
[1]

Natural Language Processing
with TensorFlow

Teach language to machines using Python's deep
learning library

Thushan Ganegedara

BIRMINGHAM - MUMBAI

Natural Language Processing with TensorFlow

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Frank Pohlmann
Project Editor: Radhika Atitkar
Content Development Editor: Chris Nelson
Technical Editor: Bhagyashree Rai
Copy Editor: Tom Jacob
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Nilesh Mohite

First published: May 2018

Production reference: 2310518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78847-831-1

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
•	 Learn better with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Mapt is fully searchable
•	 Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
Thushan Ganegedara is currently a third year Ph.D. student at the University of
Sydney, Australia. He is specializing in machine learning and has a liking for deep
learning. He lives dangerously and runs algorithms on untested data. He also works
as the chief data scientist for AssessThreat, an Australian start-up. He got his BSc.
(Hons) from the University of Moratuwa, Sri Lanka. He frequently writes technical
articles and tutorials about machine learning. Additionally, he also strives for a
healthy lifestyle by including swimming in his daily schedule.

I would like to thank my parents, my siblings, and my wife for the
faith they had in me and the support they have given, also all my
teachers and my Ph.D advisor for the guidance he provided me with.

About the reviewers
Motaz Saad holds a Ph.D. in computer science from the University of Lorraine. He
loves data and he likes to play with it. He has over 10 years, professional experience
in NLP, computational linguistics, data science, and machine learning. He currently
works as an assistant professor at the faculty of information technology, IUG.

Dr Joseph O'Connor is a data scientist with a deep passion for deep learning. His
company, Deep Learn Analytics, a UK-based data science consultancy, works with
businesses to develop machine learning applications and infrastructure from concept
to deployment. He was awarded a Ph.D. from University College London for his
work analyzing data on the MINOS high-energy physics experiment. Since then,
he has developed ML products for a number of companies in the private sector,
specializing in NLP and time series forecasting. You can find him at http://
deeplearnanalytics.com/.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

[i]

Table of Contents
Preface	 xi
Chapter 1: Introduction to Natural Language Processing	 1

What is Natural Language Processing?	 1
Tasks of Natural Language Processing	 2
The traditional approach to Natural Language Processing	 5

Understanding the traditional approach	 5
Example – generating football game summaries	 6

Drawbacks of the traditional approach	 10
The deep learning approach to Natural Language Processing	 10

History of deep learning	 11
The current state of deep learning and NLP	 13
Understanding a simple deep model – a Fully-Connected
Neural Network	 14

The roadmap – beyond this chapter	 16
Introduction to the technical tools	 21

Description of the tools	 21
Installing Python and scikit-learn	 22
Installing Jupyter Notebook	 22
Installing TensorFlow	 23

Summary	 24
Chapter 2: Understanding TensorFlow	 27

What is TensorFlow?	 28
Getting started with TensorFlow	 28
TensorFlow client in detail	 31
TensorFlow architecture – what happens when you execute the client?	 32
Cafe Le TensorFlow – understanding TensorFlow with an analogy	 35

Inputs, variables, outputs, and operations	 36
Defining inputs in TensorFlow	 37

Table of Contents

[ii]

Feeding data with Python code	 37
Preloading and storing data as tensors	 38
Building an input pipeline	 39

Defining variables in TensorFlow	 43
Defining TensorFlow outputs	 45
Defining TensorFlow operations	 45

Comparison operations	 45
Mathematical operations	 46
Scatter and gather operations	 47
Neural network-related operations	 48

Reusing variables with scoping	 57
Implementing our first neural network	 59

Preparing the data	 60
Defining the TensorFlow graph	 61
Running the neural network	 63

Summary	 65
Chapter 3: Word2vec – Learning Word Embeddings	 67

What is a word representation or meaning?	 69
Classical approaches to learning word representation	 69

WordNet – using an external lexical knowledge base for
learning word representations	 70

Tour of WordNet	 70
Problems with WordNet	 73

One-hot encoded representation	 74
The TF-IDF method	 75
Co-occurrence matrix	 76

Word2vec – a neural network-based approach to learning word
representation	 77

Exercise: is queen = king – he + she?	 78
Designing a loss function for learning word embeddings	 82

The skip-gram algorithm	 83
From raw text to structured data	 83
Learning the word embeddings with a neural network	 84

Formulating a practical loss function	 87
Efficiently approximating the loss function	 90

Implementing skip-gram with TensorFlow	 95
The Continuous Bag-of-Words algorithm	 98

Implementing CBOW in TensorFlow	 99
Summary	 100

Chapter 4: Advanced Word2vec	 103
The original skip-gram algorithm	 104

Implementing the original skip-gram algorithm	 105

Table of Contents

[iii]

Comparing the original skip-gram with the improved skip-gram	 107
Comparing skip-gram with CBOW	 107

Performance comparison	 108
Which is the winner, skip-gram or CBOW?	 112

Extensions to the word embeddings algorithms	 114
Using the unigram distribution for negative sampling	 114
Implementing unigram-based negative sampling	 115
Subsampling – probabilistically ignoring the common words	 117
Implementing subsampling	 118
Comparing the CBOW and its extensions	 118

More recent algorithms extending skip-gram and CBOW	 119
A limitation of the skip-gram algorithm	 119
The structured skip-gram algorithm	 120
The loss function	 120
The continuous window model	 122

GloVe – Global Vectors representation	 123
Understanding GloVe	 123
Implementing GloVe	 125

Document classification with Word2vec	 126
Dataset	 127
Classifying documents with word embeddings	 127
Implementation – learning word embeddings	 128
Implementation – word embeddings to document embeddings	 129
Document clustering and t-SNE visualization of embedded documents	 130
Inspecting several outliers	 131
Implementation – clustering/classification of documents with K-means	 132

Summary	 134
Chapter 5: Sentence Classification with Convolutional
Neural Networks	 135

Introducing Convolution Neural Networks	 136
CNN fundamentals	 136
The power of Convolution Neural Networks	 139

Understanding Convolution Neural Networks	 139
Convolution operation	 140

Standard convolution operation	 140
Convolving with stride	 141
Convolving with padding	 142
Transposed convolution	 143

Pooling operation	 144
Max pooling	 145
Max pooling with stride	 145
Average pooling	 146

Table of Contents

[iv]

Fully connected layers	 147
Putting everything together	 147

Exercise – image classification on MNIST with CNN	 148
About the data	 149
Implementing the CNN	 149
Analyzing the predictions produced with a CNN	 152

Using CNNs for sentence classification	 153
CNN structure	 153

Data transformation	 153
The convolution operation	 154

Pooling over time	 157
Implementation – sentence classification with CNNs	 159

Summary	 162
Chapter 6: Recurrent Neural Networks	 163

Understanding Recurrent Neural Networks	 164
The problem with feed-forward neural networks	 165
Modeling with Recurrent Neural Networks	 166
Technical description of a Recurrent Neural Network	 168

Backpropagation Through Time	 170
How backpropagation works	 170
Why we cannot use BP directly for RNNs	 171
Backpropagation Through Time – training RNNs	 172
Truncated BPTT – training RNNs efficiently	 173
Limitations of BPTT – vanishing and exploding gradients	 173

Applications of RNNs	 175
One-to-one RNNs	 176
One-to-many RNNs	 176
Many-to-one RNNs	 177
Many-to-many RNNs	 178

Generating text with RNNs	 179
Defining hyperparameters	 179
Unrolling the inputs over time for Truncated BPTT	 180
Defining the validation dataset	 181
Defining weights and biases	 181
Defining state persisting variables	 181
Calculating the hidden states and outputs with unrolled inputs	 182
Calculating the loss	 183
Resetting state at the beginning of a new segment of text	 183
Calculating validation output	 184
Calculating gradients and optimizing	 184
Outputting a freshly generated chunk of text	 184

Table of Contents

[v]

Evaluating text results output from the RNN	 185
Perplexity – measuring the quality of the text result	 187
Recurrent Neural Networks with Context Features – RNNs
with longer memory	 188

Technical description of the RNN-CF	 188
Implementing the RNN-CF	 190

Defining the RNN-CF hyperparameters	 190
Defining input and output placeholders	 191
Defining weights of the RNN-CF	 191
Variables and operations for maintaining hidden and context states	 192
Calculating output	 194
Calculating the loss	 195
Calculating validation output	 195
Computing test output	 196
Computing the gradients and optimizing	 196

Text generated with the RNN-CF	 196
Summary	 199

Chapter 7: Long Short-Term Memory Networks	 201
Understanding Long Short-Term Memory Networks	 202

What is an LSTM?	 203
LSTMs in more detail	 204
How LSTMs differ from standard RNNs	 212

How LSTMs solve the vanishing gradient problem	 213
Improving LSTMs	 216
Greedy sampling	 217
Beam search	 218
Using word vectors	 219
Bidirectional LSTMs (BiLSTM)	 220

Other variants of LSTMs	 222
Peephole connections	 223
Gated Recurrent Units	 224

Summary	 226
Chapter 8: Applications of LSTM – Generating Text	 229

Our data	 230
About the dataset	 230
Preprocessing data	 232

Implementing an LSTM	 232
Defining hyperparameters	 232
Defining parameters	 233
Defining an LSTM cell and its operations	 235
Defining inputs and labels	 236
Defining sequential calculations required to process sequential data	 237

Table of Contents

[vi]

Defining the optimizer	 238
Decaying learning rate over time	 238
Making predictions	 240
Calculating perplexity (loss)	 240
Resetting states	 240
Greedy sampling to break unimodality	 241
Generating new text	 241
Example generated text	 242

Comparing LSTMs to LSTMs with peephole connections and GRUs	 243
Standard LSTM	 243

Review	 243
Example generated text	 244

Gated Recurrent Units (GRUs)	 245
Review	 245
The code	 246
Example generated text	 247

LSTMs with peepholes	 248
Review	 248
The code	 248
Example generated text	 249

Training and validation perplexities over time	 250
Improving LSTMs – beam search	 251

Implementing beam search	 252
Examples generated with beam search	 254

Improving LSTMs – generating text with words instead of n-grams	 255
The curse of dimensionality	 255
Word2vec to the rescue	 255
Generating text with Word2vec	 256
Examples generated with LSTM-Word2vec and beam search	 258
Perplexity over time	 259

Using the TensorFlow RNN API	 260
Summary	 264

Chapter 9: Applications of LSTM – Image Caption Generation	 265
Getting to know the data	 266

ILSVRC ImageNet dataset	 267
The MS-COCO dataset	 268

The machine learning pipeline for image caption generation	 269
Extracting image features with CNNs	 273
Implementation – loading weights and inferencing with VGG-16	 274

Building and updating variables	 274
Preprocessing inputs	 275
Inferring VGG-16	 277

Table of Contents

[vii]

Extracting vectorized representations of images	 278
Predicting class probabilities with VGG-16	 278

Learning word embeddings	 280
Preparing captions for feeding into LSTMs	 281
Generating data for LSTMs	 282
Defining the LSTM	 284
Evaluating the results quantitatively	 287

BLEU	 287
ROUGE	 288
METEOR	 289
CIDEr	 291
BLEU-4 over time for our model	 292

Captions generated for test images	 293
Using TensorFlow RNN API with pretrained GloVe word vectors	 297

Loading GloVe word vectors	 298
Cleaning data	 299
Using pretrained embeddings with TensorFlow RNN API	 302

Defining the pretrained embedding layer and the adaptation layer	 303
Defining the LSTM cell and softmax layer	 303
Defining inputs and outputs	 304
Processing images and text differently	 305
Defining the LSTM output calculation	 306
Defining the logits and predictions	 307
Defining the sequence loss	 307
Defining the optimizer	 307

Summary	 308
Chapter 10: Sequence-to-Sequence Learning – Neural
Machine Translation	 311

Machine translation	 312
A brief historical tour of machine translation	 313

Rule-based translation	 313
Statistical Machine Translation (SMT)	 315
Neural Machine Translation (NMT)	 317

Understanding Neural Machine Translation	 320
Intuition behind NMT	 320
NMT architecture	 321

The embedding layer	 322
The encoder	 322
The context vector	 323
The decoder	 324

Preparing data for the NMT system	 325
At training time	 325
Reversing the source sentence	 326

Table of Contents

[viii]

At testing time	 327
Training the NMT	 328
Inference with NMT	 329
The BLEU score – evaluating the machine translation systems	 330

Modified precision	 331
Brevity penalty	 331
The final BLEU score	 332

Implementing an NMT from scratch – a German to English translator	 332
Introduction to data	 333
Preprocessing data	 333
Learning word embeddings	 335
Defining the encoder and the decoder	 335
Defining the end-to-end output calculation	 338
Some translation results	 340

Training an NMT jointly with word embeddings	 342
Maximizing matchings between the dataset vocabulary and the
pretrained embeddings	 343
Defining the embeddings layer as a TensorFlow variable	 345

Improving NMTs	 348
Teacher forcing	 348
Deep LSTMs	 350

Attention	 351
Breaking the context vector bottleneck	 351
The attention mechanism in detail	 352

Implementing the attention mechanism	 356
Defining weights	 356
Computing attention	 357

Some translation results – NMT with attention	 359
Visualizing attention for source and target sentences	 361

Other applications of Seq2Seq models – chatbots	 363
Training a chatbot	 364
Evaluating chatbots – Turing test	 365

Summary	 366
Chapter 11: Current Trends and the Future of
Natural Language Processing	 369

Current trends in NLP	 370
Word embeddings	 370

Region embedding	 370
Probabilistic word embedding	 374
Ensemble embedding	 375
Topic embedding	 375

Neural Machine Translation (NMT)	 376

Table of Contents

[ix]

Improving the attention mechanism	 376
Hybrid MT models	 376

Penetration into other research fields	 378
Combining NLP with computer vision	 378

Visual Question Answering (VQA)	 379
Caption generation for images with attention	 381

Reinforcement learning	 381
Teaching agents to communicate using their own language	 382
Dialogue agents with reinforcement learning	 383

Generative Adversarial Networks for NLP	 384
Towards Artificial General Intelligence	 386

One Model to Learn Them All	 386
A joint many-task model – growing a neural network for multiple
NLP tasks	 389

First level – word-based tasks	 389
Second level – syntactic tasks	 389
Third level – semantic-level tasks	 390

NLP for social media	 391
Detecting rumors in social media	 391
Detecting emotions in social media	 391
Analyzing political framing in tweets	 393

New tasks emerging	 393
Detecting sarcasm	 393
Language grounding	 394
Skimming text with LSTMs	 395

Newer machine learning models	 395
Phased LSTM	 396
Dilated Recurrent Neural Networks (DRNNs)	 397

Summary	 398
References	 398

Appendix: Mathematical Foundations and
Advanced TensorFlow	 403

Basic data structures	 403
Scalar	 403
Vectors	 404
Matrices	 404
Indexing of a matrix	 405

Special types of matrices	 406
Identity matrix	 406
Diagonal matrix	 407
Tensors	 407

Tensor/matrix operations	 407

Table of Contents

[x]

Transpose	 407
Multiplication	 408
Element-wise multiplication	 409
Inverse	 409
Finding the matrix inverse – Singular Value Decomposition (SVD)	 411
Norms	 412
Determinant	 412

Probability	 413
Random variables	 413
Discrete random variables	 413
Continuous random variables	 414
The probability mass/density function	 414
Conditional probability	 417
Joint probability	 417
Marginal probability	 417
Bayes' rule	 418

Introduction to Keras	 418
Introduction to the TensorFlow seq2seq library	 421

Defining embeddings for the encoder and decoder	 421
Defining the encoder	 422
Defining the decoder	 422

Visualizing word embeddings with TensorBoard	 424
Starting TensorBoard	 424
Saving word embeddings and visualizing via TensorBoard	 425

Summary	 429
Other Books You May Enjoy	 431
Index	 437

[xi]

Preface
In the digital information age that we live in, the amount of data has grown
exponentially, and it is growing at an unprecedented rate as we read this. Most of
this data is language-related data (textual or verbal), such as emails, social media
posts, phone calls, and web articles. Natural Language Processing (NLP) leverages
this data efficiently to help humans in their businesses or day-to-day tasks. NLP has
already revolutionized the way we use data to improve both businesses and our
lives, and will continue to do so in the future.

One of the most ubiquitous use cases of NLP is Virtual Assistants (VAs), such as
Apple's Siri, Google Assistant, and Amazon Alexa. Whenever you ask your VA
for "the cheapest rates for hotels in Switzerland," a complex series of NLP tasks are
triggered. First, your VA needs to understand (parse) your request (for example,
learn that it needs to retrieve hotel rates, not the dog parks). Another decision the
VA needs to make is "what is cheap?". Next, the VA needs to rank the cities in
Switzerland (perhaps based on your past traveling history). Then, the VA might
crawl websites such as Booking.com and Agoda.com to fetch the hotel rates in
Switzerland and rank them by analyzing both the rates and reviews for each hotel.
As you can see, the results you see in a few seconds are a result of a very intricate
series of complex NLP tasks.

So, what makes such NLP tasks so versatile and accurate for our everyday tasks? The
underpinning elements are "deep learning" algorithms. Deep learning algorithms
are essentially complex neural networks that can map raw data to a desired output
without requiring any sort of task-specific feature engineering. This means that you
can provide a hotel review of a customer and the algorithm can answer the question
"How positive is the customer about this hotel?", directly. Also, deep learning has
already reached, and even exceeded, human-level performance in a variety of NLP
tasks (for example, speech recognition and machine translation).

Preface

[xii]

By reading this book, you will learn how to solve many interesting NLP problems
using deep learning. So, if you want to be an influencer who changes the world,
studying NLP is critical. These tasks range from learning the semantics of words, to
generating fresh new stories, to performing language translation just by looking at
bilingual sentence pairs. All of the technical chapters are accompanied by exercises,
including step-by-step guidance for readers to implement these systems. For all
of the exercises in the book, we will be using Python with TensorFlow—a popular
distributed computation library that makes implementing deep neural networks
very convenient.

Who this book is for
This book is for aspiring beginners who are seeking to transform the world by
leveraging linguistic data. This book will provide you with a solid practical foundation
for solving NLP tasks. In this book, we will cover various aspects of NLP, focusing
more on the practical implementation than the theoretical foundation. Having sound
practical knowledge of solving various NLP tasks will help you to have a smoother
transition when learning the more advanced theoretical aspects of these methods. In
addition, a solid practical understanding will help when performing more domain-
specific tuning of your algorithms, to get the most out of a particular domain.

What this book covers
Chapter 1, Introduction to Natural Language Processing, embarks us on our journey
with a gentle introduction to NLP. In this chapter, we will first look at the reasons
we need NLP. Next, we will discuss some of the common subtasks found in NLP.
Thereafter, we will discuss the two main eras of NLP—the traditional era and
the deep learning era. We will gain an understanding of the characteristics of the
traditional era by working through how a language modeling task might have
been solved with traditional algorithms. Then, we will discuss the deep learning
era, where deep learning algorithms are heavily utilized for NLP. We will also
discuss the main families of deep learning algorithms. We will then discuss the
fundamentals of one of the most basic deep learning algorithms—a fully connected
neural network. We will conclude the chapter with a road map that provides a brief
introduction to the coming chapters.

Preface

[xiii]

Chapter 2, Understanding TensorFlow, introduces you to the Python TensorFlow
library—the primary platform we will implement our solutions on. We will start by
writing code to perform a simple calculation in TensorFlow. We will then discuss
how things are executed, starting from running the code to getting results. Thereby,
we will understand the underlying components of TensorFlow in detail. We will
further strengthen our understanding of TensorFlow with a colorful analogy of a
restaurant and see how orders are fulfilled. Later, we will discuss more technical
details of TensorFlow, such as the data structures and operations (mostly related
to neural networks) defined in TensorFlow. Finally, we will implement a fully
connected neural network to recognize handwritten digits. This will help us to
understand how an end-to-end solution might be implemented with TensorFlow.

Chapter 3, Word2vec – Learning Word Embeddings, begins by discussing how to solve
NLP tasks with TensorFlow. In this chapter, we will see how neural networks can be
used to learn word vectors or word representations. Word vectors are also known as
word embeddings. Word vectors are numerical representations of words that have
similar values for similar words and different values for different words. First, we
will discuss several traditional approaches to achieving this, which include using a
large human-built knowledge base known as WordNet. Then, we will discuss the
modern neural network-based approach known as Word2vec, which learns word
vectors without any human intervention. We will first understand the mechanics
of Word2vec by working through a hands-on example. Then, we will discuss two
algorithmic variants for achieving this—the skip-gram and continuous bag-of-words
(CBOW) model. We will discuss the conceptual details of the algorithms, as well as
how to implement them in TensorFlow.

Chapter 4, Advance Word2vec, takes us on to more advanced topics related to word
vectors. First, we will compare skip-gram and CBOW to see whether a winner
exists. Next, we will discuss several improvements that can be used to improve
the performance of the Word2vec algorithms. Then, we will discuss a more
recent and powerful word embedding learning algorithm—the GloVe (global
vectors) algorithm. Finally, we will look at word vectors in action, in a document
classification task. In that exercise, we will see that word vectors are powerful
enough to represent the topic (for example, entertainment and sport) that the
document belongs to.

Preface

[xiv]

Chapter 5, Sentence Classification with Convolutional Neural Networks, discusses
convolution neural networks (CNN)—a family of neural networks that excels
at processing spatial data such as images or sentences. First, we will develop a
solid high-level understanding of CNNs by discussing how they process data
and what sort of operations are involved. Next, we will dive deep into each of the
operations involved in the computations of a CNN to understand the underpinning
mathematics of a CNN. Finally, we will walk through two exercises. First, we will
classify hand written digit images with a CNN. We will see that CNNs are is capable
of reaching a very high accuracy quickly for this task. Next, we will explore how
CNNs can be used to classify sentences. Particularly, we will ask a CNN to predict
whether a sentence is about an object, person, location, and so on.

Chapter 6, Recurrent Neural Networks, is about a powerful family of neural networks
that can model sequences of data, known as recurrent neural networks (RNNs). We
will first discuss the mathematics behind the RNNs and the update rules that are
used to update the RNNs over time during learning. Then, we will discuss section
different variants of RNNs and their applications (for example, one-to-one RNNs
and one-to-many RNNs). Finally, we will go through an exercise where RNNs are
used for a text generation task. In this, we will train the RNN on folk stories and ask
the RNN to produce a new story. We will see that RNNs are poor at persisting long-
term memory. Finally, we will discuss a more advanced variant of RNNs, which we
will call RNN-CF, which is able to persist memory for longer.

Chapter 7, Long Short-Term Memory Networks, allows us to explore more powerful
techniques that are able to remember for a longer period of time, having found
out that RNNs are poor at retaining long-term memory. We will discuss one such
technique in this chapter—Long Short-Term Memory Networks (LSTMs). LSTMs
are more powerful and have been shown to outperform other sequential models in
many time-series tasks. We will first investigate the underlying mathematics and
update the rules of the LSTM, along with a colorful example that illustrates why
each computation matters. Then, we will look at how LSTMs can persist memory
for longer. Next, we will discuss how we can improve LSTMs prediction capabilities
further. Finally, we will discuss several variants of LSTMs that have a more complex
structure (LSTMs with peephole connections), as well as a method that tries to
simplify the LSTMs gated recurrent units (GRUs).

Chapter 8, Applications of LSTM – Generating Text, extensively evaluates how LSTMs
perform in a text generation task. We will qualitatively and quantitatively measure
how good the text generated by LSTMs is. We will also conduct comparisons
between LSTMs, LSTMs with peephole connections, and GRUs. Finally, we will
see how we can bring word embeddings into the model to improve the text
generated by LSTMs.

Preface

[xv]

Chapter 9, Applications of LSTM – Image Caption Generation, moves us on to
multimodal data (that is, images and text) after coping with textual data. In this
chapter, we will investigate how we can automatically generate descriptions for a
given image. This involves combining a feed-forward model (that is, a CNN) with a
word embedding layer and a sequential model (that is, an LSTM) in a way that forms
an end-to-end machine learning pipeline.

Chapter 10, Sequence to Sequence Learning – Neural Machine Translation, is about the
implementing neural machine translation (NMT) model. Machine translation is where
we translate a sentence/phrase from a source language into a target language. We
will first briefly discuss what machine translation is. This will be followed by a section
about the history of machine translation. Then, we will discuss the architecture of
modern neural machine translation models in detail, including the training and
inference procedures. Next, we will look at how to implement an NMT system from
scratch. Finally, we will explore ways to improve standard NMT systems.

Chapter 11, Current Trends and Future of Natural Language Processing, the final
chapter, focuses on the current and future trends of NLP. We will discuss the latest
discoveries related to the systems and tasks we discussed in the previous chapters.
This chapter will cover most of the exciting novel innovations, as well as giving you
in-depth intuition to implement some of the technologies.

Appendix, Mathematical Foundations and Advanced TensorFlow, will introduce
the reader to various mathematical data structures (for example, matrices) and
operations (for example, matrix inverse). We will also discuss several important
concepts in probability. We will then introduce Keras—a high-level library that uses
TensorFlow underneath. Keras makes the implementing of neural networks simpler
by hiding some of the details in TensorFlow, which some might find challenging.
Concretely, we will see how we can implement a CNN with Keras, to get a feel
of how to use Keras. Next, we will discuss how we can use the seq2seq library in
TensorFlow to implement a neural machine translation system with much less code
that we used in Chapter 11, Current Trends and the Future of Natural Language
Processing. Finally, we will walk you through a guide aimed at teaching to use the
TensorBoard to visualize word embeddings. TensorBoard is a handy visualization
tool that is shipped with TensorFlow. This can be used to visualize and monitor
various variables in your TensorFlow client.

Preface

[xvi]

To get the most out of this book
To get the most out of this book, we assume the following from the reader:

•	 A solid will and an ambition to learn the modern ways of NLP
•	 Familiarity with basic Python syntax and data structures (for example,

lists and dictionaries)
•	 A good understanding of basic mathematics (for example,

matrix/vector multiplication)
•	 (Optional) Advance mathematics knowledge (for example, derivative

calculation) to understand a handful of subsections that cover the details of
how certain learning models overcome potential practical issues
faced during training

•	 (Optional) Read research papers to refer to advances/details in systems,
beyond what the book covers

Download the example code files
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.
2.	 Select the SUPPORT tab.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of one of these:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for macOS
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Natural-Language-Processing-with-TensorFlow. We also
have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xvii]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/NaturalLanguageProcessingwithTensorFlow_
ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Mount the downloaded WebStorm-10*.dmg disk image
file as another disk in your system."

A block of code is set as follows:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

Any command-line input or output is written as follows:

conda --version

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

References: In Chapter 11, Current Trends and the Future of Natural Language Processing,
in-text references include a bracketed number (for example, [1]) that correlates with
the numbering in the References section at the end of the chapter.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalLanguageProcessingwithTensorFlow_ColorImages.pdf

Preface

[xviii]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be
grateful if you would report this to us. Please visit, http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

[1]

Introduction to Natural
Language Processing

Natural Language Processing (NLP) is an important tool for understanding and
processing the immense volume of unstructured data in today's world. Recently,
deep learning has been widely adopted for many NLP tasks because of the
remarkable performance that deep learning algorithms have shown in a plethora
of challenging tasks, such as, image classification, speech recognition, and realistic
text generation. TensorFlow, in turn, is one of the most intuitive and efficient deep
learning frameworks currently in existence. This book will enable aspiring deep
learning developers to handle massive amounts of data using NLP and TensorFlow.

In this chapter, we will provide an introduction to NLP and to the rest of the book.
We will answer the question, "What is Natural Language Processing?" Also, we'll
look at some of its most important uses. We will also consider the traditional
approaches and the more recent deep learning-based approaches to NLP, including
a Fully-Connected Neural Network (FCNN). Finally, we will conclude with an
overview of the rest of the book and the technical tools we will be using.

What is Natural Language Processing?
According to IBM, 2.5 exabytes (1 exabyte = 1,000,000,000 gigabytes) of data were
generated every day in 2017, and this is growing as this book is being written. To
put that into perspective, if all the human beings in the world were to process that
data, it would be roughly 300 MB for each of us every day to process. Of all this data,
a large fraction is unstructured text and speech as there are millions of emails and
social media content created and phone calls made every day.

Introduction to Natural Language Processing

[2]

These statistics provide a good basis for us to define what NLP is. Simply put, the
goal of NLP is to make machines understand our spoken and written languages.
Moreover, NLP is ubiquitous and is already a large part of human life. Virtual
Assistants (VAs), such as Google Assistant, Cortana, and Apple Siri, are largely NLP
systems. Numerous NLP tasks take place when one asks a VA, "Can you show me
a good Italian restaurant nearby?". First, the VA needs to convert the utterance to
text (that is, speech-to-text). Next, it must understand the semantics of the request
(for example, the user is looking for a good restaurant with an Italian cuisine) and
formulate a structured request (for example, cuisine = Italian, rating = 3-5, distance
< 10 km). Then, the VA must search for restaurants filtering by the location and
cuisine, and then, sort the restaurants by the ratings received. To calculate an overall
rating for a restaurant, a good NLP system may look at both the rating and text
description provided by each user. Finally, once the user is at the restaurant, the VA
might assist the user by translating various menu items from Italian to English. This
example shows that NLP has become an integral part of human life.

It should be understood that NLP is an extremely challenging field of research as
words and semantics have a highly complex nonlinear relationship, and it is even
more difficult to capture this information as a robust numerical representation. To
make matters worse, each language has its own grammar, syntax, and vocabulary.
Therefore, processing textual data involves various complex tasks such as text
parsing (for example, tokenization and stemming), morphological analysis, word
sense disambiguation, and understanding the underlying grammatical structure of
a language. For example, in these two sentences, I went to the bank and I walked along
the river bank, the word bank has two entirely different meanings. To distinguish
or (disambiguate) the word bank, we need to understand the context in which the
word is being used. Machine learning has become a key enabler for NLP, helping to
accomplish the aforementioned tasks through machines.

Tasks of Natural Language Processing
NLP has a multitude of real-world applications. A good NLP system is that which
performs many NLP tasks. When you search for today's weather on Google or use
Google Translate to find out how to say, "How are you?" in French, you rely on a
subset of such tasks in NLP. We will list some of the most ubiquitous tasks here, and
this book covers most of these tasks:

•	 Tokenization: Tokenization is the task of separating a text corpus into atomic
units (for example, words). Although it may seem trivial, tokenization is
an important task. For example, in the Japanese language, words are not
delimited by spaces nor punctuation marks.

Chapter 1

[3]

•	 Word-sense Disambiguation (WSD): WSD is the task of identifying the
correct meaning of a word. For example, in the sentences, The dog barked at the
mailman, and Tree bark is sometimes used as a medicine, the word bark has two
different meanings. WSD is critical for tasks such as question answering.

•	 Named Entity Recognition (NER): NER attempts to extract entities (for
example, person, location, and organization) from a given body of text or
a text corpus. For example, the sentence, John gave Mary two apples at school
on Monday will be transformed to [John]name gave [Mary]name [two]number apples at
[school]organization on [Monday.]time. NER is an imperative topic in fields such as
information retrieval and knowledge representation.

•	 Part-of-Speech (PoS) tagging: PoS tagging is the task of assigning words to
their respective parts of speech. It can either be basic tags such as noun, verb,
adjective, adverb, and preposition, or it can be granular such as proper noun,
common noun, phrasal verb, verb, and so on.

•	 Sentence/Synopsis classification: Sentence or synopsis (for example, movie
reviews) classification has many use cases such as spam detection, news
article classification (for example, political, technology, and sport), and
product review ratings (that is, positive or negative). This is achieved by
training a classification model with labeled data (that is, reviews annotated
by humans, with either a positive or negative label).

•	 Language generation: In language generation, a learning model (for
example, neural network) is trained with text corpora (a large collection
of textual documents), which predict new text that follows. For example,
language generation can output an entirely new science fiction story by
using existing science fiction stories for training.

•	 Question Answering (QA): QA techniques possess a high commercial
value, and such techniques are found at the foundation of chatbots and
VA (for example, Google Assistant and Apple Siri). Chatbots have been
adopted by many companies for customer support. Chatbots can be used
to answer and resolve straightforward customer concerns (for example,
changing a customer's monthly mobile plan), which can be solved without
human intervention. QA touches upon many other aspects of NLP such as
information retrieval, and knowledge representation. Consequently, all this
makes developing a QA system very difficult.

Introduction to Natural Language Processing

[4]

•	 Machine Translation (MT): MT is the task of transforming a sentence/
phrase from a source language (for example, German) to a target language
(for example, English). This is a very challenging task as, different languages
have highly different morphological structures, which means that it is not
a one-to-one transformation. Furthermore, word-to-word relationships
between languages can be one-to-many, one-to-one, many-to-one, or
many-to-many. This is known as the word alignment problem in
MT literature.

Finally, to develop a system that can assist a human in day-to-day tasks (for example,
VA or a chatbot) many of these tasks need to be performed together. As we saw in the
previous example where the user asks, "Can you show me a good Italian restaurant
nearby?" several different NLP tasks, such as speech-to-text conversion, semantic
and sentiment analyses, question answering, and machine translation, need to be
completed. In Figure 1.1, we provide a hierarchical taxonomy of different NLP tasks
categorized into several different types. We first have two broad categories: analysis
(analyzing existing text) and generation (generating new text) tasks. Then we divide
analysis into three different categories: syntactic (language structure-based tasks),
semantic (meaning-based tasks), and pragmatic (open problems difficult to solve):

Figure 1.1: A taxonomy of the popular tasks of NLP categorized under broader categories

Chapter 1

[5]

Having understood the various tasks in NLP, let us now move on to understand how
we can solve these tasks with the help of machines.

The traditional approach to Natural
Language Processing
The traditional or classical approach to solving NLP is a sequential flow of several
key steps, and it is a statistical approach. When we take a closer look at a traditional
NLP learning model, we will be able to see a set of distinct tasks taking place, such
as preprocessing data by removing unwanted data, feature engineering to get good
numerical representations of textual data, learning to use machine learning algorithms
with the aid of training data, and predicting outputs for novel unfamiliar data. Of
these, feature engineering was the most time-consuming and crucial step for obtaining
good performance on a given NLP task.

Understanding the traditional approach
The traditional approach to solving NLP tasks involves a collection of distinct
subtasks. First, the text corpora need to be preprocessed focusing on reducing the
vocabulary and distractions. By distractions, I refer to the things that distract the
algorithm (for example, punctuation marks and stop word removal) from capturing
the vital linguistic information required for the task.

Next, comes several feature engineering steps. The main objective of feature
engineering is to make the learning easier for the algorithms. Often the features
are hand-engineered and biased toward the human understanding of a language.
Feature engineering was of utter importance for classical NLP algorithms, and
consequently, the best performing systems often had the best engineered features.
For example, for a sentiment classification task, you can represent a sentence with
a parse tree and assign positive, negative, or neutral labels to each node/subtree in
the tree to classify that sentence as positive or negative. Additionally, the feature
engineering phase can use external resources such as WordNet (a lexical database) to
develop better features. We will soon look at a simple feature engineering technique
known as bag-of-words.

Introduction to Natural Language Processing

[6]

Next, the learning algorithm learns to perform well at the given task using the
obtained features and optionally, the external resources. For example, for a text
summarization task, a thesaurus that contains synonyms of words can be a good
external resource. Finally, prediction occurs. Prediction is straightforward, where
you will feed a new input and obtain the predicted label by forwarding the input
through the learning model. The entire process of the traditional approach is
depicted in Figure 1.2:

Figure 1.2: The general approach of classical NLP

Example – generating football game summaries
To gain an in-depth understanding of the traditional approach to NLP, let's consider
a task of automatic text generation from the statistics of a game of football. We
have several sets of game statistics (for example, score, penalties, and yellow
cards) and the corresponding articles generated for that game by a journalist, as
the training data. Let's also assume that for a given game, we have a mapping
from each statistical parameter to the most relevant phrase of the summary for that
parameter. Our task here is that, given a new game, we need to generate a natural
looking summary about the game. Of course, this can be as simple as finding the
best-matching statistics for the new game from the training data and retrieving the
corresponding summary. However, there are more sophisticated and elegant ways of
generating text.

If we were to incorporate machine learning to generate natural language, a sequence
of operations such as preprocessing the text, tokenization, feature engineering,
learning, and prediction are likely to be performed.

Chapter 1

[7]

Preprocessing the text involves operations, such as stemming (for example,
converting listened to listen) and removing punctuation (for example, ! and ;), in order
to reduce the vocabulary (that is, features), thus reducing the memory requirement.
It is important to understand that stemming is not a trivial operation. It might
appear that stemming is a simple operation that relies on a simple set of rules such
as removing ed from a verb (for example, the stemmed result of listened is listen);
however, it requires more than a simple rule base to develop a good stemming
algorithm, as stemming certain words can be tricky (for example, the stemmed result
of argued is argue). In addition, the effort required for proper stemming can vary in
complexity for other languages.

Tokenization is another preprocessing step that might need to be performed.
Tokenization is the process of dividing a corpus into small entities (for example,
words). This might appear trivial for a language such as English, as the words are
isolated; however, this is not the case for certain languages such as Thai, Japanese,
and Chinese, as these languages are not consistently delimited.

Feature engineering is used to transform raw text data into an appealing numerical
format so that a model can be trained on that data, for example, converting text into
a bag-of-words representation or using the n-gram representation which we will
discuss later. However, remember that state-of-the-art classical models rely on much
more sophisticated feature engineering techniques.

The following are some of the feature engineering techniques:

Bag-of-words: This is a feature engineering technique that creates feature
representations based on the word occurrence frequency. For example, let's consider
the following sentences:

•	 Bob went to the market to buy some flowers
•	 Bob bought the flowers to give to Mary

The vocabulary for these two sentences would be:

["Bob", "went", "to", "the", "market", "buy", "some", "flowers", "bought", "give", "Mary"]

Next, we will create a feature vector of size V (vocabulary size) for each sentence
showing how many times each word in the vocabulary appears in the sentence. In
this example, the feature vectors for the sentences would respectively be as follows:

[1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0]

[1, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1]

Introduction to Natural Language Processing

[8]

A crucial limitation of the bag-of-words method is that it loses contextual
information as the order of words is no longer preserved.

n-gram: This is another feature engineering technique that breaks down text
into smaller components consisting of n letters (or words). For example, 2-gram
would break the text into two-letter (or two-word) entities. For example, consider
this sentence:

Bob went to the market to buy some flowers

The letter level n-gram decomposition for this sentence is as follows:

["Bo", "ob", "b ", " w", "we", "en", ..., "me", "e "," f", "fl", "lo", "ow", "we", "er", "rs"]

The word-based n-gram decomposition is this:

["Bob went", "went to", "to the", "the market", ..., "to buy", "buy some",
"some flowers"]

The advantage in this representation (letter, level) is that the vocabulary will be
significantly smaller than if we were to use words as features for large corpora.

Next, we need to structure our data to be able to feed it into a learning model.
For example, we will have data tuples of the form, (statistic, a phrase explaining the
statistic) as follows:

Total goals = 4, "The game was tied with 2 goals for each team at the end of the
first half"

Team 1 = Manchester United, "The game was between Manchester United
and Barcelona"

Team 1 goals = 5, "Manchester United managed to get 5 goals"

The learning process may comprise three sub modules: a Hidden Markov Model
(HMM), a sentence planner, and a discourse planner. In our example, a HMM might
learn the morphological structure and grammatical properties of the language by
analyzing the corpus of related phrases. More specifically, we will concatenate each
phrase in our dataset to form a sequence, where the first element is the statistic
followed by the phrase explaining it. Then, we will train a HMM by asking it to
predict the next word, given the current sequence. Concretely, we will first input
the statistic to the HMM and then get the prediction made by the HMM; then, we
will concatenate the last prediction to the current sequence and ask the HMM to
give another prediction, and so on. This will enable the HMM to output meaningful
phrases, given statistics.

Chapter 1

[9]

Next, we can have a sentence planner that corrects any linguistic mistakes
(for example, morphological or grammar), which we might have in the phrases.
For examples, a sentence planner outputs the phrase, I go house as I go home; it can
use a database of rules, which contains the correct way of conveying meanings
(for example, the need of a preposition between a verb and the word house).

Now we can generate a set of phrases for a given set of statistics using a HMM.
Then, we need to aggregate these phrases in such a way that an essay made from the
collection of phrases is human readable and flows correctly. For example, consider
the three phrases, Player 10 of the Barcelona team scored a goal in the second half, Barcelona
played against Manchester United, and Player 3 from Manchester United got a yellow card
in the first half; having these sentences in this order does not make much sense. We
like to have them in this order: Barcelona played against Manchester United, Player 3
from Manchester United got a yellow card in the first half, and Player 10 of the Barcelona
team scored a goal in the second half. To do this, we use a discourse planner; discourse
planners can order and structure a set of messages that need to be conveyed.

Now we can get a set of arbitrary test statistics and obtain an essay explaining the
statistics by following the preceding workflow, which is depicted in Figure 1.3:

Figure 1.3: A step from a classical approach example of solving a language modelling task

Here, it is important to note that this is a very high level explanation that only covers the
main general-purpose components that are most likely to be included in the traditional
way of NLP. The details can largely vary according to the particular application we are
interested in solving. For example, additional application-specific crucial components
might be needed for certain tasks (a rule base and an alignment model in machine
translation). However, in this book, we do not stress about such details as the main
objective here is to discuss more modern ways of natural language processing.

Introduction to Natural Language Processing

[10]

Drawbacks of the traditional approach
Let's list several key drawbacks of the traditional approach as this would lay a good
foundation for discussing the motivation for deep learning:

•	 The preprocessing steps used in traditional NLP forces a trade-off
of potentially useful information embedded in the text (for example,
punctuation and tense information) in order to make the learning feasible
by reducing the vocabulary. Though preprocessing is still used in modern
deep-learning-based solutions, it is not as crucial as for the traditional NLP
workflow due to the large representational capacity of deep networks.

•	 Feature engineering needs to be performed manually by hand. In order to
design a reliable system, good features need to be devised. This process can
be very tedious as different feature spaces need to be extensively explored.
Additionally, in order to effectively explore robust features, domain expertise
is required, which can be scarce for certain NLP tasks.

•	 Various external resources are needed for it to perform well, and there are
not many freely available ones. Such external resources often consist of
manually created information stored in large databases. Creating one for a
particular task can take several years, depending on the severity of the task
(for example, a machine translation rule base).

The deep learning approach to Natural
Language Processing
I think it is safe to assume that deep learning revolutionized machine learning,
especially in fields such as computer vision, speech recognition, and of course, NLP.
Deep models created a wave of paradigm shifts in many of the fields in machine
learning, as deep models learned rich features from raw data instead of using limited
human-engineered features. This consequentially caused the pesky and expensive
feature engineering to be obsolete. With this, deep models made the traditional
workflow more efficient, as deep models perform feature learning and task learning,
simultaneously. Moreover, due to the massive number of parameters (that is,
weights) in a deep model, it can encompass significantly more features than a human
would've engineered. However, deep models are considered a black box due to the
poor interpretability of the model. For example, understanding the "how" and "what"
features learnt by deep models for a given problem still remains an open problem.

Chapter 1

[11]

A deep model is essentially an artificial neural network that has an input layer,
many interconnected hidden layers in the middle, and finally, an output layer (for
example, a classifier or a regressor). As you can see, this forms an end-to-end model
from raw data to predictions. These hidden layers in the middle give the power to
deep models as they are responsible for learning the good features from raw data,
eventually succeeding at the task at hand.

History of deep learning
Let's briefly discuss the roots of deep learning and how the field evolved to be a very
promising technique for machine learning. In 1960, Hubel and Weisel performed an
interesting experiment and discovered that a cat's visual cortex is made of simple and
complex cells, and that these cells are organized in a hierarchical form. Also, these
cells react differently to different stimuli. For example, simple cells are activated by
variously oriented edges while complex cells are insensitive to spatial variations (for
example, the orientation of the edge). This kindled the motivation for replicating a
similar behavior in machines, giving rise to the concept of deep learning.

In the years that followed, neural networks gained the attention of many researchers.
In 1965, a neural network trained by a method known as the Group Method of Data
Handling (GMDH) and based on the famous Perceptron by Rosenblatt, was introduced
by Ivakhnenko and others. Later, in 1979, Fukushima introduced the Neocognitron,
which laid the base for one of the most famous variants of deep models—Convolution
Neural Networks. Unlike the perceptrons, which always took in a 1D input, a
neocognitron was able to process 2D inputs using convolution operations.

Artificial neural networks used to backpropagate the error signal to optimize
the network parameters by computing a Jacobian matrix from one layer to the
layer before it. Furthermore, the problem of vanishing gradients strictly limited
the potential number of layers (depth) of the neural network. The gradients of
layers closer to the inputs, being very small, is known as the vanishing gradients
phenomenon. This transpired due to the application of the chain rule to compute
gradients (the Jacobian matrix) of lower layer weights. This in turn limited the
plausible maximum depth of classical neural networks.

Introduction to Natural Language Processing

[12]

Then in 2006, it was found that pretraining a deep neural network by minimizing
the reconstruction error (obtained by trying to compress the input to a lower
dimensionality and then reconstructing it back into the original dimensionality)
for each layer of the network, provides a good initial starting point for the weight
of the neural network; this allows a consistent flow of gradients from the output
layer to the input layer. This essentially allowed neural network models to have
more layers without the ill-effects of the vanishing gradient. Also, these deeper
models were able to surpass traditional machine learning models in many tasks,
mostly in computer vision (for example, test accuracy for the MNIST hand-written
digit dataset). With this breakthrough, deep learning became the buzzword in the
machine learning community.

Things started gaining a progressive momentum, when in 2012, AlexNet (a deep
convolution neural network created by Alex Krizhevsky (http://www.cs.toronto.
edu/~kriz/), Ilya Sutskever (http://www.cs.toronto.edu/~ilya/), and Geoff
Hinton) won the Large Scale Visual Recognition Challenge (LSVRC) 2012 with an
error decrease of 10% from the previous best. During this time, advances were made in
speech recognition, wherein state-of-the-art speech recognition accuracies were reported
using deep neural networks. Furthermore, people began realizing that Graphical
Processing Units (GPUs) enable more parallelism, which allows for faster training of
larger and deeper networks compared with Central Processing Units (CPUs).

Deep models were further improved with better model initialization techniques
(for example, Xavier initialization), making the time-consuming pretraining
redundant. Also, better nonlinear activation functions, such as Rectified Linear
Units (ReLUs), were introduced, which alleviated the ill-effects of the vanishing
gradient in deeper models. Better optimization (or learning) techniques, such as
Adam, automatically tweaked individual learning rates of each parameter among
the millions of parameters that we have in the neural network model, which rewrote
the state-of-the-art performance in many different fields of machine learning, such
as object classification and speech recognition. These advancements also allowed
neural network models to have large numbers of hidden layers. The ability to
increase the number of hidden layers (that is, to make the neural networks deep)
is one of the primary contributors to the significantly better performance of neural
network models compared with other machine learning models. Furthermore, better
intermediate regularizers, such as batch normalization layers, have improved the
performance of deep nets for many tasks.

Later, even deeper models such as ResNets, Highway Nets, and Ladder Nets were
introduced, which had hundreds of layers and billions of parameters. It was possible
to have such an enormous number of layers with the help of various empirically and
theoretically inspired techniques. For example, ResNets use shortcut connections to
connect layers that are far apart, which minimizes the diminishing of gradients, layer
to layer, as discussed earlier.

http://www.cs.toronto.edu/~kriz/
http://www.cs.toronto.edu/~kriz/

Chapter 1

[13]

The current state of deep learning and NLP
Many different deep models have seen the light since their inception in early
2000. Even though they share a resemblance, such as all of them using nonlinear
transformation of the inputs and parameters, the details can vary vastly. For
example, a Convolution Neural Network (CNN) can learn from two-dimensional
data (for example, RGB images) as it is, while a multilayer perceptron model requires
the input to be unwrapped to a one-dimensional vector, causing loss of important
spatial information.

When processing text, as one of the most intuitive interpretations of text is to
perceive it as a sequence of characters, the learning model should be able to do time-
series modelling, thus requiring the memory of the past. To understand this, think
of a language modelling task; the next word for the word cat should be different
from the next word for the word climbed. One such popular model that encompasses
this ability is known as a Recurrent Neural Network (RNN). We will see in Chapter
6, Recurrent Neural Networks how exactly RNNs achieve this by going through
interactive exercises.

It should be noted that memory is not a trivial operation that is inherent to a learning
model. Conversely, ways of persisting memory should be carefully designed.
Also, the term memory should not be confused with the learned weights of a
non-sequential deep network that only looks at the current input, where a sequential
model (for example, RNN) will look at both the learned weights and the previous
element of the sequence to predict the next output.

One prominent drawback of RNNs is that they cannot remember more than few
(approximately 7) time steps, thus lacking long-term memory. Long Short-Term
Memory (LSTM) networks are an extension of RNNs that encapsulate long-term
memory. Therefore, often LSTMs are preferred over standard RNNs, nowadays.
We will peek under the hood in Chapter 7, Long Short-Term Memory Networks to
understand them better.

Introduction to Natural Language Processing

[14]

In summary, we can mainly separate deep networks into two categories: the
non-sequential models that deal with only a single input at a time for both training
and prediction (for example, image classification) and the sequential models that
cope with sequences of inputs of arbitrary length (for example, text generation
where a single word is a single input). Then we can categorize non-sequential (also
called feed-forward) models into deep (approximately less than 20 layers) and very
deep networks (can be greater than hundreds of layers). The sequential models are
categorized into short-term memory models (for example, RNNs), which can only
memorize short-term patterns and long-term memory models, which can memorize
longer patterns. In Figure 1.4, we outline the discussed taxonomy. It is not expected
that you understand these different deep learning models fully at this point, but it
only illustrates the diversity of the deep learning models:

Figure 1.4: A general taxonomy of the most commonly used deep learning methods,
categorized into several classes

Understanding a simple deep model – a
Fully-Connected Neural Network
Now let's have a closer look at a deep neural network in order to gain a better
understanding. Although there are numerous different variants of deep models,
let's look at one of the earliest models (dating back to 1950-60), known as a
Fully-Connected Neural Network (FCNN), or sometimes called a multilayer
perceptron. The Figure 1.5 depicts a standard three-layered FCNN.

Chapter 1

[15]

The goal of a FCNN is to map an input (for example, an image or a sentence) to
a certain label or annotation (for example, the object category for images). This is
achieved by using an input x to compute h—a hidden representation of x—using a
transformation such as h = sigma (W * x + b); here, W and b are the weights and bias of
the FCNN, respectively, and sigma is the sigmoid activation function. Next, a classifier
(for example, a softmax classifier) is placed on top of the FCNN that gives the ability to
leverage the learned features in hidden layers to classify inputs. Classifier, essentially
is a part of the FCNN and yet another hidden layer with some weights, Ws and a
bias, bs. Also, we can calculate the final output of the FCNN as, output = softmax (Ws *
h + bs). For example, a softmax classifier provides a normalized representation of the
scores output by the classifier layer; the label is considered to be the output node with
the highest softmax value. Then, with this, we can define a classification loss that is
calculated as the difference between the predicted output label and the actual output
label. An example of such a loss function is the mean squared loss. You don't have
to worry if you don't understand the actual intricacies of the loss function. We will
discuss quite a few of them in later chapters. Next, the neural network parameters,
W, b, Ws, and bs, are optimized using a standard stochastic optimizer (for example, the
stochastic gradient descent) to reduce the classification loss all the inputs. Figure 1.5
depicts the process explained in this paragraph for a three-layer FCNN. We will
walk-through the details on how to use such a model for NLP tasks, step by step in
Chapter 3, Word2vec – Learning Word Embeddings.

Figure 1.5: An example of a Fully Connected Neural Network (FCNN)

Introduction to Natural Language Processing

[16]

Let's look at an example of how to use a neural network for a sentiment analysis task.
Consider that we have a dataset where the input is a sentence expressing a positive
or negative opinion about a movie and a corresponding label saying if the sentence
is actually positive (1) or negative (0). Then, we are given a test data set, where we
have single sentence movie reviews, and our task is to classify these new sentences
as positive or negative.

It is possible to use a neural network (which can be deep or shallow, depending on
the difficulty of the task) for this task by adhering to the following workflow:

1.	 Tokenize the sentence by words
2.	 Pad the sentences with a special token if necessary, to bring all sentences

to a fixed length
3.	 Convert the sentences into a numerical representation (for example,

Bag-of-Words representation)
4.	 Feed the numerical inputs to the neural network and predict the output

(positive or negative)
5.	 Optimize the neural network using a desired loss function

The roadmap – beyond this chapter
This section delineates the details of the rest of the book; it's brief, but has
informative details about what each chapter of the book covers. In this book, we
will be looking at numerous exciting fields of NLP, from algorithms that find word
similarities without any sort of annotated data, to algorithms that can write a story
by themselves.

Starting from the next chapter, we will dive into the details about several popular
and interesting NLP tasks. In order to gain an in-depth knowledge and to make
the learning interactive, various exercises are also provided. We will use Python
and TensorFlow, an open-source library for distributed numerical computations,
for all the implementations. TensorFlow encapsulates advance technicalities such
as optimizing your code for GPUs using Compute Unified Device Architecture
(CUDA), which can be challenging. Furthermore, TensorFlow provides built-in
functions for implementing deep learning algorithms, for example, activations,
stochastic optimization methods, and convolutions, making everyone's life easier.

Chapter 1

[17]

We will embark on a journey that covers many hot topics of NLP and how they
perform, while using TensorFlow to see the state-of-the-art algorithms in action.
This is what we will look at in this book:

•	 Chapter 2, Understanding TensorFlow, provides you with a sound guide to
understand how to write client programs and run them in TensorFlow. This
is important especially if you are new to TensorFlow, because TensorFlow
behaves differently from a traditional coding language such as Python.
This chapter will first offer an in-depth explanation about how TensorFlow
executes a client. This will help you to understand the TensorFlow execution
workflow and feel comfortable around TensorFlow terminology. Next, the
chapter will walk you through various elements of a TensorFlow client such
as defining variables, defining operations/functions, feeding inputs to an
algorithm, and obtaining the results. We will finally discuss how all this
knowledge of TensorFlow can be used to implement a moderately complex
neural network to classify images of hand-written images.

•	 Chapter 3, Word2vec – Learning Word Embeddings. The objective of this chapter
is to introduce Word2vec—a method to learn numerical representations of
words that reflects semantic of the words. But before diving straight into
the Word2vec techniques, we will first discuss some classical approaches
used to represent word semantics. One of the early approach was to rely
on WordNet—a large lexical database. WordNet can be used to measure
the semantic similarity between different words. However, maintaining
such a large lexical database is costly. Therefore, there exist other simpler
representation techniques, such as one-hot-encoded representations, and
the term-frequency inverse document frequency method, that doesn't rely
on external resources. Following this, we will move onto the modern way of
learning word vectors known as Word2vec, where we use a neural network
to learn word representations. We will discuss two popular Word2vec
techniques: skip-gram and continuous bag-of-words (CBOW) model.

•	 Chapter 4, Advanced Word2vec. We will start this chapter with several
comparisons including a comparison between the skip-gram and CBOW
algorithms to see if there is a clear-cut winner. Then we will discuss several
extensions that have been introduced to the original Word2vec techniques
over the course of the past few years. For example, ignoring common words
in the text, such as "the" and "a", that have a high probability, improves the
performance of the Word2vec models. On the other hand, the Word2vec
model only considers the local context of a word and ignores the global
statistics of the entire corpus. Consequently, a word embedding learning
technique known as GloVe, which incorporates both global and local
statistics in finding word vectors will be discussed.

Introduction to Natural Language Processing

[18]

•	 Chapter 5, Sentence Classification with Convolution Neural Networks, introduces
you to convolution neural networks (CNNs). Convolution networks are a
powerful family of deep models that can leverage the spatial structure of
an input to learn from data. In other words, a CNN can process images in
their two-dimensional form, where a multilayer perceptron needs the image
to be unwrapped to a one-dimensional vector. We will first discuss various
operations that undergoes in CNNs, such as the convolution and pooling
operations, in detail. Then we will see an example where we will learn to
classify hand-written digit images with a CNN. Then we will transition into
an application of CNNs in NLP. Precisely, we will be investigating how to
apply a CNN to classify sentences, where the task is to classify if a sentence is
about a person, location, object, and so on.

•	 Chapter 6, Recurrent Neural Networks, focuses on introducing recurrent neural
networks (RNNs) and using RNNs for language generation. RNNs are different
from feed-forward neural networks (for example, CNNs) as RNNs have
memory. The memory is stored as a continuously updated system state. We
will start with a representation of a feed-forward neural network and modify
that representation to learn from sequences of data instead of individual data
points. This process will transform the feed-forward network to a RNN. This
will be followed by a technical description about the exact equations used
for computations within the RNN. Next, we will discuss the optimization
process of RNNs that is used to update the RNN's weights. Thereafter we
will iterate through different types of RNNs such as one-to-one RNNs and
one-to-many RNNs. We will then walkthrough an exciting application of
RNNs, where the RNN will learn to tell new stories by learning from a
corpus of existing stories. We achieve this by training the RNN to predict the
next word given the preceding sequence of words of the story. Finally, we
will discuss a variant of standard RNNs, which we call RNN-CF (RNN with
contextual features), and will compare it with the standard RNN to see which
one performs better.

Chapter 1

[19]

•	 Chapter 7, Long Short-Term Memory Networks, discusses LSTMs by initially
providing a solid intuition to how these models work and progressively
diving into the technical details adequate to implement them on your own.
Standard RNNs suffer from the crucial limitation of the inability to persist
long-term memory. However, advanced RNN models (for example, long
short-term memory cells (LSTMs) and gated recurrent units (GRUs)) have
been proposed, which can remember sequences for large number of time
steps. We will also examine how exactly does the LSTMs alleviate the
problem of persisting long-term memory (this is known as the vanishing
gradient problem). We will then discuss several improvements that can be
used to improve LSTM models further such as predicting for several time
steps ahead at once and reading sequences both forward and backward.
Finally, we will discuss several variants of LSTM models such as GRUs and
LSTMs with peephole connections.

•	 Chapter 8, Applications of LSTM – Generating Text, explains how to implement
LSTMs, GRUs, and LSTMs with peephole connections discussed in Chapter
7, Long Short-Term Memory Networks. Furthermore, we will compare the
performance of these extensions both qualitatively and quantitatively.
We will also discuss how to implement some of the extensions examined
in Chapter 7, Long Short-Term Memory Networks such as predicting several
time steps ahead (known as beam search) and using word vectors as inputs
instead of one-hot-encoded representations. Finally, we will discuss how we
can use the RNN API, which is a sub library of TensorFlow that simplifies the
implementation of recurrent models.

•	 Chapter 9, Applications of LSTM – Image Caption Generation, looks at another
exciting application, where the model learns how to generate captions (that
is, descriptions) for images using an LSTM and a CNN. This application is
interesting because it shows us how to combine two different types of models
as well as how to learn with multimodal data (for example, images and text).
The specific way to achieve this is to first learn image representations (similar
to word vectors) with the CNN and train the LSTM by feeding that image
vector followed by the words of the description of the image as a sequence.
We will first discuss how we can use a pretrained CNN to obtain the image
representations. Then we will discuss how to learn the word embeddings.
Next we will discuss how to feed the image vectors along with word
embeddings to train the LSTM. This is followed by a description of different
evaluation metrics that exist for evaluating image captioning systems.
Afterwards, we will evaluate the captions generated by our model, both
qualitatively and quantitatively. We will conclude the chapter with a guide
of how to implement the same system using the TensorFlow RNN API.

Introduction to Natural Language Processing

[20]

•	 Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation.
Machine Translation has gained a lot of attention both due to the necessity of
automating translation and the inherent difficulty of the task. We will start
the chapter with a brief historical flashback of how machine translation was
implemented in the early days. This discussion ends with an introduction
to neural machine translation (NMT) systems. We will see how well current
NMT systems are doing compared to old systems (such as statistical machine
translation systems), which will motivate us to learn about NMT systems.
Afterwards, we will discuss the intuition behind the design of NMT systems
and continue with the technical details. Then we will discuss the evaluation
metric we use to evaluate our system. Following this, we will investigate
how we can implement a German to English translator from scratch. Next,
we will learn about ways to improve NMT systems. We will look at one of
those extensions in detail, called attention mechanism. Attention mechanism
has become an essential in sequence to sequence learning problems. Finally,
we will compare the performance improvement obtained with attention
mechanism and analyze reasons behind the performance gain. This chapter
concludes with a section on how the same concept of NMT systems can be
extended to implement chatbots. Chatbots are systems that can communicate
with humans and are used to fulfill various customer requests.

•	 Chapter 11, Current Trends and the Future of Natural Language Processing.
Natural language processing has branched out to a vast spectrum of
different tasks. Here we will discuss some of the current trends and future
developments of NLP we can expect in the future. We will first discuss
various word embedding extensions that have emerged recently. We will
also look at the implementation of one such embedding learning technique,
known as tv-embeddings. Next, we will examine various trends growing
in the field of neural machine translation. Then we will look at how NLP
is combined with other fields such as computer vision and reinforcement
learning to solve some interesting problems such as teaching computer
agents to communicate by devising their own language. Another booming
area these days is artificial general intelligence, which is about developing
systems that can do multiple tasks (classify images, translate text, caption
images, and so on) with a single system. We will investigate several such
systems. Afterwards, we will talk about the introduction of NLP into mining
social media. We will conclude this chapter with some of the new tasks
emerging (for example, language grounding – developing common sense
NLP systems) and new models (for example, phased LSTMs).

Chapter 1

[21]

•	 Appendix, Mathematical Foundations and Advanced TensorFlow, will introduce
the reader to various mathematical data structures (for example, matrices)
and operations (for example, matrix inverse). We will also discuss several
important concepts in probability. We will then introduce Keras—a
high-level library that uses TensorFlow underneath. Keras makes the
implementing of neural networks simpler by hiding some of the details in
TensorFlow, which some might find challenging. Concretely, we will see
how we can implement a CNN with Keras, to get a feel of how to use Keras.
Next, we will discuss how we can use the seq2seq library in TensorFlow to
implement a neural machine translation system with much less code that
we used in Chapter 11, Current Trends and the Future of Natural Language
Processing. Finally, we will walk you through a guide aimed at teaching to
use the TensorBoard to visualize word embeddings. TensorBoard is a handy
visualization tool that is shipped with TensorFlow. This can be used to
visualize and monitor various variables in your TensorFlow client.

Introduction to the technical tools
In this section, you will be introduced to the technical tools that will be used
in the exercises of the following chapters. First, we will present a brief introduction
to the main tools provided. Next, we will present a coarse guide on how to
install each tool along with hyperlinks to detailed guides provided by the official
websites. Additionally, we will share tips on how to make sure that the tools were
installed properly.

Description of the tools
We will use Python as the coding/scripting language. Python is a very versatile
easy-to-set-up coding language that is heavily used by the scientific community.
Additionally, there are numerous scientific libraries floating around Python, catering
to areas ranging from deep learning to probabilistic inference to data visualization.
TensorFlow is one such library that is well-known among the deep learning
community, providing many basic and advanced operations that are useful for deep
learning. Next, we will use Jupyter notebooks in all our exercises as it provides a
more interactive environment for coding compared to using an IDE. We will also
use scikit-learn—another popular machine learning toolkit for Python—for various
miscellaneous purposes such as data preprocessing. Another library we will be
using for various text related operations is NLTK—Python natural language toolkit.
Finally, we will use matplotlib for data visualization.

Introduction to Natural Language Processing

[22]

Installing Python and scikit-learn
Python is hassle-free to install in any of the commonly used operating systems such
as Windows, macOS, or Linux. We will use Anaconda to set up Python, as it does all
the laborious work for setting up Python as well as the essential libraries.

To install Anaconda, follow these steps:

1.	 Download Anaconda from https://www.continuum.io/downloads
2.	 Select the appropriate OS and download Python 3.5
3.	 Install Anaconda by following the instructions at https://docs.

continuum.io/anaconda/install/

To check whether Anaconda was properly installed, follow these steps:

1.	 Open a Terminal window (Command Prompt in Windows)
2.	 Now, run the following command:

conda --version

If installed properly, the version of the current Anaconda distribution should be
shown in Terminal.

Next, install scikit-learn by following the instructions at http://scikit-learn.
org/stable/install.html, NLTK from https://www.nltk.org/install.html
and Matplotlib from https://matplotlib.org/users/installing.html.

Installing Jupyter Notebook
You can install Jupyter Notebook by following the instruction at http://jupyter.
readthedocs.io/en/latest/install.html.

To check whether Jupyter Notebook is properly installed, follow these steps:

1.	 Open a Terminal window
2.	 Run this command:

jupyter notebook

https://www.continuum.io/downloads
https://docs.continuum.io/anaconda/install/
https://docs.continuum.io/anaconda/install/
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
https://www.nltk.org/install.html
https://matplotlib.org/users/installing.html
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html

Chapter 1

[23]

You should be presented with a new browser window that looks like
Figure 1.6:

Figure 1.6. Jupyter Notebook installed successfully

Installing TensorFlow
Follow the instructions given at https://www.tensorflow.org/install/ under
the Installing with Anaconda subsection to install TensorFlow. We will use TensorFlow
1.8.x throughout all the exercises.

When providing the tfBinaryURL as asked in the instruction, make sure that you
provide a TensorFlow 1.8.x version. We stress this as the API has undergone many
changes compared to the previous TensorFlow versions.

To check whether TensorFlow installed properly, follow these steps:

1.	 Open Command Prompt in Windows or Terminal in Linux or macOS.
2.	 Type python to enter the Python environment. You should now see the

Python version right below. Make sure that you are using Python 3.
3.	 Next, enter the following commands:

import tensorflow as tf
print(tf.__version__)

Introduction to Natural Language Processing

[24]

If all went well, you should not have any errors (there might be warnings if your
computer does not have a dedicated GPU, but you can ignore them) and the
TensorFlow version 1.8.x should be shown.

Many cloud-based computational platforms are also available,
where you can set up your own machine with various customization
(operating system, GPU card type, number of GPU cards, and so on).
Many are migrating to such cloud-based services due to the
following benefits:

•	 More customization options
•	 Less maintenance effort
•	 No infrastructure requirements

Several popular cloud-based computational platforms are as follows:
•	 Google Cloud Platform (GCP): https://cloud.google.com/
•	 Amazon Web Services (AWS): https://aws.amazon.com/
•	 TensorFlow Research Cloud (TFRC): https://www.

tensorflow.org/tfrc/

Summary
In this chapter, we broadly explored NLP to get an impression of the kind of tasks
involved in building a good NLP-based system. First, we explained why we need
NLP and then discussed various tasks of NLP to generally understand the objective
of each task and how difficult it is to succeed at these tasks.

Next, we looked at the classical approach of solving NLP and went into the details
of the workflow using an example of generating sport summaries for football games.
We saw that the traditional approach usually involves cumbersome and tedious
feature engineering. For example, in order to check the correctness of a generated
phrase, we might need to generate a parse tree for that phrase. Next, we discussed
the paradigm shift that transpired with deep learning and saw how deep learning
made the feature engineering step obsolete. We started with a bit of time-travelling
to go back to the inception of deep learning and artificial neural networks and
worked our way to the massive modern networks with hundreds of hidden layers.
Afterward, we walked through a simple example illustrating a deep model—a
multilayer perceptron model—to understand the mathematical wizardry taking
place in such a model (on the surface of course!).

https://cloud.google.com/
https://www.tensorflow.org/tfrc/
https://www.tensorflow.org/tfrc/

Chapter 1

[25]

With a nice foundation to both traditional and modern ways of approaching NLP,
we then discussed the roadmap to understand the topics we will be covering in
the book, from learning word embeddings to mighty LSTMs, generating captions
for images to neural machine translators! Finally, we set up our environment by
installing Python, scikit-learn, Jupyter Notebook, and TensorFlow.

In the next chapter, you will learn the basics of TensorFlow. By the end of the
chapter, you should be comfortable with writing a simple algorithm that can take
some input, transform the input through a defined function and output the result.

[27]

Understanding TensorFlow
In this chapter, you will get an in-depth understanding of TensorFlow. This is an
open source distributed numerical computation framework, and it will be the main
platform on which we will be implementing all our exercises.

We will get started with TensorFlow by defining a simple calculation and trying to
compute it using TensorFlow. After we successfully complete this, we will investigate
how TensorFlow executes this computation. This will help us to understand how
the framework creates a computational graph to compute the outputs and execute
this graph through something known as a session. Then we will gain a hands-on
experience of the TensorFlow architecture by relating how TensorFlow executes
things, with the help of an analogy of how a restaurant might operate.

Having gained a good conceptual and technical understanding of how TensorFlow
operates, we will look at some of the important computational operations that
the framework offers. First, we will look at defining various data structures in
TensorFlow, such as variables, placeholders and tensors, and we'll also see how to
read inputs. Then we will work through some neural-network related operations
(for example, convolution operation, defining losses, and optimization). Following
this, we will learn how to reuse and efficiently manage TensorFlow variables using
scoping. Finally, we will apply this knowledge in an exciting exercise, where we will
implement a neural network that can recognize images of handwritten digits.

Understanding TensorFlow

[28]

What is TensorFlow?
In Chapter 1, Introduction to Natural Language Processing, we briefly discussed what
TensorFlow is. Now let's take a closer look at it. TensorFlow is an open source
distributed numerical computation framework released by Google that is mainly
intended to alleviate the painful details of implementing a neural network (for
example, computing derivatives of the weights of the neural network). TensorFlow
takes this even a step further by providing efficient implementations of such
numerical computations using Compute Unified Device Architecture (CUDA),
which is a parallel computational platform introduced by NVIDIA. The Application
Programming Interface (API) of TensorFlow at https://www.tensorflow.org/
api_docs/python/ shows that TensorFlow provides thousands of operations that
make our lives easier.

TensorFlow was not developed overnight. This is a result of the persistence of
talented, good-hearted individuals who wanted to make a difference by bringing
deep learning to a wider audience. If you are interested, you can take a look at the
TensorFlow code at https://github.com/tensorflow/tensorflow. Currently,
TensorFlow has around 1,000 contributors, and it sits on top of more than 25,000
commits, evolving to be better and better every day.

Getting started with TensorFlow
Now let's learn about a few essential components in the TensorFlow framework by
working through a code example. Let's write an example to perform the following
computation, which is very common for neural networks:

h = sigmoid(W * x + b)

Here W and x are matrices and b is a vector. Then, * denotes the dot product. sigmoid
is a non-linear transformation given by the following equation:

sigmoid(x) 1
1 e x−= −−

We will discuss how to do this computation through TensorFlow step by step.

First, we will need to import TensorFlow and NumPy. Importing them is essential
before you run any type of TensorFlow- or NumPy-related operation, in Python:

import tensorflow as tf
import numpy as np

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
https://github.com/tensorflow/tensorflow

Chapter 2

[29]

Next, we'll define a graph object, which we will populate with operations and
variables later:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

The graph object contains the computational graph that connects the various inputs
and outputs we define in our program to get the final desired output (that is, it
defines how W, x, and b are connected to produce h in terms of a graph). For example,
if you think of the output as a cake, then the graph would be the recipe to make that
cake using ingredients (that is, inputs). Also, we'll define a session object that takes
the defined graph as the input, which executes the graph. We will talk about these
elements in detail in the next section.

To create a new graph object, you can either use the following,
as we did in the preceding example:

graph = tf.Graph()

Alternatively, you can use the following to get the TensorFlow
default computational graph:

graph = tf.get_default_graph()

We show exercises using both these methods.

Now we'll define a few tensors, namely x, W, b, and h. A tensor is essentially
an n-dimensional array in TensorFlow. For example, a one-dimensional vector
or a two-dimensional matrix is called a tensor. There are several different ways
in TensorFlow that you can define tensors. Here we will look at three such
different approaches:

1.	 First, x is a placeholder. Placeholders, as the name suggests, are not
initialized with some value. Rather, we will provide the value on-the-fly at
the time of the graph execution.

2.	 Next, we have variables W and b. Variables are mutable, meaning that their
values can change over time.

3.	 Finally, we have h, which is an immutable tensor produced by performing
some operations on x, W, and b:
x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1,
maxval=0.1, dtype=tf.float32),name='W')
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')
h = tf.nn.sigmoid(tf.matmul(x,W) + b)

Understanding TensorFlow

[30]

Also, notice that for W and b we provide some important arguments such as
the following:

tf.random_uniform(shape=[10,5], minval=-0.1, maxval=0.1,
dtype=tf.float32)
tf.zeros(shape=[5],dtype=tf.float32)

These are called variable initializers and are the tensors that will be assigned to
the W and b variables initially. Variables cannot float without an initial value as
placeholders and need to have some value assigned to them all the time. Here,
tf.random_uniform means that we uniformly sample values between minval (-0.1)
and maxval (0.1) to assign values to the tensors, and tf.zeros initializes the tensor
with zeros. It is also very important to define the shape of your tensor when you are
defining it. The shape property defines the size of each dimension of a tensor. For
example, if shape is [10, 5], this means that it will be a two-dimensional structure
and will have 10 elements on axis 0 and 5 elements on axis 1.

Next, we'll run an initialization operation that initializes the variables in the graph,
W and b:

tf.global_variables_initializer().run()

Now, we will execute the graph to obtain the final output we need, h. This is done
by running session.run(...), where we provide the value to the placeholder as an
argument of the session.run() command:

h_eval = session.run(h,feed_dict={x: np.random.rand(1,10)})

Finally, we close the session, releasing any resources held by the session object.

session.close()

Here is the full code of this TensorFlow example. All the code examples in this chapter
will be available in the tensorflow_introduction.ipynb file in the ch2 folder:

import tensorflow as tf
import numpy as np

Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

Building the graph
A placeholder is an symbolic input
x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1,
maxval=0.1, dtype=tf.float32),name='W') # Variable

Chapter 2

[31]

Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

Run the operation by providing a value to the symbolic input x
h_eval = session.run(h,feed_dict={x: np.random.rand(1,10)})
Closes the session to free any held resources by the session
session.close()

When you run this code, you might encounter a warning, as shown here:

... tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU
supports instructions that this TensorFlow binary was not compiled to
use: ...

Don't worry about this. This is a warning saying that you used an off-the-shelf
precompiled version of TensorFlow without compiling it on your computer. This is
totally fine. It is just that you will get a slightly better performance if you compile it
on your computer, as TensorFlow will be optimized for that particular hardware.

In the following sections we will explain how TensorFlow executes this code to
produce the final output. Also note that the next two sections will be somewhat
complex and technical. However, you don't have to worry if you don't understand
everything completely, because after this, we will go through a nice, thorough real-
world example, where the same execution is explained in terms of how an order is
fulfilled in a restaurant, our own Café Le TensorFlow.

TensorFlow client in detail
The preceding example program is called a TensorFlow client. In any client program
you write with TensorFlow, there will be two main types of objects: operations and
tensors. In the preceding example, tf.nn.sigmoid is an operation and h is a tensor.

Then we have a graph object, which is the computational graph that stores the
dataflow of our program. When we add the subsequent lines defining x, W, b, and
h in the code, TensorFlow automatically adds these tensors and any operations
(for example, tf.matmul()) to the graph as nodes. The graph will store vital
information such as the tensor dependencies and which operation to perform
where. In our example, the graph will know that to calculate h, tensors x, W, and b
are required. So, if you haven't properly initialized one of them during runtime,
TensorFlow can point you to the exact initialization error that needs to be fixed.

Understanding TensorFlow

[32]

Next, the session plays the role of executing the graph by dividing the graph into
subgraphs and subsequently to even finer pieces which will then be assigned
to workers that will perform the assigned task. This is done with the session.
run(...) function. We will talk about this soon. For future reference, let's call our
example the sigmoid example.

TensorFlow architecture – what happens
when you execute the client?
We know that TensorFlow is skillful at creating a nice computational graph with all
the dependencies and operations so that it knows exactly how, when, and where the
data flows. But there should be one more element to this to make TensorFlow great:
the effective execution of the defined computational graph. This is where the session
comes in. Now let's peek under the hood of the session to understand how the graph
is executed.

First, the TensorFlow client holds a graph and session. When you create a session, it
sends the computational graph as a tf.GraphDef protocol buffer to the distributed
master. tf.GraphDef is a standardized representation of the graph. The distributed
master sees all computations in the graph and divides the computations to different
devices (for example, different GPUs and CPUs). The graph in our sigmoid example
looks like Figure 2.1. A single element of the graph is called a node:

Figure 2.1: A computational graph of the client

Chapter 2

[33]

Next, the computational graph will be broken into subgraphs and further into finer
pieces by the distributed master. Though decomposing the computational graph
appears too trivial in our example, the computational graph can exponentially grow
in real-world solutions with many hidden layers. Additionally, it becomes important
to break the computational graph into multiple pieces in order to execute things in
parallel (for example, multiple devices). Executing this graph (or a subgraph if the
graph is divided to subgraphs) is called a single task, where a task is allocated to a
single TensorFlow server.

However, in reality, each task will be executed by breaking this down into two
pieces, where each piece is executed by a single worker:

•	 One worker executes the TensorFlow operations using the current values of
the parameters (operation executor)

•	 The other worker stores the parameters and updates them with new values
obtained after executing the operations (parameter server)

This general workflow of a TensorFlow client is depicted in Figure 2.2:

Figure 2.2: The generic execution of a TensorFlow client

Understanding TensorFlow

[34]

Figure 2.3 illustrates the decomposition of the graph. In addition to breaking the graph
down, TensorFlow inserts send and receive nodes to help with the communication
between the parameter server and the operation executor. You can understand send
nodes to be sending data whenever data is available, where the receive nodes keep
listening and capture data when the corresponding send node sends data:

Figure 2.3: Decomposition of the TensorFlow graph

Finally, the session brings back the updated data to the client from the parameter
server once the calculation is done. The architecture of TensorFlow is shown in Figure
2.4. This explanation is based on the official TensorFlow documentation found at
https://www.tensorflow.org/extend/architecture.

Figure 2.4: TensorFlow framework architecture (https://www.tensorflow.org/extend/architecture)

Chapter 2

[35]

Cafe Le TensorFlow – understanding
TensorFlow with an analogy
If you were overwhelmed with the information contained in the technical
explanation, we'll try to grasp the concept from a different perspective. Let's say that
a new cafe just opened and you've been dying to try it. So you go there and grab a
seat by a window.

Next, the waiter comes to take your order, and you order a chicken burger with extra
cheese and no tomatoes. Think of yourself as the client and your order as defining
the graph. The graph defines what you need and how you need it. The waiter is
analogous to the session, where his responsibility is to carry the order to the kitchen
so the order can be made. When taking the order, the waiter uses a certain format
to convey your order, for example, table number, menu item ID, quantity, and
special requirements. Think of this formatted order written in the waiter's notebook
as GraphDef. Then the waiter takes the order to the kitchen and gives it to the
kitchen manager. From this point, the kitchen manager assumes the responsibility of
fulfilling the order. Here, the kitchen manager represents the distributed master. The
kitchen manager makes decisions, such as how many chefs are required to make the
dish and which chefs are the best candidates for the job. Let's also assume that each
chef has a cook, whose responsibility is to provide the chef with the right ingredients,
equipment, and so forth. So the kitchen manager takes the order to a single chef and
a cook (a burger is not that hard to prepare) and asks them to prepare the dish. In
our example, the chef is the operation executor, and the cook is the parameter server.

The chef looks at the order and tells the cook what is needed. So the cook first finds
the things that will be required (for example, buns, patties, and onions) and keeps
them close to fulfill the chef's requests as soon as possible. Moreover, the chef might
also ask to keep the intermediate results (for example, cut vegetables) of the dish
temporarily until the chef needs it back again.

