

Docker Cookbook
Second Edition

Over 100 practical and insightful recipes to build distributed
applications with Docker

Ken Cochrane
Jeeva S. Chelladhurai
Neependra K Khare

BIRMINGHAM - MUMBAI

Docker Cookbook
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Nithin George Varghese
Technical Editor: Prashant Chaudhari
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: June 2015
Second edition: August 2018

Production reference: 1300818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-686-6

www.packtpub.com

http://www.packtpub.com

For Emily, Zander, and Maddox.
 - Ken Cochrane

To Dr. Pethuru Raj Chelliah, my mentor, who rekindled my technical brain
and constantly challenges me with new technologies.

 - Jeeva S. Chelladhurai

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Ken Cochrane is an IT professional with over 15 years of experience working with
organizations to build large-scale applications and platforms. Ken was a founding team
member at Docker, where he was the lead developer for the Docker Hub, and Docker for
AWS products. As an early team member, he worked on everything from the Docker
Engine to documentation. Ken also helped create Docker meetup groups in New York,
Boston, and Portland Maine. Ken currently works for WEX, a global payments company,
where he leads a team and helps modernize their technology stack by moving to the cloud
and automating their development pipeline using containers. He currently resides in
Southern Maine with his wife, Emily, and two sons, Zander and Maddox. His Twitter
handle is @kencochrane.

I would like to thank my wife, Emily, and my two boys, Zander and Maddox, for giving
me the time to work on this book; also, my parents for buying me my first computer, and
letting me spend so much of my free time on it. I would also like to thank Solomon Hykes,
and Sam Alba for taking a chance and hiring me at dotCloud, and allowing me to be a part
of Docker.

Jeeva S. Chelladhurai has been working as a DevOps specialist at the IBM Global Cloud
Center of Excellence (CoE) in India for the past 8 years. He has more than 20 years of
experience in the IT industry. In various capacities, he has technically managed and
mentored diverse teams across the globe in envisaging and building pioneering
telecommunication products. He specializes in DevOps and cloud solution delivery, with a
focus on data center optimization, software-defined environments (SDEs), and distributed
application development, deployment, and delivery using the newest Docker technology.
Jeeva is also a strong proponent of agile methodologies, DevOps, and IT automation. He
holds a master's degree in computer science from Manonmaniam Sundaranar University
and a graduate certificate in project management from Boston University. He has been
instrumental in crafting reusable assets for IBM solution architects and consultants in
Docker-inspired containerization technology.

Neependra K Khare is the founder and principal consultant at CloudYuga. CloudYuga
provides training and consulting on Docker, Kubernetes, GO Programming, and so on. He
is one of the Docker Captains and has run Docker Meetup Group in Bangalore for around 4
years. In 2015, he authored a book on Docker, Docker Cookbook. In 2016, he coauthored a
course on Cloud Infrastructure Technologies at Edx for the Linux Foundation. Recently, he
authored a course on Kubernetes on Edx, for the Linux Foundation.

About the reviewers
Fabrizio Soppelsa works as a software engineer for Samsung Electronics, in the cloud
computing department. He's also a Docker contributor and Docker community leader. He
has extensive hands-on experience with open cloud infrastructures and container
workloads in production, run by some of the most iconic companies in the world. He
shares his life with Anna in Moscow, Russia.

He's the author of Docker Clustering with Swarm, edited by Packt Publishing (2017).

Vishnu Gopal is an engineer with strong product and user experience skills, with
experience in product development, web development, and engineering management. He
was part of the initial team that built SlideShare Inc., which then went on to be acquired by
LinkedIn. He's been working in the web and mobile development field for over 10 years.
He is currently the CTO of SV.CO, a product accelerator for students based in India. He
lives in Kochi, India.

I would like to thank Deepa Pillai, DP, my English teacher in school, for her constant
encouragement and love. Like so many others, I started writing because she taught me the
value of words, of careful and patient editing, and that most good writing is rewriting. I
hope she continues to be as young as ever, forever.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction and Installation 7
Introduction 8

Namespaces 11
The PID namespace 11
The net namespace 12
The IPC namespace 13
The mnt namespace 14
The UTS namespace 14
The user namespace 14

Cgroups 14
The union filesystem 17
The container format 17

Verifying requirements for Docker installation 18
Getting ready 18
How to do it… 18
How it works… 19
See also 19

Installing Docker on Ubuntu 20
Getting ready 20
How to do it… 20
How it works... 21
There's more… 22
See also 22

Installing Docker on CentOS 22
Getting ready 22
How to do it... 23
How it works... 24
There's more... 24
See also 25

Installing Docker on Linux with an automated script 25
Getting ready 25
How to do it 26
How it works... 26
There's more... 26

Installing Docker for Windows 26
Getting ready 27
How to do it 27
How it works... 28

Table of Contents

[ii]

There's more 28
See also 29

Installing Docker for Mac 30
Getting ready 30
How to do it 30
How it works... 32
There's more... 32
See also 33

Pulling an image and running a container 33
Getting ready 34
How to do it... 34
How it works… 35
There's more… 36
See also 37

Adding a nonroot user to administer Docker 37
Getting ready 37
How to do it... 37
How it works… 38

Finding help with the Docker command line 38
Getting ready 38
How to do it… 38
How it works… 38
See also 38

Chapter 2: Working with Docker Containers 39
Introduction 40
Listing/searching for an image 40

Getting ready 41
How to do it... 41
How it works... 42
There's more... 42
See also 42

Pulling an image 43
Getting ready 43
How to do it... 43
How it works... 43
There's more... 44
See also 44

Listing images 45
Getting ready 45
How to do it... 45
How it works... 45
There's more... 46
See also 46

Starting a container 46

Table of Contents

[iii]

Getting ready 46
How to do it... 46
How it works... 47
There's more... 48
See also 49

Listing containers 49
Getting ready 49
How to do it... 50
How it works... 50
There's more... 50
See also 51

Looking at the container logs 51
Getting ready 51
How to do it... 51
How it works... 52
There's more... 52
See also 52

Stopping a container 53
Getting ready 53
How to do it... 53
How it works... 53
There's more... 53
See also 54

Removing a container 54
Getting ready 54
How to do it... 54
There's more... 55
How it works... 55
See also 55

Removing all stopped containers 56
Getting ready 56
How to do it... 56
There's more... 57
How it works... 57
See also 57

Setting the restart policy on a container 57
Getting ready 57
How to do it... 58
There's more... 58
See also 58

Getting privileged access inside a container 59
Getting ready 59
How to do it... 59
How it works... 60
There's more... 60

Table of Contents

[iv]

See also 60
Accessing the host device inside a container 60

Getting ready 61
How to do it... 61
How it works... 61
See also 61

Injecting a new process into a running container 61
Getting ready 62
How to do it... 62
How it works... 62
See also 62

Reading a container's metadata 63
Getting ready 63
How to do it... 63
How it works... 64
There's more... 64
See also 64

Labeling and filtering containers 64
Getting ready 65
How to do it... 65
How it works... 66
There's more... 66
See also 67

Reaping a zombie inside a container 67
Getting ready 68
How to do it... 68
There's more... 68
How it works... 69
See also 69

Chapter 3: Working with Docker Images 70
Introduction 71
Creating an image from the container 71

Getting ready 71
How to do it... 72
How it works... 73
There's more... 73
See also 74

Creating an account with Docker Hub 74
Getting ready 74
How to do it... 75
How it works... 77
See also 77

Logging in and out of the Docker image registry 78
Getting ready 78

Table of Contents

[v]

How to do it... 78
How it works... 80
There's more... 80
See also 80

Publishing an image to the registry 81
Getting ready 81
How to do it... 81
How it works... 82
There's more... 83
See also 83

Looking at the history of an image 83
Getting ready 83
How to do it... 84
How it works... 84
There's more... 84
See also 85

Removing an image 85
Getting ready 85
How to do it... 86
There's more... 87
See also 88

Exporting an image 88
Getting ready 88
How to do it... 88
There's more... 89
See also 89

Importing an image 89
Getting ready 89
How to do it... 90
There's more... 90
See also 90

Building an image using a Dockerfile 90
Getting ready 91
How to do it... 91
How it works... 92
There's more... 93
See also 96

Building an Apache image – a Dockerfile example 96
Getting ready 97
How to do it... 97
How it works... 98
There's more... 98
See also 99

Setting up a private index/registry 99
Getting ready 99

Table of Contents

[vi]

How to do it... 99
How it works... 100
There's more... 100
See also 100

Automated builds – with GitHub and Bitbucket 101
Getting ready 101
How to do it... 101
How it works... 111
There's more... 111
See also 112

Creating a custom base image 112
Getting ready 112
How to do it... 112
How it works... 113
See also 113

Creating a minimal image using a scratch base image 113
Getting ready 114
How to do it... 114
How it works... 115
There's more... 116
See also 116

Building images in multiple stages 116
Getting ready 117
How to do it... 117
How it works... 118
There's more... 119
See also 119

Visualizing the image hierarchy 119
Getting ready 119
How to do it... 120
How it works... 121
There's more... 121
See also 121

Chapter 4: Network and Data Management for Containers 122
Introduction 122
Accessing containers from outside 126

Getting ready 127
How to do it... 127
How it works... 128
There's more... 129
See also 129

Attaching containers to a host network 130
Getting ready 130
How to do it... 130

Table of Contents

[vii]

How it works... 131
See also 131

Launching containers with no network 132
Getting ready 132
How to do it... 132
How it works... 133
See also 133

Sharing IP addresses with other containers 133
Getting ready 134
How to do it... 134
How it works... 135
There's more... 136
See also 136

Creating a user-defined bridge network 137
Getting ready 137
How to do it... 138
How it works... 140
There's more... 140
See also 140

Discovering and load balancing containers 141
Getting ready 141
How to do it... 141
How it works... 143
There's more... 144
See also 144

Persisting data using volumes 145
Getting ready 146
How to do it... 146
How it works... 147
There's more... 148
See also 148

Sharing data between the host and the container 149
Getting ready 149
How to do it... 149
How it works... 150
There's more... 150
See also 151

Chapter 5: Docker Use Cases 152
Introduction 152
Testing with Docker 153

Getting ready 154
How to do it… 155
How it works… 156
There's more… 156

Table of Contents

[viii]

Performing CI/CD with Shippable and Heroku 156
Getting ready 157
How to do it… 160
How it works… 163
See also 164

Performing CI/CD with TravisCI 164
Getting ready 165
How to do it… 166
How it works… 168
There's more… 168
See also 168

Setting up PaaS with OpenShift origin 168
Getting ready 170
How to do it… 171
How it works… 181
There's more… 181
See also 181

Building and deploying an app on OpenShift from the source code 181
Getting ready 183
How to do it… 183
How it works… 184
There's more… 185
See also 185

Chapter 6: Docker APIs and SDKs 186
Introduction 186
Working with images using APIs 189

How to do it... 189
How it works... 191
There's more... 192
See also 192

Building images using APIs 193
How to do it... 193
How it works... 194
There's more... 194
See also 196

Launching containers using APIs 196
How to do it... 197
How it works... 198
There's more... 199
See also 199

Performing container operations using APIs 199
How to do it... 200
How it works... 201
See also 201

Table of Contents

[ix]

Exploring Docker remote API client libraries 201
Getting ready 202
How to do it... 202
How it works... 204
See also 204

Configuring the Docker daemon for remote connectivity 204
How to do it... 204
How it works... 207
There's more... 207
See also 207

Securing the Docker daemon's remote connectivity 208
Getting ready 208
How to do it... 208
How it works... 212
There's more... 212
See also 213

Chapter 7: Docker Performance 214
Introduction 214
Benchmarking CPU performance 219

Getting ready 220
How to do it… 220
How it works… 222
There's more… 222
See also 222

Benchmarking disk performance 223
Getting ready 223
How to do it... 224
How it works... 226
There's more… 226
See also 226

Benchmarking network performance 226
Getting ready 227
How to do it… 227
How it works… 228
There's more… 229
See also 229

Getting container resource usage using the stats feature 229
Getting ready 229
How to do it... 229
How it works... 230
See also 230

Setting up performance monitoring 230
Getting ready 230
How to do it... 231

Table of Contents

[x]

How it works... 232
There's more… 232
See also 232

Chapter 8: Docker Orchestration and Hosting a Platform 233
Introduction 233
Running applications with Docker Compose 234

Getting ready 234
How to do it 234
How it works... 235
There's more... 235
See also 236

Setting up a cluster with Docker Swarm 237
Getting ready 237
How to do it 238
How it works… 239
There's more... 240
See also 240

Using secrets with Docker Swarm 240
Getting ready 241
How to do it... 241
How it works... 242
There's more... 242
See also 242

Setting up a Kubernetes cluster 243
Getting ready 244
How to do it... 246
How it works... 246
There's more... 246
See also 248

Using secrets with Kubernetes 248
Getting ready 249
How to do it... 249
How it works... 250
There's more... 251
See also 251

Scaling up and down in Kubernetes cluster 252
Getting ready 252
How to do it... 252
How it works... 253
There's more... 253

Setting up WordPress with Kubernetes clusters 254
Getting ready 254
How to do it... 254
How it works... 256

Table of Contents

[xi]

There's more... 256
See also 256

Chapter 9: Docker Security 257
Introduction 257
Setting Mandatory Access Control (MAC) with SELinux 261

Getting ready 262
How to do it… 262
How it works… 264
There's more... 264
See also 265

Allowing writes to volumes mounted from the host with SELinux
ON 265

Getting ready 265
How to do it... 265
How it works… 266
See also 266

Removing capabilities to break down the power of a root user
inside a container 266

Getting ready 267
How to do it... 268
How it works... 268
There's more... 268
See also 269

Sharing namespaces between the host and the container 269
Getting ready 269
How to do it... 270
How it works... 271

Chapter 10: Getting Help and Tips and Tricks 272
Introduction 272
Starting Docker in debug mode 273

Getting ready 273
How to do it... 273
How it works... 274
See also 274

Building a Docker binary from the source 274
Getting ready 275
How to do it... 275
How it works... 276
There's more... 276
See also 276

Building images without using cached layers 276
Getting ready 276
How to do it... 277
How it works... 278

Table of Contents

[xii]

There's more... 278
Building your own bridge for container communication 278

Getting ready 278
How to do it... 278
How it works... 279
There's more... 280
See also 280

Changing the default OCI runtime 280
Getting ready 280
How to do it... 281
How it works... 281
See also 282

Selecting the logging driver for containers 282
Getting ready 282
How to do it 283
How it works... 283
There's more... 283
See also 283

Getting real-time Docker events for containers 284
Getting ready... 284
How to do it... 284
How it works... 285
There's more... 285
See also 286

Chapter 11: Docker on the Cloud 287
Introduction 287
Docker for AWS 288

Getting ready 288
How to do it... 289
How it works... 293
There's more 294
See also 297

Deploying WordPress on Docker for AWS 297
Getting ready 297
How to do it... 297
How it works... 301
There's more... 302

Docker for Azure 302
Getting ready 303
How to do it... 304
How it works... 309
There's more... 309
See also 311

Deploying Joomla! on Docker for Azure 311

Table of Contents

[xiii]

Getting ready 311
How to do it... 312
How it works... 316
See also 316

Other Books You May Enjoy 317

Index 320

Preface
With Docker, containers are becoming mainstream and enterprises are ready to use them in
production. This book is specially designed to help you get up to speed with Docker and
give you the confidence to use it in production. This book also covers Docker use cases,
orchestration, clustering, hosting platforms, security, and performance, which will help you
understand the different aspects of production deployment.

With step-by-step instructions to practical and applicable recipes, Docker Cookbook will not
only help you with the current version of Docker (18.06), but with the accompanying text, it
will provide you with conceptual information to cope with the minor changes in future
versions.

Docker is a registered trademark of Docker, Inc.

Who this book is for
This book targets developers, system administrators, and DevOps engineers who want to
use Docker in their development, QA, or production environments.

What this book covers
Chapter 1, Introduction and Installation, compares containers with bare metal and virtual
machines. It helps you understand Linux kernel features, that enable containerization;
finally, we'll take a look at installation recipes.

Chapter 2, Working with Docker Containers, explains the different operations you can
perform with containers, such as starting, stopping, listing, and deleting.

Chapter 3, Working with Docker Images, introduces you to Docker Hub and shows you how
to share images through Docker Hub and how to host your own Docker registry. It will also
show you the different ways to build your own image, along with a few Docker image
housekeeping operations.

Preface

[2]

Chapter 4, Network and Data Management for Containers teaches you how to access the
container from the outside world, share external storage within the container, communicate
with containers running on other hosts, and more.

Chapter 5, Docker Use Cases, explains most of the Docker use cases, such as using Docker
for testing, CI/CD, and setting up a PaaS.

Chapter 6, Docker APIs and Language Bindings, dives deep into the Docker API and shows
how to work with Docker using the RESTful API and SDK. The curl command that ships
with Ubuntu 18.04 has a bug; so, for this chapter, we are using Ubuntu 16.04 and Docker
version 17.03.

Chapter 7, Docker Performance, explains the approach one can follow to compare the
performance of containers with bare metal and VMs. It also covers monitoring tools.

Chapter 8, Docker Orchestration and Hosting Platforms, provides an introduction to Docker
Compose and Swarm, and then we take a look at using Kubernetes for Docker
Orchestration.

Chapter 9, Docker Security, explains general security guidelines, SELinux for mandatory
access controls, and other security features such as changing capabilities and sharing
namespaces.

Chapter 10, Getting Help and Tips and Tricks, provides tips and tricks and resources to help
you in things related to Docker administration and development.

Chapter 11, Docker on Cloud, provides an introduction to Docker for AWS and Azure, along
with how to install and deploy an application.

To get the most out of this book
It is expected that the reader should have basic Linux/Unix skills, such as installing
packages, editing files, and managing services.

Any experience in virtualization technologies, such as KVM, XEN, and VMware, would be
an added advantage.

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Docker- ​Cookbook- ​Second- ​Edition. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

A block of code is set as follows:

{
 "insecure-registries": [
 "172.30.0.0/16"
]
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

{
 "insecure-registries": [
 "172.30.0.0/16"
]
 }

Any command-line input or output is written as follows:

 $ docker image pull ubuntu

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Preface

[5]

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[6]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction and Installation

In this chapter, we will cover the following recipes:

Verifying the requirements for Docker installation
Installing Docker on Ubuntu
Installing Docker on CentOS
Installing Docker on Linux with an automated script
Installing Docker for Windows
Installing Docker for Mac
Pulling an image and running a container
Adding a nonroot user to administer Docker
Finding help with the Docker command line

Introduction and Installation Chapter 1

[8]

Introduction
At the very start of the IT revolution, most applications were deployed directly on physical
hardware, over the host OS. Because of that single user space, runtime was shared between
applications. The deployment was stable, hardware-centric, and had a long maintenance
cycle. It was mostly managed by an IT department, and gave much less flexibility to
developers. In such cases, the hardware resources were underutilized most of the time. The
following diagram depicts such a setup:

Traditional application deployment

Introduction and Installation Chapter 1

[9]

For flexible deployments, and in order to better utilize the resources of the host system,
virtualization was invented. With hypervisors, such as KVM, XEN, ESX, Hyper-V, and so
on, we emulated the hardware for virtual machines (VMs) and deployed a guest OS on
each virtual machine. VMs can have a different OS than their host; this means that we are
responsible for managing patches, security, and the performance of that VM. With
virtualization, applications are isolated at VM level and are defined by the life cycle of VMs.
This gives us a better return on our investment and higher flexibility at the cost of increased
complexity and redundancy. The following diagram depicts a typical virtualized
environment:

Application deployment in a virtualized environment

Introduction and Installation Chapter 1

[10]

Since virtualization was developed, we have been moving towards more application-
centric IT. We have removed the hypervisor layer to reduce hardware emulation and
complexity. The applications are packaged with their runtime environment, and are
deployed using containers. OpenVZ, Solaris Zones, and LXC are a few examples of
container technology. Containers are less flexible compared to VMs; for example, we cannot
run Microsoft Windows on Linux OS as of writing. Containers are also considered less
secure than VMs, because with containers, everything runs on the host OS. If a container
gets compromised, then it might be possible to get full access to the host OS. It can be a bit
too complex to set up, manage, and automate. These are a few of the reasons why we have
not seen the mass adoption of containers in the last few years, even though we had the
technology. The following diagram shows how an application is deployed using containers:

Application deployment with containers

With Docker, containers suddenly became first-class citizens. All big corporations, such as
Google, Microsoft, Red Hat, IBM, and others, are now working to make containers
mainstream.

Docker was started as an internal project by dotCloud founder Solomon Hykes. It was
released as open source in March 2013 under the Apache 2.0 license. With dotCloud's
platform as a service experience, the founders and engineers of Docker were aware of the
challenges of running containers. So with Docker, they developed a standard way to
manage containers.

Introduction and Installation Chapter 1

[11]

Docker uses the operating system's underlying kernel features, which enable
containerization. The following diagram depicts the Docker platform and the kernel
features used by Docker. Let's look at some of the major kernel features that Docker uses:

Docker platform and the kernel features used by Docker

Namespaces
Namespaces are the building blocks of a container. There are different types of namespace,
and each one of them isolates applications from the others. They are created using the clone
system call. You can also attach to existing namespaces. Some of the namespaces used by
Docker will be explained in the following sections.

The PID namespace
The PID namespace allows each container to have its own process numbering. Each PID
forms its own process hierarchy. A parent namespace can see the children namespaces and
affect them, but a child can neither see the parent namespace nor affect it.

Introduction and Installation Chapter 1

[12]

If there are two levels of hierarchy, then at the top level, we would see the process running
inside the child namespace with a different PID. So a process running in a child namespace
would have two PIDs: one in the child namespace and the other in the parent namespace.
For example, if we run a program on the container.sh container, then we can see the
corresponding program on the host as well.

On the container, the sh container.sh process has a PID of 8:

On the host, the same process has a PID of 29778:

The net namespace
With the PID namespace, we can run the same program multiple times in different isolated
environments; for example, we can run different instances of Apache on different
containers. But without the net namespace, we would not be able to listen on port 80 on
each one of them. The net namespace allows us to have different network interfaces on each
container, which solves the problem I mentioned earlier. Loopback interfaces would be
different in each container as well.

To enable networking in containers, we create pairs of special interfaces in two different net
namespaces and allow them to talk to each other. One end of the special interface resides
inside the container and the other resides on the host system. Generally, the interface inside
the container is called eth0, and on the host system, it is given a random name, such as
veth516cc56. These special interfaces are then linked through a bridge (docker0) on the
host to enable communication between the containers and the route packets.

Inside the container, you will see something like the following:

$ docker container run -it alpine ash
ip a

Introduction and Installation Chapter 1

[13]

On the host, it would look like the following:

$ ip a

Also, each net namespace has its own routing table and firewall rules.

The IPC namespace
The inter-process communication (IPC) namespace provides semaphores, message queues,
and shared memory segments. It is not widely used these days, but some programs still
depend on it.

Introduction and Installation Chapter 1

[14]

If the IPC resource created by one container is consumed by another container, then the
application running on the first container could fail. With the IPC namespace, processes
running in one namespace cannot access resources from another namespace.

The mnt namespace
Using only a chroot, you can inspect the relative paths of the system from a chrooted
directory/namespace. The mnt namespace takes the idea of chroots to the next level. With
the mnt namespace, a container can have its own set of mounted filesystems and root
directories. Processes in one mnt namespace cannot see the mounted filesystems of another
mnt namespace.

The UTS namespace
With the UTS namespace, we can have different hostnames for each container.

The user namespace
With user namespace support, we can have users who have a nonzero ID on the host, but
who can have a zero ID inside the container. This is because the user namespace allows
mappings of users and groups IDs per namespace.

There are ways to share namespaces between the host and container, and other containers
as well. We'll see how to do this in subsequent chapters.

Cgroups
Control groups (cgroups) provide resource limitations and accounting for containers. The
following quote is from the Linux Kernel documentation:

"Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all
their future children, into hierarchical groups with specialized behaviour."

In simple terms, they can be compared to the ulimit shell command or the setrlimit
system call. Instead of setting the resource limit to a single process, cgroups allow you to
limit resources to a group of processes.

Introduction and Installation Chapter 1

[15]

Control groups are split into different subsystems, such as CPU, CPU sets, memory block
I/O, and so on. Each subsystem can be used independently, or can be grouped with others.
The features that cgroups provide are as follows:

Resource limiting: For example, one cgroup can be bound to specific CPUs, so
that all processes in that group would run on given CPUs only
Prioritization: Some groups may get a larger share of CPUs
Accounting: You can measure the resource usage of different subsystems for
billing
Control: You can freeze and restart groups

Some of the subsystems that can be managed by cgroups are as follows:

blkio: Sets I/O access to and from block devices, such as disks, SSDs, and so on
Cpu: Limits access to CPU
Cpuacct: Generates CPU resource utilization
Cpuset: Assigns CPUs on a multicore system to tasks in a cgroup
Devices: Grants devices access to a set of tasks in a group
Freezer: Suspends or resumes tasks in a cgroup
Memory: Sets limits on memory use by tasks in a cgroup

There are multiple ways to control work with cgroups. Two of the most popular ones are
accessing the cgroup virtual filesystem manually and accessing it with the libcgroup
library. To use libcgroup on Linux, run the following command to install the required
packages on Ubuntu or Debian:

$ sudo apt-get install cgroup-tools

To install the required packages on CentOS, Fedora, or Red Hat, use the following code:

$ sudo yum install libcgroup libcgroup-tools

These steps are not possible on Docker for Mac and Windows, because
you can't install the required packages on those versions of Docker.

Introduction and Installation Chapter 1

[16]

Once installed, you can get the list of subsystems and their mount point in the pseudo
filesystem with the following command:

$ lssubsys -M

Although we haven't looked at the actual commands yet, let's assume that we are running a
few containers and want to get the cgroup entries for a container. To get those, we first
need to get the container ID and then use the lscgroup command to get the cgroup entries
of a container, which we can get using the following command:

For more details, visit https:/ ​/​docs. ​docker. ​com/​config/ ​containers/
runmetrics/ ​. ​

https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.
https://docs.docker.com/config/containers/runmetrics/.

Introduction and Installation Chapter 1

[17]

The union filesystem
The union filesystem allows the files and directories of separate filesystems, known as
layers, to be transparently overlaid to create a new virtual filesystem. While starting a
container, Docker overlays all the layers attached to an image and creates a read-only
filesystem. On top of that, Docker creates a read/write layer that is used by the container's
runtime environment. You can read the Pulling an image and running a container recipe of
this chapter for more details. Docker can use several union filesystem variants, including
AUFS, Btrfs, zfs, overlay, overlay2, and DeviceMapper.

Docker also has a virtual file system (VFS) storage driver. A VFS doesn't support copy-on-
write (COW) and is not a union filesystem. This means that each layer is a directory on the
disk, and each time a new layer is created, it requires a deep copy of its parent layer. For
these reasons, it has lower performance and requires more disk space, but it is a robust and
stable option that works in every environment.

The container format
Docker Engine combines the namespaces, control groups, and UnionFS into a wrapper
called a container format. In 2015, Docker donated its container format and runtime to an
organization called the the Open Container Initiative (OCI). The OCI is a lightweight,
open-governance structure formed under the Linux Foundation by Docker and other
industry leaders. The purpose of the OCI is to create open industry standards around
container formats and runtimes. There are currently two specifications: the Runtime
Specification and the Image Specification.

The Runtime Specification outlines how to run an OCI runtime filesystem bundle. Docker
donated runC, (https:/ ​/​github. ​com/ ​opencontainers/ ​runc) its OCI-compliant runtime to
the OCI, to serve as the reference implementation.

The OCI image format contains the information needed to launch the application on the
target platform. The specification defines how to create the OCI image, and what the
desired output would look like. The output would consist of an image manifest, a
filesystem (layer) serialization, and the image configuration. Docker donated its Docker V2
image format to the OCI to form the basis of the OCI image specification.

There are currently two container engines that support the OCI Runtime and Image
Specifications: Docker and rkt.

https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc

Introduction and Installation Chapter 1

[18]

Verifying requirements for Docker
installation
Docker is supported on many Linux platforms, such as RHEL, Ubuntu, Fedora, CentOS,
Debian, Arch Linux, among others. It is also supported on many cloud platforms, such as
Amazon Web Services, Digital Ocean, Microsoft Azure, and Google Cloud. Docker has also
released desktop applications for Microsoft Windows and Mac OS X that allows you to
easily get Docker up and running directly on your local machine.

