travelling 
to go back to the inception of deep learning and artificial neural networks and 
worked our way to the massive modern networks with hundreds of hidden layers. 
Afterward, we walked through a simple example illustrating a deep model—a 
multilayer perceptron model—to understand the mathematical wizardry taking 
place in such a model (on the surface of course!).

https://cloud.google.com/ 
https://www.tensorflow.org/tfrc/
https://www.tensorflow.org/tfrc/
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With a nice foundation to both traditional and modern ways of approaching NLP, 
we then discussed the roadmap to understand the topics we will be covering in 
the book, from learning word embeddings to mighty LSTMs, generating captions 
for images to neural machine translators! Finally, we set up our environment by 
installing Python, scikit-learn, Jupyter Notebook, and TensorFlow.

In the next chapter, you will learn the basics of TensorFlow. By the end of the 
chapter, you should be comfortable with writing a simple algorithm that can take 
some input, transform the input through a defined function and output the result.
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Understanding TensorFlow
In this chapter, you will get an in-depth understanding of TensorFlow. This is an 
open source distributed numerical computation framework, and it will be the main 
platform on which we will be implementing all our exercises.

We will get started with TensorFlow by defining a simple calculation and trying to 
compute it using TensorFlow. After we successfully complete this, we will investigate 
how TensorFlow executes this computation. This will help us to understand how 
the framework creates a computational graph to compute the outputs and execute 
this graph through something known as a session. Then we will gain a hands-on 
experience of the TensorFlow architecture by relating how TensorFlow executes 
things, with the help of an analogy of how a restaurant might operate.

Having gained a good conceptual and technical understanding of how TensorFlow 
operates, we will look at some of the important computational operations that 
the framework offers. First, we will look at defining various data structures in 
TensorFlow, such as variables, placeholders and tensors, and we'll also see how to 
read inputs. Then we will work through some neural-network related operations 
(for example, convolution operation, defining losses, and optimization). Following 
this, we will learn how to reuse and efficiently manage TensorFlow variables using 
scoping. Finally, we will apply this knowledge in an exciting exercise, where we will 
implement a neural network that can recognize images of handwritten digits.
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What is TensorFlow?
In Chapter 1, Introduction to Natural Language Processing, we briefly discussed what 
TensorFlow is. Now let's take a closer look at it. TensorFlow is an open source 
distributed numerical computation framework released by Google that is mainly 
intended to alleviate the painful details of implementing a neural network (for 
example, computing derivatives of the weights of the neural network). TensorFlow 
takes this even a step further by providing efficient implementations of such 
numerical computations using Compute Unified Device Architecture (CUDA), 
which is a parallel computational platform introduced by NVIDIA. The Application 
Programming Interface (API) of TensorFlow at https://www.tensorflow.org/
api_docs/python/ shows that TensorFlow provides thousands of operations that 
make our lives easier.

TensorFlow was not developed overnight. This is a result of the persistence of 
talented, good-hearted individuals who wanted to make a difference by bringing 
deep learning to a wider audience. If you are interested, you can take a look at the 
TensorFlow code at https://github.com/tensorflow/tensorflow. Currently, 
TensorFlow has around 1,000 contributors, and it sits on top of more than 25,000 
commits, evolving to be better and better every day.

Getting started with TensorFlow
Now let's learn about a few essential components in the TensorFlow framework by 
working through a code example. Let's write an example to perform the following 
computation, which is very common for neural networks:

h = sigmoid(W * x + b)

Here W and x are matrices and b is a vector. Then, * denotes the dot product. sigmoid 
is a non-linear transformation given by the following equation:

sigmoid(x) 1
1 e x−= −−

We will discuss how to do this computation through TensorFlow step by step.

First, we will need to import TensorFlow and NumPy. Importing them is essential 
before you run any type of TensorFlow- or NumPy-related operation, in Python:

import tensorflow as tf
import numpy as np

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
https://github.com/tensorflow/tensorflow
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Next, we'll define a graph object, which we will populate with operations and 
variables later:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

The graph object contains the computational graph that connects the various inputs 
and outputs we define in our program to get the final desired output (that is, it 
defines how W, x, and b are connected to produce h in terms of a graph). For example, 
if you think of the output as a cake, then the graph would be the recipe to make that 
cake using ingredients (that is, inputs). Also, we'll define a session object that takes 
the defined graph as the input, which executes the graph. We will talk about these 
elements in detail in the next section.

To create a new graph object, you can either use the following, 
as we did in the preceding example:

graph = tf.Graph()

Alternatively, you can use the following to get the TensorFlow 
default computational graph:

graph = tf.get_default_graph()

We show exercises using both these methods.

Now we'll define a few tensors, namely x, W, b, and h. A tensor is essentially  
an n-dimensional array in TensorFlow. For example, a one-dimensional vector  
or a two-dimensional matrix is called a tensor. There are several different ways  
in TensorFlow that you can define tensors. Here we will look at three such  
different approaches:

1.	 First, x is a placeholder. Placeholders, as the name suggests, are not 
initialized with some value. Rather, we will provide the value on-the-fly at 
the time of the graph execution.

2.	 Next, we have variables W and b. Variables are mutable, meaning that their 
values can change over time.

3.	 Finally, we have h, which is an immutable tensor produced by performing 
some operations on x, W, and b:
x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1, 
maxval=0.1, dtype=tf.float32),name='W')
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')
h = tf.nn.sigmoid(tf.matmul(x,W) + b)
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Also, notice that for W and b we provide some important arguments such as  
the following:

tf.random_uniform(shape=[10,5], minval=-0.1, maxval=0.1,  
dtype=tf.float32)
tf.zeros(shape=[5],dtype=tf.float32)

These are called variable initializers and are the tensors that will be assigned to 
the W and b variables initially. Variables cannot float without an initial value as 
placeholders and need to have some value assigned to them all the time. Here, 
tf.random_uniform means that we uniformly sample values between minval (-0.1) 
and maxval (0.1) to assign values to the tensors, and tf.zeros initializes the tensor 
with zeros. It is also very important to define the shape of your tensor when you are 
defining it. The shape property defines the size of each dimension of a tensor. For 
example, if shape is [10, 5], this means that it will be a two-dimensional structure 
and will have 10 elements on axis 0 and 5 elements on axis 1.

Next, we'll run an initialization operation that initializes the variables in the graph,  
W and b:

tf.global_variables_initializer().run()

Now, we will execute the graph to obtain the final output we need, h. This is done 
by running session.run(...), where we provide the value to the placeholder as an 
argument of the session.run() command:

h_eval = session.run(h,feed_dict={x: np.random.rand(1,10)})

Finally, we close the session, releasing any resources held by the session object.

session.close()

Here is the full code of this TensorFlow example. All the code examples in this chapter 
will be available in the tensorflow_introduction.ipynb file in the ch2 folder:

import tensorflow as tf
import numpy as np

# Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

# Building the graph
# A placeholder is an symbolic input
x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')  
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1, 
maxval=0.1, dtype=tf.float32),name='W') # Variable
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# Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')  

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

# Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

# Run the operation by providing a value to the symbolic input x
h_eval = session.run(h,feed_dict={x: np.random.rand(1,10)})
# Closes the session to free any held resources by the session
session.close()

When you run this code, you might encounter a warning, as shown here:

... tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU 
supports instructions that this TensorFlow binary was not compiled to 
use: ...

Don't worry about this. This is a warning saying that you used an off-the-shelf 
precompiled version of TensorFlow without compiling it on your computer. This is 
totally fine. It is just that you will get a slightly better performance if you compile it 
on your computer, as TensorFlow will be optimized for that particular hardware.

In the following sections we will explain how TensorFlow executes this code to 
produce the final output. Also note that the next two sections will be somewhat 
complex and technical. However, you don't have to worry if you don't understand 
everything completely, because after this, we will go through a nice, thorough real-
world example, where the same execution is explained in terms of how an order is 
fulfilled in a restaurant, our own Café Le TensorFlow.

TensorFlow client in detail
The preceding example program is called a TensorFlow client. In any client program 
you write with TensorFlow, there will be two main types of objects: operations and 
tensors. In the preceding example, tf.nn.sigmoid is an operation and h is a tensor.

Then we have a graph object, which is the computational graph that stores the 
dataflow of our program. When we add the subsequent lines defining x, W, b, and  
h in the code, TensorFlow automatically adds these tensors and any operations  
(for example, tf.matmul()) to the graph as nodes. The graph will store vital 
information such as the tensor dependencies and which operation to perform 
where. In our example, the graph will know that to calculate h, tensors x, W, and b 
are required. So, if you haven't properly initialized one of them during runtime, 
TensorFlow can point you to the exact initialization error that needs to be fixed.
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Next, the session plays the role of executing the graph by dividing the graph into 
subgraphs and subsequently to even finer pieces which will then be assigned 
to workers that will perform the assigned task. This is done with the session.
run(...) function. We will talk about this soon. For future reference, let's call our 
example the sigmoid example.

TensorFlow architecture – what happens 
when you execute the client?
We know that TensorFlow is skillful at creating a nice computational graph with all 
the dependencies and operations so that it knows exactly how, when, and where the 
data flows. But there should be one more element to this to make TensorFlow great: 
the effective execution of the defined computational graph. This is where the session 
comes in. Now let's peek under the hood of the session to understand how the graph 
is executed.

First, the TensorFlow client holds a graph and session. When you create a session, it 
sends the computational graph as a tf.GraphDef protocol buffer to the distributed 
master. tf.GraphDef is a standardized representation of the graph. The distributed 
master sees all computations in the graph and divides the computations to different 
devices (for example, different GPUs and CPUs). The graph in our sigmoid example 
looks like Figure 2.1. A single element of the graph is called a node:

Figure 2.1: A computational graph of the client
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Next, the computational graph will be broken into subgraphs and further into finer 
pieces by the distributed master. Though decomposing the computational graph 
appears too trivial in our example, the computational graph can exponentially grow 
in real-world solutions with many hidden layers. Additionally, it becomes important 
to break the computational graph into multiple pieces in order to execute things in 
parallel (for example, multiple devices). Executing this graph (or a subgraph if the 
graph is divided to subgraphs) is called a single task, where a task is allocated to a 
single TensorFlow server.

However, in reality, each task will be executed by breaking this down into two 
pieces, where each piece is executed by a single worker:

•	 One worker executes the TensorFlow operations using the current values of 
the parameters (operation executor)

•	 The other worker stores the parameters and updates them with new values 
obtained after executing the operations (parameter server)

This general workflow of a TensorFlow client is depicted in Figure 2.2:

Figure 2.2: The generic execution of a TensorFlow client
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Figure 2.3 illustrates the decomposition of the graph. In addition to breaking the graph 
down, TensorFlow inserts send and receive nodes to help with the communication 
between the parameter server and the operation executor. You can understand send 
nodes to be sending data whenever data is available, where the receive nodes keep 
listening and capture data when the corresponding send node sends data:

Figure 2.3: Decomposition of the TensorFlow graph

Finally, the session brings back the updated data to the client from the parameter 
server once the calculation is done. The architecture of TensorFlow is shown in Figure 
2.4. This explanation is based on the official TensorFlow documentation found at 
https://www.tensorflow.org/extend/architecture.

Figure 2.4: TensorFlow framework architecture (https://www.tensorflow.org/extend/architecture)
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Cafe Le TensorFlow – understanding 
TensorFlow with an analogy
If you were overwhelmed with the information contained in the technical 
explanation, we'll try to grasp the concept from a different perspective. Let's say that 
a new cafe just opened and you've been dying to try it. So you go there and grab a 
seat by a window.

Next, the waiter comes to take your order, and you order a chicken burger with extra 
cheese and no tomatoes. Think of yourself as the client and your order as defining 
the graph. The graph defines what you need and how you need it. The waiter is 
analogous to the session, where his responsibility is to carry the order to the kitchen 
so the order can be made. When taking the order, the waiter uses a certain format 
to convey your order, for example, table number, menu item ID, quantity, and 
special requirements. Think of this formatted order written in the waiter's notebook 
as GraphDef. Then the waiter takes the order to the kitchen and gives it to the 
kitchen manager. From this point, the kitchen manager assumes the responsibility of 
fulfilling the order. Here, the kitchen manager represents the distributed master. The 
kitchen manager makes decisions, such as how many chefs are required to make the 
dish and which chefs are the best candidates for the job. Let's also assume that each 
chef has a cook, whose responsibility is to provide the chef with the right ingredients, 
equipment, and so forth. So the kitchen manager takes the order to a single chef and 
a cook (a burger is not that hard to prepare) and asks them to prepare the dish. In 
our example, the chef is the operation executor, and the cook is the parameter server.

The chef looks at the order and tells the cook what is needed. So the cook first finds 
the things that will be required (for example, buns, patties, and onions) and keeps 
them close to fulfill the chef's requests as soon as possible. Moreover, the chef might 
also ask to keep the intermediate results (for example, cut vegetables) of the dish 
temporarily until the chef needs it back again.
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When the order is ready, the kitchen manager receives the burger from the chef and 
the cook and notifies the waiter. At this point, the waiter takes the burger from the 
kitchen manager and brings it to you. You will finally be able to enjoy the delicious 
burger made according to your specifications. This process is shown in Figure 2.5:

Figure 2.5: The restaurant analogy illustrated

Inputs, variables, outputs, and operations
Now with an understanding of the underlying architecture let's proceed to the most 
common elements that comprise a TensorFlow client. If you read any of the millions 
of TensorFlow clients available on the internet, they all (the TensorFlow-related 
code) fall into one of these buckets:

•	 Inputs: Data used to train and test our algorithms
•	 Variables: Mutable tensors, mostly defining the parameters of  

our algorithms
•	 Outputs: Immutable tensors storing both terminal and intermediate outputs
•	 Operations: Various transformations for inputs to produce the  

desired outputs
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In our earlier example, in the sigmoid example, we can find instances of all these 
categories. We list the elements in Table 2.1:

TensorFlow element Value from example client
Inputs x

Variables W and b
Outputs h

Operations tf.matmul(...), tf.nn.sigmoid(...)

The following subsections explain each of these TensorFlow elements in more detail.

Defining inputs in TensorFlow
The client can mainly receive data in three different ways:

•	 Feeding data at every step of the algorithm with Python code
•	 Preloading and storing data as TensorFlow tensors
•	 Building an input pipeline

Let's look at each of these ways.

Feeding data with Python code
In the first method, data can be fed to the TensorFlow client using conventional 
Python code. In our earlier example, x is an example of this method. To feed 
data into the client from external data structures (for example, numpy.ndarray), 
the TensorFlow library provides an elegant symbolic data structure known as a 
placeholder defined as tf.placeholder(...). As the name suggests, a placeholder 
does not require actual data at the graph building stage. Rather, the data is fed only 
for graph executions invoked with session.run(...,feed_dict={placeholder: 
value}) by passing the external data to the feed_dict argument in the form 
of a Python dictionary where the key is the tf.placeholder variable and the 
corresponding value is the actual data (for example, numpy.ndarray). The 
placeholder definition takes the following form:

tf.placeholder(dtype, shape=None, name=None)

The arguments are as follows:

•	 dtype: This is the data type for the data fed into the placeholder
•	 shape: This is the shape of the placeholder, given as a 1D vector
•	 name: This is the name of the placeholder, and it is important for debugging
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Preloading and storing data as tensors
The second method is similar to the first one, but with one less thing to worry about. 
We do not have to feed data during the graph execution as the data is preloaded.  
To see this in action, let's modify our sigmoid example. Remember that we defined  
x as a placeholder:

x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')

Instead, let's define this as a tensor that contains specific values:

x = tf.constant(value=[[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]], 
dtype=tf.float32,name='x')

Also, the full code would become as follows:

import tensorflow as tf
# Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

# Building the graph

# x - A pre-loaded input
x = tf.constant(value=[[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]], 
dtype=tf.float32,name='x')

W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1, 
maxval=0.1, dtype=tf.float32),name='W') # Variable
# Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')  

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

# Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

# Run the operation without feed_dict
h_eval = session.run(h)
print(h_eval)
session.close()

You will notice there are two main differences from our original sigmoid example. 
We have defined x in a different way. Instead of using a placeholder object and 
feeding in the actual value at graph execution, we now assign a specific value 
straightaway and define x as a tensor. Also, as you can see, we do not feed in any 
extra arguments at session.run(...). However, on the downside, now you cannot 
feed different values to x at session.run(...) and see how the output changes.
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Building an input pipeline
Input pipelines are designed for more heavy-duty clients that need to process a lot 
of data quickly. This essentially creates a queue that holds data until it is needed. 
TensorFlow also provides various preprocessing steps (for example, for adjusting 
image contrast/brightness or standardization) that can be performed before feeding 
data to the algorithm. To make things even more efficient, it is possible to have 
multiple threads reading and processing data in parallel.

A typical pipeline will consist of the following components:

•	 The list of filenames
•	 A filename queue producing filenames for an input (record) reader
•	 A record reader for reading the inputs (records)
•	 A decoder to decode the read records (for example, JPEG image decoding)
•	 Preprocessing steps (optional)
•	 An example (that is, decoded inputs) queue

Let's write a quick example input pipeline using TensorFlow. In this example, we 
have three text files (text1.txt, text2.txt, and text3.txt) in CSV format, each 
with five lines and each line having 10 numbers separated by commas (an example 
line: 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). We need to read this data as 
batches (multiple rows of data vectors) by forming an input pipeline from the files all 
the way to a tensor representing those inputs in the files. We will go step by step to 
see what is going on.

For more information, refer to the official TensorFlow page 
on Importing Data at https://www.tensorflow.org/
programmers_guide/reading_data.

First, let's import a few important libraries as before:

import tensorflow as tf
import numpy as np

Next, we'll define the graph and session objects:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

https://www.tensorflow.org/programmers_guide/reading_data
https://www.tensorflow.org/programmers_guide/reading_data
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Then we'll define a filename queue, a queue data structure containing filenames. 
This will be passed as an argument to a reader (soon to be defined). The queue will 
produce filenames as requested by the reader, so that the reader can fetch the files 
with these filenames to read data:

filenames = ['test%d.txt'%i for i in range(1,4)]
filename_queue = tf.train.string_input_producer(filenames, capacity=3, 
shuffle=True, name='string_input_producer')

Here, capacity is the amount of data held in the queue at a given time, and shuffle 
tells the queue if the data should be shuffled before spitting out.

TensorFlow has several different types of readers (a list of available readers 
is available at https://www.tensorflow.org/api_guides/python/io_
ops#Readers). As we have a few separate text files where a single line represents a 
single data point, TextLineReader suits us the best:

reader = tf.TextLineReader()

After defining the reader, we can use the read() function to read data from the files. 
It outputs (key,value) pairs. The key identifies the file and the record (that is, the line 
of text) being read within the file. We can omit this. The value returns the actual 
value of the line read by the reader:

key, value = reader.read(filename_queue, name='text_read_op')

Next, we'll define record_defaults, which will be output if any faulty records  
are found:

record_defaults = [[-1.0], [-1.0], [-1.0], [-1.0], [-1.0], [-1.0], 
[-1.0], [-1.0], [-1.0], [-1.0]]

Now we decode the read line of text into numerical columns (as we have CSV files). 
For this we use the decode_csv() method. You will see that we have 10 columns in 
a single line if you open a file (for example, test1.txt) with a text editor:

col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 = 
tf.decode_csv(value, record_defaults=record_defaults)

Then we'll concatenate these columns to form a single tensor (we call this features) 
that will be passed to another method, tf.train.shuffle_batch(). The tf.train.
shuffle_batch() method takes the previously defined tensor (features), and 
outputs a batch of a given batch size by randomly shuffling the tensor:

features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8, 
col9, col10])

x = tf.train.shuffle_batch([features], batch_size=3, capacity=5, 
name='data_batch', min_after_dequeue=1, num_threads=1)



Chapter 2

[ 41 ]

The batch_size argument is the size of the data batch we'll be sampling at a given 
step, capacity is the capacity of the data queue (more memory required for large 
queues), and min_after_dequeue represents the minimum number of elements to 
be left in the queue after dequeue. Finally, num_threads defines how many threads 
are used to produce a batch of data. If there is lot of preprocessing taking place in 
the pipeline, you can increase this number. Also, if you need to read data without 
shuffling (as with tf.train.shuffle_batch), you can use the tf.train.batch 
operation. Then we'll start this pipeline by calling the following:

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=session)

The tf.train.Coordinator() class can be seen as a thread manager. It implements 
various mechanisms for managing threads (for example, starting threads and joining 
threads to the main thread once the task is finished). The tf.train.Coordinator() 
class is needed because, the input pipeline spawns many threads for filling in 
(that is, enqueue) queues, dequeuing queues, and many other tasks. Next, we will 
execute tf.train.start_queue_runners(...) using the thread manager we 
created before. QueueRunner() holds enqueue operations for a queue and they are 
automatically created during the definition of the input pipeline. So, to fill in the 
defined queues, we need to start these queue runners with the tf.train.start_
queue_runners function.

Next, after the task we're interested in is completed, we explicitly need to stop 
the threads and join them to the main thread, otherwise the program will hang 
indefinitely. This is achieved by coord.request_stop() and coord.join(threads). 
This input pipeline combined with our sigmoid example—so that it reads data from 
the file directly—would look like the following:

import tensorflow as tf
import numpy as np
import os

# Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

### Building the Input Pipeline ###
# The filename queue
filenames = ['test%d.txt'%i for i in range(1,4)]
filename_queue = tf.train.string_input_producer(filenames, capacity=3, 
shuffle=True,name='string_input_producer')

# check if all files are there
for f in filenames:
    if not tf.gfile.Exists(f):
        raise ValueError('Failed to find file: ' + f)
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    else:
        print('File %s found.'%f)

# Reader which takes a filename queue and  
# read() which outputs data one by one
reader = tf.TextLineReader()

# ready the data of the file and output as key,value pairs 
# We're discarding the key
key, value = reader.read(filename_queue, name='text_read_op')

# if any problems encountered with reading file  
# this is the value returned
record_defaults = [[-1.0], [-1.0], [-1.0], [-1.0], [-1.0], [-1.0], 
[-1.0], [-1.0], [-1.0], [-1.0]] 

# decoding the read value to columns
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 = 
tf.decode_csv(value, record_defaults=record_defaults)
# Now we stack the columns together to form a single tensor containing 
# all the columns
features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8, 
col9, col10])

# output x is randomly assigned a batch of data of batch_size 
# where the data is read from the .txt files
x = tf.train.shuffle_batch([features], batch_size=3,
                           capacity=5, name='data_batch', 
                           min_after_dequeue=1,num_threads=1)

# QueueRunner retrieve data from queues and we need to explicitly 
start them
# Coordinator coordinates multiple QueueRunners
# Coordinator coordinates multiple QueueRunners
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=session)

# Building the graph by defining the variables and calculations
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1, 
maxval=0.1, dtype=tf.float32),name='W') # Variable
# Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')  

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

# Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

# Calculate h with x and print the results for 5 steps
for step in range(5):
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    x_eval, h_eval = session.run([x,h]) 
    print('========== Step %d =========='%step)
    print('Evaluated data (x)')
    print(x_eval)
    print('Evaluated data (h)')
    print(h_eval)
    print('')

# We also need to explicitly stop the coordinator 
# otherwise the process will hang indefinitely
coord.request_stop()
coord.join(threads)
session.close()

Defining variables in TensorFlow
Variables play an important role in TensorFlow. A variable is essentially a tensor with 
a specific shape defining how many dimensions the variable will have and the size of 
each dimension. However, unlike a regular tensor, variables are mutable; meaning that 
the value of the variables can change after they are defined. This is an ideal property 
to have to implement parameters of a learning model (for example, neural network 
weights), where the weights change slightly after each step of learning. For example, 
if you define a variable with x = tf.Variable(0,dtype=tf.int32), you can change 
the value of that variable using a TensorFlow operation such as tf.assign(x,x+1). 
However, if you define a tensor such as x = tf.constant(0,dtype=tf.int32), you 
cannot change the value of the tensor, as for a variable. It should stay 0 until the end 
of the program execution.

Variable creation is quite simple. In our example, we already created two variables, 
W and b. When creating a variable, a few things are of high importance. We list them 
here and discuss each in detail in the following paragraphs:

•	 Variable shape
•	 Data type
•	 Initial value
•	 Name (optional)

The variable shape is a 1D vector of the [x,y,z,...] format. Each value in the list 
indicates how large the corresponding dimension or axis is. For instance, if you 
require a 2D tensor with 50 rows and 10 columns as the variable, the shape would  
be equal to [50,10].

The dimensionality of the variable (that is, the length of the shape vector) is 
recognized as the rank of the tensor in TensorFlow. Do not confuse this with the  
rank of a matrix.
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Tensor rank in TensorFlow indicates the dimensionality of the 
tensor; for a two-dimensional matrix, rank = 2.

The data type plays an important role in determining the size of a variable. There 
are many different data types including the commonly used tf.bool, tf.uint8, 
tf.float32, and tf.int32. Each data type has a number of bits required to represent 
a single value with that type. For example, tf.uint8 requires 8 bits, whereas 
tf.float32 requires 32 bits. It is common practice to use the same data types for 
computations as doing otherwise can lead to data type mismatches. So if you have two 
different data types for two tensors that you need to transform, you have to explicitly 
convert one tensor to the other tensor's type using the tf.cast(...) operation. 
The tf.cast(...) operation is designed to cope with such situations. For example, 
if you have an x variable with the tf.int32 type, which needs to be converted to 
tf.float32, employ tf.cast(x,dtype=tf.float32) to convert x to tf.float32.

Next, a variable requires an initial value to be initialized with. TensorFlow provides 
several different initializers for our convenience, including constant intializers and 
normal distribution intializers. Here are a few popular TensorFlow intializers you 
can use to initialize variables:

•	 tf.zeros

•	 tf.constant_initializer

•	 tf.random_uniform

•	 tf.truncated_normal

Finally, the name of the variable will be used as an ID to identify that variable in the 
graph. So if you ever visualize the computational graph, the variable will appear by 
the argument passed to the name keyword. If you do not specify a name, TensorFlow 
will use the default naming scheme.

Note that the Python variable tf.Variable is assigned to, 
is not known by the computational graph and is not a part of 
TensorFlow variable naming. Consider this example where 
you specify a TensorFlow variable as follows:

a = tf.Variable(tf.zeros([5]),name='b')

Here, the TensorFlow graph will know this variable by the 
name b and not a.
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Defining TensorFlow outputs
TensorFlow outputs are usually tensors and a result of a transformation to either 
an input or a variable or both. In our example, h is an output, where h = tf.nn.
sigmoid(tf.matmul(x,W) + b). It is also possible to give such outputs to other 
operations, forming a chained set of operations. Furthermore, it does not necessarily 
have to be TensorFlow operations. You also can use standard Python arithmetic with 
TensorFlow. Here is an example:

x = tf.matmul(w,A)
y = x + B
z = tf.add(y,C)

Defining TensorFlow operations
If you take a look at the TensorFlow API at https://www.tensorflow.org/api_docs/
python/, you will see that TensorFlow has a massive collection of operations available. 
Here we will take a look at a selected few of the myriad TensorFlow operations.

Comparison operations
Comparison operations are useful for comparing two tensors. The following 
code example includes a few useful comparison operations. You can find the 
comprehensive list of comparison operators in the Comparison Operators section 
at https://www.tensorflow.org/api_guides/python/control_flow_ops. 
Furthermore, to understand the working of these operations, let's consider two 
example tensors, x and y:

# Let's assume the following values for x and y
# x (2-D tensor) => [[1,2],[3,4]]
# y (2-D tensor) => [[4,3],[3,2]]
x = tf.constant([[1,2],[3,4]], dtype=tf.int32)
y = tf.constant([[4,3],[3,2]], dtype=tf.int32)

# Checks if two tensors are equal element-wise and returns a boolean 
tensor
# x_equal_y => [[False,False],[True,False]]
x_equal_y = tf.equal(x, y, name=None) 

# Checks if x is less than y element-wise and returns a boolean tensor
# x_less_y => [[True,True],[False,False]]
x_less_y = tf.less(x, y, name=None) 

# Checks if x is greater or equal than y element-wise and returns a 
boolean tensor
# x_great_equal_y => [[False,False],[True,True]]

https://www.tensorflow.org/api_docs/python/
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x_great_equal_y = tf.greater_equal(x, y, name=None) 

# Selects elements from x and y depending on whether,
# the condition is satisfied (select elements from x)
# or the condition failed (select elements from y)
condition = tf.constant([[True,False],[True,False]],dtype=tf.bool)
# x_cond_y => [[1,3],[3,2]]
x_cond_y = tf.where(condition, x, y, name=None) 

Mathematical operations
TensorFlow allows you to perform math operations on tensors that range from the 
simple to the complex. We will discuss a few of the mathematical operations made 
available in TensorFlow. The complete set of operations is available at https://www.
tensorflow.org/api_guides/python/math_ops.

# Let's assume the following values for x and y
# x (2-D tensor) => [[1,2],[3,4]]
# y (2-D tensor) => [[4,3],[3,2]]
x = tf.constant([[1,2],[3,4]], dtype=tf.float32)
y = tf.constant([[4,3],[3,2]], dtype=tf.float32)

# Add two tensors x and y in an element-wise fashion
# x_add_y => [[5,5],[6,6]]
x_add_y = tf.add(x, y) 

# Performs matrix multiplication (not element-wise)
# x_mul_y => [[10,7],[24,17]]
x_mul_y = tf.matmul(x, y) 

# Compute natural logarithm of x element-wise
# equivalent to computing ln(x)
# log_x => [[0,0.6931],[1.0986,1.3863]]
log_x = tf.log(x) 

# Performs reduction operation across the specified axis
# x_sum_1 => [3,7]
x_sum_1 = tf.reduce_sum(x, axis=[1], keepdims=False)

# x_sum_2 => [[4],[6]]
x_sum_2 = tf.reduce_sum(x, axis=[0], keepdims=True)

https://www.tensorflow.org/api_guides/python/math_ops
https://www.tensorflow.org/api_guides/python/math_ops
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# Segments the tensor according to segment_ids (items with same id in
# the same segment) and computes a segmented sum of the data

data = tf.constant([1,2,3,4,5,6,7,8,9,10], dtype=tf.float32)
segment_ids = tf.constant([0,0,0,1,1,2,2,2,2,2 ], dtype=tf.int32)
# x_seg_sum => [6,9,40]
x_seg_sum = tf.segment_sum(data, segment_ids)

Scatter and gather operations
Scatter and gather operations play a vital role in matrix manipulation tasks, as these 
two variants are the only way (until recent times) to index tensors in TensorFlow. In 
other words, you cannot access elements of tensors in TensorFlow as you would in 
NumPy (for example, x[1,0], where x is a 2D numpy.ndarray). A scatter operation 
allows you to assign values to specific indices of a given tensor, whereas the gather 
operation allows you to extract a slice (or individual elements) of a given tensor. The 
following code shows a few variations of the scatter and gather operations:

# 1-D scatter operation
ref = tf.Variable(tf.constant([1,9,3,10,5],dtype=tf.
float32),name='scatter_update')
indices = [1,3]
updates = tf.constant([2,4],dtype=tf.float32)
tf_scatter_update = tf.scatter_update(ref, indices, updates, use_
locking=None, name=None) 

# n-D scatter operation
indices = [[1],[3]]
updates = tf.constant([[1,1,1],[2,2,2]])
shape = [4,3]
tf_scatter_nd_1 = tf.scatter_nd(indices, updates, shape, name=None)

# n-D scatter operation
indices = [[1,0],[3,1]] # 2 x 2
updates = tf.constant([1,2]) # 2 x 1
shape = [4,3] # 2
tf_scatter_nd_2 = tf.scatter_nd(indices, updates, shape, name=None)

# 1-D gather operation
params = tf.constant([1,2,3,4,5],dtype=tf.float32)
indices = [1,4]
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tf_gather = tf.gather(params, indices, validate_indices=True, 
name=None) #=> [2,5]

# n-D gather operation
params = tf.constant([[0,0,0],[1,1,1],[2,2,2],[3,3,3]],dtype=tf.
float32)
indices = [[0],[2]]
tf_gather_nd = tf.gather_nd(params, indices, name=None) #=> 
[[0,0,0],[2,2,2]]

params = tf.constant([[0,0,0],[1,1,1],[2,2,2],[3,3,3]],dtype=tf.
float32)
indices = [[0,1],[2,2]]
tf_gather_nd_2 = tf.gather_nd(params, indices, name=None) #=> 
[[0,0,0],[2,2,2]]

Neural network-related operations
Now let's look at several useful neural network-related operations that we will 
use heavily in the following chapters. The operations we will discuss here range 
from simple element-wise transformations (that is, activations) to computing 
partial derivatives of a set of parameters with respect to another value. We will also 
implement a simple neural network as an exercise.

Nonlinear activations used by neural networks
Nonlinear activations enable neural networks to perform well at numerous tasks. 
Typically, there is a nonlinear activation transformation (that is, activation layer) 
after each layer output in a neural network (except for the last layer). A nonlinear 
transformation helps a neural network to learn various nonlinear patterns that are 
present in data. This is very useful for complex real-world problems, where data 
often has more complex nonlinear patterns, in contrast to linear patterns. If not for 
the nonlinear activations between layers, a deep neural network will be a bunch of 
linear layers stacked on top of each other. Also, a set of linear layers can essentially 
be compressed to a single bigger linear layer. In conclusion, if not for the nonlinear 
activations, we cannot create a neural network with more than one layer.
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Let's observe the importance of nonlinear activation through an 
example. First, recall the computation for the neural networks we 
saw in the sigmoid example. If we disregard b, it will be this:

h = sigmoid(W*x)

Assume a three-layer neural network (having W1, W2, and W3 as 
layer weights) where each layer does the preceding computation; 
we can summarize the full computation as follows:

h = sigmoid(W3*sigmoid(W2*sigmoid(W1*x)))

However, if we remove the nonlinear activation (that is, sigmoid), 
we get this:

h = (W3 * (W2 * (W1 *x))) = (W3*W2*W1)*x

So, without the nonlinear activations, the three layers can be 
brought down to a single linear layer.

Now we'll list two commonly used nonlinear activations in neural networks and 
how they can be implemented in TensorFlow:

# Sigmoid activation of x is given by 1 / (1 + exp(-x))
tf.nn.sigmoid(x,name=None)
# ReLU activation of x is given by max(0,x)
tf.nn.relu(x, name=None)

The convolution operation
A convolution operation is a widely used signal-processing technique. For images, 
convolution is used to produce different effects of an image. An example of edge 
detection using convolution is shown in Figure 2.6. This is achieved by shifting a 
convolution filter on top of an image to produce a different output at each location 
(see Figure 2.7 later in this section). Specifically, at each location we do element-wise 
multiplication of the elements in the convolution filter with the image patch  
(same size as the convolution filter) that overlaps with the convolution filter and 
takes the sum of the multiplication:

Figure 2.6: Using the convolution operation for edge detection in an image  
(Source: https://en.wikipedia.org/wiki/Kernel_(image_processing))
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The following is the implementation of the convolution operation:

x = tf.constant(
    [[
        [[1],[2],[3],[4]],
        [[4],[3],[2],[1]],
        [[5],[6],[7],[8]],
        [[8],[7],[6],[5]]
    ]],
    dtype=tf.float32)

x_filter = tf.constant(
    [
        [
            [[0.5]],[[1]]
        ],
        [
            [[0.5]],[[1]]
        ]
    ],
    dtype=tf.float32)

x_stride = [1,1,1,1]
x_padding = 'VALID'

x_conv = tf.nn.conv2d(
    input=x, filter=x_filter,
    strides=x_stride, padding=x_padding
)

Here, the apparently excessive number of square brackets used might make you 
think that the example can be made easy to follow by getting rid of these redundant 
brackets. Unfortunately, that is not the case. For the tf.conv2d(...) operation, 
TensorFlow requires input, filter, and stride to be of an exact format. We 
will now go through each argument in tf.conv2d(input, filter, strides, 
padding) in more detail:

•	 input: This is typically a 4D tensor where the dimensions should be ordered 
as [batch_size, height, width, channels].
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°° batch_size: This is the amount of data (for example, inputs such as, 
images, and words) in a single batch of data. We normally process 
data in batches as often large datasets are used for learning. At a 
given training step, we randomly sample a small batch of data that 
approximately represents the full dataset. And doing this for many 
steps allows us to approximate the full dataset quite well. This 
batch_size parameter is the same as the one we discussed in the 
TensorFlow input pipeline example.

°° height and width: This is the height and the width of the input.
°° channels: This is the depth of an input (for example, for a RGB 

image, channels will be 3—a channel for each color).

•	 filter: This is a 4D tensor that represents the convolution window of the 
convolution operation. The filter dimensions should be [height, width, 
in_channels, out_channels]:

°° height and width: This is the height and the width of the filter  
(often smaller than that of the input)

°° in_channels: This is the number of channels of the input to the layer
°° out_channels: This is the number of channels to be produced in the 

output of the layer

•	 strides: This is a list with four elements, where the elements are  
[batch_stride, height_stride, width_stride, channels_stride]. 
The strides argument denotes how many elements to skip during a single 
shift of the convolution window on the input. If you do not completely 
understand what strides is, you can use the default value of 1.

•	 padding: This can be one of ['SAME', 'VALID']. It decides how to handle 
the convolution operation near the boundaries of the input. The VALID 
operation performs the convolution without padding. If we were to convolve 
an input of n length with a convolution window of size h, this will result in 
an output of size (n-h+1 < n). The diminishing of the output size can severely 
limit the depth of neural networks. SAME pads zeros to the boundary such 
that the output will have the same height and width as the input.
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To gain a better understanding of what filter size, stride, and padding are,  
refer to Figure 2.7:

Figure 2.7: The convolution operation

The pooling operation
A pooling operation behaves similar to the convolution operation, but the final 
output is different. Instead of outputting the sum of the element-wise multiplication 
of the filter and the image patch, we now take the maximum element of the image 
patch for that location (see Figure 2.8):

x = tf.constant(
    [[
        [[1],[2],[3],[4]],
        [[4],[3],[2],[1]],
        [[5],[6],[7],[8]],
        [[8],[7],[6],[5]]
    ]],
    dtype=tf.float32)
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x_ksize = [1,2,2,1]
x_stride = [1,2,2,1]
x_padding = 'VALID'

x_pool = tf.nn.max_pool(
    value=x, ksize=x_ksize,
    strides=x_stride, padding=x_padding
)
# Returns (out) =>
[[[[ 4.]
   [ 4.]],
  [[ 8.]
   [ 8.]]]]

Figure 2.8: The max-pooling operation
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Defining loss
We know that in order for a neural network to learn something useful, a loss needs 
to be defined. There are several functions for automatically calculating the loss in 
TensorFlow, two of which are shown in the following code. The tf.nn.l2_loss 
function is the mean squared error loss, and tf.nn.softmax_cross_entropy_
with_logits_v2 is another type of loss, which actually gives better performance 
in classification tasks. And by logits here, we mean the unnormalized output of the 
neural network (that is, the linear output of the last layer of the neural network):

# Returns half of L2 norm of t given by sum(t**2)/2
x = tf.constant([[2,4],[6,8]],dtype=tf.float32)
x_hat = tf.constant([[1,2],[3,4]],dtype=tf.float32)
# MSE = (1**2 + 2**2 + 3**2 + 4**2)/2 = 15
MSE = tf.nn.l2_loss(x-x_hat)

# A common loss function used in neural networks to optimize the 
network
# Calculating the cross_entropy with logits (unnormalized outputs of 
the last layer)
# instead of outputs leads to better numerical stabilities

y = tf.constant([[1,0],[0,1]],dtype=tf.float32)
y_hat = tf.constant([[3,1],[2,5]],dtype=tf.float32)
# This function alone doesnt average the cross entropy losses of all 
data points,
# You need to do that manually using reduce_mean function
CE = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(logits=y_hat,labels=y))

Optimization of neural networks
After defining the loss of a neural network, our objective is to minimize that loss 
over time. Optimization is the procedure used for this. In other words, the objective 
of the optimizer is to find the neural network parameters (that is, weights and bias 
values) that give the minimum loss for all the inputs. Again, our beloved TensorFlow 
provides us with several different optimizers, so we don't have to worry about 
implementing them from scratch.
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Figure 2.9 illustrates a simple optimization problem and shows how the optimization 
happens over time. The curve can be imagined as the loss curve (for high dimensions, 
we say loss surface), where x can be thought of as the parameters of the neural 
network (in this case a neural network with a single weight), and y can be thought 
of as the loss. We have an initial guess of x=2. From this point, we use the optimizer 
to reach the minimum y (that is, loss), which is obtained at x=0. More specifically, 
we take small steps in the direction opposite to the gradient at a given point and 
continue for several steps in this manner. However, in real-world problems, the loss 
surface will not be as nice as in the illustration, but it will be more complex:

Figure 2.9: The optimization process

In this example, we use GradientDescentOptimizer. The learning_rate 
parameter denotes the step size you take in the direction of minimization (distance 
between two red dots):

# Optimizers play the role of tuning neural network parameters so that 
# their task error is minimal
# For example task error can be the cross_entropy error  
# for a classification task
tf_x = tf.Variable(tf.constant(2.0,dtype=tf.float32),name='x') 
tf_y = tf_x**2
minimize_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).
minimize(tf_y)

Everytime you execute the loss minimize operation with session.run(minimize_op), 
you will get close to the tf_x value that gives the minimum of tf_y.

The control flow operations
Control flow operations, as the name implies, controls the order of execution in  
the graph. For example, let's say we need to perform the following computation,  
in this order:

x = x+5

z = x*2
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Precisely, if x = 2, we should get z = 14. Let's first try to achieve this in the simplest 
possible way:

session = tf.InteractiveSession()

x = tf.Variable(tf.constant(2.0), name='x')
x_assign_op = tf.assign(x, x+5)
z = x*2

tf.global_variables_initializer().run()
print('z=',session.run(z))
print('x=',session.run(x))
session.close()

Ideally, we would want x = 7 and z = 14, instead, TensorFlow produced x=2 and 
z=4. This is not the answer you were expecting. This is because TensorFlow does not 
care about the order of execution of things unless you explicitly specify it. Control 
flow operations enable you to exactly do this. To fix the preceding code, we do the 
following:

session = tf.InteractiveSession()

x = tf.Variable(tf.constant(2.0), name='x')
with tf.control_dependencies([tf.assign(x, x+5)]):
  z = x*2

tf.global_variables_initializer().run()
print('z=',session.run(z))
print('x=',session.run(x))
session.close()

Now this should give us x=7 and z=14. The tf.control_dependencies(...) 
operation makes sure that the operations passed to it as arguments will be performed 
before performing the nested operation.
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Reusing variables with scoping
Until now, we have looked at the architecture of TensorFlow and the essentials 
required to implement a basic TensorFlow client. However, there is much more to 
TensorFlow than this. As we already saw, TensorFlow behaves quite differently 
from a typical Python script. For example, you cannot debug TensorFlow code 
in real time (as you would do a simple Python script using a Python IDE), as the 
computations do not happen in real time in TensorFlow (unless you are using the 
Eager Execution method, which was only recently in TensorFlow 1.7: https://
research.googleblog.com/2017/10/eager-execution-imperative-define-by.
html). In other words, TensorFlow first defines the full computational graph, does all 
computations on a device, and finally fetches results. Consequently, it can be quite 
tedious and painful to debug a TensorFlow client. This emphasizes the importance 
of attention to detail when implementing a TensorFlow client. Therefore, it is advised 
to adhere to proper coding practices introduced for TensorFlow. One such practice is 
known as scoping and allows easier variable reusing.

Reusing TensorFlow variables is a common scenario that occurs frequently in 
TensorFlow clients. To understand the value of an answer, we must first understand 
the question. Also, what better way to understand the question than erroneous code. 
Let's say that we want a function that performs a certain computation; given w, we 
need to compute x*w + y**2. Let's write a TensorFlow client, which has a function 
that performs this:

import tensorflow as tf
session = tf.InteractiveSession()
def very_simple_computation(w):
  x = tf.Variable(tf.constant(5.0, shape=None, dtype=tf.float32),
  name='x')
  y = tf.Variable(tf.constant(2.0, shape=None, dtype=tf.float32),
  name='y')
  z = x*w + y**2
  return z
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Say that you want to compute this for a single step. Then, you can call session.
run(very_simple_computation(2)) (of course, after calling tf.global_
variables_initializer().run()), and you will have the answer and feel good 
about writing code that actually works. However, don't get too comfortable, because 
an issue arises if you want to run this function several times. Each time you call this 
method, two TensorFlow variables will be created. Remember that we discussed that 
TensorFlow is different to Python? This is one such instance. The x and y variables 
will not get replaced in the graph when you call this method multiple times. Rather, 
the old variables will be retained and new variables will be created in the graph 
until you run out of memory. But of course, the answer will be correct. To see this in 
action, run session.run(very_simple_computation(2)) in a for loop, and if you 
print the names of the variables in the graph, you will see more than two variables. 
This is the output when you run it 10 times:

'x:0', 'y:0', 'x_1:0', 'y_1:0', 'x_2:0', 'y_2:0', 'x_3:0', 'y_3:0', 
'x_4:0', 'y_4:0', 'x_5:0', 'y_5:0', 'x_6:0', 'y_6:0', 'x_7:0', 
'y_7:0', 'x_8:0', 'y_8:0', 'x_9:0', 'y_9:0', 'x_10:0', 'y_10:0'

Each time you run the function, a pair of variables is created. Let's make this explicit: 
if you run this function for 100 times, you will have 198 obsolete variables in your 
graph (99 x variables and 99 y variables).

This is where scoping comes to the rescue. Scoping allows you to reuse the variables 
instead of creating one each time a function is invoked. Now to add reusability to 
our little example, we will be changing the code to the following:

def not_so_simple_computation(w):
  x = tf.get_variable('x', initializer=tf.constant (5.0, shape=None,  
                      dtype=tf.float32))
  y = tf.get_variable('y', initializer=tf.constant(2.0, shape=None,  
                      dtype=tf.float32)) 
  z = x*w + y**2
  return z

def another_not_so_simple_computation(w):
  x = tf.get_variable('x', initializer=tf.constant(5.0, shape=None,  
                      dtype=tf.float32))
  y = tf.get_variable('y', initializer=tf.constant(2.0, shape=None,  
                      dtype=tf.float32)) 
  z = w*x*y
  return z
 
# Since this is the first call, the variables will  
# be created with following names
# x => scopeA/x, y => scopeA/y
with tf.variable_scope('scopeA'):
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  z1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
# scopeA/x and scopeA/y alread created we reuse them
with tf.variable_scope('scopeA',reuse=True):
  z2 = another_not_so_simple_computation(z1)

# Since this is the first call, the variables will be created with  
# be created with
# following names x => scopeB/x, y => scopeB/y
with tf.variable_scope('scopeB'):
  a1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
# scopeB/x and scopeB/y alread created we reuse them
with tf.variable_scope('scopeB',reuse=True):
  a2 = another_not_so_simple_computation(a1)

# Say we want to reuse the "scopeA" again, since variables are already
# created we should set "reuse" argument to True when invoking the 
scope
with tf.variable_scope('scopeA',reuse=True):
  zz1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
  zz2 = another_not_so_simple_computation(z1)

In this example, if you do session.run([z1,z2,a1,a2,zz1,zz2]), you should see 
z1, z2, a1, a2, zz1, zz2 has 9.0, 90.0, 9.0, 90.0, 9.0, 90.0 values in that order. Now if 
you print variables, you should see only four different variables: scopeA/x, scopeA/y, 
scopeB/x, and scopeB/y. We can now run it as many times as we want in a loop 
without worrying about creating redundant variables and running out of memory.

Now you might wonder why you cannot just create four variables at the  
beginning of the code and use them within the methods. However, this breaks the 
encapsulation of your code, because now you are explicitly depending on something 
outside your code.

Finally, scoping enables reusability while preserving the encapsulation of the code. 
Furthermore, scoping makes the flow of the code more intuitive and reduces the 
chance of errors as we are explicitly getting the variable by the scope and name 
instead of using the Python variable the TensorFlow variable was assigned to.

Implementing our first neural network
Great! Now that you've learned the architecture, basics, and scoping mechanism of 
TensorFlow, it's high time that we move on and implement something moderately 
complex. Let's implement a neural network. Precisely, we will implement a fully 
connected neural network model that we discussed in Chapter 1, Introduction to 
Natural Language Processing.
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One of the stepping stones to the introduction of neural networks is to implement 
a neural network that is able to classify digits. For this task, we will be using the 
famous MNIST dataset made available at http://yann.lecun.com/exdb/mnist/. 
You might feel a bit skeptical regarding our using a computer vision task rather than 
a NLP task. However, vision tasks can be implemented with less preprocessing and 
are easy to understand.

As this is our first encounter with neural networks, we will walk through the main 
parts of the example. However, note that I will only walk through the crucial bits 
of the exercise. To run the example end to end, you can find the full exercise in the 
tensorflow_introduction.ipynb file in the ch2 folder.

Preparing the data
First, we need to download the dataset with the maybe_download(...) function and 
preprocess it with the read_mnist(...) function. These two functions are defined in 
the exercise file. The read_mnist(...) function performs two main steps:

•	 Reading the byte stream of the dataset and forming it into a proper  
numpy.ndarray object

•	 Standardizing the images to have a zero-mean and unit-variance  
(also known as whitening)

The following code shows the read_mnist(...) function. The read_mnist(...) 
function takes the filename of the file containing images and the filename of the 
file containing labels, as input. Then the read_mnist(...) function produces two 
NumPy matrices containing all the images and their corresponding labels:

def read_mnist(fname_img, fname_lbl):
  print('\nReading files %s and %s'%(fname_img, fname_lbl))

  with gzip.open(fname_img) as fimg:
    magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16))
    print(num,rows,cols)
    img = (np.frombuffer(fimg.read(num*rows*cols), dtype=np.uint8). 
           reshape(num, rows * cols)).astype(np.float32)
    print('(Images) Returned a tensor of shape ',img.shape)
    # Standardizing the images
    img = (img - np.mean(img))/np.std(img)
 
  with gzip.open(fname_lbl) as flbl:
    # flbl.read(8) reads upto 8 bytes
    magic, num = struct.unpack(">II", flbl.read(8))
    lbl = np.frombuffer(flbl.read(num), dtype=np.int8)

http://yann.lecun.com/exdb/mnist/
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    print('(Labels) Returned a tensor of shape: %s'%lbl.shape)
    print('Sample labels: ',lbl[:10])
 
  return img, lbl

Defining the TensorFlow graph
To define the TensorFlow graph, we'll first define placeholders for the input images 
(tf_inputs) and the corresponding labels (tf_labels):

# Defining inputs and outputs
tf_inputs = tf.placeholder(shape=[batch_size, input_size], dtype=tf.
float32, name = 'inputs')
tf_labels = tf.placeholder(shape=[batch_size, num_labels], dtype=tf.
float32, name = 'labels')

Next, we'll write a Python function that will create the variables for the first time. 
Note that we are using scoping to ensure the reusability, and make sure that our 
variables are named properly:

# Defining the TensorFlow variables
def define_net_parameters():
  with tf.variable_scope('layer1'):
    tf.get_variable(WEIGHTS_STRING,shape=[input_size,500],  
    initializer=tf.random_normal_initializer(0,0.02))
    tf.get_variable(BIAS_STRING, shape=[500],
    initializer=tf.random_uniform_initializer(0,0.01))
 
  with tf.variable_scope('layer2'):
    tf.get_variable(WEIGHTS_STRING,shape=[500,250],
    initializer=tf.random_normal_initializer(0,0.02))
    tf.get_variable(BIAS_STRING, shape=[250],
    initializer=tf.random_uniform_initializer(0,0.01))
 
  with tf.variable_scope('output'):
    tf.get_variable(WEIGHTS_STRING,shape=[250,10], initializer=tf. 
    random_normal_initializer(0,0.02))
    tf.get_variable(BIAS_STRING, shape=[10], initializer=tf.random_ 
    uniform_initializer(0,0.01))
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Next, we'll define the inference process for the neural network. Note how the scoping 
has given a very intuitive flow to the code in the function, compared with using 
variables without scoping. So, in this network we have three layers:

•	 A fully-connected layer with ReLU activation (layer1)
•	 A fully-connected layer with ReLU activation (layer2)
•	 A fully-connected softmax layer (output)

By means of scoping, we name variables (weights and biases) for each layer as, 
layer1/weights, layer1/bias, layer2/weights, layer2/bias, output/weights, 
and output/bias. Note that in the code, all of them have the same name, but 
different scopes:

# Defining calcutations in the neural network  
# starting from inputs to logits
# logits are the values before applying softmax to the final output
 
def inference(x):
  # calculations for layer 1
  with tf.variable_scope('layer1',reuse=True):
    w,b = tf.get_variable(WEIGHTS_STRING),  
                          tf.get_variable(BIAS_STRING)
    tf_h1 = tf.nn.relu(tf.matmul(x,w) + b, name = 'hidden1')

  # calculations for layer 2
  with tf.variable_scope('layer2',reuse=True):
    w,b = tf.get_variable(WEIGHTS_STRING),  
                          tf.get_variable(BIAS_STRING)
    tf_h2 = tf.nn.relu(tf.matmul(tf_h1,w) + b, name = 'hidden1')

  # calculations for output layer
  with tf.variable_scope('output',reuse=True):
    w,b = tf.get_variable(WEIGHTS_STRING),  
                          tf.get_variable(BIAS_STRING)
    tf_logits = tf.nn.bias_add(tf.matmul(tf_h2,w), b, name = 'logits')

  return tf_logits
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Now we'll define a loss function and then a loss minimize operation. The loss 
minimize operation minimizes the loss by nudging the network parameters in the 
direction that minimizes the loss. There is a diverse collection of optimizers available 
in TensorFlow. Here, we will be using MomentumOptimizer, which gives better final 
accuracy and convergence than GradientDescentOptimizer:

# defining the loss
tf_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(logits=inference(tf_inputs), labels=tf_labels))
# defining the optimize function
tf_loss_minimize = tf.train.MomentumOptimizer(momentum=0.9,learning_
rate=0.01).minimize(tf_loss)

Finally, we'll define an operation to retrieve the predicted softmax probabilities for 
a given batch of inputs. This in turn will be used to calculate the accuracy of your 
neural network:

# defining predictions
tf_predictions = tf.nn.softmax(inference(tf_inputs))

Running the neural network
Now we have all the essential operations required to run the neural network and 
examine whether it's capable of learning to successfully classify digits:

for epoch in range(NUM_EPOCHS):
  train_loss = []
 
  # Training Phase
  for step in range(train_inputs.shape[0]//batch_size):
    # Creating one-hot encoded labels with labels
    # One-hot encoding digit 3 for 10-class MNIST dataset
    # will result in
    # [0,0,0,1,0,0,0,0,0,0]
    labels_one_hot = np.zeros((batch_size, num_labels), 
                               dtype=np.float32)
    labels_one_hot[np.arange(batch_size),train_labels[ 
    step*batch_size:(step+1)*batch_size]] = 1.0
 

    # Running the optimization process
    loss, _ = session.run([tf_loss,tf_loss_minimize],feed_dict={
    tf_inputs: train_inputs[step*batch_size: (step+1)*batch_size,:],  
    tf_labels: labels_one_hot})
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    train_loss.append(loss)  
# Used to average the loss for a single epoch
 
    test_accuracy = []
    # Testing Phase
    for step in range(test_inputs.shape[0]//batch_size):
      test_predictions = session.run(tf_predictions,feed_dict={tf_
inputs: test_inputs[step*batch_size: (step+1)*batch_size,:]})
      batch_test_accuracy = accuracy(test_predictions,test_
labels[step*batch_size: (step+1)*batch_size])
      test_accuracy.append(batch_test_accuracy)

   print('Average train loss for the %d epoch: %.3f\n'%(epoch+1,np.
mean(train_loss)))
   print('\tAverage test accuracy for the %d epoch: 
%.2f\n'%(epoch+1,np.mean(test_accuracy)*100.0))

In this code, accuracy(test_predictions,test_labels) is a function that 
takes some predictions and labels as inputs and provides the accuracy (how many 
predictions matched the actual label). It is defined in the exercise file.

If successful, you should be able to see a behavior similar to the ones shown in  
Figure 2.10. After 50 epochs, the test accuracy should reach approximately 98%:

Figure 2.10: Training loss and test accuracy for the MNIST digit classification task
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Summary
In this chapter, you took your first steps to solving NLP tasks by understanding the 
primary underlying platform (TensorFlow) on which we will be implementing our 
algorithms. First, we discussed the underlying details of TensorFlow architecture. 
Next, we discussed the essential ingredients of a meaningful TensorFlow client. 
Then we discussed a general coding practice widely used in TensorFlow known 
as scoping. Later, we brought all these elements together to implement a neural 
network to classify an MNIST dataset.

Specifically, we discussed the TensorFlow architecture lining up the explanation with 
an example TensorFlow client. In the TensorFlow client, we defined the TensorFlow 
graph. Then, when we created a session, it looked at the graph, created a GraphDef 
object representing the graph, and sent it to the distributed master. The distributed 
master looked at the graph, decided which components to use for the relevant 
computation, and divided it into several subgraphs to make the computations faster. 
Finally, workers executed subgraphs and returned the result through the session.

Next, we discussed various elements that composes a typical TensorFlow client: 
inputs, variables, outputs, and operations. Inputs are the data we feed to the 
algorithm for training and testing purposes. We discussed three different ways of 
feeding inputs: using placeholders, preloading data and storing data as TensorFlow 
tensors, and using an input pipeline. Then we discussed TensorFlow variables, how 
they differ from other tensors, and how to create and initialize them. Following this, 
we discussed how variables can be used to create intermediate and terminal outputs. 
Finally, we discussed several available TensorFlow operations, such as mathematical 
operations, matrix operations, neural-network related operations, and control-flow 
operations, that will be used later in the book.

Then we discussed how scoping can be used to avoid certain pitfalls when 
implementing a TensorFlow client. Scoping allows variables to be used with ease, 
while maintaining the encapsulation of the code.

Finally, we implemented a neural network using all the previously learned concepts. 
We used a three-layer neural network to classify an MNIST digit dataset.

In the next chapter, we will see how to use the fully connected neural network 
we implemented in this chapter, for learning the semantic numerical word 
representation of words.
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Word2vec – Learning  
Word Embeddings

In this chapter, we will discuss a topic of paramount importance in NLP—Word2vec, a 
technique to learn word embeddings or distributed numerical feature representations 
(that is, vectors) of words. Learning word representations lies at the very foundation 
of many NLP tasks because many NLP tasks rely on good feature representations for 
words that preserve their semantics as well as their context in a language. For example, 
the feature representation of the word forest should be very different from oven as these 
words are rarely used in similar contexts, whereas the representations of forest and 
jungle should be very similar.

Word2vec is called a distributed representation, as the semantics 
of the word is captured by the activation pattern of the full 
representation vector, in contrast to a single element of the 
representation vector (for example, setting a single element in 
the vector to 1 and rest to 0 for a single word).



Word2vec – Learning Word Embeddings

[ 68 ]

We will go step by step from the classical approach to solving this problem to 
modern neural network-based methods that deliver state-of-the-art performance 
in finding good word representations. We visualize (using t-SNE, a visualization 
technique for high-dimensional data) such learned word embeddings for a set  
of words on a 2D canvas in Figure 3.1. If you take a closer look, you will see that 
similar things are placed close to each other (for example, numbers in the cluster  
in the middle):

Figure 3.1: An example visualization of learned word embeddings using t-SNE
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t-Distributed Stochastic Neighbor Embedding (t-SNE)
This is a dimensionality reduction technique that 
projects high-dimensional data to a two-dimensional 
space. This allows us to imagine how high-dimensional 
data is distributed in space, and it is quite useful as we 
cannot visualize beyond three dimensions easily. You 
will learn about t-SNE in more detail in the next chapter.

What is a word representation or 
meaning?
What is meant by the word meaning? This is more of a philosophical question than a 
technical one. So, we will not try to discern the most proper answer for this question, 
but accept a more modest answer, that is, meaning is the idea or the representation 
conveyed by a word. Since the primary objective of NLP is to achieve human-
like performance in linguistic tasks, it is sensible to explore principled ways of 
representing words for machines. To achieve this, we will use algorithms that can 
analyze a given text corpus and come up with good numerical representations of 
words (that is, word embeddings), such that words that fall within similar contexts 
(for example, one and two, I and we) will have similar numerical representations 
compared with words that are irrelevant (for example, cat and volcano).

First, we will discuss some classical approaches to achieve this and then move on to 
understanding more sophisticated recent methods that use neural networks to learn 
such feature representations and deliver state-of-the-art performance.

Classical approaches to learning word 
representation
In this section, we will discuss some of the classical approaches used for numerically 
representing words. These approaches mainly can be categorized into two classes: 
approaches that use external resources for representing words and approaches  
that do not. First, we will discuss WordNet—one of the most popular external 
resource-based approaches for representing words. Then we will proceed to more 
localized methods (that is, those that do not rely on external resources), such as  
one-hot encoding and Term Frequency-Inverse Document Frequency (TF-IDF).
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WordNet – using an external lexical 
knowledge base for learning word 
representations
WordNet is one of the most popular classical approaches or statistical NLP that 
deals with word representations. It relies on an external lexical knowledge base that 
encodes the information about the definition, synonyms, ancestors, descendants, and 
so forth of a given word. WordNet allows a user to infer various information for a 
given word, such as the aspects of a word discussed in the preceding sentence and 
the similarity between two words.

Tour of WordNet
As already mentioned, WordNet is a lexical database, encoding part-of-speech 
tag relationships between words including nouns, verbs, adjectives, and adverbs. 
WordNet was pioneered by the Department of Psychology of Princeton University, 
United States, and it is currently hosted at the Department of Computer Science of 
Princeton University. WordNet considers the synonymy between words to evaluate 
the relationship between words. The English WordNet currently hosts more than 
150,000 words and more than 100,000 synonym groups (that is, synsets). Also, 
WordNet is not just restricted to English. A multitude of different wordnets have 
been founded since its inception and can be viewed at http://globalwordnet.org/
wordnets-in-the-world/.

In order to understand how to leverage WordNet, it is important to lay a solid 
ground on the terminology used in WordNet. First, WordNet uses the term synset to 
denote a group or set of synonyms. Next, each synset has a definition that explains 
what the synset represents. Synonyms contained within a synset are called lemmas.

In WordNet, the word representations are modeled hierarchically, which forms a 
complex graph between a given synset and the associations to another synset. These 
associations can be of two different categories: an is-a relationship or an is-made-of 
relationship. First, we will discuss the is-a association.

For a given synset, there exist two categories of relations: hypernyms and hyponyms. 
Hypernyms of a synset are the synsets that carry a general (high-level) meaning of 
the considered synset. For example, vehicle is a hypernym of the synset car. Next, 
hyponyms are synsets that are more specific than the corresponding synset. For 
example, Toyota car is a hyponym of the synset car.

http://globalwordnet.org/wordnets-in-the-world/
http://globalwordnet.org/wordnets-in-the-world/
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Now let's discuss the is-made-of relationships for a synset. Holonyms of a synset are 
the group of synsets that represents the whole entity of the considered synset. For 
example, a holonym of tires is the cars synset. Meronyms are an is-made-of category 
and represent the opposite of holonyms, where meronyms are the parts or substances 
synset that makes the corresponding synset. We can visualize this in Figure 3.2:

Figure 3.2: The various associations that exist for a synset

The NLTK library, a Python natural language processing library, can be used to 
understand WordNet and its mechanisms. The full example is available as an 
exercise in the ch3_wordnet.ipynb file located in the ch3 folder.

Installing the NLTK Library
To install the NLTK library to Python, you can use the following 
Python pip command:
pip install nltk

Alternatively, you can use an IDE (such as PyCharm) to install 
the library through the Graphical User Interface (GUI). You can 
find more detailed instructions at http://www.nltk.org/
install.html.
To import NLTK into Python and download the WordNet 
corpus, first import the nltk library:

import nltk

Then you can download the WordNet corpus by running the 
following command:

nltk.download('wordnet')

After the nltk library is installed and imported, we need to import the WordNet 
corpus with this command:

from nltk.corpus import wordnet as wn

http://www.nltk.org/install.html
http://www.nltk.org/install.html
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Then we can query the WordNet corpus as follows:

# retrieves all the available synsets
word = 'car'
car_syns = wn.synsets(word)

# The definition of each synset of car synsets
syns_defs = [car_syns[i].definition() for i in range(len(car_syns))]

# Get the lemmas for the first Synset
car_lemmas = car_syns[0].lemmas()[:3]

# Let's get hypernyms for a Synset (general superclass)
syn = car_syns[0]
print('\t',syn.hypernyms()[0].name(),'\n')

# Let's get hyponyms for a Synset (specific subclass)
syn = car_syns[0]
print('\t',[hypo.name() for hypo in syn.hyponyms()[:3]],'\n')

# Let's get part-holonyms for the third "car"
# Synset (specific subclass)
syn = car_syns[2]
print('\t',[holo.name() for holo in syn.part_holonyms()],'\n')

# Let's get meronyms for a Synset (specific subclass)
syn = car_syns[0]
print('\t',[mero.name() for mero in syn.part_meronyms()[:3]],'\n')

After running the example, the results will look like this:

All the available Synsets for car
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), 
Synset('car.n.04'), Synset('cable_car.n.01')]

Example definitions of available synsets:
car.n.01 :  a motor vehicle with four wheels; usually propelled by an 
internal combustion engine
car.n.02 :  a wheeled vehicle adapted to the rails of railroad
car.n.03 :  the compartment that is suspended from an airship and that 
carries personnel and the cargo and the power plant

Example lemmas for the Synset  car.n.03
['car', 'auto', 'automobile']

Hypernyms of the Synset  car.n.01
motor_vehicle.n.01
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Hyponyms of the Synset  car.n.01
['ambulance.n.01', 'beach_wagon.n.01', 'bus.n.04']

Holonyms (Part) of the Synset  car.n.03
['airship.n.01']

Meronyms (Part) of the Synset  car.n.01
['accelerator.n.01', 'air_bag.n.01', 'auto_accessory.n.01']

We can also obtain the similarities between two synsets in the following way. There 
are several different similarity metrics implemented in NLTK, and you can see them 
in action on the official website (www.nltk.org/howto/wordnet.html). Here, we use 
the Wu-Palmer similarity, which measures the similarity between two synsets based 
on their depth in the hierarchical organization of the synsets:

sim = wn.wup_similarity(w1_syns[0], w2_syns[0])

Problems with WordNet
Though WordNet is an amazing resource that anyone can use to learn meanings of 
word in the NLP tasks, there are quite a few drawbacks in using WordNet for this. 
They are as follows:

•	 Missing nuances is a key problem in WordNet. There are both theoretical 
and practical reasons why this is not viable for WordNet. From a theoretical 
perspective, it is not well-posed or direct to model the definition of the subtle 
difference between two entities. Practically speaking, defining nuances is 
subjective. For example, the words want and need have similar meanings, but 
one of them (need) is more assertive. This is considered to be a nuance.

•	 Next, WordNet is subjective in itself as WordNet was designed by a 
relatively small community. Therefore, depending on what you are trying 
to solve, WordNet might be suitable or you might be able to perform better 
with a loose definition of words.