Understanding TensorFlow

[36]

When the order is ready, the kitchen manager receives the burger from the chef and
the cook and notifies the waiter. At this point, the waiter takes the burger from the
kitchen manager and brings it to you. You will finally be able to enjoy the delicious
burger made according to your specifications. This process is shown in Figure 2.5:

Figure 2.5: The restaurant analogy illustrated

Inputs, variables, outputs, and operations
Now with an understanding of the underlying architecture let's proceed to the most
common elements that comprise a TensorFlow client. If you read any of the millions
of TensorFlow clients available on the internet, they all (the TensorFlow-related
code) fall into one of these buckets:

•	 Inputs: Data used to train and test our algorithms
•	 Variables: Mutable tensors, mostly defining the parameters of

our algorithms
•	 Outputs: Immutable tensors storing both terminal and intermediate outputs
•	 Operations: Various transformations for inputs to produce the

desired outputs

Chapter 2

[37]

In our earlier example, in the sigmoid example, we can find instances of all these
categories. We list the elements in Table 2.1:

TensorFlow element Value from example client
Inputs x

Variables W and b
Outputs h

Operations tf.matmul(...), tf.nn.sigmoid(...)

The following subsections explain each of these TensorFlow elements in more detail.

Defining inputs in TensorFlow
The client can mainly receive data in three different ways:

•	 Feeding data at every step of the algorithm with Python code
•	 Preloading and storing data as TensorFlow tensors
•	 Building an input pipeline

Let's look at each of these ways.

Feeding data with Python code
In the first method, data can be fed to the TensorFlow client using conventional
Python code. In our earlier example, x is an example of this method. To feed
data into the client from external data structures (for example, numpy.ndarray),
the TensorFlow library provides an elegant symbolic data structure known as a
placeholder defined as tf.placeholder(...). As the name suggests, a placeholder
does not require actual data at the graph building stage. Rather, the data is fed only
for graph executions invoked with session.run(...,feed_dict={placeholder:
value}) by passing the external data to the feed_dict argument in the form
of a Python dictionary where the key is the tf.placeholder variable and the
corresponding value is the actual data (for example, numpy.ndarray). The
placeholder definition takes the following form:

tf.placeholder(dtype, shape=None, name=None)

The arguments are as follows:

•	 dtype: This is the data type for the data fed into the placeholder
•	 shape: This is the shape of the placeholder, given as a 1D vector
•	 name: This is the name of the placeholder, and it is important for debugging

Understanding TensorFlow

[38]

Preloading and storing data as tensors
The second method is similar to the first one, but with one less thing to worry about.
We do not have to feed data during the graph execution as the data is preloaded.
To see this in action, let's modify our sigmoid example. Remember that we defined
x as a placeholder:

x = tf.placeholder(shape=[1,10],dtype=tf.float32,name='x')

Instead, let's define this as a tensor that contains specific values:

x = tf.constant(value=[[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]],
dtype=tf.float32,name='x')

Also, the full code would become as follows:

import tensorflow as tf
Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

Building the graph

x - A pre-loaded input
x = tf.constant(value=[[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]],
dtype=tf.float32,name='x')

W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1,
maxval=0.1, dtype=tf.float32),name='W') # Variable
Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

Run the operation without feed_dict
h_eval = session.run(h)
print(h_eval)
session.close()

You will notice there are two main differences from our original sigmoid example.
We have defined x in a different way. Instead of using a placeholder object and
feeding in the actual value at graph execution, we now assign a specific value
straightaway and define x as a tensor. Also, as you can see, we do not feed in any
extra arguments at session.run(...). However, on the downside, now you cannot
feed different values to x at session.run(...) and see how the output changes.

Chapter 2

[39]

Building an input pipeline
Input pipelines are designed for more heavy-duty clients that need to process a lot
of data quickly. This essentially creates a queue that holds data until it is needed.
TensorFlow also provides various preprocessing steps (for example, for adjusting
image contrast/brightness or standardization) that can be performed before feeding
data to the algorithm. To make things even more efficient, it is possible to have
multiple threads reading and processing data in parallel.

A typical pipeline will consist of the following components:

•	 The list of filenames
•	 A filename queue producing filenames for an input (record) reader
•	 A record reader for reading the inputs (records)
•	 A decoder to decode the read records (for example, JPEG image decoding)
•	 Preprocessing steps (optional)
•	 An example (that is, decoded inputs) queue

Let's write a quick example input pipeline using TensorFlow. In this example, we
have three text files (text1.txt, text2.txt, and text3.txt) in CSV format, each
with five lines and each line having 10 numbers separated by commas (an example
line: 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). We need to read this data as
batches (multiple rows of data vectors) by forming an input pipeline from the files all
the way to a tensor representing those inputs in the files. We will go step by step to
see what is going on.

For more information, refer to the official TensorFlow page
on Importing Data at https://www.tensorflow.org/
programmers_guide/reading_data.

First, let's import a few important libraries as before:

import tensorflow as tf
import numpy as np

Next, we'll define the graph and session objects:

graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

https://www.tensorflow.org/programmers_guide/reading_data
https://www.tensorflow.org/programmers_guide/reading_data

Understanding TensorFlow

[40]

Then we'll define a filename queue, a queue data structure containing filenames.
This will be passed as an argument to a reader (soon to be defined). The queue will
produce filenames as requested by the reader, so that the reader can fetch the files
with these filenames to read data:

filenames = ['test%d.txt'%i for i in range(1,4)]
filename_queue = tf.train.string_input_producer(filenames, capacity=3,
shuffle=True, name='string_input_producer')

Here, capacity is the amount of data held in the queue at a given time, and shuffle
tells the queue if the data should be shuffled before spitting out.

TensorFlow has several different types of readers (a list of available readers
is available at https://www.tensorflow.org/api_guides/python/io_
ops#Readers). As we have a few separate text files where a single line represents a
single data point, TextLineReader suits us the best:

reader = tf.TextLineReader()

After defining the reader, we can use the read() function to read data from the files.
It outputs (key,value) pairs. The key identifies the file and the record (that is, the line
of text) being read within the file. We can omit this. The value returns the actual
value of the line read by the reader:

key, value = reader.read(filename_queue, name='text_read_op')

Next, we'll define record_defaults, which will be output if any faulty records
are found:

record_defaults = [[-1.0], [-1.0], [-1.0], [-1.0], [-1.0], [-1.0],
[-1.0], [-1.0], [-1.0], [-1.0]]

Now we decode the read line of text into numerical columns (as we have CSV files).
For this we use the decode_csv() method. You will see that we have 10 columns in
a single line if you open a file (for example, test1.txt) with a text editor:

col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 =
tf.decode_csv(value, record_defaults=record_defaults)

Then we'll concatenate these columns to form a single tensor (we call this features)
that will be passed to another method, tf.train.shuffle_batch(). The tf.train.
shuffle_batch() method takes the previously defined tensor (features), and
outputs a batch of a given batch size by randomly shuffling the tensor:

features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8,
col9, col10])

x = tf.train.shuffle_batch([features], batch_size=3, capacity=5,
name='data_batch', min_after_dequeue=1, num_threads=1)

Chapter 2

[41]

The batch_size argument is the size of the data batch we'll be sampling at a given
step, capacity is the capacity of the data queue (more memory required for large
queues), and min_after_dequeue represents the minimum number of elements to
be left in the queue after dequeue. Finally, num_threads defines how many threads
are used to produce a batch of data. If there is lot of preprocessing taking place in
the pipeline, you can increase this number. Also, if you need to read data without
shuffling (as with tf.train.shuffle_batch), you can use the tf.train.batch
operation. Then we'll start this pipeline by calling the following:

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=session)

The tf.train.Coordinator() class can be seen as a thread manager. It implements
various mechanisms for managing threads (for example, starting threads and joining
threads to the main thread once the task is finished). The tf.train.Coordinator()
class is needed because, the input pipeline spawns many threads for filling in
(that is, enqueue) queues, dequeuing queues, and many other tasks. Next, we will
execute tf.train.start_queue_runners(...) using the thread manager we
created before. QueueRunner() holds enqueue operations for a queue and they are
automatically created during the definition of the input pipeline. So, to fill in the
defined queues, we need to start these queue runners with the tf.train.start_
queue_runners function.

Next, after the task we're interested in is completed, we explicitly need to stop
the threads and join them to the main thread, otherwise the program will hang
indefinitely. This is achieved by coord.request_stop() and coord.join(threads).
This input pipeline combined with our sigmoid example—so that it reads data from
the file directly—would look like the following:

import tensorflow as tf
import numpy as np
import os

Defining the graph and session
graph = tf.Graph() # Creates a graph
session = tf.InteractiveSession(graph=graph) # Creates a session

Building the Input Pipeline
The filename queue
filenames = ['test%d.txt'%i for i in range(1,4)]
filename_queue = tf.train.string_input_producer(filenames, capacity=3,
shuffle=True,name='string_input_producer')

check if all files are there
for f in filenames:
 if not tf.gfile.Exists(f):
 raise ValueError('Failed to find file: ' + f)

Understanding TensorFlow

[42]

 else:
 print('File %s found.'%f)

Reader which takes a filename queue and
read() which outputs data one by one
reader = tf.TextLineReader()

ready the data of the file and output as key,value pairs
We're discarding the key
key, value = reader.read(filename_queue, name='text_read_op')

if any problems encountered with reading file
this is the value returned
record_defaults = [[-1.0], [-1.0], [-1.0], [-1.0], [-1.0], [-1.0],
[-1.0], [-1.0], [-1.0], [-1.0]]

decoding the read value to columns
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 =
tf.decode_csv(value, record_defaults=record_defaults)
Now we stack the columns together to form a single tensor containing
all the columns
features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8,
col9, col10])

output x is randomly assigned a batch of data of batch_size
where the data is read from the .txt files
x = tf.train.shuffle_batch([features], batch_size=3,
 capacity=5, name='data_batch',
 min_after_dequeue=1,num_threads=1)

QueueRunner retrieve data from queues and we need to explicitly
start them
Coordinator coordinates multiple QueueRunners
Coordinator coordinates multiple QueueRunners
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=session)

Building the graph by defining the variables and calculations
W = tf.Variable(tf.random_uniform(shape=[10,5], minval=-0.1,
maxval=0.1, dtype=tf.float32),name='W') # Variable
Variable
b = tf.Variable(tf.zeros(shape=[5],dtype=tf.float32),name='b')

h = tf.nn.sigmoid(tf.matmul(x,W) + b) # Operation to be performed

Executing operations and evaluating nodes in the graph
tf.global_variables_initializer().run() # Initialize the variables

Calculate h with x and print the results for 5 steps
for step in range(5):

Chapter 2

[43]

 x_eval, h_eval = session.run([x,h])
 print('========== Step %d =========='%step)
 print('Evaluated data (x)')
 print(x_eval)
 print('Evaluated data (h)')
 print(h_eval)
 print('')

We also need to explicitly stop the coordinator
otherwise the process will hang indefinitely
coord.request_stop()
coord.join(threads)
session.close()

Defining variables in TensorFlow
Variables play an important role in TensorFlow. A variable is essentially a tensor with
a specific shape defining how many dimensions the variable will have and the size of
each dimension. However, unlike a regular tensor, variables are mutable; meaning that
the value of the variables can change after they are defined. This is an ideal property
to have to implement parameters of a learning model (for example, neural network
weights), where the weights change slightly after each step of learning. For example,
if you define a variable with x = tf.Variable(0,dtype=tf.int32), you can change
the value of that variable using a TensorFlow operation such as tf.assign(x,x+1).
However, if you define a tensor such as x = tf.constant(0,dtype=tf.int32), you
cannot change the value of the tensor, as for a variable. It should stay 0 until the end
of the program execution.

Variable creation is quite simple. In our example, we already created two variables,
W and b. When creating a variable, a few things are of high importance. We list them
here and discuss each in detail in the following paragraphs:

•	 Variable shape
•	 Data type
•	 Initial value
•	 Name (optional)

The variable shape is a 1D vector of the [x,y,z,...] format. Each value in the list
indicates how large the corresponding dimension or axis is. For instance, if you
require a 2D tensor with 50 rows and 10 columns as the variable, the shape would
be equal to [50,10].

The dimensionality of the variable (that is, the length of the shape vector) is
recognized as the rank of the tensor in TensorFlow. Do not confuse this with the
rank of a matrix.

Understanding TensorFlow

[44]

Tensor rank in TensorFlow indicates the dimensionality of the
tensor; for a two-dimensional matrix, rank = 2.

The data type plays an important role in determining the size of a variable. There
are many different data types including the commonly used tf.bool, tf.uint8,
tf.float32, and tf.int32. Each data type has a number of bits required to represent
a single value with that type. For example, tf.uint8 requires 8 bits, whereas
tf.float32 requires 32 bits. It is common practice to use the same data types for
computations as doing otherwise can lead to data type mismatches. So if you have two
different data types for two tensors that you need to transform, you have to explicitly
convert one tensor to the other tensor's type using the tf.cast(...) operation.
The tf.cast(...) operation is designed to cope with such situations. For example,
if you have an x variable with the tf.int32 type, which needs to be converted to
tf.float32, employ tf.cast(x,dtype=tf.float32) to convert x to tf.float32.

Next, a variable requires an initial value to be initialized with. TensorFlow provides
several different initializers for our convenience, including constant intializers and
normal distribution intializers. Here are a few popular TensorFlow intializers you
can use to initialize variables:

•	 tf.zeros

•	 tf.constant_initializer

•	 tf.random_uniform

•	 tf.truncated_normal

Finally, the name of the variable will be used as an ID to identify that variable in the
graph. So if you ever visualize the computational graph, the variable will appear by
the argument passed to the name keyword. If you do not specify a name, TensorFlow
will use the default naming scheme.

Note that the Python variable tf.Variable is assigned to,
is not known by the computational graph and is not a part of
TensorFlow variable naming. Consider this example where
you specify a TensorFlow variable as follows:

a = tf.Variable(tf.zeros([5]),name='b')

Here, the TensorFlow graph will know this variable by the
name b and not a.

Chapter 2

[45]

Defining TensorFlow outputs
TensorFlow outputs are usually tensors and a result of a transformation to either
an input or a variable or both. In our example, h is an output, where h = tf.nn.
sigmoid(tf.matmul(x,W) + b). It is also possible to give such outputs to other
operations, forming a chained set of operations. Furthermore, it does not necessarily
have to be TensorFlow operations. You also can use standard Python arithmetic with
TensorFlow. Here is an example:

x = tf.matmul(w,A)
y = x + B
z = tf.add(y,C)

Defining TensorFlow operations
If you take a look at the TensorFlow API at https://www.tensorflow.org/api_docs/
python/, you will see that TensorFlow has a massive collection of operations available.
Here we will take a look at a selected few of the myriad TensorFlow operations.

Comparison operations
Comparison operations are useful for comparing two tensors. The following
code example includes a few useful comparison operations. You can find the
comprehensive list of comparison operators in the Comparison Operators section
at https://www.tensorflow.org/api_guides/python/control_flow_ops.
Furthermore, to understand the working of these operations, let's consider two
example tensors, x and y:

Let's assume the following values for x and y
x (2-D tensor) => [[1,2],[3,4]]
y (2-D tensor) => [[4,3],[3,2]]
x = tf.constant([[1,2],[3,4]], dtype=tf.int32)
y = tf.constant([[4,3],[3,2]], dtype=tf.int32)

Checks if two tensors are equal element-wise and returns a boolean
tensor
x_equal_y => [[False,False],[True,False]]
x_equal_y = tf.equal(x, y, name=None)

Checks if x is less than y element-wise and returns a boolean tensor
x_less_y => [[True,True],[False,False]]
x_less_y = tf.less(x, y, name=None)

Checks if x is greater or equal than y element-wise and returns a
boolean tensor
x_great_equal_y => [[False,False],[True,True]]

https://www.tensorflow.org/api_docs/python/

Understanding TensorFlow

[46]

x_great_equal_y = tf.greater_equal(x, y, name=None)

Selects elements from x and y depending on whether,
the condition is satisfied (select elements from x)
or the condition failed (select elements from y)
condition = tf.constant([[True,False],[True,False]],dtype=tf.bool)
x_cond_y => [[1,3],[3,2]]
x_cond_y = tf.where(condition, x, y, name=None)

Mathematical operations
TensorFlow allows you to perform math operations on tensors that range from the
simple to the complex. We will discuss a few of the mathematical operations made
available in TensorFlow. The complete set of operations is available at https://www.
tensorflow.org/api_guides/python/math_ops.

Let's assume the following values for x and y
x (2-D tensor) => [[1,2],[3,4]]
y (2-D tensor) => [[4,3],[3,2]]
x = tf.constant([[1,2],[3,4]], dtype=tf.float32)
y = tf.constant([[4,3],[3,2]], dtype=tf.float32)

Add two tensors x and y in an element-wise fashion
x_add_y => [[5,5],[6,6]]
x_add_y = tf.add(x, y)

Performs matrix multiplication (not element-wise)
x_mul_y => [[10,7],[24,17]]
x_mul_y = tf.matmul(x, y)

Compute natural logarithm of x element-wise
equivalent to computing ln(x)
log_x => [[0,0.6931],[1.0986,1.3863]]
log_x = tf.log(x)

Performs reduction operation across the specified axis
x_sum_1 => [3,7]
x_sum_1 = tf.reduce_sum(x, axis=[1], keepdims=False)

x_sum_2 => [[4],[6]]
x_sum_2 = tf.reduce_sum(x, axis=[0], keepdims=True)

https://www.tensorflow.org/api_guides/python/math_ops
https://www.tensorflow.org/api_guides/python/math_ops

Chapter 2

[47]

Segments the tensor according to segment_ids (items with same id in
the same segment) and computes a segmented sum of the data

data = tf.constant([1,2,3,4,5,6,7,8,9,10], dtype=tf.float32)
segment_ids = tf.constant([0,0,0,1,1,2,2,2,2,2], dtype=tf.int32)
x_seg_sum => [6,9,40]
x_seg_sum = tf.segment_sum(data, segment_ids)

Scatter and gather operations
Scatter and gather operations play a vital role in matrix manipulation tasks, as these
two variants are the only way (until recent times) to index tensors in TensorFlow. In
other words, you cannot access elements of tensors in TensorFlow as you would in
NumPy (for example, x[1,0], where x is a 2D numpy.ndarray). A scatter operation
allows you to assign values to specific indices of a given tensor, whereas the gather
operation allows you to extract a slice (or individual elements) of a given tensor. The
following code shows a few variations of the scatter and gather operations:

1-D scatter operation
ref = tf.Variable(tf.constant([1,9,3,10,5],dtype=tf.
float32),name='scatter_update')
indices = [1,3]
updates = tf.constant([2,4],dtype=tf.float32)
tf_scatter_update = tf.scatter_update(ref, indices, updates, use_
locking=None, name=None)

n-D scatter operation
indices = [[1],[3]]
updates = tf.constant([[1,1,1],[2,2,2]])
shape = [4,3]
tf_scatter_nd_1 = tf.scatter_nd(indices, updates, shape, name=None)

n-D scatter operation
indices = [[1,0],[3,1]] # 2 x 2
updates = tf.constant([1,2]) # 2 x 1
shape = [4,3] # 2
tf_scatter_nd_2 = tf.scatter_nd(indices, updates, shape, name=None)

1-D gather operation
params = tf.constant([1,2,3,4,5],dtype=tf.float32)
indices = [1,4]

Understanding TensorFlow

[48]

tf_gather = tf.gather(params, indices, validate_indices=True,
name=None) #=> [2,5]

n-D gather operation
params = tf.constant([[0,0,0],[1,1,1],[2,2,2],[3,3,3]],dtype=tf.
float32)
indices = [[0],[2]]
tf_gather_nd = tf.gather_nd(params, indices, name=None) #=>
[[0,0,0],[2,2,2]]

params = tf.constant([[0,0,0],[1,1,1],[2,2,2],[3,3,3]],dtype=tf.
float32)
indices = [[0,1],[2,2]]
tf_gather_nd_2 = tf.gather_nd(params, indices, name=None) #=>
[[0,0,0],[2,2,2]]

Neural network-related operations
Now let's look at several useful neural network-related operations that we will
use heavily in the following chapters. The operations we will discuss here range
from simple element-wise transformations (that is, activations) to computing
partial derivatives of a set of parameters with respect to another value. We will also
implement a simple neural network as an exercise.

Nonlinear activations used by neural networks
Nonlinear activations enable neural networks to perform well at numerous tasks.
Typically, there is a nonlinear activation transformation (that is, activation layer)
after each layer output in a neural network (except for the last layer). A nonlinear
transformation helps a neural network to learn various nonlinear patterns that are
present in data. This is very useful for complex real-world problems, where data
often has more complex nonlinear patterns, in contrast to linear patterns. If not for
the nonlinear activations between layers, a deep neural network will be a bunch of
linear layers stacked on top of each other. Also, a set of linear layers can essentially
be compressed to a single bigger linear layer. In conclusion, if not for the nonlinear
activations, we cannot create a neural network with more than one layer.

Chapter 2

[49]

Let's observe the importance of nonlinear activation through an
example. First, recall the computation for the neural networks we
saw in the sigmoid example. If we disregard b, it will be this:

h = sigmoid(W*x)

Assume a three-layer neural network (having W1, W2, and W3 as
layer weights) where each layer does the preceding computation;
we can summarize the full computation as follows:

h = sigmoid(W3*sigmoid(W2*sigmoid(W1*x)))

However, if we remove the nonlinear activation (that is, sigmoid),
we get this:

h = (W3 * (W2 * (W1 *x))) = (W3*W2*W1)*x

So, without the nonlinear activations, the three layers can be
brought down to a single linear layer.

Now we'll list two commonly used nonlinear activations in neural networks and
how they can be implemented in TensorFlow:

Sigmoid activation of x is given by 1 / (1 + exp(-x))
tf.nn.sigmoid(x,name=None)
ReLU activation of x is given by max(0,x)
tf.nn.relu(x, name=None)

The convolution operation
A convolution operation is a widely used signal-processing technique. For images,
convolution is used to produce different effects of an image. An example of edge
detection using convolution is shown in Figure 2.6. This is achieved by shifting a
convolution filter on top of an image to produce a different output at each location
(see Figure 2.7 later in this section). Specifically, at each location we do element-wise
multiplication of the elements in the convolution filter with the image patch
(same size as the convolution filter) that overlaps with the convolution filter and
takes the sum of the multiplication:

Figure 2.6: Using the convolution operation for edge detection in an image
(Source: https://en.wikipedia.org/wiki/Kernel_(image_processing))

Understanding TensorFlow

[50]

The following is the implementation of the convolution operation:

x = tf.constant(
 [[
 [[1],[2],[3],[4]],
 [[4],[3],[2],[1]],
 [[5],[6],[7],[8]],
 [[8],[7],[6],[5]]
]],
 dtype=tf.float32)

x_filter = tf.constant(
 [
 [
 [[0.5]],[[1]]
],
 [
 [[0.5]],[[1]]
]
],
 dtype=tf.float32)

x_stride = [1,1,1,1]
x_padding = 'VALID'

x_conv = tf.nn.conv2d(
 input=x, filter=x_filter,
 strides=x_stride, padding=x_padding
)

Here, the apparently excessive number of square brackets used might make you
think that the example can be made easy to follow by getting rid of these redundant
brackets. Unfortunately, that is not the case. For the tf.conv2d(...) operation,
TensorFlow requires input, filter, and stride to be of an exact format. We
will now go through each argument in tf.conv2d(input, filter, strides,
padding) in more detail:

•	 input: This is typically a 4D tensor where the dimensions should be ordered
as [batch_size, height, width, channels].

Chapter 2

[51]

°° batch_size: This is the amount of data (for example, inputs such as,
images, and words) in a single batch of data. We normally process
data in batches as often large datasets are used for learning. At a
given training step, we randomly sample a small batch of data that
approximately represents the full dataset. And doing this for many
steps allows us to approximate the full dataset quite well. This
batch_size parameter is the same as the one we discussed in the
TensorFlow input pipeline example.

°° height and width: This is the height and the width of the input.
°° channels: This is the depth of an input (for example, for a RGB

image, channels will be 3—a channel for each color).

•	 filter: This is a 4D tensor that represents the convolution window of the
convolution operation. The filter dimensions should be [height, width,
in_channels, out_channels]:

°° height and width: This is the height and the width of the filter
(often smaller than that of the input)

°° in_channels: This is the number of channels of the input to the layer
°° out_channels: This is the number of channels to be produced in the

output of the layer

•	 strides: This is a list with four elements, where the elements are
[batch_stride, height_stride, width_stride, channels_stride].
The strides argument denotes how many elements to skip during a single
shift of the convolution window on the input. If you do not completely
understand what strides is, you can use the default value of 1.

•	 padding: This can be one of ['SAME', 'VALID']. It decides how to handle
the convolution operation near the boundaries of the input. The VALID
operation performs the convolution without padding. If we were to convolve
an input of n length with a convolution window of size h, this will result in
an output of size (n-h+1 < n). The diminishing of the output size can severely
limit the depth of neural networks. SAME pads zeros to the boundary such
that the output will have the same height and width as the input.

Understanding TensorFlow

[52]

To gain a better understanding of what filter size, stride, and padding are,
refer to Figure 2.7:

Figure 2.7: The convolution operation

The pooling operation
A pooling operation behaves similar to the convolution operation, but the final
output is different. Instead of outputting the sum of the element-wise multiplication
of the filter and the image patch, we now take the maximum element of the image
patch for that location (see Figure 2.8):

x = tf.constant(
 [[
 [[1],[2],[3],[4]],
 [[4],[3],[2],[1]],
 [[5],[6],[7],[8]],
 [[8],[7],[6],[5]]
]],
 dtype=tf.float32)

Chapter 2

[53]

x_ksize = [1,2,2,1]
x_stride = [1,2,2,1]
x_padding = 'VALID'

x_pool = tf.nn.max_pool(
 value=x, ksize=x_ksize,
 strides=x_stride, padding=x_padding
)
Returns (out) =>
[[[[4.]
 [4.]],
 [[8.]
 [8.]]]]

Figure 2.8: The max-pooling operation

Understanding TensorFlow

[54]

Defining loss
We know that in order for a neural network to learn something useful, a loss needs
to be defined. There are several functions for automatically calculating the loss in
TensorFlow, two of which are shown in the following code. The tf.nn.l2_loss
function is the mean squared error loss, and tf.nn.softmax_cross_entropy_
with_logits_v2 is another type of loss, which actually gives better performance
in classification tasks. And by logits here, we mean the unnormalized output of the
neural network (that is, the linear output of the last layer of the neural network):

Returns half of L2 norm of t given by sum(t**2)/2
x = tf.constant([[2,4],[6,8]],dtype=tf.float32)
x_hat = tf.constant([[1,2],[3,4]],dtype=tf.float32)
MSE = (1**2 + 2**2 + 3**2 + 4**2)/2 = 15
MSE = tf.nn.l2_loss(x-x_hat)

A common loss function used in neural networks to optimize the
network
Calculating the cross_entropy with logits (unnormalized outputs of
the last layer)
instead of outputs leads to better numerical stabilities

y = tf.constant([[1,0],[0,1]],dtype=tf.float32)
y_hat = tf.constant([[3,1],[2,5]],dtype=tf.float32)
This function alone doesnt average the cross entropy losses of all
data points,
You need to do that manually using reduce_mean function
CE = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(logits=y_hat,labels=y))

Optimization of neural networks
After defining the loss of a neural network, our objective is to minimize that loss
over time. Optimization is the procedure used for this. In other words, the objective
of the optimizer is to find the neural network parameters (that is, weights and bias
values) that give the minimum loss for all the inputs. Again, our beloved TensorFlow
provides us with several different optimizers, so we don't have to worry about
implementing them from scratch.

Chapter 2

[55]

Figure 2.9 illustrates a simple optimization problem and shows how the optimization
happens over time. The curve can be imagined as the loss curve (for high dimensions,
we say loss surface), where x can be thought of as the parameters of the neural
network (in this case a neural network with a single weight), and y can be thought
of as the loss. We have an initial guess of x=2. From this point, we use the optimizer
to reach the minimum y (that is, loss), which is obtained at x=0. More specifically,
we take small steps in the direction opposite to the gradient at a given point and
continue for several steps in this manner. However, in real-world problems, the loss
surface will not be as nice as in the illustration, but it will be more complex:

Figure 2.9: The optimization process

In this example, we use GradientDescentOptimizer. The learning_rate
parameter denotes the step size you take in the direction of minimization (distance
between two red dots):

Optimizers play the role of tuning neural network parameters so that
their task error is minimal
For example task error can be the cross_entropy error
for a classification task
tf_x = tf.Variable(tf.constant(2.0,dtype=tf.float32),name='x')
tf_y = tf_x**2
minimize_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).
minimize(tf_y)

Everytime you execute the loss minimize operation with session.run(minimize_op),
you will get close to the tf_x value that gives the minimum of tf_y.

The control flow operations
Control flow operations, as the name implies, controls the order of execution in
the graph. For example, let's say we need to perform the following computation,
in this order:

x = x+5

z = x*2

Understanding TensorFlow

[56]

Precisely, if x = 2, we should get z = 14. Let's first try to achieve this in the simplest
possible way:

session = tf.InteractiveSession()

x = tf.Variable(tf.constant(2.0), name='x')
x_assign_op = tf.assign(x, x+5)
z = x*2

tf.global_variables_initializer().run()
print('z=',session.run(z))
print('x=',session.run(x))
session.close()

Ideally, we would want x = 7 and z = 14, instead, TensorFlow produced x=2 and
z=4. This is not the answer you were expecting. This is because TensorFlow does not
care about the order of execution of things unless you explicitly specify it. Control
flow operations enable you to exactly do this. To fix the preceding code, we do the
following:

session = tf.InteractiveSession()

x = tf.Variable(tf.constant(2.0), name='x')
with tf.control_dependencies([tf.assign(x, x+5)]):
 z = x*2

tf.global_variables_initializer().run()
print('z=',session.run(z))
print('x=',session.run(x))
session.close()

Now this should give us x=7 and z=14. The tf.control_dependencies(...)
operation makes sure that the operations passed to it as arguments will be performed
before performing the nested operation.

Chapter 2

[57]

Reusing variables with scoping
Until now, we have looked at the architecture of TensorFlow and the essentials
required to implement a basic TensorFlow client. However, there is much more to
TensorFlow than this. As we already saw, TensorFlow behaves quite differently
from a typical Python script. For example, you cannot debug TensorFlow code
in real time (as you would do a simple Python script using a Python IDE), as the
computations do not happen in real time in TensorFlow (unless you are using the
Eager Execution method, which was only recently in TensorFlow 1.7: https://
research.googleblog.com/2017/10/eager-execution-imperative-define-by.
html). In other words, TensorFlow first defines the full computational graph, does all
computations on a device, and finally fetches results. Consequently, it can be quite
tedious and painful to debug a TensorFlow client. This emphasizes the importance
of attention to detail when implementing a TensorFlow client. Therefore, it is advised
to adhere to proper coding practices introduced for TensorFlow. One such practice is
known as scoping and allows easier variable reusing.

Reusing TensorFlow variables is a common scenario that occurs frequently in
TensorFlow clients. To understand the value of an answer, we must first understand
the question. Also, what better way to understand the question than erroneous code.
Let's say that we want a function that performs a certain computation; given w, we
need to compute x*w + y**2. Let's write a TensorFlow client, which has a function
that performs this:

import tensorflow as tf
session = tf.InteractiveSession()
def very_simple_computation(w):
 x = tf.Variable(tf.constant(5.0, shape=None, dtype=tf.float32),
 name='x')
 y = tf.Variable(tf.constant(2.0, shape=None, dtype=tf.float32),
 name='y')
 z = x*w + y**2
 return z

Understanding TensorFlow

[58]

Say that you want to compute this for a single step. Then, you can call session.
run(very_simple_computation(2)) (of course, after calling tf.global_
variables_initializer().run()), and you will have the answer and feel good
about writing code that actually works. However, don't get too comfortable, because
an issue arises if you want to run this function several times. Each time you call this
method, two TensorFlow variables will be created. Remember that we discussed that
TensorFlow is different to Python? This is one such instance. The x and y variables
will not get replaced in the graph when you call this method multiple times. Rather,
the old variables will be retained and new variables will be created in the graph
until you run out of memory. But of course, the answer will be correct. To see this in
action, run session.run(very_simple_computation(2)) in a for loop, and if you
print the names of the variables in the graph, you will see more than two variables.
This is the output when you run it 10 times:

'x:0', 'y:0', 'x_1:0', 'y_1:0', 'x_2:0', 'y_2:0', 'x_3:0', 'y_3:0',
'x_4:0', 'y_4:0', 'x_5:0', 'y_5:0', 'x_6:0', 'y_6:0', 'x_7:0',
'y_7:0', 'x_8:0', 'y_8:0', 'x_9:0', 'y_9:0', 'x_10:0', 'y_10:0'

Each time you run the function, a pair of variables is created. Let's make this explicit:
if you run this function for 100 times, you will have 198 obsolete variables in your
graph (99 x variables and 99 y variables).

This is where scoping comes to the rescue. Scoping allows you to reuse the variables
instead of creating one each time a function is invoked. Now to add reusability to
our little example, we will be changing the code to the following:

def not_so_simple_computation(w):
 x = tf.get_variable('x', initializer=tf.constant (5.0, shape=None,
 dtype=tf.float32))
 y = tf.get_variable('y', initializer=tf.constant(2.0, shape=None,
 dtype=tf.float32))
 z = x*w + y**2
 return z

def another_not_so_simple_computation(w):
 x = tf.get_variable('x', initializer=tf.constant(5.0, shape=None,
 dtype=tf.float32))
 y = tf.get_variable('y', initializer=tf.constant(2.0, shape=None,
 dtype=tf.float32))
 z = w*x*y
 return z

Since this is the first call, the variables will
be created with following names
x => scopeA/x, y => scopeA/y
with tf.variable_scope('scopeA'):

Chapter 2

[59]

 z1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
scopeA/x and scopeA/y alread created we reuse them
with tf.variable_scope('scopeA',reuse=True):
 z2 = another_not_so_simple_computation(z1)

Since this is the first call, the variables will be created with
be created with
following names x => scopeB/x, y => scopeB/y
with tf.variable_scope('scopeB'):
 a1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
scopeB/x and scopeB/y alread created we reuse them
with tf.variable_scope('scopeB',reuse=True):
 a2 = another_not_so_simple_computation(a1)

Say we want to reuse the "scopeA" again, since variables are already
created we should set "reuse" argument to True when invoking the
scope
with tf.variable_scope('scopeA',reuse=True):
 zz1 = not_so_simple_computation(tf.constant(1.0,dtype=tf.float32))
 zz2 = another_not_so_simple_computation(z1)

In this example, if you do session.run([z1,z2,a1,a2,zz1,zz2]), you should see
z1, z2, a1, a2, zz1, zz2 has 9.0, 90.0, 9.0, 90.0, 9.0, 90.0 values in that order. Now if
you print variables, you should see only four different variables: scopeA/x, scopeA/y,
scopeB/x, and scopeB/y. We can now run it as many times as we want in a loop
without worrying about creating redundant variables and running out of memory.

Now you might wonder why you cannot just create four variables at the
beginning of the code and use them within the methods. However, this breaks the
encapsulation of your code, because now you are explicitly depending on something
outside your code.

Finally, scoping enables reusability while preserving the encapsulation of the code.
Furthermore, scoping makes the flow of the code more intuitive and reduces the
chance of errors as we are explicitly getting the variable by the scope and name
instead of using the Python variable the TensorFlow variable was assigned to.

Implementing our first neural network
Great! Now that you've learned the architecture, basics, and scoping mechanism of
TensorFlow, it's high time that we move on and implement something moderately
complex. Let's implement a neural network. Precisely, we will implement a fully
connected neural network model that we discussed in Chapter 1, Introduction to
Natural Language Processing.

Understanding TensorFlow

[60]

One of the stepping stones to the introduction of neural networks is to implement
a neural network that is able to classify digits. For this task, we will be using the
famous MNIST dataset made available at http://yann.lecun.com/exdb/mnist/.
You might feel a bit skeptical regarding our using a computer vision task rather than
a NLP task. However, vision tasks can be implemented with less preprocessing and
are easy to understand.

As this is our first encounter with neural networks, we will walk through the main
parts of the example. However, note that I will only walk through the crucial bits
of the exercise. To run the example end to end, you can find the full exercise in the
tensorflow_introduction.ipynb file in the ch2 folder.

Preparing the data
First, we need to download the dataset with the maybe_download(...) function and
preprocess it with the read_mnist(...) function. These two functions are defined in
the exercise file. The read_mnist(...) function performs two main steps:

•	 Reading the byte stream of the dataset and forming it into a proper
numpy.ndarray object

•	 Standardizing the images to have a zero-mean and unit-variance
(also known as whitening)

The following code shows the read_mnist(...) function. The read_mnist(...)
function takes the filename of the file containing images and the filename of the
file containing labels, as input. Then the read_mnist(...) function produces two
NumPy matrices containing all the images and their corresponding labels:

def read_mnist(fname_img, fname_lbl):
 print('\nReading files %s and %s'%(fname_img, fname_lbl))

 with gzip.open(fname_img) as fimg:
 magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16))
 print(num,rows,cols)
 img = (np.frombuffer(fimg.read(num*rows*cols), dtype=np.uint8).
 reshape(num, rows * cols)).astype(np.float32)
 print('(Images) Returned a tensor of shape ',img.shape)
 # Standardizing the images
 img = (img - np.mean(img))/np.std(img)

 with gzip.open(fname_lbl) as flbl:
 # flbl.read(8) reads upto 8 bytes
 magic, num = struct.unpack(">II", flbl.read(8))
 lbl = np.frombuffer(flbl.read(num), dtype=np.int8)

http://yann.lecun.com/exdb/mnist/

Chapter 2

[61]

 print('(Labels) Returned a tensor of shape: %s'%lbl.shape)
 print('Sample labels: ',lbl[:10])

 return img, lbl

Defining the TensorFlow graph
To define the TensorFlow graph, we'll first define placeholders for the input images
(tf_inputs) and the corresponding labels (tf_labels):

Defining inputs and outputs
tf_inputs = tf.placeholder(shape=[batch_size, input_size], dtype=tf.
float32, name = 'inputs')
tf_labels = tf.placeholder(shape=[batch_size, num_labels], dtype=tf.
float32, name = 'labels')

Next, we'll write a Python function that will create the variables for the first time.
Note that we are using scoping to ensure the reusability, and make sure that our
variables are named properly:

Defining the TensorFlow variables
def define_net_parameters():
 with tf.variable_scope('layer1'):
 tf.get_variable(WEIGHTS_STRING,shape=[input_size,500],
 initializer=tf.random_normal_initializer(0,0.02))
 tf.get_variable(BIAS_STRING, shape=[500],
 initializer=tf.random_uniform_initializer(0,0.01))

 with tf.variable_scope('layer2'):
 tf.get_variable(WEIGHTS_STRING,shape=[500,250],
 initializer=tf.random_normal_initializer(0,0.02))
 tf.get_variable(BIAS_STRING, shape=[250],
 initializer=tf.random_uniform_initializer(0,0.01))

 with tf.variable_scope('output'):
 tf.get_variable(WEIGHTS_STRING,shape=[250,10], initializer=tf.
 random_normal_initializer(0,0.02))
 tf.get_variable(BIAS_STRING, shape=[10], initializer=tf.random_
 uniform_initializer(0,0.01))

Understanding TensorFlow

[62]

Next, we'll define the inference process for the neural network. Note how the scoping
has given a very intuitive flow to the code in the function, compared with using
variables without scoping. So, in this network we have three layers:

•	 A fully-connected layer with ReLU activation (layer1)
•	 A fully-connected layer with ReLU activation (layer2)
•	 A fully-connected softmax layer (output)

By means of scoping, we name variables (weights and biases) for each layer as,
layer1/weights, layer1/bias, layer2/weights, layer2/bias, output/weights,
and output/bias. Note that in the code, all of them have the same name, but
different scopes:

Defining calcutations in the neural network
starting from inputs to logits
logits are the values before applying softmax to the final output

def inference(x):
 # calculations for layer 1
 with tf.variable_scope('layer1',reuse=True):
 w,b = tf.get_variable(WEIGHTS_STRING),
 tf.get_variable(BIAS_STRING)
 tf_h1 = tf.nn.relu(tf.matmul(x,w) + b, name = 'hidden1')

 # calculations for layer 2
 with tf.variable_scope('layer2',reuse=True):
 w,b = tf.get_variable(WEIGHTS_STRING),
 tf.get_variable(BIAS_STRING)
 tf_h2 = tf.nn.relu(tf.matmul(tf_h1,w) + b, name = 'hidden1')

 # calculations for output layer
 with tf.variable_scope('output',reuse=True):
 w,b = tf.get_variable(WEIGHTS_STRING),
 tf.get_variable(BIAS_STRING)
 tf_logits = tf.nn.bias_add(tf.matmul(tf_h2,w), b, name = 'logits')

 return tf_logits

Chapter 2

[63]

Now we'll define a loss function and then a loss minimize operation. The loss
minimize operation minimizes the loss by nudging the network parameters in the
direction that minimizes the loss. There is a diverse collection of optimizers available
in TensorFlow. Here, we will be using MomentumOptimizer, which gives better final
accuracy and convergence than GradientDescentOptimizer:

defining the loss
tf_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(logits=inference(tf_inputs), labels=tf_labels))
defining the optimize function
tf_loss_minimize = tf.train.MomentumOptimizer(momentum=0.9,learning_
rate=0.01).minimize(tf_loss)

Finally, we'll define an operation to retrieve the predicted softmax probabilities for
a given batch of inputs. This in turn will be used to calculate the accuracy of your
neural network:

defining predictions
tf_predictions = tf.nn.softmax(inference(tf_inputs))

Running the neural network
Now we have all the essential operations required to run the neural network and
examine whether it's capable of learning to successfully classify digits:

for epoch in range(NUM_EPOCHS):
 train_loss = []

 # Training Phase
 for step in range(train_inputs.shape[0]//batch_size):
 # Creating one-hot encoded labels with labels
 # One-hot encoding digit 3 for 10-class MNIST dataset
 # will result in
 # [0,0,0,1,0,0,0,0,0,0]
 labels_one_hot = np.zeros((batch_size, num_labels),
 dtype=np.float32)
 labels_one_hot[np.arange(batch_size),train_labels[
 step*batch_size:(step+1)*batch_size]] = 1.0

 # Running the optimization process
 loss, _ = session.run([tf_loss,tf_loss_minimize],feed_dict={
 tf_inputs: train_inputs[step*batch_size: (step+1)*batch_size,:],
 tf_labels: labels_one_hot})

Understanding TensorFlow

[64]

 train_loss.append(loss)
Used to average the loss for a single epoch

 test_accuracy = []
 # Testing Phase
 for step in range(test_inputs.shape[0]//batch_size):
 test_predictions = session.run(tf_predictions,feed_dict={tf_
inputs: test_inputs[step*batch_size: (step+1)*batch_size,:]})
 batch_test_accuracy = accuracy(test_predictions,test_
labels[step*batch_size: (step+1)*batch_size])
 test_accuracy.append(batch_test_accuracy)

 print('Average train loss for the %d epoch: %.3f\n'%(epoch+1,np.
mean(train_loss)))
 print('\tAverage test accuracy for the %d epoch:
%.2f\n'%(epoch+1,np.mean(test_accuracy)*100.0))

In this code, accuracy(test_predictions,test_labels) is a function that
takes some predictions and labels as inputs and provides the accuracy (how many
predictions matched the actual label). It is defined in the exercise file.

If successful, you should be able to see a behavior similar to the ones shown in
Figure 2.10. After 50 epochs, the test accuracy should reach approximately 98%:

Figure 2.10: Training loss and test accuracy for the MNIST digit classification task

Chapter 2

[65]

Summary
In this chapter, you took your first steps to solving NLP tasks by understanding the
primary underlying platform (TensorFlow) on which we will be implementing our
algorithms. First, we discussed the underlying details of TensorFlow architecture.
Next, we discussed the essential ingredients of a meaningful TensorFlow client.
Then we discussed a general coding practice widely used in TensorFlow known
as scoping. Later, we brought all these elements together to implement a neural
network to classify an MNIST dataset.

Specifically, we discussed the TensorFlow architecture lining up the explanation with
an example TensorFlow client. In the TensorFlow client, we defined the TensorFlow
graph. Then, when we created a session, it looked at the graph, created a GraphDef
object representing the graph, and sent it to the distributed master. The distributed
master looked at the graph, decided which components to use for the relevant
computation, and divided it into several subgraphs to make the computations faster.
Finally, workers executed subgraphs and returned the result through the session.

Next, we discussed various elements that composes a typical TensorFlow client:
inputs, variables, outputs, and operations. Inputs are the data we feed to the
algorithm for training and testing purposes. We discussed three different ways of
feeding inputs: using placeholders, preloading data and storing data as TensorFlow
tensors, and using an input pipeline. Then we discussed TensorFlow variables, how
they differ from other tensors, and how to create and initialize them. Following this,
we discussed how variables can be used to create intermediate and terminal outputs.
Finally, we discussed several available TensorFlow operations, such as mathematical
operations, matrix operations, neural-network related operations, and control-flow
operations, that will be used later in the book.

Then we discussed how scoping can be used to avoid certain pitfalls when
implementing a TensorFlow client. Scoping allows variables to be used with ease,
while maintaining the encapsulation of the code.

Finally, we implemented a neural network using all the previously learned concepts.
We used a three-layer neural network to classify an MNIST digit dataset.

In the next chapter, we will see how to use the fully connected neural network
we implemented in this chapter, for learning the semantic numerical word
representation of words.

[67]

Word2vec – Learning
Word Embeddings

In this chapter, we will discuss a topic of paramount importance in NLP—Word2vec, a
technique to learn word embeddings or distributed numerical feature representations
(that is, vectors) of words. Learning word representations lies at the very foundation
of many NLP tasks because many NLP tasks rely on good feature representations for
words that preserve their semantics as well as their context in a language. For example,
the feature representation of the word forest should be very different from oven as these
words are rarely used in similar contexts, whereas the representations of forest and
jungle should be very similar.

Word2vec is called a distributed representation, as the semantics
of the word is captured by the activation pattern of the full
representation vector, in contrast to a single element of the
representation vector (for example, setting a single element in
the vector to 1 and rest to 0 for a single word).

Word2vec – Learning Word Embeddings

[68]

We will go step by step from the classical approach to solving this problem to
modern neural network-based methods that deliver state-of-the-art performance
in finding good word representations. We visualize (using t-SNE, a visualization
technique for high-dimensional data) such learned word embeddings for a set
of words on a 2D canvas in Figure 3.1. If you take a closer look, you will see that
similar things are placed close to each other (for example, numbers in the cluster
in the middle):

Figure 3.1: An example visualization of learned word embeddings using t-SNE

Chapter 3

[69]

t-Distributed Stochastic Neighbor Embedding (t-SNE)
This is a dimensionality reduction technique that
projects high-dimensional data to a two-dimensional
space. This allows us to imagine how high-dimensional
data is distributed in space, and it is quite useful as we
cannot visualize beyond three dimensions easily. You
will learn about t-SNE in more detail in the next chapter.

What is a word representation or
meaning?
What is meant by the word meaning? This is more of a philosophical question than a
technical one. So, we will not try to discern the most proper answer for this question,
but accept a more modest answer, that is, meaning is the idea or the representation
conveyed by a word. Since the primary objective of NLP is to achieve human-
like performance in linguistic tasks, it is sensible to explore principled ways of
representing words for machines. To achieve this, we will use algorithms that can
analyze a given text corpus and come up with good numerical representations of
words (that is, word embeddings), such that words that fall within similar contexts
(for example, one and two, I and we) will have similar numerical representations
compared with words that are irrelevant (for example, cat and volcano).

First, we will discuss some classical approaches to achieve this and then move on to
understanding more sophisticated recent methods that use neural networks to learn
such feature representations and deliver state-of-the-art performance.

Classical approaches to learning word
representation
In this section, we will discuss some of the classical approaches used for numerically
representing words. These approaches mainly can be categorized into two classes:
approaches that use external resources for representing words and approaches
that do not. First, we will discuss WordNet—one of the most popular external
resource-based approaches for representing words. Then we will proceed to more
localized methods (that is, those that do not rely on external resources), such as
one-hot encoding and Term Frequency-Inverse Document Frequency (TF-IDF).

Word2vec – Learning Word Embeddings

[70]

WordNet – using an external lexical
knowledge base for learning word
representations
WordNet is one of the most popular classical approaches or statistical NLP that
deals with word representations. It relies on an external lexical knowledge base that
encodes the information about the definition, synonyms, ancestors, descendants, and
so forth of a given word. WordNet allows a user to infer various information for a
given word, such as the aspects of a word discussed in the preceding sentence and
the similarity between two words.

Tour of WordNet
As already mentioned, WordNet is a lexical database, encoding part-of-speech
tag relationships between words including nouns, verbs, adjectives, and adverbs.
WordNet was pioneered by the Department of Psychology of Princeton University,
United States, and it is currently hosted at the Department of Computer Science of
Princeton University. WordNet considers the synonymy between words to evaluate
the relationship between words. The English WordNet currently hosts more than
150,000 words and more than 100,000 synonym groups (that is, synsets). Also,
WordNet is not just restricted to English. A multitude of different wordnets have
been founded since its inception and can be viewed at http://globalwordnet.org/
wordnets-in-the-world/.

In order to understand how to leverage WordNet, it is important to lay a solid
ground on the terminology used in WordNet. First, WordNet uses the term synset to
denote a group or set of synonyms. Next, each synset has a definition that explains
what the synset represents. Synonyms contained within a synset are called lemmas.

In WordNet, the word representations are modeled hierarchically, which forms a
complex graph between a given synset and the associations to another synset. These
associations can be of two different categories: an is-a relationship or an is-made-of
relationship. First, we will discuss the is-a association.

For a given synset, there exist two categories of relations: hypernyms and hyponyms.
Hypernyms of a synset are the synsets that carry a general (high-level) meaning of
the considered synset. For example, vehicle is a hypernym of the synset car. Next,
hyponyms are synsets that are more specific than the corresponding synset. For
example, Toyota car is a hyponym of the synset car.

http://globalwordnet.org/wordnets-in-the-world/
http://globalwordnet.org/wordnets-in-the-world/

Chapter 3

[71]

Now let's discuss the is-made-of relationships for a synset. Holonyms of a synset are
the group of synsets that represents the whole entity of the considered synset. For
example, a holonym of tires is the cars synset. Meronyms are an is-made-of category
and represent the opposite of holonyms, where meronyms are the parts or substances
synset that makes the corresponding synset. We can visualize this in Figure 3.2:

Figure 3.2: The various associations that exist for a synset

The NLTK library, a Python natural language processing library, can be used to
understand WordNet and its mechanisms. The full example is available as an
exercise in the ch3_wordnet.ipynb file located in the ch3 folder.

Installing the NLTK Library
To install the NLTK library to Python, you can use the following
Python pip command:
pip install nltk

Alternatively, you can use an IDE (such as PyCharm) to install
the library through the Graphical User Interface (GUI). You can
find more detailed instructions at http://www.nltk.org/
install.html.
To import NLTK into Python and download the WordNet
corpus, first import the nltk library:

import nltk

Then you can download the WordNet corpus by running the
following command:

nltk.download('wordnet')

After the nltk library is installed and imported, we need to import the WordNet
corpus with this command:

from nltk.corpus import wordnet as wn

http://www.nltk.org/install.html
http://www.nltk.org/install.html

Word2vec – Learning Word Embeddings

[72]

Then we can query the WordNet corpus as follows:

retrieves all the available synsets
word = 'car'
car_syns = wn.synsets(word)

The definition of each synset of car synsets
syns_defs = [car_syns[i].definition() for i in range(len(car_syns))]

Get the lemmas for the first Synset
car_lemmas = car_syns[0].lemmas()[:3]

Let's get hypernyms for a Synset (general superclass)
syn = car_syns[0]
print('\t',syn.hypernyms()[0].name(),'\n')

Let's get hyponyms for a Synset (specific subclass)
syn = car_syns[0]
print('\t',[hypo.name() for hypo in syn.hyponyms()[:3]],'\n')

Let's get part-holonyms for the third "car"
Synset (specific subclass)
syn = car_syns[2]
print('\t',[holo.name() for holo in syn.part_holonyms()],'\n')

Let's get meronyms for a Synset (specific subclass)
syn = car_syns[0]
print('\t',[mero.name() for mero in syn.part_meronyms()[:3]],'\n')

After running the example, the results will look like this:

All the available Synsets for car
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'),
Synset('car.n.04'), Synset('cable_car.n.01')]

Example definitions of available synsets:
car.n.01 : a motor vehicle with four wheels; usually propelled by an
internal combustion engine
car.n.02 : a wheeled vehicle adapted to the rails of railroad
car.n.03 : the compartment that is suspended from an airship and that
carries personnel and the cargo and the power plant

Example lemmas for the Synset car.n.03
['car', 'auto', 'automobile']

Hypernyms of the Synset car.n.01
motor_vehicle.n.01

Chapter 3

[73]

Hyponyms of the Synset car.n.01
['ambulance.n.01', 'beach_wagon.n.01', 'bus.n.04']

Holonyms (Part) of the Synset car.n.03
['airship.n.01']

Meronyms (Part) of the Synset car.n.01
['accelerator.n.01', 'air_bag.n.01', 'auto_accessory.n.01']

We can also obtain the similarities between two synsets in the following way. There
are several different similarity metrics implemented in NLTK, and you can see them
in action on the official website (www.nltk.org/howto/wordnet.html). Here, we use
the Wu-Palmer similarity, which measures the similarity between two synsets based
on their depth in the hierarchical organization of the synsets:

sim = wn.wup_similarity(w1_syns[0], w2_syns[0])

Problems with WordNet
Though WordNet is an amazing resource that anyone can use to learn meanings of
word in the NLP tasks, there are quite a few drawbacks in using WordNet for this.
They are as follows:

•	 Missing nuances is a key problem in WordNet. There are both theoretical
and practical reasons why this is not viable for WordNet. From a theoretical
perspective, it is not well-posed or direct to model the definition of the subtle
difference between two entities. Practically speaking, defining nuances is
subjective. For example, the words want and need have similar meanings, but
one of them (need) is more assertive. This is considered to be a nuance.

•	 Next, WordNet is subjective in itself as WordNet was designed by a
relatively small community. Therefore, depending on what you are trying
to solve, WordNet might be suitable or you might be able to perform better
with a loose definition of words.

•	 There also exists the issue of maintaining WordNet, which is labor-intensive.
Maintaining and adding new synsets, definitions, lemmas, and so on, can be
very expensive. This adversely affects the scalability of WordNet, as human
labor is essential to keep WordNet up to date.

•	 Developing WordNet for other languages can be costly. There are also some
efforts to build WordNet for other languages and link it with the English
WordNet as MultiWordNet (MWN), but they are yet incomplete.

Next, we will discuss several word representation techniques that do not rely on
external resources.

www.nltk.org/howto/wordnet.html

Word2vec – Learning Word Embeddings

[74]

One-hot encoded representation
A simpler way of representing words is to use the one-hot encoded representation.
This means that if we have a vocabulary of V size, for each ith word wi, we will
represent the word wi with a V-long vector [0, 0, 0, …, 0, 1, 0, …, 0, 0, 0] where the
ith element is 1 and other elements are zero. As an example, consider this sentence:

Bob and Mary are good friends.

The one-hot encoded representation for each word might look like this:

Bob: [1,0,0,0,0,0]

and: [0,1,0,0,0,0]

Mary: [0,0,1,0,0,0]

are: [0,0,0,1,0,0]

good: [0,0,0,0,1,0]

friends: [0,0,0,0,0,1]

However, as you might have already figured out, this representation has
many drawbacks.

This representation does not encode the similarity between words in any way and
completely ignores the context in which the words are used. Let's consider the dot
product between the word vectors as the similarity measure. The more similar two
vectors are, the higher the dot product is for those two vectors. For example, the
representation of the words car and automobile will have a similarity distance of 0,
where car and pencil will also have the same value.

This method becomes extremely ineffective for large vocabularies. Also, for a
typical NLP task, the vocabulary easily can exceed 50,000 words. Therefore,
the word representation matrix for 50,000 words will result in a very sparse
50,000 × 50,000 matrix.

However, one-hot encoding plays an important role even in the state-of-the-art
word embedding learning algorithms. We use one-hot encoding to represent words
numerically and feed them into neural networks so that the neural networks can
learn better and smaller numerical feature representations of the words.

Chapter 3

[75]

One-hot encoding is also known as a localist representation
(opposite of the distributed representation), as the feature
representation is decided by the activation of a single
element in the vector.

The TF-IDF method
TF-IDF is a frequency-based method that takes into account the frequency with
which a word appears in a corpus. This is a word representation in the sense that it
represents the importance of a specific word in a given document. Intuitively, the
higher the frequency of the word, the more important that word is in the document.
For example, in a document about cats, the word cats will appear more. However,
just calculating the frequency would not work, because words such as this and is
are very frequent but do not carry that much information. TF-IDF takes this into
consideration and gives a value of zero for such common words.

Again, TF stands for term frequency and IDF stands for inverse document frequency:

TF(wi) = number of times wi appear / total number of words

IDF(wi) = log(total number of documents / number of documents with wi in it)

TF-IDF(wi) = TF(wi) x IDF(wi)

Let's do a quick exercise. Consider two documents:

•	 Document 1: This is about cats. Cats are great companions.
•	 Document 2: This is about dogs. Dogs are very loyal.

Now let's crunch some numbers:

TF-IDF (cats, doc1) = (2/8) * log(2/1) = 0.075

TF-IDF (this, doc2) = (1/8) * log(2/2) = 0.0

Therefore, the word cats is informative while this is not. This is the desired behavior
we needed in terms of measuring the importance of words.

Word2vec – Learning Word Embeddings

[76]

Co-occurrence matrix
Co-occurrence matrices, unlike one-hot-encoded representation, encodes the context
information of words, but requires maintaining a V × V matrix. To understand the
co-occurrence matrix, let's take two example sentences:

•	 Jerry and Mary are friends.
•	 Jerry buys flowers for Mary.

The co-occurrence matrix will look like the following matrix. We only show one
triangle of the matrix, as the matrix is symmetric:

Jerry and Mary are friends buys flowers for
Jerry 0 1 0 0 0 1 0 0
and 0 1 0 0 0 0 0
Mary 0 1 0 0 0 1
are 0 1 0 0 0
friends 0 0 0 0
buys 0 1 0
flowers 0 1
for 0

However, it is not hard to see that maintaining such a co-occurrence matrix comes at
a cost as the size of the matrix grows polynomially with the size of the vocabulary.
Furthermore, it is not straightforward to incorporate a context window size larger
than 1. One option is to have a weighted count, where the weight for a word in the
context deteriorates with the distance from the word of interest.

All these drawbacks motivate us to investigate more principled, robust, and scalable
ways of learning and inferring meanings (that is, representations) of words.

Word2vec is a recently-introduced distributed word representation learning
technique that is currently being used as a feature engineering technique for many
NLP tasks (for example, machine translation, chatbots, and image caption generators).
Essentially, Word2vec learns word representations by looking at the surrounding
words (that is, context) in which the word is used. More specifically, we attempt to
predict the context, given some words (or vice versa), through a neural network,
which leads the neural network to be forced to learn good word embeddings. We will
discuss this method in detail in the next section. The Word2vec approach has many
advantages over the previously-described methods. They are as follows:

•	 The Word2vec approach is not subjective to the human knowledge of
language as in the WordNet-based approach.

Chapter 3

[77]

•	 Word2vec representation vector size is independent of the vocabulary size
unlike one-hot encoded representation or the word co-occurrence matrix.

•	 Word2vec is a distributed representation. Unlike localist representation,
where the representation depends on the activation of a single element of
the representation vector (for example, one-hot encoding), the distributed
representation depends on the activation pattern of all the elements in the
vector. This gives more expressive power to Word2vec than produced by the
one-hot encoded representation.

In the following section, we will first develop some intuitive feeling about learning
word embeddings by working through an example. Then we will define a loss
function so that we can use machine learning to learn word embeddings. Also,
we will discuss two Word2vec algorithms, namely, the skip-gram and Continuous
Bag-of-Words (CBOW) algorithms.

Word2vec – a neural network-based
approach to learning word representation

"You shall know a word by the company it keeps."

 – J.R. Firth

This statement, uttered by J.R. Firth in 1957, lies at the very foundation of Word2vec,
as Word2vec techniques use the context of a given word to learn its semantics.
Word2vec is a groundbreaking approach that allows to learn the meaning of words
without any human intervention. Also, Word2vec learns numerical representations
of words by looking at the words surrounding a given word.

We can test the correctness of the preceding quote by imagining a real-world
scenario. Imagine you are sitting for an exam and you find this sentence in your first
question: "Mary is a very stubborn child. Her pervicacious nature always gets her
in trouble." Now, unless you are very clever, you might not know what pervicacious
means. In such a situation, you automatically will be compelled to look at the
phrases surrounding the word of interest. In our example, pervicacious is surrounded
by stubborn, nature, and trouble. Looking at these three words is enough to determine
that pervicacious in fact means a state of being stubborn. I think this is adequate
evidence to observe the importance of context for a word's meaning.

Word2vec – Learning Word Embeddings

[78]

Now let's discuss the basics of Word2vec. As already mentioned, Word2vec
learns the meaning of a given word by looking at its context and representing it
numerically. By context, we refer to a fixed number of words in front of and behind
the word of interest. Let's take a hypothetical corpus with N words. Mathematically,
this can be represented by a sequence of words denoted by w0, w1, …, wi, and wN,
where wi is the ith word in the corpus.

Next, if we want to find a good algorithm that is capable of learning word meanings,
given a word, our algorithm should be able to predict the context words correctly.
This means that the following probability should be high for any given word wi:

() ()1 1, , , , , | |
i m

i m i i i m i j i
j i j i m

P w w w w w P w w
+

− − + +
≠ Λ = −

= ∏K K

To arrive at the right-hand side of the equation, we need to assume that given the
target word (wi), the context words are independent of each other (for example, wi-2
and wi-1 are independent). Though not entirely true, this approximation makes the
learning problem practical and works well in practice.

Exercise: is queen = king – he + she?
Before proceeding further, let's do a small exercise to understand how maximizing
the previously-mentioned probability leads to finding good meaning (or
representations) of words. Consider the following very small corpus:

There was a very rich king. He had a beautiful queen. She was very kind.

Now let's do some manual preprocessing and remove the punctuation and the
uninformative words:

was rich king he had beautiful queen she was kind

Now let's form a set of tuples for each word with their context words in the format
(target word → context word 1, context word 2). We will assume a context window size
of 1 on either side:

was → rich

rich → was, king

king → rich, he

he → king, had

had → he, beautiful

Chapter 3

[79]

beautiful → had, queen

queen → beautiful, she

she → queen, was

was → she, kind

kind → was

Remember, our goal is to be able to predict the words on the right, provided the
word at the left is given. To do this, for a given word, the words on the right-side
context should share a high numerical or geometrical similarity with the words on
the left-side context. In other words, the word of interest should be conveyed by the
surrounding word. Now let's assume actual numerical vectors to understand how
this works. For simplicity, let's only consider the tuples highlighted in bold. Let's
begin by assuming the following for the word rich:

rich → [0,0]

To be able to correctly predict was and king from rich, was and king should have high
similarity with the word rich. Let's assume the Euclidean distance between vectors as
the similarity product.

Let's try the following values for the words king and rich:

king → [0,1]

was → [-1,0]

This works out fine as the following:

Dist(rich,king) = 1.0

Dist(rich,was) = 1.0

Here, Dist is the Euclidean distance between two words. This is illustrated
in Figure 3.3:

Figure 3.3: The positioning of word vectors for the words "rich", "was" and "king"

Word2vec – Learning Word Embeddings

[80]

Now let's consider the following tuple:

king → rich, he

We have established the relationship between king and rich already. However, it is
not done yet; the more we see a relationship, the closer these two words should be.
So, let's first adjust the vector of king so that it is a bit closer to rich:

king → [0,0.8]

Next, we will need to add the word he to the picture. The word he should be closer to
king. This is all the information that we have right now about the word he:

he → [0.5,0.8]

At this moment, the graph with the words looks like Figure 3.4:

Figure 3.4: The positioning of word vectors for the words "rich", "was", "king," and "he"

Now let's proceed with the next two tuples: queen → beautiful, she and she → queen,
was. Note that I have swapped the order of the tuples as this makes it easier for us
to understand the example:

she → queen, was

Now, we will have to use our prior knowledge about English to proceed further.
It is a reasonable decision to place the word she, which has the same distance as he
from the word was because their usage in the context of the word was is equivalent.
Therefore, let's use this:

she → [0.5,0.6]

Next, we will use the word queen close to the word she:

queen → [0.0,0.6]

Chapter 3

[81]

This is illustrated in Figure 3.5:

Figure 3.5: The positioning of word vectors for the words "rich," "was," "king," "he," "she," and "queen"

Next, we only have the following tuple:

queen → beautiful, she

Here, the word beautiful is found. It should have approximately the same distance
from the words queen and she. Let's use the following:

beautiful → [0.25,0]

Now we have the following graph depicting the relationships between words.
When we observe Figure 3.6, it seems to be a very intuitive representation of the
meanings of words:

Figure 3.6: The positioning of word vectors for the words
"rich," "was," "king," "he," "she," "queen," and "beautiful"

Now, let's look at the question that has been lurking in our minds since the
beginning of this exercise. Are the quantities in this equation equivalent: queen = king
– he + she? Well, we've got all the resources that we'll need to solve this mystery now.
Let's try the right-hand side of the equation first:

= king – he + she

= [0,0.8] – [0.5,0.8] + [0.5,0.6]

= [0,0.6]

Word2vec – Learning Word Embeddings

[82]

It all works out at the end. If you look at the word vector we obtained for the word
queen, you see that this is exactly similar to the answer we deduced earlier.

Note that this is a crude working to show how word embeddings are learned,
and this might differ from the exact positions of word embeddings if learned using
an algorithm.

However, keep in mind that this is an unrealistically scaled down exercise with
regard to what a real-world corpus might look like. So, you will not be able to
work out these values by hand just by crunching a dozen numbers. This is where
sophisticated function approximators such as neural networks do the job for us.
But, to use neural networks, we need to formulate our problem in a mathematically
assertive way. However, this is a good exercise that actually shows the power of
word vectors.

Designing a loss function for learning word
embeddings
The vocabulary for even a simple real-world task can easily exceed 10,000 words.
Therefore, we cannot develop word vectors by hand for large text corpora and need
to devise a way to automatically find good word embeddings using some machine
learning algorithms (for example, neural networks) to perform this laborious task
efficiently. Also, to use any sort of machine learning algorithm for any sort of task,
we need to define a loss, so completing the task becomes minimizing the loss. Let's
define the loss for finding good word embedding vectors.

First, let's recall the equation we discussed at the beginning of this section:

() ()1 1, , , , , | |
i m

i m i i i m i j i
j i j i m

P w w w w w P w w
+

− − + +
≠ Λ = −

= ∏K K

With this equation in mind, we can define a cost function for the neural network:

() () ()
1

1/ 2 |
i mN m

j i
i m j i j i m

J N m P w wθ
+−

= + ≠ Λ = −

= − − ∑ ∏

Remember, ()J θ is a loss (that is, cost), not a reward. Also, we want to maximize
P(wj|wi). Thus, we need a minus sign in front of the expression to convert it into
a cost function.

Chapter 3

[83]

Now, instead of working with the product operator, let's convert this to log space.
Converting the equation to log space will introduce consistency and numerical
stability. This gives us the following equation:

() () ()
1

1/ 2 |
N m i m

j i
i m j i j i m

J N m logP w wθ
− +

= + ≠ Λ = −

= − − ∑ ∑

This formulation of the cost function is known as the negative log-likelihood.

Now, as we have a well-formulated cost function, a neural network can be used
to optimize this cost function. Doing so will force the word vectors or word
embeddings to organize themselves well according to their meaning. Now, it is time
to learn about the existing algorithms that use this cost function to find good word
embeddings.

The skip-gram algorithm
The first algorithm we will talk about is known as the skip-gram algorithm. The
skip-gram algorithm, introduced by Mikolov and others in 2013, is an algorithm that
exploits the context of the words of written text to learn good word embeddings.
Let's go through step by step to understand the skip-gram algorithm.

First, we will discuss the data preparation process, followed by an introduction
to the notation required to understand the algorithm. Finally, we will discuss the
algorithm itself.

As we discussed in numerous places, the meaning of the word can be elicited
from the contextual words surrounding that particular word. However, it is not
entirely straightforward to develop a model that exploits this property to learning
word meanings.

From raw text to structured data
First, we need to design a mechanism to extract a dataset that can be fed to our
learning model. Such a dataset should be a set of tuples of the format (input, output).
Moreover, this needs to be created in an unsupervised manner. That is, a human
should not have to manually engineer the labels for the data. In summary, the data
preparation process should do the following:

•	 Capture the surrounding words of a given word
•	 Perform in an unsupervised manner

Word2vec – Learning Word Embeddings

[84]

The skip-gram model uses the following approach to design such a dataset:

1.	 For a given word wi, a context window size m is assumed. By context window
size, we mean the number of words considered as context on a single side.
Therefore, for wi, the context window (including the target word wi) will be
of size 2m+1 and will look like this: [wi-m, …, wi-1, wi, wi+1, …, wi+m].

2.	 Next, input-output tuples are formed as […, (wi, wi-m), …,(wi,wi-1), (wi,wi+1), …,
(wi,wi+m), …]; here, m 1 i N m+ ≤ ≤ − and N is the number of words in the text
to get a practical insight. Let's assume the following sentence and context
window size (m) of 1:
The dog barked at the mailman.
For this example, the dataset would be as follows:
[(dog, The), (dog, barked), (barked, dog), (barked, at), …, (the, at), (the, mailman)]

Learning the word embeddings with a
neural network
Once the data is in the (input, output) format, we can use a neural network to learn
the word embeddings. First, let's identify the variables we need to learn the word
embeddings. To store the word embeddings, we need a V × D matrix, where V is
the vocabulary size and D is the dimensionality of the word embeddings (that is, the
number of elements in the vector that represents a single word). D is a user-defined
hyperparameter. The higher D is, the more expressive the word embeddings learned
will be. This matrix will be referred to as the embedding space or the embedding layer.
Next, we have a softmax layer with weights of size D × V, a bias of size V.

Each word will be represented as a one-hot encoded vector of size V with one
element being 1 and all the others being 0. Therefore, an input word and the
corresponding output words would each be of size V. Let's refer to the ith input as xi,
the corresponding embedding of xi as zi, and the corresponding output as yi.

At this point, we have the necessary variables defined. Next, for each input xi, we
will look up the embedding vectors from the embedding layer corresponding to the
input. This operation provides us with zi, which is a D-sized vector (that is, a D-long
embedding vector). Afterwards, we calculate the prediction output for xi using the
following transformation:

logit(xi) = zi W+b

ŷi = softmax(logit(xi))

Chapter 3

[85]

Here, logit(xi) represents the unnormalized scores (that is, logits), ŷi is the V-sized
predicted output (representing the probability of output being a word from the
V-sized vocabulary), W is the D × V weight matrix, b is the V × 1 bias-vector, and
softmax is the softmax activation. We will visualize both the conceptual (Figure 3.7)
and implementation (Figure 3.8) views of the skip-gram model. Here is a summary of
the notation:

•	 V: This is the size of the vocabulary
•	 D: This is the dimensionality of the embedding layer
•	 xi: This is the ith input word represented as a one-hot-encoded vector
•	 zi: This is the embedding (that is, representation) vector corresponding

to the ith input word
•	 yi: This is the one-hot-encoded output word corresponding to xi

•	 ŷi: This is the predicted output for xi

•	 logit(xi): This is the unnormalized score for the input xi

•	
jw
I : This is the one-hot-encoded representation for word wj

•	 W: This is the softmax weight matrix
•	 b: This is the bias of the softmax

Figure 3.7: The conceptual skip-gram model

Word2vec – Learning Word Embeddings

[86]

Figure 3.8: The implementation of the skip-gram model

Using both the existing and derived entities, we can now use the negative
log-likelihood loss function to calculate the loss for a given data point (xi, yi). If
you are wondering what P(wj|wi) is, it can be derived from the already defined
entities. Next, let's discuss how to calculate P(wj|wi) from ŷi and also derive a formal
definition for that.

Chapter 3

[87]

Why does the original word embeddings paper use two
embedding layers?
The original paper (by Mikolov, and others, 2013) uses two
distinct V × D embedding spaces to denote words in the
target space (words when used as the target) and words in the
contextual space (words used as context words). One motivation
to do this is that the same word does not occur in the context of
itself often. So, we want to minimize the probability of such things
happening. For example, for the target word dog, it is highly
unlikely that the word dog is also found in its context (P(dog|dog)
~ 0). Intuitively, if we feed the (xi=dog and yi=dog) data point to the
neural network, we are asking the neural network to give a higher
loss if the neural network predicts dog as a context word of dog. In
other words, we are asking the word embedding of the word dog
to have a very high distance to the word embedding of the word
dog. This creates a strong contradiction as the distance between
the embedding of the same word will be 0. Therefore, we cannot
achieve this if we only have a single embedding space. However,
having two separate embedding spaces for target words and
contextual words allows us to have this property because this
way we have two separate embedding vectors for the same word.
However, in practice, as long as you avoid feeding input-output
tuples, having the same word as input and output allows us to
work with a single embedding space and eliminate the need of
two distinct embedding layers.

Formulating a practical loss function
Let's inspect our loss function more closely. We have derived that the loss should be
as follows:

() () ()
1

1/ 2 |
N m i m

j i
i m j i j i m

J N m logP w wθ
− +

= + ≠ Λ = −

= − − ∑ ∑

However, calculating this particular loss from the entities we have at hand at the
moment is not entirely straightforward.

Word2vec – Learning Word Embeddings

[88]

First, let's understand what the P(wj|wi) entity represents. To do this, we will move
from individual words notation to an individual data points notation. That is, we
will say that P(wj, wi) is given by the nth data point, which has the one-hot encoded
vector of wi as the input (xn) and the one-hot encoded representation of wj as the true
output (yn). This is given by the following equation:

()
()()

()()
P | j

kk

n w
j i

n ww vocabulary

exp logit x
w w

exp logit x
∈

=
∑

The logit(xn) term denotes the unnormalized prediction score (that is, logit) vector
(V-sized) obtained for a given input xn and ()

j
n w

logit x is the score value corresponding
to the non-zeroth index of the one-hot encoded representation of wj (we call this,
the index of wj from now onwards). Then, we normalize the logit value at the index
of wj with respect to all the logit values corresponding to all the words in the entire
vocabulary. This particular type of normalization is known as the softmax activation
(or normalization). Now, by converting this to log space, we get the following
equation:

() () () ()()
1

J 1 N 2m
j k

k

N m i m

n nw w
i m j i j i m w vocabulary

logit x log exp logit x
− +

= + ≠ = − ∈

 
θ = − − −  

 
∑ ∑ ∑

To calculate the logit function effectively, we can fiddle with variables and come up
with the following notation:

() ()
1

logit
jj

V

n w nw
l

x logit xI
=

=∑

Here,
jw
I is the one-hot encoded vector of wj. Now the logit operation has reduced

to a sum and product operation. Since
jw
I only has a single nonzero element

corresponding to the word wj, only that index of the vector will be used in the
computation. This is more computationally efficient than finding the value in the
logit vector that corresponds to the index of the nonzero element by sweeping
through a vector of the size of the vocabulary.

Now, by assigning the logit calculation we obtained, for the loss, we get the following:

() () () ()
j kw w

1 1 1
J 1 2

k

N m i m V V

n n
i m j i j i m l w vocabulary l

N m logit x log exp logit xI I
− +

= + ≠ = − = ∈ =

  θ = − − −   
  

∑ ∑ ∑ ∑ ∑

Chapter 3

[89]

Let's consider an example to understand this calculation:

I like NLP

We can create input-output tuples as follows:

(like, I)

(like, NLP)

Now let's assume the following one-hot-encoded representations for the
preceding words:

like – 1,0,0

I – 0,1,0

NLP – 0,0,1

Next, let's consider the input-output tuple (like, I). When we propagated the input
like through the skip-gram learning model, let's assume that we obtained the
following logits for the words like, I, and NLP in that order:

2,10,5

Now softmax outputs for each word in the vocabulary will be as follows:

P(like|like) = exp(2)/(exp(2)+exp(10)+exp(5)) = 0.118

P(I|like) = exp(10)/ (exp(2)+exp(10)+exp(5)) = 0.588

P(NLP|like) = exp(5)/ (exp(2)+exp(10)+exp(5)) = 0.294

The preceding loss function says that we need to maximize P(I|like) to minimize
the loss. Now let's apply our example to this loss function:

=- ([0,1,0] * ([2, 10, 5]) - log(exp([1,0,0]*[2, 10, 5]) + exp([0,1,0]*[2, 10, 5]) + exp([0,0,1]*[2,
10, 5])))

=- (10 - log(exp(2)+exp(10)+exp(5))) = 0.007

With this loss function, for the term before the minus sign, there is only a single
nonzero element in the y vector corresponding to the word I. Therefore, we will only
be considering the probability P(I|like), which is exactly what we wanted.

Word2vec – Learning Word Embeddings

[90]

However, this is not the ideal solution we were looking for. The objective of this
loss function from a practical perspective, we want to maximize the probability of
predicting a contextual word given a word, while minimizing the probability of "all"
the noncontextual words, given a word. We will soon see that having a well-defined
loss function will not solve our problem effectively in practice. We will need to
devise a more clever approximate loss function to learn good word embeddings in a
feasible time duration.

Efficiently approximating the loss function
We are fortunate to have a loss function that is solid both mathematically and
intuitively. However, hard work does not end here. If we try to calculate the
loss function in closed form as we discussed earlier, we will face an inevitable
tremendous slowness of our algorithm.

This slowness is due to the large vocabulary causing a performance bottleneck.
Let's have a look at our cost function:

() () () ()()
1

J 1 2
j k

k

N m i m

n nw w
i m j i j i m w vocabulary

N m logit x log exp logit x
− +

= + ≠ = − ∈

 
θ = − − −  

 
∑ ∑ ∑

You will see that computing the loss for a single example requires computing logits
for all the words in the vocabulary. Unlike computer vision problems, where a few
hundreds of output classes is more than adequate to solve most of the existing real-
world problems, skip-gram does not boast such properties. Therefore, we need to
turn our heads towards efficient approximations of the loss without losing efficacy of
our model.

We will discuss two popular choices of approximations:

•	 Negative sampling
•	 Hierarchical softmax

Negative sampling of the softmax layer
Here we will discuss our first approach: negative sampling the softmax layer.
Negative sampling is an approximation of the Noise-Contrastive Estimation (NCE)
method. NCE says that a good model should differentiate data from noise by means
of logistic regression.

Chapter 3

[91]

With this property in mind, let's reformulate our objective of learning word
embeddings. We do not require a full-probabilistic model, which has the exact
probabilities of all words in the vocabulary for a given word. What we need are
high-quality word vectors. Therefore, we can simplify our problem to differentiating
actual data (that is, input-output pairs) from noise (that is, K-many imaginary noise
input-output pairs). By noise, we refer to false input-output pairs created using
words that do not fall within the context of a given word. We will also get rid of
the softmax activation and replace it with a sigmoid activation (also known as the
logistic function). This allows us to remove the dependency of the cost function,
on the full vocabulary while keeping output between [0,1]. We can visualize the
negative sample process in Figure 3.9.

Precisely, our original loss function is given by the following equation:

() () ()()() ()()
1

J 1 2
j k

k

N m i m

n nw w
i m j i j i m w vocabulary

N m log exp logit x log exp logit x
− +

= + ≠ = − ∈

 
θ = − − −  

 
∑ ∑ ∑

The preceding formula becomes this:

() () ()()() () ()()()q ,
1 1

J 1 2 1
j qi j

N m i m k

n nw ww vocabulary w w
i m j i j i m q

N m log logit x log logit xσ σ
− +

−
= + ≠ = − =

θ = − − + −∑ ∑ ∑ ∼
E

Here, σ denotes the sigmoid activation, where σ(x)=1/(1+exp(-x)). Note that I have
replaced logit(xn)wj with a ()()()j

n w
log exp logit x in the original loss function, for clarity. You

can see that the new loss function depends only on the calculations related to k items
from the vocabulary.