In this recipe, we will verify the requirements for Docker installation. We will look at a
system with an Ubuntu 18.04 LTS installation, though the same steps should work on other
Linux flavors as well.

Getting ready
Log in as a root user on the system that has Ubuntu 18.04 installed.

How to do it…
Perform the following steps:

1. Docker is not supported on 32-bit architecture. To check the architecture on
your system, run the following command:

 $ uname -i
 x86_64

Docker is supported on kernel 3.8 or later. It has been back-ported on some of the2.
kernel 2.6, such as RHEL 6.5 and above. To check the kernel version, run the
following command:

 $ uname -r
 4.15.0-29-generic

Running the kernel should support an appropriate storage backend. Some of the3.
options for such a backend are VFS, DeviceMapper, AUFS, Btrfs, zfs, and
Overlayfs.

Introduction and Installation Chapter 1

[19]

For Ubuntu, the default storage backend or driver is overlay2, which has been
available since Ubuntu 14.04. Another popular one is DeviceMapper, which uses
the device-mapper thin provisioning module to implement layers. It should be
installed by default on a majority of Linux platforms. To check for device-
mapper, you can run the following command:

 $ grep device-mapper /proc/devices
 253 device-mapper

On most distributions, AUFS would require a modified kernel.

Support for cgroups and namespaces have been in the kernel for sometime, and4.
should be enabled by default. To check for their presence, you can look at the
corresponding configuration file of the kernel you are running. For example, on
Ubuntu, I can do something like the following:

 $ grep -i namespaces /boot/config-4.15.0-29-generic
 CONFIG_NAMESPACES=y

 $ grep -i cgroups /boot/config-4.15.0-29-generic
 CONFIG_CGROUPS=y

The name of the config file is usually dependent on your kernel version.
Your system might have a different filename. If this is the case, change the
command accordingly.

How it works…
Docker requires that the host system meets a basic set of requirements in order for it to run
correctly. By running the preceding commands, we were able to confirm that our system
meets those requirements.

See also
Check out the installation document on the Docker website at https:/ ​/​docs. ​docker. ​com/
install/​.

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/

Introduction and Installation Chapter 1

[20]

Installing Docker on Ubuntu
There are a few different versions of Ubuntu that are available. In this recipe, we will be
installing Docker on Ubuntu 18.04, which is the latest LTS version as of writing. These same
steps should also work with Ubuntu 16.04.

Getting ready
Check for the prerequisites mentioned in the previous recipe.

Uninstall any older versions of Docker. Previous versions of the Docker package are called
docker, docker.io, or docker-engine. If these are installed, then we need to uninstall
them, or else they might cause problems:

 $ sudo apt-get remove docker docker-engine docker.io

How to do it…
Go through the following steps:

Update the apt package index:1.

 $ sudo apt-get update

 Install the packages to allow apt to use a repository over HTTPS:2.

 $ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Add Docker's official GPG key:3.

 $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo
apt-key add -
 OK

Introduction and Installation Chapter 1

[21]

Verify that we have the correct key installed:

 $ sudo apt-key fingerprint 0EBFCD88
 pub rsa4096 2017-02-22 [SCEA]
 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
 uid [unknown] Docker Release (CE deb) <docker@docker.com>
 sub rsa4096 2017-02-22 [S]

Add the Docker apt repository using the stable channel:4.

 $ sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

If you want more frequent updates, and you don't mind a few bugs, you
can use the nightly test channel. To use the test channel, all you need to do
is change stable to test in the preceding command.

Update the apt package index so that it includes the Docker repository we just5.
added:

 $ sudo apt-get update

 Install the latest version of Docker CE:6.

 $ sudo apt-get install docker-ce

Verify that the installation worked:7.

 $ sudo docker container run hello-world

How it works...
The preceding command will install Docker on Ubuntu and all the packages required by it.

Introduction and Installation Chapter 1

[22]

There's more…
The default Docker daemon configuration file is located at /etc/docker, which is used
while starting the daemon. Here are some basic operations:

To start the service, enter the following:

 $ sudo systemctl start docker

To verify the installation, enter the following:

 $ docker info

To update the package, enter the following:

 $ sudo apt-get update

To enable the start of the service at boot time, enter the following:

 $ sudo systemctl enable docker

To stop the service, enter the following:

 $ sudo systemctl stop docker

See also
For more information, check out the Ubuntu installation document on the Docker website
at https:/​/​docs.​docker. ​com/ ​install/ ​linux/ ​docker- ​ce/ ​ubuntu/ ​.

Installing Docker on CentOS
Another popular Linux distribution is CentOS, which is a free, enterprise-class distribution
that is compatible with Red Hat Enterprise Linux (RHEL). Go through the following easy
recipe to install Docker on CentOS 7.x.

Getting ready
The centos-extra repository must be enabled. This is usually enabled by default, but if
you disabled it, please enable it again.

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Introduction and Installation Chapter 1

[23]

Previously, the Docker package had a different name: It was called docker or docker-
engine; it is now called docker-ce. We will need to remove any previous Docker versions
in order to prevent any conflicts:

$ sudo yum remove docker \
 docker-client \
 docker-client-latest \
 docker-common \
 docker-latest \
 docker-latest-logrotate \
 docker-logrotate \
 docker-selinux \
 docker-engine-selinux \
 docker-engine

It is OK if yum reports that none of these packages are installed.

How to do it...
Go through the following steps:

Install the required packages: 1.

 $ sudo yum install -y yum-utils \
 device-mapper-persistent-data \
 lvm2

 Set up the Docker yum repository using the stable channel:2.

 $ sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo

Optional: Enable the test channel for access to the nightly builds:3.

 $ sudo yum-config-manager --enable docker-ce-test

Install the latest version of docker-ce:4.

 $ sudo yum install docker-ce

Introduction and Installation Chapter 1

[24]

If prompted to accept the GPG key, verify that it matches 060A 61C5 1B555.
8A7F 742B 77AA C52F EB6B 621E 9F35. If it does, then accept it:

 Retrieving key from https://download.docker.com/linux/centos/gpg
 Importing GPG key 0x621E9F35:
 Userid : "Docker Release (CE rpm) <docker@docker.com>"
 Fingerprint: 060a 61c5 1b55 8a7f 742b 77aa c52f eb6b 621e 9f35
 From : https://download.docker.com/linux/centos/gpg
 Is this ok [y/N]: y

 Start the Docker daemon:6.

 $ sudo systemctl start docker

Verify that the installation worked:7.

 $ docker container run hello-world

How it works...
The preceding recipe installs Docker on CentOS and all the packages required by it.

There's more...
The default Docker daemon configuration file is located at /etc/docker, which is used
while starting the daemon. Here are some basic operations:

To start the service, enter the following:

 $ sudo systemctl start docker

To verify the installation, enter the following:

 $ docker info

To update the package, enter the following:

 $ sudo yum -y upgrade

To enable the service start at boot time, enter the following:

 $ sudo systemctl enable docker

Introduction and Installation Chapter 1

[25]

To uninstall Docker, enter the following:

 $ sudo yum remove docker-ce

To stop the service, enter the following:

 $ sudo systemctl stop docker

See also
For more information, check out the CentOS installation document on the Docker website
at https:/​/​docs.​docker. ​com/ ​install/ ​linux/ ​docker- ​ce/ ​centos/ ​.

Installing Docker on Linux with an
automated script
In the previous two recipes, we went through the different steps required to install Docker
on Ubuntu and CentOS. Those steps are fine when you are only installing it on a host or
two, but what if you need to install it on a hundred? In that case, you would want
something a little more automated to speed up the process. This recipe shows you how to
install Docker on different Linux flavors using an install script that is provided by Docker.

Getting ready
Like all scripts that you download off the internet, the first thing you should do is examine
the script and make sure you know what it is doing before you use it. To do this, go
through the following steps:

Visit https:/ ​/ ​get. ​docker. ​com in your favorite web browser to review the script,1.
and make sure you are comfortable with what it is doing. If in doubt, don't use it.
The script needs to be run as root or with sudo privileges.2.
If Docker has already been installed on the host, it needs to be removed before3.
running the script.

The script currently works with the following flavors of Linux: CentOS, Fedora, Debian,
Ubuntu, and Raspbian.

https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com
https://get.docker.com

Introduction and Installation Chapter 1

[26]

How to do it
To use the script, go through the following steps:

Download the script to the host system:1.

 $ curl -fsSL get.docker.com -o get-docker.sh

Run the script:2.

 $ sudo sh get-docker.sh

How it works...
The preceding recipe used an automated script to install Docker on Linux.

There's more...
In order to upgrade Docker, you will need to use the package manager on your host.
Rerunning the script can cause issues if it attempts to re-add repositories that were already
added. See the previous recipes to learn how to upgrade Docker on CentOS and Ubuntu
using their respective package managers.

Installing Docker for Windows
Docker for Windows is a native application that is deeply integrated with Hyper-V
virtualization and the Windows networking and filesystems. It is a full-featured
development environment that can be used for building, debugging, and testing Docker
apps on a Windows PC. It also works well with VPNs and proxies to make it easier when
used in a corporate environment.

Docker for Windows supports both Windows and Linux containers out of the box, and it is
easy to switch between the two to build your multiplatform applications. It comes with the
Docker CLI client, Docker Compose, Docker Machine, and Docker Notary.

Recent releases have also added Kubernetes support so that you can easily create a full
Kubernetes environment on your machine with just the click of a button.

Introduction and Installation Chapter 1

[27]

Getting ready
Docker for Windows has the following system requirements:

64-bit Windows 10 Pro, Enterprise, and Education (1607 Anniversary Update,
Build 14393 or later)
Virtualization must be enabled in BIOS and be CPU-SLAT-capable.
4 GB of RAM

If your system does not satisfy these requirements, fear not—all is not lost.
You can install Docker Toolbox (https:/ ​/​docs. ​docker. ​com/ ​toolbox/
overview/ ​), which uses Oracle VirtualBox instead of Hyper-V. It isn't as
good, but it is better than nothing.

How to do it
To install Docker for Windows, go through the following steps:

Download Docker for Windows from the Docker Store1.
at https://store.docker.com/editions/community/docker-ce-desktop-windo
ws. You will need to log in in order to download the installer. If you do not have
a Docker account, you can create one at https:/ ​/​store. ​docker. ​com/​signup.
Double-click the installation file that you downloaded from the store. It should2.
be called something like Docker for windows Installer.exe:

Once the installation is complete, it will automatically start up. You will
notice a little whale icon in the notification area of your task bar. If you
need to change any settings, right-click on the icon and select Settings.

https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup
https://store.docker.com/signup

Introduction and Installation Chapter 1

[28]

Open up a command-line terminal and check to make sure that the installation is3.
working:

 $ docker container run hello-world

How it works...
This recipe will show you how to install a Docker development environment on your
Windows machine.

There's more
Now that you have Docker for Windows installed, check out the following tips to get the
most out of your installation:

Docker for Windows supports both Windows and Linux containers. If you want
to switch, you just need to right-click on the whale icon, select Switch to
Windows containers..., and then click the Switch button:

To switch back, do the same thing, except this time, select Switch to Linux
containers....

Introduction and Installation Chapter 1

[29]

Docker for Windows will automatically check for new updates and let you know
when a new version is available to install. If you agree to upgrade, it will
download the new version and install it for you.
Kubernetes doesn't run by default. If you want to turn it on, you will need to
right-click on the Docker whale icon in your task bar, then select Settings. Inside
the Settings menu, there is a Kubernetes tab. Click on the tab, and then click
the Enable Kubernetes option and hit the Apply button:

See also
For more information about Docker for Windows, and for links to labs and more examples,
go to https:/​/​docs. ​docker. ​com/ ​docker- ​for- ​windows/ ​.

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/

Introduction and Installation Chapter 1

[30]

Installing Docker for Mac
Docker for Mac is the fastest and most reliable way to run Docker on a Mac. It installs all of
the tools required to set up a complete Docker development environment on your Mac. It
includes the Docker command line, Docker Compose, and Docker Notary. It also works
well with VPNs and proxies to make it easier when used in a corporate environment.

Recent releases have also added Kubernetes support so that you can easily create a full
Kubernetes environment on your machine with just the click of a button.

Getting ready
Docker for Mac has the following system requirements:

macOS El Capitan 10.11, or a newer macOS release
At least 4 GB of RAM
The Mac hardware must be a 2010 or newer model, with Intel's hardware
support for Memory Management Unit (MMU) virtualization, including
Extended Page Tables (EPT) and unrestricted mode. To see whether your
machine supports this, run the following command in a terminal:

 $ sysctl kern.hv_support
 kern.hv_support: 1

If your system does not satisfy these requirements, fear not—all is not lost.
You can install Docker Toolbox (https:/ ​/​docs. ​docker. ​com/ ​toolbox/
overview/ ​), which uses Oracle VirtualBox instead of HyperKit. It isn't as
good, but it is better than nothing.

How to do it
To install Docker for Mac, go through the following steps:

Download Docker for Mac from the Docker Store at https:/ ​/ ​store. ​docker. ​com/1.
editions/ ​community/ ​docker- ​ce-​desktop- ​mac. You will need to log in in order to
download the installer. If you do not have a Docker account, you can create one
at https://store.docker.com/signup.
Open the installation file that you downloaded from the store. It should be called2.
something like Docker.dmg.

https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/signup

Introduction and Installation Chapter 1

[31]

Drag and drop the whale icon into the Applications folder:3.

Double-click the Docker.app icon in the Applications folder to start Docker, as4.
shown in the following screenshot:

You will be prompted to authorize Docker.app with your system password. This5.
is normal—Docker.app needs privileged access to install some of its components.
Click OK and enter your password so it can finish installing:

Introduction and Installation Chapter 1

[32]

When Docker is finished, a little whale icon will show up in the status menu in6.
the top right of your screen, as shown in the following screenshot:

If you click on the whale, you can access the application preferences and other7.
options.
Select the About Docker button to verify that you have the latest version.8.
Check to make sure that it is installed and working. Open up a terminal window9.
and type the following:

 $ docker container run hello-world

How it works...
The preceding recipe will download and install a Docker development environment on
your Mac.

There's more...
Now that you have Docker for Mac installed, here are a few more tips for getting started:

Docker for Mac will automatically check for new updates and let you know
when a new version is available for you to install. If you agree to upgrade, it will
do all the work, downloading the new version and installing it for you.
Kubernetes isn't running by default. If you want to turn it on, you will need to
click on the Docker whale icon in your Status menu, then select Preferences.
Inside of Preferences, there is a Kubernetes tab. Click on the tab, then click the
Enable Kubernetes option, and hit the Apply button:

Introduction and Installation Chapter 1

[33]

See also
Visit the Get Started with Docker for Mac guide to help you learn about the application and
how best to use it. You can find it at https:/ ​/​docs. ​docker. ​com/​docker- ​for- ​mac/​.

Pulling an image and running a container
I am borrowing the following recipe from the next chapter to introduce some concepts.
Don't worry if the recipe doesn't explain everything; we'll cover the topics in detail later in
this chapter, or in the next few chapters. For now, let's pull an image and run it. We'll also
get familiar with Docker architecture and its components in this recipe.

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/

Introduction and Installation Chapter 1

[34]

Getting ready
First, gain access to a system that has Docker installed.

How to do it...
To pull an image and run a container, go through the following steps:

Pull an image by running the following command:1.

 $ docker image pull alpine

List the existing images by using the following command:2.

 $ docker image ls

Create a container using the pulled image and list the containers as follows:3.

 $ docker container run -id --name demo alpine ash

Introduction and Installation Chapter 1

[35]

How it works…
Docker has client–server architecture. Its binary consists of the Docker client and server
daemon, and can reside on the same host. The client can communicate via sockets or a
RESTful API to either a local or remote Docker daemon. The Docker daemon builds, runs,
and distributes containers. As shown in the following diagram, the Docker client sends the
command to the Docker daemon running on the host machine. The Docker daemon also
connects to either a public or a local registry to get images requested by the client:

So in our case, the Docker client sends a request to the daemon running on the local system,
which then connects to the public Docker registry and downloads the image. Once it is
downloaded, we can run it.

Introduction and Installation Chapter 1

[36]

There's more…
Let's explore some keywords that we encountered earlier in this recipe:

Images: Docker images are read-only templates, and they give us containers
during runtime. They are based on the idea of a base image and layers resting on
top of it. For example, we can have a base image of Alpine or Ubuntu, and then
we can install packages or make modifications over the base image to create a
new layer. The base image and new layer can be treated as a new image. For
example, in the following figure, Debian is the base image and then Emacs and
Apache are the two layers added on top of it. They are highly portable and can
be shared easily:

Layers are transparently laid on top of the base image to create a single
coherent filesystem.

Registries: A registry holds Docker images. It can be public or private,
depending on the location from which you can download or upload images. The
public Docker registry is called Docker Hub, which we will cover later.
Index: An index manages user accounts, permissions, searches, tagging, and all
that nice stuff that's in the public web interface of the Docker registry.

Introduction and Installation Chapter 1

[37]

Containers: Containers run images that are created by combining the base image
and the layers on top of it. They contain everything that is needed to run an
application. As shown in the preceding diagram, a temporary layer is also added
while starting the container, and this will be discarded if it is not committed after
the container is stopped and deleted. If it is committed, then it would create
another layer.
Repository: Different versions of an image can be managed by multiple tags,
which are saved with different GUID. A repository is a collection of images
tracked by GUIDs.

See also
For more information, check out the documentation on the Docker website at https:/ ​/
docs.​docker.​com/ ​engine/ ​docker- ​overview/ ​.

Adding a nonroot user to administer Docker
For ease of use, we can allow a nonroot user to administer Docker by adding it to a Docker
group. This is not required when using Docker on Mac or Windows.

Getting ready
To prepare to add a nonroot user to administer Docker, go through the following steps:

Create the Docker group, if it is not there already:1.

 $ sudo groupadd docker

Create the user to whom you want to give permissions to administer Docker:2.

 $ sudo useradd dockertest

How to do it...
Run the following command to add the newly created user to administer Docker:

 $ sudo usermod -aG docker dockertest

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/

Introduction and Installation Chapter 1

[38]

How it works…
The preceding command will add a user to the Docker group. The added user will thus be
able to perform all Docker operations.

Finding help with the Docker command line
Docker commands are well documented, and can be referred to whenever needed. Lots of
documentation is available online as well, but it might differ from the documentation for
the Docker version you are running.

Getting ready
First, install Docker on your system.

How to do it…
On a Linux-based system, you can use the man command to find help, as follows:1.

 $ man docker

Subcommand-specific help can also be found with either of the following2.
commands:

 $ man docker ps
 $ man docker-ps

How it works…
The man command uses the man pages installed by the Docker package to provide help.

See also
For more information, see the documentation on the Docker website at https:/ ​/​docs.
docker.​com/​engine/ ​reference/ ​commandline/ ​cli/ ​.

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

2
Working with Docker

Containers
In this chapter, we will cover the following recipes:

Listing/searching for an image
Pulling an image
Listing images
Starting a container
Listing containers
Looking at the container logs
Stopping a container
Removing a container
Removing all stopped containers
Setting the restart policy on a container
Getting privileged access inside a container
Accessing the host device inside a container
Injecting a new process into a running container
Reading a container's metadata
Labeling and filtering containers
Reaping a zombie inside a container

Working with Docker Containers Chapter 2

[40]

Introduction
In the previous chapter, after installing Docker, we pulled an image and created a container
from it. Docker's primary objective is running containers. In this chapter, we'll see the
different operations we can perform with containers, such as starting, stopping, listing,
deleting, and so on. This will help us use Docker for different use cases, such as testing,
CI/CD, setting up PaaS, and so on, which we'll cover in later chapters. Before we start, let's
verify the Docker installation by running the following command:

 $ docker version

This will give the Docker client and server version, as well as other details.

I am using Ubuntu 18.04 as my primary environment in which to run
these recipes. They should also work with the other environments.

Listing/searching for an image
We need an image to get the container started. Let's see how images are searched for on the
Docker registry. As we have seen in Chapter 1, Introduction and Installation, a registry holds
the Docker images, which can be both public and private. By default, the search happens on
the default public registry, which is the Docker Hub and is located at
https://hub.docker.com/.

https://hub.docker.com/.

Working with Docker Containers Chapter 2

[41]

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
The docker search command lets you search an image on a Docker registry. The
following is the syntax for this:

 docker search [OPTIONS] TERM

The following is an example of searching for the alpine image:

 $ docker search --limit 5 alpine

The preceding screenshot lists the name, description, and number of stars awarded to the
image. It also points out whether the image is official and automated or not:

STARS signify how many people liked the given image.
The OFFICIAL column helps us identify whether the image is built from a
trusted source or not.
The AUTOMATED column is a way of telling whether an image is built
automatically when pushed into GitHub or Bitbucket repositories. More details
about AUTOMATED can be found in the next chapter.

The convention for an image name is <user>/<name>, but it can be
anything.

Working with Docker Containers Chapter 2

[42]

How it works...
Docker searches for images on the Docker public registry, which has a repository for
images at https://index.docker.io/v1/.

We can configure our private registry as well, so it can also search for images there.

There's more...
To list images that got more than 20 stars and are automated, run the following
command:

 $ docker search \
 --filter is-automated=true \
 --filter stars=20 alpine

In Chapter 3, Working with Docker Images, we will see how to set up automated builds.

From Docker 1.3 onwards, the --insecure-registry option for the Docker daemon is
provided, which allows us to search/pull/commit images from an insecure registry. For
more details, look at https://docs.docker.com/registry/insecure/.

See also
Look at the help on Docker search by running the following command:

 $ docker search --help

The documentation for this is on the Docker website
here: https://docs.docker.com/edge/engine/reference/commandline/search/.

https://index.docker.io/v1/.
https://docs.docker.com/registry/insecure/
https://docs.docker.com/edge/engine/reference/commandline/search/

Working with Docker Containers Chapter 2

[43]

Pulling an image
After searching for the image, we can pull it to the system by running the Docker daemon.
Let's see how we can do that.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
To pull an image from the Docker registry, you can either run the following:

 docker image pull [OPTIONS] NAME[:TAG|@DIGEST]

Or the legacy command:

 docker pull [OPTIONS] NAME[:TAG|@DIGEST]

The following is an example of pulling the ubuntu image:

 $ docker image pull ubuntu

How it works...
The pull command downloads all layers from the Docker registry that are required to
create that image locally. We will see details about layers in the next chapter.

Working with Docker Containers Chapter 2

[44]

There's more...
Image tags group images of the same type. For example, CentOS can have images with tags
such as centos6, centos7, and so on. To pull an image with a specific tag, for instance,
run the following command:

 $ docker image pull centos:centos7

By default, the image with latest tag gets pulled. To pull all images corresponding to all
tags, use the following command:

 $ docker image pull --all-tags alpine

From Docker 1.6 (https://blog.docker.com/2015/04/docker-release-1-6/), we can
build and refer to images by a new content addressable identifier called a digest. It is a
very useful feature when we want to work with the specific images, rather than tags. To
pull an image with a specific digest, we can use the following syntax:

 $ docker image pull <image>@sha256:<digest>

The following is an example of using the preceding command:

 $ docker image pull
nginx@sha256:788fa27763db6d69ad3444e8ba72f947df9e7e163bad7c1f5614f8fd27a311
c3

Digests are only supported with version 2 of the Docker registry.

Once an image gets pulled, it resides on the local cache (storage), so subsequent pulls will
be very fast. This feature plays a very important role in building Docker layered images.

See also
Look at the help option for docker image pull:

$ docker image pull --help

The relevant documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/image_pull/.

https://blog.docker.com/2015/04/docker-release-1-6/
https://docs.docker.com/engine/reference/commandline/image_pull/

Working with Docker Containers Chapter 2

[45]

Listing images
We can list the images that are available on the system by running the Docker daemon.
These images might have been pulled from the registry, imported through the docker
image pull command, or created through a Dockerfile.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
Run either one of the following commands to list the images:

 $ docker image ls
 $ docker images

How it works...
The Docker client talks to the Docker engine and gets a list of images that are downloaded
(pulled) to the Docker host.

Working with Docker Containers Chapter 2

[46]

There's more...
All the images with the same name but with different tags are downloaded. The interesting
thing to note here is that they have the same name but different tags. Also, there are two
different tags for the same IMAGE ID, which is 7328f6f8b418.

See also
Look at the help option of docker image ls:

 $ docker image ls --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/image_ls/.

Starting a container
Once we have the images, we can use them to start containers. In this recipe, we will start a
container with the ubuntu:latest image and see what happens behind the scenes.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
We can start a container using either of the following syntaxes:

 docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
 docker container run [OPTIONS] IMAGE [COMMAND] [ARG...]

The docker container run command is recommended over docker
run because, in version 1.13, Docker logically grouped container
operations under the docker container management command, and
so docker run might be obsolete in the future.

https://docs.docker.com/engine/reference/commandline/image_ls/

Working with Docker Containers Chapter 2

[47]

Here is an example of using the docker container run command:

 $ docker container run -i -t --name mycontainer ubuntu /bin/bash

By default, Docker picks the image with the latest tag:

The -interactive or -i option starts the container in interactive mode by
keeping the STDIN open
The --tty or -t option allocates a pseudo-tty and attaches it to the standard
input

So, with the preceding command, we can start a container from the ubuntu:latest image,
attach pseudo-tty, name it mycontainer, and run the /bin/bash command. If the name
is not specified, then a random string will be assigned as the name.

Also, if the image is not available locally, then it will be downloaded from the registry first
and then run.

How it works...
Under the hood, Docker will:

Merge all the layers, that makeup that image using UnionFS.
Allocate a unique ID to a container, which is referred to as the Container ID.
Allocate a filesystem and mount a read/write layer for the container. Any
changes on this layer will be temporary and will be discarded if they are not
committed.
Allocate a bridge network interface.
Assign an IP address to the container.
Execute the process specified by the user.

Also, with the default Docker configuration, it creates a directory (with the container's ID
inside /var/lib/docker/containers), which has the container's specific information
such as hostname, configuration details, logs, and /etc/hosts.

Working with Docker Containers Chapter 2

[48]

There's more...
To exit from the container, press Ctrl + D or type exit. It is similar to exiting from a shell,
but this will stop the container. Alternatively, to detach from the container, press Ctrl + P +
Q. The detached container will detach itself from the terminal, give control back to the
Docker host shell, and wait for the docker container attach command to attach back
to the container.

The run command creates and starts the container. With Docker 1.3 or later, it is possible to
just create the container using the create command and run it later using the start
command, as shown in the following example:

 $ ID=$(docker container create -t -i ubuntu /bin/bash)
 $ docker container start -a -i $ID

The container can be started in the background, and then we can attach to it whenever
needed. We need to use the -d option to start the container in the background:

 $ docker container run -d -i -t ubuntu /bin/bash
 0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672aa48f28c4f

The preceding command returns the container ID of the container, which we can attach to
later, as follows:

 $ ID=$(docker container run -d -t -i ubuntu /bin/bash)`
 $ docker attach $ID

In the preceding case, we chose /bin/bash to run inside the container. If we attach to the
container, we will get an interactive shell. We can run a non-interactive process and run it
in the background to make a deamonized container, like the following:

 $ docker container run -d ubuntu \
 /bin/bash -c \
 "while [true]; do date; sleep 1; done"

To remove the container after it exits, start the container with the --rm option, as follows:

 $ docker run --rm ubuntu date

As soon as the date command exits, the container will be removed.

Working with Docker Containers Chapter 2

[49]

The --read-only option of the run command will mount the root filesystem in read-
only mode:

 $ docker container run --read-only --rm \
 ubuntu touch file
 touch: cannot touch 'file': Read-only file system

You can also set custom labels for containers, which can be used to group containers based
on labels. Take a look at the Labelling and filtering containers recipe in this chapter for more
details.

A container can be referred to in three ways: by name, by its short
container ID (0df95cc49e25), and by its container ID
(0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672aa4
8f28c4f).

See also
Look at the help option of docker run:

 $ docker container run --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_run/.