•	 There also exists the issue of maintaining WordNet, which is labor-intensive. 
Maintaining and adding new synsets, definitions, lemmas, and so on, can be 
very expensive. This adversely affects the scalability of WordNet, as human 
labor is essential to keep WordNet up to date.

•	 Developing WordNet for other languages can be costly. There are also some 
efforts to build WordNet for other languages and link it with the English 
WordNet as MultiWordNet (MWN), but they are yet incomplete.

Next, we will discuss several word representation techniques that do not rely on 
external resources.

www.nltk.org/howto/wordnet.html
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One-hot encoded representation
A simpler way of representing words is to use the one-hot encoded representation. 
This means that if we have a vocabulary of V size, for each ith word wi, we will 
represent the word wi with a V-long vector [0, 0, 0, …, 0, 1, 0, …, 0, 0, 0] where the  
ith element is 1 and other elements are zero. As an example, consider this sentence:

Bob and Mary are good friends.

The one-hot encoded representation for each word might look like this:

Bob: [1,0,0,0,0,0]

and: [0,1,0,0,0,0]

Mary: [0,0,1,0,0,0]

are: [0,0,0,1,0,0]

good: [0,0,0,0,1,0]

friends: [0,0,0,0,0,1]

However, as you might have already figured out, this representation has  
many drawbacks.

This representation does not encode the similarity between words in any way and 
completely ignores the context in which the words are used. Let's consider the dot 
product between the word vectors as the similarity measure. The more similar two 
vectors are, the higher the dot product is for those two vectors. For example, the 
representation of the words car and automobile will have a similarity distance of 0, 
where car and pencil will also have the same value.

This method becomes extremely ineffective for large vocabularies. Also, for a  
typical NLP task, the vocabulary easily can exceed 50,000 words. Therefore,  
the word representation matrix for 50,000 words will result in a very sparse  
50,000 × 50,000 matrix.

However, one-hot encoding plays an important role even in the state-of-the-art 
word embedding learning algorithms. We use one-hot encoding to represent words 
numerically and feed them into neural networks so that the neural networks can 
learn better and smaller numerical feature representations of the words.
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One-hot encoding is also known as a localist representation 
(opposite of the distributed representation), as the feature 
representation is decided by the activation of a single 
element in the vector.

The TF-IDF method
TF-IDF is a frequency-based method that takes into account the frequency with 
which a word appears in a corpus. This is a word representation in the sense that it 
represents the importance of a specific word in a given document. Intuitively, the 
higher the frequency of the word, the more important that word is in the document. 
For example, in a document about cats, the word cats will appear more. However, 
just calculating the frequency would not work, because words such as this and is 
are very frequent but do not carry that much information. TF-IDF takes this into 
consideration and gives a value of zero for such common words.

Again, TF stands for term frequency and IDF stands for inverse document frequency:

TF(wi) = number of times wi appear / total number of words

IDF(wi) = log(total number of documents / number of documents with wi in it)

TF-IDF(wi) = TF(wi) x IDF(wi)

Let's do a quick exercise. Consider two documents:

•	 Document 1: This is about cats. Cats are great companions.
•	 Document 2: This is about dogs. Dogs are very loyal.

Now let's crunch some numbers:

TF-IDF (cats, doc1) = (2/8) * log(2/1) = 0.075

TF-IDF (this, doc2) = (1/8) * log(2/2) = 0.0

Therefore, the word cats is informative while this is not. This is the desired behavior 
we needed in terms of measuring the importance of words.
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Co-occurrence matrix
Co-occurrence matrices, unlike one-hot-encoded representation, encodes the context 
information of words, but requires maintaining a V × V matrix. To understand the 
co-occurrence matrix, let's take two example sentences:

•	 Jerry and Mary are friends.
•	 Jerry buys flowers for Mary.

The co-occurrence matrix will look like the following matrix. We only show one 
triangle of the matrix, as the matrix is symmetric:

Jerry and Mary are friends buys flowers for
Jerry 0 1 0 0 0 1 0 0
and 0 1 0 0 0 0 0
Mary 0 1 0 0 0 1
are 0 1 0 0 0
friends 0 0 0 0
buys 0 1 0
flowers 0 1
for 0

However, it is not hard to see that maintaining such a co-occurrence matrix comes at 
a cost as the size of the matrix grows polynomially with the size of the vocabulary. 
Furthermore, it is not straightforward to incorporate a context window size larger 
than 1. One option is to have a weighted count, where the weight for a word in the 
context deteriorates with the distance from the word of interest.

All these drawbacks motivate us to investigate more principled, robust, and scalable 
ways of learning and inferring meanings (that is, representations) of words.

Word2vec is a recently-introduced distributed word representation learning 
technique that is currently being used as a feature engineering technique for many 
NLP tasks (for example, machine translation, chatbots, and image caption generators). 
Essentially, Word2vec learns word representations by looking at the surrounding 
words (that is, context) in which the word is used. More specifically, we attempt to 
predict the context, given some words (or vice versa), through a neural network, 
which leads the neural network to be forced to learn good word embeddings. We will 
discuss this method in detail in the next section. The Word2vec approach has many 
advantages over the previously-described methods. They are as follows:

•	 The Word2vec approach is not subjective to the human knowledge of 
language as in the WordNet-based approach.
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•	 Word2vec representation vector size is independent of the vocabulary size 
unlike one-hot encoded representation or the word co-occurrence matrix.

•	 Word2vec is a distributed representation. Unlike localist representation, 
where the representation depends on the activation of a single element of 
the representation vector (for example, one-hot encoding), the distributed 
representation depends on the activation pattern of all the elements in the 
vector. This gives more expressive power to Word2vec than produced by the 
one-hot encoded representation.

In the following section, we will first develop some intuitive feeling about learning 
word embeddings by working through an example. Then we will define a loss 
function so that we can use machine learning to learn word embeddings. Also,  
we will discuss two Word2vec algorithms, namely, the skip-gram and Continuous 
Bag-of-Words (CBOW) algorithms.

Word2vec – a neural network-based 
approach to learning word representation

"You shall know a word by the company it keeps."

                                                                                                                    – J.R. Firth

This statement, uttered by J.R. Firth in 1957, lies at the very foundation of Word2vec, 
as Word2vec techniques use the context of a given word to learn its semantics. 
Word2vec is a groundbreaking approach that allows to learn the meaning of words 
without any human intervention. Also, Word2vec learns numerical representations 
of words by looking at the words surrounding a given word.

We can test the correctness of the preceding quote by imagining a real-world 
scenario. Imagine you are sitting for an exam and you find this sentence in your first 
question: "Mary is a very stubborn child. Her pervicacious nature always gets her 
in trouble." Now, unless you are very clever, you might not know what pervicacious 
means. In such a situation, you automatically will be compelled to look at the 
phrases surrounding the word of interest. In our example, pervicacious is surrounded 
by stubborn, nature, and trouble. Looking at these three words is enough to determine 
that pervicacious in fact means a state of being stubborn. I think this is adequate 
evidence to observe the importance of context for a word's meaning.
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Now let's discuss the basics of Word2vec. As already mentioned, Word2vec 
learns the meaning of a given word by looking at its context and representing it 
numerically. By context, we refer to a fixed number of words in front of and behind 
the word of interest. Let's take a hypothetical corpus with N words. Mathematically, 
this can be represented by a sequence of words denoted by w0, w1, …, wi, and wN, 
where wi is the ith word in the corpus.

Next, if we want to find a good algorithm that is capable of learning word meanings, 
given a word, our algorithm should be able to predict the context words correctly. 
This means that the following probability should be high for any given word wi:

( ) ( )1 1, , , , , | |
i m

i m i i i m i j i
j i j i m

P w w w w w P w w
+

− − + +
≠ Λ = −
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To arrive at the right-hand side of the equation, we need to assume that given the 
target word (wi), the context words are independent of each other (for example, wi-2 
and wi-1 are independent). Though not entirely true, this approximation makes the 
learning problem practical and works well in practice.

Exercise: is queen = king – he + she?
Before proceeding further, let's do a small exercise to understand how maximizing 
the previously-mentioned probability leads to finding good meaning (or 
representations) of words. Consider the following very small corpus:

There was a very rich king. He had a beautiful queen. She was very kind.

Now let's do some manual preprocessing and remove the punctuation and the 
uninformative words:

was rich king he had beautiful queen she was kind

Now let's form a set of tuples for each word with their context words in the format 
(target word → context word 1, context word 2). We will assume a context window size 
of 1 on either side:

was → rich

rich → was, king

king → rich, he

he → king, had

had → he, beautiful



Chapter 3

[ 79 ]

beautiful → had, queen

queen → beautiful, she

she → queen, was

was → she, kind

kind → was

Remember, our goal is to be able to predict the words on the right, provided the 
word at the left is given. To do this, for a given word, the words on the right-side 
context should share a high numerical or geometrical similarity with the words on 
the left-side context. In other words, the word of interest should be conveyed by the 
surrounding word. Now let's assume actual numerical vectors to understand how 
this works. For simplicity, let's only consider the tuples highlighted in bold. Let's 
begin by assuming the following for the word rich:

rich → [0,0]

To be able to correctly predict was and king from rich, was and king should have high 
similarity with the word rich. Let's assume the Euclidean distance between vectors as 
the similarity product.

Let's try the following values for the words king and rich:

king → [0,1]

was → [-1,0]

This works out fine as the following:

Dist(rich,king) = 1.0

Dist(rich,was) = 1.0

Here, Dist is the Euclidean distance between two words. This is illustrated  
in Figure 3.3:

Figure 3.3: The positioning of word vectors for the words "rich", "was" and "king"
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Now let's consider the following tuple:

king → rich, he

We have established the relationship between king and rich already. However, it is 
not done yet; the more we see a relationship, the closer these two words should be. 
So, let's first adjust the vector of king so that it is a bit closer to rich:

king → [0,0.8]

Next, we will need to add the word he to the picture. The word he should be closer to 
king. This is all the information that we have right now about the word he:

he → [0.5,0.8]

At this moment, the graph with the words looks like Figure 3.4:

Figure 3.4: The positioning of word vectors for the words "rich", "was", "king," and "he"

Now let's proceed with the next two tuples: queen → beautiful, she and she → queen, 
was. Note that I have swapped the order of the tuples as this makes it easier for us  
to understand the example:

she → queen, was

Now, we will have to use our prior knowledge about English to proceed further. 
It is a reasonable decision to place the word she, which has the same distance as he 
from the word was because their usage in the context of the word was is equivalent. 
Therefore, let's use this:

she → [0.5,0.6]

Next, we will use the word queen close to the word she:

queen → [0.0,0.6]
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This is illustrated in Figure 3.5:

Figure 3.5: The positioning of word vectors for the words "rich," "was," "king," "he," "she," and "queen"

Next, we only have the following tuple:

queen → beautiful, she

Here, the word beautiful is found. It should have approximately the same distance 
from the words queen and she. Let's use the following:

beautiful → [0.25,0]

Now we have the following graph depicting the relationships between words.  
When we observe Figure 3.6, it seems to be a very intuitive representation of the 
meanings of words:

Figure 3.6: The positioning of word vectors for the words  
"rich," "was," "king," "he," "she," "queen," and "beautiful"

Now, let's look at the question that has been lurking in our minds since the 
beginning of this exercise. Are the quantities in this equation equivalent: queen = king 
– he + she? Well, we've got all the resources that we'll need to solve this mystery now. 
Let's try the right-hand side of the equation first:

= king – he + she

= [0,0.8] – [0.5,0.8] + [0.5,0.6]

= [0,0.6]
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It all works out at the end. If you look at the word vector we obtained for the word 
queen, you see that this is exactly similar to the answer we deduced earlier.

Note that this is a crude working to show how word embeddings are learned,  
and this might differ from the exact positions of word embeddings if learned using 
an algorithm.

However, keep in mind that this is an unrealistically scaled down exercise with 
regard to what a real-world corpus might look like. So, you will not be able to 
work out these values by hand just by crunching a dozen numbers. This is where 
sophisticated function approximators such as neural networks do the job for us. 
But, to use neural networks, we need to formulate our problem in a mathematically 
assertive way. However, this is a good exercise that actually shows the power of 
word vectors.

Designing a loss function for learning word 
embeddings
The vocabulary for even a simple real-world task can easily exceed 10,000 words. 
Therefore, we cannot develop word vectors by hand for large text corpora and need 
to devise a way to automatically find good word embeddings using some machine 
learning algorithms (for example, neural networks) to perform this laborious task 
efficiently. Also, to use any sort of machine learning algorithm for any sort of task, 
we need to define a loss, so completing the task becomes minimizing the loss. Let's 
define the loss for finding good word embedding vectors.

First, let's recall the equation we discussed at the beginning of this section:

( ) ( )1 1, , , , , | |
i m

i m i i i m i j i
j i j i m

P w w w w w P w w
+

− − + +
≠ Λ = −

= ∏K K

With this equation in mind, we can define a cost function for the neural network:

( ) ( ) ( )
1

1/ 2 |
i mN m

j i
i m j i j i m

J N m P w wθ
+−

= + ≠ Λ = −

= − − ∑ ∏

Remember, ( )J θ  is a loss (that is, cost), not a reward. Also, we want to maximize 
P(wj|wi). Thus, we need a minus sign in front of the expression to convert it into  
a cost function.
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Now, instead of working with the product operator, let's convert this to log space. 
Converting the equation to log space will introduce consistency and numerical 
stability. This gives us the following equation:

( ) ( ) ( )
1

1/ 2 |
N m i m

j i
i m j i j i m

J N m logP w wθ
− +

= + ≠ Λ = −

= − − ∑ ∑

This formulation of the cost function is known as the negative log-likelihood.

Now, as we have a well-formulated cost function, a neural network can be used 
to optimize this cost function. Doing so will force the word vectors or word 
embeddings to organize themselves well according to their meaning. Now, it is time 
to learn about the existing algorithms that use this cost function to find good word 
embeddings.

The skip-gram algorithm
The first algorithm we will talk about is known as the skip-gram algorithm. The 
skip-gram algorithm, introduced by Mikolov and others in 2013, is an algorithm that 
exploits the context of the words of written text to learn good word embeddings. 
Let's go through step by step to understand the skip-gram algorithm.

First, we will discuss the data preparation process, followed by an introduction 
to the notation required to understand the algorithm. Finally, we will discuss the 
algorithm itself.

As we discussed in numerous places, the meaning of the word can be elicited  
from the contextual words surrounding that particular word. However, it is not 
entirely straightforward to develop a model that exploits this property to learning 
word meanings.

From raw text to structured data
First, we need to design a mechanism to extract a dataset that can be fed to our 
learning model. Such a dataset should be a set of tuples of the format (input, output). 
Moreover, this needs to be created in an unsupervised manner. That is, a human 
should not have to manually engineer the labels for the data. In summary, the data 
preparation process should do the following:

•	 Capture the surrounding words of a given word
•	 Perform in an unsupervised manner
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The skip-gram model uses the following approach to design such a dataset:

1.	 For a given word wi, a context window size m is assumed. By context window 
size, we mean the number of words considered as context on a single side. 
Therefore, for wi, the context window (including the target word wi) will be  
of size 2m+1 and will look like this: [wi-m, …, wi-1, wi, wi+1, …, wi+m].

2.	 Next, input-output tuples are formed as […, (wi, wi-m), …,(wi,wi-1), (wi,wi+1), …, 
(wi,wi+m), …]; here, m 1 i N m+ ≤ ≤ −  and N is the number of words in the text 
to get a practical insight. Let's assume the following sentence and context 
window size (m) of 1:
The dog barked at the mailman.
For this example, the dataset would be as follows:
[(dog, The), (dog, barked), (barked, dog), (barked, at), …, (the, at), (the, mailman)]

Learning the word embeddings with a  
neural network
Once the data is in the (input, output) format, we can use a neural network to learn 
the word embeddings. First, let's identify the variables we need to learn the word 
embeddings. To store the word embeddings, we need a V × D matrix, where V is 
the vocabulary size and D is the dimensionality of the word embeddings (that is, the 
number of elements in the vector that represents a single word). D is a user-defined 
hyperparameter. The higher D is, the more expressive the word embeddings learned 
will be. This matrix will be referred to as the embedding space or the embedding layer. 
Next, we have a softmax layer with weights of size D × V, a bias of size V.

Each word will be represented as a one-hot encoded vector of size V with one 
element being 1 and all the others being 0. Therefore, an input word and the 
corresponding output words would each be of size V. Let's refer to the ith input as xi, 
the corresponding embedding of xi as zi, and the corresponding output as yi.

At this point, we have the necessary variables defined. Next, for each input xi, we 
will look up the embedding vectors from the embedding layer corresponding to the 
input. This operation provides us with zi, which is a D-sized vector (that is, a D-long 
embedding vector). Afterwards, we calculate the prediction output for xi using the 
following transformation:

logit(xi) = zi W+b

ŷi = softmax(logit(xi))
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Here, logit(xi) represents the unnormalized scores (that is, logits), ŷi is the V-sized 
predicted output (representing the probability of output being a word from the 
V-sized vocabulary), W is the D × V weight matrix, b is the V × 1 bias-vector, and 
softmax is the softmax activation. We will visualize both the conceptual (Figure 3.7) 
and implementation (Figure 3.8) views of the skip-gram model. Here is a summary of  
the notation:

•	 V: This is the size of the vocabulary
•	 D: This is the dimensionality of the embedding layer
•	 xi: This is the ith input word represented as a one-hot-encoded vector
•	 zi: This is the embedding (that is, representation) vector corresponding  

to the ith input word
•	 yi: This is the one-hot-encoded output word corresponding to xi

•	 ŷi: This is the predicted output for xi

•	 logit(xi): This is the unnormalized score for the input xi

•	
jw
I : This is the one-hot-encoded representation for word wj

•	 W: This is the softmax weight matrix
•	 b: This is the bias of the softmax

Figure 3.7: The conceptual skip-gram model
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Figure 3.8: The implementation of the skip-gram model

Using both the existing and derived entities, we can now use the negative  
log-likelihood loss function to calculate the loss for a given data point (xi, yi). If 
you are wondering what P(wj|wi) is, it can be derived from the already defined 
entities. Next, let's discuss how to calculate P(wj|wi) from ŷi and also derive a formal 
definition for that.
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Why does the original word embeddings paper use two 
embedding layers?
The original paper (by Mikolov, and others, 2013) uses two 
distinct V × D embedding spaces to denote words in the 
target space (words when used as the target) and words in the 
contextual space (words used as context words). One motivation 
to do this is that the same word does not occur in the context of 
itself often. So, we want to minimize the probability of such things 
happening. For example, for the target word dog, it is highly 
unlikely that the word dog is also found in its context (P(dog|dog) 
~ 0). Intuitively, if we feed the (xi=dog and yi=dog) data point to the 
neural network, we are asking the neural network to give a higher 
loss if the neural network predicts dog as a context word of dog. In 
other words, we are asking the word embedding of the word dog 
to have a very high distance to the word embedding of the word 
dog. This creates a strong contradiction as the distance between 
the embedding of the same word will be 0. Therefore, we cannot 
achieve this if we only have a single embedding space. However, 
having two separate embedding spaces for target words and 
contextual words allows us to have this property because this 
way we have two separate embedding vectors for the same word. 
However, in practice, as long as you avoid feeding input-output 
tuples, having the same word as input and output allows us to 
work with a single embedding space and eliminate the need of 
two distinct embedding layers.

Formulating a practical loss function
Let's inspect our loss function more closely. We have derived that the loss should be 
as follows:

( ) ( ) ( )
1

1/ 2 |
N m i m

j i
i m j i j i m

J N m logP w wθ
− +

= + ≠ Λ = −

= − − ∑ ∑

However, calculating this particular loss from the entities we have at hand at the 
moment is not entirely straightforward.
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First, let's understand what the P(wj|wi) entity represents. To do this, we will move 
from individual words notation to an individual data points notation. That is, we 
will say that P(wj, wi) is given by the nth data point, which has the one-hot encoded 
vector of wi as the input (xn) and the one-hot encoded representation of wj as the true 
output (yn). This is given by the following equation:

( )
( )( )

( )( )
P | j

kk

n w
j i

n ww vocabulary

exp logit x
w w

exp logit x
∈

=
∑

The logit(xn) term denotes the unnormalized prediction score (that is, logit) vector 
(V-sized) obtained for a given input xn and ( )

j
n w

logit x  is the score value corresponding 
to the non-zeroth index of the one-hot encoded representation of wj (we call this, 
the index of wj from now onwards). Then, we normalize the logit value at the index 
of wj with respect to all the logit values corresponding to all the words in the entire 
vocabulary. This particular type of normalization is known as the softmax activation 
(or normalization). Now, by converting this to log space, we get the following 
equation:

( ) ( ) ( ) ( )( )
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J 1 N 2m
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logit x log exp logit x
− +
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 
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To calculate the logit function effectively, we can fiddle with variables and come up 
with the following notation:

( ) ( )
1

logit
jj

V

n w nw
l

x logit xI
=

=∑

Here, 
jw
I  is the one-hot encoded vector of wj. Now the logit operation has reduced 

to a sum and product operation. Since 
jw
I  only has a single nonzero element 

corresponding to the word wj, only that index of the vector will be used in the 
computation. This is more computationally efficient than finding the value in the 
logit vector that corresponds to the index of the nonzero element by sweeping 
through a vector of the size of the vocabulary.

Now, by assigning the logit calculation we obtained, for the loss, we get the following:

( ) ( ) ( ) ( )
j kw w

1 1 1
J 1 2

k

N m i m V V

n n
i m j i j i m l w vocabulary l

N m logit x log exp logit xI I
− +

= + ≠ = − = ∈ =

  θ = − − −   
  

∑ ∑ ∑ ∑ ∑
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Let's consider an example to understand this calculation:

I like NLP

We can create input-output tuples as follows:

(like, I)

(like, NLP)

Now let's assume the following one-hot-encoded representations for the  
preceding words:

like – 1,0,0

I – 0,1,0

NLP – 0,0,1

Next, let's consider the input-output tuple (like, I). When we propagated the input  
like through the skip-gram learning model, let's assume that we obtained the 
following logits for the words like, I, and NLP in that order:

2,10,5

Now softmax outputs for each word in the vocabulary will be as follows:

P(like|like) = exp(2)/(exp(2)+exp(10)+exp(5)) = 0.118

P(I|like) = exp(10)/ (exp(2)+exp(10)+exp(5)) = 0.588

P(NLP|like) = exp(5)/ (exp(2)+exp(10)+exp(5)) = 0.294

The preceding loss function says that we need to maximize P(I|like) to minimize  
the loss. Now let's apply our example to this loss function:

=- ( [0,1,0] * ([2, 10, 5]) - log(exp([1,0,0]*[2, 10, 5]) + exp([0,1,0]*[2, 10, 5]) + exp([0,0,1]*[2, 
10, 5])))

=- (10 - log(exp(2)+exp(10)+exp(5))) = 0.007

With this loss function, for the term before the minus sign, there is only a single 
nonzero element in the y vector corresponding to the word I. Therefore, we will only 
be considering the probability P(I|like), which is exactly what we wanted.
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However, this is not the ideal solution we were looking for. The objective of this 
loss function from a practical perspective, we want to maximize the probability of 
predicting a contextual word given a word, while minimizing the probability of "all" 
the noncontextual words, given a word. We will soon see that having a well-defined 
loss function will not solve our problem effectively in practice. We will need to 
devise a more clever approximate loss function to learn good word embeddings in a 
feasible time duration.

Efficiently approximating the loss function
We are fortunate to have a loss function that is solid both mathematically and 
intuitively. However, hard work does not end here. If we try to calculate the 
loss function in closed form as we discussed earlier, we will face an inevitable 
tremendous slowness of our algorithm.

This slowness is due to the large vocabulary causing a performance bottleneck.  
Let's have a look at our cost function:

( ) ( ) ( ) ( )( )
1

J 1 2
j k

k

N m i m

n nw w
i m j i j i m w vocabulary

N m logit x log exp logit x
− +

= + ≠ = − ∈

 
θ = − − −  

 
∑ ∑ ∑

You will see that computing the loss for a single example requires computing logits 
for all the words in the vocabulary. Unlike computer vision problems, where a few 
hundreds of output classes is more than adequate to solve most of the existing real-
world problems, skip-gram does not boast such properties. Therefore, we need to 
turn our heads towards efficient approximations of the loss without losing efficacy of 
our model.

We will discuss two popular choices of approximations:

•	 Negative sampling
•	 Hierarchical softmax

Negative sampling of the softmax layer
Here we will discuss our first approach: negative sampling the softmax layer. 
Negative sampling is an approximation of the Noise-Contrastive Estimation (NCE) 
method. NCE says that a good model should differentiate data from noise by means 
of logistic regression.
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With this property in mind, let's reformulate our objective of learning word 
embeddings. We do not require a full-probabilistic model, which has the exact 
probabilities of all words in the vocabulary for a given word. What we need are 
high-quality word vectors. Therefore, we can simplify our problem to differentiating 
actual data (that is, input-output pairs) from noise (that is, K-many imaginary noise 
input-output pairs). By noise, we refer to false input-output pairs created using 
words that do not fall within the context of a given word. We will also get rid of 
the softmax activation and replace it with a sigmoid activation (also known as the 
logistic function). This allows us to remove the dependency of the cost function, 
on the full vocabulary while keeping output between [0,1]. We can visualize the 
negative sample process in Figure 3.9.

Precisely, our original loss function is given by the following equation:
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The preceding formula becomes this:
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Here, σ denotes the sigmoid activation, where σ(x)=1/(1+exp(-x)). Note that I have 
replaced logit(xn)wj with a ( )( )( )j

n w
log exp logit x  in the original loss function, for clarity. You 

can see that the new loss function depends only on the calculations related to k items 
from the vocabulary.

After some simplification, we arrive at the following equation:
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Let's take a moment to understand what this equation says. To simplify things let's 
assume k=1. This gives us the following equation:

( ) ( ) ( )( )( ) ( )( )( )
1

J 1 2
j q

N m i m

n nw w
i m j i j i m
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Here, wj represents a context word of wi and wq represents a noncontext word of 
wi. What this equation essentially says is that, to minimize J(θ), we should make 

( )( ) 1
jn w

logit xσ ≈ , which means ( )
j

n w
logit x  needs to be a large positive value. Then, 

( )( ) 1
qn w

-logit xσ ≈  means that ( )n qlogit x w  needs to be a large negative value. In other 
words, for true data points representing true target words and context words should 
get large positive values and fake data points representing target words and noise 
should get large negative values. This is the same behavior you would get with a 
softmax function, but with more computational efficiency.

Figure 3.9: The negative sampling process

Here, σ  is the sigmoid activation. Intuitively, we do the following two steps in our 
loss function calculation:

•	 Calculating the loss for the nonzero column of wj (pushing towards positive)
•	 Calculating the loss for K-many noise samples (pulling towards negative)
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Hierarchical softmax
Hierarchical softmax is slightly more complex than negative sampling, but serves 
the same objective as the negative sampling; that is, approximating the softmax 
without having to calculate activations for all the words in the vocabulary for all the 
training samples. However, unlike negative sampling, hierarchical softmax uses only 
the actual data and does not need noise samples. We can visualize the hierarchical 
softmax model in Figure 3.10.

To understand hierarchical softmax, let's consider an example:

I like NLP. Deep learning is amazing.

The vocabulary for this is as follows:

I, like, NLP, Deep, learning, is, amazing

With this vocabulary, we will build a binary tree, where all the words in the 
vocabulary are present as leaf nodes. We will also add a special token PAD to  
make sure that all the tree leaves have two members:

Figure 3.10: Hierarchical softmax



Word2vec – Learning Word Embeddings

[ 94 ]

Then, our last hidden layer will be fully connected to all the nodes in the  
hierarchy (see Figure 3.11). Note that this model has similar amount of total  
weights compared with a classical softmax layer; however, it uses only a subset  
of them for a given calculation:

Figure 3.11: How the hierarchical softmax connects to the embedding layer

Let's say that we need to infer the probability of P(NLP|like), where like is the input 
word. Then we only need a subset of the weights to calculate the probability, as 
shown in Figure 3.12:

Figure 3.12: Calculating probabilities with the hierarchical softmax
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Concretely, here is how the probability is calculated:

( ) ( ) ( ) ( )| 1| 2 | 5 |NLP like P left at like x P right at like x P left at like=

Since now we know how to calculate P(wj|wi), we can use the original loss function. 
Note that this method uses only the weights connected to the nodes in the path for 
calculation, resulting in a high computational efficiency.

Learning the hierarchy
Though hierarchical softmax is efficient, an important question remains unanswered. 
How do we determine the decomposition of the tree? More precisely, which word 
will follow which branch? There are a few options to achieve this:

•	 Initialize the hierarchy randomly: This method does have some 
performance degradations as the random placement cannot be guaranteed to 
have the best branching possible among words.

•	 Use WordNet to determine the hierarchy: WordNet can be utilized to 
determine a suitable order for the words in the tree. This method has shown 
to perform significantly better than the random initialization.

Optimizing the learning model
Since we own a well-formulated loss function, the optimization is a matter of calling 
the correct function from the TensorFlow library. The optimization process that will 
be used is a stochastic optimization process, meaning that we do not feed the full 
dataset at once, but only a random batch of data for many steps.

Implementing skip-gram with TensorFlow
We will now walk through an implementation of the skip-gram algorithm that 
uses the TensorFlow library. Here we will only be discussing the essential parts of 
defining the required TensorFlow operations to learn the embeddings, not running 
the operations. The full exercise is available in ch3_word2vec.ipynb in the ch3 
exercise directory.
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First let's define the hyperparameters of the model. You are free to change  
these hyperparameters to see how they affect final performance (for example, 
batch_size = 16 or batch_size = 256). However, since this is a simple problem 
compared with the more complex real-word problems, you might not see any 
significant differences (unless you change them to extremes, for example,  
batch_size = 1 or num_sampled = 1):

batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
window_size = 4 # How many words to consider left and right.
valid_size = 16 # Random set of words to evaluate similarity on.
# Only pick dev samples in the head of the distribution.
valid_window = 100 
valid_examples = get_common_and_rare_word_ids(valid_size//2,valid_
size//2)
num_sampled = 32 # Number of negative examples to sample.

Next, define TensorFlow placeholders for training inputs, labels, and valid inputs:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

Then, define the TensorFlow variables for the embedding layer and softmax weights 
and bias:

embeddings = tf.Variable(
  tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.Variable(
  tf.truncated_normal([vocabulary_size, embedding_size],
stddev=0.5 / math.sqrt(embedding_size)))
softmax_biases =
  tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01))

Next, we will define an embedding lookup operation that gathers the corresponding 
embeddings of a given batch of training inputs:

embed = tf.nn.embedding_lookup(embeddings, train_dataset)

Afterwards, we will define the softmax loss, using a negative sampling:

loss = tf.reduce_mean(
  tf.nn.sampled_softmax_loss(weights=softmax_weights,
  biases=softmax_biases, inputs=embed,
  labels=train_labels, num_sampled=num_sampled,
  num_classes=vocabulary_size))
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Here we define an optimizer to optimize (minimize) the preceding defined loss 
function. Feel free to experiment with other optimizers listed at https://www.
tensorflow.org/api_guides/python/train:

optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

Compute the similarity between validation input examples and all embeddings. The 
cosine distance is used:

norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
  normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings,
  tf.transpose(normalized_embeddings))

With all the TensorFlow variables and operations defined, we can now move 
onto executing the operations to get some results. Here we will outline the basic 
procedure for executing these operations. You can refer to the exercise file for a 
complete view of the execution.

•	 First initialize the TensorFlow variables with tf.global_variables_
initializer().run()

•	 For each step (for a predefined number of total steps), do the following:
°° Generate a batch of data (batch_data – inputs, batch_labels – 

outputs) using the data generator
°° Create a dictionary called feed_dict that maps train input/output 

placeholders to data generated by the data generator:
feed_dict = {train_dataset : batch_data, train_labels : 
batch_labels}

°° Execute an optimization step and obtain the loss value as follows:
_, l = session.run([optimizer, loss], feed_dict=feed_dict)

We will now discuss another popular Word2vec algorithm known as the 
Continuous Bag-of-Words (CBOW) model.

https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
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The Continuous Bag-of-Words algorithm
The CBOW model has a working similar to the skip-gram algorithm with one 
significant change in the problem formulation. In the skip-gram model, we predicted 
the context words from the target word. However, in the CBOW model, we will 
predict the target from contextual words. Let's compare what data looks like for skip-
gram and CBOW by taking the previous example sentence:

The dog barked at the mailman.

For skip-gram, data tuples—(input word, output word)—might look like this:

(dog, the), (dog, barked), (barked, dog), and so on.

For CBOW, data tuples would look like the following:

([the, barked], dog), ([dog, at], barked), and so on.

Consequently, the input of the CBOW has a dimensionality of 2 × m × D, where 
m is the context window size and D is the dimensionality of the embeddings. The 
conceptual model of CBOW is shown in Figure 3.13:

Figure 3.13: The CBOW model
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We will not go into great details about the intricacies of CBOW as they are quite 
similar to those of skip-gram. However, we will discuss the algorithm implementation 
(though not in depth, as it shares a lot of similarities with skip-gram) to get a clear 
understanding of how to properly implement CBOW. The full implementation of 
CBOW is available at ch3_word2vec.ipynb in the ch3 exercise folder.

Implementing CBOW in TensorFlow
First, we define the variables; this is same as in the case of the skip-gram model:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
  embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights = tf.Variable(
  tf.truncated_normal([vocabulary_size, embedding_size],
  stddev=1.0 / math.sqrt(embedding_size),
  dtype=tf.float32))
softmax_biases =
  tf.Variable(tf.zeros([vocabulary_size],dtype=tf.float32))

Here, we are creating a stacked set of embeddings, representing each position of 
the context. So we will have a matrix of size [batch_size, embeddings_size, 2*context_
window_size]. Then, we will use a reduction operator to reduce the stacked matrix to 
that of size [batch_size, embedding size] by averaging the stacked embeddings over the 
last axis:

stacked_embedings = None
for i in range(2*window_size):
  embedding_i = tf.nn.embedding_lookup(embeddings,
  train_dataset[:,i])
  x_size,y_size = embedding_i.get_shape().as_list()
  if stacked_embedings is None:
    stacked_embedings = tf.reshape(embedding_i,[x_size,y_size,1])
  else:
    stacked_embedings =
    tf.concat(axis=2,
      values=[stacked_embedings,
      tf.reshape(embedding_i,[x_size,y_size,1])]
    )

assert stacked_embedings.get_shape().as_list()[2]==2*window_size
mean_embeddings = tf.reduce_mean(stacked_embedings,2,keepdims=False)
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Thereafter, loss and optimizer are defined as in the skip-gram model:

loss = tf.reduce_mean(
    tf.nn.sampled_softmax_loss(weights=softmax_weights,
        biases=softmax_biases,
        inputs=mean_embeddings,
        labels=train_labels, 
        num_sampled=num_sampled, 
        num_classes=vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

Summary
Word embeddings have become an integral part of many NLP tasks and are widely 
used for tasks such as machine translation, chatbots, image caption generation, and 
language modeling. Not only do word embeddings act as a dimensionality reduction 
technique (compared to one-hot encoding) but they also give a richer feature 
representation than other existing techniques. In this chapter, we discussed two 
popular neural network-based methods for learning word representations, namely 
the skip-gram model and the CBOW model.

First, we discussed the classical approaches to develop an understanding about how 
word representations were learned in the past. We discussed various methods such 
as using WordNet, building a co-occurrence matrix of the words, and calculating  
TF-IDF. Later, we discussed the limitations of these approaches.

This motivated us to explore neural network-based word representation learning 
methods. First, we worked out an example by hand to understand how word 
embeddings or word vectors can be calculated and one use case of word vectors to 
learn the interesting things that can be done with word vectors.

Next, we discussed the first word-embedding learning algorithm—the skip-gram 
model. We then learned how to prepare the data to be used for learning. Later, we 
examined how to design a loss function that allows us to use word embeddings using 
the context words of a given word. Afterwards, we discussed a crucial limitation of 
the close-form loss function we developed. The loss function is not scalable for large 
vocabularies. Later we analyzed two popular approximations of the close-form loss 
that allowed us to calculate the loss efficiently and effectively—negative sampling 
and hierarchical softmax. Finally, we discussed how to implement the skip-gram 
algorithm using TensorFlow.
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Then we reviewed the next choice for learning word embeddings—the CBOW 
model. We also discussed how CBOW differs from the skip-gram model. Finally,  
we discussed a TensorFlow implementation of CBOW as well.

In the next chapter, we will analyze the performance of the Word2vec techniques 
we learned and also learn several extensions that significantly improve their 
performance. Furthermore, we will learn another word embedding learning 
technique known as Global Vectors or GloVe.
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Advanced Word2vec
In Chapter 3, Word2vec – Learning Word Embeddings, we introduced you to Word2vec, 
the basics of learning word embeddings, and the two common Word2vec algorithms: 
skip-gram and CBOW. In this chapter, we will discuss several topics related to 
Word2vec, focusing on these two algorithms and extensions.

First, we will explore how the original skip-gram algorithm was implemented and 
how it compares to its more modern variant, which we used in Chapter 3, Word2vec 
– Learning Word Embeddings. We will examine the differences between skip-gram 
and CBOW and look at the behavior of the loss over time of the two approaches. We 
will also discuss which method works better, using both our observation and the 
available literature.

We will discuss several extensions to the existing Word2vec methods that boost 
performance. These extensions include using more effective sampling techniques to 
sample negative examples for negative sampling and ignoring uninformative words 
in the learning process, among others. You will also learn a novel word embedding 
learning technique known as Global Vectors (GloVe) and the specific advantages 
that GloVe has over skip-gram and CBOW.

Finally, you will learn how to use Word2vec to solve a real-world problem: 
document classification. We will see this with a simple trick of obtaining document 
embeddings from word embeddings.
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The original skip-gram algorithm
The skip-gram algorithm discussed up to this point in the book is actually an 
improvement over the original skip-gram algorithm proposed in the original  
paper by Mikolov and others, published in 2013. In this paper, the algorithm did  
not use an intermediate hidden layer to learn the representations. In contrast, the 
original algorithm used two different embedding or projection layers (the input 
and output embeddings in Figure 4.1) and defined a cost function derived from the 
embeddings themselves:

Figure 4.1: The original skip-gram algorithm without hidden layers

The original negative sampled loss was defined as follows:
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Here, v is the input embeddings layer, v' is the output word embeddings layer, 
iw

v  
corresponds to the embedding vector for the word wi in the input embeddings layer 
and 

iw
v′  corresponds to the word vector for the word wi in the output embeddings layer. 

( )nP w  is the noise distribution, from which we sample noise samples (for example, it 
can be as simple as uniformly sampling from vocabulary—{wi,wj}, as we saw in Chapter 
3, Word2vec – Learning Word Embeddings). Finally, E denotes the expectation (average) 
of the loss obtained from k-negative samples. As you can see, there are no weights and 
bias in this equation except for the word embeddings themselves.

Implementing the original skip-gram 
algorithm
Implementing the original skip-gram algorithm is not as straightforward as the 
version we have already implemented. This is because the loss function needs 
to be handcrafted using TensorFlow functions as there is no built-in function for 
calculating the loss as we had for the other algorithms.

First, let's define placeholders for the following:

•	 Input data: This is a placeholder containing a batch of target words of the 
[batch_size] shape

•	 Output data: This is a placeholder containing the corresponding context 
words for the batch of target words and is of size, [batch_size, 1]
train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int64, shape=[batch_size, 1])

With the input and output placeholders defined, we can use a TensorFlow built-in 
candidate_sampler to sample negative samples as shown in the following code:

negative_samples, _, _ = tf.nn.log_uniform_candidate_sampler(
                                      train_labels, num_true=1,
                                      num_sampled=num_sampled,
                                      unique=True,

                                      range_max=vocabulary_size)

Here we sample negative words uniformly without any special preference for 
different words. train_labels are the true samples, so TensorFlow can avoid 
producing them as negative samples. Then we have the number of num_true, which 
denotes number of true classes for a given data point, which is 1. Next comes the 
number of negative samples we want for a batch of data (num_sampled). unique 
defines whether the negative samples should be unique. Finally, range defines the 
maximum ID a word has, so that the sampler doesn't produce any invalid word IDs.
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We get rid of the softmax weights and biases. Then, we introduce two embedding 
layers, one for the input data and the other for the output data.  
Two embedding layers are needed because if we had only one embedding layer,  
the cost function would not work, as discussed in Chapter 3, Word2vec – Learning 
Word Embeddings.

Let's embed lookups for the input data, output data, and negative samples:

in_embed = tf.nn.embedding_lookup(in_embeddings, train_dataset)
out_embed = tf.nn.embedding_lookup(out_embeddings, tf.reshape(
                                      train_labels,[-1]))
negative_embed = tf.nn.embedding_lookup(out_embeddings,
                                           negative_samples)

Next, we will define the loss function, and it is the most important part of the code. 
This code implements the loss function we discussed earlier. However, as we defined 
in the loss function ( )J θ , we do not calculate the loss for all the words in a document 
at once. This is due to the fact that a document can be too large to fit into the memory 
fully. Therefore, we calculate the loss for small batches of data at a single time step. 
The full code is available in the ch4_word2vec_improvements.ipynb exercise book 
located in the ch4 folder:

# Computing the loss for the positive sample
loss = tf.reduce_mean(
    tf.log(
        tf.nn.sigmoid(
            tf.reduce_sum(
                tf.diag([1.0 for _ in range(batch_size)])*
                tf.matmul(out_embed,tf.transpose(in_embed)),
            axis=0)
        )
    )
)

# Computing loss for the negative samples
loss += tf.reduce_mean(
    tf.reduce_sum(
        tf.log(tf.nn.sigmoid(
            -tf.matmul(negative_embed,tf.transpose(in_embed)))),
        axis=0
    )
)
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Tensorflow implements sampled_softmax_loss by defining 
a smaller subset of weights and biases that are only required to 
process the current batch of data, from the full softmax weights 
and biases. Thereafter, TensorFlow computes the loss similar to 
the standard softmax cross entropy calculation. However, we 
cannot directly translate that approach to calculate the original 
skip-gram loss as there are no softmax weights and biases.

Comparing the original skip-gram with the 
improved skip-gram
We should have a good reason to use a hidden layer in contrast to the original  
skip-gram algorithm which does not use one. Therefore, we will observe  
the loss function behavior of the original skip-gram algorithm and the  
hidden-layer-including skip-gram algorithm in Figure 4.2:

Figure 4.2: The original skip-gram algorithm versus the improved skip-gram algorithm

We can clearly see that having a hidden layer leads to better performance compared 
with not having one. This also suggest that deeper Word2vec models tend to 
perform better.

Comparing skip-gram with CBOW
Before looking at the performance differences and investigating reasons, let's  
remind ourselves about the fundamental difference between the skip-gram and 
CBOW methods.
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As shown in the following figures, given a context and a target word, skip-gram 
observes only the target word and a single word of the context in a single input/
output tuple. However, CBOW observes the target word and all the words in the 
context in a single sample. For example, if we assume the phrase dog barked at the 
mailman, skip-gram sees an input-output tuple such as ["dog", "at"] at a single time 
step, whereas CBOW sees an input-output tuple [["dog","barked","the","mailman"], 
"at"]. Therefore, in a given batch of data, CBOW receives more information than 
skip-gram about the context of a given word. Let's next see how this difference 
affects the performance of the two algorithms.

Figure 4.3: The implementation view of  
skip-gram algorithm

Figure 4.4: The implementation view of the  
CBOW algorithm

As shown in the preceding figures, the CBOW model has access to more information 
(inputs) at a given time compared to the skip-gram algorithm, allowing CBOW to 
perform perform better in certain conditions.

Performance comparison
Now let's plot the loss over time for both skip-gram and CBOW in the task we 
trained the models earlier in Chapter 3, Word2vec – Learning Word Embeddings  
(see Figure 4.4):
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Figure 4.5: Loss decrease: skip-gram versus CBOW

We discussed that, compared to the skip-gram algorithm, CBOW has access to more 
information about the context of a given target word for a given input-output tuple. 
We can see that CBOW shows a rapid decrease of the loss compared to the skip-gram 
model. However, loss itself is an inadequate measure of performance, as the loss can be 
rapidly dwindling due to overfitting to the training data. Though there are benchmark 
tasks that are used to evaluate the quality of word embeddings (for example, word 
analogy tasks), we will use a simpler way of inspection. Let's visually inspect the 
learned embeddings in order to make sure that skip-gram and CBOW show a 
significant semantic difference between them. For this, we use a popular visualization 
technique known as t-Distributed Stochastic Neighbor Embedding (t-SNE).

It should be noted that the reduction of loss is not a very 
convincing metric to evaluate the performance of a word 
embedding system, because the sampled softmax we use to 
measure loss is a significant underestimate of the full softmax loss. 
Performances of word embeddings are often evaluated in terms of 
word analogy tasks. A typical word analogy task might ask this:
Aware to unaware is like impressive to _______________.
So, a good embedding set should answer this with unimpressive.
This can be computed with a simple arithmetic operation given 
by embedding(impressive) - [embedding(aware) 
- embedding(unaware)]. If the resulting vector has the 
embedding of the word unimpressive as its nearest neighbor, 
then you have obtained the correct answer.
There are several word analogy testing datasets available, such as 
the following:

•	 Google analogy dataset: http://download.
tensorflow.org/data/questions-words.txt

•	 Bigger Analogy Test Set (BATS): http://vsm.
blackbird.pw/bats

http://download.tensorflow.org/data/questions-words.txt
http://download.tensorflow.org/data/questions-words.txt
http://vsm.blackbird.pw/bats
http://vsm.blackbird.pw/bats
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In Figure 4.6, we can see that CBOW tends to cluster the words together more than 
skip-gram, where words seem to be distributed across the full space sparsely. 
Therefore, we can say that CBOW looks visually appealing compared to skip-gram, 
in this particular example:

Figure 4.6: t-SNE visualization for word vectors obtained with skip-gram and CBOW

We will use the scikit-learn provided t-SNE algorithm to 
compute the low-dimensional representation and then visualize 
it through Matplotlib. However, TensorFlow provides a much 
more convenient embedding visualization option through its 
visualization framework TensorBoard. You can find an exercise of 
this in tensorboard_word_embeddings.ipynb located in the 
appendix folder.
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t-SNE – a brief tour
t-SNE is a visualization technique that can visualize high-dimensional 
data (for example, images and word embeddings) in lower two-
dimensional space. We will not dive into all the complex mathematics 
behind the technique, but only understand how the algorithm works 
on a more intuitive level.

Let's define the notations first. D
ix R∈  denotes a D-dimensional 

data point and { }iX x=  is the input space. For example, this can be a 
word-embedding vector similar to the ones we covered in Chapter 3, 
Word2vec – Learning Word Embeddings, and D is the embedding size. 
Next, let's imagine a hypothetical two-dimensional space { }iY y= , 
 where yi denotes a two-dimensional vector corresponding to the xi 
data point; X and Y have a one-to-one mapping. We will refer to Y as 
the map space and yi as the map points.
Now let's define a conditional probability 

|j iP  that defines the 
probability that the xi data point will pick xj as its neighbor. Pj|i needs 
to be low when point xj is far from xi and vise versa. An intuitive 
choice for 

|j iP  is a Gaussian centered at the xi data point with the 
2
iσ  variance. The variance will be low for data points with dense 

neighborhoods and high for data points with sparse neighborhoods. 
Concretely, the formula for the conditional probability is given by:
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Similarly, we can define a similar conditional probability for map 
points yi in space Y, |j iq .
Now, in order to obtain a good low-dimensional representation Y of the 
high-dimensional space X, |j ip  and |j iq  should demonstrate similar 
behaviors. That is, if two data points are similar in the X space, they 
should be similar in space Y as well, and vice versa. Therefore, the 
problem of getting a good two-dimensional representation of the data 
boils down to minimizing the mismatch between |j ip  and |j iq  for all 
1, ,i N= K .

This problem can be formally formulated as minimizing the Kullback-

Leibler divergence between |j ip  and |j iq  denoted by ( )| |j i j iKL p q . 
Therefore, the cost function for our problem is:
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Also, by minimizing this C cost by means of stochastic gradient 
descent, we can find an optimal representation Y that matches 
closely with X.
Intuitively, this process can be thought of as an equilibrium 
reached by a collection of springs attached between all the 
pairs of data points. |j ip  is the stiffness of the spring between 
the xi and xj data points. Therefore, when xi and xj are similar, 
they will remain close to each other and far apart when they 
are dissimilar. Therefore, C for a particular data point acts as 
the total force acting on that data point and will cause it to 
either attract or repel for all the other data points according to 
the total force.

Which is the winner, skip-gram or CBOW?
There is no clear-cut winner between skip-gram and CBOW when it comes to 
performance. For example, the paper Distributed Representations of Words and Phrases 
and their Compositionality, Mikolov and others, 2013 suggests that skip-gram works 
better in semantic tasks, whereas CBOW works better in syntactic tasks. However, 
skip-gram appears to perform better than CBOW in most tasks, which contradicts  
our findings.

Various empirical evidence suggests that skip-gram works well with large datasets 
compared to CBOW, and that is supported in Distributed Representations of Words and 
Phrases and their Compositionality, Mikolov and others, 2013 and GloVe: Global Vectors for 
Word Representation, Pennington and others, 2014, which usually use corpora of billions 
of words. However, our task involved a few hundred thousand words, which is 
comparatively small. For this reason, CBOW might be performing better.

Now let me explain why I believe this is the case. Consider the following  
two sentences:

•	 It is a nice day
•	 It is a brilliant day

For CBOW, input-output tuples would look like this:

[[It, is, nice, day], a]

[[It, is, brilliant, day],a]
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And input output tuples for skip-gram would look like this:

[It, a], [is, a], [nice, a], [day, a]

[It, a], [is, a], [brilliant, a], [day, a]

We would like our model to understand that nice and brilliant are slightly different 
things (that is, brilliant means nicer than nice). Such words having subtle differences 
in meaning are called nuances. We can see that, for CBOW, there is a high chance that 
it would see brilliant and nice as the same thing, because their semantics get averaged 
by the surrounding words (It, is, and day) as these words are also a part of the input. 
By contrast, for skip-gram, the words nice and brilliant appear separated from It, is, 
and day, allowing skip-gram to pay more attention to subtle differences between 
words (such as brilliant and nice) than CBOW.

However, note that there are millions of parameters in our model. To train such 
models, a lot of data is needed. CBOW somehow circumvents this problem by 
trying not to focus learning subtle differences in words, but by just an averaging 
of all the words in a given context (for example, average semantic of It is nice 
day or It is brilliant day). However, skip-gram would learn more meticulous 
representations because there is no averaging effect as in CBOW. To learn meticulous 
representations, skip-gram would require more data. But once more data is 
provided, skip-gram will most likely outperform the CBOW algorithm.

In addition, note that a single input to the CBOW model is approximately equal to 
2 m×  many inputs for the skip-gram model, where m is the context window size. This 
is because a single input to the skip-gram consists only of a single word, where a 
single input to CBOW has 2 m×  many words. So, to make this a fairer comparison, if 
we run CBOW for L steps, we should run the skip-gram algorithm for 2m L×  steps.

So far, you have learned how skip-gram was initially implemented—it had two 
embedding layers (one to look up input words and the other to look up output 
words). We discussed how the skip-gram algorithm discussed in Chapter 3, Word2vec 
– Learning Word Embeddings, actually is an improvement of the original skip-gram 
algorithm. We saw that the improved skip-gram in fact outperforms the original 
algorithm. Then, we compared performances of skip-gram and CBOW and saw that, 
in our example, CBOW performs better. Finally, we discussed some of the reasons 
why CBOW might be performing better than skip-gram.
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Extensions to the word embeddings 
algorithms
The original paper by Mikolov and others, published in 2013, discusses several 
extensions that can improve the performance of the word embedding learning 
algorithms even further. Though they are initially introduced to be used for skip-
gram, they are extendable to CBOW as well. Also, as we already saw that CBOW 
outperforms the skip-gram algorithm in our example, we will use CBOW for 
understanding all the extensions.

Using the unigram distribution for negative 
sampling
It has been found that the performance results of negative sampling are better when 
performed by sampling from certain distributions rather than from the uniform 
distribution. One such distribution is the unigram distribution. The unigram 
probability of a word wi is given by the following equation:
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Here, count(wi) is the number of times wi appears in the document. When the 
unigram distribution is distorted as ( )( )3/4 /iU w Z  for some constant Z, it has shown 
to provide better performance than the uniform distribution or the standard unigram 
distribution.

Let's use an example to understand the unigram distribution better. Consider the 
following sentences:

Bob is a football fan. He is on the school football team.

Here, the unigram probability of the word football would be as follows:

( ) 2 /12 1/ 6U football = =

It can be seen that the unigram probability for common words will be higher. 
These common words tend to be very uninformative words, such as the, a, and is. 
Therefore, such frequent words will be negatively sampled more during the cost 
optimization, leading to more informative words being less negatively sampled. 
Consequently, this creates a balance between the common words and rare words 
during the optimization, leading to better performance.



Chapter 4

[ 115 ]

Implementing unigram-based negative 
sampling
Here, we will see how we can implement unigram-based negative sampling with 
TensorFlow:

unigrams = [0 for _ in range(vocabulary_size)]
for word,w_count in count:
    w_idx = dictionary[word]
    unigrams[w_idx] = w_count*1.0/token_count
    word_count_dictionary[w_idx] = w_count

Here, count is a list of tuples, where each tuple is made of (word ID, frequency). 
This algorithm computes the unigram probabilities of each word and returns them 
as a list ordered by the index of the word. (This is a specific format for the unigrams 
stipulated by TensorFlow). This is available as an exercise in ch4_word2vec_
improvements.ipynb, located in the ch4 folder.

Next, we calculate up to the embedding lookups as we normally did for CBOW:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size,
    window_size*2])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

# Variables.
# embedding, vector for each word in the vocabulary
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
    embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights =
    tf.Variable(tf.truncated_normal([vocabulary_size,
    embedding_size],
    stddev=1.0 / math.sqrt(embedding_size), dtype=tf.float32))
softmax_biases =
    tf.Variable(tf.zeros([vocabulary_size], dtype=tf.float32))

stacked_embedings = None

for i in range(2*window_size):
    embedding_i = tf.nn.embedding_lookup(embeddings,
    train_dataset[:,i])
    x_size,y_size = embedding_i.get_shape().as_list()
    if stacked_embedings is None:
        stacked_embedings =
            tf.reshape(embedding_i,[x_size,y_size,1])
    else:
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        stacked_embedings =
            tf.concat(axis=2,values=[stacked_embedings,
            tf.reshape(embedding_i,[x_size,y_size,1])])
mean_embeddings = tf.reduce_mean(stacked_embedings,2,keepdims=False)

Next, we'll sample negative examples based on the unigram distribution. To do  
this, we'll use the TensorFlow built-in function tf.nn.fixed_unigram_candidate_
sampler:

candidate_sampler = tf.nn.fixed_unigram_candidate_sampler(
    true_classes = tf.cast(train_labels, dtype=tf.int64),
    num_true = 1, num_sampled = num_sampled, unique = True,
    range_max = vocabulary_size, distortion=0.75,
    num_reserved_ids=0, unigrams=unigrams, name='unigram_sampler')

loss = tf.reduce_mean(
    tf.nn.sampled_softmax_loss(weights=softmax_weights,
    biases=softmax_biases, inputs=mean_embeddings,
    labels=train_labels, num_sampled=num_sampled,
    num_classes=vocabulary_size, sampled_values=candidate_sampler))

This code snippet provides the general flow of implementing the word-embedding 
learning with unigram-based negative sampling. Generally, the following steps  
take place:

1.	 Defining the variables, placeholders, and hyperparameters.
2.	 For each batch of data, the following occurs:

1.	 Computing the mean input embedding matrix by looking up  
the embeddings for each index of the context window and  
averaging them

2.	 Calculating the loss by means of negative sampling, sampled 
according to the unigram distribution

3.	 Optimizing the neural network using stochastic gradient descent

The following one-liner code extracted from the preceding code snippet plays the 
most important role in this algorithm by producing negative samples generated 
according to the distorted unigram distribution:

candidate_sampler = tf.nn.fixed_unigram_candidate_sampler(
    true_classes = tf.cast(train_labels,dtype=tf.int64),
    num_true = 1, num_sampled = num_sampled, unique = True,
    range_max = vocabulary_size, distortion=0.75,
    num_reserved_ids=0, unigrams=unigrams, name='unigram_sampler')
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We will go through each argument in this function in detail:

•	 true_classes: This is a vector of the batch_size size that provides the 
target word ID (an integer) for a given batch of context words corresponding 
to that target word.

•	 num_true: This is the number of true elements for a given word (often 1).
•	 num_sampled: This is the number of negative elements to sample for  

a single input.
•	 unique: This says to sample unique negative samples (no replacement).
•	 range_max: This is the size of the vocabulary.
•	 distortion: This returns the unigram sample raised to the power given by 

the value distortion. In our example it is 3/4 = (0.75).
•	 num_reserved_ids: This is a list of indices indicating words from  

the vocabulary. The IDs in num_reserved_ids will not be sampled as 
negative samples.

•	 unigrams: These are unigram probabilities ordered by the ID of the word.

Subsampling – probabilistically ignoring the 
common words
Subsampling, or ignoring common words, also has proved to provide better 
performance. This can be understood intuitively as follows—the input-output words 
extracted from a finite context ("The", "France") provide less information than the 
tuple ("Paris", "France"). Therefore, it is a better choice to ignore such uninformative 
words (or stop words), such as the, being sampled frequently from the corpus. 
Mathematically, this is achieved by ignoring the word wi in the sequence of words in 
the corpus with a probability:

( )
1

i

t
f w

−

Here, t is a constant that controls the threshold of the word frequency that causes to 
ignore words and ( )if w  is the frequency of wi in the corpus. This effectively reduces 
the frequency of stop words (for example, "the", "a", "of", ".", and ","), thus creating 
more balance in the dataset.
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Implementing subsampling
Implementing subsampling is quite simple, as shown in the following example code 
snippet. We'll create a new word sequence from the original sequence by dropping 
words from the sequence with the probability obtained as we just saw, and use this new 
word sequence for learning the word embeddings. Here we have chosen t as 10,000:

subsampled_data = []
for w_i in data:
    p_w_i = 1 - np.sqrt(1e5/word_count_dictionary[w_i])

    if np.random.random() < p_w_i:
        drop_count += 1
        drop_examples.append(reverse_dictionary[w_i])
    else:
        subsampled_data.append(w_i)

Comparing the CBOW and its extensions
In Figure 4.6, we'll see the different loss decreases of CBOW, the CBOW with 
unigram-based negative sampling—CBOW(Unigram)—and CBOW with unigram-
based negative sampling and subsampling—CBOW (Unigram+Subsampling):

Figure 4.6: Loss behavior with original CBOW and two extensions to CBOW

It is quite interesting to see that having both unigram and subsampling 
improvements gives a similar looking loss value overall compared to having only  
unigram-based negative sampling. However, this should not be misunderstood  
as a lack of advantage of subsampling on the learning problem. The reason for this 
particular behavior can be understood as follows. As with subsampling, we get 
rid of many uninformative words, so the quality of the text increases (in terms of 
information quality). This in turn makes the learning problem more difficult. In 
the previous problem setting, the word vectors had the opportunity to exploit the 
abundance of uninformative words in the optimization process, whereas in the new 
problem setting, such chances are rare. This results in a higher loss, but semantically 
sound word vectors.
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More recent algorithms extending  
skip-gram and CBOW
We already saw that the Word2vec techniques are quite powerful in capturing 
semantics of words. However, they are not without their limitations. For example, 
they do not pay attention to the distance between a context word and the target 
word. However, if the context word is further away from the target word, its 
impact on the target word should be less. Therefore, we will discuss techniques that 
pay separate attention to different positions in the context. Another limitation of 
Word2vec is that it only pays attention to a very small window around a given word 
when computing the word vector. However, in reality, the way the word co-occurs 
throughout a corpus should be considered to compute good word vectors. So, we 
will look at a technique that not only looks at the context of a word, but also at the 
global co-occurrence information of the word.

A limitation of the skip-gram algorithm
The previously-discussed skip-gram algorithm and all its variants ignore the 
localization of contextual words within a given context. In other words, skip-gram 
does not exploit the exact position of a context word within the context, but treats all 
the words within a given context equally. For example, let's consider a sentence:

The dog barked at the mailman.

Let's consider a window size of 2 and the target word, barked. Then the context for 
the word barked would be the, dog, at, and the. Also, we will compose four data points 
("barked", "the"), ("barked", "dog"), ("barked", "at"), and ("barked", "the"), where the 
first element of the tuple is the input word and the second is the output word. If we 
consider two data points from this collection, ("barked", "the") and ("barked, "dog"), 
the original skip-gram algorithm will treat both these tuples equally during the 
optimization. In other words, skip-gram ignores the actual position of a context word 
in the context. However, from a linguistic perspective, clearly the tuple ("barked", 
"dog") carries more information than ("barked", "the"). Essentially, the structured 
skip-gram algorithm attempts to address this limitation. Let's see how this is solved 
in the next section.
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The structured skip-gram algorithm
The structured skip-gram algorithm uses the architecture shown in Figure 4.7  
to tackle the limitation of the original skip-gram algorithm discussed in the 
preceding section:

Figure 4.7. The structured skip-gram model

As shown here, structured skip-gram preserves the structure or localization of 
the context words during the optimization. However, it poses a higher memory 
requirement, as the number of parameters is linearly dependent on the window size. 
More precisely, for a window size m (that is, on one side), if the original skip-gram 
model had P parameters in the softmax layer, the structured skip-gram algorithm 
will have 2mP  parameters, as we have a set of P parameters for each position in the 
context window.

The loss function
The original negative sampled softmax loss for the skip-gram model looked like this:

( ) ( ) ( )( )( ) ( )( )( )~ { , }
1 1

J 1/ 2
q i jj q

N m i m k

n w vocabulary w w nw w
i m j i j i m q

N m log logit x log logit xEσ σ
− +

−
= + ≠ = − =

θ = − − + −∑ ∑ ∑
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For structured skip-gram, we use the following loss:

( ) ( ) ( )( )( ) ( )( )( )2

~ { , }
1 1 1

J 1/ 2
q i jj q

m N m i m k

k n w vocabulary w w p nw w
p i m j i j i m q

N m log logit x log logit xEσ σ
− +

−
= = + ≠ = − =

θ = − − + −∑ ∑ ∑ ∑

Here, ( )
jp n w

logit x  is calculated using the pth set of softmax weights and softmax bias 
corresponding to the index of wj position.

This is implemented as shown in the following code, which is available in  
ch4_word2vec_extended.ipynb in the ch4 folder. As we can see, we now have 2 m×  
softmax weights and biases, and the embedding vectors corresponding to each context 
position are propagated through their corresponding softmax weight and bias.

First, we'll define input and output placeholders:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = [tf.placeholder(tf.int32, shape=[batch_size, 1]) for _ 
in range(2*window_size)]

Then we'll define the calculations required to calculate loss, starting from the training 
inputs and labels:

# Variables.
embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size, embedding_size],
    -1.0, 1.0))
softmax_weights = [tf.Variable(
    tf.truncated_normal([vocabulary_size, embedding_size],
    stddev=0.5 / math.sqrt(embedding_size))) for _ in range(2*window_
size)]
softmax_biases =
    [tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01)) for _ 
in range(2*window_size)]

# Model.
# Look up embeddings for inputs.
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
# Compute the softmax loss, using a sample of 
# the negative labels each time.
loss = tf.reduce_sum(
    [
        tf.reduce_mean(tf.nn.sampled_softmax_loss(
            weights=softmax_weights[wi],
            biases=softmax_biases[wi], inputs=embed,
            labels=train_labels[wi], num_sampled=num_sampled,
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            num_classes=vocabulary_size))
        for wi in range(window_size*2)
    ]
)

Structured skip-gram addresses an important limitation of the standard skip-gram 
algorithm, which is paying attention to the position of context words during learning. 
This is achieved by introducing a separate set of softmax weights and a bias for each 
position of the context. This leads to an improved performance, which however 
possesses a high memory requirement due to the increased amount of parameters. 
Next, we will see a similar extension to the CBOW model.

The continuous window model
The continuous window model extends the CBOW algorithm in a way similar to 
the one in the structured skip-gram algorithm. In the original CBOW algorithm, 
the embeddings found for all the context words are averaged before propagating 
through the softmax layer. However, in the continuous window model, instead 
of averaging the embeddings, they are concatenated, resulting in embm D× -long 
embedding vectors, where embD  is the original embedding size of the CBOW 
algorithm. Figure 4.8 illustrates the continuous window model:

Figure 4.8: The continuous window model
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In this section, we discussed two extended algorithms of skip-gram and CBOW. 
These two variants essentially employ the position of the words in the context 
instead of treating all words in a given context equally. Next, we will discuss a 
newly-introduced word embedding learning algorithm called GloVe. We will see 
that GloVe overcomes certain limitations of skip-gram and CBOW.

GloVe – Global Vectors representation
Methods for learning word vectors fall into either of two categories: global matrix 
factorization-based methods or local context window-based methods. Latent 
Semantic Analysis (LSA) is an example of a global matrix factorization-based 
method, and skip-gram and CBOW are local context window-based methods. 
LSA is used as a document analysis technique that maps words in the documents 
to something known as a concept, a common pattern of words that appears in a 
document. Global matrix factorization-based methods efficiently exploit the global 
statistics of a corpus (for example, co-occurrence of words in a global scope), but 
have shown to perform poorly at word analogy tasks. On the other hand, context 
window-based methods have been shown to perform well at word analogy tasks, but 
do not utilize global statistics of the corpus, leaving space for improvement. GloVe 
attempts to get the best of both worlds—an approach that efficiently leverages global 
corpus statistics while optimizing the learning model in a context window-based 
manner similar to skip-gram or CBOW.

Understanding GloVe
Before looking at the implementation details of GloVe, let's take time to understand 
the basic idea behind GloVe. To do so, let's consider an example:

1.	 Consider word " "i dog=  and " "j cat=
2.	 Define an arbitrary probe word k
3.	 Define ikP  to be the probability of words i and k occurring close to each other, 

and jkP  to be the words j and k occurring together

Now let's look at how the ik jkp p  entity behaves with different values for k.

For " "k bark= , it is highly likely to appear with i, thus, ikP  will be high. However, 
k would not often appear along with j causing a low jkP . Therefore, we get the 
following expression:

/ 1ik jkP P >>
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Next, for " "k purr= , it is unlikely to appear in the close proximity of i and therefore 
will have a low ikP ; however, since k highly correlates with j, the value  
of jkP  will be high. This leads to the following:

0ik jkP P ≈

Now, for words such as " "k pet= , which has a strong relationship with both  
i and j, or " "k politics= , where i and j, both have a minimal relevance to,  
we get this:

/ 1ik jkP P ≈

It can be seen that the /ik jkP P  entity, which is calculated by measuring the frequency 
of two words appearing close to each other, is a good means for measuring the 
relationship between words. As a result, it becomes a good candidate for learning 
word vectors. Therefore, a good starting point for defining the loss function will be 
as shown here:

( ), , /i j k ik jkF w w w P P=%

Here, F is some function. From this point, the original paper goes through the 
derivation meticulously to reach the following loss function:

( ) ( )( )2
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Here, ( ) ( )( )3/4
max max/ 1f x x x if x x else= < , ijX  is the frequency with which the word j 

appeared in the context of the word i. Also, wi and bi represent the word embedding 
and the bias embedding for the word i obtained from input embeddings, respectively. 
And, jw�  and jb�  represents the word embedding and bias embedding for word j 
obtained from output embeddings, respectively. maxx  is a hypeparameter we set. Both 
these embeddings behave similarly except for the randomization at the initialization. 
At the evaluation phase, these two embeddings are added together, leading to an 
improved performance.
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Implementing GloVe
In this subsection, we will discuss the steps for implementing GloVe. The full code is 
available in the ch4_glove.ipynb exercise file located in the ch4 folder.