After some simplification, we arrive at the following equation:

() () ()()() () ()()()q ,
1 1

J 1 2
j qi j

N m i m k

n nw ww vocabulary w w
i m j i j i m q

N m log logit x log -logit xσ σ
− +

−
= + ≠ = − =

θ = − − +∑ ∑ ∑ ∼
E

Let's take a moment to understand what this equation says. To simplify things let's
assume k=1. This gives us the following equation:

() () ()()() ()()()
1

J 1 2
j q

N m i m

n nw w
i m j i j i m

N m log logit x log -logit xσ σ
− +

= + ≠ = −

θ = − − +∑ ∑

Word2vec – Learning Word Embeddings

[92]

Here, wj represents a context word of wi and wq represents a noncontext word of
wi. What this equation essentially says is that, to minimize J(θ), we should make

()() 1
jn w

logit xσ ≈ , which means ()
j

n w
logit x needs to be a large positive value. Then,

()() 1
qn w

-logit xσ ≈ means that ()n qlogit x w needs to be a large negative value. In other
words, for true data points representing true target words and context words should
get large positive values and fake data points representing target words and noise
should get large negative values. This is the same behavior you would get with a
softmax function, but with more computational efficiency.

Figure 3.9: The negative sampling process

Here, σ is the sigmoid activation. Intuitively, we do the following two steps in our
loss function calculation:

•	 Calculating the loss for the nonzero column of wj (pushing towards positive)
•	 Calculating the loss for K-many noise samples (pulling towards negative)

Chapter 3

[93]

Hierarchical softmax
Hierarchical softmax is slightly more complex than negative sampling, but serves
the same objective as the negative sampling; that is, approximating the softmax
without having to calculate activations for all the words in the vocabulary for all the
training samples. However, unlike negative sampling, hierarchical softmax uses only
the actual data and does not need noise samples. We can visualize the hierarchical
softmax model in Figure 3.10.

To understand hierarchical softmax, let's consider an example:

I like NLP. Deep learning is amazing.

The vocabulary for this is as follows:

I, like, NLP, Deep, learning, is, amazing

With this vocabulary, we will build a binary tree, where all the words in the
vocabulary are present as leaf nodes. We will also add a special token PAD to
make sure that all the tree leaves have two members:

Figure 3.10: Hierarchical softmax

Word2vec – Learning Word Embeddings

[94]

Then, our last hidden layer will be fully connected to all the nodes in the
hierarchy (see Figure 3.11). Note that this model has similar amount of total
weights compared with a classical softmax layer; however, it uses only a subset
of them for a given calculation:

Figure 3.11: How the hierarchical softmax connects to the embedding layer

Let's say that we need to infer the probability of P(NLP|like), where like is the input
word. Then we only need a subset of the weights to calculate the probability, as
shown in Figure 3.12:

Figure 3.12: Calculating probabilities with the hierarchical softmax

Chapter 3

[95]

Concretely, here is how the probability is calculated:

() () () ()| 1| 2 | 5 |NLP like P left at like x P right at like x P left at like=

Since now we know how to calculate P(wj|wi), we can use the original loss function.
Note that this method uses only the weights connected to the nodes in the path for
calculation, resulting in a high computational efficiency.

Learning the hierarchy
Though hierarchical softmax is efficient, an important question remains unanswered.
How do we determine the decomposition of the tree? More precisely, which word
will follow which branch? There are a few options to achieve this:

•	 Initialize the hierarchy randomly: This method does have some
performance degradations as the random placement cannot be guaranteed to
have the best branching possible among words.

•	 Use WordNet to determine the hierarchy: WordNet can be utilized to
determine a suitable order for the words in the tree. This method has shown
to perform significantly better than the random initialization.

Optimizing the learning model
Since we own a well-formulated loss function, the optimization is a matter of calling
the correct function from the TensorFlow library. The optimization process that will
be used is a stochastic optimization process, meaning that we do not feed the full
dataset at once, but only a random batch of data for many steps.

Implementing skip-gram with TensorFlow
We will now walk through an implementation of the skip-gram algorithm that
uses the TensorFlow library. Here we will only be discussing the essential parts of
defining the required TensorFlow operations to learn the embeddings, not running
the operations. The full exercise is available in ch3_word2vec.ipynb in the ch3
exercise directory.

Word2vec – Learning Word Embeddings

[96]

First let's define the hyperparameters of the model. You are free to change
these hyperparameters to see how they affect final performance (for example,
batch_size = 16 or batch_size = 256). However, since this is a simple problem
compared with the more complex real-word problems, you might not see any
significant differences (unless you change them to extremes, for example,
batch_size = 1 or num_sampled = 1):

batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
window_size = 4 # How many words to consider left and right.
valid_size = 16 # Random set of words to evaluate similarity on.
Only pick dev samples in the head of the distribution.
valid_window = 100
valid_examples = get_common_and_rare_word_ids(valid_size//2,valid_
size//2)
num_sampled = 32 # Number of negative examples to sample.

Next, define TensorFlow placeholders for training inputs, labels, and valid inputs:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

Then, define the TensorFlow variables for the embedding layer and softmax weights
and bias:

embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
stddev=0.5 / math.sqrt(embedding_size)))
softmax_biases =
 tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01))

Next, we will define an embedding lookup operation that gathers the corresponding
embeddings of a given batch of training inputs:

embed = tf.nn.embedding_lookup(embeddings, train_dataset)

Afterwards, we will define the softmax loss, using a negative sampling:

loss = tf.reduce_mean(
 tf.nn.sampled_softmax_loss(weights=softmax_weights,
 biases=softmax_biases, inputs=embed,
 labels=train_labels, num_sampled=num_sampled,
 num_classes=vocabulary_size))

Chapter 3

[97]

Here we define an optimizer to optimize (minimize) the preceding defined loss
function. Feel free to experiment with other optimizers listed at https://www.
tensorflow.org/api_guides/python/train:

optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

Compute the similarity between validation input examples and all embeddings. The
cosine distance is used:

norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
 normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings,
 tf.transpose(normalized_embeddings))

With all the TensorFlow variables and operations defined, we can now move
onto executing the operations to get some results. Here we will outline the basic
procedure for executing these operations. You can refer to the exercise file for a
complete view of the execution.

•	 First initialize the TensorFlow variables with tf.global_variables_
initializer().run()

•	 For each step (for a predefined number of total steps), do the following:
°° Generate a batch of data (batch_data – inputs, batch_labels –

outputs) using the data generator
°° Create a dictionary called feed_dict that maps train input/output

placeholders to data generated by the data generator:
feed_dict = {train_dataset : batch_data, train_labels :
batch_labels}

°° Execute an optimization step and obtain the loss value as follows:
_, l = session.run([optimizer, loss], feed_dict=feed_dict)

We will now discuss another popular Word2vec algorithm known as the
Continuous Bag-of-Words (CBOW) model.

https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train

Word2vec – Learning Word Embeddings

[98]

The Continuous Bag-of-Words algorithm
The CBOW model has a working similar to the skip-gram algorithm with one
significant change in the problem formulation. In the skip-gram model, we predicted
the context words from the target word. However, in the CBOW model, we will
predict the target from contextual words. Let's compare what data looks like for skip-
gram and CBOW by taking the previous example sentence:

The dog barked at the mailman.

For skip-gram, data tuples—(input word, output word)—might look like this:

(dog, the), (dog, barked), (barked, dog), and so on.

For CBOW, data tuples would look like the following:

([the, barked], dog), ([dog, at], barked), and so on.

Consequently, the input of the CBOW has a dimensionality of 2 × m × D, where
m is the context window size and D is the dimensionality of the embeddings. The
conceptual model of CBOW is shown in Figure 3.13:

Figure 3.13: The CBOW model

Chapter 3

[99]

We will not go into great details about the intricacies of CBOW as they are quite
similar to those of skip-gram. However, we will discuss the algorithm implementation
(though not in depth, as it shares a lot of similarities with skip-gram) to get a clear
understanding of how to properly implement CBOW. The full implementation of
CBOW is available at ch3_word2vec.ipynb in the ch3 exercise folder.

Implementing CBOW in TensorFlow
First, we define the variables; this is same as in the case of the skip-gram model:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
 embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights = tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size),
 dtype=tf.float32))
softmax_biases =
 tf.Variable(tf.zeros([vocabulary_size],dtype=tf.float32))

Here, we are creating a stacked set of embeddings, representing each position of
the context. So we will have a matrix of size [batch_size, embeddings_size, 2*context_
window_size]. Then, we will use a reduction operator to reduce the stacked matrix to
that of size [batch_size, embedding size] by averaging the stacked embeddings over the
last axis:

stacked_embedings = None
for i in range(2*window_size):
 embedding_i = tf.nn.embedding_lookup(embeddings,
 train_dataset[:,i])
 x_size,y_size = embedding_i.get_shape().as_list()
 if stacked_embedings is None:
 stacked_embedings = tf.reshape(embedding_i,[x_size,y_size,1])
 else:
 stacked_embedings =
 tf.concat(axis=2,
 values=[stacked_embedings,
 tf.reshape(embedding_i,[x_size,y_size,1])]
)

assert stacked_embedings.get_shape().as_list()[2]==2*window_size
mean_embeddings = tf.reduce_mean(stacked_embedings,2,keepdims=False)

Word2vec – Learning Word Embeddings

[100]

Thereafter, loss and optimizer are defined as in the skip-gram model:

loss = tf.reduce_mean(
 tf.nn.sampled_softmax_loss(weights=softmax_weights,
 biases=softmax_biases,
 inputs=mean_embeddings,
 labels=train_labels,
 num_sampled=num_sampled,
 num_classes=vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)

Summary
Word embeddings have become an integral part of many NLP tasks and are widely
used for tasks such as machine translation, chatbots, image caption generation, and
language modeling. Not only do word embeddings act as a dimensionality reduction
technique (compared to one-hot encoding) but they also give a richer feature
representation than other existing techniques. In this chapter, we discussed two
popular neural network-based methods for learning word representations, namely
the skip-gram model and the CBOW model.

First, we discussed the classical approaches to develop an understanding about how
word representations were learned in the past. We discussed various methods such
as using WordNet, building a co-occurrence matrix of the words, and calculating
TF-IDF. Later, we discussed the limitations of these approaches.

This motivated us to explore neural network-based word representation learning
methods. First, we worked out an example by hand to understand how word
embeddings or word vectors can be calculated and one use case of word vectors to
learn the interesting things that can be done with word vectors.

Next, we discussed the first word-embedding learning algorithm—the skip-gram
model. We then learned how to prepare the data to be used for learning. Later, we
examined how to design a loss function that allows us to use word embeddings using
the context words of a given word. Afterwards, we discussed a crucial limitation of
the close-form loss function we developed. The loss function is not scalable for large
vocabularies. Later we analyzed two popular approximations of the close-form loss
that allowed us to calculate the loss efficiently and effectively—negative sampling
and hierarchical softmax. Finally, we discussed how to implement the skip-gram
algorithm using TensorFlow.

Chapter 3

[101]

Then we reviewed the next choice for learning word embeddings—the CBOW
model. We also discussed how CBOW differs from the skip-gram model. Finally,
we discussed a TensorFlow implementation of CBOW as well.

In the next chapter, we will analyze the performance of the Word2vec techniques
we learned and also learn several extensions that significantly improve their
performance. Furthermore, we will learn another word embedding learning
technique known as Global Vectors or GloVe.

[103]

Advanced Word2vec
In Chapter 3, Word2vec – Learning Word Embeddings, we introduced you to Word2vec,
the basics of learning word embeddings, and the two common Word2vec algorithms:
skip-gram and CBOW. In this chapter, we will discuss several topics related to
Word2vec, focusing on these two algorithms and extensions.

First, we will explore how the original skip-gram algorithm was implemented and
how it compares to its more modern variant, which we used in Chapter 3, Word2vec
– Learning Word Embeddings. We will examine the differences between skip-gram
and CBOW and look at the behavior of the loss over time of the two approaches. We
will also discuss which method works better, using both our observation and the
available literature.

We will discuss several extensions to the existing Word2vec methods that boost
performance. These extensions include using more effective sampling techniques to
sample negative examples for negative sampling and ignoring uninformative words
in the learning process, among others. You will also learn a novel word embedding
learning technique known as Global Vectors (GloVe) and the specific advantages
that GloVe has over skip-gram and CBOW.

Finally, you will learn how to use Word2vec to solve a real-world problem:
document classification. We will see this with a simple trick of obtaining document
embeddings from word embeddings.

Advanced Word2vec

[104]

The original skip-gram algorithm
The skip-gram algorithm discussed up to this point in the book is actually an
improvement over the original skip-gram algorithm proposed in the original
paper by Mikolov and others, published in 2013. In this paper, the algorithm did
not use an intermediate hidden layer to learn the representations. In contrast, the
original algorithm used two different embedding or projection layers (the input
and output embeddings in Figure 4.1) and defined a cost function derived from the
embeddings themselves:

Figure 4.1: The original skip-gram algorithm without hidden layers

The original negative sampled loss was defined as follows:

() ()() () ()~1

1
2 j i q iq n

N m i m T T
w w w ww P wi m j i j i m

J log v v kE log v v
N m

θ σ σ
− +

= + ≠ ∧ = −

    ′ ′=− + −     − ∑ ∑

Chapter 4

[105]

Here, v is the input embeddings layer, v' is the output word embeddings layer,
iw

v
corresponds to the embedding vector for the word wi in the input embeddings layer
and

iw
v′ corresponds to the word vector for the word wi in the output embeddings layer.

()nP w is the noise distribution, from which we sample noise samples (for example, it
can be as simple as uniformly sampling from vocabulary—{wi,wj}, as we saw in Chapter
3, Word2vec – Learning Word Embeddings). Finally, E denotes the expectation (average)
of the loss obtained from k-negative samples. As you can see, there are no weights and
bias in this equation except for the word embeddings themselves.

Implementing the original skip-gram
algorithm
Implementing the original skip-gram algorithm is not as straightforward as the
version we have already implemented. This is because the loss function needs
to be handcrafted using TensorFlow functions as there is no built-in function for
calculating the loss as we had for the other algorithms.

First, let's define placeholders for the following:

•	 Input data: This is a placeholder containing a batch of target words of the
[batch_size] shape

•	 Output data: This is a placeholder containing the corresponding context
words for the batch of target words and is of size, [batch_size, 1]
train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int64, shape=[batch_size, 1])

With the input and output placeholders defined, we can use a TensorFlow built-in
candidate_sampler to sample negative samples as shown in the following code:

negative_samples, _, _ = tf.nn.log_uniform_candidate_sampler(
 train_labels, num_true=1,
 num_sampled=num_sampled,
 unique=True,

 range_max=vocabulary_size)

Here we sample negative words uniformly without any special preference for
different words. train_labels are the true samples, so TensorFlow can avoid
producing them as negative samples. Then we have the number of num_true, which
denotes number of true classes for a given data point, which is 1. Next comes the
number of negative samples we want for a batch of data (num_sampled). unique
defines whether the negative samples should be unique. Finally, range defines the
maximum ID a word has, so that the sampler doesn't produce any invalid word IDs.

Advanced Word2vec

[106]

We get rid of the softmax weights and biases. Then, we introduce two embedding
layers, one for the input data and the other for the output data.
Two embedding layers are needed because if we had only one embedding layer,
the cost function would not work, as discussed in Chapter 3, Word2vec – Learning
Word Embeddings.

Let's embed lookups for the input data, output data, and negative samples:

in_embed = tf.nn.embedding_lookup(in_embeddings, train_dataset)
out_embed = tf.nn.embedding_lookup(out_embeddings, tf.reshape(
 train_labels,[-1]))
negative_embed = tf.nn.embedding_lookup(out_embeddings,
 negative_samples)

Next, we will define the loss function, and it is the most important part of the code.
This code implements the loss function we discussed earlier. However, as we defined
in the loss function ()J θ , we do not calculate the loss for all the words in a document
at once. This is due to the fact that a document can be too large to fit into the memory
fully. Therefore, we calculate the loss for small batches of data at a single time step.
The full code is available in the ch4_word2vec_improvements.ipynb exercise book
located in the ch4 folder:

Computing the loss for the positive sample
loss = tf.reduce_mean(
 tf.log(
 tf.nn.sigmoid(
 tf.reduce_sum(
 tf.diag([1.0 for _ in range(batch_size)])*
 tf.matmul(out_embed,tf.transpose(in_embed)),
 axis=0)
)
)
)

Computing loss for the negative samples
loss += tf.reduce_mean(
 tf.reduce_sum(
 tf.log(tf.nn.sigmoid(
 -tf.matmul(negative_embed,tf.transpose(in_embed)))),
 axis=0
)
)

Chapter 4

[107]

Tensorflow implements sampled_softmax_loss by defining
a smaller subset of weights and biases that are only required to
process the current batch of data, from the full softmax weights
and biases. Thereafter, TensorFlow computes the loss similar to
the standard softmax cross entropy calculation. However, we
cannot directly translate that approach to calculate the original
skip-gram loss as there are no softmax weights and biases.

Comparing the original skip-gram with the
improved skip-gram
We should have a good reason to use a hidden layer in contrast to the original
skip-gram algorithm which does not use one. Therefore, we will observe
the loss function behavior of the original skip-gram algorithm and the
hidden-layer-including skip-gram algorithm in Figure 4.2:

Figure 4.2: The original skip-gram algorithm versus the improved skip-gram algorithm

We can clearly see that having a hidden layer leads to better performance compared
with not having one. This also suggest that deeper Word2vec models tend to
perform better.

Comparing skip-gram with CBOW
Before looking at the performance differences and investigating reasons, let's
remind ourselves about the fundamental difference between the skip-gram and
CBOW methods.

Advanced Word2vec

[108]

As shown in the following figures, given a context and a target word, skip-gram
observes only the target word and a single word of the context in a single input/
output tuple. However, CBOW observes the target word and all the words in the
context in a single sample. For example, if we assume the phrase dog barked at the
mailman, skip-gram sees an input-output tuple such as ["dog", "at"] at a single time
step, whereas CBOW sees an input-output tuple [["dog","barked","the","mailman"],
"at"]. Therefore, in a given batch of data, CBOW receives more information than
skip-gram about the context of a given word. Let's next see how this difference
affects the performance of the two algorithms.

Figure 4.3: The implementation view of
skip-gram algorithm

Figure 4.4: The implementation view of the
CBOW algorithm

As shown in the preceding figures, the CBOW model has access to more information
(inputs) at a given time compared to the skip-gram algorithm, allowing CBOW to
perform perform better in certain conditions.

Performance comparison
Now let's plot the loss over time for both skip-gram and CBOW in the task we
trained the models earlier in Chapter 3, Word2vec – Learning Word Embeddings
(see Figure 4.4):

Chapter 4

[109]

Figure 4.5: Loss decrease: skip-gram versus CBOW

We discussed that, compared to the skip-gram algorithm, CBOW has access to more
information about the context of a given target word for a given input-output tuple.
We can see that CBOW shows a rapid decrease of the loss compared to the skip-gram
model. However, loss itself is an inadequate measure of performance, as the loss can be
rapidly dwindling due to overfitting to the training data. Though there are benchmark
tasks that are used to evaluate the quality of word embeddings (for example, word
analogy tasks), we will use a simpler way of inspection. Let's visually inspect the
learned embeddings in order to make sure that skip-gram and CBOW show a
significant semantic difference between them. For this, we use a popular visualization
technique known as t-Distributed Stochastic Neighbor Embedding (t-SNE).

It should be noted that the reduction of loss is not a very
convincing metric to evaluate the performance of a word
embedding system, because the sampled softmax we use to
measure loss is a significant underestimate of the full softmax loss.
Performances of word embeddings are often evaluated in terms of
word analogy tasks. A typical word analogy task might ask this:
Aware to unaware is like impressive to _______________.
So, a good embedding set should answer this with unimpressive.
This can be computed with a simple arithmetic operation given
by embedding(impressive) - [embedding(aware)
- embedding(unaware)]. If the resulting vector has the
embedding of the word unimpressive as its nearest neighbor,
then you have obtained the correct answer.
There are several word analogy testing datasets available, such as
the following:

•	 Google analogy dataset: http://download.
tensorflow.org/data/questions-words.txt

•	 Bigger Analogy Test Set (BATS): http://vsm.
blackbird.pw/bats

http://download.tensorflow.org/data/questions-words.txt
http://download.tensorflow.org/data/questions-words.txt
http://vsm.blackbird.pw/bats
http://vsm.blackbird.pw/bats

Advanced Word2vec

[110]

In Figure 4.6, we can see that CBOW tends to cluster the words together more than
skip-gram, where words seem to be distributed across the full space sparsely.
Therefore, we can say that CBOW looks visually appealing compared to skip-gram,
in this particular example:

Figure 4.6: t-SNE visualization for word vectors obtained with skip-gram and CBOW

We will use the scikit-learn provided t-SNE algorithm to
compute the low-dimensional representation and then visualize
it through Matplotlib. However, TensorFlow provides a much
more convenient embedding visualization option through its
visualization framework TensorBoard. You can find an exercise of
this in tensorboard_word_embeddings.ipynb located in the
appendix folder.

Chapter 4

[111]

t-SNE – a brief tour
t-SNE is a visualization technique that can visualize high-dimensional
data (for example, images and word embeddings) in lower two-
dimensional space. We will not dive into all the complex mathematics
behind the technique, but only understand how the algorithm works
on a more intuitive level.

Let's define the notations first. D
ix R∈ denotes a D-dimensional

data point and { }iX x= is the input space. For example, this can be a
word-embedding vector similar to the ones we covered in Chapter 3,
Word2vec – Learning Word Embeddings, and D is the embedding size.
Next, let's imagine a hypothetical two-dimensional space { }iY y= ,
 where yi denotes a two-dimensional vector corresponding to the xi
data point; X and Y have a one-to-one mapping. We will refer to Y as
the map space and yi as the map points.
Now let's define a conditional probability

|j iP that defines the
probability that the xi data point will pick xj as its neighbor. Pj|i needs
to be low when point xj is far from xi and vise versa. An intuitive
choice for

|j iP is a Gaussian centered at the xi data point with the
2
iσ variance. The variance will be low for data points with dense

neighborhoods and high for data points with sparse neighborhoods.
Concretely, the formula for the conditional probability is given by:

()
()

2 2

| 2 2

/ 2

/ 2

i j i

j i

i k ik i

exp x x
p

exp x x

σ

σ
≠

− −
=

− −∑
Similarly, we can define a similar conditional probability for map
points yi in space Y, |j iq .
Now, in order to obtain a good low-dimensional representation Y of the
high-dimensional space X, |j ip and |j iq should demonstrate similar
behaviors. That is, if two data points are similar in the X space, they
should be similar in space Y as well, and vice versa. Therefore, the
problem of getting a good two-dimensional representation of the data
boils down to minimizing the mismatch between |j ip and |j iq for all
1, ,i N= K .

This problem can be formally formulated as minimizing the Kullback-

Leibler divergence between |j ip and |j iq denoted by ()| |j i j iKL p q .
Therefore, the cost function for our problem is:

() |
| | |

1 1 |

N N
j i

j i j i j i
i i j i j i

p
C KL p q p log

q= = ≠

 
= ==   

 
∑ ∑∑

Advanced Word2vec

[112]

Also, by minimizing this C cost by means of stochastic gradient
descent, we can find an optimal representation Y that matches
closely with X.
Intuitively, this process can be thought of as an equilibrium
reached by a collection of springs attached between all the
pairs of data points. |j ip is the stiffness of the spring between
the xi and xj data points. Therefore, when xi and xj are similar,
they will remain close to each other and far apart when they
are dissimilar. Therefore, C for a particular data point acts as
the total force acting on that data point and will cause it to
either attract or repel for all the other data points according to
the total force.

Which is the winner, skip-gram or CBOW?
There is no clear-cut winner between skip-gram and CBOW when it comes to
performance. For example, the paper Distributed Representations of Words and Phrases
and their Compositionality, Mikolov and others, 2013 suggests that skip-gram works
better in semantic tasks, whereas CBOW works better in syntactic tasks. However,
skip-gram appears to perform better than CBOW in most tasks, which contradicts
our findings.

Various empirical evidence suggests that skip-gram works well with large datasets
compared to CBOW, and that is supported in Distributed Representations of Words and
Phrases and their Compositionality, Mikolov and others, 2013 and GloVe: Global Vectors for
Word Representation, Pennington and others, 2014, which usually use corpora of billions
of words. However, our task involved a few hundred thousand words, which is
comparatively small. For this reason, CBOW might be performing better.

Now let me explain why I believe this is the case. Consider the following
two sentences:

•	 It is a nice day
•	 It is a brilliant day

For CBOW, input-output tuples would look like this:

[[It, is, nice, day], a]

[[It, is, brilliant, day],a]

Chapter 4

[113]

And input output tuples for skip-gram would look like this:

[It, a], [is, a], [nice, a], [day, a]

[It, a], [is, a], [brilliant, a], [day, a]

We would like our model to understand that nice and brilliant are slightly different
things (that is, brilliant means nicer than nice). Such words having subtle differences
in meaning are called nuances. We can see that, for CBOW, there is a high chance that
it would see brilliant and nice as the same thing, because their semantics get averaged
by the surrounding words (It, is, and day) as these words are also a part of the input.
By contrast, for skip-gram, the words nice and brilliant appear separated from It, is,
and day, allowing skip-gram to pay more attention to subtle differences between
words (such as brilliant and nice) than CBOW.

However, note that there are millions of parameters in our model. To train such
models, a lot of data is needed. CBOW somehow circumvents this problem by
trying not to focus learning subtle differences in words, but by just an averaging
of all the words in a given context (for example, average semantic of It is nice
day or It is brilliant day). However, skip-gram would learn more meticulous
representations because there is no averaging effect as in CBOW. To learn meticulous
representations, skip-gram would require more data. But once more data is
provided, skip-gram will most likely outperform the CBOW algorithm.

In addition, note that a single input to the CBOW model is approximately equal to
2 m× many inputs for the skip-gram model, where m is the context window size. This
is because a single input to the skip-gram consists only of a single word, where a
single input to CBOW has 2 m× many words. So, to make this a fairer comparison, if
we run CBOW for L steps, we should run the skip-gram algorithm for 2m L× steps.

So far, you have learned how skip-gram was initially implemented—it had two
embedding layers (one to look up input words and the other to look up output
words). We discussed how the skip-gram algorithm discussed in Chapter 3, Word2vec
– Learning Word Embeddings, actually is an improvement of the original skip-gram
algorithm. We saw that the improved skip-gram in fact outperforms the original
algorithm. Then, we compared performances of skip-gram and CBOW and saw that,
in our example, CBOW performs better. Finally, we discussed some of the reasons
why CBOW might be performing better than skip-gram.

Advanced Word2vec

[114]

Extensions to the word embeddings
algorithms
The original paper by Mikolov and others, published in 2013, discusses several
extensions that can improve the performance of the word embedding learning
algorithms even further. Though they are initially introduced to be used for skip-
gram, they are extendable to CBOW as well. Also, as we already saw that CBOW
outperforms the skip-gram algorithm in our example, we will use CBOW for
understanding all the extensions.

Using the unigram distribution for negative
sampling
It has been found that the performance results of negative sampling are better when
performed by sampling from certain distributions rather than from the uniform
distribution. One such distribution is the unigram distribution. The unigram
probability of a word wi is given by the following equation:

() ()
()

i
i

jj Corpus

count w
U w

count w
∈

=
∑

Here, count(wi) is the number of times wi appears in the document. When the
unigram distribution is distorted as ()()3/4 /iU w Z for some constant Z, it has shown
to provide better performance than the uniform distribution or the standard unigram
distribution.

Let's use an example to understand the unigram distribution better. Consider the
following sentences:

Bob is a football fan. He is on the school football team.

Here, the unigram probability of the word football would be as follows:

() 2 /12 1/ 6U football = =

It can be seen that the unigram probability for common words will be higher.
These common words tend to be very uninformative words, such as the, a, and is.
Therefore, such frequent words will be negatively sampled more during the cost
optimization, leading to more informative words being less negatively sampled.
Consequently, this creates a balance between the common words and rare words
during the optimization, leading to better performance.

Chapter 4

[115]

Implementing unigram-based negative
sampling
Here, we will see how we can implement unigram-based negative sampling with
TensorFlow:

unigrams = [0 for _ in range(vocabulary_size)]
for word,w_count in count:
 w_idx = dictionary[word]
 unigrams[w_idx] = w_count*1.0/token_count
 word_count_dictionary[w_idx] = w_count

Here, count is a list of tuples, where each tuple is made of (word ID, frequency).
This algorithm computes the unigram probabilities of each word and returns them
as a list ordered by the index of the word. (This is a specific format for the unigrams
stipulated by TensorFlow). This is available as an exercise in ch4_word2vec_
improvements.ipynb, located in the ch4 folder.

Next, we calculate up to the embedding lookups as we normally did for CBOW:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size,
 window_size*2])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

Variables.
embedding, vector for each word in the vocabulary
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
 embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights =
 tf.Variable(tf.truncated_normal([vocabulary_size,
 embedding_size],
 stddev=1.0 / math.sqrt(embedding_size), dtype=tf.float32))
softmax_biases =
 tf.Variable(tf.zeros([vocabulary_size], dtype=tf.float32))

stacked_embedings = None

for i in range(2*window_size):
 embedding_i = tf.nn.embedding_lookup(embeddings,
 train_dataset[:,i])
 x_size,y_size = embedding_i.get_shape().as_list()
 if stacked_embedings is None:
 stacked_embedings =
 tf.reshape(embedding_i,[x_size,y_size,1])
 else:

Advanced Word2vec

[116]

 stacked_embedings =
 tf.concat(axis=2,values=[stacked_embedings,
 tf.reshape(embedding_i,[x_size,y_size,1])])
mean_embeddings = tf.reduce_mean(stacked_embedings,2,keepdims=False)

Next, we'll sample negative examples based on the unigram distribution. To do
this, we'll use the TensorFlow built-in function tf.nn.fixed_unigram_candidate_
sampler:

candidate_sampler = tf.nn.fixed_unigram_candidate_sampler(
 true_classes = tf.cast(train_labels, dtype=tf.int64),
 num_true = 1, num_sampled = num_sampled, unique = True,
 range_max = vocabulary_size, distortion=0.75,
 num_reserved_ids=0, unigrams=unigrams, name='unigram_sampler')

loss = tf.reduce_mean(
 tf.nn.sampled_softmax_loss(weights=softmax_weights,
 biases=softmax_biases, inputs=mean_embeddings,
 labels=train_labels, num_sampled=num_sampled,
 num_classes=vocabulary_size, sampled_values=candidate_sampler))

This code snippet provides the general flow of implementing the word-embedding
learning with unigram-based negative sampling. Generally, the following steps
take place:

1.	 Defining the variables, placeholders, and hyperparameters.
2.	 For each batch of data, the following occurs:

1.	 Computing the mean input embedding matrix by looking up
the embeddings for each index of the context window and
averaging them

2.	 Calculating the loss by means of negative sampling, sampled
according to the unigram distribution

3.	 Optimizing the neural network using stochastic gradient descent

The following one-liner code extracted from the preceding code snippet plays the
most important role in this algorithm by producing negative samples generated
according to the distorted unigram distribution:

candidate_sampler = tf.nn.fixed_unigram_candidate_sampler(
 true_classes = tf.cast(train_labels,dtype=tf.int64),
 num_true = 1, num_sampled = num_sampled, unique = True,
 range_max = vocabulary_size, distortion=0.75,
 num_reserved_ids=0, unigrams=unigrams, name='unigram_sampler')

Chapter 4

[117]

We will go through each argument in this function in detail:

•	 true_classes: This is a vector of the batch_size size that provides the
target word ID (an integer) for a given batch of context words corresponding
to that target word.

•	 num_true: This is the number of true elements for a given word (often 1).
•	 num_sampled: This is the number of negative elements to sample for

a single input.
•	 unique: This says to sample unique negative samples (no replacement).
•	 range_max: This is the size of the vocabulary.
•	 distortion: This returns the unigram sample raised to the power given by

the value distortion. In our example it is 3/4 = (0.75).
•	 num_reserved_ids: This is a list of indices indicating words from

the vocabulary. The IDs in num_reserved_ids will not be sampled as
negative samples.

•	 unigrams: These are unigram probabilities ordered by the ID of the word.

Subsampling – probabilistically ignoring the
common words
Subsampling, or ignoring common words, also has proved to provide better
performance. This can be understood intuitively as follows—the input-output words
extracted from a finite context ("The", "France") provide less information than the
tuple ("Paris", "France"). Therefore, it is a better choice to ignore such uninformative
words (or stop words), such as the, being sampled frequently from the corpus.
Mathematically, this is achieved by ignoring the word wi in the sequence of words in
the corpus with a probability:

()
1

i

t
f w

−

Here, t is a constant that controls the threshold of the word frequency that causes to
ignore words and ()if w is the frequency of wi in the corpus. This effectively reduces
the frequency of stop words (for example, "the", "a", "of", ".", and ","), thus creating
more balance in the dataset.

Advanced Word2vec

[118]

Implementing subsampling
Implementing subsampling is quite simple, as shown in the following example code
snippet. We'll create a new word sequence from the original sequence by dropping
words from the sequence with the probability obtained as we just saw, and use this new
word sequence for learning the word embeddings. Here we have chosen t as 10,000:

subsampled_data = []
for w_i in data:
 p_w_i = 1 - np.sqrt(1e5/word_count_dictionary[w_i])

 if np.random.random() < p_w_i:
 drop_count += 1
 drop_examples.append(reverse_dictionary[w_i])
 else:
 subsampled_data.append(w_i)

Comparing the CBOW and its extensions
In Figure 4.6, we'll see the different loss decreases of CBOW, the CBOW with
unigram-based negative sampling—CBOW(Unigram)—and CBOW with unigram-
based negative sampling and subsampling—CBOW (Unigram+Subsampling):

Figure 4.6: Loss behavior with original CBOW and two extensions to CBOW

It is quite interesting to see that having both unigram and subsampling
improvements gives a similar looking loss value overall compared to having only
unigram-based negative sampling. However, this should not be misunderstood
as a lack of advantage of subsampling on the learning problem. The reason for this
particular behavior can be understood as follows. As with subsampling, we get
rid of many uninformative words, so the quality of the text increases (in terms of
information quality). This in turn makes the learning problem more difficult. In
the previous problem setting, the word vectors had the opportunity to exploit the
abundance of uninformative words in the optimization process, whereas in the new
problem setting, such chances are rare. This results in a higher loss, but semantically
sound word vectors.

Chapter 4

[119]

More recent algorithms extending
skip-gram and CBOW
We already saw that the Word2vec techniques are quite powerful in capturing
semantics of words. However, they are not without their limitations. For example,
they do not pay attention to the distance between a context word and the target
word. However, if the context word is further away from the target word, its
impact on the target word should be less. Therefore, we will discuss techniques that
pay separate attention to different positions in the context. Another limitation of
Word2vec is that it only pays attention to a very small window around a given word
when computing the word vector. However, in reality, the way the word co-occurs
throughout a corpus should be considered to compute good word vectors. So, we
will look at a technique that not only looks at the context of a word, but also at the
global co-occurrence information of the word.

A limitation of the skip-gram algorithm
The previously-discussed skip-gram algorithm and all its variants ignore the
localization of contextual words within a given context. In other words, skip-gram
does not exploit the exact position of a context word within the context, but treats all
the words within a given context equally. For example, let's consider a sentence:

The dog barked at the mailman.

Let's consider a window size of 2 and the target word, barked. Then the context for
the word barked would be the, dog, at, and the. Also, we will compose four data points
("barked", "the"), ("barked", "dog"), ("barked", "at"), and ("barked", "the"), where the
first element of the tuple is the input word and the second is the output word. If we
consider two data points from this collection, ("barked", "the") and ("barked, "dog"),
the original skip-gram algorithm will treat both these tuples equally during the
optimization. In other words, skip-gram ignores the actual position of a context word
in the context. However, from a linguistic perspective, clearly the tuple ("barked",
"dog") carries more information than ("barked", "the"). Essentially, the structured
skip-gram algorithm attempts to address this limitation. Let's see how this is solved
in the next section.

Advanced Word2vec

[120]

The structured skip-gram algorithm
The structured skip-gram algorithm uses the architecture shown in Figure 4.7
to tackle the limitation of the original skip-gram algorithm discussed in the
preceding section:

Figure 4.7. The structured skip-gram model

As shown here, structured skip-gram preserves the structure or localization of
the context words during the optimization. However, it poses a higher memory
requirement, as the number of parameters is linearly dependent on the window size.
More precisely, for a window size m (that is, on one side), if the original skip-gram
model had P parameters in the softmax layer, the structured skip-gram algorithm
will have 2mP parameters, as we have a set of P parameters for each position in the
context window.

The loss function
The original negative sampled softmax loss for the skip-gram model looked like this:

() () ()()() ()()()~ { , }
1 1

J 1/ 2
q i jj q

N m i m k

n w vocabulary w w nw w
i m j i j i m q

N m log logit x log logit xEσ σ
− +

−
= + ≠ = − =

θ = − − + −∑ ∑ ∑

Chapter 4

[121]

For structured skip-gram, we use the following loss:

() () ()()() ()()()2

~ { , }
1 1 1

J 1/ 2
q i jj q

m N m i m k

k n w vocabulary w w p nw w
p i m j i j i m q

N m log logit x log logit xEσ σ
− +

−
= = + ≠ = − =

θ = − − + −∑ ∑ ∑ ∑

Here, ()
jp n w

logit x is calculated using the pth set of softmax weights and softmax bias
corresponding to the index of wj position.

This is implemented as shown in the following code, which is available in
ch4_word2vec_extended.ipynb in the ch4 folder. As we can see, we now have 2 m×
softmax weights and biases, and the embedding vectors corresponding to each context
position are propagated through their corresponding softmax weight and bias.

First, we'll define input and output placeholders:

train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = [tf.placeholder(tf.int32, shape=[batch_size, 1]) for _
in range(2*window_size)]

Then we'll define the calculations required to calculate loss, starting from the training
inputs and labels:

Variables.
embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size, embedding_size],
 -1.0, 1.0))
softmax_weights = [tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=0.5 / math.sqrt(embedding_size))) for _ in range(2*window_
size)]
softmax_biases =
 [tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01)) for _
in range(2*window_size)]

Model.
Look up embeddings for inputs.
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
Compute the softmax loss, using a sample of
the negative labels each time.
loss = tf.reduce_sum(
 [
 tf.reduce_mean(tf.nn.sampled_softmax_loss(
 weights=softmax_weights[wi],
 biases=softmax_biases[wi], inputs=embed,
 labels=train_labels[wi], num_sampled=num_sampled,

Advanced Word2vec

[122]

 num_classes=vocabulary_size))
 for wi in range(window_size*2)
]
)

Structured skip-gram addresses an important limitation of the standard skip-gram
algorithm, which is paying attention to the position of context words during learning.
This is achieved by introducing a separate set of softmax weights and a bias for each
position of the context. This leads to an improved performance, which however
possesses a high memory requirement due to the increased amount of parameters.
Next, we will see a similar extension to the CBOW model.

The continuous window model
The continuous window model extends the CBOW algorithm in a way similar to
the one in the structured skip-gram algorithm. In the original CBOW algorithm,
the embeddings found for all the context words are averaged before propagating
through the softmax layer. However, in the continuous window model, instead
of averaging the embeddings, they are concatenated, resulting in embm D× -long
embedding vectors, where embD is the original embedding size of the CBOW
algorithm. Figure 4.8 illustrates the continuous window model:

Figure 4.8: The continuous window model

Chapter 4

[123]

In this section, we discussed two extended algorithms of skip-gram and CBOW.
These two variants essentially employ the position of the words in the context
instead of treating all words in a given context equally. Next, we will discuss a
newly-introduced word embedding learning algorithm called GloVe. We will see
that GloVe overcomes certain limitations of skip-gram and CBOW.

GloVe – Global Vectors representation
Methods for learning word vectors fall into either of two categories: global matrix
factorization-based methods or local context window-based methods. Latent
Semantic Analysis (LSA) is an example of a global matrix factorization-based
method, and skip-gram and CBOW are local context window-based methods.
LSA is used as a document analysis technique that maps words in the documents
to something known as a concept, a common pattern of words that appears in a
document. Global matrix factorization-based methods efficiently exploit the global
statistics of a corpus (for example, co-occurrence of words in a global scope), but
have shown to perform poorly at word analogy tasks. On the other hand, context
window-based methods have been shown to perform well at word analogy tasks, but
do not utilize global statistics of the corpus, leaving space for improvement. GloVe
attempts to get the best of both worlds—an approach that efficiently leverages global
corpus statistics while optimizing the learning model in a context window-based
manner similar to skip-gram or CBOW.

Understanding GloVe
Before looking at the implementation details of GloVe, let's take time to understand
the basic idea behind GloVe. To do so, let's consider an example:

1.	 Consider word " "i dog= and " "j cat=
2.	 Define an arbitrary probe word k
3.	 Define ikP to be the probability of words i and k occurring close to each other,

and jkP to be the words j and k occurring together

Now let's look at how the ik jkp p entity behaves with different values for k.

For " "k bark= , it is highly likely to appear with i, thus, ikP will be high. However,
k would not often appear along with j causing a low jkP . Therefore, we get the
following expression:

/ 1ik jkP P >>

Advanced Word2vec

[124]

Next, for " "k purr= , it is unlikely to appear in the close proximity of i and therefore
will have a low ikP ; however, since k highly correlates with j, the value
of jkP will be high. This leads to the following:

0ik jkP P ≈

Now, for words such as " "k pet= , which has a strong relationship with both
i and j, or " "k politics= , where i and j, both have a minimal relevance to,
we get this:

/ 1ik jkP P ≈

It can be seen that the /ik jkP P entity, which is calculated by measuring the frequency
of two words appearing close to each other, is a good means for measuring the
relationship between words. As a result, it becomes a good candidate for learning
word vectors. Therefore, a good starting point for defining the loss function will be
as shown here:

(), , /i j k ik jkF w w w P P=%

Here, F is some function. From this point, the original paper goes through the
derivation meticulously to reach the following loss function:

() ()()2
, 1

V
T

ij i j i j ij
i j

J f X w w b b log X
=

= + + −∑ ��

Here, () ()()3/4
max max/ 1f x x x if x x else= < , ijX is the frequency with which the word j

appeared in the context of the word i. Also, wi and bi represent the word embedding
and the bias embedding for the word i obtained from input embeddings, respectively.
And, jw� and jb� represents the word embedding and bias embedding for word j
obtained from output embeddings, respectively. maxx is a hypeparameter we set. Both
these embeddings behave similarly except for the randomization at the initialization.
At the evaluation phase, these two embeddings are added together, leading to an
improved performance.

Chapter 4

[125]

Implementing GloVe
In this subsection, we will discuss the steps for implementing GloVe. The full code is
available in the ch4_glove.ipynb exercise file located in the ch4 folder.

First, we'll define the inputs and outputs:

train_dataset = tf.placeholder(tf.int32, shape=[batch_
size],name='train_dataset')
train_labels = tf.placeholder(tf.int32, shape=[batch_
size],name='train_labels')

Next, we'll define the embedding layers. We have two different embedding layers,
one to look up input words and the other to look up output words. In addition, we'll
define a bias embedding, like the bias we had for the softmax layer:

in_embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size, embedding_size],
 -1.0, 1.0), name='embeddings')
in_bias_embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size],0.0,0.01,
 dtype=tf.float32), name='embeddings_bias')

out_embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size, embedding_size],
 -1.0, 1.0), name='embeddings')
out_bias_embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size],0.0,0.01,
 dtype=tf.float32), name='embeddings_bias')

Now, we'll look up the corresponding embeddings for given inputs and
outputs (labels):

embed_in = tf.nn.embedding_lookup(in_embeddings, train_dataset)
embed_out = tf.nn.embedding_lookup(out_embeddings, train_labels)
embed_bias_in = tf.nn.embedding_lookup(in_bias_embeddings, train_
dataset)
embed_bias_out = tf.nn.embedding_lookup(out_bias_embeddings, train_
labels)

Also, we'll define placeholders for f(Xij) (weights_x) and ijX (x_ij) in the
cost function:

weights_x = tf.placeholder(tf.float32, shape=[batch_size],
name='weights_x')
x_ij = tf.placeholder(tf.float32, shape=[batch_size], name='x_ij')

Advanced Word2vec

[126]

Finally, we'll define the full loss function with the preceding defined entities, which
is as follows:

loss = tf.reduce_mean(
 weights_x * (tf.reduce_sum(embed_in*embed_out,axis=1) +
 embed_bias_in + embed_bias_out - tf.log(epsilon+x_ij))**2)

In this section, we looked at GloVe, another word embedding learning technique.
The main advantage of GloVe over the previously described Word2vec techniques
is that it pays attention to both global and local statistics of the corpus to learn
embeddings. As GloVe are able to capture the global information about words, they
tend to give better performance, especially when the corpus size increases. Another
advantage is that unlike in Word2vec techniques, GloVe does not approximate the
cost function (for example, Word2vec using negative sampling), but calculates the
true cost. This leads to better and easier optimization of the loss.

Document classification with Word2vec
Although Word2vec gives a very elegant way of learning numerical representations
of words, as we saw quantitatively (loss value) and qualitatively (t-SNE
embeddings), learning word representations alone is not convincing enough to
realize the power of word vectors in real-world applications. Word embeddings are
used as the feature representation of words for many tasks, such as image caption
generation and machine translation. However, these tasks involve combining
different learning models (such as Convolution Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) models or two LSTM models). These will be discussed
in later chapters. To understand a real-world usage of word embeddings let's stick to
a simpler task—document classification.

Document classification is one of the most popular tasks in NLP. Document
classification is extremely useful for anyone who is handling massive collections of
data such as those for news websites, publishers, and universities. Therefore, it is
interesting to see how learning word vectors can be adapted to a real-world task such
as document classification by means of embedding entire documents instead of words.

This exercise is available in the ch4 folder (ch4_document_embedding.ipynb).

Chapter 4

[127]

Dataset
For this task, we will use an already-organized set of text files. These are news
articles from the BBC. Every document in this collection belongs to one of the
following categories: Business, Entertainment, Politics, Sports, or Technology. We
use 250 documents from each category. Our vocabulary will be of size 25,000.
Also, each document will be represented by a <type of document>-<id> tag for
visualization purposes. For example, the 50th document of the Entertainment section
will be represented as entertainment-50. It should be noted that this is a very
small dataset compared to the large text corpora that is being analyzed in real-world
applications. However, this small example is adequate at the moment to see the
power of word embeddings.

Here are a couple brief snippets from the actual data:

Business

Japan narrowly escapes recession

Japan's economy teetered on the brink of a technical recession in the three months
to September, figures show.

Revised figures indicated growth of just 0.1% - and a similar-sized contraction in
the previous quarter. On an annual basis, the data suggests annual growth of just
0.2%,...

Technology

UK net users leading TV downloads

British TV viewers lead the trend of illegally downloading US shows from the net,
according to research.

New episodes of 24, Desperate Housewives and Six Feet Under, appear on the
web hours after they are shown in the US, said a report. Web tracking company
Envisional said 18% of downloaders were from within the UK and that downloads
of TV programmers had increased by 150% in the last year....

Classifying documents with word embeddings
The problem broadly is to see if word embedding methods such as skip-gram or
CBOW can be extended to classify/cluster documents. In this example, we will use
the CBOW algorithm, as it has been shown to perform better with smaller datasets
than skip-gram.

Advanced Word2vec

[128]

We will take the following approach:

1.	 Extracting data from all the text files and learning word embeddings as we
did already.

2.	 Extracting a random set of documents from the already trained documents.
3.	 Extending the learned embeddings to embed these selected documents. More

specifically, we'll represent a document by the mean value of the embeddings
belonging to all the words found in the document.

4.	 Visualizing the found document embeddings with the t-SNE visualization
technique to see whether word embeddings can be useful for document
clustering or classification.

5.	 Finally, a clustering algorithm such as K-means can be used to assign a label
for each document. We will briefly discuss what K-means is while discussing
the implementation.

Implementation – learning word embeddings
First, we will define several placeholders for train data, train labels, and valid
data (used to monitor word embeddings) and test data (used to compute mean
embeddings of the test documents):

Input data.
train_dataset = tf.placeholder(tf.int32,
 shape=[batch_size, 2*window_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

test_labels = tf.placeholder(tf.int32,
 shape=[batch_size], name='test_dataset')

Next, we'll define the variables for embeddings for the vocabulary and softmax
weights and biases (used to compute mean embeddings of the test documents):

Variables.
embedding, vector for each word in the vocabulary
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
 embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights = tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size), dtype=tf.float32))
softmax_biases = tf.Variable(
 tf.zeros([vocabulary_size], dtype=tf.float32))

Chapter 4

[129]

Then we define the sampled negative softmax loss function as we did before:

loss = tf.reduce_mean(
 tf.nn.sampled_softmax_loss(weights=softmax_weights,
 biases=softmax_biases, inputs=mean_embeddings,
 labels=train_labels, num_sampled=num_sampled,
 num_classes=vocabulary_size))

Implementation – word embeddings to
document embeddings
In order to obtain good document embeddings from word embeddings, we will
take the average embedding of all the words found in a document as the document
embedding. However, we will be processing data in batches. So, we will use the
following to achieve this.

For each document, do the following:

1.	 Creating a dataset where each data point is a word belonging to
the document

2.	 For a mini-batch sampled from the dataset, returning the mean embedding
vector by averaging the embedding vectors for all the words in the
mini-batch

3.	 Traversing the test document in batches and obtaining the document
embedding by averaging the mini-batch mean embeddings

We'll get the mean batch embeddings as follows:

mean_batch_embedding = tf.reduce_mean(tf.nn.embedding_
lookup(embeddings, test_labels), axis=0)
mean_embeddings = tf.reduce_mean(stacked_embeddings, 2,
keepdims=False)

Then, we'll collect such mean embeddings in a list for all the batches in a document
and obtain the average embedding as the document embedding. This is a very
simple method for obtaining document embeddings, but very powerful, as we will
see soon.

Advanced Word2vec

[130]

Document clustering and t-SNE visualization
of embedded documents
In Figure 4.9, we can visualize the document embeddings learned by the CBOW
algorithm. We can see that the algorithm has learned reasonably well to cluster
documents with the same topic. We employed the prefix of the documents (different
colors for different document categories) to add colors to data points so that the
separation is more obvious. As we discussed before, this simple method has proved
to be a very effective way to classify/cluster documents in an unsupervised manner:

Figure 4.9: t-SNE visualization of embedded documents

Chapter 4

[131]

Inspecting several outliers
We can see from Figure 4.9 that very few documents appear to be outliers
(for example, tech-42 and sport-50). It is interesting to see the content of these
documents so we can investigate the likely reasons for such a behavior.

The following is a snippet from the tech-42 document:

Tech-42

Hotspot users gain free net calls

People using wireless net hotspots will soon be able to make free phone calls as well
as surf the net.

Users of the system can also make calls to landlines and mobiles for a fee. The
system is gaining in popularity and now has 28 million users around the world.
Its paid service - dubbed Skype Out - has so far attracted 940,000 users....

This document has been written in a way that emphasizes the value of Skype
to people, rather than diving into technical details of Skype. This in turn can
lead the document to be clustered close to topics more related to people, such
as entertainment or politics.

The following is a snippet from the sport-50 document:

Sport-50

IAAF awaits Greek pair's response

Kostas Kenteris and Katerina Thanou are yet to respond to doping charges from the
International Association of Athletics Federations (IAAF).

The Greek pair were charged after missing a series of routine drugs tests in Tel
Aviv, Chicago and Athens. They have until midnight on 16 December and an
IAAF spokesman said: "We're sure their responses are on their way." If they do not
respond or their explanations are rejected, they will be provisionally banned from
competition. They will then face a hearing in front of the Greek Federation,...

Advanced Word2vec

[132]

We can shed some light as to why sport-50 has been clustered far away from the other
sports-related articles. Let's closely look at another document close to sport-50, which is,
entertainment-115:

Entertainment-115

Rapper Snoop Dogg sued for 'rape'

US rapper Snoop Dogg has been sued for $25m (£13m) by a make-up artist who
claimed he and his entourage drugged and raped her two years ago.

The woman said she was assaulted after a recording of the Jimmy Kimmel Live TV
show on the ABC network in 2003. The rapper's spokesman said the allegations
were "untrue" and the woman was "misusing the legal system as a means of
extracting financial gain". ABC said the claims had "no merit". The star has not
been charged by police.

So, the documents around this area seem to be related to various criminal
or illicit charges instead of being about sports or entertainment. This causes
these documents to be clustered far away from other typical sports or
entertainment-related documents.

Implementation – clustering/classification of
documents with K-means
So far, we have been able to visually inspect clusters of documents. However,
this is not enough, because if we have 1,000 more documents that we would like to
cluster/classify, we will have to visually inspect things for 1,000 times. So we need
more automated ways for achieving this.

We can use K-means to cluster these documents. K-means is a simple but powerful
technique used to break data into groups (clusters) based on the similarity of data,
so that similar data will be in the same group and different data will be in different
groups. K-means works in the following way:

1.	 Define K, the number of clusters to be formed. We will set that to 5 since we
already know that there are five categories.

2.	 Form K random centroids, which are the centers of the clusters.
3.	 Then we'll assign each data point to the nearest cluster centroid.
4.	 After assigning all the data points to some cluster, we'll recompute the cluster

centroids (that is, mean of the data points).

Chapter 4

[133]

5.	 We'll continue in this fashion until the centroid movement becomes smaller
than some threshold.

We'll use scikit-learn library to get the K-means algorithm. In code, this looks like
the following:

kmeans = KMeans(n_clusters=5, random_state=43643, max_iter=10000,
 n_init=100, algorithm='elkan')

The most important hyperparameter is n_clusters, which is the number of clusters
we want to form. You can play around with the other hyperparameters to see
what sort of effect they have on the performance. An explanation of the possible
hyperparameters is available at http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html.

Then we can classify the documents we used to train (or any other document) into
classes. We will obtain the following:

Label Documents
0 'entertainment-207', 'entertainment-14',

'entertainment-232', 'entertainment-49',
'entertainment-191', 'entertainment-243',
'entertainment-240'

1 'sport-145', 'sport-228', 'sport-141', 'sport-249'

2 'sport-4', 'sport-43', 'entertainment-54', 'politics-214',
'politics-12', 'politics-165', 'sport-42', 'politics-203',
'politics-87', 'sport-33', 'politics-81', 'politics-247',
'entertainment-245', 'entertainment-22', 'tech-102',
'sport-50', 'politics-33', 'politics-28'

3 'business-220', 'business-208', 'business-51',
'business-30', 'business-130', 'business-190',
'business-34', 'business-206'

4 'business-185', 'business-238', 'tech-105', 'tech-99',
'tech-239', 'tech-227', 'tech-31', 'tech-131', 'tech-118',
'politics-10', 'tech-150', 'tech-165'

It's not perfect, but it does a decent job of classifying documents belonging to
different categories to different labels. We can see that the entertainment-related
documents have the 0 label, the sports-related documents the 1 label, the business-
related documents the 3 label, and so on.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Advanced Word2vec

[134]

In this section, you learned how we can extend word embeddings to classify/cluster
documents. First, you learned word embeddings, as we normally did. Then we
created document embeddings by averaging the word embeddings of all the words
found in that document. Later we used these document embeddings to cluster/
classify some BBC news articles which fall into these categories: entertainment, tech,
politics, business, and sports. After clustering the documents, we saw that documents
were reasonably clustered such that documents belonging to one category were
clustered close to each other. However, there were a few outlier documents. But after
analyzing the textual content of these documents, we saw that there were certain
valid reasons behind these documents behaving in this particular way.

Summary
In this chapter, we examined the performance difference between the skip-gram
and CBOW algorithms. For the comparison, we used a popular two-dimensional
visualization technique, t-SNE, which we also briefly introduced to you, touching
on the fundamental intuition and mathematics behind the method.

Next, we introduced you to the several extensions to Word2vec algorithms that
boost their performance, followed by several novel algorithms that were based on
the skip-gram and CBOW algorithms. Structured skip-gram extends the skip-gram
algorithm by preserving the position of the context word during optimization,
allowing the algorithm to treat input-output based on the distance between them.
The same extension can be applied to the CBOW algorithm, and this results in the
continuous window algorithm.

Then we discussed GloVe—another word embedding learning technique.
GloVe takes the current Word2vec algorithms a step further by incorporating
global statistics into the optimization, thus increasing the performance. Finally,
we discussed a real-world application of using word embeddings—document
clustering/classification. We showed that word embeddings are very powerful
and allow us to cluster related documents together reasonably well.

In the next chapter, we will move onto discuss a different family of deep networks
that are more powerful in exploiting spatial information present in data known as
Convolutional Neural Networks (CNNs). Precisely, we will see how CNNs can be
used to exploit the spatial structure of sentences to classify them into different classes.

[135]

Sentence Classification
with Convolutional

Neural Networks
In this chapter, we will discuss a type of neural networks known as Convolutional
Neural Networks (CNNs). CNNs are quite different from fully connected neural
networks and have achieved state-of-the-art performance in numerous tasks. These
tasks include image classification, object detection, speech recognition, and of course,
sentence classification. One of the main advantages of CNNs is that compared to a
fully connected layer, a convolution layer in a CNN has a much smaller number of
parameters. This allows us to build deeper models without worrying about memory
overflow. Also, deeper models usually lead to better performance.

We will introduce you to what a CNN is in detail by discussing different components
found in a CNN and what makes CNNs different from their fully connected
counterparts. Then we will discuss the various operations used in CNNs, such as the
convolution and pooling operations, and certain hyperparameters related to these
operations, such as filter size, padding, and stride. We will also look at some of the
mathematics behind the actual operations. After establishing a good understanding
of CNNs, we will look at the practical side of implementing a CNN with TensorFlow.
First, we will implement a CNN to classify objects and then use a CNN for sentence
classification.

Sentence Classification with Convolutional Neural Networks

[136]

Introducing Convolution Neural Networks
In this section, you will learn about CNNs. Specifically, you will first get an
understanding of the sort of operations present in a CNN, such as convolution layers,
pooling layers, and fully connected layers. Next, we will briefly see how all of these
are connected to form an end-to-end model. Then we will dive into the details of
each of these operations, define them mathematically, and learn how the various
hyperparameters involved with these operations change the output produced by them.

CNN fundamentals
Now, let's explore the fundamental idea behind a CNN without delving into too
much technical detail. As noted in the preceding paragraph, a CNN is a stack of
layers, such as convolution layers, pooling layers, and fully connected layers. We
will discuss each of these to understand their role in the CNN.

Initially, the input is connected to a set of convolution layers. These convolution
layers slide a patch of weights (sometimes called the convolution window or filter)
over the input and produce an output by means of the convolution operation.
Convolution layers use a small number of weights organized to cover only a small
patch of input in each layer, unlike fully connected neural networks, and these
weights are shared across certain dimensions (for example, the width and height
dimensions of an image). Also, CNNs use the convolution operations to share
the weights form the output by sliding this small set of weights along the desired
dimension. What we ultimately get from this convolution operation is illustrated in
Figure 5.1. If the pattern present in a convolution filter is present in a patch of image,
the convolution will output a high value for that location; if not, it will output a
low value. Also, by convolving the full image, we get a matrix indicating whether
a pattern was present or not in a given location. Finally, we will get a matrix as the
convolution output:

Figure 5.1: What convolution operation does to an image

Chapter 5

[137]

Also, these convolution layers are optionally interleaved with pooling/subsampling
layers, which reduces the dimensionality of the input. While reducing the
dimensionality, we make the translation of CNNs invariant as well as force the CNN
to learn with less information, leading to better generalization and regularization of
the model. The dimensionality is reduced by dividing the input into several patches
and transforming each patch to a single element. For example, such transformations
include picking the maximum element of a patch or averaging all the values in a
patch. We will illustrate how pooling can make the translation of CNNs invariant
in Figure 5.2:

Figure 5.2: How pooling operation helps to make data translation invariant

Here, we have the original image and an image slightly translated on the y axis. We
have convolution output for both images, and you can see that the value 10 appears
at slightly different places in the convolution output. However, using max pooling
(which takes the maximum value of each thick square), we can get the same output
at the end. We will discuss these operations in detail later.

Sentence Classification with Convolutional Neural Networks

[138]

Finally, the output is fed to a set of fully connected layers, which then forward
the output to the final classification/regression layer (for example, sentence/
image classification). Fully connected layers contain a significant fraction of the
total number of weights of the CNN as convolution layers have a small number of
weights. However, it has been found that CNNs perform better with fully connected
layers than without them. This could be because convolution layers learn more
localized features due to small size, whereas fully connected layers provide a global
picture about how these localized features should be connected together to produce
a desirable final output. Figure 5.3 shows a typical CNN used to classify images:

Figure 5.3: A typical CNN architecture

As is evident from the figure, CNNs, by design, preserve the spatial structure of the
inputs during the learning. In other words, for a two-dimensional input, a CNN
will have most of the layers two-dimensional, whereas we have fully connected
layers only close to the output layer. Preserving the spatial structure allows CNNs to
exploit valuable spatial information of the inputs and learn about inputs with fewer
parameters. The value of spatial information is illustrated in Figure 5.4:

Figure 5.4: Unwrapping an image into a one-dimensional vector loses some of the important spatial information

Chapter 5

[139]

As you can see, when a two-dimensional image of a cat is unwrapped to be a
one-dimensional vector, ears are no longer close to the eyes, and the nose is far
away from the eyes as well. This means we have destroyed some of useful spatial
information during the unwrapping.

The power of Convolution Neural Networks
CNNs are a very versatile family of models and have shown a remarkable
performance in many types of tasks. Such versatility is attributed to the ability of
CNNs to perform feature extraction and learning simultaneously, leading to greater
efficiency and generalizability. Let's discuss a few examples of the utility of CNNs.

In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2016, which
involved classifying images, detecting objects, and localizing objects in the image,
CNNs were used to achieve incredible test accuracies. For example, for image-
classification tasks, its test accuracy was approximately 98% for 1,000 different
object classes, which means that the CNN was able to correctly identify around 980
different objects correctly.

CNNs also have been used for image segmentation. Image segmentation involves
segmenting an image into different areas. For example, in an urbanscape image that
includes buildings, a road, vehicles, and passengers, isolating the road from the
buildings is a segmentation task. Moreover, CNNs have made incredible strides,
demonstrating their performance in NLP tasks such as sentence classification, text
generation, and machine translation.

Understanding Convolution Neural
Networks
Now let's walk through the technical details of a CNN. First, we will discuss the
convolution operation and introduce some terminology, such as filter size, stride, and
padding. In brief, filter size refers to the window size of the convolution operation,
stride refers to the distance between two movements of the convolution window, and
padding refers to the way you handle boundaries of the input. We will also discuss
an operation that is known as deconvolution or transposed convolution. Then we will
discuss the details of the pooling operation. Finally, we will discuss how to connect
fully connected layers and the two-dimensional outputs produced by the convolution
and pooling layers and how to use the output for classification or regression.

Sentence Classification with Convolutional Neural Networks

[140]

Convolution operation
In this section, we will discuss the convolution operation in detail. First we will
discuss the convolution operation without stride and padding, next we will describe
the convolution operation with stride, and then we will discuss the convolution
operation with padding. Finally, we will discuss something called transposed
convolution. For all the operations in this chapter, we consider index starting from
one, and not from zero.

Standard convolution operation
The convolution operation is a central part of CNNs. For an input of size n n× and
a weight patch (also known as a filter) of m m× , where n m≥ , the convolution
operation slides the patch of weights over the input. Let's denote the input by X, the
patch of weights by W, and the output by H. Also, at each location ,i j ; the output is
calculated as follows:

, , 1, 1
1 1

1 , 1
m m

i j k l i k j l
k l

h w x where i j n m+ − + −
= =

= ≤ ≤ − +∑∑

Here, xi,j, wi,j, and hi,j denote the value at the (i,j)th location of X, W, and H,
respectively. As already shown by the equation, though the input size is n n× , the
output in this case will be 1 1n m n m− + × − + . Also, m is known as the filter size.
Let's look at this through a visualization (see Figure 5.5):

The output produced by the convolution operation (the rectangle
on the top in Figure 5.5) is sometimes called a features map.

Figure 5.5: The convolution operation with filter size (m) = 3 stride = 1 and no padding

Chapter 5

[141]

Convolving with stride
In the preceding example, we shifted the filter by a single step. However, this is not
mandatory; we can take large steps or strides while convolving the input. Therefore,
the size of the step is known as the stride. Let's modify the previous equation to
include the si and sj strides:

() () () (), , 1 , 1
1 1

1 1 1
i j

m m

i j k l i ji s k j s l
k l

h w x where i floor n m s and floor n m s− × + − × +
= =

 = ≤ ≤ − + − +    ∑∑

In this case, the output will be smaller as the size of si and sj increases. Comparing
Figure 5.5 (stride = 1) and Figure 5.6 (stride = 2) illustrates the effect of different strides:

Figure 5.6: The convolution operation with a filter size (m) = 2 stride = 2 and no padding

As you can see, doing convolution with stride helps to
reduce the dimensionality of the input similar to a pooling
layer. Therefore, sometimes convolution with strides are
used instead of pooling in the CNNs as it reduces the
computational complexity.

Sentence Classification with Convolutional Neural Networks

[142]

Convolving with padding
The inevitable output size reduction resulting from each convolution (without
stride) is an undesirable property. This greatly limits the number of layers we can
have in a network. Also, it is known that deeper networks perform better than
shallow networks. This should not be confused with the dimensionality reduction
achieved by stride, as this is a design choice and we can decide to have a stride of 1
if necessary. Therefore, padding is used to circumvent this issue. This is achieved by
padding zeros to the boundary of the input so that the output size and the input size
are equal. Let's assume a stride of 1:

() (), , 1 , 1
1 1

1 ,
m m

i j k l i k m j l m
k l

h w x where i j n+ − − + − −
= =

= ≤ ≤∑∑

Here:

, 0 , 1 ,i jx if i j or i j n= < >

Figure 5.7 depicts the result of the padding:

Figure 5.7: Convolution operation with a filter size (m=3), stride (s=1), and zero padding

Chapter 5

[143]

Transposed convolution
Though the convolution operation looks complicated in terms of mathematics,
it can be simplified to a matrix multiplication. For this reason, we can define the
transpose of the convolution operation or deconvolution, as it is sometimes called.
However, we will use the term transposed convolution as it sounds more natural. In
addition, deconvolution refers to a different mathematical concept. The transposed
convolution operation plays an important role in CNNs for the reverse accumulation
of the gradients during backpropagation. Let's go through an example.

For an input of size n n× and a weight patch, or filter, m m× , where n m≥ , the
convolution operation slides the patch of weights over the input. Let's denote the
input by X, the patch of weights by W, and the output by H. The output h can be
calculated as a matrix multiplication as follows.

Let's assume 4n = and 3m = for clarity and unwrap the input X from left to right,
top to bottom, resulting in this:

()16,1
1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 4,1 4,2 4,3 4,4, , , , , , , , , , , ,x x x x x x x x x x x x x= …

Let's define a new matrix A from W:

()

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,34,16

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

w w w w w w w w w
w w w w w w w w w

A
w w w w w w w w w

w w w w w w w w w

 
 
 
 =  
 
 
  

Then, if we perform the following matrix multiplication, we obtain H:

() () ()4,1 4,16 16,1H A X=

Now, by reshaping the output ()4,1H to ()2,2H we obtain the convolved output. Now
let's project this result back to n and m:

Sentence Classification with Convolutional Neural Networks

[144]

By unwrapping the input (),n nX to ()2 ,1nX and by creating a matrix
()()2 21 ,n m nA − +

from w, as we showed earlier, we obtain ()()21 ,1n m

H
− + , which will then be reshaped

to ()1, 1n m n mH − + − + .

Next, to obtain the transposed convolution, we simply transpose A and arrive at the
following:

() () ()() ()()2 222 , 1 1 ,1,1ˆ n n m n mn TX A H
− + − +

=

Here, X̂ is the resultant output of the transposed convolution.

We end our discussion about the convolution operation here. We discussed the
convolution operation, convolution operation with stride, convolution operation
with padding, and how to calculate the transposed convolution. Next we will discuss
the pooling operation in more detail.

Pooling operation
The pooling operation, which is sometimes known as the subsampling operation,
was introduced to CNNs mainly for reducing the size of the intermediate outputs
as well as for making the translation of CNNs invariant. This is preferred over the
natural dimensionality reduction caused by convolution without padding, as we
can decide where to reduce the size of the output with the pooling layer, in contrast
to forcing it to happen every time. Forcing the dimensionality to decrease without
padding would strictly limit the number of layers we can have in our CNN models.

We define the pooling operation mathematically in the following sections. More
precisely, we will discuss two types of pooling: max pooling and average pooling.
First, however, we will define the notation. For an input of size n n× and a kernel
(analogous to the filter of convolution layer) of size m m× , where n m≥ , the
convolution operation slides the patch of weights over the input. Let's denote the
input by x, the patch of weights by w and the output by h.

Chapter 5

[145]

Max pooling
The max pooling operation picks the maximum element within the defined kernel
of an input to produce the output. The max pooling operation shifts are windows
over the input (the middle squares in Figure 5.8) and take the maximum at each time.
Mathematically, we define the pooling equation as follows:

{ }(), , , 1 , 1 1, 1, 1 1, 1, 1max , , , , , , , , , , 1 , 1i j i j i j i j m i j i j m i m j i m j mh x x x x x x x where i j n m+ + − + + + − + − + − + −= ≤ ≤ − +… … … …

Figure 5.8 shows this operation:

Figure 5.8: The max pooling operation with a filter size of 3, stride 1 and no padding

Max pooling with stride
Max pooling with stride is similar to convolution with stride. Here is the equation:

() () () () () () () () () () () () () (){ }(), -1 1, 1 1, 1 1, 1 2 -1 1, 1 1 2, 1 1 1 2, 1 1 , 1 1 1 , 1, , , , , , , , ,
i j j j i j i j i j i j i ji j i s j s i s j s i s j s m i s j s i s j s m i s m j s i s m j s mh max x x x x x x x× + − × + − × + − × + × + − × + − × + − × + − × + − × + − × + − × + − × + − × += … … … …

() ()1 1 1 1i iwhere i floor n m s and j floor n m s≤ ≤ − + ≤ ≤ − +      

Sentence Classification with Convolutional Neural Networks

[146]

Figure 5.9 shows the result:

Figure 5.9: Max pooling operation for an input of size (n=4) with a filter
size of (m=2), stride (s=2) and no padding

Average pooling
Average pooling works similar to max pooling, except that instead of only taking the
maximum, the average of all the inputs falling within the kernel is taken. Consider
the following equation:

, , 1 , 1 1, 1, 1 1, 1, 1
,

, , , , , , , , , ,
1, 1i j i j i j m i j i j m i m j i m j m

i j

x x x x x x x
h i j n m

m m
+ + − + + + − + − + − + −= ∀ ≥ ≤ − +

×

… … … …

The average pooling operation is shown in Figure 5.10:

Figure 5.10: Average pooling operation for an input of size (n=4) with
a filter size of (m=2), stride (s=1) and no padding

Chapter 5

[147]

Fully connected layers
Fully connected layers are a fully connected set of weights from the input to the
output. These fully connected weights are able to learn global information as they
are connected from each input to each output. Also, having such layers of full
connectedness allows us to combine features learned by the convolution layers
preceding the fully connected layers, globally, to produce meaningful outputs.

Let's define the output of the last convolution or pooling layer to be of size p o d× × ,
where p is the height of the input, o is the width of the input, and d is the depth of the
input. As an example, think of an RGB image, which will have a fixed height, fixed
width, and a depth of 3 (one depth channel for each RGB component).

Then, for the initial fully connected layer found immediately after the last
convolution or pooling layer, the weight matrix will be (),m p o dw × × , where height x
width x depth of the layer output is the number of output units produced by that last
layer and m is the number of hidden units in the fully connected layer. Then, during
inference (or prediction), we reshape the output of the last convolution/pooling
layer to be of size (),1p o d× × and perform the following matrix multiplication to
obtain h:

() () ()1 , ,1m m p o d p o dh w x× × × × ×=

The resultant fully connected layers will behave as in a fully connected neural
network, where you have several fully connected layers and an output layer. The
output layer can be a softmax classification layer for a classification problem or a
linear layer for a regression problem.

Putting everything together
Now we will discuss how the convolutional, pooling, and fully connected layers
come together to form a complete CNN.

Sentence Classification with Convolutional Neural Networks

[148]

As shown in Figure 5.11, the convolution, pooling, and fully connected layers come
together to form an end-to-end learning model that takes raw data, which can be
high-dimensional (for example, RGB images) and produce meaningful output (for
example, class of the object). First, the convolution layers learn spatial features of
the images. The lower convolution layers learn low-level features such as differently
oriented edges present in the images, and the higher layers learn more high-level
features such as shapes present in the images (for example, circles and triangles)
or bigger parts of an object (for example, the face of a dog, tail of a dog, and front
section of a car). The pooling layers in the middle make each of these learned
features slightly translation invariant. This means that in a new image even if the
feature appears a bit offset compared to the location in which the feature appeared
in the learned images, the CNN will still recognize that feature. Finally, the fully
connected layers combine the high-level features learned by the CNN to produce
global representations that will be used by the final output layer to determine the
class the object belongs to:

Figure 5.11: Combining convolution layers, pooling layers, and fully connected layers to form a CNN

Exercise – image classification on MNIST
with CNN
This will be our first example of using a CNN for a real-world machine learning task.
We will classify images using a CNN. The reason for not starting with an NLP task
is that applying CNNs to NLP tasks (for example, sentence classification) is not very
straightforward. There are several tricks involved in using CNNs for such a task.
However, originally, CNNs were designed to cope with image data. Therefore, let's
start there and then find our way through to see how CNNs apply to NLP tasks.

Chapter 5

[149]

About the data
In this exercise, we will use a dataset well-known in the computer vision
community: the MNIST dataset. The MNIST dataset is a database of labeled images
of handwritten digits from 0 to 9. The dataset contains three different subdatasets:
the training, validation, and test sets. We will train on the training set and evaluate
the performance of our model on the unseen test dataset. We will use the validation
dataset to improve the performance of the model and use this as a monitoring
mechanism for our model. We will discuss the details later. This is one of the easiest
tasks in image classification and can be solved fairly well with a simple CNN. We
will see that we can reach up to approximately 98% test accuracy without any special
regularization or tricks.

Implementing the CNN
In this subsection, we will look at some important code snippets from the
TensorFlow implementation of the CNN. The full code is available in image_
classification_mnist.ipynb in the ch5 folder. First, we will define the
TensorFlow placeholders for feeding inputs (images) and outputs (labels). Then we
will define a global step, which will then be used to decay the learning rate:

Inputs and Outputs Placeholders
tf_inputs = tf.placeholder(shape=[batch_size, image_size, image_size,
n_channels],dtype=tf.float32,name='tf_mnist_images')
tf_labels = tf.placeholder(shape=[batch_size, n_classes],dtype=tf.
float32,name='tf_mnist_labels')

Global step for decaying the learning rate
global_step = tf.Variable(0,trainable=False)

Next, we will define the TensorFlow variables, which are the convolution weights
and biases and fully connected weights. We will define the filter size, stride, and
padding for each convolution layer, kernel size, stride and padding for each pooling
layer, and the number of output units for each fully connected layer in a Python
dictionary called layer_hyperparameters:

Initializing the variables
layer_weights = {}
layer_biases = {}
for layer_id in cnn_layer_ids:
 if 'pool' not in layer_id:
 layer_weights[layer_id] =
tf.Variable(initial_value=tf.random_normal(shape=layer_
hyperparameters[layer_id]['weight_shape'],
stddev=0.02,dtype=tf.float32),name=layer_id+'_weights')

Sentence Classification with Convolutional Neural Networks

[150]

layer_biases[layer_id] = tf.Variable(initial_value=tf.random_
normal(shape=[layer_hyperparameters[layer_id]['weight_shape'][-1]],
stddev=0.01,dtype=tf.float32), name=layer_id+'_bias')

We will also define the logit calculation. Logits are the value of the output layer
before applying the softmax activation. To calculate this, we will iterate through
each layer.

For each convolution layer, we will convolve the input using this:

h = tf.nn.conv2d(h,layer_weights[layer_id],layer_
hyperparameters[layer_id]['stride'],
layer_hyperparameters[layer_id]['padding']) + layer_biases[layer_id]

Here, the input h to tf.nn.conv2d is replaced with tf_inputs for the very first
convolution. Remember that we discussed each of the arguments we feed to tf.nn.
conv2d in detail in Chapter 2, Understanding TensorFlow. However, we will briefly
revisit the arguments of tf.nn.conv2d. Also, tf.nn.conv2d(input, filter,
strides, padding) takes the following argument values in that order:

•	 input: This is the input to convolve, having the shape [batch size, input
height, input width, input depth]

•	 filter: This is the convolution filter we convolve the input with and has the
shape [filter height, filter width, input depth, output depth]

•	 strides: This denotes the stride on each dimension of the input and has the
shape [batch stride, height stride, width stride, depth stride]

•	 padding: This denotes the type of padding (can be 'SAME' or 'VALID')

We also apply a nonlinear activation as follows:

h = tf.nn.relu(h)

Then, for each pooling layer, we subsample the input with this:

h = tf.nn.max_pool(h, layer_hyperparameters[layer_id]['kernel_
shape'],layer_hyperparameters[layer_id]['stride'],
layer_hyperparameters[layer_id]['padding'])

The tf.nn.max_pool(input, ksize, strides, padding) function takes the
following arguments in that order:

•	 input: This is the input to subsample, having the shape [batch size,
input height, input width, input depth]

•	 ksize: This is the kernel size on each dimension for the max pooling
operation [batch kernel size, height kernel size, width kernel
size, depth kernel size]

Chapter 5

[151]

•	 strides: This is the stride on each dimension of the input [batch stride,
height stride, width stride, depth stride]

•	 padding: This can be 'SAME' or 'VALID'

Next, for the first fully connected layer, we reshape the output:

h = tf.reshape(h,[batch_size,-1])

Then we will perform the weight multiplication and the bias addition followed by
the nonlinear activation:

h = tf.matmul(h,layer_weights[layer_id]) + layer_biases[layer_id]
h = tf.nn.relu(h)

Now, we can calculate the logits:

h = tf.matmul(h,layer_weights[layer_id]) + layer_biases[layer_id]

We will assign the very last value of h (output of the very last layer) to tf_logits
using this:

tf_logits = h

Next, we will define the softmax cross-entropy loss, which is a popular loss function
for supervised classification tasks:

tf_loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=tf_
logits,labels=tf_labels)

We also need to define a learning rate where we will decrease the learning rate by
a factor of 0.5 whenever the validation accuracy has not increased for a predefined
number of epochs (an epoch is a single traverse through the full dataset). This is
known as the learning rate decay:

tf_learning_rate = tf.train.exponential_decay(learning_
rate=0.001,global_step=global_step,decay_rate=0.5,decay_
steps=1,staircase=True)

Next, we will define the loss minimization using an optimizer known as
RMSPropOptimizer, which has been found to perform better than the conventional
Stochastic Gradient Descent (SGD), especially in compute vision:

tf_loss_minimize = tf.train.RMSPropOptimizer(learning_rate=tf_
learning_rate, momentum=0.9).minimize(tf_loss)

Finally, to calculate the accuracy of the predictions by comparing the predicted labels
to actual labels, we will define the following prediction calculation function:

tf_predictions = tf.nn.softmax(tf_logits)

Sentence Classification with Convolutional Neural Networks

[152]

You just finished learning about the functions that we used to create our first CNN.
You learned to use the functions to implement the CNN structure as well as define
the loss, minimizing the loss, and getting the predictions to unseen data. We used
a simple CNN to see if it could learn to classify handwritten images. Also, we were
able to achieve an accuracy above 98% with a reasonabley simple CNN. Next we
will analyze some of the results produced by the CNN. We will see why the CNN
couldn't recognize some of the images correctly.