Listing containers
We can list both running and stopped containers.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client. You will also need a few running and/or stopped containers.

https://docs.docker.com/engine/reference/commandline/container_run/

Working with Docker Containers Chapter 2

[50]

How to do it...
To list the containers, either run the following command:

 docker container ls [OPTIONS]

Or run the following legacy command:

 docker ps [OPTIONS]

How it works...
The Docker daemon will look at the metadata associated with the containers and list them.
By default, the command returns the following:

The container ID
The image from which it was created
The command that was run after starting the container
The details about when it was created
The current status
The ports that are exposed from the container
The name of the container

There's more...
To list both running and stopped containers, use the -a option as follows:

Working with Docker Containers Chapter 2

[51]

To return just the container IDs of all containers, use the -aq option as follows:

To show the last created container, including non-running containers, run the following
command:

 $ docker container ls -l

Using the --filter/-f option to ps, we can list containers with specific labels. Look at the
Labelling and filtering containers recipe in this chapter for more details.

See also
Look at the help option of docker container ls:

 $ docker container ls --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_ls/.

Looking at the container logs
If the container emits logs or output on STDOUT/STDERR, then we can get them without
logging into the container.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client. You will also need a running container, that emits logs/output on STDOUT.

How to do it...
To get logs from the container, run the following command:

 docker container logs [OPTIONS] CONTAINER

https://docs.docker.com/engine/reference/commandline/container_ls/

Working with Docker Containers Chapter 2

[52]

Or run the following legacy command:

 docker logs [OPTIONS] CONTAINER

Let's take an example from the earlier section where we ran a daemonized container and
looked at the logs:

 $ docker container run -d ubuntu \
 /bin/bash -c \
 "while [true]; do date; sleep 1; done"

How it works...
Docker will look at the container's specific log file from
/var/lib/docker/containers/<Container ID>/<Container ID>-json.log and
show the results.

There's more...
With the -t option, we can get the timestamp with each log line, and with -f we can get
tail-like behavior.

See also
Look at the help option of docker container logs:

 $ docker container logs --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_logs/.

https://docs.docker.com/engine/reference/commandline/container_logs/

Working with Docker Containers Chapter 2

[53]

Stopping a container
We can stop one or more containers at once. In this recipe, we will first start a container and
then stop it.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client. You will also need one or more running containers.

How to do it...
To stop a container, run the following command:

 docker container stop [OPTIONS] CONTAINER [CONTAINER...]

Or run the following legacy command:

 docker stop [OPTIONS] CONTAINER [CONTAINER...]

If you already have running containers, then you can go ahead and stop them; otherwise,
we can create one and then stop it as follows:

 $ ID=$(docker run -d -i ubuntu /bin/bash)
 $ docker stop $ID

How it works...
This will move the container from a running state to a stop state by stopping the process
running inside the container. A stopped container can be be started again, if needed.

There's more...
To stop a container after waiting for some time, use the --time/-t option.

To stop all running containers, run the following command:

 $ docker stop $(docker ps -q)

Working with Docker Containers Chapter 2

[54]

See also
Look at the help option of docker container stop:

 $ docker container stop --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_stop/.

Removing a container
We can remove a container permanently, but before that, we have to stop the container or
use the force option. In this recipe, we'll create and remove a container.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client. You will also need some containers in a stopped or running state to delete
them.

How to do it...
Use the following command:

 $ docker container rm [OPTIONS] CONTAINER [CONTAINER]

Or run the following legacy command:

 $ docker rm [OPTIONS] CONTAINER [CONTAINER]

Let's first create a container, and then delete it using the following commands:

 $ ID=$(docker container create ubuntu /bin/bash)
 $ docker container stop $ID
 $ docker container rm $ID

https://docs.docker.com/engine/reference/commandline/container_stop/

Working with Docker Containers Chapter 2

[55]

As we can see from the preceding screenshot, the container did not show up, which just
entered the docker container ls command after being stopped. We had to provide the
-a option in order to list it.

There's more...
To remove a running container, it must be stopped first using the docker container
stop command and then removed using the docker container rm command.

To forcefully remove a container without intermediate stop, use the -f option of
the docker container rm command.

To remove all the containers, we first need to stop all running containers and then remove
them. Be careful before running these commands as they will remove both running and
stopped containers:

 $ docker container stop $(docker container ls -q)
 $ docker container rm $(docker container ls -aq)

There are options to remove a specified link and volumes associated with the container,
which we will explore later.

How it works...
The Docker daemon will remove the read/write layer, which was created while starting the
container.

See also
Look at the help option of docker container rm:

 $ docker container rm --help

The documentation on the Docker website can be found here: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​container_ ​rm/ ​.

https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_rm/

Working with Docker Containers Chapter 2

[56]

Removing all stopped containers
We can remove all stopped containers with a single command. In this recipe, we'll create a
bunch of containers in a stopped state, and then delete all of them.

Getting ready
Ensure that Docker daemon 1.13 (and above) are running on the host and can be connected
through the Docker client. You will also need some containers in a stopped or running state
in order to delete them.

How to do it...
Use the following command:

 $ docker container prune [OPTIONS]

Let's first create a container, and then delete it using the following commands:

 $ docker container create --name c1 ubuntu /bin/bash
 $ docker container run --name c2 ubuntu /bin/bash
 $ docker container prune

Working with Docker Containers Chapter 2

[57]

There's more...
By default, the docker container prune command confirms prompts the user for
confirmation before removing containers that are not in a running state.

You could avoid the aforementioned confirmation by using the -f or --force option of
the docker container prune command.

How it works...
The Docker daemon will iterate through containers that are not running and will remove
them.

See also
Look at the help option of docker container prune:

 $ docker container prune --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_prune/.

Setting the restart policy on a container
Before Docker 1.2, when a container exited for any reason or the Docker host was rebooted,
the container had to be manually restarted using the restart command. With the release
of Docker 1.2, a policy-based restart capability was added to the Docker engine to automate
restarting containers. This feature is activated using the --restart option of the run
command and it supports container restart at Docker host boot time, as well as when
container failures occur.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

https://docs.docker.com/engine/reference/commandline/container_prune/

Working with Docker Containers Chapter 2

[58]

How to do it...
You can set the restart policy using the following syntax:

 $ docker container run --restart=POLICY [OPTIONS] IMAGE[:TAG]
[COMMAND] [ARG...]

Here is an example of using the preceding command:

 $ docker container run --restart=always -d -i -t ubuntu /bin/bash

There are three restart policies to choose from:

no: This does not start the container if it dies
on-failure: This restarts the container if it fails with a nonzero exit code
always: This always restarts the container without worrying about the return
code

There's more...
You can also get an optional restart count with the on-failure policy as follows:

 $ docker container run --restart=on-failure:3 \
 -d -i -t ubuntu /bin/bash

The preceding command will only restart the container three times if any failure occurs.

See also
Look at the help option of docker container run:

 $ docker container run --help

You can find help at Docker's website here: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​reference/
commandline/​conconcon_ ​run/ ​,
https://docs.docker.com/engine/reference/run/#restart-policies-restart.

Docker's documentation on starting containers automatically can be found
here: https://docs.docker.com/engine/admin/start-containers-automatically/.

If restart policies do not meet your requirements, then use process managers such as
systemd, supervisor, or upstart.

https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://docs.docker.com/engine/admin/start-containers-automatically/

Working with Docker Containers Chapter 2

[59]

Getting privileged access inside a container
Linux divides privileges that are traditionally associated with superusers into distinct units,
known as capabilities (run man capabilities on a Linux-based system), which can be
independently enabled and disabled. For example, the net_bind_service capability
allows nonuser processes to bind the port below 1,024. By default, Docker starts containers
with limited capabilities. With privileged access inside the container, we allocate more
capabilities to perform operations that are normally done by the root user. In order to have
a better understanding of privileged mode, let's first try a simple mount on an unprivileged
container and observe the effect:

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
To use privileged mode, use the following command:

 $ docker container run --privileged [OPTIONS] IMAGE [COMMAND] [ARG...]

Now, let's try the preceding example with privileged access:

 $ docker container run --privileged -i -t ubuntu /bin/bash

Working with Docker Containers Chapter 2

[60]

How it works...
This provides almost all capabilities inside the container.

There's more...
This mode causes security risks as containers can get root-level access on the Docker host.
With Docker 1.2 or newer, two new flags called --cap-add and --cap-del have been
added to give fine-grained control inside a container. For example, to prevent any chown
inside the container, use the following command:

 $ docker container run --cap-drop=CHOWN [OPTIONS] IMAGE [COMMAND]
 [ARG...]

Refer to Chapter 9, Docker Security, for more details.

See also
Look at the help option of docker container run:

 $ docker container run --help

The documentation on the Docker website can be found here:

https:/​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​container_ ​run/ ​
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-li
nux-capabilities

The Docker 1.2 release announcement can be found here:
http://blog.docker.com/2014/08/announcing-docker-1-2-0/.

Accessing the host device inside a
container
From Docker 1.2 onwards, we can give access of the host device to a container with the --
device option, following the run command. Earlier, you had to bind-mount it with the -v
option, and that had to be done with the --privileged option.

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
http://blog.docker.com/2014/08/announcing-docker-1-2-0/

Working with Docker Containers Chapter 2

[61]

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client. You will also need a device to pass the container to.

How to do it...
You can give access of a host device to the container using the following syntax:

 docker container run --device=<Host Device>:<Container Device
Mapping>:<Permissions> [OPTIONS] IMAGE [COMMAND] [ARG...]

Here is an example of using the preceding command:

 $ docker container run --device=/dev/sdc:/dev/xvdc \
 -i -t ubuntu /bin/bash

How it works...
The preceding command will access /dev/sdc inside the container.

See also
Look at the help option of docker container run:

 $ docker container run --help

The documentation on the Docker website can be found here: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​container_ ​run/ ​.

Injecting a new process into a running
container
While doing development and debugging, we might want to look inside an already
running container. There are a few utilities, such as nsenter
(https://github.com/jpetazzo/nsenter), which allow us to enter the namespace of the
container to inspect its state. With the exec option, which was added in Docker 1.3, we can
inject a new process inside a running container.

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_run/
https://github.com/jpetazzo/nsenter

Working with Docker Containers Chapter 2

[62]

Getting ready
Make sure that the Docker daemon is running on the host and that you can connect
through the Docker client. You might also need a running container to inject a process into.

How to do it...
You can inject a process inside a running container with the following command:

 $ docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Let's start an nginx container and then inject bash into it:

 $ ID=$(docker container run -d redis)
 $ docker container exec -it $ID /bin/bash

How it works...
The exec command enters the namespace of the container and starts the new process.

See also
Look at the help option of Docker inspect:

 $ docker container exec --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_exec/.

https://docs.docker.com/engine/reference/commandline/container_exec/

Working with Docker Containers Chapter 2

[63]

Reading a container's metadata
While doing debugging, automation, and so on, we will need the container's configuration
details. Docker provides the container inspect command to get those easily.

Getting ready
Ensure that the Docker daemon is running on the host and can be connected through the
Docker client.

How to do it...
To inspect a container, run the following command:

 $ docker container inspect [OPTIONS] CONTAINER [CONTAINER...]

We'll start a container and then inspect it, like so:

 $ ID=$(docker container run -d -i ubuntu /bin/bash)
 $ docker container inspect $ID

Working with Docker Containers Chapter 2

[64]

How it works...
Docker will look into the metadata and configuration for the given container and present it
in JSON format. Using tools like jq , this JSON formatted output can be further post-
processed.

There's more...
With the -f | --format option, we can use the Go (programming language) template to
get this specific information. The following command will give us an IP address for the
container:

 $ docker container inspect \
 --format='{{.NetworkSettings.IPAddress}}' $ID
 172.17.0.2

See also
Look at the help option of docker container inspect:

 $ docker container inspect --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_inspect/.

Labeling and filtering containers
With Docker 1.6, a feature has been added so that we can label containers and images
through which we can attach arbitrary key-value pairs as metadata. You can think of them
as environment variables, that are not available for applications running inside containers,
but they are available to Docker clients that manage the images and containers. Labels
attached to images also get applied to containers that are started using those images. We
can also attach labels to containers while starting them. Having labeled an image or a
container, the labels can later be used for filtering or selection purposes.

For this recipe, let's assume that we have an image with the label
com.example.image=docker-cookbook. We will see how to assign a label to an image in
the next chapter:

https://docs.docker.com/engine/reference/commandline/container_inspect/

Working with Docker Containers Chapter 2

[65]

As you can see from the preceding screenshot, if we use filters with the docker image ls
command, we only get the image where the corresponding label is found in the image's
metadata.

Getting ready
Ensure that Docker daemon 1.6 or above is running on the host and can be connected to
through the Docker client.

How to do it...
Add labels to the container's metadata by using the --label or -l option of the docker
container run command, as follows:

 $ docker container run \
 --label com.example.container=docker-cookbook \
 label-demo date

Let's start a container without a label and start two others with the same label:

Working with Docker Containers Chapter 2

[66]

Now, if we run docker container ls -a without any filter, it will list all the containers.
However, we can limit the list of containers to those we labelled by applying filtering to the
docker container ls -a command by using the --filter or -f option:

How it works...
Docker attaches label metadata to containers while starting them and matches the label
while listing them or performing other related operations.

There's more...
All the labels attached to a container can be listed through the docker container
inspect command. As we can see, the inspect command returns both the image and the
container labels that are attached to the container:

You can apply labels to a container from a file by using the --label-file option. The file
should have a list of labels separated by a new EOL.

These labels are different from Kubernetes labels, which we will explore in Chapter 8,
Docker Orchestration and Hosting Platform.

Working with Docker Containers Chapter 2

[67]

See also
The documentation on the Docker website can be found
here: https://docs.docker.com/engine/reference/commandline/container_run/.

Labeling key format recommendations can be found
here: https://docs.docker.com/engine/userguide/labels-custom-metadata/#key-forma
t-recommendations.

Labeling value guidelines can be found
here: https://docs.docker.com/engine/userguide/labels-custom-metadata/#value-gui
delines.

Details on adding label support to Docker can be found here:
http://rancher.com/docker-labels/.

Reaping a zombie inside a container
On Linux (and all Unix-like) operating systems, when a process exits, all the resources
associated with that process are released with the exception of its entry in the process table.
This entry in the process table is kept until the parent process reads the entry to learn about
the exit status of its child. This transient state of a process is called a zombie. As soon as the
parent process reads the entry, the zombie process is removed from the process table, and
this is called reaping. If the parent process exits before the child process, the init process
(PID 1) adopts the child process (PID 1) and it eventually reaps adopted child processes
when they exit:

In the preceding screenshot, we snipped the process tree for Ubuntu 14.04 on the left-hand
side and Ubuntu 18.04 on the right-hand side. As we can see, both process trees have the
init process at PID 1 on the left-and right-hand sides.

systemd is a variant of the init system and is adopted by many Linux
distributions.

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/userguide/labels-custom-metadata/#key-format-recommendations
https://docs.docker.com/engine/userguide/labels-custom-metadata/#key-format-recommendations
https://docs.docker.com/engine/userguide/labels-custom-metadata/#value-guidelines
https://docs.docker.com/engine/userguide/labels-custom-metadata/#value-guidelines
http://rancher.com/docker-labels/

Working with Docker Containers Chapter 2

[68]

If we go back to our namespace discussion of Docker, the Docker engine creates a new PID
namespace for each docker container, thus the first process inside the container is mapped
to PID 1. Docker is designed to run one process per container and usually the process
running inside the containers doesn't create child processes. However, if the process inside
the container creates child processes, then an init system is needed to reap zombie
processes. In this recipe, we will look at how to configure an init process for our container
to reap zombie processes.

Getting ready
Ensure that Docker daemon 1.13 or above is running on the host and can be connected
through the Docker client.

How to do it...
You can launch a container with the init process using the --init option of the Docker
container run command, as shown in the following syntax:

 docker container run --init [OPTIONS] IMAGE [COMMAND] [ARG...]

Let's create four containers, two without the --init option and another two with the --
init option, and compare the process tree by using the pstree command:

There's more...
By default, the docker container run --init command uses tini
(https://github.com/krallin/tini) as the init process.

The daemon flag --init-path allows you to configure your own init process.

https://github.com/krallin/tini

Working with Docker Containers Chapter 2

[69]

How it works...
The Docker daemon will launch the containers with init as the first process, followed by
the specified command.

See also
Look at the help option of docker container run:

 $ docker container run --help

The documentation on the Docker website can be found here:
https://docs.docker.com/engine/reference/commandline/container_run/.

https://docs.docker.com/engine/reference/commandline/container_run/

3
Working with Docker Images

In this chapter, we will cover the following recipes:

Creating an image from a container
Creating an account with Docker Hub
Logging in and out of a Docker image registry
Publishing an image to a registry
Looking at the history of an image
Removing an image
Exporting an image
Importing an image
Building an image using a Dockerfile
Building an Apache image - a Dockerfile example
Setting up a private index/registry
Automated builds - with GitHub and Bitbucket
Creating a custom base image
Creating a minimal image using a scratch base image
Building images in multiple stages
Visualizing the image hierarchy

Working with Docker Images Chapter 3

[71]

Introduction
Docker images are the essential building blocks of the Docker-inspired containerization
paradigm. As you are already aware, Docker containers are created from Docker images.
According to your application requirements, you can choose to create complex services
using the Docker images that are built and offered by the folks at Docker or third parties. If
the existing images don't fit your requirements, you can also extend the existing images or
custom-build your own images.

In this chapter, we will introduce you to Docker Hub, and will show you how to share
images through Docker Hub and how to host your own Docker registry. We will also show
you different ways to build your own image, along with a few Docker image housekeeping
operations.

We are using Ubuntu 18.04 as our primary environment on which to run
the z=zx. They should also work with other environments.

Creating an image from the container
There are a couple of ways to create images. One is by manually making changes inside a
container and then committing the image. The other is to build one using a Dockerfile. In
this recipe, we'll look at the former recipe and look at Dockerfiles later in the chapter.

As we start a new container, a read/write layer gets attached to it. This layer will get
destroyed if we do not save it. In this recipe, we will learn how to save that layer and make
a new image from the running or stopped container using the docker container
commit command. The following is the syntax for the docker container commit
command:

 $ docker container commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Getting ready
Ensure that the Docker daemon is running and has access to the Ubuntu image.

Working with Docker Images Chapter 3

[72]

How to do it...
Perform the following steps:

Let's start a container from an ubuntu image using the docker container run1.
command:

Having launched the container, issue apt-get update from the container2.
prompt to sync the package list, as shown in the following screenshot:

Install the apache2 package using the apt-get install command:3.

Now, open another terminal and create an image using the docker container4.
run command:

As you can see, the new image is now being committed to the local repository with
myapache2 as the name and latest as the tag.

Working with Docker Images Chapter 3

[73]

How it works...
In Chapter 1, Introduction and Installation, we learned that Docker images are layered and
that each layer is stacked on top of its parent image. When we start a container, a read/write
ephemeral filesystem layer gets created. The changes to the filesystem (that is, the addition,
modification, or deletion of files) through the apt-get update and install commands are
preserved in this read/write ephemeral filesystem layer. If we stop and delete the container,
the ephemeral layer associated with that container is removed and, essentially, we lose all
the changes we applied to the container.

In this recipe, we persisted the container's ephemeral layer by using the docker
container commit command. In effect, the commit operation creates another image layer
and saves it along with other images in the Docker host.

There's more...
The docker container diff command lists all the changes to the container filesystem
from its image, as shown in the following code:

 $ docker diff 6289e32373bf
 ...OUTPUT SNIPPED...
 C /var/log
 C /var/log/alternatives.log
 A /var/log/apache2
 A /var/log/apache2/access.log
 A /var/log/apache2/error.log
 A /var/log/apache2/other_vhosts_access.log
 ... OUTPUT SNIPPED...

We can see that there is a prefix before each entry of the output. The following is a list of
those prefixes:

A: This is for when a file/directory has been added
C: This is for when a file/directory has been modified
D: This is for when a file/directory has been deleted

Working with Docker Images Chapter 3

[74]

By default, a container gets paused while doing the commit. You can change its behavior by
passing --pause=false to commit.

See also
Refer to the help option for docker container commit:

 $ docker container commit --help

For more information, you can read the documentation on the Docker website at https:/ ​/
docs.​docker.​com/ ​engine/ ​reference/ ​commandline/ ​container_ ​commit/ ​.

Creating an account with Docker Hub
Docker Hub is a cloud-based public registry service to host both public and private images,
share them, and collaborate with others. It has integration with GitHub and Bitbucket, and
can trigger automated builds.

To host your image in Docker Hub, you need to create your Docker ID. This gives you the
ability to create any number of public repositories in Docker Hub.

Docker Hub also gives you one free private repository. If you need more
than one private repository, you can upgrade to a paid plan. A repository
can hold different versions of an image.

Getting ready
To sign up, you need access to any standard web browser.

https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/
https://docs.docker.com/engine/reference/commandline/container_commit/

Working with Docker Images Chapter 3

[75]

How to do it...
Perform the following steps:

Go to https://hub.docker.com:1.

Enter your preferred Docker ID, a valid email address, and password in the2.
fields in the sign up section and then click the Sign Up button.
Upon successful creation of the account, Docker Hub will display the following3.
information:

https://hub.docker.com

Working with Docker Images Chapter 3

[76]

As shown in the preceding screenshot, your account is not activated yet. In order4.
to activate your account, you have to confirm your email by pressing the
Confirm Your Email button in the email from Docker that you will have received
in the inbox of the email account that you provided, as shown in the following
screenshot:

Working with Docker Images Chapter 3

[77]

As soon as you confirm your email, you will land on the Welcome to Docker5.
page, as shown in the following screenshot:

Now, you have successfully created and activated your Docker Hub account.

How it works...
The preceding steps will have created a Docker Hub account for you. Once the account is
created, you'll get a confirmation email, through which you need to confirm your identity.

See also
The documentation at the Docker website:

https://docs.docker.com/docker-hub

https://docs.docker.com/docker-hub/accounts

https://hub.docker.com/help

https://docs.docker.com/docker-hub
https://docs.docker.com/docker-hub/accounts
https://hub.docker.com/help

Working with Docker Images Chapter 3

[78]

Logging in and out of the Docker image
registry
In your journey through the world of containerization, oftentimes you will be publishing
your images for public consumption or privately sharing images using a Docker registry.
To push an image to a public repository, you must log in to a Docker registry and you must
be the owner of that repository. In the case of a private repository, both pulling and
pushing are allowed, but only once you are logged in. In this recipe, we will see how to log
in and log out of a Docker registry.

Getting ready
Ensure that you have a valid Docker ID or GitLab account.

How to do it...
The docker login command lets you log in to more than one Docker registry at the same
time. Similarly, the docker logout command lets you log out from the specified server.
Here is the syntax for the Docker login and logout commands:

$ docker login [OPTIONS] [SERVER]
$ docker logout [SERVER]

By default, both the docker login and docker logout commands assume https:/ ​/​hub.
docker.​com/​ as the default registry, but this can be changed.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Working with Docker Images Chapter 3

[79]

Let's learn a little more about this process by experimenting with the following, as depicted
in the following screenshot:

Logging into the default Docker registry
Logging into the registry hosted at https:/ ​/​about. ​gitlab. ​com/ ​

Reading out the persisted login details
Logging out from all these registrie

https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/

Working with Docker Images Chapter 3

[80]

How it works...
In this recipe, we logged into two registries by using the docker login command, and
then explored how the login information is stored. We also used base64 to retrieve the
logged-in user ID, whereas it also displayed the stored password. Then we continued to log
out from both the registries by using the docker logout command.

There's more...
By default, the docker login command interactively prompts the user for their username
and password. You can change this interactive behavior to batch mode by supplying the
username using the -u or --username option and the password using the -p or --
password option.

In the preceding recipe, the password stored in the
$HOME/.docker/config.json file can be easily decoded using base64.
This is not desirable in all environments, however; in other scenarios, you
could resort to tools such as docker-credential-helpers.

See also
The help option for the docker login and docker logout options:

 $ docker login -help
 $ docker logout --help

The documentation on the Docker website:
https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/
login/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/
logout/ ​

The GitHub repository for the Docker credential helpers:
https://github.com/docker/docker-credential-helpers

https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/logout/
https://github.com/docker/docker-credential-helpers

Working with Docker Images Chapter 3

[81]

Publishing an image to the registry
As mentioned in the previous recipe, Docker image registries act as hubs to store and share
images. In this recipe, we'll see how to push the image to the registry using the docker
image push command. Later in this chapter, we'll cover how to set up the private registry.

Getting ready
Ensure that you have successfully logged in to hub.docker.com because, in this recipe, we
will be pushing an image to hub.docker.com. Alternatively, you could use a private or
third-party Docker image registry.

How to do it...
The following are two syntaxes for the command that is used to push a Docker image to a
registry:

 $ docker image push [OPTIONS] NAME[:TAG]
 $ docker push [OPTIONS] NAME[:TAG]

To push an image to a Docker registry, go through the following steps:

Begin by tagging the image using the docker image tag command with the1.
appropriate user or organization in the Docker hub, as shown in the following
code:

 $ docker image tag myapache2 cookbook/myapache2

Here, the image is tagged as cookbook/myapache2 because, in the next
step, we will be pushing this image to the Docker Hub user cookbook.

Working with Docker Images Chapter 3

[82]

Now, let's push the image to the Docker Hub using docker image push, as2.
shown in the following screenshot:

Having pushed the image to the Docker Hub, we can log in to the Docker Hub3.
and verify the image, as shown in the following screenshot:

How it works...
The docker image push command identifies all the image layers that make up the image
that is to be pushed, and check whether any of those images are already available in the
registry. Then the push command uploads all the images that are not present in the
registry.

Working with Docker Images Chapter 3

[83]

There's more...
Let's say you want to push the image to a registry that is hosted locally. To do this, you first
need to tag the image with the registry host's name or IP address with the port number on
which the registry is running, and then push the images.

For example, let's say our registry is configured on shadowfax.example.com. To tag the
image, we would use the following command:

 $ docker tag myapache2 \
 shadowfax.example.com:5000/cookbook/myapache2

Then, to push the image, we would use the following command:

 $ docker push shadowfax.example.com:5000/cookbook/myapache2

See also
The help option of docker image push:

 $ docker push --help

The documentation on the Docker website:
 https://docs.docker.com/engine/reference/commandline/imag
e_push/

Looking at the history of an image
It is imperative for us to have a deeper understanding of the Docker image we are using.
The docker image history command helps us find all the layers in the image, its image
ID, when it was created, how it was created, the size, and any additional comments
associated with that layer.

Getting ready
Before we begin the next recipe, first pull or import any Docker image.

https://docs.docker.com/engine/reference/commandline/image_push/
https://docs.docker.com/engine/reference/commandline/image_push/

Working with Docker Images Chapter 3

[84]

How to do it...
To look at the history of the image, consider the following syntax:

 $ docker image history [OPTIONS] IMAGE

Here's an example using the preceding syntax:

 $ docker image history myapache2

How it works...
When we build a Docker image, the Docker engine preserves the build instruction in the
image metadata. Later, the docker image history command recursively gathers these
build instruction from the prescribed image to the base image and presents it in a nice
format.

There's more...
If you recall the Creating an image from the container recipe, while committing the image we
added a message, and that message is seen nowhere in the output of the docker image
history command. You could resort to the docker image inspect command, as shown
in the following code:

 $ docker image inspect --format='{{.Comment}}' myapache2
 Ubuntu with apache2 package

Well! The docker image inspect command can work with only one image at a time, but
if you want to see the comments of all the image layers, then you have to go through each
image or automate the operation through some scripts. By the way, the comment is
optional, and so you might not find comments on all the images.

Working with Docker Images Chapter 3

[85]

See also
The help option of docker image history:

 $ docker image history --help

The documentation on the Docker website:

 https://docs.docker.com/engine/reference/commandline/image_history
/

Removing an image
The docker image rm command lets you remove images from the Docker host. This
command can remove one or more images, and you can specify images using one of the
following identifiers:

The image's short ID.
The image's long ID.
The image's digest.
The image's name along with its tag. If the tag is not specified, then the
latest tag is assumed by default.

If the image happens to have more than one tag associated with it, then those tags must be
removed before removing the image. Alternatively, you can forcefully remove them using
the -f or --force option of the docker image rm command. In such a case, all the tags
will also be automatically removed.