First, we'll define the inputs and outputs:

train_dataset = tf.placeholder(tf.int32, shape=[batch_
size],name='train_dataset')
train_labels = tf.placeholder(tf.int32, shape=[batch_
size],name='train_labels')

Next, we'll define the embedding layers. We have two different embedding layers, 
one to look up input words and the other to look up output words. In addition, we'll 
define a bias embedding, like the bias we had for the softmax layer:

in_embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size, embedding_size],
    -1.0, 1.0), name='embeddings')
in_bias_embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size],0.0,0.01,
    dtype=tf.float32), name='embeddings_bias')

out_embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size, embedding_size],
    -1.0, 1.0), name='embeddings')
out_bias_embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size],0.0,0.01,
    dtype=tf.float32), name='embeddings_bias')

Now, we'll look up the corresponding embeddings for given inputs and  
outputs (labels):

embed_in = tf.nn.embedding_lookup(in_embeddings, train_dataset)
embed_out = tf.nn.embedding_lookup(out_embeddings, train_labels)
embed_bias_in = tf.nn.embedding_lookup(in_bias_embeddings, train_
dataset)
embed_bias_out = tf.nn.embedding_lookup(out_bias_embeddings, train_
labels)

Also, we'll define placeholders for f(Xij) (weights_x) and ijX  (x_ij) in the  
cost function:

weights_x = tf.placeholder(tf.float32, shape=[batch_size], 
name='weights_x')
x_ij = tf.placeholder(tf.float32, shape=[batch_size], name='x_ij')



Advanced Word2vec

[ 126 ]

Finally, we'll define the full loss function with the preceding defined entities, which 
is as follows:

loss = tf.reduce_mean(
    weights_x * (tf.reduce_sum(embed_in*embed_out,axis=1) +
    embed_bias_in + embed_bias_out - tf.log(epsilon+x_ij))**2)

In this section, we looked at GloVe, another word embedding learning technique. 
The main advantage of GloVe over the previously described Word2vec techniques 
is that it pays attention to both global and local statistics of the corpus to learn 
embeddings. As GloVe are able to capture the global information about words, they 
tend to give better performance, especially when the corpus size increases. Another 
advantage is that unlike in Word2vec techniques, GloVe does not approximate the 
cost function (for example, Word2vec using negative sampling), but calculates the 
true cost. This leads to better and easier optimization of the loss.

Document classification with Word2vec
Although Word2vec gives a very elegant way of learning numerical representations 
of words, as we saw quantitatively (loss value) and qualitatively (t-SNE 
embeddings), learning word representations alone is not convincing enough to 
realize the power of word vectors in real-world applications. Word embeddings are 
used as the feature representation of words for many tasks, such as image caption 
generation and machine translation. However, these tasks involve combining 
different learning models (such as Convolution Neural Networks (CNNs) and Long 
Short-Term Memory (LSTM) models or two LSTM models). These will be discussed 
in later chapters. To understand a real-world usage of word embeddings let's stick to 
a simpler task—document classification.

Document classification is one of the most popular tasks in NLP. Document 
classification is extremely useful for anyone who is handling massive collections of 
data such as those for news websites, publishers, and universities. Therefore, it is 
interesting to see how learning word vectors can be adapted to a real-world task such 
as document classification by means of embedding entire documents instead of words.

This exercise is available in the ch4 folder (ch4_document_embedding.ipynb).
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Dataset
For this task, we will use an already-organized set of text files. These are news 
articles from the BBC. Every document in this collection belongs to one of the 
following categories: Business, Entertainment, Politics, Sports, or Technology. We 
use 250 documents from each category. Our vocabulary will be of size 25,000. 
Also, each document will be represented by a <type of document>-<id> tag for 
visualization purposes. For example, the 50th document of the Entertainment section 
will be represented as entertainment-50. It should be noted that this is a very 
small dataset compared to the large text corpora that is being analyzed in real-world 
applications. However, this small example is adequate at the moment to see the 
power of word embeddings.

Here are a couple brief snippets from the actual data:

Business

Japan narrowly escapes recession

Japan's economy teetered on the brink of a technical recession in the three months 
to September, figures show.

Revised figures indicated growth of just 0.1% - and a similar-sized contraction in 
the previous quarter. On an annual basis, the data suggests annual growth of just 
0.2%,...

Technology

UK net users leading TV downloads

British TV viewers lead the trend of illegally downloading US shows from the net, 
according to research.

New episodes of 24, Desperate Housewives and Six Feet Under, appear on the 
web hours after they are shown in the US, said a report. Web tracking company 
Envisional said 18% of downloaders were from within the UK and that downloads 
of TV programmers had increased by 150% in the last year....

Classifying documents with word embeddings
The problem broadly is to see if word embedding methods such as skip-gram or 
CBOW can be extended to classify/cluster documents. In this example, we will use 
the CBOW algorithm, as it has been shown to perform better with smaller datasets 
than skip-gram.
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We will take the following approach:

1.	 Extracting data from all the text files and learning word embeddings as we 
did already.

2.	 Extracting a random set of documents from the already trained documents.
3.	 Extending the learned embeddings to embed these selected documents. More 

specifically, we'll represent a document by the mean value of the embeddings 
belonging to all the words found in the document.

4.	 Visualizing the found document embeddings with the t-SNE visualization 
technique to see whether word embeddings can be useful for document 
clustering or classification.

5.	 Finally, a clustering algorithm such as K-means can be used to assign a label 
for each document. We will briefly discuss what K-means is while discussing 
the implementation.

Implementation – learning word embeddings
First, we will define several placeholders for train data, train labels, and valid 
data (used to monitor word embeddings) and test data (used to compute mean 
embeddings of the test documents):

# Input data.
train_dataset = tf.placeholder(tf.int32,
    shape=[batch_size, 2*window_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

test_labels = tf.placeholder(tf.int32,
    shape=[batch_size], name='test_dataset')

Next, we'll define the variables for embeddings for the vocabulary and softmax 
weights and biases (used to compute mean embeddings of the test documents):

# Variables.
# embedding, vector for each word in the vocabulary
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
    embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights = tf.Variable(
    tf.truncated_normal([vocabulary_size, embedding_size],
    stddev=1.0 / math.sqrt(embedding_size), dtype=tf.float32))
softmax_biases = tf.Variable(
    tf.zeros([vocabulary_size], dtype=tf.float32))
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Then we define the sampled negative softmax loss function as we did before:

loss = tf.reduce_mean(
    tf.nn.sampled_softmax_loss(weights=softmax_weights,
    biases=softmax_biases, inputs=mean_embeddings,
    labels=train_labels, num_sampled=num_sampled,
    num_classes=vocabulary_size))

Implementation – word embeddings to 
document embeddings
In order to obtain good document embeddings from word embeddings, we will 
take the average embedding of all the words found in a document as the document 
embedding. However, we will be processing data in batches. So, we will use the 
following to achieve this.

For each document, do the following:

1.	 Creating a dataset where each data point is a word belonging to  
the document

2.	 For a mini-batch sampled from the dataset, returning the mean embedding 
vector by averaging the embedding vectors for all the words in the  
mini-batch

3.	 Traversing the test document in batches and obtaining the document 
embedding by averaging the mini-batch mean embeddings

We'll get the mean batch embeddings as follows:

mean_batch_embedding = tf.reduce_mean(tf.nn.embedding_
lookup(embeddings, test_labels), axis=0)
mean_embeddings = tf.reduce_mean(stacked_embeddings, 2, 
keepdims=False)

Then, we'll collect such mean embeddings in a list for all the batches in a document 
and obtain the average embedding as the document embedding. This is a very 
simple method for obtaining document embeddings, but very powerful, as we will 
see soon.
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Document clustering and t-SNE visualization 
of embedded documents
In Figure 4.9, we can visualize the document embeddings learned by the CBOW 
algorithm. We can see that the algorithm has learned reasonably well to cluster 
documents with the same topic. We employed the prefix of the documents (different 
colors for different document categories) to add colors to data points so that the 
separation is more obvious. As we discussed before, this simple method has proved 
to be a very effective way to classify/cluster documents in an unsupervised manner:

Figure 4.9: t-SNE visualization of embedded documents
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Inspecting several outliers
We can see from Figure 4.9 that very few documents appear to be outliers  
(for example, tech-42 and sport-50). It is interesting to see the content of these 
documents so we can investigate the likely reasons for such a behavior.

The following is a snippet from the tech-42 document:

Tech-42

Hotspot users gain free net calls

People using wireless net hotspots will soon be able to make free phone calls as well 
as surf the net.

Users of the system can also make calls to landlines and mobiles for a fee. The 
system is gaining in popularity and now has 28 million users around the world.  
Its paid service - dubbed Skype Out - has so far attracted 940,000 users....

This document has been written in a way that emphasizes the value of Skype  
to people, rather than diving into technical details of Skype. This in turn can  
lead the document to be clustered close to topics more related to people, such  
as entertainment or politics.

The following is a snippet from the sport-50 document:

Sport-50

IAAF awaits Greek pair's response

Kostas Kenteris and Katerina Thanou are yet to respond to doping charges from the 
International Association of Athletics Federations (IAAF).

The Greek pair were charged after missing a series of routine drugs tests in Tel 
Aviv, Chicago and Athens. They have until midnight on 16 December and an 
IAAF spokesman said: "We're sure their responses are on their way." If they do not 
respond or their explanations are rejected, they will be provisionally banned from 
competition. They will then face a hearing in front of the Greek Federation,...
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We can shed some light as to why sport-50 has been clustered far away from the other 
sports-related articles. Let's closely look at another document close to sport-50, which is, 
entertainment-115:

Entertainment-115

Rapper Snoop Dogg sued for 'rape'

US rapper Snoop Dogg has been sued for $25m (£13m) by a make-up artist who 
claimed he and his entourage drugged and raped her two years ago.

The woman said she was assaulted after a recording of the Jimmy Kimmel Live TV 
show on the ABC network in 2003. The rapper's spokesman said the allegations 
were "untrue" and the woman was "misusing the legal system as a means of 
extracting financial gain". ABC said the claims had "no merit". The star has not 
been charged by police.

So, the documents around this area seem to be related to various criminal  
or illicit charges instead of being about sports or entertainment. This causes  
these documents to be clustered far away from other typical sports or  
entertainment-related documents.

Implementation – clustering/classification of 
documents with K-means
So far, we have been able to visually inspect clusters of documents. However,  
this is not enough, because if we have 1,000 more documents that we would like to 
cluster/classify, we will have to visually inspect things for 1,000 times. So we need 
more automated ways for achieving this.

We can use K-means to cluster these documents. K-means is a simple but powerful 
technique used to break data into groups (clusters) based on the similarity of data, 
so that similar data will be in the same group and different data will be in different 
groups. K-means works in the following way:

1.	 Define K, the number of clusters to be formed. We will set that to 5 since we 
already know that there are five categories.

2.	 Form K random centroids, which are the centers of the clusters.
3.	 Then we'll assign each data point to the nearest cluster centroid.
4.	 After assigning all the data points to some cluster, we'll recompute the cluster 

centroids (that is, mean of the data points).
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5.	 We'll continue in this fashion until the centroid movement becomes smaller 
than some threshold.

We'll use scikit-learn library to get the K-means algorithm. In code, this looks like  
the following:

kmeans = KMeans(n_clusters=5, random_state=43643, max_iter=10000,
                   n_init=100, algorithm='elkan')

The most important hyperparameter is n_clusters, which is the number of clusters 
we want to form. You can play around with the other hyperparameters to see 
what sort of effect they have on the performance. An explanation of the possible 
hyperparameters is available at http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html.

Then we can classify the documents we used to train (or any other document) into 
classes. We will obtain the following:

Label Documents
0 'entertainment-207', 'entertainment-14', 

'entertainment-232', 'entertainment-49', 
'entertainment-191', 'entertainment-243', 
'entertainment-240'

1 'sport-145', 'sport-228', 'sport-141', 'sport-249'

2 'sport-4', 'sport-43', 'entertainment-54', 'politics-214', 
'politics-12', 'politics-165', 'sport-42', 'politics-203', 
'politics-87', 'sport-33', 'politics-81', 'politics-247', 
'entertainment-245', 'entertainment-22', 'tech-102', 
'sport-50', 'politics-33', 'politics-28'

3 'business-220', 'business-208', 'business-51', 
'business-30', 'business-130', 'business-190', 
'business-34', 'business-206'

4 'business-185', 'business-238', 'tech-105', 'tech-99', 
'tech-239', 'tech-227', 'tech-31', 'tech-131', 'tech-118', 
'politics-10', 'tech-150', 'tech-165'

It's not perfect, but it does a decent job of classifying documents belonging to 
different categories to different labels. We can see that the entertainment-related 
documents have the 0 label, the sports-related documents the 1 label, the business-
related documents the 3 label, and so on.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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In this section, you learned how we can extend word embeddings to classify/cluster 
documents. First, you learned word embeddings, as we normally did. Then we 
created document embeddings by averaging the word embeddings of all the words 
found in that document. Later we used these document embeddings to cluster/
classify some BBC news articles which fall into these categories: entertainment, tech, 
politics, business, and sports. After clustering the documents, we saw that documents 
were reasonably clustered such that documents belonging to one category were 
clustered close to each other. However, there were a few outlier documents. But after 
analyzing the textual content of these documents, we saw that there were certain 
valid reasons behind these documents behaving in this particular way.

Summary
In this chapter, we examined the performance difference between the skip-gram 
and CBOW algorithms. For the comparison, we used a popular two-dimensional 
visualization technique, t-SNE, which we also briefly introduced to you, touching  
on the fundamental intuition and mathematics behind the method.

Next, we introduced you to the several extensions to Word2vec algorithms that  
boost their performance, followed by several novel algorithms that were based on 
the skip-gram and CBOW algorithms. Structured skip-gram extends the skip-gram 
algorithm by preserving the position of the context word during optimization, 
allowing the algorithm to treat input-output based on the distance between them. 
The same extension can be applied to the CBOW algorithm, and this results in the 
continuous window algorithm.

Then we discussed GloVe—another word embedding learning technique. 
GloVe takes the current Word2vec algorithms a step further by incorporating 
global statistics into the optimization, thus increasing the performance. Finally, 
we discussed a real-world application of using word embeddings—document 
clustering/classification. We showed that word embeddings are very powerful  
and allow us to cluster related documents together reasonably well.

In the next chapter, we will move onto discuss a different family of deep networks 
that are more powerful in exploiting spatial information present in data known as 
Convolutional Neural Networks (CNNs). Precisely, we will see how CNNs can be 
used to exploit the spatial structure of sentences to classify them into different classes.
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Sentence Classification  
with Convolutional  

Neural Networks
In this chapter, we will discuss a type of neural networks known as Convolutional 
Neural Networks (CNNs). CNNs are quite different from fully connected neural 
networks and have achieved state-of-the-art performance in numerous tasks. These 
tasks include image classification, object detection, speech recognition, and of course, 
sentence classification. One of the main advantages of CNNs is that compared to a 
fully connected layer, a convolution layer in a CNN has a much smaller number of 
parameters. This allows us to build deeper models without worrying about memory 
overflow. Also, deeper models usually lead to better performance.

We will introduce you to what a CNN is in detail by discussing different components 
found in a CNN and what makes CNNs different from their fully connected 
counterparts. Then we will discuss the various operations used in CNNs, such as the 
convolution and pooling operations, and certain hyperparameters related to these 
operations, such as filter size, padding, and stride. We will also look at some of the 
mathematics behind the actual operations. After establishing a good understanding 
of CNNs, we will look at the practical side of implementing a CNN with TensorFlow. 
First, we will implement a CNN to classify objects and then use a CNN for sentence 
classification.
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Introducing Convolution Neural Networks
In this section, you will learn about CNNs. Specifically, you will first get an 
understanding of the sort of operations present in a CNN, such as convolution layers, 
pooling layers, and fully connected layers. Next, we will briefly see how all of these 
are connected to form an end-to-end model. Then we will dive into the details of 
each of these operations, define them mathematically, and learn how the various 
hyperparameters involved with these operations change the output produced by them.

CNN fundamentals
Now, let's explore the fundamental idea behind a CNN without delving into too 
much technical detail. As noted in the preceding paragraph, a CNN is a stack of 
layers, such as convolution layers, pooling layers, and fully connected layers. We 
will discuss each of these to understand their role in the CNN.

Initially, the input is connected to a set of convolution layers. These convolution 
layers slide a patch of weights (sometimes called the convolution window or filter) 
over the input and produce an output by means of the convolution operation. 
Convolution layers use a small number of weights organized to cover only a small 
patch of input in each layer, unlike fully connected neural networks, and these 
weights are shared across certain dimensions (for example, the width and height 
dimensions of an image). Also, CNNs use the convolution operations to share 
the weights form the output by sliding this small set of weights along the desired 
dimension. What we ultimately get from this convolution operation is illustrated in 
Figure 5.1. If the pattern present in a convolution filter is present in a patch of image, 
the convolution will output a high value for that location; if not, it will output a 
low value. Also, by convolving the full image, we get a matrix indicating whether 
a pattern was present or not in a given location. Finally, we will get a matrix as the 
convolution output:

Figure 5.1: What convolution operation does to an image
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Also, these convolution layers are optionally interleaved with pooling/subsampling 
layers, which reduces the dimensionality of the input. While reducing the 
dimensionality, we make the translation of CNNs invariant as well as force the CNN 
to learn with less information, leading to better generalization and regularization of 
the model. The dimensionality is reduced by dividing the input into several patches 
and transforming each patch to a single element. For example, such transformations 
include picking the maximum element of a patch or averaging all the values in a 
patch. We will illustrate how pooling can make the translation of CNNs invariant  
in Figure 5.2:

Figure 5.2: How pooling operation helps to make data translation invariant

Here, we have the original image and an image slightly translated on the y axis. We 
have convolution output for both images, and you can see that the value 10 appears 
at slightly different places in the convolution output. However, using max pooling 
(which takes the maximum value of each thick square), we can get the same output 
at the end. We will discuss these operations in detail later.
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Finally, the output is fed to a set of fully connected layers, which then forward 
the output to the final classification/regression layer (for example, sentence/
image classification). Fully connected layers contain a significant fraction of the 
total number of weights of the CNN as convolution layers have a small number of 
weights. However, it has been found that CNNs perform better with fully connected 
layers than without them. This could be because convolution layers learn more 
localized features due to small size, whereas fully connected layers provide a global 
picture about how these localized features should be connected together to produce 
a desirable final output. Figure 5.3 shows a typical CNN used to classify images:

Figure 5.3: A typical CNN architecture

As is evident from the figure, CNNs, by design, preserve the spatial structure of the 
inputs during the learning. In other words, for a two-dimensional input, a CNN 
will have most of the layers two-dimensional, whereas we have fully connected 
layers only close to the output layer. Preserving the spatial structure allows CNNs to 
exploit valuable spatial information of the inputs and learn about inputs with fewer 
parameters. The value of spatial information is illustrated in Figure 5.4:

Figure 5.4: Unwrapping an image into a one-dimensional vector loses some of the important spatial information
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As you can see, when a two-dimensional image of a cat is unwrapped to be a 
one-dimensional vector, ears are no longer close to the eyes, and the nose is far 
away from the eyes as well. This means we have destroyed some of useful spatial 
information during the unwrapping.

The power of Convolution Neural Networks
CNNs are a very versatile family of models and have shown a remarkable 
performance in many types of tasks. Such versatility is attributed to the ability of 
CNNs to perform feature extraction and learning simultaneously, leading to greater 
efficiency and generalizability. Let's discuss a few examples of the utility of CNNs.

In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2016, which 
involved classifying images, detecting objects, and localizing objects in the image, 
CNNs were used to achieve incredible test accuracies. For example, for image-
classification tasks, its test accuracy was approximately 98% for 1,000 different 
object classes, which means that the CNN was able to correctly identify around 980 
different objects correctly.

CNNs also have been used for image segmentation. Image segmentation involves 
segmenting an image into different areas. For example, in an urbanscape image that 
includes buildings, a road, vehicles, and passengers, isolating the road from the 
buildings is a segmentation task. Moreover, CNNs have made incredible strides, 
demonstrating their performance in NLP tasks such as sentence classification, text 
generation, and machine translation.

Understanding Convolution Neural 
Networks
Now let's walk through the technical details of a CNN. First, we will discuss the 
convolution operation and introduce some terminology, such as filter size, stride, and 
padding. In brief, filter size refers to the window size of the convolution operation, 
stride refers to the distance between two movements of the convolution window, and 
padding refers to the way you handle boundaries of the input. We will also discuss 
an operation that is known as deconvolution or transposed convolution. Then we will 
discuss the details of the pooling operation. Finally, we will discuss how to connect 
fully connected layers and the two-dimensional outputs produced by the convolution 
and pooling layers and how to use the output for classification or regression.
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Convolution operation
In this section, we will discuss the convolution operation in detail. First we will 
discuss the convolution operation without stride and padding, next we will describe 
the convolution operation with stride, and then we will discuss the convolution 
operation with padding. Finally, we will discuss something called transposed 
convolution. For all the operations in this chapter, we consider index starting from 
one, and not from zero.

Standard convolution operation
The convolution operation is a central part of CNNs. For an input of size n n×  and 
a weight patch (also known as a filter) of m m× , where n m≥ , the convolution 
operation slides the patch of weights over the input. Let's denote the input by X, the 
patch of weights by W, and the output by H. Also, at each location ,i j ; the output is 
calculated as follows:

, , 1, 1
1 1

1 , 1
m m

i j k l i k j l
k l

h w x where i j n m+ − + −
= =

= ≤ ≤ − +∑∑

Here, xi,j, wi,j, and hi,j denote the value at the (i,j)th location of X, W, and H, 
respectively. As already shown by the equation, though the input size is n n× , the 
output in this case will be 1 1n m n m− + × − + . Also, m is known as the filter size. 
Let's look at this through a visualization (see Figure 5.5):

The output produced by the convolution operation (the rectangle 
on the top in Figure 5.5) is sometimes called a features map.

Figure 5.5: The convolution operation with filter size (m) = 3 stride = 1 and no padding
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Convolving with stride
In the preceding example, we shifted the filter by a single step. However, this is not 
mandatory; we can take large steps or strides while convolving the input. Therefore, 
the size of the step is known as the stride. Let's modify the previous equation to 
include the si and sj strides:

( ) ( ) ( ) ( ), , 1 , 1
1 1

1 1 1
i j

m m

i j k l i ji s k j s l
k l

h w x where i floor n m s and floor n m s− × + − × +
= =

 = ≤ ≤ − + − +    ∑∑

In this case, the output will be smaller as the size of si and sj increases. Comparing 
Figure 5.5 (stride = 1) and Figure 5.6 (stride = 2) illustrates the effect of different strides:

Figure 5.6: The convolution operation with a filter size (m) = 2 stride = 2 and no padding

As you can see, doing convolution with stride helps to 
reduce the dimensionality of the input similar to a pooling 
layer. Therefore, sometimes convolution with strides are 
used instead of pooling in the CNNs as it reduces the 
computational complexity.
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Convolving with padding
The inevitable output size reduction resulting from each convolution (without 
stride) is an undesirable property. This greatly limits the number of layers we can 
have in a network. Also, it is known that deeper networks perform better than 
shallow networks. This should not be confused with the dimensionality reduction 
achieved by stride, as this is a design choice and we can decide to have a stride of 1 
if necessary. Therefore, padding is used to circumvent this issue. This is achieved by 
padding zeros to the boundary of the input so that the output size and the input size 
are equal. Let's assume a stride of 1:

( ) ( ), , 1 , 1
1 1

1 ,
m m

i j k l i k m j l m
k l

h w x where i j n+ − − + − −
= =

= ≤ ≤∑∑

Here:

, 0 , 1 ,i jx if i j or i j n= < >

Figure 5.7 depicts the result of the padding:

Figure 5.7: Convolution operation with a filter size (m=3), stride (s=1), and zero padding
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Transposed convolution
Though the convolution operation looks complicated in terms of mathematics, 
it can be simplified to a matrix multiplication. For this reason, we can define the 
transpose of the convolution operation or deconvolution, as it is sometimes called. 
However, we will use the term transposed convolution as it sounds more natural. In 
addition, deconvolution refers to a different mathematical concept. The transposed 
convolution operation plays an important role in CNNs for the reverse accumulation 
of the gradients during backpropagation. Let's go through an example.

For an input of size n n×  and a weight patch, or filter, m m× , where n m≥ , the 
convolution operation slides the patch of weights over the input. Let's denote the 
input by X, the patch of weights by W, and the output by H. The output h can be 
calculated as a matrix multiplication as follows.

Let's assume 4n =  and 3m =  for clarity and unwrap the input X from left to right, 
top to bottom, resulting in this:

( )16,1
1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 4,1 4,2 4,3 4,4, , , , , , , , , , , ,x x x x x x x x x x x x x= …

Let's define a new matrix A from W:

( )

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,34,16

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

w w w w w w w w w
w w w w w w w w w

A
w w w w w w w w w

w w w w w w w w w

 
 
 
 =  
 
 
  

Then, if we perform the following matrix multiplication, we obtain H:

( ) ( ) ( )4,1 4,16 16,1H A X=

Now, by reshaping the output ( )4,1H  to ( )2,2H  we obtain the convolved output. Now 
let's project this result back to n and m:
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By unwrapping the input ( ),n nX  to ( )2 ,1nX  and by creating a matrix 
( )( )2 21 ,n m nA − +

  
from w, as we showed earlier, we obtain ( )( )21 ,1n m

H
− + , which will then be reshaped  

to ( )1, 1n m n mH − + − + .

Next, to obtain the transposed convolution, we simply transpose A and arrive at the 
following:

( ) ( ) ( )( ) ( )( )2 222 , 1 1 ,1,1ˆ n n m n mn TX A H
− + − +

=

Here, X̂  is the resultant output of the transposed convolution.

We end our discussion about the convolution operation here. We discussed the 
convolution operation, convolution operation with stride, convolution operation 
with padding, and how to calculate the transposed convolution. Next we will discuss 
the pooling operation in more detail.

Pooling operation
The pooling operation, which is sometimes known as the subsampling operation, 
was introduced to CNNs mainly for reducing the size of the intermediate outputs 
as well as for making the translation of CNNs invariant. This is preferred over the 
natural dimensionality reduction caused by convolution without padding, as we 
can decide where to reduce the size of the output with the pooling layer, in contrast 
to forcing it to happen every time. Forcing the dimensionality to decrease without 
padding would strictly limit the number of layers we can have in our CNN models.

We define the pooling operation mathematically in the following sections. More 
precisely, we will discuss two types of pooling: max pooling and average pooling. 
First, however, we will define the notation. For an input of size n n×  and a kernel 
(analogous to the filter of convolution layer) of size m m× , where n m≥ , the 
convolution operation slides the patch of weights over the input. Let's denote the 
input by x, the patch of weights by w and the output by h.
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Max pooling
The max pooling operation picks the maximum element within the defined kernel 
of an input to produce the output. The max pooling operation shifts are windows 
over the input (the middle squares in Figure 5.8) and take the maximum at each time. 
Mathematically, we define the pooling equation as follows:

{ }( ), , , 1 , 1 1, 1, 1 1, 1, 1max , , , , , , , , , , 1 , 1i j i j i j i j m i j i j m i m j i m j mh x x x x x x x where i j n m+ + − + + + − + − + − + −= ≤ ≤ − +… … … …

Figure 5.8 shows this operation:

Figure 5.8: The max pooling operation with a filter size of 3, stride 1 and no padding

Max pooling with stride
Max pooling with stride is similar to convolution with stride. Here is the equation:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( ), -1 1, 1 1, 1 1, 1 2 -1 1, 1 1 2, 1 1 1 2, 1 1 , 1 1 1 , 1, , , , , , , , ,
i j j j i j i j i j i j i ji j i s j s i s j s i s j s m i s j s i s j s m i s m j s i s m j s mh max x x x x x x x× + − × + − × + − × + × + − × + − × + − × + − × + − × + − × + − × + − × + − × += … … … …

( ) ( )1 1 1 1i iwhere i floor n m s and j floor n m s≤ ≤ − + ≤ ≤ − +      
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Figure 5.9 shows the result:

Figure 5.9: Max pooling operation for an input of size (n=4) with a filter  
size of (m=2), stride (s=2) and no padding

Average pooling
Average pooling works similar to max pooling, except that instead of only taking the 
maximum, the average of all the inputs falling within the kernel is taken. Consider 
the following equation:

, , 1 , 1 1, 1, 1 1, 1, 1
,

, , , , , , , , , ,
1, 1i j i j i j m i j i j m i m j i m j m

i j

x x x x x x x
h i j n m

m m
+ + − + + + − + − + − + −= ∀ ≥ ≤ − +

×

… … … …

The average pooling operation is shown in Figure 5.10:

Figure 5.10: Average pooling operation for an input of size (n=4) with  
a filter size of (m=2), stride (s=1) and no padding
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Fully connected layers
Fully connected layers are a fully connected set of weights from the input to the 
output. These fully connected weights are able to learn global information as they 
are connected from each input to each output. Also, having such layers of full 
connectedness allows us to combine features learned by the convolution layers 
preceding the fully connected layers, globally, to produce meaningful outputs.

Let's define the output of the last convolution or pooling layer to be of size p o d× × , 
where p is the height of the input, o is the width of the input, and d is the depth of the 
input. As an example, think of an RGB image, which will have a fixed height, fixed 
width, and a depth of 3 (one depth channel for each RGB component).

Then, for the initial fully connected layer found immediately after the last 
convolution or pooling layer, the weight matrix will be ( ),m p o dw × × , where height x 
width x depth of the layer output is the number of output units produced by that last 
layer and m is the number of hidden units in the fully connected layer. Then, during 
inference (or prediction), we reshape the output of the last convolution/pooling 
layer to be of size ( ),1p o d× ×  and perform the following matrix multiplication to 
obtain h:

( ) ( ) ( )1 , ,1m m p o d p o dh w x× × × × ×=

The resultant fully connected layers will behave as in a fully connected neural 
network, where you have several fully connected layers and an output layer. The 
output layer can be a softmax classification layer for a classification problem or a 
linear layer for a regression problem.

Putting everything together
Now we will discuss how the convolutional, pooling, and fully connected layers 
come together to form a complete CNN.
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As shown in Figure 5.11, the convolution, pooling, and fully connected layers come 
together to form an end-to-end learning model that takes raw data, which can be 
high-dimensional (for example, RGB images) and produce meaningful output (for 
example, class of the object). First, the convolution layers learn spatial features of 
the images. The lower convolution layers learn low-level features such as differently 
oriented edges present in the images, and the higher layers learn more high-level 
features such as shapes present in the images (for example, circles and triangles) 
or bigger parts of an object (for example, the face of a dog, tail of a dog, and front 
section of a car). The pooling layers in the middle make each of these learned 
features slightly translation invariant. This means that in a new image even if the 
feature appears a bit offset compared to the location in which the feature appeared 
in the learned images, the CNN will still recognize that feature. Finally, the fully 
connected layers combine the high-level features learned by the CNN to produce 
global representations that will be used by the final output layer to determine the 
class the object belongs to:

Figure 5.11: Combining convolution layers, pooling layers, and fully connected layers to form a CNN

Exercise – image classification on MNIST 
with CNN
This will be our first example of using a CNN for a real-world machine learning task. 
We will classify images using a CNN. The reason for not starting with an NLP task 
is that applying CNNs to NLP tasks (for example, sentence classification) is not very 
straightforward. There are several tricks involved in using CNNs for such a task. 
However, originally, CNNs were designed to cope with image data. Therefore, let's 
start there and then find our way through to see how CNNs apply to NLP tasks.
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About the data
In this exercise, we will  use a dataset well-known in the computer vision 
community: the MNIST dataset. The MNIST dataset is a database of labeled images 
of handwritten digits from 0 to 9. The dataset contains three different subdatasets: 
the training, validation, and test sets. We will train on the training set and evaluate 
the performance of our model on the unseen test dataset. We will use the validation 
dataset to improve the performance of the model and use this as a monitoring 
mechanism for our model. We will discuss the details later. This is one of the easiest 
tasks in image classification and can be solved fairly well with a simple CNN. We 
will see that we can reach up to approximately 98% test accuracy without any special 
regularization or tricks.

Implementing the CNN
In this subsection, we will look at some important code snippets from the 
TensorFlow implementation of the CNN. The full code is available in image_
classification_mnist.ipynb in the ch5 folder. First, we will define the 
TensorFlow placeholders for feeding inputs (images) and outputs (labels). Then we 
will define a global step, which will then be used to decay the learning rate:

# Inputs and Outputs Placeholders
tf_inputs = tf.placeholder(shape=[batch_size, image_size, image_size, 
n_channels],dtype=tf.float32,name='tf_mnist_images')
tf_labels = tf.placeholder(shape=[batch_size, n_classes],dtype=tf.
float32,name='tf_mnist_labels')

# Global step for decaying the learning rate
global_step = tf.Variable(0,trainable=False)

Next, we will define the TensorFlow variables, which are the convolution weights 
and biases and fully connected weights. We will define the filter size, stride, and 
padding for each convolution layer, kernel size, stride and padding for each pooling 
layer, and the number of output units for each fully connected layer in a Python 
dictionary called layer_hyperparameters:

# Initializing the variables
layer_weights = {}
layer_biases = {}
for layer_id in cnn_layer_ids:
    if 'pool' not in layer_id:
        layer_weights[layer_id] = 
tf.Variable(initial_value=tf.random_normal(shape=layer_
hyperparameters[layer_id]['weight_shape'],
stddev=0.02,dtype=tf.float32),name=layer_id+'_weights')
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layer_biases[layer_id] = tf.Variable(initial_value=tf.random_
normal(shape=[layer_hyperparameters[layer_id]['weight_shape'][-1]], 
stddev=0.01,dtype=tf.float32), name=layer_id+'_bias')

We will also define the logit calculation. Logits are the value of the output layer 
before applying the softmax activation. To calculate this, we will iterate through  
each layer.

For each convolution layer, we will convolve the input using this:

h = tf.nn.conv2d(h,layer_weights[layer_id],layer_
hyperparameters[layer_id]['stride'],
layer_hyperparameters[layer_id]['padding']) + layer_biases[layer_id]

Here, the input h to tf.nn.conv2d is replaced with tf_inputs for the very first 
convolution. Remember that we discussed each of the arguments we feed to tf.nn.
conv2d in detail in Chapter 2, Understanding TensorFlow. However, we will briefly 
revisit the arguments of tf.nn.conv2d. Also, tf.nn.conv2d(input, filter, 
strides, padding) takes the following argument values in that order:

•	 input: This is the input to convolve, having the shape [batch size, input 
height, input width, input depth]

•	 filter: This is the convolution filter we convolve the input with and has the 
shape [filter height, filter width, input depth, output depth]

•	 strides: This denotes the stride on each dimension of the input and has the 
shape [batch stride, height stride, width stride, depth stride]

•	 padding: This denotes the type of padding (can be 'SAME' or 'VALID')

We also apply a nonlinear activation as follows:

h = tf.nn.relu(h)

Then, for each pooling layer, we subsample the input with this:

h = tf.nn.max_pool(h, layer_hyperparameters[layer_id]['kernel_
shape'],layer_hyperparameters[layer_id]['stride'],
layer_hyperparameters[layer_id]['padding'])

The tf.nn.max_pool(input, ksize, strides, padding) function takes the 
following arguments in that order:

•	 input: This is the input to subsample, having the shape [batch size, 
input height, input width, input depth]

•	 ksize: This is the kernel size on each dimension for the max pooling 
operation [batch kernel size, height kernel size, width kernel 
size, depth kernel size]
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•	 strides: This is the stride on each dimension of the input [batch stride, 
height stride, width stride, depth stride]

•	 padding: This can be 'SAME' or 'VALID'

Next, for the first fully connected layer, we reshape the output:

h = tf.reshape(h,[batch_size,-1])

Then we will perform the weight multiplication and the bias addition followed by 
the nonlinear activation:

h = tf.matmul(h,layer_weights[layer_id]) + layer_biases[layer_id]
h = tf.nn.relu(h)

Now, we can calculate the logits:

h = tf.matmul(h,layer_weights[layer_id]) + layer_biases[layer_id]

We will assign the very last value of h (output of the very last layer) to tf_logits 
using this:

tf_logits = h

Next, we will define the softmax cross-entropy loss, which is a popular loss function 
for supervised classification tasks:

tf_loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=tf_
logits,labels=tf_labels)

We also need to define a learning rate where we will decrease the learning rate by 
a factor of 0.5 whenever the validation accuracy has not increased for a predefined 
number of epochs (an epoch is a single traverse through the full dataset). This is 
known as the learning rate decay:

tf_learning_rate = tf.train.exponential_decay(learning_
rate=0.001,global_step=global_step,decay_rate=0.5,decay_
steps=1,staircase=True)

Next, we will define the loss minimization using an optimizer known as 
RMSPropOptimizer, which has been found to perform better than the conventional 
Stochastic Gradient Descent (SGD), especially in compute vision:

tf_loss_minimize = tf.train.RMSPropOptimizer(learning_rate=tf_
learning_rate, momentum=0.9).minimize(tf_loss)

Finally, to calculate the accuracy of the predictions by comparing the predicted labels 
to actual labels, we will define the following prediction calculation function:

tf_predictions = tf.nn.softmax(tf_logits)
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You just finished learning about the functions that we used to create our first CNN. 
You learned to use the functions to implement the CNN structure as well as define 
the loss, minimizing the loss, and getting the predictions to unseen data. We used 
a simple CNN to see if it could learn to classify handwritten images. Also, we were 
able to achieve an accuracy above 98% with a reasonabley simple CNN. Next we 
will analyze some of the results produced by the CNN. We will see why the CNN 
couldn't recognize some of the images correctly.

Analyzing the predictions produced with  
a CNN
Here, we can randomly pick some correctly and incorrectly classified samples from 
the test set to evaluate the learning power of CNNs (see Figure 5.12). We can see that 
for the correctly classified instances, the CNN is very confident about the output, 
which can be seen as a good property of a learning algorithm. However, when we 
evaluate the incorrectly classified examples, we can see that they are in fact difficult, 
and even a human can get some of them wrong (for example, the third image 
from the left in the second row). For the incorrect samples, the CNN often is not as 
confident as it is for the correct samples, which again is a good characteristic. Also, 
even though the highest confidence answer is wrong for the misclassified ones, the 
correct label is often not completely ignored and given some recognition in terms of 
the value of the prediction:

Figure 5.12: MNIST correctly classified and misclassified instances
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Using CNNs for sentence classification
Though CNNs have mostly been used for computer vision tasks, nothing stops them 
from being used in NLP applications. One such application for which CNNs have 
been used effectively is sentence classification.

In sentence classification, a given sentence should be classified to a class. We will use 
a question database, where each question is labeled by what the question is about. 
For example, the question "Who was Abraham Lincoln?" will be a question and its 
label will be Person. For this we will use a sentence classification dataset available at 
http://cogcomp.org/Data/QA/QC/; here you will find 1,000 training sentences and 
their respective labels and 500 testing sentences.

We will use the CNN network introduced in the paper by Yoon Kim, Convolutional 
Neural Networks for Sentence Classification, to understand the value of CNNs for NLP 
tasks. However, using CNNs for sentence classification is somewhat different from 
the MNIST example we discussed, because operations (for example, convolution and 
pooling) now happen in one dimension rather than two dimensions. Furthermore, 
the pooling operations will also have certain differences from the normal pooling 
operation, as we will see soon. You can find the code for this exercise in the cnn_
sentence_classification.ipynb file in the ch5 folder.

CNN structure
Now we will discuss the technical details of the CNN used for sentence classification. 
First, we will discuss how data or sentences are transformed to a preferred format 
that can easily be dealt with by CNNs. Next, we will discuss how the convolution 
and pooling operations are adapted for sentence classification, and finally, we will 
discuss how all these components are connected.

Data transformation
Let's assume a sentence of p words. First, we will pad the sentence with some special 
word (if the length of the sentence is < n) to set the sentence length to n words, 
where n p≥ . Next, we will represent each word in the sentence by a vector of size k, 
where this vector can either be a one-hot-encoded representation, or Word2vec word 
vectors learnt using skip-gram, CBOW, or GloVe. Then a batch of sentences of size b 
can be represented by a b n k× ×  matrix.

Let's walk through an example. Let's consider the following three sentences:

•	 Bob and Mary are friends.
•	 Bob plays soccer.
•	 Mary likes to sing in the choir.

http://cogcomp.org/Data/QA/QC/
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In this example, the third sentence has the most words, so let's set 7n = , which is 
the number of words in the third sentence. Next, let's look at the one-hot-encoded 
representation for each word. In this case, there are 13 distinct words. Therefore, we 
get this:

Bob: 1,0,0,0,0,0,0,0,0,0,0,0,0

and: 0,1,0,0,0,0,0,0,0,0,0,0,0

Mary: 0,0,1,0,0,0,0,0,0,0,0,0,0

Also, 13k =  for the same reason. With this representation, we can represent the three 
sentences as a three-dimensional matrix of size 3 7 13× × , as shown in Figure 5.13:

Figure 5.13: A sentence matrix

The convolution operation
If we ignore the batch size, that is, if we assume that we are only processing a 
single sentence at a time, our data is a n k×  matrix, where n is the number of words 
per sentence after padding, and k is the dimension of a single word vector. In our 
example, this would be 7 13× .
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Now we will define our convolution weight matrix to be of size m k× , where m is 
the filter size for a one-dimensional convolution operation. By convolving the input x 
of size n k×  with a weight matrix W of size m k× , we will produce an output of h of 
size 1 n×  as follows:

,1 , 1,
1 1

m k

i j l i j l
j l

h w x + −
= =

=∑∑

Here, wi,j is the (i,j)th element of W and we will pad x with zeros so that h is of size 
1 n× . Also, we will define this operation more simply, as shown here:

h W x b= ∗ +

Here, * defines the convolution operation (with padding) and we will add an 
additional scalar bias b. Figure 5.14 illustrates this operation:

Figure 5.14: A convolution operation for sentence classification
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Then, to learn a rich set of features, we have parallel layers with different 
convolution filter sizes. Each convolution layer outputs a hidden vector of size 1 n× ,  
and we will concatenate these outputs to form the input to the next layer of size 
q n× , where q is the number of parallel layers we will use. The larger q is, the better 
the performance of the model.

The value of convolving can be understood in the following manner. Think about the 
movie rating learning problem (with two classes, positive or negative), and we have 
the following sentences:

•	 I like the movie, not too bad
•	 I did not like the movie, bad

Now imagine a convolution window of size 5. Let's bin the words according to the 
movement of the convolution window.

The sentence I like the movie, not too bad gives:

[I, like, the, movie, ',']

[like, the, movie, ',', not]

[the, movie, ',', not, too]

[movie, ',', not, too, bad]

The sentence I did not like the movie, bad gives the following:

[I, did, not, like, the]

[did, not ,like, the, movie]

[not, like, the, movie, ',']

[like, the, movie, ',', bad]
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For the first sentence, windows such as the following convey that the rating is 
positive:

[I, like, the, movie, ',']

[movie, ',', not, too, bad]

However, for the second sentence, windows such as the following convey negativity 
in the rating:

[did, not, like, the, movie]

We are able to see such patterns that help to classify ratings thanks to the preserved 
spatiality. For example, if you use a technique such as bag-of-words to calculate 
sentence representations that lose spatial information, the sentence representations 
would be highly similar. The convolution operation plays an important role in 
preserving spatial information of the sentences.

Having q different layers with different filter sizes, the network learns to extract the 
rating with different size phrases, leading to an improved performance.

Pooling over time
The pooling operation is designed to subsample the outputs produced by the 
previously discussed parallel convolution layers. This is achieved as follows.

Let's assume the output of the last layer h is of size q n× . The pooling over time layer 
would produce an output h' of size 1q×  output. The precise calculation would be as 
follows:

( )( ){ },1 1i
ih max h where i q′ = ≤ ≤
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Here, ( ) ( )i ih W x b= ∗ +  and h(i) is the output produced by the thi  convolution layer 
and ( )iW  is the set of weights belonging to that layer. Simply put, the pooling over 
time operation creates a vector by concatenating the maximum element of each 
convolution layer. We will illustrate this operation in Figure 5.15:

Figure 5.15: The pooling over time operation for sentence classification

By combining these operations, we finally arrive at the architecture shown  
in Figure 5.16:
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5.16: A sentence classification CNN architecture

Implementation – sentence classification  
with CNNs
First, we will define the inputs and outputs. The input will be a batch of sentences, 
where the words are represented by one-hot-encoded word vectors—word 
embeddings will deliver even better performance than the one-hot-encoded 
representations; however, we will use the one-hot-encoded representation for 
simplicity:

sent_inputs = tf.placeholder(shape=[batch_size,sent_length,vocabulary_
size],dtype=tf.float32,name='sentence_inputs')
sent_labels = tf.placeholder(shape=[batch_size,num_classes],dtype=tf.
float32,name='sentence_labels')
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Here, we will define three different one-dimensional convolution layers with three 
different filter sizes of 3, 5, and 7 (provided as a list in filter_sizes) and their 
respective biases:

w1 = tf.Variable(tf.truncated_normal([filter_sizes[0],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_1')
b1 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_1')

w2 = tf.Variable(tf.truncated_normal([filter_sizes[1],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_2')
b2 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_2')

w3 = tf.Variable(tf.truncated_normal([filter_sizes[2],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_3')
b3 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_3')

Now we will calculate three outputs, each belonging to a single convolution layer, 
as we just defined. This can easily be calculated with the tf.nn.conv1d function 
provided in TensorFlow. We use a stride of 1 and zero padding to ensure that the 
outputs will have the same size as the input:

h1_1 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w1,stride=1,padding='SAME'
) + b1)
h1_2 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w2,stride=1,padding='SAME'
) + b2)
h1_3 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w3,stride=1,padding='SAME'
) + b3)

For calculating max pooling over time, we need to write the elementary functions to 
do that in TensorFlow, as TensorFlow does not have a native function that does this 
for us. However, it is quite easy to write these functions.

First, we will calculate the maximum value of each hidden output produced by each 
convolution layer. This results in a single scalar for each layer:

h2_1 = tf.reduce_max(h1_1,axis=1)
h2_2 = tf.reduce_max(h1_2,axis=1)
h2_3 = tf.reduce_max(h1_3,axis=1)

Then we will concatenate the produced outputs on axis 1 (width) to produce an 
output of size batchsize q× :

h2 = tf.concat([h2_1,h2_2,h2_3],axis=1)
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Next, we will define the fully connected layers, which will be fully connected to the 
output batchsize q×  produced by the pooling over time layer. There is only one fully 
connected layer in this case and this will also be our output layer:

w_fc1 = tf.Variable(tf.truncated_normal([len(filter_sizes),num_
classes],stddev=0.5,dtype=tf.float32),name='weights_fulcon_1')
b_fc1 = tf.Variable(tf.random_uniform([num_classes],0,0.01,dtype=tf.
float32),name='bias_fulcon_1')

The function defined here will produce the logits that are then used to calculate the 
loss of the network:

logits = tf.matmul(h2,w_fc1) + b_fc1

Here, by applying the softmax activation to the logits, we will obtain the predictions:

predictions = tf.argmax(tf.nn.softmax(logits),axis=1)

Also, we will define the loss function, which is the cross-entropy loss:

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(labels=sent_labels,logits=logits))

To optimize the network, we will use a TensorFlow built-in optimizer called  
MomentumOptimizer:

optimizer = tf.train.MomentumOptimizer(learning_
rate=0.01,momentum=0.9).minimize(loss)

Running these preceding defined operations to optimize the CNN and evaluate 
the test data as given in the exercise, gives us a test accuracy close to 90% (500 test 
sentences) in this sentence classification task.

Here we end our discussion about using CNNs for sentence classification. We 
first discussed how one-dimensional convolution operations combined with a 
special pooling operation called pooling over time can be used to implement a 
sentence classifier based on the CNN architecture. Finally, we discussed how to 
use TensorFlow to implement such a CNN and saw that it in fact performs well in 
sentence classification.

It can be useful to know how the problem we just solved can be useful in the real 
world. Assume that you have a large document about the history of Rome in your 
hand, and you want to find out about Julius Caesar without reading the whole 
document. In this situation, the sentence classifier we just implemented can be used 
as a handy tool to summarize the sentences that only correspond to a person, so you 
don't have to read the whole document.
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Sentence classification can be used for many other tasks as well; one common use 
of this is classifying movie reviews as positive or negative, which is useful for 
automating computation of movie ratings. Another important application of sentence 
classification can be seen in the medical domain, which is extracting clinically useful 
sentences from large documents containing large amounts of text.

Summary
In this chapter, we discussed CNNs and their various applications. First, we went 
through a detailed explanation about what CNNs are and their ability to excel at 
machine learning tasks. Next we decomposed the CNN into several components, 
such as convolution and pooling layers, and discussed in detail how these operators 
work. Furthermore, we discussed several hyperparameters that are related to these 
operators such as filter size, stride, and padding. Then, to illustrate the functionality 
of CNNs, we walked through a simple example of classifying images of handwritten 
digits to the corresponding image. We also did a bit of analysis to see why the CNN 
fails to recognize some images correctly. Finally, we started talking about how CNNs 
are applied for NLP tasks. Concretely, we discussed an altered architecture of CNNs 
that can be used to classify sentences. We then implemented this particular CNN 
architecture and tested it on an actual sentence classification task.

In the next chapter, we will move on to one of the most popular types of neural 
networks used for many NLP tasks—Recurrent Neural Networks (RNNs).
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a special family of neural networks that are 
designed to cope with sequential data (that is, time series data), such as a sequence 
of texts (for example, variable length sentence or a document) or stock market 
prices. RNNs maintain a state variable that captures the various patterns present 
in sequential data; therefore, they are able to model sequential data. For example, 
conventional feed-forward neural networks do not have this ability unless the data 
is represented with a feature representation that captures the important patterns 
present in the sequence. However, coming up with such feature representations is 
extremely difficult. Another alternative for feed-forward models to model sequential 
data is to have a separate set of parameters for each position in time/sequence. So 
that the set of parameters assigned to a certain position learns about the patterns  
that occur at that position. This will greatly increase the memory requirement for  
your model.

However, as opposed to having a separate set of parameters for each position like 
feed-forward networks, RNNs share the same set of parameters over time. Sharing 
parameters over time is an important part of RNNs and in fact is one of the main 
enablers for learning temporal patterns. Then the state variable is updated over 
time for each input we observe in the sequence. These parameters shared over time, 
combined with the state vector, are able to predict the next value of a sequence, given 
the previously observed values of the sequence. Furthermore, since we process a 
single element of a sequence at a time (for example, one word in a document at a 
time), RNNs can process data of arbitrary lengths without padding data with  
special tokens.
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In this chapter, we will dive into the details of RNNs. First, we will discuss how an 
RNN can be formed by starting with a simple feed-forward model. After this we will 
discuss the basic functionality of an RNN. We also will delve into the underlying 
equations, such as output calculation and parameter update rules of RNNs, and 
discuss several variants of applications of RNNs: one-to-one, one-to-many, and 
many-to-many RNNs. We will walk through an example of using RNNs to generate 
new text based on a collection of training data and will also discuss some of the 
limitations of RNNs. After computing and evaluating the generated text, we will 
discuss a better extension of RNNs, known as the RNN-CF, that remembers longer 
compared with conventional RNNs.

Understanding Recurrent Neural 
Networks
In this section, we will discuss what an RNN is by starting with a gentle 
introduction, and then move on to more in-depth technical details. We mentioned 
earlier that RNNs maintain a state variable which evolves over time as the RNN is 
seeing more data, thus giving the power to model sequential data. In particular, this 
state variable is updated over time by a set of recurrent connections. Existence of 
recurrent connections is the main structural difference between an RNN and a feed-
forward network. The recurrent connections can be understood as links between a 
series of memory RNN learned in the past, connecting to the current state variable 
of the RNN. In other words, the recurrent connections update the current state 
variable with respect to the past memory the RNN has, enabling the RNN to make a 
prediction based on the current input as well as the previous inputs.

In the upcoming section, we will discuss the following things. First, we will discuss 
how we can start with representing a feed-forward network as a computational 
graph. Then we will see through an example why a feed-forward network might fail 
at a sequential task. Then we will adapt that feed-forward graph to model sequential 
data, which will give us the basic computational graph of an RNN. We will also 
discuss the technical details (for example, update rules) of an RNN. Finally, we will 
discuss the details of how we can train RNN models.
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The problem with feed-forward neural 
networks
To understand the limits of feed-forward neural networks and how RNNs address 
them, let's imagine a sequence of data:

{ } { }1 2 1 2, , , , ,T Tx x x x y y y y= =… …

Next, let's assume that, in the real world, x and y are linked in the following 
relationship:

( )1 1,t t th g x h−=

( )2t ty g h=

Here, g1 and g2 are some functions. This means that the current output yt depends on 
the current state ht for some state belonging to the model that outputs x and y. Also, 
ht is calculated with the current input xt and previous state ht-1. The state encodes 
information about previous inputs observed in the history by the model.

Now, let's imagine a simple feed-forward neural network, which we will represent 
by the following:

( );t ty f x θ=

Here, yt is the predicted output for some input xt.

If we use a feed-forward neural network to solve this task, the network will have to 
produce { }1 2, , , Ty y y…  one at a time, by taking { }1 2, , , Tx x x…  as inputs. Now, let's 
consider the problem we face in this solution for a time-series problem.

The predicted output yt at time t of a feed-forward neural network depends only on 
the current input xt. In other words, it does not have any knowledge about the inputs 
that led to xt (that is, { }1 2 1, , , tx x x −… ). For this reason, a feed-forward neural network 
will fail at a task, where the current output not only depends on the current input but 
also on the previous inputs. Let's understand this through an example.
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Say we need to train a neural network to fill missing words. We have the following 
phrase, and we would like to predict the next word:

James had a cat and it likes to drink ____.

If we are to process one word at a time and use a feed-forward neural network, we 
will only have the input drink and this is not enough at all to understand the phrase 
or even to understand the context (the word drink can appear in many different 
contexts). One can argue that we can achieve good results by processing the full 
sentence at a single go. Even though this is true, such an approach has limitations, 
such as it will quickly become impractical for very long sentences.

Modeling with Recurrent Neural Networks
On the other hand, we can use an RNN to find a solution to this problem. We will 
start with the data we have:

{ } { }1 2 1 2, , , , , , ,T Tx x x x y y y y= =… …

Assume that we have the following relationship:

( )1 1,t t th g x h−=

( )2t ty g h=

Now, let's replace g1 with a function approximator ( )1 1, ;t tf x h θ−  parametrized by θ that 
takes the current input xt and the previous state of the system ht-1 as the input and 
produces the current state ht. Then, we will replace g2 with ( )2 ;tf h ϕ , which takes the 
current state of the system ht to produce yt. This gives us the following:

( )1 1, ;t t th f x h θ−=

( )2 ;t ty f h ϕ=

We can think of 1 2f f�  as an approximation of the true model that generates x and y. 
To understand this more clearly, let's now expand the equation as follows:

( )( )2 1 1, ; ;t t ty f f x h θ ϕ−=
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For example, we can represent y4 as follows:

( )( )4 2 1 4 3y f f x ,h ; ;ϕ= θ

Also, by expansion we get the following (omitting θ and φ for clarity):

( )( )( )( )( )( )( )4 2 1 4 2 1 3 2 1 2 2 1 1 0y f f x , f f x , f f x , f f x , h =   

This can be illustrated in a graph, as shown in Figure 6.1:

Figure 6.1: The relationship between xt and yt expanded

We can generally summarize the diagram, for any given time step t, as shown in 
Figure 6.2:

Figure 6.2: A single-step calculation of an RNN structure
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However, it should be understood that ht-1 in fact is what ht was before receiving xt. In 
other words, ht-1 is ht before one time step. Therefore, we can represent the calculation 
of ht with a recurrent connection, as shown in Figure 6.3:

Figure 6.3: A single-step calculation of an RNN with the recurrent connection

The ability to summarize a chain of equations mapping { }1 2, , , Tx x x…  to 
{ }1 2, , , Ty y y…  as in Figure 6.3 allows us to write any yt in terms of xt, ht-1, and ht. This 
is the key idea behind an RNN.

Technical description of a Recurrent Neural 
Network
Let's now have an even closer look at what makes an RNN and define the 
mathematical equations for the calculations taking place within an RNN. Let's start 
with the two functions we derived as function approximators for learning yt from xt:

( )t 1 t t-1h f x ,h ;= θ

( )t 2 ty f h ;ϕ=
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As we have seen, a neural network is composed of a set of weights and biases and 
some nonlinear activation function. Therefore, we can write the preceding relation as 
shown here:

( )t t t-1h tanh Ux Wh= +

Here, tanh is the tanh activation function, and U is a weight matrix of size m d× , 
where m is the number of hidden units and d is the dimensionality of the input. Also, 
W is a weight matrix of size m m×  that creates the recurrent link from ht-1 to ht. The yt 
relation is given by the following equation:

( )t ty softmax Vh=

Here, V is a weight matrix of size c m×  and c is the dimensionality of the output 
(can be the number of output classes). In Figure 6.4, we illustrate how these weights 
form an RNN:

Figure 6.4: The structure of an RNN

So far, we have seen how we can represent an RNN with a graph of computational 
nodes, with edges denoting computations. Also, we looked at the actual mathematics 
behind an RNN. Let's now look at how to optimize (or train) the weights of an RNN 
to learn from sequential data.
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Backpropagation Through Time
For training RNNs, a special form of backpropagation, known as Backpropagation 
Through Time (BPTT), is used. To understand BPTT, however, first we need to 
understand how backpropagation (BP) works. Then we will discuss why BP cannot 
be directly applied to RNNs, but how BP can be adapted to RNNs, resulting in BPTT. 
Finally, we will discuss two major problems present in BPTT.

How backpropagation works
Backpropagation is the technique that is used to train a feed-forward neural network. 
In backpropagation, you do the following:

1.	 Calculate a prediction for a given input
2.	 Calculate an error, E, of the prediction by comparing it to the actual label of 

the input (for example, mean squared error and cross-entropy loss)
3.	 Update the weights of the feed-forward network to minimize the loss 

calculated in step 2, by taking a small step in the opposite direction of the 
gradient / ijE w∂ ∂  for all wij, where wij is the jth weight of ith layer

To understand more clearly, consider the feed-forward network depicted in Figure 6.5. 
This has two single weights, w1 and w2, and calculates two outputs, h and y, as shown 
in the following figure. We assume no nonlinearities in the model for simplicity:

Figure 6.5: Computations of a feed-forward network
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We can calculate 
1

E
w
∂
∂  using the chain rule as follows:

1 1

E L y h
w y h w
∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

This simplifies to the following:

( ) ( ) ( )2
2 1

1 1

y l w h w xE
w y h w

∂ − ∂ ∂∂
=

∂ ∂ ∂ ∂

Here, l is the correct label for the data point x. Also, we are assuming the mean 
squared error as the loss function. Everything here is defined, and it is quite 

straightforward to calculate 
1

E
w
∂
∂ .

Why we cannot use BP directly for RNNs
Now, let's try the same for the RNN in Figure 6.6. Now we have an additional 
recurrent weight w3. We have omitted time components of inputs and outputs for the 
clarity of the problem we are trying to emphasize:

Figure 6.6: Computations of an RNN

Let's see what happens if we apply the chain rule to calculate 
3

E
w
∂
∂ :

3 3

E L y h
w y h w
∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
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This becomes the following:

( ) ( ) ( ) ( )2
2 1 3

3 3 3

y l w h w x w hE
w y h w w

 ∂ − ∂ ∂ ∂∂  = +  ∂ ∂ ∂ ∂ ∂ 

The term 
( )3

3

w h
w

∂
∂  here creates problems because it is a recursive term. You end up 

with an infinite number of derivative terms, as h is recursive (that is, calculating 
h includes h itself) and h is not a constant and dependent on w3. This is solved by 
unrolling the input sequence x over time, creating a copy of RNN for each input 
xt and calculating derivatives for each copy separately and rolling them back into, 
by summing up the gradients, to calculate the weight update. We will discuss the 
details next.

Backpropagation Through Time – training 
RNNs
The trick to calculating backpropagation for RNNs is to consider not a single input, 

but the full input sequence. Then, if we calculate 
3

E
w
∂
∂  at time step 4, we will get the 

following:

3
4 4
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This means that we need to calculate the sum of gradients for all the time steps up 
to the fourth time step. In other words, we will first unroll the sequence so that we 

can calculate 4

j

h
h
∂
∂  and 

3

jh
w
∂

∂  for each time step j. This is done by creating four copies 

of the RNN. So, to calculate 
t

j

h
h
∂
∂ , we need t-j+1 copies of the RNN. Then we will roll 

up the copies to a single RNN, by summing up gradients with respect to all previous 

time steps to get the gradient, and update the RNN with the gradient 
3

E
w
∂
∂ . However, 

this becomes costly as the number of time steps increases. For more computational 
efficiency, we can use Truncated Backpropagation Through Time (TBPTT) to 
optimize recurrent models, which is an approximation of BPTT.
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Truncated BPTT – training RNNs efficiently
In TBPTT, we only calculate the gradients for a fixed number of T time steps  
(in contrast to calculating it to the very beginning of the sequence as in BPTT).  

More specifically, when calculating 
3

E
w
∂
∂ , for time step t, we only calculate derivatives 

down to t-T (that is, we do not compute derivatives up to the very beginning):

1

3 3

t
jt t

j t T t t j

hy hE L
w y h h w

−

= −

∂∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂∑

This is much more computationally efficient than standard BPTT. In standard 
BPTT, for each time step t, we calculate derivatives up to the very beginning of the 
sequence. But this gets computationally infeasible as the sequence length becomes 
larger and larger (for example, processing a text document word by word). However, 
in truncated BPTT, we only calculate the derivatives up for a fixed number of steps 
backwards, and as you can imagine, the computational cost does not change as the 
sequence becomes larger.

Limitations of BPTT – vanishing and 
exploding gradients
Having a way to calculate gradients for recurrent weights and having a 
computationally efficient approximation such as TBPTT does not enable us to train 
RNNs without trouble. Something else can go wrong with the calculations.

To see why, let's expand a single term in 
3

E
w
∂
∂ , which is as follows:

( ) ( )1 3 3 1 3 04 4 1 4

4 4 1 3 4 4 1 3

w x w h w x w hy h h yL L
y h h w y h h w

∂ + ∂ +∂ ∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Since we know that the issues of backpropagation arise from the recurrent 
connections, let's ignore the w1x terms and consider the following:

( ) ( )3 3 3 04

4 4 1 3

w h w hyL
y h h w

∂ ∂∂∂
∂ ∂ ∂ ∂
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By simply expanding h3 and doing simple arithmetic operations we can show this:

34
0 3

4 4

yL h w
y h
∂∂

=
∂ ∂

We see that for just four time steps we have a term 3
3w . So at the nth time step, it 

would become, 1
3
nw − . Say we initialized w3 to be very small (say 0.00001) at n=100 

time step, the gradient would be infinitesimally small (of scale 0.1500). Also, since 
computers have limited precision in representing a number, this update would 
be ignored (that is, arithmetic underflow). This is called the vanishing gradient. 
Solving the vanishing gradient is not very straightforward. There are no easy 
ways of rescaling the gradients so that they will properly propagate through time. 
Few techniques to solve the problem of vanishing gradients to some extent is to 
use careful initialization of weights (for example, the Xavier initialization) or use 
momentum-based optimization methods (that is, in addition to the current gradient 
update, we add an additional term, which is the accumulation of all the past 
gradients, known as the velocity term). However, more principled approaches to 
solving this, such as different structural modifications to the standard RNN, have 
been introduced, as we will see in Chapter 7, Long Short-Term Memory Networks.

On the other hand, say that we initialized w3 to be very large (say 1000.00). Then 
at the n=100 time step, the gradients would be massive (of scale 10300). This leads 
to numerical instabilities and you will get values such as Inf or NaN (that is, not a 
number) in Python. This is called the exploding gradient.

Gradient explosion also can take place due to the complexity of the loss surface 
of a problem. Complex nonconvex loss surfaces are very common in deep neural 
networks due to both the dimensionality of inputs as well as the large number of 
parameters (weights) present in the models. Figure 6.7 illustrates the loss surface 
of an RNN and highlights the presence of walls with very high curvature. If the 
optimization method comes in contact with such a wall, then the gradients will 
explode or overshoot, as shown by the solid line in the image. This can either lead 
to very poor loss minimization or numerical instabilities or both. A simple solution 
to avoid gradient explosion in such situations is to clip the gradients to a reasonably 
small value when it is larger than some threshold. The dashed line in the figure shows 
what happens when we clip the gradient at some small value. (Gradient clipping is 
covered well in the paper On the difficulty of training recurrent neural networks, Pascanu, 
Mikolov, and Bengio, International Conference on Machine Learning (2013): 1310-1318.)
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Figure 6.7: The gradient explosion phenomenon 
Source: This figure is from the paper, On the difficulty of training recurrent neural 

 networks by Pascanu, Mikolov, and Bengio

Next we will discuss various ways that RNNs can be used to solve applications. 
These applications include sentence classification, image captioning, and machine 
translation. We will categorize the RNNs to several different categories such as one-
to-one, one-to-many, many-to-one, and many-to-many.