Analyzing the predictions produced with
a CNN
Here, we can randomly pick some correctly and incorrectly classified samples from
the test set to evaluate the learning power of CNNs (see Figure 5.12). We can see that
for the correctly classified instances, the CNN is very confident about the output,
which can be seen as a good property of a learning algorithm. However, when we
evaluate the incorrectly classified examples, we can see that they are in fact difficult,
and even a human can get some of them wrong (for example, the third image
from the left in the second row). For the incorrect samples, the CNN often is not as
confident as it is for the correct samples, which again is a good characteristic. Also,
even though the highest confidence answer is wrong for the misclassified ones, the
correct label is often not completely ignored and given some recognition in terms of
the value of the prediction:

Figure 5.12: MNIST correctly classified and misclassified instances

Chapter 5

[153]

Using CNNs for sentence classification
Though CNNs have mostly been used for computer vision tasks, nothing stops them
from being used in NLP applications. One such application for which CNNs have
been used effectively is sentence classification.

In sentence classification, a given sentence should be classified to a class. We will use
a question database, where each question is labeled by what the question is about.
For example, the question "Who was Abraham Lincoln?" will be a question and its
label will be Person. For this we will use a sentence classification dataset available at
http://cogcomp.org/Data/QA/QC/; here you will find 1,000 training sentences and
their respective labels and 500 testing sentences.

We will use the CNN network introduced in the paper by Yoon Kim, Convolutional
Neural Networks for Sentence Classification, to understand the value of CNNs for NLP
tasks. However, using CNNs for sentence classification is somewhat different from
the MNIST example we discussed, because operations (for example, convolution and
pooling) now happen in one dimension rather than two dimensions. Furthermore,
the pooling operations will also have certain differences from the normal pooling
operation, as we will see soon. You can find the code for this exercise in the cnn_
sentence_classification.ipynb file in the ch5 folder.

CNN structure
Now we will discuss the technical details of the CNN used for sentence classification.
First, we will discuss how data or sentences are transformed to a preferred format
that can easily be dealt with by CNNs. Next, we will discuss how the convolution
and pooling operations are adapted for sentence classification, and finally, we will
discuss how all these components are connected.

Data transformation
Let's assume a sentence of p words. First, we will pad the sentence with some special
word (if the length of the sentence is < n) to set the sentence length to n words,
where n p≥ . Next, we will represent each word in the sentence by a vector of size k,
where this vector can either be a one-hot-encoded representation, or Word2vec word
vectors learnt using skip-gram, CBOW, or GloVe. Then a batch of sentences of size b
can be represented by a b n k× × matrix.

Let's walk through an example. Let's consider the following three sentences:

•	 Bob and Mary are friends.
•	 Bob plays soccer.
•	 Mary likes to sing in the choir.

http://cogcomp.org/Data/QA/QC/

Sentence Classification with Convolutional Neural Networks

[154]

In this example, the third sentence has the most words, so let's set 7n = , which is
the number of words in the third sentence. Next, let's look at the one-hot-encoded
representation for each word. In this case, there are 13 distinct words. Therefore, we
get this:

Bob: 1,0,0,0,0,0,0,0,0,0,0,0,0

and: 0,1,0,0,0,0,0,0,0,0,0,0,0

Mary: 0,0,1,0,0,0,0,0,0,0,0,0,0

Also, 13k = for the same reason. With this representation, we can represent the three
sentences as a three-dimensional matrix of size 3 7 13× × , as shown in Figure 5.13:

Figure 5.13: A sentence matrix

The convolution operation
If we ignore the batch size, that is, if we assume that we are only processing a
single sentence at a time, our data is a n k× matrix, where n is the number of words
per sentence after padding, and k is the dimension of a single word vector. In our
example, this would be 7 13× .

Chapter 5

[155]

Now we will define our convolution weight matrix to be of size m k× , where m is
the filter size for a one-dimensional convolution operation. By convolving the input x
of size n k× with a weight matrix W of size m k× , we will produce an output of h of
size 1 n× as follows:

,1 , 1,
1 1

m k

i j l i j l
j l

h w x + −
= =

=∑∑

Here, wi,j is the (i,j)th element of W and we will pad x with zeros so that h is of size
1 n× . Also, we will define this operation more simply, as shown here:

h W x b= ∗ +

Here, * defines the convolution operation (with padding) and we will add an
additional scalar bias b. Figure 5.14 illustrates this operation:

Figure 5.14: A convolution operation for sentence classification

Sentence Classification with Convolutional Neural Networks

[156]

Then, to learn a rich set of features, we have parallel layers with different
convolution filter sizes. Each convolution layer outputs a hidden vector of size 1 n× ,
and we will concatenate these outputs to form the input to the next layer of size
q n× , where q is the number of parallel layers we will use. The larger q is, the better
the performance of the model.

The value of convolving can be understood in the following manner. Think about the
movie rating learning problem (with two classes, positive or negative), and we have
the following sentences:

•	 I like the movie, not too bad
•	 I did not like the movie, bad

Now imagine a convolution window of size 5. Let's bin the words according to the
movement of the convolution window.

The sentence I like the movie, not too bad gives:

[I, like, the, movie, ',']

[like, the, movie, ',', not]

[the, movie, ',', not, too]

[movie, ',', not, too, bad]

The sentence I did not like the movie, bad gives the following:

[I, did, not, like, the]

[did, not ,like, the, movie]

[not, like, the, movie, ',']

[like, the, movie, ',', bad]

Chapter 5

[157]

For the first sentence, windows such as the following convey that the rating is
positive:

[I, like, the, movie, ',']

[movie, ',', not, too, bad]

However, for the second sentence, windows such as the following convey negativity
in the rating:

[did, not, like, the, movie]

We are able to see such patterns that help to classify ratings thanks to the preserved
spatiality. For example, if you use a technique such as bag-of-words to calculate
sentence representations that lose spatial information, the sentence representations
would be highly similar. The convolution operation plays an important role in
preserving spatial information of the sentences.

Having q different layers with different filter sizes, the network learns to extract the
rating with different size phrases, leading to an improved performance.

Pooling over time
The pooling operation is designed to subsample the outputs produced by the
previously discussed parallel convolution layers. This is achieved as follows.

Let's assume the output of the last layer h is of size q n× . The pooling over time layer
would produce an output h' of size 1q× output. The precise calculation would be as
follows:

()(){ },1 1i
ih max h where i q′ = ≤ ≤

Sentence Classification with Convolutional Neural Networks

[158]

Here, () ()i ih W x b= ∗ + and h(i) is the output produced by the thi convolution layer
and ()iW is the set of weights belonging to that layer. Simply put, the pooling over
time operation creates a vector by concatenating the maximum element of each
convolution layer. We will illustrate this operation in Figure 5.15:

Figure 5.15: The pooling over time operation for sentence classification

By combining these operations, we finally arrive at the architecture shown
in Figure 5.16:

Chapter 5

[159]

5.16: A sentence classification CNN architecture

Implementation – sentence classification
with CNNs
First, we will define the inputs and outputs. The input will be a batch of sentences,
where the words are represented by one-hot-encoded word vectors—word
embeddings will deliver even better performance than the one-hot-encoded
representations; however, we will use the one-hot-encoded representation for
simplicity:

sent_inputs = tf.placeholder(shape=[batch_size,sent_length,vocabulary_
size],dtype=tf.float32,name='sentence_inputs')
sent_labels = tf.placeholder(shape=[batch_size,num_classes],dtype=tf.
float32,name='sentence_labels')

Sentence Classification with Convolutional Neural Networks

[160]

Here, we will define three different one-dimensional convolution layers with three
different filter sizes of 3, 5, and 7 (provided as a list in filter_sizes) and their
respective biases:

w1 = tf.Variable(tf.truncated_normal([filter_sizes[0],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_1')
b1 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_1')

w2 = tf.Variable(tf.truncated_normal([filter_sizes[1],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_2')
b2 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_2')

w3 = tf.Variable(tf.truncated_normal([filter_sizes[2],vocabulary_
size,1],stddev=0.02,dtype=tf.float32),name='weights_3')
b3 = tf.Variable(tf.random_uniform([1],0,0.01,dtype=tf.
float32),name='bias_3')

Now we will calculate three outputs, each belonging to a single convolution layer,
as we just defined. This can easily be calculated with the tf.nn.conv1d function
provided in TensorFlow. We use a stride of 1 and zero padding to ensure that the
outputs will have the same size as the input:

h1_1 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w1,stride=1,padding='SAME'
) + b1)
h1_2 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w2,stride=1,padding='SAME'
) + b2)
h1_3 = tf.nn.relu(tf.nn.conv1d(sent_inputs,w3,stride=1,padding='SAME'
) + b3)

For calculating max pooling over time, we need to write the elementary functions to
do that in TensorFlow, as TensorFlow does not have a native function that does this
for us. However, it is quite easy to write these functions.

First, we will calculate the maximum value of each hidden output produced by each
convolution layer. This results in a single scalar for each layer:

h2_1 = tf.reduce_max(h1_1,axis=1)
h2_2 = tf.reduce_max(h1_2,axis=1)
h2_3 = tf.reduce_max(h1_3,axis=1)

Then we will concatenate the produced outputs on axis 1 (width) to produce an
output of size batchsize q× :

h2 = tf.concat([h2_1,h2_2,h2_3],axis=1)

Chapter 5

[161]

Next, we will define the fully connected layers, which will be fully connected to the
output batchsize q× produced by the pooling over time layer. There is only one fully
connected layer in this case and this will also be our output layer:

w_fc1 = tf.Variable(tf.truncated_normal([len(filter_sizes),num_
classes],stddev=0.5,dtype=tf.float32),name='weights_fulcon_1')
b_fc1 = tf.Variable(tf.random_uniform([num_classes],0,0.01,dtype=tf.
float32),name='bias_fulcon_1')

The function defined here will produce the logits that are then used to calculate the
loss of the network:

logits = tf.matmul(h2,w_fc1) + b_fc1

Here, by applying the softmax activation to the logits, we will obtain the predictions:

predictions = tf.argmax(tf.nn.softmax(logits),axis=1)

Also, we will define the loss function, which is the cross-entropy loss:

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_
v2(labels=sent_labels,logits=logits))

To optimize the network, we will use a TensorFlow built-in optimizer called
MomentumOptimizer:

optimizer = tf.train.MomentumOptimizer(learning_
rate=0.01,momentum=0.9).minimize(loss)

Running these preceding defined operations to optimize the CNN and evaluate
the test data as given in the exercise, gives us a test accuracy close to 90% (500 test
sentences) in this sentence classification task.

Here we end our discussion about using CNNs for sentence classification. We
first discussed how one-dimensional convolution operations combined with a
special pooling operation called pooling over time can be used to implement a
sentence classifier based on the CNN architecture. Finally, we discussed how to
use TensorFlow to implement such a CNN and saw that it in fact performs well in
sentence classification.

It can be useful to know how the problem we just solved can be useful in the real
world. Assume that you have a large document about the history of Rome in your
hand, and you want to find out about Julius Caesar without reading the whole
document. In this situation, the sentence classifier we just implemented can be used
as a handy tool to summarize the sentences that only correspond to a person, so you
don't have to read the whole document.

Sentence Classification with Convolutional Neural Networks

[162]

Sentence classification can be used for many other tasks as well; one common use
of this is classifying movie reviews as positive or negative, which is useful for
automating computation of movie ratings. Another important application of sentence
classification can be seen in the medical domain, which is extracting clinically useful
sentences from large documents containing large amounts of text.

Summary
In this chapter, we discussed CNNs and their various applications. First, we went
through a detailed explanation about what CNNs are and their ability to excel at
machine learning tasks. Next we decomposed the CNN into several components,
such as convolution and pooling layers, and discussed in detail how these operators
work. Furthermore, we discussed several hyperparameters that are related to these
operators such as filter size, stride, and padding. Then, to illustrate the functionality
of CNNs, we walked through a simple example of classifying images of handwritten
digits to the corresponding image. We also did a bit of analysis to see why the CNN
fails to recognize some images correctly. Finally, we started talking about how CNNs
are applied for NLP tasks. Concretely, we discussed an altered architecture of CNNs
that can be used to classify sentences. We then implemented this particular CNN
architecture and tested it on an actual sentence classification task.

In the next chapter, we will move on to one of the most popular types of neural
networks used for many NLP tasks—Recurrent Neural Networks (RNNs).

[163]

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a special family of neural networks that are
designed to cope with sequential data (that is, time series data), such as a sequence
of texts (for example, variable length sentence or a document) or stock market
prices. RNNs maintain a state variable that captures the various patterns present
in sequential data; therefore, they are able to model sequential data. For example,
conventional feed-forward neural networks do not have this ability unless the data
is represented with a feature representation that captures the important patterns
present in the sequence. However, coming up with such feature representations is
extremely difficult. Another alternative for feed-forward models to model sequential
data is to have a separate set of parameters for each position in time/sequence. So
that the set of parameters assigned to a certain position learns about the patterns
that occur at that position. This will greatly increase the memory requirement for
your model.

However, as opposed to having a separate set of parameters for each position like
feed-forward networks, RNNs share the same set of parameters over time. Sharing
parameters over time is an important part of RNNs and in fact is one of the main
enablers for learning temporal patterns. Then the state variable is updated over
time for each input we observe in the sequence. These parameters shared over time,
combined with the state vector, are able to predict the next value of a sequence, given
the previously observed values of the sequence. Furthermore, since we process a
single element of a sequence at a time (for example, one word in a document at a
time), RNNs can process data of arbitrary lengths without padding data with
special tokens.

Recurrent Neural Networks

[164]

In this chapter, we will dive into the details of RNNs. First, we will discuss how an
RNN can be formed by starting with a simple feed-forward model. After this we will
discuss the basic functionality of an RNN. We also will delve into the underlying
equations, such as output calculation and parameter update rules of RNNs, and
discuss several variants of applications of RNNs: one-to-one, one-to-many, and
many-to-many RNNs. We will walk through an example of using RNNs to generate
new text based on a collection of training data and will also discuss some of the
limitations of RNNs. After computing and evaluating the generated text, we will
discuss a better extension of RNNs, known as the RNN-CF, that remembers longer
compared with conventional RNNs.

Understanding Recurrent Neural
Networks
In this section, we will discuss what an RNN is by starting with a gentle
introduction, and then move on to more in-depth technical details. We mentioned
earlier that RNNs maintain a state variable which evolves over time as the RNN is
seeing more data, thus giving the power to model sequential data. In particular, this
state variable is updated over time by a set of recurrent connections. Existence of
recurrent connections is the main structural difference between an RNN and a feed-
forward network. The recurrent connections can be understood as links between a
series of memory RNN learned in the past, connecting to the current state variable
of the RNN. In other words, the recurrent connections update the current state
variable with respect to the past memory the RNN has, enabling the RNN to make a
prediction based on the current input as well as the previous inputs.

In the upcoming section, we will discuss the following things. First, we will discuss
how we can start with representing a feed-forward network as a computational
graph. Then we will see through an example why a feed-forward network might fail
at a sequential task. Then we will adapt that feed-forward graph to model sequential
data, which will give us the basic computational graph of an RNN. We will also
discuss the technical details (for example, update rules) of an RNN. Finally, we will
discuss the details of how we can train RNN models.

Chapter 6

[165]

The problem with feed-forward neural
networks
To understand the limits of feed-forward neural networks and how RNNs address
them, let's imagine a sequence of data:

{ } { }1 2 1 2, , , , ,T Tx x x x y y y y= =… …

Next, let's assume that, in the real world, x and y are linked in the following
relationship:

()1 1,t t th g x h−=

()2t ty g h=

Here, g1 and g2 are some functions. This means that the current output yt depends on
the current state ht for some state belonging to the model that outputs x and y. Also,
ht is calculated with the current input xt and previous state ht-1. The state encodes
information about previous inputs observed in the history by the model.

Now, let's imagine a simple feed-forward neural network, which we will represent
by the following:

();t ty f x θ=

Here, yt is the predicted output for some input xt.

If we use a feed-forward neural network to solve this task, the network will have to
produce { }1 2, , , Ty y y… one at a time, by taking { }1 2, , , Tx x x… as inputs. Now, let's
consider the problem we face in this solution for a time-series problem.

The predicted output yt at time t of a feed-forward neural network depends only on
the current input xt. In other words, it does not have any knowledge about the inputs
that led to xt (that is, { }1 2 1, , , tx x x −…). For this reason, a feed-forward neural network
will fail at a task, where the current output not only depends on the current input but
also on the previous inputs. Let's understand this through an example.

Recurrent Neural Networks

[166]

Say we need to train a neural network to fill missing words. We have the following
phrase, and we would like to predict the next word:

James had a cat and it likes to drink ____.

If we are to process one word at a time and use a feed-forward neural network, we
will only have the input drink and this is not enough at all to understand the phrase
or even to understand the context (the word drink can appear in many different
contexts). One can argue that we can achieve good results by processing the full
sentence at a single go. Even though this is true, such an approach has limitations,
such as it will quickly become impractical for very long sentences.

Modeling with Recurrent Neural Networks
On the other hand, we can use an RNN to find a solution to this problem. We will
start with the data we have:

{ } { }1 2 1 2, , , , , , ,T Tx x x x y y y y= =… …

Assume that we have the following relationship:

()1 1,t t th g x h−=

()2t ty g h=

Now, let's replace g1 with a function approximator ()1 1, ;t tf x h θ− parametrized by θ that
takes the current input xt and the previous state of the system ht-1 as the input and
produces the current state ht. Then, we will replace g2 with ()2 ;tf h ϕ , which takes the
current state of the system ht to produce yt. This gives us the following:

()1 1, ;t t th f x h θ−=

()2 ;t ty f h ϕ=

We can think of 1 2f f� as an approximation of the true model that generates x and y.
To understand this more clearly, let's now expand the equation as follows:

()()2 1 1, ; ;t t ty f f x h θ ϕ−=

Chapter 6

[167]

For example, we can represent y4 as follows:

()()4 2 1 4 3y f f x ,h ; ;ϕ= θ

Also, by expansion we get the following (omitting θ and φ for clarity):

()()()()()()()4 2 1 4 2 1 3 2 1 2 2 1 1 0y f f x , f f x , f f x , f f x , h =   

This can be illustrated in a graph, as shown in Figure 6.1:

Figure 6.1: The relationship between xt and yt expanded

We can generally summarize the diagram, for any given time step t, as shown in
Figure 6.2:

Figure 6.2: A single-step calculation of an RNN structure

Recurrent Neural Networks

[168]

However, it should be understood that ht-1 in fact is what ht was before receiving xt. In
other words, ht-1 is ht before one time step. Therefore, we can represent the calculation
of ht with a recurrent connection, as shown in Figure 6.3:

Figure 6.3: A single-step calculation of an RNN with the recurrent connection

The ability to summarize a chain of equations mapping { }1 2, , , Tx x x… to
{ }1 2, , , Ty y y… as in Figure 6.3 allows us to write any yt in terms of xt, ht-1, and ht. This
is the key idea behind an RNN.

Technical description of a Recurrent Neural
Network
Let's now have an even closer look at what makes an RNN and define the
mathematical equations for the calculations taking place within an RNN. Let's start
with the two functions we derived as function approximators for learning yt from xt:

()t 1 t t-1h f x ,h ;= θ

()t 2 ty f h ;ϕ=

Chapter 6

[169]

As we have seen, a neural network is composed of a set of weights and biases and
some nonlinear activation function. Therefore, we can write the preceding relation as
shown here:

()t t t-1h tanh Ux Wh= +

Here, tanh is the tanh activation function, and U is a weight matrix of size m d× ,
where m is the number of hidden units and d is the dimensionality of the input. Also,
W is a weight matrix of size m m× that creates the recurrent link from ht-1 to ht. The yt
relation is given by the following equation:

()t ty softmax Vh=

Here, V is a weight matrix of size c m× and c is the dimensionality of the output
(can be the number of output classes). In Figure 6.4, we illustrate how these weights
form an RNN:

Figure 6.4: The structure of an RNN

So far, we have seen how we can represent an RNN with a graph of computational
nodes, with edges denoting computations. Also, we looked at the actual mathematics
behind an RNN. Let's now look at how to optimize (or train) the weights of an RNN
to learn from sequential data.

Recurrent Neural Networks

[170]

Backpropagation Through Time
For training RNNs, a special form of backpropagation, known as Backpropagation
Through Time (BPTT), is used. To understand BPTT, however, first we need to
understand how backpropagation (BP) works. Then we will discuss why BP cannot
be directly applied to RNNs, but how BP can be adapted to RNNs, resulting in BPTT.
Finally, we will discuss two major problems present in BPTT.

How backpropagation works
Backpropagation is the technique that is used to train a feed-forward neural network.
In backpropagation, you do the following:

1.	 Calculate a prediction for a given input
2.	 Calculate an error, E, of the prediction by comparing it to the actual label of

the input (for example, mean squared error and cross-entropy loss)
3.	 Update the weights of the feed-forward network to minimize the loss

calculated in step 2, by taking a small step in the opposite direction of the
gradient / ijE w∂ ∂ for all wij, where wij is the jth weight of ith layer

To understand more clearly, consider the feed-forward network depicted in Figure 6.5.
This has two single weights, w1 and w2, and calculates two outputs, h and y, as shown
in the following figure. We assume no nonlinearities in the model for simplicity:

Figure 6.5: Computations of a feed-forward network

Chapter 6

[171]

We can calculate
1

E
w
∂
∂ using the chain rule as follows:

1 1

E L y h
w y h w
∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

This simplifies to the following:

() () ()2
2 1

1 1

y l w h w xE
w y h w

∂ − ∂ ∂∂
=

∂ ∂ ∂ ∂

Here, l is the correct label for the data point x. Also, we are assuming the mean
squared error as the loss function. Everything here is defined, and it is quite

straightforward to calculate
1

E
w
∂
∂ .

Why we cannot use BP directly for RNNs
Now, let's try the same for the RNN in Figure 6.6. Now we have an additional
recurrent weight w3. We have omitted time components of inputs and outputs for the
clarity of the problem we are trying to emphasize:

Figure 6.6: Computations of an RNN

Let's see what happens if we apply the chain rule to calculate
3

E
w
∂
∂ :

3 3

E L y h
w y h w
∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

Recurrent Neural Networks

[172]

This becomes the following:

() () () ()2
2 1 3

3 3 3

y l w h w x w hE
w y h w w

 ∂ − ∂ ∂ ∂∂  = +  ∂ ∂ ∂ ∂ ∂ 

The term
()3

3

w h
w

∂
∂ here creates problems because it is a recursive term. You end up

with an infinite number of derivative terms, as h is recursive (that is, calculating
h includes h itself) and h is not a constant and dependent on w3. This is solved by
unrolling the input sequence x over time, creating a copy of RNN for each input
xt and calculating derivatives for each copy separately and rolling them back into,
by summing up the gradients, to calculate the weight update. We will discuss the
details next.

Backpropagation Through Time – training
RNNs
The trick to calculating backpropagation for RNNs is to consider not a single input,

but the full input sequence. Then, if we calculate
3

E
w
∂
∂ at time step 4, we will get the

following:

3
4 4

13 4 4 3

j

j j

hy hE L
w y h h w=

∂∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂∑

This means that we need to calculate the sum of gradients for all the time steps up
to the fourth time step. In other words, we will first unroll the sequence so that we

can calculate 4

j

h
h
∂
∂ and

3

jh
w
∂

∂ for each time step j. This is done by creating four copies

of the RNN. So, to calculate
t

j

h
h
∂
∂ , we need t-j+1 copies of the RNN. Then we will roll

up the copies to a single RNN, by summing up gradients with respect to all previous

time steps to get the gradient, and update the RNN with the gradient
3

E
w
∂
∂ . However,

this becomes costly as the number of time steps increases. For more computational
efficiency, we can use Truncated Backpropagation Through Time (TBPTT) to
optimize recurrent models, which is an approximation of BPTT.

Chapter 6

[173]

Truncated BPTT – training RNNs efficiently
In TBPTT, we only calculate the gradients for a fixed number of T time steps
(in contrast to calculating it to the very beginning of the sequence as in BPTT).

More specifically, when calculating
3

E
w
∂
∂ , for time step t, we only calculate derivatives

down to t-T (that is, we do not compute derivatives up to the very beginning):

1

3 3

t
jt t

j t T t t j

hy hE L
w y h h w

−

= −

∂∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂∑

This is much more computationally efficient than standard BPTT. In standard
BPTT, for each time step t, we calculate derivatives up to the very beginning of the
sequence. But this gets computationally infeasible as the sequence length becomes
larger and larger (for example, processing a text document word by word). However,
in truncated BPTT, we only calculate the derivatives up for a fixed number of steps
backwards, and as you can imagine, the computational cost does not change as the
sequence becomes larger.

Limitations of BPTT – vanishing and
exploding gradients
Having a way to calculate gradients for recurrent weights and having a
computationally efficient approximation such as TBPTT does not enable us to train
RNNs without trouble. Something else can go wrong with the calculations.

To see why, let's expand a single term in
3

E
w
∂
∂ , which is as follows:

() ()1 3 3 1 3 04 4 1 4

4 4 1 3 4 4 1 3

w x w h w x w hy h h yL L
y h h w y h h w

∂ + ∂ +∂ ∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Since we know that the issues of backpropagation arise from the recurrent
connections, let's ignore the w1x terms and consider the following:

() ()3 3 3 04

4 4 1 3

w h w hyL
y h h w

∂ ∂∂∂
∂ ∂ ∂ ∂

Recurrent Neural Networks

[174]

By simply expanding h3 and doing simple arithmetic operations we can show this:

34
0 3

4 4

yL h w
y h
∂∂

=
∂ ∂

We see that for just four time steps we have a term 3
3w . So at the nth time step, it

would become, 1
3
nw − . Say we initialized w3 to be very small (say 0.00001) at n=100

time step, the gradient would be infinitesimally small (of scale 0.1500). Also, since
computers have limited precision in representing a number, this update would
be ignored (that is, arithmetic underflow). This is called the vanishing gradient.
Solving the vanishing gradient is not very straightforward. There are no easy
ways of rescaling the gradients so that they will properly propagate through time.
Few techniques to solve the problem of vanishing gradients to some extent is to
use careful initialization of weights (for example, the Xavier initialization) or use
momentum-based optimization methods (that is, in addition to the current gradient
update, we add an additional term, which is the accumulation of all the past
gradients, known as the velocity term). However, more principled approaches to
solving this, such as different structural modifications to the standard RNN, have
been introduced, as we will see in Chapter 7, Long Short-Term Memory Networks.

On the other hand, say that we initialized w3 to be very large (say 1000.00). Then
at the n=100 time step, the gradients would be massive (of scale 10300). This leads
to numerical instabilities and you will get values such as Inf or NaN (that is, not a
number) in Python. This is called the exploding gradient.

Gradient explosion also can take place due to the complexity of the loss surface
of a problem. Complex nonconvex loss surfaces are very common in deep neural
networks due to both the dimensionality of inputs as well as the large number of
parameters (weights) present in the models. Figure 6.7 illustrates the loss surface
of an RNN and highlights the presence of walls with very high curvature. If the
optimization method comes in contact with such a wall, then the gradients will
explode or overshoot, as shown by the solid line in the image. This can either lead
to very poor loss minimization or numerical instabilities or both. A simple solution
to avoid gradient explosion in such situations is to clip the gradients to a reasonably
small value when it is larger than some threshold. The dashed line in the figure shows
what happens when we clip the gradient at some small value. (Gradient clipping is
covered well in the paper On the difficulty of training recurrent neural networks, Pascanu,
Mikolov, and Bengio, International Conference on Machine Learning (2013): 1310-1318.)

Chapter 6

[175]

Figure 6.7: The gradient explosion phenomenon
Source: This figure is from the paper, On the difficulty of training recurrent neural

 networks by Pascanu, Mikolov, and Bengio

Next we will discuss various ways that RNNs can be used to solve applications.
These applications include sentence classification, image captioning, and machine
translation. We will categorize the RNNs to several different categories such as one-
to-one, one-to-many, many-to-one, and many-to-many.

Applications of RNNs
So far what we have talked about is a one-to-one mapped RNN, where the current
output depends on the current input as well as the previously observed history
of inputs. This means that there exists an output for the sequence of previously
observed inputs and the current input. However, in the real word, there can be
situations where there is only one output for a sequence of inputs, a sequence
of outputs for a single input, and a sequence of outputs for a sequence of inputs
where the sequence sizes are different. In this section, we will look at a few such
applications.

Recurrent Neural Networks

[176]

One-to-one RNNs
In one-to-one RNNs, the current input depends on the previously observed inputs
(see Figure 6.8). Such RNNs are appropriate for problems where each input has an
output, but the output depends both on the current input and the history of inputs
that led to the current input. An example of such a task is stock market prediction,
where we output a value for the current input, and this output also depends on how
the previous inputs have behaved. Another example would be scene classification,
where each pixel in an image is labeled (for example, labels such as car, road, and
person). Sometimes xt+1 can be same as yt for some problems. For example, in text
generation problems, the previously predicted word becomes an input to predict the
next word. The following figure depicts a one-to-one RNN:

Figure 6.8: One-to-one RNNs having temporal dependencies

One-to-many RNNs
A one-to-many RNN would take a single input and output a sequence (see Figure
6.9). Here, we assume the inputs to be independent of each other. That is, we do not
need information about previous inputs to make a prediction about the current input.
However, the recurrent connections are needed because, although we process a single
input, the output is a sequence of values that depends on the previous output values.
An example task where such an RNN would be used is an image captioning task. For
example, for a given input image, the text caption can consist of five or ten words.
In other words, the RNN will keep predicting words until it outputs a meaningful
phrase describing the image. The following figure depicts a one-to-many RNN:

Chapter 6

[177]

Figure 6.9. A one-to-many RNN

Many-to-one RNNs
Many-to-one RNNs take an input of arbitrary length as an input and produce a
single output for the sequence of inputs (see Figure 6.10). Sentence classification is
one such task that can benefit from a many-to-one RNN. A sentence is a sequence
of words of arbitrary length, which is taken as the input to the network, is used to
produce an output classifying the sentence to one of a set of predefined classes. Some
specific examples of sentence classification are as follows:

•	 Classifying movie reviews as positive or negative statements (that is,
sentiment analysis)

•	 Classifying a sentence depending on what the sentence describes (for
example, person, object, and location)

Another application of many-to-one RNNs is classifying large-scale images by
processing only a patch of images at a time and moving the window over the whole
image

The following figure depicts a many-to-one RNN:

Figure 6.10: A many-to-one RNN

Recurrent Neural Networks

[178]

Many-to-many RNNs
Many-to-many RNNs often produce arbitrary-length outputs from arbitrary-length
inputs (see Figure 6.11). In other words, inputs and outputs do not have to be of the
same length. This is particularly useful in machine translation, where we translate a
sentence from one language to another. As you can imagine, one sentence in a certain
language does not always align with a sentence from another language. Another
such example is chatbots, where the chatbot reads a sequence of words (that is, a user
request) and outputs a sequence of words (that is, the answer). The following figure
depicts a many-to-many RNN:

Figure 6.11: A many-to-many RNN

We can summarize the different types of applications of feed-forward networks and
RNNs as follows:

Algorithm Description Applications
One-to-one RNNs These take a single input and

give a single output. Current
input depends on the previously
observed input(s).

Stock market prediction,
scene classification, and text
generation

One-to-many RNNs These take a single input and
give an output consisting of an
arbitrary number of elements

Image captioning

Many-to-one RNNs These take a sequence of inputs
and give a single output.

Sentence classification
(considering a single word as
a single input)

Many-to-many RNNs These take a sequence of
arbitrary length as inputs and
outputs a sequence of arbitrary
length.

Machine translation, chatbots

Chapter 6

[179]

Generating text with RNNs
Now let's look at our first example of using an RNN for an interesting task. In this
exercise, we will be using an RNN to generate a fairy tale story! This is a one-to-one
RNN problem. We will train a single layer RNN on a collection of fairy tales and
ask the RNN to generate a new story. For this task, we will use a small text corpus
of 20 different tales (which we will increase later). This example also will highlight
one of the crucial limitations of RNNs: the lack of persisting long-term memory. This
exercise is available in rnn_language_bigram.ipynb in the ch6 folder.

Defining hyperparameters
First, we will define several hyperparameters needed for our RNN, as shown here:

•	 The number of unrolls to perform at one time step. This is the number of
steps that the input unrolled for, as discussed in the TBPTT method (T
in the Truncated BPTT – training RNNs efficiently section). The higher this
number is, the longer the RNN's memory is. However, due to the vanishing
gradient, the effect of this value disappears for very high num_unroll values
(say, above 50). Note that increasing num_unroll increases the memory
requirement of the program as well.

•	 The batch size for training data, validation data, and test data. A higher
batch size often leads to better results as we are seeing more data during
each optimization step, but just like num_unroll, this causes a higher
memory requirement.

•	 The dimensionality of the input, output, and the hidden layer. Increasing
dimensionality of the hidden layer usually leads to a better performance.
However, note that increasing the size of the hidden layer causes all three sets
of weights (that is, U, W, and V) to increase as well, thus resulting in a high
computational footprint.

First, we will define our unrolls and batch and test batch sizes:

num_unroll = 50
batch_size = 64
test_batch_size = 1

We will next define the number of units in a hidden layer (we will be using a single
hidden layer RNN), followed by the input and output sizes:

hidden = 64
in_size,out_size = vocabulary_size,vocabulary_size

Recurrent Neural Networks

[180]

Unrolling the inputs over time for
Truncated BPTT
Unrolling the inputs over time is an important part of the RNN optimization process
(TBPTT), as we saw earlier. So, this is our next step: defining how the inputs are
unrolled over time.

Let's consider an example to understand how unrolling is done:

Bob and Mary went to buy some flowers.

Let's assume that we process the data at the granularity level of characters. Also,
consider one batch of data and that the number of steps to unroll (num_unroll) is 5.

First, we will break the sentence into characters:

'B', 'o', 'b', ' ', 'a', 'n', 'd', ' ', 'M', 'a', 'r', 'y', ' ', 'w', 'e', 'n', 't', ' ', 't', 'o', ' ', 'b', 'u',
'y', ' ', 's', 'o', 'm', 'e', ' ', 'f', 'l', 'o', 'w', 'e', 'r', 's'

If we take the first three batches of inputs and outputs with unrolling, it would
look like this:

Input Output
'B', 'o', 'b', ' ', 'a' 'o', ' ', 'b', 'a', 'n'
'n', 'd', ' ', 'M', 'a' 'd', ' ', 'M', 'a', 'r'
'r', 'y', ' ', 'w', 'e' 'y', ' ', 'w', 'e', 'n'

By doing this, the RNN sees a relatively long sequence of data at a time, unlike
processing a single character at a time. Therefore, it can retain longer memories
of the sequence:

train_dataset, train_labels = [],[]
for ui in range(num_unroll):
 train_dataset.append(tf.placeholder(tf.float32,
 shape=[batch_size,in_size],name='train_dataset_%d'%ui))
 train_labels.append(tf.placeholder(tf.float32,
 shape=[batch_size,out_size],name='train_labels_%d'%ui))

Chapter 6

[181]

Defining the validation dataset
We will define a validation dataset to measure the performance of the RNN over
time. We do not train with the data in the validation set. We only observe the
predictions given for validation data as an indication of performance of the RNN:

valid_dataset = tf.placeholder(tf.float32,
 shape=[1,in_size],name='valid_dataset')
valid_labels = tf.placeholder(tf.float32,
 shape=[1,out_size],name='valid_labels')

We collect a validation set by using longer stories and extracting a part of the
story from the very end. You can understand the details in the code as the code is
documented meticulously.

Defining weights and biases
Here we will define several weights and bias parameters of the RNN:

•	 W_xh: Weights between the inputs and the hidden layer
•	 W_hh: Weights of the recurrent connections of the hidden layer
•	 W_hy: Weights between the hidden layer and the outputs

W_xh = tf.Variable(tf.truncated_normal(
 [in_size,hidden],stddev=0.02,
 dtype=tf.float32),name='W_xh')
W_hh = tf.Variable(tf.truncated_normal([hidden,hidden],
 stddev=0.02,
 dtype=tf.float32),name='W_hh')
W_hy = tf.Variable(tf.truncated_normal(
 [hidden,out_size],stddev=0.02,
 dtype=tf.float32),name='W_hy')

Defining state persisting variables
Here we will define one of the most important entities that differentiate RNNs from
feed-forward neural networks: the state of the RNN. The state variables represent the
memory of RNNs. Also, these are modeled as untrainable TensorFlow variables.

Recurrent Neural Networks

[182]

We will first define variables (training data: prev_train_h and validation data:
prev_valid_h) to persist the previous state of the hidden layer that is used to
calculate the current hidden state. We will define two state variables. One state
variable maintains the state of the RNN during training and the other maintains
the state of the RNN during validation:

prev_train_h = tf.Variable(tf.zeros([batch_size,hidden],
 dtype=tf.float32),name='train_h',trainable=False)
 name='prev_h1',trainable=False)
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
 name='valid_h',trainable=False)

Calculating the hidden states and outputs
with unrolled inputs
Next we will define the hidden layer calculations per each unrolled input, the
unnormalized scores, and the predictions. In order to calculate the output for each
hidden layer, we maintain the num_unroll hidden state outputs (that is, outputs
in code) representing each unrolled element. Then the unnormalized predictions
(also called logits or scores) and softmax predictions are calculated for all the
num_unroll steps:

Appending the calculated output of RNN for each step in
the num_unroll steps
outputs = list()

This will be iteratively used within num_unroll steps of calculation
output_h = prev_train_h

Calculating the output of the RNN for num_unroll steps
(as required by the truncated BPTT)
for ui in range(num_unroll):
 output_h = tf.nn.tanh(
 tf.matmul(tf.concat([train_dataset[ui],output_h],1),
 tf.concat([W_xh,W_hh],0))
)
 outputs.append(output_h)

Then we will calculate the unnormalized predictions (y_scores) and normalized
predictions (y_predictions) as follows:

Get the scores and predictions for all the RNN outputs
we produced for num_unroll steps
y_scores = [tf.matmul(outputs[ui],W_hy) for ui in range(num_unroll)]
y_predictions = [tf.nn.softmax(y_scores[ui]) for ui in range(num_
unroll)]

Chapter 6

[183]

Calculating the loss
After the predictions are calculated, we will calculate rnn_loss as follows. The loss
is the cross-entropy loss between the predicted and actual outputs. Note that we
save the last output of the RNN (output_h) into the prev_train_h variable, with
the tf.control_dependencies(...) operation. So that in the next iteration, we can
start with the previously saved RNN output as the initial state:

Here we make sure that before calculating the loss,
the state variable
is updated with the last RNN output state we obtained
with tf.control_dependencies([tf.assign(prev_train_h,output_h)]):
 # We calculate the softmax cross entropy for all the predictions
 # we obtained in all num_unroll steps at once.
 rnn_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits_v2(
 logits=tf.concat(y_scores,0),
 labels=tf.concat(train_labels,0)
))

Resetting state at the beginning of a new
segment of text
We also need to define hidden state reset operations. The reset is especially used
before producing a new chunk of text at test time. Otherwise, the RNN would
continue producing text dependent on the previously produced text, leading to
highly correlated outputs. This is bad because it eventually will lead the RNN to
output the same word over and over again. It is still debatable if resetting the state
is practically beneficial during training. Nevertheless, we define the TensorFlow
operations for that:

Reset the hidden states
reset_train_h_op = tf.assign(prev_train_h,tf.zeros(
 [batch_size,hidden],
 dtype=tf.float32))
reset_valid_h_op = tf.assign(prev_valid_h,tf.zeros(
 [1,hidden],dtype=tf.float32))

Recurrent Neural Networks

[184]

Calculating validation output
Here, similar to the training state, loss and prediction calculation, we define a state,
loss and prediction for validation:

Compute the next valid state (only for 1 step)
next_valid_state = tf.nn.tanh(tf.matmul(valid_dataset,W_xh) +
 tf.matmul(prev_valid_h,W_hh))

Calculate the prediction using the state output of the RNN
But before that, assign the latest state output of the RNN
to the state variable of the validation phase
So you need to make sure you execute valid_predictions operation
To update the validation state
with tf.control_dependencies([tf.assign(prev_valid_h,next_valid_
state)]):
 valid_scores = tf.matmul(next_valid_state,W_hy)
 valid_predictions = tf.nn.softmax(valid_scores)

Calculating gradients and optimizing
Since we have the loss for the RNN defined, we will use stochastic gradient methods
to calculate gradients and apply them. For this, we use TBPTT. In this method, we
will unroll the RNN over time (similar to how we unrolled the inputs over time) and
calculate gradients, then roll back the calculated gradients to update the weights
of the RNN. Also, we will be using AdamOptimizer, which is a momentum-based
optimization method that has shown far better convergence rates than the standard
stochastic gradient descent. Moreover, be sure to use a small learning rate when
using Adam (for example, between 0.001 and 0.0001). We will also use gradient
clipping to prevent any potential gradient explosions:

rnn_optimizer = tf.train.AdamOptimizer(learning_rate=0.001)

gradients, v = zip(*rnn_optimizer.compute_gradients(rnn_loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
rnn_optimizer = rnn_optimizer.apply_gradients(zip(gradients, v))

Outputting a freshly generated chunk of text
Now we will see how we can use the trained model to output new text. Here, we will
predict a word and use that word as the next input and predict another word, and
continue in this manner for several time steps:

Chapter 6

[185]

Maintain the previous state of hidden nodes in testing phase
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden],
 dtype=tf.float32),name='test_h')

Test dataset
test_dataset = tf.placeholder(tf.float32, shape=[test_batch_size,
 in_size],name='test_dataset')

Calculating hidden output for test data
next_test_state = tf.nn.tanh(tf.matmul(test_dataset,W_xh) +
 tf.matmul(prev_test_h,W_hh)
)

Making sure that the test hidden state is updated
every time we make a prediction
with tf.control_dependencies([tf.assign(prev_test_h,next_test_
state)]):
 test_prediction = tf.nn.softmax(tf.matmul(next_test_state,W_hy))

Note that we are using small imputations when resetting
the test state
As this helps to add more variation to the generated text
reset_test_h_op = tf.assign(prev_test_h,tf.truncated_normal(
 [test_batch_size,hidden],stddev=0.01,
 dtype=tf.float32))

Evaluating text results output from
the RNN
Here we will display a segment of text we generated using our RNN. We will
show results of when we do not use input unrolling as well as when we use
input unrolling.

Without input unrolling, we get the following after 10 epochs:

 he the the the the the the the the the the the the the the the the
the the the the the the the the the the the the the the the the the
the the the the the the the the the the the the the the the the the
the the the the the the the the the the the the
 o the the the the the the the the the the the the the the the the
the the the the the the the the the the the the the the the the the
the the the the the the the the the the the the the the the the the
the the the the the the the the the the the the t

Recurrent Neural Networks

[186]

With input unrolling, we get the following after 10 epochs:

... god grant that our sister may be here, and then we shall be free.
when the maiden,who was standing behind the door watching, heard that
wish,
she came forth, and on this all the ravens were restored to their
human form again. and they embraced and kissed each other,
and went joyfully home whome, and wanted to eat and drink, and
looked for their little plates and glasses. then said one after
the other, who has eaten something from my plate. who has drunk
out of my little glass. it was a human mouth. and when the
seventh came to the bottom of the glass, the ring rolled against
his mouth. then he looked at it, and saw that it was a ring
belonging to his father and mother, and said, god grant that our
sister may be here, and then we shall be free. ...

The first thing we can note from these results is that it in fact helps to do input
unrolling over time, compared to processing a single input at a time. However, even
with unrolling the input, there are some grammatical mistakes and rare spelling
mistakes. (This is acceptable as we are processing two characters at a time.)

The other noticeable observation is that our RNN tries to produce a new story by
combining different stories that it has previously seen. You can see that it first talks
about ravens, and then it moves the story to something similar to Goldilocks and the
Three Bears, by talking about plates and someone eating from plates. Next the story
brings up a ring.

This means that the RNN has learned to combine stories and come up with a new
one. However, we can further improve these results by introducing better learning
models (for example, LSTM) and better search techniques (for example, beam-
search), as we will see in later chapters.

Due to the complexity of the language and the smaller representational
power of RNNs, it is unlikely you will get outputs as nice-looking
as the text shown here, throughout the learning process. Therefore
we have cherry-picked some generated text to get our point across.

Note that this is a cherry-picked generated sample and, if you pay attention, over
time you will see that the RNN tries to repeat the same chunk of text over and over
again if you keep predicting for many iterations. You can already see that this is
already present in the preceding chunk, where the first sentence is identical to the
last sentence. This issue becomes more prominent as we increase the size of the
dataset as we will see soon. This is due to limited memory capabilities of the RNNs
caused by the vanishing gradient problem, and we would like to reduce this effect.
So we will soon talk about one variant of RNNs, called the RNNs with Context
Features (RNN-CF), which reduces this effect.

Chapter 6

[187]

Perplexity – measuring the quality of the
text result
It is not just enough to produce text; we also need a way to measure the quality of
the produced text. One such way is to measure how surprised or perplexed the RNN
was to see the output given the input. That is, if the cross-entropy loss for an input xi
and its corresponding output yi is (),i il x y , then the perplexity would be as follows:

() (),, i il x y
i ip x y e=

Using this, we can compute the average perplexity for a training dataset of size N
with the following:

() () ()
1

1/ ,N
train i ii

p D N p x y
=

= ∑

In Figure 6.12, we show the behavior of the training and validation perplexities over
time. We can see that the train perplexity goes down over time steadily, where the
validation perplexity is fluctuating significantly. This is expected because what we
are essentially evaluating in the validation perplexity is our RNN's ability to predict
a unseen text based on our learning on training data. Since language can be quite
difficult to model, this is a very difficult task, and these fluctuations are natural:

Figure 6.12: A train and valid perplexity plot

Recurrent Neural Networks

[188]

One way to improve the results is to add more hidden layers to the RNN, as often
deeper models deliver better results. We have implemented a three-layer RNN in
rnn_language_bigram_multilayer.ipynb in the ch6 folder. We leave this for the
reader to explore.

Now we come to the question, are there better variants of RNNs that work even
better? For example, are there variants of RNNs that solve the problem of the
vanishing gradient more effectively? Let's talk about one such variant called the
RNN-CF in the next section.

Recurrent Neural Networks with Context
Features – RNNs with longer memory
Earlier, we discussed two important challenges in training a simple RNN: the
exploding gradient and the vanishing gradient. We also know that we can prevent
gradient explosion with a simple trick such as gradient clipping, leading to more
stable training. However, solving the vanishing gradient takes much more effort,
because there is no simple scaling/clipping mechanism to solve the gradient
vanishing, as we did for gradient explosion. Therefore, we need to modify the
structure of the RNN itself, giving explicitly the ability for it to remember longer
patterns in sequences of data .The RNN-CF proposed in the paper, Learning
Longer Memory in Recurrent Neural Networks, Tomas Mikolov and others, International
Conference on Learning Representations (2015), is one such modification to the standard
RNN, helping RNNs to memorize patterns in sequences of data for longer.

An RNN-CF provides an improvement to reduce the vanishing gradient by
introducing a new state and a new set of forward and recurrent connections. In
other words, an RNN-CF will have two state vectors, compared to a standard RNN
which has only a single state vector. The idea is that one state vector changes slowly,
retaining longer memory, while the other state vector can change rapidly, working as
short-term memory.

Technical description of the RNN-CF
Here we modify the conventional RNN with several more parameters to help
persisting memory for a longer time. These modifications include introducing a
new state vector, in addition to the conventional state vector present in a standard
RNN model. As a result of this, several forward and recurrent sets of weights are
also introduced. On an abstract level, Figure 6.13 compares an RNN-CF and its
modifications with a simple RNN:

Chapter 6

[189]

Figure 6.13: Comparing an RNN and an RNN-CF side by side

As we can see from the preceding figure, an RNN-CF has a few additional weights
compared to a conventional RNN. Now let's have a close look at what each of these
layers and weights do.

First, the input is received by two hidden layers, like the conventional hidden layer
also found in RNNs. We have seen that using just this hidden layer is not effective
in retaining long-term memory. However, we can force the hidden layer to retain
memory for longer by forcing the recurrent matrix to be close to identity and
removing the nonlinearity. When the recurrent matrix is close to identity, without
nonlinearities, any change that happens to h should always come from a change in
the input. In other words, the previous state will have less effect on changing the
current state. This leads to the state changing slower than with dense weight matrix
and nonlinearities. Thus, this state helps to retain the memory longer. Another
reason to favor the recurrent matrix to be close to 1 is that when weights are close
to 1, terms such as wn-1 that appear in the derivations will not either vanish or
explode. However, if we use only this without the hidden layer with nonlinearity,
the gradient would never diminish. Here, by diminishing gradient, we refer to the
fact that gradients produced by older inputs should have a lesser impact than the
more recent inputs. We then will need to propagate the gradients through time to the
beginning of the input. This is expensive. Therefore, to get the best of both worlds,
we keep both these layers: the standard RNN state layer (ht) that can change rapidly,
as well as the context feature layer (st) that changes more slowly. This new layer
is called the context layer and is a novel layer that helps with keeping long-term
memory. The update rules for the RNN-CF are as follows. Note that you do not see
st-1 being multiplied by an identity matrix as discussed because t-1 t-1Is s= :

() 11 Bt t ts x sα α −= − +

()1t t t th Ps Ax Rhσ −= + +

Recurrent Neural Networks

[190]

()t t ty softmax Uh Vs= +

The notation related to the RNN-CF is summarized in the following table:

Notation Description
xt Current input
ht Current state vector
yt Current output
st Current context feature vector
A Weight matrix between xt and ht

B Weight matrix between xt and st

R Recurrent connections of ht

α Constant that controls the contribution of st-1 to st

P Weights connecting ht and st

U Weight matrix between ht and yt

V Weight matrix between st and yt

Implementing the RNN-CF
We have discussed how the RNN-CF contains an additional state vector and
how that helps to prevent vanishing of the gradients. Here we will discuss the
implementation of the RNN-CF. In addition to hidden (ht), W_xh (A in the table),
W_hh (R in the table), and W_hy (U in the table), which were in the conventional
RNN implementation, we now need three more additional sets of weights; namely,
we will define B, P, and V. Furthermore we will define a new variable to contain st
(hidden_context) as well (in addition to ht)

Defining the RNN-CF hyperparameters
First, we will define the hyperparameters including the ones we defined previously
and new ones. One new hyperparameter defines the number of neurons in the
context feature layer, st, where alpha represents the α in the equation.

hidden_context = 64
alpha = 0.9

Chapter 6

[191]

Defining input and output placeholders
As we did for the standard RNN we first define placeholders to contain training
inputs and outputs, validation inputs and outputs, and test inputs:

Train dataset
We use unrolling over time
train_dataset, train_labels = [],[]
for ui in range(num_unroll):
 train_dataset.append(tf.placeholder(tf.float32,
 shape=[batch_size,in_size],
 name='train_dataset_%d'%ui))
 train_labels.append(tf.placeholder(tf.float32,
 shape=[batch_size,out_size],
 name='train_labels_%d'%ui))

Validation dataset
valid_dataset = tf.placeholder(tf.float32,
 shape=[1,in_size],name='valid_dataset')
valid_labels = tf.placeholder(tf.float32,
 shape=[1,out_size],name='valid_labels')

Test dataset
test_dataset = tf.placeholder(tf.float32,
 shape=[test_batch_size,in_size],

 name='save_test_dataset')

Defining weights of the RNN-CF
Here we define the weights required for the calculations of the RNN-CF. As we
saw in the notation table, six sets of weights (A, B, R, P, U, and V) are required.
Remember that we only had three sets of weights in the conventional RNN
implementation:

Weights between inputs and h
A = tf.Variable(tf.truncated_normal([in_size,hidden],
 stddev=0.02,dtype=tf.float32),name='W_xh')
B = tf.Variable(tf.truncated_normal([in_size,hidden_context],
 stddev=0.02,dtype=tf.float32),name='W_xs')

Weights between h and h
R = tf.Variable(tf.truncated_normal([hidden,hidden],
 stddev=0.02,dtype=tf.float32),name='W_hh')
P = tf.Variable(tf.truncated_normal([hidden_context,hidden],

Recurrent Neural Networks

[192]

 stddev=0.02,dtype=tf.float32),name='W_ss')

Weights between h and y
U = tf.Variable(tf.truncated_normal([hidden,out_size],
 stddev=0.02,dtype=tf.float32),name='W_hy')
V = tf.Variable(tf.truncated_normal([hidden_context,
 out_size],stddev=0.02,
 dtype=tf.float32),
 name='W_sy')

State variables for training data
prev_train_h = tf.Variable(tf.zeros([batch_size,hidden],
 dtype=tf.float32),
 name='train_h',trainable=False)
prev_train_s = tf.Variable(tf.zeros([batch_size,hidden_context],
 dtype=tf.float32),name='train_s',
 trainable=False)

State variables for validation data
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
 name='valid_h',trainable=False)
prev_valid_s = tf.Variable(tf.zeros([1,hidden_context],
 dtype=tf.float32),
 name='valid_s',trainable=False)

State variables for test data
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden],
 dtype=tf.float32),
 name='test_h')
prev_test_s = tf.Variable(tf.zeros([test_batch_size,hidden_context],
 dtype=tf.float32),name='test_s')

Variables and operations for maintaining hidden
and context states
Here we define state variables of the RNN-CF. In addition to ht we had in the
conventional RNN, we need to have a separate state for context features which is st.
In total, we will have six state variables. Here, three state variables are to maintain
state vector ht during training, validation, and testing, and the other three state
variables are to maintain the state vector st during training, validation, and testing:

Chapter 6

[193]

State variables for training data
prev_train_h = tf.Variable(tf.zeros([batch_size,hidden],
 dtype=tf.float32),
 name='train_h',trainable=False)
prev_train_s = tf.Variable(tf.zeros([batch_size,hidden_context],
 dtype=tf.float32),name='train_s',
 trainable=False)

State variables for validation data
prev_valid_h = tf.Variable(tf.zeros([1,hidden],dtype=tf.float32),
 name='valid_h',trainable=False)
prev_valid_s = tf.Variable(tf.zeros([1,hidden_context],
 dtype=tf.float32),
 name='valid_s',trainable=False)

State variables for test data
prev_test_h = tf.Variable(tf.zeros([test_batch_size,hidden],
 dtype=tf.float32),
 name='test_h')
prev_test_s = tf.Variable(tf.zeros([test_batch_size,hidden_context],
 dtype=tf.float32),name='test_s')

Next, we define the reset operations required to reset operations required
to reset states:

reset_prev_train_h_op = tf.assign(prev_train_h,tf.zeros([batch_size,
 hidden], dtype=tf.float32))
reset_prev_train_s_op = tf.assign(prev_train_s,tf.zeros([batch_size,
 hidden_context],dtype=tf.float32))

reset_valid_h_op = tf.assign(prev_valid_h,tf.zeros([1,hidden],
 dtype=tf.float32))
reset_valid_s_op = tf.assign(prev_valid_s,tf.zeros([1,hidden_context],
 dtype=tf.float32))

Impute the testing states with noise
reset_test_h_op = tf.assign(prev_test_h,tf.truncated_normal(
 [test_batch_size,hidden],
 stddev=0.01,
 dtype=tf.float32))
reset_test_s_op = tf.assign(prev_test_s,tf.truncated_normal(
 [test_batch_size,hidden_context],
 stddev=0.01,dtype=tf.float32))

Recurrent Neural Networks

[194]

Calculating output
With all the inputs, variables, and state vectors defined, we now can calculate
the output of the RNN-CF according to the equations in the preceding section. In
essence, we are doing the following with this code snippet. We first initialize state
vectors to be zeros. Then we will unroll our inputs for a fixed set of time steps (as
needed by BPTT) and separately calculate unnormalized outputs (sometimes called
logits or scores) for each of these unrolled steps. Then we will concatenate all the y
values belonging to each unrolled time step, and then calculate the mean loss of all
these entries, comparing it to the true labels:

Train score (unnormalized) values and predictions (normalized)
y_scores, y_predictions = [],[]

These will be iteratively used within num_unroll
steps of calculation
next_h_state = prev_train_h
next_s_state = prev_train_s

Appending the calculated state outputs of RNN for
each step in the num_unroll steps
next_h_states_unrolled, next_s_states_unrolled = [],[]

Calculating the output of the RNN for num_unroll steps
(as required by the truncated BPTT)
for ui in range(num_unroll):
 next_h_state = tf.nn.tanh(
 tf.matmul(tf.concat([train_dataset[ui],prev_train_h,
 prev_train_s],1),
 tf.concat([A,R,P],0))
)
 next_s_state = (1-alpha)*tf.matmul(train_dataset[ui],B) +
 alpha * next_s_state
 next_h_states_unrolled.append(next_h_state)
 next_s_states_unrolled.append(next_s_state)

Get the scores and predictions for all the RNN outputs
we produced for num_unroll steps
y_scores = [tf.matmul(next_h_states_unrolled[ui],U) +
 tf.matmul(next_s_states_unrolled[ui],V)
 for ui in range(num_unroll)]
y_predictions = [tf.nn.softmax(y_scores[ui]) for ui in range(num_
unroll)]

Chapter 6

[195]

Calculating the loss
Here we define the loss calculation of RNN-CF. This operation is identical to the one
we defined for the standard RNN and is as follows:

Here we make sure that before calculating the loss,
the state variables are
updated with the last RNN output state we obtained
with tf.control_dependencies([tf.assign(prev_train_s, next_s_state),
 tf.assign(prev_train_h,next_h_state)]):
 rnn_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits_v2(
 logits=tf.concat(y_scores,0),
 labels=tf.concat(train_labels,0)
))

Calculating validation output
Similar to calculating the output at training time, we calculate the output for
validation inputs, as well. However, we do not unroll the inputs as we did for
training data, as unrolling is not required during prediction, but only for training:

Validation data related inference logic
(very similar to the training inference logic)

Compute the next valid state (only for 1 step)
next_valid_s_state = (1-alpha) * tf.matmul(valid_dataset,B) +
 alpha * prev_valid_s
next_valid_h_state = tf.nn.tanh(tf.matmul(valid_dataset,A) +
 tf.matmul(prev_valid_s, P) +
 tf.matmul(prev_valid_h,R))

Calculate the prediction using the state output of the RNN
But before that, assign the latest state output of the RNN
to the state variable of the validation phase
So you need to make sure you execute rnn_valid_loss operation
To update the validation state
with tf.control_dependencies([tf.assign(prev_valid_s,
 next_valid_s_state),
 tf.assign(prev_valid_h,next_valid_h_
state)]):
 valid_scores = tf.matmul(prev_valid_h, U) + tf.matmul(
 prev_valid_s, V)
 valid_predictions = tf.nn.softmax(valid_scores)

Recurrent Neural Networks

[196]

Computing test output
We can now define the output calculations for generating new test data as well:

Test data realted inference logic

Calculating hidden output for test data
next_test_s = (1-alpha)*tf.matmul(test_dataset,B)+ alpha*prev_test_s

next_test_h = tf.nn.tanh(
 tf.matmul(test_dataset,A) + tf.matmul(prev_test_s,P) +
 tf.matmul(prev_test_h, R)
)

Making sure that the test hidden state is updated
every time we make a prediction
with tf.control_dependencies([tf.assign(prev_test_s,next_test_s),
 tf.assign(prev_test_h,next_test_h)]):
 test_prediction = tf.nn.softmax(
 tf.matmul(prev_test_h,U) + tf.matmul(prev_test_s,V)
)

Computing the gradients and optimizing
Here we use an optimizer to minimize the loss identical to the way we did for the
conventional RNN:

rnn_optimizer = tf.train.AdamOptimizer(learning_rate=.001)

gradients, v = zip(*rnn_optimizer.compute_gradients(rnn_loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
rnn_optimizer = rnn_optimizer.apply_gradients(zip(gradients, v))

Text generated with the RNN-CF
Here we will compare the text generated by the RNN and RNN-CF, both
qualitatively and quantitatively. We will first compare the results obtained using
20 training documents. Afterwards, we will elevate the number of training
documents to 100, to see if the RNN and RNN-CF are able to incorporate large
amounts of data, well to output better quality text.

Chapter 6

[197]

First, we will generate text with the RNN-CF using only 20 documents:

the king's daughter, who had
no more excuses left to make. they cut the could not off, and her his
first rays of life in the garden,
and was amazed to see with the showed to the grown mighted and the
seart the answer to star's brothers, and seeking the golden apple, we
flew over the tree to the seadow where her
heard that he could not have
discome.

emptied him by him. she himself 'well i ston the fire struck it was
and said the youth, farm of them into the showed to shudder, but here
and said the fire himself 'if i could but the youth, and thought that
is that shudder.'
'then, said he said 'i will by you are you, you.' then the king, who
you are your
wedding-mantle. you are you are you
bird in wretch me. ah. what man caller streep them if i will bed.
the youth
begged for a hearing, and said 'if you will below in you to be your
wedding-mantle.' 'what.' said he, 'i shall said 'if i hall by you are
you

bidden it i could not have

In terms of the quality of text, compared to standard RNN, we are not able to see
much of a difference. We should think about why the RNN-CF is not performing
better than standard RNNs. In their paper, Learning Longer Memory in Recurrent
Neural Networks, Mikolov and others, mention the following:

"When the number of standard hidden units is enough to capture short term
patterns, learning the self-recurrent weights does not seem crucial anymore."

So if the number of hidden units is large enough, the RNN-CF has no significant
advantage over standard RNNs. This might be the reason why we are observing
this. We are using 64 hidden neurons and a relatively small corpus, and it could be
adequate to represent a story, well to a level RNNs are capable of.

Therefore, let's see whether increasing the amount of data actually helps the RNN-CF
to perform better. For our example, we will increase the number of documents to 100
documents after training for around 50 epochs.

Recurrent Neural Networks

[198]

The following is the output of a standard RNN:

they were their dearest and she she told him to stop crying to the
king's son they were their dearest and she she told him to stop crying
to the king's son they were their dearest and she she told him to stop
crying to the king's son they were their dearest and she she told him
to stop crying to the king's son they were their dearest and she she
told him to stop

We can see that RNNs have grown worse, compared to how they performed with
less data. Having a lot of data and inadequate model capacity affects standard RNNs
adversely, leading them to output poor-quality text.

The following is the output of the RNN-CF. You can see that, in terms of variation,
the RNN-CF has done a much better job than a standard RNN:

then they could be the world. not was now from the first for a set
out of his pocket, what is the world. then they were all they were
forest, and the never yet not
rething, and took the
children in themselver to peard, and then the first her. then the was
in the first, and that he was to the first, and that he was to the
kitchen, and said, and had took the
children in the mountain, and they were hansel of the fire, gretel of
they were all the fire, goggle-eyes and all in the moster. when she
had took the
changeling the little elves, and now ran into them, and she bridge
away with the witch form,
and their father's daughter was that had neep himselver in the horse,
and now they lived them himselver to them, and they were am the
marriage was all they were and all of the marriage was anger of the
forest, and the manikin was laughing, who had said they had not know,
and took the
children in themselver to themselver and they lived them himselver to
them

Therefore, it seems that when data is abundant, the RNN-CF in fact outperforms
standard RNNs. We will also plot the training and validation perplexities over time
for both these models. As you can see, in terms of training perplexity both RNN-CF
and the standard RNN do not show a significant difference. Finally, in the validation
perplexity graph (see Figure 6.14), we can see that the RNN-CF shows fewer
fluctuations compared to the standard RNN.

Chapter 6

[199]

One important conclusion we can make here is that when we had smaller amounts
of data, the standard RNN was probably overfitting data. That is, the RNN probably
memorized data as it is, rather than trying to learn more general patterns present in
data. When RNN is overwhelmed by the amount of data and trained for longer (say
around 50 epochs), this weakness becomes more prominent. The quality of the text
produced decreases, and there are larger fluctuations of the validation perplexity.
However, the RNN-CF shows somewhat consistent behavior with both small and
large amounts of data:

Figure 6.14: Train and valid perplexities of the RNN and RNN-CF

Summary
In this chapter, we looked at RNNs, which are different from conventional feed-
forward neural networks and more powerful in terms of solving temporal tasks.
Furthermore, RNNs can manifest in many different forms: one-to-one (text
generation), many-to-one (sequential image classification), one-to-many (image
captioning), and many-to-many (machine translation).

Specifically, we discussed how to arrive at an RNN from a feed-forward neural
networks type structure. We assumed a sequence of inputs and outputs, and
designed a computational graph that can represent the sequence of inputs and
outputs. This computational graph resulted in a series of copies of functions that we
applied to each individual input-output tuple in the sequence. Then, by generalizing
this model to any given single time step t in the sequence, we were able to arrive at
the basic computational graph of an RNN. We discussed the exact equations and
update rules used to calculate the hidden state and the output.

Recurrent Neural Networks

[200]

Next we discussed how RNNs are trained with data using BPTT. We examined how
we can arrive at BPTT with standard backpropagation as well as why we can't use
standard backpropagation for RNNs. We also discussed two important practical
issues that arise with BPTT—vanishing gradient and exploding gradient—and how
these can be solved on the surface level.

Then we moved on to the practical applications of RNNs. We discussed four
main categories of RNNs. One-to-one architectures are used for tasks such as text
generation, scene classification, and video frame labeling. Many-to-one architectures
are used for sentiment analysis, where we process the sentences/phrases word
by word (compared to processing a full sentence at a single go, as we saw in the
previous chapter). One-to-many architectures are common in image captioning tasks,
where we map a single image to an arbitrarily long sentence phrase describing the
image. Many-to-many architectures are leveraged for machine translation tasks.

Next we looked at an interesting application of RNNs: text generation. We used a
corpus of fairy tales to train an RNN. In particular, we broke the text in the story to
bigrams (a bigram contains two characters). We trained the RNN by giving a set of
bigrams selected from a story as the input and the following bigrams (from the input)
as the output. Then the RNN was optimized by maximizing the accuracy of predicting
the next bigram correctly. Following this procedure, we asked the RNN to generate a
different story, and we made two important observations of the generated results:

•	 Unrolling the input over time in fact helps to maintain memory for longer
•	 RNNs even with unrolling can only store a limited amount of long-term

memory

Therefore, we looked at an RNN variant that has the ability to capture even longer
memory. This is referred to as the RNN-CF. The RNN-CF has two different layers:
the hidden layer (that is, conventional hidden layer, found in simple RNNs) and a
context layer (for persisting long-term memory). We saw that having this additional
context layer did not help significantly when used with a small dataset, as we had a
fairly complex hidden layer in our RNN, but it produced slightly better results when
more data was used.

In the next chapter, we will discuss a more powerful RNN model known as long
short-term memory (LSTM) networks that further reduces the adverse effect of the
vanishing gradient, and thus produces much better results.

[201]

Long Short-Term
Memory Networks

In this chapter, we will discuss a more advanced RNN variant known as Long Short-
Term Memory Networks (LSTMs). LSTMs are widely used in many sequential tasks
(including stock market prediction, language modeling, and machine translation)
and have proven to perform better than other sequential models (for example,
standard RNNs), especially given the availability of large amounts of data. LSTMs
are well-designed to avoid the problem of the vanishing gradient that we discussed
in the previous chapter.

The main practical limitation posed by the vanishing gradient is that it prevents the
model from learning long-term dependencies. However, by avoiding the vanishing
gradient problem, LSTMs have the ability to store memory for longer than ordinary
RNNs (for hundreds of time steps). In contrast to those RNNs, which only maintain
a single hidden state, LSTMs have many more parameters as well as better control
over what memory to store and what to discard at a given training step. For example,
RNNs are not able to decide which memory to store and which to discard, as the
hidden state is forced to be updated at every training step.

Long Short-Term Memory Networks

[202]

Specifically, we will discuss what an LSTM is at a very high level and how the
functionality of LSTMs allows them to store long-term dependencies. Then we
will go into the actual underlying mathematical framework governing LSTMs
and discuss an example to highlight why each computation matters. We will
also compare LSTMs to vanilla RNNs and see that LSTMs have a much more
sophisticated architecture that allows them to surpass vanilla RNNs in sequential
tasks. Revisiting the problem of the vanishing gradient and illustrating it through
an example will lead us to understand how LSTMs solve the problem.

Thereafter, we will discuss several techniques that have been introduced to improve
the predictions produced by a standard LSTM (for example, improving the quality/
variety of generated text in a text generation task). For example, generating several
predictions at once instead of predicting them one-by-one can help to improve the
quality of generated predictions. We will also look at BiLSTMs, or bidirectional
LSTMs, which are an extension to the standard LSTM that has greater capabilities
for capturing the patterns present in the sequence than a standard LSTM.

Finally, we will discuss two recent LSTM variants. First, we will look at peephole
connections, which introduce more parameters and information to the LSTM gates
allowing LSTMs to perform better. Next, we will discuss Gated Recurrent Units
(GRUs), which are gaining increasing popularity as they have a much simpler
structure compared to LSTMs and also do not degrade performance.

Understanding Long Short-Term
Memory Networks
In this section, we will first explain what happens within an LSTM cell. We will see
that in addition to the states, a gating mechanism to control information flow inside
the cell is present. Then we will work through a detailed example and see how each
gate and states help at various stages of the example to achieve desired behaviors,
finally leading to the desired output. Finally, we will compare an LSTM against
a standard RNN to learn how an LSTM differs from a standard RNN.

Chapter 7

[203]

What is an LSTM?
LSTMs can be seen as a fancier family of RNNs. An LSTM is composed mainly of
five different things:

•	 Cell state: This is the internal cell state (that is, memory) of an LSTM cell
•	 Hidden state: This is the external hidden state used to calculate predictions
•	 Input gate: This determines how much of the current input is read into the

cell state
•	 Forget gate: This determines how much of the previous cell state is sent into

the current cell state
•	 Output gate: This determines how much of the cell state is output into the

hidden state

We can wrap the RNN to a cell architecture as follows. The cell will output some
state which is dependent (with a nonlinear activation function) on previous cell state
and the current input. However, in RNNs, the cell state is always changed with every
incoming input. This leads the cell state of the RNNs to always change. This behavior
is quite undesirable for storing long-term dependencies.

LSTMs can decide when to replace, update, or forget information stored in each
neuron in the cell state. In other words, LSTMs are equipped with a mechanism
to keep the cell state unchanged (if needed) giving them the ability to store
long-term dependencies.

This is achieved by introducing a gating mechanism. LSTMs possess gates for
each operation the cell needs to perform. The gates are continuous (often sigmoid
functions) between 0 and 1, where 0 means no information flows through the gate
and 1 means all the information flows through the gate. An LSTM uses one such gate
for each neuron in the cell. As explained earlier, these gates control the following:

•	 How much of the current input is written to the cell state (input gate)
•	 How much information is forgotten from the previous cell state (forget gate)
•	 How much information is output into the final hidden state from the cell

state (output gate)

Long Short-Term Memory Networks

[204]

Figure 7.1 illustrates this functionality. Each gate decides how much of various
data (for example, current input, previous hidden state, or the previous cell state)
flow into the states (that is, the final hidden state or the cell state). The thickness of
each line represents how much information is flowing from/to that gate (in some
hypothetical scenario). For example, in this figure, you can see that the input gate
is allowing more from the current input than from the previous final hidden state,
where the forget gate allows more from the previous final hidden state than from the
current input:

Figure 7.1: An abstract view of the data flow in an LSTM

LSTMs in more detail
Here we will walk through the actual mechanism of LSTMs. We will first briefly
discuss the overall view of an LSTM cell and then start discussing each of the
operations taking place within an LSTM cell along with an example of text
generation.

As we discussed earlier, the LSTMs are mainly composed of the following
three gates:

•	 Input gate: A gate which outputs values between 0 (the current input is not
written to the cell state), and 1 (the current input is fully written to the cell
state). Sigmoid activation is used to squash the output to between 0 and 1.

•	 Forget gate: A sigmoidal gate which outputs values between 0 (the previous
cell state is fully forgotten for calculating the current cell state) and 1 (the
previous cell state is fully read in when calculating the current cell state).

•	 Output gate: A sigmoidal gate which outputs values between 0 (the current
cell state is fully discarded for calculating the final state) and 1 (the current
cell state is fully used when calculating the final hidden state).

Chapter 7

[205]

This can be shown as in Figure 7.2. This is a very high-level diagram, and some
details have been hidden in order to avoid clutter. We present LSTMs, both with
loops and without loops to improve the understanding. The figure on the right-hand
side depicts an LSTM with loops and that on the left-hand side shows the same
LSTM with the loops expanded so that no loops are present in the model:

Figure 7.2: LSTM with recurrent links (that is, loops) (right) LSTM with recurrent links expanded (left)

Now, to get a better understanding of LSTMs, let's consider an example. We will
discuss the actual update rules and equations along with an example to understand
LSTMs better.

Now let's consider an example of generating text starting from the following
sentence:

John gave Mary a puppy.

The story that we output should be about John, Mary, and the puppy. Let's assume
our LSTM to output two sentences following the given sentence:

John gave Mary a puppy. ____________________. _____________________.

The following is the output given by our LSTM:

John gave Mary a puppy. It barks very loudly. They named it Luna.

Long Short-Term Memory Networks

[206]

We are still far from outputting realistic phrases such as these. However, LSTMs can
learn relationships such as between nouns and pronouns. For example, it is related to
the puppy, and they to John and Mary. Then, it should learn the relationship between
the noun/pronoun and the verb. For example, for it, the verb should have an s at
the end. We illustrate these relationships/dependencies in Figure 7.3. As we can see
both, long-term (for example, Luna → puppy) and short-term (for example, It → barks)
dependencies are present in this phrase. The solid arrows depict links between nouns
and pronouns and dashed arrows show links between nouns/pronouns and verbs:

Figure 7.3: Sentences given and predicted by the LSTM with various relationships between words highlighted

Now let's consider how LSTMs, using their various operations, can model such
relationships and dependencies to output sensible text, given a starting sentence.

The input gate (it) takes the current input (xt) and the previous final hidden state (ht-1)
as the input and calculates it, as follows:

()1t ix t ih t ii W x W h bσ −= + +

The input gate, it can be understood as the calculation performed at the hidden layer
of a single-hidden-layer standard RNN with the sigmoidal activation. Remember
that we calculated the hidden state of a standard RNN as follows:

()t t t 1h tanh Ux Wh −= +

Therefore, the calculation of it of the LSTM looks quite analogous to the calculation
of ht of a standard RNN, except for the change in the activation function and the
addition of bias.

After the calculation, a value of 0 for it will mean that no information from the
current input will flow to the cell state, where a value of 1 means that all the
information from the current input will flow to the cell state.

Chapter 7

[207]

Next, another value (which is called candidate value) is calculated as follows, which
is added to calculate the current cell state later:

()1t cx t ch t cc tanh W x W h b−= + +�

We can visualize these calculations in Figure 7.4:

Figure 7.4. Calculation of it and tc� (in bold) in the context of all the calculations
(grayed out) that take place in an LSTM

In our example, at the very beginning of the learning, the input gate needs to be
highly activated. The first word that the LSTM outputs is it. Also in order to do so,
the LSTM must learn that puppy is also referred to as it. Let's assume our LSTM has
five neurons to store the state. We would like the LSTM to store the information that
it refers to puppy. Another piece of information we would like the LSTM to learn (in
a different neuron) is that the present tense verb should have an s at the end of the
verb, when the pronoun it is used. One more thing the LSTM needs to know is that
the puppy barks loud. Figure 7.5 illustrates how this knowledge might be encoded in
the cell state of the LSTM. Each circle represents a single neuron (that is, hidden unit)
of the cell state:

Figure 7.5: The knowledge that should be encoded in the cell state to output the first sentence

Long Short-Term Memory Networks

[208]

With this information, we can output the first new sentence:

John gave Mary a puppy. It barks very loudly.

Next, the forget gate is calculated as follows:

()1t fx t fh t ff W x W h bσ −= + +

The forget gate does the following. A value of 0 for the forget gate means that no
information from ct-1 will be passed to calculate ct, and a value of 1 means that all the
information of ct-1 will propagate into the calculation of ct.

Now we will see how the forget gate helps in predicting the next sentence:

They named it Luna.

Now as you can see, the new relationship we are looking at is between John and Mary
and they. Therefore, we no longer need information about it and how the verb bark
behaves, as the subjects are John and Mary. We can use the forget gate in combination
with the current subject they and the corresponding verb named to replace the
information stored in the Current subject and Verb for current subject neurons
(see Figure 7.6):

Figure 7.6: The knowledge in the third neuron from left (it → barks)
is replaced with new information (they → named).

In terms of the values of weights, we illustrate this transformation in Figure 7.7.
We do not change the state of the neuron maintaining the it → puppy relationship,
because puppy appears as an object in the last sentence. This is done by setting
weights connecting it → puppy from ct-1 to ct to 1. Then we will replace the neurons
maintaining current subject and current verb information with new subject and verb.
This is achieved by setting the forget weights of ft, for that neuron, to 0. Then we will
set the weights of it connecting the current subject and verb to the corresponding
state neurons to 1. We can think of tc� as the entity that contains what new
information (such as new information from the current input xt) should be brought
to the cell state:

Chapter 7

[209]

Figure 7.7: How the cell state ct is calculated with the previous state ct-1 and the candidate value tc�

The current cell state will be updated as follows:

1t t t t tc f c i c−= + �

In other words, the current state is the combination of the following:

•	 What information to forget/remember from the previous cell state
•	 What information to add/discard to the current input

Next in Figure 7.8, we highlight what we have calculated so far with respect to all the
calculations that are taking place inside an LSTM:

Figure 7.8: Calculations covered so far including it, ft, tc� , and ct

Long Short-Term Memory Networks

[210]

After learning the full state, it would look like Figure 7.9:

Figure 7.9: The full cell state will look like this after outputting both the sentences

Next, we will look at how the final state of the LSTM cell (ht) is computed:

()1t ox t oh t oo W x W h bσ −= + +

()t t th o tanh c=

In our example, we want to output the following sentence:

They named it Luna.

For this we do not need the second to last neuron to compute this sentence, as it
contains information about how the puppy barks, where this sentence is about the
name of the puppy. Therefore, we can ignore the last neuron (containing bark -> loud
relationship) during the predictions of the last sentence. This is exactly what ot does;
it will ignore the unnecessary memory and only retrieve the related memory from
the cell state when calculating the final output of the LSTM cell. Also, in Figure 7.10,
we illustrate how an LSTM cell would look like at a full glance:

Figure 7.10: What the full LSTM looks like

Chapter 7

[211]

Here, we summarize all the equations relating to the operations taking place within
an LSTM cell.

()1t ix t ih t ii W x W h bσ −= + +

()1t fx t fh t ff W x W h bσ −= + +

()1tanht cx t ch t cc W x W h b−= + +�

1t t t t tc f c i c−= + �

()1t ox t oh t oo W x W h bσ −= + +

()tanht t th o c=

Now in the bigger picture, for a sequential learning problem, we can unroll the
LSTM cells over time to show how they would link together so they receive the
previous state of the cell to compute the next state, as shown in Figure 7.11:

Figure 7.11: How LSTMs will be linked over time

However, this is not adequate to do something useful. As you can see, even though
we can create a nice chain of LSTMs that are actually capable of modelling a
sequence, we still don't have an output or a prediction. But if we want to use what
the LSTM actually learned, we need a way to extract the final output from the LSTM.
Therefore, we will fix a softmax layer (with weights Ws and bias bs) on top of the
LSTM. The final output is obtained using the following equation:

()t s t sy softmax W h b= +

Long Short-Term Memory Networks

[212]

Now the final picture of the LSTM with the softmax layer looks like Figure 7.12:

Figure 7.12: LSTMs with a softmax output layer linked over time

How LSTMs differ from standard RNNs
Let's now investigate how LSTMs compare to standard RNNs. An LSTM has a more
intricate structure compared to a standard RNN. One of the primary differences
is that an LSTM has two different states: a cell state ct and a final hidden state ht.
However, an RNN only has a single hidden state ht. The next primary difference is
that since an LSTM has three different gates, an LSTM has much more control over
how the current input and the previous cell state are handled when computing the
final hidden state ht.