Here is the syntax for the docker image rm command:

docker image rm [OPTIONS] IMAGE [IMAGE...]

In this recipe, we will create multiple tags for an image and demonstrate how to remove
them.

Getting ready
One or more Docker images should be locally available in the Docker host.

https://docs.docker.com/engine/reference/commandline/image_history/
https://docs.docker.com/engine/reference/commandline/image_history/

Working with Docker Images Chapter 3

[86]

How to do it...
Perform the following steps:

Let's choose one of the existing images and add multiple tags to it, as shown in1.
the following screenshot:

Here, we have selected the centos image with the image ID 328edcd84f1b
and added another three tags: tag1, tag2, and tag3. All the tags have the
same image ID of 328edcd84f1b.

Now, let's make an attempt to delete the image with the ID 328edcd84f1b and2.
observe the outcome:

Clearly, the docker image rm failed to remove the image because there are
four tags referring to the same image ID.

Working with Docker Images Chapter 3

[87]

Remove the tags from the image until all the tags are removed and the image is3.
deleted, as shown in the following screenshot:

Clearly, the docker image rm command removed the tags, and finally removed
the image when there were no more tags.

There's more...
In the preceding recipe, we removed the tags one by one till all the tags were
removed and the image was deleted. Perhaps you could use the -f or --force
option of the docker image rm to delete all the tags and images in one stroke.
Before using the --force option, ensure that the image doesn't have any
containers spawned from that image. Otherwise, you will end up having
dangling images.
Though it is not recommended, if for any reason you want to remove all
containers and images, then you can use the following commands:
To stop all containers, use the following command:

 $ docker container stop $(docker container ls -q)

To delete all containers, use the following command:

 $ docker container rm $(docker container ls -a -q)`

To delete all images, use the following command:

 $ docker image rm $(docker image ls -q)

Working with Docker Images Chapter 3

[88]

See also
The help option of docker image rm:

 $ docker image rm --help

The documentation on the Docker website:

 https://docs.docker.com/engine/reference/commandline/image_rm/

Exporting an image
Let's say you have a customer who has very strict policies that do not allow them to use
images from the public domain. In such cases, you can share one or more images through
tarballs, which can then later be imported on another system.

The docker image save command lets you save or export images as tarballs. The
command syntax is as follows:

docker image save [-o|--output]=file.tar IMAGE [IMAGE...]

In this recipe, we will learn how to export an image using the docker image save
command.

Getting ready
Before you begin, first pull or import one or more Docker images on the Docker host.

How to do it...
Let's pick the myapache2 image we created in the Create an image from a container recipe and
export the image as a .tar file, as shown in the following code:

 $ docker image save --output=myapache2.tar myapache2

The preceding command generates the myapache2.tar file, which can be imported as
described in the next recipe.

https://docs.docker.com/engine/reference/commandline/image_rm/

Working with Docker Images Chapter 3

[89]

There's more...
You can also export the container's filesystem using the following command:

 $ docker container export --output=myapache2_cont.tar c71ae52e382d

See also
The help option of docker image save and docker container export:

 $ docker image save -help
 $ docker container export --help

The documentation on the Docker website:

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​image_ ​save/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​container_
export/ ​

Importing an image
To get a local copy of the image, we either need to pull it from the accessible registry or
import it from the already exported image, as we saw in an earlier recipe. The docker
image import command lets you import one or more images from a tarball. The docker
image import command syntax is as follows:

docker image import [OPTIONS] file|URL|- [REPOSITORY[:TAG]]

Getting ready
Before you begin, you need a local copy of the exported Docker image.

https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/
https://docs.docker.com/engine/reference/commandline/container_export/

Working with Docker Images Chapter 3

[90]

How to do it...
Perform the following steps:

Transfer the myapache2.tar file we created in the previous recipe to a new1.
Docker host using any of your favorite file transfer tools.
Now, on the new Docker host, import the transferred myapache2.tar file, as2.
shown in the following code:

 $ docker image import myapache2.tar apache2:imported

Here, we have imported our myapache2.tar file as an apache2:imported3.
image.

There's more...
You can also import TAR files stored in a remote location by specifying their URL.

See also
The help option of docker image import:

 $ docker image import --help

The documentation on the Docker website:
 https://docs.docker.com/engine/reference/commandline/imag
e_import/

Building an image using a Dockerfile
The Dockerfile is a text-based build instruction file that enables us to define the content of
the Docker image and automate image creation. The Docker build engine reads the
instruction in the Dockerfile line by line and constructs the image as prescribed. In other
words, Dockerfile helps us to craft an image repeatedly in an automated fashion. The
images created using Dockerfiles are considered immutable.

https://docs.docker.com/engine/reference/commandline/image_import/
https://docs.docker.com/engine/reference/commandline/image_import/

Working with Docker Images Chapter 3

[91]

Getting ready
Before we begin, we need a Dockerfile with build instructions. To make one, we need to go
through the following steps:

Create an empty directory:1.

 $ mkdir sample_image
 $ cd sample_image

Create a file named Dockerfile with the following content:2.

 $ cat Dockerfile
 # Use ubuntu as the base image
 FROM ubuntu
 # Add author's name
 LABEL maintainer="Jeeva S. Chelladhurai"
 # Add the command to run at the start of container
 CMD date

How to do it...
Perform the following steps:

Run the following command inside the directory where we created1.
the Dockerfile to build the image:

 $ docker image build .

Working with Docker Images Chapter 3

[92]

In the preceding setup, we did not specify any repository and tag name
while building the image. It is always recommended that you build the
image with a repository name for easy reference in the future.

Now, let's proceed to create our own repository name using the -t option of the2.
docker image build command, as follows:

 $ docker image build -t sample .

If you compare the output of step 1 and step 2, you can notice a subtle difference. In the
output of step 1, you can see the text Running after the LABEL and CMD instructions,
whereas for step 2, it is printed as Using cache. This indicates that Docker is reusing the
intermediate layers from the image that was built in step 1. The Docker build system
always reuses the layers from the previously built image if there is no change on that layer.
If you don't want the build system to reuse the intermediate layers, then add the --no-
cache option to the build.

How it works...
When we build a Docker image using the docker image build command, we specify a
directory. This command bundles the entire directory tree as the build context and transfers
it to the Docker engine to create the Docker image. This is evident from the build output
Sending build context to Docker daemon 2.048 kB message. If there is a file
named .dockerignore in the current working directory with the list of files and
directories (new-line separated), then those files and directories will be ignored in the build
context. More details about .dockerignore can be found at
https://docs.docker.com/reference/builder/#the-dockerignore-file.

https://docs.docker.com/reference/builder/#the-dockerignore-file.

Working with Docker Images Chapter 3

[93]

Now, the Docker build system will read each instruction in the Dockerfile, launch an
intermediate container, execute the instruction inside the container or update the metadata,
commit the intermediate container as an image layer, and remove the intermediate
container. This process is continued until all the instructions in the Dockerfile are executed.

There's more...
The format for the Dockerfile is as follows:

 INSTRUCTION arguments

Generally, instructions are given in uppercase, but they are not case-sensitive. They are
evaluated in order. The # code phrase in the beginning is treated like a comment.

Let's take a look at the different types of instruction:

FROM: This must be the first instruction of any Dockerfile, and sets the base image
for subsequent instructions. By default, the latest tag is assumed to be the
following:

 FROM <image>

Alternatively, consider the following tag:

 FROM <images>:<tag>

There can be more than one FROM instruction in one Dockerfile to create
multiple images.

If only the image names, such as fedora and Ubuntu, are given, then the
images will be downloaded from the default Docker registry (Docker Hub).
If you want to use private or third-party images, then you have to include
them as follows:

 [registry_hostname[:port]/][user_name/](repository_name:version_tag)

The following is an example using the preceding syntax:

 FROM registry-host:5000/cookbook/apache2
 FROM <images>:<tag> AS <build stage>

You can also prescribe a build stage to be used for multistage image
building, as you will see in the Building images in multiple stages recipe.

Working with Docker Images Chapter 3

[94]

RUN: We can execute the RUN instruction in two ways. First, we can run it in the
shell (sh -c):

 RUN <command> <param1> ... <pamamN>

Second, we can directly run an executable:

 RUN ["executable", "param1",...,"paramN"]

As we know, with Docker we create an overlay—a layer on top of another
layer—to make the resulting image. Through each RUN instruction, we create
and commit a layer on top of the earlier committed layer. A container can be
started from any of the committed layers.

By default, Docker tries to cache the layers committed by different RUN
instructions so that they can be used in subsequent builds. However, this
behavior can be turned off using --no-cache flag while building the
image.

LABEL: Docker 1.6 added a new feature to the attached arbitrary key–value pair
of Docker images and containers. We covered part of this in the Labeling and
filtering containers recipe in Chapter 2, Working with Docker Containers. To give a
label to an image, we use the LABEL instruction in the Dockerfile—for
example, LABEL distro=ubuntu.
CMD: The CMD instruction provides a default executable while starting a container.
If the CMD instruction does not have any executable (parameter 2), then it will
provide arguments to ENTRYPOINT:

 CMD ["executable", "param1",...,"paramN"]
 CMD ["param1", ... , "paramN"]
 CMD <command> <param1> ... <pamamN>

Only one CMD instruction is allowed in Dockerfile. If more than one is
specified, then only the last one will be honored.

ENTRYPOINT: This helps us configure the container as an executable. Similar to
CMD, there can be a maximum of one instruction for ENTRYPOINT; if more then
one is specified, then only the last one will be honored:

 ENTRYPOINT ["executable", "param1",...,"paramN"]
 ENTRYPOINT <command> <param1> ... <pamamN>

Working with Docker Images Chapter 3

[95]

Once the parameters are defined with the ENTRYPOINT instruction, they
cannot be overwritten at runtime. However, ENTRYPOINT can be used as
CMD, if we want to use different parameters for ENTRYPOINT.

EXPOSE: This exposes network ports on the container, on which it will listen at
runtime:

 EXPOSE <port> [<port> ...]

We can also expose a port while starting the container. We covered this in
the Exposing a port while starting a container recipe in Chapter 2, Working with
Docker Containers.

ENV: This will set the environment variable <key> to <value>. It will be passed
to all the subsequent instructions and will persist when a container is run from
the resulting image:

 ENV <key> <value>

ADD: This copies files from the source to the destination:

 ADD <src> <dest>

The following ADD instruction is for a path containing white spaces:

 ADD ["<src>"... "<dest>"]

<src>: This must be the file or directory inside the build directory from which
we are building an image, which is also called the context of the build. A source
can be a remote URL as well.
<dest>: This must be the absolute path inside the container in which
files/directories from the source will be copied.
COPY: This is similar to ADD. COPY <src> <dest>:

 COPY ["<src>"... "<dest>"]

The COPY instruction optionally supports a --from option for multistage
building.

VOLUME: This instruction will create a mount point with the given name and flag
it as mounting the external volume using the following syntax:

 VOLUME ["/data"]

Working with Docker Images Chapter 3

[96]

Alternatively, you can use the following code:

 VOLUME /data

USER: This sets the username for any of the following run instructions using the
following syntax:

 USER <username>/<UID>

WORKDIR: This sets the working directory for any RUN, CMD, and ENTRYPOINT
instructions that follow it. It can have multiple entries in the same Dockerfile. A
relative path can be given that will be relative to the earlier WORKDIR instruction
using the following syntax:

 WORKDIR <PATH>

ONBUILD: This adds trigger instructions to the image that will be executed later,
when this image will be used as the base image for another image. This trigger
will run as part of the FROM instruction in a downstream Dockerfile using the
following syntax:

 ONBUILD [INSTRUCTION]

See also
The help option of docker image build:

 $ docker image build --help

The documentation on the Docker website:
 https://docs.docker.com/engine/reference/builder/

Building an Apache image – a Dockerfile
example
Now that we're armed with a good understanding of the Dockerfile constructs, in this
recipe we will build a very simple Docker image that bundles the apache2 web server and
also adds metadata to launch the apache2 application inside the container whenever a new
container is created from this image.

https://docs.docker.com/engine/reference/builder/

Working with Docker Images Chapter 3

[97]

Getting ready
Before we begin, the git repository https:/ ​/​github. ​com/ ​docker- ​cookbook/ ​apache2 has a
Dockerfile to build an apache2 image, so clone the repository as shown in the following
code:

 $ git clone https://github.com/docker-cookbook/apache2.git

Now, go to the apache2 directory:

 $ cd apache2
 $ cat Dockerfile
 FROM alpine:3.6
 LABEL maintainer="Jeeva S. Chelladhurai <sjeeva@gmail.com>"
 RUN apk add --no-cache apache2 && \
 mkdir -p /run/apache2 && \
 echo "<html><h1>Docker Cookbook</h1></html>" > \
 /var/www/localhost/htdocs/index.html
 EXPOSE 80
 ENTRYPOINT ["/usr/sbin/httpd", "-D", "FOREGROUND"]

How to do it...
With the following build command, we can build a new image:

 $ docker image build -t apache2 .
 Sending build context to Docker daemon 52.74kB
 Step 1/5 : FROM alpine:3.6
 3.6: Pulling from library/alpine
 88286f41530e: Pull complete
 Digest:
sha256:f006ecbb824d87947d0b51ab8488634bf69fe4094959d935c0c103f4820a417d
 Status: Downloaded newer image for alpine:3.6
 ---> 76da55c8019d
 Step 2/5 : LABEL maintainer "Jeeva S. Chelladhurai <sjeeva@gmail.com>"
 ---> Running in 83e2c061c956
 ---> f77381e55873
 Removing intermediate container 83e2c061c956
 Step 3/5 : RUN apk add --no-cache apache2 &&
 mkdir -p /run/apache2 &&
 echo "<html><h1>Docker Cookbook</h1></html>" >
 /var/www/localhost/htdocs/index.html
 ---> Running in 3abde4480544
 fetch
http://dl-cdn.alpinelinux.org/alpine/v3.6/main/x86_64/APKINDEX.tar.gz
 fetch

https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2

Working with Docker Images Chapter 3

[98]

http://dl-cdn.alpinelinux.org/alpine/v3.6/community/x86_64/APKINDEX.tar.gz
 (1/6) Installing libuuid (2.28.2-r2)
 (2/6) Installing apr (1.5.2-r1)
 (3/6) Installing expat (2.2.0-r1)
 (4/6) Installing apr-util (1.5.4-r3)
 (5/6) Installing pcre (8.41-r0)
 (6/6) Installing apache2 (2.4.27-r1)
 Executing apache2-2.4.27-r1.pre-install
 Executing busybox-1.26.2-r5.trigger
 OK: 7 MiB in 17 packages
 ---> d7585e779ee8
 Removing intermediate container 3abde4480544
 Step 4/5 : EXPOSE 80
 ---> Running in ac761e55a45c
 ---> 63bbb379239f
 Removing intermediate container ac761e55a45c
 Step 5/5 : ENTRYPOINT /usr/sbin/httpd -D FOREGROUND
 ---> Running in fa3e5be6b893
 ---> 97f0bac0f021
 Removing intermediate container fa3e5be6b893
 Successfully built 97f0bac0f021
 Successfully tagged apache2:latest

How it works...
The build process pulls the alpine base image from Docker Hub, installs the apache2
package, and creates a simple HTML page. Then it continues, adding port 80 as a piece of
metadata to the image, and finally sets the instructions to start the Apache application at
the start of the container.

There's more...
Let's run an apache2 container from the created image, get its IP address, and access the
web page from it:

Working with Docker Images Chapter 3

[99]

See also
The help option of docker image build:

 $ docker image build --help

The documentation on the Docker website:
 https://docs.docker.com/engine/reference/commandline/imai
m_build/

Setting up a private index/registry
Earlier, we used a Docker-hosted registry (https:/ ​/​hub. ​docker. ​com) to push and pull
images. Nonetheless, quite often you will come across use cases where you will have to
host a private registry in your infrastructure. In this recipe, we will host our own private
registry using Docker's registry:2 image.

Getting ready
Make sure that Docker daemon version 1.6.0 or above is running on the host.

How to do it...
Perform the following steps:

Let's begin by launching a local registry on the container using the following1.
command:

 $ docker container run -d -p 5000:5000 \
 --name registry registry:2

To push the image to the local registry, you need to prefix the repository name2.
with the localhost hostname or the IP address 127.0.0.1 and the registry
port 5000 using the Docker image tag command, as shown in the following code:

 $ docker tag apache2 localhost:5000/apache2

Here, we will reuse the apache2 image we built in the previous recipe.

https://docs.docker.com/engine/reference/commandline/imaim_build/
https://docs.docker.com/engine/reference/commandline/imaim_build/
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Working with Docker Images Chapter 3

[100]

Now, let's push the image to the local registry using the docker image push3.
command, as shown in the following screenshot:

How it works...
The preceding command to pull the image will download the official registry image from
Docker Hub and run it on port 5000. The -p option publishes the container port to the host
system's port. We will explore details about port publishing in the next chapter.

There's more...
The registry has a notification framework that can invoke WebHooks when it receives a
push or pull request. These WebHooks can be chained with your DevOps flow.

See also
The documentation on GitHub:

 https://github.com/docker/docker-registry

https://github.com/docker/docker-registry

Working with Docker Images Chapter 3

[101]

Automated builds – with GitHub and
Bitbucket
We saw earlier how to push Docker images to Docker Hub. Docker Hub allows us to create
automated images from a GitHub or Bitbucket repository using its build clusters. The
GitHub/Bitbucket repository should contain the Dockerfile and also the content that is to be
copied/added inside the image. We will be looking at a GitHub example in upcoming
sections.

Getting ready
For this you, will need a valid Docker ID and GitHub account.

Also, visit https:/​/​github. ​com/ ​docker- ​cookbook/ ​apache2 for the apache2 Dockerfile.

How to do it...
Perform the following steps:

Log in to Docker Hub (https://hub.docker.com/).1.

https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://hub.docker.com/

Working with Docker Images Chapter 3

[102]

The first step to create an automated build is to link your GitHub or Bitbucket2.
account. The account-linking feature is available in the Linked Accounts &
Services web wizard. You can reach this wizard either by navigating through the
Settings menu or via Create Automated Build menu in the Create dropdown.
Here, we will choose the former option—that is, the Settings menu—which is
accessible from the rightmost drop-down menu:

Working with Docker Images Chapter 3

[103]

In the preceding wizard, click the Link Github option; in the next screen, you3.
will be presented with two options, as shown in the following screenshot. Here,
let us click the Select button under the Public and Private (Recommended)
option:

Working with Docker Images Chapter 3

[104]

A new window or tab will open for you to key in your GitHub credentials, as4.
shown in the following screenshot:

Working with Docker Images Chapter 3

[105]

Having successfully logged in to your GitHub account, continue to Grant 5.
permission to the organizations in your GitHub account. In this example, we
have granted permission to the docker-cookbook organization. Click the
Authorize docker button:

Working with Docker Images Chapter 3

[106]

As you can see in the following screenshot, now the Docker Hub account is
linked to the GitHub account:

As we can see in the preceding screenshot, the GitHub account is
successfully linked to the Docker Hub account. Now, we can proceed to
configure the automated build.

Working with Docker Images Chapter 3

[107]

Select the Create Automated Build option from the Create drop-down menu, as6.
shown in the following screenshot:

You will be presented with two options: Create Auto-Build for Github and Link7.
Account to link your account to Bitbucket, as shown in the following screenshot:

Working with Docker Images Chapter 3

[108]

We will be linking our account with Bitbucket because we have not yet
linked any Bitbucket account.

Working with Docker Images Chapter 3

[109]

Click on the Create Auto-build option:8.

Click on the apache2 option, which is the fork of https:/ ​/​github. ​com/ ​docker-9.
cookbook/ ​apache2:

https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2

Working with Docker Images Chapter 3

[110]

Provide a short description and click Create:10.

Working with Docker Images Chapter 3

[111]

Hurray! You have successfully automated the build process, and the image build
process will get triggered when you make any change in your forked repository.

Now, you can navigate to the Build Details tab to see the build status.11.

How it works...
When we select a GitHub repository for an automated build, GitHub enables the Docker
service for that repository. You can confirm this by looking at the Integrations & services
section of the Settings tab in the GitHub repository:

Whenever we make any changes to any source code and commit to the GitHub repository,
the automated build gets triggered and builds the Docker image using the Dockerfile that
resides in the GitHub repository.

There's more...
You can view the Dockerfile by navigating to the Dockerfile tab in your repository.

You can also have your build triggered when another Docker Hub repository is updated by
linking the other repository in the Build Settings tab of your repository.

The steps for setting up an automated build with Bitbucket are almost identical. The hook
for an automated build gets configured under the Hooks section of the Bitbucket
repository's Settings section.

Working with Docker Images Chapter 3

[112]

See also
The documentation on the Docker website:

https://docs.docker.com/docker-hub/builds/

Creating a custom base image
Docker has a rich library of base images, and we strongly recommend that you select a lean
image that fits your application well. However, you may choose to custom-build your base
image from the get go. Here, in this recipe, we will use debootstrap to create our Ubuntu
18.04 LTS (Xenial Xerus) base image. The debootstrap utility can create any Debian-based
system by downloading it from the appropriate repository.

Getting ready
Install debootstrap on any Debian-based system using the following command:

 $ apt-get install debootstrap

How to do it...
Perform the following steps:

Create the directory on which you want to populate all the distribution files:1.

 $ mkdir xenial

Now, using debootstrap, install Xenial Xerus inside the directory we created2.
earlier:

 $ sudo debootstrap xenial ./xenial

You will see the directory tree, similar to any Linux root filesystem, inside
the directory in which Xenial Xerus is installed:

 $ ls ./xenial
 bin boot dev etc home lib lib64 media mnt opt proc
 root run sbin srv sys tmp usr var

https://docs.docker.com/docker-hub/builds/

Working with Docker Images Chapter 3

[113]

Now, we can export the directory as a Docker image with following command:3.

 $ sudo tar -C xenial/ -c . | docker image import - xenial

Look at the docker image ls output. You should have a new image with4.
xenial as the name.

How it works...
The debootstrap command pulls all the Ubuntu 18.04 (Xenial Xerus) packages to the
directory from the package repository. Then they are bundled as a TAR file and pushed to
the Docker image import command to create the Docker image.

See also
The debootstrap wiki page:

https:/ ​/ ​wiki. ​debian. ​org/ ​Debootstrap.
Alternative approaches to creating base images:

https:/ ​/ ​docs. ​docker. ​com/ ​articles/ ​baseimages/ ​.

Creating a minimal image using a scratch
base image
In the previous recipe, we custom-created a base image without any parent image.
However, that image is bloated with all the binaries and libraries that are shipped with the
Ubuntu 18.04 distribution. Typically, to run an application, we don't need the majority of
the binaries and libraries we have bundled in the image. Besides, it leaves a large image
footprint, and thus becomes a portability problem. To overcome this issue, you can
diligently hand-pick the binaries and libraries that will constitute your image and then
bundle the Docker image. Alternatively, you can build using Docker's reserved image,
called a scratch image. This scratch image is explicitly an empty image, and it does not add
any additional layer to your image. Furthermore, unlike the previous recipe, you can
automate image creation using a Dockerfile. In this recipe, we will use a simple builder
pattern to create a statically linked binary and create a Docker image using a scratch base
image.

https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://wiki.debian.org/Debootstrap
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/

Working with Docker Images Chapter 3

[114]

Getting ready
First, ensure that the Docker daemon is running and has access to the gcc and scratch
images. You should also ensure that you have a clone of https:/ ​/​github. ​com/ ​docker-
cookbook/​scratch. ​git, and that the repository contains demo.c and a Dockerfile.

The content of demo.c should be as follows:

#include <stdio.h>
void main() {
printf("Statically built for demo\n");
}

The content of the Dockerfile should be as follows:

FROM scratch
ADD demo /
CMD ["/demo"]

How to do it...
Perform the following steps to create a smaller image using the scratch base image:

Change to the repository directory:1.

$ cd scratch

Now, build a static executable demo from the demo.c file using the gcc:7.22.
runtime container, as shown in the following code:

 $ docker container run --rm \
 -v ${PWD}:/src \
 -w /src \
 gcc:7.2 \
 gcc -static -o demo demo.c

Having built the statically linked executable lets quickly verify the binary:3.

https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git
https://github.com/docker-cookbook/scratch.git

Working with Docker Images Chapter 3

[115]

Continue to build an image from the scratch base image with the executable4.
demo created in the previous step, as shown in the following code:

Finally, let us verify the image by spinning a container from the preceding image5.
and checking the image size:

Evidently, this image is much smaller, and the Docker image is just 20 bytes
larger than the executable demo.

How it works...
The Docker build system intuitively understands the reserved image name scratch in the
FROM instruction and starts bundling the image without any additional layer for the base
image. So, in this recipe, the Docker build system just bundled the statically linked
executable demo and the metadata for the image.

Working with Docker Images Chapter 3

[116]

There's more...
As mentioned earlier, the scratch image doesn't add any additional layer to the image.
The docker image history command comes in handy here to list the layers in the
image, as shown in the following code:

As we can see, there is no additional layer for the base image scratch.

See also
The documentation at the Docker Hub:

https:/ ​/ ​hub. ​docker. ​com/ ​_​/​scratch/ ​

Alternative approaches to creating base images:
https:/ ​/ ​docs. ​docker. ​com/ ​articles/ ​baseimages/ ​

Building images in multiple stages
In the previous recipe, we created a statically linked executable using the gcc builder
container and then bundled the executable using the scratch image. Build pipelines with
the builder pattern are very common because, during the build time, you will need
heavyweight building and supporting tools. However, the resulting artifacts usually don't
need those tools during execution time. Therefore, the artifacts are usually built using the
appropriate runtime with additional capability and then the resulting artifacts are
packaged with the runtime just enough to run the artifacts. Though this solution works
very well, the complexity of this build pipeline is managed outside the Docker ecosystem
through scripts. To address this complexity, Docker introduced a cool feature called
multistage builds in version 17.05.

https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/
https://docs.docker.com/articles/baseimages/

Working with Docker Images Chapter 3

[117]

Docker's multistage build enables us to orchestrate complex building stages in a single
Dockerfile. In the Dockerfile, we can define one or more intermediate stages with the
appropriate parent image and the build ecosystem to build the artifact. The Dockerfile
provides the essential previously mentioned primitives in building the image using
Dockerfile to copy the artifacts to subsequent stages and finally compose a Docker image
with just enough runtime and artifacts.

Getting ready
Before we begin, ensure that the Docker daemon is running and has access to
the gcc and scratch images. Also, ensure that there is a clone of https:/ ​/
github.​com/ ​docker- ​cookbook/ ​multistage. ​git and that the repository contains
both src/app.c and Dockerfile.
The content of src/app.c should be as follows:

#include <stdio.h>
void main()
{
 printf("This is a Docker multistage build demo\n");
}

The content of Dockerfile should be as follows:

FROM gcc:7.2 AS builder
COPY src /src
RUN gcc -static -o /src/app /src/app.c && strip -R .comment -s /src/app
FROM scratch
COPY --from=builder /src/app .
CMD ["./app"]

How to do it...
Perform the following steps to create a smaller image using the scratch base image:

Change to the repository directory:1.

 $ cd multistage

https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git
https://github.com/docker-cookbook/multistage.git

Working with Docker Images Chapter 3

[118]

Build the image using the Docker image build command, as shown in the2.
following screenshot:

Now that the image is successfully built, let's proceed to spin a container from3.
the image we created in the previous step, as shown in the following screenshot:

How it works...
The Docker build system intuitively understands the reserved image name scratch in the
FROM instruction and starts bundling the image without any additional layer for the base
image. So in this recipe, the Docker build system just bundled the statically linked
executable demo and the metadata for the image.

Working with Docker Images Chapter 3

[119]

There's more...
As mentioned earlier, the scratch image doesn't add any additional layer to the image.
The docker image history command comes in handy here to list the layers in the
image, as shown in the following screenshot:

As we can see, there is no additional layer for the base image scratch.