Applications of RNNs
So far what we have talked about is a one-to-one mapped RNN, where the current 
output depends on the current input as well as the previously observed history 
of inputs. This means that there exists an output for the sequence of previously 
observed inputs and the current input. However, in the real word, there can be 
situations where there is only one output for a sequence of inputs, a sequence 
of outputs for a single input, and a sequence of outputs for a sequence of inputs 
where the sequence sizes are different. In this section, we will look at a few such 
applications.
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One-to-one RNNs
In one-to-one RNNs, the current input depends on the previously observed inputs 
(see Figure 6.8). Such RNNs are appropriate for problems where each input has an 
output, but the output depends both on the current input and the history of inputs 
that led to the current input. An example of such a task is stock market prediction, 
where we output a value for the current input, and this output also depends on how 
the previous inputs have behaved. Another example would be scene classification, 
where each pixel in an image is labeled (for example, labels such as car, road, and 
person). Sometimes xt+1 can be same as yt for some problems. For example, in text 
generation problems, the previously predicted word becomes an input to predict the 
next word. The following figure depicts a one-to-one RNN:

Figure 6.8: One-to-one RNNs having temporal dependencies

One-to-many RNNs
A one-to-many RNN would take a single input and output a sequence (see Figure 
6.9). Here, we assume the inputs to be independent of each other. That is, we do not 
need information about previous inputs to make a prediction about the current input. 
However, the recurrent connections are needed because, although we process a single 
input, the output is a sequence of values that depends on the previous output values. 
An example task where such an RNN would be used is an image captioning task. For 
example, for a given input image, the text caption can consist of five or ten words. 
In other words, the RNN will keep predicting words until it outputs a meaningful 
phrase describing the image. The following figure depicts a one-to-many RNN:
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Figure 6.9. A one-to-many RNN

Many-to-one RNNs
Many-to-one RNNs take an input of arbitrary length as an input and produce a 
single output for the sequence of inputs (see Figure 6.10). Sentence classification is 
one such task that can benefit from a many-to-one RNN. A sentence is a sequence 
of words of arbitrary length, which is taken as the input to the network, is used to 
produce an output classifying the sentence to one of a set of predefined classes. Some 
specific examples of sentence classification are as follows:

•	 Classifying movie reviews as positive or negative statements (that is, 
sentiment analysis)

•	 Classifying a sentence depending on what the sentence describes (for 
example, person, object, and location)

Another application of many-to-one RNNs is classifying large-scale images by 
processing only a patch of images at a time and moving the window over the whole 
image

The following figure depicts a many-to-one RNN:

Figure 6.10: A many-to-one RNN
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Many-to-many RNNs
Many-to-many RNNs often produce arbitrary-length outputs from arbitrary-length 
inputs (see Figure 6.11). In other words, inputs and outputs do not have to be of the 
same length. This is particularly useful in machine translation, where we translate a 
sentence from one language to another. As you can imagine, one sentence in a certain 
language does not always align with a sentence from another language. Another 
such example is chatbots, where the chatbot reads a sequence of words (that is, a user 
request) and outputs a sequence of words (that is, the answer). The following figure 
depicts a many-to-many RNN:

Figure 6.11: A many-to-many RNN 

We can summarize the different types of applications of feed-forward networks and 
RNNs as follows:

Algorithm Description Applications
One-to-one RNNs These take a single input and 

give a single output. Current 
input depends on the previously 
observed input(s).

Stock market prediction, 
scene classification, and text 
generation

One-to-many RNNs These take a single input and 
give an output consisting of an 
arbitrary number of elements

Image captioning

Many-to-one RNNs These take a sequence of inputs 
and give a single output.

Sentence classification 
(considering a single word as 
a single input)

Many-to-many RNNs These take a sequence of 
arbitrary length as inputs and 
outputs a sequence of arbitrary 
length.

Machine translation, chatbots
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Generating text with RNNs
Now let's look at our first example of using an RNN for an interesting task. In this 
exercise, we will be using an RNN to generate a fairy tale story! This is a one-to-one 
RNN problem. We will train a single layer RNN on a collection of fairy tales and 
ask the RNN to generate a new story. For this task, we will use a small text corpus 
of 20 different tales (which we will increase later). This example also will highlight 
one of the crucial limitations of RNNs: the lack of persisting long-term memory. This 
exercise is available in rnn_language_bigram.ipynb in the ch6 folder.

Defining hyperparameters
First, we will define several hyperparameters needed for our RNN, as shown here:

•	 The number of unrolls to perform at one time step. This is the number of 
steps that the input unrolled for, as discussed in the TBPTT method (T 
in the Truncated BPTT – training RNNs efficiently section). The higher this 
number is, the longer the RNN's memory is. However, due to the vanishing 
gradient, the effect of this value disappears for very high num_unroll values 
(say, above 50). Note that increasing num_unroll increases the memory 
requirement of the program as well.

•	 The batch size for training data, validation data, and test data. A higher  
batch size often leads to better results as we are seeing more data during  
each optimization step, but just like num_unroll, this causes a higher 
memory requirement.

•	 The dimensionality of the input, output, and the hidden layer. Increasing 
dimensionality of the hidden layer usually leads to a better performance. 
However, note that increasing the size of the hidden layer causes all three sets 
of weights (that is, U, W, and V) to increase as well, thus resulting in a high 
computational footprint.

First, we will define our unrolls and batch and test batch sizes:

num_unroll = 50
batch_size = 64
test_batch_size = 1

We will next define the number of units in a hidden layer (we will be using a single 
hidden layer RNN), followed by the input and output sizes:

hidden = 64
in_size,out_size = vocabulary_size,vocabulary_size
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Unrolling the inputs over time for  
Truncated BPTT
Unrolling the inputs over time is an important part of the RNN optimization process 
(TBPTT), as we saw earlier. So, this is our next step: defining how the inputs are 
unrolled over time.

Let's consider an example to understand how unrolling is done:

Bob and Mary went to buy some flowers.

Let's assume that we process the data at the granularity level of characters. Also, 
consider one batch of data and that the number of steps to unroll (num_unroll) is 5.

First, we will break the sentence into characters:

'B', 'o', 'b', ' ', 'a', 'n', 'd', ' ', 'M', 'a', 'r', 'y', ' ', 'w', 'e', 'n', 't', ' ', 't', 'o', ' ', 'b', 'u', 
'y', ' ', 's', 'o', 'm', 'e', ' ', 'f', 'l', 'o', 'w', 'e', 'r', 's'

If we take the first three batches of inputs and outputs with unrolling, it would  
look like this:

Input Output
'B', 'o', 'b', ' ', 'a' 'o', ' ', 'b', 'a', 'n'
'n', 'd', ' ', 'M', 'a' 'd', ' ', 'M', 'a', 'r'
'r', 'y', ' ', 'w', 'e' 'y', ' ', 'w', 'e', 'n'

By doing this, the RNN sees a relatively long sequence of data at a time, unlike 
processing a single character at a time. Therefore, it can retain longer memories  
of the sequence:

train_dataset, train_labels = [],[]
for ui in range(num_unroll):
    train_dataset.append(tf.placeholder(tf.float32,
        shape=[batch_size,in_size],name='train_dataset_%d'%ui))
    train_labels.append(tf.placeholder(tf.float32,
        shape=[batch_size,out_size],name='train_labels_%d'%ui))
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Defining the validation dataset
We will define a validation dataset to measure the performance of the RNN over 
time. We do not train with the data in the validation set. We only observe the 
predictions given for validation data as an indication of performance of the RNN:

valid_dataset = tf.placeholder(tf.float32,
    shape=[1,in_size],name='valid_dataset')
valid_labels = tf.placeholder(tf.float32,
    shape=[1,out_size],name='valid_labels')

We collect a validation set by using longer stories and extracting a part of the 
story from the very end. You can understand the details in the code as the code is 
documented meticulously.

Defining weights and biases
Here we will define several weights and bias parameters of the RNN:

•	 W_xh: Weights between the inputs and the hidden layer
•	 W_hh: Weights of the recurrent connections of the hidden layer
•	 W_hy: Weights between the hidden layer and the outputs

W_xh = tf.Variable(tf.truncated_normal(
                   [in_size,hidden],stddev=0.02,
                   dtype=tf.float32),name='W_xh')
W_hh = tf.Variable(tf.truncated_normal([hidden,hidden],
                   stddev=0.02,
                   dtype=tf.float32),name='W_hh')
W_hy = tf.Variable(tf.truncated_normal(
                   [hidden,out_size],stddev=0.02,
                   dtype=tf.float32),name='W_hy')

Defining state persisting variables
Here we will define one of the most important entities that differentiate RNNs from 
feed-forward neural networks: the state of the RNN. The state variables represent the 
memory of RNNs. Also, these are modeled as untrainable TensorFlow variables.
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We will first define variables (training data: prev_train_h and validation data: 
prev_valid_h) to persist the previous state of the hidden layer that is used to 
calculate the current hidden state. We will define two state variables. One state 
variable maintains the state of the RNN during training and the other maintains  
the state of the RNN during validation:

prev_train_h = tf.Variable(tf.zeros([batch_size,hidden],
               dtype=tf.float32),name='train_h',trainable=False)
               name='prev_h1',trainable=False)
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
               name='valid_h',trainable=False)

Calculating the hidden states and outputs 
with unrolled inputs
Next we will define the hidden layer calculations per each unrolled input, the 
unnormalized scores, and the predictions. In order to calculate the output for each 
hidden layer, we maintain the num_unroll hidden state outputs (that is, outputs  
in code) representing each unrolled element. Then the unnormalized predictions 
(also called logits or scores) and softmax predictions are calculated for all the  
num_unroll steps:

# Appending the calculated output of RNN for each step in
# the num_unroll steps
outputs = list()

# This will be iteratively used within num_unroll steps of calculation
output_h = prev_train_h

# Calculating the output of the RNN for num_unroll steps
# (as required by the truncated BPTT)
for ui in range(num_unroll):   
        output_h = tf.nn.tanh(
            tf.matmul(tf.concat([train_dataset[ui],output_h],1),
                      tf.concat([W_xh,W_hh],0)) 
        )    
        outputs.append(output_h)

Then we will calculate the unnormalized predictions (y_scores) and normalized 
predictions (y_predictions) as follows:

# Get the scores and predictions for all the RNN outputs
# we produced for num_unroll steps
y_scores = [tf.matmul(outputs[ui],W_hy) for ui in range(num_unroll)]
y_predictions = [tf.nn.softmax(y_scores[ui]) for ui in range(num_
unroll)]
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Calculating the loss
After the predictions are calculated, we will calculate rnn_loss as follows. The loss 
is the cross-entropy loss between the predicted and actual outputs. Note that we 
save the last output of the RNN (output_h) into the prev_train_h variable, with 
the tf.control_dependencies(...) operation. So that in the next iteration, we can 
start with the previously saved RNN output as the initial state:

# Here we make sure that before calculating the loss,
# the state variable
# is updated with the last RNN output state we obtained
with tf.control_dependencies([tf.assign(prev_train_h,output_h)]):
    # We calculate the softmax cross entropy for all the predictions
    # we obtained in all num_unroll steps at once.
    rnn_loss = tf.reduce_mean(
               tf.nn.softmax_cross_entropy_with_logits_v2(
               logits=tf.concat(y_scores,0),
               labels=tf.concat(train_labels,0)
    ))

Resetting state at the beginning of a new 
segment of text
We also need to define hidden state reset operations. The reset is especially used 
before producing a new chunk of text at test time. Otherwise, the RNN would 
continue producing text dependent on the previously produced text, leading to 
highly correlated outputs. This is bad because it eventually will lead the RNN to 
output the same word over and over again. It is still debatable if resetting the state 
is practically beneficial during training. Nevertheless, we define the TensorFlow 
operations for that:

# Reset the hidden states
reset_train_h_op = tf.assign(prev_train_h,tf.zeros(
                             [batch_size,hidden],
                             dtype=tf.float32))
reset_valid_h_op = tf.assign(prev_valid_h,tf.zeros(
                             [1,hidden],dtype=tf.float32))
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Calculating validation output
Here, similar to the training state, loss and prediction calculation, we define a state, 
loss and prediction for validation:

# Compute the next valid state (only for 1 step)
next_valid_state = tf.nn.tanh(tf.matmul(valid_dataset,W_xh) +
                                tf.matmul(prev_valid_h,W_hh))

# Calculate the prediction using the state output of the RNN
# But before that, assign the latest state output of the RNN
# to the state variable of the validation phase
# So you need to make sure you execute valid_predictions operation
# To update the validation state
with tf.control_dependencies([tf.assign(prev_valid_h,next_valid_
state)]):
    valid_scores = tf.matmul(next_valid_state,W_hy)
    valid_predictions = tf.nn.softmax(valid_scores)

Calculating gradients and optimizing
Since we have the loss for the RNN defined, we will use stochastic gradient methods 
to calculate gradients and apply them. For this, we use TBPTT. In this method, we 
will unroll the RNN over time (similar to how we unrolled the inputs over time) and 
calculate gradients, then roll back the calculated gradients to update the weights 
of the RNN. Also, we will be using AdamOptimizer, which is a momentum-based 
optimization method that has shown far better convergence rates than the standard 
stochastic gradient descent. Moreover, be sure to use a small learning rate when 
using Adam (for example, between 0.001 and 0.0001). We will also use gradient 
clipping to prevent any potential gradient explosions:

rnn_optimizer = tf.train.AdamOptimizer(learning_rate=0.001)

gradients, v = zip(*rnn_optimizer.compute_gradients(rnn_loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
rnn_optimizer = rnn_optimizer.apply_gradients(zip(gradients, v))

Outputting a freshly generated chunk of text
Now we will see how we can use the trained model to output new text. Here, we will 
predict a word and use that word as the next input and predict another word, and 
continue in this manner for several time steps:
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# Maintain the previous state of hidden nodes in testing phase
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden],
                          dtype=tf.float32),name='test_h')

# Test dataset
test_dataset = tf.placeholder(tf.float32, shape=[test_batch_size,
                              in_size],name='test_dataset')

# Calculating hidden output for test data
next_test_state = tf.nn.tanh(tf.matmul(test_dataset,W_xh) +
                             tf.matmul(prev_test_h,W_hh)
                  )

# Making sure that the test hidden state is updated 
# every time we make a prediction
with tf.control_dependencies([tf.assign(prev_test_h,next_test_
state)]):
    test_prediction = tf.nn.softmax(tf.matmul(next_test_state,W_hy))

# Note that we are using small imputations when resetting
# the test state
# As this helps to add more variation to the generated text
reset_test_h_op = tf.assign(prev_test_h,tf.truncated_normal(
                            [test_batch_size,hidden],stddev=0.01,
                            dtype=tf.float32))

Evaluating text results output from  
the RNN
Here we will display a segment of text we generated using our RNN. We will  
show results of when we do not use input unrolling as well as when we use  
input unrolling.

Without input unrolling, we get the following after 10 epochs:

    he the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the
    o the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the the the the the the 
the the the the the the the the the the the the t
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With input unrolling, we get the following after 10 epochs:

... god grant that our sister may be here, and then we shall be free.  
when the maiden,who was standing behind the door watching, heard that 
wish,
she came forth, and on this all the ravens were restored to their
human form again.  and they embraced and kissed each other,
and went joyfully home whome, and wanted to eat and drink, and
looked for their little plates and glasses.  then said one after
the other, who has eaten something from my plate.  who has drunk
out of my little glass.  it was a human mouth.  and when the
seventh came to the bottom of the glass, the ring rolled against
his mouth.  then he looked at it, and saw that it was a ring
belonging to his father and mother, and said, god grant that our
sister may be here, and then we shall be free. ...

The first thing we can note from these results is that it in fact helps to do input 
unrolling over time, compared to processing a single input at a time. However, even 
with unrolling the input, there are some grammatical mistakes and rare spelling 
mistakes. (This is acceptable as we are processing two characters at a time.)

The other noticeable observation is that our RNN tries to produce a new story by 
combining different stories that it has previously seen. You can see that it first talks 
about ravens, and then it moves the story to something similar to Goldilocks and the 
Three Bears, by talking about plates and someone eating from plates. Next the story 
brings up a ring.

This means that the RNN has learned to combine stories and come up with a new 
one. However, we can further improve these results by introducing better learning 
models (for example, LSTM) and better search techniques (for example, beam-
search), as we will see in later chapters.

Due to the complexity of the language and the smaller representational 
power of RNNs, it is unlikely you will get outputs as nice-looking 
as the text shown here, throughout the learning process. Therefore 
we have cherry-picked some generated text to get our point across.

Note that this is a cherry-picked generated sample and, if you pay attention, over 
time you will see that the RNN tries to repeat the same chunk of text over and over 
again if you keep predicting for many iterations. You can already see that this is 
already present in the preceding chunk, where the first sentence is identical to the 
last sentence. This issue becomes more prominent as we increase the size of the 
dataset as we will see soon. This is due to limited memory capabilities of the RNNs 
caused by the vanishing gradient problem, and we would like to reduce this effect. 
So we will soon talk about one variant of RNNs, called the RNNs with Context 
Features (RNN-CF), which reduces this effect.
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Perplexity – measuring the quality of the 
text result
It is not just enough to produce text; we also need a way to measure the quality of 
the produced text. One such way is to measure how surprised or perplexed the RNN 
was to see the output given the input. That is, if the cross-entropy loss for an input xi 
and its corresponding output yi is ( ),i il x y , then the perplexity would be as follows:

( ) ( ),, i il x y
i ip x y e=

Using this, we can compute the average perplexity for a training dataset of size N 
with the following:

( ) ( ) ( )
1

1/ ,N
train i ii

p D N p x y
=

= ∑

In Figure 6.12, we show the behavior of the training and validation perplexities over 
time. We can see that the train perplexity goes down over time steadily, where the 
validation perplexity is fluctuating significantly. This is expected because what we 
are essentially evaluating in the validation perplexity is our RNN's ability to predict 
a unseen text based on our learning on training data. Since language can be quite 
difficult to model, this is a very difficult task, and these fluctuations are natural:

Figure 6.12: A train and valid perplexity plot
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One way to improve the results is to add more hidden layers to the RNN, as often 
deeper models deliver better results. We have implemented a three-layer RNN in 
rnn_language_bigram_multilayer.ipynb in the ch6 folder. We leave this for the 
reader to explore.

Now we come to the question, are there better variants of RNNs that work even 
better? For example, are there variants of RNNs that solve the problem of the 
vanishing gradient more effectively? Let's talk about one such variant called the 
RNN-CF in the next section.

Recurrent Neural Networks with Context 
Features – RNNs with longer memory
Earlier, we discussed two important challenges in training a simple RNN: the 
exploding gradient and the vanishing gradient. We also know that we can prevent 
gradient explosion with a simple trick such as gradient clipping, leading to more 
stable training. However, solving the vanishing gradient takes much more effort, 
because there is no simple scaling/clipping mechanism to solve the gradient 
vanishing, as we did for gradient explosion. Therefore, we need to modify the 
structure of the RNN itself, giving explicitly the ability for it to remember longer 
patterns in sequences of data .The RNN-CF proposed in the paper, Learning 
Longer Memory in Recurrent Neural Networks, Tomas Mikolov and others, International 
Conference on Learning Representations (2015), is one such modification to the standard 
RNN, helping RNNs to memorize patterns in sequences of data for longer.

An RNN-CF provides an improvement to reduce the vanishing gradient by 
introducing a new state and a new set of forward and recurrent connections. In 
other words, an RNN-CF will have two state vectors, compared to a standard RNN 
which has only a single state vector. The idea is that one state vector changes slowly, 
retaining longer memory, while the other state vector can change rapidly, working as 
short-term memory.

Technical description of the RNN-CF
Here we modify the conventional RNN with several more parameters to help 
persisting memory for a longer time. These modifications include introducing a 
new state vector, in addition to the conventional state vector present in a standard 
RNN model. As a result of this, several forward and recurrent sets of weights are 
also introduced. On an abstract level, Figure 6.13 compares an RNN-CF and its 
modifications with a simple RNN:
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Figure 6.13: Comparing an RNN and an RNN-CF side by side

As we can see from the preceding figure, an RNN-CF has a few additional weights 
compared to a conventional RNN. Now let's have a close look at what each of these 
layers and weights do.

First, the input is received by two hidden layers, like the conventional hidden layer 
also found in RNNs. We have seen that using just this hidden layer is not effective 
in retaining long-term memory. However, we can force the hidden layer to retain 
memory for longer by forcing the recurrent matrix to be close to identity and 
removing the nonlinearity. When the recurrent matrix is close to identity, without 
nonlinearities, any change that happens to h should always come from a change in 
the input. In other words, the previous state will have less effect on changing the 
current state. This leads to the state changing slower than with dense weight matrix 
and nonlinearities. Thus, this state helps to retain the memory longer. Another 
reason to favor the recurrent matrix to be close to 1 is that when weights are close 
to 1, terms such as wn-1 that appear in the derivations will not either vanish or 
explode. However, if we use only this without the hidden layer with nonlinearity, 
the gradient would never diminish. Here, by diminishing gradient, we refer to the 
fact that gradients produced by older inputs should have a lesser impact than the 
more recent inputs. We then will need to propagate the gradients through time to the 
beginning of the input. This is expensive. Therefore, to get the best of both worlds, 
we keep both these layers: the standard RNN state layer (ht) that can change rapidly, 
as well as the context feature layer (st) that changes more slowly. This new layer 
is called the context layer and is a novel layer that helps with keeping long-term 
memory. The update rules for the RNN-CF are as follows. Note that you do not see 
st-1 being multiplied by an identity matrix as discussed because t-1 t-1Is s= :

( ) 11 Bt t ts x sα α −= − +

( )1t t t th Ps Ax Rhσ −= + +
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( )t t ty softmax Uh Vs= +

The notation related to the RNN-CF is summarized in the following table:

Notation Description
xt Current input
ht Current state vector
yt Current output
st Current context feature vector
A Weight matrix between xt and ht

B Weight matrix between xt and st

R Recurrent connections of ht

α Constant that controls the contribution of st-1 to st

P Weights connecting ht and st

U Weight matrix between ht and yt

V Weight matrix between st and yt

Implementing the RNN-CF
We have discussed how the RNN-CF contains an additional state vector and 
how that helps to prevent vanishing of the gradients. Here we will discuss the 
implementation of the RNN-CF. In addition to hidden (ht), W_xh (A in the table),  
W_hh (R in the table), and W_hy (U in the table), which were in the conventional 
RNN implementation, we now need three more additional sets of weights; namely, 
we will define B, P, and V. Furthermore we will define a new variable to contain st 
(hidden_context) as well (in addition to ht)

Defining the RNN-CF hyperparameters
First, we will define the hyperparameters including the ones we defined previously 
and new ones. One new hyperparameter defines the number of neurons in the 
context feature layer, st, where alpha represents the α in the equation.

hidden_context = 64
alpha = 0.9
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Defining input and output placeholders
As we did for the standard RNN we first define placeholders to contain training 
inputs and outputs, validation inputs and outputs, and test inputs:

# Train dataset
# We use unrolling over time
train_dataset, train_labels = [],[]
for ui in range(num_unroll):
    train_dataset.append(tf.placeholder(tf.float32,
                         shape=[batch_size,in_size],
                         name='train_dataset_%d'%ui))
    train_labels.append(tf.placeholder(tf.float32,
                        shape=[batch_size,out_size],
                        name='train_labels_%d'%ui))

# Validation dataset
valid_dataset = tf.placeholder(tf.float32,
                               shape=[1,in_size],name='valid_dataset')
valid_labels = tf.placeholder(tf.float32,
                              shape=[1,out_size],name='valid_labels')

# Test dataset
test_dataset = tf.placeholder(tf.float32,
                              shape=[test_batch_size,in_size],

                              name='save_test_dataset')

Defining weights of the RNN-CF
Here we define the weights required for the calculations of the RNN-CF. As we 
saw in the notation table, six sets of weights (A, B, R, P, U, and V) are required. 
Remember that we only had three sets of weights in the conventional RNN 
implementation:

# Weights between inputs and h
A = tf.Variable(tf.truncated_normal([in_size,hidden],
                stddev=0.02,dtype=tf.float32),name='W_xh')
B = tf.Variable(tf.truncated_normal([in_size,hidden_context],
                stddev=0.02,dtype=tf.float32),name='W_xs')
 
# Weights between h and h
R = tf.Variable(tf.truncated_normal([hidden,hidden],
                stddev=0.02,dtype=tf.float32),name='W_hh')
P = tf.Variable(tf.truncated_normal([hidden_context,hidden],
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                stddev=0.02,dtype=tf.float32),name='W_ss')
 
# Weights between h and y
U = tf.Variable(tf.truncated_normal([hidden,out_size],
                stddev=0.02,dtype=tf.float32),name='W_hy')
V = tf.Variable(tf.truncated_normal([hidden_context,
                                    out_size],stddev=0.02,
                                    dtype=tf.float32),
                                    name='W_sy')

# State variables for training data
prev_train_h = tf.Variable(tf.zeros([batch_size,hidden],
                           dtype=tf.float32),
                           name='train_h',trainable=False)
prev_train_s = tf.Variable(tf.zeros([batch_size,hidden_context],
                           dtype=tf.float32),name='train_s',
                           trainable=False)
 
# State variables for validation data
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
                           name='valid_h',trainable=False)
prev_valid_s = tf.Variable(tf.zeros([1,hidden_context],
                           dtype=tf.float32),
                           name='valid_s',trainable=False)
 
# State variables for test data
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden],
                          dtype=tf.float32),
                          name='test_h')
prev_test_s = tf.Variable(tf.zeros([test_batch_size,hidden_context],
                          dtype=tf.float32),name='test_s')

Variables and operations for maintaining hidden 
and context states
Here we define state variables of the RNN-CF. In addition to ht we had in the 
conventional RNN, we need to have a separate state for context features which is st. 
In total, we will have six state variables. Here, three state variables are to maintain 
state vector ht during training, validation, and testing, and the other three state 
variables are to maintain the state vector st during training, validation, and testing:
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# State variables for training data
prev_train_h = tf.Variable(tf.zeros([batch_size,hidden], 
                           dtype=tf.float32),
                           name='train_h',trainable=False)
prev_train_s = tf.Variable(tf.zeros([batch_size,hidden_context],
                           dtype=tf.float32),name='train_s', 
                           trainable=False)

# State variables for validation data
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
                           name='valid_h',trainable=False)
prev_valid_s = tf.Variable(tf.zeros([1,hidden_context], 
                           dtype=tf.float32),
                           name='valid_s',trainable=False)

# State variables for test data
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden], 
                                   dtype=tf.float32),
                                   name='test_h')
prev_test_s = tf.Variable(tf.zeros([test_batch_size,hidden_context],
                                   dtype=tf.float32),name='test_s')

Next, we define the reset operations required to reset operations required  
to reset states:

reset_prev_train_h_op = tf.assign(prev_train_h,tf.zeros([batch_size,
                        hidden], dtype=tf.float32))
reset_prev_train_s_op = tf.assign(prev_train_s,tf.zeros([batch_size,
                        hidden_context],dtype=tf.float32))

reset_valid_h_op = tf.assign(prev_valid_h,tf.zeros([1,hidden],
                   dtype=tf.float32))
reset_valid_s_op = tf.assign(prev_valid_s,tf.zeros([1,hidden_context],
                   dtype=tf.float32))

# Impute the testing states with noise
reset_test_h_op = tf.assign(prev_test_h,tf.truncated_normal(
                            [test_batch_size,hidden],
                            stddev=0.01,
                            dtype=tf.float32))
reset_test_s_op = tf.assign(prev_test_s,tf.truncated_normal(
                            [test_batch_size,hidden_context],
                            stddev=0.01,dtype=tf.float32))
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Calculating output
With all the inputs, variables, and state vectors defined, we now can calculate 
the output of the RNN-CF according to the equations in the preceding section. In 
essence, we are doing the following with this code snippet. We first initialize state 
vectors to be zeros. Then we will unroll our inputs for a fixed set of time steps (as 
needed by BPTT) and separately calculate unnormalized outputs (sometimes called 
logits or scores) for each of these unrolled steps. Then we will concatenate all the y 
values belonging to each unrolled time step, and then calculate the mean loss of all 
these entries, comparing it to the true labels:

# Train score (unnormalized) values and predictions (normalized)
y_scores, y_predictions = [],[]
 
# These will be iteratively used within num_unroll
# steps of calculation
next_h_state = prev_train_h
next_s_state = prev_train_s
 
# Appending the calculated state outputs of RNN for
# each step in the num_unroll steps
next_h_states_unrolled, next_s_states_unrolled = [],[]

# Calculating the output of the RNN for num_unroll steps
# (as required by the truncated BPTT)
for ui in range(num_unroll):
    next_h_state = tf.nn.tanh(
        tf.matmul(tf.concat([train_dataset[ui],prev_train_h,
                  prev_train_s],1),
                  tf.concat([A,R,P],0))
    )
    next_s_state = (1-alpha)*tf.matmul(train_dataset[ui],B) + 
                   alpha * next_s_state
    next_h_states_unrolled.append(next_h_state)
    next_s_states_unrolled.append(next_s_state)
 
# Get the scores and predictions for all the RNN outputs 
# we produced for num_unroll steps
y_scores = [tf.matmul(next_h_states_unrolled[ui],U) + 
            tf.matmul(next_s_states_unrolled[ui],V)
             for ui in range(num_unroll)]
y_predictions = [tf.nn.softmax(y_scores[ui]) for ui in range(num_
unroll)]
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Calculating the loss
Here we define the loss calculation of RNN-CF. This operation is identical to the one 
we defined for the standard RNN and is as follows:

# Here we make sure that before calculating the loss, 
# the state variables are
# updated with the last RNN output state we obtained
with tf.control_dependencies([tf.assign(prev_train_s, next_s_state),
                              tf.assign(prev_train_h,next_h_state)]):
    rnn_loss = tf.reduce_mean(
               tf.nn.softmax_cross_entropy_with_logits_v2(
               logits=tf.concat(y_scores,0),
               labels=tf.concat(train_labels,0)
    ))

Calculating validation output
Similar to calculating the output at training time, we calculate the output for 
validation inputs, as well. However, we do not unroll the inputs as we did for 
training data, as unrolling is not required during prediction, but only for training:

# Validation data related inference logic
# (very similar to the training inference logic)

# Compute the next valid state (only for 1 step)
next_valid_s_state = (1-alpha) * tf.matmul(valid_dataset,B) + 
                     alpha * prev_valid_s
next_valid_h_state = tf.nn.tanh(tf.matmul(valid_dataset,A)  +
                                tf.matmul(prev_valid_s, P) +
                                tf.matmul(prev_valid_h,R))

# Calculate the prediction using the state output of the RNN
# But before that, assign the latest state output of the RNN
# to the state variable of the validation phase
# So you need to make sure you execute rnn_valid_loss operation
# To update the validation state
with tf.control_dependencies([tf.assign(prev_valid_s,
                             next_valid_s_state),
                             tf.assign(prev_valid_h,next_valid_h_
state)]):
    valid_scores = tf.matmul(prev_valid_h, U) + tf.matmul(
                                                prev_valid_s, V)
    valid_predictions = tf.nn.softmax(valid_scores)
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Computing test output
We can now define the output calculations for generating new test data as well:

# Test data realted inference logic

# Calculating hidden output for test data
next_test_s = (1-alpha)*tf.matmul(test_dataset,B)+ alpha*prev_test_s
                         
next_test_h = tf.nn.tanh(
    tf.matmul(test_dataset,A) + tf.matmul(prev_test_s,P) + 
    tf.matmul(prev_test_h, R)
                         )

# Making sure that the test hidden state is updated 
# every time we make a prediction
with tf.control_dependencies([tf.assign(prev_test_s,next_test_s),
                              tf.assign(prev_test_h,next_test_h)]):
    test_prediction = tf.nn.softmax(
        tf.matmul(prev_test_h,U) + tf.matmul(prev_test_s,V)
    )

Computing the gradients and optimizing
Here we use an optimizer to minimize the loss identical to the way we did for the 
conventional RNN:

rnn_optimizer = tf.train.AdamOptimizer(learning_rate=.001)

gradients, v = zip(*rnn_optimizer.compute_gradients(rnn_loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
rnn_optimizer = rnn_optimizer.apply_gradients(zip(gradients, v))

Text generated with the RNN-CF
Here we will compare the text generated by the RNN and RNN-CF, both 
qualitatively and quantitatively. We will first compare the results obtained using  
20 training documents. Afterwards, we will elevate the number of training 
documents to 100, to see if the RNN and RNN-CF are able to incorporate large 
amounts of data, well to output better quality text.
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First, we will generate text with the RNN-CF using only 20 documents:

the king's daughter, who had
no more excuses left to make.  they cut the could not off, and her his 
first rays of life in the garden,
and was amazed to see with the showed to the grown mighted and the 
seart the answer to star's brothers, and seeking the golden apple, we 
flew over the tree to the seadow where her
heard that he could not have
discome.

emptied him by him.  she himself 'well i ston the fire struck it was 
and said the youth, farm of them into the showed to shudder, but here 
and said the fire himself 'if i could but the youth, and thought that 
is that shudder.'
'then, said he said 'i will by you are you, you.' then the king, who 
you are your
wedding-mantle.  you are you are you
bird in wretch me.  ah.  what man caller streep them if i will bed.  
the youth
begged for a hearing, and said 'if you will below in you to be your
wedding-mantle.' 'what.' said he,  'i shall said 'if i hall by you are 
you

bidden it i could not have

In terms of the quality of text, compared to standard RNN, we are not able to see 
much of a difference. We should think about why the RNN-CF is not performing 
better than standard RNNs. In their paper, Learning Longer Memory in Recurrent 
Neural Networks, Mikolov and others, mention the following:

"When the number of standard hidden units is enough to capture short term 
patterns, learning the self-recurrent weights does not seem crucial anymore."

So if the number of hidden units is large enough, the RNN-CF has no significant 
advantage over standard RNNs. This might be the reason why we are observing 
this. We are using 64 hidden neurons and a relatively small corpus, and it could be 
adequate to represent a story, well to a level RNNs are capable of.

Therefore, let's see whether increasing the amount of data actually helps the RNN-CF 
to perform better. For our example, we will increase the number of documents to 100 
documents after training for around 50 epochs.
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The following is the output of a standard RNN:

they were their dearest and she she told him to stop crying to the 
king's son they were their dearest and she she told him to stop crying 
to the king's son they were their dearest and she she told him to stop 
crying to the king's son they were their dearest and she she told him 
to stop crying to the king's son they were their dearest and she she 
told him to stop

We can see that RNNs have grown worse, compared to how they performed with 
less data. Having a lot of data and inadequate model capacity affects standard RNNs 
adversely, leading them to output poor-quality text.

The following is the output of the RNN-CF. You can see that, in terms of variation, 
the RNN-CF has done a much better job than a standard RNN:

then they could be the world.  not was now from the first for a set 
out of his pocket, what is the world.  then they were all they were 
forest, and the never yet not
rething, and took the
children in themselver to peard, and then the first her.  then the was 
in the first, and that he was to the first, and that he was to the
kitchen, and said, and had took the
children in the mountain, and they were hansel of the fire, gretel of 
they were all the fire, goggle-eyes and all in the moster.  when she 
had took the
changeling the little elves, and now ran into them, and she bridge 
away with the witch form,
and their father's daughter was that had neep himselver in the horse, 
and now they lived them himselver to them, and they were am the 
marriage was all they were and all of the marriage was anger of the 
forest, and the manikin was laughing, who had said they had not know, 
and took the
children in themselver to themselver and they lived them himselver to 
them

Therefore, it seems that when data is abundant, the RNN-CF in fact outperforms 
standard RNNs. We will also plot the training and validation perplexities over time 
for both these models. As you can see, in terms of training perplexity both RNN-CF 
and the standard RNN do not show a significant difference. Finally, in the validation 
perplexity graph (see Figure 6.14), we can see that the RNN-CF shows fewer 
fluctuations compared to the standard RNN.
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One important conclusion we can make here is that when we had smaller amounts 
of data, the standard RNN was probably overfitting data. That is, the RNN probably 
memorized data as it is, rather than trying to learn more general patterns present in 
data. When RNN is overwhelmed by the amount of data and trained for longer (say 
around 50 epochs), this weakness becomes more prominent. The quality of the text 
produced decreases, and there are larger fluctuations of the validation perplexity. 
However, the RNN-CF shows somewhat consistent behavior with both small and 
large amounts of data:

Figure 6.14: Train and valid perplexities of the RNN and RNN-CF

Summary
In this chapter, we looked at RNNs, which are different from conventional feed-
forward neural networks and more powerful in terms of solving temporal tasks. 
Furthermore, RNNs can manifest in many different forms: one-to-one (text 
generation), many-to-one (sequential image classification), one-to-many (image 
captioning), and many-to-many (machine translation).

Specifically, we discussed how to arrive at an RNN from a feed-forward neural 
networks type structure. We assumed a sequence of inputs and outputs, and 
designed a computational graph that can represent the sequence of inputs and 
outputs. This computational graph resulted in a series of copies of functions that we 
applied to each individual input-output tuple in the sequence. Then, by generalizing 
this model to any given single time step t in the sequence, we were able to arrive at 
the basic computational graph of an RNN. We discussed the exact equations and 
update rules used to calculate the hidden state and the output.
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Next we discussed how RNNs are trained with data using BPTT. We examined how 
we can arrive at BPTT with standard backpropagation as well as why we can't use 
standard backpropagation for RNNs. We also discussed two important practical 
issues that arise with BPTT—vanishing gradient and exploding gradient—and how 
these can be solved on the surface level.

Then we moved on to the practical applications of RNNs. We discussed four 
main categories of RNNs. One-to-one architectures are used for tasks such as text 
generation, scene classification, and video frame labeling. Many-to-one architectures 
are used for sentiment analysis, where we process the sentences/phrases word 
by word (compared to processing a full sentence at a single go, as we saw in the 
previous chapter). One-to-many architectures are common in image captioning tasks, 
where we map a single image to an arbitrarily long sentence phrase describing the 
image. Many-to-many architectures are leveraged for machine translation tasks.

Next we looked at an interesting application of RNNs: text generation. We used a 
corpus of fairy tales to train an RNN. In particular, we broke the text in the story to 
bigrams (a bigram contains two characters). We trained the RNN by giving a set of 
bigrams selected from a story as the input and the following bigrams (from the input) 
as the output. Then the RNN was optimized by maximizing the accuracy of predicting 
the next bigram correctly. Following this procedure, we asked the RNN to generate a 
different story, and we made two important observations of the generated results:

•	 Unrolling the input over time in fact helps to maintain memory for longer
•	 RNNs even with unrolling can only store a limited amount of long-term 

memory

Therefore, we looked at an RNN variant that has the ability to capture even longer 
memory. This is referred to as the RNN-CF. The RNN-CF has two different layers: 
the hidden layer (that is, conventional hidden layer, found in simple RNNs) and a 
context layer (for persisting long-term memory). We saw that having this additional 
context layer did not help significantly when used with a small dataset, as we had a 
fairly complex hidden layer in our RNN, but it produced slightly better results when 
more data was used.

In the next chapter, we will discuss a more powerful RNN model known as long 
short-term memory (LSTM) networks that further reduces the adverse effect of the 
vanishing gradient, and thus produces much better results.
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Long Short-Term  
Memory Networks

In this chapter, we will discuss a more advanced RNN variant known as Long Short-
Term Memory Networks (LSTMs). LSTMs are widely used in many sequential tasks 
(including stock market prediction, language modeling, and machine translation) 
and have proven to perform better than other sequential models (for example, 
standard RNNs), especially given the availability of large amounts of data. LSTMs 
are well-designed to avoid the problem of the vanishing gradient that we discussed 
in the previous chapter.

The main practical limitation posed by the vanishing gradient is that it prevents the 
model from learning long-term dependencies. However, by avoiding the vanishing 
gradient problem, LSTMs have the ability to store memory for longer than ordinary 
RNNs (for hundreds of time steps). In contrast to those RNNs, which only maintain 
a single hidden state, LSTMs have many more parameters as well as better control 
over what memory to store and what to discard at a given training step. For example, 
RNNs are not able to decide which memory to store and which to discard, as the 
hidden state is forced to be updated at every training step.
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Specifically, we will discuss what an LSTM is at a very high level and how the 
functionality of LSTMs allows them to store long-term dependencies. Then we 
will go into the actual underlying mathematical framework governing LSTMs 
and discuss an example to highlight why each computation matters. We will 
also compare LSTMs to vanilla RNNs and see that LSTMs have a much more 
sophisticated architecture that allows them to surpass vanilla RNNs in sequential 
tasks. Revisiting the problem of the vanishing gradient and illustrating it through 
an example will lead us to understand how LSTMs solve the problem.

Thereafter, we will discuss several techniques that have been introduced to improve 
the predictions produced by a standard LSTM (for example, improving the quality/
variety of generated text in a text generation task). For example, generating several 
predictions at once instead of predicting them one-by-one can help to improve the 
quality of generated predictions. We will also look at BiLSTMs, or bidirectional 
LSTMs, which are an extension to the standard LSTM that has greater capabilities 
for capturing the patterns present in the sequence than a standard LSTM.

Finally, we will discuss two recent LSTM variants. First, we will look at peephole 
connections, which introduce more parameters and information to the LSTM gates 
allowing LSTMs to perform better. Next, we will discuss Gated Recurrent Units 
(GRUs), which are gaining increasing popularity as they have a much simpler 
structure compared to LSTMs and also do not degrade performance.

Understanding Long Short-Term 
Memory Networks
In this section, we will first explain what happens within an LSTM cell. We will see 
that in addition to the states, a gating mechanism to control information flow inside 
the cell is present. Then we will work through a detailed example and see how each 
gate and states help at various stages of the example to achieve desired behaviors, 
finally leading to the desired output. Finally, we will compare an LSTM against 
a standard RNN to learn how an LSTM differs from a standard RNN.
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What is an LSTM?
LSTMs can be seen as a fancier family of RNNs. An LSTM is composed mainly of 
five different things:

•	 Cell state: This is the internal cell state (that is, memory) of an LSTM cell
•	 Hidden state: This is the external hidden state used to calculate predictions
•	 Input gate: This determines how much of the current input is read into the 

cell state
•	 Forget gate: This determines how much of the previous cell state is sent into 

the current cell state
•	 Output gate: This determines how much of the cell state is output into the 

hidden state

We can wrap the RNN to a cell architecture as follows. The cell will output some 
state which is dependent (with a nonlinear activation function) on previous cell state 
and the current input. However, in RNNs, the cell state is always changed with every 
incoming input. This leads the cell state of the RNNs to always change. This behavior 
is quite undesirable for storing long-term dependencies.

LSTMs can decide when to replace, update, or forget information stored in each 
neuron in the cell state. In other words, LSTMs are equipped with a mechanism 
to keep the cell state unchanged (if needed) giving them the ability to store  
long-term dependencies.

This is achieved by introducing a gating mechanism. LSTMs possess gates for 
each operation the cell needs to perform. The gates are continuous (often sigmoid 
functions) between 0 and 1, where 0 means no information flows through the gate 
and 1 means all the information flows through the gate. An LSTM uses one such gate 
for each neuron in the cell. As explained earlier, these gates control the following:

•	 How much of the current input is written to the cell state (input gate)
•	 How much information is forgotten from the previous cell state (forget gate)
•	 How much information is output into the final hidden state from the cell 

state (output gate)
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Figure 7.1 illustrates this functionality. Each gate decides how much of various 
data (for example, current input, previous hidden state, or the previous cell state) 
flow into the states (that is, the final hidden state or the cell state). The thickness of 
each line represents how much information is flowing from/to that gate (in some 
hypothetical scenario). For example, in this figure, you can see that the input gate 
is allowing more from the current input than from the previous final hidden state, 
where the forget gate allows more from the previous final hidden state than from the 
current input:

Figure 7.1: An abstract view of the data flow in an LSTM

LSTMs in more detail
Here we will walk through the actual mechanism of LSTMs. We will first briefly 
discuss the overall view of an LSTM cell and then start discussing each of the 
operations taking place within an LSTM cell along with an example of text 
generation.

As we discussed earlier, the LSTMs are mainly composed of the following  
three gates:

•	 Input gate: A gate which outputs values between 0 (the current input is not 
written to the cell state), and 1 (the current input is fully written to the cell 
state). Sigmoid activation is used to squash the output to between 0 and 1.

•	 Forget gate: A sigmoidal gate which outputs values between 0 (the previous 
cell state is fully forgotten for calculating the current cell state) and 1 (the 
previous cell state is fully read in when calculating the current cell state).

•	 Output gate: A sigmoidal gate which outputs values between 0 (the current 
cell state is fully discarded for calculating the final state) and 1 (the current 
cell state is fully used when calculating the final hidden state).
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This can be shown as in Figure 7.2. This is a very high-level diagram, and some 
details have been hidden in order to avoid clutter. We present LSTMs, both with 
loops and without loops to improve the understanding. The figure on the right-hand 
side depicts an LSTM with loops and that on the left-hand side shows the same 
LSTM with the loops expanded so that no loops are present in the model:

Figure 7.2: LSTM with recurrent links (that is, loops) (right) LSTM with recurrent links expanded (left)

Now, to get a better understanding of LSTMs, let's consider an example. We will 
discuss the actual update rules and equations along with an example to understand 
LSTMs better.

Now let's consider an example of generating text starting from the following 
sentence:

John gave Mary a puppy.

The story that we output should be about John, Mary, and the puppy. Let's assume 
our LSTM to output two sentences following the given sentence:

John gave Mary a puppy. ____________________. _____________________.

The following is the output given by our LSTM:

John gave Mary a puppy. It barks very loudly. They named it Luna.
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We are still far from outputting realistic phrases such as these. However, LSTMs can 
learn relationships such as between nouns and pronouns. For example, it is related to 
the puppy, and they to John and Mary. Then, it should learn the relationship between 
the noun/pronoun and the verb. For example, for it, the verb should have an s at 
the end. We illustrate these relationships/dependencies in Figure 7.3. As we can see 
both, long-term (for example, Luna → puppy) and short-term (for example, It → barks) 
dependencies are present in this phrase. The solid arrows depict links between nouns 
and pronouns and dashed arrows show links between nouns/pronouns and verbs:

Figure 7.3: Sentences given and predicted by the LSTM with various relationships between words highlighted

Now let's consider how LSTMs, using their various operations, can model such 
relationships and dependencies to output sensible text, given a starting sentence.

The input gate (it) takes the current input (xt) and the previous final hidden state (ht-1) 
as the input and calculates it, as follows:

( )1t ix t ih t ii W x W h bσ −= + +

The input gate, it can be understood as the calculation performed at the hidden layer 
of a single-hidden-layer standard RNN with the sigmoidal activation. Remember 
that we calculated the hidden state of a standard RNN as follows:

( )t t t 1h tanh Ux Wh −= +

Therefore, the calculation of it of the LSTM looks quite analogous to the calculation 
of ht of a standard RNN, except for the change in the activation function and the 
addition of bias.

After the calculation, a value of 0 for it will mean that no information from the 
current input will flow to the cell state, where a value of 1 means that all the 
information from the current input will flow to the cell state.
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Next, another value (which is called candidate value) is calculated as follows, which 
is added to calculate the current cell state later:

( )1t cx t ch t cc tanh W x W h b−= + +�

We can visualize these calculations in Figure 7.4:

Figure 7.4. Calculation of it and tc�  (in bold) in the context of all the calculations  
(grayed out) that take place in an LSTM

In our example, at the very beginning of the learning, the input gate needs to be 
highly activated. The first word that the LSTM outputs is it. Also in order to do so, 
the LSTM must learn that puppy is also referred to as it. Let's assume our LSTM has 
five neurons to store the state. We would like the LSTM to store the information that 
it refers to puppy. Another piece of information we would like the LSTM to learn (in 
a different neuron) is that the present tense verb should have an s at the end of the 
verb, when the pronoun it is used. One more thing the LSTM needs to know is that 
the puppy barks loud. Figure 7.5 illustrates how this knowledge might be encoded in 
the cell state of the LSTM. Each circle represents a single neuron (that is, hidden unit) 
of the cell state:

Figure 7.5: The knowledge that should be encoded in the cell state to output the first sentence
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With this information, we can output the first new sentence:

John gave Mary a puppy. It barks very loudly.

Next, the forget gate is calculated as follows:

( )1t fx t fh t ff W x W h bσ −= + +

The forget gate does the following. A value of 0 for the forget gate means that no 
information from ct-1 will be passed to calculate ct, and a value of 1 means that all the 
information of ct-1 will propagate into the calculation of ct.

Now we will see how the forget gate helps in predicting the next sentence:

They named it Luna.

Now as you can see, the new relationship we are looking at is between John and Mary 
and they. Therefore, we no longer need information about it and how the verb bark 
behaves, as the subjects are John and Mary. We can use the forget gate in combination 
with the current subject they and the corresponding verb named to replace the 
information stored in the Current subject and Verb for current subject neurons  
(see Figure 7.6):

Figure 7.6: The knowledge in the third neuron from left (it → barks)  
is replaced with new information (they → named).

In terms of the values of weights, we illustrate this transformation in Figure 7.7. 
We do not change the state of the neuron maintaining the it → puppy relationship, 
because puppy appears as an object in the last sentence. This is done by setting 
weights connecting it → puppy from ct-1 to ct to 1. Then we will replace the neurons 
maintaining current subject and current verb information with new subject and verb. 
This is achieved by setting the forget weights of ft, for that neuron, to 0. Then we will 
set the weights of it connecting the current subject and verb to the corresponding 
state neurons to 1. We can think of tc�  as the entity that contains what new 
information (such as new information from the current input xt) should be brought 
to the cell state:
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Figure 7.7: How the cell state ct is calculated with the previous state ct-1 and the candidate value tc�

The current cell state will be updated as follows:

1t t t t tc f c i c−= + �

In other words, the current state is the combination of the following:

•	 What information to forget/remember from the previous cell state
•	 What information to add/discard to the current input

Next in Figure 7.8, we highlight what we have calculated so far with respect to all the 
calculations that are taking place inside an LSTM:

Figure 7.8: Calculations covered so far including it, ft, tc� , and ct
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After learning the full state, it would look like Figure 7.9:

Figure 7.9: The full cell state will look like this after outputting both the sentences

Next, we will look at how the final state of the LSTM cell (ht) is computed:

( )1t ox t oh t oo W x W h bσ −= + +

( )t t th o tanh c=

In our example, we want to output the following sentence:

They named it Luna.

For this we do not need the second to last neuron to compute this sentence, as it 
contains information about how the puppy barks, where this sentence is about the 
name of the puppy. Therefore, we can ignore the last neuron (containing bark -> loud 
relationship) during the predictions of the last sentence. This is exactly what ot does; 
it will ignore the unnecessary memory and only retrieve the related memory from 
the cell state when calculating the final output of the LSTM cell. Also, in Figure 7.10, 
we illustrate how an LSTM cell would look like at a full glance:

Figure 7.10: What the full LSTM looks like
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Here, we summarize all the equations relating to the operations taking place within 
an LSTM cell.

( )1t ix t ih t ii W x W h bσ −= + +

( )1t fx t fh t ff W x W h bσ −= + +

( )1tanht cx t ch t cc W x W h b−= + +�

1t t t t tc f c i c−= + �

( )1t ox t oh t oo W x W h bσ −= + +

( )tanht t th o c=

Now in the bigger picture, for a sequential learning problem, we can unroll the 
LSTM cells over time to show how they would link together so they receive the 
previous state of the cell to compute the next state, as shown in Figure 7.11:

Figure 7.11: How LSTMs will be linked over time

However, this is not adequate to do something useful. As you can see, even though 
we can create a nice chain of LSTMs that are actually capable of modelling a 
sequence, we still don't have an output or a prediction. But if we want to use what 
the LSTM actually learned, we need a way to extract the final output from the LSTM. 
Therefore, we will fix a softmax layer (with weights Ws and bias bs) on top of the 
LSTM. The final output is obtained using the following equation:

( )t s t sy softmax W h b= +
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Now the final picture of the LSTM with the softmax layer looks like Figure 7.12:

Figure 7.12: LSTMs with a softmax output layer linked over time

How LSTMs differ from standard RNNs
Let's now investigate how LSTMs compare to standard RNNs. An LSTM has a more 
intricate structure compared to a standard RNN. One of the primary differences 
is that an LSTM has two different states: a cell state ct and a final hidden state ht. 
However, an RNN only has a single hidden state ht. The next primary difference is 
that since an LSTM has three different gates, an LSTM has much more control over 
how the current input and the previous cell state are handled when computing the 
final hidden state ht.

Having the two different states is quite advantageous. With this mechanism, 
even when the cell state is changing quickly, the final hidden state will still be 
changed more slowly. So, while the cell state is learning both short-term and long-
term dependencies, the final hidden state can reflect either only the short-term 
dependencies or only the long-term dependencies or both.

Next, the gating mechanism is composed of three gates: the input, forget, and  
output gates:

•	 The input gate controls how much of the current input is written to the  
cell state

•	 The forget gate controls how much of the previous cell state is carried over to 
the current cell state

•	 Finally, the output gate controls how much from the cell state is propagated to 
the final hidden state
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It is quite evident that this is a much more principled approach (especially, compared 
to the standard RNNs) that permits better control over how much the current input 
and the previous cell state contribute to the current cell state. Also, the output gate 
gives better control over how much the cell state contributes to the final hidden state. 
In Figure 7.13, we compare schematic diagrams of a standard RNN and an LSTM to 
emphasize the difference in terms of the functionality of the two models.

In summary, with the design of maintaining two different states, an LSTM can learn 
both short-term and long-term dependencies, which helps solve the problem of the 
vanishing gradient, which we'll discuss in the following section.

Figure 7.13: Side-by-side comparison of a standard RNN and an LSTM cell

How LSTMs solve the vanishing gradient 
problem
As we discussed earlier, even though RNNs are theoretically sound, in practice they 
suffer from a serious drawback. That is, when the Backpropagation Through Time 
(BPTT) is used, the gradient diminishes quickly, which allows us to propagate the 
information of only a few time steps. Consequently, we can only store information of 
very few time steps, thus possessing only short-term memory. This in turn limits the 
usefulness of RNNs in real-world sequential tasks.
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Often useful and interesting sequential tasks (such as stock market predictions or 
language modeling) require the ability to learn and store long-term dependencies. 
Think of the following example for predicting the next word:

John is a talented student. He is an A-grade student and plays rugby and cricket. All the 
other students envy ______.

For us, this is a very easy task. The answer would be John. However, for an RNN, this 
is a difficult task. We are trying to predict an answer which lies at the very beginning 
of the text. Also, to solve this task, we need a way to store long-term dependencies in 
the state of the RNN. This is exactly the type of tasks LSTMs are designed to solve.

In Chapter 6, Recurrent Neural Networks, we discussed how a vanishing/exploding 
gradient can appear without any nonlinear functions present. We will now see that it 
could still happen even with the nonlinear term present. For this, we will see how the 
derivative term /t t kh h−∂ ∂  is for a standard RNN and an LSTM ( /t t kc c −∂ ∂  for an LSTM) 
network. This is the crucial term that causes the vanishing gradient, as we learned in 
the previous chapter.

Let's assume the hidden state is calculated as follows for a standard RNN:

( )1t x t h th W x W hσ −= +

To simplify the calculations, we can ignore the current input related terms and focus 
on the recurrent part, which will give us the following equation:

( )1t h th W hσ −=

If we calculate /t t kh h−∂ ∂  for the preceding equations, we will get the following:

( ) ( )( )
1

0

/ 1
k

t t k h h t k i h t k i
i

h h W W h W hσ σ
−

− − + − +
=

∂ ∂ = −∏

( ) ( )( )
1

0

/ 1
k

k
t t k h h t k i h t k i

i
h h W W h W hσ σ

−

− − + − +
=

∂ ∂ = −∏
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Now let's see what happens when 0h t k iW h− + <<  or 0h t k iW h− + >>  (which will happen 
as learning continues). In both cases, /t t kh h−∂ ∂  will start to approach 0, giving 
rise to the vanishing gradient. Even when 0h t k iW h− + = , where the gradient is 
maximum (0.25) for sigmoid activation, when multiplied for many time steps, the 
overall gradient becomes quite small. Moreover, the term k

hW  (possibly due to bad 
initialization) can cause exploding or vanishing of the gradients, as well. However, 
compared to the gradient vanishing due to 0h t k iW h− + <<  or 0h t k iW h− + >> , gradient 
vanishing/explosion caused by the term k

hW  is relatively easy to solve (with careful 
initialization of weights and gradient clipping).

Now let's look at an LSTM cell. More specifically, we'll look at the cell state, given by 
the following equation:

1t t t t tc f c i c−= + �

This is the product of all the forget gate applications happening in the LSTM. 
However, if you calculate /t t kc c −∂ ∂  in a similar way for LSTMs (that is, ignoring the 

fx tW x  terms and bf, as they are non-recurrent), we get the following:

( )
1

0

/
k

t t k fh t k i
i

c c W hσ
−

− − +
=

∂ ∂ =∏

In this case, though the gradient will vanish if 0h t k iW h− + << , on the other hand if 
0h t k iW h− + >> , the derivative will decrease much slower than it would in a standard 

RNN. Therefore, we have one alternative, where the gradient will not vanish. Also, 
as the squashing function is used, the gradients will not explode due to /t t kc c −∂ ∂  
being large (which is the likely thing to happen during a gradient explosion). In 
addition, when 0h t k iW h− + >> , we get a maximum gradient close to 1, meaning that 
the gradients will not rapidly decrease as we saw with RNNs (when gradient is 
at maximum). Finally, there is no term such as k

hW  in the derivation. However, 
derivations are trickier for /t t kh h−∂ ∂ . Let's see if such terms are present in the 
derivation of /t t kh h−∂ ∂ . If you calculate the derivatives of this, you will get something 
of the following form:

( )( )/ tanh /t t k t t t kh h o c h− −∂ ∂ =∂ ∂

Once you solve this, you will get something of this form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2
1tanh . . 1 . . 1 tanh . . 1 . . 1 tanh . tanh . . 1 .oh t fh ch ihw c w w wσ σ σ σ σ σ σ σ−

        − + − − + − + −           
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We do not care about the content within ( ).σ  or ( )tanh . , because no matter what 
the value, it will be bounded by (0,1) or (-1,1). If we further reduce the notation by 
replacing the ( ).σ , ( )1 .σ −  , ( )tanh . , and ( )21 tanh . −    terms with some common notation 
such as ( ).γ , we get something of this form:

( ) ( ) ( ) ( ) ( )1. . . . .oh t fh ch ihw c w w wγ γ γ γ γ−
 + + +  

Alternatively, we get the following (assuming that the outside ( ).γ  gets absorbed by 
each ( ).γ  term present within the square brackets):

( ) ( ) ( ) ( )1. . . .oh t fh ch ihw c w w wγ γ γ γ−+ + +

This will give the following:

( ) ( ) ( ) ( )
1

1
0

/ . . . .
k

t t k oh t fh ch ih
i

h h w c w w wγ γ γ γ
−

− −
=

∂ ∂ ≈ + + +∏

This means that though the term /t t kc c −∂ ∂  is safe from any k
hW  terms, /t t kh h−∂ ∂  is not. 

Therefore, we must be careful when initializing the weights of the LSTM and we 
should use gradient clipping as well.

However, ht of LSTMs being unsafe from vanishing gradient is not as 
crucial as for RNNs. Because ct still can store the long term dependencies 
without being affected by vanishing gradient, and ht can retrieve the  
long-term dependencies from ct, if required to.

Improving LSTMs
As we have already seen while learning about RNNs, having a solid theoretical 
foundation does not always guarantee that they will perform the best in practice. 
This is due to the limitations in numerical precision of the computers. This is  
also true for LSTMs. Having a sophisticated design—allowing better modeling  
of long-term dependencies in the data—does not in itself mean the LSTM will  
output perfectly realistic predictions. Therefore, numerous extensions have been 
developed to help LSTMs perform better at prediction stage. Here we will discuss 
several such improvements: greedy sampling, beam search, using word vectors 
instead of one-hot-encoded representation of words, and using bidirectional LSTMs.
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Greedy sampling
If we try to always predict the word with the highest probability, the LSTM will tend 
to produce very monotonic results. For example, it will repeat the word the many 
times before switching to another word.

One way to get around this is to use greedy sampling, where we pick the predicted 
best n and sample from that set. This helps to break the monotonic nature of the 
predictions.

Let's consider the first sentence of the previous example:

John gave Mary a puppy.

Say, we start with the first word and want to predict the next four words:

John ____ ____ _ _____.

If we attempt to choose samples deterministically, the LSTM might tend to output 
something like the following:

John gave Mary gave John.

However, by sampling the next word from a subset of words in the vocabulary (most 
highly probable ones), the LSTM is forced to vary the prediction and might output 
the following:

John gave Mary a puppy.

Alternatively, it will give the following output:

John gave puppy a puppy.

However, even though greedy sampling helps to add more variation to the 
generated text, this method does not guarantee that the output will always be 
realistic, especially when outputting longer sequences of text. Now we will see a 
better search technique that actually looks ahead several steps before predictions.
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Beam search
Beam search is a way of helping with the quality of the predictions produced by the 
LSTM. In this, the predictions are found by solving a search problem. The crucial 
idea of beam search is to produce the b outputs (that is, 1, , ,t t t by y y+ +… ) at once 
instead of a single output yt. Here, b is known as the length of the beam, and the b 
outputs produced is known as the beam. More technically, we pick the beam that 
has the highest joint probability ( )1, , , |t t t b tp y y y x+ +…  instead of picking the highest 
probable ( )|t tp y x . We are looking farther into the future before making a prediction, 
which usually leads to better results.

Let's understand beam search through the previous example:

John gave Mary a puppy.

Say, we are predicting word by word. And initially we have the following:

John ____ ____ _ _____.

Let's assume hypothetically that our LSTM produces the example sentence using 
beam search. Then the probabilities for each word might look like what we see in 
Figure 7.13. Let's assume beam length 2b= , and we will consider the 3n=  best 
candidates at each stage of the search. The search tree would look like the  
following figure:

Figure 7.13: The search space of beam search for a b=2 and n=3

We start with the word John and get the probabilities for all the words in the 
vocabulary. In our example, as 2n= , we pick the best three candidates for the 
next level of the tree: gave, Mary, and puppy. (Note that these might not be the 
candidates found by an actual LSTM and are only used as an example.) Then from 
these selected candidates, the next level of the tree is grown. And from that, we will 
pick the best three candidates, and the search will repeat until we reach a depth of b 
in the tree.
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The path that gives the highest joint probability (that is, ( ), | 0.09P gave Mary John = ) is 
highlighted with heavier arrows. Also, this is a better prediction mechanism, as it 
would return a higher probability, or a reward, for a phrase such as John gave Mary 
than John Mary John or John John gave.

Note that the outputs produced by both greedy sampling and beam search are 
identical in our example, which is a simple sentence containing five words. However, 
this is not the case when we scale this to output a small essay. Then the results 
produced by beam search will be more realistic and grammatically correct than the 
ones produced by greedy sampling.

Using word vectors
Another popular way of improving the performance of LSTMs is to use word vectors 
instead of using one-hot-encoded vectors as the input to the LSTM. Let's understand 
the value of this method through an example. Let's assume that we want to generate 
text starting from some random word. In our case, it would be the following:

John ____ ____ _ _____.

We have already trained our LSTM on the following sentences:

John gave Mary a puppy. Mary has sent Bob a kitten.

Let's also assume that we have the word vectors positioned as shown in Figure 7.15:

Figure 7.15: Assumed word vectors topology in two-dimensional space

The word embeddings of these words, in their numerical form, might look like the 
following:

kitten: [0.5, 0.3, 0.2]

puppy: [0.49, 0.31, 0.25]

gave: [0.1, 0.8, 0.9]
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It can be seen that ( ) ( ), ,distance kitten puppy distance kitten gave< . However, if we use one-hot 
encoding, they would be as follows:

kitten: [ 1, 0, 0, …]

puppy: [0, 1, 0, …]

gave: [0, 0, 1, …]

Then, ( ) ( ), ,distance kitten puppy distance kitten gave= . As we can already see, one-hot-
encoded vectors do not capture the proper relationship between words and see all 
the words are equally-distanced from each other. However, word vectors are capable 
of capturing such relationships and are more suitable as features into an LSTM.

Using word vectors, the LSTM will learn to exploit relationships between words 
better. For example, with word vectors, LSTM will learn the following:

John gave Mary a kitten.

This is quite close to the following:

John gave Mary a puppy.

Also, it is quite different from the following:

John gave Mary a gave.

However, this would not be the case if one-hot-encoded vectors are used.

Bidirectional LSTMs (BiLSTM)
Making LSTMs bidirectional is another way of improving the quality of the 
predictions of an LSTM. By this we mean training the LSTM with data read from the 
beginning to the end and the end to the beginning. So far during the training of the 
LSTM, we would create a dataset as follows:

Consider the following two sentences:

John gave Mary a _____. It barks very loudly.
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However, at this stage, there is data missing in the one of the sentences that we 
would want our LSTM to fill sensibly.

If we read from the beginning up to the missing word, it would be as follows:

John gave Mary a _____.

This does not provide enough information about the context of the missing word 
to fill the word properly. However, if we read in both directions, it would be the 
following:

John gave Mary a _____.

 _____. It barks very loudly.

If we created data with both these pieces, it is adequate to predict that the missing 
word should be something like dog or puppy. Therefore, certain problems can benefit 
significantly from reading data from both sides. Furthermore, this increases the 
amount of data available to the neural network and boosts its performance.

Another application of BiLSTMs is neural machine translation, where we translate a 
sentence of a source language to a target language. As there is no specific alignment 
between the translation of one language to another, knowing both the past and the 
future of the source language can greatly help to understand the context better, 
thus producing better translations. As an example, consider a translation task of 
translating Filipino to English. In Filipino, sentences are usually written having 
verb-object-subject in that order, whereas in English, it is subject-verb-object. In this 
translation task, it will be extremely helpful to read sentences forward and backward 
both to make a good translation.

BiLSTM is essentially two separate LSTM networks. One network learns data from 
the beginning to the end, and the other network learns data from the end to the 
beginning. In Figure 7.16, we illustrate the architecture of a BiLSTM network.
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Training occurs in two phases. First, the solid colored network is trained with data 
created by reading the text from the beginning to the end. This network represents 
the normal training procedure used for standard LSTMs. Secondly, the dashed 
network is trained with data generated by reading the text in the reversed direction. 
Then, at the inference phase, we use both the solid and dashed states' information 
(by concatenating both states and creating a vector) to predict the missing word:

Figure 7.16: A schematic diagram of a BiLSTM

Other variants of LSTMs
Though we mainly focus on the standard LSTM architecture, many variants have 
emerged that either simplify the complex architecture found in standard LSTMs 
or produce better performance or both. We will look at two variants that introduce 
structural modifications to the cell architecture of LSTM: peephole connections 
and GRUs.
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Peephole connections
Peephole connections allow gates not only to see the current input and the previous 
final hidden state but also the previous cell state. This increases the number of 
weights in the LSTM cell. Having such connections have shown to produce better 
results. The equations would look like these:

( )1 1t ix t ih t ic t ii W x W h W c bσ − −= + + +

( )1t cx t ch t cc tanh W x W h b−= + +�

( )1 1t fx t fh t fc t ff W x W h W c bσ − −= + + +

1t t t t tc f c i c−= + �

( )1t ox t oh t oc t oo W x W h W c bσ −= + + +

( )t t th o tanh c=

Let's briefly look at how this helps the LSTM perform better. So far, the gates see 
the current input and final hidden state, but not the cell state. However, in this 
configuration, if the output gate is close to zero, even when the cell state contains 
important information crucial for better performance, the final hidden state will be 
close to zero. Thus, the gates will not take the hidden state into consideration during 
calculation. Including the cell state directly in the gate calculation equation allows 
more control over the cell state, and it can perform well even in situations where the 
output gate is close to zero.
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We illustrate the architecture of the LSTM with peephole connections in Figure 7.17. 
We have greyed all the existing connections in a standard LSTM and the newly 
added connections are shown in black:

Figure 7.17: An LSTM with peephole connections (the peephole connections  
are shown in black while the other connections are greyed out)

Gated Recurrent Units
GRUs can be seen as a simplification of the standard LSTM architecture. As we 
have seen already, an LSTM has three different gates and two different states. This 
alone requires a large number of parameters even for a small state size. Therefore, 
scientists have investigated ways to reduce the number of parameters. GRUs are 
a result of one such endeavor.