Having the two different states is quite advantageous. With this mechanism,
even when the cell state is changing quickly, the final hidden state will still be
changed more slowly. So, while the cell state is learning both short-term and long-
term dependencies, the final hidden state can reflect either only the short-term
dependencies or only the long-term dependencies or both.

Next, the gating mechanism is composed of three gates: the input, forget, and
output gates:

•	 The input gate controls how much of the current input is written to the
cell state

•	 The forget gate controls how much of the previous cell state is carried over to
the current cell state

•	 Finally, the output gate controls how much from the cell state is propagated to
the final hidden state

Chapter 7

[213]

It is quite evident that this is a much more principled approach (especially, compared
to the standard RNNs) that permits better control over how much the current input
and the previous cell state contribute to the current cell state. Also, the output gate
gives better control over how much the cell state contributes to the final hidden state.
In Figure 7.13, we compare schematic diagrams of a standard RNN and an LSTM to
emphasize the difference in terms of the functionality of the two models.

In summary, with the design of maintaining two different states, an LSTM can learn
both short-term and long-term dependencies, which helps solve the problem of the
vanishing gradient, which we'll discuss in the following section.

Figure 7.13: Side-by-side comparison of a standard RNN and an LSTM cell

How LSTMs solve the vanishing gradient
problem
As we discussed earlier, even though RNNs are theoretically sound, in practice they
suffer from a serious drawback. That is, when the Backpropagation Through Time
(BPTT) is used, the gradient diminishes quickly, which allows us to propagate the
information of only a few time steps. Consequently, we can only store information of
very few time steps, thus possessing only short-term memory. This in turn limits the
usefulness of RNNs in real-world sequential tasks.

Long Short-Term Memory Networks

[214]

Often useful and interesting sequential tasks (such as stock market predictions or
language modeling) require the ability to learn and store long-term dependencies.
Think of the following example for predicting the next word:

John is a talented student. He is an A-grade student and plays rugby and cricket. All the
other students envy ______.

For us, this is a very easy task. The answer would be John. However, for an RNN, this
is a difficult task. We are trying to predict an answer which lies at the very beginning
of the text. Also, to solve this task, we need a way to store long-term dependencies in
the state of the RNN. This is exactly the type of tasks LSTMs are designed to solve.

In Chapter 6, Recurrent Neural Networks, we discussed how a vanishing/exploding
gradient can appear without any nonlinear functions present. We will now see that it
could still happen even with the nonlinear term present. For this, we will see how the
derivative term /t t kh h−∂ ∂ is for a standard RNN and an LSTM (/t t kc c −∂ ∂ for an LSTM)
network. This is the crucial term that causes the vanishing gradient, as we learned in
the previous chapter.

Let's assume the hidden state is calculated as follows for a standard RNN:

()1t x t h th W x W hσ −= +

To simplify the calculations, we can ignore the current input related terms and focus
on the recurrent part, which will give us the following equation:

()1t h th W hσ −=

If we calculate /t t kh h−∂ ∂ for the preceding equations, we will get the following:

() ()()
1

0

/ 1
k

t t k h h t k i h t k i
i

h h W W h W hσ σ
−

− − + − +
=

∂ ∂ = −∏

() ()()
1

0

/ 1
k

k
t t k h h t k i h t k i

i
h h W W h W hσ σ

−

− − + − +
=

∂ ∂ = −∏

Chapter 7

[215]

Now let's see what happens when 0h t k iW h− + << or 0h t k iW h− + >> (which will happen
as learning continues). In both cases, /t t kh h−∂ ∂ will start to approach 0, giving
rise to the vanishing gradient. Even when 0h t k iW h− + = , where the gradient is
maximum (0.25) for sigmoid activation, when multiplied for many time steps, the
overall gradient becomes quite small. Moreover, the term k

hW (possibly due to bad
initialization) can cause exploding or vanishing of the gradients, as well. However,
compared to the gradient vanishing due to 0h t k iW h− + << or 0h t k iW h− + >> , gradient
vanishing/explosion caused by the term k

hW is relatively easy to solve (with careful
initialization of weights and gradient clipping).

Now let's look at an LSTM cell. More specifically, we'll look at the cell state, given by
the following equation:

1t t t t tc f c i c−= + �

This is the product of all the forget gate applications happening in the LSTM.
However, if you calculate /t t kc c −∂ ∂ in a similar way for LSTMs (that is, ignoring the

fx tW x terms and bf, as they are non-recurrent), we get the following:

()
1

0

/
k

t t k fh t k i
i

c c W hσ
−

− − +
=

∂ ∂ =∏

In this case, though the gradient will vanish if 0h t k iW h− + << , on the other hand if
0h t k iW h− + >> , the derivative will decrease much slower than it would in a standard

RNN. Therefore, we have one alternative, where the gradient will not vanish. Also,
as the squashing function is used, the gradients will not explode due to /t t kc c −∂ ∂
being large (which is the likely thing to happen during a gradient explosion). In
addition, when 0h t k iW h− + >> , we get a maximum gradient close to 1, meaning that
the gradients will not rapidly decrease as we saw with RNNs (when gradient is
at maximum). Finally, there is no term such as k

hW in the derivation. However,
derivations are trickier for /t t kh h−∂ ∂ . Let's see if such terms are present in the
derivation of /t t kh h−∂ ∂ . If you calculate the derivatives of this, you will get something
of the following form:

()()/ tanh /t t k t t t kh h o c h− −∂ ∂ =∂ ∂

Once you solve this, you will get something of this form:

() () () () () () () () () () () (){ }2 2
1tanh . . 1 . . 1 tanh . . 1 . . 1 tanh . tanh . . 1 .oh t fh ch ihw c w w wσ σ σ σ σ σ σ σ−

        − + − − + − + −           

Long Short-Term Memory Networks

[216]

We do not care about the content within ().σ or ()tanh . , because no matter what
the value, it will be bounded by (0,1) or (-1,1). If we further reduce the notation by
replacing the ().σ , ()1 .σ −  , ()tanh . , and ()21 tanh . −   terms with some common notation
such as ().γ , we get something of this form:

() () () () ()1.oh t fh ch ihw c w w wγ γ γ γ γ−
 + + +  

Alternatively, we get the following (assuming that the outside ().γ gets absorbed by
each ().γ term present within the square brackets):

() () () ()1. . . .oh t fh ch ihw c w w wγ γ γ γ−+ + +

This will give the following:

() () () ()
1

1
0

/
k

t t k oh t fh ch ih
i

h h w c w w wγ γ γ γ
−

− −
=

∂ ∂ ≈ + + +∏

This means that though the term /t t kc c −∂ ∂ is safe from any k
hW terms, /t t kh h−∂ ∂ is not.

Therefore, we must be careful when initializing the weights of the LSTM and we
should use gradient clipping as well.

However, ht of LSTMs being unsafe from vanishing gradient is not as
crucial as for RNNs. Because ct still can store the long term dependencies
without being affected by vanishing gradient, and ht can retrieve the
long-term dependencies from ct, if required to.

Improving LSTMs
As we have already seen while learning about RNNs, having a solid theoretical
foundation does not always guarantee that they will perform the best in practice.
This is due to the limitations in numerical precision of the computers. This is
also true for LSTMs. Having a sophisticated design—allowing better modeling
of long-term dependencies in the data—does not in itself mean the LSTM will
output perfectly realistic predictions. Therefore, numerous extensions have been
developed to help LSTMs perform better at prediction stage. Here we will discuss
several such improvements: greedy sampling, beam search, using word vectors
instead of one-hot-encoded representation of words, and using bidirectional LSTMs.

Chapter 7

[217]

Greedy sampling
If we try to always predict the word with the highest probability, the LSTM will tend
to produce very monotonic results. For example, it will repeat the word the many
times before switching to another word.

One way to get around this is to use greedy sampling, where we pick the predicted
best n and sample from that set. This helps to break the monotonic nature of the
predictions.

Let's consider the first sentence of the previous example:

John gave Mary a puppy.

Say, we start with the first word and want to predict the next four words:

John ____ ____ _ _____.

If we attempt to choose samples deterministically, the LSTM might tend to output
something like the following:

John gave Mary gave John.

However, by sampling the next word from a subset of words in the vocabulary (most
highly probable ones), the LSTM is forced to vary the prediction and might output
the following:

John gave Mary a puppy.

Alternatively, it will give the following output:

John gave puppy a puppy.

However, even though greedy sampling helps to add more variation to the
generated text, this method does not guarantee that the output will always be
realistic, especially when outputting longer sequences of text. Now we will see a
better search technique that actually looks ahead several steps before predictions.

Long Short-Term Memory Networks

[218]

Beam search
Beam search is a way of helping with the quality of the predictions produced by the
LSTM. In this, the predictions are found by solving a search problem. The crucial
idea of beam search is to produce the b outputs (that is, 1, , ,t t t by y y+ +…) at once
instead of a single output yt. Here, b is known as the length of the beam, and the b
outputs produced is known as the beam. More technically, we pick the beam that
has the highest joint probability ()1, , , |t t t b tp y y y x+ +… instead of picking the highest
probable ()|t tp y x . We are looking farther into the future before making a prediction,
which usually leads to better results.

Let's understand beam search through the previous example:

John gave Mary a puppy.

Say, we are predicting word by word. And initially we have the following:

John ____ ____ _ _____.

Let's assume hypothetically that our LSTM produces the example sentence using
beam search. Then the probabilities for each word might look like what we see in
Figure 7.13. Let's assume beam length 2b= , and we will consider the 3n= best
candidates at each stage of the search. The search tree would look like the
following figure:

Figure 7.13: The search space of beam search for a b=2 and n=3

We start with the word John and get the probabilities for all the words in the
vocabulary. In our example, as 2n= , we pick the best three candidates for the
next level of the tree: gave, Mary, and puppy. (Note that these might not be the
candidates found by an actual LSTM and are only used as an example.) Then from
these selected candidates, the next level of the tree is grown. And from that, we will
pick the best three candidates, and the search will repeat until we reach a depth of b
in the tree.

Chapter 7

[219]

The path that gives the highest joint probability (that is, (), | 0.09P gave Mary John =) is
highlighted with heavier arrows. Also, this is a better prediction mechanism, as it
would return a higher probability, or a reward, for a phrase such as John gave Mary
than John Mary John or John John gave.

Note that the outputs produced by both greedy sampling and beam search are
identical in our example, which is a simple sentence containing five words. However,
this is not the case when we scale this to output a small essay. Then the results
produced by beam search will be more realistic and grammatically correct than the
ones produced by greedy sampling.

Using word vectors
Another popular way of improving the performance of LSTMs is to use word vectors
instead of using one-hot-encoded vectors as the input to the LSTM. Let's understand
the value of this method through an example. Let's assume that we want to generate
text starting from some random word. In our case, it would be the following:

John ____ ____ _ _____.

We have already trained our LSTM on the following sentences:

John gave Mary a puppy. Mary has sent Bob a kitten.

Let's also assume that we have the word vectors positioned as shown in Figure 7.15:

Figure 7.15: Assumed word vectors topology in two-dimensional space

The word embeddings of these words, in their numerical form, might look like the
following:

kitten: [0.5, 0.3, 0.2]

puppy: [0.49, 0.31, 0.25]

gave: [0.1, 0.8, 0.9]

Long Short-Term Memory Networks

[220]

It can be seen that () (), ,distance kitten puppy distance kitten gave< . However, if we use one-hot
encoding, they would be as follows:

kitten: [1, 0, 0, …]

puppy: [0, 1, 0, …]

gave: [0, 0, 1, …]

Then, () (), ,distance kitten puppy distance kitten gave= . As we can already see, one-hot-
encoded vectors do not capture the proper relationship between words and see all
the words are equally-distanced from each other. However, word vectors are capable
of capturing such relationships and are more suitable as features into an LSTM.

Using word vectors, the LSTM will learn to exploit relationships between words
better. For example, with word vectors, LSTM will learn the following:

John gave Mary a kitten.

This is quite close to the following:

John gave Mary a puppy.

Also, it is quite different from the following:

John gave Mary a gave.

However, this would not be the case if one-hot-encoded vectors are used.

Bidirectional LSTMs (BiLSTM)
Making LSTMs bidirectional is another way of improving the quality of the
predictions of an LSTM. By this we mean training the LSTM with data read from the
beginning to the end and the end to the beginning. So far during the training of the
LSTM, we would create a dataset as follows:

Consider the following two sentences:

John gave Mary a _____. It barks very loudly.

Chapter 7

[221]

However, at this stage, there is data missing in the one of the sentences that we
would want our LSTM to fill sensibly.

If we read from the beginning up to the missing word, it would be as follows:

John gave Mary a _____.

This does not provide enough information about the context of the missing word
to fill the word properly. However, if we read in both directions, it would be the
following:

John gave Mary a _____.

 _____. It barks very loudly.

If we created data with both these pieces, it is adequate to predict that the missing
word should be something like dog or puppy. Therefore, certain problems can benefit
significantly from reading data from both sides. Furthermore, this increases the
amount of data available to the neural network and boosts its performance.

Another application of BiLSTMs is neural machine translation, where we translate a
sentence of a source language to a target language. As there is no specific alignment
between the translation of one language to another, knowing both the past and the
future of the source language can greatly help to understand the context better,
thus producing better translations. As an example, consider a translation task of
translating Filipino to English. In Filipino, sentences are usually written having
verb-object-subject in that order, whereas in English, it is subject-verb-object. In this
translation task, it will be extremely helpful to read sentences forward and backward
both to make a good translation.

BiLSTM is essentially two separate LSTM networks. One network learns data from
the beginning to the end, and the other network learns data from the end to the
beginning. In Figure 7.16, we illustrate the architecture of a BiLSTM network.

Long Short-Term Memory Networks

[222]

Training occurs in two phases. First, the solid colored network is trained with data
created by reading the text from the beginning to the end. This network represents
the normal training procedure used for standard LSTMs. Secondly, the dashed
network is trained with data generated by reading the text in the reversed direction.
Then, at the inference phase, we use both the solid and dashed states' information
(by concatenating both states and creating a vector) to predict the missing word:

Figure 7.16: A schematic diagram of a BiLSTM

Other variants of LSTMs
Though we mainly focus on the standard LSTM architecture, many variants have
emerged that either simplify the complex architecture found in standard LSTMs
or produce better performance or both. We will look at two variants that introduce
structural modifications to the cell architecture of LSTM: peephole connections
and GRUs.

Chapter 7

[223]

Peephole connections
Peephole connections allow gates not only to see the current input and the previous
final hidden state but also the previous cell state. This increases the number of
weights in the LSTM cell. Having such connections have shown to produce better
results. The equations would look like these:

()1 1t ix t ih t ic t ii W x W h W c bσ − −= + + +

()1t cx t ch t cc tanh W x W h b−= + +�

()1 1t fx t fh t fc t ff W x W h W c bσ − −= + + +

1t t t t tc f c i c−= + �

()1t ox t oh t oc t oo W x W h W c bσ −= + + +

()t t th o tanh c=

Let's briefly look at how this helps the LSTM perform better. So far, the gates see
the current input and final hidden state, but not the cell state. However, in this
configuration, if the output gate is close to zero, even when the cell state contains
important information crucial for better performance, the final hidden state will be
close to zero. Thus, the gates will not take the hidden state into consideration during
calculation. Including the cell state directly in the gate calculation equation allows
more control over the cell state, and it can perform well even in situations where the
output gate is close to zero.

Long Short-Term Memory Networks

[224]

We illustrate the architecture of the LSTM with peephole connections in Figure 7.17.
We have greyed all the existing connections in a standard LSTM and the newly
added connections are shown in black:

Figure 7.17: An LSTM with peephole connections (the peephole connections
are shown in black while the other connections are greyed out)

Gated Recurrent Units
GRUs can be seen as a simplification of the standard LSTM architecture. As we
have seen already, an LSTM has three different gates and two different states. This
alone requires a large number of parameters even for a small state size. Therefore,
scientists have investigated ways to reduce the number of parameters. GRUs are
a result of one such endeavor.

There are several main differences in GRUs compared to LSTMs.

First, GRUs combine two states, the cell state and the final hidden state, into a single
hidden state ht. Now, as a side effect of this simple modification of not having two
different states, we can get rid of the output gate. Remember, the output gate was
merely deciding how much of the cell state is read into the final hidden state. This
operation greatly reduces the number of parameters in the cell.

Chapter 7

[225]

Next, GRUs introduce a reset gate which, when it's close to 1, takes the full previous
state information in when computing the current state. Also, when the reset gate is
close to 0, it ignores the previous state when computing the current state.

()1rt rx t rh t rW x W h bσ −= + +

()()1t hx t hh t t hh tanh W x W rh b−= + +�

Then, GRUs combine the input and forget gates into one update gate. The standard
LSTM has two gates known as the input and forget gates. The input gate decides
how much of the current input is read into the cell state, and the forget gate
determines how much of the previous cell state is read into the current cell state.
Mathematically, this can be shown as follows:

()1t ix t ih t ii W x W h bσ −= + +

()1t fx t fh t ff W x W h bσ −= + +

GRUs combine these two operations into a single gate known as the update gate.
If the update gate is 0, then the full state information of the previous cell state is
pushed into the current cell state, where none of the current input is read into the
state. If the update gate is 1, then the all of the current input is read into the current
cell state and none of the previous cell state is propagated into the current cell state.
In other words, the input gate it becomes inverse of the forget gate, that is, 1 tf− :

()1t zx t zh t zz W x W h bσ −= + +

() 11t t t t th z h z h−= + −�

Now let's bring all the equations into one place. The GRU computations would look
like this:

()1rt rx t rh t rW x W h bσ −= + +

()()1t hx t hh t t hh tanh W x W rh b−= + +�

()1t zx t zh t zz W x W h bσ −= + +

() 11t t t t th z h z h−= + −�

Long Short-Term Memory Networks

[226]

This is much more compact than LSTMs. In Figure 7.18, we can visualize a GRU cell
(left) and an LSTM cell (right) side by side:

Figure 7.18: A side-by-side comparison of a GRU (left) and the standard LSTM (right)

Summary
In this chapter, you learned about LSTM networks. First, we discussed what
an LSTM is and its high-level architecture. We also delved into the detailed
computations that take place in an LSTM and discussed the computations through
an example.

We saw that LSTM is composed mainly of five different things:

•	 Cell state: The internal cell state of an LSTM cell
•	 Hidden state: The external hidden state used to calculate predictions
•	 Input gate: This determines how much of the current input is read into the

cell state
•	 Forget gate: This determines how much of the previous cell state is sent into

the current cell state
•	 Output gate: This determines how much of the cell state is output into the

hidden state

Having such a complex structure allows LSTMs to capture both short-term and long-
term dependencies quite well.

Chapter 7

[227]

We compared LSTMs to vanilla RNNs and saw that LSTMs are actually capable
of learning long-term dependencies as an inherent part of their structure, whereas
RNNs can fail to learn long-term dependencies. Afterwards, we discussed how
LSTMs solve the vanishing gradient with its complex structure.

Then we discussed several extensions that improve the performance of LSTMs. First,
a very simple technique we called greedy sampling, in which, instead of always
outputting the best candidate, we randomly sample a prediction from a set of best
candidates. We saw that this improves the diversity of the generated text. Next, we
looked at a more complex search technique called beam search. With this, instead
of making a prediction for a single time step into the future, we predict several time
steps into the future and pick the candidates that produce the best joint probability.
Another improvement involved seeing how word vectors can help improve the
quality of the predictions of an LSTM. Using word vectors, LSTMs can learn more
effectively to replace semantically similar words during prediction (for example,
instead of outputting dog, LSTM might output cat), leading to more realism and
correctness of generated text. The final extension we considered was BiLSTMs or
bidirectional LSTMs. A popular application of BiLSTMs is filling missing words in a
phrase. BiLSTMs read the text in both directions, from the beginning to the end and
the end to the beginning. This gives more context as we are looking at both the past
and future before predicting.

Finally, we discussed two variants of vanilla LSTMs: peephole connections and
GRUs. Vanillan LSTMs, when calculating the gates, only looks at the current input
and the hidden state. With peephole connections, we make the gate computations
dependent on all: the current input, hidden, and cell states.

GRUs are a much more elegant variant of vanilla LSTMs that simplifies LSTMs
without compromising on performance. GRUs have only two gates and a single
state, whereas vanilla LSTMs have three gates and two states.

In the next chapter, we will see all these different architectures in action
with implementations of each of them and see how well they perform in text
generation tasks.

[229]

Applications of LSTM –
Generating Text

Now that we have a good understanding of the underlying mechanisms of LSTMs,
such as how they solve the problem of the vanishing gradient and update rules,
we can look at how to use them in NLP tasks. LSTMs are heavily employed for
tasks such as text generation and image caption generation. For example, language
modeling is very useful for text summarization tasks or generating captivating
textual advertisements for products, where image caption generation or image
annotation is very useful for image retrieval, and where a user might need to retrieve
images representing some concept (for example, a cat).

The application that we will cover in this chapter is the use of an LSTM to generate
new text. For this task, we will download translations of some folk stories by the
Brothers Grimm. We will use these stories to train an LSTM and ask it at the end to
output a fresh new story. We will process the text by breaking it into character-level
bigrams (n-grams where n=2) and make a vocabulary out of the unique bigrams.
We will also explore ways to implement previously described techniques such as
greedy sampling or beam search for predictions. Afterwards, we will see how we
can implement time-series models other than standard LSTMs, such as LSTMs with
peepholes and GRUs.

Next, we will see how we can learn to generate text with better input representations
beyond character level bigrams, such as individual words. Note that it is very
inefficient to have one-hot-encoded word features, as the vocabulary can quickly
grow with words, compared to character level bigrams. Therefore, one good
technique to deal with this is to first learn the word embeddings (or use pretrained
embeddings) and use these as inputs to the LSTM. Using word embeddings allows
us to avoid the curse of dimensionality. In an interesting real-world problem, the size
of the vocabulary can be between 10,000 and 1,000,000. However, word embeddings
have a fixed dimensionality despite the size of the vocabulary.

Applications of LSTM – Generating Text

[230]

Our data
First, we will discuss the data we will use for text generation and various
preprocessing steps employed to clean data.

About the dataset
First, we will understand what the dataset looks like so that when we see the
generated text, we can assess whether it makes sense, given the training data.
We will download the first 100 books from the website https://www.cs.cmu.
edu/~spok/grimmtmp/. These are translations of a set of books (from German
to English) by the Brothers Grimm. This is the same as the text used in Chapter 6,
Recurrent Neural Networks, for demonstrating the performance of RNNs.

Initially, we will download the first 100 books from the website with an automated
script, as follows:

url = 'https://www.cs.cmu.edu/~spok/grimmtmp/'

Create a directory if needed
dir_name = 'stories'
if not os.path.exists(dir_name):
 os.mkdir(dir_name)

def maybe_download(filename):
 """Download a file if not present"""
 print('Downloading file: ', dir_name+ os.sep+filename)

 if not os.path.exists(dir_name+os.sep+filename):
 filename, _ = urlretrieve(url + filename,
 dir_name+os.sep+filename)
 else:
 print('File ',filename, ' already exists.')

 return filename

num_files = 100
filenames = [format(i, '03d')+'.txt' for i in range(1,101)]

for fn in filenames:
 maybe_download(fn)

We will now show example text snippets extracted from two randomly picked
stories.

https://www.cs.cmu.edu/~spok/grimmtmp/
https://www.cs.cmu.edu/~spok/grimmtmp/

Chapter 8

[231]

The following is the first snippet:

Then she said, my dearest benjamin, your father has had these coffins made for you
and for your eleven brothers, for if I bring a little girl into the world, you are all
to be killed and buried in them. And as she wept while she was saying this, the
son comforted her and said, weep not, dear mother, we will save ourselves, and
go hence. But she said, go forth into the forest with your eleven brothers, and let
one sit constantly on the highest tree which can be found, and keep watch, looking
towards the tower here in the castle. If I give birth to a little son, I will put up a
white flag, and then you may venture to come back. But if I bear a daughter, I will
hoist a red flag, and then fly hence as quickly as you are able, and may the good God
protect you.

The second text snippet is as follows:

Red-cap did not know what a wicked creature he was, and was not at all afraid of
him.

"Good-day, little red-cap," said he.

"Thank you kindly, wolf."

"Whither away so early, little red-cap?"

"To my grandmother's."

"What have you got in your apron?"

"Cake and wine. Yesterday was baking-day, so poor sick grandmother is to have
something good, to make her stronger."

"Where does your grandmother live, little red-cap?"

"A good quarter of a league farther on in the wood. Her house stands under the
three large oak-trees, the nut-trees are just below. You surely must know it,"
replied little red-cap.

The wolf thought to himself, what a tender young creature. What a nice plump
mouthful, she will be better to eat than the old woman.

Applications of LSTM – Generating Text

[232]

Preprocessing data
In terms of preprocessing, we will initially make all the text lowercase and break the
text into character n-grams, where n=2. Consider the following sentence:

The king was hunting in the forest.

This would break down to a sequence of n-grams as follows:

['th,' 'e ,' 'ki,' 'ng,' ' w,' 'as,' …]

We will use character level bigrams because it greatly reduces the size of the
vocabulary compared with using individual words. Moreover, we will be replacing
all the bigrams that appear fewer than 10 times in the corpus with a special token
(that is, UNK), representing that bigram as unknown. This helps us to reduce the size
of the vocabulary even further.

Implementing an LSTM
Here we will discuss the details of the LSTM implementation. Though there are
sublibraries in TensorFlow that have already implemented ready-to-go LSTMs, we
will implement one from scratch. This will be very valuable, as in the real world
there might be situations where you cannot use these off-the-shelf components
directly. This code is available in the lstm_for_text_generation.ipynb exercise
located in the ch8 folder of the exercises. However, we will also include an exercise
where we will show how to use the existing TensorFlow RNN API that will be
available in lstm_word2vec_rnn_api.ipynb, located in the same folder. Here we
will discuss the code available in the lstm_for_text_generation.ipynb file.

First, we will discuss the hyperparameters and their effects that are used for the
LSTM. Thereafter, we will discuss the parameters (weights and biases) required to
implement the LSTM. We will then discuss how these parameters are used to write
the operations taking place within the LSTM. This will be followed by understanding
how we will sequentially feed data to the LSTM. Next, we will discuss how we can
implement the optimization of the parameters using gradient clipping. Finally, we
will investigate how we can use the learned model to output predictions, which are
essentially bigrams that will eventually add up to a meaningful story.

Defining hyperparameters
First, we will define some hyperparameters required for the LSTM:

Number of neurons in the hidden state variables
num_nodes = 128

Chapter 8

[233]

Number of data points in a batch we process
batch_size = 64

Number of time steps we unroll for during optimization
num_unrollings = 50

dropout = 0.2 # We use dropout

The following list describes each of the hyperparameters:

•	 num_nodes: This denotes the number of neurons in the cell memory state.
When data is abundant, increasing the complexity of the cell memory will
give you a better performance; however, at the same time, it slows down the
computations.

•	 batch_size: This is the amount of data processed in a single step. Increasing
the size of the batch gives a better performance, but poses higher memory
requirements.

•	 num_unrollings: This is the number of time steps used in truncated-BPTT.
The higher the num_unrollings steps, the better the performance, but it will
increase both the memory requirement and the computational time.

•	 dropout: Finally, we will employ dropout (that is, a regularization
technique) to reduce overfitting of the model and produce better results;
dropout randomly drops information from inputs/outputs/state variables
before passing them to their successive operations. This creates redundant
features during learning, leading to better performance.

Defining parameters
Now we will define TensorFlow variables for the actual parameters of the LSTM.

First, we will define the input gate parameters:

•	 ix: These are weights connecting the input to the input gate
•	 im: These are weights connecting the hidden state to the input gate
•	 ib: This is the bias

Here we will define the parameters:

Input gate (it) - How much memory to write to cell state
Connects the current input to the input gate
ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes],
stddev=0.02))
Connects the previous hidden state to the input gate
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],

Applications of LSTM – Generating Text

[234]

stddev=0.02))
Bias of the input gate
ib = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

Similarly, we will define such weights for the forget gate, candidate value (used for
memory cell computations), and output gate.

The forget gate is defined as follows:

Forget gate (ft) - How much memory to discard from cell state
Connects the current input to the forget gate
fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes],
stddev=0.02))
Connects the previous hidden state to the forget gate
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.02))
Bias of the forget gate
fb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02, 0.02))

The candidate value (used to compute the cell state) is defined as follows:

Candidate value (c~
t
) - Used to compute the current cell state

Connects the current input to the candidate
cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes],
stddev=0.02))
Connects the previous hidden state to the candidate
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.02))
Bias of the candidate
cb = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))

The output gate is defined as follows:

Output gate - How much memory to output from the cell state
Connects the current input to the output gate
ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes],
stddev=0.02))
Connects the previous hidden state to the output gate
om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.02))
Bias of the output gate
ob = tf.Variable(tf.random_uniform([1, num_nodes],-0.02,0.02))

Chapter 8

[235]

Next, we will define variables for the state and output. These are the TensorFlow
variables representing the internal cell state and the external hidden state of the
LSTM cell. When defining the LSTM computational operation, we define these to
be updated with the latest cell state and hidden state values we compute, using the
tf.control_dependencies(...) function.

Variables saving state across unrollings.
Hidden state
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]),
trainable=False, name='train_hidden')
Cell state
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]),
trainable=False, name='train_cell')
Same variables for validation phase
saved_valid_output = tf.Variable(tf.zeros([1, num_
nodes]),trainable=False, name='valid_hidden')
saved_valid_state = tf.Variable(tf.zeros([1, num_
nodes]),trainable=False, name='valid_cell')

Finally, we will define a softmax layer to get the actual predictions out:

Softmax Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size],
stddev=0.02))
b = tf.Variable(tf.random_uniform([vocabulary_size],-0.02,0.02))

Note that we're using the normal distribution with zero mean and a
small standard deviation. This is fine as our model is a simple single
LSTM cell. However, when the network gets deeper (that is, multiple
LSTM cells stacked on top of each other), more careful initialization
techniques are required. One such initialization technique is known
as Xavier initialization, proposed by Glorot and Bengio in their paper
Understanding the difficulty of training deep feedforward neural networks,
Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, 2010. This is available as a variable initializer in TensorFlow,
as shown here: https://www.tensorflow.org/api_docs/
python/tf/contrib/layers/xavier_initializer.

Defining an LSTM cell and its operations
With the weights and the bias defined, we can now define the operations within an
LSTM cell. These operations include the following:

•	 Calculating the outputs produced by the input and forget gates
•	 Calculating the internal cell state

Applications of LSTM – Generating Text

[236]

•	 Calculating the output produced by the output gate
•	 Calculating the external hidden state

The following is the implementation of our LSTM cell:

def lstm_cell(i, o, state):

 input_gate = tf.sigmoid(tf.matmul(i, ix) +
 tf.matmul(o, im) + ib)
 forget_gate = tf.sigmoid(tf.matmul(i, fx) +
 tf.matmul(o, fm) + fb)
 update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
 state = forget_gate * state + input_gate * tf.tanh(update)
 output_gate = tf.sigmoid(tf.matmul(i, ox) +
 tf.matmul(o, om) + ob)
 return output_gate * tf.tanh(state), state

Defining inputs and labels
Now we will define training inputs (unrolled) and labels. The training inputs is a list
with the num_unrolling batches of data (sequential), where each batch of data is of
the [batch_size, vocabulary_size] size:

train_inputs, train_labels = [],[]

for ui in range(num_unrollings):
 train_inputs.append(tf.placeholder(tf.float32,
 shape=[batch_size,vocabulary_size],
 name='train_inputs_%d'%ui))
 train_labels.append(tf.placeholder(tf.float32,
 shape=[batch_size,vocabulary_size],
 name = 'train_labels_%d'%ui))

We also define placeholders for validation inputs and outputs, which will be used to
compute the validation perplexity. Note that we do not use unrolling for validation-
related computations.

Validation data placeholders
valid_inputs = tf.placeholder(tf.float32, shape=[1,vocabulary_size],
 name='valid_inputs')
valid_labels = tf.placeholder(tf.float32, shape=[1,vocabulary_size],
 name = 'valid_labels')

Chapter 8

[237]

Defining sequential calculations required to
process sequential data
Here we will calculate the outputs produced by a single unrolling of the training
inputs in a recursive manner. We will also use dropout (refer to Dropout: A Simple
Way to Prevent Neural Networks from Overfitting, Srivastava, Nitish, and others, Journal
of Machine Learning Research 15 (2014): 1929-1958), as this gives a slightly better
performance. Finally we compute the logit values for all the hidden output values
computed for the training data:

Keeps the calculated state outputs in all the unrollings
Used to calculate loss
outputs = list()

These two python variables are iteratively updated
at each step of unrolling
output = saved_output
state = saved_state

Compute the hidden state (output) and cell state (state)
recursively for all the steps in unrolling
for i in train_inputs:
 output, state = lstm_cell(i, output, state)
 output = tf.nn.dropout(output,keep_prob=1.0-dropout)
 # Append each computed output value
 outputs.append(output)

calculate the score values
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Next, before calculating the loss, we have to make sure that the output and the
external hidden state are updated to the most current value we calculated earlier.
This is achieved by adding a tf.control_dependencies condition and keeping
the logit and loss calculation within the condition:

with tf.control_dependencies([saved_output.assign(output),
 saved_state.assign(state)]):
 # Classifier.
 loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits_v2(
 logits=logits, labels=tf.concat(axis=0,
 values=train_labels)))

Applications of LSTM – Generating Text

[238]

We also define the forward propagation logic for validation data. Note that
we do not use dropout during validation, but only during training:

Validation phase related inference logic

Compute the LSTM cell output for validation data
valid_output, valid_state = lstm_cell(
 valid_inputs, saved_valid_output, saved_valid_state)

Compute the logits
valid_logits = tf.nn.xw_plus_b(valid_output, w, b)

Defining the optimizer
Here we will define the optimization process. We will use a state-of-the-art optimizer
known as Adam, which is one of the best stochastic gradient-based optimizers to
date. Here in the code, gstep is a variable that is used to decay the learning rate
over time. We will discuss the details in the next section. Furthermore, we will use
gradient clipping to avoid the exploding gradient:

Decays learning rate everytime the gstep increases
tf_learning_rate = tf.train.exponential_decay(0.001,gstep,
 decay_steps=1, decay_rate=0.5)
Adam Optimizer. And gradient clipping.
optimizer = tf.train.AdamOptimizer(tf_learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
 zip(gradients, v))

Decaying learning rate over time
As mentioned earlier, I use a decaying learning rate instead of a constant learning
rate. Decaying the learning rate over time is a common technique used in deep
learning for achieving better performance and reducing overfitting. The key
idea here is to step-down the learning rate (for example, by a factor of 0.5) if the
validation perplexity does not decrease for a predefined number of epochs. Let's see
how exactly this is implemented, in more detail:

Chapter 8

[239]

First we define gstep and an operation to increment gstep, called inc_gstep as
follows:

learning rate decay
gstep = tf.Variable(0,trainable=False,name='global_step')
Running this operation will cause the value of gstep
to increase, while in turn reducing the learning rate
inc_gstep = tf.assign(gstep, gstep+1)

With this defined, we can write some simple logic to call the inc_gstep operation
whenever validation loss does not decrease, as follows:

Learning rate decay related
If valid perplexity does not decrease
continuously for this many epochs
decrease the learning rate
decay_threshold = 5
Keep counting perplexity increases
decay_count = 0
min_perplexity = 1e10

Learning rate decay logic
def decay_learning_rate(session, v_perplexity):
 global decay_threshold, decay_count, min_perplexity
 # Decay learning rate
 if v_perplexity < min_perplexity:
 decay_count = 0
 min_perplexity= v_perplexity
 else:
 decay_count += 1

 if decay_count >= decay_threshold:
 print('\t Reducing learning rate')
 decay_count = 0
 session.run(inc_gstep)

Here we update min_perplexity whenever we experience a new minimum
validation perplexity. Also, v_perplexity is the current validation perplexity.

Applications of LSTM – Generating Text

[240]

Making predictions
Now we can make predictions, simply by applying a softmax activation to the logits
we calculated previously. We also define prediction operation for validation logits
as well:

train_prediction = tf.nn.softmax(logits)
Make sure that the state variables are updated
before moving on to the next iteration of generation
with tf.control_dependencies([saved_valid_output.assign(valid_output),
 saved_valid_state.assign(valid_state)]):
 valid_prediction = tf.nn.softmax(valid_logits)

Calculating perplexity (loss)
We defined what perplexity is in Chapter 7, Long Short-Term Memory Networks. To
review, perplexity is a measure of how surprised the LSTM is to see the next n-gram,
given the current n-gram. Therefore, a higher perplexity means poor performance,
whereas a lower perplexity means a better performance:

train_perplexity_without_exp = tf.reduce_sum(
 tf.concat(train_labels,0)*-tf.log(tf.concat(
 train_prediction,0)+1e-10))/(num_unrollings*batch_size)
Compute validation perplexity
valid_perplexity_without_exp = tf.reduce_sum(valid_labels*-tf.
log(valid_prediction+1e-10))

Resetting states
We employ state resetting, as we are processing multiple documents. So, at the
beginning of processing a new document, we reset the hidden state back to zero.
However, it is not very clear whether resetting the state helps or not in practice. On
one hand, it sounds intuitive to reset the memory of the LSTM cell at the beginning
of each document to zero, when starting to read a new story. On the other hand, this
creates a bias in state variables toward zero. We encourage you to try running the
algorithm both with and without state resetting and see which method performs
well.

Reset train state
reset_train_state = tf.group(tf.assign(saved_state,
 tf.zeros([batch_size, num_nodes])),
 tf.assign(saved_output, tf.zeros(
 [batch_size, num_nodes])))

Chapter 8

[241]

Reset valid state
reset_valid_state = tf.group(tf.assign(saved_valid_state,
 tf.zeros([1, num_nodes])),
 tf.assign(saved_valid_output,
 tf.zeros([1, num_nodes])))

Greedy sampling to break unimodality
This is quite a simple technique where we can stochastically sample the next
prediction out of the n best candidates found by the LSTM. Furthermore, we will
give the probability of picking one candidate to be proportional to the likelihood of
that candidate being the next bigram:

def sample(distribution):

 best_inds = np.argsort(distribution)[-3:]
 best_probs = distribution[best_inds]/
 np.sum(distribution[best_inds])
 best_idx = np.random.choice(best_inds,p=best_probs)
 return best_idx

Generating new text
Finally, we will define the placeholders, variables, and operations required for
generating new text. These are defined similarly to what we did for the training
data. First, we will define an input placeholder and variables for state and output.
Next, we will define state resetting operations. Finally, we will define the LSTM
cell calculations and predictions for the new text to be generated:

Text generation: batch 1, no unrolling.
test_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size],
name = 'test_input')

Same variables for testing phase
saved_test_output = tf.Variable(tf.zeros([1,
 num_nodes]),
 trainable=False, name='test_hidden')
saved_test_state = tf.Variable(tf.zeros([1,
 num_nodes]),
 trainable=False, name='test_cell')

Compute the LSTM cell output for testing data
test_output, test_state = lstm_cell(
test_input, saved_test_output, saved_test_state)

Applications of LSTM – Generating Text

[242]

Make sure that the state variables are updated
before moving on to the next iteration of generation
with tf.control_dependencies([saved_test_output.assign(test_output),
 saved_test_state.assign(test_state)]):
 test_prediction = tf.nn.softmax(tf.nn.xw_plus_b(test_output,
 w, b))

Reset test state
reset_test_state = tf.group(
 saved_test_output.assign(tf.random_normal([1,
 num_nodes],stddev=0.05)),
 saved_test_state.assign(tf.random_normal([1,
 num_nodes],stddev=0.05)))

Example generated text
Let's take a look at some of the data generated by the LSTM after 50 steps of learning:

they saw that the birds were at her bread, and threw behind him a comb
which
made a great ridge with a thousand times thousands of spikes. that
was a
collier.
the nixie was at church, and thousands of spikes, they were flowers,
however, and had hewn through the glass, the children had formed a
hill of mirrors, and was so slippery that it was impossible for the
nixie to cross it. then she thought, i will go home quickly and
fetch my axe, and cut the hill of glass in half. long before she
returned, however, and had hewn through the glass, the children saw
her from afar,
and he sat down close to it,
and was so slippery that it was impossible for the
nixie to cross it.

Chapter 8

[243]

As you can see, the text looks much better than the text we saw being generated
from RNNs. There actually exists a story about a water-nixie in our training corpus.
However, our LSTM does not merely output that text, but it adds more color to that
story by introducing new things, such as talking about a church and flowers, which
are not found in the original text. Next we will investigate how the text generated from
standard LSTMs compares to other models, such as LSTMs with peepholes and GRUs.

Comparing LSTMs to LSTMs with
peephole connections and GRUs
Now we will compare LSTMs to LSTMs with peepholes and GRUs in the text
generation task. This will help us to compare how well different models (LSTMs
with peepholes and GRUs) perform in terms of perplexity as well as the quality
of the generated text. This is available as an exercise in lstm_extensions.ipynb
located in the ch8 folder.

Standard LSTM
First, we will reiterate the components of a standard LSTM. We will not repeat the
code for standard LSTMs as it is identical to what we discussed previously. Finally,
we will see some text generated by an LSTM.

Review
Here we will revisit what a standard LSTM looks like. As we already mentioned,
an LSTM consists of the following:

•	 Input gate: This decides how much of the current input is written to the cell
state

•	 Forget gate: This decides how much of the previous cell state is written to
the current cell state

•	 Output gate: This decides how much information from the cell state is
exposed to output into the external hidden state

Applications of LSTM – Generating Text

[244]

In Figure 8.1, we will illustrate how each of these gates, input, cell state, and the
external hidden states are connected:

Figure 8.1: An LSTM cell

Example generated text
Here we will show the text produced by a standard LSTM after a single step of
training and 25 steps of training on our dataset.

Text produced at step 1:

emy that then the to they the the to and and and then there the to
the to the withe there the the to, and ther, and ther tthe the the the
withe the the the the wid the th to e the there to, and the the the
the the wid the the the to, the and to the was and and was the when
hind the whey the the to and was the whe wous thout hit the to hhe was
they his up the was was the wou was and and wout the the ous to hhe
the was and was they hind and and then the the the wit to the wther
thae wid the and the the wit the ther, the there the to the wthe wit
the the the the wit up the they og a and the whey the the ous th the
wthe the ars to and the whey it a and whe was they the ound the was
whe was and and to ther then the and ther the wthe art the the and and
the the the to and when the the wie to the wthe wit up the whe wou
wout hit hit the the the to the whe was aou was to t the out and the
and hit the the the with then the wie the to then the the to, the to a
t to the the wit up he the wit there

Chapter 8

[245]

Text produced at step 25:

there, said the father for a while, and her trouble she was to carry
the mountain. then they were all the child, and they were once and
only sighed, but they said, i am as
old now as the way and drew the child, and he began and wife looked at
last and said, i have the child, fath-turn, and
hencefore they were to himself, and then they trembled, hand all three
days with him. when the king of the golden changeling, and his wife
looked at last and only one lord, and then he was laughing, wished
himself, and then he said
nothing and only sighed. then they had said, all the changeling
laugh, and he said, who was still done, the bridegroom, and he went
away to him, but he did not trouble to the changeling away, and then
they were over this, he was all to the wife, and she said,
has the wedding did gretel give her them, and said, hans in a place.
in her trouble shell into the father. i am you.
the king had said, how he was to sweep. then the spot on hand but the
could give you doing there,

We can see that at step 25, there is quite a dramatic increase in the quality of the text
compared to step 1. Furthermore, this text looks much better than the text we saw
in the Chapter 6, Recurrent Neural Networks examples, when 100 stories were used to
train the model.

Gated Recurrent Units (GRUs)
Here we will first briefly delineate what a GRU is composed of, followed by the code
for implementing a GRU cell. Finally, we look at some code generated by a GRU cell.

Review
In order to review, let's briefly go through what a GRU is. A GRU is an elegant
simplification of the operations of an LSTM. A GRU introduces two different
modifications to an LSTM (see Figure 8.2):

•	 It connects the internal cell state and the external hidden state into a
single state

Applications of LSTM – Generating Text

[246]

•	 Then it combines the input gate and the forget gate into one update gate

Figure 8.2: A GRU cell

The code
Here we will define a GRU cell:

def gru_cell(i, o):
 """Create a GRU cell."""
 reset_gate = tf.sigmoid(tf.matmul(i, rx) + tf.matmul(o, rh)
 + rb)
 h_tilde = tf.tanh(tf.matmul(i,hx) + tf.matmul(
 reset_gate * o, hh) + hb)
 z = tf.sigmoid(tf.matmul(i,zx) + tf.matmul(o, zh) + zb)
 h = (1-z)*o + z*h_tilde

 return h

Then we will call this method as we did earlier in our example:

for i in train_inputs:
 output = gru_cell(i, output)
 output = tf.nn.dropout(output,keep_prob=1.0-dropout)
 outputs.append(output)

Chapter 8

[247]

Example generated text
Here we will show text produced by a GRU after a single step of training and 25
steps of training on our dataset.

Text produced at step 1:

 hing ther that ther her to the was shen andmother to to her the
cake, and the caked the woked that the wer hou shen her the the the
that her her, and to ther to ther her that the wer the wer ther the
wong are whe was the was so the the caked her the wong an the woked
the wolf the soought and was the was he grandmred the wolf sas shen
that ther to hout her the the cap the wolf so the wong the soor ind
the wolf the when that, her the the wolf to and the wolf sher the the
cap the cap. the wolf so ther the was her her, the the the wong and
whe her the was her he grout the ther, and the cap., and the caked the
the ther the were cap and the would the the wolf the was the whe wher
cad-the cake the was her her, he when the ther, the wolf so the that,
and the wolf so and her the the the cap. the the wong to the wolf,
andmother the cap. the so to ther ther, the woked he was the was the
when the caked her cad-ing and the cake, and

Text produced at step 25:

you will be sack, and the king's son, the king continued, and he was
about to them all, and that she was strange carry them to somether,
and who was there, but when the shole before the king, and the king's
daughter was into such into the six can dish of this wine before the
said, the king continued, and said to the king, when he was into the
castle to so the king.
then the king was stranged the king.
then she said, and said that he saw what the sack, but the king, and
the king content up the king.
the king had the other, and said, it is not down to the king was in
the blower to be took them. then the king sack, the king, and the
other, there, and
said to the other, there, and the king, who had been away, the six
content the six conved the king's strong one, they were not down the
king.
then she said to her, and saw the six content until there, and the
king content until the six convered the

We can see that in terms of the quality of text, GRUs do not demonstrate a significant
quality improvement compared to standard LSTMs. However, the output of GRUs
seems to have more repetitions (for example, the word king) in text more frequently
than the LSTMs. This is possibly due to compromising of long-term memory caused
by the simplification of the model (that is, having only a single state, compared to the
two states in a standard LSTM).

Applications of LSTM – Generating Text

[248]

LSTMs with peepholes
Here we will discuss LSTMs with peepholes and how they are different from a
standard LSTM. Next we will discuss their implementation, followed by the text
generated by the LSTM with peepholes model.

Review
Now, let's briefly look at LSTMs with peepholes. Peepholes are essentially a way for
the gates (input, forget, and output) to directly see the cell state, instead of waiting
for the external hidden state (see Figure 8.3):

Figure 8.3: An LSTM with peepholes

The code
Note that we're keeping the peep connections diagonal. We found that nondiagonal
peephole connections (proposed by Gers and Schmidhuber in their paper Recurrent
Nets that Time and Count, Neural Networks, 2000) hurt performance more than they
help, for this language modeling task. Therefore, we adopted a different variation
that uses diagonal peephole connections, as used by Sak, Senior, and Beaufays in
their paper Long Short-Term Memory Recurrent Neural Network Architectures for Large
Scale Acoustic Modeling, Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, 2014: 338-342.

Chapter 8

[249]

The following is the code implementation:

def lstm_with_peephole_cell(i, o, state):

 input_gate = tf.sigmoid(tf.matmul(i, ix) + state*ic +
 tf.matmul(o, im) + ib)
 forget_gate = tf.sigmoid(tf.matmul(i, fx) + state*fc +
 tf.matmul(o, fm) + fb)
 update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
 state = forget_gate * state + input_gate * tf.tanh(update)
 output_gate = tf.sigmoid(tf.matmul(i, ox) + state*oc +
 tf.matmul(o, om) + ob)

 return output_gate * tf.tanh(state), state

Then we will call this method for each batch of inputs for spanning across all time
steps (that is, the num_unrollings time steps), as in this code:

for i in train_inputs:
 output, state = lstm_with_peephole_cell(i, output, state)
 output = tf.nn.dropout(output,keep_prob=1.0-dropout)
 outputs.append(output)

Example generated text
Here we show text produced by a standard LSTM after a single step of training and
25 steps of training on our dataset.

The following is the text produced at step 1:

our oned he the the hed the the the he here hed he he e e and her and
the ther her the then hed and her and her her the hed her and the the
he he ther the hhe the he ther the whed hed her he hthe and the the
the ther the to e and the the the ane and and her and the hed ant and
the and ane hed and ther and and he e the th the hhe ther the the and
the the the the the the hed and ther hhe wher the her he he and he
hthe the the the he the then the he he e and the the the and and the
the the ther to he hhe wher ant the her and the hed the he he the and
ther and he the and and the ant he he e the and ther he e and ther
here th the whed

Applications of LSTM – Generating Text

[250]

The following is the text produced at step 25:

will, it was there, and it was me, and i trod on the stress and there
is a stone and the went and said, klink, and that the princess and
they said, i will not stare
it, the wedding and that the was of little the sun came in the sun
came out, and then the wolf is took a little coat and i were at little
hand and beaning therein and said, klink, and broke out of the shoes
he had the wolf of the were to patches a little put into the were, and
they said, she was to pay the bear said, "ah, that they come to the
well and there is a stone and the wolf were of the light, and that the
two old were of glass there is a little that his
well as well and wherever a stone
and they were the went to the well, and the went the sun came in the
seater hand, and they said, klink, and broke in his sead, and i were
my good one
the wedding and said, that the two of slapped to said to said, "ah,
that his store once the worl's said, klink, but the went out of a
patched on his store, and the wedding and said, that

The text produced by LSTMs with peepholes appears to be grammatically poor
compared to text produced by LSTMs or GRUs. Let's now see how each method
compares quantitatively in terms of the perplexity measure.

Training and validation perplexities over time
In Figure 8.4, we will plot the behavior of perplexity over time for LSTMs, LSTMs
with peepholes, and GRUs. First, we can see that not having dropout gives a
significant reduction in training perplexity. However, we should not conclude that
dropout adversely affects performance, as this appealing performance is due to
the overfitting training data. This is evident from the validation perplexity graph.
Although LSTM's train perplexity appears to be competitive with the models that
use dropout, the validation perplexity is much higher than these models. This shows
us that dropout in fact helps us in the language generation task.

Also, from all the methods that use dropout, we can see that LSTM and GRUs deliver
the best performance. One surprising observation is that LSTMs with peepholes
produce the worst training perplexity and a slightly worse validation perplexity.
This means that peephole connections do not add any value to solving our problem,
but instead make the optimization difficult by introducing more parameters to
the model. Following this analysis, we will use LSTMs from here on. We leave
experimenting with GRUs as an exercise for the readers:

Chapter 8

[251]

Figure 8.4: Perplexity change for training data over time (LSTMs, LSTM (peephole), and GRUs)

The current literature suggests that among LSTMs and
GRUs, there is no clear winner and a lot depends on
the task (refer to the paper Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling, Chung and
others, NIPS 2014 Workshop on Deep Learning, December 2014).

Improving LSTMs – beam search
As we saw earlier, the generated text can be improved. Now let's see if beam
search, which we discussed in Chapter 7, Long Short-Term Memory Networks, might
help to improve the performance. In beam search, we will look ahead a number of
steps (called a beam) and get the beam (that is, a sequence of bigrams) that has the
highest joint probability calculated separately for each beam. The joint probability
is calculated by multiplying the prediction probabilities of each predicted bigram
in a beam. Note that this is a greedy search, meaning that we will calculate the best
candidates at each depth of the tree iteratively, as the tree grows. It should be noted
that this search will not result in the globally best beam.

Applications of LSTM – Generating Text

[252]

Implementing beam search
To implement beam search, we only have to change the text generation technique.
Training and validation operations stay the same. However the code will be more
complicated than the text generation operation flow we saw earlier. This code is
available to the end of the lstm_for_text_generation.ipynb exercise file in the
ch8 folder.

First, we will define the beam length (that is, the number of steps we look into the
future) and beam_neighbors (that is, the number of candidates we compare at each
time step):

beam_length = 5
beam_neighbors = 5

We will define the beam_neighbor number of placeholders to maintain the best
candidates at each time step:

sample_beam_inputs = [tf.placeholder(tf.float32, shape=[1, vocabulary_
size]) for _ in range(beam_neighbors)]

Next, we will define two placeholders to hold the best greedily found global beam
index and the locally maintained best candidate beam indices, which we will use to
continue our predictions for the next stage of predictions:

best_beam_index = tf.placeholder(shape=None, dtype=tf.int32)
best_neighbor_beam_indices = tf.placeholder(shape=[beam_neighbors],
dtype=tf.int32)

Then we will define state and output variables for each beam candidate as we did for
a single prediction earlier:

saved_sample_beam_output = [tf.Variable(tf.zeros([1, num_nodes])) for
_ in range(beam_neighbors)]
saved_sample_beam_state = [tf.Variable(tf.zeros([1, num_nodes])) for _
in range(beam_neighbors)]

We will also define state reset operations:

reset_sample_beam_state = tf.group(
 *[saved_sample_beam_output[vi].assign(tf.zeros([1, num_nodes]))
for vi in range(beam_neighbors)],
 *[saved_sample_beam_state[vi].assign(tf.zeros([1, num_nodes])) for
vi in range(beam_neighbors)]
)

Chapter 8

[253]

Also, we will need cell output and prediction calculations for each beam:

We calculate lstm_cell state and output for each beam
sample_beam_outputs, sample_beam_states = [],[]
for vi in range(beam_neighbors):
 tmp_output, tmp_state = lstm_cell(
 sample_beam_inputs[vi], saved_sample_beam_output[vi],
 saved_sample_beam_state[vi]
)
 sample_beam_outputs.append(tmp_output)
 sample_beam_states.append(tmp_state)

For a given set of beams, outputs a list of prediction vectors of
size beam_neighbors
each beam having the predictions for full vocabulary
sample_beam_predictions = []
for vi in range(beam_neighbors):
 with tf.control_dependencies([saved_sample_beam_output[vi].
assign(sample_beam_outputs[vi]),
 saved_sample_beam_state[vi].
assign(sample_beam_states[vi])]):
 sample_beam_predictions.append(tf.nn.softmax(tf.nn.xw_
plus_b(sample_beam_outputs[vi], w, b)))

Next, we will define a new set of operations for updating the state and output
variables of each beam with the best beam candidate indices found at each step. This
is important for each step, as the best beam candidates will not uniformly branch out
from each tree at a given depth. Figure 8.5 shows an example. We will indicate the
best beam candidates with bold font and arrows:

Figure 8.5: A beam search illustrating the requirement for updating beam states at each step

Applications of LSTM – Generating Text

[254]

As seen here, candidates are not uniformly sampled, having always one candidate
from a subtree (a set of arrows starting from the same point) at a given depth. For
example, at depth two, there are no candidates spawning from the hunting → king
path, so the state update we calculated for that path is not useful anymore. So the
state we maintained for that path must be replaced with the state update we had for
the king → was path, as there are now two paths sharing the parent king → was. We
will use the following code to make such replacements to the states:

stacked_beam_outputs = tf.stack(saved_sample_beam_output)
stacked_beam_states = tf.stack(saved_sample_beam_state)

update_sample_beam_state = tf.group(
 *[saved_sample_beam_output[vi].assign(tf.gather_nd(stacked_beam_
outputs,[best_neighbor_beam_indices[vi]])) for vi in range(beam_
neighbors)],
 *[saved_sample_beam_state[vi].assign(tf.gather_nd(stacked_beam_
states,[best_neighbor_beam_indices[vi]])) for vi in range(beam_
neighbors)]
)

Examples generated with beam search
Let's see how our LSTM performs with beam search. It looks better than before:

and they sailed to him and said,
 oh, queen. where heavens, she went to her, and thumbling
where the whole kingdom likewis, and that she had given him as that
he had to eat, and they gave him the money, hans took his head that
he had been the churchyar, and they gave him the money, hans took his
head that he had been the world, and, however do that, he have begging
his that he was
placed where they were brought in the mouse's horn again. where
have, you come? then thumbling where the world, and when they came to
them, and that he was soon came back, and then the will make that they
hardled the world, and, however do that heard him, they have gone out
through the room, and said the king's son was again and said,
 ah, father, i have been in a dream, for his horse again,
answered the door. when they saw
each other that they had been. then they saw they had been.

Compared to the text produced by the LSTM, this text seems to have more variation
in the text while keeping the text grammatically consistent as well. So, in fact, beam
search helps to produce quality predictions compared to predicting one word at a
time. Also, we see that the LSTM interestingly combines different elements from
stories to come up with interesting concepts (for example, mouse's horn, bringing
Thumbling, a character, and Hans, a character from a different story, together). But
still, there are instances where words together don't make much sense. Let's see how
we can improve our LSTM further.

Chapter 8

[255]

Improving LSTMs – generating text
with words instead of n-grams
Here we will discuss ways to improve LSTMs. First, we will discuss how the number
of model parameters grows if we use one-hot-encoded word features. This motivates
us to use low-dimensional word vectors instead of one-hot-encoded vectors. Finally,
we will discuss how we can employ word vectors in the code to generate better-
quality text compared to using bigrams. The code for this section is available in
lstm_word2vec.ipynb in the ch8 folder.

The curse of dimensionality
One major limitation stopping us from using words instead of n-grams as the input
to our LSTM is that this will drastically increase the number of parameters in our
model. Let's understand this through an example. Consider that we have an input of
size 500 and a cell state of size 100. This would result in a total of approximately 240K
parameters (excluding the softmax layer), as shown here:

()~ 4 500 100 100 100 100 ~ 240x x x K= + + =

Let's now increase the size of the input to 1000. Now the total number of parameters
would be approximately 440K, as shown here:

()~ 4 1000 100 100 100 100 ~ 440x x x K= + + =

As you can see, for an increase of 500 units of the input dimensionality, the number
of parameters has grown by 200,000. This not only increases the computational
complexity, but also increases the risk of overfitting due to the large number of
parameters. So, we need ways of restricting the dimensionality of the input.

Word2vec to the rescue
As you will remember, not only can Word2vec give a lower-dimensional feature
representation of words compared to one-hot encoding, but it also gives semantically
sound features. To understand this, let's consider three words: cat, dog, and volcano.
If we one-hot encode just these words and calculate the Euclidean distance between
them, it would be the following:

distance(cat,volcano) = distance(cat,dog)

Applications of LSTM – Generating Text

[256]

However, if we learn word embeddings, it would be the following:

distance(cat,volcano) > distance(cat,dog)

We would like our features to represent the latter, where similar things have a lower
distance than dissimilar things. Consequently, the model will be able to generate
better-quality text.

Generating text with Word2vec
Here, our LSTM gets a bit more complex than the standard LSTM, as we are
plugging in an embedding layer in the middle of the input and the LSTM. Figure 8.6
depicts the overall architecture of LSTM-Word2vec. This is available as an exercise in
the lstm_word2vec.ipynb file located in the ch8 folder.

Figure 8.6: The structure of a language modeling LSTM using word vectors

Chapter 8

[257]

We will first learn word vectors using the Continuous Bag-of-Words (CBOW)
model. The following are some of the best relationships learned by our
Word2vec model:

Nearest to which: what
Nearest to not: bitterly, easily, praying, unseen
Nearest to do: did
Nearest to day: evening, sunday
Nearest to two: many, kinsmen
Nearest to will: may, shall, 'll
Nearest to pick-axe: ladder
Nearest to stir: bestir, milk

Now we can feed the embeddings—instead of one-hot-encoded vectors—to the
LSTM. For this, we incorporate the tf.nn.embedding_lookup function, as follows:

for ui in range(num_unrollings):
 train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))
 train_inputs_embeds.append(tf.nn.embedding_
lookup(embeddings,train_inputs[ui]))

For a more general-purpose language modeling task, we can use
already available pretrained word vectors. Word vectors found
by learning from text corpus with billions of words are freely
available to be downloaded and used. Here we will list several such
repositories that are readily available word vectors:

•	 Word2vec: https://code.google.com/archive/p/
word2vec/

•	 Pretrained GloVe word vectors: https://nlp.stanford.
edu/projects/glove/

•	 fastText word vectors: https://github.com/
facebookresearch/fastText/blob/master/
pretrained-vectors.md

However, as we are working with a very limited-size vocabulary,
we will learn our own word vectors. It will be a computational
overhead if we try to use these massive word vector repositories
for a vocabulary of a few thousand words. Moreover, since we are
outputting stories, certain unique words (for example, elves and
water-nixie) might not even have been used during learning.

The rest of the code will be similarly used for LSTM cell computations,
loss, optimization, and predictions we discussed earlier. However, remember
that our input size is not the vocabulary size anymore, but the embedding size.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Applications of LSTM – Generating Text

[258]

Examples generated with LSTM-Word2vec
and beam search
The following text is generated by LSTM-Word2vec (after applying a simple
preprocessing step involving removing redundant spaces). Now the text looks
quite realistic:

i am in a great castle. the king's son. the king 's son. "you are
mine with the dragon , and a glass mountain and she gave it to you.
"the king's son. "i have not". "no," said the king's son , and a
great lake, and in its little dish, which was much larger than do you
want to have not. the king. if i had a great lake, but it was not
long before it. then the king's son. the king's son, however, drank
only the milk. then the king 's son said, "you are not". then the
wedding was celebrated, and when she got to the king's son. "you are
mine, and a glass mountain and the king 's son, however. they gave
him to see her heart, and went away, and the old king's son, who was
sitting by the town, and when they went to the king's boy. she was in
its little head against it as long as it had strength to do so, until
at last it was standing in the kitchen and heard the crown, which are
so big. when she got into a carriage, and slept in the whole night,
and the wedding was celebrated, and when she got to the glass mountain
they thrust the princess remained, the child says, come out. when
she got into a great lake, but the king's son, and there was a great
lake before the paddock came to a glass mountain, and there were full
of happiness. when the bride, she got to sleep in a great castle, and
as soon as it was going to be put to her house, but the wedding was
celebrated, and when she got to the old woman, and a glass of wine.
when it was evening, she began to cry in the whole night, and the
wedding was celebrated, and after this the king's boy. and when she
had washed up, and when the bride, who came to her, but when it was
evening, when the king 's son. the king 's son. the king 's son. "i
will follow it. then the king". if i had a great lake, and a glass
mountain, and there were full dress, i have not. "thereupon the king's
son as the paddock had to put in it. she felt a great lake, so she is
mine. then the king 's son's son".

You can see that there are no repetitions of text, as we saw with standard RNNs,
and the text looks grammatically correct in most cases, and there are very few
spelling mistakes.

So far we have analyzed how the generated text looks like for standard LSTMs,
LSTMs with peepholes, GRUs, LSTMs with beam search, and LSTMs with beam
search using Word2vec. Now we will see how these methods compare to each other
quantitatively again.

Chapter 8

[259]

Perplexity over time
Here in Figure 8.7, we will plot the behavior of perplexity over time for all the
methods we saw so far: LSTMs, LSTMs with peepholes, GRUs, and LSTMs using the
Word2vec features. To make the comparison interesting, we will also compare one
of the best models we can think of: a three-layer deep LSTM that uses word vectors
and dropout. We can see that from the methods that use dropout (that is, the methods
that reduce overfitting), LSTMs with the Word2vec features show promising results.
I am not stating that LSTMs with Word2vec deliver good performance based on just
numerical values, but also considering the difficulty of the problem. In the Word2vec
settings, the atomic unit we use for learning are words, unlike the other models that
use bigrams. Language generation at the word level can be challenging compared to
that at the bigram level due to the large size of the vocabulary. Therefore, achieving
a training perplexity at the word level that is comparable to that of the bigram-based
models can be thought of as good performance. Looking at the validation perplexity,
we can see that the word-vector-based methods exhibit a higher validation perplexity.
This is understandable as the task is more challenging due to the large vocabulary.
Another interesting observation I'd like to draw your attention to is, comparing the
single layer LSTM and the deep LSTMs. You can see that the deep LSTM shows a
much lower and a stable validation perplexity over time, which lead us to believe that
deep models often deliver better. Note that we don't report the results of using beam
search, as beam search only affects the prediction and has no effect on the training
perplexity:

Figure 8.7: Perplexity change for training data over time (LSTMs, LSTM (Peephole) and GRUs,
and LSTMs + Word2vec)

Applications of LSTM – Generating Text

[260]

Using the TensorFlow RNN API
We will now examine how we can use the TensorFlow RNN API to make the code
simpler. The TensorFlow RNN API contains a variety of RNN-related functions
that help us to implement RNNs faster and easier. We will now see how the same
example we discussed in the preceding sections can be implemented using the
TensorFlow RNN API. However, to make things exciting, we will implement a deep
LSTM network with three layers that we talked about in the comparisons. The full
code for this is available in the lstm_word2vec_rnn_api.ipynb file in the Ch8 folder.

First, we will define the placeholders for holding inputs, labels, and corresponding
embedding vectors for the inputs. We ignore the validation data related
computations as we have already discussed them:

Training Input data.
train_inputs, train_labels = [],[]
train_labels_ohe = []
Defining unrolled training inputs
for ui in range(num_unrollings):
 train_inputs.append(tf.placeholder(tf.int32,
 shape=[batch_size],name='train_inputs_%d'%ui))
 train_labels.append(tf.placeholder(tf.int32,
 shape=[batch_size], name = 'train_labels_%d'%ui))
 train_labels_ohe.append(tf.one_hot(train_labels[ui],
 vocabulary_size))

Defining embedding lookup operations for all the unrolled
trianing inputs
train_inputs_embeds = []
for ui in range(num_unrollings):
 # We use expand_dims to add an additional axis
 # As this is needed later for LSTM cell computation
 train_inputs_embeds.append(tf.expand_dims(
 tf.nn.embedding_lookup(
 embeddings,train_inputs[ui]),0))

Thereafter, we will define a list of LSTM cells from the LSTM cell from the RNN API:

num_nodes here is a sequence of hidden layer sizes
cells = [tf.nn.rnn_cell.LSTMCell(n) for n in num_nodes]

We will also define DropoutWrapper for all the LSTM cells, that performs the
dropout operation on the inputs/states/outputs of the LSTM cell:

We now define a dropout wrapper for each LSTM cell
dropout_cells = [

Chapter 8

[261]

 rnn.DropoutWrapper(
 cell=lstm, input_keep_prob=1.0,
 output_keep_prob=1.0-dropout, state_keep_prob=1.0,
 variational_recurrent=True,
 input_size=tf.TensorShape([embeddings_size]),
 dtype=tf.float32
) for lstm in cells
]

The parameters provided to this function are as follows:

•	 cell: This is the type of the RNN cell we're using in the computations
•	 input_keep_prob: This is the amount of units of the input to keep activated

when performing dropout (between 0 and 1)
•	 output_keep_prob: This is the amount of units of the output to keep

activated when performing dropout
•	 state_keep_prob: This is the amount of units of the cell state to keep

activated when performing dropout
•	 variational_recurrent: This is a special type of dropout for RNNs

introduced by Gal and Ghahramani in A Theoretically Grounded Application
of Dropout in Recurrent Neural Networks, Data-Efficient Machine Learning
workshop, ICML (2016).

Then we will define a tensor called initial_state (initialized with zeros), which
will contain the iteratively updated states (both the hidden state and the cell state)
of the LSTM:

Initial state of the LSTM memory.
initial_state = stacked_dropout_cell.zero_state(batch_size, dtype=tf.
float32)

With the list of LSTM cells defined, we can now define a MultiRNNCell object that
encapsulates the list of LSTM cells as follows:

We first define a MultiRNNCell Object that uses the
Dropout wrapper (for training)
stacked_dropout_cell = tf.nn.rnn_cell.MultiRNNCell(dropout_cells)
Here we define a MultiRNNCell that does not use dropout
Validation and Testing
stacked_cell = tf.nn.rnn_cell.MultiRNNCell(cells)

Applications of LSTM – Generating Text

[262]

Next we will calculate the output of the LSTM cell using the tf.nn.dynamic_rnn
function as follows:

Defining the LSTM cell computations (training)
train_outputs, initial_state = tf.nn.dynamic_rnn(
 stacked_dropout_cell, tf.concat(train_inputs_embeds,axis=0),
 time_major=True, initial_state=initial_state
)

For this function, we will provide several parameters, as shown here:

•	 cell: This is the type of the sequential model that will be used to compute
the output. In our case, this would be the LSTM cell we defined earlier.

•	 inputs: These are the inputs for the LSTM cell. The inputs need to have a
shape of [num_unrollings, batch_size, embeddings_size]. Therefore,
we have all the batches of data for all the time steps in this tensor. We will
call this type of data time major, as the time axis is the 0th axis.

•	 time_major: We are saying that our inputs are time major.
•	 initial_state: An LSTM needs an initial state to start with.

With the final hidden state and cell state of the LSTM calculated, we will now define
the logits (unnormalized scores obtained from the softmax layer for each word) and
predictions (normalized scores of the softmax layer for each word):

Reshape the final outputs to [num_unrollings*batch_size, num_nodes]
final_output = tf.reshape(train_outputs,[-1,num_nodes[-1]])

Computing logits
logits = tf.matmul(final_output, w) + b
Computing predictions
train_prediction = tf.nn.softmax(logits)

Then we will make our logits and labels time major. This is necessary for the loss
function we will be using:

Reshape logits to time-major fashion [num_unrollings, batch_size,
vocabulary_size]
time_major_train_logits = tf.reshape(logits,[num_unrollings,batch_
size,-1])

We create train labels in a time major fashion [num_unrollings,
batch_size, vocabulary_size]
so that this could be used with the loss function
time_major_train_labels = tf.reshape(tf.concat(train_
labels,axis=0),[num_unrollings,batch_size])

Chapter 8

[263]

Now we will arrive at defining the loss between the outputs computed from
the LSTM and the softmax layer and the actual labels. For this, we will use the
tf.contrib.seq2seq.sequence_loss function. This function is widely used in
machine translation tasks to compute the difference between the model output
translation and the actual translation, which are sequences of words. Therefore, the
same concept can be extended to our problem because we are essentially outputting
a sequence of words:

We use the sequence-to-sequence loss function to define the loss
We calculate the average across the batches
But get the sum across the sequence length
loss = tf.contrib.seq2seq.sequence_loss(
 logits = tf.transpose(time_major_train_logits,[1,0,2]),
 targets = tf.transpose(time_major_train_labels),
 weights= tf.ones([batch_size, num_unrollings], dtype=tf.float32),
 average_across_timesteps=False,
 average_across_batch=True
)

loss = tf.reduce_sum(loss)

Let's take a look at the arguments we are providing to this loss function:

•	 logits: These are the unnormalized scores of predictions we computed
earlier. However, this function accepts the logits ordered to the following
shape: [batch_size, num_unrollings, vocabulary_size]. For this, we
use the tf.transpose function.

•	 targets: These are the actual labels for the batch or sequence of inputs.
These need to be in the [batch_size, num_unrollings] shape.

•	 weights: These are the weights we give to each position in the time axis
as well as the batch axis. We are not discriminating inputs by their position,
so we will set it to 1 for all the positions.

•	 average_across_timesteps: We don't average the loss across time steps.
We need the sum across time steps, so we will set this to False.

•	 average_across_batch: We need to average the loss over the batch, so we
will set this to True.

Next we will define the optimizer, just like we did before:

Used for decaying learning rate
gstep = tf.Variable(0, trainable=False)

Running this operation will cause the value of gstep
to increase, while in turn reducing the learning rate

Applications of LSTM – Generating Text

[264]

inc_gstep = tf.assign(gstep, gstep+1)

Adam Optimizer. And gradient clipping.
tf_learning_rate = tf.train.exponential_decay(0.001,gstep,decay_
steps=1, decay_rate=0.5)

print('Defining optimizer')
optimizer = tf.train.AdamOptimizer(tf_learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
 zip(gradients, v))

inc_gstep = tf.assign(gstep, gstep+1)

With all the functions defined, you can now run the code as shown in the exercise file.

Summary
In this chapter, we looked at the implementations of the LSTM algorithm and other
various important aspects to improve LSTMs beyond standard performance. As
an exercise, we trained our LSTM on the text of stories by the Brothers Grimm and
asked the LSTM to output a fresh new story. We discussed how to implement an
LSTM with code examples extracted from exercises.

Next, we had a technical discussion about how to implement LSTMs with peepholes
and GRUs. Then we did a performance comparison between a standard LSTM and
its variants. We saw that the LSTMs performed the best compared to LSTMs with
peepholes and GRUs. We made the surprising observation of peepholes actually
hurting the performance rather than helping for our language modeling task.

Then we discussed some of the various improvements possible for enhancing the
quality of outputs generated by an LSTM. The first improvement was beam search.
We looked at an implementation of beam search and covered how to implement
it step by step. Then we looked at how we can use word embeddings to teach our
LSTM to output better text.

In conclusion, LSTMs are very powerful machine learning models that can capture
both long-term and short-term dependencies. Moreover, beam search in fact helps to
produce more realistic-looking textual phrases compared to predicting one at a time.
Also, we saw that we obtained the best performance using word vectors as inputs
instead of using the one-hot-encoded feature representation.

In the next chapter, we will look at another interesting task involving both feed-
forward networks and LSTMs: generating image captions.

[265]

Applications of LSTM –
Image Caption Generation

In the previous chapter, we saw how we can use LSTMs to generate text. In this
chapter, we will use an LSTM to solve a more complex task: generating suitable
captions for given images. This task is more complex in the sense that solving it
involves multiple subtasks, such as training/using a CNN to generate encoded
vectors of images, learning word embeddings, and training an LSTM to generate
captions. So this is not as straightforward as the text generation task, where we
simply input text and output text in a sequential manner.

Automated image captioning or image annotation has a wide variety of applications.
One of the most prominent application is image retrieval in search engines.
Automated image captioning can be used to retrieve all the images belonging to
a certain concept (for example, a cat) as per the user's request. Another application
can be in social media, where, when an image is uploaded by a user, the image is
automatically captioned so that either the user can refine the generated caption or
post it as it is.

Applications of LSTM – Image Caption Generation

[266]

For generating captions for images, we will use a popular dataset for image
captioning tasks known as Microsoft Common Objects in Context (MS-COCO). We
will first process images from the dataset (MS-COCO) to obtain an encoding of the
images with a pretrained Convolutional Neural Network (CNN), which is already
good at classifying images. The CNN will take a fixed-size image as the input and
output the class the image belongs to (for example, cat, dog, bus, and tree). Using
this CNN, we can obtain compressed encoded vectors describing images.

Then we will process the captions of the images to learn the word embeddings of
the words found in captions. We can also use pretrained word vectors for this task.
Finally, having obtained both the image and word encodings, we will feed them into
an LSTM and train it on the images and their respective captions. Then we will ask to
generate a caption for a set of unseen images (that is, the validation set).

We will use a pretrained CNN to generate image encodings. Then we will first
implement our own word embedding learning algorithm and LSTMs from scratch.
Finally, we will see how we can use pretrained word vectors along with the LSTM
modules available in the TensorFlow RNN API to achieve this. Using pretrained
word vectors and the RNN API reduces the amount of coding we have to do
otherwise, significantly.

Getting to know the data
Let's first understand the data we are working with both directly and indirectly.
There are two datasets we will rely on:

•	 The ILSVRC ImageNet dataset (http://image-net.org/download)
•	 The MS-COCO dataset (http://cocodataset.org/#download)

We will not engage the first dataset directly, but it is essential for caption learning.
This dataset contains images and their respective class labels (for example, cat, dog,
and car). We will use a CNN that is already trained on this dataset, so we do not
have to download and train on this dataset from scratch. Next we will use the
MS-COCO dataset, which contains images and their respective captions. We will
directly learn from this dataset by mapping the image to a fixed-size feature vector,
using the CNN, and then map this vector to the corresponding caption using an
LSTM (we will discuss the process in detail later).

Chapter 9

[267]

ILSVRC ImageNet dataset
ImageNet is an image dataset that contains a large set of images (~1 million) and
their respective labels. These images belong to 1,000 different categories. This dataset
is very expressive and contains almost all the objects found in the images we want
to generate captions for. Therefore, I consider ImageNet to be a good dataset to train
on, in order to obtain image encodings that are required for caption generation.
We say we use this dataset indirectly because we will use a pretrained CNN that
is trained on this dataset. Therefore we will not be downloading, nor training the
CNN on this dataset, by ourselves. Figure 9.1 shows some of the classes available
in the ImageNet dataset:

Figure 9.1: A small sample of the ImageNet dataset

Applications of LSTM – Image Caption Generation

[268]

The MS-COCO dataset
Now we will move on to the dataset that we will actually be using, which is called
MS-COCO (short for, Microsoft - Common Objects in COntext). We will use the
dataset from the year 2014. As described earlier, this dataset consists of images and
their respective descriptions. The dataset is quite large (for example, the training
dataset consists of ~120,000 samples and can measure over 15 GB). Datasets are
updated every year, and a competition is then held to recognize the team that
achieves state-of-the-art performance. Using the full dataset is important when the
objective is to achieve state-of-the-art performance. However, in our case, we want
to learn a reasonable model that is able to suggest what is in an image generally.
Therefore, we will use a smaller dataset (~40,000 images and ~200,000K captions)
to train our model on. Figure 9.2 includes some of the samples available:

Figure 9.2: A small sample of the MS-COCO dataset

Chapter 9

[269]

For learning with and testing our end-to-end image caption generation model,
we will use the 2014 validation dataset, provided on the official MS-COCO dataset
website. The dataset consists of ~41,000 images and ~200,000 captions. We will use
the initial set of 1,000 samples as the validation set and the rest as the training set.

In practice, you should use separate datasets for testing and validation.
However, as we are using limited data, to maximize the learning,
we consider the same dataset for both testing and validation.

In Figure 9.3, we can see some of the images found in the validation set. These
are some hand-picked examples from the validation set representing a variety
of different objects and scenes. We will use these for visually inspecting results,
as it is infeasible to visually inspect all the 1,000 samples in the validation set:

Figure 9.3: An unseen image we use to test image caption generation capability of our algorithm

The machine learning pipeline for image
caption generation
Here we will look at the image caption generation pipeline at a very high
level and then discuss it piece by piece until we have the full model. The image
caption generation framework consists of three main components and one
optional component:

Applications of LSTM – Image Caption Generation

[270]

•	 A CNN generating encoded vectors for images
•	 An embedding layer learning word vectors
•	 (Optional) An adaptation layer that can transform a given embedding

dimensionality to an arbitrary dimensionality (details will be discussed later)
•	 An LSTM taking the encoded vectors of the images, and outputting the

corresponding caption

First, let's look at the CNN generating the encoded vectors for images. We can
achieve this by first training a CNN on a large classification dataset, such as
ImageNet, and using that knowledge to generate compressed vectorized
representations of images.

One might ask, why not input the image as it is to the LSTM? Let's go back to a
simple calculation we did in the previous chapter:

"An increase of 500 units in the input layer resulted in an increase of
200,000 parameters."

The images we deal with here are around 224 × 224 × 3 ~ 150,000. This should give
you an idea of the increase in the number of parameters this would result in for the
LSTM. Therefore, finding a compressed representation is crucial. Another reason
why LSTMs are not suitable for directly processing raw image data is that it is not
very straightforward compared to using a CNN to process image data.