See also
The documentation at Docker Hub:

 https:/ ​/ ​hub. ​docker. ​com/ ​_​/​scratch/ ​

Visualizing the image hierarchy
Docker provides multiple commands to learn about its images in a textual format.
However, a picture is worth a thousand words, so it is imperative that we can visualize the
image hierarchy through graphs. While Docker doesn't support any image visualization
tool, numerous solutions are available to visualize the image hierarchy. In this recipe, we
will visualize the image hierarchy using a nate/dockviz container and Graphviz.

Getting ready
Before we begin, we need one or more Docker images on the host to be running a Docker
daemon. We also need to ensure that Graphviz is installed.

https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/
https://hub.docker.com/_/scratch/

Working with Docker Images Chapter 3

[120]

How to do it...
Run the nate/dockviz container by supplying images --dot as a command-line
argument and pipe the output to the dot (Graphviz) command, as shown in the following
code, to generate the image hierarchy:

 $ docker run --rm \
 -v /var/run/docker.sock:/var/run/docker.sock \
 nate/dockviz \
 images --dot | dot -Tpng -o images-graph.png

The following is a graphic view of the images in the Docker host:

Here, in the graphic view, nodes with <missing> are layers within an image.

Working with Docker Images Chapter 3

[121]

How it works...
The nate/dockviz tool is written in go, and iterates through the Docker images' metadata
and generates a Graphviz dot output that is converted to a png image using Graphviz.

There's more...
You could also use nate/dockviz to visualize the dependency between linked containers.
The following is the command for visualizing the container dependencies:

 $ docker run --rm \
 -v /var/run/docker.sock:/var/run/docker.sock \
 nate/dockviz \
 containers --dot | dot -Tpng -o containers-graph.png

See also
The documentation on nate/dockerviz:

https://github.com/justone/dockviz

https://github.com/justone/dockviz

4
Network and Data Management

for Containers
In this chapter, we will cover the following recipes:

Accessing containers from outside
Attaching containers to a host network
Launching containers with no network
Sharing IP addresses with other containers
Creating a user-defined bridge network
Discovering and load balancing containers
Persisting data using volumes
Sharing data between the host and the container

Introduction
Until now, we have worked with a single container and accessed it locally. But as we move
to more real-world use cases, we will need to access the container from the outside world,
share external storage within the container, communicate with containers running on other
hosts, and so on. In this chapter, we'll learn how to fulfill some of those requirements. Let's
start by understanding Docker's default networking setup and then move on to advanced
use cases.

Network and Data Management for Containers Chapter 4

[123]

When the Docker daemon starts, it creates a virtual Ethernet bridge with the name
docker0. Perhaps we can glean more insight into docker0 using the ip addr command
on the system that runs the Docker daemon:

As we can see, docker0 has the IP address of 172.17.0.1/16. Docker randomly chooses
an address and subnet from a private range defined in RFC 1918
(https://tools.ietf.org/html/rfc1918). Using this bridged interface, containers can
communicate with each other and with the host system.

By default, every time Docker starts a container, it creates a pair of virtual run on
Ethernet interfaces and then performs the following with the pair:

Ties one end of the veth pair to the docker0 bridge interface in the Docker
host—let's call this end the host end
Ties the other end of the veth pair to the newly created container as its eth0
interface—let's call this end of the veth pair the container end

Let's start a container and examine its network interface IP addresses:

In the preceding screenshot, the container end of the veth pair is named eth0@if17,
where 17 is the interface index of the host end of the veth pair. We can use this index to
identify the host end of the veth pair in the Docker host. The eth0 of the container is
assigned the IP address 172.17.0.3, which belongs to the docker0 subnet—that
is, 172.17.0.1/16.

https://tools.ietf.org/html/rfc1918

Network and Data Management for Containers Chapter 4

[124]

Now, let's take a peek at the interface at the seventeenth index:

Here, the host end of the veth interface is named vethe8b40b8@if16, wherein 16 is the
interface index of the container end of the veth pair. Since the interface at index 16 is
assigned to the container's network namespace, it is not displayed in the Docker host. The
Docker Engine autogenerates the name of the host end veth pair by generating a seven-
digit hex number and then appends it to the string veth. In this example, e8b40b8 is the
random number generated by the Docker Engine. The Docker Engine also ensures that this
random number is unique inside the Docker host. If you look closely, you might also notice
that the host end of the veth interface is bound to the docker0 bridge.

Now let's create a few more containers and look at the docker0 bridge using the Linux
Ethernet bridge administration command, brctl.

The Ubuntu Linux distribution does not usually carry the brctl tool, so
we have to either install the bridge-utils package or leverage one of
Docker's nifty features that lets you share the Docker host's network stack
with the Docker container, as described in the Attaching container to the
host network recipe.

Here, we are using the --network=host option of the docker container run command
to connect to the Docker host's network stack. Since the alpine image is packed with
the brctl utility command, we will choose to spin our container with the alpine image
and run the brctl show command to display the bridge details, as shown in the following
screenshot:

Network and Data Management for Containers Chapter 4

[125]

Evidently, all the host ends of the veth pairs are bound to the default Docker bridge
docker0. Apart from setting up the docker0 bridge, Docker also creates iptables NAT
rules, so that all containers can talk to the external world by default, but the external world
cannot talk to the containers. Let's look at the NAT rules on the Docker host:

In the preceding output, a POSTROUTING rule is configured for the 172.17.0.0/16 subnet.
The sole purpose of this rule is to change the source IP address of the data packets that
originated from the 172.17.0.0/16 subnet to the host IP address. Apparently, the
172.17.0.0/16 subnet is assigned to our docker0 bridge. Essentially, this POSTROUTING
rule enables the Docker containers to connect to the external world, as you can see in the
following traceroute output:

Network and Data Management for Containers Chapter 4

[126]

Cool, isn't it? Nonetheless, by default, Docker doesn't do any network plumbing for the
external world to connect to the containers. However, when you host a service inside the
container, it must be reached from the external world. The Accessing containers from outside
recipe demonstrates how to open up the service running inside the container to the external
world. In addition, we have other recipes that focus on various aspects of single-host
container networking.

For more information about the different kinds of networking we
discussed in the preceding section, visit: https:/ ​/​docs. ​docker. ​com/
network/ ​.

In this chapter, we focused only on single-host container networking. Along with single-
host container networks, we will also look at how to share and persist data in the container
paradigm.

Accessing containers from outside
In the microservice architecture, multiple smaller services are used to provide a meaningful
enterprise-grade application. The Docker-inspired containerization technology is inherently
very lightweight, and hence it plays a vital role in enabling the microservice architecture.
By default, the Docker container allows outgoing data traffic, but there is no path for the
external world to connect to the services running inside the container. Nonetheless, Docker
provides an elegant solution to selectively enable the external world to communicate with
the service running inside the container, using the following options of the docker
container run command:

--publish, -p Publish a container's port to the host
--publish-all, -P Publish all exposed ports to random ports

Both these options allow the external world to connect to the services running inside the
containers through the ports of the Docker host.

https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/

Network and Data Management for Containers Chapter 4

[127]

Getting ready
Before we begin, make sure the Docker daemon is running on the Docker host.

How to do it...
Perform the following the steps:

Let's launch an apache2 service inside a container using our1.
cookbook/apache2 image and publish the service so that it runs to the external
world through port 80 of the Docker host using the -p option of the docker
container run command, as shown in the following code:

 $ docker container run -d -p 80:80 cookbook/apache2
a101ac9009f2237a2e4356e9caed6d0cf1666b5b86768f559a629d39034b4132

Next, look at the port mapping between the container and the Docker host port2.
using the docker container port command:

 $ docker container port a101ac9009f2
 80/tcp -> 0.0.0.0:80

Evidently, port 80 of the Docker container is mapped to port 80 of the Docker3.
host. The IP address of 0.0.0.0 implies any IP address in the Docker host.

Now you can connect to the apache service running inside your container from4.
any network using the Docker host IP address, as long as the Docker host has IP
network connectivity from that network. For example, let's say that your Docker
host's IP address is 198.51.100.73. This means that it can connect to the
apache service by using the http://198.51.100.73 URL from any browser,
and you will get the following output:

 <html><h1>Docker Cookbook</h1></html>

Network and Data Management for Containers Chapter 4

[128]

How it works...
When a container is launched with -p <host port>:<container port>, the Docker
Engine configures the iptables destination NAT rule. This destination NAT rule is
responsible for forwarding all the packets it receives on the Docker host port to the
container's port:

Noticeably, the Docker Engine has inserted a destination NAT rule with the following
configurations:

Source address 0.0.0.0/0: A wild card address that means that this rule is
applicable to packets received from any source
Destination address 0.0.0.0/0: A wild card address that means that this rule is
applicable to the packets received on any network interface of the Docker host
Destination port dpt:80: One of the key attributes in this rule, which enables
the iptables to selectively apply the rule to the packets that are sent only to
port 80 of the Docker host
Forwarding address 172.17.0.2:80: The container's IP address and port to
which the iptables forward the packets when the aforementioned criteria are
met

Network and Data Management for Containers Chapter 4

[129]

There's more...
The -p (--publish) option of the docker container run command supports four
configurations that you can use to publish your containerized service to the external world,
as shown in the following list:

<hostPort>:<containerPort>: This configuration was addressed in an earlier1.
recipe.
<containerPort>: In this configuration, we just specify the container port and2.
let the Docker Engine select the Docker host port. The typical port range is from
32768 to 61000, which is defined in
/proc/sys/net/ipv4/ip_local_port_range.
<ip>:<hostPort>:<containerPort>: This configuration is very similar3.
to <hostPort>:<containerPort>; however, here you are specifying a
particular IP interface of the Docker host.
<ip>::<containerPort>: This configuration is very similar to4.
<containerPort>; however, here you are specifying a particular IP interface of
the Docker host.

The -P (--publish-all) option of the docker container run command reads out the
container port from the image metadata and maps it to a random higher-order port (32768
to 61000) in the Docker host. The EXPOSE instruction of Dockerfile adds the port
information to the image metadata.

See also
The help option of docker container run:

 $ docker container run --help

The documentation on the Docker website:
https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/
default_ ​network/ ​binding/ ​

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[130]

Attaching containers to a host network
In the previous recipe, Docker by default attached our container to the default bridge
network docker0 and then leveraged the DNAT rule of iptables to allow TCP connection
from the external world. However, there are many use cases wherein the container needs
full access to the host network namespace, such as the brctl show scenario in the
introduction section of this chapter. In this recipe, we will attach one container to the
default bridge network and another one to the host network and compare the differences.

Getting ready
Before we begin, ensure that the Docker daemon is running and has access to the alpine
image.

How to do it...
Perform the following steps:

First, let's launch an alpine container without prescribing any network option1.
and invoke the ip address command, as shown in the following screenshot:

Network and Data Management for Containers Chapter 4

[131]

Now, let's continue to launch an alpine container by attaching it to the Docker2.
host's network stack by using --net=host as an argument and executing the ip
address command, as shown in the following screenshot:

Evidently, in step 1, Docker created a network namespace for the container and assigned an
IP address for the container, whereas, in step 2, Docker attached the container to the host
network stack, hence the container has full access to the host's network stack.

How it works...
The Docker Engine launches the new container by attaching the container to the Docker
host's network stack, thereby allowing the container full access to the host's network stack.

See also
The help option of docker container run:

 $ docker container run --help

Network and Data Management for Containers Chapter 4

[132]

The documentation on the Docker website:
https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/
default_ ​network/ ​binding/ ​

Launching containers with no network
Docker inherently supports three types of network (bridge, hosts, and none), as is
evident in the following docker network ls command output:

In the previous recipes, we discussed the bridge and host networking capability.
Nonetheless, the none network mode comes in handy when you package any utility inside
the container that doesn't need any network connectivity. Besides, the none network mode
can also be used to do your custom network plumbing without involving the Docker. In
this recipe, we will launch a container with the none network mode and explore the
container's network details.

Getting ready
Before we begin, ensure that the Docker daemon is running and has access to the alpine
image.

How to do it...
Launch a container with no network by using the --net none argument in the docker
container run command, as shown in the following screenshot:

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[133]

Apparently, when we launch a container with the network mode set to none, Docker only
creates a loopback interface for that container. Since there is no Ethernet interface defined
for this container, the container is isolated from the network.

How it works...
When a container is launched with the none network mode, the Docker Engine creates a
network namespace for the container. However, it doesn't configure any network for that
container.

See also

The help option of docker container run:

$ docker container run --help

The documentation on the Docker website:

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​default_
network/ ​binding/ ​

Sharing IP addresses with other containers
Typically, when we launch a container, the Docker Engine assigns an IP address to that
container. Of course, we can use the host network mode to attach the container to the
Docker host's IP address, or use the none network mode to launch a container without any
IP address assigned to it. However, you might come across scenarios wherein multiple
services have to share the same IP address. In such situations, you can run multiple services
inside a container; however, such a practice is deemed as anticontainer-pattern.

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[134]

The better alternative is to run each service inside separate containers, but share the IP
address, as shown in the following topology:

In essence, the Docker Engine assigns an IP address for the IP container and then the IP
address is inherited by the Service1, Service2, and Service3 containers. In this recipe, we
will launch one container and share the IP address with another container.

Getting ready
Before we begin, ensure that the Docker daemon is running and has access to the alpine image.

How to do it...
Perform the following the steps:

Firstly, launch a container in the background, as shown in the following1.
screenshot:

Here, the container is named as ipcontainer.

Network and Data Management for Containers Chapter 4

[135]

Look at the IP address of the ipcontainer, as shown in the following2.
screenshot:

Finally, let's launch a container by attaching its network to the ipcontainer and3.
display the IP addresses attached to this container:

As is evident in step 2 and step 3, eth0 of ipcontainer in step 2 and the transient
container in step 3 have the same interface index of 4 and IP address of 172.17.0.2.

How it works...
In this recipe, we created one container and then created subsequent containers to use the
network of the first container. In this case, the Docker Engine would create a network
namespace for the first container and then assign the same namespace for the other
containers too.

Network and Data Management for Containers Chapter 4

[136]

There's more...
When containers share the network namespace, the original container that created the
namespace must be in a running state until the other containers are running. If the original
container is stopped before the other containers, it will put the other containers in an
unusable state, as shown in the following code:

Containers in a Kubernetes (http://kubernetes.io/) pod use this trick to share the IP
address between the containers in a pod. We will revisit this in Chapter 8, Docker
Orchestration and Hosting Platform.

See also

The help option of docker container run:

$ docker container run --help

The documentation on the Docker website:

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/
default_ ​network/ ​binding/ ​

http://kubernetes.io/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[137]

Creating a user-defined bridge network
In the previous recipes, we used the default bridge that gets activated when we install
Docker. The containers that are connected through the default bridge can communicate
with each other using the IP address, but not the container's name. In microservice
architecture, multiple containers are orchestrated to provide a meaningful higher-level
service, and it is imperative that these containers communicate with each other effectively.
The container IP address is assigned during the container start time, and hence it does not
work well for multicontainer orchestration. Docker made an attempt to address this issue
by linking containers statically using the --link option of the docker container run
command. Unfortunately, the linked containers have a tightly coupled container life cycle,
so a restart of a container might impede the complete solution, and it will also not be
scalable. Later, between versions 1.9 and 1.12, Docker introduced a series of new
capabilities through a user-defined network that solves many of the aforementioned
shortcomings of multicontainer orchestration and communication.

The user-defined bridge network is functionally very much akin to the default bridge;
however, it provides the following additional features:

Service discovery through an embedded DNS server, which is an excellent fit for
multicontainer orchestration and communication.
DNS-based load balancing, another cool feature that complements
multicontainer orchestration and communication. Notably, this feature allows us
to seamlessly and transparently scale containers.
Optionally, we can configure our own subnet to the bridge.
Optionally, we can manually assign an IP address to the containers from the
bridge's subnet.

In this recipe, we will create a user-defined network and scrutinize some of its fundamental
constructs. In the following recipe, we will create containers in the user-defined bridge and
demonstrate the capabilities of a user-defined bridge network.

Getting ready
Before we begin, ensure that the Docker daemon is running.

Network and Data Management for Containers Chapter 4

[138]

How to do it...
Let's begin by creating a new user-defined bridge network using the docker1.
network create command, as shown in the following screenshot:

Here, the user-defined bridge network is named cookbook.

Inspect the user-defined bridge network cookbook using the docker network2.
inspect command:

Here, the 172.18.0.0/16 subnet is assigned to the user-defined bridge network
cookbook and the 172.18.0.1 IP address is assigned to the gateway.

Network and Data Management for Containers Chapter 4

[139]

Let's now look at the interface details of the Docker host:3.

Apparently, a new Linux bridge interface, br-408276d6b1f2, is created, and is
assigned the address 172.18.0.1/16. The bridge name is derived by
concatenating the br- string with the first twelve digits of the network ID.

Finally, let's look at the iptables to understand the NATing behavior of the4.
user-defined bridge:

Network and Data Management for Containers Chapter 4

[140]

As highlighted in the preceding screenshot, a NAT POSTROUTING rule has been added for
the 172.18.0.0/16 subnet, like the default bridge.

How it works...
When we create a user-defined bridge, Docker creates a Linux bridge interface and creates
the necessary NAT rules in the iptables.

There's more...
The docker network create command provides over a dozen options to customize your
network according to your business requirements. In the following example, we are
creating a user-defined network on a 10.1.0.0/16 subnet:

$ docker network create 10dot1net --subnet 10.1.0.0/16

See also

The help option of docker network create:

$ docker network create --help

The documentation on the Docker website:

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​default_
network/ ​binding/ ​

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[141]

Discovering and load balancing containers
In the previous recipe, we looked at the benefits of a user-defined bridge network and the
steps to create and examine a user-defined bridge network. In this recipe, we will build a
container topology, as depicted in the following diagram:

In this topology, we will launch container1 and container2 like a service and use a
transient container to demonstrate the following capabilities of the user-defined bridge
network:

Service discovery through an embedded DNS server
DNS-based load balancing

Getting ready
Before we begin, ensure that the Docker daemon is running.

How to do it...
Perform the following the steps:

Let's start off by spinning two containers, container1 and container2, by1.
connecting them to the user-defined bridge network cookbook using the docker
container run command, as shown in the following screenshot:

Network and Data Management for Containers Chapter 4

[142]

Here, the --network-alias option helps us to group multiple containers
with a single alias name and load balance using the embedded DNS. The
embedded DNS provides round-robin load balancing.

Look at the IP address of both container1 and container2 using the docker2.
container inspect command:

Here, the .NetworkSettings.Networks.cookbook.IPAddress filter is
applied to the --format option because we know that the containers are
connected to the user-defined bridge network cookbook.

Now, let's use transient containers to understand the service discovery capability3.
of user-defined networks, as demonstrated in the following screenshot:

Network and Data Management for Containers Chapter 4

[143]

Cool, isn't it! Now the containers can communicate with each other by using
the containers' names. This service discovery capability simplifies the
multicontainer orchestration a great deal.

Having delved into the service discovery capability, let's gain more4.
understanding of the DNS load balancing capability of the user-defined network
by pinging the network alias netalias, as shown in the following screenshot:

As we can discern from the preceding screenshot, the first ping on netalias got a
response from the IP address 172.18.0.3, which is container2, and the second ping on
netalias got a response from 172.18.0.2, which is container1. In essence, the
embedded DNS load balancer resolved the netalias using a round-robin algorithm.

How it works...
When a container is connected to a user-defined network, the Docker Engine adds the
container's name and its network alias (if present) to the user-defined network's DNS
record. Then Docker shares these details to the other containers connected to the same user-
defined network through the embedded DNS hosted at 127.0.0.11.

Network and Data Management for Containers Chapter 4

[144]

There's more...
Like any DNS server, we can query our embedded DNS server for the DNS
records using dig or nslookup. Here, we are using a third-party image called
sequenceiq/alpine-dig to query the DNS record because this image is
shipped with the dig command, rather than the official alpine image that does
not have the dig command:

Evidently, the DNS entry netalias has two IP addresses, 172.18.0.3 and
172.18.0.2, as its A record.

Applications, such as nginx, usually cache the IP addresses, and so DNS-based
load-balancing solutions usually don't work well with such applications.

See also
The help option of the docker network create command:

$ docker network create -help

Network and Data Management for Containers Chapter 4

[145]

The h option of the dig command:

$ dig -h

The documentation on the Docker website:

 https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​userguide/ ​networking/ ​default_
network/ ​binding/ ​

Persisting data using volumes
As we are aware, the container's read–write layer is temporary, and is destroyed when the
container is removed. However, there are use cases wherein you will have to preserve the
application data beyond the life cycle of the container. For instance, a Docker registry
container holds all the images that are pushed to it. If this container is deleted, then we will
lose all the images that it was holding. Perhaps, we can resort to the container's commit
flow to preserve the data, but it will bloat the image and complicate the container
deployment process. The recommended alternative is to persist the application data outside
of the container's filesystem, using volumes or a bind mount. We will discuss bind mounts
in the next recipe.

Docker volumes are a special directory in the Docker host, and are created and managed by
Docker itself. We can mount these volumes to our container and have the application store
its data to the volume. The Docker volumes are either named or anonymous. Functionally,
the anonymous volumes are the same as named volumes; however, the anonymous volume
name is randomly generated. Docker also supports the volume plugin to address advanced
storage needs, which is outside the scope of this book.

In this recipe, we will demonstrate data persistence using one named volume and two
containers.

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Network and Data Management for Containers Chapter 4

[146]

Getting ready
Before we begin, ensure that the Docker daemon is running.

How to do it...
Perform the following the steps:

Let's begin by creating a named volume using the docker volume1.
create command, as shown in the following code:

 $ docker volume create datavol
 datavol

List the volume using the docker volume ls command, as shown in the2.
following code:

 $ docker volume create ls
 DRIVER VOLUME NAME
 local datavol

Launch an interactive container using the docker container run command3.
and -v option to mount the datavol volume to the container, as shown in the
following code:

 $ docker container run -it --rm -v datavol:/data alpine / #

Now, let's create a new file at the /data directory of the container and write4.
some text to it:

/ # echo "This is a named volume demo" > /data/demo.txt / #

Exit from the preceding container and remove the container using the docker5.
container rm command.

Network and Data Management for Containers Chapter 4

[147]

Now, launch a new container by mounting the datavol volume again and print6.
the content of the demo.txt, as shown in the following code. Here, we are
intentionally choosing an ubuntu image just to stress that the Docker volume
functions the same way irrespective of the Docker image from which the
container is created:

$ docker container run --rm \ -v datavol:/data ubuntu cat
/data/demo.txt

This is a named volume demo. Evidently, the text we wrote from the first
container is persisted in the datavol volume, and later it is retrieved by the
second container.

How it works...
The default docker volume create command creates a directory for the volume under
the /var/lib/docker/volumes/ directory of the Docker host. For instance, in this recipe,
a datavol directory is created under /var/lib/docker/volumes/. Furthermore, Docker
internally creates one more directory called _data for each volume under the directory it
created for that volume. We can confirm the directory path by running the docker volume
inspect command, as shown in the following screenshot:

When we mount the volume to a container, Docker internally bind mounts the _data
directory of the volume to the container.

We will learn more about bind mounting in the next recipe.

Network and Data Management for Containers Chapter 4

[148]

In the current recipe, the /var/lib/docker/volumes/datavol/_data directory gets
bind mounted while launching the container, and any file operations on the volume are
preserved in this directory, as is evident in the following tree output:

Since the file operation is externalized from the container, the life cycle of the volume is
separated from the container.

There's more...
Docker allows us to share the volume with more than one container, and so the volumes
can also be used as an effective vehicle to share data between containers.

See also
The help option of the docker volume create command:

$ docker volume create -help

The help option of the docker volume ls command:

$ docker volume ls -help

The help option of the docker volume inspect command:

$ docker volume inspect -help

The documentation on the Docker website:

 https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​admin/ ​volumes/ ​volumes/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​volume_
create/ ​

https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/

Network and Data Management for Containers Chapter 4

[149]

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​volume_
ls/ ​

https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​volume_
inspect/ ​

Sharing data between the host and the
container
In the previous recipe, we used a named volume to persist application data. We also
learned that named volumes can be used to share data between containers. In this recipe,
we will use bind mounting to mount a Docker host directory to a container and then share
data between the Docker host and container using that mount point.

Getting ready
Before we begin, ensure that the Docker daemon is running.

How to do it...
Perform the following steps:

Let's begin by creating a new directory called data_share in our home1.
directory, as shown in the following code:

 $ mkdir $HOME/data_share

Create a new file in the $HOME/data_share directory of the Docker host and2.
write some text in it:

$ echo "data sharing demo" > $HOME/data_share/demo.txt

https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_inspect/

Network and Data Management for Containers Chapter 4

[150]

Now, launch a container by mounting the $HOME/data_share directory and3.
then print the content of the demo.txt:

$ docker container run --rm \
 -v $(HOME)/data_share:/data \
 ubuntu cat /data/demo.txt
data sharing demo

In this recipe, we effectively shared a file from the Docker host to the container. Though this
is a very simple example, it is a very powerful mechanism to share your application
configuration, as well as other details.

How it works...
When a container is launched with the -v <host path>:<container path> option, the
Docker Engine bind mounts the host path into the container filesystem on the specified
container path. The bind mount is a Linux capability that is used to take an existing
directory structure and map it to a different location.

There's more...
In this recipe, we mounted a directory to the container. Similarly, we can also mount
individual files to the container, as shown in the following code:

$ docker container run --rm \
 -v $(HOME)/data_share/demo.txt:/demo.txt \
 ubuntu cat /demo.txt
data sharing demo

By default, when we mount a directory or a file into a container, it gets mounted in
read–write mode, so that the container can alter the content of the mounted directory or
file. We can prevent the containers from modifying the content of the mounted directory or
file using the ro flag, as demonstrated in the following code:

$ touch file
$ docker container run -rm \
 -v ${PWD}/file:/file:rw \
 ubuntu sh -c "echo rw mode >> /file"
$ cat file
rw mode
$ docker container run -rm \

Network and Data Management for Containers Chapter 4

[151]

 -v ${PWD}/file:/file:rw \
 ubuntu sh -c "echo ro >> /file"
sh: 1: cannot create /file: Read-only file system

Apparently, the write operation failed when we mounted the file as read-only.

See also

The help option of the docker container run command:

$ docker container run -help

The documentation on the Docker website:

 https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​admin/ ​volumes/ ​volumes/ ​

https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/

5
Docker Use Cases

In this chapter, we will cover the following recipes:

Testing with Docker
Performing CI/CD with Shippable and Heroku
Performing CI/CD with TravisCI
Setting up PaaS with OpenShift Origin
Building and deploying an app on OpenShift from the source code

Introduction
Now we know how to work with containers and images. In the last chapter, we also saw
how to link containers and share data between the host and other containers. We also saw
how containers from one host can communicate with containers from other hosts.

Now, let's look at different use cases of Docker. Let's list a few of them here:

Quick prototyping of ideas: This is one of my favorite use cases. Once we have an
idea, it is very easy to prototype it with Docker. All we have to do is set up
containers to provide all the backend services we need and connect them
together. For example, to set up a LAMP application, get the web and DB server
and link them, as we saw in the previous chapter.
Collaboration and distribution: Git is one of the best examples of collaborating
and distributing code. Similarly, Docker provides features such as Dockerfile,
registries, and import/export to share and collaborate with others. We have
covered all this in earlier chapters.

Docker Use Cases Chapter 5

[153]

Continuous Integration (CI): The following definition on the Martin Fowler
website (http:/ ​/ ​www. ​martinfowler. ​com/​articles/ ​continuousIntegration.
html) covers it all:

Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading to
multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and allows a team to
develop cohesive software more rapidly. Using recipes from other chapters, we can build an
environment for CI using Docker. You can create your own CI environment or get
services from companies such as Shippable and TravisCI. We'll see how Shippable and
TravisCI can be used for CI work later in this chapter. I thought it would be helpful if I
talk about both of them here:

Continuous Delivery (CD): The next step after CI is Continuous Delivery,
through which we can deploy our code rapidly and reliably to our customer, the
cloud, and other environments without any manual work. In this chapter, we'll
see how we can automatically deploy an app on Heroku through Shippable CI.
Platform-as-a-Service (PaaS): Docker can be used to build your own PaaS. It can
be deployed using tools/platforms such as OpenShift, CoreOS, Atomic, and so
on. Later in this chapter, we'll see how to set up PaaS using OpenShift Origin
(https:/ ​/ ​www. ​okd. ​io).