There are several main differences in GRUs compared to LSTMs.

First, GRUs combine two states, the cell state and the final hidden state, into a single 
hidden state ht. Now, as a side effect of this simple modification of not having two 
different states, we can get rid of the output gate. Remember, the output gate was 
merely deciding how much of the cell state is read into the final hidden state. This 
operation greatly reduces the number of parameters in the cell.
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Next, GRUs introduce a reset gate which, when it's close to 1, takes the full previous 
state information in when computing the current state. Also, when the reset gate is 
close to 0, it ignores the previous state when computing the current state.

( )1rt rx t rh t rW x W h bσ −= + +

( )( )1t hx t hh t t hh tanh W x W rh b−= + +�

Then, GRUs combine the input and forget gates into one update gate. The standard 
LSTM has two gates known as the input and forget gates. The input gate decides 
how much of the current input is read into the cell state, and the forget gate 
determines how much of the previous cell state is read into the current cell state. 
Mathematically, this can be shown as follows:

( )1t ix t ih t ii W x W h bσ −= + +

( )1t fx t fh t ff W x W h bσ −= + +

GRUs combine these two operations into a single gate known as the update gate. 
If the update gate is 0, then the full state information of the previous cell state is 
pushed into the current cell state, where none of the current input is read into the 
state. If the update gate is 1, then the all of the current input is read into the current 
cell state and none of the previous cell state is propagated into the current cell state. 
In other words, the input gate it becomes inverse of the forget gate, that is, 1 tf− :

( )1t zx t zh t zz W x W h bσ −= + +

( ) 11t t t t th z h z h−= + −�

Now let's bring all the equations into one place. The GRU computations would look 
like this:

( )1rt rx t rh t rW x W h bσ −= + +

( )( )1t hx t hh t t hh tanh W x W rh b−= + +�

( )1t zx t zh t zz W x W h bσ −= + +

( ) 11t t t t th z h z h−= + −�
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This is much more compact than LSTMs. In Figure 7.18, we can visualize a GRU cell 
(left) and an LSTM cell (right) side by side:

Figure 7.18: A side-by-side comparison of a GRU (left) and the standard LSTM (right)

Summary
In this chapter, you learned about LSTM networks. First, we discussed what 
an LSTM is and its high-level architecture. We also delved into the detailed 
computations that take place in an LSTM and discussed the computations through 
an example.

We saw that LSTM is composed mainly of five different things:

•	 Cell state: The internal cell state of an LSTM cell
•	 Hidden state: The external hidden state used to calculate predictions
•	 Input gate: This determines how much of the current input is read into the 

cell state
•	 Forget gate: This determines how much of the previous cell state is sent into 

the current cell state
•	 Output gate: This determines how much of the cell state is output into the 

hidden state

Having such a complex structure allows LSTMs to capture both short-term and long-
term dependencies quite well.
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We compared LSTMs to vanilla RNNs and saw that LSTMs are actually capable 
of learning long-term dependencies as an inherent part of their structure, whereas 
RNNs can fail to learn long-term dependencies. Afterwards, we discussed how 
LSTMs solve the vanishing gradient with its complex structure.

Then we discussed several extensions that improve the performance of LSTMs. First, 
a very simple technique we called greedy sampling, in which, instead of always 
outputting the best candidate, we randomly sample a prediction from a set of best 
candidates. We saw that this improves the diversity of the generated text. Next, we 
looked at a more complex search technique called beam search. With this, instead 
of making a prediction for a single time step into the future, we predict several time 
steps into the future and pick the candidates that produce the best joint probability. 
Another improvement involved seeing how word vectors can help improve the 
quality of the predictions of an LSTM. Using word vectors, LSTMs can learn more 
effectively to replace semantically similar words during prediction (for example, 
instead of outputting dog, LSTM might output cat), leading to more realism and 
correctness of generated text. The final extension we considered was BiLSTMs or 
bidirectional LSTMs. A popular application of BiLSTMs is filling missing words in a 
phrase. BiLSTMs read the text in both directions, from the beginning to the end and 
the end to the beginning. This gives more context as we are looking at both the past 
and future before predicting.

Finally, we discussed two variants of vanilla LSTMs: peephole connections and 
GRUs. Vanillan LSTMs, when calculating the gates, only looks at the current input 
and the hidden state. With peephole connections, we make the gate computations 
dependent on all: the current input, hidden, and cell states.

GRUs are a much more elegant variant of vanilla LSTMs that simplifies LSTMs 
without compromising on performance. GRUs have only two gates and a single 
state, whereas vanilla LSTMs have three gates and two states.

In the next chapter, we will see all these different architectures in action  
with implementations of each of them and see how well they perform in text 
generation tasks.
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Applications of LSTM – 
Generating Text

Now that we have a good understanding of the underlying mechanisms of LSTMs, 
such as how they solve the problem of the vanishing gradient and update rules, 
we can look at how to use them in NLP tasks. LSTMs are heavily employed for 
tasks such as text generation and image caption generation. For example, language 
modeling is very useful for text summarization tasks or generating captivating 
textual advertisements for products, where image caption generation or image 
annotation is very useful for image retrieval, and where a user might need to retrieve 
images representing some concept (for example, a cat).

The application that we will cover in this chapter is the use of an LSTM to generate 
new text. For this task, we will download translations of some folk stories by the 
Brothers Grimm. We will use these stories to train an LSTM and ask it at the end to 
output a fresh new story. We will process the text by breaking it into character-level 
bigrams (n-grams where n=2) and make a vocabulary out of the unique bigrams. 
We will also explore ways to implement previously described techniques such as 
greedy sampling or beam search for predictions. Afterwards, we will see how we 
can implement time-series models other than standard LSTMs, such as LSTMs with 
peepholes and GRUs.

Next, we will see how we can learn to generate text with better input representations 
beyond character level bigrams, such as individual words. Note that it is very 
inefficient to have one-hot-encoded word features, as the vocabulary can quickly 
grow with words, compared to character level bigrams. Therefore, one good 
technique to deal with this is to first learn the word embeddings (or use pretrained 
embeddings) and use these as inputs to the LSTM. Using word embeddings allows 
us to avoid the curse of dimensionality. In an interesting real-world problem, the size 
of the vocabulary can be between 10,000 and 1,000,000. However, word embeddings 
have a fixed dimensionality despite the size of the vocabulary.
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Our data
First, we will discuss the data we will use for text generation and various 
preprocessing steps employed to clean data.

About the dataset
First, we will understand what the dataset looks like so that when we see the 
generated text, we can assess whether it makes sense, given the training data. 
We will download the first 100 books from the website https://www.cs.cmu.
edu/~spok/grimmtmp/. These are translations of a set of books (from German 
to English) by the Brothers Grimm. This is the same as the text used in Chapter 6, 
Recurrent Neural Networks, for demonstrating the performance of RNNs.

Initially, we will download the first 100 books from the website with an automated 
script, as follows:

url = 'https://www.cs.cmu.edu/~spok/grimmtmp/'

# Create a directory if needed
dir_name = 'stories'
if not os.path.exists(dir_name):
    os.mkdir(dir_name)
    
def maybe_download(filename):
  """Download a file if not present"""
  print('Downloading file: ', dir_name+ os.sep+filename)
    
  if not os.path.exists(dir_name+os.sep+filename):
    filename, _ = urlretrieve(url + filename,
                              dir_name+os.sep+filename)
  else:
    print('File ',filename, ' already exists.')
  
  return filename

num_files = 100
filenames = [format(i, '03d')+'.txt' for i in range(1,101)]

for fn in filenames:
    maybe_download(fn)

We will now show example text snippets extracted from two randomly picked 
stories.

https://www.cs.cmu.edu/~spok/grimmtmp/
https://www.cs.cmu.edu/~spok/grimmtmp/
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The following is the first snippet:

Then she said, my dearest benjamin, your father has had these coffins made for you 
and for your eleven brothers, for if I bring a little girl into the world, you are all 
to be killed and buried in them.  And as she wept while she was saying this, the 
son comforted her and said, weep not, dear mother, we will save ourselves, and 
go hence.  But she said, go forth into the forest with your eleven brothers, and let 
one sit constantly on the highest tree which can be found, and keep watch, looking 
towards the tower here in the castle.  If I give birth to a little son, I will put up a 
white flag, and then you may venture to come back.  But if I bear a daughter, I will 
hoist a red flag, and then fly hence as quickly as you are able, and may the good God 
protect you.

The second text snippet is as follows:

Red-cap did not know what a wicked creature he was, and was not at all afraid of 
him.

"Good-day, little red-cap," said he.

"Thank you kindly, wolf."

"Whither away so early, little red-cap?"

"To my grandmother's."

"What have you got in your apron?"

"Cake and wine.  Yesterday was baking-day, so poor sick grandmother is to have 
something good, to make her stronger."

"Where does your grandmother live, little red-cap?"

"A good quarter of a league farther on in the wood.  Her house stands under the 
three large oak-trees, the nut-trees are just below.  You surely must know it," 
replied little red-cap.

The wolf thought to himself, what a tender young creature.  What a nice plump 
mouthful, she will be better to eat than the old woman.
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Preprocessing data
In terms of preprocessing, we will initially make all the text lowercase and break the 
text into character n-grams, where n=2. Consider the following sentence:

The king was hunting in the forest.

This would break down to a sequence of n-grams as follows:

['th,' 'e ,' 'ki,' 'ng,' ' w,' 'as,' …]

We will use character level bigrams because it greatly reduces the size of the 
vocabulary compared with using individual words. Moreover, we will be replacing 
all the bigrams that appear fewer than 10 times in the corpus with a special token 
(that is, UNK), representing that bigram as unknown. This helps us to reduce the size 
of the vocabulary even further.

Implementing an LSTM
Here we will discuss the details of the LSTM implementation. Though there are 
sublibraries in TensorFlow that have already implemented ready-to-go LSTMs, we 
will implement one from scratch. This will be very valuable, as in the real world 
there might be situations where you cannot use these off-the-shelf components 
directly. This code is available in the lstm_for_text_generation.ipynb exercise 
located in the ch8 folder of the exercises. However, we will also include an exercise 
where we will show how to use the existing TensorFlow RNN API that will be 
available in lstm_word2vec_rnn_api.ipynb, located in the same folder. Here we 
will discuss the code available in the lstm_for_text_generation.ipynb file.

First, we will discuss the hyperparameters and their effects that are used for the 
LSTM. Thereafter, we will discuss the parameters (weights and biases) required to 
implement the LSTM. We will then discuss how these parameters are used to write 
the operations taking place within the LSTM. This will be followed by understanding 
how we will sequentially feed data to the LSTM. Next, we will discuss how we can 
implement the optimization of the parameters using gradient clipping. Finally, we 
will investigate how we can use the learned model to output predictions, which are 
essentially bigrams that will eventually add up to a meaningful story.

Defining hyperparameters
First, we will define some hyperparameters required for the LSTM:

# Number of neurons in the hidden state variables
num_nodes = 128
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# Number of data points in a batch we process
batch_size = 64

# Number of time steps we unroll for during optimization
num_unrollings = 50

dropout = 0.2 # We use dropout

The following list describes each of the hyperparameters:

•	 num_nodes: This denotes the number of neurons in the cell memory state. 
When data is abundant, increasing the complexity of the cell memory will 
give you a better performance; however, at the same time, it slows down the 
computations.

•	 batch_size: This is the amount of data processed in a single step. Increasing 
the size of the batch gives a better performance, but poses higher memory 
requirements.

•	 num_unrollings: This is the number of time steps used in truncated-BPTT. 
The higher the num_unrollings steps, the better the performance, but it will 
increase both the memory requirement and the computational time.

•	 dropout: Finally, we will employ dropout (that is, a regularization 
technique) to reduce overfitting of the model and produce better results; 
dropout randomly drops information from inputs/outputs/state variables 
before passing them to their successive operations. This creates redundant 
features during learning, leading to better performance.

Defining parameters
Now we will define TensorFlow variables for the actual parameters of the LSTM.

First, we will define the input gate parameters:

•	 ix: These are weights connecting the input to the input gate
•	 im: These are weights connecting the hidden state to the input gate
•	 ib: This is the bias

Here we will define the parameters:

# Input gate (it) - How much memory to write to cell state
# Connects the current input to the input gate
ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], 
stddev=0.02))
# Connects the previous hidden state to the input gate
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
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stddev=0.02))
# Bias of the input gate
ib = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

Similarly, we will define such weights for the forget gate, candidate value (used for 
memory cell computations), and output gate.

The forget gate is defined as follows:

# Forget gate (ft) - How much memory to discard from cell state
# Connects the current input to the forget gate
fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], 
stddev=0.02))
# Connects the previous hidden state to the forget gate
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.02))
# Bias of the forget gate
fb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

The candidate value (used to compute the cell state) is defined as follows:

# Candidate value (c~
t
) - Used to compute the current cell state

# Connects the current input to the candidate
cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], 
stddev=0.02))
# Connects the previous hidden state to the candidate
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.02))
# Bias of the candidate
cb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))

The output gate is defined as follows:

# Output gate - How much memory to output from the cell state
# Connects the current input to the output gate
ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], 
stddev=0.02))
# Connects the previous hidden state to the output gate
om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.02))
# Bias of the output gate
ob = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))
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Next, we will define variables for the state and output. These are the TensorFlow 
variables representing the internal cell state and the external hidden state of the 
LSTM cell. When defining the LSTM computational operation, we define these to 
be updated with the latest cell state and hidden state values we compute, using the 
tf.control_dependencies(...) function.

# Variables saving state across unrollings.
# Hidden state
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), 
trainable=False, name='train_hidden')
# Cell state
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), 
trainable=False, name='train_cell')
# Same variables for validation phase
saved_valid_output = tf.Variable(tf.zeros([1, num_
nodes]),trainable=False, name='valid_hidden')
saved_valid_state = tf.Variable(tf.zeros([1, num_
nodes]),trainable=False, name='valid_cell')

Finally, we will define a softmax layer to get the actual predictions out:

# Softmax Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], 
stddev=0.02))
b = tf.Variable(tf.random_uniform([vocabulary_size],-0.02,0.02))

Note that we're using the normal distribution with zero mean and a 
small standard deviation. This is fine as our model is a simple single 
LSTM cell. However, when the network gets deeper (that is, multiple 
LSTM cells stacked on top of each other), more careful initialization 
techniques are required. One such initialization technique is known 
as Xavier initialization, proposed by Glorot and Bengio in their paper 
Understanding the difficulty of training deep feedforward neural networks, 
Proceedings of the 13th International Conference on Artificial Intelligence and 
Statistics, 2010. This is available as a variable initializer in TensorFlow, 
as shown here: https://www.tensorflow.org/api_docs/
python/tf/contrib/layers/xavier_initializer.

Defining an LSTM cell and its operations
With the weights and the bias defined, we can now define the operations within an 
LSTM cell. These operations include the following:

•	 Calculating the outputs produced by the input and forget gates
•	 Calculating the internal cell state
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•	 Calculating the output produced by the output gate
•	 Calculating the external hidden state

The following is the implementation of our LSTM cell:

def lstm_cell(i, o, state):

    input_gate = tf.sigmoid(tf.matmul(i, ix) +
                            tf.matmul(o, im) + ib)
    forget_gate = tf.sigmoid(tf.matmul(i, fx) +
                             tf.matmul(o, fm) + fb)
    update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
    state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, ox) +
                             tf.matmul(o, om) + ob)
    return output_gate * tf.tanh(state), state

Defining inputs and labels
Now we will define training inputs (unrolled) and labels. The training inputs is a list 
with the num_unrolling batches of data (sequential), where each batch of data is of 
the [batch_size, vocabulary_size] size:

train_inputs, train_labels = [],[]

for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.float32,
                               shape=[batch_size,vocabulary_size],
                               name='train_inputs_%d'%ui))
    train_labels.append(tf.placeholder(tf.float32,
                               shape=[batch_size,vocabulary_size],
                               name = 'train_labels_%d'%ui))

We also define placeholders for validation inputs and outputs, which will be used to 
compute the validation perplexity. Note that we do not use unrolling for validation-
related computations.

# Validation data placeholders
valid_inputs = tf.placeholder(tf.float32, shape=[1,vocabulary_size],
               name='valid_inputs')
valid_labels = tf.placeholder(tf.float32, shape=[1,vocabulary_size],
               name = 'valid_labels')
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Defining sequential calculations required to 
process sequential data
Here we will calculate the outputs produced by a single unrolling of the training 
inputs in a recursive manner. We will also use dropout (refer to Dropout: A Simple 
Way to Prevent Neural Networks from Overfitting, Srivastava, Nitish, and others, Journal 
of Machine Learning Research 15 (2014): 1929-1958), as this gives a slightly better 
performance. Finally we compute the logit values for all the hidden output values 
computed for the training data:

# Keeps the calculated state outputs in all the unrollings
# Used to calculate loss
outputs = list()

# These two python variables are iteratively updated
# at each step of unrolling
output = saved_output
state = saved_state

# Compute the hidden state (output) and cell state (state)
# recursively for all the steps in unrolling
for i in train_inputs:
    output, state = lstm_cell(i, output, state)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    # Append each computed output value
    outputs.append(output)

# calculate the score values
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Next, before calculating the loss, we have to make sure that the output and the 
external hidden state are updated to the most current value we calculated earlier. 
This is achieved by adding a tf.control_dependencies condition and keeping 
the logit and loss calculation within the condition:

with tf.control_dependencies([saved_output.assign(output),
                            saved_state.assign(state)]):
    # Classifier.
    loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits_v2(
        logits=logits, labels=tf.concat(axis=0,
                                        values=train_labels)))
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We also define the forward propagation logic for validation data. Note that 
we do not use dropout during validation, but only during training:

# Validation phase related inference logic

# Compute the LSTM cell output for validation data
valid_output, valid_state = lstm_cell(
    valid_inputs, saved_valid_output, saved_valid_state)

# Compute the logits
valid_logits = tf.nn.xw_plus_b(valid_output, w, b)

Defining the optimizer
Here we will define the optimization process. We will use a state-of-the-art optimizer 
known as Adam, which is one of the best stochastic gradient-based optimizers to 
date. Here in the code, gstep is a variable that is used to decay the learning rate 
over time. We will discuss the details in the next section. Furthermore, we will use 
gradient clipping to avoid the exploding gradient:

# Decays learning rate everytime the gstep increases
tf_learning_rate = tf.train.exponential_decay(0.001,gstep,
                   decay_steps=1, decay_rate=0.5)
# Adam Optimizer. And gradient clipping.
optimizer = tf.train.AdamOptimizer(tf_learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
    zip(gradients, v))

Decaying learning rate over time
As mentioned earlier, I use a decaying learning rate instead of a constant learning 
rate. Decaying the learning rate over time is a common technique used in deep 
learning for achieving better performance and reducing overfitting. The key 
idea here is to step-down the learning rate (for example, by a factor of 0.5) if the 
validation perplexity does not decrease for a predefined number of epochs. Let's see 
how exactly this is implemented, in more detail:
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First we define gstep and an operation to increment gstep, called inc_gstep as 
follows:

# learning rate decay
gstep = tf.Variable(0,trainable=False,name='global_step')
# Running this operation will cause the value of gstep
# to increase, while in turn reducing the learning rate
inc_gstep = tf.assign(gstep, gstep+1)

With this defined, we can write some simple logic to call the inc_gstep operation 
whenever validation loss does not decrease, as follows:

# Learning rate decay related
# If valid perplexity does not decrease
# continuously for this many epochs
# decrease the learning rate
decay_threshold = 5
# Keep counting perplexity increases
decay_count = 0
min_perplexity = 1e10

# Learning rate decay logic
def decay_learning_rate(session, v_perplexity):
  global decay_threshold, decay_count, min_perplexity  
  # Decay learning rate
  if v_perplexity < min_perplexity:
    decay_count = 0
    min_perplexity= v_perplexity
  else:
    decay_count += 1

  if decay_count >= decay_threshold:
    print('\t Reducing learning rate')
    decay_count = 0
    session.run(inc_gstep)

Here we update min_perplexity whenever we experience a new minimum 
validation perplexity. Also, v_perplexity is the current validation perplexity.
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Making predictions
Now we can make predictions, simply by applying a softmax activation to the logits 
we calculated previously. We also define prediction operation for validation logits 
as well:

train_prediction = tf.nn.softmax(logits)
# Make sure that the state variables are updated
# before moving on to the next iteration of generation
with tf.control_dependencies([saved_valid_output.assign(valid_output),
                            saved_valid_state.assign(valid_state)]):
    valid_prediction = tf.nn.softmax(valid_logits)

Calculating perplexity (loss)
We defined what perplexity is in Chapter 7, Long Short-Term Memory Networks. To 
review, perplexity is a measure of how surprised the LSTM is to see the next n-gram, 
given the current n-gram. Therefore, a higher perplexity means poor performance, 
whereas a lower perplexity means a better performance:

train_perplexity_without_exp = tf.reduce_sum(
    tf.concat(train_labels,0)*-tf.log(tf.concat(
        train_prediction,0)+1e-10))/(num_unrollings*batch_size)
# Compute validation perplexity
valid_perplexity_without_exp = tf.reduce_sum(valid_labels*-tf.
log(valid_prediction+1e-10))

Resetting states
We employ state  resetting, as we are processing multiple documents. So, at the 
beginning of processing a new document, we reset the hidden state back to zero. 
However, it is not very clear whether resetting the state helps or not in practice. On 
one hand, it sounds intuitive to reset the memory of the LSTM cell at the beginning 
of each document to zero, when starting to read a new story. On the other hand, this 
creates a bias in state variables toward zero. We encourage you to try running the 
algorithm both with and without state resetting and see which method performs 
well.

# Reset train state
reset_train_state = tf.group(tf.assign(saved_state, 
                             tf.zeros([batch_size, num_nodes])),
                             tf.assign(saved_output, tf.zeros(
                             [batch_size, num_nodes])))
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# Reset valid state
reset_valid_state = tf.group(tf.assign(saved_valid_state,
                             tf.zeros([1, num_nodes])),
                             tf.assign(saved_valid_output,
                             tf.zeros([1, num_nodes])))

Greedy sampling to break unimodality
This is quite a simple technique where we can stochastically sample the next 
prediction out of the n best candidates found by the LSTM. Furthermore, we will 
give the probability of picking one candidate to be proportional to the likelihood of 
that candidate being the next bigram:

def sample(distribution):

  best_inds = np.argsort(distribution)[-3:]
  best_probs = distribution[best_inds]/
  np.sum(distribution[best_inds])
  best_idx = np.random.choice(best_inds,p=best_probs)
  return best_idx

Generating new text
Finally, we will define the placeholders, variables, and operations required for 
generating new text. These are defined similarly to what we did for the training 
data. First, we will define an input placeholder and variables for state and output. 
Next, we will define state resetting operations. Finally, we will define the LSTM 
cell calculations and predictions for the new text to be generated:

# Text generation: batch 1, no unrolling.
test_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size], 
name = 'test_input')

# Same variables for testing phase
saved_test_output = tf.Variable(tf.zeros([1,
                                num_nodes]),
                                trainable=False, name='test_hidden')
saved_test_state = tf.Variable(tf.zeros([1,
                               num_nodes]),
                               trainable=False, name='test_cell')

# Compute the LSTM cell output for testing data
test_output, test_state = lstm_cell(
test_input, saved_test_output, saved_test_state)
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# Make sure that the state variables are updated
# before moving on to the next iteration of generation
with tf.control_dependencies([saved_test_output.assign(test_output),
                            saved_test_state.assign(test_state)]):
    test_prediction = tf.nn.softmax(tf.nn.xw_plus_b(test_output, 
                                    w, b))

# Reset test state
reset_test_state = tf.group(
    saved_test_output.assign(tf.random_normal([1,
                             num_nodes],stddev=0.05)),
    saved_test_state.assign(tf.random_normal([1,
                            num_nodes],stddev=0.05)))

Example generated text
Let's take a look at some of the data generated by the LSTM after 50 steps of learning:

they saw that the birds were at her bread, and threw behind him a comb 
which
made a great ridge with a thousand times thousands of spikes.  that 
was a
collier.  
the nixie was at church, and thousands of spikes, they were flowers, 
however, and had hewn through the glass, the children had formed a
hill of mirrors, and was so slippery that it was impossible for the
nixie to cross it.  then she thought, i will go home quickly and
fetch my axe, and cut the hill of glass in half.  long before she
returned, however, and had hewn through the glass, the children saw 
her from afar,
and he sat down close to it,
and was so slippery that it was impossible for the
nixie to cross it.
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As you can see, the text looks much better than the text we saw being generated 
from RNNs. There actually exists a story about a water-nixie in our training corpus. 
However, our LSTM does not merely output that text, but it adds more color to that 
story by introducing new things, such as talking about a church and flowers, which 
are not found in the original text. Next we will investigate how the text generated from 
standard LSTMs compares to other models, such as LSTMs with peepholes and GRUs.

Comparing LSTMs to LSTMs with 
peephole connections and GRUs
Now we will compare LSTMs to LSTMs with peepholes and GRUs in the text 
generation task. This will help us to compare how well different models (LSTMs 
with peepholes and GRUs) perform in terms of perplexity as well as the quality 
of the generated text. This is available as an exercise in lstm_extensions.ipynb 
located in the ch8 folder.

Standard LSTM
First, we will reiterate the components of a standard LSTM. We will not repeat the 
code for standard LSTMs as it is identical to what we discussed previously. Finally, 
we will see some text generated by an LSTM.

Review
Here we will revisit what a standard LSTM looks like. As we already mentioned, 
an LSTM consists of the following:

•	 Input gate: This decides how much of the current input is written to the cell 
state

•	 Forget gate: This decides how much of the previous cell state is written to 
the current cell state

•	 Output gate: This decides how much information from the cell state is 
exposed to output into the external hidden state
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In Figure 8.1, we will illustrate how each of these gates, input, cell state, and the 
external hidden states are connected:

Figure 8.1: An LSTM cell

Example generated text
Here we will show the text produced by a standard LSTM after a single step of 
training and 25 steps of training on our dataset.

Text produced at step 1:

emy that then the to they the the to and and and then there the to 
the to the withe there the the to, and ther, and ther tthe the the the 
withe the the the the wid the th to e the there to, and the the the 
the the wid the the the to, the and to the was and and was the when 
hind the whey the the to and was the whe wous thout hit the to hhe was 
they his up the was was the wou was and and wout the the ous to hhe 
the was and was they hind and and then the the the wit to the wther 
thae wid the and the the wit the ther, the there the to the wthe wit 
the the the the wit up the they og a and the whey the the ous th the 
wthe the ars to and the whey it a and whe was they the ound the was 
whe was and and to ther then the and ther the wthe art the the and and 
the the the to and when the the wie to the wthe wit up the whe wou 
wout hit hit the the the to the whe was aou was to t the out and the 
and hit the the the with then the wie the to then the the to, the to a 
t to the the wit up he the wit there
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Text produced at step 25:

there, said the father for a while, and her trouble she was to carry 
the mountain.  then they were all the child, and they were once and 
only sighed, but they said, i am as
old now as the way and drew the child, and he began and wife looked at 
last and said, i have the child, fath-turn, and
hencefore they were to himself, and then they trembled, hand all three 
days with him.  when the king of the golden changeling, and his wife 
looked at last and only one lord, and then he was laughing, wished 
himself, and then he said
nothing and only sighed.  then they had said, all the changeling
laugh, and he said, who was still done, the bridegroom, and he went 
away to him, but he did not trouble to the changeling away, and then 
they were over this, he was all to the wife, and she said,
has the wedding did gretel give her them, and said, hans in a place.
in her trouble shell into the father.  i am you.
the king had said, how he was to sweep.  then the spot on hand but the 
could give you doing there,

We can see that at step 25, there is quite a dramatic increase in the quality of the text 
compared to step 1. Furthermore, this text looks much better than the text we saw 
in the Chapter 6, Recurrent Neural Networks examples, when 100 stories were used to 
train the model.

Gated Recurrent Units (GRUs)
Here we will first briefly delineate what a GRU is composed of, followed by the code 
for implementing a GRU cell. Finally, we look at some code generated by a GRU cell.

Review
In order to review, let's briefly go through what a GRU is. A GRU is an elegant 
simplification of the operations of an LSTM. A GRU introduces two different 
modifications to an LSTM (see Figure 8.2):

•	 It connects the internal cell state and the external hidden state into a  
single state
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•	 Then it combines the input gate and the forget gate into one update gate

Figure 8.2: A GRU cell

The code
Here we will define a GRU cell:

def gru_cell(i, o):
    """Create a GRU cell."""
    reset_gate = tf.sigmoid(tf.matmul(i, rx) + tf.matmul(o, rh)
                            + rb)
    h_tilde = tf.tanh(tf.matmul(i,hx) + tf.matmul(
        reset_gate * o, hh) + hb)
    z = tf.sigmoid(tf.matmul(i,zx) + tf.matmul(o, zh) + zb)
    h = (1-z)*o + z*h_tilde
    
    return h

Then we will call this method as we did earlier in our example:

for i in train_inputs:
    output = gru_cell(i, output)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    outputs.append(output)
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Example generated text
Here we will show text produced by a GRU after a single step of training and 25 
steps of training on our dataset.

Text produced at step 1:

     hing ther that ther her to the was shen andmother to to her the 
cake, and the caked the woked that the wer hou shen her the the the 
that her her, and to ther to ther her that the wer the wer ther the 
wong are whe was the was so the the caked her the wong an the woked 
the wolf the soought and was the was he grandmred the wolf sas shen 
that ther to hout her the the cap the wolf so the wong the soor ind 
the wolf the when that, her the the wolf to and the wolf sher the the 
cap the cap.  the wolf so ther the was her her, the the the wong and 
whe her the was her he grout the ther, and the cap., and the caked the 
the ther the were cap and the would the the wolf the was the whe wher 
cad-the cake the was her her, he when the ther, the wolf so the that, 
and the wolf so and her the the the cap.  the the wong to the wolf, 
andmother the cap. the so to ther ther, the woked he was the was the 
when the caked her cad-ing and the cake, and

Text produced at step 25:

you will be sack, and the king's son, the king continued, and he was 
about to them all, and that she was strange carry them to somether, 
and who was there, but when the shole before the king, and the king's 
daughter was into such into the six can dish of this wine before the 
said, the king continued, and said to the king, when he was into the 
castle to so the king.
then the king was stranged the king.
then she said, and said that he saw what the sack, but the king, and 
the king content up the king.
the king had the other, and said, it is not down to the king was in 
the blower to be took them.  then the king sack, the king, and the 
other, there, and
said to the other, there, and the king, who had been away, the six 
content the six conved the king's strong one, they were not down the 
king.
then she said to her, and saw the six content until there, and the 
king content until the six convered the

We can see that in terms of the quality of text, GRUs do not demonstrate a significant 
quality improvement compared to standard LSTMs. However, the output of GRUs 
seems to have more repetitions (for example, the word king) in text more frequently 
than the LSTMs. This is possibly due to compromising of long-term memory caused 
by the simplification of the model (that is, having only a single state, compared to the 
two states in a standard LSTM).
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LSTMs with peepholes
Here we will discuss LSTMs with peepholes and how they are different from a 
standard LSTM. Next we will discuss their implementation, followed by the text 
generated by the LSTM with peepholes model.

Review
Now, let's briefly look at LSTMs with peepholes. Peepholes are essentially a way for 
the gates (input, forget, and output) to directly see the cell state, instead of waiting 
for the external hidden state (see Figure 8.3):

Figure 8.3: An LSTM with peepholes

The code
Note that we're keeping the peep connections diagonal. We found that nondiagonal 
peephole connections (proposed by Gers and Schmidhuber in their paper Recurrent 
Nets that Time and Count, Neural Networks, 2000) hurt performance more than they 
help, for this language modeling task. Therefore, we adopted a different variation 
that uses diagonal peephole connections, as used by Sak, Senior, and Beaufays in 
their paper Long Short-Term Memory Recurrent Neural Network Architectures for Large 
Scale Acoustic Modeling, Proceedings of the Annual Conference of the International Speech 
Communication Association, INTERSPEECH, 2014: 338-342.
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The following is the code implementation:

def lstm_with_peephole_cell(i, o, state):
    
    input_gate = tf.sigmoid(tf.matmul(i, ix) + state*ic +
                            tf.matmul(o, im) + ib)
    forget_gate = tf.sigmoid(tf.matmul(i, fx) + state*fc +
                             tf.matmul(o, fm) + fb)
    update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
    state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, ox) + state*oc +
                             tf.matmul(o, om) + ob)

    return output_gate * tf.tanh(state), state

Then we will call this method for each batch of inputs for spanning across all time 
steps (that is, the num_unrollings time steps), as in this code:

for i in train_inputs:
    output, state = lstm_with_peephole_cell(i, output, state)
    output = tf.nn.dropout(output,keep_prob=1.0-dropout)
    outputs.append(output)

Example generated text
Here we show text produced by a standard LSTM after a single step of training and 
25 steps of training on our dataset.

The following is the text produced at step 1:

our oned he the the hed the the the he here hed he he e e and her and 
the ther her the then hed and her and her her the hed her and the the 
he he ther the hhe the he ther the whed hed her he hthe and the the 
the ther the to e and the the the ane and and her and the hed ant and 
the and ane hed and ther and and he e the th the hhe ther the the and 
the the the the the the hed and ther hhe wher the her he he and he 
hthe the the the he the then the he he e and the the the and and the 
the the ther to he hhe wher ant the her and the hed the he he the and 
ther and he the and and the ant he he e the and ther he e and ther 
here th the whed
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The following is the text produced at step 25:

will, it was there, and it was me, and i trod on the stress and there 
is a stone and the went and said, klink, and that the princess and 
they said, i will not stare
it, the wedding and that the was of little the sun came in the sun 
came out, and then the wolf is took a little coat and i were at little 
hand and beaning therein and said, klink, and broke out of the shoes 
he had the wolf of the were to patches a little put into the were, and 
they said, she was to pay the bear said, "ah, that they come to the 
well and there is a stone and the wolf were of the light, and that the 
two old were of glass there is a little that his
well as well and wherever a stone
and they were the went to the well, and the went the sun came in the 
seater hand, and they said, klink, and broke in his sead, and i were 
my good one
the wedding and said, that the two of slapped to said to said, "ah, 
that his store once the worl's said, klink, but the went out of a 
patched on his store, and the wedding and said, that

The text produced by LSTMs with peepholes appears to be grammatically poor 
compared to text produced by LSTMs or GRUs. Let's now see how each method 
compares quantitatively in terms of the perplexity measure.

Training and validation perplexities over time
In Figure 8.4, we will plot the behavior of perplexity over time for LSTMs, LSTMs 
with peepholes, and GRUs. First, we can see that not having dropout gives a 
significant reduction in training perplexity. However, we should not conclude that 
dropout adversely affects performance, as this appealing performance is due to 
the overfitting training data. This is evident from the validation perplexity graph. 
Although LSTM's train perplexity appears to be competitive with the models that 
use dropout, the validation perplexity is much higher than these models. This shows 
us that dropout in fact helps us in the language generation task. 

Also, from all the methods that use dropout, we can see that LSTM and GRUs deliver 
the best performance. One surprising observation is that LSTMs with peepholes 
produce the worst training perplexity and a slightly worse validation perplexity. 
This means that peephole connections do not add any value to solving our problem, 
but instead make the optimization difficult by introducing more parameters to 
the model. Following this analysis, we will use LSTMs from here on. We leave 
experimenting with GRUs as an exercise for the readers:
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Figure 8.4: Perplexity change for training data over time (LSTMs, LSTM (peephole), and GRUs)

The current literature suggests that among LSTMs and 
GRUs, there is no clear winner and a lot depends on 
the task (refer to the paper Empirical Evaluation of Gated 
Recurrent Neural Networks on Sequence Modeling, Chung and 
others, NIPS 2014 Workshop on Deep Learning, December 2014).

Improving LSTMs – beam search
As we saw earlier, the generated text can be improved. Now let's see if beam 
search, which we discussed in Chapter 7, Long Short-Term Memory Networks, might 
help to improve the performance. In beam search, we will look ahead a number of 
steps (called a beam) and get the beam (that is, a sequence of bigrams) that has the 
highest joint probability calculated separately for each beam. The joint probability 
is calculated by multiplying the prediction probabilities of each predicted bigram 
in a beam. Note that this is a greedy search, meaning that we will calculate the best 
candidates at each depth of the tree iteratively, as the tree grows. It should be noted 
that this search will not result in the globally best beam.
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Implementing beam search
To implement beam search, we only have to change the text generation technique. 
Training and validation operations stay the same. However the code will be more 
complicated than the text generation operation flow we saw earlier. This code is 
available to the end of the lstm_for_text_generation.ipynb exercise file in the 
ch8 folder.

First, we will define the beam length (that is, the number of steps we look into the 
future) and beam_neighbors (that is, the number of candidates we compare at each 
time step):

beam_length = 5 
beam_neighbors = 5

We will define the beam_neighbor number of placeholders to maintain the best 
candidates at each time step:

sample_beam_inputs = [tf.placeholder(tf.float32, shape=[1, vocabulary_
size]) for _ in range(beam_neighbors)]

Next, we will define two placeholders to hold the best greedily found global beam 
index and the locally maintained best candidate beam indices, which we will use to 
continue our predictions for the next stage of predictions:

best_beam_index = tf.placeholder(shape=None, dtype=tf.int32)
best_neighbor_beam_indices = tf.placeholder(shape=[beam_neighbors], 
dtype=tf.int32)

Then we will define state and output variables for each beam candidate as we did for 
a single prediction earlier:

saved_sample_beam_output = [tf.Variable(tf.zeros([1, num_nodes])) for 
_ in range(beam_neighbors)]
saved_sample_beam_state = [tf.Variable(tf.zeros([1, num_nodes])) for _ 
in range(beam_neighbors)]

We will also define state reset operations:

reset_sample_beam_state = tf.group(
    *[saved_sample_beam_output[vi].assign(tf.zeros([1, num_nodes])) 
for vi in range(beam_neighbors)],
    *[saved_sample_beam_state[vi].assign(tf.zeros([1, num_nodes])) for 
vi in range(beam_neighbors)]
)
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Also, we will need cell output and prediction calculations for each beam:

# We calculate lstm_cell state and output for each beam
sample_beam_outputs, sample_beam_states = [],[]
for vi in range(beam_neighbors):
    tmp_output, tmp_state = lstm_cell(
        sample_beam_inputs[vi], saved_sample_beam_output[vi],
        saved_sample_beam_state[vi]
    )
    sample_beam_outputs.append(tmp_output)
    sample_beam_states.append(tmp_state)

# For a given set of beams, outputs a list of prediction vectors of 
size beam_neighbors
# each beam having the predictions for full vocabulary
sample_beam_predictions = []
for vi in range(beam_neighbors):
    with tf.control_dependencies([saved_sample_beam_output[vi].
assign(sample_beam_outputs[vi]),
                                saved_sample_beam_state[vi].
assign(sample_beam_states[vi])]):
        sample_beam_predictions.append(tf.nn.softmax(tf.nn.xw_
plus_b(sample_beam_outputs[vi], w, b)))

Next, we will define a new set of operations for updating the state and output 
variables of each beam with the best beam candidate indices found at each step. This 
is important for each step, as the best beam candidates will not uniformly branch out 
from each tree at a given depth. Figure 8.5 shows an example. We will indicate the 
best beam candidates with bold font and arrows:

Figure 8.5: A beam search illustrating the requirement for updating beam states at each step
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As seen here, candidates are not uniformly sampled, having always one candidate 
from a subtree (a set of arrows starting from the same point) at a given depth. For 
example, at depth two, there are no candidates spawning from the hunting → king 
path, so the state update we calculated for that path is not useful anymore. So the 
state we maintained for that path must be replaced with the state update we had for 
the king → was path, as there are now two paths sharing the parent king → was. We 
will use the following code to make such replacements to the states:

stacked_beam_outputs = tf.stack(saved_sample_beam_output)
stacked_beam_states = tf.stack(saved_sample_beam_state)

update_sample_beam_state = tf.group(
    *[saved_sample_beam_output[vi].assign(tf.gather_nd(stacked_beam_
outputs,[best_neighbor_beam_indices[vi]])) for vi in range(beam_
neighbors)],
    *[saved_sample_beam_state[vi].assign(tf.gather_nd(stacked_beam_
states,[best_neighbor_beam_indices[vi]])) for vi in range(beam_
neighbors)]
)

Examples generated with beam search
Let's see how our LSTM performs with beam search. It looks better than before:

and they sailed to him and said,
          oh, queen.  where heavens, she went to her, and thumbling 
where the whole kingdom likewis, and that she had given him as that 
he had to eat, and they gave him the money, hans took his head that 
he had been the churchyar, and they gave him the money, hans took his 
head that he had been the world, and, however do that, he have begging 
his that he was
placed where they were brought in the mouse's horn again.  where 
have, you come?  then thumbling where the world, and when they came to 
them, and that he was soon came back, and then the will make that they 
hardled the world, and, however do that heard him, they have gone out 
through the room, and said the king's son was again and said,
          ah, father, i have been in a dream, for his horse again, 
answered the door.  when they saw
each other that they had been.  then they saw they had been.

Compared to the text produced by the LSTM, this text seems to have more variation 
in the text while keeping the text grammatically consistent as well. So, in fact, beam 
search helps to produce quality predictions compared to predicting one word at a 
time. Also, we see that the LSTM interestingly combines different elements from 
stories to come up with interesting concepts (for example, mouse's horn, bringing 
Thumbling, a character, and Hans, a character from a different story, together). But 
still, there are instances where words together don't make much sense. Let's see how 
we can improve our LSTM further.
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Improving LSTMs – generating text 
with words instead of n-grams
Here we will discuss ways to improve LSTMs. First, we will discuss how the number 
of model parameters grows if we use one-hot-encoded word features. This motivates 
us to use low-dimensional word vectors instead of one-hot-encoded vectors. Finally, 
we will discuss how we can employ word vectors in the code to generate better-
quality text compared to using bigrams. The code for this section is available in 
lstm_word2vec.ipynb in the ch8 folder.

The curse of dimensionality
One major limitation stopping us from using words instead of n-grams as the input 
to our LSTM is that this will drastically increase the number of parameters in our 
model. Let's understand this through an example. Consider that we have an input of 
size 500 and a cell state of size 100. This would result in a total of approximately 240K 
parameters (excluding the softmax layer), as shown here:

( )~ 4 500 100 100 100 100 ~ 240x x x K= + + =

Let's now increase the size of the input to 1000. Now the total number of parameters 
would be approximately 440K, as shown here:

( )~ 4 1000 100 100 100 100 ~ 440x x x K= + + =

As you can see, for an increase of 500 units of the input dimensionality, the number 
of parameters has grown by 200,000. This not only increases the computational 
complexity, but also increases the risk of overfitting due to the large number of 
parameters. So, we need ways of restricting the dimensionality of the input.

Word2vec to the rescue
As you will remember, not only can Word2vec give a lower-dimensional feature 
representation of words compared to one-hot encoding, but it also gives semantically 
sound features. To understand this, let's consider three words: cat, dog, and volcano. 
If we one-hot encode just these words and calculate the Euclidean distance between 
them, it would be the following:

distance(cat,volcano) = distance(cat,dog)
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However, if we learn word embeddings, it would be the following:

distance(cat,volcano) > distance(cat,dog)

We would like our features to represent the latter, where similar things have a lower 
distance than dissimilar things. Consequently, the model will be able to generate 
better-quality text.

Generating text with Word2vec
Here, our LSTM gets a bit more complex than the standard LSTM, as we are 
plugging in an embedding layer in the middle of the input and the LSTM. Figure 8.6 
depicts the overall architecture of LSTM-Word2vec. This is available as an exercise in 
the lstm_word2vec.ipynb file located in the ch8 folder.

Figure 8.6: The structure of a language modeling LSTM using word vectors
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We will first learn word vectors using the Continuous Bag-of-Words (CBOW) 
model. The following are some of the best relationships learned by our 
Word2vec model:

Nearest to which: what
Nearest to not: bitterly, easily, praying, unseen
Nearest to do: did
Nearest to day: evening, sunday
Nearest to two: many, kinsmen
Nearest to will: may, shall, 'll
Nearest to pick-axe: ladder
Nearest to stir: bestir, milk

Now we can feed the embeddings—instead of one-hot-encoded vectors—to the 
LSTM. For this, we incorporate the tf.nn.embedding_lookup function, as follows:

for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))
    train_inputs_embeds.append(tf.nn.embedding_
lookup(embeddings,train_inputs[ui]))

For a more general-purpose language modeling task, we can use 
already available pretrained word vectors. Word vectors found 
by learning from text corpus with billions of words are freely 
available to be downloaded and used. Here we will list several such 
repositories that are readily available word vectors:

•	 Word2vec: https://code.google.com/archive/p/
word2vec/

•	 Pretrained GloVe word vectors: https://nlp.stanford.
edu/projects/glove/

•	 fastText word vectors: https://github.com/
facebookresearch/fastText/blob/master/
pretrained-vectors.md

However, as we are working with a very limited-size vocabulary, 
we will learn our own word vectors. It will be a computational 
overhead if we try to use these massive word vector repositories 
for a vocabulary of a few thousand words. Moreover, since we are 
outputting stories, certain unique words (for example, elves and 
water-nixie) might not even have been used during learning.

The rest of the code will be similarly used for LSTM cell computations, 
loss, optimization, and predictions we discussed earlier. However, remember 
that our input size is not the vocabulary size anymore, but the embedding size.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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Examples generated with LSTM-Word2vec 
and beam search
The following text is generated by LSTM-Word2vec (after applying a simple 
preprocessing step involving removing redundant spaces). Now the text looks 
quite realistic:

i am in a great castle. the king's son. the king 's son. "you are 
mine  with the dragon , and  a glass mountain and she gave it to you. 
"the king's son. "i  have not". "no," said the  king's son , and  a 
great lake, and in its little dish, which was much larger than do you 
want to have  not. the king. if i had a great lake, but it was not 
long before it. then the king's son. the king's son, however, drank 
only the milk.  then the king 's son said, "you are not". then the 
wedding was celebrated, and when she got to the king's son. "you are 
mine, and a glass mountain and the king 's son, however. they gave 
him to see her heart, and went away, and the old king's son, who was 
sitting by the town, and when they went to the king's boy. she was in 
its little head against it as long as it had strength to do so, until 
at last it was standing in the kitchen and heard the crown, which are 
so big. when she got into a carriage, and slept in the whole night, 
and the wedding was celebrated, and when she got to the glass mountain 
they thrust the princess remained, the child says, come out.  when 
she got into a great lake, but the king's son, and there was a great 
lake before the paddock came to a glass mountain, and there were full 
of happiness. when the bride, she got to sleep in a great castle, and 
as soon as it was going to be put to her house, but the wedding was 
celebrated, and when she got to the old woman, and a glass of wine. 
when it was evening, she began to cry in the whole night, and the 
wedding was celebrated, and after this the king's boy. and when she 
had washed up, and when the bride, who came to her, but when it was 
evening, when the king 's son. the king 's son. the king 's son. "i 
will follow it. then the king". if i had a great lake, and a glass 
mountain, and there were full dress, i have not. "thereupon the king's 
son as the paddock had to put in it. she felt a great lake, so she is 
mine. then the king 's son's son".    

You can see that there are no repetitions of text, as we saw with standard RNNs, 
and the text looks grammatically correct in most cases, and there are very few 
spelling mistakes.

So far we have analyzed how the generated text looks like for standard LSTMs, 
LSTMs with peepholes, GRUs, LSTMs with beam search, and LSTMs with beam 
search using Word2vec. Now we will see how these methods compare to each other 
quantitatively again.
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Perplexity over time
Here in Figure 8.7, we will plot the behavior of perplexity over time for all the 
methods we saw so far: LSTMs, LSTMs with peepholes, GRUs, and LSTMs using the 
Word2vec features. To make the comparison interesting, we will also compare one 
of the best models we can think of: a three-layer deep LSTM that uses word vectors 
and dropout. We can see that from the methods that use dropout (that is, the methods 
that reduce overfitting), LSTMs with the Word2vec features show promising results. 
I am not stating that LSTMs with Word2vec deliver good performance based on just 
numerical values, but also considering the difficulty of the problem. In the Word2vec 
settings, the atomic unit we use for learning are words, unlike the other models that 
use bigrams. Language generation at the word level can be challenging compared to 
that at the bigram level due to the large size of the vocabulary. Therefore, achieving 
a training perplexity at the word level that is comparable to that of the bigram-based 
models can be thought of as good performance. Looking at the validation perplexity, 
we can see that the word-vector-based methods exhibit a higher validation perplexity. 
This is understandable as the task is more challenging due to the large vocabulary. 
Another interesting observation I'd like to draw your attention to is, comparing the 
single layer LSTM and the deep LSTMs. You can see that the deep LSTM shows a 
much lower and a stable validation perplexity over time, which lead us to believe that 
deep models often deliver better. Note that we don't report the results of using beam 
search, as beam search only affects the prediction and has no effect on the training 
perplexity:

Figure 8.7: Perplexity change for training data over time (LSTMs, LSTM (Peephole) and GRUs,  
and LSTMs + Word2vec)
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Using the TensorFlow RNN API
We will now examine how we can use the TensorFlow RNN API to make the code 
simpler. The TensorFlow RNN API contains a variety of RNN-related functions 
that help us to implement RNNs faster and easier. We will now see how the same 
example we discussed in the preceding sections can be implemented using the 
TensorFlow RNN API. However, to make things exciting, we will implement a deep 
LSTM network with three layers that we talked about in the comparisons. The full 
code for this is available in the lstm_word2vec_rnn_api.ipynb file in the Ch8 folder.

First, we will define the placeholders for holding inputs, labels, and corresponding 
embedding vectors for the inputs. We ignore the validation data related 
computations as we have already discussed them:

# Training Input data.
train_inputs, train_labels = [],[]
train_labels_ohe = []
# Defining unrolled training inputs
for ui in range(num_unrollings):
    train_inputs.append(tf.placeholder(tf.int32,
        shape=[batch_size],name='train_inputs_%d'%ui))
    train_labels.append(tf.placeholder(tf.int32,
        shape=[batch_size], name = 'train_labels_%d'%ui))
    train_labels_ohe.append(tf.one_hot(train_labels[ui],
        vocabulary_size))
    
# Defining embedding lookup operations for all the unrolled
# trianing inputs
train_inputs_embeds = []
for ui in range(num_unrollings):
    # We use expand_dims to add an additional axis
    # As this is needed later for LSTM cell computation
    train_inputs_embeds.append(tf.expand_dims(
                               tf.nn.embedding_lookup(
                               embeddings,train_inputs[ui]),0))

Thereafter, we will define a list of LSTM cells from the LSTM cell from the RNN API:

# num_nodes here is a sequence of hidden layer sizes
cells = [tf.nn.rnn_cell.LSTMCell(n) for n in num_nodes]

We will also define DropoutWrapper for all the LSTM cells, that performs the 
dropout operation on the inputs/states/outputs of the LSTM cell:

# We now define a dropout wrapper for each LSTM cell
dropout_cells = [



Chapter 8

[ 261 ]

    rnn.DropoutWrapper(
        cell=lstm, input_keep_prob=1.0,
        output_keep_prob=1.0-dropout, state_keep_prob=1.0,
        variational_recurrent=True, 
        input_size=tf.TensorShape([embeddings_size]),
        dtype=tf.float32
    ) for lstm in cells
]

The parameters provided to this function are as follows:

•	 cell: This is the type of the RNN cell we're using in the computations
•	 input_keep_prob: This is the amount of units of the input to keep activated 

when performing dropout (between 0 and 1)
•	 output_keep_prob: This is the amount of units of the output to keep 

activated when performing dropout
•	 state_keep_prob: This is the amount of units of the cell state to keep 

activated when performing dropout
•	 variational_recurrent: This is a special type of dropout for RNNs 

introduced by Gal and Ghahramani in A Theoretically Grounded Application 
of Dropout in Recurrent Neural Networks, Data-Efficient Machine Learning 
workshop, ICML (2016).

Then we will define a tensor called initial_state (initialized with zeros), which 
will contain the iteratively updated states (both the hidden state and the cell state) 
of the LSTM:

# Initial state of the LSTM memory.
initial_state = stacked_dropout_cell.zero_state(batch_size, dtype=tf.
float32)

With the list of LSTM cells defined, we can now define a MultiRNNCell object that 
encapsulates the list of LSTM cells as follows:

# We first define a MultiRNNCell Object that uses the 
# Dropout wrapper (for training)
stacked_dropout_cell = tf.nn.rnn_cell.MultiRNNCell(dropout_cells)
# Here we define a MultiRNNCell that does not use dropout
# Validation and Testing
stacked_cell = tf.nn.rnn_cell.MultiRNNCell(cells)
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Next we will calculate the output of the LSTM cell using the tf.nn.dynamic_rnn 
function as follows:

# Defining the LSTM cell computations (training)
train_outputs, initial_state = tf.nn.dynamic_rnn(
    stacked_dropout_cell, tf.concat(train_inputs_embeds,axis=0), 
    time_major=True, initial_state=initial_state
)

For this function, we will provide several parameters, as shown here:

•	 cell: This is the type of the sequential model that will be used to compute 
the output. In our case, this would be the LSTM cell we defined earlier.

•	 inputs: These are the inputs for the LSTM cell. The inputs need to have a 
shape of [num_unrollings, batch_size, embeddings_size]. Therefore, 
we have all the batches of data for all the time steps in this tensor. We will 
call this type of data time major, as the time axis is the 0th axis.

•	 time_major: We are saying that our inputs are time major.
•	 initial_state: An LSTM needs an initial state to start with.

With the final hidden state and cell state of the LSTM calculated, we will now define 
the logits (unnormalized scores obtained from the softmax layer for each word) and 
predictions (normalized scores of the softmax layer for each word):

# Reshape the final outputs to [num_unrollings*batch_size, num_nodes]
final_output = tf.reshape(train_outputs,[-1,num_nodes[-1]])

# Computing logits
logits = tf.matmul(final_output, w) + b
# Computing predictions
train_prediction = tf.nn.softmax(logits)

Then we will make our logits and labels time major. This is necessary for the loss 
function we will be using:

# Reshape logits to time-major fashion [num_unrollings, batch_size, 
vocabulary_size]
time_major_train_logits = tf.reshape(logits,[num_unrollings,batch_
size,-1])

# We create train labels in a time major fashion [num_unrollings, 
batch_size, vocabulary_size]
# so that this could be used with the loss function
time_major_train_labels = tf.reshape(tf.concat(train_
labels,axis=0),[num_unrollings,batch_size])
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Now we will arrive at defining the loss between the outputs computed from 
the LSTM and the softmax layer and the actual labels. For this, we will use the 
tf.contrib.seq2seq.sequence_loss function. This function is widely used in 
machine translation tasks to compute the difference between the model output 
translation and the actual translation, which are sequences of words. Therefore, the 
same concept can be extended to our problem because we are essentially outputting 
a sequence of words:

# We use the sequence-to-sequence loss function to define the loss
# We calculate the average across the batches
# But get the sum across the sequence length
loss = tf.contrib.seq2seq.sequence_loss(
    logits = tf.transpose(time_major_train_logits,[1,0,2]),
    targets = tf.transpose(time_major_train_labels),
    weights= tf.ones([batch_size, num_unrollings], dtype=tf.float32),
    average_across_timesteps=False,
    average_across_batch=True
)

loss = tf.reduce_sum(loss)

Let's take a look at the arguments we are providing to this loss function:

•	 logits: These are the unnormalized scores of predictions we computed 
earlier. However, this function accepts the logits ordered to the following 
shape: [batch_size, num_unrollings, vocabulary_size]. For this, we 
use the tf.transpose function.

•	 targets: These are the actual labels for the batch or sequence of inputs. 
These need to be in the [batch_size, num_unrollings] shape.

•	 weights: These are the weights we give to each position in the time axis 
as well as the batch axis. We are not discriminating inputs by their position, 
so we will set it to 1 for all the positions.

•	 average_across_timesteps: We don't average the loss across time steps. 
We need the sum across time steps, so we will set this to False.

•	 average_across_batch: We need to average the loss over the batch, so we 
will set this to True.

Next we will define the optimizer, just like we did before:

# Used for decaying learning rate
gstep = tf.Variable(0, trainable=False)

# Running this operation will cause the value of gstep
# to increase, while in turn reducing the learning rate
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inc_gstep = tf.assign(gstep, gstep+1)

# Adam Optimizer. And gradient clipping.
tf_learning_rate = tf.train.exponential_decay(0.001,gstep,decay_
steps=1, decay_rate=0.5)

print('Defining optimizer')
optimizer = tf.train.AdamOptimizer(tf_learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
    zip(gradients, v))

inc_gstep = tf.assign(gstep, gstep+1)

With all the functions defined, you can now run the code as shown in the exercise file.

Summary
In this chapter, we looked at the implementations of the LSTM algorithm and other 
various important aspects to improve LSTMs beyond standard performance. As 
an exercise, we trained our LSTM on the text of stories by the Brothers Grimm and 
asked the LSTM to output a fresh new story. We discussed how to implement an 
LSTM with code examples extracted from exercises.

Next, we had a technical discussion about how to implement LSTMs with peepholes 
and GRUs. Then we did a performance comparison between a standard LSTM and 
its variants. We saw that the LSTMs performed the best compared to LSTMs with 
peepholes and GRUs. We made the surprising observation of peepholes actually 
hurting the performance rather than helping for our language modeling task.

Then we discussed some of the various improvements possible for enhancing the 
quality of outputs generated by an LSTM. The first improvement was beam search. 
We looked at an implementation of beam search and covered how to implement 
it step by step. Then we looked at how we can use word embeddings to teach our 
LSTM to output better text.

In conclusion, LSTMs are very powerful machine learning models that can capture 
both long-term and short-term dependencies. Moreover, beam search in fact helps to 
produce more realistic-looking textual phrases compared to predicting one at a time. 
Also, we saw that we obtained the best performance using word vectors as inputs 
instead of using the one-hot-encoded feature representation.

In the next chapter, we will look at another interesting task involving both feed-
forward networks and LSTMs: generating image captions.



[ 265 ]

Applications of LSTM – 
Image Caption Generation

In the previous chapter, we saw how we can use LSTMs to generate text. In this 
chapter, we will use an LSTM to solve a more complex task: generating suitable 
captions for given images. This task is more complex in the sense that solving it 
involves multiple subtasks, such as training/using a CNN to generate encoded 
vectors of images, learning word embeddings, and training an LSTM to generate 
captions. So this is not as straightforward as the text generation task, where we 
simply input text and output text in a sequential manner.

Automated image captioning or image annotation has a wide variety of applications. 
One of the most prominent application is image retrieval in search engines. 
Automated image captioning can be used to retrieve all the images belonging to 
a certain concept (for example, a cat) as per the user's request. Another application 
can be in social media, where, when an image is uploaded by a user, the image is 
automatically captioned so that either the user can refine the generated caption or 
post it as it is.
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For generating captions for images, we will use a popular dataset for image 
captioning tasks known as Microsoft Common Objects in Context (MS-COCO). We 
will first process images from the dataset (MS-COCO) to obtain an encoding of the 
images with a pretrained Convolutional Neural Network (CNN), which is already 
good at classifying images. The CNN will take a fixed-size image as the input and 
output the class the image belongs to (for example, cat, dog, bus, and tree). Using 
this CNN, we can obtain compressed encoded vectors describing images.

Then we will process the captions of the images to learn the word embeddings of 
the words found in captions. We can also use pretrained word vectors for this task. 
Finally, having obtained both the image and word encodings, we will feed them into 
an LSTM and train it on the images and their respective captions. Then we will ask to 
generate a caption for a set of unseen images (that is, the validation set).

We will use a pretrained CNN to generate image encodings. Then we will first 
implement our own word embedding learning algorithm and LSTMs from scratch. 
Finally, we will see how we can use pretrained word vectors along with the LSTM 
modules available in the TensorFlow RNN API to achieve this. Using pretrained 
word vectors and the RNN API reduces the amount of coding we have to do 
otherwise, significantly.

Getting to know the data
Let's first understand the data we are working with both directly and indirectly. 
There are two datasets we will rely on:

•	 The ILSVRC ImageNet dataset (http://image-net.org/download)
•	 The MS-COCO dataset (http://cocodataset.org/#download)

We will not engage the first dataset directly, but it is essential for caption learning. 
This dataset contains images and their respective class labels (for example, cat, dog, 
and car). We will use a CNN that is already trained on this dataset, so we do not 
have to download and train on this dataset from scratch. Next we will use the  
MS-COCO dataset, which contains images and their respective captions. We will 
directly learn from this dataset by mapping the image to a fixed-size feature vector, 
using the CNN, and then map this vector to the corresponding caption using an 
LSTM (we will discuss the process in detail later).
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ILSVRC ImageNet dataset
ImageNet is an image dataset that contains a large set of images (~1 million) and 
their respective labels. These images belong to 1,000 different categories. This dataset 
is very expressive and contains almost all the objects found in the images we want 
to generate captions for. Therefore, I consider ImageNet to be a good dataset to train 
on, in order to obtain image encodings that are required for caption generation. 
We say we use this dataset indirectly because we will use a pretrained CNN that 
is trained on this dataset. Therefore we will not be downloading, nor training the 
CNN on this dataset, by ourselves. Figure 9.1 shows some of the classes available 
in the ImageNet dataset:

Figure 9.1: A small sample of the ImageNet dataset
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The MS-COCO dataset
Now we will move on to the dataset that we will actually be using, which is called 
MS-COCO (short for, Microsoft - Common Objects in COntext). We will use the 
dataset from the year 2014. As described earlier, this dataset consists of images and 
their respective descriptions. The dataset is quite large (for example, the training 
dataset consists of ~120,000 samples and can measure over 15 GB). Datasets are 
updated every year, and a competition is then held to recognize the team that 
achieves state-of-the-art performance. Using the full dataset is important when the 
objective is to achieve state-of-the-art performance. However, in our case, we want 
to learn a reasonable model that is able to suggest what is in an image generally. 
Therefore, we will use a smaller dataset (~40,000 images and ~200,000K captions) 
to train our model on. Figure 9.2 includes some of the samples available:

Figure 9.2: A small sample of the MS-COCO dataset
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For learning with and testing our end-to-end image caption generation model, 
we will use the 2014 validation dataset, provided on the official MS-COCO dataset 
website. The dataset consists of ~41,000 images and ~200,000 captions. We will use 
the initial set of 1,000 samples as the validation set and the rest as the training set.

In practice, you should use separate datasets for testing and validation. 
However, as we are using limited data, to maximize the learning, 
we consider the same dataset for both testing and validation.

In Figure 9.3, we can see some of the images found in the validation set. These 
are some hand-picked examples from the validation set representing a variety 
of different objects and scenes. We will use these for visually inspecting results, 
as it is infeasible to visually inspect all the 1,000 samples in the validation set:

Figure 9.3: An unseen image we use to test image caption generation capability of our algorithm

The machine learning pipeline for image 
caption generation
Here we will look at the image caption generation pipeline at a very high 
level and then discuss it piece by piece until we have the full model. The image 
caption generation framework consists of three main components and one 
optional component:
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•	 A CNN generating encoded vectors for images
•	 An embedding layer learning word vectors 
•	 (Optional) An adaptation layer that can transform a given embedding 

dimensionality to an arbitrary dimensionality (details will be discussed later)
•	 An LSTM taking the encoded vectors of the images, and outputting the 

corresponding caption

First, let's look at the CNN generating the encoded vectors for images. We can 
achieve this by first training a CNN on a large classification dataset, such as  
ImageNet, and using that knowledge to generate compressed vectorized 
representations of images.

One might ask, why not input the image as it is to the LSTM? Let's go back to a 
simple calculation we did in the previous chapter:

"An increase of 500 units in the input layer resulted in an increase of  
200,000 parameters."

The images we deal with here are around 224 × 224 × 3 ~ 150,000. This should give 
you an idea of the increase in the number of parameters this would result in for the 
LSTM. Therefore, finding a compressed representation is crucial. Another reason 
why LSTMs are not suitable for directly processing raw image data is that it is not 
very straightforward compared to using a CNN to process image data.

There exist convolutional variants of LSTMs called Convolution LSTMs. 
Convolution LSTMs are capable of working with image inputs by 
using the convolution operation, instead of fully connected layers. Such 
networks are heavily used for spatiotemporal problems (for example, 
weather data or video prediction) that has both spatial and temporal 
dimensions to the data. You can read more about convolutional 
LSTMs in Long-term Recurrent Convolutional Networks for Visual Recognition 
and Description, Jeff Donahue, and others, Proceedings of the IEEE conference on 
Computer Vision and Pattern Recognition (2015).
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Although the training procedure is completely different, our goal for this training 
process is similar to what we achieve after we learn word embeddings. For word 
embeddings, we would like similar words to have similar vectors (that is, high 
similarity) and different words to have different vectors (that is, low similarity). 
In other words, if xImage  represents the encoded vector obtained for image x, 
then we should have this:

( ) ( ), ,cat volcano cat dogDistance Image Image Distance Image Image>

Next we will learn the word embeddings for the text corpus created by extracting 
all the words from all the captions available in the MS-COCO dataset. Again, 
learning the word embeddings helps us to reduce the dimensionality of the input 
to the LSTM, and it also helps us to produce more meaningful features as the input 
to the LSTM. However, this also serves another crucial purpose in the pipeline.

When we used an LSTM to generate text, we used either the one-hot-encoded 
representation of the words or word embeddings/vectors. Therefore, the input to the 
LSTM was always of a fixed size. If the input sizes were dynamic, we couldn't handle 
it with standard LSTMs. However, we didn't have to worry about this as we dealt 
only with text.

In this case, however, we are working with both images and text, and we need to 
make sure that the encoded image vectors and the representation of each word 
corresponding to the caption of that image are all of same dimensionality. Also, with 
word vectors, we can create an arbitrary fixed-length feature representation for all the 
words. Therefore, we use word vectors to match the image encoding vector length.

Finally, we will create a sequence of data for each image, where the first element 
of the sequence is the vectorized representation of the image, followed by the word 
vectors for each word in the caption of the image, in that order. We will then use 
this sequence of data to train the LSTM as we did earlier.
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This approach is similar to the approach found in Show, Attend and Tell: Neural 
Image Caption Generation with Visual Attention, Xu and others, Proceedings of the 32nd 
International Conference on Machine Learning (2015). The process is depicted in Figure 9.4:

Figure 9.4: Machine learning pipeline for training on the task of generating image captions
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Extracting image features with CNNs
With a high level understanding of the overall pipeline, we will now discuss in 
detail how we can use CNNs to extract feature vectors for images. In order to get 
good feature vectors, we first need to either train the CNN with the images and its 
corresponding classes or use a pretrained CNN freely available on the internet. We 
will be reinventing the wheel if we train a CNN from scratch, as there are pretrained 
models available for free download. We also need to keep in mind that if the CNN 
needs to be capable of describing many objects, it needs to be trained on a set of 
classes corresponding to a variety of objects. This is why a model trained on a large 
dataset such as ImageNet (for example, compared to training on a small dataset 
having only 10 different classes) is important. As we saw earlier, ImageNet contains 
1,000 object categories. This is more than adequate for the task we are trying to solve.