There exist convolutional variants of LSTMs called Convolution LSTMs.
Convolution LSTMs are capable of working with image inputs by
using the convolution operation, instead of fully connected layers. Such
networks are heavily used for spatiotemporal problems (for example,
weather data or video prediction) that has both spatial and temporal
dimensions to the data. You can read more about convolutional
LSTMs in Long-term Recurrent Convolutional Networks for Visual Recognition
and Description, Jeff Donahue, and others, Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (2015).

Chapter 9

[271]

Although the training procedure is completely different, our goal for this training
process is similar to what we achieve after we learn word embeddings. For word
embeddings, we would like similar words to have similar vectors (that is, high
similarity) and different words to have different vectors (that is, low similarity).
In other words, if xImage represents the encoded vector obtained for image x,
then we should have this:

() (), ,cat volcano cat dogDistance Image Image Distance Image Image>

Next we will learn the word embeddings for the text corpus created by extracting
all the words from all the captions available in the MS-COCO dataset. Again,
learning the word embeddings helps us to reduce the dimensionality of the input
to the LSTM, and it also helps us to produce more meaningful features as the input
to the LSTM. However, this also serves another crucial purpose in the pipeline.

When we used an LSTM to generate text, we used either the one-hot-encoded
representation of the words or word embeddings/vectors. Therefore, the input to the
LSTM was always of a fixed size. If the input sizes were dynamic, we couldn't handle
it with standard LSTMs. However, we didn't have to worry about this as we dealt
only with text.

In this case, however, we are working with both images and text, and we need to
make sure that the encoded image vectors and the representation of each word
corresponding to the caption of that image are all of same dimensionality. Also, with
word vectors, we can create an arbitrary fixed-length feature representation for all the
words. Therefore, we use word vectors to match the image encoding vector length.

Finally, we will create a sequence of data for each image, where the first element
of the sequence is the vectorized representation of the image, followed by the word
vectors for each word in the caption of the image, in that order. We will then use
this sequence of data to train the LSTM as we did earlier.

Applications of LSTM – Image Caption Generation

[272]

This approach is similar to the approach found in Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention, Xu and others, Proceedings of the 32nd
International Conference on Machine Learning (2015). The process is depicted in Figure 9.4:

Figure 9.4: Machine learning pipeline for training on the task of generating image captions

Chapter 9

[273]

Extracting image features with CNNs
With a high level understanding of the overall pipeline, we will now discuss in
detail how we can use CNNs to extract feature vectors for images. In order to get
good feature vectors, we first need to either train the CNN with the images and its
corresponding classes or use a pretrained CNN freely available on the internet. We
will be reinventing the wheel if we train a CNN from scratch, as there are pretrained
models available for free download. We also need to keep in mind that if the CNN
needs to be capable of describing many objects, it needs to be trained on a set of
classes corresponding to a variety of objects. This is why a model trained on a large
dataset such as ImageNet (for example, compared to training on a small dataset
having only 10 different classes) is important. As we saw earlier, ImageNet contains
1,000 object categories. This is more than adequate for the task we are trying to solve.

Keep in mind, however, that ImageNet contains ~1 M images. Also, since there
are 1,000 classes, we cannot use a small CNN with a simple structure (for example,
a CNN with few layers) to learn well. We need more powerful and deeper CNNs,
but with the complexity of the CNN and the complexity of the dataset itself, it
can take days (even weeks) on GPUs to train such a network. For example, VGG
(a well-known CNN that has produced exceptionally good classification accuracy
on ImageNet) can take 2-3 weeks to train.

Therefore, we need smarter ways to solve this issue. Fortunately, CNNs such as
VGG are readily available to download, so we can use them without any additional
training. These are called pretrained models. Using pretrained models allows us
to save several weeks of computational time. This is quite easy, as all we need is
the learned weights and the actual structure of the CNN to recreate the network
and use it immediately for inference.

In this exercise, we will use the VGG CNN (available at http://www.cs.toronto.
edu/~frossard/post/vgg16/). VGG architecture won the second place in the
2014 ImageNet competition. VGG has several variants to it: a 13-layer deep network
(VGG-13), a 16-layer deep network (VGG-16), and a 19-layer deep network (VGG-19).
We will use the 16-layer deep VGG-16. Figure 9.5 displays the VGG-16 network:

Figure 9.5: A 16-layer VGG architecture

http://www.cs.toronto.edu/~frossard/post/vgg16/
http://www.cs.toronto.edu/~frossard/post/vgg16/

Applications of LSTM – Image Caption Generation

[274]

Implementation – loading weights and
inferencing with VGG-16
The website http://www.cs.toronto.edu/~frossard/post/vgg16/ provides the
weights as a dictionary of NumPy arrays. There are 16 weight values and 16 bias
values corresponding to the 16 layers of VGG-16. They are saved under the keys as
follows:

conv1_1_W, conv1_1_b, conv1_2_W, conv1_2_b, conv2_1_W, conv2_1_b…

First, download the file from the website and place it in the ch9/image_caption_
data folder. Now we will discuss the implementation, from loading the downloaded
CNN to making predictions with the pretrained CNN we'll use. First, we will discuss
how to create necessary TensorFlow variables and load them with the downloaded
weights. Next, we will define an input reading pipeline to read in images as inputs
to the CNN and also several preprocessing steps. Then we will define the inference
operations for the CNN to get predictions for the inputs. Then we will define
calculations to get the class, along with the prediction for that class which the CNN
thinks that it suits the best for a given input. The last operation is not required
to generate captions for images; however, it is important to ensure that we have
configured the pretrained CNN correctly.

Building and updating variables
We will first load the dictionary of NumPy arrays containing the weights of the CNN
to the memory with the following:

weight_file = os.path.join('image_caption_data', 'vgg16_weights.npz')
weights = np.load(weight_file)

Then we will create TensorFlow variables and assign them actual weights. Also,
this can take up quite a bit of memory. So, to avoid crashes, we will specifically
ask TensorFlow to save this on CPU rather than on GPU. We will outline the code
for building and loading the TensorFlow variables with correct weights here. We
will first define all the dictionary keys (denoting different layer IDs of the CNN) in
a Python list, TF_SCOPES. Then, we will iterate through each layer ID while using
the corresponding weight matrix and the bias vector, as initializers, to specific
TensorFlow variables named according to the respective layer ID:

http://www.cs.toronto.edu/~frossard/post/vgg16/
http://www.cs.toronto.edu/~frossard/post/vgg16/

Chapter 9

[275]

def build_vgg_variables(npz_weights):
 '''
 Build the required tensorflow variables to
 populate the VGG-16 model
 and populate them with actual weights
 :param npz_weights: loaded weights as a dictionary
 :return:
 '''

 params = []
 print("Building VGG Variables (Tensorflow)...")

 with tf.variable_scope('CNN'):
 # Iterate through each convolution and fully connected layer
 # and create TensorFlow variables using variable scoping
 for si,scope in enumerate(TF_SCOPES):
 with tf.variable_scope(scope) as sc:
 weight_key, bias_key = TF_SCOPES[si]+'_W',
 TF_SCOPES[si]+'_b'

 with tf.device('/cpu:0'):
 weights = tf.get_variable(TF_WEIGHTS_STR,
 initializer= npz_weights[weight_key])
 bias = tf.get_variable(TF_BIAS_STR,
 initializer = npz_weights[bias_key])

 params.extend([weights,bias])

 return params

Preprocessing inputs
Next, we will define an input pipeline to input image to VGG-16. VGG-16 has the
following requirements for the input images in order for the predictions to be correct:

•	 Inputs should be of size [224,224,3]
•	 Inputs should have zero-mean (but not unit variance)

The following code creates a pipeline that reads straight from a set of given
filenames, applies the preceding transformations, and creates a batch of such
transformed images. This procedure is defined in the preprocess_inputs_with_
tfqueue function in the exercise file.

Applications of LSTM – Image Caption Generation

[276]

First, we will define a queue of filenames. This holds the filenames we should be
reading (that is, the filenames of the images):

 # FIFO Queue of file names
 # creates a FIFO queue until the reader needs them
 filename_queue = tf.train.string_input_producer(filenames,
 capacity=10, shuffle=False)

Next we will define a reader, which takes the filename queue as the input and
outputs a buffer which holds the images obtained by reading the filenames produced
by the queue at any given time:

 # Reader which takes a filename queue and read()
 # which outputs data one by one
 reader = tf.WholeFileReader()
 _, image_buffer = reader.read(filename_queue,
 name='image_read_op')

 # Read the raw image data and return as uint8
 dec_image = tf.image.decode_jpeg(contents=
 image_buffer,channels=3,name='decode_jpg')
 # Convert uint8 data to float32
 float_image = tf.image.convert_image_dtype(dec_image,
 dtype=tf.float32,name= 'float_image')

Next we will do the aforementioned preprocessing:

 # Resize image to 224x224x3
 resized_image = tf.image.resize_images(float_
 image,[224,224])*255.0

 # For VGG, images are only zero-meaned
 # (not standardized to unit variance)
 std_image = resized_image - tf.reduce_mean(resized_
 image,axis=[0,1], keepdims=True)

After the preprocessing pipeline is defined, we will ask TensorFlow to produce a
batch of preprocessed images at a time, without shuffling:

 image_batch = tf.train.batch([std_image],
 batch_size = batch_size, capacity = 10,
 allow_smaller_final_batch=False,
 name='image_batch')

Chapter 9

[277]

Inferring VGG-16
So far, we have created our CNN and we have defined a pipeline for reading images
and creating a batch by reading image files saved on the disk. Now we would like
to infer the CNN with the images read from the pipeline. Inferring refers to passing
an input (that is, image) and obtaining the prediction (that is, the probabilities of an
image belonging to some class) as outputs. For this we will start from the first layer
and iterate until we reach the softmax layer. This process is defined in the function
inference_cnn in the exercise file.

At each layer, we will get the weights and the bias as follows:

def inference_cnn(tf_inputs, device):

 with tf.variable_scope('CNN'):
 for si, scope in enumerate(TF_SCOPES):
 with tf.variable_scope(scope,reuse=True) as sc:
 weight, bias = tf.get_variable(TF_WEIGHTS_STR),
 tf.get_variable(TF_BIAS_STR)

Then for the first convolution layer we compute the output:

h = tf.nn.relu(tf.nn.conv2d(tf_inputs,weight,strides=[1,1,1,1],
 padding='SAME')+bias)

For the rest of the convolution layers we compute the output, where the input is the
previous layer's output:

h = tf.nn.relu(tf.nn.conv2d(h, weight, strides=[1, 1, 1, 1],
 padding='SAME') + bias)

And for the pooling layers, the output is computed as follows:

h = tf.nn.max_pool(h,[1,2,2,1],[1,2,2,1],padding='SAME')

Then, for the first fully connected layer found immediately after the last convolution
pooling layer, we will define the layer output as follows. We need to reshape the
input from last convolution/pooling layer of the [batch_size, height, width,
channels] to [batch_size, height*width*channels] size as this is a fully
connected layer:

h_shape = h.get_shape().as_list()
h = tf.reshape(h,[h_shape[0], h_shape[1] * h_shape[2] * h_shape[3]])
h = tf.nn.relu(tf.matmul(h, weight) + bias)

Applications of LSTM – Image Caption Generation

[278]

For the next set of fully connected layers except for the last layer, we get the output
as follows:

h = tf.nn.relu(tf.matmul(h, weight) + bias)

Finally, for the last fully connected layer, we do not apply any type of activations.
This will be the image feature representation which we will be feeding into
the LSTM. This will be a 1,000 dimensional vector:

out = tf.matmul(h,weight) + bias

Extracting vectorized representations
of images
The most important information we extract from the CNN is the image feature
representations. As the image representations, we will obtain the network output of
the very last layer before applying softmax. Therefore, a vector corresponding to a
single image is of length 1,000:

tf_train_logit_prediction = inference_cnn(train_image_batch, device)
tf_test_logit_prediction = inference_cnn(test_image_batch, device)

Predicting class probabilities with VGG-16
Next, we will define the operations required to get feature representations of the
images and also the actual softmax predictions to make sure that our model is
actually correct. We will define these for both the training data and the test data:

tf_train_softmax_prediction = tf.nn.softmax(tf_train_logit_prediction)
tf_test_softmax_prediction = tf.nn.softmax(tf_test_logit_prediction)

Chapter 9

[279]

Now let's run these operations and see if they work properly (see Figure 9.6):

Figure 9.6: Class prediction for our test images with VGG

It seems that our CNN knows what it is doing. Of course, there are misclassified
samples (for example, giraffe identified as a llama), but most of the time it is correct.

When running the preceding defined operations to obtain the feature
vectors and the predictions, be mindful of the batch_size variable.
Increasing this will make the code run quickly. However, it also might
lead to a system crash if large enough RAM memory (> 8 GB) is not
available. It is recommended that you keep this less than 10 if you do not
have a high end machine.

Applications of LSTM – Image Caption Generation

[280]

Learning word embeddings
We will next discuss how we can learn word embeddings for the words found in the
captions. First we will preprocess the captions in order to reduce the vocabulary:

def preprocess_caption(capt):
 capt = capt.replace('-',' ')
 capt = capt.replace(',','')
 capt = capt.replace('.','')
 capt = capt.replace('"','')
 capt = capt.replace('!','')
 capt = capt.replace(':','')
 capt = capt.replace('/','')
 capt = capt.replace('?','')
 capt = capt.replace(';','')
 capt = capt.replace('\' ',' ')
 capt = capt.replace('\n',' ')

 return capt.lower()

For example, consider the following sentence:

A living room and dining room have two tables, couches, and multiple chairs.

This will be transformed to the following:

a living room and dining room have two tables couches and multiple chairs

Then we will use the Continuous Bag-of-Words (CBOW) model to learn the word
embeddings as we did in Chapter 3, Word2vec – Learning Word Embeddings. A crucial
condition we have to keep in mind while learning word embeddings is that the
dimensionality of the embedding should match the dimensionality of the feature
representations obtained for the images, as standard LSTMs cannot handle
dynamic-sized inputs.

If we are to use pretrained word embeddings, it is most likely that the dimensionality
of the embeddings is different from the size of the image feature representations.
In that case, we can use adaptation layers (similar to a layer of a neural network)
to match the word vector dimensionality to the image feature representation
dimensionality. We will see an exercise doing just that, later.

Chapter 9

[281]

Now let's look at some of the word embeddings learnt after running 100,000 steps:

Nearest to suitcase: woman
Nearest to girls: smart, racket
Nearest to barrier: obstacle
Nearest to casings: exterior
Nearest to normal: lady
Nearest to developed: natural
Nearest to shoreline: peninsula
Nearest to eating: table
Nearest to hoodie: bonnet
Nearest to prepped: plate, timetable
Nearest to regular: signs
Nearest to tie: pants, button

Preparing captions for feeding into
LSTMs
Now, before feeding word vectors along with image feature vectors, we
need to perform a few more preprocessing steps on the caption data.

Before the preprocessing, let's look at a few basic statistics about the captions.
A caption has approximately ten words on average, with a standard deviation
of approximately two words. This information is important for us to truncate
captions which are unnecessarily long.

First, following the preceding statistics, let's set the maximum caption length allowed
to be 12.

Next, let's introduce two new word tokens, SOS and EOS. SOS denotes the start
of a sentence, whereas EOS denotes the end of a sentence. These help the LSTM
to identify both the start and end of a sentence easily.

Next, we will append captions with length less than 12 with EOS tokens such that
their length is 12.

So, consider the following caption:

a man standing on a tennis court holding a racquet

This would appear as follows:

SOS a man standing on a tennis court holding a racquet EOS

Applications of LSTM – Image Caption Generation

[282]

Consider this caption:

a cat sitting on a desk

It would become the following:

SOS a cat sitting on a desk EOS EOS EOS EOS EOS

However, consider the following caption:

a well lit and well decorated living room shows a glimpse of a glass front door through the
corridor

This would become the following:

SOS a well lit and well decorated living room shows a EOS

Note that even after being truncated, the context of the image is still
mostly preserved.

Bringing all the captions to the same length is important so that we can process a
batch of images and captions instead of processing them one by one.

Generating data for LSTMs
Here we will define how to extract a batch of data to train the LSTM. Whenever we
process a fresh batch of data, the first input should be the image feature vector and
the label should be SOS. We will define a batch of data, where, if the first_sample
Boolean is True, then the input is extracted from the image feature vectors, and if
first_sample is False, the input is extracted from the word embeddings. Also,
after generating a batch of data, we will move the cursor by one, so we get the next
item in the sequence next time we generate a batch of data. This way we can unroll
a sequence of batches of data for the LSTM where the first batch of the sequence
is the image feature vectors, followed by the word embeddings of the captions
corresponding to that batch of images.

Fill each of the batch indices
for b in range(self._batch_size):

 cap_id = cap_ids[b] # Current caption id
 # Current image feature vector
 cap_image_vec = self._image_data[self._fname_caption_tuples[
 cap_id][0]]
 # Current caption

Chapter 9

[283]

 cap_text = self._fname_caption_tuples[cap_id][1]

 # If the cursor exceeds the length of the caption, reset
 if self._cursor[b]+1>=self._cap_length:
 self._cursor[b] = 0

 # If we're processing a fresh set of cap IDs
 # The first sample should be the image feature vector
 if first_sample:
 batch_data[b] = cap_image_vec
 batch_labels[b] = np.zeros((vocabulary_size),
 dtype=np.float32)
 batch_labels[b,cap_text[0]] = 1.0
 # If we're continuing from an already processed batch
 # Keep producing the current word as the input and
 # the next word as the output
 else:
 batch_data[b] = self._word_embeddings[
 cap_text[self._cursor[b]],:]
 batch_labels[b] = np.zeros((vocabulary_size),
 dtype=np.float32)
 batch_labels[b,cap_text[self._cursor[b]+1]] = 1.0

 # Increment the cursor
 self._cursor[b] = (self._cursor[b]+1)%self._cap_length

We visualize the data generation process as shown in the following figure, for a
batch_size=1 and num_unrollings=5. To have a larger batch size, you can perform
this for the batch_size number of such sequences in parallel.

Figure 9.7: Visualization of the data generation

Applications of LSTM – Image Caption Generation

[284]

Defining the LSTM
Now that we have defined the data generator to output a batch of data, starting with
a batch of image feature vectors followed by the caption for the respective images
word by word, we will define the LSTM cell. The definition of the LSTM and the
training procedure is similar to what we observed in the previous chapter.

We will first define the parameters of the LSTM cell. Two sets of weights and a bias
for input gate, forget gate, output gate, and for calculating the candidate value:

Input gate (i_t) - How much memory to write to cell state
Connects the current input to the input gate
ix = tf.Variable(tf.truncated_normal([embedding_size, num_nodes],
stddev=0.01))
Connects the previous hidden state to the input gate
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.01))
Bias of the input gate
ib = tf.Variable(tf.random_uniform([1, num_nodes],0.0, 0.01))

Forget gate (f_t) - How much memory to discard from cell state
Connects the current input to the forget gate
fx = tf.Variable(tf.truncated_normal([embedding_size, num_nodes],
stddev=0.01))
Connects the previous hidden state to the forget gate
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.01))
Bias of the forget gate
fb = tf.Variable(tf.random_uniform([1, num_nodes],0.0, 0.01))

Candidate value (c~_t) - Used to compute the current cell state
Connects the current input to the candidate
cx = tf.Variable(tf.truncated_normal([embedding_size, num_nodes],
stddev=0.01))
Connects the previous hidden state to the candidate
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.01))
Bias of the candidate
cb = tf.Variable(tf.random_uniform([1, num_nodes],0.0,0.01))

Output gate - How much memory to output from the cell state
Connects the current input to the output gate
ox = tf.Variable(tf.truncated_normal([embedding_size, num_nodes],
stddev=0.01))
Connects the previous hidden state to the output gate

Chapter 9

[285]

om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes],
stddev=0.01))
Bias of the output gate
ob = tf.Variable(tf.random_uniform([1, num_nodes],0.0,0.01))

Then we will define the softmax weights:

Softmax Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size],
stddev=0.01))
b = tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01))

We will now define the state and output variables to maintain the state and output of
the LSTM for both training and validation data:

Variables saving state across unrollings.
Hidden state
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]),
trainable=False, name='test_cell')
Cell state
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]),
trainable=False, name='train_cell')

Hidden and cell state variables for test data
saved_test_output = tf.Variable(tf.zeros([batch_size, num_
nodes]),trainable=False, name='test_hidden')
saved_test_state = tf.Variable(tf.zeros([batch_size, num_
nodes]),trainable=False, name='test_cell')

Next we will define the LSTM cell computations:

def lstm_cell(i, o, state):
 input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) +
 ib)
 forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) +
 fb)
 update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
 state = forget_gate * state + input_gate * tf.tanh(update)
 output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) +
 ob)
 return output_gate * tf.tanh(state), state

Applications of LSTM – Image Caption Generation

[286]

Then we will iteratively calculate the state and output of the LSTM cell for num_
unrollings steps at each training step:

These two python variables are iteratively updated
at each step of unrolling
output = saved_output
state = saved_state

Compute the hidden state (output) and cell state (state)
recursively for all the steps in unrolling
for i in train_inputs:
 output, state = lstm_cell(i, output, state)
 # Append each computed output value
 outputs.append(output)

Calculate the score values
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Predictions.
train_prediction = tf.nn.softmax(logits)

Then, after saving the output and state of the LSTM to the variables we defined
earlier, we will calculate loss, by summing across unrolled axis and taking the
average over the batch axis:

State saving across unrollings.
with tf.control_dependencies([saved_output.assign(output),
 saved_state.assign(state)]):
 # When define the loss we need to sum accross all time steps
 # But average across the batch axis
 loss = 0
 split_logits = tf.split(logits,num_or_size_splits=num_unrollings)

 for lgt,lbl in zip(split_logits, train_labels):
 loss += tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits_v2(logits=lgt,
 labels=lbl)
)

Chapter 9

[287]

Finally, we will define an optimizer to optimize the weights of the LSTM and the
softmax layer with respect to the loss:

optimizer = tf.train.AdamOptimizer(learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
 zip(gradients, v))

Having generated the image feature vectors, prepared data to be fed to the LSTM,
and defined calculations required to learn the LSTM defined, we will now discuss
the evaluation metrics that we can use to evaluate the captions generated for our
validation dataset.

Evaluating the results quantitatively
There are many different techniques for evaluating the quality and the relevancy
of the captions generated. We will briefly discuss several such metrics we can use
to evaluate the captions. We will discuss four metrics: BLEU, ROGUE, METEOR,
and CIDEr. All these measures share a key objective, to measure the adequacy
(meaning of generated text) and fluency (grammatical correctness of text) in the
generated text. To calculate all these measures, we will use a candidate sentence and
a reference sentence, where a candidate sentence is the sentence/phrase predicted
by our algorithm and the reference sentence is the true sentence/phrase we want
to compare with.

BLEU
Bilingual Evaluation Understudy (BLEU) was proposed by Papineni and others in
BLEU: A Method for Automatic Evaluation of Machine Translation, Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July
(2002): 311-318. It measures the n-gram similarity between reference and candidate
phrases, in a position-independent manner. This means that a given n-gram from
the candidate is present anywhere in the reference sentence and is considered to be
a match. BLEU calculates the n-gram similarity in terms of precision. BLEU comes in
several variations (BLEU-1, BLEU-2, BLEU-3, and so on), denoting the value of n in
the n-gram.

()
()
()

candidate, ref
clipn gram in candidate

n gram in candidate

Count n gram
BLEU BP

Count n gram
∀ −

−

−
= ×

−
∑
∑

Applications of LSTM – Image Caption Generation

[288]

Here, Count(n-gram) is the number of total occurrences of a given n-gram in the
candidate sentence. Countclip (n-gram) is a measure that calculates Count(n-gram) for
a given n-gram and clips that value by a maximum value. The maximum value for
an n-gram is calculated as the number of occurrences of that n-gram in the reference
sentence. For example, consider these two sentences:

Candidate: the the the the the the the
Reference: the cat sat on the mat

Count("the") = 7
Countclip ("the")=2

Note that the entity,
()
()

clipn gram in candidate

n gram in candidate

Count n gram

Count n gram
∀ −

∀ −

−

−
∑
∑ , is a form of precision. In fact, it is

called the modified n-gram precision. When multiple references are present, the
BLEU is considered to be the maximum:

However, the modified n-gram precision tends to be higher for smaller candidate
phrases because this entity is divided by the number of n-grams in the candidate
phrase. This means that this measure will incline the model to produce shorter
phrases. To avoid this, a penalty term, BP is added to the preceding term that
penalizes short candidate phrases as well. BLEU possesses several limitations such
as BLEU ignores synonyms when calculating the score and does not consider recall,
which is also an important metric to measure accuracy. Furthermore, BLEU appears
to be a poor choice for certain languages. However, this is a simple metric that has
been found to correlate well with human judgement as well in most situations. We
will discuss BLEU in more detail in the next chapter.

ROUGE
Recall-Oriented Understudy for Gisting Evaluations (ROUGE) proposed by
Chin-Yew Lin in ROUGE: A Package for Automatic Evaluation of Summaries, Proceedings
of the Workshop on Text Summarization Branches Out (2004), can be identified as a
variant of BLEU, and uses recall as the basic performance metric. ROGUE metric
looks like the following:

ROUGE N match

ref

Count
Count

− =

Chapter 9

[289]

Here, matchCount is the number of n-grams from candidates that were present in the
reference, and refCount is the total n-grams present in the reference. If there exist
multiple references, ROUGE-N is calculated as follows:

()()ROUGE max ROUGE ,iN N ref candidate− = −

Here, refi is a single reference from the pool of available references. There are
numerous variants of ROGUE measure that introduce various improvements to
the standard ROGUE metric. ROGUE-L computes the score based on the longest
common subsequence found between the candidate and reference sentence pairs.
Note that the longest common subsequence does not need to be continuous in
this case. Next, ROGUE-W calculates the score based on the longest common
subsequence, which is penalized by the amount of fragmentation present within the
subsequence. ROGUE also suffers from limitations such as not considering precision
in the calculations of the score.

METEOR
Metric for Evaluation of Translation with Explicit ORdering (METEOR), proposed
by Michael Denkowski and Alon Lavie in Meteor Universal: Language Specific
Translation Evaluation for Any Target Language, Proceedings of the Ninth Workshop on
Statistical Machine Translation (2014): 376-380, is a more advanced evaluation metric
that performs alignments for a candidate and a reference sentence. METEOR is
different from BLEU and ROUGE in the sense that METEOR takes the position of
words into account. When computing similarities between a candidate sentence and
a reference sentence, the following cases are considered as matches:

•	 Exact: The word from the candidate exactly matches the word from the
reference sentence

•	 Stem: A stemmed word (for example, walk of the word walked) matches the
word from reference sentence

•	 Synonym: The word from a candidate sentence is a synonym for the word
from the reference sentence

To calculate the METEOR score, the matches between a reference sentence and
a candidate sentence can be shown as in Figure 9.8, with the help of a table. Then,
precision (P) and recall (R) values are calculated based on the number of matches
present in the candidate and reference sentences. Finally, the harmonic mean
of P and R is used to compute the METEOR score:

()
(). 1 frag

1mean
P RF

P R
βγ

α α
= − ×

+ −

Applications of LSTM – Image Caption Generation

[290]

Here, α, β, and γ are tunable parameters, and frag penalizes fragmented matches, in
order to prefer candidate sentences that have less gaps in matches as well as closely
follow the order of words of the reference sentence. The frag is calculated by looking
at the number of crosses in the final unigram mapping (Figure 9.8):

Figure 9.8: Different possible alignments for two strings

Figure 9.9: The METEOR word matching table

Chapter 9

[291]

You can see that we denoted matches between the candidate sentence and the
reference sentence in circles and ovals. For example, we denote exact matches with a
solid black circle, synonyms with a dashed hollow circle, and stemmed matches with
dotted circles.

METEOR is computationally more complex, but has been often found to correlate
with the human judgement more than BLEU, suggesting that METEOR is a better
evaluation metric than BLEU.

CIDEr
Consensus-based Image Description Evaluation (CIDEr), proposed by Ramakrishna
Vedantam and others in CIDEr: Consensus-based Image Description Evaluation, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, is another
measure that evaluates the consensus of a candidate sentence to a given set of
reference statements. CIDEr is defined to measure the grammaticality, saliency,
and accuracy (that is, precision and recall) of a candidate sentence.

First, CIDEr weighs each n-gram found in both the candidate and reference
sentences by means of TF-IDF, so that more common n-grams (for example, if
words considered for example, a and the) will have a smaller weight, whereas rare
words will have a higher weight. Finally, CIDEr is calculated as the cosine similarity
between the vectors formed by TF-IDF weighed n-grams found in the candidate
sentence and the reference sentence:

()
() ()
() ()

.1CIDEr cand, ref vec vec j

j
vec vec j

TF IDF cand TF IDF ref
m TF IDF cand TF IDF ref

− −
=

− −
∑

Here, cand is the candidate sentence, ref is the set of reference sentences, refj is the
jth sentence of ref, and m is the number of reference sentences for a given candidate.
Most importantly, ()vecTF IDF cand− is the TF-IDF values calculated for all the
n-grams in the candidate sentence and formed as a vector. ()vec jTF IDF ref− is the
same vector for the reference sentence, refi. ().vecTF IDF− denotes the magnitude of
the vector.

Overall, it should be noted that there is no clear-cut winner that is able to perform
well across all the different tasks that are found in natural language processing.
These metrics are significantly task-dependent and should be carefully chosen
depending on the task.

Applications of LSTM – Image Caption Generation

[292]

BLEU-4 over time for our model
In Figure 9.10, we report the evolution of the BLEU-4 value for our experiment.
We can see that the score goes up over time and reaches close to 0.3. Note that the
current state of the art (at the time of writing) for the MS-COCO dataset is around
0.369 (Bottom-Up and Top-Down Attention for Image Captioning and Visual Question
Answering, Anderson and others, 2017), which is obtained with much more complex
models as well as more advanced regularization being employed. In addition, the
actual full training set of MS-COCO is almost three times the size of the training set
we used. So, a BLEU-4 score of 0.3 with limited training data, a single LSTM cell and
no special regularization is quite a good result:

Figure 9.10: BLEU-4 for the image caption generation example over time

Chapter 9

[293]

Captions generated for test images
Let's see what sort of captions are generated for the test images.

After 100 steps, the only thing that our model has learned is that the caption starts
with an SOS token, and there are some words followed by a bunch of EOS tokens
(see Figure 9.11):

Figure 9.11: Captions generated after 100 steps

Applications of LSTM – Image Caption Generation

[294]

After 1,000 steps, our model knows to generate slightly semantic phrases and
recognizes objects in some images correctly (for example, a man holding a tennis
racket, shown in Figure 9.12). However, the text seems to be short and vague, and in
addition, several images are described incorrectly:

Figure 9.12: Captions generated after 1,000 steps

Chapter 9

[295]

After 2,000 steps, our model has become quite good at generating expressive phrases
composed of proper grammar (see Figure 9.13). Images are not described with small
and vague phrases as we saw in step 1,000 before:

Figure 9.13: Captions generated after 2,000 steps

Applications of LSTM – Image Caption Generation

[296]

After 5,000 steps, our model now recognizes most of the images correctly (see
Figure 9.14). Also, it can generate very relevant and grammatically correct phrases,
explaining what is happening in the image. However, note that it is not perfect. For
example, our algorithm gets the fourth image quite wrong. The image is actually
a building, whereas our algorithm knows that it's something urban, but is unable
to distinguish the building, mistaking it for a clock. The eighth image is also
recognized incorrectly. The image depicts an airplane in the sky, but the algorithm
mistakes it for a person flying a kite:

Figure 9.14: Captions generated after 5,000 steps

After 10,000 steps, our algorithm is quite good at describing images. It correctly
describes most of the images, but still it gets ninth image wrong. The image shows a
pizza, and the algorithm seems to think this is a sandwich (see Figure 9.15). Another
observation is that the seventh image is actually a woman holding a cell phone, but
the algorithm seems to think that it is a man. However, we can see that there are
people in the background of that image, so the algorithm might be mistaking the
person in the foreground for that of the background. From this point, the algorithm
generates different variations of what is happening in the image, as each image has
multiple captions for training:

Chapter 9

[297]

Figure 9.15: Captions generated after 10,000 steps

Remember that these are the results obtained using approximately only one third
of the full training data available. Furthermore, we are using a simple single cell
LSTM. We encourage you to try to maximize the performance by employing the
full set of training data as well as to use multilayered LSTMs (or GRUs) with better
regularization (dropout).

Using TensorFlow RNN API with
pretrained GloVe word vectors
So far, we have implemented everything from scratch in order to understand the
exact underlying mechanisms of such a system. Here we will discuss how to use the
TensorFlow RNN API along with pretrained GloVe word vectors in order to reduce
both the amount of code and learning for the algorithm. This will be available as
an exercise in the lstm_image_caption_pretrained_wordvecs_rnn_api.ipynb
notebook found in the ch9 folder.

Applications of LSTM – Image Caption Generation

[298]

We will first discuss how to download the word vectors and then discuss how to load
only the relevant word vectors from the downloaded file, as the vocabulary size of the
pretrained GloVe vectors is around 400,000 words, whereas ours is just 18,000. Next,
we will perform some elementary spelling correction of the captions, as there seems
to be a lot of spelling mistakes present. Then we will discuss how we can process the
cleaned data using a tf.nn.rnn_cell.LSTMCell module found in the RNN API.

Loading GloVe word vectors
First, download the GloVe embedding file available at https://nlp.stanford.
edu/projects/glove/ and place it in the ch9 folder. Next, we will define a NumPy
array to hold the loaded relevant word vectors from GloVe:

pret_embeddings = np.empty(shape=(vocabulary_size,50),
 dtype=np.float32)

Then we will open the ZIP file containing the downloaded GloVe word vectors and
read line by line. The ZIP file contains several different variations of GloVe having
different embedding sizes (for example, 50, 100). We will use the glove.6B.50d.txt
file found in the ZIP file as this is the smallest and is adequate for the problem we are
trying to solve. Each line in the file will be of the following format (each value in a
line separated by a space):

dog 0.11008 -0.38781 -0.57615 -0.27714 0.70521 ...

In the following code, we show how to extract relevant word embeddings
from the file. First, we will open the ZIP file and read the text file we identified
(glove.6B.50d.txt):

with zipfile.ZipFile('glove.6B.zip') as glovezip:
 with glovezip.open('glove.6B.50d.txt') as glovefile:

Next we will enumerate each line in the text file and read the word that line
corresponds to (that is, the first element of the line), and also read the corresponding
word vector for that word:

for li, line in enumerate(glovefile):
 # Decode the line to get rid of any
 # unparsable symbols
 line_tokens = line.decode('utf-8').split(' ')

 # Get the word
 word = line_tokens[0]

 # Get the vector
 vector = [float(v) for v in line_tokens[1:]]

Chapter 9

[299]

Then, if the word is found in our dataset, we will save that vector in the NumPy array
we defined previously that holds the word vectors. We will save a given vector in the
row given by our dictionary variable that holds a mapping of words to a unique
ID. At the same time, in addition to the given word, we will also process the word
produced by adding an apostrophe and s to the end of the word (for example, cat
→ cat's). We initialize both these variations with the word vector corresponding to
the original word (for example, cat) as the GloVe file doesn't contain words denoting
possession (for example, cat's). We will also save all the words from the captions that
matched some word in GloVe into the words_in_glove list. This will be used in the
next step:

if word in dictionary.keys():
 words_in_glove.append(word)
 pret_embeddings[dictionary[word],:] = vector
 words_found += 1
 found_word_ids.append(dictionary[word])

 word_with_s = word + '\'s'
 if word_with_s in dictionary.keys():
 pret_embeddings[dictionary[word_with_s],:] =
 vector
 words_found += 1
 found_word_ids.append(dictionary[word_with_s])

Cleaning data
Now we have to deal with an issue that we ignored when we had to learn word
vectors from scratch. There are many spelling mistakes (in the captions) present in
the MS-COCO dataset. Therefore, to utilize the pretrained word vectors maximally,
we need to correct these spelling mistakes to make sure that these words will have
the correct word vector assigned to them. In order to correct the spellings, we use the
following procedure.

First, we will compute the IDs of the words that were not found in the GloVe file
(possibly due to wrong spellings):

notfound_word_ids = list(set(list(range(0,vocabulary_size))) -
 set(found_word_ids))

Then, if any of these words were found in a caption, we will correct the spellings of
those words using the following logic.

Applications of LSTM – Image Caption Generation

[300]

First, calculate the similarity between the incorrect word (denoted by cw) and all
words in the words_in_glove list (each identified by gw), using string matching:

for each word not found in pretrained embeddings
we find most similar spellings
 for gw in words_in_glove:
 cor, found_sim = correct_spellings.correct_
wrong_word(cw,gw,cap)

If this similarity is greater than 0.9 (heuristically chosen), we will replace the
incorrect word with the following logic. We had to correct some words manually
as there were multiple highly similar words to some words (for example, stting was
similar to both setting and sitting):

def correct_wrong_word(cw,gw,cap):

 '''
 Spelling correction logic
 This is a very simple logic that replaces
 words with incorrect spelling with the word that highest
 similarity. Some words are manually corrected as the words
 found to be most similar semantically did not match.
 '''

 correct_word = None
 found_similar_word = False
 sim = string_similarity(gw,cw)
 if sim>0.9:
 if cw != 'stting' and cw != 'sittign' and \
 cw != 'smilling' and \
 cw!='skiies' and cw!='childi' and cw!='sittion' and \
 cw!='peacefuly' and cw!='stainding' and \
 cw != 'staning' and cw!='lating' and cw!='sking' and \
 cw!='trolly' and cw!='umping' and cw!='earing' and \
 cw !='baters' and cw !='talkes' and cw !='trowing' and \
 cw !='convered' and cw !='onsie' and cw !='slying':
 print(gw,' ',cw,' ',sim,' (',cap,')')
 correct_word = gw
 found_similar_word = True
 elif cw == 'stting' or cw == 'sittign' or cw == 'sittion':
 correct_word = 'sitting'

Chapter 9

[301]

 found_similar_word = True
 elif cw == 'smilling':
 correct_word = 'smiling'
 found_similar_word = True
 elif cw == 'skiies':
 correct_word = 'skis'
 found_similar_word = True
 elif cw == 'childi':
 correct_word = 'child'
 found_similar_word = True
 .
 .
 .
 elif cw == 'onsie':
 correct_word = cw
 found_similar_word = True
 elif cw =='slying':
 correct_word = 'flying'
 found_similar_word = True
 else:
 raise NotImplementedError

 else:
 correct_word = cw
 found_similar_word = False
return correct_word, found_similar_word

Although not all the spelling mistakes will be captured by the preceding code, most
of them will be. Also, this is adequate for our exercise.

Applications of LSTM – Image Caption Generation

[302]

Using pretrained embeddings with
TensorFlow RNN API
After we preprocess the caption data, we will move on to learning how to use the
RNN API with the pretrained GloVe embeddings. We will first discuss how we can
make the embedding size of GloVe vectors (50) to match the size of the image feature
vectors (1,000). Thereafter, we will explore how we can use the off-the-shelf LSTM
modules from TensorFlow RNN API to learn from the data. Finally, we will learn
how we can feed data with different modalities (images and text) to the model, as
images and text have to be processed differently. We will now discuss the details,
step by step. We depict the full learning model as a diagram in Figure 9.16:

Figure 9.16: Using pretrained GloVe embeddings with the TensorFlow RNN API

Chapter 9

[303]

Defining the pretrained embedding layer and the
adaptation layer
We will first define a TensorFlow variable to contain the pretrained embeddings.
We'll leave this as a trainable variable as we only did a crude initialization for some
words (that is, we used the same word vectors for the 's extension of the words). So
the word vectors will improve as the training continues:

embeddings = tf.get_variable(
 'glove_embeddings',shape=[vocabulary_size, 50],
 initializer=tf.constant_initializer(pret_embeddings,
 dtype=tf.float32)
)

We will then define the weights and biases for the adaptation layer. The adaptation
layer takes an input of the [batch_size, 50] size, which is a batch of GloVe word
vectors, and we'll convert it to a batch of vectors of the [batch_size, 1000] size.
This will act as a linear layer that adapts the GloVe word vectors to the correct input
size (to match the size of image feature vectors):

with tf.variable_scope('embeddings'):
 # We need to match the size of the input to the LSTM to
 # be same as input_size always
 # For that we use a dense layer that will take the input
 # of size 50 and produce inputs of size 1000 (input size)
 embedding_dense = tf.get_variable('embedding_dense',
 shape=[50,1000],
 dtype=tf.float32,
 initializer=tf.contrib.layers.xavier_initializer())
 embedding_bias = tf.get_variable('embedding_bias',
 dtype=tf.float32,
 initializer=tf.random_uniform(
 shape=[1000],
 minval=-0.1,
 maxval=0.1))

Defining the LSTM cell and softmax layer
Next we will define the LSTM cell that learns to model an image followed by a
sequence of words, and a softmax layer which converts the LSTM cell output to a
probabilistic prediction. We will use DropoutWrapper (similar to that in Chapter 8,
Applications of LSTM – Generating Text) to improve performance:

LSTM cell and Dropout Cell
with tf.variable_scope('rnn'):

Applications of LSTM – Image Caption Generation

[304]

 lstm = tf.nn.rnn_cell.LSTMCell(num_nodes)
 # We use dropout to improve the performance
 dropout_lstm = rnn.DropoutWrapper(
 cell=lstm, input_keep_prob=0.8,
 output_keep_prob=0.8, state_keep_prob=1.0,
 dtype=tf.float32
)

Here, we will define the weights and biases of the softmax layer:

Defining the softmax weights and biases
with tf.variable_scope('rnn'):
 w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size],
 stddev=0.01),
 name='softmax_weights',
 trainable=True)
 b = tf.Variable(tf.random_uniform([vocabulary_size],0.0,0.01),
 name='softmax_bias',trainable=True)

Defining inputs and outputs
We will now define the input and output placeholders that will hold the inputs and
outputs required to train our model. We will have three important placeholders
feeding values in:

•	 is_train_text: This is a num_unrollings long list of placeholders, where
each placeholder contains a Boolean value representing if we are currently
feeding in the image feature vector or the text at a given time step. This is
essential as we will later define a conditional input processing operation
(that is, if the Boolean is false, return the image feature as is; if the Boolean
is true, perform tf.nn.embedding_lookup on the inputs).

•	 train_inputs: This is a list of placeholders having the num_unrollings
placeholders, where each placeholder contains an input of the [batch_size,
1000] size (where 1000 is the input_size). For images, we will feed in the
image feature vector, and for text we will feed in a batch of word IDs
(as returned by the dictionary variable containing a mapping from a word
to a unique ID) from the captions. However, we will append each word
ID with 999 zeros to make the input size 1,000 (where the 999 zeros are
discarded at processing).

•	 train_labels: This is a list of placeholders having the num_unrollings
placeholders that will contain the corresponding output to a given input
(that is, SOS, if the input is image feature vectors, or the next word in the
caption, if the input is a word in the caption).

Chapter 9

[305]

The code will be as shown here:

is_train_text, train_inputs, train_labels = [],[],[]

for ui in range(num_unrollings):
 is_train_text.append(tf.placeholder(tf.bool,
 shape=None, name='is_train_text_data_%d'%ui))
 train_inputs.append(tf.placeholder(tf.float32,
 shape=[batch_size,input_size],name='train_inputs_%d'%ui))
 train_labels.append(tf.placeholder(tf.int32,
 shape=[batch_size], name = 'train_labels_%d'%ui))

Processing images and text differently
Here we will understand one of the most crucial differences we make when using
pretrained embeddings, compared with when we learned embeddings from
scratch. When we were learning embeddings from scratch, we had the flexibility of
making the embedding size match the image feature vector size. Having the same
dimensionality of inputs is a must, as LSTMs cannot handle inputs with arbitrary
dimensionality. However, since now we are using pretrained embeddings, and they
do not match the input size we have specified, we need to use an adaptation layer
that maps the 50-dimensional inputs to a 1,000-dimensional input. Also, we need to
say to TensorFlow that we do not need the previous transformation for the image
feature vectors. We will see in detail how to implement this.

First, we will use the tf.cond operation to differentiate between the two different
processing mechanisms. The tf.cond(pred, true_fn, false_fn) operation can
switch between different operations (that is, true_fn and false_fn), depending on
whether the Boolean pred is true or false. We need to achieve the following:

•	 If data is image feature vectors (that is, is_train_text is false), we need
no additional processing. We will simply forward data as it is using the
tf.identity operation.

•	 If data is text (word IDs) (that is, is_train_text is true), we first need
to perform the tf.nn.embedding_lookup operation on the batch of word IDs
(found in the zeroth column). Next, we will pass the returned word vectors
(of size [batch_size, 50]) through the adaptation layer to make the word
vectors [batch_size, 1000] using embedding_dense and embedding_bias
(this performs similar to a typical layer of a fully connected neural network
without the nonlinear activation).

Applications of LSTM – Image Caption Generation

[306]

We write the processed inputs to train_inputs_processed:

train_inputs_processed = []
for ui in range(num_unrollings):

 train_inputs_processed.append(
 tf.cond(is_train_text[ui],
 lambda: tf.add(
 tf.matmul(tf.nn.embedding_lookup(
 embeddings, tf.reduce_sum(tf.cast(
 train_inputs[ui],tf.int32),
 axis=1)
),embedding_dense),embedding_bias),
 lambda: tf.identity(train_inputs[ui]))
)

We also need to set the shape of each tensor found in the train_inputs_processed
list because, after performing the tf.cond operation, the shape information is lost.
Also, the shape information is required for LSTM cell calculations:

[t_in.set_shape([batch_size,input_size]) for t_in in train_inputs_
processed]

Defining the LSTM output calculation
Next, we will define the initial state of the LSTM cell:

initial_state = lstm.zero_state(batch_size, dtype=tf.float32)

Then, using the tf.nn.dynamic_rnn function, we will calculate the output for all the
time steps in the num_unrollings window, which we will calculate LSTM output in
a single step:

Gives a [num_unrolling, batch_size, num_nodes] size output
train_outputs, initial_state = tf.nn.dynamic_rnn(
 dropout_lstm, tf.concat([tf.expand_dims(t_in,axis=0) for t_in in
train_inputs_processed],axis=0),
 time_major=True, initial_state=initial_state
)

Chapter 9

[307]

Defining the logits and predictions
The previously calculated train_output will be of the [num_unrollings, batch_
size, vocabulary_size] size. This is known as a time-major format. Then, to
calculate the logits and predictions from the LSTM output in a single go for all the
num_unrollings time steps, we will reshape the final output as follows:

final_output = tf.reshape(train_outputs,[-1,num_nodes])
logits = tf.matmul(final_output, w) + b
train_prediction = tf.nn.softmax(logits)

Defining the sequence loss
Then we will reshape the logits and labels back to the time-major format, as this is
required by the loss function we're using:

time_major_train_logits = tf.reshape(logits,[
 num_unrollings,batch_size,vocabulary_size])

time_major_train_labels = tf.reshape(tf.concat(
 train_labels,axis=0),[num_unrollings,batch_size])

We now calculate the loss using the tf.contrib.seq2seq.sequence_loss function.
We will need the loss averaged across the batch, but summed over the time steps:

loss = tf.contrib.seq2seq.sequence_loss(
 logits = tf.transpose(time_major_train_logits,[1,0,2]),
 targets = tf.transpose(time_major_train_labels),
 weights= tf.ones([batch_size, num_unrollings],
 dtype=tf.float32),
 average_across_timesteps=False,
 average_across_batch=True
)
loss = tf.reduce_sum(loss)

Defining the optimizer
Finally, we will define the optimizer that will optimize the pretrained embeddings,
the adaptation layer, the LSTM cell, and the softmax weights with respect to the loss
defined earlier. We will use AdamOptimizer and the learning rate decay over time
to improve performance. We also decay the learning rate as we did in Chapter 8,
Applications of LSTM – Generating Text:

This variable and operation are used to decay the learning rate
as we saw in chapter 8
global_step = tf.Variable(0, trainable=False)

Applications of LSTM – Image Caption Generation

[308]

inc_gstep = tf.assign(global_step,global_step + 1)

We define a decaying learning rate
learning_rate = tf.train.exponential_decay(
 0.001, global_step, decay_steps=1, decay_rate=0.75,
 staircase=True)
We define Adam Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate)

Gradient clipping
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = optimizer.apply_gradients(
 zip(gradients, v))

After defining all the necessary TensorFlow operations, you can run the optimization
process for a predefined number of steps, interleaved by calculation of the BLEU
score on test data as well as predictions for several test image. The exact process
can be found in the exercise file.

Summary
In this chapter, we focused on a very interesting task that involves generating
captions for given images. Our learning model was a complex machine learning
pipeline, which included the following:

•	 Inferring feature vectors for a given image using a CNN
•	 Learning word embeddings for the words found in the captions
•	 Training an LSTM with the image feature vectors and their

corresponding captions

We discussed each component in detail. First, we talked about how we can use a
pretrained CNN model on a large classification dataset (that is, ImageNet) to extract
good feature vectors without training a model from scratch. For this, we used a
VGG with 16 layers. Next we discussed step by step how we can create TensorFlow
variables, load the weights into them, and create the network. Finally, we ran a few
of the test images through the model to make sure the model is actually capable of
recognizing objects in the image.

Then we used the CBOW algorithm to learn good word embeddings of the words
found in the captions. We made sure that we matched the dimensionality of the
word embeddings with the image feature vectors, as standard LSTMs cannot handle
inputs with dynamic dimensionality.

Chapter 9

[309]

Finally, we used a simple LSTM network, where we input a sequence of data,
in which the first element is the image feature vector preceded by the word
embeddings corresponding to each word in the caption belonging to that image. First
we preprocessed the captions by introducing two tokens to denote the beginning and
end of each caption and then by truncating the captions, so that all of them were of
the same length.

Thereafter, we discussed several different metrics (BLEU, ROUGE, METEOR, and
CIDEr), which we can use to quantitatively evaluate the generated captions, and
we saw that as we ran our algorithm through the training data, the BLEU-4 score
increased over time. Additionally, we visually inspected the generated captions and
saw that our ML pipeline progressively gets better at captioning images.

Finally, we discussed how we can use the pretrained GloVe embeddings and the
TensorFlow RNN API to perform the same task with less code and more efficiency.

In the next chapter, we will learn how we can implement a machine translation
system that takes a sentence/phrase in a source language as an input, and output a
sentence/phrase that is the corresponding translation of a different language.

[311]

Sequence-to-Sequence
Learning – Neural

Machine Translation
Sequence-to-sequence learning is the term used for tasks that require mapping an
arbitrary length sequence to another arbitrary length sequence. This is one of the
most sophisticated tasks that involves learning many-to-many mappings. Examples
of this task include Neural Machine Translation (NMT) and creating chatbots. NMT
is where we translate a sentence from one language (source language) to another
(target language). Google Translate is an example of an NMT system. Chatbots (that
is, software that can communicate with/answer a person) are able to converse with
humans in a realistic manner. This is especially useful for various service providers,
as chatbots can be used to find answers for easily solvable questions which
customers might have, instead of redirecting them to human operators.

In this chapter, we will learn how to implement a NMT system. However, before
diving directly into such recent advances, we will first briefly visit some of the
Statistical Machine Translation (SMT) methods, which preceded NMT and were
the state-of-the-art systems until NMT caught up. Next, we will walk through the
steps required for building an NMT. Finally, we will learn how to implement a real
NMT system that translates from German to English, step by step.

Sequence-to-Sequence Learning – Neural Machine Translation

[312]

Machine translation
Humans often communicate with each other by means of a language, compared to
other communication methods (for example, gesturing). Currently, more than 5,000
languages are spoken worldwide. Furthermore, learning a language to a level where
it is easily understandable for a native speaker of that language is a difficult task to
master. However, communication is essential for sharing knowledge, socializing and
expanding your network. Therefore, language acts as a barrier for communicating
with different parts of the world. This is where machine translation (MT) comes
in. MT systems allow the user to input a sentence in his own tongue (known as the
source language) and output a sentence in a desired target language.

The problem with MT can be formulated as follows. Say, we are given a sentence (or
a sequence of words) belonging to a source language S, defined by the following:

{ }1 2 3, , , ,s LW w w w w= …

Here, sW S∈ .

The source language would be translated to a sentence TW , where T is the target
language and is given by the following:

{ }1 2 3, , , ,T MW w w w w′ ′ ′ ′= …

Here, TW T∈ .

TW is obtained through the MT system, which outputs the following:

()| *T s T Tp W W W W∀ ∈

Here, *TW is the pool of possible translation candidates found by the algorithm for
the source sentence. Also, the best candidate from the pool of candidates is given by
the following equation:

()()| ;
T T

best
T T SW W
W argmax p W W∗∈

= θ

Here, θ is the model parameters. During training, we optimize the model with
to maximize the probability of some known target translations for a set of
corresponding source translations (that is, training data).

So far, we discussed the formal setup of the language translation problem that we're
interested in solving. Next, we will walk through the history of MT to get a feel of
how people tried solving this in the early days.

Chapter 10

[313]

A brief historical tour of machine
translation
Here we will discuss the history of MT. The inception of MT involved rule-based
systems. Then, more statistically sound MT systems emerged. An Statistical
Machine Translation (SMT) used various measures of statistics of a language
to produce translations to another language. Then came the era of NMT. NMT
currently holds the state of the art performance in most machine learning tasks
compared with other methods.

Rule-based translation
NMT came long after statistical machine learning, and statistical machine learning
has been around for more than half a century now. The inception of SMT methods
dates back to 1950-60, when during one of the first recorded projects, the Georgetown-
IBM experiment, more than 60 Russian sentences were translated to English.

One of the initial techniques for MT was word-based machine translation. This
system performed word-to-word translations using bilingual dictionaries. However,
as you can imagine, this method has serious limitations. The obvious limitation
is that word-to-word translation is not a one-to-one mapping between different
languages. In addition, word-to-word translation may lead to incorrect results as
it does not consider the context of a given word. The translation of a given word in
the source language can change depending on the context in which it is used. To
understand this with a concrete example, let's look at the translation example from
English to French in Figure 10.1. You can see that in the given two English sentences
a single word changes. However this creates drastic changes in the translation:

Figure 10.1: Translations (English to French) between languages are not one-to-one mappings between words

In the 1960s, the Automatic Language Processing Advisory Committee (ALPAC)
released a report, Languages and machines: computers in translation and linguistics,
National Academy of the Sciences (1966), on MT's prospects. The conclusion was this:

There is no immediate or predictable prospect of useful machine translation.

Sequence-to-Sequence Learning – Neural Machine Translation

[314]

This was because MT was slower, less accurate, and more expensive than human
translation at the time. This delivered a huge blow to MT advancements, and almost
a decade passed in silence.

Next came corpora-based MT, where an algorithm was trained using tuples of
source sentence, and the corresponding target sentence was obtained through a
parallel corpus, that is, the parallel corpus will be of format, ([(<source_sentence_1>,
<target_sentence_1>), (<source_sentence_2>, <target_sentence_2>), …]). The parallel
corpus is a large text corpus formed as tuples, consisting of text from the source
language and the corresponding translation of that text. An illustration of this is
shown in Table 10.2. It should be noted that building a parallel corpus is much
easier than building bilingual dictionaries and more accurate because the training
data is richer than word-to-word training data. Furthermore, instead of directly
relying on manually created bilingual dictionaries, the bilingual dictionary (that
is, the transition models) of two languages can be built using the parallel corpus.
A transition model shows how likely a target word/phrase is to be the correct
translation, given the current source word/phrase. In addition to learning the
transition model, corpora based MT also learn the word alignment models. A word
alignment model can represent how words in a phrase from the source language
corresponds to the translation of that phrase. An example of a parallel corpora
and a word alignment model is depicted in Figure 10.2.

An illustration of an example parallel corpora is shown in Table 10.2:

Source language sentences
(English)

Target language sentences
(French)

I went home Je suis allé à la maison
John likes to play guitar John aime jouer de la guitare
He is from England Il est d'Angleterre
… ….

Figure 10.2: Word alignment between two different languages

Chapter 10

[315]

Another popular approach was interlingual machine translation, which involved
translating the source sentence to an language neutral interlingua (that is, a
metalanguage), and then generating the translated sentence out of the interlingua.
More specifically, an interlingual machine translation system consists of two
important components, an analyzer and a synthesizer. The analyzer will take the
source sentence and identify agents (for example, nouns), actions (for example,
verb), and so on, and also how they interact with each other. Next, these identified
elements are represented by means of an interlingual lexicon. An example of an
interlingual lexicon can be made with the synsets (that is, the group of synonyms
sharing a common meaning) available in WordNet. Then, from this interlingual
representation, the synthesizer will create the translation. Since the synthesizer
knows the nouns, verbs, and so on through the interlingual representation, it can
generate the translation in the target language by incorporating language-specific
grammar rules.

Statistical Machine Translation (SMT)
Next, more statistically sound systems started emerging. One of the pioneering
models of this era was IBM Models 1-5 that did word-based translation. However, as
we discussed earlier, word translations are not one-to-one from the source language
to a target language (for example, compound words and morphology). Eventually,
researchers started experimenting with phrase-based translation systems which
made some notable advances in machine translation.

Phrase-based translation works in a similar way to word-based translation, except
that it uses phrases of a language as the atomic units of translation instead of
individual words. This is a more sensible approach as it makes modeling the one-to-
many, many-to-one, or many-to-many relationships between words easier. The main
goal of phrase-based translation is to learn a phrase-translation model that contains
a probability distribution of different candidate target phrases for a given source
phrase. As you can imagine, this method involves maintaining huge databases of
various phrases in two languages. A reordering step for phrases is also performed
as there is no monotonic ordering of words between a sentence from one language
and one in another. An example of this is shown in Figure 10.2. If the words are
monotonically ordered between languages, there should not be crosses between
word mappings.

Sequence-to-Sequence Learning – Neural Machine Translation

[316]

One of the limitations of this approach is that the decoding process (finding the
best target phrase for a given source phrase) is expensive. This is due to the size of
the phrase-database as well as a source phrase that often contains multiple target
language phrases. To alleviate the burden, syntax-based translations arose.

In syntax-based translation, the source sentence is represented by a syntax tree. In
Figure 10.3, NP represents a noun phrase, VP a verb phrase, and S a sentence. Then a
reordering phase takes place, where the tree nodes are reordered to change the order
of subject, verb, and object, depending on the target language. This is because the
sentence structure can change depending on the language (for example, in English
it is subject-verb-object, whereas in Japanese it is subject-object-verb). The reordering
is decided according to something known as the r-table. The r-table contains the
likelihood probabilities for the tree nodes to be changed to some other order:

Figure 10.3. Syntax tree for a sentence

An insertion phase then takes place. In the insertion phase, we stochastically insert
a word into each node of the tree. This is due to the assumption that there is an
invisible NULL word, and it generates target words at the random positions of the
tree. Also, the probability of inserting a word is determined by something called the
n-table, which is a table that contain probabilities of inserting a particular word into
the tree.

Next the translation phase occurs, where each leaf node is translated to the target
word in a word-by-word manner. Finally, the translated sentence is read off the
syntax tree, to construct the target sentence.

Chapter 10

[317]

Neural Machine Translation (NMT)
Finally, around the year 2014, NMT systems were introduced. NMT is an end-to-
end system that takes a full sentence as an input, performs certain transformations,
and then outputs the translated sentence for the corresponding source sentence.
Therefore, NMT eliminates the need for the feature engineering required for
machine translation, such as building phrase translation models and building syntax
trees, which is a big win for the NLP community. Also, NMT has outperformed
all the other popular MT techniques in a very short period, just two to three years.
In Figure 10.4, we depict the results of various MT systems reported in the MT
literature. For example, 2016 results are obtained from Sennrich, and others in their
paper, Edinburgh Neural Machine Translation Systems for WMT 16, Association for
Computational Linguistics, Proceedings of the First Conference on Machine Translation,
August 2016: 371-376, and from Williams and others in their paper, Edinburgh's
Statistical Machine Translation Systems for WMT16, Association for Computational
Linguistics, Proceedings of the First Conference on Machine Translation, August 2016:
399-410. All the MT systems are evaluated with the BLEU score. As we discussed in
Chapter 9, Applications of LSTM – Image Caption Generation, the BLEU score denotes
the number of n-grams (for example, unigrams and bigrams) of candidate translation
that matched in the reference translation. So the higher the BLEU score, the better
the MT system is. We'll discuss BLEU metric in detail later in the chapter. There is no
need to highlight that NMT is a clear-cut winner:

Figure 10.4. Comparison of statistical machine translation system to NMT systems.
Courtesy of Rico Sennrich.

Sequence-to-Sequence Learning – Neural Machine Translation

[318]

A case study assessing the potential of NMT systems is available in Is Neural Machine
Translation Ready for Deployment? A Case Study on 30 Translation Directions, Junczys-
Dowmunt, Hoang and Dwojak, Proceedings of the Ninth International Workshop on Spoken
Language Translation, Seattle (2016). The study looks at the performance of different
systems on several translation tasks between various languages (English, Arabic,
French, Russian, and Chinese). The results also support that NMT systems (NMT
1.2M and NMT 2.4M) perform better than SMT systems (PB-SMT and Hiero).

Figure 10.5 shows several statistics for a set from a 2017 current state-of-the-art machine
translator. This is from a presentation, State of the Machine Translation, Intento, Inc, 2017,
produced by Konstantin Savenkov, cofounder and CEO at Intento. We can see that
the performance of the MT produced by DeepL (https://www.deepl.com) appears
to be competing closely with other MT giants, including Google. The comparison
includes MT systems such as DeepL (NMT), Google (NMT), Yandex (NMT-SMT
hybrid), Microsoft (has both SMT and NMT), IBM (SMT), Prompt (rule-based), and
SYSTRAN (rule-based/SMT hybrid). The graph clearly shows that NMT systems are
leading the current MT advancements. The LEPOR score is used to assess different
systems. LEPOR is a more advanced metric than BLEU, and it attempts to solve the
language bias problem. The language bias problem refers to the phenomenon that some
evaluation metrics (such as, BLEU) perform well for certain languages, but perform
poorly for some others.

However, it should also be noted that the results do contain some bias due to the
averaging mechanism used in this comparison. For example, Google Translator has
been averaged over a larger set of languages (including difficult translation tasks),
whereas DeepL has been averaged over a smaller and relatively easier subset of
languages. Therefore, we should not conclude that the DeepL MT system is better
than the Google MT system. Nevertheless, the overall results provide a general
comparison of the performance of the current NMT and SMT systems:

https://www.deepl.com

Chapter 10

[319]

Figure 10.5: Performance of various MT systems. Courtesy of Intento, Inc.

We saw that NMT has already outperformed SMT systems in very few years,
and it is the current state of the art. We will now move onto discussing details and
the architecture of an NMT system. Finally, we will be implementing an NMT
system from scratch.

Sequence-to-Sequence Learning – Neural Machine Translation

[320]

Understanding Neural Machine
Translation
Now that we have an appreciation for how machine translation has evolved over
time, let's try to understand how state-of-the-art NMT works. First, we will take a
look at the model architecture used by neural machine translators and then move on
to understanding the actual training algorithm.

Intuition behind NMT
First, let's understand the intuition underlying an NMT system's design. Say, you
are a fluent English and German speaker and were asked to translate the following
sentence to English:

Ich ging nach Hause

This sentence translates to the following:

I went home

Although it might not have taken more than few seconds for a fluent person to
translate this, there is a certain process involved in the translation. First, you read
the German sentence, and then you create a thought or concept about what this
sentence represents or implies. And finally, you translate the sentence to English.
The same idea is used for building NMT systems (see Figure 10.6). The encoder reads
the source sentence (that is, similar to you reading the German sentence). Then the
encoder outputs a context vector (the context vector corresponds to the thought/
concept you imagined after reading the sentence). Finally, the decoder takes in the
context vectors and outputs the translation in English:

Figure 10.6. Conceptual architecture of an NMT system

Chapter 10

[321]

NMT architecture
Now we will look at the architecture in more detail. The sequence-to-sequence
approach discussed here was proposed by Sutskever, Vinyals, and Le in their paper,
Sequence to Sequence Learning with Neural Networks, Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2: 3104-3112. From the
diagram in Figure 10.6, we can see that there are two major components in the NMT
architecture. These are called the encoder and decoder. In other words, NMT can
be seen as an encoder-decoder architecture. The encoder converts a sentence from a
given source language to a thought, and the decoder decodes or translates the thought
to a target language. As you can see, this shares some features with the interlingual
machine translation method we briefly talked about. This is illustrated in Figure 10.7.
The left-hand side of the context vector denotes the encoder (which takes a source
sentence in word by word to train a time-series model). The right-hand side denotes
the decoder that outputs word by word (while using the previous word as the
current input) the corresponding translation of the source sentence. We will also use
embedding layers (for both source and target languages) to provide word vectors as
inputs to the models:

Figure 10.7: Unrolling the source and target sentences over time

With a basic understanding of what NMT looks like, let's formally define the
objective of the NMT. The ultimate objective of an NMT system is to maximize
the log likelihood, given a source sentence xs and its corresponding yT, that is, to
maximize the following:

()
1

1 |
N

T s
i

logP y x
N =
∑

Here, N refers to the number of source and target sentence tuples we have as
training data.

Sequence-to-Sequence Learning – Neural Machine Translation

[322]

Then, during inference, for a given source sentence, infer
sx , we will find the best

Ty
translation using the following:

() ()
T

M
infer

y Y
i 1

| argmax | x
T

best infer i
T y Y T s T sy argmax P y x P y∈ ∈

=

= = ∏

Here, TY is the set of possible candidate sentences.

Before we examine each part of the NMT architecture, let's define the mathematical
notation to understand the system more concretely.

Let's define the encoder LSTM as encLSTM and the decoder LSTM as decLSTM . At the
time step t, let's define the cell state of the LSTM as ct and the external hidden state as
ht. Therefore, feeding in the input xt into the LSTM produces ct and ht:

()1 2 1, | , , ,t t t tc h LSTM x x x x −= …

Now, we will talk about the embedding layer, the encoder, the context vector, and
finally, the decoder.

The embedding layer
In both Chapter 8, Applications of LSTM – Generating Text and Chapter 9, Applications
of LSTM – Image Caption Generation, we discussed in detail the benefit of using word
embedding instead of one-hot-encoded representations of words, especially when
the vocabulary is large. Here as well, we are using a two-word embedding layer,

sEmb , for the source language and TEmb for the target language. So, instead of
feeding xt directly into the LSTM, we will be getting ()tEmb x . However, to
avoid unnecessarily increasing the notation, we will assume ()t tx Emb x= .

The encoder
As mentioned earlier, the encoder is responsible for generating a thought vector or a
context vector that represents what is meant by the source language. For this, we will
use an LSTM network (see Figure 10.8):

Chapter 10

[323]

Figure 10.8: An LSTM cell

The encoder is initialized with c0 and h0 as zero vectors. The encoder takes
a sequence of words, { }1 2, , , L

s s s sx x x x= … , as the input and calculates a context
vector, { },c hv v v= , where vc is the final cell state and vh is the final external hidden
state obtained after processing the final element, L

Tx , of the sequence, xT. We
represent this as the following:

()1 2 1, | , , ,L L
L L enc s s s sc h LSTM x x x x −= …

c Lv c=

h Lv h=

The context vector
The idea of the context vector (v) is to represent a sentence of a source language
concisely. Also, in contrast to how the encoder's states are initialized (that is, they
are initialized with zeros), the context vector becomes the initial state for the decoder
LSTM. In other words, the decoder LSTM doesn't start with an initial state of zeros, but
with the context vector as its initial state. We will talk about this in more detail next.

Sequence-to-Sequence Learning – Neural Machine Translation

[324]

The decoder
The decoder is responsible for decoding the context vector into the desired
translation. Our decoder is an LSTM network as well. Though it is possible for the
encoder and decoder to share the same set of weights, it is usually better to use two
different networks for the encoder and the decoder. This increases the number of
parameters in our model, allowing us to learn the translations more effectively.

First, the decoder's states are initialized with the context vector, { },c hv v v= , as
shown here:

0 cc v=

0 hh v=

Here, 0 0, decc h LSTM∈ .

This (v) is the crucial link that connects the encoder with the decoder to form an
end-to-end computational chain (see in Figure 10.6 that the only thing shared by the
encoder and decoder is v). Also, this is the only piece of information that is available
to the decoder about the source sentence.

Then we will compute the mth prediction of the translated sentence with
the following:

()1 1 2 2, | , , , ,m m
m m dec T T T Tc h LSTM y v y y y− −= …

()softmaxm
T softmax m softmaxy w h b= × +

The full NMT system with the details of how the LSTM cell in the encoder connects
to the LSTM cell in the decoder and how the softmax layer is used to output
predictions is shown in Figure 10.9:

Chapter 10

[325]

Figure 10.9: The encoder-decoder architecture with the LSTMs

Preparing data for the NMT system
In this section, we will talk about the exact process for preparing data for training
and predicting from the NMT system. First, we talk will about how to prepare
training data (that is, the source sentence and target sentence pairs) to train the NMT
system followed by inputting a given source sentence to produce the translation of
the source sentence.

At training time
The training data consists of pairs of source sentences and corresponding translations
to the target language. An example might look like this:

•	 (Ich ging nach Hause , I went home)
•	 (Sie hat in der Schule gewartet , She was waiting at school)

We have N such pairs in our dataset. If we are to implement a fairly good translator,
N needs to be in the scale of millions. An increase of training data as such, also
implies prolonged training times.

Sequence-to-Sequence Learning – Neural Machine Translation

[326]

Next, we will introduce two special tokens: <s> and </s>. The <s> token represents
the start of a sentence, whereas </s> represents the end of a sentence. Now, the data
would look like this:

•	 (<s> Ich ging nach Hause </s> , <s> I went home </s>)
•	 (<s> Sie hat in der Schule gewartet </s> , <s> She was waiting at school </s>)

Thereafter, we will pad the sentences with the </s> tokens such that the source
sentences are of a fixed length L and the target sentences are of a fixed length M.
It should be noted that L and M do not need to be equal. This step results in
the following:

•	 (<s> Ich ging nach Hause </s> </s> </s> , <s> I went home </s> </s> </s>)
•	 (<s> Sie hat in der Schule gewartet </s> , <s> She was waiting at school </s>)

If a sentence has a length greater than L or M, it is truncated to fit the length. Then
the sentences are passed through a tokenizer to get the tokenized words out. Here I'm
ignoring the second tuple (that is, a pair of sentences), as both are processed similarly:

(['<s>' , 'Ich' , 'ging' , 'nach' , 'Hause' , '</s>' , '</s>' , '</s>'] , ['<s>' , 'I' , 'went' ,
'home' , '</s>' , '</s>' , '</s>'])

It should be noted that bringing sentences to a fixed length is not essential, as LSTMs
are capable of handling dynamic sequence sizes. However, bringing them to a fixed
length helps us to process sentences as batches instead of processing them one by one.

Reversing the source sentence
Next we will perform a special trick on the source sentences. Say, we have the
sentence, ABC in the source language, which we want to translate to αβγφ in the
target language. We will first reverse the source sentences so that the sentence, ABC
would be read as CBA. This means that in order to translate ABC to αβγφ , we need
to feed in CBA. This improves the performance of our model significantly, especially
when the source and target languages share the same sentence structure (for
example, subject-verb-object).

Let's try to understand why this helps. Mainly, it helps to build good communication
between the encoder and the decoder. Let's start from the previous example. We will
concatenate the source and target sentence:

ABCαβγφ

Chapter 10

[327]

If you calculate the distance (that is, the number of words separating two words)
from A to α or B to β , they will be the same. However, consider this when you
reverse the source sentence, as shown here:

CBAαβγφ

Here, A is very close to α and so on. Also, to build good translations, building good
communications at the very start is important. This can possibly help NMT systems
to improve their performance with this simple trick.

Now, our dataset becomes this:

(['</s>' , '</s>' , '</s>' , 'Hause' , 'nach' , 'ging' , 'Ich' , '<s>'] , ['<s>' , 'I' , 'went' ,
'home' , '</s>' , '</s>' , '</s>'])

Next, using the learned embeddings, sEmb and TEmb , we replace each word with its
corresponding embedding vector.

The other good news is that our source sentence ends with a <s> token and the
target sentence starts with a <s> token, so during training, we do not have to do any
special processing to build the link between the end of the source sentence and the
beginning of the target sentence.

Note that the source sentence reversing step is a subjective
preprocessing step. This might not be necessary for some
translational tasks. For example, if your translation task is to
translate from Japanese (that is, often written subject-object-verb
format) to Filipino (often written verb-subject-object), then reversing
the source sentence might actually cause harm rather than helping.
This is because by reversing the text in the Japanese language, you
are increasing the distance between the starting element of the target
sentence (that is, the verb (Japanese)) and the corresponding source
language entity (that is, the verb (Filipino)).

At testing time
At testing time, we only have the source sentence, but not the target sentence.
Also, we prepare our source data as we did for the training phase. Next, we get
the translated output word by word by feeding in the last predicted word by the
decoder as the next input. The prediction process is first triggered by feeding in
an <s> token to the decoder first.

We will talk about the exact training procedure and the predicting procedure for
a given source sentence.

Sequence-to-Sequence Learning – Neural Machine Translation

[328]

Training the NMT
Now that we have defined the NMT architecture and preprocessed training data,
it is quite straightforward to train the model. Here we will define and illustrate
(see Figure 10.10) the exact process used for training:

1.	 Preprocess (),S Tx y as explained previously
2.	 Feed xs into the encLSTM and calculate v conditioned on xs

3.	 Initialize decLSTM with v

4.	 Predict { }1 2ˆ ˆ ˆ ˆ, , , M
T T T Ty y y y= … corresponding to the input sentence xs

from decLSTM , where the mth prediction, out of the target vocabulary V is
calculated as follows:

()mˆ w h bm
T softmax softmaxy softmax= +

()(),m 1 1
T ˆ ˆ ˆw argmax P | , , ,

m

m

m w m
T T Tw V
y v y y −

∈
= …

Here, wT
m denotes the best target word for mth position.

5.	 Calculate the loss: categorical cross-entropy between the predicted word,
ˆ m
Ty , and the actual word at the thm position, m

Ty

6.	 Optimize both the encLSTM , decLSTM , and softmax layer with respect to
the loss

Figure 10.10: The training procedure for the NMT

Chapter 10

[329]

Inference with NMT
Inferencing is slightly different from the training process for NMT (Figure 10.11).
As we do not have a target sentence at the inference time, we need a way to trigger
the decoder at the end of the encoding phase. This shares similarities with the
image captioning exercise we did in Chapter 9, Applications of LSTM – Image Caption
Generation. In that exercise, we appended the <SOS> token to the beginning of the
captions to denote the start of the caption and <EOS> to denote the end.

We can simply do this by giving <s> as the first input to the decoder, then by getting
the prediction as the output, and by feeding in the last prediction as the next input to
the NMT:

1.	 Preprocess xs as explained previously
2.	 Feed xs into encLSTM and calculate v conditioned on xs

3.	 Initialize decLSTM with v

4.	 For the initial prediction step, predict 2ˆTy by conditioning the prediction on
1ˆTy s=< > and v

5.	 For subsequent time steps, while ˆ /i
Ty s≠< > , predict 1ˆ m

Ty
+ by conditioning

the prediction on { }1ˆ ˆ, , ,m m
T Ty y s− < >… and v

Figure 10.11: Inferring from a NMT

Sequence-to-Sequence Learning – Neural Machine Translation

[330]

The BLEU score – evaluating the
machine translation systems
BLEU stands for Bilingual Evaluation Understudy and is a way of automatically
evaluating machine translation systems. This metric was first introduced in the
paper, BLEU: A Method for Automatic Evaluation of Machine Translation, Papineni
and others, Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), Philadelphia, July 2002: 311-318. We will be implementing the BLEU
score calculation algorithm and is available as an exercise in bleu_score_example.
ipynb. Let's understand how this is calculated.

Let's consider an example to learn the calculations of the BLEU score. Say, we have two
candidate sentences (that is, a sentence predicted by our MT system) and a reference
sentence (that is, corresponding actual translation) for some given source sentence:

•	 Reference 1: The cat sat on the mat
•	 Candidate 1: The cat is on the mat

To see how good the translation is, we can use one measure, precision. Precision is a
measure of how many words in the candidate are actually present in the reference.
In general, if you consider a classification problem with two classes (denoted by
negative and positive), precision is given by the following formula:

number of samples correctly classified as positivePrecision
all the samples classified as positive

=

Let's now calculate the precision for candidate 1:

Precision = # of times each word of candidate appeared in reference/ # of words in candidate

Mathematically, this can be given by the following formula:

()
unigram Candidate

IsFoundInRef unigram
Precision

Candidate
∈=

∑

Precision for candidate 1 = 5/6

This is also known as the 1-gram precision since we consider a single word at a time.

Now let's introduce a new candidate:

Candidate 2: The the the cat cat cat

Chapter 10

[331]

It is not hard for a human to see that candidate 1 is far better than candidate 2. Let's
calculate the precision:

Precision for candidate 2 = 6/6 = 1

As we can see, the precision score disagrees with the judgment we made. Therefore,
precision alone cannot be trusted to be a good measure of the quality of a translation.

Modified precision
To address the precision limitation, we can use a modified 1-gram precision. The
modified precision clips the number of occurrences of each unique word in the
candidate by the number of times that word appeared in the reference:

()(){ }
1

, maxunigram Candidate
Min Occurences unigram unigram

p
Candidate

∈=
∑

Therefore, for candidates 1 and 2, the modified precision would be as follows:

Mod-1-gram-Precision Candidate 1 = (1 + 1 + 1 + 1 + 1)/ 6 = 5/6

Mod-1-gram-Precision Candidate 2= (2 + 1) / 6 = 3/6

We can already see that this is a good modification as the precision of candidate 2
is reduced. This can be extended to any n-gram by considering n words at a time
instead of a single word.

Brevity penalty
Precision naturally prefers small sentences. This raises a question in evaluation, as
the MT system might generate small sentences for longer references and still have
a higher precision. Therefore, brevity penalty is introduced to avoid this. Brevity
penalty is calculated by the following:

()1 /

1
.r c

if c r
BP

e if c r−

 >  =  ≤  

Sequence-to-Sequence Learning – Neural Machine Translation

[332]

Here, c is the candidate sentence length and r is the reference sentence length. In our
example, we calculate as shown here:

BP for candidate 1 = ()()1 6/6 0 1e e− = =

BP for candidate 2 = ()()1 6/6 0 1e e− = =

The final BLEU score
Next, to calculate the BLEU score, we first calculate several different modified
n-gram precisions for a bunch of different 1,2, ,n N= … values. We will then calculate
the weighted geometric mean of the n-gram precisions:

1

N

n n
i

BLEU BP exp w p
=

 = ×    ∑

Here, wn is the weight for the modified n-gram precision pn. By default, equal weights
are used for all n-gram values. In conclusion, BLEU calculates a modified-n-gram
precision and penalizes the modified-n-gram precision with a brevity penalty.
The modified n-gram precision avoids potential high precision values given to
meaningless sentences (for example, candidate 2).

Implementing an NMT from scratch –
a German to English translator
Now we will implement an actual neural machine translator. We will be implementing
the NMT using raw TensorFlow operations variables. The exercise is available in
ch10/neural_machine_translation.ipynb. However, there is a sublibrary in
TensorFlow, known as the seq2seq library. You can read more information about
seq2seq as well as, learn to implement an NMT with seq2seq in the Appendix,
Mathematical Foundations and Advanced TensorFlow.

The reason why we use raw TensorFlow is because, once you learn to implement
a machine translator from scratch without using any helper functions, you will
be able to quickly learn to use the seq2seq library. Furthermore, online resources
are very scarce for learning to implement sequence-to-sequence models using raw
TensorFlow. However, there are numerous resources/tutorials on how to use the
seq2seq library for machine translation.

Chapter 10

[333]

TensorFlow provides very informative sequence to sequence learning
tutorials focused on NMT at https://www.tensorflow.org/
tutorials/seq2seq.