Testing with Docker
While doing development or QA, it will be helpful if we can check our code against
different environments. For example, we may need to check our Python code between
different versions of Python, or on different Linux distributions such as Fedora, Ubuntu,
CentOS, and so on. For this recipe, we will use Flask, which is a microframework for
Python (https:/​/ ​www. ​palletsprojects. ​com/​p/​flask/ ​). We will use the sample code from
Flask's GitHub repository. I chose this to keep things simple, and it is easier to use for other
recipes as well.

For this recipe, we will create images with one container with Python 2.7 and another with
Python 3.7. We'll then use sample Python test code to run against each container.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.okd.io
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/flask/

Docker Use Cases Chapter 5

[154]

Getting ready
Make the following preparations:

As we are going to use example code from Flask's GitHub repository, let's clone
it:

 $ cd /tmp
 $ git clone https://github.com/pallets/flask

Create a Dockerfile_2.7 file, as follows, and then build an image from it:

 $ cat /tmp/Dockerfile_2.7
 FROM python:2.7
 RUN pip install flask pytest
 ADD flask/ /flask
 WORKDIR /flask/examples/tutorial
 RUN pip install -e .
 CMD ["/usr/local/bin/pytest"]

To build the python2.7test image, run the following command:

 $ docker image build -t python2.7test -f /tmp/Dockerfile_2.7 .

Similarly, create a Dockerfile with python:3.7 as the base image and build the
python3.7test image:

 $ cat /tmp/Dockerfile_3.7
 FROM python:3.7
 RUN pip install flask pytest
 ADD flask/ /flask
 WORKDIR /flask/examples/tutorial
 RUN pip install -e .
 CMD ["/usr/local/bin/pytest"]

To build the python3.7test image, run the following command:

 $ docker image build -t python3.7test -f /tmp/Dockerfile_3.7 .

Make sure both the images are created:

 $ docker image ls

Docker Use Cases Chapter 5

[155]

How to do it…
Now, using the two images we created, let's run them, to see the results.

To test with Python 2.7, run the following command:

$ docker container run python2.7test

Similarly, to test with Python 3.7, run the following command:

$ docker container run python3.7test

Docker Use Cases Chapter 5

[156]

How it works…
As you can see from the two Dockerfiles, before running the CMD, which runs the pytest
binary, we add the Flask source code to the image, change our working directory to the
tutorial example directory, /flask/examples/tutorial, and install the app. So, as soon
as the container starts, it will run the pytest binary on our tests.

There's more…
In this recipe, we have seen how to test our code with different versions of
Python. Similarly, you can pick up different base images from Fedora, CentOS,
and Ubuntu, and test them on different Linux distributions.
If you use Jenkins in your environment, then you can use its Docker plugin to
dynamically provision a slave, run a build, and tear it down on the Docker host.

More details about this can be found at https:/ ​/​plugins. ​jenkins. ​io/
docker- ​plugin.

Performing CI/CD with Shippable and
Heroku
In the preceding recipe, we saw an example of how Docker can be used for testing in a local
Dev and QA environment. Let's look at an end-to-end example to see how Docker is now
used in CI/CD environments. In this recipe, we'll see how we can use Shippable (https:/ ​/
www.​shippable.​com) to perform CI/CD and deploy it on Heroku (https:/ ​/​www. ​heroku.
com).

https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://plugins.jenkins.io/docker-plugin
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com

Docker Use Cases Chapter 5

[157]

Shippable is a SaaS platform that lets you easily add Continuous Integration/Deployment to
your GitHub and Bitbucket (Git) repositories, and is completely built on Docker. Shippable
uses build minions, which are Docker-based containers, to run workloads. Shippable
supports many languages, such as Ruby, Python, Node.js, Java, Scala, PHP, Go, and
Clojure. The default build minions are of Ubuntu 14.04 LTS and Ubuntu 16.04. They have
also added support to use custom images from Docker Hub as minions. Shippable CI needs
information about the project and build instructions in a YAML file called shippable.yml,
which you have to provide in your source code repo. The yaml file contains the following
instructions:

language: This will show the programming language
python: With this, you can specify different versions of the language to get test
in a single build instruction
build: This is the build pipeline
ci: These are the instructions for running the build
on_success: These are instructions after the build succeeds, used to perform
deployment on PaaS such as Heroku, Amazon Elastic Beanstalk, AWS
OpsWorks, Google App Engine, and others

Heroku is a Platform-as-a-Service (PaaS) that enables developers to run and operate
applications entirely in the cloud.

For this recipe, we will use the same example code we used in the previous recipe, to first
test it on Shippable and then deploy it on Heroku.

Getting ready
Follow the following prerequisites:

Create an account on Shippable (https:/ ​/ ​www.​shippable. ​com).1.
Fork the flask example from https:/ ​/ ​github. ​com/ ​kencochrane/ ​heroku- ​flask-2.
example and clone it to your local machine.
Create an app on Heroku for the forked repository with the following steps:3.

Create an account (https:/ ​/​signup. ​heroku. ​com) on Heroku, install the
Heroku application, and log in:

 $ heroku login

https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://www.shippable.com
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com

Docker Use Cases Chapter 5

[158]

Change your directory to where you cloned your fork from Step 2, and create
an app on Heroku:

 $ heroku create --ssh-git

Push your code to Heroku to deploy your application:

 $ git push heroku master

After a minute, your application will be deployed:

Docker Use Cases Chapter 5

[159]

Make sure your application has at least one dynamo, and open the app in
your browser, to make sure it is working:

 $ heroku ps:scale web=1
 $ heroku open

Your browser should open and load the page for your application. If the
result worked, it should look something like the following:

Update the shippable.yml file in your fork to use your Heroku application's4.
Git URL:

language: python
python:
 - 3.7
build:
 ci:
 - shippable_retry pip install -r requirements.txt
 # Create folders for test and code coverage
 - mkdir -p shippable/testresults
 - mkdir -p shippable/codecoverage
 # run tests
 - pytest
 on_success:
 # my heroku app git urls:
 # http url: https://git.heroku.com/blooming-mountain-58044.git
 # git url: git@heroku.com:blooming-mountain-58044.git
 # use git url not http.
 # change this value to the value of your app.
 - git push git@heroku.com:blooming-mountain-58044.git

Commit the changes to your code, and push it to your forked repository.5.

Docker Use Cases Chapter 5

[160]

How to do it…
Perform the following steps:

Log in to Shippable, and select the Enable a Project link:1.

Then, select the correct subscription on the left, and it will show you a list of your2.
repos below. Select the heroku-flask-example repo:

Docker Use Cases Chapter 5

[161]

Click on the Play button and select Branch to build. For this recipe, I chose3.
master:

If the build is successful, you will see the success icon.

Next time, if you do a commit in your repository, a build on Shippable will be
triggered and the code will be tested. Now, to perform Continuous Deployment
on Heroku, let's follow the instructions provided on the Shippable website
(http:/​/​docs. ​shippable. ​com/ ​ci/​deploy- ​to- ​heroku/ ​). Shippable will need to
have permission to make changes to our Heroku application; we grant it
permission by adding its deployment SSH key to our Heroku account.

Get the deployment key from your Shippable dashboard by clicking the little4.
gears icon, and selecting Settings:

http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/
http://docs.shippable.com/ci/deploy-to-heroku/

Docker Use Cases Chapter 5

[162]

Toward the bottom of the page, there is a Deployment Key section. Copy the5.
key:

Now that you have the key, go to your Account settings in Heroku:6.

Docker Use Cases Chapter 5

[163]

Scroll down until you see the SSH Keys section, and hit the Add button.7.

A window will pop up where you will be able to add the SSH key that you8.
copied from Shippable. Paste the key, and hit Save changes:

We have now made it so that, when a build is successful, Shippable is able to push changes
to Heroku.

How it works…
At every build instruction, Shippable spins up a new container depending on the image
and language type specified in the shippable.yml file, and runs the build to perform
testing. Shippable knows when to start a build, because it adds a webhook to your GitHub
repository when you register your application with them:

Docker Use Cases Chapter 5

[164]

So, every time a change is committed to GitHub, a build on Shippable gets triggered, and
after the build is successful, it is deployed to Heroku.

See also
Detailed documentation is available on the Shippable website at http:/ ​/​docs.
shippable. ​com. ​

Performing CI/CD with TravisCI
As mentioned on the TravisCI website (https:/ ​/ ​travis- ​ci. ​org), TravisCI is a hosted
Continuous Integration service. It enables you to conveniently set up projects to
automatically build, test, and deploy them as you make changes to your code. As of now,
they support over 30 languages such as C/C++, Dart, Go, Haskell, Groovy, Java, Node.js,
PHP, Python, Ruby, and Scala. Using TravisCI, you can deploy your application on
platforms such as Heroku, Google App Engine, AWS, and Azure.

For this recipe, let's use the same example that we used in earlier recipes.

http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
http://docs.shippable.com
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org

Docker Use Cases Chapter 5

[165]

Getting ready
Follow the following prerequisites:

Log in to TravisCI (https:/ ​/ ​travis- ​ci.​org).1.

Click on your profile and set up a Repository. In our case, we'll pick the same2.
repository from GitHub that we used in the previous recipe (https:/ ​/ ​github.
com/​kencochrane/ ​heroku- ​flask- ​example):

https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example
https://github.com/kencochrane/heroku-flask-example

Docker Use Cases Chapter 5

[166]

We will need to now add a .travis.yml file to our Git repo that has the3.
information that TravisCI will need when building our code. Create a file with
the following contents, and commit and push it to GitHub:

$ cat .travis.yml
language: python
python:
 - "3.6"
install:
 - pip install -r requirements.txt
script:
 - pytest

How to do it…
Follow the following steps:

Trigger a manual build by clicking on More options and then Trigger build, as1.
shown in the following screenshot:

Docker Use Cases Chapter 5

[167]

If all went well, you should be able to see the results of your build, with the logs:2.

Docker Use Cases Chapter 5

[168]

How it works…
The build process starts a new container, clones the source code repository, and runs the
commands that we specified in the script section of our .travis.yml file, inside of our test
container.

There's more…
TravisCI also adds a webhook in GitHub; thus, the next time you commit the
changes in the repository, a build will be triggered.
TravisCI also supports Continuous Deployment to different cloud environments,
as we have seen in the earlier recipe. To set that up, you would need to add more
information to the .travis.yml file. For more details, check out the deployment
documentation (https:/ ​/​docs. ​travis- ​ci.​com/ ​user/ ​deployment/ ​).

See also
The TravisCI documentation at https:/ ​/ ​docs. ​travis- ​ci. ​com. ​

Setting up PaaS with OpenShift origin
Platform-as-a-Service (PaaS) is a type of cloud service where the consumer controls
software deployments and configuration settings for applications (mostly web), and the
provider provides servers, networks, and other services to manage those deployments. The
provider can be external (public provider) or internal (IT department in an organization).
There are many PaaS providers, such as Amazon (https:/ ​/​aws. ​amazon. ​com), Heroku
(https:/​/​www.​heroku. ​com), OpenShift (https:/ ​/​www. ​openshift. ​com), and so on. In the
recent past, containers seem to have become the natural choice for applications to get
deployed to.

https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com/user/deployment/
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://docs.travis-ci.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com
https://www.openshift.com

Docker Use Cases Chapter 5

[169]

Earlier in this chapter, we looked at how we can build a CI/CD solution using Shippable
and Heroku, where we deployed our app using the Heroku PaaS. Heroku is a public cloud
service, hosted on Amazon Web Service (AWS). OpenShift (https:/ ​/​github. ​com/
openshift/​origin) is a PaaS that leverages technologies such as Docker and Kubernetes
(https:/​/​kubernetes. ​io) among others, providing a complete ecosystem to service your
cloud-enabled apps. As we talked about Kubernetes in Chapter 8, Docker Orchestration and
Hosting Platform, it is highly recommended you read that first before continuing into this
recipe. I am going to borrow some of the concepts from that chapter. Lets look at the
following diagram:

https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io

Docker Use Cases Chapter 5

[170]

Kubernetes provides container cluster management with features such as scheduling pods
and service discovery, but it does not have the concept of a complete application, nor does
it build and deploy Docker images from the source code. OpenShift extends the base
Kubernetes model and fills those gaps. If we fast-forward and look at Chapter 8, Docker
Orchestration and Hosting Platform, for the Kubernetes section, you will notice that to deploy
an app, we need to define Pods, Services, and Replication-Controllers. OpenShift tries to
abstract all that information and let you define one configuration file that takes care of all
the internal wiring. Further, OpenShift provides other features such as automated
deployment through source code push, centralized administration and management of
applications, authentication, team and project isolation, and resource tracking and limiting,
all of which are required for enterprise deployment.

In this recipe, we will set up all-in-one OpenShift Origin on a VM and start a pod. In the
next recipe, we will see how to build and deploy an app through source code using the
Source-to-image (S2I) build feature. The example can be found at https:/ ​/​github. ​com/
openshift/​origin/ ​tree/ ​master/ ​examples/ ​sample- ​app .

Getting ready
Set up a Virtual Machine with CentOS 7.5 and at least 4 GB of RAM, and SSH into it.

Install Docker:1.

 $ curl https://get.docker.com | bash

Add an entry for an insecure registry to the Docker daemon configuration file2.
(/etc/docker/daemon.json):

 $ cat /etc/docker/daemon.json
 {
 "insecure-registries": [
 "172.30.0.0/16"
]
 }

Start up Docker:3.

 $ systemctl start docker

 Install the wget package:4.

 $ yum install -y wget

https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app

Docker Use Cases Chapter 5

[171]

Download the latest OpenShift binaries from the releases page on github5.
(https:/ ​/ ​github. ​com/ ​openshift/ ​origin/ ​releases):

 $ cd /tmp
 $ wget
https://github.com/openshift/origin/releases/download/v3.10.0/openshift-ori
gin-client-tools-v3.10.0-dd10d17-linux-64bit.tar.gz

 Use tar to extract the archive and move the oc binary to a directory in your6.
path (/usr/local/bin):

 $ tar -xvzf openshift-origin-client-tools-v3.10.0-dd10d17-
linux-64bit.tar.gz
 $ cd openshift-origin-client-tools-v3.10.0-dd10d17-linux-64bit
 $ sudo cp oc /usr/local/bin
 $ cd ~

How to do it…
Now that we have a VM set up with Docker running and the OpenShift binaries installed,
we can start up our cluster using the oc binary. OpenShift has a web console that you can
log into, but in order for it to work correctly, OpenShift will need to be able to determine
your IP address. If your VM has more than one, you might need to explicitly tell OpenShift
which one to use when starting the cluster. In the example here, my public IP address is
142.93.14.79; your IP will be different:

$ oc cluster up --public-hostname=<your ip>

https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases

Docker Use Cases Chapter 5

[172]

After a few minutes, the cluster is up and running, and you will see something like this:

At this point, we have two options; we can either install our application via the SSH shell,
or we can use the web console. Let's try with the web console first, and make sure that is
working correctly. Open the web console URL in your browser, and log in using the
credentials shown in the output when starting your cluster.

You will probably get a warning from your browser that the SSL/TLS
certificate doesn't match. That is fine, and expected; you can bypass this
warning and continue.

Docker Use Cases Chapter 5

[173]

Now that you are logged in, let's deploy an example application. Click on the Ruby icon in
the catalog:

This brings up a wizard, that will help us add our application to the cluster. Click the Next
button:

Docker Use Cases Chapter 5

[174]

Click the Try Sample Repository link, and it will auto-populate the form for us; then, click
the Create button:

Docker Use Cases Chapter 5

[175]

Just like that, our ruby-ex application was created. Click the Close button:

You should now see the application listed in the web console; once the application is up
and running, you will watch a URL where you can see the application in action:

Docker Use Cases Chapter 5

[176]

Open the application URL in your browser, and you should see something like the
following:

Docker Use Cases Chapter 5

[177]

Now that we have the example Ruby application up and running, let's delete it, and do the
same thing, but using the SSH shell. Under applications, you can click the Actions option
and select Delete. This will delete the application for us:

Go back to the SSH shell, and let's create a new application, but this time using the oc
binary. For this example, we will be using one of the other built-in examples that comes
with OpenShift. We will use the django-psql-persistent example, which has two
services, a Django web service and a PostgreSQL database service:

$ oc new-app django-psql-persistent

Docker Use Cases Chapter 5

[178]

After a few minutes, your application is created, and you should see something like the
following:

When we run the oc status command, we can see the URL for our project:

$ oc status

Docker Use Cases Chapter 5

[179]

When we open that URL in our browser, you can see the application is up and running:

Docker Use Cases Chapter 5

[180]

When you go back to the web console, you can see the details of the application you just
deployed:

If we want to delete the application using the oc binary, it is pretty easy. We just need to
use the delete command:

$ oc delete dc/django/psql-persistent
$ oc delete dc/postgresql

Docker Use Cases Chapter 5

[181]

How it works…
When OpenShift starts, all Kubernetes services start as well. Then, we connect to the
OpenShift master through CLI and request it to start a pod. That request is then forwarded
to Kubernetes, which starts the pod. OpenShift acts as the middleman between you and
Kubernetes.

There's more…
If you run the docker container ls command, you will see the corresponding
containers running
If you want to stop the OpenShift cluster, you can run the following command:

 $ oc cluster down

See also
The Learn More section on https:/ ​/​github. ​com/ ​openshift/ ​origin.
OpenShift documentation at https:/ ​/​docs. ​okd. ​io/​latest/ ​welcome/ ​index.
html.

Building and deploying an app on OpenShift
from the source code
OpenShift provides the build process to build an image from source code. The following
are build strategies that you can follow to build images:

Docker build: In this, users will supply to Docker context (Dockerfile and
support files), which can be used to build images. OpenShift just triggers the
docker build command to create the image.
Source-to-image (S2I) build: In this, the developer defines the source code
repository and the builder image, which defines the environment used to create
the app. S2I then uses the given source code and builder image to create a new
image for the app. More details about S2I can be found at https:/ ​/​github. ​com/
openshift/ ​source- ​to- ​image.

https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/welcome/index.html
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image

Docker Use Cases Chapter 5

[182]

Custom build: This is similar to the Docker build strategy, but users might
customize the builder image that will be used for build execution.

In this recipe, we are going to look at the S2I build process. We are going to look at sample-
app from the OpenShift Origin repo (https:/ ​/​github. ​com/​openshift/ ​origin/ ​tree/
master/​examples/ ​sample- ​app). The corresponding S2I build file is located at https:/ ​/
github.​com/​openshift/ ​origin/ ​tree/ ​master/ ​examples/ ​sample- ​app/ ​application-
template-​stibuild. ​json.

In the BuildConfig section, we can see that the source is pointing to a GitHub repo (git:/ ​/
github.​com/​openshift/ ​ruby- ​hello- ​world. ​git) and the image under the strategy section
is pointing to the centos/ruby-22-centos7 image. So, we will use the
centos/ruby-22-centos7 image and build a new image using the source from the
GitHub repo. The new image, after the build is pushed to the local or third-party Docker
registry, depends on the settings. The BuildConfig section also defines triggers on when to
trigger a new build, for instance, when the build image changes.

In the same S2I build file (application-template-stibuild.json), you will find
multiple DeploymentConfig sections, one for each pod. The DeploymentConfig section
has information such as exported port, replicas, environment variables for pod, and other
info. In simple terms, you can think of DeploymentConfig as an extended replication
controller for Kubernetes. It also has triggers to trigger new deployments. Each time a new
deployment is created, the latestVersion field of DeploymentConfig is incremented. A
deploymentCause is also added to the DeploymentConfig, describing the change that led
to the latest deployment.

ImageStream is a stream of related images. BuildConfig and DeploymentConfig watch
ImageStream to look for image changes and react accordingly, based on the respective
triggers.

Other sections that you will find in the S2I build file are services for pods (database and
frontend), routes for the frontend service through which the app can be accessed, and
templates. A template describes a set of resources intended to be used together that can be
customized and processed to produce a configuration. Each template can define a list of
parameters that can be modified for consumption by containers.

Similar to the S2I build, there are examples of Docker and custom builds in the same
sample-app example folder. I am assuming you have the earlier recipe, so we will continue
from there.

https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git
http://github.com/openshift/ruby-hello-world.git

Docker Use Cases Chapter 5

[183]

Getting ready
You should have completed the earlier Setting up PaaS with OpenShift Origin recipe.

Make sure your cluster is up and running:

$ oc cluster status

Clone the OpenShift Git repo into the /opt/openshift/origin directory:

$ mkdir -p /opt/openshift
$ cd /opt/openshift
$ git clone https://github.com/openshift/origin.git
$ cd origin/examples/sample-app

Your current working directory should be /opt/openshift/origin/examples/sample-
app inside the VM.

How to do it…
Submit the application template for processing using the oc command:

$ oc new-app application-template-stibuild.json

Docker Use Cases Chapter 5

[184]

Monitor the build and wait for the status to go to complete (this can take a few minutes):

$ oc get builds

Get a list of pods:

$ oc get pods

Get a list of services:

$ oc get services

How it works…
In the BuildConfig (ruby-sample-build) section, we specified our source as the ruby-
hello-world Git repo (git://github.com/openshift/ruby-hello-world.git) and our
image as centos/ruby-22-centos7. So, the build process takes that image, and with S2I
builder, a new image called origin-ruby-sample is created after building our source on
centos/ruby-22-centos7. The new image is then pushed to the Docker registry that is
built into OpenShift.

With the DeploymentConfig, the frontend, and backend pods are also deployed and linked
to the corresponding services.

Docker Use Cases Chapter 5

[185]

There's more…
In a multiple node setup, your pods can be scheduled on different systems.
OpenShift connects pods through the overlay network, so a pod running on one
node can access another. It is called openshift-sdn. For more details, please
visit https:/ ​/ ​docs. ​openshift. ​com/ ​container- ​platform/ ​3. ​10/​architecture/
networking/ ​sdn. ​html.

See also
The Learn More section at https:/ ​/ ​github. ​com/ ​openshift/ ​origin. ​

OpenShift documentation at https:/ ​/​docs. ​openshift. ​com. ​

https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://github.com/openshift/origin
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com
https://docs.openshift.com

6
Docker APIs and SDKs

In this chapter, we will cover the following recipes:

Working with images using APIs
Building images using APIs
Launching containers using APIs
Performing container operations using APIs
Exploring Docker remote API client libraries
Configuring the Docker daemon for remote connectivity
Securing the Docker daemon's remote connectivity

Introduction
In previous chapters, we have been fiddling a lot with Docker commands to work with
Docker images, containers, volumes, and networks. One of the hallmarks of Docker is the
amazing user experience it provides through its easy-to-remember and well-structured
commands. With a single Docker command, we can spin a very useful microservice or
utility container. However, behind the scenes, the Docker client translates our request into
multiple API calls in order to fulfill it. These APIs are called Docker Engine APIs, and they
are designed using the REST paradigm.

Note: REST (aka RESTful) stands for REpresentational State Transfer,
which is a web standard for data communication over the HTTP protocol.

Docker APIs and SDKs Chapter 6

[187]

The Docker Engine API is documented using the OpenAPI (formerly known as Swagger)
specification. As a result, we can access API help through any standard OpenAPI editor. In
this book, we are using an editor called Swagger Editor, and it is available at http:/ ​/
editor.​swagger.​io; however, you can use any OpenAPI editor of your choice. Swagger
Editor has options such as Try it out and Execute, which can be used to generate curl
commands with appropriate options. The following screenshot shows Swagger Editor with
the Docker engine API document:

Here, we generated the Docker Engine API document from the swagger.yaml file
available at https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​api/ ​v1. ​35/​swagger. ​yaml. ​ Of course, you
can also refer to the current, work-in-progress version of the API from https:/ ​/​raw.
githubusercontent. ​com/ ​moby/ ​moby/ ​master/ ​api/ ​swagger. ​yaml. ​

http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
http://editor.swagger.io
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml

Docker APIs and SDKs Chapter 6

[188]

By default, the Docker engine listens on /var/run/docker.sock, a Unix domain socket,
to communicate with its client. The Unix domain socket, also known as the inter-process
communication socket, enables reliable communication within a host. Besides this,
/var/run/docker.sock has read-write access for the user root and group docker;
hence, the client application must either have root privilege or be a member of the docker
group. In addition to the Unix socket, the Docker daemon supports two more socket types:

fd: Systemd's socket activation. On Systemd-based systems such as Ubuntu
16.04, the Docker daemon listens on the fd socket, which internally gets mapped
to the Unix socket /var/run/docker.sock using the systemd's socket
activation feature.
tcp: For remote connectivity. In recipe, Configuring the Docker daemon for remote
connectivity, we will configure the Docker daemon to accept unencrypted
communication from the client, and in recipe, Securing the Docker daemon's remote
connectivity, we will configure the Docker daemon to use secure communication.

Docker also provides Software Development Kits (SDKs) for the Python and Go
monogramming language. These SDKs internally use Docker engine REST APIs. In
addition to these standard SDKs, there are many community-supported API bindings for
other programming languages. Some of these API bindings are listed at https:/ ​/ ​docs.
docker.​com/​develop/ ​sdk/ ​#unofficial- ​libraries. However, these libraries are not tested
by Docker.

Throughout this chapter, we will use two tools, curl and jq:

curl is a command-line tool for transferring data. We use curl to connect to our
Docker daemon. Please ensure that you are running curl7.40 or above, because
curl started supporting Unix sockets from version 7.40. You can find more
details about curl at the official website at https:/ ​/ ​curl. ​haxx. ​se/​.​

jq is a command line tool for processing JSON data. We use jq to manipulate the
data we receive from the Docker daemon. You can find more details about jq at
the official website at https:/ ​/​stedolan. ​github. ​io/ ​jq/​. ​

In this chapter we are using Ubuntu 16.04 and Docker 17.10, because of an
issue with the default curl command that comes along with the Ubuntu
18.04 installation. If you choose to continue with Ubuntu 18.04 and
Docker 18.03, you can do so by prefixing any text in the Docker API
endpoint (http://bug/version) as a workaround.

All the recipes in this chapter assume that the Docker is installed and running.

https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://docs.docker.com/develop/sdk/#unofficial-libraries
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Docker APIs and SDKs Chapter 6

[189]

Working with images using APIs
As mentioned earlier, Docker internally uses the Docker engine API to fulfill all our
containerization need

s. In this recipe, we will be using the curl command and the Docker engine APIs to
perform various operations on the Docker images.

How to do it...
In this recipe, we'll look at a few image operations, as follows:

To list images, use the following API:1.

Here is an example of the preceding syntax:

Docker APIs and SDKs Chapter 6

[190]

You can create an image by pulling it from any registry or tar file using the2.
following API:

The /images/create API supports a few options, as listed next, to work
with images:

Now let's look into a few examples:

Get the cookbook/apache2 image from Docker Hub:3.

 $ curl -X POST \
 --unix-socket /var/run/docker.sock \
 http:/images/create?fromImage=cookbook/apache2

Get the WordPress image with the latest tag:4.

Docker APIs and SDKs Chapter 6

[191]

Create an image from the tar file:5.

In this example, we chose to upload the image as a tar bundle from the Docker host using
the --data-binary option of the curl command. Here, the content of myimage.tar is
sent to the Docker daemon through the HTTP message body. If you pay closer attention to
the curl command invocation, you will notice the -i option. We are using the -i option of
the curl command to get HTTP header information.

To delete an image, use the following API:

Here is an example of the preceding syntax:

 $ curl -X DELETE \
 --unix-socket /var/run/docker.sock \
 http:/images/wordpress:latest

How it works...
In this recipe, we performed various operations on the Docker image using the curl
command. The curl command sends our API request to the Docker daemon as a REST API
request over HTTP. The Docker daemon, in turn, will perform the requested action on the
image and reply back with the status of the action.