Keep in mind, however, that ImageNet contains ~1 M images. Also, since there 
are 1,000 classes, we cannot use a small CNN with a simple structure (for example, 
a CNN with few layers) to learn well. We need more powerful and deeper CNNs, 
but with the complexity of the CNN and the complexity of the dataset itself, it 
can take days (even weeks) on GPUs to train such a network. For example, VGG 
(a well-known CNN that has produced exceptionally good classification accuracy 
on ImageNet) can take 2-3 weeks to train.

Therefore, we need smarter ways to solve this issue. Fortunately, CNNs such as 
VGG are readily available to download, so we can use them without any additional 
training. These are called pretrained models. Using pretrained models allows us 
to save several weeks of computational time. This is quite easy, as all we need is 
the learned weights and the actual structure of the CNN to recreate the network 
and use it immediately for inference.

In this exercise, we will use the VGG CNN (available at http://www.cs.toronto.
edu/~frossard/post/vgg16/). VGG architecture won the second place in the 
2014 ImageNet competition. VGG has several variants to it: a 13-layer deep network  
(VGG-13), a 16-layer deep network (VGG-16), and a 19-layer deep network (VGG-19). 
We will use the 16-layer deep VGG-16. Figure 9.5 displays the VGG-16 network:

Figure 9.5: A 16-layer VGG architecture

http://www.cs.toronto.edu/~frossard/post/vgg16/
http://www.cs.toronto.edu/~frossard/post/vgg16/


Applications of LSTM – Image Caption Generation

[ 274 ]

Implementation – loading weights and 
inferencing with VGG-16
The website http://www.cs.toronto.edu/~frossard/post/vgg16/ provides the 
weights as a dictionary of NumPy arrays. There are 16 weight values and 16 bias 
values corresponding to the 16 layers of VGG-16. They are saved under the keys as 
follows:

conv1_1_W, conv1_1_b, conv1_2_W, conv1_2_b, conv2_1_W, conv2_1_b…

First, download the file from the website and place it in the ch9/image_caption_
data folder. Now we will discuss the implementation, from loading the downloaded 
CNN to making predictions with the pretrained CNN we'll use. First, we will discuss 
how to create necessary TensorFlow variables and load them with the downloaded 
weights. Next, we will define an input reading pipeline to read in images as inputs 
to the CNN and also several preprocessing steps. Then we will define the inference 
operations for the CNN to get predictions for the inputs. Then we will define 
calculations to get the class, along with the prediction for that class which the CNN 
thinks that it suits the best for a given input. The last operation is not required 
to generate captions for images; however, it is important to ensure that we have 
configured the pretrained CNN correctly.

Building and updating variables
We will first load the dictionary of NumPy arrays containing the weights of the CNN 
to the memory with the following:

weight_file = os.path.join('image_caption_data', 'vgg16_weights.npz')
weights = np.load(weight_file)

Then we will create TensorFlow variables and assign them actual weights. Also, 
this can take up quite a bit of memory. So, to avoid crashes, we will specifically 
ask TensorFlow to save this on CPU rather than on GPU. We will outline the code 
for building and loading the TensorFlow variables with correct weights here. We 
will first define all the dictionary keys (denoting different layer IDs of the CNN) in 
a Python list, TF_SCOPES. Then, we will iterate through each layer ID while using 
the corresponding weight matrix and the bias vector, as initializers, to specific 
TensorFlow variables named according to the respective layer ID:

http://www.cs.toronto.edu/~frossard/post/vgg16/
http://www.cs.toronto.edu/~frossard/post/vgg16/
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def build_vgg_variables(npz_weights):
    '''
    Build the required tensorflow variables to 
    populate the VGG-16 model
    and populate them with actual weights
    :param npz_weights: loaded weights as a dictionary
    :return:
    '''

    params = []
    print("Building VGG Variables (Tensorflow)...")

    with tf.variable_scope('CNN'):
        # Iterate through each convolution and fully connected layer
        # and create TensorFlow variables using variable scoping
        for si,scope in enumerate(TF_SCOPES):
            with tf.variable_scope(scope) as sc:
                weight_key, bias_key = TF_SCOPES[si]+'_W',
                                       TF_SCOPES[si]+'_b'

                with tf.device('/cpu:0'):
                    weights = tf.get_variable(TF_WEIGHTS_STR,
                              initializer= npz_weights[weight_key])
                    bias = tf.get_variable(TF_BIAS_STR,
                           initializer = npz_weights[bias_key])

                    params.extend([weights,bias])

    return params

Preprocessing inputs
Next, we will define an input pipeline to input image to VGG-16. VGG-16 has the 
following requirements for the input images in order for the predictions to be correct:

•	 Inputs should be of size [224,224,3]
•	 Inputs should have zero-mean (but not unit variance)

The following code creates a pipeline that reads straight from a set of given 
filenames, applies the preceding transformations, and creates a batch of such 
transformed images. This procedure is defined in the preprocess_inputs_with_
tfqueue function in the exercise file.
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First, we will define a queue of filenames. This holds the filenames we should be 
reading (that is, the filenames of the images):

        # FIFO Queue of file names
        # creates a FIFO queue until the reader needs them
        filename_queue = tf.train.string_input_producer(filenames,
                         capacity=10, shuffle=False)

Next we will define a reader, which takes the filename queue as the input and 
outputs a buffer which holds the images obtained by reading the filenames produced 
by the queue at any given time:

        # Reader which takes a filename queue and read()
        # which outputs data one by one
        reader = tf.WholeFileReader()
        _, image_buffer = reader.read(filename_queue,
                          name='image_read_op')

        # Read the raw image data and return as uint8
        dec_image = tf.image.decode_jpeg(contents=
                    image_buffer,channels=3,name='decode_jpg')
        # Convert uint8 data to float32
        float_image = tf.image.convert_image_dtype(dec_image,
                      dtype=tf.float32,name= 'float_image')

Next we will do the aforementioned preprocessing:

        # Resize image to 224x224x3
        resized_image = tf.image.resize_images(float_ 
                        image,[224,224])*255.0

        # For VGG, images are only zero-meaned 
        # (not standardized to unit variance)
        std_image = resized_image - tf.reduce_mean(resized_ 
        image,axis=[0,1], keepdims=True)

After the preprocessing pipeline is defined, we will ask TensorFlow to produce a 
batch of preprocessed images at a time, without shuffling:

        image_batch = tf.train.batch([std_image],
                      batch_size = batch_size, capacity = 10,
                      allow_smaller_final_batch=False,
                      name='image_batch')
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Inferring VGG-16
So far, we have created our CNN and we have defined a pipeline for reading images 
and creating a batch by reading image files saved on the disk. Now we would like 
to infer the CNN with the images read from the pipeline. Inferring refers to passing 
an input (that is, image) and obtaining the prediction (that is, the probabilities of an 
image belonging to some class) as outputs. For this we will start from the first layer 
and iterate until we reach the softmax layer. This process is defined in the function 
inference_cnn in the exercise file.

At each layer, we will get the weights and the bias as follows:

def inference_cnn(tf_inputs, device):

    with tf.variable_scope('CNN'):
        for si, scope in enumerate(TF_SCOPES):
            with tf.variable_scope(scope,reuse=True) as sc:
                weight, bias = tf.get_variable(TF_WEIGHTS_STR),
                               tf.get_variable(TF_BIAS_STR)

Then for the first convolution layer we compute the output:

h = tf.nn.relu(tf.nn.conv2d(tf_inputs,weight,strides=[1,1,1,1],
               padding='SAME')+bias)

For the rest of the convolution layers we compute the output, where the input is the 
previous layer's output:

h = tf.nn.relu(tf.nn.conv2d(h, weight, strides=[1, 1, 1, 1],
               padding='SAME') + bias)

And for the pooling layers, the output is computed as follows:

h = tf.nn.max_pool(h,[1,2,2,1],[1,2,2,1],padding='SAME')

Then, for the first fully connected layer found immediately after the last convolution 
pooling layer, we will define the layer output as follows. We need to reshape the 
input from last convolution/pooling layer of the [batch_size, height, width, 
channels] to [batch_size, height*width*channels] size as this is a fully 
connected layer:

h_shape = h.get_shape().as_list()
h = tf.reshape(h,[h_shape[0], h_shape[1] * h_shape[2] * h_shape[3]])
h = tf.nn.relu(tf.matmul(h, weight) + bias)
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For the next set of fully connected layers except for the last layer, we get the output 
as follows:

h = tf.nn.relu(tf.matmul(h, weight) + bias)

Finally, for the last fully connected layer, we do not apply any type of activations. 
This will be the image feature representation which we will be feeding into  
the LSTM. This will be a 1,000 dimensional vector:

out = tf.matmul(h,weight) + bias

Extracting vectorized representations  
of images
The most important information we extract from the CNN is the image feature 
representations. As the image representations, we will obtain the network output of 
the very last layer before applying softmax. Therefore, a vector corresponding to a 
single image is of length 1,000:

tf_train_logit_prediction = inference_cnn(train_image_batch, device)
tf_test_logit_prediction = inference_cnn(test_image_batch, device)

Predicting class probabilities with VGG-16
Next, we will define the operations required to get feature representations of the 
images and also the actual softmax predictions to make sure that our model is 
actually correct. We will define these for both the training data and the test data:

tf_train_softmax_prediction = tf.nn.softmax(tf_train_logit_prediction)
tf_test_softmax_prediction = tf.nn.softmax(tf_test_logit_prediction)
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Now let's run these operations and see if they work properly (see Figure 9.6):

Figure 9.6: Class prediction for our test images with VGG

It seems that our CNN knows what it is doing. Of course, there are misclassified 
samples (for example, giraffe identified as a llama), but most of the time it is correct.

When running the preceding defined operations to obtain the feature 
vectors and the predictions, be mindful of the batch_size variable. 
Increasing this will make the code run quickly. However, it also might 
lead to a system crash if large enough RAM memory (> 8 GB) is not 
available. It is recommended that you keep this less than 10 if you do not 
have a high end machine.
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Learning word embeddings
We will next discuss how we can learn word embeddings for the words found in the 
captions. First we will preprocess the captions in order to reduce the vocabulary:

def preprocess_caption(capt):
    capt = capt.replace('-',' ')
    capt = capt.replace(',','')
    capt = capt.replace('.','')
    capt = capt.replace('"','')
    capt = capt.replace('!','')
    capt = capt.replace(':','')
    capt = capt.replace('/','')
    capt = capt.replace('?','')
    capt = capt.replace(';','')
    capt = capt.replace('\' ',' ')
    capt = capt.replace('\n',' ') 
    
    return capt.lower()

For example, consider the following sentence:

A living room and dining room have two tables, couches, and multiple chairs.

This will be transformed to the following:

a living room and dining room have two tables couches and multiple chairs

Then we will use the Continuous Bag-of-Words (CBOW) model to learn the word 
embeddings as we did in Chapter 3, Word2vec – Learning Word Embeddings. A crucial 
condition we have to keep in mind while learning word embeddings is that the 
dimensionality of the embedding should match the dimensionality of the feature 
representations obtained for the images, as standard LSTMs cannot handle  
dynamic-sized inputs.

If we are to use pretrained word embeddings, it is most likely that the dimensionality 
of the embeddings is different from the size of the image feature representations. 
In that case, we can use adaptation layers (similar to a layer of a neural network) 
to match the word vector dimensionality to the image feature representation 
dimensionality. We will see an exercise doing just that, later.
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Now let's look at some of the word embeddings learnt after running 100,000 steps:

Nearest to suitcase: woman
Nearest to girls: smart, racket
Nearest to barrier: obstacle
Nearest to casings: exterior
Nearest to normal: lady
Nearest to developed: natural
Nearest to shoreline: peninsula
Nearest to eating: table
Nearest to hoodie: bonnet
Nearest to prepped: plate, timetable
Nearest to regular: signs
Nearest to tie: pants, button

Preparing captions for feeding into 
LSTMs
Now, before feeding word vectors along with image feature vectors, we 
need to perform a few more preprocessing steps on the caption data.

Before the preprocessing, let's look at a few basic statistics about the captions. 
A caption has approximately ten words on average, with a standard deviation 
of approximately two words. This information is important for us to truncate 
captions which are unnecessarily long.

First, following the preceding statistics, let's set the maximum caption length allowed 
to be 12.

Next, let's introduce two new word tokens, SOS and EOS. SOS denotes the start 
of a sentence, whereas EOS denotes the end of a sentence. These help the LSTM 
to identify both the start and end of a sentence easily.

Next, we will append captions with length less than 12 with EOS tokens such that 
their length is 12.

So, consider the following caption:

a man standing on a tennis court holding a racquet

This would appear as follows:

SOS a man standing on a tennis court holding a racquet EOS
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Consider this caption:

a cat sitting on a desk

It would become the following:

SOS a cat sitting on a desk EOS EOS EOS EOS EOS

However, consider the following caption:

a well lit and well decorated living room shows a glimpse of a glass front door through the 
corridor

This would become the following:

SOS a well lit and well decorated living room shows a EOS

Note that even after being truncated, the context of the image is still  
mostly preserved.

Bringing all the captions to the same length is important so that we can process a 
batch of images and captions instead of processing them one by one.

Generating data for LSTMs
Here we will define how to extract a batch of data to train the LSTM. Whenever we 
process a fresh batch of data, the first input should be the image feature vector and 
the label should be SOS. We will define a batch of data, where, if the first_sample 
Boolean is True, then the input is extracted from the image feature vectors, and if 
first_sample is False, the input is extracted from the word embeddings. Also, 
after generating a batch of data, we will move the cursor by one, so we get the next 
item in the sequence next time we generate a batch of data. This way we can unroll 
a sequence of batches of data for the LSTM where the first batch of the sequence 
is the image feature vectors, followed by the word embeddings of the captions 
corresponding to that batch of images.

# Fill each of the batch indices
for b in range(self._batch_size):

    cap_id = cap_ids[b] # Current caption id
    # Current image feature vector
    cap_image_vec = self._image_data[self._fname_caption_tuples[
                                     cap_id][0]]
    # Current caption
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    cap_text = self._fname_caption_tuples[cap_id][1]

    # If the cursor exceeds the length of the caption, reset
    if self._cursor[b]+1>=self._cap_length:
        self._cursor[b] = 0

    # If we're processing a fresh set of cap IDs
    # The first sample should be the image feature vector
    if first_sample:
        batch_data[b] = cap_image_vec
        batch_labels[b] = np.zeros((vocabulary_size),
                          dtype=np.float32)
        batch_labels[b,cap_text[0]] = 1.0
    # If we're continuing from an already processed batch
    # Keep producing the current word as the input and 
    # the next word as the output
    else:
        batch_data[b] = self._word_embeddings[
                        cap_text[self._cursor[b]],:]
        batch_labels[b] = np.zeros((vocabulary_size),
                          dtype=np.float32)
        batch_labels[b,cap_text[self._cursor[b]+1]] = 1.0

        # Increment the cursor
        self._cursor[b] = (self._cursor[b]+1)%self._cap_length

We visualize the data generation process as shown in the following figure, for a 
batch_size=1 and num_unrollings=5. To have a larger batch size, you can perform 
this for the batch_size number of such sequences in parallel.

Figure 9.7: Visualization of the data generation
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Defining the LSTM
Now that we have defined the data generator to output a batch of data, starting with 
a batch of image feature vectors followed by the caption for the respective images 
word by word, we will define the LSTM cell. The definition of the LSTM and the 
training procedure is similar to what we observed in the previous chapter.

We will first define the parameters of the LSTM cell. Two sets of weights and a bias 
for input gate, forget gate, output gate, and for calculating the candidate value:

# Input gate (i_t) - How much memory to write to cell state
# Connects the current input to the input gate
ix = tf.Variable(tf.truncated_normal([embedding_size, num_nodes], 
stddev=0.01))
# Connects the previous hidden state to the input gate
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.01))
# Bias of the input gate
ib = tf.Variable(tf.random_uniform([1, num_nodes],0.0, 0.01))

# Forget gate (f_t) - How much memory to discard from cell state
# Connects the current input to the forget gate
fx = tf.Variable(tf.truncated_normal([embedding_size, num_nodes], 
stddev=0.01))
# Connects the previous hidden state to the forget gate
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.01))
# Bias of the forget gate
fb = tf.Variable(tf.random_uniform([1, num_nodes],0.0, 0.01))

# Candidate value (c~_t) - Used to compute the current cell state
# Connects the current input to the candidate
cx = tf.Variable(tf.truncated_normal([embedding_size, num_nodes], 
stddev=0.01))
# Connects the previous hidden state to the candidate
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.01))
# Bias of the candidate
cb = tf.Variable(tf.random_uniform([1, num_nodes],0.0,0.01))

# Output gate - How much memory to output from the cell state
# Connects the current input to the output gate
ox = tf.Variable(tf.truncated_normal([embedding_size, num_nodes], 
stddev=0.01))
# Connects the previous hidden state to the output gate
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om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], 
stddev=0.01))
# Bias of the output gate
ob = tf.Variable(tf.random_uniform([1, num_nodes],0.0,0.01))

Then we will define the softmax weights:

# Softmax Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], 
stddev=0.01))
b = tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01))

We will now define the state and output variables to maintain the state and output of 
the LSTM for both training and validation data:

# Variables saving state across unrollings.
# Hidden state
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), 
trainable=False, name='test_cell')
# Cell state
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), 
trainable=False, name='train_cell')

# Hidden and cell state variables for test data
saved_test_output = tf.Variable(tf.zeros([batch_size, num_
nodes]),trainable=False, name='test_hidden')
saved_test_state = tf.Variable(tf.zeros([batch_size, num_
nodes]),trainable=False, name='test_cell')

Next we will define the LSTM cell computations:

def lstm_cell(i, o, state):
    input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) +
                           ib)
    forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) +
                            fb)
    update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
    state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) +
                            ob)
    return output_gate * tf.tanh(state), state
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Then we will iteratively calculate the state and output of the LSTM cell for num_
unrollings steps at each training step:

# These two python variables are iteratively updated
# at each step of unrolling
output = saved_output
state = saved_state

# Compute the hidden state (output) and cell state (state)
# recursively for all the steps in unrolling
for i in train_inputs:
    output, state = lstm_cell(i, output, state)
    # Append each computed output value
    outputs.append(output)

# Calculate the score values
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

# Predictions.
train_prediction = tf.nn.softmax(logits)

Then, after saving the output and state of the LSTM to the variables we defined 
earlier, we will calculate loss, by summing across unrolled axis and taking the 
average over the batch axis:

# State saving across unrollings.
with tf.control_dependencies([saved_output.assign(output),
                            saved_state.assign(state)]):
    # When define the loss we need to sum accross all time steps
    # But average across the batch axis
    loss = 0
    split_logits = tf.split(logits,num_or_size_splits=num_unrollings)
    
    for lgt,lbl in zip(split_logits, train_labels):
        loss += tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits_v2(logits=lgt,
            labels=lbl)
        )
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Finally, we will define an optimizer to optimize the weights of the LSTM and the 
softmax layer with respect to the loss:

optimizer = tf.train.AdamOptimizer(learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
    zip(gradients, v))

Having generated the image feature vectors, prepared data to be fed to the LSTM, 
and defined calculations required to learn the LSTM defined, we will now discuss 
the evaluation metrics that we can use to evaluate the captions generated for our 
validation dataset.

Evaluating the results quantitatively
There are many different techniques for evaluating the quality and the relevancy 
of the captions generated. We will briefly discuss several such metrics we can use 
to evaluate the captions. We will discuss four metrics: BLEU, ROGUE, METEOR, 
and CIDEr. All these measures share a key objective, to measure the adequacy 
(meaning of generated text) and fluency (grammatical correctness of text) in the 
generated text. To calculate all these measures, we will use a candidate sentence and 
a reference sentence, where a candidate sentence is the sentence/phrase predicted 
by our algorithm and the reference sentence is the true sentence/phrase we want 
to compare with.

BLEU
Bilingual Evaluation Understudy (BLEU) was proposed by Papineni and others in 
BLEU: A Method for Automatic Evaluation of Machine Translation, Proceedings of the 40th 
Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July 
(2002): 311-318. It measures the n-gram similarity between reference and candidate 
phrases, in a position-independent manner. This means that a given n-gram from 
the candidate is present anywhere in the reference sentence and is considered to be 
a match. BLEU calculates the n-gram similarity in terms of precision. BLEU comes in 
several variations (BLEU-1, BLEU-2, BLEU-3, and so on), denoting the value of n in 
the n-gram.

( )
( )
( )

candidate, ref
clipn gram in candidate

n gram in candidate

Count n gram
BLEU BP

Count n gram
∀ −

−

−
= ×

−
∑
∑
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Here, Count(n-gram) is the number of total occurrences of a given n-gram in the 
candidate sentence. Countclip (n-gram) is a measure that calculates Count(n-gram) for 
a given n-gram and clips that value by a maximum value. The maximum value for 
an n-gram is calculated as the number of occurrences of that n-gram in the reference 
sentence. For example, consider these two sentences:

Candidate: the the the the the the the
Reference: the cat sat on the mat

Count("the") = 7
Countclip ("the")=2

Note that the entity, 
( )
( )

clipn gram in candidate

n gram in candidate

Count n gram

Count n gram
∀ −

∀ −

−

−
∑
∑ , is a form of precision. In fact, it is 

called the modified n-gram precision. When multiple references are present, the 
BLEU is considered to be the maximum:

However, the modified n-gram precision tends to be higher for smaller candidate 
phrases because this entity is divided by the number of n-grams in the candidate 
phrase. This means that this measure will incline the model to produce shorter 
phrases. To avoid this, a penalty term, BP is added to the preceding term that 
penalizes short candidate phrases as well. BLEU possesses several limitations such 
as BLEU ignores synonyms when calculating the score and does not consider recall, 
which is also an important metric to measure accuracy. Furthermore, BLEU appears 
to be a poor choice for certain languages. However, this is a simple metric that has 
been found to correlate well with human judgement as well in most situations. We 
will discuss BLEU in more detail in the next chapter.

ROUGE
Recall-Oriented Understudy for Gisting Evaluations (ROUGE) proposed by  
Chin-Yew Lin in ROUGE: A Package for Automatic Evaluation of Summaries, Proceedings 
of the Workshop on Text Summarization Branches Out (2004), can be identified as a 
variant of BLEU, and uses recall as the basic performance metric. ROGUE metric 
looks like the following:

ROUGE N match

ref

Count
Count

− =
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Here, matchCount  is the number of n-grams from candidates that were present in the 
reference, and refCount  is the total n-grams present in the reference. If there exist 
multiple references, ROUGE-N is calculated as follows:

( )( )ROUGE max ROUGE ,iN N ref candidate− = −

Here, refi is a single reference from the pool of available references. There are 
numerous variants of ROGUE measure that introduce various improvements to 
the standard ROGUE metric. ROGUE-L computes the score based on the longest 
common subsequence found between the candidate and reference sentence pairs. 
Note that the longest common subsequence does not need to be continuous in 
this case. Next, ROGUE-W calculates the score based on the longest common 
subsequence, which is penalized by the amount of fragmentation present within the 
subsequence. ROGUE also suffers from limitations such as not considering precision 
in the calculations of the score. 

METEOR
Metric for Evaluation of Translation with Explicit ORdering (METEOR), proposed 
by Michael Denkowski and Alon Lavie in Meteor Universal: Language Specific 
Translation Evaluation for Any Target Language, Proceedings of the Ninth Workshop on 
Statistical Machine Translation (2014): 376-380, is a more advanced evaluation metric 
that performs alignments for a candidate and a reference sentence. METEOR is 
different from BLEU and ROUGE in the sense that METEOR takes the position of 
words into account. When computing similarities between a candidate sentence and 
a reference sentence, the following cases are considered as matches:

•	 Exact: The word from the candidate exactly matches the word from the 
reference sentence

•	 Stem: A stemmed word (for example, walk of the word walked) matches the 
word from reference sentence

•	 Synonym: The word from a candidate sentence is a synonym for the word 
from the reference sentence

To calculate the METEOR score, the matches between a reference sentence and 
a candidate sentence can be shown as in Figure 9.8, with the help of a table. Then, 
precision (P) and recall (R) values are calculated based on the number of matches 
present in the candidate and reference sentences. Finally, the harmonic mean 
of P and R is used to compute the METEOR score:

( )
( ). 1 frag

1mean
P RF

P R
βγ

α α
= − ×

+ −



Applications of LSTM – Image Caption Generation

[ 290 ]

Here, α, β, and γ are tunable parameters, and frag penalizes fragmented matches, in 
order to prefer candidate sentences that have less gaps in matches as well as closely 
follow the order of words of the reference sentence. The frag is calculated by looking 
at the number of crosses in the final unigram mapping (Figure 9.8):

Figure 9.8: Different possible alignments for two strings

Figure 9.9: The METEOR word matching table
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You can see that we denoted matches between the candidate sentence and the 
reference sentence in circles and ovals. For example, we denote exact matches with a 
solid black circle, synonyms with a dashed hollow circle, and stemmed matches with 
dotted circles.

METEOR is computationally more complex, but has been often found to correlate 
with the human judgement more than BLEU, suggesting that METEOR is a better 
evaluation metric than BLEU.

CIDEr
Consensus-based Image Description Evaluation (CIDEr), proposed by Ramakrishna 
Vedantam and others in CIDEr: Consensus-based Image Description Evaluation, IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, is another 
measure that evaluates the consensus of a candidate sentence to a given set of 
reference statements. CIDEr is defined to measure the grammaticality, saliency, 
and accuracy (that is, precision and recall) of a candidate sentence.

First, CIDEr weighs each n-gram found in both the candidate and reference 
sentences by means of TF-IDF, so that more common n-grams (for example, if 
words considered for example, a and the) will have a smaller weight, whereas rare 
words will have a higher weight. Finally, CIDEr is calculated as the cosine similarity 
between the vectors formed by TF-IDF weighed n-grams found in the candidate 
sentence and the reference sentence:

( )
( ) ( )
( ) ( )

.1CIDEr cand, ref vec vec j

j
vec vec j

TF IDF cand TF IDF ref
m TF IDF cand TF IDF ref

− −
=

− −
∑

Here, cand is the candidate sentence, ref is the set of reference sentences, refj is the 
jth sentence of ref, and m is the number of reference sentences for a given candidate. 
Most importantly, ( )vecTF IDF cand−  is the TF-IDF values calculated for all the 
n-grams in the candidate sentence and formed as a vector. ( )vec jTF IDF ref−  is the 
same vector for the reference sentence, refi. ( ).vecTF IDF−  denotes the magnitude of  
the vector.

Overall, it should be noted that there is no clear-cut winner that is able to perform 
well across all the different tasks that are found in natural language processing. 
These metrics are significantly task-dependent and should be carefully chosen 
depending on the task.
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BLEU-4 over time for our model
In Figure 9.10, we report the evolution of the BLEU-4 value for our experiment. 
We can see that the score goes up over time and reaches close to 0.3. Note that the 
current state of the art (at the time of writing) for the MS-COCO dataset is around 
0.369 (Bottom-Up and Top-Down Attention for Image Captioning and Visual Question 
Answering, Anderson and others, 2017), which is obtained with much more complex 
models as well as more advanced regularization being employed. In addition, the 
actual full training set of MS-COCO is almost three times the size of the training set 
we used. So, a BLEU-4 score of 0.3 with limited training data, a single LSTM cell and 
no special regularization is quite a good result:

Figure 9.10: BLEU-4 for the image caption generation example over time
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Captions generated for test images
Let's see what sort of captions are generated for the test images.

After 100 steps, the only thing that our model has learned is that the caption starts 
with an SOS token, and there are some words followed by a bunch of EOS tokens  
(see Figure 9.11):

Figure 9.11: Captions generated after 100 steps
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After 1,000 steps, our model knows to generate slightly semantic phrases and 
recognizes objects in some images correctly (for example, a man holding a tennis 
racket, shown in Figure 9.12). However, the text seems to be short and vague, and in 
addition, several images are described incorrectly:

Figure 9.12: Captions generated after 1,000 steps
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After 2,000 steps, our model has become quite good at generating expressive phrases 
composed of proper grammar (see Figure 9.13). Images are not described with small 
and vague phrases as we saw in step 1,000 before:

Figure 9.13: Captions generated after 2,000 steps
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After 5,000 steps, our model now recognizes most of the images correctly (see 
Figure 9.14). Also, it can generate very relevant and grammatically correct phrases, 
explaining what is happening in the image. However, note that it is not perfect. For 
example, our algorithm gets the fourth image quite wrong. The image is actually 
a building, whereas our algorithm knows that it's something urban, but is unable 
to distinguish the building, mistaking it for a clock. The eighth image is also 
recognized incorrectly. The image depicts an airplane in the sky, but the algorithm 
mistakes it for a person flying a kite:

Figure 9.14: Captions generated after 5,000 steps

After 10,000 steps, our algorithm is quite good at describing images. It correctly 
describes most of the images, but still it gets ninth image wrong. The image shows a 
pizza, and the algorithm seems to think this is a sandwich (see Figure 9.15). Another 
observation is that the seventh image is actually a woman holding a cell phone, but 
the algorithm seems to think that it is a man. However, we can see that there are 
people in the background of that image, so the algorithm might be mistaking the 
person in the foreground for that of the background. From this point, the algorithm 
generates different variations of what is happening in the image, as each image has 
multiple captions for training:
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Figure 9.15: Captions generated after 10,000 steps

Remember that these are the results obtained using approximately only one third 
of the full training data available. Furthermore, we are using a simple single cell 
LSTM. We encourage you to try to maximize the performance by employing the 
full set of training data as well as to use multilayered LSTMs (or GRUs) with better 
regularization (dropout).

Using TensorFlow RNN API with 
pretrained GloVe word vectors
So far, we have implemented everything from scratch in order to understand the 
exact underlying mechanisms of such a system. Here we will discuss how to use the 
TensorFlow RNN API along with pretrained GloVe word vectors in order to reduce 
both the amount of code and learning for the algorithm. This will be available as 
an exercise in the lstm_image_caption_pretrained_wordvecs_rnn_api.ipynb 
notebook found in the ch9 folder.
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We will first discuss how to download the word vectors and then discuss how to load 
only the relevant word vectors from the downloaded file, as the vocabulary size of the 
pretrained GloVe vectors is around 400,000 words, whereas ours is just 18,000. Next, 
we will perform some elementary spelling correction of the captions, as there seems 
to be a lot of spelling mistakes present. Then we will discuss how we can process the 
cleaned data using a tf.nn.rnn_cell.LSTMCell module found in the RNN API.

Loading GloVe word vectors
First, download the GloVe embedding file available at https://nlp.stanford.
edu/projects/glove/ and place it in the ch9 folder. Next, we will define a NumPy 
array to hold the loaded relevant word vectors from GloVe:

pret_embeddings = np.empty(shape=(vocabulary_size,50),
                          dtype=np.float32)

Then we will open the ZIP file containing the downloaded GloVe word vectors and 
read line by line. The ZIP file contains several different variations of GloVe having 
different embedding sizes (for example, 50, 100). We will use the glove.6B.50d.txt 
file found in the ZIP file as this is the smallest and is adequate for the problem we are 
trying to solve. Each line in the file will be of the following format (each value in a 
line separated by a space):

dog 0.11008 -0.38781 -0.57615 -0.27714 0.70521 ...

In the following code, we show how to extract relevant word embeddings 
from the file. First, we will open the ZIP file and read the text file we identified 
(glove.6B.50d.txt):

with zipfile.ZipFile('glove.6B.zip') as glovezip:
    with glovezip.open('glove.6B.50d.txt') as glovefile:

Next we will enumerate each line in the text file and read the word that line 
corresponds to (that is, the first element of the line), and also read the corresponding 
word vector for that word:

for li, line in enumerate(glovefile):
    # Decode the line to get rid of any
    # unparsable symbols
    line_tokens = line.decode('utf-8').split(' ')
    
    # Get the word
    word = line_tokens[0]
    
    # Get the vector
    vector = [float(v) for v in line_tokens[1:]]
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Then, if the word is found in our dataset, we will save that vector in the NumPy array 
we defined previously that holds the word vectors. We will save a given vector in the 
row given by our dictionary variable that holds a mapping of words to a unique 
ID. At the same time, in addition to the given word, we will also process the word 
produced by adding an apostrophe and s to the end of the word (for example, cat 
→ cat's). We initialize both these variations with the word vector corresponding to 
the original word (for example, cat) as the GloVe file doesn't contain words denoting 
possession (for example, cat's). We will also save all the words from the captions that 
matched some word in GloVe into the words_in_glove list. This will be used in the 
next step:

if word in dictionary.keys():
    words_in_glove.append(word)
    pret_embeddings[dictionary[word],:] = vector
    words_found += 1
    found_word_ids.append(dictionary[word])
    
    word_with_s = word + '\'s'
    if word_with_s in dictionary.keys():
        pret_embeddings[dictionary[word_with_s],:] = 
            vector
        words_found += 1
        found_word_ids.append(dictionary[word_with_s])

Cleaning data
Now we have to deal with an issue that we ignored when we had to learn word 
vectors from scratch. There are many spelling mistakes (in the captions) present in 
the MS-COCO dataset. Therefore, to utilize the pretrained word vectors maximally, 
we need to correct these spelling mistakes to make sure that these words will have 
the correct word vector assigned to them. In order to correct the spellings, we use the 
following procedure.

First, we will compute the IDs of the words that were not found in the GloVe file 
(possibly due to wrong spellings):

notfound_word_ids = list(set(list(range(0,vocabulary_size))) -
                        set(found_word_ids))

Then, if any of these words were found in a caption, we will correct the spellings of 
those words using the following logic.
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First, calculate the similarity between the incorrect word (denoted by cw) and all 
words in the words_in_glove list (each identified by gw), using string matching:

# for each word not found in pretrained embeddings  
# we find most similar spellings
                    for gw in words_in_glove:
                        cor, found_sim = correct_spellings.correct_
wrong_word(cw,gw,cap)

If this similarity is greater than 0.9 (heuristically chosen), we will replace the 
incorrect word with the following logic. We had to correct some words manually 
as there were multiple highly similar words to some words (for example, stting was 
similar to both setting and sitting):

def correct_wrong_word(cw,gw,cap):

    '''
    Spelling correction logic
    This is a very simple logic that replaces
    words with incorrect spelling with the word that highest
    similarity. Some words are manually corrected as the words
    found to be most similar semantically did not match.
    '''

    correct_word = None
    found_similar_word = False
    sim = string_similarity(gw,cw)
    if sim>0.9:
        if cw != 'stting' and cw != 'sittign' and \ 
            cw != 'smilling' and \
            cw!='skiies' and cw!='childi' and cw!='sittion' and \
            cw!='peacefuly' and cw!='stainding' and \
            cw != 'staning' and cw!='lating' and cw!='sking' and \
            cw!='trolly' and cw!='umping' and cw!='earing' and \
            cw !='baters' and cw !='talkes' and cw !='trowing' and \
            cw !='convered' and cw !='onsie' and cw !='slying':
            print(gw,' ',cw,' ',sim,' (',cap,')')
            correct_word = gw
            found_similar_word = True
        elif cw == 'stting' or cw == 'sittign' or cw == 'sittion':
            correct_word = 'sitting'
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            found_similar_word = True
        elif cw == 'smilling':
            correct_word = 'smiling'
            found_similar_word = True
        elif cw == 'skiies':
            correct_word = 'skis'
            found_similar_word = True
        elif cw == 'childi':
            correct_word = 'child'
            found_similar_word = True
        .
        .
        .
        elif cw == 'onsie':
            correct_word = cw
            found_similar_word = True
        elif cw =='slying':
            correct_word = 'flying'
            found_similar_word = True
        else:
            raise NotImplementedError

    else:
        correct_word = cw
        found_similar_word = False
return correct_word, found_similar_word

Although not all the spelling mistakes will be captured by the preceding code, most 
of them will be. Also, this is adequate for our exercise.
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Using pretrained embeddings with 
TensorFlow RNN API
After we preprocess the caption data, we will move on to learning how to use the 
RNN API with the pretrained GloVe embeddings. We will first discuss how we can 
make the embedding size of GloVe vectors (50) to match the size of the image feature 
vectors (1,000). Thereafter, we will explore how we can use the off-the-shelf LSTM 
modules from TensorFlow RNN API to learn from the data. Finally, we will learn 
how we can feed data with different modalities (images and text) to the model, as 
images and text have to be processed differently. We will now discuss the details, 
step by step. We depict the full learning model as a diagram in Figure 9.16:

Figure 9.16: Using pretrained GloVe embeddings with the TensorFlow RNN API
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Defining the pretrained embedding layer and the 
adaptation layer
We will first define a TensorFlow variable to contain the pretrained embeddings. 
We'll leave this as a trainable variable as we only did a crude initialization for some 
words (that is, we used the same word vectors for the 's extension of the words). So 
the word vectors will improve as the training continues:

embeddings = tf.get_variable(
        'glove_embeddings',shape=[vocabulary_size, 50],
        initializer=tf.constant_initializer(pret_embeddings,
        dtype=tf.float32)
)

We will then define the weights and biases for the adaptation layer. The adaptation 
layer takes an input of the [batch_size, 50] size, which is a batch of GloVe word 
vectors, and we'll convert it to a batch of vectors of the [batch_size, 1000] size. 
This will act as a linear layer that adapts the GloVe word vectors to the correct input 
size (to match the size of image feature vectors):

with tf.variable_scope('embeddings'):
    # We need to match the size of the input to the LSTM to
    # be same as input_size always
    # For that we use a dense layer that will take the input
    # of size 50 and produce inputs of size 1000 (input size)
    embedding_dense = tf.get_variable('embedding_dense',
                      shape=[50,1000],
                      dtype=tf.float32,
              initializer=tf.contrib.layers.xavier_initializer())
    embedding_bias = tf.get_variable('embedding_bias',
                     dtype=tf.float32,
                     initializer=tf.random_uniform(
                         shape=[1000],
                         minval=-0.1,
                         maxval=0.1))

Defining the LSTM cell and softmax layer
Next we will define the LSTM cell that learns to model an image followed by a 
sequence of words, and a softmax layer which converts the LSTM cell output to a 
probabilistic prediction. We will use DropoutWrapper (similar to that in Chapter 8, 
Applications of LSTM – Generating Text) to improve performance:

# LSTM cell and Dropout Cell
with tf.variable_scope('rnn'):
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    lstm = tf.nn.rnn_cell.LSTMCell(num_nodes)
    # We use dropout to improve the performance
    dropout_lstm = rnn.DropoutWrapper(
        cell=lstm, input_keep_prob=0.8,
        output_keep_prob=0.8, state_keep_prob=1.0,
        dtype=tf.float32
    )

Here, we will define the weights and biases of the softmax layer:

# Defining the softmax weights and biases
with tf.variable_scope('rnn'):
    w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size],  
                    stddev=0.01), 
                    name='softmax_weights', 
                    trainable=True)
    b = tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01), 
                    name='softmax_bias',trainable=True)

Defining inputs and outputs
We will now define the input and output placeholders that will hold the inputs and 
outputs required to train our model. We will have three important placeholders 
feeding values in:

•	 is_train_text: This is a num_unrollings long list of placeholders, where 
each placeholder contains a Boolean value representing if we are currently 
feeding in the image feature vector or the text at a given time step. This is 
essential as we will later define a conditional input processing operation 
(that is, if the Boolean is false, return the image feature as is; if the Boolean 
is true, perform tf.nn.embedding_lookup on the inputs).

•	 train_inputs: This is a list of placeholders having the num_unrollings 
placeholders, where each placeholder contains an input of the [batch_size, 
1000] size (where 1000 is the input_size). For images, we will feed in the 
image feature vector, and for text we will feed in a batch of word IDs  
(as returned by the dictionary variable containing a mapping from a word 
to a unique ID) from the captions. However, we will append each word 
ID with 999 zeros to make the input size 1,000 (where the 999 zeros are 
discarded at processing).

•	 train_labels: This is a list of placeholders having the num_unrollings 
placeholders that will contain the corresponding output to a given input 
(that is, SOS, if the input is image feature vectors, or the next word in the 
caption, if the input is a word in the caption).
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The code will be as shown here:

is_train_text, train_inputs, train_labels = [],[],[]

for ui in range(num_unrollings):
    is_train_text.append(tf.placeholder(tf.bool,
        shape=None, name='is_train_text_data_%d'%ui))
    train_inputs.append(tf.placeholder(tf.float32,
        shape=[batch_size,input_size],name='train_inputs_%d'%ui))
    train_labels.append(tf.placeholder(tf.int32,
         shape=[batch_size], name = 'train_labels_%d'%ui))

Processing images and text differently
Here we will understand one of the most crucial differences we make when using 
pretrained embeddings, compared with when we learned embeddings from 
scratch. When we were learning embeddings from scratch, we had the flexibility of 
making the embedding size match the image feature vector size. Having the same 
dimensionality of inputs is a must, as LSTMs cannot handle inputs with arbitrary 
dimensionality. However, since now we are using pretrained embeddings, and they 
do not match the input size we have specified, we need to use an adaptation layer 
that maps the 50-dimensional inputs to a 1,000-dimensional input. Also, we need to 
say to TensorFlow that we do not need the previous transformation for the image 
feature vectors. We will see in detail how to implement this.

First, we will use the tf.cond operation to differentiate between the two different 
processing mechanisms. The tf.cond(pred, true_fn, false_fn) operation can 
switch between different operations (that is, true_fn and false_fn), depending on 
whether the Boolean pred is true or false. We need to achieve the following:

•	 If data is image feature vectors (that is, is_train_text is false), we need 
no additional processing. We will simply forward data as it is using the 
tf.identity operation.

•	 If data is text (word IDs) (that is, is_train_text is true), we first need  
to perform the tf.nn.embedding_lookup operation on the batch of word IDs 
(found in the zeroth column). Next, we will pass the returned word vectors 
(of size [batch_size, 50]) through the adaptation layer to make the word 
vectors [batch_size, 1000] using embedding_dense and embedding_bias 
(this performs similar to a typical layer of a fully connected neural network 
without the nonlinear activation).
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We write the processed inputs to train_inputs_processed:

train_inputs_processed = []
for ui in range(num_unrollings):
    
    train_inputs_processed.append(
        tf.cond(is_train_text[ui],
                lambda: tf.add(
                    tf.matmul(tf.nn.embedding_lookup(
                        embeddings, tf.reduce_sum(tf.cast(
                                       train_inputs[ui],tf.int32),
                        axis=1)
                    ),embedding_dense),embedding_bias),
                lambda: tf.identity(train_inputs[ui]))
    )

We also need to set the shape of each tensor found in the train_inputs_processed 
list because, after performing the tf.cond operation, the shape information is lost. 
Also, the shape information is required for LSTM cell calculations:

[t_in.set_shape([batch_size,input_size]) for t_in in train_inputs_
processed]

Defining the LSTM output calculation
Next, we will define the initial state of the LSTM cell:

initial_state = lstm.zero_state(batch_size, dtype=tf.float32)

Then, using the tf.nn.dynamic_rnn function, we will calculate the output for all the 
time steps in the num_unrollings window, which we will calculate LSTM output in 
a single step:

# Gives a [num_unrolling, batch_size, num_nodes] size output
train_outputs, initial_state = tf.nn.dynamic_rnn(
    dropout_lstm, tf.concat([tf.expand_dims(t_in,axis=0) for t_in in 
train_inputs_processed],axis=0), 
    time_major=True, initial_state=initial_state
)
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Defining the logits and predictions
The previously calculated train_output will be of the [num_unrollings, batch_
size, vocabulary_size] size. This is known as a time-major format. Then, to 
calculate the logits and predictions from the LSTM output in a single go for all the 
num_unrollings time steps, we will reshape the final output as follows:

final_output = tf.reshape(train_outputs,[-1,num_nodes])
logits = tf.matmul(final_output, w) + b
train_prediction = tf.nn.softmax(logits)

Defining the sequence loss
Then we will reshape the logits and labels back to the time-major format, as this is 
required by the loss function we're using:

time_major_train_logits = tf.reshape(logits,[
    num_unrollings,batch_size,vocabulary_size])

time_major_train_labels = tf.reshape(tf.concat(
    train_labels,axis=0),[num_unrollings,batch_size]) 

We now calculate the loss using the tf.contrib.seq2seq.sequence_loss function. 
We will need the loss averaged across the batch, but summed over the time steps:

loss = tf.contrib.seq2seq.sequence_loss(
    logits = tf.transpose(time_major_train_logits,[1,0,2]),
    targets = tf.transpose(time_major_train_labels),
    weights= tf.ones([batch_size, num_unrollings],
                    dtype=tf.float32),
    average_across_timesteps=False,
    average_across_batch=True
)
loss = tf.reduce_sum(loss)

Defining the optimizer
Finally, we will define the optimizer that will optimize the pretrained embeddings, 
the adaptation layer, the LSTM cell, and the softmax weights with respect to the loss 
defined earlier. We will use AdamOptimizer and the learning rate decay over time 
to improve performance. We also decay the learning rate as we did in Chapter 8, 
Applications of LSTM – Generating Text:

# This variable and operation are used to decay the learning rate
# as we saw in chapter 8
global_step = tf.Variable(0, trainable=False)
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inc_gstep = tf.assign(global_step,global_step + 1)

# We define a decaying learning rate
learning_rate = tf.train.exponential_decay(
    0.001, global_step, decay_steps=1, decay_rate=0.75,
    staircase=True)
# We define Adam Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate)

# Gradient clipping
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
    zip(gradients, v))

After defining all the necessary TensorFlow operations, you can run the optimization 
process for a predefined number of steps, interleaved by calculation of the BLEU 
score on test data as well as predictions for several test image. The exact process 
can be found in the exercise file.

Summary
In this chapter, we focused on a very interesting task that involves generating 
captions for given images. Our learning model was a complex machine learning 
pipeline, which included the following:

•	 Inferring feature vectors for a given image using a CNN
•	 Learning word embeddings for the words found in the captions
•	 Training an LSTM with the image feature vectors and their  

corresponding captions

We discussed each component in detail. First, we talked about how we can use a 
pretrained CNN model on a large classification dataset (that is, ImageNet) to extract 
good feature vectors without training a model from scratch. For this, we used a 
VGG with 16 layers. Next we discussed step by step how we can create TensorFlow 
variables, load the weights into them, and create the network. Finally, we ran a few 
of the test images through the model to make sure the model is actually capable of 
recognizing objects in the image.

Then we used the CBOW algorithm to learn good word embeddings of the words 
found in the captions. We made sure that we matched the dimensionality of the 
word embeddings with the image feature vectors, as standard LSTMs cannot handle 
inputs with dynamic dimensionality.
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Finally, we used a simple LSTM network, where we input a sequence of data, 
in which the first element is the image feature vector preceded by the word 
embeddings corresponding to each word in the caption belonging to that image. First 
we preprocessed the captions by introducing two tokens to denote the beginning and 
end of each caption and then by truncating the captions, so that all of them were of 
the same length.

Thereafter, we discussed several different metrics (BLEU, ROUGE, METEOR, and 
CIDEr), which we can use to quantitatively evaluate the generated captions, and 
we saw that as we ran our algorithm through the training data, the BLEU-4 score 
increased over time. Additionally, we visually inspected the generated captions and 
saw that our ML pipeline progressively gets better at captioning images.

Finally, we discussed how we can use the pretrained GloVe embeddings and the 
TensorFlow RNN API to perform the same task with less code and more efficiency.

In the next chapter, we will learn how we can implement a machine translation 
system that takes a sentence/phrase in a source language as an input, and output a 
sentence/phrase that is the corresponding translation of a different language.
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Sequence-to-Sequence 
Learning – Neural  

Machine Translation
Sequence-to-sequence learning is the term used for tasks that require mapping an 
arbitrary length sequence to another arbitrary length sequence. This is one of the 
most sophisticated tasks that involves learning many-to-many mappings. Examples 
of this task include Neural Machine Translation (NMT) and creating chatbots. NMT 
is where we translate a sentence from one language (source language) to another 
(target language). Google Translate is an example of an NMT system. Chatbots (that 
is, software that can communicate with/answer a person) are able to converse with 
humans in a realistic manner. This is especially useful for various service providers, 
as chatbots can be used to find answers for easily solvable questions which 
customers might have, instead of redirecting them to human operators.

In this chapter, we will learn how to implement a NMT system. However, before 
diving directly into such recent advances, we will first briefly visit some of the 
Statistical Machine Translation (SMT) methods, which preceded NMT and were 
the state-of-the-art systems until NMT caught up. Next, we will walk through the 
steps required for building an NMT. Finally, we will learn how to implement a real 
NMT system that translates from German to English, step by step.
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Machine translation
Humans often communicate with each other by means of a language, compared to 
other communication methods (for example, gesturing). Currently, more than 5,000 
languages are spoken worldwide. Furthermore, learning a language to a level where 
it is easily understandable for a native speaker of that language is a difficult task to 
master. However, communication is essential for sharing knowledge, socializing and 
expanding your network. Therefore, language acts as a barrier for communicating 
with different parts of the world. This is where machine translation (MT) comes 
in. MT systems allow the user to input a sentence in his own tongue (known as the 
source language) and output a sentence in a desired target language.

The problem with MT can be formulated as follows. Say, we are given a sentence (or 
a sequence of words) belonging to a source language S, defined by the following:

{ }1 2 3, , , ,s LW w w w w= …

Here, sW S∈ .

The source language would be translated to a sentence TW , where T is the target 
language and is given by the following:

{ }1 2 3, , , ,T MW w w w w′ ′ ′ ′= …

Here, TW T∈ .

TW  is obtained through the MT system, which outputs the following:

( )| *T s T Tp W W W W∀ ∈

Here, *TW  is the pool of possible translation candidates found by the algorithm for 
the source sentence. Also, the best candidate from the pool of candidates is given by 
the following equation:

( )( )| ;
T T

best
T T SW W
W argmax p W W∗∈

= θ

Here, θ is the model parameters. During training, we optimize the model with 
to maximize the probability of some known target translations for a set of 
corresponding source translations (that is, training data).

So far, we discussed the formal setup of the language translation problem that we're 
interested in solving. Next, we will walk through the history of MT to get a feel of 
how people tried solving this in the early days.
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A brief historical tour of machine 
translation
Here we will discuss the history of MT. The inception of MT involved rule-based 
systems. Then, more statistically sound MT systems emerged. An Statistical 
Machine Translation (SMT) used various measures of statistics of a language 
to produce translations to another language. Then came the era of NMT. NMT 
currently holds the state of the art performance in most machine learning tasks 
compared with other methods.

Rule-based translation
NMT came long after statistical machine learning, and statistical machine learning 
has been around for more than half a century now. The inception of SMT methods 
dates back to 1950-60, when during one of the first recorded projects, the Georgetown-
IBM experiment, more than 60 Russian sentences were translated to English.

One of the initial techniques for MT was word-based machine translation. This 
system performed word-to-word translations using bilingual dictionaries. However, 
as you can imagine, this method has serious limitations. The obvious limitation 
is that word-to-word translation is not a one-to-one mapping between different 
languages. In addition, word-to-word translation may lead to incorrect results as 
it does not consider the context of a given word. The translation of a given word in 
the source language can change depending on the context in which it is used. To 
understand this with a concrete example, let's look at the translation example from 
English to French in Figure 10.1. You can see that in the given two English sentences 
a single word changes. However this creates drastic changes in the translation:

Figure 10.1: Translations (English to French) between languages are not one-to-one mappings between words

In the 1960s, the Automatic Language Processing Advisory Committee (ALPAC) 
released a report, Languages and machines: computers in translation and linguistics, 
National Academy of the Sciences (1966), on MT's prospects. The conclusion was this:

There is no immediate or predictable prospect of useful machine translation.
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This was because MT was slower, less accurate, and more expensive than human 
translation at the time. This delivered a huge blow to MT advancements, and almost 
a decade passed in silence.

Next came corpora-based MT, where an algorithm was trained using tuples of  
source sentence, and the corresponding target sentence was obtained through a 
parallel corpus, that is, the parallel corpus will be of format, ([(<source_sentence_1>, 
<target_sentence_1>), (<source_sentence_2>, <target_sentence_2>), …]). The parallel 
corpus is a large text corpus formed as tuples, consisting of text from the source 
language and the corresponding translation of that text. An illustration of this is 
shown in Table 10.2. It should be noted that building a parallel corpus is much 
easier than building bilingual dictionaries and more accurate because the training 
data is richer than word-to-word training data. Furthermore, instead of directly 
relying on manually created bilingual dictionaries, the bilingual dictionary (that 
is, the transition models) of two languages can be built using the parallel corpus. 
A transition model shows how likely a target word/phrase is to be the correct 
translation, given the current source word/phrase. In addition to learning the 
transition model, corpora based MT also learn the word alignment models. A word 
alignment model can represent how words in a phrase from the source language 
corresponds to the translation of that phrase. An example of a parallel corpora 
and a word alignment model is depicted in Figure 10.2.

An illustration of an example parallel corpora is shown in Table 10.2:

Source language sentences 
(English)

Target language sentences 
(French)

I went home Je suis allé à la maison
John likes to play guitar John aime jouer de la guitare
He is from England Il est d'Angleterre
… ….

Figure 10.2: Word alignment between two different languages
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Another popular approach was interlingual machine translation, which involved 
translating the source sentence to an language neutral interlingua (that is, a 
metalanguage), and then generating the translated sentence out of the interlingua. 
More specifically, an interlingual machine translation system consists of two 
important components, an analyzer and a synthesizer. The analyzer will take the 
source sentence and identify agents (for example, nouns), actions (for example, 
verb), and so on, and also how they interact with each other. Next, these identified 
elements are represented by means of an interlingual lexicon. An example of an 
interlingual lexicon can be made with the synsets (that is, the group of synonyms 
sharing a common meaning) available in WordNet. Then, from this interlingual 
representation, the synthesizer will create the translation. Since the synthesizer 
knows the nouns, verbs, and so on through the interlingual representation, it can 
generate the translation in the target language by incorporating language-specific 
grammar rules.

Statistical Machine Translation (SMT)
Next, more statistically sound systems started emerging. One of the pioneering 
models of this era was IBM Models 1-5 that did word-based translation. However, as 
we discussed earlier, word translations are not one-to-one from the source language 
to a target language (for example, compound words and morphology). Eventually, 
researchers started experimenting with phrase-based translation systems which 
made some notable advances in machine translation.

Phrase-based translation works in a similar way to word-based translation, except 
that it uses phrases of a language as the atomic units of translation instead of 
individual words. This is a more sensible approach as it makes modeling the one-to-
many, many-to-one, or many-to-many relationships between words easier. The main 
goal of phrase-based translation is to learn a phrase-translation model that contains 
a probability distribution of different candidate target phrases for a given source 
phrase. As you can imagine, this method involves maintaining huge databases of 
various phrases in two languages. A reordering step for phrases is also performed 
as there is no monotonic ordering of words between a sentence from one language 
and one in another. An example of this is shown in Figure 10.2. If the words are 
monotonically ordered between languages, there should not be crosses between 
word mappings.



Sequence-to-Sequence Learning – Neural Machine Translation

[ 316 ]

One of the limitations of this approach is that the decoding process (finding the 
best target phrase for a given source phrase) is expensive. This is due to the size of 
the phrase-database as well as a source phrase that often contains multiple target 
language phrases. To alleviate the burden, syntax-based translations arose.

In syntax-based translation, the source sentence is represented by a syntax tree. In 
Figure 10.3, NP represents a noun phrase, VP a verb phrase, and S a sentence. Then a 
reordering phase takes place, where the tree nodes are reordered to change the order 
of subject, verb, and object, depending on the target language. This is because the 
sentence structure can change depending on the language (for example, in English 
it is subject-verb-object, whereas in Japanese it is subject-object-verb). The reordering 
is decided according to something known as the r-table. The r-table contains the 
likelihood probabilities for the tree nodes to be changed to some other order:

Figure 10.3. Syntax tree for a sentence

An insertion phase then takes place. In the insertion phase, we stochastically insert 
a word into each node of the tree. This is due to the assumption that there is an 
invisible NULL word, and it generates target words at the random positions of the 
tree. Also, the probability of inserting a word is determined by something called the 
n-table, which is a table that contain probabilities of inserting a particular word into 
the tree.

Next the translation phase occurs, where each leaf node is translated to the target 
word in a word-by-word manner. Finally, the translated sentence is read off the 
syntax tree, to construct the target sentence.
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Neural Machine Translation (NMT)
Finally, around the year 2014, NMT systems were introduced. NMT is an end-to-
end system that takes a full sentence as an input, performs certain transformations, 
and then outputs the translated sentence for the corresponding source sentence. 
Therefore, NMT eliminates the need for the feature engineering required for 
machine translation, such as building phrase translation models and building syntax 
trees, which is a big win for the NLP community. Also, NMT has outperformed 
all the other popular MT techniques in a very short period, just two to three years. 
In Figure 10.4, we depict the results of various MT systems reported in the MT 
literature. For example, 2016 results are obtained from Sennrich, and others in their 
paper, Edinburgh Neural Machine Translation Systems for WMT 16, Association for 
Computational Linguistics, Proceedings of the First Conference on Machine Translation, 
August 2016: 371-376, and from Williams and others in their paper, Edinburgh's 
Statistical Machine Translation Systems for WMT16, Association for Computational 
Linguistics, Proceedings of the First Conference on Machine Translation, August 2016: 
399-410. All the MT systems are evaluated with the BLEU score. As we discussed in 
Chapter 9, Applications of LSTM – Image Caption Generation, the BLEU score denotes 
the number of n-grams (for example, unigrams and bigrams) of candidate translation 
that matched in the reference translation. So the higher the BLEU score, the better 
the MT system is. We'll discuss BLEU metric in detail later in the chapter. There is no 
need to highlight that NMT is a clear-cut winner:

Figure 10.4. Comparison of statistical machine translation system to NMT systems.  
Courtesy of Rico Sennrich.
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A case study assessing the potential of NMT systems is available in Is Neural Machine 
Translation Ready for Deployment? A Case Study on 30 Translation Directions, Junczys-
Dowmunt, Hoang and Dwojak, Proceedings of the Ninth International Workshop on Spoken 
Language Translation, Seattle (2016). The study looks at the performance of different 
systems on several translation tasks between various languages (English, Arabic, 
French, Russian, and Chinese). The results also support that NMT systems (NMT 
1.2M and NMT 2.4M) perform better than SMT systems (PB-SMT and Hiero).

Figure 10.5 shows several statistics for a set from a 2017 current state-of-the-art machine 
translator. This is from a presentation, State of the Machine Translation, Intento, Inc, 2017, 
produced by Konstantin Savenkov, cofounder and CEO at Intento. We can see that 
the performance of the MT produced by DeepL (https://www.deepl.com) appears 
to be competing closely with other MT giants, including Google. The comparison 
includes MT systems such as DeepL (NMT), Google (NMT), Yandex (NMT-SMT 
hybrid), Microsoft (has both SMT and NMT), IBM (SMT), Prompt (rule-based), and 
SYSTRAN (rule-based/SMT hybrid). The graph clearly shows that NMT systems are 
leading the current MT advancements. The LEPOR score is used to assess different 
systems. LEPOR is a more advanced metric than BLEU, and it attempts to solve the 
language bias problem. The language bias problem refers to the phenomenon that some 
evaluation metrics (such as, BLEU) perform well for certain languages, but perform 
poorly for some others.

However, it should also be noted that the results do contain some bias due to the 
averaging mechanism used in this comparison. For example, Google Translator has 
been averaged over a larger set of languages (including difficult translation tasks), 
whereas DeepL has been averaged over a smaller and relatively easier subset of 
languages. Therefore, we should not conclude that the DeepL MT system is better 
than the Google MT system. Nevertheless, the overall results provide a general 
comparison of the performance of the current NMT and SMT systems:

https://www.deepl.com
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Figure 10.5: Performance of various MT systems. Courtesy of Intento, Inc.

We saw that NMT has already outperformed SMT systems in very few years,  
and it is the current state of the art. We will now move onto discussing details and 
the architecture of an NMT system. Finally, we will be implementing an NMT 
system from scratch.
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Understanding Neural Machine 
Translation
Now that we have an appreciation for how machine translation has evolved over 
time, let's try to understand how state-of-the-art NMT works. First, we will take a 
look at the model architecture used by neural machine translators and then move on 
to understanding the actual training algorithm.

Intuition behind NMT
First, let's understand the intuition underlying an NMT system's design. Say, you 
are a fluent English and German speaker and were asked to translate the following 
sentence to English:

Ich ging nach Hause

This sentence translates to the following:

I went home

Although it might not have taken more than few seconds for a fluent person to 
translate this, there is a certain process involved in the translation. First, you read 
the German sentence, and then you create a thought or concept about what this 
sentence represents or implies. And finally, you translate the sentence to English. 
The same idea is used for building NMT systems (see Figure 10.6). The encoder reads 
the source sentence (that is, similar to you reading the German sentence). Then the 
encoder outputs a context vector (the context vector corresponds to the thought/
concept you imagined after reading the sentence). Finally, the decoder takes in the 
context vectors and outputs the translation in English:

Figure 10.6. Conceptual architecture of an NMT system
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NMT architecture
Now we will look at the architecture in more detail. The sequence-to-sequence 
approach discussed here was proposed by Sutskever, Vinyals, and Le in their paper, 
Sequence to Sequence Learning with Neural Networks, Proceedings of the 27th International 
Conference on Neural Information Processing Systems - Volume 2: 3104-3112. From the 
diagram in Figure 10.6, we can see that there are two major components in the NMT 
architecture. These are called the encoder and decoder. In other words, NMT can 
be seen as an encoder-decoder architecture. The encoder converts a sentence from a 
given source language to a thought, and the decoder decodes or translates the thought 
to a target language. As you can see, this shares some features with the interlingual 
machine translation method we briefly talked about. This is illustrated in Figure 10.7. 
The left-hand side of the context vector denotes the encoder (which takes a source 
sentence in word by word to train a time-series model). The right-hand side denotes 
the decoder that outputs word by word (while using the previous word as the 
current input) the corresponding translation of the source sentence. We will also use 
embedding layers (for both source and target languages) to provide word vectors as 
inputs to the models:

Figure 10.7: Unrolling the source and target sentences over time

With a basic understanding of what NMT looks like, let's formally define the 
objective of the NMT. The ultimate objective of an NMT system is to maximize 
the log likelihood, given a source sentence xs and its corresponding yT, that is, to 
maximize the following:

( )
1

1 |
N

T s
i

logP y x
N =
∑

Here, N refers to the number of source and target sentence tuples we have as 
training data.
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Then, during inference, for a given source sentence, infer
sx , we will find the best

Ty  
translation using the following:

( ) ( )
T

M
infer

y Y
i 1

| argmax | x
T

best infer i
T y Y T s T sy argmax P y x P y∈ ∈

=

= = ∏

Here, TY  is the set of possible candidate sentences.

Before we examine each part of the NMT architecture, let's define the mathematical 
notation to understand the system more concretely.

Let's define the encoder LSTM as encLSTM  and the decoder LSTM as decLSTM . At the 
time step t, let's define the cell state of the LSTM as ct and the external hidden state as 
ht. Therefore, feeding in the input xt into the LSTM produces ct and ht:

( )1 2 1, | , , ,t t t tc h LSTM x x x x −= …

Now, we will talk about the embedding layer, the encoder, the context vector, and 
finally, the decoder.

The embedding layer
In both Chapter 8, Applications of LSTM – Generating Text and Chapter 9, Applications 
of LSTM – Image Caption Generation, we discussed in detail the benefit of using word 
embedding instead of one-hot-encoded representations of words, especially when 
the vocabulary is large. Here as well, we are using a two-word embedding layer, 

sEmb , for the source language and TEmb  for the target language. So, instead of 
feeding xt directly into the LSTM, we will be getting ( )tEmb x . However, to  
avoid unnecessarily increasing the notation, we will assume ( )t tx Emb x= .

The encoder
As mentioned earlier, the encoder is responsible for generating a thought vector or a 
context vector that represents what is meant by the source language. For this, we will 
use an LSTM network (see Figure 10.8):
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Figure 10.8: An LSTM cell

The encoder is initialized with c0 and h0 as zero vectors. The encoder takes 
a sequence of words, { }1 2, , , L

s s s sx x x x= … , as the input and calculates a context 
vector, { },c hv v v= , where vc is the final cell state and vh is the final external hidden 
state obtained after processing the final element, L

Tx , of the sequence, xT. We 
represent this as the following:

( )1 2 1, | , , ,L L
L L enc s s s sc h LSTM x x x x −= …

c Lv c=

h Lv h=

The context vector
The idea of the context vector (v) is to represent a sentence of a source language 
concisely. Also, in contrast to how the encoder's states are initialized (that is, they 
are initialized with zeros), the context vector becomes the initial state for the decoder 
LSTM. In other words, the decoder LSTM doesn't start with an initial state of zeros, but 
with the context vector as its initial state. We will talk about this in more detail next.
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The decoder
The decoder is responsible for decoding the context vector into the desired 
translation. Our decoder is an LSTM network as well. Though it is possible for the 
encoder and decoder to share the same set of weights, it is usually better to use two 
different networks for the encoder and the decoder. This increases the number of 
parameters in our model, allowing us to learn the translations more effectively.

First, the decoder's states are initialized with the context vector, { },c hv v v= , as  
shown here:

0 cc v=

0 hh v=

Here, 0 0, decc h LSTM∈ .

This (v) is the crucial link that connects the encoder with the decoder to form an 
end-to-end computational chain (see in Figure 10.6 that the only thing shared by the 
encoder and decoder is v). Also, this is the only piece of information that is available 
to the decoder about the source sentence.

Then we will compute the mth prediction of the translated sentence with  
the following:

( )1 1 2 2, | , , , ,m m
m m dec T T T Tc h LSTM y v y y y− −= …

( )softmaxm
T softmax m softmaxy w h b= × +

The full NMT system with the details of how the LSTM cell in the encoder connects 
to the LSTM cell in the decoder and how the softmax layer is used to output 
predictions is shown in Figure 10.9:
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Figure 10.9: The encoder-decoder architecture with the LSTMs

Preparing data for the NMT system
In this section, we will talk about the exact process for preparing data for training 
and predicting from the NMT system. First, we talk will about how to prepare 
training data (that is, the source sentence and target sentence pairs) to train the NMT 
system followed by inputting a given source sentence to produce the translation of 
the source sentence.

At training time
The training data consists of pairs of source sentences and corresponding translations 
to the target language. An example might look like this:

•	 ( Ich ging nach Hause , I went home)
•	 ( Sie hat in der Schule gewartet , She was waiting at school)

We have N such pairs in our dataset. If we are to implement a fairly good translator, 
N needs to be in the scale of millions. An increase of training data as such, also 
implies prolonged training times.
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Next, we will introduce two special tokens: <s> and </s>. The <s> token represents 
the start of a sentence, whereas </s> represents the end of a sentence. Now, the data 
would look like this:

•	 (<s> Ich ging nach Hause </s> , <s> I went home </s>)
•	 (<s> Sie hat in der Schule gewartet </s> , <s> She was waiting at school </s>)

Thereafter, we will pad the sentences with the </s> tokens such that the source 
sentences are of a fixed length L and the target sentences are of a fixed length M.  
It should be noted that L and M do not need to be equal. This step results in  
the following:

•	 (<s> Ich ging nach Hause </s> </s> </s> , <s> I went home </s> </s> </s>)
•	 (<s> Sie hat in der Schule gewartet </s> , <s> She was waiting at school </s>)

If a sentence has a length greater than L or M, it is truncated to fit the length. Then 
the sentences are passed through a tokenizer to get the tokenized words out. Here I'm 
ignoring the second tuple (that is, a pair of sentences), as both are processed similarly:

(['<s>' , 'Ich' , 'ging' , 'nach' , 'Hause' , '</s>' , '</s>' , '</s>'] , ['<s>' , 'I' , 'went' , 
'home' , '</s>' , '</s>' , '</s>'])

It should be noted that bringing sentences to a fixed length is not essential, as LSTMs 
are capable of handling dynamic sequence sizes. However, bringing them to a fixed 
length helps us to process sentences as batches instead of processing them one by one.