Introduction to data
We use English-German sentence pairs available at https://nlp.stanford.edu/
projects/nmt/. There are ~4.5 million sentence pairs available. However, we will
use only 250,000 sentence pairs due to computational feasibility. The vocabulary
consists of the 50,000 most common English words and 50,000 most common
German words, and the words not found in the vocabulary will be replaced with a
special token, <unk>. Here, we will list example sentences found in the dataset:

DE: Das Großunternehmen sieht sich einfach die Produkte des kleinen
Unternehmens an und unterstellt so viele Patentverletzungen , wie es
nur geht .

EN: The large corporation will look at the products of the small
company and bring up as many patent infringement assertions as
possible .

DE: In der ordentlichen Sitzung am 22. September 2008 befasste
sich der Aufsichtsrat mit strategischen Themen aus den einzelnen
Geschäftsbereichen wie der Positionierung des Kassamarktes im
Wettbewerb mit außerbörslichen Handelsplattformen , den Innovationen
im Derivatesegment und verschiedenen Aktivitäten im Nachhandelsbereich
.

EN: At the regular meeting on 22 September 2008 , the Supervisory
Board dealt with strategic issues from the various business areas ,
such as the positioning of the cash market in competition with OTC
trading platforms , innovation in the derivatives segment and various
post ##AT##-##AT## trading activities .

Preprocessing data
After you download the training data (train.en and train.de) as instructed in
the exercise file, let's look at what's in these files. The train.en file contains English
sentences, whereas train.de contains the corresponding German sentences. Next,
we will select 250,000 sentence pairs from the large corpus that we have as data.
We will also collect 100 sentences held out from the training data as our test data.
Finally, the vocabularies for the two languages are found in vocab.50K.en.txt
and vocab.50K.de.txt.

https://www.tensorflow.org/tutorials/seq2seq
https://www.tensorflow.org/tutorials/seq2seq
https://nlp.stanford.edu/projects/nmt/

Sequence-to-Sequence Learning – Neural Machine Translation

[334]

Then we will preprocess this data as explained earlier in the chapter. Reversing the
sentences is optional for the word embedding learning (if performed separately),
as reversing a sentence would not change the context of a given word. We will use
the following simple tokenizing algorithm for tokenizing sentences into words.
Essentially, we are introducing spaces before various punctuation marks so they
can be tokenized to individual elements. Then for any word that is not found in the
vocabulary, we will replace it with a special <unk> token. The is_source parameter
tells if we're processing source sentences (is_source = True) or target sentences
(is_source = False):

def split_to_tokens(sent,is_source):
 '''
 This function takes in a sentence (source or target)
 and preprocess the sentency with various steps
 (e.g. removing punctuation)
 '''

 global src_unk_count, tgt_unk_count

 # Remove punctuation and new-line chars
 sent = sent.replace(',',' ,')
 sent = sent.replace('.',' .')
 sent = sent.replace('\n',' ')

 sent_toks = sent.split(' ')
 for t_i, tok in enumerate(sent_toks):
 if is_source:
 # src_dictionary contain the word ->
 # word ID mapping for source vocabulary
 if tok not in src_dictionary.keys():
 if not len(tok.strip())==0:
 sent_toks[t_i] = '<unk>'
 src_unk_count += 1
 else:
 # tgt_dictionary contain the word ->
 # word ID mapping for target vocabulary
 if tok not in tgt_dictionary.keys():
 if not len(tok.strip())==0:
 sent_toks[t_i] = '<unk>'
 # print(tok)
 tgt_unk_count += 1
 return sent_toks

Chapter 10

[335]

Learning word embeddings
Next we will move onto learning the word embeddings. To learn the word embeddings,
we will use the Continuous Bag-of-Words (CBOW) model. However, you are welcome
to experiment with other word embedding learning methods such as GloVe. We will
not go through the code (found in the word2vec.py file), but share some of the learned
word embeddings:

German Word Embeddings

Nearest to In: in, Aus, An, Neben, Bei, Mit, Trotz, Auf,
Nearest to war: ist, hat, scheint, wäre, hatte, bin, waren, kam,
Nearest to so: verbreitet, eigentlich, ausserdem, ziemlich, Rad-,
zweierlei, wollten, ebenso,
Nearest to Schritte: Meter, Minuten, Gehminuten, Autominuten, km,
Kilometer, Fahrminuten, Steinwurf,
Nearest to Sicht: Aussicht, Ausblick, Blick, Kombination, Milde,
Erscheinung, Terroranschläge, Ebenen,

English Word Embeddings

Nearest to more: cheaper, less, easier, better, further, greater,
bigger, More,
Nearest to States: Kingdom, Nations, accross, attrition, Efex,
Republic, authoritative, Sorbonne,
Nearest to Italy: Spain, Poland, France, Switzerland, Madrid,
Portugal, Fuengirola, 51,
Nearest to island: shores, Principality, outskirts, islands, skyline,
ear, continuation, capital,
Nearest to 2004: 2005, 2001, 2003, 2007, 1996, 2006, 1999, 1995,

It is possible to learn the embeddings simultaneously while training the machine
translation system. Another alternative is to use the pretrained word embeddings.
We will talk about how to do that later in the chapter.

Defining the encoder and the decoder
We will use two separate LSTMs as the encoder and the decoder.

First, we will define hyperparameters:

•	 batch_size: You will have to be very careful when setting the batch size.
Our NMT can take quite an amount of memory when running.

•	 num_nodes: This is the number of hidden units in the LSTM. A large
num_nodes hyperparameter will result in better performance and a high
computational cost.

Sequence-to-Sequence Learning – Neural Machine Translation

[336]

•	 enc_num_unrollings: We set this to be the number of words in a source
sentence. We will be unrolling the LSTM for the full length of the sentence
at a single computation. The higher enc_num_unrollings is, the better your
model will perform. However, this will slow down the algorithm.

•	 dec_num_unrollings: This is set to be the number of words in the
target sentence. Higher dec_num_unrollings will also result in a better
performance, but a large computational cost.

•	 embedding_size: This is the dimensionality of the vectors we learn. An
embedding size of 100-300 will be adequate for most of the real-world
problems that use word vectors.

Here we will define the hyperparameters:

We set the input size by loading the saved word embeddings
and getting the column size
tgt_emb_mat = np.load('en-embeddings.npy')
input_size = tgt_emb_mat.shape[1]

num_nodes = 128
batch_size = 10

We unroll the full length at one go
both source and target sentences
enc_num_unrollings = 40
dec_num_unrollings = 60

If you have a large batch size (on a standard laptop more than 20), you
can run into issues such as the following:

Resource exhausted: OOM when allocating tensor with ...

In this case, you should reduce the batch size and rerun the code.

Chapter 10

[337]

Next, we will define the weights and biases for the LSTMs and the softmax
layer. We will use an encoder and decoder variable scope to make the naming
of variables more intuitive. This is a standard LSTM cell, and we will not reiterate
the weight definition.

Then we will define four TensorFlow placeholders for training:

•	 enc_train_inputs: This is a list of the enc_num_unrollings placeholder,
where each placeholder is of the [batch_size, input_size] size. This is
used to feed a batch of source language sentence to the encoder.

•	 dec_train_inputs: This is a list of the dec_num_unrollings placeholders,
where each placeholder is of the [batch_size, input_size] size. This is
used to feed the corresponding batch of the target language sentence.

•	 dec_train_labels: This is a list of the dec_num_unrollings placeholders,
where each placeholder is of the [batch_size, vocabulary_size] size.
This contains words of the dec_train_inputs offset by 1. So that two
placeholders from dec_train_inputs and dec_train_labels with the
same index in the list would have the ith word and the 1thi+ word.

•	 dec_train_masks: This is of the same size as dec_train_inputs and masks
any element that has a </s> label from the loss calculation. This is important
as there are many data points with the </s> token, as that is used for
padding sentences to a fixed length:

for ui in range(dec_num_unrollings):
 dec_train_inputs.append(tf.placeholder(tf.float32,
 shape=[batch_size,input_size],
 name='dec_train_inputs_%d'%ui))
 dec_train_labels.append(tf.placeholder(tf.float32,
 shape=[batch_size,vocabulary_size],
 name = 'dec_train_labels_%d'%ui))
 dec_train_masks.append(tf.placeholder(tf.float32,
 shape=[batch_size,1],
 name='dec_train_masks_%d'%ui))

for ui in range(enc_num_unrollings):
 enc_train_inputs.append(tf.placeholder(tf.float32,
 shape=[batch_size,input_size],
 name='train_inputs_%d'%ui))

Sequence-to-Sequence Learning – Neural Machine Translation

[338]

To initialize the weights of both the LSTM cells and the softmax
layers, we will be using Xavier initialization, introduced by Glorot
and Bengio in 2010 in their paper, Understanding the difficulty of
training deep feedforward neural networks, Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics (2010).
This is a principled initialization technique designed to alleviate the
vanishing gradient problem in very deep networks. This is available
through the tf.contrib.layers.xavier_initializer()
variable initializer provided in TensorFlow. Specifically, in Xavier
initialization, the weights of the jth layer of the neural network are
initialized according to the uniform distribution, U[a,b], where a is
the minimum value and b is the maximum value:

1 1

6 6~ ,
j j j j

W U
n n n n+ +

 
 − + +  

Here, nj is the size of the jth layer.

Defining the end-to-end output calculation
Here, with the variables and input/output placeholders defined, we will move
onto defining output calculations from the encoder to the decoder and the loss
function as well.

For the output, we will first calculate the LSTM cell state and the hidden state for
all the words in a given batch of sentences. This is achieved by running a for loop,
where in the ith iteration, we feed in the ith placeholder in enc_train_inputs, and the
cell state and the output hidden state from the 1thi− iteration. The enc_lstm_cell
function works similarly to the lstm_cell function we saw in Chapter 8, Applications of
LSTM – Generating Text and Chapter 9, Applications of LSTM – Image Caption Generation:

Update the output and state of the encoder iteratively
for i in enc_train_inputs:
 output, state = enc_lstm_cell(i, output,state)

Next, we will calculate the output of the decoder for the whole target sentence
similarly. However, in order to do that we should finish the calculations shown in
the preceding code snippet so that we can obtain v to initialize the decoder states
with. This is achieved with the tf.control_dependencies(...) statement. So the
nested commands within the with statement will only execute after the encoder
output is fully calculated:

Chapter 10

[339]

With the computations of the enc_lstm_cell done,
calculate the output and state of the decoder
with tf.control_dependencies([saved_output.assign(output),
 saved_state.assign(state)]):
 # Calculate the decoder state and output iteratively
 for i in dec_train_inputs:
 output, state = dec_lstm_cell(i, output, state)
 outputs.append(output)

Then, after the decoder outputs are calculated, we will calculate the logits of the
softmax layer using the hidden state of the LSTM as the input to the layer:

Calculate the logits of the decoder for all unrolled steps
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Now, with the logits calculated, we can calculate the loss. Note that we are using
mask to mask out the elements that should not be contributing to the loss (that is, the
</s> elements we append to make the sentence of fixed length):

loss_batch = tf.concat(axis=0,values=dec_train_masks)*
 tf.nn.softmax_cross_entropy_with_logits_v2(
 logits=logits, labels=tf.concat(axis=0,
 values=dec_train_labels))
loss = tf.reduce_mean(loss_batch)

Thereafter, unlike in previous chapters, we will use two optimizers: Adam and
standard stochastic gradient descent. This is because using Adam in long run
gave undesired results (for example, sudden large fluctuations of the BLEU score).
We also use gradient clipping to avoid any gradient explosions.

We use two optimizers: Adam and naive SGD
using Adam in the long run produced undesirable results
(e.g.) sudden fluctuations in BLEU
Therefore we use Adam to get a good starting point for optimizing
and then switch to SGD from that point onwards
with tf.variable_scope('Adam'):
 optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.variable_scope('SGD'):
 sgd_optimizer = tf.train.GradientDescentOptimizer(sgd_learning_
rate)

Calculates gradients with clipping for Adam
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimize = optimizer.apply_gradients(zip(gradients, v))

Sequence-to-Sequence Learning – Neural Machine Translation

[340]

Calculates gradients with clipping for SGD
sgd_gradients, v = zip(*sgd_optimizer.compute_gradients(loss))
sgd_gradients, _ = tf.clip_by_global_norm(sgd_gradients, 5.0)
sgd_optimize = optimizer.apply_gradients(zip(sgd_gradients, v))

We will use the following statement to ensure that the gradient flows correctly
from the decoder to the encoder by making sure the gradient exists for all the
trainable variables:

for (g_i,v_i) in zip(gradients,v):
 assert g_i is not None, 'Gradient none for %s'%(v_i.name)

Note that running the NMT will be much slower compared to previous exercises,
and on a single GPU it can take more than 12 hours to run fully.

Some translation results
These are results that we obtained after 10,000 steps:

DE: | Ferienwohnungen 1 Zi | Ferienhäuser | Landhäuser
| Autovermietung | Last Minute Angebote ! !

EN (TRUE):| 1 Bedroom Apts | Holiday houses | Rural
Homes | Car Rental | Last Minute Offers !

EN (Predicted): Casino Tropez | Club | Club |
Aparthotels Hotels | Club | Last Minute Offers | Last
Minute Offers | Last Minute Offers | Last Minute Offers
| Last Minute Offers ! </s>

DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?

EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?

EN (Predicted): How to install the new version of XLSTAT ? </s>

DE: Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist
eine richtige Sprache .

EN (TRUE):This is Ladin from Fassa which is more than a dialect : it
is a language in its own right .

EN (Predicted): The <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>

Chapter 10

[341]

<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk>

DE: In der Hotelbeschreibung im Internet müßte die Zufahrt beschrieben
werden .
EN (TRUE): There are no adverse comments about this hotel at all .

EN (Predicted): The <unk> <unk> is a bit of the <unk> <unk> . </s>

We can see that the first sentence is recognized quite well. However, the second
sentence is very poorly translated.

Also, here are the results obtained after 100,000 steps:

DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre ,
Kongens Nytorv , ' Stroget ' und Nyhavn .

EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens
Nytorv , " Strøget " and fascinating Nyhavn .

EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

DE: Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro
Übernachtung und Person für Zustellbetten .

EN (TRUE):All older children or adults are charged EUR 32.00 per night
and person for extra beds .

EN (Predicted): All older children or adults are charged EUR 15 <unk>
per night and person for extra beds . </s>

DE: Im Allgemeinen basieren sie auf Datenbanken , Templates und
Skripts .

EN (TRUE):In general they are based on databases , template and
scripts .

EN (Predicted): The user is the most important software of the
software . </s>

DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie
können OpenOffice zum Arbeiten verwenden .

Sequence-to-Sequence Learning – Neural Machine Translation

[342]

EN (TRUE): Tux Racer will help you pass the time while you wait ,
and you can use OpenOffice for work .

EN (Predicted): <unk> .com we have a very friendly and helpful
staff . </s>

We can see that, even though the translations are not perfect, it most of the time
captures the context of the source sentence, and our NMT is quite good at generating
grammatically correct sentences.

Figure 10.12 depicts the BLEU score over time for the NMT. There is a clear increase
in the BLEU score for both train and test datasets over time:

Figure 10.12: The BLEU score over time for the NMT

Training an NMT jointly with word
embeddings
Here we will discuss how we can train an NMT jointly with word embeddings.
We will be covering two concepts in this section:

•	 Training an NMT jointly with a word embedding layer
•	 Using pretrained embeddings instead of randomly initializing

the embeddings layer

Chapter 10

[343]

There are several multilingual word embedding repositories available:

•	 Facebook's fastText: https://github.com/facebookresearch/fastText/
blob/master/pretrained-vectors.md

•	 CMU multilingual embeddings: http://www.cs.cmu.edu/~afm/projects/
multilingual_embeddings.html

From these, we will use the CMU embeddings (~200 MB) as it's much smaller
compared with fastText (~5 GB). We first need to download the German
(multilingual_embeddings.de) and English (multilingual_embeddings.en)
embeddings. This is available as an exercise in nmt_with_pretrained_wordvecs.
ipynb in the ch10 folder.

Maximizing matchings between the dataset
vocabulary and the pretrained embeddings
We will first have to get a subset of the pretrained word embeddings that are
relevant for the problem we're interested in solving. This is important as the
vocabulary of pretrained word embeddings can be large and might contain lots
of words that are not found in the dataset vocabulary. The pretrained word
embeddings are a set of lines, where a line is a word and the word vector separated
by spaces. An example line from pretrained embeddings might look like this:

door 0.283259492301 0.198089365764 0.335635845187 -0.385702777914
0.491404970211 …

One obvious and naïve way of achieving this is to run through the pretrained dataset
vocabulary line by line, and if the word in the current line matches any word in
the dataset vocabulary, we will save that word embedding to be used in the future.
However, this will be highly inefficient as usually a vocabulary tends to be biased
toward various design decisions made by the creator. For example, some might
consider cat's, cat, and Cat to be the same word, whereas others might consider them
to be separate words. If we naïvely match pretrained word embedding vocabulary
and the dataset vocabulary, we might miss many words. Therefore, will we use the
following logic to make sure that we get most out of the pretrained word vectors.

First, we will define two NumPy arrays to hold the relevant word embeddings for
both the source and target languages:

de_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_
size),low=-1.0, high=1.0)
en_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_
size),low=-1.0, high=1.0)

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
http://www.cs.cmu.edu/~afm/projects/multilingual_embeddings.html
http://www.cs.cmu.edu/~afm/projects/multilingual_embeddings.html

Sequence-to-Sequence Learning – Neural Machine Translation

[344]

Then we will open the text file containing word vectors as shown here. The filename
parameter is multilingual_embeddings.de for German and miltilingual_
embeddings.en for English:

with open(filename,'r',encoding='utf-8') as f:

Next we will separate the word and the word vector by splitting the line by spaces:

 line_tokens = line.split(' ')
 lword = line_tokens[0]
 vector = [float(v) for v in line_tokens[1:]]

We will also ignore if a word is empty (that is, has only spaces, tabs, or new
line characters):

 if len(lword.strip())==0:
 continue

We will also strip out any accents present in the words (especially in German words)
to make sure that we will get the most chances of resulting in a match:

 lword = unidecode.unidecode(lword)

Thereafter, we will use the following logic to check for matches. We will write a set
of cascading conditions to check for matches, for both source and target languages:

1.	 First check whether the word from the pretrained embeddings (lword) is in
the dataset vocabulary as it is

2.	 If not, check whether the first letter is capitalized (that is, cat becomes Cat),
if found in the dataset vocabulary

3.	 If not, check whether the word from the pretrained embeddings (lword)
is similar to any of the word results by removing special characters (for
example, accents) from the dataset vocabulary words

If one of these conditions is satisfied, we will get that word embedding vector and
assign it to the row indexed by the ID of that word (word → ID) mapping is stored
in src_dictionary and tgt_dictionary for the two languages. We will do this for
both the languages:

 # Update the randomly initialized
 # matrix for the embeddings
 # Update the number of words
 # matched with pretrained embeddings
 try:
 dword = dictionary[lword]
 words_found_ids.append(dictionary[lword])

Chapter 10

[345]

 embeddings[dictionary[lword],:] = vector
 words_found += 1

 # If a given word is not found in our vocabulary,
 except KeyError:
 try:
 # First try to match the same
 # with first letter capitalized
 # capitalized
 if len(lword)>0:
 firt_letter_cap = lword[0].upper()+lword[1:]

 else:
 continue

 # Update the word embeddings matrix
 dword = dictionary[firt_letter_cap]
 words_found_ids.append(dictionary[
 firt_letter_cap])
 embeddings[dictionary[firt_letter_cap],:] = vector
 words_found += 1

 except KeyError:
 # If not found try to match the word with
 # the unaccented word
 try:
 dword = unaccented_dict[lword]
 words_found_ids.append(dictionary[lword])
 embeddings[dictionary[lword],:] = vector
 words_found += 1
 except KeyError:

 continue

Defining the embeddings layer
as a TensorFlow variable
We will define two trainable TensorFlow variables, for embedding layers (that is,
tgt_word_embeddings and src_word_embeddings), as follows:

tgt_word_embeddings = tf.get_variable(
 'target_embeddings',shape=[vocabulary_size,
 embeddings_size],
 dtype=tf.float32, initializer = tf.constant_initializer(

Sequence-to-Sequence Learning – Neural Machine Translation

[346]

 en_embeddings)
)
src_word_embeddings = tf.get_variable(
 'source_embeddings',shape=[vocabulary_size,
 embeddings_size],
 dtype=tf.float32, initializer = tf.constant_initializer(
 de_embeddings)
)

Then we will first change the dimensionality of the placeholders in dec_train_
inputs and enc_train_inputs to be [batch_size] and the data type to
tf.int32. This is so that we can use them to perform the embeddings lookup (tf.
nn.embedding_lookup(...)) for each unrolled input as follows:

Defining unrolled training inputs as well as embedding lookup
(Encoder)
for ui in range(enc_num_unrollings):
 enc_train_inputs.append(tf.placeholder(tf.int32,
 shape=[batch_size],
 name='train_inputs_%d'%ui))
 enc_train_input_embeds.append(tf.nn.embedding_lookup(
 src_word_embeddings,
 enc_train_inputs[ui]))

Defining unrolled training inputs, embeddings,
outputs, and masks (Decoder)
for ui in range(dec_num_unrollings):  dec_train_inputs.append(tf.
placeholder(tf.int32,
 shape=[batch_size],
 name='dec_train_inputs_%d'%ui))
 dec_train_input_embeds.append(tf.nn.embedding_lookup(
 tgt_word_embeddings,
 dec_train_inputs[ui]))
 dec_train_labels.append(tf.placeholder(tf.float32,
 shape=[batch_size,vocabulary_size],
 name = 'dec_train_labels_%d'%ui))
 dec_train_masks.append(tf.placeholder(tf.float32,
 shape=[batch_size,1],
 name='dec_train_masks_%d'%ui))

Chapter 10

[347]

Then the LSTM cell computations for the encoder and decoder changes as
shown here In this part, we first calculate the encoder LSTM cell output with
the source sentence inputs. Next by using the final state information from the
encoder as the initialization state for the decoder (that is, using tf.control_
dependencies(...)) we compute the decoders output as well as the softmax
logits and predictions:

Update the output and state of the encoder iteratively
for i in enc_train_inputs:
 output, state = enc_lstm_cell(i, output,state)

print('Calculating Decoder Output')
With the computations of the enc_lstm_cell done,
calculate the output and state of the decoder
with tf.control_dependencies([saved_output.assign(output),
 saved_state.assign(state)]):
 # Calculate the decoder state and output iteratively
 for i in dec_train_inputs:
 output, state = dec_lstm_cell(i, output, state)
 outputs.append(output)

Note that, the exercise file has a slightly different output calculation than shown
here. Instead of feeding in the previous prediction as input, we feed in the true word
as the input. This tends to deliver better performance than feeding in the previous
prediction, and will be discussed in detail in the next section. However the overall
idea remains the same.

The final steps include, computing the loss for the decoder and defining an optimizer
to optimize the model parameters, as we saw earlier.

Sequence-to-Sequence Learning – Neural Machine Translation

[348]

Finally we outline the computational graph for the implementation of our NMT.
Here we visualize the computational graph for our model.

Figure: 10.13: Computational graph of the NMT system with pretrained embeddings

Improving NMTs
As you can see from the preceding results, our translation model is not behaving
ideally. These results were obtained by running the optimization for more than
12 hours on a single NVIDIA 1080 Ti GPU. Also note that this is not even the
full dataset, we only used 250,000 sentence pairs for training. However, if you
type something into Google Translate, which uses the Google Neural Machine
Translation (GNMT) system, the translation almost always looks very realistic with
only minor mistakes. So it is important to know how we can improve the model
so that it can produce better results. In this section, we will discuss several ways
of improving NMTs such as teacher forcing, deep LSTMs, and attention mechanism.

Teacher forcing
As we discussed in the Training the NMT section, we do the following to train
the NMT:

•	 First, we fed the full encoder sentence to obtain the final state outputs
of the encoder

•	 We then set the final states of the encoder to be the initial state of the decoder
•	 We also asked the decoder to predict the full target sentence without any

additional information except for the last state output of the encoder

Chapter 10

[349]

This can be too difficult of a task for the model. We can understand this phenomenon
as follows. Say, a teacher asks a kindergarten student to complete the following
sentence, given just the first word:

I ___ ____ ___ ___ ____ ____

This means that the child needs to pick a subject; verb; and an object, know the
syntax of the language, understand the grammar rules of the language, and so on.
Therefore, the tendency for the child to produce an incorrect sentence is high.

However, if we ask the child to produce it word-by-word they might do a better job
at coming up with a sentence. In other words, we ask the child to produce the next
word given the following:

I ____

Then we ask them to fill the blank given:

I like ____

And continue in the same fashion:

I like to ___, I like to fly ____, I like to fly kites ____

This way, the child can do a better job at producing a correct and meaningful
sentence. This phenomenon is known as teacher forcing. We can adopt the same
approach to alleviate the difficulty of the translation task, as shown in Figure 10.13:

Figure 10.14: The teacher forcing mechanism. The darker arrows in the inputs depict newly introduced input
connections to the decoder. The right-hand side figure shows how the decoder LSTM cell changes.

Sequence-to-Sequence Learning – Neural Machine Translation

[350]

As shown in bold in the figure, the inputs to the decoder have been replaced
with actual target words in the training data. Therefore NMT decoder no longer
has to carry the burden of predicting a whole target sentence given the source
sentence. Rather, the decoder only has to predict the current word correctly, given
the previous word. Something worth noting is that, we discussed the training
procedure without any details about teacher forcing, in the previous discussion.
However, we actually use teacher forcing in all the exercises for this chapter.

Deep LSTMs
One obvious improvement we can do is to increase the number of layers by stacking
LSTMs on top of each other, thereby creating a deep LSTM (see Figure 10.14). For
example, the Google NMT system uses eight LSTM layers stacked upon each other
(Google's Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation, Wu and others, Technical Report (2016)). Though this hampers the
computational efficiency, having more layers greatly improves the neural network's
ability to learn the syntax and other linguistic characteristics of the two languages.

Figure 10.15: An illustration of a deep LSTM

Chapter 10

[351]

Attention
Attention is one of the key breakthroughs in machine translation that gave rise to
better working NMT systems. Attention allows the decoder to access the full state
history of the encoder, leading to creating a richer representation of the source
sentence, at the time of translation. Before delving into the details of an attention
mechanism, let's understand one of the crucial bottlenecks in our current NMT
system and the benefit of attention in dealing with it.

Breaking the context vector bottleneck
As you have probably already guessed, the bottleneck is the context vector, or
thought vector, that resides between the encoder and the decoder (see Figure 10.15):

Figure 10.16: The encoder-decoder architecture

To understand why this is a bottleneck, let's imagine translating the following
English sentence:

I went to the flower market to buy some flowers

This translates to the following:

Ich ging zum Blumenmarkt, um Blumen zu kaufen

If we are to compress this into a fixed length vector, the resulting vector needs to
contain these:

•	 Information about the subject (I)
•	 Information about the verbs (buy and went)
•	 Information about the objects (flowers and flower market)
•	 Interaction of the subjects, verbs, and objects with each other in the sentence

Sequence-to-Sequence Learning – Neural Machine Translation

[352]

Generally, the context vector has a size of 128 or 256 elements. This is a very
impractical and an extremely difficult requirement for the system. Therefore, most
of the time, the context vector fails to provide the complete information required
to make a good translation. This results in an underperforming decoder that
suboptimally translates a sentence.

Furthermore, during the decoding, the context vector is observed only in the
beginning. Thereafter, the decoder LSTM must memorize the context vector until the
end of the translation. Though LSTMs are good at long-term memorizing, practically
they are limited. This will heavily affect outcomes, especially for long sentences.

This is where attention comes in handy. With the attention mechanism, the decoder
will have access to the full state history of the encoder for each decoding time step.
This allows the decoder to have access to a very rich representation of the source
sentence. Furthermore, the attention mechanism introduces a softmax layer that
allows the decoder to calculate a weighted mean of the past observed encoder states,
which will be used as the context vector for the decoder. This allows the decoder to
pay different amounts of attention to different words at different decoding steps.

The attention mechanism in detail
Now let's investigate the actual implementation of the attention mechanism in detail.
We will use the attention mechanism detailed in the paper, Neural Machine Translation
by Learning to Jointly Align and Translate, Bahdanau, Cho, and Bengio, arXiv:1409.0473
(2014). For consistency with the paper, we will use the following notations:

•	 Encoder's hidden state: hi

•	 Target sentence words: yi

•	 Decoder's hidden state: si

•	 Context vector: ci

So far, our decoder LSTM was composed of an input yi and a hidden state 1is − .
We will ignore the cell state as this is an internal part of the LSTM. This can be
represented as follows:

()1,dec i iLSTM f y s −=

Chapter 10

[353]

Here, f represents the actual update rules used to calculate yi+1 and si. With the
attention mechanism, we are introducing a new time-dependent context vector ci
for the ith decoding step. The ci vector is a weighted mean of the hidden states of all
the unrolled encoder steps. A higher weight will be given to the jth hidden state of
the encoder if the jth word is more important for translating the ith word in the target
language. Now the decoder LSTM becomes this:

()1, ,dec i i iLSTM f y s c−=

Conceptually, attention mechanism can be thought of as a separate layer and
illustrated as in Figure 10.16. As shown, the attention functions as a layer. The
attention layer is responsible for producing ci for the ith time step of the decoding
process:

Figure 10.17: Conceptual attention mechanism in NMT

Sequence-to-Sequence Learning – Neural Machine Translation

[354]

Let's now see how to calculate ci:

1

L

i ij j
j

c hα
=

=∑

Here, L is the number of words in the source sentence, and, ijα is a normalized
weight representing the importance of the jth encoder hidden state for calculating the
ith decoder prediction. This is calculated using a softmax layer. L is the length of the
encoder sentence:

()
()

1

ij
ij L

ikk

exp e

exp e
α

=

=
∑

Here, ije is the energy or importance measuring how much the jth hidden state of the
encoder and to the previous decoder state 1is − contributes to calculating si:

()1
T

ij a a i a je v tanh W s U h−= +

This essentially means that ije is calculated with a multilayer perceptron whose
weights are va, Wa, and Ua, and 1is − and hj are the inputs to the network. The
attention mechanism is shown in Figure 10.17:

Chapter 10

[355]

Figure 10.18: The attention mechanism

Sequence-to-Sequence Learning – Neural Machine Translation

[356]

Implementing the attention mechanism
Here we will discuss how we can implement the attention mechanism. Two major
changes the system will go through are as follows:

•	 More parameters (that is, weights) will be introduced (for calculating
attention and using attention as an input to the decoder LSTM cell)

•	 A new function for attention related computations will be introduced
(that is, attn_layer)

•	 Changes to decoder LSTM cell computation to take the attention-weighted
sum of all the encoder LSTM cell outputs as an input

We will only be discussing the additional things introduced compared to the
standard NMT model. You can find the full exercise for NMT with attention in the
neural_machine_translation_attention.ipynb.

Defining weights
Three new sets of weights will be introduced to implement the attention
mechanism. All these weights are used to calculate the energy term (that is, ije)
we discussed earlier:

 W_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],
 stddev=0.05),name='W_a')
 U_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],
 stddev=0.05),name='U_a')
 v_a = tf.Variable(tf.truncated_normal([num_nodes,1],
 stddev=0.05),name='v_a')

Also, we will define a new set of weights that will be used to take ci as an input to the
ith step of unrolling of the decoder:

 dec_ic = tf.get_variable('ic',shape=[num_nodes, num_nodes],
 initializer = tf.contrib.layers.xavier_initializer())
 dec_fc = tf.get_variable('fc',shape=[num_nodes, num_nodes],
 initializer = tf.contrib.layers.xavier_initializer())
 dec_cc = tf.get_variable('cc',shape=[num_nodes, num_nodes],
 initializer = tf.contrib.layers.xavier_initializer())
 dec_oc = tf.get_variable('oc',shape=[num_nodes, num_nodes],
 initializer = tf.contrib.layers.xavier_initializer())

Chapter 10

[357]

Computing attention
For computing attention values for each position of the encoder and decoder, we will
define a function that does that for us, attn_layer(...). This method calculates
attention for all the positions (that is,the num_enc_unrollings) of the encoder, for
a single unrolling step of the decoder. The attn_layer(...) method takes two
arguments as parameters to the function:

attn_layer(h_j_unrolled, s_i_minus_1)

The parameters are as follows:

•	 h_i_unrolled: These are the num_enc_unrolling encoder LSTM cell
outputs we calculated during feeding in the source sentence to the encoder.
This will be a list of the num_enc_unrolling tensors, where each tensor is
[batch_size, num_nodes] sized.

•	 s_i_minus_1: The pervious decoder's LSTM cell output. This will be a tensor
of the [batch_size, num_nodes] size.

First we will create a single tensor with the list of unrolled encoder outputs of the
[num_enc_unrollings * batch_size, num_nodes] size:

 enc_logits = tf.concat(axis=0,values=h_j_unrolled)

Then we will calculate 1a iW s − with the following operation:

 # of size [enc_num_unroll x batch_size, num_nodes]
 w_a_mul_s_i_minus_1 = tf.matmul(enc_outputs,W_a)

Next we will calculate a jU h :

 # of size [enc_num_unroll x batch_size, num_nodes]
 u_a_mul_h_j = tf.matmul(tf.tile(s_i_minus_1,[enc_num_
unrollings,1]), U_a)

Now we will calculate energy as ()1
T

ij a a i a je v tanh W s U h−= + . This is a tensor of the
[enc_num_unroll * batch_size ,1] size:

 e_j = tf.matmul(tf.nn.tanh(w_a_mul_s_i_minus_1 +
 u_a_mul_h_j),v_a)

Sequence-to-Sequence Learning – Neural Machine Translation

[358]

We can now first break the large e_j to the enc_num_unrolling long list of tensors
with tf.split(...), where each tensor is of the [batch_size, 1] size. Thereafter,
we concatenate this list along axis 1 to produce a tensor of the [batch_size,
enc_num_unrollings] size (that is, reshaped_e_j). Therefore, a single row of
reshaped_e_j will correspond to the attention values for all the positions of the
encoder's unrolled timesteps:

 # list of enc_num_unroll elements, each
 # element [batch_size, 1]
 batched_e_j = tf.split(axis=0,
 num_or_size_splits=enc_num_unrollings,value=e_j)
 # of size [batch_size, enc_num_unroll]
 reshaped_e_j = tf.concat(axis=1,values=batched_e_j)

We can now easily calculate the normalized attention values for reshaped_e_j. The
values will be normalized across the unrolled time steps (axis 1 of reshaped_e_j):

 # of size [batch_size, enc_num_unroll]
 alpha_i = tf.nn.softmax(reshaped_e_j)

This is followed by breaking alpha_i into a list of enc_num_unroll tensors, each of
the [batch_size,1] size:

 alpha_i_list = tf.unstack(alpha_i,axis=1)

Afterwards, we will calculate the weighted sum of each of the encoder outputs (that
is, h_j_unrolled) and assign this to c_i, which will be used as an input to the ith
time step of unrolling, of the decoder LSTM cell:

 c_i_list = [tf.reshape(alpha_i_list[e_i],
 [-1,1])*h_j_unrolled[e_i] for e_i in range(enc_num_
unrollings)]
 c_i = tf.add_n(c_i_list) # of size [batch_size, num_nodes]

Then to take c_i as an input to the ith step of unrolling of the decoder LSTM cell, the
decoder LSTM cell computation changes as follows:

Definition of the cell computation (Decoder)
def dec_lstm_cell(i, o, state, c):
 """Create a LSTM cell"""
 input_gate = tf.sigmoid(tf.matmul(i, dec_ix) + tf.matmul(o, dec_
im) +
 tf.matmul(c, dec_ic) + dec_ib)
 forget_gate = tf.sigmoid(tf.matmul(i, dec_fx) + tf.matmul(o, dec_
fm) +
 tf.matmul(c, dec_fc) + dec_fb)
 update = tf.matmul(i, dec_cx) + tf.matmul(o, dec_cm) +

Chapter 10

[359]

 tf.matmul(c, dec_cc) +dec_cb
 state = forget_gate * state + input_gate * tf.tanh(update)
 output_gate = tf.sigmoid(tf.matmul(i, dec_ox) + tf.matmul(o, dec_
om) +
 tf.matmul(o, dec_oc) + dec_ob)
 return output_gate * tf.tanh(state), state

Some translation results – NMT with attention
Here are the results we obtained after 10,000 steps:

DE: | Ferienwohnungen 1 Zi | Ferienhäuser | Landhäuser
| Autovermietung | Last Minute Angebote ! !

EN (TRUE):| 1 Bedroom Apts | Holiday houses | Rural
Homes | Car Rental | Last Minute Offers !

EN (Predicted): | Apartments | Hostels | Hostels |
Last Minute Offers ! </s>

DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?

EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?

EN (Predicted): How can you find the XLSTAT ##AT##-##AT## MX ? </s>

DE: Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist
eine richtige Sprache .

EN (TRUE):This is Ladin from Fassa which is more than a dialect : it
is a language in its own right .

EN (Predicted): The <unk> " is a very important role in the world
. </s>

DE: In der Hotelbeschreibung im Internet müßte die Zufahrt
beschrieben werden .

EN (TRUE): There are no adverse comments about this hotel at all .

EN (Predicted): The <unk> <unk> is the <unk> of the Internet . </s>

Similar to what we observed earlier, the NMT with attention is good at translating
some sentences, but poor at translating others.

Sequence-to-Sequence Learning – Neural Machine Translation

[360]

Also, these are the results obtained after 100,000 steps:

DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre ,
Kongens Nytorv , ' Stroget ' und Nyhavn .

EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens
Nytorv , " Strøget " and fascinating Nyhavn .

EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

DE: Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro
Übernachtung und Person für Zustellbetten .

EN (TRUE):All older children or adults are charged EUR 32.00 per night
and person for extra beds .

EN (Predicted): All older children or adults are charged EUR 15 <unk>
per night and person for extra beds . </s>

DE: Im Allgemeinen basieren sie auf Datenbanken , Templates und
Skripts .

EN (TRUE):In general they are based on databases , template and
scripts .

EN (Predicted): The user is the most important software of the
software . </s>

DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie
können OpenOffice zum Arbeiten verwenden .

EN (TRUE): Tux Racer will help you pass the time while you wait ,
and you can use OpenOffice for work .

EN (Predicted): <unk> .com we have a very friendly and helpful
staff . </s>

We have used the same set of test sentences we used to evaluate the standard NMT
for easier comparison. We can see that the NMT with attention model provides much
better translations compared to the standard NMT. But still there is the possibility of
getting some translations wrong, as we use limited amount of data.

Chapter 10

[361]

Figure 10.18 depicts the BLEU score over time for the NMT and NMT with attention,
side by side. We can clearly see that the NMT with attention gives a better BLEU
score in both training and test data:

Figure 10.19: The BLEU score over time for the NMT and NMT+Attention

According to 2017 results, the current state of the art BLEU score for
German to English translation is 35.1 (The University of Edinburgh's
Neural MT Systems for WMT17 by Rico Sennrich and others arXiv preprint
arXiv:1708.00726 (2017))

Visualizing attention for source and target
sentences
In Figure 10.19, we can visualize how the attention values look for different source
words for a given target word for several source to target translation pairs. If you
remember, when calculating attention, we had the enc_num_unrollings attention
values for a given position of the decoder. Therefore, if you concatenate all the attention
vectors for all the positions in the decoder, you can create an attention matrix.

Sequence-to-Sequence Learning – Neural Machine Translation

[362]

In the attention matrix, we have target words as rows and source words as columns.
A higher (lighter) value for some rows and columns indicates that when predicting
the target word found in that row, the decoder mostly paid attention to the source
word given by the column. For example, you can see that Hotel in the target
sentence is highly correlated with Hotel in the source sentence:

Figure 10.20: Attention matrices for several different source-target translation pairs

Chapter 10

[363]

This brings us to the end of our discussion about NMT. We discussed the basic
encoder-decoder architecture used in NMT as well as discussing how to evaluate
NMT systems. Then we discussed several ways to improve NMT systems such as
teacher forcing, using deep LSTMs, and the attention mechanism.

It is important to understand that NMT has a wide variety of use cases in the real
world. One of the obvious use cases is for international businesses having branches
spread out in many countries. In such businesses, employees from different countries
need to have faster ways of communicating without making language a barrier.
Therefore, automatically translating emails from one language to another can be
very useful for such a company. Next, in manufacturing, MT can be used to produce
multilingual product descriptions/user-manuals of products. Then experts can
perform light post-processing to make sure the translations are accurate. Finally, MT
can come in handy for day-to-day tasks, such as multilingual translations. Say, the
user is not a native English speaker and needs to search for something that they don't
know how to fully describe in English. In that case, the user can write a multilingual
search query. Then the MT system can translate the query to different languages and
search resources on the internet that matches the user's search request.

Other applications of Seq2Seq
models – chatbots
One other popular application of sequence to sequence models is in creating
chatbots. A chatbot is a computer program that is able to make a realistic
conversation with a human. Such applications are very useful for companies with a
huge customer base. Responding to the customers asking basic questions for which
answers are obvious accounts for a significant portion of customer support requests.
A chatbot can serve customers with basic concerns when it is able to find an answer.
Also, if the chatbot is unable to answer a question, the request gets redirected to
a human operator. Chatbots can save lot of the time that human operators spend
answering basic concerns and let them attend to more difficult tasks.

Sequence-to-Sequence Learning – Neural Machine Translation

[364]

Training a chatbot
So, how can we use a sequence-to-sequence model to train a chatbot? The answer
is quite straightforward as we have already learned about the machine translation
model. The only difference would be how the source and target sentence pairs
are formed.

In the NMT system, the sentence pairs consist of a source sentence and the
corresponding translation in a target language for that sentence. However, in
training a chatbot, the data is extracted from the dialogue between two people.
The source sentences would be the sentences/phrases uttered by person A, and
the target sentences would be the replies to person A made by person B. Here is
an example of this. This data consists of movie dialogues between people and is
found at https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_
Corpus.html.

BIANCA: They do not!

CAMERON: They do to!

BIANCA: I hope so.

CAMERON: She okay?

BIANCA: Let's go.

CAMERON: Wow

BIANCA: Okay -- you're gonna need to learn how to lie.

CAMERON: No

BIANCA: I'm kidding. You know how sometimes you just become this "persona"?
And you don't know how to quit?

BIANCA: Like my fear of wearing pastels?

CAMERON: The "real you".

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

Chapter 10

[365]

Here are links to several other datasets for training conversational chatbots:

•	 Reddit comments dataset: https://www.reddit.com/r/datasets/
comments/3bxlg7/i_have_every_publicly_available_reddit_comment/

•	 Maluuba dialogue dataset: https://datasets.maluuba.com/Frames
•	 Ubuntu dialogue corpus: http://dataset.cs.mcgill.ca/ubuntu-

corpus-1.0/

•	 NIPS conversational intelligence challenge: http://convai.io/
•	 Microsoft research social media text corpus: https://tinyurl.com/

y7ha9rc5

Figure 10.20 shows the similarity of a chatbot system to an NMT system. For
example, we train a chatbot with a dataset consisting of dialogues between two
people. The encoder takes in the sentences/phrases spoken by one person, where
the decoder is trained to predict the other person's response. After training in such
a way, we can use the chatbot to provide a response to a given question:

Figure 10.21: Illustration of a chatbot

Evaluating chatbots – Turing test
The Turing test was invented by Alan Turing in the 1950s as a way of measuring
the intelligence of a machine. The experiment settings are well-suited for evaluating
chatbots. The experiment is set up as follows.

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://datasets.maluuba.com/Frames
http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/
http://convai.io/data/
http://convai.io/

Sequence-to-Sequence Learning – Neural Machine Translation

[366]

There are three parties involved: an evaluator (that is, a human) (A), another human
(B), and a machine (C). The three of them sit in three different rooms so that none
of them can see the others. The only communication medium is text, which is typed
into a computer by one party, and the receiver sees the text on a computer on their
side. The evaluator communicates with both the human and the machine. And at the
end of the conversation, the evaluator is to distinguish the machine from the human.
If the evaluator cannot make the distinction, the machine is said to have passed the
Turing test. This setup is illustrated in Figure 10.21:

Figure 10.22: The Turing test

Summary
In this chapter, we talked in detail about NMT systems. Machine translation is the
task of translating a given text corpus from a source language to a target language.
First we talked about the history of machine translation briefly to build a sense of
appreciation for what has gone into machine translation, to become what it is today.
We saw that today the highest performing machine translation systems are actually
NMT systems. Next we talked about the fundamental concept of these systems
and decomposed the model into the embedding layer, the encoder, the context
vector, and the decoder. We first established the benefit of having an embedding
layer as it gives semantic representations of words compared to one-hot-encoded
vectors. Then we understood the objective of the encoder, which is to learn a good
fixed dimensional vector that represents the source sentence. Next, once the fixed
dimensional context vector was learned, we used this to initialize the decoder. The
decoder is responsible for producing the actual translation of the source sentence.
Then we discussed how the training and the inference work in the NMT systems.

Chapter 10

[367]

Then we looked at an actual implementation of an NMT system that translates
sentences from German to English to understand the internal mechanisms of the NMT
system. Here we looked at an NMT system implemented using basic TensorFlow
operations, as this gives us an in-depth understanding of the step-by-step execution
of the system, compared with using off-the-shelf libraries such as seq2seq in
TensorFlow. Then we learned that the context vector causes a bottleneck in the system
as the system is forced to embed all the knowledge in the source sentence to a fixed
dimensional (comparatively small) vector. Due to the difficulty of the task the system
underperforms, we moved on to learning a technique that avoids this bottleneck: the
attention mechanism. Instead of depending solely on the fixed-dimensional vector for
learning translations, the attention mechanism, allows the decoder to observe full state
history of the encoder at each decoding step, allowing the decoder to form a rich context
vector. We saw that this technique allows NMT systems to perform much better.

Finally, we talked about another popular application of sequence-to-sequence
learning: chatbots. Chatbots are machine learning applications that are able to make
realistic conversation with a human and even answer questions. We saw that NMT
systems and chatbots work similarly, and only the training data is the difference. We
also discussed the Turing test, which is a qualitative test that can be used to evaluate
chatbots.

In the next chapter, we will discuss the various future trends in NLP.

[369]

Current Trends and
the Future of Natural

Language Processing
In this chapter, we will discuss the latest trends in NLP and what the future will
be like. In the first section, we will talk about the latest trends in NLP. Improving
the existing models is a key part of the latest trends. This includes improving the
performance of existing models (for example, the word embeddings and machine
translation systems).

The rest of the chapter is about the novel areas emerging recently in the field of NLP.
We will be driving our discussion into five different subareas, drawing on unique
and instructive papers from the discipline. First we will see how NLP has ventured
into other research fields, such as computer vision and reinforcement learning. Next
we will discuss several novel attempts that have been made to achieve Artificial
General Intelligence (AGI) in NLP, by training a single model to perform several
NLP tasks. We will also look at some of the new tasks emerging in the realm of NLP,
such as detecting sarcasm and language grounding. Then we will see how NLP is
being used in social media, especially in mining social media for information. Finally,
we will learn about some new time-series learning models that have appeared
recently, such as Phased LSTMs. For example, Phased LSTMs are much better at
identifying specific events happening over very long periods of time.

To summarize, we will be talking about the latest NLP trends, and then, the most
important emerging innovations:

•	 Current trends in NLP
•	 Penetration of NLP into other fields
•	 Advances in AGI in terms of NLP

Current Trends and the Future of Natural Language Processing

[370]

•	 Emerging Novel NLP tasks
•	 NLP for social media
•	 Better time-series models

Most of the material in this chapter pertaining to current trends
and new directions is based on scholarly papers from within the
discipline. We have referenced all the primary sources to credit
the authors and provide resources for further reading. In-text
references include a bracketed number that correlates with the
numbering in the References section at the end of the chapter.

Current trends in NLP
In this section, we will talk about current trends in NLP. These trends are from
the NLP research conducted between 2012 and early 2018. First let's talk about the
current states of word embeddings. Word embeddings is a crucial topic as we have
already seen many interesting tasks that rely on word embeddings to perform well.
We will then look at important improvements in NMT.

Word embeddings
Many variants of word embeddings have emerged over time. With the inception of
high-quality word embeddings (refer to Distributed representations of words and phrases
and their compositionality, Mikolov and others [1]) in NLP, it can be said that NLP had a
resurgence, where many took an interest in using word embeddings in various NLP
tasks (for example, sentiment analysis, machine translation, and question answering).
Also, there have been many attempts to improve word embeddings, leading to even
better embeddings. The four models that we'll introduce are in the areas of region
embedding, probabilistic word embedding, meta-embedding, and topic embedding.

Region embedding
The tv-embedding (short for, two-view embedding) model was introduced in Rie
Johnson and Tong Zhang's paper, Semi-supervised Convolutional Neural Networks for
Text Categorization via Region Embedding [2]. This approach is different from word
embeddings, as these are region-embeddings where they embed a region of a text
into a fixed dimensional vector. For example, unlike in word embedding, where
we had a vector for each word (for example, cat), with tv-embedding, we have
embeddings for phrases (for example, the cat sat on a mat). An embedding is called a
two-view embedding if it preserves the information required to predict a view (that
is, a word or a region) from another view (that is, a context word or context region).

Chapter 11

[371]

Input representation
Let's now look at the details of this approach. A tv-embedding system would look
like Figure 11.1. First, a numerical representation of regions of words is found. For
example, consider the following phrase:

very good drama

This can be represented as shown here:

very good drama | very good drama | very good drama

 1 0 0 | 0 1 0 | 0 0 1

This is called a sequence one-hot-encoded vector. Alternatively, it can be
represented as shown here:

very good drama

 1 1 1

This is called the Bag-of-Words (BOW) representation. We can see that the BOW
representation is more compact and does not grow with the phrase size. However,
note that this representation loses contextual information. Note that BOW is the
feature representation we use to represent words or text phrases. This is not related
to the CBOW word embedding learning algorithm we discussed in Chapter 3,
Word2vec – Learning Word Embeddings.

Figure 11.1: Learning region embeddings and using region embeddings for sentiment analysis

Current Trends and the Future of Natural Language Processing

[372]

Learning region embeddings
We learn region embeddings the same way we learned word embeddings. We feed
in an input containing a text region and ask the model to predict the target context
region. For example, we use a region size of three for the phrase:

very good drama I enjoyed it

Then, for the input we use this:

very good drama

The output (target) will be as follows:

I enjoyed it

As an exercise, we will see if the learned region embeddings help to improve
sentiment analysis tasks. For this, we will use the dataset found at http://
ai.stanford.edu/~amaas/data/sentiment/. This is a text corpus containing
IMDB movie reviews. We will first learn useful region embeddings by training an
embedding layer to predict the context region correctly for a given input text region.
Then we will use these embeddings as an additional input to the sentiment analysis
network. This is available as an exercise in tv_embeddings.ipynb in the ch11 folder.

Implementation – region embeddings
For this example, we will use 400 positive and 400 negative samples from
the dataset as our training data. We will also set up a held-out validation set
consisting of roughly 150 positive and 150 negative samples. We will only gloss
over this implementation and not discuss the specific details. You can refer to the
exercise file for more details.

First, for learning region embeddings, we will define a fully connected set of weights
and a bias:

 w1 = tf.get_variable('w1', shape=[vocabulary_size,500],
 initializer = tf.contrib.layers.xavier_initializer_conv2d())
 b1 = tf.get_variable('b1',shape=[500],
 initializer = tf.random_normal_initializer(stddev=0.05))

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/

Chapter 11

[373]

Next, using the weights and bias, we will calculate the hidden value that has rectified
linear units, which is a type of nonlinearity we use in neural networks:

 h = tf.nn.relu(
 tf.matmul(train_dataset,w1) + b1
)

Then we will define another set of weights and bias, which acts as the top regression
layer. The top layer predicts the BOW representation of the context region, for a
given text region:

 w = tf.get_variable('linear_w', shape=[500, vocabulary_size],
 initializer= tf.contrib.layers.xavier_initializer())
 b = tf.get_variable('linear_b', shape=[vocabulary_size],
 initializer= tf.random_normal_initializer(stddev=0.05))

We will next calculate the final output:

 out =tf.matmul(h,w)+b

We will now define loss. Loss is a mean squared error between the predicted context
region BOW and the true context BOW. We will use train_mask to mask some of
the nonexisting words (0s in the true BOW representation), similar to the negative
sampling method we discussed in Chapter 3, Word2vec – Learning Word Embeddings.

 loss = tf.reduce_mean(tf.reduce_sum(train_mask*(
 out - train_labels)**2,axis=1))

Finally, we will use the optimizer to optimize the defined loss:

 optimizer = tf.train.AdamOptimizer(
 learning_rate = 0.0005).minimize(loss)

Then we will use the learned embeddings as an additional input to classify text, as
shown in Figure 11.1. For this, we will concatenate region embeddings sequentially
for all the text regions found in a given review. We will do the same for the BOW
inputs. Then we will convolve over the concatenated vectors (that is, the region
embedding and BOW vectors) in parallel and concatenate the convolution outputs.
Next we will feed the concatenated convolution output into the top classification
layer, which outputs whether the movie review was positive or negative.

Current Trends and the Future of Natural Language Processing

[374]

Classification accuracy
When performance is measured against a held-out validation dataset, the model
with tv-embeddings seems to slightly outperform the model that does not use
tv-embeddings (see Figure 11.2). This difference can be improved by employing
regularization techniques such as dropout and training for a longer time. Therefore,
we can conclude that tv-embeddings in fact contribute to better performance with text
classification tasks, compared with just using a simple representation such as BOW:

Figure 11.2: Sentiment classification accuracy for a model using BOW inputs
and a model using BOW and region embeddings

Probabilistic word embedding
The probabilistic word embedding models are another novel development in the
word embedding area. A Generative Word Embedding Model and Its Low Rank Positive
Semidefinite Solution [3], by Shaohua Li and others, introduces a word embedding
technique called PSDVec, which produces embeddings that are different and more
informative than the deterministic word vector models we saw earlier in the book (for
example, skip-gram, CBOW, and GloVe). PSDVecs will provide for an embedding
distribution for each word embedding instead of an exact numerical vector. As an
example, if we assume a word vector has an embedding size of 1, and GloVe says
that the word vector for the word dog is 0.5, PSDVec will provide a distribution over
all the possible values that might look as shown in Figure 11.3. PSDVec might say that
the embedding value for dog can be 0.5 with a higher probability (for example, 0.3),
and it can be 0.1 with a lower probability (for example, 0.05):

Figure 11.3: What PSDVec gives for a one-dimensional embedding

Chapter 11

[375]

The probabilistic models have a richer interpretation than the deterministic models,
such as Word2vec. To learn such probabilistic distributions of word vectors, they use
a technique known as variational inference. In their work, they learn an embedding
layer as well as a residual layer that captures noisy and nonlinear relationships
between words. The authors show that PSDVec provides competitive performance
compared with standard Word2vec and GloVe.

Ensemble embedding
In their paper, Learning Word Meta-Embeddings [4], Wenpeng Yin and Hinrich Schütze
propose an approach to learning meta-embeddings, an ensemble embedding model
from several publicly available embedding sets. Two key benefits of this approach
are (1) enhanced performance as they leverage multiple word embedding sets and
(2) higher vocabulary coverage due to using multiple word embedding sets.

Topic embedding
Topic embedding is also gaining interest in the NLP community. It allows any
document to be represented by a set of topics (for example, information technology,
medicine, and entertainment), and for a given document, we will compute weights
for each topic, representing how relevant the document is to that topic. For example,
a document about using machine learning for healthcare will have higher weights for
topics such as information technology and medicine, but a low weight for the topic, law.

The paper Topical Word Embeddings [5], by Yang Liu and others, takes this approach
for learning word embeddings. Topical Word Embeddings (TWE) learns multi-
prototype embeddings. Multi-prototype embeddings are different from standard
word embeddings as they give different embedding values depending on the context
in which the word is used. For example, in the context of information technology
(IT), Windows will give a different embedding value, compared to what it provides
in the context of home. They learn the topics by a process known as Latent Dirichlet
Allocation (LDA), a popular method used for topic modeling. The authors evaluate
their method in a multiclass text classification task from a news group, which
contains various topics such as IT, medicine, and politics. TWE outperforms other
topic modeling methods, such as BOW and LDA used alone.

Current Trends and the Future of Natural Language Processing

[376]

Neural Machine Translation (NMT)
NMT has already proven its versatility, and many companies and researchers
are investing in improving NMT systems. NMTs offer the current state-of-the-art
translation performance that has been demonstrated by an autonomous translation
system. However, these systems still haven't reached human translation capability.
Therefore, a lot of effort is underway for improving NMT systems. As we discussed
in Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation MT has
potential in various domains such as manufacturing and business. Another use
case of real-time machine translation can be found in the domain of tourism, where
tourists can obtain English translations of various languages (through photos/
speech/text), while visiting some other country.

Improving the attention mechanism
We already talked about the attention mechanism that eliminates the notorious
performance bottleneck limit vanilla encoder-decoder style NMTs. With the
attention mechanism, the decoder was given freedom to look at the complete source
sentence at each decoding step. However, the improvements don't stop there. One
improvement that has been suggested is the input feeding approach found in Effective
Approaches to Attention-based Neural Machine Translation [6], Minh-Thang Luong and
others. With this method, we feed the previous attention vector as an input to the
current time step of the decoder. This measure is taken to make the decoder aware
of the previous word alignment information, as this increases the performance of the
MT system.

The paper CKY-based Convolutional Attention for Neural Machine Translation [7], by
Taiki Watanabe and others, introduces an approach which uses a sophisticated
Convolution Neural Network (CNN) for learning where to attend in the source
sentence. This tends to deliver better results as CNNs are good at collecting spatial
information compared with multilayer perceptrons, which have been used in the
original attention mechanism.

Hybrid MT models
As we saw in the results of the NMT system we implemented in Chapter 10, Sequence-
to-Sequence Learning – Neural Machine Translation, the predictions often include the
<unk> token. This is to replace rare words occurring in the predictions. However, we
do not want this behavior. So there should be a way to replace these rare words in
the source and target sentences with some meaningful words.

Chapter 11

[377]

However, it is not practical to have all the possible words in a language in the
vocabulary, as this would result in a gigantic database. Currently, the Oxford
English Dictionary contains more than 150,000 distinct words. However, adding
various tenses of verbs, names, and objects in the world, this quickly reaches
unmanageable numbers.

This is where the hybrid models come in handy (see Figure 11.4). In the hybrid
models, we do not replace rare words with the <unk> token. Instead, we keep the
word in the sentence, and when a rare word is encountered in the source sentence,
we delegate the task of processing the word to a character level encoder. Since there
is a very small set of possible characters, this approach is quite feasible. Then the last
state of the character level encoder is returned to a word-based machine translator
and continues through the sentence normally. Also, the same process is used for the
decoder when the decoder outputs an <unk> token. This was introduced in Minh-
Thang Luong's thesis Neural Machine Translation [8]. You can find an implementation
of a hybrid NMT model at https://github.com/lmthang/nmt.hybrid.

Here, for clarity, we will show the prediction method used in hybrid NMTs in
pseudocode style.

For each word in the source sentence, it is as follows:

If word != <unk>
 encode the word with the word-based encoder
Else
 For each character in actual rare word
 Encode with the character-based encoder
 Return last hidden state of the char-based encoder as the input to
the word-based encoder, instead of the <unk> token

For each word predicted by the decoder, the prediction is as follows:

If word != <unk>
 Decode with the word-based decoder
If word == <end>
 Stop prediction
Else
 Initialize the character level decoder with the word-based decoder
hidden state
 Output a sequence of characters using the character level decoder
until <end> is output

Current Trends and the Future of Natural Language Processing

[378]

Figure 11.4: A hybrid neural machine translation model

Now let's look at some of the promising NLP directions that we will see in the future.
These directions include combining NLP with other established research areas, such
as reinforcement learning and Generative Adversarial Models (GANs).

Penetration into other research fields
Next we will discuss three different areas, which have blended with NLP to produce
some interesting machine learning tasks. We will be discussing three specific areas:

•	 NLP and computer vision
•	 NLP and reinforcement learning
•	 NLP and generative adversarial networks

Combining NLP with computer vision
First we will discuss two applications where NLP is combined with various
computer vision applications to process multimodal data (that is, images and text).

Chapter 11

[379]

Visual Question Answering (VQA)
VQA is a novel research area, where the focus is to produce an answer to a textual
question about an image. For example, consider these questions about Figure 11.5:

Q1: What color is the sofa?

Q2: How many black chairs are there?

Figure 11.5: The image about which we've asked questions

With this type of information provided to the system, the system should output the
following (preferably):

Answer Q1: The color of the sofa is black

Answer Q2: There are two black chairs in the room

The learning model for this type of task would be quite similar to the architecture
we used for image caption generation in Chapter 9, Applications of LSTM – Image
Caption Generation. The dataset will consist of images and questions and answers
corresponding to the image.

Current Trends and the Future of Natural Language Processing

[380]

The process during training would be as follows:

1.	 Feed the images through a CNN (for example, pretrained on ImageNet) to
obtain a context vector, representing the image

2.	 Create a sequence of data, where the sequence is composed of (image
encoding, <s>, question, </s>, <s>, answer, </s>), and <s>
denotes the start and </s> is a special token marking the end of question

3.	 Use this sequence to train an LSTM on the answers for the corresponding
question

During prediction, the process is as follows:

1.	 Feed the images through a CNN (for example, pretrained on ImageNet) to
obtain a context vector, representing the image.

2.	 Create a sequence of data, where the sequence is composed of (image
encoding, <s>, question, </s>, <s>).

3.	 Feed the sequence to the LSTM and once the last <s> is fed, it iteratively
predicts words by feeding in the last predicted word as the input to the
next step until the LSTM outputs </s>. The newly predicted words will
compose the answer.

One of the early CNN- and LSTM-based models successfully used for answering
questions about images is explained in Exploring Models and Data for Image Question
Answering [8], Mengye Ren and others. Another more advanced method is proposed
in Hierarchical Question-Image Co-Attention for Visual Question Answering [9], Jiasen Lu
and others.

The code for a VQA system written in TensorFlow is available at https://github.
com/tensorflow/models/tree/master/research/qa_kg. This code contains the
method described in the paper Learning to Reason: End-to-End Module Networks for
Visual Question Answering [10], Ronghang Hu and others.

A good dataset for training and testing the VQA models (dataset with images,
and question and answers corresponding to each image) is found at http://www.
visualqa.org/vqa_v1_download.html, which was introduced in VQA: Visual
Question Answering [11], Stanislaw Antol and others.

https://github.com/tensorflow/models/tree/master/research/qa_kg
https://github.com/tensorflow/models/tree/master/research/qa_kg
http://www.visualqa.org/vqa_v1_download.html
http://www.visualqa.org/vqa_v1_download.html

Chapter 11

[381]

Caption generation for images with attention
A paper titled Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention [12], Kelvin Xu and others, describes interesting research, where the focus
was to learn where to look in an image to generate a caption. The main contribution
here is that, unlike the standard image caption generation models that use a fully
connected layer of the CNN to extract feature vectors, this method uses a lower
convolution layer as the feature representation of the image. Then, on top of the
convolution layer, it uses a 2D attention layer (similar to the one-dimensional
attention layer we used in Chapter 10, Sequence-to-Sequence Learning – Neural Machine
Translation) that represents the part of the image on which the model should focus
while generating the word. For example, given an image of a dog sitting on a carpet,
when generating the word dog, the image caption generator can pay more attention
to the part of the image where the dog is than to the rest of the image.

Reinforcement learning
Another field of research leveraged by NLP is reinforcement learning (RL). NLP and
RL had no interaction with each other for decades, and it is quite interesting to see how
NLP problems are formulated through an RL lens and solved by RL techniques. Let's
quickly understand what RL is. In RL, an agent interacts with an environment. The
agent can observe the environment (completely or partially), which is fed to the agent
as a state. Then, depending on the state, the agent will take an action sampled from
some action space. Finally, after the execution of the action, a reward will be provided
to the agent. The goal of the agent is to maximize the long-term reward it accumulates.

Next we will discuss how RL is used to solve various NLP tasks. First, we will
discuss how RL is used to teach several agents a "language" that they use to
communicate about data. This will be followed by RL being used to train agents
to fulfill a user's request better by asking questions about the information the user
didn't specify.

https://arxiv.org/find/cs/1/au:+Xu_K/0/1/0/all/0/1

Current Trends and the Future of Natural Language Processing

[382]

Teaching agents to communicate using their
own language
In Multi-agent cooperation and the emergence of (natural) language [13], Angeliki Lazaridou
and others teach several agents to learn a unique language for communication. This
is specifically done by selecting two agents from the group—a sender and a receiver.
The sender is given a pair of images (where one image is the target), and the sender
should send a small message for the receiver. The message is composed of symbols
chosen from a fixed vocabulary that has no semantic meaning between symbols
initially. The receiver sees the images, but does not know the target and is supposed
to identify the target from the message received. The ultimate goal would be for the
agent to activate the same symbol for similar-looking images. If the receiver predicts
the target image correctly, both agents will receive a reward of 1; if it fails, both
receive a reward of 0. This is depicted in Figure 11.6:

Figure 11.6: Agents learning to use the vocabulary to communicate about images,
where only a single image is provided at a time. If the receiver identifies the

image correctly, both the sender and receiver will get positive rewards.

Chapter 11

[383]

Dialogue agents with reinforcement learning
The following two papers use RL to train end-to-end deep learning-based dialogue
systems: Towards End-to-End Reinforcement Learning of Dialogue Agents for Information
Access [14], Bhuwan Dhingra and others and A Network-based End-to-End Trainable
Task-oriented Dialogue System [15], Tsung-Hsien Wen and others. A dialogue system
converses with a human in natural language and tries to accomplish the task implied
by the phrase uttered by the human. For example, a human might ask this:

What are some of the French restaurants in Sydney?

Then the agent should convert the question to a system desired feature vector,
which is achieved through a system called a belief tracker. A belief tracker maps
the free-form natural language request to a fixed feature vector. This also could be
viewed as a semantic parser. Then the feature vector is used to query a structured
knowledge base to find the answer.

However, there can be tricky situations, where the human provides partial
information in the request. For example, the human might ask the following:

What are the best restaurants in town?

Then the system might ask this:

Which town?

To this, the human answers the following:

Sydney.

Then the system might ask this:

Which cuisine?

To this, the human answers the following:

French.

After obtaining all the information needed to complete the request, the system will
query the knowledge base and find the answer. A reward function can be designed
to give positive reward whenever the system finds the correct answer. This will
motivate the agent to ask correct relevant questions that are required to fill the
missing information of the user's request.

Current Trends and the Future of Natural Language Processing

[384]

Generative Adversarial Networks for NLP
Generative models are a family of models that are able to generate new samples
from some observed sample distribution. We already saw an example of a generative
model when we used an LSTM to generate text. Another example of this would be to
generate images. A model is trained on handwritten digits, and the model is asked
to generate new handwritten digits. For generating images, we can use Generative
Adversarial Models (GANs), a popular generative method. A GAN looks as shown
in Figure 11.7:

Figure 11.7. A Generative Adversarial Network (GAN)

There are two different components in the system: a generator and a discriminator.
The generator's objective is to generate images that look like the real image. The
discriminator tries to distinguish real (for example, true handwritten images) and
fake images (generated by the generator) correctly. We will provide the generator
with some noise (that is, sample values generated from a normal distribution), and
it generates an image. The generator is an inverse CNN, where it takes a vector as
an input and outputs an image. This contrasts with a standard CNN, which takes
an image as an input and outputs a prediction vector. The discriminator tries to
discriminate between real images and the ones generated by the generator. So at the
beginning, it is easy for the discriminator to distinguish between real ones and the
fake ones. The generator is optimized in a way that it becomes more difficult for the
discriminator to identify fake ones from the real one. With this process, the generator
becomes good at generating images that look like real images.

Chapter 11

[385]

GANs were originally designed to generate realistic images. However, there have
been several attempts to adapt GANs for generating sentences. Figure 11.8 illustrates
the general approach to using a GAN to generate sentences. Next, let's look at the
specifics of this approach:

Figure 11.8: The general concept of using an LSTM generator and a CNN discriminator to generate sentences

In Generating Text via Adversarial Training [16], Yizhe Zhang and others use a modified
GAN for generating text. In their work, there are significant differences to the
convolutional GAN we discussed earlier. First, they use an LSTM generator,
which takes some random item from the vocabulary as the input and generates an
arbitrarily long sentence. Next, the discriminator is a CNN that is trained to classify
a given sentence into one of two classes (that is, fake or real). The data is fed to the
CNN and trained, similar to the sentence classification CNN we discussed in Chapter
5, Sentence Classification with Convolutional Neural Networks. First, the CNN will be
very good at discriminating between real sentences and fake sentences. Over time,
the LSTM will be optimized to produce more and more realistic looking sentences to
fool the classifier.

In SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient [17], Lantao Yu
and others show another approach for generating text using a generative model. In
this case also, the generator is an LSTM network and the discriminator is a CNN
network (for example, similar to Generating Text via Adversarial Training [16], Zhang
and others). However, unlike the approach in that work, the training process is
formulated as a reinforcement learning problem.

Current Trends and the Future of Natural Language Processing

[386]

The state is the currently generated text string by the generator, and the action
space is the vocabulary to choose words from. This process is continued until the
full text is generated for a given step. The reward is obtained only at the end of the
full sequence. The output of the discriminator is used as the reward. Therefore,
the reward will be high if the output of the discriminator is close to 1 (that is, the
discriminator thinks data is real) and low if the output is close to 0. Then with
the reward defined, the authors use policy gradient to train the generator through
backpropagation. Specifically, the policy gradient calculates the gradients for the
parameters (that is, weights) in the generator with respect to the reward produced
by the discriminator. A TensorFlow implementation of SeqGAN is available at
https://github.com/LantaoYu/SeqGAN.

Towards Artificial General Intelligence
Artificial General Intelligence (AGI) enables machines to perform cognitive or
intellectual tasks that a human can perform. It is a different or a more difficult concept
than AI, as AGI involves achieving general intelligence beyond asking a machine to
perform a task given necessary data. For example, let's say we put a robot in a novel
environment (say, a house that robot has never visited) and ask it to make coffee. If it
can actually navigate the house, find the machine, learn how to operate it, execute the
correct sequence of actions needed to make coffee and bring the coffee to a human,
then we can say that robot has achieved AGI. We are still far from achieving AGI, but
steps are being made in that direction. Also, NLP will play a great role in this as the
most natural way for humans to interact is vocal communication.

The papers that will be discussed here are single models that try to learn to do
many tasks. In other words, a single end-to-end model will be able to classify
images, detect objects, recognize speech, translate between languages, and so on.
We can think of machine learning models that are capable of doing many tasks as
a step towards AGI.

One Model to Learn Them All
In One Model To Learn Them All [18], Lukasz Kaiser and others introduce a single
deep learning model that is capable of learning many tasks (for example, image
classification, image caption generation, language translation, and speech
recognition). Specifically, this model (which is called the MultiModel) consists of
several modules: subnetworks, an encoder, an input/output mixer, and a decoder.

https://github.com/LantaoYu/SeqGAN
https://github.com/LantaoYu/SeqGAN

Chapter 11

[387]

First, the MultiModel comprises several subnetworks or modality-nets. A modality-net
converts inputs belonging to some specific modality (for example, images) to a unified
representation. This way, all the inputs having different modalities can be processed
by a single deep network. Note that modality-nets are not task specific; they are only
input-modality specific. This means that several tasks having the same input modality
will share a single modality-net. Next we will list the roles performed by the encoder,
I/O mixer, and the decoder.

The encoder processes the inputs produced by the modality networks using
computational elements such as convolution blocks, attention blocks, and a mixture
of experts blocks. We will describe the tasks achieved by each of these elements later.

The I/O mixer combines (or mixes) the encoded input with the previously observed
outputs to produce encoded outputs. This module processes the inputs and the
previously observed outputs as an autoregressive model. To understand what an
autoregressive model is, let's consider a time series denoted by { }0 1 2 1y , , , , ty y y y −= … .
In its simplest form, an autoregressive model predicts yt as a function of yt-1 (that is,

1 1 0t ty yβ β−= + +∈ , where 0β and 1β are learnable coefficients and ∈ captures noise
present in y. However, this can be generalized to arbitrary number of previous y
values, for example, 2 2 1 1 0t t ty y yβ β β− −= + + +∈ . This is useful as the MultiModel processes
many types of time-series data such as speech and text.

The decoder takes in both the encoded outputs and the encoded inputs and produces
a decoded output using convolution and attention blocks and a mixture of experts
blocks. We will describe these blocks here:

•	 The convolutional block: The convolutional block detects local and spatial
patterns and converts them to feature maps.

•	 The attention block: The attention block decides what to pay attention to in
the input, when encoding/decoding.

•	 The mixture of experts block: The mixture of experts block is a way to
increase the model capacity at a negligible extra computational cost. A
mixture of experts is a collection of several feed-forward networks (that is,
experts) with a trainable (and differentiable) gating mechanism that chooses
different networks depending on the inputs.

Though the details vastly differ, you should be able to see a resemblance to the
NMT system we studied in Chapter 10, Sequence-to-Sequence Learning – Neural
Machine Translation. The MultiModel first encodes the input, as we encoded the
source sentence through the NMT encoder. Finally, the MultiModel decodes and
produces a human-readable output, just as the NMT decoder produced a target
sentence.

Current Trends and the Future of Natural Language Processing

[388]

The MultiModel is trained to perform various tasks with the following datasets,
which are laid out in the paper One Model To Learn Them All, Kaiser and others:

1.	 Wall Street Journal (WSJ) speech corpus: WSJ speech corpus is a large
dataset containing utterances (~ 73 hours of speech) by various people
(including journalists with varying experience). This dataset is found at
https://catalog.ldc.upenn.edu/ldc93s6a.

2.	 ImageNet dataset: The ImageNet dataset is the image dataset we discussed
in Chapter 9, Applications of LSTM – Image Caption Generation. It contains more
than a million images belonging to 1,000 different classes. The dataset is
found at image-net.org/download.

3.	 MS-COCO image captioning dataset: MS-COCO data was also used in
Chapter 9, Applications of LSTM – Image Caption Generation. This contains
images and image descriptions generated by humans. This dataset can be
found at http://cocodataset.org/#download.

4.	 WSJ parsing dataset: Parsing is the process of identifying nouns,
determinants, verbs, noun phrases, verb phrases, and so on, in a sentence and
constructing a parse tree for that sentence. A dataset constructed by parsing
a corpus of WSJ material is found in the WSJ parsing dataset. The dataset is
found at https://catalog.ldc.upenn.edu/ldc99t42.

5.	 WMT English-German translation corpus: This is a bilingual text corpus,
having English sentences and corresponding German translations, similar
to the dataset we used in Chapter 10, Sequence-to-Sequence Learning – Neural
Machine Translation. Datasets are found at http://www.statmt.org/wmt14/
translation-task.html.

6.	 The reverse of 5: This is the German-English translation.
7.	 WMT English-French translation corpus: This is a bilingual text corpus,

having English sentences and corresponding French translation, similar to
the dataset we used in Chapter 10, Sequence-to-Sequence Learning – Neural
Machine Translation. Datasets are found at http://www.statmt.org/wmt14/
translation-task.html.

8.	 The reverse of 7: This is the French-English translation. In One Model To
Learn Them All, the authors actually say German-French here, which we
take to be an inadvertent error, as the preceding corpus is English with
French translations.

image-net.org/download
http://cocodataset.org/#download
https://catalog.ldc.upenn.edu/ldc99t42
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html

Chapter 11

[389]

After training on these datasets, the model is expected to perform the following tasks
with a good accuracy:

•	 Converting speech to text
•	 Generating captions for a given image
•	 Identifying objects in a given image
•	 Translating from English to German or French
•	 Building parse trees for English

A TensorFlow implementation is found at https://github.com/tensorflow/
tensor2tensor.

A joint many-task model – growing a neural
network for multiple NLP tasks
In A Joint Many-Task Model – Growing a Neural Network for Multiple NLP Tasks [19],
Kazuma Hashimoto and others train an end-to-end model on a variety of NLP tasks.
However, this method formulation is different from the previously discussed
approach. In this case, the lower layers of the model learn simpler tasks, and higher
(or deeper) layers learn more advanced tasks. To achieve this, the required labels (for
example, part-of-speech (POS) tags) for training are provided to individual levels of
the network. These tasks are categorized into three different types in this order (that
is, lower to higher in the network): word-level tasks, syntactic tasks, and semantic
tasks. When organized in this fashion, higher layers can use the knowledge of
completing simpler tasks to perform more advanced tasks (for example, identifying
dependencies of a sentence can benefit from the POS tags). This concept is illustrated
in Figure 11.9.

First level – word-based tasks
The first two layers perform word-level tasks. Given a sentence, the first layer
performs POS tagging for each word in the sentence. The next layer performs
chunking, a process where tags are again assigned to each word.

Second level – syntactic tasks
The next layer performs dependency parsing on the sentence. Dependency parsing
is the task of analyzing the grammar structure of a sentence and identifying
relationships between words.

https://github.com/tensorflow/tensor2tensor

Current Trends and the Future of Natural Language Processing

[390]

Third level – semantic-level tasks
The next layer encodes the relatedness information of sentences. However,
relatedness is measured between two sentences. To process two sentences in parallel,
we have two parallel stacks of what we described earlier. Therefore, we have two
different networks encoding two sentences with respect to their relatedness. The
final layer performs textual entailment. Textual entailment is the task of analyzing
whether the premise sentence (second sentence) entails the hypothesis sentence (first
sentence). The output can be entailment, contradiction, or neutral. Here we will list
examples of positive/negative and neutral textual entailments:

•	 Positive:
Hypothesis: cloudy skies lead to rain
Premise: If it is cloudy, it will rain

•	 Negative:
Hypothesis: cloudy skies don't lead to rain
Premise: If it is cloudy, it will rain

•	 Neutral:
Hypothesis: cloudy skies lead to rain
Premise: if it is cloudy, your dog will bark

Figure 11.9: Solving increasingly complex tasks in a bottom to top manner

Chapter 11

[391]

NLP for social media
Now we will discuss how NLP has influenced social media mining. Here we will
discuss findings presented in several papers. These findings include detecting
rumors from truth and detecting emotions and identifying manipulations of words
by politicians, for example, to gain more support (that is, political framing).

Detecting rumors in social media
In Detect Rumors Using Time Series of Social Context Information on Microblogging Websites
[20], Jing Ma and others propose a way to detect rumors in microblogs. Rumors are
stories or statements that are either deliberately false or for which the truth is not
verified. Identifying rumors in their early phases is important to prevent false/
invalid information being delivered to people. In this paper, an event is defined as a
set of microblogs relevant to that event. A time-sensitive context feature is derived
for each microblog and they are binned into time intervals depending on the time the
microblog appeared. Thereafter, they use a Dynamic-Series Time Structure (DSTS)
to learn a "shape" of the time series of the evolution context-features. More specifically,
given a series of temporal context features, DSTS represents the shape of the time-
series with a combination of feature vectors over time (f0, f1, f2, …, ft) and a function
of the slope between consecutive context features over time (0, f1-f0, f2-f1, …). This can
help to identify rumors as these patterns tend to behave differently for rumors and
nonrumors. For example, the number of question marks in microblogs related to a
nonrumor event goes down with time, whereas for rumors, it does not.

Detecting emotions in social media
EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks [21],
Muhammad Abdul-Mageed and Lyle Ungar, shows an approach for detecting emotions
in social media posts (for example, tweets). Detecting emotions in social media
posts plays an important role as the emotions help to determine one's physical and
mental health. Ability to detect emotions also provides customer insights, which are
valuable for businesses. Therefore, correctly mining the emotions from social media
posts can provide parents with their children's physical/mental status or can help
businesses grow. However, technical barriers exist for automatic emotion detection
approaches as there is limited amount of data due to the controversial nature of
the emotions themselves. For example, when one says, I love Mondays, it could be a
sarcastic remark indicating the loathing of a working person. On the contrary, it also
could be someone actually being happy about Mondays because of some weekly
celebration that takes place on Mondays.