Docker APIs and SDKs Chapter 6

[192]

There's more...
In this recipe, we just covered three APIs related to Docker image handling, but there are
more. The following screenshot lists all the available /images APIs:

See also
Each API endpoint can have different inputs to control operations. For more
details, visit the documentation on the Docker website at
https://docs.docker.com/engine/api/latest/.

https://docs.docker.com/engine/api/latest/

Docker APIs and SDKs Chapter 6

[193]

Building images using APIs
In the previous recipe, we explored a few actions on Docker images using APIs. In this
recipe, we will build a Docker image using the /build API. Here is the /build API
snippet from Swagger Editor:

How to do it...
Begin by cloning the https:/ ​/​github. ​com/ ​docker- ​cookbook/ ​apache2 repository,1.
as follows:

 $ git clone https://github.com/docker-cookbook/apache2

This repository contains the Dockerfile to bundle an apache2 service; listed
here is the content of the Dockerfile:

https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2
https://github.com/docker-cookbook/apache2

Docker APIs and SDKs Chapter 6

[194]

Let's create the build context by bundling the content of the cloned apache22.
repository as a tar file, as demonstrated here:

 $ cd apache2
 $ tar cvf /tmp/apache2.tar *

Continue on to build the Docker image using the /build API:3.

 $ curl -X POST \
 -H "Content-Type:application/tar" \
 --data-binary '@/tmp/apache2.tar' \
 --unix-socket /var/run/docker.sock \
 http:/build

While the build is in progress, you will receive the build logs as a series of JSON messages.
Once the build is successfully completed, you will get a JSON message like this one:

 {"stream":"Successfully built 3c6f5044386d\n"}

In the preceding JSON message, 3c6f5044386d is the ID of the image we just built using
the /build API.

How it works...
In this recipe, we bundled the build context as a tar file and sent it to the Docker engine as
part of the /build API call. The Docker engine uses the build context and the Dockerfile
in the build context to build the Docker image.

There's more...
In this recipe, we did not specify any repository or tag name, and hence the1.
image is created without any repository or tag name, as shown here:

 $ curl -s --unix-socket /var/run/docker.sock \
 http:/images/json | jq ".[0].RepoTags"
 [
 "<none>:<none>"
]

Docker APIs and SDKs Chapter 6

[195]

Of course, you can now tag the image with the appropriate repository and tag
name using the /images/{name}/tag API. Here is the help document snipped
from the Swagger editor:

Alternatively, you can bundle the image with the repository name during the
build time using the t parameter, as demonstrated here:

 $ curl -X POST \
 -H "Content-Type:application/tar" \
 --data-binary '@/tmp/apache2.tar' \
 --unix-socket /var/run/docker.sock \
 http:/build?t=apache2:usingapi

The tag name is optional and if no tag name is specified, the Docker build engine
will assume the tag name latest.

Docker APIs and SDKs Chapter 6

[196]

You can also create an image from a container using the following API:2.

Here is an example of committing an image from a container ID 4aaec8980c43:

See also
Each API endpoint can have different inputs to control the operations. For more details,
visit the documentation on the Docker website at
https://docs.docker.com/engine/api/latest/.

Launching containers using APIs
In Chapter 2, Working with Docker Containers, recipe Starting a container, we methodically
and meticulously explored different ways of running containers. In all those scenarios, we
used the docker container run command with a few options, and all our containers
were up and running. However, behind the scenes, the Docker CLI makes it possible by
first creating the container layer through the /create API and then launches the
application (cmd) through the /start API, as visualized here:

In addition to the /create and /start API, the Docker CLI uses APIs such as /attach
and /wait to fulfill our request. In this recipe, we will create an alpine container and run
a simple ls command to demonstrate the steps involved in launching a container through
the Docker engine APIs.

https://docs.docker.com/engine/api/latest/

Docker APIs and SDKs Chapter 6

[197]

How to do it...
Begin by creating a container from an alpine image, as shown here:1.

Here, we used the -d option of the curl command to pass our container
configuration as a JSON data to the Docker engine. Evidently, the image is
alpine, and the command we chose to run when the container starts is ls.
In addition, we are also requesting the Docker engine to attach STDERR and
STDOUT to this container, in order to retrieve the output of the ls command.

The HTTP header response code 201 Created indicates that our container
is created successfully. Apparently, the response from the Docker engine is
also a JSON payload. The ID field of the payload contains the container ID,
which is
f9fd4b2e2040d4dea32deb527889bf2fb95b351d8316a4c74bfb6e2e38c

9b499. We shall use the short version of the container ID, f9fd4b2e2040, to
perform further operations on this container.

Since we want to capture the output of the ls command on the screen, let's2.
attach to the container using the /attach API:

The /attach API would block the client (namely, curl) if it is called with
the stderr, stdout, and stream parameter, so we are running the curl
command in the background.

Docker APIs and SDKs Chapter 6

[198]

Now, proceed to start the container using the /start API, as demonstrated here:3.

Cool, isn't it? We emulated the docker container run command with the Docker engine
APIs.

How it works...
In this recipe, we used three Docker engine APIs to successfully launch a container. In the
backend, the Docker engine received the API calls from the client, and on behalf of the
client it created the container for the /container/create API call, then blocked the HTTP
stream for the /containers/attach API call, and finally ran the ls command inside the
container's namespace for the /containers/start API call.

Docker APIs and SDKs Chapter 6

[199]

There's more...
The following is the list of APIs that deal with the life cycle of a container:

See also
Each API endpoint can have different inputs to control operations. For more details, visit
the documentation on the Docker website at
https://docs.docker.com/engine/api/latest/.

Performing container operations using APIs
In the previous recipe, we launched a container and executed a command inside the
container using the /create, /attach, and /start API. In this recipe, we perform a few
more operations on the container.

https://docs.docker.com/engine/api/latest/

Docker APIs and SDKs Chapter 6

[200]

How to do it...
In this recipe, we'll look at a few container operations:

To list containers, use the following API:1.

Here are a few examples:

Here is how to get all the running containers:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/json

Here is how to get all the running containers, including the stopped ones:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/json?all=1

To inspect a container, use the following API:2.

Here is an example of inspecting a container 591ab8ac2650:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/591ab8ac2650/json

To get the list of processes running inside a container, use the following API:3.

Here is an example of listing the process running inside the 591ab8ac2650
container:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/591ab8ac2650/top

Docker APIs and SDKs Chapter 6

[201]

To get the resource usage statistics of a container, use the following API:4.

Here is an example of getting the resource usage statistics for the 591ab8ac2650 container:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/591ab8ac2650/stats

By default, this API streams the resource usage statistics. However, you can disable
streaming by using the stream parameter, as shown here:

 $ curl --unix-socket /var/run/docker.sock \
 http:/containers/591ab8ac2650/stats?stream=0

How it works...
When we connect with the Docker engine using the APIs described in this recipe, the
Docker engine would in turn gather the relevant information from its data source and send
it back to the client.

See also
Each API endpoint can have different inputs to control operations. For more details, visit
the documentation on the Docker website at
https://docs.docker.com/engine/api/latest/.

Exploring Docker remote API client libraries
In the previous recipes, we explored APIs provided by Docker to connect and perform
operations on the Docker daemon. Docker also provides the Software Development Kit for
the python and go languages.

In this recipe, let's explore the python SDK with a few examples.

https://docs.docker.com/engine/api/latest/

Docker APIs and SDKs Chapter 6

[202]

Getting ready
Ensure python3 is installed.
ubuntu 16.04 might not have pip3, so install pip3 using the following
command:

 $ sudo apt-get -y install python3-pip

How to do it...
Let's begin by installing the docker package for python using pip3:1.

 $ sudo pip3 install docker

Now, let's launch python3 and import the docker and json packages, as2.
demonstrated in the following:

Having imported the docker and json packages, let's connect to the Docker3.
daemon through the Unix socket, unix://var/run/docker.sock, using
docker.DockerClient, as shown here:

Here, base_url is the Docker daemon's connection address.

Docker APIs and SDKs Chapter 6

[203]

Continue on to print the Docker daemon version using the following code:4.

Here, the client.version() fetched the version details from the Docker
server in json format, and then we used json.dump() to print the fetched
json data in a pretty format.

Let's write a little more code to list all the running containers using5.
client.containers.list(), as shown here:

As you can see, we have two running containers: 458b8add4a and
62c814650f.

Finally, let's launch a container using client.containers.run(), as shown6.
here:

Docker APIs and SDKs Chapter 6

[204]

How it works...
In all the preceding cases, the Docker module will translate our requests to the appropriate
Docker engine API, wrap it as a RESTful message, and send it to the Docker daemon.

See also
You will find a clearly articulated Python SDK document at https:/ ​/​docker- ​py.
readthedocs.​io/​en/ ​stable/ ​. ​

Configuring the Docker daemon for remote
connectivity
In the previous recipes, we were using the Unix socket (/var/run/docker.sock) to talk to
the Docker engine. As mentioned earlier, by default dockerd listens to the Unix socket
/var/run/docker.sock. However, access to the Unix socket is confined to a local system.
But there will be use cases where you will have to access the Docker daemon remotely. You
can achieve this by configuring the Docker daemon to listen for remote connections using
the tcp socket. In this recipe, we will configure our Docker daemon for remote API
connectivity.

How to do it...
Let's begin by locating the Systemd unit file for the Docker service using the1.
systemctl command, as shown here:

 $ sudo systemctl docker status | grep Loaded
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor
preset: enabled)

https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/

Docker APIs and SDKs Chapter 6

[205]

Evidently, /lib/systemd/system/docker.service is the unit file for the
Docker service. Here is the content of the default Docker service unit file:

As you can see, ExecStart in the unit file is configured to launch the
dockerd (Docker daemon) with fd:// as the listening socket.

Continue on to configure dockerd to accept connections from remote systems by2.
appending -H tcp://0.0.0.0:2375 to the ExecStart line in the unit file, as
shown here:

 ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375

Docker APIs and SDKs Chapter 6

[206]

Here, the IP address 0.0.0.0 is a wildcard address that binds the service to
all the IPv4 addresses of the Docker host. The port, 2375, is a convention
used for clear text (unencrypted) communication.

Having modified the Docker service unit file of the Docker service, we need to3.
manually reload the changes, as shown here:

 $ sudo systemctl daemon-reload

Proceed to restart the Docker service so that the dockerd daemon can listen for4.
communications from the external world:

 $ sudo systemctl restart docker

Now, we can connect to the Docker Engine API from any system that has5.
network connectivity to the Docker host. To demonstrate this remote
connectivity, first let's use our favorite curl command to get the Docker server
version, as show here:

Let's also demonstrate remote connectivity using the Docker client, as shown here:

Docker APIs and SDKs Chapter 6

[207]

Evidently, the client is running on a windows machine and the server is running on Linux.

How it works...
In the preceding command, we configured the Docker daemon to listen for client
connection on TCP port 2375, on all available network interfaces in the Docker host. With
this configuration change, clients can connect to the Docker daemon using any network
interface on the Docker host.

There's more...
In this recipe, we configure the Docker daemon to communicate using clear text
or an unencrypted transport layer. Additionally, the Docker daemon can receive
messages from any system that has network connectivity. Since Docker runs as
root, the open connectivity to the daemon posses a huge security risk. So, use this
model for remote connectivity only in a restricted network. Otherwise, secure the
communication between the Docker daemon and the client using Transport
Layer Security (TLS), as explained later in this chapter.
Earlier, we used the -H option of the docker command to specify the address of
the remote Docker daemon. This is counter-intuitive when we have to run
multiple commands against a remote Docker engine. In such scenarios, we can
use the environment variable, DOCKER_HOST, to set the remote address, as shown
next:

 $ export DOCKER_HOST=tcp://dockerhost.example.com:2375

Once we configure the environment variable, DOCKER_HOST, the Docker client
will use that address to send our request. Thus, all the future docker commands
in that session by default will go to the remote Docker Host.

See also
The documentation on the Docker website can be found at
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-opt
ion.

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option

Docker APIs and SDKs Chapter 6

[208]

Securing the Docker daemon's remote
connectivity
Earlier in this chapter, we saw how to configure the Docker daemon to accept remote
connections. However, with the approach we followed, anyone can connect to our Docker
daemon. We can secure our connection with Transport Layer Security
(http://en.wikipedia.org/wiki/Transport_Layer_Security).

We can configure TLS either by using the existing Certificate Authority (CA) or by creating
our own. For simplicity, we will create our own, which is not recommended for production.
For this example, we assume that our host running the Docker daemon is
dockerhost.example.com.

Getting ready
Make sure you have the openssl library installed.

How to do it...
Create a directory on your host in which to put our CA and other related files:1.

 $ mkdir -p /etc/docker/keys
 $ cd /etc/docker/keys

Create the CA private and public keys:2.

 $ openssl genrsa -aes256 -out ca-key.pem 4096
 $ openssl req -new -x509 -days 365 -key ca-key.pem \
 -sha256 -out ca.pem

http://en.wikipedia.org/wiki/Transport_Layer_Security

Docker APIs and SDKs Chapter 6

[209]

Now, let's create the server key and certificate signing request. Make sure that3.
the common name matches the Docker daemon system hostname. In our case, it
is dockerhost.example.com:

 $ openssl genrsa -out server-key.pem 4096
 $ openssl req -subj "/CN=dockerhost.example.com" \
 -new -key server-key.pem -out server.csr

Docker APIs and SDKs Chapter 6

[210]

Clients can connect to the Docker daemon using the Docker host's DNS name or4.
IP addresses. So, the DNS name and the IP addresses must be crafted into the
certificate as an extension. Also, add the Docker daemon key's extended usage
attributes to be used only for server authentication. Both these pieces of
information are captured in the extfile.cnf, as shown here:

Here, 192.168.33.101 and 10.0.2.15 are the IP addresses of two network
interfaces, and 127.0.0.1 is the loopback address.

Continue on to generate the key:5.

 $ openssl x509 -req -days 365 -sha256 -in server.csr \
 -CA ca.pem -CAkey ca-key.pem -CAcreateserial \
 -out server-cert.pem -extfile extfile.cnf

For client authentication, create a client key and certificate signing request:6.

 $ openssl genrsa -out key.pem 4096
 $ openssl req -subj '/CN=client' -new -key key.pem \
 -out client.csr

Docker APIs and SDKs Chapter 6

[211]

To make the key suitable for client authentication, create an extension7.
configuration file and sign the public key:

 $ echo extendedKeyUsage = clientAuth > client-extfile.cnf
 $ openssl x509 -req -days 365 -sha256 -in client.csr \
 -CA ca.pem -CAkey ca-key.pem -CAcreateserial \
 -out cert.pem -extfile client-extfile.cnf

After generating cert.pem and server-cert.pem, we can safely remove both8.
certificate signing requests:

 $ rm -rf client.csr server.csr

In order to protect keys from accidental damage, let's remove write permission9.
from these key files: ca-key.pem, key.pem, and server-key.pem. Moreover,
let's limit the read permission for these files to just the root:

 $ chmod 0400 ca-key.pem key.pem server-key.pem

The certificate files ca.pem, server-cert.pem, and cert.pem need a
broader read access, so let's give read access for all these certificate files, as
shown here:

 $ chmod 0444 ca.pem server-cert.pem cert.pem

Stop the daemon if it is running on dockerhost.example.com using the10.
systemctl stop docker command. Then, start the Docker daemon manually
from /etc/docker/keys:

 $ dockerd --tlsverify \
 --tlscacert=ca.pem \
 --tlscert=server-cert.pem \
 --tlskey=server-key.pem \
 -H=0.0.0.0:2376

Docker APIs and SDKs Chapter 6

[212]

From another terminal, go to /etc/docker/keys. Run the following command11.
to connect to the Docker daemon:

 $ cd /etc/docker/keys
 $ docker --tlsverify \
 --tlscacert=ca.pem \
 --tlscert=cert.pem \
 --tlskey=key.pem \
 -H=127.0.0.1:2376 version

The Docker client is able to seamlessly connect with the Docker daemon over TLS and get
the server version.

How it works...
Once we configure the Docker daemon to use TLS as the transport, it only accepts secure
TLS connection for the client, and fulfills the client's request.

There's more...
In this recipe, we used the --tlscacert, --tlscert, and --tlskey options of docker
command to connect to the TLS enabled Docker daemon. Invoking the docker command
using such a long list of options is quite klutzy. However, we can get around this issue by
doing the following:

Copy the ca.pem, cert.pem, and key.pem files to the user's $HOME/.docker1.
directory.
Modify the file ownership to that user using the chown command.2.
Set DOCKER_HOST to the daemon address as shown here:3.

 $ export DOCKER_HOST=tcp://127.0.0.1:2376

Set DOCKER_TLS_VERIFY to 1, as shown here:4.

 $ export DOCKER_TLS_VERIFY=1

Now, you can run the docker command as if you were running it on the Unix socket.

Docker APIs and SDKs Chapter 6

[213]

In this recipe, we launched the Docker daemon from the shell prompt, which is good for
testing. However, the Docker daemon must be configured to start using Systemd. You can
achieve this by editing the unit file of the Docker service, as outlined in the Configuring the
Docker daemon for remote connectivity recipe, with the following noted exception for
ExecStart:

ExecStart=/usr/bin/dockerd \
 --tlsverify \
 --tlscacert=/etc/docker/keys/ca.pem \
 --tlscert=/etc/docker/keys/server-cert.pem \
 --tlskey=/etc/docker/keys/server-key.pem \
 -H=0.0.0.0:2376

Here, we have separated the command in multiple lines for intelligibility. However, it must
be in a single line in the unit file.

The curl command can also securely connect to the TLS-enabled Docker
daemon, as shown here:

$ curl --cacert ${HOME}/.docker/ca.pem \
--cert ${HOME}/.docker/cert.pem \
--key ${HOME}/.docker/key.pem \
https://127.0.0.1:2376/version

See also
 The documentation on the Docker website:
https://docs.docker.com/engine/security/https/

https://docs.docker.com/engine/security/https/

7
Docker Performance

In this chapter, we will cover the following recipes:

Benchmarking CPU performance
Benchmarking disk performance
Benchmarking network performance
Getting container resource usage using the stats feature
Setting up performance monitoring

Introduction
In Chapter 3, Working with Docker Images, we saw how Dockerfiles can be used to create
images consisting of different services/software. Later, in Chapter 4, Network and Data
Management for Containers, we saw how one Docker container can talk to the outside world
with respect to data and network. In Chapter 5, Docker Use Cases, we looked into different
use cases of Docker, and in Chapter 6, Docker APIs and SDKs, we looked at how to use
remote APIs to connect to the remote Docker host.

Ease of use is all to the good, but before going into production, performance is one of the
key aspects that is considered. In this chapter, we'll see performance-impacting Docker
features and what approach we can follow to benchmark different subsystems. While doing
performance evaluation, we need to compare Docker performance against the following:

Bare metal
Virtual machine
Docker running inside a virtual machine

Docker Performance Chapter 7

[215]

In the chapter, we will just look at an approach you can follow to do performance
evaluation rather than performance numbers collected from runs to do a comparison.
However, I'll point out performance comparisons done by different companies, which you
can refer to.

Let's first look at some of the Docker performance impacting features:

Volumes: While putting down any enterprise class workload, you would like to
tune the underlying storage accordingly. You should not use the primary/root
filesystem used by containers to store data. Docker provides the facility to
attach/mount external storage through volumes. As we saw in Chapter 4,
Network and Data Management for Containers, there are two types of volume as
follows:

Volumes that are mounted through the host machine using the -
volume option
Volumes that are mounted through another container using the -
volumes-from option

Storage drivers: We looked at different storage drivers in Chapter 1, Introduction
and Installation, which are vfs, aufs, btrfs, zfs, devicemapper, and overlayFS. You
can check the currently supported storage drivers and their selection priority if
nothing is chosen as the Docker start time at https:/ ​/​github. ​com/ ​moby/ ​moby/
blob/​master/ ​daemon/ ​graphdriver/ ​driver_ ​linux. ​go.

If you are running Fedora, CentOS, or RHEL, then the device mapper will be
the default storage driver. You can find some device mapper-specific tuning
at https:/ ​/​github. ​com/ ​moby/ ​moby/ ​tree/ ​master/ ​daemon/ ​graphdriver/
devmapper.

You can change the default storage driver with the -s option to the Docker
daemon. You can update the distribution-specific configuration/systems file
to make changes for service restart. For Fedora/RHEL/CentOS, you will have
the update storage-driver field in /etc/docker/daemon.json – something
like the following so that you can use the btrfs backend:

 "storage-driver": "btrfs"

https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper

Docker Performance Chapter 7

[216]

The following graph shows you how much time it takes to start and stop
1,000 containers with different configurations of storage driver:

As you can see, overlayFS performs better than other storage drivers.

--net=host: As we know, by default, Docker creates a bridge and associates IPs
from it to the containers. Using --net=host exposes the host networking stack
to the container by skipping the creation of a network namespace for the
container. From the tests, we can see that this option always gives better
performance as compared to the bridged one.

This gives us some constraints, such as we cannot have two containers or
host apps listening on the same port.

Docker Performance Chapter 7

[217]

cgroups: Docker's default execution driver, libcontainer, exposes different
cgroups knobs, which can be used to fine-tune container performance. Some of
them are as follows:

CPU shares: With this, we can give proportional weight to the
containers so that the resource will be shared. By default, all
containers get the same proportion of CPU cycles. To modify the
proportion from the default of 1024, use the -c or --cpu-shares
flag to set the weighting to 2 or higher. The proportion will only
apply when CPU-intensive processes are running. When tasks in
one container are idle, other containers can use the left-over CPU
time. Consider the following example:

 $ docker container run -it -c 100 alpine ash

CPUsets: Using CPUSets will allow you to limit the
container to just running on the selected CPU cores.
For example, the following code will only run
threads inside a container on the 0th and 3rd core:

$ docker container run -it --cpuset=0,3
alpine ash

Memory limits: We can set memory limits to a container. For
example, the following will limit the memory usage to 512 MB for
the container:

 $ docker container run -it -m 512M alpine ash

The sysctl and ulimit settings: In a few cases, you might have to change some of
the sysclt values depending on the use case to get optimal performance, such
as changing the number of open files. You can change the ulimit settings with
the following command:

 $ docker container run -it --ulimit data=8192 alpine ash

Docker Performance Chapter 7

[218]

The preceding command would be a container-specific setting. We can also set
some of these settings through the configuration file of the Docker daemon, which
will be applicable to all containers by default. For example, looking at the
configuration file for Docker, you will see something like the following in
/etc/docker/daemon.json:

 {
 "default-ulimits": {
 "nofile": "1048576",
 "nproc": "1048576",
 "core": "-1"
 }
 }

Feel free to change the values to fit your use case. If you are using Docker for Mac
or Windows, you would change these values from their preferences menu.

You can learn about Docker performance by studying the work done by others. The
following are some of the Docker performance-related studies that have been published by
a few companies:

From Red Hat:
Performance Analysis of Docker on Red Hat Enterprise Linux:

https:/ ​/​developers. ​redhat. ​com/ ​blog/ ​2014/ ​08/
19/ ​performance- ​analysis- ​docker- ​red- ​hat-
enterprise- ​linux- ​7

https:/ ​/​github. ​com/ ​redhat- ​performance/ ​docker-
performance

Comprehensive Overview of Storage Scalability in Docker:
https:/ ​/​developers. ​redhat. ​com/ ​blog/ ​2014/ ​09/
30/ ​overview- ​storage- ​scalability- ​docker/ ​

Beyond Microbenchmarks – breakthrough container performance
with Tesla efficiency:

https:/ ​/​developers. ​redhat. ​com/ ​blog/ ​2014/ ​10/
21/ ​beyond- ​microbenchmarks- ​breakthrough-
container- ​performance- ​with- ​tesla- ​efficiency/ ​

Containerizing Databases with Red Hat Enterprise Linux:
http:/ ​/ ​rhelblog. ​redhat. ​com/ ​2014/ ​10/​29/
containerizing- ​databases- ​with- ​red- ​hat-
enterprise- ​linux/ ​

https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://github.com/redhat-performance/docker-performance
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/

Docker Performance Chapter 7

[219]

From IBM:
An Updated Performance Comparison of Virtual Machines and
Linux Containers:

http:/ ​/ ​domino. ​research. ​ibm. ​com/​library/
cyberdig. ​nsf/ ​papers/
0929052195DD819C85257D2300681E7B/ ​$File/
rc25482. ​pdf

https:/ ​/​github. ​com/ ​thewmf/ ​kvm- ​docker-
comparison

From VMware:
Docker Containers Performance in VMware vSphere:

http:/ ​/ ​blogs. ​vmware. ​com/ ​performance/ ​2014/ ​10/
docker- ​containers- ​performance- ​vmware- ​vsphere.
html

To do the benchmarking, we need to run a similar workload on different environments
(bare-metal/VM/Docker) and then collect results with different performance stats. To
simplify things, we can write common benchmark scripts which can be run on different
environments. We can also create Dockerfiles to spin off containers with workload
generation scripts. For example, in the Performance Analysis of Docker on Red Hat
Enterprise Linux article, which was listed earlier (https://github.com/redhat-
performance/docker-performance/blob/master/Dockerfiles/Dockerfile), the author
used a Dockerfile to create a CentOS image and used the container environment variable to
select a Docker and non-Docker environment for the benchmark script run-sysbench.sh.

Similarly, Dockerfiles and related scripts are published by IBM and are available at https:/
/​github.​com/​thewmf/ ​kvm- ​docker- ​comparison.

We will be using some of the Docker files and scripts mentioned earlier in the recipes in this
chapter.

Benchmarking CPU performance
We can use benchmarks such as Linpack (http:/ ​/​www. ​netlib. ​org/ ​linpack/ ​) and sysbench
(https:/​/​github.​com/ ​nuodb/ ​sysbench) to benchmark CPU performance. For this recipe,
we'll use sysbench. We'll see how to run a benchmark on bare metal and inside the
container. Similar steps can be performed in other environments, like we mentioned
previously.

http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
https://github.com/thewmf/kvm-docker-comparison
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench
https://github.com/nuodb/sysbench

Docker Performance Chapter 7

[220]

Getting ready
We will use the CentOS 7 container to run the benchmark inside the container. Ideally, we
should have a system with CentOS 7 installed to get benchmark results on bare metal. For
the container test, let's build the image from the Git repository that we referred to earlier:

 $ git clone https://github.com/redhat-performance/docker-
performance.git
 $ cd docker-performance/Dockerfiles/
 $ docker image build -t c7perf --rm .
 $ docker image ls
 REPOSITORY TAG IMAGE ID CREATED SIZE
 c7perf latest 59a10df39a82 1 minute ago 678.3 MB

How to do it…
Inside the same Git repository, we have a script to run sysbench, that is, docker-
performance/bench/sysbench/run-sysbench.sh. It has some configurations, which
you can modify according to your needs:

As the root user, create the /results directory on the host:1.

$ mkdir -p /results

Now, run the benchmark after setting the container environment variable to
something other than Docker, which we used while building the c7perf image
on the host machine, with the following commands:

$ cd docker-performance/bench/sysbench
$ export container=no
$ sh ./run-sysbench.sh cpu test1

If you are running on an OS other than CentOS, you might need to install
sysbench manually, and run the script a little differently. For example, here is
how you run the script with Ubuntu 18.04:

 $ apt-get install sysbench
 $ cd docker-performance/bench/sysbench
 $ export container=no
 $ bash ./run-sysbench.sh cpu test1

Docker Performance Chapter 7

[221]

By default, the results are collected in /results. Make sure you have write
access to it or change the OUTDIR parameter in the benchmark script:

To run the benchmark inside the container, we need to first start the container2.
and then run the benchmark script:

$ mkdir -p /results_container
$ docker container run -it -v /results_container:/results
c7perf bash
/root/docker-performance/bench/sysbench/run-sysbench.sh cpu
test1

As we mount the host directory, /results_container, inside the /results
container, the result will be collected on the host:

Docker Performance Chapter 7

[222]

While running the preceding test on Fedora/RHEL/CentOS, where SELinux is3.
enabled, you will get a Permission denied error. To fix it, relabel the host
directory while mounting it inside the container as follows:

 $ docker container run -it -v /results_container:/results:z
c7perf bash

Alternatively, for the time being, put SELinux in permissive mode:

 $ setenforce 0

Then, after the test, put it back in permissive mode:

 $ setenforce 1

Refer to Chapter 9, Docker Security, for more details about SELinux.

How it works…
The benchmark script internally calls sysbench's CPU benchmark for the given input. CPU
is benchmarked by using 64-bit integer manipulation using Euklid algorithms for prime
number computation. The result for each run gets collected in the corresponding results
directory, which can be used for comparison.

There's more…
Almost no difference is reported between bare-metal and Docker CPU performance.