Reversing the source sentence
Next we will perform a special trick on the source sentences. Say, we have the 
sentence, ABC in the source language, which we want to translate to αβγφ  in the 
target language. We will first reverse the source sentences so that the sentence, ABC 
would be read as CBA. This means that in order to translate ABC to αβγφ , we need 
to feed in CBA. This improves the performance of our model significantly, especially 
when the source and target languages share the same sentence structure (for 
example, subject-verb-object).

Let's try to understand why this helps. Mainly, it helps to build good communication 
between the encoder and the decoder. Let's start from the previous example. We will 
concatenate the source and target sentence:

ABCαβγφ
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If you calculate the distance (that is, the number of words separating two words) 
from A to α  or B to β , they will be the same. However, consider this when you 
reverse the source sentence, as shown here:

CBAαβγφ

Here, A is very close to α  and so on. Also, to build good translations, building good 
communications at the very start is important. This can possibly help NMT systems 
to improve their performance with this simple trick.

Now, our dataset becomes this:

(['</s>' , '</s>' , '</s>' , 'Hause' , 'nach' , 'ging' , 'Ich' , '<s>'] , ['<s>' , 'I' , 'went' , 
'home' , '</s>' , '</s>' , '</s>'])

Next, using the learned embeddings, sEmb  and TEmb , we replace each word with its 
corresponding embedding vector.

The other good news is that our source sentence ends with a <s> token and the 
target sentence starts with a <s> token, so during training, we do not have to do any 
special processing to build the link between the end of the source sentence and the 
beginning of the target sentence.

Note that the source sentence reversing step is a subjective 
preprocessing step. This might not be necessary for some 
translational tasks. For example, if your translation task is to 
translate from Japanese (that is, often written subject-object-verb 
format) to Filipino (often written verb-subject-object), then reversing 
the source sentence might actually cause harm rather than helping. 
This is because by reversing the text in the Japanese language, you 
are increasing the distance between the starting element of the target 
sentence (that is, the verb (Japanese)) and the corresponding source 
language entity (that is, the verb (Filipino)).

At testing time
At testing time, we only have the source sentence, but not the target sentence.  
Also, we prepare our source data as we did for the training phase. Next, we get  
the translated output word by word by feeding in the last predicted word by the 
decoder as the next input. The prediction process is first triggered by feeding in  
an <s> token to the decoder first.

We will talk about the exact training procedure and the predicting procedure for  
a given source sentence.
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Training the NMT
Now that we have defined the NMT architecture and preprocessed training data,  
it is quite straightforward to train the model. Here we will define and illustrate  
(see Figure 10.10) the exact process used for training:

1.	 Preprocess ( ),S Tx y  as explained previously
2.	 Feed xs into the encLSTM  and calculate v conditioned on xs

3.	 Initialize decLSTM  with v

4.	 Predict { }1 2ˆ ˆ ˆ ˆ, , , M
T T T Ty y y y= …  corresponding to the input sentence xs 

from decLSTM , where the mth prediction, out of the target vocabulary V is 
calculated as follows:

( )mˆ w h bm
T softmax softmaxy softmax= +

( )( ),m 1 1
T ˆ ˆ ˆw argmax P | , , ,

m

m

m w m
T T Tw V
y v y y −

∈
= …

Here, wT
m denotes the best target word for mth position.

5.	 Calculate the loss: categorical cross-entropy between the predicted word, 
ˆ m
Ty , and the actual word at the thm  position, m

Ty

6.	 Optimize both the encLSTM , decLSTM , and softmax layer with respect to  
the loss

Figure 10.10: The training procedure for the NMT
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Inference with NMT
Inferencing is slightly different from the training process for NMT (Figure 10.11). 
As we do not have a target sentence at the inference time, we need a way to trigger 
the decoder at the end of the encoding phase. This shares similarities with the 
image captioning exercise we did in Chapter 9, Applications of LSTM – Image Caption 
Generation. In that exercise, we appended the <SOS> token to the beginning of the 
captions to denote the start of the caption and <EOS> to denote the end.

We can simply do this by giving <s> as the first input to the decoder, then by getting 
the prediction as the output, and by feeding in the last prediction as the next input to 
the NMT:

1.	 Preprocess xs as explained previously
2.	 Feed xs into encLSTM  and calculate v conditioned on xs

3.	 Initialize decLSTM  with v

4.	 For the initial prediction step, predict 2ˆTy  by conditioning the prediction on 
1ˆTy s=< >  and v

5.	 For subsequent time steps, while ˆ /i
Ty s≠< > , predict 1ˆ m

Ty
+  by conditioning 

the prediction on { }1ˆ ˆ, , ,m m
T Ty y s− < >…  and v

Figure 10.11: Inferring from a NMT



Sequence-to-Sequence Learning – Neural Machine Translation

[ 330 ]

The BLEU score – evaluating the 
machine translation systems
BLEU stands for Bilingual Evaluation Understudy and is a way of automatically 
evaluating machine translation systems. This metric was first introduced in the 
paper, BLEU: A Method for Automatic Evaluation of Machine Translation, Papineni 
and others, Proceedings of the 40th Annual Meeting of the Association for Computational 
Linguistics (ACL), Philadelphia, July 2002: 311-318. We will be implementing the BLEU 
score calculation algorithm and is available as an exercise in bleu_score_example.
ipynb. Let's understand how this is calculated.

Let's consider an example to learn the calculations of the BLEU score. Say, we have two 
candidate sentences (that is, a sentence predicted by our MT system) and a reference 
sentence (that is, corresponding actual translation) for some given source sentence:

•	 Reference 1: The cat sat on the mat
•	 Candidate 1: The cat is on the mat

To see how good the translation is, we can use one measure, precision. Precision is a 
measure of how many words in the candidate are actually present in the reference. 
In general, if you consider a classification problem with two classes (denoted by 
negative and positive), precision is given by the following formula:

number of samples correctly classified as positivePrecision
all the samples classified as positive

=

Let's now calculate the precision for candidate 1:

Precision = # of times each word of candidate appeared in reference/ # of words in candidate

Mathematically, this can be given by the following formula:

( )
unigram Candidate

IsFoundInRef unigram
Precision

Candidate
∈=

∑

Precision for candidate 1 = 5/6

This is also known as the 1-gram precision since we consider a single word at a time.

Now let's introduce a new candidate:

Candidate 2: The the the cat cat cat
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It is not hard for a human to see that candidate 1 is far better than candidate 2. Let's 
calculate the precision:

Precision for candidate 2 = 6/6 = 1

As we can see, the precision score disagrees with the judgment we made. Therefore, 
precision alone cannot be trusted to be a good measure of the quality of a translation.

Modified precision
To address the precision limitation, we can use a modified 1-gram precision. The 
modified precision clips the number of occurrences of each unique word in the 
candidate by the number of times that word appeared in the reference:

( )( ){ }
1

, maxunigram Candidate
Min Occurences unigram unigram

p
Candidate

∈=
∑

Therefore, for candidates 1 and 2, the modified precision would be as follows:

Mod-1-gram-Precision Candidate 1 = (1 + 1 + 1 + 1 + 1)/ 6 = 5/6

Mod-1-gram-Precision Candidate 2= (2 + 1) / 6 = 3/6

We can already see that this is a good modification as the precision of candidate 2 
is reduced. This can be extended to any n-gram by considering n words at a time 
instead of a single word.

Brevity penalty
Precision naturally prefers small sentences. This raises a question in evaluation, as 
the MT system might generate small sentences for longer references and still have 
a higher precision. Therefore, brevity penalty is introduced to avoid this. Brevity 
penalty is calculated by the following:

( )1 /

1
.r c

if c r
BP

e if c r−

 >  =  ≤  
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Here, c is the candidate sentence length and r is the reference sentence length. In our 
example, we calculate as shown here:

BP for candidate 1 = ( )( )1 6/6 0 1e e− = =

BP for candidate 2 = ( )( )1 6/6 0 1e e− = =

The final BLEU score
Next, to calculate the BLEU score, we first calculate several different modified 
n-gram precisions for a bunch of different 1,2, ,n N= …  values. We will then calculate 
the weighted geometric mean of the n-gram precisions:

1

N

n n
i

BLEU BP exp w p
=

 = ×    ∑

Here, wn is the weight for the modified n-gram precision pn. By default, equal weights 
are used for all n-gram values. In conclusion, BLEU calculates a modified-n-gram 
precision and penalizes the modified-n-gram precision with a brevity penalty. 
The modified n-gram precision avoids potential high precision values given to 
meaningless sentences (for example, candidate 2).

Implementing an NMT from scratch – 
a German to English translator
Now we will implement an actual neural machine translator. We will be implementing 
the NMT using raw TensorFlow operations variables. The exercise is available in 
ch10/neural_machine_translation.ipynb. However, there is a sublibrary in 
TensorFlow, known as the seq2seq library. You can read more information about 
seq2seq as well as, learn to implement an NMT with seq2seq in the Appendix, 
Mathematical Foundations and Advanced TensorFlow.

The reason why we use raw TensorFlow is because, once you learn to implement 
a machine translator from scratch without using any helper functions, you will 
be able to quickly learn to use the seq2seq library. Furthermore, online resources 
are very scarce for learning to implement sequence-to-sequence models using raw 
TensorFlow. However, there are numerous resources/tutorials on how to use the 
seq2seq library for machine translation.
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TensorFlow provides very informative sequence to sequence learning 
tutorials focused on NMT at https://www.tensorflow.org/
tutorials/seq2seq.

Introduction to data
We use English-German sentence pairs available at https://nlp.stanford.edu/
projects/nmt/. There are ~4.5 million sentence pairs available. However, we will 
use only 250,000 sentence pairs due to computational feasibility. The vocabulary 
consists of the 50,000 most common English words and 50,000 most common 
German words, and the words not found in the vocabulary will be replaced with a 
special token, <unk>. Here, we will list example sentences found in the dataset:

DE:  Das Großunternehmen sieht sich einfach die Produkte des kleinen 
Unternehmens an und unterstellt so viele Patentverletzungen , wie es 
nur geht .

EN:  The large corporation will look at the products of the small 
company and bring up as many patent infringement assertions as 
possible .

DE:  In der ordentlichen Sitzung am 22. September 2008 befasste 
sich der Aufsichtsrat mit strategischen Themen aus den einzelnen 
Geschäftsbereichen wie der Positionierung des Kassamarktes im 
Wettbewerb mit außerbörslichen Handelsplattformen , den Innovationen 
im Derivatesegment und verschiedenen Aktivitäten im Nachhandelsbereich 
.

EN:  At the regular meeting on 22 September 2008 , the Supervisory 
Board dealt with strategic issues from the various business areas , 
such as the positioning of the cash market in competition with OTC 
trading platforms , innovation in the derivatives segment and various 
post ##AT##-##AT## trading activities .

Preprocessing data
After you download the training data (train.en and train.de) as instructed in 
the exercise file, let's look at what's in these files. The train.en file contains English 
sentences, whereas train.de contains the corresponding German sentences. Next, 
we will select 250,000 sentence pairs from the large corpus that we have as data. 
We will also collect 100 sentences held out from the training data as our test data. 
Finally, the vocabularies for the two languages are found in vocab.50K.en.txt 
and vocab.50K.de.txt.

https://www.tensorflow.org/tutorials/seq2seq
https://www.tensorflow.org/tutorials/seq2seq
https://nlp.stanford.edu/projects/nmt/
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Then we will preprocess this data as explained earlier in the chapter. Reversing the 
sentences is optional for the word embedding learning (if performed separately), 
as reversing a sentence would not change the context of a given word. We will use 
the following simple tokenizing algorithm for tokenizing sentences into words. 
Essentially, we are introducing spaces before various punctuation marks so they 
can be tokenized to individual elements. Then for any word that is not found in the 
vocabulary, we will replace it with a special <unk> token. The is_source parameter 
tells if we're processing source sentences (is_source = True) or target sentences 
(is_source = False):

def split_to_tokens(sent,is_source):
    '''
    This function takes in a sentence (source or target)
    and preprocess the sentency with various steps
    (e.g. removing punctuation)
    '''

    global src_unk_count, tgt_unk_count

    # Remove punctuation and new-line chars
    sent = sent.replace(',',' ,')
    sent = sent.replace('.',' .')
    sent = sent.replace('\n',' ') 
    
    sent_toks = sent.split(' ')
    for t_i, tok in enumerate(sent_toks):
        if is_source:
            # src_dictionary contain the word -> 
            # word ID mapping for source vocabulary
            if tok not in src_dictionary.keys():
                if not len(tok.strip())==0:
                    sent_toks[t_i] = '<unk>'
                    src_unk_count += 1
        else:
            # tgt_dictionary contain the word -> 
            # word ID mapping for target vocabulary
            if tok not in tgt_dictionary.keys():
                if not len(tok.strip())==0:
                    sent_toks[t_i] = '<unk>'
                    # print(tok)
                    tgt_unk_count += 1
    return sent_toks
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Learning word embeddings
Next we will move onto learning the word embeddings. To learn the word embeddings, 
we will use the Continuous Bag-of-Words (CBOW) model. However, you are welcome 
to experiment with other word embedding learning methods such as GloVe. We will 
not go through the code (found in the word2vec.py file), but share some of the learned 
word embeddings:

German Word Embeddings

Nearest to In: in, Aus, An, Neben, Bei, Mit, Trotz, Auf,
Nearest to war: ist, hat, scheint, wäre, hatte, bin, waren, kam,
Nearest to so: verbreitet, eigentlich, ausserdem, ziemlich, Rad-, 
zweierlei, wollten, ebenso,
Nearest to Schritte: Meter, Minuten, Gehminuten, Autominuten, km, 
Kilometer, Fahrminuten, Steinwurf,
Nearest to Sicht: Aussicht, Ausblick, Blick, Kombination, Milde, 
Erscheinung, Terroranschläge, Ebenen,

English Word Embeddings

Nearest to more: cheaper, less, easier, better, further, greater, 
bigger, More,
Nearest to States: Kingdom, Nations, accross, attrition, Efex, 
Republic, authoritative, Sorbonne,
Nearest to Italy: Spain, Poland, France, Switzerland, Madrid, 
Portugal, Fuengirola, 51,
Nearest to island: shores, Principality, outskirts, islands, skyline, 
ear, continuation, capital,
Nearest to 2004: 2005, 2001, 2003, 2007, 1996, 2006, 1999, 1995,

It is possible to learn the embeddings simultaneously while training the machine 
translation system. Another alternative is to use the pretrained word embeddings. 
We will talk about how to do that later in the chapter.

Defining the encoder and the decoder
We will use two separate LSTMs as the encoder and the decoder.

First, we will define hyperparameters:

•	 batch_size: You will have to be very careful when setting the batch size. 
Our NMT can take quite an amount of memory when running.

•	 num_nodes: This is the number of hidden units in the LSTM. A large 
num_nodes hyperparameter will result in better performance and a high 
computational cost.
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•	 enc_num_unrollings: We set this to be the number of words in a source 
sentence. We will be unrolling the LSTM for the full length of the sentence 
at a single computation. The higher enc_num_unrollings is, the better your 
model will perform. However, this will slow down the algorithm.

•	 dec_num_unrollings: This is set to be the number of words in the 
target sentence. Higher dec_num_unrollings will also result in a better 
performance, but a large computational cost.

•	 embedding_size: This is the dimensionality of the vectors we learn. An 
embedding size of 100-300 will be adequate for most of the real-world 
problems that use word vectors. 

Here we will define the hyperparameters:

# We set the input size by loading the saved word embeddings
# and getting the column size
tgt_emb_mat = np.load('en-embeddings.npy')
input_size = tgt_emb_mat.shape[1]

num_nodes = 128
batch_size = 10

# We unroll the full length at one go
# both source and target sentences
enc_num_unrollings = 40
dec_num_unrollings = 60

If you have a large batch size (on a standard laptop more than 20), you 
can run into issues such as the following:

Resource exhausted: OOM when allocating tensor with ...

In this case, you should reduce the batch size and rerun the code.
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Next, we will define the weights and biases for the LSTMs and the softmax  
layer. We will use an encoder and decoder variable scope to make the naming  
of variables more intuitive. This is a standard LSTM cell, and we will not reiterate  
the weight definition.

Then we will define four TensorFlow placeholders for training:

•	 enc_train_inputs: This is a list of the enc_num_unrollings placeholder, 
where each placeholder is of the [batch_size, input_size] size. This is 
used to feed a batch of source language sentence to the encoder.

•	 dec_train_inputs: This is a list of the dec_num_unrollings placeholders, 
where each placeholder is of the [batch_size, input_size] size. This is 
used to feed the corresponding batch of the target language sentence.

•	 dec_train_labels: This is a list of the dec_num_unrollings placeholders, 
where each placeholder is of the [batch_size, vocabulary_size] size. 
This contains words of the dec_train_inputs offset by 1. So that two 
placeholders from dec_train_inputs and dec_train_labels with the 
same index in the list would have the ith word and the 1thi+  word.

•	 dec_train_masks: This is of the same size as dec_train_inputs and masks 
any element that has a </s> label from the loss calculation. This is important 
as there are many data points with the </s> token, as that is used for 
padding sentences to a fixed length:

for ui in range(dec_num_unrollings):
    dec_train_inputs.append(tf.placeholder(tf.float32,
        shape=[batch_size,input_size],
        name='dec_train_inputs_%d'%ui))
    dec_train_labels.append(tf.placeholder(tf.float32,
        shape=[batch_size,vocabulary_size],
        name = 'dec_train_labels_%d'%ui))
    dec_train_masks.append(tf.placeholder(tf.float32,
        shape=[batch_size,1],
        name='dec_train_masks_%d'%ui))

for ui in range(enc_num_unrollings):
    enc_train_inputs.append(tf.placeholder(tf.float32,
        shape=[batch_size,input_size],
        name='train_inputs_%d'%ui))
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To initialize the weights of both the LSTM cells and the softmax 
layers, we will be using Xavier initialization, introduced by Glorot 
and Bengio in 2010 in their paper, Understanding the difficulty of 
training deep feedforward neural networks, Proceedings of the 13th 
International Conference on Artificial Intelligence and Statistics (2010). 
This is a principled initialization technique designed to alleviate the 
vanishing gradient problem in very deep networks. This is available 
through the tf.contrib.layers.xavier_initializer() 
variable initializer provided in TensorFlow. Specifically, in Xavier 
initialization, the weights of the jth layer of the neural network are 
initialized according to the uniform distribution, U[a,b], where a is 
the minimum value and b is the maximum value:
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Here, nj is the size of the jth layer.

Defining the end-to-end output calculation
Here, with the variables and input/output placeholders defined, we will move  
onto defining output calculations from the encoder to the decoder and the loss 
function as well.

For the output, we will first calculate the LSTM cell state and the hidden state for 
all the words in a given batch of sentences. This is achieved by running a for loop, 
where in the ith iteration, we feed in the ith placeholder in enc_train_inputs, and the 
cell state and the output hidden state from the 1thi−  iteration. The enc_lstm_cell 
function works similarly to the lstm_cell function we saw in Chapter 8, Applications of 
LSTM – Generating Text and Chapter 9, Applications of LSTM – Image Caption Generation:

# Update the output and state of the encoder iteratively
for i in enc_train_inputs:
    output, state = enc_lstm_cell(i, output,state)

Next, we will calculate the output of the decoder for the whole target sentence 
similarly. However, in order to do that we should finish the calculations shown in 
the preceding code snippet so that we can obtain v to initialize the decoder states 
with. This is achieved with the tf.control_dependencies(...) statement. So the 
nested commands within the with statement will only execute after the encoder 
output is fully calculated:
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# With the computations of the enc_lstm_cell done,
# calculate the output and state of the decoder
with tf.control_dependencies([saved_output.assign(output),
                             saved_state.assign(state)]):
    # Calculate the decoder state and output iteratively
    for i in dec_train_inputs:
        output, state = dec_lstm_cell(i, output, state)
        outputs.append(output)

Then, after the decoder outputs are calculated, we will calculate the logits of the 
softmax layer using the hidden state of the LSTM as the input to the layer:

# Calculate the logits of the decoder for all unrolled steps
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Now, with the logits calculated, we can calculate the loss. Note that we are using 
mask to mask out the elements that should not be contributing to the loss (that is, the 
</s> elements we append to make the sentence of fixed length):

loss_batch = tf.concat(axis=0,values=dec_train_masks)*
             tf.nn.softmax_cross_entropy_with_logits_v2(
                 logits=logits, labels=tf.concat(axis=0,
                 values=dec_train_labels))
loss = tf.reduce_mean(loss_batch)

Thereafter, unlike in previous chapters, we will use two optimizers: Adam and 
standard stochastic gradient descent. This is because using Adam in long run 
gave undesired results (for example, sudden large fluctuations of the BLEU score). 
We also use gradient clipping to avoid any gradient explosions.

# We use two optimizers: Adam and naive SGD
# using Adam in the long run produced undesirable results 
# (e.g.) sudden fluctuations in BLEU
# Therefore we use Adam to get a good starting point for optimizing
# and then switch to SGD from that point onwards
with tf.variable_scope('Adam'):
    optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.variable_scope('SGD'):
    sgd_optimizer = tf.train.GradientDescentOptimizer(sgd_learning_
rate)

# Calculates gradients with clipping for Adam
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimize = optimizer.apply_gradients(zip(gradients, v))
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# Calculates gradients with clipping for SGD
sgd_gradients, v = zip(*sgd_optimizer.compute_gradients(loss))
sgd_gradients, _ = tf.clip_by_global_norm(sgd_gradients, 5.0)
sgd_optimize = optimizer.apply_gradients(zip(sgd_gradients, v))

We will use the following statement to ensure that the gradient flows correctly  
from the decoder to the encoder by making sure the gradient exists for all the 
trainable variables:

for (g_i,v_i) in zip(gradients,v):
    assert g_i is not None, 'Gradient none for %s'%(v_i.name)

Note that running the NMT will be much slower compared to previous exercises, 
and on a single GPU it can take more than 12 hours to run fully.

Some translation results
These are results that we obtained after 10,000 steps:

DE:  &#124; Ferienwohnungen 1 Zi &#124; Ferienhäuser &#124; Landhäuser 
&#124; Autovermietung &#124; Last Minute Angebote ! !

EN (TRUE):&#124; 1 Bedroom Apts &#124; Holiday houses &#124; Rural 
Homes &#124; Car Rental &#124; Last Minute Offers !

EN (Predicted): Casino Tropez &#124; Club &#124; Club &#124; 
Aparthotels Hotels &#124; Club &#124; Last Minute Offers &#124; Last 
Minute Offers &#124; Last Minute Offers &#124; Last Minute Offers 
&#124; Last Minute Offers ! </s>

DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?

EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?

EN (Predicted): How to install the new version of XLSTAT ? </s>

DE:  Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist 
eine richtige Sprache .

EN (TRUE):This is Ladin from Fassa which is more than a dialect : it 
is a language in its own right .

EN (Predicted): The <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> 
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> 
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> 
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> 
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<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> 
<unk> <unk> <unk> <unk> <unk> <unk> <unk>

DE: In der Hotelbeschreibung im Internet müßte die Zufahrt beschrieben
werden .
EN (TRUE): There are no adverse comments about this hotel at all .

EN (Predicted): The <unk> <unk> is a bit of the <unk> <unk> . </s>

We can see that the first sentence is recognized quite well. However, the second 
sentence is very poorly translated.

Also, here are the results obtained after 100,000 steps:

DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre ,
Kongens Nytorv , &apos; Stroget &apos; und Nyhavn .

EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens
Nytorv , &quot; Strøget &quot; and fascinating Nyhavn .

EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

DE:  Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro 
Übernachtung und Person für Zustellbetten .

EN (TRUE):All older children or adults are charged EUR 32.00 per night 
and person for extra beds .

EN (Predicted): All older children or adults are charged EUR 15 <unk> 
per night and person for extra beds . </s>

DE:  Im Allgemeinen basieren sie auf Datenbanken , Templates und 
Skripts .

EN (TRUE):In general they are based on databases , template and 
scripts .

EN (Predicted): The user is the most important software of the 
software . </s>

DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie
können OpenOffice zum Arbeiten verwenden .
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EN (TRUE): Tux Racer will help you pass the time while you wait ,
and you can use OpenOffice for work .

EN (Predicted): <unk> .com we have a very friendly and helpful
staff . </s>

We can see that, even though the translations are not perfect, it most of the time 
captures the context of the source sentence, and our NMT is quite good at generating 
grammatically correct sentences.

Figure 10.12 depicts the BLEU score over time for the NMT. There is a clear increase 
in the BLEU score for both train and test datasets over time:

Figure 10.12: The BLEU score over time for the NMT

Training an NMT jointly with word 
embeddings
Here we will discuss how we can train an NMT jointly with word embeddings. 
We will be covering two concepts in this section:

•	 Training an NMT jointly with a word embedding layer
•	 Using pretrained embeddings instead of randomly initializing 

the embeddings layer
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There are several multilingual word embedding repositories available:

•	 Facebook's fastText: https://github.com/facebookresearch/fastText/
blob/master/pretrained-vectors.md

•	 CMU multilingual embeddings: http://www.cs.cmu.edu/~afm/projects/
multilingual_embeddings.html

From these, we will use the CMU embeddings (~200 MB) as it's much smaller 
compared with fastText (~5 GB). We first need to download the German 
(multilingual_embeddings.de) and English (multilingual_embeddings.en) 
embeddings. This is available as an exercise in nmt_with_pretrained_wordvecs.
ipynb in the ch10 folder.

Maximizing matchings between the dataset 
vocabulary and the pretrained embeddings
We will first have to get a subset of the pretrained word embeddings that are 
relevant for the problem we're interested in solving. This is important as the 
vocabulary of pretrained word embeddings can be large and might contain lots 
of words that are not found in the dataset vocabulary. The pretrained word 
embeddings are a set of lines, where a line is a word and the word vector separated 
by spaces. An example line from pretrained embeddings might look like this:

door 0.283259492301 0.198089365764 0.335635845187 -0.385702777914 
0.491404970211 …

One obvious and naïve way of achieving this is to run through the pretrained dataset 
vocabulary line by line, and if the word in the current line matches any word in 
the dataset vocabulary, we will save that word embedding to be used in the future. 
However, this will be highly inefficient as usually a vocabulary tends to be biased 
toward various design decisions made by the creator. For example, some might 
consider cat's, cat, and Cat to be the same word, whereas others might consider them 
to be separate words. If we naïvely match pretrained word embedding vocabulary 
and the dataset vocabulary, we might miss many words. Therefore, will we use the 
following logic to make sure that we get most out of the pretrained word vectors.

First, we will define two NumPy arrays to hold the relevant word embeddings for 
both the source and target languages:

de_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_
size),low=-1.0, high=1.0)
en_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_
size),low=-1.0, high=1.0)

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
http://www.cs.cmu.edu/~afm/projects/multilingual_embeddings.html
http://www.cs.cmu.edu/~afm/projects/multilingual_embeddings.html
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Then we will open the text file containing word vectors as shown here. The filename 
parameter is multilingual_embeddings.de for German and miltilingual_
embeddings.en for English:

with open(filename,'r',encoding='utf-8') as f:

Next we will separate the word and the word vector by splitting the line by spaces:

        line_tokens = line.split(' ')
        lword = line_tokens[0]
        vector = [float(v) for v in line_tokens[1:]]

We will also ignore if a word is empty (that is, has only spaces, tabs, or new  
line characters):

        if len(lword.strip())==0:
            continue

We will also strip out any accents present in the words (especially in German words) 
to make sure that we will get the most chances of resulting in a match:

        lword = unidecode.unidecode(lword)

Thereafter, we will use the following logic to check for matches. We will write a set 
of cascading conditions to check for matches, for both source and target languages:

1.	 First check whether the word from the pretrained embeddings (lword) is in 
the dataset vocabulary as it is

2.	 If not, check whether the first letter is capitalized (that is, cat becomes Cat),  
if found in the dataset vocabulary

3.	 If not, check whether the word from the pretrained embeddings (lword) 
is similar to any of the word results by removing special characters (for 
example, accents) from the dataset vocabulary words

If one of these conditions is satisfied, we will get that word embedding vector and 
assign it to the row indexed by the ID of that word (word → ID) mapping is stored 
in src_dictionary and tgt_dictionary for the two languages. We will do this for 
both the languages:

            # Update the randomly initialized
            # matrix for the embeddings
            # Update the number of words
            # matched with pretrained embeddings
            try:
                dword = dictionary[lword]
                words_found_ids.append(dictionary[lword])
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                embeddings[dictionary[lword],:] = vector
                words_found += 1
            
            # If a given word is not found in our vocabulary,
            except KeyError:
                try:
                    # First try to match the same
                    # with first letter capitalized
                    # capitalized
                    if len(lword)>0:
                        firt_letter_cap = lword[0].upper()+lword[1:]

                    else:
                        continue
                        
                    # Update the word embeddings matrix
                    dword = dictionary[firt_letter_cap]
                    words_found_ids.append(dictionary[ 
                                           firt_letter_cap])
                    embeddings[dictionary[firt_letter_cap],:] = vector
                    words_found += 1
                
                except KeyError:
                    # If not found try to match the word with
                    # the unaccented word
                    try:
                        dword = unaccented_dict[lword]
                        words_found_ids.append(dictionary[lword])
                        embeddings[dictionary[lword],:] = vector
                        words_found += 1
                    except KeyError:

                        continue

Defining the embeddings layer 
as a TensorFlow variable
We will define two trainable TensorFlow variables, for embedding layers (that is, 
tgt_word_embeddings and src_word_embeddings), as follows:

tgt_word_embeddings = tf.get_variable(
    'target_embeddings',shape=[vocabulary_size,
        embeddings_size],
    dtype=tf.float32, initializer = tf.constant_initializer(
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        en_embeddings)
)
src_word_embeddings = tf.get_variable(
    'source_embeddings',shape=[vocabulary_size,
        embeddings_size], 
    dtype=tf.float32, initializer = tf.constant_initializer(
        de_embeddings)
)

Then we will first change the dimensionality of the placeholders in dec_train_
inputs and enc_train_inputs to be [batch_size] and the data type to 
tf.int32. This is so that we can use them to perform the embeddings lookup (tf.
nn.embedding_lookup(...)) for each unrolled input as follows:

# Defining unrolled training inputs as well as embedding lookup 
(Encoder)
for ui in range(enc_num_unrollings):
    enc_train_inputs.append(tf.placeholder(tf.int32,
                            shape=[batch_size],
                            name='train_inputs_%d'%ui))
    enc_train_input_embeds.append(tf.nn.embedding_lookup(
                                  src_word_embeddings,
                                  enc_train_inputs[ui]))

# Defining unrolled training inputs, embeddings,
# outputs, and masks (Decoder)
for ui in range(dec_num_unrollings):     dec_train_inputs.append(tf.
placeholder(tf.int32,
                            shape=[batch_size],
                            name='dec_train_inputs_%d'%ui))
    dec_train_input_embeds.append(tf.nn.embedding_lookup(
                                  tgt_word_embeddings,
                                  dec_train_inputs[ui]))
    dec_train_labels.append(tf.placeholder(tf.float32,
                            shape=[batch_size,vocabulary_size],
                            name = 'dec_train_labels_%d'%ui))
    dec_train_masks.append(tf.placeholder(tf.float32,
                           shape=[batch_size,1],
                           name='dec_train_masks_%d'%ui))
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Then the LSTM cell computations for the encoder and decoder changes as  
shown here In this part, we first calculate the encoder LSTM cell output with 
the source sentence inputs. Next by using the final state information from the 
encoder as the initialization state for the decoder (that is, using tf.control_
dependencies(...)) we compute the decoders output as well as the softmax 
logits and predictions:

# Update the output and state of the encoder iteratively
for i in enc_train_inputs:
    output, state = enc_lstm_cell(i, output,state)

print('Calculating Decoder Output')
# With the computations of the enc_lstm_cell done,
# calculate the output and state of the decoder
with tf.control_dependencies([saved_output.assign(output),
                             saved_state.assign(state)]):
    # Calculate the decoder state and output iteratively
    for i in dec_train_inputs:
        output, state = dec_lstm_cell(i, output, state)
        outputs.append(output)

Note that, the exercise file has a slightly different output calculation than shown 
here. Instead of feeding in the previous prediction as input, we feed in the true word 
as the input. This tends to deliver better performance than feeding in the previous 
prediction, and will be discussed in detail in the next section. However the overall 
idea remains the same.

The final steps include, computing the loss for the decoder and defining an optimizer 
to optimize the model parameters, as we saw earlier.
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Finally we outline the computational graph for the implementation of our NMT. 
Here we visualize the computational graph for our model.

Figure: 10.13: Computational graph of the NMT system with pretrained embeddings

Improving NMTs
As you can see from the preceding results, our translation model is not behaving 
ideally. These results were obtained by running the optimization for more than 
12 hours on a single NVIDIA 1080 Ti GPU. Also note that this is not even the 
full dataset, we only used 250,000 sentence pairs for training. However, if you 
type something into Google Translate, which uses the Google Neural Machine 
Translation (GNMT) system, the translation almost always looks very realistic with 
only minor mistakes. So it is important to know how we can improve the model 
so that it can produce better results. In this section, we will discuss several ways 
of improving NMTs such as teacher forcing, deep LSTMs, and attention mechanism.

Teacher forcing
As we discussed in the Training the NMT section, we do the following to train 
the NMT:

•	 First, we fed the full encoder sentence to obtain the final state outputs  
of the encoder

•	 We then set the final states of the encoder to be the initial state of the decoder
•	 We also asked the decoder to predict the full target sentence without any 

additional information except for the last state output of the encoder
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This can be too difficult of a task for the model. We can understand this phenomenon 
as follows. Say, a teacher asks a kindergarten student to complete the following 
sentence, given just the first word:

I ___  ____  ___  ___  ____  ____

This means that the child needs to pick a subject; verb; and an object, know the 
syntax of the language, understand the grammar rules of the language, and so on. 
Therefore, the tendency for the child to produce an incorrect sentence is high.

However, if we ask the child to produce it word-by-word they might do a better job 
at coming up with a sentence. In other words, we ask the child to produce the next 
word given the following:

I ____

Then we ask them to fill the blank given:

I like ____

And continue in the same fashion:

I like to ___, I like to fly ____, I like to fly kites ____

This way, the child can do a better job at producing a correct and meaningful 
sentence. This phenomenon is known as teacher forcing. We can adopt the same 
approach to alleviate the difficulty of the translation task, as shown in Figure 10.13:

Figure 10.14: The teacher forcing mechanism. The darker arrows in the inputs depict newly introduced input 
connections to the decoder. The right-hand side figure shows how the decoder LSTM cell changes.
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As shown in bold in the figure, the inputs to the decoder have been replaced 
with actual target words in the training data. Therefore NMT decoder no longer 
has to carry the burden of predicting a whole target sentence given the source 
sentence. Rather, the decoder only has to predict the current word correctly, given 
the previous word. Something worth noting is that, we discussed the training 
procedure without any details about teacher forcing, in the previous discussion. 
However, we actually use teacher forcing in all the exercises for this chapter.

Deep LSTMs
One obvious improvement we can do is to increase the number of layers by stacking 
LSTMs on top of each other, thereby creating a deep LSTM (see Figure 10.14). For 
example, the Google NMT system uses eight LSTM layers stacked upon each other 
(Google's Neural Machine Translation System: Bridging the Gap between Human and 
Machine Translation, Wu and others, Technical Report (2016)). Though this hampers the 
computational efficiency, having more layers greatly improves the neural network's 
ability to learn the syntax and other linguistic characteristics of the two languages.

Figure 10.15: An illustration of a deep LSTM
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Attention
Attention is one of the key breakthroughs in machine translation that gave rise to 
better working NMT systems. Attention allows the decoder to access the full state 
history of the encoder, leading to creating a richer representation of the source 
sentence, at the time of translation. Before delving into the details of an attention 
mechanism, let's understand one of the crucial bottlenecks in our current NMT 
system and the benefit of attention in dealing with it.

Breaking the context vector bottleneck
As you have probably already guessed, the bottleneck is the context vector, or 
thought vector, that resides between the encoder and the decoder (see Figure 10.15):

Figure 10.16: The encoder-decoder architecture

To understand why this is a bottleneck, let's imagine translating the following 
English sentence:

I went to the flower market to buy some flowers

This translates to the following:

Ich ging zum Blumenmarkt, um Blumen zu kaufen

If we are to compress this into a fixed length vector, the resulting vector needs to 
contain these:

•	 Information about the subject (I)
•	 Information about the verbs (buy and went)
•	 Information about the objects (flowers and flower market)
•	 Interaction of the subjects, verbs, and objects with each other in the sentence
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Generally, the context vector has a size of 128 or 256 elements. This is a very 
impractical and an extremely difficult requirement for the system. Therefore, most 
of the time, the context vector fails to provide the complete information required 
to make a good translation. This results in an underperforming decoder that 
suboptimally translates a sentence.

Furthermore, during the decoding, the context vector is observed only in the 
beginning. Thereafter, the decoder LSTM must memorize the context vector until the 
end of the translation. Though LSTMs are good at long-term memorizing, practically 
they are limited. This will heavily affect outcomes, especially for long sentences.

This is where attention comes in handy. With the attention mechanism, the decoder 
will have access to the full state history of the encoder for each decoding time step. 
This allows the decoder to have access to a very rich representation of the source 
sentence. Furthermore, the attention mechanism introduces a softmax layer that 
allows the decoder to calculate a weighted mean of the past observed encoder states, 
which will be used as the context vector for the decoder. This allows the decoder to 
pay different amounts of attention to different words at different decoding steps.

The attention mechanism in detail
Now let's investigate the actual implementation of the attention mechanism in detail. 
We will use the attention mechanism detailed in the paper, Neural Machine Translation 
by Learning to Jointly Align and Translate, Bahdanau, Cho, and Bengio, arXiv:1409.0473 
(2014). For consistency with the paper, we will use the following notations:

•	 Encoder's hidden state: hi

•	 Target sentence words: yi

•	 Decoder's hidden state: si

•	 Context vector: ci

So far, our decoder LSTM was composed of an input yi and a hidden state 1is − .  
We will ignore the cell state as this is an internal part of the LSTM. This can be 
represented as follows:

( )1,dec i iLSTM f y s −=
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Here, f represents the actual update rules used to calculate yi+1 and si. With the 
attention mechanism, we are introducing a new time-dependent context vector ci 
for the ith decoding step. The ci vector is a weighted mean of the hidden states of all 
the unrolled encoder steps. A higher weight will be given to the jth hidden state of 
the encoder if the jth word is more important for translating the ith word in the target 
language. Now the decoder LSTM becomes this:

( )1, ,dec i i iLSTM f y s c−=

Conceptually, attention mechanism can be thought of as a separate layer and 
illustrated as in Figure 10.16. As shown, the attention functions as a layer. The 
attention layer is responsible for producing ci for the ith time step of the decoding 
process:

Figure 10.17: Conceptual attention mechanism in NMT
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Let's now see how to calculate ci:

1

L

i ij j
j

c hα
=

=∑

Here, L is the number of words in the source sentence, and, ijα  is a normalized 
weight representing the importance of the jth encoder hidden state for calculating the 
ith decoder prediction. This is calculated using a softmax layer. L is the length of the 
encoder sentence:
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Here, ije  is the energy or importance measuring how much the jth hidden state of the 
encoder and to the previous decoder state 1is −  contributes to calculating si:

( )1
T

ij a a i a je v tanh W s U h−= +

This essentially means that ije  is calculated with a multilayer perceptron whose 
weights are va, Wa, and Ua, and 1is −  and hj are the inputs to the network. The 
attention mechanism is shown in Figure 10.17:
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Figure 10.18: The attention mechanism
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Implementing the attention mechanism
Here we will discuss how we can implement the attention mechanism. Two major 
changes the system will go through are as follows:

•	 More parameters (that is, weights) will be introduced (for calculating 
attention and using attention as an input to the decoder LSTM cell)

•	 A new function for attention related computations will be introduced  
(that is, attn_layer)

•	 Changes to decoder LSTM cell computation to take the attention-weighted 
sum of all the encoder LSTM cell outputs as an input

We will only be discussing the additional things introduced compared to the 
standard NMT model. You can find the full exercise for NMT with attention in the 
neural_machine_translation_attention.ipynb.

Defining weights
Three new sets of weights will be introduced to implement the attention  
mechanism. All these weights are used to calculate the energy term (that is, ije )  
we discussed earlier:

    W_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],
        stddev=0.05),name='W_a')
    U_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],
        stddev=0.05),name='U_a')
    v_a = tf.Variable(tf.truncated_normal([num_nodes,1],
        stddev=0.05),name='v_a')

Also, we will define a new set of weights that will be used to take ci as an input to the 
ith step of unrolling of the decoder:

    dec_ic = tf.get_variable('ic',shape=[num_nodes, num_nodes],
        initializer = tf.contrib.layers.xavier_initializer())
    dec_fc = tf.get_variable('fc',shape=[num_nodes, num_nodes],
        initializer = tf.contrib.layers.xavier_initializer())
    dec_cc = tf.get_variable('cc',shape=[num_nodes, num_nodes],
        initializer = tf.contrib.layers.xavier_initializer())
    dec_oc = tf.get_variable('oc',shape=[num_nodes, num_nodes],
        initializer = tf.contrib.layers.xavier_initializer())
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Computing attention
For computing attention values for each position of the encoder and decoder, we will 
define a function that does that for us, attn_layer(...). This method calculates 
attention for all the positions (that is,the num_enc_unrollings) of the encoder, for 
a single unrolling step of the decoder. The attn_layer(...) method takes two 
arguments as parameters to the function:

attn_layer(h_j_unrolled, s_i_minus_1)

The parameters are as follows:

•	 h_i_unrolled: These are the num_enc_unrolling encoder LSTM cell 
outputs we calculated during feeding in the source sentence to the encoder. 
This will be a list of the num_enc_unrolling tensors, where each tensor is 
[batch_size, num_nodes] sized.

•	 s_i_minus_1: The pervious decoder's LSTM cell output. This will be a tensor 
of the [batch_size, num_nodes] size.

First we will create a single tensor with the list of unrolled encoder outputs of the 
[num_enc_unrollings * batch_size, num_nodes] size:

    enc_logits = tf.concat(axis=0,values=h_j_unrolled)

Then we will calculate 1a iW s −  with the following operation:

    # of size [enc_num_unroll x batch_size, num_nodes]
    w_a_mul_s_i_minus_1 = tf.matmul(enc_outputs,W_a)

Next we will calculate a jU h :

    # of size [enc_num_unroll x batch_size, num_nodes]
    u_a_mul_h_j = tf.matmul(tf.tile(s_i_minus_1,[enc_num_
unrollings,1]), U_a)

Now we will calculate energy as ( )1
T

ij a a i a je v tanh W s U h−= + . This is a tensor of the 
[enc_num_unroll * batch_size ,1] size:

    e_j = tf.matmul(tf.nn.tanh(w_a_mul_s_i_minus_1 +
        u_a_mul_h_j),v_a)
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We can now first break the large e_j to the enc_num_unrolling long list of tensors 
with tf.split(...), where each tensor is of the [batch_size, 1] size. Thereafter, 
we concatenate this list along axis 1 to produce a tensor of the [batch_size, 
enc_num_unrollings] size (that is, reshaped_e_j). Therefore, a single row of 
reshaped_e_j will correspond to the attention values for all the positions of the 
encoder's unrolled timesteps:

    # list of enc_num_unroll elements, each 
    # element [batch_size, 1]
    batched_e_j = tf.split(axis=0,
        num_or_size_splits=enc_num_unrollings,value=e_j) 
    # of size [batch_size, enc_num_unroll]
    reshaped_e_j = tf.concat(axis=1,values=batched_e_j) 

We can now easily calculate the normalized attention values for reshaped_e_j. The 
values will be normalized across the unrolled time steps (axis 1 of reshaped_e_j):

    # of size [batch_size, enc_num_unroll]
    alpha_i = tf.nn.softmax(reshaped_e_j) 

This is followed by breaking alpha_i into a list of enc_num_unroll tensors, each of 
the [batch_size,1] size:

    alpha_i_list = tf.unstack(alpha_i,axis=1)

Afterwards, we will calculate the weighted sum of each of the encoder outputs (that 
is, h_j_unrolled) and assign this to c_i, which will be used as an input to the ith 
time step of unrolling, of the decoder LSTM cell:

    c_i_list =  [tf.reshape(alpha_i_list[e_i],
        [-1,1])*h_j_unrolled[e_i] for e_i in range(enc_num_
unrollings)]
    c_i = tf.add_n(c_i_list) # of size [batch_size, num_nodes]

Then to take c_i as an input to the ith step of unrolling of the decoder LSTM cell, the 
decoder LSTM cell computation changes as follows:

# Definition of the cell computation (Decoder)
def dec_lstm_cell(i, o, state, c):
    """Create a LSTM cell"""
    input_gate = tf.sigmoid(tf.matmul(i, dec_ix) + tf.matmul(o, dec_
im) +
                 tf.matmul(c, dec_ic) + dec_ib)
    forget_gate = tf.sigmoid(tf.matmul(i, dec_fx) + tf.matmul(o, dec_
fm) +
                  tf.matmul(c, dec_fc) + dec_fb)
    update = tf.matmul(i, dec_cx) + tf.matmul(o, dec_cm) +
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             tf.matmul(c, dec_cc) +dec_cb 
    state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, dec_ox) + tf.matmul(o, dec_
om) +
                  tf.matmul(o, dec_oc) + dec_ob)
    return output_gate * tf.tanh(state), state

Some translation results – NMT with attention
Here are the results we obtained after 10,000 steps:

DE:  &#124; Ferienwohnungen 1 Zi &#124; Ferienhäuser &#124; Landhäuser 
&#124; Autovermietung &#124; Last Minute Angebote ! !

EN (TRUE):&#124; 1 Bedroom Apts &#124; Holiday houses &#124; Rural 
Homes &#124; Car Rental &#124; Last Minute Offers !

EN (Predicted): &#124; Apartments &#124; Hostels &#124; Hostels &#124; 
Last Minute Offers ! </s>

DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?

EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?

EN (Predicted): How can you find the XLSTAT ##AT##-##AT## MX ? </s>

DE:  Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist 
eine richtige Sprache .

EN (TRUE):This is Ladin from Fassa which is more than a dialect : it 
is a language in its own right .

EN (Predicted): The <unk> &quot; is a very important role in the world 
. </s>

DE: In der Hotelbeschreibung im Internet müßte die Zufahrt
beschrieben werden .

EN (TRUE): There are no adverse comments about this hotel at all .

EN (Predicted): The <unk> <unk> is the <unk> of the Internet . </s>

Similar to what we observed earlier, the NMT with attention is good at translating 
some sentences, but poor at translating others.
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Also, these are the results obtained after 100,000 steps:

DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre , 
Kongens Nytorv , &apos; Stroget &apos; und Nyhavn .

EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens 
Nytorv , &quot; Strøget &quot; and fascinating Nyhavn .

EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

DE:  Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro 
Übernachtung und Person für Zustellbetten .

EN (TRUE):All older children or adults are charged EUR 32.00 per night 
and person for extra beds .

EN (Predicted): All older children or adults are charged EUR 15 <unk> 
per night and person for extra beds . </s>

DE:  Im Allgemeinen basieren sie auf Datenbanken , Templates und 
Skripts .

EN (TRUE):In general they are based on databases , template and 
scripts .

EN (Predicted): The user is the most important software of the 
software . </s>

DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie
können OpenOffice zum Arbeiten verwenden .

EN (TRUE): Tux Racer will help you pass the time while you wait ,
and you can use OpenOffice for work .

EN (Predicted): <unk> .com we have a very friendly and helpful
staff . </s>

We have used the same set of test sentences we used to evaluate the standard NMT 
for easier comparison. We can see that the NMT with attention model provides much 
better translations compared to the standard NMT. But still there is the possibility of 
getting some translations wrong, as we use limited amount of data.
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Figure 10.18 depicts the BLEU score over time for the NMT and NMT with attention, 
side by side. We can clearly see that the NMT with attention gives a better BLEU 
score in both training and test data:

Figure 10.19: The BLEU score over time for the NMT and NMT+Attention

According to 2017 results, the current state of the art BLEU score for 
German to English translation is 35.1  (The University of Edinburgh's 
Neural MT Systems for WMT17 by Rico Sennrich and others arXiv preprint 
arXiv:1708.00726 (2017))

Visualizing attention for source and target 
sentences
In Figure 10.19, we can visualize how the attention values look for different source 
words for a given target word for several source to target translation pairs. If you 
remember, when calculating attention, we had the enc_num_unrollings attention 
values for a given position of the decoder. Therefore, if you concatenate all the attention 
vectors for all the positions in the decoder, you can create an attention matrix.
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In the attention matrix, we have target words as rows and source words as columns. 
A higher (lighter) value for some rows and columns indicates that when predicting 
the target word found in that row, the decoder mostly paid attention to the source 
word given by the column. For example, you can see that Hotel in the target 
sentence is highly correlated with Hotel in the source sentence:

Figure 10.20: Attention matrices for several different source-target translation pairs
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This brings us to the end of our discussion about NMT. We discussed the basic 
encoder-decoder architecture used in NMT as well as discussing how to evaluate 
NMT systems. Then we discussed several ways to improve NMT systems such as 
teacher forcing, using deep LSTMs, and the attention mechanism.

It is important to understand that NMT has a wide variety of use cases in the real 
world. One of the obvious use cases is for international businesses having branches 
spread out in many countries. In such businesses, employees from different countries 
need to have faster ways of communicating without making language a barrier. 
Therefore, automatically translating emails from one language to another can be 
very useful for such a company. Next, in manufacturing, MT can be used to produce 
multilingual product descriptions/user-manuals of products. Then experts can 
perform light post-processing to make sure the translations are accurate. Finally, MT 
can come in handy for day-to-day tasks, such as multilingual translations. Say, the 
user is not a native English speaker and needs to search for something that they don't 
know how to fully describe in English. In that case, the user can write a multilingual 
search query. Then the MT system can translate the query to different languages and 
search resources on the internet that matches the user's search request.

Other applications of Seq2Seq  
models – chatbots
One other popular application of sequence to sequence models is in creating 
chatbots. A chatbot is a computer program that is able to make a realistic 
conversation with a human. Such applications are very useful for companies with a 
huge customer base. Responding to the customers asking basic questions for which 
answers are obvious accounts for a significant portion of customer support requests. 
A chatbot can serve customers with basic concerns when it is able to find an answer. 
Also, if the chatbot is unable to answer a question, the request gets redirected to 
a human operator. Chatbots can save lot of the time that human operators spend 
answering basic concerns and let them attend to more difficult tasks.



Sequence-to-Sequence Learning – Neural Machine Translation

[ 364 ]

Training a chatbot
So, how can we use a sequence-to-sequence model to train a chatbot? The answer 
is quite straightforward as we have already learned about the machine translation 
model. The only difference would be how the source and target sentence pairs  
are formed.

In the NMT system, the sentence pairs consist of a source sentence and the 
corresponding translation in a target language for that sentence. However, in 
training a chatbot, the data is extracted from the dialogue between two people.  
The source sentences would be the sentences/phrases uttered by person A, and  
the target sentences would be the replies to person A made by person B. Here is  
an example of this. This data consists of movie dialogues between people and is 
found at https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_
Corpus.html.

BIANCA: They do not!

CAMERON: They do to!

BIANCA: I hope so.

CAMERON: She okay?

BIANCA: Let's go.

CAMERON: Wow

BIANCA: Okay -- you're gonna need to learn how to lie.

CAMERON: No

BIANCA: I'm kidding.  You know how sometimes you just become this "persona"?  
And you don't know how to quit?

BIANCA: Like my fear of wearing pastels?

CAMERON: The "real you".

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
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Here are links to several other datasets for training conversational chatbots:

•	 Reddit comments dataset: https://www.reddit.com/r/datasets/
comments/3bxlg7/i_have_every_publicly_available_reddit_comment/

•	 Maluuba dialogue dataset: https://datasets.maluuba.com/Frames
•	 Ubuntu dialogue corpus: http://dataset.cs.mcgill.ca/ubuntu-

corpus-1.0/

•	 NIPS conversational intelligence challenge: http://convai.io/
•	 Microsoft research social media text corpus: https://tinyurl.com/

y7ha9rc5

Figure 10.20 shows the similarity of a chatbot system to an NMT system. For 
example, we train a chatbot with a dataset consisting of dialogues between two 
people. The encoder takes in the sentences/phrases spoken by one person, where 
the decoder is trained to predict the other person's response. After training in such 
a way, we can use the chatbot to provide a response to a given question:

Figure 10.21: Illustration of a chatbot

Evaluating chatbots – Turing test
The Turing test was invented by Alan Turing in the 1950s as a way of measuring 
the intelligence of a machine. The experiment settings are well-suited for evaluating 
chatbots. The experiment is set up as follows.

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://datasets.maluuba.com/Frames
http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/
http://convai.io/data/
http://convai.io/
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There are three parties involved: an evaluator (that is, a human) (A), another human 
(B), and a machine (C). The three of them sit in three different rooms so that none 
of them can see the others. The only communication medium is text, which is typed 
into a computer by one party, and the receiver sees the text on a computer on their 
side. The evaluator communicates with both the human and the machine. And at the 
end of the conversation, the evaluator is to distinguish the machine from the human. 
If the evaluator cannot make the distinction, the machine is said to have passed the 
Turing test. This setup is illustrated in Figure 10.21:

Figure 10.22: The Turing test

Summary
In this chapter, we talked in detail about NMT systems. Machine translation is the 
task of translating a given text corpus from a source language to a target language. 
First we talked about the history of machine translation briefly to build a sense of 
appreciation for what has gone into machine translation, to become what it is today. 
We saw that today the highest performing machine translation systems are actually 
NMT systems. Next we talked about the fundamental concept of these systems 
and decomposed the model into the embedding layer, the encoder, the context 
vector, and the decoder. We first established the benefit of having an embedding 
layer as it gives semantic representations of words compared to one-hot-encoded 
vectors. Then we understood the objective of the encoder, which is to learn a good 
fixed dimensional vector that represents the source sentence. Next, once the fixed 
dimensional context vector was learned, we used this to initialize the decoder. The 
decoder is responsible for producing the actual translation of the source sentence. 
Then we discussed how the training and the inference work in the NMT systems.
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Then we looked at an actual implementation of an NMT system that translates 
sentences from German to English to understand the internal mechanisms of the NMT 
system. Here we looked at an NMT system implemented using basic TensorFlow 
operations, as this gives us an in-depth understanding of the step-by-step execution 
of the system, compared with using off-the-shelf libraries such as seq2seq in 
TensorFlow. Then we learned that the context vector causes a bottleneck in the system 
as the system is forced to embed all the knowledge in the source sentence to a fixed 
dimensional (comparatively small) vector. Due to the difficulty of the task the system 
underperforms, we moved on to learning a technique that avoids this bottleneck: the 
attention mechanism. Instead of depending solely on the fixed-dimensional vector for 
learning translations, the attention mechanism, allows the decoder to observe full state 
history of the encoder at each decoding step, allowing the decoder to form a rich context 
vector. We saw that this technique allows NMT systems to perform much better.

Finally, we talked about another popular application of sequence-to-sequence 
learning: chatbots. Chatbots are machine learning applications that are able to make 
realistic conversation with a human and even answer questions. We saw that NMT 
systems and chatbots work similarly, and only the training data is the difference. We 
also discussed the Turing test, which is a qualitative test that can be used to evaluate 
chatbots.

In the next chapter, we will discuss the various future trends in NLP.
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Current Trends and  
the Future of Natural 

Language Processing
In this chapter, we will discuss the latest trends in NLP and what the future will 
be like. In the first section, we will talk about the latest trends in NLP. Improving 
the existing models is a key part of the latest trends. This includes improving the 
performance of existing models (for example, the word embeddings and machine 
translation systems).

The rest of the chapter is about the novel areas emerging recently in the field of NLP. 
We will be driving our discussion into five different subareas, drawing on unique 
and instructive papers from the discipline. First we will see how NLP has ventured 
into other research fields, such as computer vision and reinforcement learning. Next 
we will discuss several novel attempts that have been made to achieve Artificial 
General Intelligence (AGI) in NLP, by training a single model to perform several 
NLP tasks. We will also look at some of the new tasks emerging in the realm of NLP, 
such as detecting sarcasm and language grounding. Then we will see how NLP is 
being used in social media, especially in mining social media for information. Finally, 
we will learn about some new time-series learning models that have appeared 
recently, such as Phased LSTMs. For example, Phased LSTMs are much better at 
identifying specific events happening over very long periods of time.

To summarize, we will be talking about the latest NLP trends, and then, the most 
important emerging innovations:

•	 Current trends in NLP
•	 Penetration of NLP into other fields
•	 Advances in AGI in terms of NLP



Current Trends and the Future of Natural Language Processing

[ 370 ]

•	 Emerging Novel NLP tasks
•	 NLP for social media
•	 Better time-series models

Most of the material in this chapter pertaining to current trends 
and new directions is based on scholarly papers from within the 
discipline. We have referenced all the primary sources to credit 
the authors and provide resources for further reading. In-text 
references include a bracketed number that correlates with the 
numbering in the References section at the end of the chapter.

Current trends in NLP
In this section, we will talk about current trends in NLP. These trends are from 
the NLP research conducted between 2012 and early 2018. First let's talk about the 
current states of word embeddings. Word embeddings is a crucial topic as we have 
already seen many interesting tasks that rely on word embeddings to perform well. 
We will then look at important improvements in NMT.

Word embeddings
Many variants of word embeddings have emerged over time. With the inception of 
high-quality word embeddings (refer to Distributed representations of words and phrases 
and their compositionality, Mikolov and others [1]) in NLP, it can be said that NLP had a 
resurgence, where many took an interest in using word embeddings in various NLP 
tasks (for example, sentiment analysis, machine translation, and question answering). 
Also, there have been many attempts to improve word embeddings, leading to even 
better embeddings. The four models that we'll introduce are in the areas of region 
embedding, probabilistic word embedding, meta-embedding, and topic embedding.

Region embedding
The tv-embedding (short for, two-view embedding) model was introduced in Rie 
Johnson and Tong Zhang's paper, Semi-supervised Convolutional Neural Networks for 
Text Categorization via Region Embedding [2]. This approach is different from word 
embeddings, as these are region-embeddings where they embed a region of a text 
into a fixed dimensional vector. For example, unlike in word embedding, where 
we had a vector for each word (for example, cat), with tv-embedding, we have 
embeddings for phrases (for example, the cat sat on a mat). An embedding is called a 
two-view embedding if it preserves the information required to predict a view (that 
is, a word or a region) from another view (that is, a context word or context region).
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Input representation
Let's now look at the details of this approach. A tv-embedding system would look 
like Figure 11.1. First, a numerical representation of regions of words is found. For 
example, consider the following phrase:

very good drama

This can be represented as shown here:

very good drama | very good drama | very good drama

   1      0       0      |    0      1        0     |    0      0        1

This is called a sequence one-hot-encoded vector. Alternatively, it can be 
represented as shown here:

very good drama

   1      1        1

This is called the Bag-of-Words (BOW) representation. We can see that the BOW 
representation is more compact and does not grow with the phrase size. However, 
note that this representation loses contextual information. Note that BOW is the 
feature representation we use to represent words or text phrases. This is not related 
to the CBOW word embedding learning algorithm we discussed in Chapter 3, 
Word2vec – Learning Word Embeddings.

Figure 11.1: Learning region embeddings and using region embeddings for sentiment analysis
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Learning region embeddings
We learn region embeddings the same way we learned word embeddings. We feed 
in an input containing a text region and ask the model to predict the target context 
region. For example, we use a region size of three for the phrase:

very good drama I enjoyed it

Then, for the input we use this:

very good drama

The output (target) will be as follows:

I enjoyed it

As an exercise, we will see if the learned region embeddings help to improve 
sentiment analysis tasks. For this, we will use the dataset found at http://
ai.stanford.edu/~amaas/data/sentiment/. This is a text corpus containing 
IMDB movie reviews. We will first learn useful region embeddings by training an 
embedding layer to predict the context region correctly for a given input text region. 
Then we will use these embeddings as an additional input to the sentiment analysis 
network. This is available as an exercise in tv_embeddings.ipynb in the ch11 folder.

Implementation – region embeddings
For this example, we will use 400 positive and 400 negative samples from 
the dataset as our training data. We will also set up a held-out validation set 
consisting of roughly 150 positive and 150 negative samples. We will only gloss 
over this implementation and not discuss the specific details. You can refer to the 
exercise file for more details.

First, for learning region embeddings, we will define a fully connected set of weights 
and a bias:

  w1 = tf.get_variable('w1', shape=[vocabulary_size,500],
      initializer = tf.contrib.layers.xavier_initializer_conv2d())
  b1 = tf.get_variable('b1',shape=[500],
      initializer = tf.random_normal_initializer(stddev=0.05))

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
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Next, using the weights and bias, we will calculate the hidden value that has rectified 
linear units, which is a type of nonlinearity we use in neural networks:

  h = tf.nn.relu(
      tf.matmul(train_dataset,w1) + b1
  )

Then we will define another set of weights and bias, which acts as the top regression 
layer. The top layer predicts the BOW representation of the context region, for a 
given text region:

  w = tf.get_variable('linear_w', shape=[500, vocabulary_size],
      initializer= tf.contrib.layers.xavier_initializer())
  b = tf.get_variable('linear_b', shape=[vocabulary_size],
      initializer= tf.random_normal_initializer(stddev=0.05))

We will next calculate the final output:

  out =tf.matmul(h,w)+b

We will now define loss. Loss is a mean squared error between the predicted context 
region BOW and the true context BOW. We will use train_mask to mask some of 
the nonexisting words (0s in the true BOW representation), similar to the negative 
sampling method we discussed in Chapter 3, Word2vec – Learning Word Embeddings.

  loss = tf.reduce_mean(tf.reduce_sum(train_mask*(
         out - train_labels)**2,axis=1))

Finally, we will use the optimizer to optimize the defined loss:

  optimizer = tf.train.AdamOptimizer(
              learning_rate = 0.0005).minimize(loss)

Then we will use the learned embeddings as an additional input to classify text, as 
shown in Figure 11.1. For this, we will concatenate region embeddings sequentially 
for all the text regions found in a given review. We will do the same for the BOW 
inputs. Then we will convolve over the concatenated vectors (that is, the region 
embedding and BOW vectors) in parallel and concatenate the convolution outputs. 
Next we will feed the concatenated convolution output into the top classification 
layer, which outputs whether the movie review was positive or negative.
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Classification accuracy
When performance is measured against a held-out validation dataset, the model 
with tv-embeddings seems to slightly outperform the model that does not use 
tv-embeddings (see Figure 11.2). This difference can be improved by employing 
regularization techniques such as dropout and training for a longer time. Therefore, 
we can conclude that tv-embeddings in fact contribute to better performance with text 
classification tasks, compared with just using a simple representation such as BOW:

Figure 11.2: Sentiment classification accuracy for a model using BOW inputs  
and a model using BOW and region embeddings

Probabilistic word embedding
The probabilistic word embedding models are another novel development in the 
word embedding area. A Generative Word Embedding Model and Its Low Rank Positive 
Semidefinite Solution [3], by Shaohua Li and others, introduces a word embedding 
technique called PSDVec, which produces embeddings that are different and more 
informative than the deterministic word vector models we saw earlier in the book (for 
example, skip-gram, CBOW, and GloVe). PSDVecs will provide for an embedding 
distribution for each word embedding instead of an exact numerical vector. As an 
example, if we assume a word vector has an embedding size of 1, and GloVe says 
that the word vector for the word dog is 0.5, PSDVec will provide a distribution over 
all the possible values that might look as shown in Figure 11.3. PSDVec might say that 
the embedding value for dog can be 0.5 with a higher probability (for example, 0.3), 
and it can be 0.1 with a lower probability (for example, 0.05):

Figure 11.3: What PSDVec gives for a one-dimensional embedding
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The probabilistic models have a richer interpretation than the deterministic models, 
such as Word2vec. To learn such probabilistic distributions of word vectors, they use 
a technique known as variational inference. In their work, they learn an embedding 
layer as well as a residual layer that captures noisy and nonlinear relationships 
between words. The authors show that PSDVec provides competitive performance 
compared with standard Word2vec and GloVe.

Ensemble embedding
In their paper, Learning Word Meta-Embeddings [4], Wenpeng Yin and Hinrich Schütze 
propose an approach to learning meta-embeddings, an ensemble embedding model 
from several publicly available embedding sets. Two key benefits of this approach 
are (1) enhanced performance as they leverage multiple word embedding sets and 
(2) higher vocabulary coverage due to using multiple word embedding sets.

Topic embedding
Topic embedding is also gaining interest in the NLP community. It allows any 
document to be represented by a set of topics (for example, information technology, 
medicine, and entertainment), and for a given document, we will compute weights 
for each topic, representing how relevant the document is to that topic. For example, 
a document about using machine learning for healthcare will have higher weights for 
topics such as information technology and medicine, but a low weight for the topic, law.

The paper Topical Word Embeddings [5], by Yang Liu and others, takes this approach 
for learning word embeddings. Topical Word Embeddings (TWE) learns multi-
prototype embeddings. Multi-prototype embeddings are different from standard 
word embeddings as they give different embedding values depending on the context 
in which the word is used. For example, in the context of information technology 
(IT), Windows will give a different embedding value, compared to what it provides 
in the context of home. They learn the topics by a process known as Latent Dirichlet 
Allocation (LDA), a popular method used for topic modeling. The authors evaluate 
their method in a multiclass text classification task from a news group, which 
contains various topics such as IT, medicine, and politics. TWE outperforms other 
topic modeling methods, such as BOW and LDA used alone.
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Neural Machine Translation (NMT)
NMT has already proven its versatility, and many companies and researchers 
are investing in improving NMT systems. NMTs offer the current state-of-the-art 
translation performance that has been demonstrated by an autonomous translation 
system. However, these systems still haven't reached human translation capability. 
Therefore, a lot of effort is underway for improving NMT systems. As we discussed 
in Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation MT has 
potential in various domains such as manufacturing and business. Another use 
case of real-time machine translation can be found in the domain of tourism, where 
tourists can obtain English translations of various languages (through photos/
speech/text), while visiting some other country.

Improving the attention mechanism
We already talked about the attention mechanism that eliminates the notorious 
performance bottleneck limit vanilla encoder-decoder style NMTs. With the 
attention mechanism, the decoder was given freedom to look at the complete source 
sentence at each decoding step. However, the improvements don't stop there. One 
improvement that has been suggested is the input feeding approach found in Effective 
Approaches to Attention-based Neural Machine Translation [6], Minh-Thang Luong and 
others. With this method, we feed the previous attention vector as an input to the 
current time step of the decoder. This measure is taken to make the decoder aware 
of the previous word alignment information, as this increases the performance of the 
MT system.