Current Trends and the Future of Natural Language Processing

[392]

The authors use Plutchik's wheel of emotions (see Figure 11.10) to categorize
emotions, from which they end up with 24 different categories. However, tweets
might be using various synonyms to mean the same thing (for example, happy can
be expressed with joyful, blissful, and excited). Therefore, the authors used Google
synonyms and other resources and found 665 different emotion hashtags belonging
to the 24 main categories.

Next, to collect data, they crawled through tweet posts dating back to 2009 and
collected about 0.5 billion tweets. Then they performed preprocessing on the raw
data, mainly to remove duplicates and tweets with multiple emotions and ended up
with around 1.5 million tweets. Finally, a gated recurrent network (that is, a network
of GRUs) was used to classify the tweets and predict what type of an emotion a
given tweet is expressing:

Figure 11.16: Plutchik's wheel of emotion

Chapter 11

[393]

Analyzing political framing in tweets
Social media is widely being used as a platform for various tasks in politics. In recent
U.S. elections, candidates heavily leveraged Twitter to advertise their agendas,
expand their supporter bases, and attack and retaliate against opposing candidates.
This highlights the importance of such political posts for mining important
information. Identifying political framing is one such important and difficult task.
Political framing refers to careful manipulation of words to control public perception.

In Leveraging Behavioral and Social Information for Weakly Supervised Collective
Classification of Political Discourse on Twitter [22], Kristen Johnson and others develop a
labeled dataset that consists of tweets by 40 members of Congress chosen randomly.
First, the tweets were extracted and labeled using a policy framing codebook to annotate
the tweets. Next, due to the dynamic nature of the problem, weakly supervised
models were used to learn the tweets. Weakly supervised models are designed to
learn with a limited amount of data (unlike deep learning models).

New tasks emerging
Now we will investigate several novel areas that have emerged in the recent past.
These areas include detecting sarcasm, language grounding (that is, the process of
eliciting common sense from natural language), and skimming text.

Detecting sarcasm
Sarcasm is when a person utters something which actually means the opposite of
the utterance (for example, I love Mondays!). Detecting sarcasm can even be difficult
for humans sometimes, and detecting sarcasm through NLP is an even harder
task. Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine
Translation [23], Lotem Peled and Roi Reichart, uses NLP for detecting sarcasm in
Twitter posts. They first create a dataset of 3,000 tweet pairs, where one tweet is
the sarcastic tweet and the other tweet is the decrypted nonsarcastic tweet. The
decrypted tweets were created by five human judges who looked at the tweet and
came up with the actual meaning. Then they used a monolingual machine translation
mechanism to learn sarcasm. This is a sequence-to-sequence model as we discussed
in an earlier chapter. Instead of giving a pair of sentences belonging to two different
languages, here we provide the sarcastic and nonsarcastic sentence pair.

Current Trends and the Future of Natural Language Processing

[394]

Language grounding
Language grounding is the task of deriving common sense from the natural
language. For example, when we use language, often there is a strong conceptual
idea of objects and actions we want to explain. This allows us to draw various
conclusions about objects, even when the conclusions are not directly present in
the sentence. However, this is not the case for machines. Machines do not learn the
natural language by relating it to actual conceptual entities they represent. However,
this is an essential part if we want to build true AI. Language grounding is the task
of achieving this property. For example, when we say the car entered the garage, it
implies that the garage is bigger than the car. However, it is not necessarily learned
by a machine learning algorithm, unless given a reward for learning that. In Verb
Physics: Relative Physical Knowledge of Actions and Objects [24], Maxwell Forbes and
Yejin Choi propose an approach for learning language grounding.

In this paper, the authors focus on five different properties or dimensions for
grounding: size, weight, strength, rigidness, and speed. Finally, a factor graph
model is used to learn various properties of the objects appearing in a conversation.
The factor graph contains subgraphs consisting of two subgraphs for each
attribute—object subgraph and verb subgraph.

Next, each subgraph contains nodes. There are two types of nodes:

•	 Object-pair nodes (nodes found in the object subgraph): These capture
the relative strength of an attribute for two objects (for example, denoted by

(),
size
human berryO : probability of size(human) > size(berry))

•	 Action frame nodes (nodes found in the verb subgraph): These capture how
verbs are related to attributes (that is, denoted by size

threwF : for sentence x threw
y, what is the probability that size(x) > size(y))

Then it is possible to create connections (that is, binary factors) between two object
pair nodes, or two action frame nodes, depending on how likely a given pair of
nodes to appear in a similar context. For example, (),

size
human ballO and (),

size
human stoneO should

have high binary factor, where (),
size
human ballO and (),

size
human carO should have a low binary

factor. Then the most crucial connections (that is, connections between action frame
nodes and object pair nodes) are established by learning from unstructured natural
language.

Finally with this graph, if we need to know the relationship between weight(human)
and weight(ball), we can infer the connection strength connecting weight

threwF with
(),
weight
human ballO . This is performed via something known as loopy belief propagation.

Chapter 11

[395]

Skimming text with LSTMs
Skimming text plays an important role in many NLP activities. For example, if an
LSTM is designed to answer questions from a book, it probably shouldn't be reading
the full text, but read only the relevant parts that contain information that helps
answering the questions. Another use might be for document retrieval, where a
set of relevant documents containing some text need to be fetched from an existing
large document base. In Learning to Skim Text [25], Adams Wei Yu and others propose a
model called LSTM-Jump that does exactly this.

There are three important hyperparameters:

•	 N: This is the total number of jumps allowed
•	 R: This is the number of tokens to be read between two jumps
•	 K: This is the maximum jump size allowed (in a step)

Next, an LSTM is created with a softmax layer with K nodes on top of the LSTM.
This softmax layer decides how many jumps to make at a given time step. This
functioning of this softmax layer is somewhat similar to the attention mechanism.
The jumping or skimming stops if one of the following conditions is encountered:

•	 Jump softmax samples a 0
•	 The LSTM reaches the end of the text
•	 The number of jumps exceeds N

Newer machine learning models
Now we will discuss several newer machine learning models that have emerged to
resolve various limitations of the current models (for example, standard LSTMs).
One such model is Phased LSTMs that allow us to pay attention to very specific
events that happen in future during learning. Another model is Dilated RNNs
(DRNNs), which provides a way to model complex dependencies present in the
inputs. DRNNs also enable parallel computation of unrolled RNNs, compared with
naïvely iterating through the unrolled RNNs.

Current Trends and the Future of Natural Language Processing

[396]

Phased LSTM
Current LSTM networks have shown a remarkable performance in many of
the sequential learning tasks. However, they are not well-suited for processing
irregularly timed data, such as data provided by event-driven sensors. This is mainly
because no matter whether an event is transpired or not, an LSTM's cell state and the
hidden states are continuously updated. This behavior can cause the LSTM to ignore
special events that might rarely or irregularly happen.

Phased LSTMs are introduced in Phased LSTM: Accelerating Recurrent Network
Training for Long or Event-based Sequences [26], Daniel Neil and others, and they try
to solve this issue by introducing a new time gate. Updates to the cell state and the
hidden state are only allowed when the time gate is open. Therefore, unless an event
occurs, the time gate would be closed causing the cell state and the hidden state to
remain the same. This behavior helps to preserve information for a longer time and
pay attention to the event that occurred. Figure 11.11 illustrates the general concept.

This timing gate operation is achieved through three newly introduced parameters:

•	 τ : This controls the real-time oscillation period

•	 onr : This controls the time the gate is open to the full duration
•	 s: This controls the phase shift of the oscillations of the gate

These variables can be learned jointly with the rest of the parameters of the LSTM.
TensorFlow already has released an implementation of Phased LSTMs, which is
found at https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/
PhasedLSTMCell:

Figure 11.11: The general concept of a timing gate. The hidden state
and the cell state are allowed to be updated only if the timing gate is on.

Chapter 11

[397]

Dilated Recurrent Neural Networks (DRNNs)
Current RNNs have several limitations in learning long-term dependencies, such as
the following:

•	 Complex dependencies present in the inputs
•	 The vanishing gradient
•	 Effective parallelization of the learning

DRNNs are introduced in Dilated Recurrent Neural Networks [27], Shiyu Chang and
others. They attempt to resolve all these limitations at once.

DRNNs solve the issue of learning complex dependencies by ensuring that a given
state is connected to older hidden states, not just the immediate previous hidden
state. This by design helps to learn long-term dependencies more effectively.

This architecture solves the issue of the vanishing gradient as one hidden state sees
the past beyond the immediate previous hidden state, so it is easy to propagate the
gradient through time to longer distances.

If you compress the DRNN architecture, it represents a standard RNN that processes
multiple inputs at the same time. Therefore, again by design, DRNNs allow greater
parallelization compared with standard RNNs. Figure 11.12 shows how DRNNs
differ from standard RNNs. An implementation of this is available at https://
github.com/code-terminator/DilatedRNN.

Figure 11.12: A standard RNN (left) and a DRNN (right) unrolled over time.
The differently shaded unrolled RNNs can be processed in parallel because

they don't have any shared connections.

https://github.com/code-terminator/DilatedRNN
https://github.com/code-terminator/DilatedRNN

Current Trends and the Future of Natural Language Processing

[398]

Summary
This chapter was aimed at learning the current trends in NLP and learning the future
directions that NLP is being driven to. Though it is a very broad topic, we discussed
some of the very recent advancements that have been made in NLP. As current trends,
we first looked at the advancements being made with regard to word embeddings. We
saw that much more accurate embeddings with richer interpretations (for example,
probabilistic) are emerging. Then we looked into improvements that have been made
in machine translation, as it is one of the most sought after areas in NLP. We saw that
better attention mechanisms and better MT models capable of producing increasingly
more realistic translations are both emerging.

We then looked at some of the novel research in NLP that is taking place (mostly in
2017). First we investigated the penetration of NLP into other fields: computer vision,
reinforcement learning, and the generative adversarial models. We looked at how
NLP systems are being improved so that they come closer to achieving GAI. Next
we looked at what type of progress NLP has made in social media, such as how
NLP is being used to detect and debunk rumors, detect emotions, and analyze
political situations.

We also looked into some of the more recent and interesting tasks that are gaining
more popularity among the NLP community, such as learning to detect sarcasm
using an encoder-decoder learning model, language grounding that has gained
thorough insights into what is implied by some utterance, and learning to skim text
instead of reading it fully from end-to-end. We discussed some of the latest machine
learning models that have been recently introduced. Phased LSTMs are an advance
type of LSTMs that have more control over how to update the cell state and the
hidden state. This behavior allows LSTMs to learn longer-term dependencies with
irregularities. Finally, we discussed another type of model called DRNNs. DRNNs
introduce a simple modification to how standard RNNs are unrolled over time.
With this modification, DRNNs are able to model complex dependencies, solve the
vanishing gradient problem, and enable more parallelization for processing data.

References
[1] Distributed representations of words and phrases and their compositionality, T. Mikolov,
I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Advances in Neural Information
Processing Systems,pp. 3111–3119, 2013.

[2] Semi-supervised convolutional neural networks for text categorization via region
embedding, Johnson, Rie and Tong Zhang, Advances in Neural Information Processing
Systems, pp. 919-927, 2015.

Chapter 11

[399]

[3] A Generative Word Embedding Model and Its Low Rank Positive Semidefinite Solution,
Li, Shaohua, Jun Zhu, and Chunyan Miao, Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1599-1609, 2015.

[4] Learning Word Meta-Embeddings, Wenpeng Yin and Hinrich Schütze, Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp.
1351-1360, 2016.

[5] Topical Word Embeddings, Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun,
AAAI, pp. 2418-2424, 2015.

[6] Effective Approaches to Attention-based Neural Machine Translation, Thang Luong,
Hieu Pham, and Christopher D. Manning, Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1412-1421, 2015.

[7] CKY-based Convolutional Attention for Neural Machine Translation, Watanabe, Taiki,
Akihiro Tamura, and Takashi Ninomiya, Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 1-6, 2017.

[8] Neural Machine Translation, Minh-Thang Luong. Stanford University, 2016.

[9] Exploring Models and Data for Image Question Answering, Ren, Mengye, Ryan
Kiros, and Richard Zemel, Advances in Neural Information Processing Systems, pp.
2953-2961, 2015.

[10] Learning to Reason: End-to-End Module Networks for Visual Question Answering,
Hu, Ronghang, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko, CoRR,
abs/1704.05526 3, 2017.

[11] VQA: Visual Question Answering, Antol, Stanislaw, Aishwarya Agrawal, Jiasen Lu,
Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh, Computer Vision
(ICCV), 2015 IEEE International Conference on, pp. 2425-2433, IEEE, 2015.

[12] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, Xu,
Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio, International Conference on Machine Learning, pp.
2048-2057, 2015.

[13] Multi-agent cooperation and the emergence of (natural) language, Lazaridou, Angeliki,
Alexander Peysakhovich, and Marco Baroni, International Conference on Learning
Representations, 2016.

[14] Towards End-to-End Reinforcement Learning of Dialogue Agents for Information
Access, Dhingra, Bhuwan, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed, and Li Deng, Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 484-495, 2017.

Current Trends and the Future of Natural Language Processing

[400]

[15] A Network-based End-to-End Trainable Task-oriented Dialogue System, Wen,
Tsung-Hsien, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M. Rojas-Barahona,
Pei-Hao Su, Stefan Ultes, and Steve Young, arXiv:1604.04562v3, 2017.

[16] Generating Text via Adversarial Training, Zhang, Yizhe, Zhe Gan, and Lawrence
Carin, NIPS workshop on Adversarial Training, vol. 21, 2016.

[17] SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, Yu, Lantao,
Weinan Zhang, Jun Wang, and Yong Yu, AAAI, pp. 2852-2858, 2017.

[18] One Model To Learn Them All, Kaiser, Lukasz, Aidan N. Gomez, Noam Shazeer, Ashish
Vaswani, Niki Parmar, Llion Jones, and Jakob Uszkoreit, arXiv:1706.05137v1, 2017.

[19] A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks,
Hashimoto, Kazuma, Yoshimasa Tsuruoka, and Richard Socher, Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp. 1923-1933, 2017.

[20] Detect Rumors Using Time Series of Social Context Information on Microblogging
Websites, Ma, Jing, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong, Proceedings
of the 24th ACM International on Conference on Information and Knowledge Management,
pp. 1751-1754, ACM, 2015.

[21] Emonet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks,
Abdul-Mageed, Muhammad, and Lyle Ungar, Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
718-728, 2017.

[22] Leveraging Behavioral and Social Information for Weakly Supervised Collective
Classification of Political Discourse on Twitter, Johnson, Kristen, Di Jin, and Dan
Goldwasser, Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 741-752, 2017.

[23] Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine
Translation, Peled, Lotem, and Roi Reichart, Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1690-1700,
2017.

[24] Verb Physics: Relative Physical Knowledge of Actions and Objects, Forbes,
Maxwell, and Yejin Choi, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 266-276, 2017.

[25] Learning to Skim Text, Yu, Adams Wei, Hongrae Lee, and Quoc Le, Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 1880-1890, 2017.

Chapter 11

[401]

[26] Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based
Sequences, Neil, Daniel, Michael Pfeiffer, and Shih-Chii Liu, Advances in Neural
Information Processing Systems, pp. 3882-3890, 2016.

[27] Dilated recurrent neural networks, Chang, Shiyu, Yang Zhang, Wei Han, Mo Yu,
Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A. Hasegawa-Johnson, and
Thomas S. Huang, Advances in Neural Information Processing Systems, pp. 76-86, 2017.

[403]

Mathematical Foundations
and Advanced TensorFlow

Here we will discuss some of the concepts that will be useful to understand
details provided in the chapters. First we will discuss several mathematical data
structures found throughout the book, followed by a description about various
operations performed on those data structures. Next, we will discuss the concept
of probabilities. Probabilities play a vital role in machine learning, as they usually
give insights to how uncertain a model is about its prediction. Thereafter, we discuss
a high-level library known as Keras in TensorFlow, as well as how to implement
a neural machine translator with the seq2seq sublibrary in TensorFlow. Finally we
conclude this section with a guide on how to use the TensorBoard as a visualization
tool for word embeddings.

Basic data structures

Scalar
A scalar is a single number unlike a matrix or a vector. For example, 1.3 is a scalar.
A scalar can be mathematically denoted as follows:

n R∈

Here, R is the real number space.

Mathematical Foundations and Advanced TensorFlow

[404]

Vectors
A vector is an array of numbers. Unlike a set, where there is no order to elements,
a vector has a certain order to the elements. An example vector is [1.0, 2.0, 1.4, 2.3].
Mathematically, it can be denoted as follows:

{ }()0 1 1, , , na a a a −= …

na R∈

Alternatively, we can write this as:

1na R ×∈

Here, R is the real number space and n is the number of elements in the vector.

Matrices
A matrix can be thought of as a two-dimensional arrangement of a collection of
scalars. In other words, a matrix can be thought of as a vector of vectors. An example
matrix would be as shown here:

1 4 2 3
2 7 7 1
5 6 9 0

    =    

A

A more general matrix of size m n× can be mathematically defined like this:

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n

n

m m m n

a a a
a a a

a a a

−

−

− − − −

      =      

�
�

� � � �
�

A

And:

m nA R ×∈

Appendix

[405]

Here, m is the number of rows of the matrix, n is the number of columns in the
matrix, and R is the real number space.

Indexing of a matrix
We will be using zero-indexed notation (that is, indexes start with 0).

To index a single element from a matrix at (i, j)th position, we use the following
notation:

, ,i j i jA a=

Referring to the previously defined matrix, we get the following:

1 4 2 3
2 7 7 1
5 6 9 0

A
    =    

We index an element from A like this:

1,0 2A =

We denote a single row of any matrix A as shown here:

(),: ,0 ,1 ,, , ,i i i i nA a a a= …

For our example matrix, we can denote the second row (indexed as 1) of the matrix
as shown here:

()1,: 2,7,7,1A =

We denote the slice starting from the (i, k)th index to the (j, l)th index of any matrix
A as shown here:

, ,

1: , :

, ,

i k i l

j k l

j k j l

a a
A

a a

    =     

�
� � �
�

Mathematical Foundations and Advanced TensorFlow

[406]

In our example matrix, we can denote the slice from first row third column to second
row fourth column as shown here:

0:1,2:3

2 3
7 1

A
 =    

Special types of matrices

Identity matrix
An identity matrix is where it is equal to 1 on the diagonal of the matrix and
0 everywhere else. Mathematically, it can be shown as follows:

,

1
I

0i j

if i j
otherwise

 = =    

This would look like the following:

1 0 0
0 1 0

=

0 0 1

            

�
�

� � � �
�

A

Here,
n nI R ×∈ .

The identity matrix gives the following nice property when multiplied with another
matrix A:

AI A=

Appendix

[407]

Diagonal matrix
A diagonal matrix is a more general case of the identity matrix, where the values
along the diagonal can take any value and the off-diagonal values are zeros:

0,0

1,1

1, 1

0 0
0 0

=

0 0 n n

a
a

a − −

            

�
�

� � � �
�

A

Tensors
An n-dimensional matrix is called a tensor. In other words, a matrix with an
arbitrary number of dimensions is called a tensor. For example, a four-dimensional
tensor can be denoted as shown here:

k l m nT R ×× ×∈

Here, R is the real number space.

Tensor/matrix operations

Transpose
Transpose is an important operation defined for matrices or tensors. For a matrix,
the transpose is defined as follows:

(), ,

T

i j j iA A=

Here, AT denotes the transpose of A.

An example of the transpose operation can be illustrated as follows:

1 4 2 3
= 2 7 7 1
5 6 9 0

        

A

Mathematical Foundations and Advanced TensorFlow

[408]

After the transpose operation:

1 2 5
4 7 6

=
2 7 9
3 1 0

T

            

A

For a tensor, transpose can be seen as permuting the dimensions order. For example,
let's define a tensor S, as shown here:

1 2 3 4, , ,d d d dS R∈

Now a transpose operation (out of many) can be defined as follows:

4 3 2 1d ,d ,d ,dTS R∈

Multiplication
Matrix multiplication is another important operation that appears quite frequently
in linear algebra.

Given the matrices m nA R ×∈ and n pB R ×∈ , the multiplication of A and B is defined
as follows:

C AB=

Here, m pC R ×∈ .

Consider this example:

1 2
= 4 5
7 8

        

A

8 5 2
=
9 6 3
     

B

Appendix

[409]

This gives C AB= , and the value of C is as follows:

26 17 8
= 77 50 23
128 83 38

        

C

Element-wise multiplication
Element-wise matrix multiplication (or the Hadamard product) is computed for
two matrices that have the same shape. Given the matrices m nA R ×∈ and m nB R ×∈ ,
the element-wise multiplication of A and B is defined as follows:

C A B= �

Here, C Rm n×∈

Consider this example:

2 3 3 2
1 2 1 3
6 1 3 5

A B
   
   
   = =   
   
   

This gives C A B= � , and the value of C is as follows:

6 6
1 6
18 5

C
 
 
 =  
 
 

Inverse
The inverse of the matrix A is denoted by A-1, where it satisfies the
following condition:

1A A I− =

Inverse is very useful if we are trying to solve a system of linear equations. Consider
this example:

Ax b=

Mathematical Foundations and Advanced TensorFlow

[410]

We can solve for x like this:

()1 1A Ax A b− −=

This can be written as, ()1 1A A x A b− −= using the associative law (that is,
() ()A BC AB C=).

Next, we will get = -1Ix A b because -1A A I= , where I is the identity matrix.

Lastly, -1x= A b because Ix= x .

For example, polynomial regression, one of the regression techniques, uses a
linear system of equations to solve the regression problem. Regression is similar
to classification, but instead of outputting a class, regression models output a
continuous value. Let's look at an example problem: given the number of bedrooms
in a house, we'll calculate the real-estate value of the house. Formally, a polynomial
regression problem can be written as follows:

()2
0 1 2 1, 2, ,m

i i i m i iy x x x i nβ β β β ε= + + + + + =� …

Here, (),i ix y is the ith data input, where xi is the input, yi is the label, and ∈ is noise
in data. In our example, x is the number of bedrooms and y is the price of the house.
This can be written as a system of linear equations as follows:

2
1 0 11 1 1

2
2 1 22 2 2

2
3 2 33 3 3

2

1
1
1

1

m

m

m

m
n m nn n n

y x x x
y x x x
y x x x

y x x x

β ε
β ε
β ε

β ε

      
      
      
      
      = +      
      
      
      

            

�
�
�

� � �� � � � �
�

However, A-1 does not exist for all A. There are certain conditions that need to be
satisfied in order for the inverse to exist for a matrix. For example, to define the
inverse, A needs to be a square matrix (that is, n nR ×). Even when the inverse exists,
we cannot always find it in the closed form; sometimes it can only be approximated
with finite-precision computers. If the inverse exists, there are several algorithms for
finding it, which we will be discussing here.

Appendix

[411]

When it is said that A needs to be a square matrix for the inverse
to exist, I refer to the standard inversion. There exists variants
of inverse operation (for example, Moore-Penrose inverse, also
known as pseudoinverse) that can perform matrix inversion on
general m n× matrices.

Finding the matrix inverse – Singular Value
Decomposition (SVD)
Let's now see how we can use SVD to find the inverse of a matrix A. SVD factorizes
A into three different matrices, as shown here:

TA UDV=

Here the columns of U are known as left singular vectors, columns of V are known
as right singular vectors, and diagonal values of D (a diagonal matrix) are known
as singular values. Left singular vectors are the eigenvectors of AAT and the
right singular vectors are the eigenvectors of TA A . Finally, the singular values
are the square roots of the eigenvalues of AAT and TA A . Eigenvector υ and its
corresponding eigenvalue λ of the square matrix A satisfies the following condition:

Aυ λυ=

Then if the SVD exists, the inverse of A is given by this:

1 1 TA VD U− −=

Mathematical Foundations and Advanced TensorFlow

[412]

Since D is diagonal, D-1 is simply the element-wise reciprocal of the nonzero elements
of D. SVD is an important matrix factorization technique that appears in many
occasions in machine learning. For example, SVD is used for calculating Principal
Component Analysis (PCA), which is a popular dimensionality reduction technique
for data (a purpose similar to that of t-SNE that we saw in Chapter 4, Advanced
Word2vec). Another, more NLP-oriented application of SVD is document ranking.
That is, when you want to get the most relevant documents (and rank them by
relevance to some term, for example, football), SVD can be used to achieve this.

Norms
Norm is used as a measure of the size of the matrix (that is, of the values in the
matrix). The pth norm is calculated and denoted as shown here:

1 p
p

ip
i

A A
 =    ∑

For example, the L2 norm would be this:

2

2 i
i

A A= ∑

Determinant
The determinant of a square matrix, denoted by ()det A , is the product of all the
eigenvalues of the matrix. Determinant is very useful in many ways. For example,
A is invertible if and only if the determinant is nonzero. The following equation
shows the calculations for the determinant of a 3 3× matrix:

() () ()

a b c
e f d f d e

d e f a b c
h i g i g h

g h i

a ei fh b di fg c dh eg
aei bfg cdh ceg bdi afh

= − +

= − − − + −

= + + − − −

Appendix

[413]

Probability
Next, we will discuss the terminology related to probability theory. Probability
theory is a vital part of machine learning, as modeling data with probabilistic
models allows us to draw conclusions about how uncertain a model is about some
predictions. Consider the example, where we performed sentiment analysis in
Chapter 11, Current Trends and the Future of Natural Language Processing where we had
an output value (positive/negative) for a given movie review. Though the model
output some value between 0 and 1 (0 for negative and 1 for positive) for any sample
we input, the model didn't know how uncertain it was about its answer.

Let's understand how uncertainty helps us to make better predictions. For example,
a deterministic model might incorrectly say the positivity of the review, I never
lost interest, is 0.25 (that is, more likely to be a negative comment). However,
a probabilistic model will give a mean value and a standard deviation for the
prediction. For example, it will say, this prediction has a mean of 0.25 and a
standard deviation of 0.5. With the second model, we know that the prediction is
likely to be wrong due to the high standard deviation. However, in the deterministic
model, we don't have this luxury. This property is especially valuable for critical
machine systems (for example, terrorism risk assessing model).

To develop such probabilistic machine learning models (for example, Bayesian
logistic regression, Bayesian neural networks, or Gaussian processes) you should
be familiar with the basic probability theory. Therefore, we provide some basic
probability information here.

Random variables
A random variable is a variable that can take some value at random. Also, random
variables are represented as x1, x2, and so on. Random variables can be of two types:
discrete and continuous.

Discrete random variables
A discrete random variable is a variable that can take discrete random values. For
example, trials of flipping a coin can be modeled as a random variable, that is, the
side of the coin it lands on when you flip a coin is a discrete variable as the values
can only be heads or tails. Alternatively, the value you get when you roll a die is
discrete, as well, as the values can only come from the set, {1,2,3,4,5,6}.

Mathematical Foundations and Advanced TensorFlow

[414]

Continuous random variables
A continuous random variable is a variable that can take any real value, that is, if x is
a continuous random variable:

x R∈

Here, R is the real number space.

For example, the height of a person is a continuous random variable as it can take
any real value.

The probability mass/density function
The probability mass function (PMF) or the probability density function (PDF) is a
way of showing the probability distribution over different values a random variable
can take. For discrete variables, a PMF is defined and for continuous variables, a PDF
is defined. Figure A.1 shows an example PMF:

A.1: Probability mass function (PMF) discrete

Appendix

[415]

The preceding PMF might be achieved by a biased die. In this graph, we can see
that there is a high probability of getting a 3 with this die. Such a graph can be
obtained by running a number of trials (say, 100) and then counting the number
of times each face fell on top. Finally, divide each count by the number of trials to
obtain the normalized probabilities. Note that all the probabilities should add up to
1, as shown here:

{ }()1,2,3,4,5,6 1P X ∈ =

The same concept is extended to a continuous random variable to obtain a PDF. Say
that we are trying to model the probability of a certain height given a population.
Unlike the discrete case, we do not have individual values to calculate the probability
for, but rather a continuous spectrum of values (in the example, it extends from 0
to 2.4 m). If we are to draw a graph for this example like the one in Figure A.1, we
need to think of it in terms of infinitesimally small bins. For example, we find out
the probability density of a person's height being between 0.0 m-0.01 m, 0.01-0.02 m,
..., 1.8 m-1.81 m, …, and so on. The probability density can be calculated using the
following formula:

'probabilitydensity for bin i
i

i

probability of person s height being inbin
bin size

=

Then, we will plot those bars close to each other to obtain a continuous curve, as
shown in Figure A.2. Note that the probability density for a given bin can be greater
than 1 (since it's density), but the area under the curve must be 1:

Figure A.2: Probability density function (PDF) continuous

Mathematical Foundations and Advanced TensorFlow

[416]

The shape shown in Figure A.2 is known as the normal (or Gaussian) distribution.
It is also called the bell curve. We previously gave just an intuitive explanation of
how to think about a continuous probability density function. More formally, a
continuous PDF of the normal distribution has an equation and is defined as follows.
Let's assume that a continuous random variable X has a normal distribution with
mean µ and standard deviation σ . The probability of X = x for any value of x is
given by this formula:

()
()2

22
2

1P X x
2

x

e
µ

σ

πσ

−
−

= =

You should get the area (which needs to be 1 for a valid PDF) if you integrate this
quantity over all possible infinitesimally small dx values, as denoted by this formula:

()2
22

2

1
2

x

e dx
µ

σ

πσ

−
∞ −

−∞∫

The integral of the normal for the arbitrary a, b values is given by the following
formula:

()2a x be dx
a
π∞ − +

−∞
=∫

(You can find more information at http://mathworld.wolfram.com/
GaussianIntegral.html, or for a less complex discussion, refer to https://
en.wikipedia.org/wiki/Gaussian_integral.)

Using this, we can get the integral of the normal distribution, where 21 2a σ=
and b µ=− :

()2
2 22

22 2 2

1 1 1 2 1
1 22 2 2

x

e dx
µ

σ π
πσ

σπσ πσ πσ

−
∞ −

−∞
= = =∫

This gives the accumulation of all the probability values for all the values of x and
gives you a value of 1.

http://mathworld.wolfram.com/GaussianIntegral.html
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Gaussian_integral

Appendix

[417]

Conditional probability
Conditional probability represents the probability of an event happening, given the
occurrence of another event. For example, given two random variables, X and Y, the
conditional probability of X = x, given that Y = y, is denoted by this formula:

()|P X x Y y= =

A real-world example of such a probability would be as follows:

()|P Bob going to school Yes It rains Yes= =

Joint probability
Given two random variables, X and Y, we will refer to the probability of X = x
together with Y = y as the joint probability of X = x and Y = y. This is denoted by the
following formula:

() () (), |P X x Y y P X x P Y y X x= = = = = =

If X and Y are mutually exclusive events, this expression reduces to this:

() () (),P X x Y y P X x P Y y= = = = =

A real-world example of this is as follows:

() () (), |P It Rains yes PlayGolf yes P It Rains Yes P PlayGolf yes It Rains Yes= = = = = =

Marginal probability
Marginal probability distribution is the probability distribution of a subset of
random variables, given the joint probability distribution of all variables. For
example, consider that two random variables, X and Y exist, and we already know
(),P X x Y y= = and we want to calculate P(x):

() (),
y

P X x P X x Y y
′∀

′= = = =∑

Mathematical Foundations and Advanced TensorFlow

[418]

Intuitively, we will take the sum over all possible values of Y, effectively making the
probability of Y = 1. This gives us () (), 1P X x Y P X x= = = = .

Bayes' rule
Bayes, rule gives us a way to calculate ()|P Y y X x= = if we already know
() ()| ,P X x Y y P X x= = = , and ()P Y y= . We can easily arrive at Bayes' rule

as follows:

() () () () (), | |P X x Y y P X x P Y y X x P Y y P X x Y y= = = = = = = = = =

Now let's take the middle and right parts:

() () () ()| |P X x P Y y X x P Y y P X x Y y= = = = = = =

()
() ()

()
|

|
P X x Y y P Y y

P Y y X x
P X x

= = =
= = =

=

This is Bayes' rule. Let's put it simply, as shown here:

()
() ()
()
|

|
P x y P y

P y x
P x

=

Introduction to Keras
Here we will provide a brief introduction to Keras, which is a sublibrary of
TensorFlow that provides more high-level functions for implementing deep
learning algorithms. Keras uses basic TensorFlow operations, underneath;
however, it exposes a higher level, beginner-friendly API for users. To see how
to use Keras, we will look at a quick example. We will outline how one might
create a CNN using Keras. Full exercise can be found at keras_cnn.ipynb located in
the appendix folder.

Appendix

[419]

We will first determine what type of a model we will be defining. Keras has two
different APIs: sequential and functional. The sequential API is simpler and allows
designing a model, layer by layer. However, the sequential API has limited flexibility
in designing the organization and connections between layers of the network. On
the other hand, the functional API has much more flexibility and allows the user to
design the specific details of the neural network. For demonstration purposes, we
will implement a CNN using the sequential API in Keras. A sequential model in this
case is a sequence of stack of layers (for example, input layer, convolution layer, and
pooling layer):

model = Sequential()

Next, we will define the layers of our CNN one by one. First, we will define a
convolution layer with 32 filters, a kernel size of 3 × 3 and ReLU nonlinearity. This
layer will be taking an input of size 28 × 28 × 1 (that is, the size of an MNIST image):

model.add(Conv2D(32, 3, activation='relu', input_shape=[28, 28, 1]))

Next, we will define a max-pooling layer. If the kernel size and stride are not defined,
they default to 2 (kernel size) and 1 (stride):

model.add(MaxPool2D())

Then we will add a batch normalization layer:

model.add(BatchNormalization())

A batch normalization layer (refer to Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, Ioffe and Szegedy, International Conference
on Machine Learning, 2015) normalizes (that is, make activations zero-mean and
unit-variance) the outputs of the previous layer. This is an additional step used to
improve the performance of the CNN, especially in computer vision applications.
Note that we did not use batch normalization in the chapter exercises, as the batch
normalization has not been used heavily for NLP tasks, compared to the amount it is
used for computer vision applications.

Next, we will add two more convolution layers, followed by a max-pooling layer and
a batch normalization layer:

model.add(Conv2D(64, 3, activation='relu'))
model.add(MaxPool2D())
model.add(BatchNormalization())
model.add(Conv2D(128, 3, activation='relu'))
model.add(MaxPool2D())
model.add(BatchNormalization())

Mathematical Foundations and Advanced TensorFlow

[420]

Next, we will flatten the input as this is required to feed the output into a fully
connected layer:

model.add(Flatten())

Then we will add a fully connected layer with 256 hidden units, a ReLU activation,
and a final softmax output layer with 10 softmax units (that is, for the 10 different
classes of MNIST):

model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))

Finally, we will compile the model, when we also tell Keras to use Adam as the
optimizer and categorical cross-entropy loss and output metric to be the accuracy of
the model:

model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])

Once the model, the loss and an optimizer is defined, we can run the Keras model
as follows.

To train the model you can use the following command:

model.fit(x_train, y_train, batch_size = batch_size)

Here, x_train and y_train are the training data. And batch_size defines the
batch size. When you run this, the training progress will be shown below.

Then to evaluate the model, use the following:

test_acc = model.evaluate(x_test, y_test, batch_size=batch_size)

This line will again output a progress bar as well as the test loss and accuracy
of each epoch.

Appendix

[421]

Introduction to the TensorFlow seq2seq
library
We used the raw TensorFlow API for all our implementations in this book for better
transparency of the actual functionality of the models and for a better learning
experience. However, TensorFlow has various libraries that hide all the fine-grained
details of the implementations. This allows users to implement sequence-to-sequence
models like the Neural Machine Translation (NMT) model we saw in Chapter 10,
Sequence-to-Sequence Learning – Neural Machine Translation with fewer lines of code
and without worrying about more specific technical details about how they work.
Knowledge about these libraries is important as they provide a much cleaner way of
using these models in production code or researching beyond the existing methods.
Therefore, we will go through a quick introduction of how to use the TensorFlow
seq2seq library. This code is available as an exercise in the seq2seq_nmt.ipynb file.

Defining embeddings for the encoder
and decoder
We will first define the encoder inputs, decoder inputs, and decoder output
placeholders:

enc_train_inputs = []
dec_train_inputs, dec_train_labels = [],[]
for ui in range(source_sequence_length):
 enc_train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))

for ui in range(target_sequence_length):
 dec_train_inputs.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_inputs_%d'%ui))
 dec_train_labels.append(tf.placeholder(tf.int32, shape=[batch_
size],name='train_outputs_%d'%ui))

Next, we will define the embedding lookup function for all the encoder and decoder
inputs, to obtain the word embeddings:

encoder_emb_inp = [tf.nn.embedding_lookup(encoder_emb_layer, src) for
src in enc_train_inputs]
encoder_emb_inp = tf.stack(encoder_emb_inp)

decoder_emb_inp = [tf.nn.embedding_lookup(decoder_emb_layer, src) for
src in dec_train_inputs]
decoder_emb_inp = tf.stack(decoder_emb_inp)

Mathematical Foundations and Advanced TensorFlow

[422]

Defining the encoder
The encoder is made with an LSTM cell as its basic building block. Then, we will
define dynamic_rnn, which takes the defined LSTM cell as the input, and the state is
initialized with zeros. Then, we will set the time_major parameter to True because
our data has the time axis as the first axis (that is, axis 0). In other words, our data
has the [sequence_length, batch_size, embeddings_size] shape, where time-
dependent sequence_length is in the first axis. The benefit of dynamic_rnn is its
ability to handle dynamically sized inputs. You can use the optional sequence_
length argument to define the length of each sentence in the batch. For example,
consider you have a batch of size [3,30] with three sentences having lengths of [10,
20, 30] (note that we pad the short sentences up to 30 with a special token). Passing
a tensor that has values [10, 20, 30] as sequence_length will zero out LSTM outputs
that are computed beyond the length of each sentence. For the cell state, it will not
zero out, but take the last cell state computed within the length of the sentence and
copy that value beyond the length of the sentence, until 30 is reached:

encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

initial_state = encoder_cell.zero_state(batch_size, dtype=tf.float32)

encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
 encoder_cell, encoder_emb_inp, initial_state=initial_state,
 sequence_length=[source_sequence_length for _ in range(batch_
size)],
 time_major=True, swap_memory=True)

The swap_memory option allows TensorFlow to swap the tensors produced during
the inference process between GPU and CPU, in case the model is too complex to fit
entirely in the GPU.

Defining the decoder
The decoder is defined similar to the encoder, but has an extra layer called,
projection_layer, which represents the softmax output layer for sampling the
predictions made by the decoder. We will also define a TrainingHelper function
that properly feeds the decoder inputs to the decoder. We also define two types
of decoders in this example: a BasicDecoder and BahdanauAttention decoders.
(The attention mechanism is discussed in Chapter 10, Sequence-to-Sequence Learning
– Neural Machine Translation.) Many other decoders exist in the library, such as
BeamSearchDecoder and BahdanauMonotonicAttention:

Appendix

[423]

decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

projection_layer = Dense(units=vocab_size, use_bias=True)

helper = tf.contrib.seq2seq.TrainingHelper(
 decoder_emb_inp, [target_sequence_length for _ in range(batch_
size)], time_major=True)

if decoder_type == 'basic':
 decoder = tf.contrib.seq2seq.BasicDecoder(
 decoder_cell, helper, encoder_state,
 output_layer=projection_layer)

elif decoder_type == 'attention':
 decoder = tf.contrib.seq2seq.BahdanauAttention(
 decoder_cell, helper, encoder_state,
 output_layer=projection_layer)

We will use dynamic decoding to get the outputs of the decoder:

outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(
 decoder, output_time_major=True,
 swap_memory=True
)

Next, we will define the logits, cross-entropy loss, and train prediction operations:

logits = outputs.rnn_output

crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
 labels=dec_train_labels, logits=logits)
loss = tf.reduce_mean(crossent)

train_prediction = outputs.sample_id

Then, we will define two optimizers, where we use AdamOptimizer for the first
10,000 steps and vanilla stochastic GradientDescentOptimizer for the rest of the
optimization process. This is because, using Adam optimizer for a long term gives
rise to some unexpected behaviors. Therefore, we will use Adam to obtain a good
initial position for the SGD optimizer and then use SGD from then on:

with tf.variable_scope('Adam'):
 optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.variable_scope('SGD'):
 sgd_optimizer = tf.train.GradientDescentOptimizer(learning_rate)

Mathematical Foundations and Advanced TensorFlow

[424]

gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 25.0)
optimize = optimizer.apply_gradients(zip(gradients, v))

sgd_gradients, v = zip(*sgd_optimizer.compute_gradients(loss))
sgd_gradients, _ = tf.clip_by_global_norm(sgd_gradients, 25.0)
sgd_optimize = optimizer.apply_gradients(zip(sgd_gradients, v))

A rigorous evaluation on how optimizers perform in NMT
training is found in a paper by Bahar and others, called, Empirical
Investigation of Optimization Algorithms in Neural Machine
Translation, The Prague Bulletin of Mathematical Linguistics, 2017.

Visualizing word embeddings with
TensorBoard
When we wanted to visualize word embedding in Chapter 3, Word2vec – Learning
Word Embeddings, we manually implemented the visualization with the t-SNE
algorithm. However, you also could use TensorBoard for visualizing word
embeddings. TensorBoard is a visualization tool provided with TensorFlow. You
can use TensorBoard to visualize the TensorFlow variables in your program. This
allows you to see how various variables behave over time (for example, model loss/
accuracy), so you can identify potential issues in your model.

TensorBoard enables you to visualize scalar values and vectors as histograms. Apart
from this, TensorBoard also allows you to visualize word embeddings. Therefore, it
takes all the required code implementation away from you, if you need to analyze
what the embeddings look like. Next we will see how we can use TensorBoard to
visualize word embeddings. The code for this exercise is provided in tensorboard_
word_embeddings.ipynb in the appendix folder.

Starting TensorBoard
First, we will list the steps for starting TensorBoard. TensorBoard acts as a service
and runs on a specific port (by default, on 6006). To start TensorBoard, you will need
to follow the following steps:

1.	 Open up Command Prompt (Windows) or Terminal (Ubuntu/macOS).
2.	 Go into the project home directory.
3.	 If you are using python virtuanenv, activate the virtual environment where

you have installed TensorFlow.

Appendix

[425]

4.	 Make sure that you can see the TensorFlow library through Python. To do
this, follow these steps:

1.	 Type in python3, you will get a >>> looking prompt
2.	 Try import tensorflow as tf
3.	 If you can run this successfully, you are fine
4.	 Exit the python prompt (that is, >>>) by typing exit()

5.	 Type in tensorboard --logdir=models:
°° The --logdir option points to the directory where you will create

data to visualize
°° Optionally, you can use --port=<port_you_like> to change the

port TensorBoard runs on

6.	 You should now get the following message:
TensorBoard 1.6.0 at <url>;:6006 (Press CTRL+C to quit)

7.	 Enter the <url>:6006 in to the web browser. You should be able to see an
orange dashboard at this point. You won't have anything to display because
we haven't generated data.

Saving word embeddings and visualizing
via TensorBoard
First, we will download and load the 50-dimensional GloVe embeddings we used
in Chapter 9, Applications of LSTM – Image Caption Generation. For that first download
the GloVe embedding file (glove.6B.zip) from https://nlp.stanford.edu/
projects/glove/ and place it in the appendix folder. We will load the first
50,000 word vectors in the file and later use these to initialize a TensorFlow variable.
We will also record the word strings of each word, as we will later provide these as
labels for each point to display on TensorBoard:

vocabulary_size = 50000
pret_embeddings = np.empty(shape=(vocabulary_size,50),dtype=np.
float32)

words = []

word_idx = 0
with zipfile.ZipFile('glove.6B.zip') as glovezip:
 with glovezip.open('glove.6B.50d.txt') as glovefile:
 for li, line in enumerate(glovefile):
 if (li+1)%10000==0: print('.',end='')

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Mathematical Foundations and Advanced TensorFlow

[426]

 line_tokens = line.decode('utf-8').split(' ')
 word = line_tokens[0]

 vector = [float(v) for v in line_tokens[1:]]
 assert len(vector)==50
 words.append(word)
 pret_embeddings[word_idx,:] = np.array(vector)
 word_idx += 1
 if word_idx == vocabulary_size:
 break

Now, we will define TensorFlow-related variables and operations. Before this, we
will create a directory called models, which will be used to store the variables:

log_dir = 'models'

if not os.path.exists(log_dir):
 os.mkdir(log_dir)

Then, we will define a variable that will be initialized with the word embeddings we
copied from the text file earlier:

embeddings = tf.get_variable('embeddings',shape=[vocabulary_size, 50],
 initializer=tf.constant_initializer(pret_
embeddings))

We will next create a session and initialize the variable we defined earlier:

session = tf.InteractiveSession()
tf.global_variables_initializer().run()

Thereafter, we will create a tf.train.Saver object. The Saver object can be used
to save TensorFlow variables to the memory, so that they can later be restored if
needed. In the following code, we will save the embedding variable to the models
directory under the name, model.ckpt:

saver = tf.train.Saver({'embeddings':embeddings})
saver.save(session, os.path.join(log_dir, "model.ckpt"), 0)

Appendix

[427]

We also need to save a metadata file. A metadata file contains labels/images or other
types of information associated with the word embeddings, so that when you hover
over the embedding visualization the corresponding points will show the word/
label they represent. The metadata file should be of the .tsv (tab separated values)
format and should contain vocabulary_size + 1 rows in it, where the first row
contains the headers for the information you are including. In the following code, we
will save two pieces of information: word strings and a unique identifier (that is, row
index) for each word:

with open(os.path.join(log_dir,'metadata.tsv'), 'w',encoding='utf-8')
as csvfile:
 writer = csv.writer(csvfile, delimiter='\t',
 quotechar='|', quoting=csv.QUOTE_MINIMAL)
 writer.writerow(['Word','Word ID'])
 for wi,w in enumerate(words):
 writer.writerow([w,wi])

Then, we will need to tell TensorFlow where it can find the metadata for the
embedding data we saved to the disk. For this, we need to create a ProjectorConfig
object, which maintains various configuration details about the embedding we want
to display. The details stored in the ProjectorConfig folder will be saved to a file
called projector_config.pbtxt in the models directory:

config = projector.ProjectorConfig()

Here, we will populate the required fields of the ProjectorConfig object we
created. First, we will tell it the name of the variable we're interested in visualizing.
Next, we will tell it where it can find the metadata corresponding to that variable:

embedding_config = config.embeddings.add()
embedding_config.tensor_name = embeddings.name
embedding_config.metadata_path = 'metadata.tsv'

We will now use a summary writer to write this to the projector_config.pbtxt
file. TensorBoard will read this file at startup:

summary_writer = tf.summary.FileWriter(log_dir)
projector.visualize_embeddings(summary_writer, config)

Mathematical Foundations and Advanced TensorFlow

[428]

Now if you load TensorBoard, you should see something similar to Figure A.3:

Figure A.3: Tensorboard view of the embeddings

When you hover over the displayed point cloud, it will show the label of the word
you're currently hovering over, as we provided this information in the metadata.
tsv file. Furthermore, you have several options. The first option (shown with a
dotted line and marked as 1) will allow you to select a subset of the full embedding
space. You can draw a bounding box over the area of the embedding space you're
interested in, and it will look as shown in Figure A.4. I have selected the embeddings
at the bottom right corner:

Figure A.4: Selecting a subset of the embedding space

Appendix

[429]

Another option you have is the ability to view words themselves, instead of dots.
You can do this by selecting the second option in Figure A.3 (show inside a solid box
and marked as 2). This would look as shown in Figure A.5. Additionally, you can
pan/zoom/rotate the view to your liking. If you click on the help button (shown
within a solid box and marked as 1 in Figure A.5), it will show you a guide for
controlling the view:

Figure A.5: Embedding vectors displayed as words instead of dots

Finally, you can change the visualization algorithm from the panel on the left-hand
side (shown with a dashed line and marked with 3 in Figure A.3).

Summary
Here we discussed some of the mathematical background as well as some
implementations we did not cover in the other sections. First we discussed
the mathematical notation for scalars, vectors, matrices and tensors. Then we discussed
various operations performed on these data structures, such as, matrix multiplication
and inversion. Next, we discussed various terminology that is useful for
understanding probabilistic machine learning such as, probability density functions,
joint probability, marginal probability and Bayes rule. Afterwards, we moved our
discussion to cover various implementations that we did not visit in the other chapters.
We learnt how to use Keras; a high-level TensorFlow library to implement a CNN.
Then we discussed how we can efficiently implement a neural machine translator with
the seq2seq library in TensorFlow, compared to the implementation we discussed
in Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation. Finally, we
ended this section with a guide that teaches you to visualize word embeddings using
the TensorBoard; a visualization platform that comes with TensorFlow.

[431]

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Deep Learning with TensorFlow - Second Edition
Giancarlo Zaccone, Md. Rezaul Karim

ISBN: 978-1-78883-110-9

•	 Apply deep machine intelligence and GPU computing with TensorFlow
•	 Access public datasets and use TensorFlow to load, process, and transform

the data
•	 Discover how to use the high-level TensorFlow API to build more powerful

applications
•	 Use deep learning for scalable object detection and mobile computing
•	 Train machines quickly to learn from data by exploring reinforcement

learning techniques
•	 Explore active areas of deep learning research and applications

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-second-edition

Other Books You May Enjoy

[432]

Python Machine Learning - Second Edition
Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78712-593-3

•	 Understand the key frameworks in data science, machine learning, and deep
learning

•	 Harness the power of the latest Python open source libraries in machine
learning

•	 Master machine learning techniques using challenging real-world data
•	 Master deep neural network implementation using the TensorFlow library
•	 Ask new questions of your data through machine learning models and

neural networks
•	 Learn the mechanics of classification algorithms to implement the best tool

for the job
•	 Predict continuous target outcomes using regression analysis
•	 Uncover hidden patterns and structures in data with clustering
•	 Delve deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-second-edition

Other Books You May Enjoy

[433]

IPython Interactive Computing and Visualization Cookbook - Second Edition
Cyrille Rossant

ISBN: 978-1-78588-863-2

•	 Master all features of the Jupyter Notebook
•	 Code better: write high-quality, readable, and well-tested programs; profile

and optimize your code; and conduct reproducible interactive computing
experiments

•	 Visualize data and create interactive plots in the Jupyter Notebook
•	 Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython,

OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more
•	 Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R),

and learn from actual data through machine learning (scikit-learn)
•	 Gain valuable insights into signals, images, and sounds with SciPy, scikit-

image, and OpenCV
•	 Simulate deterministic and stochastic dynamical systems in Python
•	 Familiarize yourself with math in Python using SymPy and Sage: algebra,

analysis, logic, graphs, geometry, and probability theory

https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook-second-e

Other Books You May Enjoy

[434]

Python Interviews
Mike Driscoll

ISBN: 978-1-78839-908-1

•	 How successful programmers think
•	 The history of Python
•	 Insights into the minds of the Python core team
•	 Trends in Python programming

https://www.packtpub.com/web-development/python-interviews

Other Books You May Enjoy

[435]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us
an honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and our authors can
see your feedback on the title that they have worked with Packt to create. It will only
take a few minutes of your time, but is valuable to other potential customers, our
authors, and Packt. Thank you!

[437]

Index
A
Amazon Web Services (AWS)

URL 24
Anaconda

references 22
Application Programming Interface (API)

reference 28
arguments, loss function

average_across_batch 263
average_across_timesteps 263
logits 263
targets 263
weights 263

Artificial General Intelligence (AGI)
about 369, 386
joint many-task model 389
MultiModel 386

attention matrix 361
attention mechanism

about 351
attention, computing 357, 358
attention, visualizing for source and target

sentences 361-363
context vector bottleneck, breaking 351, 352
implementation 352-356
translation results 359, 360
weights, defining 356

Automatic Language Processing Advisory
Committee (ALPAC) 314

B
Backpropagation Through Time (BPTT)

about 170, 213
direct use, limitations 171, 172

RNNs, training 172
working 170, 171

Bag-of-Words (BOW) representation 371
Bayes' rule 418
beam search

about 218, 219, 251
examples generated 254
implementing 252-254

bidirectional LSTMs (BiLSTM) 202-221
Bigger Analogy Test Set (BATS)

reference 109
BLEU-4 292
Bilingual Evaluation Understudy

(BLEU) 287
BLEU score

about 330, 331
brevity penalty 331
calculating 332
modified precision 331

C
captions

generating, for test images 293-297
preparing, for feeding into LSTMs 281, 282

CBOW
comparing 118
extending 119

CBOW(Unigram) 118
CBOW (Unigram+Subsampling) 118
Central Processing Units (CPUs) 12
chatbot

about 363
evaluating 365
training 364, 365

comparison operations 45

[438]

Compute Unified Device Architecture
(CUDA) 16, 28

concept 123
conditional probability 417
consensus-based Image Description

Evaluation (CIDEr) 291
Continuous Bag-Of-Words algorithm

about 98
implementing, in TensorFlow 99

Continuous Bag-of-Words
(CBOW) model 257, 280

continuous random variables 414
continuous window model 122, 123
Convolution Neural Network (CNN)

about 136, 139
filter size 139
fully connected layers 147
fundamentals 136-139
implementing 149-152
importance 139
MNIST dataset 149
operation 140
padding 139
produced predictions 152
stride 139
summarizing 147, 148
used, for image classification on

MNIST 148, 149
used, for sentence classification 153

convolution operation
about 140
padding, using 142
stride, using 141
transposed convolution 143, 144

co-occurrence matrix 76, 77
current trends, in NLP

Neural Machine Translation (NMT) 376
word embeddings 370

D
data

about 230
generating, for LSTMs 282
preloading, as tensors 38
preprocessing 232
storing, as tensors 38

data preparation, NMT system
about 325
source sentence, reversing 326, 327
testing time 327
training data 325, 326

dataset
about 230
text snippet 230, 231

data structures
matrix 404
scalar 403
vectors 404

deconvolution 143
deep learning approach

about 13
history 11, 12
to Natural Language Processing (NLP) 10

diagonal matrix 407
Dilated Recurrent Neural Networks

(DRNNs) 395, 397
discrete random variables 413
document classification, with Word2vec

about 126
dataset 127

documents
classifying, with word embeddings 127

Dynamic-Series Time Structure (DSTS) 391

E
embedded documents

document clustering 130
t-SNE visualization 130

ensemble embedding 375
EOS 281

F
feed-forward neural networks

problem 165
frame nodes 394
Fully-Connected Neural Network

(FCNN) 14

G
Gated Recurrent Units (GRUs)

about 202, 245

[439]

code 246
example generated text 247
review 245

gather operations 47
Gaussian Integral

reference 416
Generative Adversarial Models (GANs) 378
Generative Adversarial Networks,

for NLP 384-386
Global Vectors (GloVe)

about 103, 23
example 123, 124
implementing 125, 126

GloVe word vectors
loading 298-301
URL 298

Google analogy dataset
reference 109

Google Cloud Platform (GCP)
URL 24

Google Neural Machine Translation
(GNMT) system 348

Graphical Processing Units (GPUs) 12
Graphical User Interface (GUI)

reference 71
greedy sampling 217
Group Method of Data Handling

(GMDH) 11
GRUs 224, 225

H
Hidden Markov Model (HMM) 8
hierarchical softmax 93-95
hierarchy

initializing 95
learning 95
WordNet, determining 95

history, machine translation (MT)
about 313
Neural Machine Translation

(NMT) 317-319
rule-based translation 313-315
Statistical Machine Translation

(SMT) 315, 316
Holonyms 71
hypernyms 70

hyperparameters
batch_size 233, 335
dec_num_unrollings 336
defining 233
dropout 233
embedding_size 336
num_nodes 233, 335
num_unrollings 233

hyponyms 70

I
identity matrix 406
ILSVRC ImageNet dataset

about 267
URL 266

image caption generation
machine learning pipeline 269-271

image features
extracting, with CNNs 273

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 139

improved skip-gram algorithm
versus original skip-gram algorithm 107

inferring 277
information technology (IT) 375
input and output placeholders

is_train_text 304
train_inputs 304
train_labels 304

input gate parameters
ib 233
im 233
ix 233

inputs
about 36
data, feeding with Python code 37
defining 37
pipeline, building 39, 40

insertion phase 316

J
joint many-task model

about 389, 390
semantic-level tasks 390
syntactic tasks 389
word-based tasks 389

[440]

joint probability 417
Jupyter Notebook

URL, for installing 22

K
Keras 418, 419
K-means

documents, classifying 132-34
documents, clustering 132-134

L
language grounding 394
Large Scale Visual Recognition Challenge

(LSVRC) 12
Latent Dirichlet Allocation (LDA) 375
Latent Semantic Analysis (LSA) 123
learning model

optimizing 95
learning rate over time

decaying 238, 239
lemmas 70
Long Short-Term Memory Networks. See

LSTMs
loss function

about 120-122
approximating 90
formulating 87-89

LSTM cell
defining 284-287

LSTM implementation
about 232
example generated text 242, 243
greedy sampling, for breaking

unimodality 241
hyperparameters, defining 232
inputs and labels, defining 236
LSTM cell operations, defining 235
new text, generating 241
optimizer, defining 238
parameters, defining 233, 234
perplexity, calculating 240
predictions, making 240
sequential calculations, defining 237
states, resetting 240

LSTMs
about 201-204
actual mechanism 204
beam search 218, 219, 251
beam search, implementing 252-254
BiLSTM 220, 221
cell state 203
comparing 243
comparing, with standard RNNs 212
exploring 204-212
forget gate 203, 204
Gated Recurrent Units (GRUs) 245
greedy sampling 217
hidden state 203
improving 216
input gate 203, 204
LSTMs, with peepholes 248
output 205
output gate 203
perplexity over time 250
standard LSTM 243
text generation, with words 255
vanishing gradient problem,

solving 213-216
variants 222
word vectors, using 219
write gate 204

LSTMs, with peepholes
about 248
code 248, 249
example generated text 249, 250
review 248

LSTM-Word2vec
examples generated with 258

M
machine translation (MT)

about 312
history 313

machine translation systems
evaluating 330

many-to-many RNNs 178
many-to-one RNNs 177
marginal probability 417
mathematical operations 46

[441]

Matplotlib
URL, for installing 22

matrix
about 404
diagonal matrix 407
identity matrix 406
indexing 405
tensors 407

matrix operations
determinant 412
element-wise multiplication 409
inverse 409, 410
matrix inverse, finding 411, 412
multiplication 408
norms 412

max pooling operation
about 145
stride, using 145

Meronyms 71
Metric for Evaluation of Translation with

Explicit Ordering (METEOR) 289
Microsoft Common Objects in Context

(MS-COCO) 266
MNIST dataset

reference 60
MS-COCO dataset

about 268, 269
URL 266

MultiModel
about 386, 387
attention block 387
convolutional block 387
mixture of experts block 387
tasks, performing 388

MultiWordNet (MWN) 73

N
Natural Language Processing (NLP)

about 1, 2, 13, 16
bag-of-words 7
current trends 370
deep learning approach 10
example 6
feature engineering 7
language generation 3
Machine Translation (MT) 4

Named Entity Recognition (NER) 3
n-gram 8, 9
Part-of-Speech (PoS) tagging 3
preprocessing 7
Question Answering (QA) 3
Sentence/Synopsis classification 3
tasks 2-5
tokenization 7
traditional approach 5
traditional approach, drawbacks 10
Word-sense Disambiguation (WSD) 3

negative sampling
unigram distribution, using for 114

Neural Machine Translation (NMT)
about 311-320, 376
architecture 321, 322
attention mechanism, improving 376
decoder 321
encoder 321
hybrid MT models 376, 378
inference, performing 329
intuition 320
training 328

neural network
data, preparing 60
executing 63, 64
implementing 59, 60
TensorFlow graph, defining 61, 63
word embeddings, learning 84, 85, 86

neural network-related operations
about 48
control flow operations 55
convolution operation 49, 50, 52
loss, defining 54
neural networks, optimization 54, 55
nonlinear activations 48, 49
pooling operation 52

newer machine learning models
about 395
Dilated Recurrent Neural Networks

(DRNNs) 397
Phased LSTM 396

NLP, for social media
about 391
emotions, detecting in social media 391, 392
political framing, analyzing in tweets 393
rumours, detecting in social media 391

[442]

NLP, with computer vision
caption generation for images, with

attention 381
combining 378
Visual Question Answering (VQA) 379, 380

NLTK
reference 73

NMT architecture
about 321, 322
context vector 323
decoder 324
embedding layer 322
encoder 322

NMT implementation
decoder, defining 335-338
encoder, defining 335-338
end-to-end output calculation,

defining 338, 340
performing, from scratch 332
translation results 340-342
word embeddings 335

NMT, jointly with word embeddings
embeddings layer, defining

as TensorFlow variable 345-347
matching between dataset vocabulary

and pretrained embeddings,
maximizing 343, 344

training 342, 343
NMTs, improving

about 348
deep LSTMs 350
teacher forcing 349

NMT system
data, preparing 325

node 32
Noise-Contrastive Estimation (NCE) 90
n-table 316

O
object-pair nodes 394
one-hot encoded representation 74
one-hot encoding 69
one-to-many RNNs 176
one-to-one RNNs 176

operations
about 36
comparison operations 45
defining 45
gather operations 47
mathematical operations 46
neural network-related operations 48
scatter operations 47

original skip-gram algorithm
about 104, 105
implementing 105
versus improved skip-gram algorithm 107

outliers
inspecting 131, 132

outputs
about 36
defining 45

P
parameters, TensorFlow RNN API

cell 261
defining 233
input_keep_prob 261
output_keep_prob 261
state_keep_prob 261
variational_recurrent 261

peephole connections 202, 223
perplexity 187, 188
perplexity over time 250
Phased LSTM 396
placeholder 37
pooling operation

about 144
average pooling 146
max pooling 145

pretrained embeddings, using with
TensorFlow RNN API

about 302
adaptation layer, defining 303
images and text, processing differently 305
inputs and outputs, defining 304
logits and predictions, defining 307
LSTM cell, defining 303
LSTM output calculation, defining 306
optimizer, defining 307
pretrained embedding layer, defining 303

[443]

sequence loss, defining 307
softmax layer, defining 303

pretrained GloVe word vectors
TensorFlow RNN API, using with 297, 298

pretrained models 273
Principal Component Analysis (PCA) 412
probabilistic word embedding 374, 375
probability

about 413
Bayes' rule 418
conditional probability 417
continuous random variables 414
discrete random variables 413
joint probability 417
marginal probability 417, 418
probability mass/density function 414-416
random variables 413

probability density function (PDF) 414-416
probability mass function (PMF) 414-416
PSDVec 374

R
random variables 413
raw text

to structured data 83, 84
Rectified Linear Units (ReLUs) 12
Recurrent Neural Networks (RNNs)

about 163, 164
applications 175
modeling 166-168
technical description 168, 169
text results output, evaluating 185, 186
used, for text generation 179
with Context Features 188

Recurrent Neural Networks (RNNs),
applications

many-to-many RNNs 178
many-to-one RNNs 177
one-to-many RNNs 176
one-to-one RNNs 176

region embedding
about 370
classification accuracy 374
implementing 372, 373
input representation 371
learning 372

reinforcement learning (RL)
about 381
dialogue agents 383
unique language for communication,

teaching to agents 382
reordering phase 316
research fields

Generative Adversarial Networks 384
NLP, combining with computer vision 378
penetration into 378
reinforcement learning 381

RNNs with Context Features (RNN-CF)
about 186
gradients, calculating 196
gradients, optimizing 196
hyperparameters, defining 190
implementing 190
output, calculating 194
technical description 188, 189
text generated 196-198
validation output, calculating 195
weights, defining 191, 192

r-table 316
Recall-Oriented Understudy for Gisting

Evaluations (ROUGE) 288,289
result

evaluating 287
rule-based translation 313-315

S
sarcasm

about 393
detecting 393

scalar 403
scatter operation 47
scikit-learn

URL, for installing 22
scoping 57-59
sentence classification, with CNN

about 153
implementation 159-162
pooling over time 157, 158

Seq2Seq models
chatbots 363

sequence one-hot-encoded vector 371
Singular Value Decomposition (SVD) 411

[444]

skimming text, with LSTMs 395
skip-gram algorithm

about 83
extending 119
implementing 106
implementing, with TensorFlow 95-97
limitation 119
raw text, to structured data 83, 84
word embeddings, learning with neural

network 84-86
skip-gram, versus CBOW

about 107, 112, 113
performance comparison 108, 110

softmax layer
negative sampling 90, 92

SOS 281
standard LSTMs

about 243
example generated text 244, 245
reviewing 243

Statistical Machine Translation
(SMT) 311-316

structure , Convolution Neural Networks
(CNN)

about 153
convolution operation 154, 156
data transformation 153, 154
used, for extracting image features 273

structured data
from raw text 83, 84

structured skip-gram algorithm 120
subsampling

about 117
implementing 118

synset 70

T
tasks emerging

about 393
language grounding 394
sarcasm, detecting 393
skimming text, with LSTMs 395

t-Distributed Stochastic Neighbor
Embedding (t-SNE) 69, 109, 111

teacher forcing 349

technical tools
about 21
describing 21
Jupyter Notebook, installing 22
Python, installing 22
scikit-learn, installing 22
TensorFlow, installing 23

tensor 29, 407
TensorBoard

starting with 424, 425
visualizing 425-429
word embeddings, saving 425-429
word embeddings, visualizing 424

TensorFlow
about 28
architecture 32-34
architecture, reference 34
Cafe Le TensorFlow 35, 36
Continuous Bag-Of-Words algorithm,

implementing 99
reference 28
URL, for installing 23
using 28-31, 39

TensorFlow client 31
TensorFlow implementation

URL 389
TensorFlow placeholders

dec_train_inputs 337
dec_train_labels 337
dec_train_masks 337
enc_train_inputs 337

TensorFlow Research Cloud (TFRC)
URL 24

TensorFlow RNN API
pretrained embeddings, using with 302
using 260-263
using, with pretrained GloVe word

vectors 297, 298
TensorFlow seq2seq library

about 421
decoder, defining 422, 423
embeddings, defining for encoder and

decoder 421
encoder, defining 422

Term Frequency-Inverse Document
Frequency (TF-IDF) 69

[445]

text generation, with RNNs
about 179
generated chunk of text, outputting 184
gradients, calculating 184
hidden states and outputs, calculating with

unrolled inputs 182
inputs over time, unrolling for Truncated

BPTT 180
inputs validation dataset, defining 181
loss, calculating 183
optimizing 184
state persisting variables, defining 181
validation output, calculating 184
weights and biases, defining 181

text generation, with words in LSTMs
about 255
curse of dimensionality 255
perplexity over time 259
text, generating with Word2vec 256, 257
Word2vec 255

text result
output, evaluating from RNN 185, 186
quality, measuring 187, 188

TF-IDF method 75
Topical Word Embeddings (TWE) 375
topic embedding 375
training perplexities over time 250, 251
translation phase 316
transpose

about 407
example 407

transposed convolution 143
Truncated Backpropagation Through Time

(TBPTT)
about 172
exploding gradient 173-175
limitations 173
RNNs, training 173
vanishing gradient 173, 174

Turing test 366
tv-embedding 370

U
unigram-based negative sampling

implementing 115, 116

unigram distribution
using, for negative sampling 114

V
validation perplexities over time 250, 251

V
vanishing gradients phenomenon 11
variables

about 36
defining 43, 44
reusing, with scoping 57-59

variants, LSTMs
GRUs 224, 225
peephole connections 223

variational inference 375
vectors 404
velocity term 174
VGG-16

predicting with 278, 279
inferring 277

VGG CNN
URL 273

Virtual Assistants (VAs) 2
Visual Question Answering (VQA) 379, 380

W
weights loading, CNN

implementation 274
inputs, preprocessing 275
variables, building 274
variables, updating 274
vectorized representations of images,

extracting 278
whitening 60
Word2vec

about 67, 77, 255
document classification 126
exercise 78-82
loss function, designing for learning word

embeddings 82, 83
text, generating with 256, 257

word alignment problem 4

[446]

word embeddings
about 280, 370
documents, classifying with 127
ensemble embedding 375
learning 128
learning, with neural network 84-86
probabilistic word embedding 374, 375
region embedding 370
to document embeddings 129
visualizing, with TensorBoard 424

word embeddings algorithms 114
word meaning 69
WordNet

about 70-73
issues 73
reference 70

word representation
about 69
co-occurrence matrix 76, 77
learning, classical approaches 69
one-hot encoded representation 74
TF-IDF method 75

word vectors
using 219, 220

X
Xavier initialization 235, 338

	Cover
	Copyright
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Natural Language Processing
	What is Natural Language Processing?
	Tasks of Natural Language Processing
	The traditional approach to Natural Language Processing
	Understanding the traditional approach
	Example – generating football game summaries

	Drawbacks of the traditional approach

	The deep learning approach to Natural Language Processing
	History of deep learning
	The current state of deep learning and NLP
	Understanding a simple deep model – a Fully Connected Neural Network

	The roadmap – beyond this chapter
	Introduction to the technical tools
	Description of the tools
	Installing Python and scikit-learn
	Installing Jupyter Notebook
	Installing TensorFlow

	Summary

	Chapter 2: Understanding TensorFlow
	What is TensorFlow?
	Getting started with TensorFlow
	TensorFlow client in detail
	TensorFlow architecture – what happens when you execute the client?
	Cafe Le TensorFlow – understanding TensorFlow with an analogy

	Inputs, variables, outputs, and operations
	Defining inputs in TensorFlow
	Feeding data with Python code
	Preloading and storing data as tensors
	Building an input pipeline

	Defining variables in TensorFlow
	Defining TensorFlow outputs
	Defining TensorFlow operations
	Comparison operations
	Mathematical operations
	Scatter and gather operations
	Neural network-related operations

	Reusing variables with scoping
	Implementing our first neural network
	Preparing the data
	Defining the TensorFlow graph
	Running the neural network

	Summary

	Chapter 3: Word2vec – Learning
Word Embeddings
	What is a word representation or meaning?
	Classical approaches to learning word representation
	WordNet – using an external lexical knowledge base for learning word representations
	Tour of WordNet
	Problems with WordNet

	One-hot encoded representation
	The TF-IDF method
	Co-occurrence matrix

	Word2vec – a neural network-based approach to learning word representation
	Exercise: is queen = king – he + she?
	Designing a loss function for learning word embeddings

	The skip-gram algorithm
	From raw text to structured data
	Learning the word embeddings with a
neural network
	Formulating a practical loss function
	Efficiently approximating the loss function

	Implementing skip-gram with TensorFlow

	The Continuous Bag-of-Words algorithm
	Implementing CBOW in TensorFlow

	Summary

	Chapter 4: Advanced Word2vec
	The original skip-gram algorithm
	Implementing the original skip-gram algorithm
	Comparing the original skip-gram with the improved skip-gram

	Comparing skip-gram with CBOW
	Performance comparison
	Which is the winner, skip-gram or CBOW?

	Extensions to the word embeddings algorithms
	Using the unigram distribution for negative sampling
	Implementing unigram-based negative sampling
	Subsampling – probabilistically ignoring the common words
	Implementing subsampling
	Comparing the CBOW and its extensions

	More recent algorithms extending
skip-gram and CBOW
	A limitation of the skip-gram algorithm
	The structured skip-gram algorithm
	The loss function
	The continuous window model

	GloVe – Global Vectors representation
	Understanding GloVe
	Implementing GloVe

	Document classification with Word2vec
	Dataset
	Classifying documents with word embeddings
	Implementation – learning word embeddings
	Implementation – word embeddings to document embeddings
	Document clustering and t-SNE visualization of embedded documents
	Inspecting several outliers
	Implementation – clustering/classification of documents with K-means

	Summary

	Chapter 5: Sentence Classification
with Convolutional
Neural Networks
	Introducing Convolution Neural Networks
	CNN fundamentals
	The power of Convolution Neural Networks

	Understanding Convolution Neural Networks
	Convolution operation
	Standard convolution operation
	Convolving with stride
	Convolving with padding
	Transposed convolution

	Pooling operation
	Max pooling
	Max pooling with stride
	Average pooling

	Fully connected layers
	Putting everything together

	Exercise – image classification on MNIST with CNN
	About the data
	Implementing the CNN
	Analyzing the predictions produced with
a CNN

	Using CNNs for sentence classification
	CNN structure
	Data transformation
	The convolution operation

	Pooling over time
	Implementation – sentence classification
with CNNs

	Summary

	Chapter 6: Recurrent Neural Networks
	Understanding Recurrent Neural Networks
	The problem with feed-forward neural networks
	Modeling with Recurrent Neural Networks
	Technical description of a Recurrent Neural Network

	Backpropagation Through Time
	How backpropagation works
	Why we cannot use BP directly for RNNs
	Backpropagation Through Time – training RNNs
	Truncated BPTT – training RNNs efficiently
	Limitations of BPTT – vanishing and exploding gradients

	Applications of RNNs
	One-to-one RNNs
	One-to-many RNNs
	Many-to-one RNNs
	Many-to-many RNNs

	Generating text with RNNs
	Defining hyperparameters
	Unrolling the inputs over time for
Truncated BPTT
	Defining the validation dataset
	Defining weights and biases
	Defining state persisting variables
	Calculating the hidden states and outputs with unrolled inputs
	Calculating the loss
	Resetting state at the beginning of a new segment of text
	Calculating validation output
	Calculating gradients and optimizing
	Outputting a freshly generated chunk of text

	Evaluating text results output from
the RNN
	Perplexity – measuring the quality of the text result
	Recurrent Neural Networks with Context Features – RNNs with longer memory
	Technical description of the RNN-CF
	Implementing the RNN-CF
	Defining the RNN-CF hyperparameters
	Defining input and output placeholders
	Defining weights of the RNN-CF
	Variables and operations for maintaining hidden and context states
	Calculating output
	Calculating the loss
	Calculating validation output
	Computing test output
	Computing the gradients and optimizing

	Text generated with the RNN-CF

	Summary

	Chapter 7: Long Short-Term
Memory Networks
	Understanding Long Short-Term Memory Networks
	What is an LSTM?
	LSTMs in more detail
	How LSTMs differ from standard RNNs

	How LSTMs solve the vanishing gradient problem
	Improving LSTMs
	Greedy sampling
	Beam search
	Using word vectors
	Bidirectional LSTMs (BiLSTM)

	Other variants of LSTMs
	Peephole connections
	Gated Recurrent Units

	Summary

	Chapter 8: Applications of LSTM – Generating Text
	Our data
	About the dataset
	Preprocessing data

	Implementing an LSTM
	Defining hyperparameters
	Defining parameters
	Defining an LSTM cell and its operations
	Defining inputs and labels
	Defining sequential calculations required to process sequential data
	Defining the optimizer
	Decaying learning rate over time
	Making predictions
	Calculating perplexity (loss)
	Resetting states
	Greedy sampling to break unimodality
	Generating new text
	Example generated text

	Comparing LSTMs to LSTMs with peephole connections and GRUs
	Standard LSTM
	Review
	Example generated text

	Gated Recurrent Units (GRUs)
	Review
	The code
	Example generated text

	LSTMs with peepholes
	Review
	The code
	Example generated text

	Training and validation perplexities over time

	Improving LSTMs – beam search
	Implementing beam search
	Examples generated with beam search

	Improving LSTMs – generating text with words instead of n-grams
	The curse of dimensionality
	Word2vec to the rescue
	Generating text with Word2vec
	Examples generated with LSTM-Word2vec and beam search
	Perplexity over time

	Using the TensorFlow RNN API
	Summary

	Chapter 9: Applications of LSTM – Image Caption Generation
	Getting to know the data
	ILSVRC ImageNet dataset
	The MS-COCO dataset

	The machine learning pipeline for image caption generation
	Extracting image features with CNNs
	Implementation – loading weights and inferencing with VGG-16
	Building and updating variables
	Preprocessing inputs
	Inferring VGG-16
	Extracting vectorized representations
of images
	Predicting class probabilities with VGG-16

	Learning word embeddings
	Preparing captions for feeding into LSTMs
	Generating data for LSTMs
	Defining the LSTM
	Evaluating the results quantitatively
	BLEU
	ROUGE
	METEOR
	CIDEr
	BLEU-4 over time for our model

	Captions generated for test images
	Using TensorFlow RNN API with pretrained GloVe word vectors
	Loading GloVe word vectors
	Cleaning data
	Using pretrained embeddings with TensorFlow RNN API
	Defining the pretrained embedding layer and the adaptation layer
	Defining the LSTM cell and softmax layer
	Defining inputs and outputs
	Processing images and text differently
	Defining the LSTM output calculation
	Defining the logits and predictions
	Defining the sequence loss
	Defining the optimizer

	Summary

	Chapter 10: Sequence-to-Sequence Learning – Neural Machine Translation
	Machine translation
	A brief historical tour of machine translation
	Rule-based translation
	Statistical Machine Translation (SMT)
	Neural Machine Translation (NMT)

	Understanding Neural Machine Translation
	Intuition behind NMT
	NMT architecture
	The embedding layer
	The encoder
	The context vector
	The decoder

	Preparing data for the NMT system
	At training time
	Reversing the source sentence
	At testing time

	Training the NMT
	Inference with NMT
	The BLEU score – evaluating the machine translation systems
	Modified precision
	Brevity penalty
	The final BLEU score

	Implementing an NMT from scratch – a German to English translator
	Introduction to data
	Preprocessing data
	Learning word embeddings
	Defining the encoder and the decoder
	Defining the end-to-end output calculation
	Some translation results

	Training an NMT jointly with word embeddings
	Maximizing matchings between the dataset vocabulary and the pretrained embeddings
	Defining the embeddings layer as a TensorFlow variable

	Improving NMTs
	Teacher forcing
	Deep LSTMs

	Attention
	Breaking the context vector bottleneck
	The attention mechanism in detail
	Implementing the attention mechanism
	Defining weights
	Computing attention

	Some translation results – NMT with attention
	Visualizing attention for source and target sentences

	Other applications of Seq2Seq
models – chatbots
	Training a chatbot
	Evaluating chatbots – Turing test

	Summary

	Chapter 11: Current Trends and
the Future of Natural Language Processing
	Current trends in NLP
	Word embeddings
	Region embedding
	Probabilistic word embedding
	Ensemble embedding
	Topic embedding

	Neural Machine Translation (NMT)
	Improving the attention mechanism
	Hybrid MT models

	Penetration into other research fields
	Combining NLP with computer vision
	Visual Question Answering (VQA)
	Caption generation for images with attention

	Reinforcement learning
	Teaching agents to communicate using their
own language
	Dialogue agents with reinforcement learning

	Generative Adversarial Networks for NLP

	Towards Artificial General Intelligence
	One Model to Learn Them All
	A joint many-task model – growing a neural network for multiple NLP tasks
	First level – word-based tasks
	Second level – syntactic tasks
	Third level – semantic-level tasks

	NLP for social media
	Detecting rumors in social media
	Detecting emotions in social media
	Analyzing political framing in tweets

	New tasks emerging
	Detecting sarcasm
	Language grounding
	Skimming text with LSTMs

	Newer machine learning models
	Phased LSTM
	Dilated Recurrent Neural Networks (DRNNs)

	Summary
	References

	Appendix: Mathematical Foundations and Advanced TensorFlow
	Basic data structures
	Scalar
	Vectors
	Matrices
	Indexing of a matrix

	Special types of matrices
	Identity matrix
	Diagonal matrix
	Tensors

	Tensor/matrix operations
	Transpose
	Multiplication
	Element-wise multiplication
	Inverse
	Finding the matrix inverse – Singular Value Decomposition (SVD)
	Norms
	Determinant

	Probability
	Random variables
	Discrete random variables
	Continuous random variables
	The probability mass/density function
	Conditional probability
	Joint probability
	Marginal probability
	Bayes' rule

	Introduction to Keras
	Introduction to the TensorFlow seq2seq library
	Defining embeddings for the encoder
and decoder
	Defining the encoder
	Defining the decoder

	Visualizing word embeddings with TensorBoard
	Starting TensorBoard
	Saving word embeddings and visualizing via TensorBoard

	Summary

	Other Books You May Enjoy
	Index