The paper CKY-based Convolutional Attention for Neural Machine Translation [7], by 
Taiki Watanabe and others, introduces an approach which uses a sophisticated 
Convolution Neural Network (CNN) for learning where to attend in the source 
sentence. This tends to deliver better results as CNNs are good at collecting spatial 
information compared with multilayer perceptrons, which have been used in the 
original attention mechanism.

Hybrid MT models
As we saw in the results of the NMT system we implemented in Chapter 10, Sequence-
to-Sequence Learning – Neural Machine Translation, the predictions often include the 
<unk> token. This is to replace rare words occurring in the predictions. However, we 
do not want this behavior. So there should be a way to replace these rare words in 
the source and target sentences with some meaningful words.
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However, it is not practical to have all the possible words in a language in the 
vocabulary, as this would result in a gigantic database. Currently, the Oxford  
English Dictionary contains more than 150,000 distinct words. However, adding 
various tenses of verbs, names, and objects in the world, this quickly reaches 
unmanageable numbers.

This is where the hybrid models come in handy (see Figure 11.4). In the hybrid 
models, we do not replace rare words with the <unk> token. Instead, we keep the 
word in the sentence, and when a rare word is encountered in the source sentence, 
we delegate the task of processing the word to a character level encoder. Since there 
is a very small set of possible characters, this approach is quite feasible. Then the last 
state of the character level encoder is returned to a word-based machine translator 
and continues through the sentence normally. Also, the same process is used for the 
decoder when the decoder outputs an <unk> token. This was introduced in Minh-
Thang Luong's thesis Neural Machine Translation [8]. You can find an implementation 
of a hybrid NMT model at https://github.com/lmthang/nmt.hybrid.

Here, for clarity, we will show the prediction method used in hybrid NMTs in 
pseudocode style.

For each word in the source sentence, it is as follows:

If word != <unk>
    encode the word with the word-based encoder
Else
    For each character in actual rare word
        Encode with the character-based encoder
    Return last hidden state of the char-based encoder as the input to 
the word-based encoder, instead of the <unk> token

For each word predicted by the decoder, the prediction is as follows:

If word != <unk>
    Decode with the word-based decoder
If word == <end>
    Stop prediction
Else
    Initialize the character level decoder with the word-based decoder 
hidden state
    Output a sequence of characters using the character level decoder 
until <end> is output
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Figure 11.4: A hybrid neural machine translation model

Now let's look at some of the promising NLP directions that we will see in the future. 
These directions include combining NLP with other established research areas, such 
as reinforcement learning and Generative Adversarial Models (GANs).

Penetration into other research fields
Next we will discuss three different areas, which have blended with NLP to produce 
some interesting machine learning tasks. We will be discussing three specific areas:

•	 NLP and computer vision
•	 NLP and reinforcement learning
•	 NLP and generative adversarial networks

Combining NLP with computer vision
First we will discuss two applications where NLP is combined with various 
computer vision applications to process multimodal data (that is, images and text).
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Visual Question Answering (VQA)
VQA is a novel research area, where the focus is to produce an answer to a textual 
question about an image. For example, consider these questions about Figure 11.5:

Q1: What color is the sofa?

Q2: How many black chairs are there?

Figure 11.5: The image about which we've asked questions

With this type of information provided to the system, the system should output the 
following (preferably):

Answer Q1: The color of the sofa is black

Answer Q2: There are two black chairs in the room

The learning model for this type of task would be quite similar to the architecture 
we used for image caption generation in Chapter 9, Applications of LSTM – Image 
Caption Generation. The dataset will consist of images and questions and answers 
corresponding to the image.
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The process during training would be as follows:

1.	 Feed the images through a CNN (for example, pretrained on ImageNet) to 
obtain a context vector, representing the image

2.	 Create a sequence of data, where the sequence is composed of (image 
encoding, <s>, question, </s>, <s>, answer, </s>), and <s> 
denotes the start and </s> is a special token marking the end of question

3.	 Use this sequence to train an LSTM on the answers for the corresponding 
question

During prediction, the process is as follows:

1.	 Feed the images through a CNN (for example, pretrained on ImageNet) to 
obtain a context vector, representing the image.

2.	 Create a sequence of data, where the sequence is composed of (image 
encoding, <s>, question, </s>, <s>).

3.	 Feed the sequence to the LSTM and once the last <s> is fed, it iteratively 
predicts words by feeding in the last predicted word as the input to the  
next step until the LSTM outputs </s>. The newly predicted words will 
compose the answer.

One of the early CNN- and LSTM-based models successfully used for answering 
questions about images is explained in Exploring Models and Data for Image Question 
Answering [8], Mengye Ren and others. Another more advanced method is proposed 
in Hierarchical Question-Image Co-Attention for Visual Question Answering [9], Jiasen Lu 
and others.

The code for a VQA system written in TensorFlow is available at https://github.
com/tensorflow/models/tree/master/research/qa_kg. This code contains the 
method described in the paper Learning to Reason: End-to-End Module Networks for 
Visual Question Answering [10], Ronghang Hu and others.

A good dataset for training and testing the VQA models (dataset with images, 
and question and answers corresponding to each image) is found at http://www.
visualqa.org/vqa_v1_download.html, which was introduced in VQA: Visual 
Question Answering [11], Stanislaw Antol and others.

https://github.com/tensorflow/models/tree/master/research/qa_kg
https://github.com/tensorflow/models/tree/master/research/qa_kg
http://www.visualqa.org/vqa_v1_download.html
http://www.visualqa.org/vqa_v1_download.html
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Caption generation for images with attention
A paper titled Show, Attend and Tell: Neural Image Caption Generation with Visual 
Attention [12], Kelvin Xu and others, describes interesting research, where the focus 
was to learn where to look in an image to generate a caption. The main contribution 
here is that, unlike the standard image caption generation models that use a fully 
connected layer of the CNN to extract feature vectors, this method uses a lower 
convolution layer as the feature representation of the image. Then, on top of the 
convolution layer, it uses a 2D attention layer (similar to the one-dimensional 
attention layer we used in Chapter 10, Sequence-to-Sequence Learning – Neural Machine 
Translation) that represents the part of the image on which the model should focus 
while generating the word. For example, given an image of a dog sitting on a carpet, 
when generating the word dog, the image caption generator can pay more attention 
to the part of the image where the dog is than to the rest of the image.

Reinforcement learning
Another field of research leveraged by NLP is reinforcement learning (RL). NLP and 
RL had no interaction with each other for decades, and it is quite interesting to see how 
NLP problems are formulated through an RL lens and solved by RL techniques. Let's 
quickly understand what RL is. In RL, an agent interacts with an environment. The 
agent can observe the environment (completely or partially), which is fed to the agent 
as a state. Then, depending on the state, the agent will take an action sampled from 
some action space. Finally, after the execution of the action, a reward will be provided 
to the agent. The goal of the agent is to maximize the long-term reward it accumulates.

Next we will discuss how RL is used to solve various NLP tasks. First, we will 
discuss how RL is used to teach several agents a "language" that they use to 
communicate about data. This will be followed by RL being used to train agents 
to fulfill a user's request better by asking questions about the information the user 
didn't specify.

https://arxiv.org/find/cs/1/au:+Xu_K/0/1/0/all/0/1
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Teaching agents to communicate using their  
own language
In Multi-agent cooperation and the emergence of (natural) language [13], Angeliki Lazaridou 
and others teach several agents to learn a unique language for communication. This 
is specifically done by selecting two agents from the group—a sender and a receiver. 
The sender is given a pair of images (where one image is the target), and the sender 
should send a small message for the receiver. The message is composed of symbols 
chosen from a fixed vocabulary that has no semantic meaning between symbols 
initially. The receiver sees the images, but does not know the target and is supposed 
to identify the target from the message received. The ultimate goal would be for the 
agent to activate the same symbol for similar-looking images. If the receiver predicts 
the target image correctly, both agents will receive a reward of 1; if it fails, both 
receive a reward of 0. This is depicted in Figure 11.6:

Figure 11.6: Agents learning to use the vocabulary to communicate about images,  
where only a single image is provided at a time. If the receiver identifies the  

image correctly, both the sender and receiver will get positive rewards.
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Dialogue agents with reinforcement learning
The following two papers use RL to train end-to-end deep learning-based dialogue 
systems: Towards End-to-End Reinforcement Learning of Dialogue Agents for Information 
Access [14], Bhuwan Dhingra and others and A Network-based End-to-End Trainable 
Task-oriented Dialogue System [15], Tsung-Hsien Wen and others. A dialogue system 
converses with a human in natural language and tries to accomplish the task implied 
by the phrase uttered by the human. For example, a human might ask this:

What are some of the French restaurants in Sydney?

Then the agent should convert the question to a system desired feature vector, 
which is achieved through a system called a belief tracker. A belief tracker maps 
the free-form natural language request to a fixed feature vector. This also could be 
viewed as a semantic parser. Then the feature vector is used to query a structured 
knowledge base to find the answer.

However, there can be tricky situations, where the human provides partial 
information in the request. For example, the human might ask the following:

What are the best restaurants in town?

Then the system might ask this:

Which town?

To this, the human answers the following:

Sydney.

Then the system might ask this:

Which cuisine?

To this, the human answers the following:

French.

After obtaining all the information needed to complete the request, the system will 
query the knowledge base and find the answer. A reward function can be designed 
to give positive reward whenever the system finds the correct answer. This will 
motivate the agent to ask correct relevant questions that are required to fill the 
missing information of the user's request.
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Generative Adversarial Networks for NLP
Generative models are a family of models that are able to generate new samples 
from some observed sample distribution. We already saw an example of a generative 
model when we used an LSTM to generate text. Another example of this would be to 
generate images. A model is trained on handwritten digits, and the model is asked 
to generate new handwritten digits. For generating images, we can use Generative 
Adversarial Models (GANs), a popular generative method. A GAN looks as shown 
in Figure 11.7:

Figure 11.7. A Generative Adversarial Network (GAN)

There are two different components in the system: a generator and a discriminator. 
The generator's objective is to generate images that look like the real image. The 
discriminator tries to distinguish real (for example, true handwritten images) and 
fake images (generated by the generator) correctly. We will provide the generator 
with some noise (that is, sample values generated from a normal distribution), and 
it generates an image. The generator is an inverse CNN, where it takes a vector as 
an input and outputs an image. This contrasts with a standard CNN, which takes 
an image as an input and outputs a prediction vector. The discriminator tries to 
discriminate between real images and the ones generated by the generator. So at the 
beginning, it is easy for the discriminator to distinguish between real ones and the 
fake ones. The generator is optimized in a way that it becomes more difficult for the 
discriminator to identify fake ones from the real one. With this process, the generator 
becomes good at generating images that look like real images.
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GANs were originally designed to generate realistic images. However, there have 
been several attempts to adapt GANs for generating sentences. Figure 11.8 illustrates 
the general approach to using a GAN to generate sentences. Next, let's look at the 
specifics of this approach:

Figure 11.8: The general concept of using an LSTM generator and a CNN discriminator to generate sentences

In Generating Text via Adversarial Training [16], Yizhe Zhang and others use a modified 
GAN for generating text. In their work, there are significant differences to the 
convolutional GAN we discussed earlier. First, they use an LSTM generator, 
which takes some random item from the vocabulary as the input and generates an 
arbitrarily long sentence. Next, the discriminator is a CNN that is trained to classify 
a given sentence into one of two classes (that is, fake or real). The data is fed to the 
CNN and trained, similar to the sentence classification CNN we discussed in Chapter 
5, Sentence Classification with Convolutional Neural Networks. First, the CNN will be 
very good at discriminating between real sentences and fake sentences. Over time, 
the LSTM will be optimized to produce more and more realistic looking sentences to 
fool the classifier.

In SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient [17], Lantao Yu 
and others show another approach for generating text using a generative model. In 
this case also, the generator is an LSTM network and the discriminator is a CNN 
network (for example, similar to Generating Text via Adversarial Training [16], Zhang 
and others). However, unlike the approach in that work, the training process is 
formulated as a reinforcement learning problem.
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The state is the currently generated text string by the generator, and the action 
space is the vocabulary to choose words from. This process is continued until the 
full text is generated for a given step. The reward is obtained only at the end of the 
full sequence. The output of the discriminator is used as the reward. Therefore, 
the reward will be high if the output of the discriminator is close to 1 (that is, the 
discriminator thinks data is real) and low if the output is close to 0. Then with 
the reward defined, the authors use policy gradient to train the generator through 
backpropagation. Specifically, the policy gradient calculates the gradients for the 
parameters (that is, weights) in the generator with respect to the reward produced 
by the discriminator. A TensorFlow implementation of SeqGAN is available at 
https://github.com/LantaoYu/SeqGAN.

Towards Artificial General Intelligence
Artificial General Intelligence (AGI) enables machines to perform cognitive or 
intellectual tasks that a human can perform. It is a different or a more difficult concept 
than AI, as AGI involves achieving general intelligence beyond asking a machine to 
perform a task given necessary data. For example, let's say we put a robot in a novel 
environment (say, a house that robot has never visited) and ask it to make coffee. If it 
can actually navigate the house, find the machine, learn how to operate it, execute the 
correct sequence of actions needed to make coffee and bring the coffee to a human, 
then we can say that robot has achieved AGI. We are still far from achieving AGI, but 
steps are being made in that direction. Also, NLP will play a great role in this as the 
most natural way for humans to interact is vocal communication.

The papers that will be discussed here are single models that try to learn to do  
many tasks. In other words, a single end-to-end model will be able to classify  
images, detect objects, recognize speech, translate between languages, and so on.  
We can think of machine learning models that are capable of doing many tasks as  
a step towards AGI.

One Model to Learn Them All
In One Model To Learn Them All [18], Lukasz Kaiser and others introduce a single 
deep learning model that is capable of learning many tasks (for example, image 
classification, image caption generation, language translation, and speech 
recognition). Specifically, this model (which is called the MultiModel) consists of 
several modules: subnetworks, an encoder, an input/output mixer, and a decoder.

https://github.com/LantaoYu/SeqGAN
https://github.com/LantaoYu/SeqGAN
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First, the MultiModel comprises several subnetworks or modality-nets. A modality-net 
converts inputs belonging to some specific modality (for example, images) to a unified 
representation. This way, all the inputs having different modalities can be processed 
by a single deep network. Note that modality-nets are not task specific; they are only 
input-modality specific. This means that several tasks having the same input modality 
will share a single modality-net. Next we will list the roles performed by the encoder, 
I/O mixer, and the decoder.

The encoder processes the inputs produced by the modality networks using 
computational elements such as convolution blocks, attention blocks, and a mixture 
of experts blocks. We will describe the tasks achieved by each of these elements later.

The I/O mixer combines (or mixes) the encoded input with the previously observed 
outputs to produce encoded outputs. This module processes the inputs and the 
previously observed outputs as an autoregressive model. To understand what an 
autoregressive model is, let's consider a time series denoted by { }0 1 2 1y , , , , ty y y y −= … .  
In its simplest form, an autoregressive model predicts yt as a function of yt-1 (that is, 

1 1 0t ty yβ β−= + +∈ , where 0β  and 1β  are learnable coefficients and ∈  captures noise 
present in y. However, this can be generalized to arbitrary number of previous y 
values, for example, 2 2 1 1 0t t ty y yβ β β− −= + + +∈ . This is useful as the MultiModel processes 
many types of time-series data such as speech and text.

The decoder takes in both the encoded outputs and the encoded inputs and produces 
a decoded output using convolution and attention blocks and a mixture of experts 
blocks. We will describe these blocks here:

•	 The convolutional block: The convolutional block detects local and spatial 
patterns and converts them to feature maps.

•	 The attention block: The attention block decides what to pay attention to in 
the input, when encoding/decoding.

•	 The mixture of experts block: The mixture of experts block is a way to 
increase the model capacity at a negligible extra computational cost. A 
mixture of experts is a collection of several feed-forward networks (that is, 
experts) with a trainable (and differentiable) gating mechanism that chooses 
different networks depending on the inputs.

Though the details vastly differ, you should be able to see a resemblance to the 
NMT system we studied in Chapter 10, Sequence-to-Sequence Learning – Neural 
Machine Translation. The MultiModel first encodes the input, as we encoded the 
source sentence through the NMT encoder. Finally, the MultiModel decodes and 
produces a human-readable output, just as the NMT decoder produced a target 
sentence.
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The MultiModel is trained to perform various tasks with the following datasets, 
which are laid out in the paper One Model To Learn Them All, Kaiser and others:

1.	 Wall Street Journal (WSJ) speech corpus: WSJ speech corpus is a large  
dataset containing utterances (~ 73 hours of speech) by various people 
(including journalists with varying experience). This dataset is found at 
https://catalog.ldc.upenn.edu/ldc93s6a.

2.	 ImageNet dataset: The ImageNet dataset is the image dataset we discussed 
in Chapter 9, Applications of LSTM – Image Caption Generation. It contains more 
than a million images belonging to 1,000 different classes. The dataset is 
found at image-net.org/download.

3.	 MS-COCO image captioning dataset: MS-COCO data was also used in 
Chapter 9, Applications of LSTM – Image Caption Generation. This contains 
images and image descriptions generated by humans. This dataset can be 
found at http://cocodataset.org/#download.

4.	 WSJ parsing dataset: Parsing is the process of identifying nouns, 
determinants, verbs, noun phrases, verb phrases, and so on, in a sentence and 
constructing a parse tree for that sentence. A dataset constructed by parsing 
a corpus of WSJ material is found in the WSJ parsing dataset. The dataset is 
found at https://catalog.ldc.upenn.edu/ldc99t42.

5.	 WMT English-German translation corpus: This is a bilingual text corpus, 
having English sentences and corresponding German translations, similar 
to the dataset we used in Chapter 10, Sequence-to-Sequence Learning – Neural 
Machine Translation. Datasets are found at http://www.statmt.org/wmt14/
translation-task.html.

6.	 The reverse of 5: This is the German-English translation.
7.	 WMT English-French translation corpus: This is a bilingual text corpus, 

having English sentences and corresponding French translation, similar to 
the dataset we used in Chapter 10, Sequence-to-Sequence Learning – Neural 
Machine Translation. Datasets are found at http://www.statmt.org/wmt14/
translation-task.html.

8.	 The reverse of 7: This is the French-English translation. In One Model To  
Learn Them All, the authors actually say German-French here, which we  
take to be an inadvertent error, as the preceding corpus is English with 
French translations.

image-net.org/download
http://cocodataset.org/#download
https://catalog.ldc.upenn.edu/ldc99t42
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
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After training on these datasets, the model is expected to perform the following tasks 
with a good accuracy:

•	 Converting speech to text
•	 Generating captions for a given image
•	 Identifying objects in a given image
•	 Translating from English to German or French
•	 Building parse trees for English

A TensorFlow implementation is found at https://github.com/tensorflow/
tensor2tensor.

A joint many-task model – growing a neural 
network for multiple NLP tasks
In A Joint Many-Task Model – Growing a Neural Network for Multiple NLP Tasks [19], 
Kazuma Hashimoto and others train an end-to-end model on a variety of NLP tasks. 
However, this method formulation is different from the previously discussed 
approach. In this case, the lower layers of the model learn simpler tasks, and higher 
(or deeper) layers learn more advanced tasks. To achieve this, the required labels (for 
example, part-of-speech (POS) tags) for training are provided to individual levels of 
the network. These tasks are categorized into three different types in this order (that 
is, lower to higher in the network): word-level tasks, syntactic tasks, and semantic 
tasks. When organized in this fashion, higher layers can use the knowledge of 
completing simpler tasks to perform more advanced tasks (for example, identifying 
dependencies of a sentence can benefit from the POS tags). This concept is illustrated 
in Figure 11.9.

First level – word-based tasks
The first two layers perform word-level tasks. Given a sentence, the first layer 
performs POS tagging for each word in the sentence. The next layer performs 
chunking, a process where tags are again assigned to each word.

Second level – syntactic tasks
The next layer performs dependency parsing on the sentence. Dependency parsing 
is the task of analyzing the grammar structure of a sentence and identifying 
relationships between words.

https://github.com/tensorflow/tensor2tensor
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Third level – semantic-level tasks
The next layer encodes the relatedness information of sentences. However, 
relatedness is measured between two sentences. To process two sentences in parallel, 
we have two parallel stacks of what we described earlier. Therefore, we have two 
different networks encoding two sentences with respect to their relatedness. The 
final layer performs textual entailment. Textual entailment is the task of analyzing 
whether the premise sentence (second sentence) entails the hypothesis sentence (first 
sentence). The output can be entailment, contradiction, or neutral. Here we will list 
examples of positive/negative and neutral textual entailments:

•	 Positive:
Hypothesis: cloudy skies lead to rain
Premise: If it is cloudy, it will rain

•	 Negative:
Hypothesis: cloudy skies don't lead to rain
Premise: If it is cloudy, it will rain

•	 Neutral:
Hypothesis: cloudy skies lead to rain
Premise: if it is cloudy, your dog will bark

Figure 11.9: Solving increasingly complex tasks in a bottom to top manner
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NLP for social media
Now we will discuss how NLP has influenced social media mining. Here we will 
discuss findings presented in several papers. These findings include detecting 
rumors from truth and detecting emotions and identifying manipulations of words 
by politicians, for example, to gain more support (that is, political framing).

Detecting rumors in social media
In Detect Rumors Using Time Series of Social Context Information on Microblogging Websites 
[20], Jing Ma and others propose a way to detect rumors in microblogs. Rumors are 
stories or statements that are either deliberately false or for which the truth is not 
verified. Identifying rumors in their early phases is important to prevent false/
invalid information being delivered to people. In this paper, an event is defined as a 
set of microblogs relevant to that event. A time-sensitive context feature is derived 
for each microblog and they are binned into time intervals depending on the time the 
microblog appeared. Thereafter, they use a Dynamic-Series Time Structure (DSTS) 
to learn a "shape" of the time series of the evolution context-features. More specifically, 
given a series of temporal context features, DSTS represents the shape of the time-
series with a combination of feature vectors over time (f0, f1, f2, …, ft) and a function 
of the slope between consecutive context features over time (0, f1-f0, f2-f1, …). This can 
help to identify rumors as these patterns tend to behave differently for rumors and 
nonrumors. For example, the number of question marks in microblogs related to a 
nonrumor event goes down with time, whereas for rumors, it does not.

Detecting emotions in social media
EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks [21], 
Muhammad Abdul-Mageed and Lyle Ungar, shows an approach for detecting emotions 
in social media posts (for example, tweets). Detecting emotions in social media 
posts plays an important role as the emotions help to determine one's physical and 
mental health. Ability to detect emotions also provides customer insights, which are 
valuable for businesses. Therefore, correctly mining the emotions from social media 
posts can provide parents with their children's physical/mental status or can help 
businesses grow. However, technical barriers exist for automatic emotion detection 
approaches as there is limited amount of data due to the controversial nature of 
the emotions themselves. For example, when one says, I love Mondays, it could be a 
sarcastic remark indicating the loathing of a working person. On the contrary, it also 
could be someone actually being happy about Mondays because of some weekly 
celebration that takes place on Mondays.
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The authors use Plutchik's wheel of emotions (see Figure 11.10) to categorize 
emotions, from which they end up with 24 different categories. However, tweets 
might be using various synonyms to mean the same thing (for example, happy can 
be expressed with joyful, blissful, and excited). Therefore, the authors used Google 
synonyms and other resources and found 665 different emotion hashtags belonging 
to the 24 main categories.

Next, to collect data, they crawled through tweet posts dating back to 2009 and 
collected about 0.5 billion tweets. Then they performed preprocessing on the raw 
data, mainly to remove duplicates and tweets with multiple emotions and ended up 
with around 1.5 million tweets. Finally, a gated recurrent network (that is, a network 
of GRUs) was used to classify the tweets and predict what type of an emotion a 
given tweet is expressing:

Figure 11.16: Plutchik's wheel of emotion



Chapter 11

[ 393 ]

Analyzing political framing in tweets
Social media is widely being used as a platform for various tasks in politics. In recent 
U.S. elections, candidates heavily leveraged Twitter to advertise their agendas, 
expand their supporter bases, and attack and retaliate against opposing candidates. 
This highlights the importance of such political posts for mining important 
information. Identifying political framing is one such important and difficult task. 
Political framing refers to careful manipulation of words to control public perception.

In Leveraging Behavioral and Social Information for Weakly Supervised Collective 
Classification of Political Discourse on Twitter [22], Kristen Johnson and others develop a 
labeled dataset that consists of tweets by 40 members of Congress chosen randomly. 
First, the tweets were extracted and labeled using a policy framing codebook to annotate 
the tweets. Next, due to the dynamic nature of the problem, weakly supervised 
models were used to learn the tweets. Weakly supervised models are designed to 
learn with a limited amount of data (unlike deep learning models).

New tasks emerging
Now we will investigate several novel areas that have emerged in the recent past. 
These areas include detecting sarcasm, language grounding (that is, the process of 
eliciting common sense from natural language), and skimming text.

Detecting sarcasm
Sarcasm is when a person utters something which actually means the opposite of 
the utterance (for example, I love Mondays!). Detecting sarcasm can even be difficult 
for humans sometimes, and detecting sarcasm through NLP is an even harder 
task. Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine 
Translation [23], Lotem Peled and Roi Reichart, uses NLP for detecting sarcasm in 
Twitter posts. They first create a dataset of 3,000 tweet pairs, where one tweet is 
the sarcastic tweet and the other tweet is the decrypted nonsarcastic tweet. The 
decrypted tweets were created by five human judges who looked at the tweet and 
came up with the actual meaning. Then they used a monolingual machine translation 
mechanism to learn sarcasm. This is a sequence-to-sequence model as we discussed 
in an earlier chapter. Instead of giving a pair of sentences belonging to two different 
languages, here we provide the sarcastic and nonsarcastic sentence pair.



Current Trends and the Future of Natural Language Processing

[ 394 ]

Language grounding
Language grounding is the task of deriving common sense from the natural 
language. For example, when we use language, often there is a strong conceptual 
idea of objects and actions we want to explain. This allows us to draw various 
conclusions about objects, even when the conclusions are not directly present in 
the sentence. However, this is not the case for machines. Machines do not learn the 
natural language by relating it to actual conceptual entities they represent. However, 
this is an essential part if we want to build true AI. Language grounding is the task 
of achieving this property. For example, when we say the car entered the garage, it 
implies that the garage is bigger than the car. However, it is not necessarily learned 
by a machine learning algorithm, unless given a reward for learning that. In Verb 
Physics: Relative Physical Knowledge of Actions and Objects [24], Maxwell Forbes and 
Yejin Choi propose an approach for learning language grounding.

In this paper, the authors focus on five different properties or dimensions for 
grounding: size, weight, strength, rigidness, and speed. Finally, a factor graph  
model is used to learn various properties of the objects appearing in a conversation. 
The factor graph contains subgraphs consisting of two subgraphs for each  
attribute—object subgraph and verb subgraph.

Next, each subgraph contains nodes. There are two types of nodes:

•	 Object-pair nodes (nodes found in the object subgraph): These capture 
the relative strength of an attribute for two objects (for example, denoted by 

( ),
size
human berryO : probability of size(human) > size(berry))

•	 Action frame nodes (nodes found in the verb subgraph): These capture how 
verbs are related to attributes (that is, denoted by size

threwF : for sentence x threw 
y, what is the probability that size(x) > size(y))

Then it is possible to create connections (that is, binary factors) between two object 
pair nodes, or two action frame nodes, depending on how likely a given pair of 
nodes to appear in a similar context. For example, ( ),

size
human ballO  and ( ),

size
human stoneO  should 

have high binary factor, where ( ),
size
human ballO  and ( ),

size
human carO  should have a low binary 

factor. Then the most crucial connections (that is, connections between action frame 
nodes and object pair nodes) are established by learning from unstructured natural 
language.

Finally with this graph, if we need to know the relationship between weight(human) 
and weight(ball), we can infer the connection strength connecting weight

threwF  with 
( ),
weight
human ballO . This is performed via something known as loopy belief propagation.
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Skimming text with LSTMs
Skimming text plays an important role in many NLP activities. For example, if an 
LSTM is designed to answer questions from a book, it probably shouldn't be reading 
the full text, but read only the relevant parts that contain information that helps 
answering the questions. Another use might be for document retrieval, where a 
set of relevant documents containing some text need to be fetched from an existing 
large document base. In Learning to Skim Text [25], Adams Wei Yu and others propose a 
model called LSTM-Jump that does exactly this.

There are three important hyperparameters:

•	 N: This is the total number of jumps allowed
•	 R: This is the number of tokens to be read between two jumps
•	 K: This is the maximum jump size allowed (in a step)

Next, an LSTM is created with a softmax layer with K nodes on top of the LSTM. 
This softmax layer decides how many jumps to make at a given time step. This 
functioning of this softmax layer is somewhat similar to the attention mechanism. 
The jumping or skimming stops if one of the following conditions is encountered:

•	 Jump softmax samples a 0
•	 The LSTM reaches the end of the text
•	 The number of jumps exceeds N

Newer machine learning models
Now we will discuss several newer machine learning models that have emerged to 
resolve various limitations of the current models (for example, standard LSTMs). 
One such model is Phased LSTMs that allow us to pay attention to very specific 
events that happen in future during learning. Another model is Dilated RNNs 
(DRNNs), which provides a way to model complex dependencies present in the 
inputs. DRNNs also enable parallel computation of unrolled RNNs, compared with 
naïvely iterating through the unrolled RNNs.
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Phased LSTM
Current LSTM networks have shown a remarkable performance in many of 
the sequential learning tasks. However, they are not well-suited for processing 
irregularly timed data, such as data provided by event-driven sensors. This is mainly 
because no matter whether an event is transpired or not, an LSTM's cell state and the 
hidden states are continuously updated. This behavior can cause the LSTM to ignore 
special events that might rarely or irregularly happen.

Phased LSTMs are introduced in Phased LSTM: Accelerating Recurrent Network 
Training for Long or Event-based Sequences [26], Daniel Neil and others, and they try 
to solve this issue by introducing a new time gate. Updates to the cell state and the 
hidden state are only allowed when the time gate is open. Therefore, unless an event 
occurs, the time gate would be closed causing the cell state and the hidden state to 
remain the same. This behavior helps to preserve information for a longer time and 
pay attention to the event that occurred. Figure 11.11 illustrates the general concept.

This timing gate operation is achieved through three newly introduced parameters:

•	 τ : This controls the real-time oscillation period

•	 onr : This controls the time the gate is open to the full duration
•	 s: This controls the phase shift of the oscillations of the gate

These variables can be learned jointly with the rest of the parameters of the LSTM. 
TensorFlow already has released an implementation of Phased LSTMs, which is 
found at https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/
PhasedLSTMCell:

Figure 11.11: The general concept of a timing gate. The hidden state  
and the cell state are allowed to be updated only if the timing gate is on.



Chapter 11

[ 397 ]

Dilated Recurrent Neural Networks (DRNNs)
Current RNNs have several limitations in learning long-term dependencies, such as 
the following:

•	 Complex dependencies present in the inputs
•	 The vanishing gradient
•	 Effective parallelization of the learning

DRNNs are introduced in Dilated Recurrent Neural Networks [27], Shiyu Chang and 
others. They attempt to resolve all these limitations at once.

DRNNs solve the issue of learning complex dependencies by ensuring that a given 
state is connected to older hidden states, not just the immediate previous hidden 
state. This by design helps to learn long-term dependencies more effectively.

This architecture solves the issue of the vanishing gradient as one hidden state sees 
the past beyond the immediate previous hidden state, so it is easy to propagate the 
gradient through time to longer distances.

If you compress the DRNN architecture, it represents a standard RNN that processes 
multiple inputs at the same time. Therefore, again by design, DRNNs allow greater 
parallelization compared with standard RNNs. Figure 11.12 shows how DRNNs 
differ from standard RNNs. An implementation of this is available at https://
github.com/code-terminator/DilatedRNN.

Figure 11.12: A standard RNN (left) and a DRNN (right) unrolled over time.  
The differently shaded unrolled RNNs can be processed in parallel because  

they don't have any shared connections.

https://github.com/code-terminator/DilatedRNN
https://github.com/code-terminator/DilatedRNN
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Summary
This chapter was aimed at learning the current trends in NLP and learning the future 
directions that NLP is being driven to. Though it is a very broad topic, we discussed 
some of the very recent advancements that have been made in NLP. As current trends, 
we first looked at the advancements being made with regard to word embeddings. We 
saw that much more accurate embeddings with richer interpretations (for example, 
probabilistic) are emerging. Then we looked into improvements that have been made 
in machine translation, as it is one of the most sought after areas in NLP. We saw that 
better attention mechanisms and better MT models capable of producing increasingly 
more realistic translations are both emerging.

We then looked at some of the novel research in NLP that is taking place (mostly in 
2017). First we investigated the penetration of NLP into other fields: computer vision, 
reinforcement learning, and the generative adversarial models. We looked at how 
NLP systems are being improved so that they come closer to achieving GAI. Next  
we looked at what type of progress NLP has made in social media, such as how  
NLP is being used to detect and debunk rumors, detect emotions, and analyze 
political situations.

We also looked into some of the more recent and interesting tasks that are gaining 
more popularity among the NLP community, such as learning to detect sarcasm 
using an encoder-decoder learning model, language grounding that has gained 
thorough insights into what is implied by some utterance, and learning to skim text 
instead of reading it fully from end-to-end. We discussed some of the latest machine 
learning models that have been recently introduced. Phased LSTMs are an advance 
type of LSTMs that have more control over how to update the cell state and the 
hidden state. This behavior allows LSTMs to learn longer-term dependencies with 
irregularities. Finally, we discussed another type of model called DRNNs. DRNNs 
introduce a simple modification to how standard RNNs are unrolled over time. 
With this modification, DRNNs are able to model complex dependencies, solve the 
vanishing gradient problem, and enable more parallelization for processing data.
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Mathematical Foundations 
and Advanced TensorFlow

Here we will discuss some of the concepts that will be useful to understand 
details provided in the chapters. First we will discuss several mathematical data 
structures found throughout the book, followed by a description about various 
operations performed on those data structures. Next, we will discuss the concept 
of probabilities. Probabilities play a vital role in machine learning, as they usually 
give insights to how uncertain a model is about its prediction. Thereafter, we discuss 
a high-level library known as Keras in TensorFlow, as well as how to implement 
a neural machine translator with the seq2seq sublibrary in TensorFlow. Finally we 
conclude this section with a guide on how to use the TensorBoard as a visualization 
tool for word embeddings.

Basic data structures

Scalar
A scalar is a single number unlike a matrix or a vector. For example, 1.3 is a scalar. 
A scalar can be mathematically denoted as follows:

n R∈

Here, R is the real number space.
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Vectors
A vector is an array of numbers. Unlike a set, where there is no order to elements, 
a vector has a certain order to the elements. An example vector is [1.0, 2.0, 1.4, 2.3]. 
Mathematically, it can be denoted as follows:

{ }( )0 1 1, , , na a a a −= …

na R∈

Alternatively, we can write this as:

1na R ×∈

Here, R is the real number space and n is the number of elements in the vector.

Matrices
A matrix can be thought of as a two-dimensional arrangement of a collection of 
scalars. In other words, a matrix can be thought of as a vector of vectors. An example 
matrix would be as shown here:

1 4 2 3
2 7 7 1
5 6 9 0

    =    

A

A more general matrix of size m n×  can be mathematically defined like this:

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n

n

m m m n

a a a
a a a

a a a

−

−

− − − −

      =      

�
�

� � � �
�

A

And:

m nA R ×∈
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Here, m is the number of rows of the matrix, n is the number of columns in the 
matrix, and R is the real number space.

Indexing of a matrix
We will be using zero-indexed notation (that is, indexes start with 0).

To index a single element from a matrix at (i, j)th position, we use the following 
notation:

, ,i j i jA a=

Referring to the previously defined matrix, we get the following:

1 4 2 3
2 7 7 1
5 6 9 0

A
    =    

We index an element from A like this:

1,0 2A =

We denote a single row of any matrix A as shown here:

( ),: ,0 ,1 ,, , ,i i i i nA a a a= …

For our example matrix, we can denote the second row (indexed as 1) of the matrix 
as shown here:

( )1,: 2,7,7,1A =

We denote the slice starting from the (i, k)th index to the (j, l)th index of any matrix 
A as shown here:

, ,

1: , :

, ,

i k i l

j k l

j k j l

a a
A

a a

    =     

�
� � �
�
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In our example matrix, we can denote the slice from first row third column to second 
row fourth column as shown here:

0:1,2:3

2 3
7 1

A
 =    

Special types of matrices

Identity matrix
An identity matrix is where it is equal to 1 on the diagonal of the matrix and 
0 everywhere else. Mathematically, it can be shown as follows:

,

1
I

0i j

if i j
otherwise

 = =    

This would look like the following:

1 0 0
0 1 0

=

0 0 1

            

�
�

� � � �
�

A

Here, 
n nI R ×∈ .

The identity matrix gives the following nice property when multiplied with another 
matrix A:

AI A=
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Diagonal matrix
A diagonal matrix is a more general case of the identity matrix, where the values 
along the diagonal can take any value and the off-diagonal values are zeros:

0,0

1,1

1, 1

0 0
0 0

=

0 0 n n

a
a

a − −

            

�
�

� � � �
�

A

Tensors
An n-dimensional matrix is called a tensor. In other words, a matrix with an 
arbitrary number of dimensions is called a tensor. For example, a four-dimensional 
tensor can be denoted as shown here:

k l m nT R ×× ×∈

Here, R is the real number space.

Tensor/matrix operations

Transpose
Transpose is an important operation defined for matrices or tensors. For a matrix, 
the transpose is defined as follows:

( ), ,

T

i j j iA A=

Here, AT denotes the transpose of A.

An example of the transpose operation can be illustrated as follows:

1 4 2 3
= 2 7 7 1
5 6 9 0

        

A
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After the transpose operation:

1 2 5
4 7 6

=
2 7 9
3 1 0

T

            

A

For a tensor, transpose can be seen as permuting the dimensions order. For example, 
let's define a tensor S, as shown here:

1 2 3 4, , ,d d d dS R∈

Now a transpose operation (out of many) can be defined as follows:

4 3 2 1d ,d ,d ,dTS R∈

Multiplication
Matrix multiplication is another important operation that appears quite frequently 
in linear algebra.

Given the matrices m nA R ×∈  and n pB R ×∈ , the multiplication of A and B is defined 
as follows:

C AB=

Here, m pC R ×∈ .

Consider this example:

1 2
= 4 5
7 8

        

A

8 5 2
=
9 6 3
     

B
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This gives C AB= , and the value of C is as follows:

26 17 8
= 77 50 23
128 83 38

        

C

Element-wise multiplication
Element-wise matrix multiplication (or the Hadamard product) is computed for 
two matrices that have the same shape. Given the matrices m nA R ×∈  and m nB R ×∈ , 
the element-wise multiplication of A and B is defined as follows:

C A B= �

Here, C Rm n×∈

Consider this example:

2 3 3 2
1 2 1 3
6 1 3 5

A B
   
   
   = =   
   
   

This gives C A B= � , and the value of C is as follows:

6 6
1 6
18 5

C
 
 
 =  
 
 

Inverse
The inverse of the matrix A is denoted by A-1, where it satisfies the  
following condition:

1A A I− =

Inverse is very useful if we are trying to solve a system of linear equations. Consider 
this example:

Ax b=
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We can solve for x like this:

( )1 1A Ax A b− −=

This can be written as, ( )1 1A A x A b− −=  using the associative law (that is, 
( ) ( )A BC AB C= ).

Next, we will get = -1Ix A b  because -1A A I= , where I is the identity matrix.

Lastly, -1x= A b  because Ix= x .

For example, polynomial regression, one of the regression techniques, uses a 
linear system of equations to solve the regression problem. Regression is similar 
to classification, but instead of outputting a class, regression models output a 
continuous value. Let's look at an example problem: given the number of bedrooms 
in a house, we'll calculate the real-estate value of the house. Formally, a polynomial 
regression problem can be written as follows:

( )2
0 1 2 1, 2, ,m

i i i m i iy x x x i nβ β β β ε= + + + + + =� …

Here, ( ),i ix y  is the ith data input, where xi is the input, yi is the label, and ∈  is noise 
in data. In our example, x is the number of bedrooms and y is the price of the house. 
This can be written as a system of linear equations as follows:

2
1 0 11 1 1

2
2 1 22 2 2

2
3 2 33 3 3

2

1
1
1

1

m

m

m

m
n m nn n n

y x x x
y x x x
y x x x

y x x x

β ε
β ε
β ε

β ε

      
      
      
      
      = +      
      
      
      

            

�
�
�

� � �� � � � �
�

However, A-1 does not exist for all A. There are certain conditions that need to be 
satisfied in order for the inverse to exist for a matrix. For example, to define the 
inverse, A needs to be a square matrix (that is, n nR × ). Even when the inverse exists, 
we cannot always find it in the closed form; sometimes it can only be approximated 
with finite-precision computers. If the inverse exists, there are several algorithms for 
finding it, which we will be discussing here.
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When it is said that A needs to be a square matrix for the inverse 
to exist, I refer to the standard inversion. There exists variants 
of inverse operation (for example, Moore-Penrose inverse, also 
known as pseudoinverse) that can perform matrix inversion on 
general m n×  matrices.

Finding the matrix inverse – Singular Value 
Decomposition (SVD)
Let's now see how we can use SVD to find the inverse of a matrix A. SVD factorizes 
A into three different matrices, as shown here:

TA UDV=

Here the columns of U are known as left singular vectors, columns of V are known 
as right singular vectors, and diagonal values of D (a diagonal matrix) are known 
as singular values. Left singular vectors are the eigenvectors of AAT  and the 
right singular vectors are the eigenvectors of TA A . Finally, the singular values 
are the square roots of the eigenvalues of AAT  and TA A . Eigenvector υ  and its 
corresponding eigenvalue λ  of the square matrix A satisfies the following condition:

Aυ λυ=

Then if the SVD exists, the inverse of A is given by this:

1 1 TA VD U− −=
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Since D is diagonal, D-1 is simply the element-wise reciprocal of the nonzero elements 
of D. SVD is an important matrix factorization technique that appears in many 
occasions in machine learning. For example, SVD is used for calculating Principal 
Component Analysis (PCA), which is a popular dimensionality reduction technique 
for data (a purpose similar to that of t-SNE that we saw in Chapter 4, Advanced 
Word2vec). Another, more NLP-oriented application of SVD is document ranking. 
That is, when you want to get the most relevant documents (and rank them by 
relevance to some term, for example, football), SVD can be used to achieve this.

Norms
Norm is used as a measure of the size of the matrix (that is, of the values in the 
matrix). The pth norm is calculated and denoted as shown here:

1 p
p

ip
i

A A
 =    ∑

For example, the L2 norm would be this:

2

2 i
i

A A= ∑

Determinant
The determinant of a square matrix, denoted by ( )det A , is the product of all the 
eigenvalues of the matrix. Determinant is very useful in many ways. For example,  
A is invertible if and only if the determinant is nonzero. The following equation 
shows the calculations for the determinant of a 3 3×  matrix:

( ) ( ) ( )

a b c
e f d f d e

d e f a b c
h i g i g h

g h i

a ei fh b di fg c dh eg
aei bfg cdh ceg bdi afh

= − +

= − − − + −

= + + − − −



Appendix

[ 413 ]

Probability
Next, we will discuss the terminology related to probability theory. Probability 
theory is a vital part of machine learning, as modeling data with probabilistic 
models allows us to draw conclusions about how uncertain a model is about some 
predictions. Consider the example, where we performed sentiment analysis in 
Chapter 11, Current Trends and the Future of Natural Language Processing where we had 
an output value (positive/negative) for a given movie review. Though the model 
output some value between 0 and 1 (0 for negative and 1 for positive) for any sample 
we input, the model didn't know how uncertain it was about its answer.

Let's understand how uncertainty helps us to make better predictions. For example, 
a deterministic model might incorrectly say the positivity of the review, I never 
lost interest, is 0.25 (that is, more likely to be a negative comment). However, 
a probabilistic model will give a mean value and a standard deviation for the 
prediction. For example, it will say, this prediction has a mean of 0.25 and a 
standard deviation of 0.5. With the second model, we know that the prediction is 
likely to be wrong due to the high standard deviation. However, in the deterministic 
model, we don't have this luxury. This property is especially valuable for critical 
machine systems (for example, terrorism risk assessing model).

To develop such probabilistic machine learning models (for example, Bayesian 
logistic regression, Bayesian neural networks, or Gaussian processes) you should 
be familiar with the basic probability theory. Therefore, we provide some basic 
probability information here.

Random variables
A random variable is a variable that can take some value at random. Also, random 
variables are represented as x1, x2, and so on. Random variables can be of two types: 
discrete and continuous.

Discrete random variables
A discrete random variable is a variable that can take discrete random values. For 
example, trials of flipping a coin can be modeled as a random variable, that is, the 
side of the coin it lands on when you flip a coin is a discrete variable as the values 
can only be heads or tails. Alternatively, the value you get when you roll a die is 
discrete, as well, as the values can only come from the set, {1,2,3,4,5,6}.
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Continuous random variables
A continuous random variable is a variable that can take any real value, that is, if x is 
a continuous random variable:

x R∈

Here, R is the real number space.

For example, the height of a person is a continuous random variable as it can take 
any real value.

The probability mass/density function
The probability mass function (PMF) or the probability density function (PDF) is a 
way of showing the probability distribution over different values a random variable 
can take. For discrete variables, a PMF is defined and for continuous variables, a PDF 
is defined. Figure A.1 shows an example PMF:

A.1: Probability mass function (PMF) discrete
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The preceding PMF might be achieved by a biased die. In this graph, we can see  
that there is a high probability of getting a 3 with this die. Such a graph can be 
obtained by running a number of trials (say, 100) and then counting the number 
of times each face fell on top. Finally, divide each count by the number of trials to 
obtain the normalized probabilities. Note that all the probabilities should add up to 
1, as shown here:

{ }( )1,2,3,4,5,6 1P X ∈ =

The same concept is extended to a continuous random variable to obtain a PDF. Say 
that we are trying to model the probability of a certain height given a population. 
Unlike the discrete case, we do not have individual values to calculate the probability 
for, but rather a continuous spectrum of values (in the example, it extends from 0 
to 2.4 m). If we are to draw a graph for this example like the one in Figure A.1, we 
need to think of it in terms of infinitesimally small bins. For example, we find out 
the probability density of a person's height being between 0.0 m-0.01 m, 0.01-0.02 m, 
..., 1.8 m-1.81 m, …, and so on. The probability density can be calculated using the 
following formula:

'probabilitydensity for bin i
i

i

probability of person s height being inbin
bin size

=

Then, we will plot those bars close to each other to obtain a continuous curve, as 
shown in Figure A.2. Note that the probability density for a given bin can be greater 
than 1 (since it's density), but the area under the curve must be 1:

Figure A.2: Probability density function (PDF) continuous
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The shape shown in Figure A.2 is known as the normal (or Gaussian) distribution. 
It is also called the bell curve. We previously gave just an intuitive explanation of 
how to think about a continuous probability density function. More formally, a 
continuous PDF of the normal distribution has an equation and is defined as follows. 
Let's assume that a continuous random variable X has a normal distribution with 
mean µ  and standard deviation σ . The probability of X = x for any value of x is 
given by this formula:

( )
( )2

22
2

1P X x
2

x

e
µ

σ

πσ

−
−

= =

You should get the area (which needs to be 1 for a valid PDF) if you integrate this 
quantity over all possible infinitesimally small dx values, as denoted by this formula:

( )2
22

2

1
2

x

e dx
µ

σ

πσ

−
∞ −

−∞∫

The integral of the normal for the arbitrary a, b values is given by the following 
formula:

( )2a x be dx
a
π∞ − +

−∞
=∫

(You can find more information at http://mathworld.wolfram.com/
GaussianIntegral.html, or for a less complex discussion, refer to https://
en.wikipedia.org/wiki/Gaussian_integral.)

Using this, we can get the integral of the normal distribution, where 21 2a σ=   
and b µ=− :

( )2
2 22

22 2 2

1 1 1 2 1
1 22 2 2

x

e dx
µ

σ π
πσ

σπσ πσ πσ

−
∞ −

−∞
= = =∫

This gives the accumulation of all the probability values for all the values of x and 
gives you a value of 1.

http://mathworld.wolfram.com/GaussianIntegral.html
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Gaussian_integral
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Conditional probability
Conditional probability represents the probability of an event happening, given the 
occurrence of another event. For example, given two random variables, X and Y, the 
conditional probability of X = x, given that Y = y, is denoted by this formula:

( )|P X x Y y= =

A real-world example of such a probability would be as follows:

( )|P Bob going to school Yes It rains Yes= =

Joint probability
Given two random variables, X and Y, we will refer to the probability of X = x 
together with Y = y as the joint probability of X = x and Y = y. This is denoted by the 
following formula:

( ) ( ) ( ), |P X x Y y P X x P Y y X x= = = = = =

If X and Y are mutually exclusive events, this expression reduces to this:

( ) ( ) ( ),P X x Y y P X x P Y y= = = = =

A real-world example of this is as follows:

( ) ( ) ( ), |P It Rains yes PlayGolf yes P It Rains Yes P PlayGolf yes It Rains Yes= = = = = =

Marginal probability
Marginal probability distribution is the probability distribution of a subset of 
random variables, given the joint probability distribution of all variables. For 
example, consider that two random variables, X and Y exist, and we already know 
( ),P X x Y y= =  and we want to calculate P(x):

( ) ( ),
y

P X x P X x Y y
′∀

′= = = =∑
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Intuitively, we will take the sum over all possible values of Y, effectively making the 
probability of Y = 1. This gives us ( ) ( ), 1P X x Y P X x= = = = .

Bayes' rule
Bayes, rule gives us a way to calculate ( )|P Y y X x= =  if we already know 
( ) ( )| ,P X x Y y P X x= = = , and ( )P Y y= . We can easily arrive at Bayes' rule  

as follows:

( ) ( ) ( ) ( ) ( ), | |P X x Y y P X x P Y y X x P Y y P X x Y y= = = = = = = = = =

Now let's take the middle and right parts:

( ) ( ) ( ) ( )| |P X x P Y y X x P Y y P X x Y y= = = = = = =

( )
( ) ( )

( )
|

|
P X x Y y P Y y

P Y y X x
P X x

= = =
= = =

=

This is Bayes' rule. Let's put it simply, as shown here:

( )
( ) ( )
( )
|

|
P x y P y

P y x
P x

=

Introduction to Keras
Here we will provide a brief introduction to Keras, which is a sublibrary of 
TensorFlow that provides more high-level functions for implementing deep  
learning algorithms. Keras uses basic TensorFlow operations, underneath;  
however, it exposes a higher level, beginner-friendly API for users. To see how  
to use Keras, we will look at a quick example. We will outline how one might  
create a CNN using Keras. Full exercise can be found at keras_cnn.ipynb located in 
the appendix folder.



Appendix

[ 419 ]

We will first determine what type of a model we will be defining. Keras has two 
different APIs: sequential and functional. The sequential API is simpler and allows 
designing a model, layer by layer. However, the sequential API has limited flexibility 
in designing the organization and connections between layers of the network. On 
the other hand, the functional API has much more flexibility and allows the user to 
design the specific details of the neural network. For demonstration purposes, we 
will implement a CNN using the sequential API in Keras. A sequential model in this 
case is a sequence of stack of layers (for example, input layer, convolution layer, and 
pooling layer):

model = Sequential()

Next, we will define the layers of our CNN one by one. First, we will define a 
convolution layer with 32 filters, a kernel size of 3 × 3 and ReLU nonlinearity. This 
layer will be taking an input of size 28 × 28 × 1 (that is, the size of an MNIST image):

model.add(Conv2D(32, 3, activation='relu', input_shape=[28, 28, 1]))

Next, we will define a max-pooling layer. If the kernel size and stride are not defined, 
they default to 2 (kernel size) and 1 (stride):

model.add(MaxPool2D())

Then we will add a batch normalization layer:

model.add(BatchNormalization())

A batch normalization layer (refer to Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift, Ioffe and Szegedy, International Conference 
on Machine Learning, 2015) normalizes (that is, make activations zero-mean and 
unit-variance) the outputs of the previous layer. This is an additional step used to 
improve the performance of the CNN, especially in computer vision applications. 
Note that we did not use batch normalization in the chapter exercises, as the batch 
normalization has not been used heavily for NLP tasks, compared to the amount it is 
used for computer vision applications.

Next, we will add two more convolution layers, followed by a max-pooling layer and 
a batch normalization layer:

model.add(Conv2D(64, 3, activation='relu'))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Conv2D(128, 3, activation='relu'))
model.add(MaxPool2D())
model.add(BatchNormalization())
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Next, we will flatten the input as this is required to feed the output into a fully 
connected layer:

model.add(Flatten())

Then we will add a fully connected layer with 256 hidden units, a ReLU activation, 
and a final softmax output layer with 10 softmax units (that is, for the 10 different 
classes of MNIST):

model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))

Finally, we will compile the model, when we also tell Keras to use Adam as the 
optimizer and categorical cross-entropy loss and output metric to be the accuracy of 
the model:

model.compile(optimizer='adam', loss='categorical_crossentropy', 
metrics=['accuracy'])

Once the model, the loss and an optimizer is defined, we can run the Keras model 
as follows.

To train the model you can use the following command:

model.fit(x_train, y_train, batch_size = batch_size)

Here, x_train and y_train are the training data. And  batch_size defines the 
batch size. When you run this, the training progress will be shown below.

Then to evaluate the model, use the following:

test_acc = model.evaluate(x_test, y_test, batch_size=batch_size)  

This line will again output a progress bar as well as the test loss and accuracy 
of each epoch.
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Introduction to the TensorFlow seq2seq 
library
We used the raw TensorFlow API for all our implementations in this book for better 
transparency of the actual functionality of the models and for a better learning 
experience. However, TensorFlow has various libraries that hide all the fine-grained 
details of the implementations. This allows users to implement sequence-to-sequence 
models like the Neural Machine Translation (NMT) model we saw in Chapter 10, 
Sequence-to-Sequence Learning – Neural Machine Translation with fewer lines of code 
and without worrying about more specific technical details about how they work. 
Knowledge about these libraries is important as they provide a much cleaner way of 
using these models in production code or researching beyond the existing methods. 
Therefore, we will go through a quick introduction of how to use the TensorFlow 
seq2seq library. This code is available as an exercise in the seq2seq_nmt.ipynb file.

Defining embeddings for the encoder  
and decoder
We will first define the encoder inputs, decoder inputs, and decoder output 
placeholders:

enc_train_inputs = []
dec_train_inputs, dec_train_labels = [],[]
for ui in range(source_sequence_length):
    enc_train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))

for ui in range(target_sequence_length):
    dec_train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))
    dec_train_labels.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_outputs_%d'%ui))

Next, we will define the embedding lookup function for all the encoder and decoder 
inputs, to obtain the word embeddings:

encoder_emb_inp = [tf.nn.embedding_lookup(encoder_emb_layer, src) for 
src in enc_train_inputs]
encoder_emb_inp = tf.stack(encoder_emb_inp)

decoder_emb_inp = [tf.nn.embedding_lookup(decoder_emb_layer, src) for 
src in dec_train_inputs]
decoder_emb_inp = tf.stack(decoder_emb_inp)
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Defining the encoder
The encoder is made with an LSTM cell as its basic building block. Then, we will 
define dynamic_rnn, which takes the defined LSTM cell as the input, and the state is 
initialized with zeros. Then, we will set the time_major parameter to True because 
our data has the time axis as the first axis (that is, axis 0). In other words, our data 
has the [sequence_length, batch_size, embeddings_size] shape, where time-
dependent sequence_length is in the first axis. The benefit of dynamic_rnn is its 
ability to handle dynamically sized inputs. You can use the optional sequence_
length argument to define the length of each sentence in the batch. For example, 
consider you have a batch of size [3,30] with three sentences having lengths of [10, 
20, 30] (note that we pad the short sentences up to 30 with a special token). Passing 
a tensor that has values [10, 20, 30] as sequence_length will zero out LSTM outputs 
that are computed beyond the length of each sentence. For the cell state, it will not 
zero out, but take the last cell state computed within the length of the sentence and 
copy that value beyond the length of the sentence, until 30 is reached:

encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

initial_state = encoder_cell.zero_state(batch_size, dtype=tf.float32)

encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
    encoder_cell, encoder_emb_inp, initial_state=initial_state,
    sequence_length=[source_sequence_length for _ in range(batch_
size)], 
    time_major=True, swap_memory=True)

The swap_memory option allows TensorFlow to swap the tensors produced during 
the inference process between GPU and CPU, in case the model is too complex to fit 
entirely in the GPU.

Defining the decoder
The decoder is defined similar to the encoder, but has an extra layer called, 
projection_layer, which represents the softmax output layer for sampling the 
predictions made by the decoder. We will also define a TrainingHelper function 
that properly feeds the decoder inputs to the decoder. We also define two types 
of decoders in this example: a BasicDecoder and BahdanauAttention decoders. 
(The attention mechanism is discussed in Chapter 10, Sequence-to-Sequence Learning 
– Neural Machine Translation.) Many other decoders exist in the library, such as 
BeamSearchDecoder and BahdanauMonotonicAttention:
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decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

projection_layer = Dense(units=vocab_size, use_bias=True)

helper = tf.contrib.seq2seq.TrainingHelper(
    decoder_emb_inp, [target_sequence_length for _ in range(batch_
size)], time_major=True)

if decoder_type == 'basic':
    decoder = tf.contrib.seq2seq.BasicDecoder(
        decoder_cell, helper, encoder_state,
        output_layer=projection_layer)
    
elif decoder_type == 'attention':
    decoder = tf.contrib.seq2seq.BahdanauAttention(
        decoder_cell, helper, encoder_state,
        output_layer=projection_layer)

We will use dynamic decoding to get the outputs of the decoder:

outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(
    decoder, output_time_major=True,
    swap_memory=True
)

Next, we will define the logits, cross-entropy loss, and train prediction operations:

logits = outputs.rnn_output

crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
    labels=dec_train_labels, logits=logits)
loss = tf.reduce_mean(crossent)

train_prediction = outputs.sample_id

Then, we will define two optimizers, where we use AdamOptimizer for the first 
10,000 steps and vanilla stochastic GradientDescentOptimizer for the rest of the 
optimization process. This is because, using Adam optimizer for a long term gives 
rise to some unexpected behaviors. Therefore, we will use Adam to obtain a good 
initial position for the SGD optimizer and then use SGD from then on:

with tf.variable_scope('Adam'):
    optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.variable_scope('SGD'):
    sgd_optimizer = tf.train.GradientDescentOptimizer(learning_rate)
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gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 25.0)
optimize = optimizer.apply_gradients(zip(gradients, v))

sgd_gradients, v = zip(*sgd_optimizer.compute_gradients(loss))
sgd_gradients, _ = tf.clip_by_global_norm(sgd_gradients, 25.0)
sgd_optimize = optimizer.apply_gradients(zip(sgd_gradients, v))

A rigorous evaluation on how optimizers perform in NMT 
training is found in a paper by Bahar and others, called, Empirical 
Investigation of Optimization Algorithms in Neural Machine 
Translation, The Prague Bulletin of Mathematical Linguistics, 2017.

Visualizing word embeddings with 
TensorBoard
When we wanted to visualize word embedding in Chapter 3, Word2vec – Learning 
Word Embeddings, we manually implemented the visualization with the t-SNE 
algorithm. However, you also could use TensorBoard for visualizing word 
embeddings. TensorBoard is a visualization tool provided with TensorFlow. You 
can use TensorBoard to visualize the TensorFlow variables in your program. This 
allows you to see how various variables behave over time (for example, model loss/
accuracy), so you can identify potential issues in your model.

TensorBoard enables you to visualize scalar values and vectors as histograms. Apart 
from this, TensorBoard also allows you to visualize word embeddings. Therefore, it 
takes all the required code implementation away from you, if you need to analyze 
what the embeddings look like. Next we will see how we can use TensorBoard to 
visualize word embeddings. The code for this exercise is provided in tensorboard_
word_embeddings.ipynb in the appendix folder.

Starting TensorBoard
First, we will list the steps for starting TensorBoard. TensorBoard acts as a service 
and runs on a specific port (by default, on 6006). To start TensorBoard, you will need 
to follow the following steps:

1.	 Open up Command Prompt (Windows) or Terminal (Ubuntu/macOS).
2.	 Go into the project home directory.
3.	 If you are using python virtuanenv, activate the virtual environment where 

you have installed TensorFlow.
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4.	 Make sure that you can see the TensorFlow library through Python. To do 
this, follow these steps:

1.	 Type in python3, you will get a >>> looking prompt
2.	 Try import tensorflow as tf
3.	 If you can run this successfully, you are fine
4.	 Exit the python prompt (that is, >>>) by typing exit()

5.	 Type in tensorboard --logdir=models:
°° The --logdir option points to the directory where you will create 

data to visualize
°° Optionally, you can use --port=<port_you_like> to change the 

port TensorBoard runs on

6.	 You should now get the following message:
TensorBoard 1.6.0 at <url>;:6006 (Press CTRL+C to quit)

7.	 Enter the <url>:6006 in to the web browser. You should be able to see an 
orange dashboard at this point. You won't have anything to display because 
we haven't generated data.

Saving word embeddings and visualizing 
via TensorBoard
First, we will download and load the 50-dimensional GloVe embeddings we used 
in Chapter 9, Applications of LSTM – Image Caption Generation. For that first download 
the GloVe embedding file (glove.6B.zip) from https://nlp.stanford.edu/
projects/glove/ and place it in the appendix folder. We will load the first 
50,000 word vectors in the file and later use these to initialize a TensorFlow variable. 
We will also record the word strings of each word, as we will later provide these as 
labels for each point to display on TensorBoard:

vocabulary_size = 50000
pret_embeddings = np.empty(shape=(vocabulary_size,50),dtype=np.
float32)

words = [] 

word_idx = 0
with zipfile.ZipFile('glove.6B.zip') as glovezip:
    with glovezip.open('glove.6B.50d.txt') as glovefile:
        for li, line in enumerate(glovefile):
            if (li+1)%10000==0: print('.',end='')

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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            line_tokens = line.decode('utf-8').split(' ')
            word = line_tokens[0]
            
            vector = [float(v) for v in line_tokens[1:]]
            assert len(vector)==50
            words.append(word)
            pret_embeddings[word_idx,:] = np.array(vector)
            word_idx += 1
            if word_idx == vocabulary_size:
                break

Now, we will define TensorFlow-related variables and operations. Before this, we 
will create a directory called models, which will be used to store the variables:

log_dir = 'models'

if not os.path.exists(log_dir):
    os.mkdir(log_dir)

Then, we will define a variable that will be initialized with the word embeddings we 
copied from the text file earlier:

embeddings = tf.get_variable('embeddings',shape=[vocabulary_size, 50],
                             initializer=tf.constant_initializer(pret_
embeddings))

We will next create a session and initialize the variable we defined earlier:

session = tf.InteractiveSession()
tf.global_variables_initializer().run()

Thereafter, we will create a tf.train.Saver object. The Saver object can be used 
to save TensorFlow variables to the memory, so that they can later be restored if 
needed. In the following code, we will save the embedding variable to the models 
directory under the name, model.ckpt:

saver = tf.train.Saver({'embeddings':embeddings})
saver.save(session, os.path.join(log_dir, "model.ckpt"), 0)
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We also need to save a metadata file. A metadata file contains labels/images or other 
types of information associated with the word embeddings, so that when you hover 
over the embedding visualization the corresponding points will show the word/
label they represent. The metadata file should be of the .tsv (tab separated values) 
format and should contain vocabulary_size + 1 rows in it, where the first row 
contains the headers for the information you are including. In the following code, we 
will save two pieces of information: word strings and a unique identifier (that is, row 
index) for each word:

with open(os.path.join(log_dir,'metadata.tsv'), 'w',encoding='utf-8') 
as csvfile:
    writer = csv.writer(csvfile, delimiter='\t',
                            quotechar='|', quoting=csv.QUOTE_MINIMAL)
    writer.writerow(['Word','Word ID'])
    for wi,w in enumerate(words):
      writer.writerow([w,wi])

Then, we will need to tell TensorFlow where it can find the metadata for the 
embedding data we saved to the disk. For this, we need to create a ProjectorConfig 
object, which maintains various configuration details about the embedding we want 
to display. The details stored in the ProjectorConfig folder will be saved to a file 
called projector_config.pbtxt in the models directory:

config = projector.ProjectorConfig()

Here, we will populate the required fields of the ProjectorConfig object we 
created. First, we will tell it the name of the variable we're interested in visualizing. 
Next, we will tell it where it can find the metadata corresponding to that variable:

embedding_config = config.embeddings.add()
embedding_config.tensor_name = embeddings.name
embedding_config.metadata_path = 'metadata.tsv'

We will now use a summary writer to write this to the projector_config.pbtxt 
file. TensorBoard will read this file at startup:

summary_writer = tf.summary.FileWriter(log_dir)
projector.visualize_embeddings(summary_writer, config)



Mathematical Foundations and Advanced TensorFlow

[ 428 ]

Now if you load TensorBoard, you should see something similar to Figure A.3:

Figure A.3: Tensorboard view of the embeddings

When you hover over the displayed point cloud, it will show the label of the word 
you're currently hovering over, as we provided this information in the metadata.
tsv file. Furthermore, you have several options. The first option (shown with a 
dotted line and marked as 1) will allow you to select a subset of the full embedding 
space. You can draw a bounding box over the area of the embedding space you're 
interested in, and it will look as shown in Figure A.4. I have selected the embeddings 
at the bottom right corner:

Figure A.4: Selecting a subset of the embedding space
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Another option you have is the ability to view words themselves, instead of dots. 
You can do this by selecting the second option in Figure A.3 (show inside a solid box 
and marked as 2). This would look as shown in Figure A.5. Additionally, you can 
pan/zoom/rotate the view to your liking. If you click on the help button (shown 
within a solid box and marked as 1 in Figure A.5), it will show you a guide for 
controlling the view:

Figure A.5: Embedding vectors displayed as words instead of dots

Finally, you can change the visualization algorithm from the panel on the left-hand 
side (shown with a dashed line and marked with 3 in Figure A.3).

Summary
Here we discussed some of the mathematical background as well as some 
implementations we did not cover in the other sections. First we discussed 
the mathematical notation for scalars, vectors, matrices and tensors. Then we discussed 
various operations performed on these data structures, such as, matrix multiplication 
and inversion. Next, we discussed various terminology that is useful for 
understanding probabilistic machine learning such as, probability density functions, 
joint probability,  marginal probability and Bayes rule. Afterwards, we moved our 
discussion to cover various implementations that we did not visit in the other chapters. 
We learnt how to use Keras; a high-level TensorFlow library to implement a CNN. 
Then we discussed how we can efficiently implement a neural machine translator with 
the seq2seq library in TensorFlow, compared to the implementation we discussed 
in Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation. Finally, we 
ended this section with a guide that teaches you to visualize word embeddings using 
the TensorBoard; a visualization platform that comes with TensorFlow.
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