See also
Look at the CPU benchmark results published in IBM and VMware using Linpack in the
links referenced earlier in this chapter.

Docker Performance Chapter 7

[223]

Benchmarking disk performance
There are tools such as Iozone (http:/ ​/​www. ​iozone. ​org), smallfile (https:/ ​/​github. ​com/
bengland2/​smallfile), and Flexible IO (https:/ ​/ ​github. ​com/ ​axboe/ ​fio), which are
available to benchmark disk performance. For this recipe, we will use FIO. For that, we
need to write a job file, which mimics the workload you want to run. Using this job file, we
can simulate the workload on the target. For this recipe, let's take the FIO example from the
benchmark results, which IBM has published (https:/ ​/​github. ​com/ ​thewmf/ ​kvm- ​docker-
comparison/​tree/ ​master/ ​fio).

Getting ready
On a bare metal/VM/Docker container, install FIO and mount the disk containing a
filesystem for each test under /ferrari or anything which is mentioned in the FIO job file.
On bare metal, you can mount natively; on the VM, you can mounted using the virtual disk
driver or perform a device pass-through. On Docker, we can attach the filesystem from the
host machine using Docker volumes.

Prepare the workload file. We will pick: https:/ ​/​github. ​com/​thewmf/ ​kvm- ​docker-
comparison/​blob/ ​master/ ​fio/ ​mixed. ​fio:

$ curl -o mixed.fio
https://raw.githubusercontent.com/thewmf/kvm-docker-comparison/master/f
io/mixed.fio
$ cat mixed.fio
[global]
ioengine=libaio
direct=1
size=16g
group_reporting
thread
filename=/ferrari/fio-test-file

[mixed-random-rw-32x8]
stonewall
rw=randrw
rwmixread=70
bs=4K
iodepth=32
numjobs=8
runtime=60

http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
http://www.iozone.org
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/bengland2/smallfile
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio
https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio

Docker Performance Chapter 7

[224]

This recipe is specific to Linux; it may work on Docker for Mac or
Windows with some minor changes.

Using the preceding job file, we can do random direct IO on /ferrari/fio-test-file
with 4K block size using the libaio driver on a 16 GB file. The I/O depth is 32 and the
number of parallel jobs are 8. It is a mix workload, which does a 70 percent read and 30
percent write.

How to do it...
Follow these steps:

For a bare metal and VM test, you can just run the FIO job file and collect the1.
result:

 $ fio mixed.fio

For a Docker test, you can prepare a Docker file as follows:2.

FROM ubuntu:18.04
RUN apt-get update
RUN apt-get -qq install -y fio
ADD mixed.fio /
VOLUME ["/ferrari"]
ENTRYPOINT ["fio"]

Now, create an image using the following command:3.

 $ docker image build -t docker_fio_perf .

Docker Performance Chapter 7

[225]

Start the container as follows to run the benchmark and collect the results as4.
shown in the follwoing screenshot:

 $ docker container run --rm -v /ferrari:/ferrari
 docker_fio_perf mixed.fio

Docker Performance Chapter 7

[226]

While running the preceding test on Fedora/RHEL/CentOS, where SELinux is5.
enabled, you will get the Permission denied error. To fix it, relabel the host
directory while mounting it inside the container as follows:

 $ docker container run --rm -v /ferrari:/ferrari:z
 docker_fio_perf mixed.fio

How it works...
FIO will run the workload given in the job file and spit out the results.

There's more…
Once the results are collected, you can do a result comparison. You can even try out
different kinds of I/O pattern using the job file and get the desired result. When you look at
the results, a few of the things you will want to examine are as follows:

iops: The number of input/output operations per second; the higher the better.
bandwidth (bw): The rate of data transfer, bit rate, or throughput;
the higher the better.

Latency (lat): The time that passes between submission to the kernel and when
the IO is completehe lower the better.

See also
Look at the disk benchmark results published in IBM and VMware using FIO in the links
referenced earlier in this chapter.

Benchmarking network performance
The network is one of the key aspects to consider while deploying the applications in the
container environment. To do performance comparison with bare metal, the VM, and the
container, we have to consider different scenarios as follows:

Bare metal to bare metal
VM to VM
Docker container to a container with the default networking mode (bridge)

Docker Performance Chapter 7

[227]

Docker container to a container with host net (--net=host)
Docker container running inside a VM with the external world

In any of the preceding cases, we can pick up two endpoints to do the benchmarking. We
can use tools such as nuttcp (http:/ ​/​www. ​nuttcp. ​net) and netperf (https:/ ​/​github. ​com/
HewlettPackard/​netperf) to measure the network bandwidth and request/response,
respectively.

Getting ready
Make sure both the endpoints can reach each other and that you have the necessary
packages/software installed. On Ubuntu, you can install nuttcp and netperf with the
following command:

$ sudo apt-get install -y nuttcp netperf

How to do it…
To measure the network bandwidth using nuttcp, perform the following steps:

Start the nuttcp server on one endpoint:1.

 $ nuttcp -S

Measure the transmit throughput (client to server) from the client with the2.
following command and refer the below screenshot:

 $ nuttcp -t <SERVER_IP>

Measure the receiver throughput on the client (server to client) with the3.
following command and refer the below screenshot:

 $ nuttcp -r <SERVER_IP>

http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
http://www.nuttcp.net
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf

Docker Performance Chapter 7

[228]

To run the request/response benchmark using netperf; perform the following4.
steps:

Start netserver on one endpoint:

 $ netserver

netserver starts up automatically on install. If netserver is already
running and you run this command, you might get an error like Unable to
start netserver with IN(6)ADDR_ANY port 12865 and family
AF_UNSPEC. That is fine, it just means it is already running. To confirm it
is running, you can run use ps -ef | grep netserver.

Connect to the server from the other endpoint and run the request/response test,
refer to the output in the following screenshots:

For TCP:

 $ netperf -H 172.17.0.6 -t TCP_RR

For UDP:

 $ netperf -H 172.17.0.6 -t UDP_RR

How it works…
In both of the cases mentioned earlier, one endpoint becomes the client and sends the
requests to the server on the other endpoint.

Docker Performance Chapter 7

[229]

There's more…
We can collect the benchmark results for different scenarios and compare them. netperf
can also be used for throughput tests.

See also
Look at the network benchmark results published by IBM and VMware in the links
referenced earlier in this chapter.

Getting container resource usage using the
stats feature
Docker has a feature to easily get the resource usage for the containers that it manages. The
following recipe shows you how to use it.

Getting ready
You will need a Docker host that can be accessed via the Docker client. Also, start a few
containers to get some stats.

How to do it...
Follow these steps:

Run the following command to get stats from one or more containers:1.

 $ docker stats [OPTIONS] [CONTAINERS]

For example, if we have two containers with the names some-mysql and
backstabbing_turing, then run the following command to get the stats as shown in the
below screenshot:

 $ docker stats some-mysql backstabbing_turing

Docker Performance Chapter 7

[230]

How it works...
The Docker daemon fetches resource information from cgroups and serves it through the
APIs.

See also
Refer to the Docker stats documentation at https:/ ​/​docs. ​docker. ​com/ ​engine/ ​reference/
commandline/​stats/ ​.

Setting up performance monitoring
We have tools such as SNMP, Nagios, and so on to monitor bare metal, VM performance.
Similarly, there are a few tools/plugins available to monitor container performance such as
cAdvisor (https:/ ​/​github. ​com/ ​google/ ​cadvisor) and Prometheus (https:/ ​/ ​prometheus.
io). In this recipe, let's see how we can configure cAdvisor.

Getting ready
Perform the following to set up cAdvisor:

The easiest way to run cAdvisor is to run its docker container, which can be
done with the following command:

$ sudo docker container run \
 --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:rw \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
 --publish=8080:8080 \
 --detach=true \
 --name=cadvisor \
 google/cadvisor:latest

If you want to run cAdvisor outside Docker, then follow the instructions given
on the cAdvisor home page: https:/ ​/​github. ​com/ ​google/ ​cadvisor/ ​blob/
master/​docs/ ​running. ​md#standalone.

https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone
https://github.com/google/cadvisor/blob/master/docs/running.md#standalone

Docker Performance Chapter 7

[231]

How to do it...
After the container starts, point your browser to http://localhost:8080. You will first
get graphs for CPU, memory usage, and other information for the host machine. Then, by
clicking on the Docker Containers link, you will get the URLs for containers running on the
machine under the Subcontainers section. If you click on any one of them, you will see the
resource usage information for the corresponding container. The following screenshot
shows one such container:

Docker Performance Chapter 7

[232]

How it works...
With the docker run command, we have mounted a few volumes from host machines in
read-only mode. cAdvisor will read the relevant information from those, such as Cgroup
details for containers, and show them graphically.

There's more…
cAdvisor supports exporting performance matrices to influxdb (https:/ ​/​www. ​influxdata.
com).

See also
You can look at the matrices used by cAdvisor from Cgroups in the documentation on the
Docker website: https:/ ​/ ​docs. ​docker. ​com/​config/ ​containers/ ​runmetrics/ ​.

https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/

8
Docker Orchestration and

Hosting a Platform
 this chapter, we will cover the following recipes:

Running applications with Docker Compose
Setting up a cluster with Docker Swarm
Using secrets with Docker Swarm
Setting up Kubernetes clusters
Scaling up and down in Kubernetes clusters
Using secrets with Kubernetes
Setting up WordPress with Kubernetes clusters

Introduction
Running Docker on a single host may be good for the development environment, but the
real value comes when we span multiple hosts. However, this is not a trivial task. You have
to orchestrate these containers. So, in this chapter, we'll cover some orchestration tools and
hosting platforms.

Docker Inc. announced two such tools:

Docker Compose (https:/ ​/​docs. ​docker. ​com/​compose), to create apps consisting
of multiple containers.
Docker Swarm (https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​swarm/ ​), to cluster multiple
Docker hosts. Docker Compose was previously called Fig (http:/ ​/ ​www.​fig. ​sh).

Google started Kubernetes (http:/ ​/​kubernetes. ​io/ ​) Docker orchestration. Kubernetes
provides mechanisms for application deployment, scheduling, updating, maintenance, and
scaling.

https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://www.fig.sh
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/

Docker Orchestration and Hosting a Platform Chapter 8

[234]

Even Microsoft announced (http:/ ​/​azure. ​microsoft. ​com/ ​blog/ ​2015/ ​04/​08/ ​microsoft-
unveils-​new-​container- ​technologies- ​for- ​the- ​next- ​generation- ​cloud/ ​) a specialized
operating system for Docker.

Apache Mesos (http:/ ​/ ​mesos. ​apache. ​org), which provides resource management and
scheduling across entire datacenters and cloud environments, also added support for
Docker (http:/​/​mesos. ​apache. ​org/ ​documentation/ ​latest/ ​docker- ​containerizer/ ​).

VMware also launched a container-specific host called VMware Photon (http:/ ​/​vmware.
github.​io/​photon/ ​).

All of the preceding tools and platforms need separate chapters to themselves. But in this
chapter, we'll explore Compose, Swarm, and Kubernetes.

Running applications with Docker Compose
Docker Compose (http:/ ​/​docs. ​docker. ​com/​compose/ ​) is the native Docker tool that runs
interdependent containers that make up an application. We define a multicontainer
application in a single file and feed it to Docker Compose, which sets up the application. In
this recipe, we'll once again use WordPress as a sample application to run.

Getting ready
To install Docker Compose, run the following command:

$ sudo pip install docker-compose

How to do it
Follow these steps:

Create a directory for the application, and within it, create docker-1.
compose.yml to define the app:

$ cd wordpress_compose/
$ cat docker-compose.yml
version: '3.1'
services:
 wordpress:
 image: wordpress

http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://vmware.github.io/photon/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/

Docker Orchestration and Hosting a Platform Chapter 8

[235]

 restart: always
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_PASSWORD: example
 mysql:
 image: mysql:5.7
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: example

We took the preceding example from the official WordPress Docker repository2.
on Docker Hub (https:/ ​/​registry. ​hub. ​docker. ​com/​_ ​/​wordpress/ ​).
Within the app directory, run the following command to build and start the app:3.

$ docker-compose up

Once the build is complete, access the WordPress installation page from4.
http://localhost:8080 or http://<host-ip>:8080.

How it works...
Docker Compose downloads both MySQL and WordPress images, if not available locally
from the official Docker Registry. First, it starts the db container from the MySQL image;
then, it starts the WordPress container.

There's more...
We can even build images from a Dockerfile during the compose, and then use it for the
app. For example, to build the WordPress image, we can use the corresponding Dockerfile
and place it within the application compose directory:

$ cat Dockerfile
FROM wordpress:latest
extend the base wordpress image with anything custom
you might need for local dev.
ENV CUSTOM_ENV env-value

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/

Docker Orchestration and Hosting a Platform Chapter 8

[236]

We then need to update the docker-compose.yml file so that we are referencing the
Dockerfile from above. This will allow us to change the WordPress image, and make any
custom changes that we might need that are not in the official image:

$ cat docker-compose.yml
version: "3.1"
services:
 wordpress:
 build: .
 restart: always
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_PASSWORD: example
 mysql:
 image: mysql:5.7
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: example

Once you have those changes, you start the stack the same way as before:

 $ docker-compose up

To bring down the stack after you have started it, you do the following:

 $ docker-compose down

Build the containers in the stack:

 $ docker-compose build

Enter the running WordPress container:

 $ docker-compose exec wordpress bash

List the running containers in the stack:

 $ docker-compose ps

See also
You may also check the following references:

Docker Compose YAML file reference at: https:/ ​/​docs. ​docker. ​com/​compose/
compose- ​file/ ​.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Docker Orchestration and Hosting a Platform Chapter 8

[237]

Docker Compose command-line reference at: https:/ ​/​docs. ​docker. ​com/
compose/ ​reference/ ​overview/ ​.
Docker Compose GitHub repository at: https:/ ​/​github. ​com/ ​docker/ ​compose.

Setting up a cluster with Docker Swarm
Docker Swarm (https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​swarm/ ​) is native clustering that is built
in to Docker. It groups multiple Docker hosts into a single pool in which you can launch
containers. To keep things simple, here, we'll use VirtualBox as the backend to configure
the hosts.

There are two versions of Swarm. In this recipe, we will be using the newer of the two
called Docker Swarm mode, which is based on SwarmKit (https:/ ​/​github. ​com/ ​docker/
swarmkit). The newer version makes it much easier to get up and running, and removes a
lot of the steps that were previously required. Swarm mode is built into the Docker
daemon, so there is no extra software required in order to use it.

Docker Swarm mode supports two types of nodes; a manager and a worker. Manager
nodes perform the orchestration and cluster management functions for the Swarm. They
dispatch units of work called tasks to the workers. The manager nodes use the Raft
Consensus algorithm (http:/ ​/​thesecretlivesofdata. ​com/ ​raft/ ​) to manage the global
cluster state. The worker nodes receive and execute the tasks that are dispatched by the
managers.

For Raft to work correctly, you need an odd number of managers in order for the leader
election to work properly. That means that, if you want a fault-tolerant Swarm cluster, you
should have either three or five managers. If you have three managers, you can handle one
manager node failure, and with five, you can handle up to two node failures before the Raft
consensus is lost. Pick the cluster size that is most appropriate for your work load.

Getting ready
Follow these steps:

Install VirtualBox on your system (https:/ ​/ ​www.​virtualbox. ​org/​). Instructions1.
to configure VirtualBox are outside the scope of this book.
Using VirtualBox, create three virtual machines called dockerhost-1,2.
dockerhost-2, and dockerhost-3, and install the latest version of Docker on
it.

https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/docker/compose
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Docker Orchestration and Hosting a Platform Chapter 8

[238]

Make sure that there are no firewalls blocking access between dockerhost-1,3.
dockerhost-2, and dockerhost-3.

How to do it
Follow these steps:

Log in to dockerhost-1 and initialize the Swarm. The --advertise-addr1.
argument is the IP address for your host where you will be listening for Swarm
traffic:

$ docker swarm init --advertise-addr <your host ip>

Swarm initialized: current node (4daiatuoef7eh0ne6kawtflml) is now a
manager.
To add a worker to this swarm, run the following command:

docker swarm join --token
SWMTKN-1-2nyaeu0l2rw7fv6wpgco4o1spos0elazjxob3nitlnfy9bv15y-
bdch9bt28qsviddpmc38r5hv1 10.10.0.6:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and
follow the instructions.

The Swarm token that is returned by the Swarm init command will be
different for everyone. Make sure you use the one that you get when you
start your Swarm.

 Login to dockerhost-2 and dockerhost-3 and join the Swarm as a worker:2.

$ docker swarm join --token
SWMTKN-1-2nyaeu0l2rw7fv6wpgco4o1spos0elazjxob3nitlnfy9bv15y-
bdch9bt28qsviddpmc38r5hv1 10.10.0.6:2377

On host1, list the nodes in the Swarm cluster as shown in the following3.
screenshot:

$ docker node ls

Docker Orchestration and Hosting a Platform Chapter 8

[239]

As you can see, we have three nodes in the cluster: one manager and two
workers. Now that you have a Swarm, you can schedule tasks on the Swarm.

Start a service on the cluster:4.

 $ docker service create --name demo --publish 80:80 nginx

 Look at the status of the service by referring to the follwoing screenshot:5.

 $ docker service ls
 $ docker service ps demo

Scale the service to 3:6.

 $ docker service scale demo=3

Check to make sure that the service has scaled to 3. It might take a few minutes7.
for the scaling event to complete:

How it works…
Using the unique token we got from the manager node when we initialized the swarm, we
added the worker nodes to the cluster. We then created a simple nginx service, and scaled
it to 3; this started a container one each of the nodes in the Swarm.

Docker Orchestration and Hosting a Platform Chapter 8

[240]

There's more...
If you want to add a manager to the cluster, you need to do the following:

On an existing manager, run the following command:

 $ docker swarm join-token manager
 To add a manager to this swarm, run the following command:

 docker swarm join --token
SWMTKN-1-0trltcq6gwhz9w40j3wpuqedjwviwdgksuz8zulaz6qon118s4-2ui4f15uu7ceow6
k2gc9xutb5 10.10.0.6:2377

Log in to the potential new manager host, and run the command from above:

 $ docker swarm join --token
SWMTKN-1-0trltcq6gwhz9w40j3wpuqedjwviwdgksuz8zulaz6qon118s4-2ui4f15uu7ceow6
k2gc9xutb5 10.10.0.6:2377

 This node joined a swarm as a manager.

See also
You can view the Swarm documentation on the Docker website at https:/ ​/​docs. ​docker.
com/​engine/​swarm/ ​ for more information.

Using secrets with Docker Swarm
When you are using containers, a common thing that you will need to do is connect to some
external resources such as a database, cache, or web service. These resources usually need
credentials. One popular way of passing these credentials to containers is to make them
environmental variables that get populated on container startup. This allows you to use the
same Docker image for different development environments, and removes the need for
storing passwords in the image. This is a common trait for a twelve-factor app (https:/ ​/
12factor.​net), which was made popular by Heroku (https:/ ​/​www. ​heroku. ​com).

Adding environmental variables to a container at runtime is very easy, but it has its
downsides. When an environment variable is added to the container, it is accessible to
everything running in that container. That means that, not only can your code see it, code
from third-party libraries can as well. This makes it easy for those passwords to
accidentally get exposed outside the container.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com
https://www.heroku.com

Docker Orchestration and Hosting a Platform Chapter 8

[241]

This usually happens accidentally when an error occurs, and in the resulting error stack
trace, it lists all of the current environment variables. This was originally added to help you
debug the issue, but little did they know that, by exposing all of the environment variables,
they were sharing your passwords as well, and creating another issue in the process.

To fix this problem, Docker came out with a new feature called Docker Secrets (https:/ ​/
docs.​docker.​com/ ​engine/ ​swarm/ ​secrets/ ​). Docker Secrets is currently only available to
Swarm services. A secret can be any blob of data, such as a password, TLS certificate, and
so on, that you don't want to share with others.

That is a lot to take in, so let's look at an example.

Getting ready
You will need access to a system with Docker Swarm set up.

How to do it...
Follow these steps:

Add a secret to Swarm as shown in the following screenshot:1.

 $ echo "myP@ssWord" | docker secret create my_password -

Create a service that uses the secret:2.

 $ docker service create --name="my-service" --secret="my_password"
redis

Since we are using Swarm, the container could be running on any of the nodes in3.
the cluster. To find out which node your Swarm container is running on, you can
use the docker service ps command; refer the below screenshot:

 $ docker service ps my-service

https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/

Docker Orchestration and Hosting a Platform Chapter 8

[242]

Now that you know which node the container is running on, connect to that4.
node and run the following command to view the unencrypted secret inside the
container as shown in the following screenshot:

 $ docker container exec $(docker container ls --filter name=my-service
-q) cat /run/secrets/my_password

How it works...
It works like this, when you add a secret to Swarm, it will store this encrypted secret in its
internal Raft store. When you create your service and reference that secret, Swarm will give
those containers access to the secret, and it will add the unencrypted secret as an in-
memory filesystem mount inside the container. In order to read the secret, your application
will need to look at the filesystem mount instead of the environment.

If the secret is removed, or the service is updated to remove the secret, the secret will no
longer be available to the container.

There's more...
Let's look into some additional features:

Use the following code to inspect a secret:

 $ docker secret inspect <secret name>

Use the following code to list the secrets:

 $ docker secret ls

Use the following code to remove a secret:

 $ docker secret rm <secret name>

Use the following code to update a service to remove the secret:

 $ docker service update --secret-rm <secret name> <service name>

Docker Orchestration and Hosting a Platform Chapter 8

[243]

See also
You can view the Docker Secrets documentation at https:/ ​/ ​docs. ​docker. ​com/ ​engine/
swarm/​secrets/​ for more information.

Setting up a Kubernetes cluster
Kubernetes is an open source container orchestration tool used across multiple nodes in the
cluster. It was started by Google, and now, developers from other companies are
contributing to it. It provides mechanisms for application deployment, scheduling,
updating, maintenance, and scaling. Kubernetes' auto-placement, auto-restart, and auto-
replication features make sure that the desired state of the application is maintained, which
is defined by the user. Users define applications through YAML or JSON files, which we'll
see later in this recipe. These YAML and JSON files also contain the API version
(apiVersion field) to identify the schema.

Let's look at some of the key components and concepts for Kubernetes:

Pods: A pod, which consists of one or more containers, is the deployment unit of
Kubernetes. Each container in a pod shares different namespaces with other
containers in the same pod. For example, each container in a pod shares the same
network namespace, which means they all can communicate through the
localhost.
Node/minion: A node, which was earlier called a minion, is a worker node in the
Kubernetes cluster and is managed through the master. Pods are deployed on a
node, which includes the following necessary services to run them:

docker, to run containers
kubelet, to interact with the master
proxy (kube-proxy), which connects the service to the
corresponding pod

Master: Masters host cluster-level control services such as the following:
API server: This has RESTful APIs to interact with the master and
nodes. This is the only component that talks to the etcd instance.
Scheduler: This schedules jobs in clusters, such as creating pods on
nodes.
ReplicaSet: This ensures that the user-specified number of pod
replicas is running at any given time. To manage replicas with
ReplicaSet, we have to define a configuration file with a replica
count for a pod.

https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/

Docker Orchestration and Hosting a Platform Chapter 8

[244]

Master also communicates with etcd, which is a distributed key-value pair. etcd is used to
store configuration information, which is used by both the master and nodes. The watch
functionality of etcd is used to notify the changes in the cluster. etcd can be hosted on the
master or on a different set of systems.

Services: In Kubernetes, each pod gets its own IP address, and pods are created
and destroyed every now and then based on the replication controller
configuration. So, we cannot rely on the pod's IP address to cater an app. To
overcome this problem, Kubernetes defines an abstraction, which defines logical
set of pods and policies to access them. This abstraction is called a service. Labels
are used to define the logical set, which our service manages.
Labels: Labels are key-value pairs that can be attached to objects. Using these, we
can select a subset of objects. For example, a service can select all pods with the
label mysql.
Volumes: A volume is a directory that is accessible to the containers in a pod. It
is similar to Docker volumes, but not the same. Different types of volumes are
supported in Kubernetes, some of which are emptyDir (ephemeral), hostPath,
gcePersistentDisk, awsElasticBlockStore, and NFS. Active development is taking
place to support more types of volumes. More details can be found at https:/ ​/
kubernetes. ​io/ ​docs/ ​concepts/ ​storage/ ​.

Kubernetes can be installed to VMs, physical machines, and the cloud. For the complete
matrix, take a look at https:/ ​/ ​kubernetes. ​io/ ​docs/ ​setup/ ​pick- ​right- ​solution/ ​. In
Chapter 1, Introduction and Installation, we showed you how to install Docker for Mac and
Docker for Windows. Both of these tools allow you to easily create a local Kubernetes
cluster with the click of a button. Refer back to that chapter for more details.

In this recipe, we'll see another way to install Kubernetes on your local host using
MiniKube with VirtualBox. This and the following recipes on Kubernetes were tried on
v1.10.0 of Kubernetes.

Getting ready
Make the following preparations:

Install the latest VirtualBox from https:/ ​/​www. ​virtualbox. ​org/ ​wiki/ ​Downloads.
Instructions to set these up are outside the scope of this book.
VT-x or AMD-v virtualization must be enabled in your computer’s BIOS.

https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Docker Orchestration and Hosting a Platform Chapter 8

[245]

Install Kubectl:
You can install Kubectl with Homebrew (https:/ ​/​brew. ​sh) on
macOS with the following:

$ brew install kubernetes-cli

You can install Kubectl with Chocolatey (https:/ ​/​chocolatey. ​org) on Windows
with the following:

$ choco install kubernetes-cli

You can install the kubectl binary via curl on Linux:

$ curl -LO
https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux
/amd64/kubectl
$ chmod +x ./kubectl
$ sudo mv ./kubectl /usr/local/bin/kubectl

Install MiniKube (https:/ ​/​github. ​com/ ​kubernetes/ ​minikube/ ​releases):
On Linux:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-linux-amd
64
$ chmod +x minikube
$ sudo mv minikube /usr/local/bin/

On macOS:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-darwi
n-amd64
$ chmod +x minikube
$ sudo mv minikube /usr/local/bin/

https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://chocolatey.org
https://chocolatey.org
https://chocolatey.org
https://chocolatey.org
https://chocolatey.org
https://chocolatey.org
https://chocolatey.org
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases
https://github.com/kubernetes/minikube/releases

Docker Orchestration and Hosting a Platform Chapter 8

[246]

How to do it...
Run the following command to set up Kubernetes using MiniKube with VirtualBox and
refer the below screenshot:

$ minikube start --vm-driver=virtualbox

How it works...
MiniKube will download the MiniKube ISO, create a new VM in VirtualBox, and then
configure Kubernetes inside. Finally, it will set the cluster as the default for kubectl.

There's more...
If you need to run commands against the cluster, you'll d have to use the kubectl
command. Here are some common commands that you will be using on a day-to-day basis:

To create a new deployment, you would use the kubctl run command. Enter
the following command to start an echo web service and refer the below
screenshot:

 $ kubectl run hello-minikube --image=k8s.gcr.io/echoserver:1.4 --
port=8080
 $ kubectl expose deployment hello-minikube --type=NodePort

Docker Orchestration and Hosting a Platform Chapter 8

[247]

Check to make sure it is up and running:

 $ kubectl get pod

Connect to the new service using curl to make sure it is working:

 $ curl $(minikube service hello-minikube --url)

You can delete the service and the deployment by using the following code:

 $ kubectl delete service hello-minikube
 $ kubectl delete deployment hello-minikube

You can get a list of nodes with the following code:

 $ kubectl get nodes

Docker Orchestration and Hosting a Platform Chapter 8

[248]

You can get a list of pods with the following code:

 $ kubectl get pods

You can get a list of services with the following code:

 $ kubectl get services

You can get a list of ReplicaSets with the following code:

 $ kubectl get rs

You can stop a MiniKube cluster with the following code:

 $ minikube stop

You can delete a MiniKube cluster with the following code:

 $ minikube delete

You will see some pods, services, and replication controllers listed, as Kubernetes creates
them for internal use. If you didn't see any, you can use the -all-namespaces command-
line flag.

See also
You can also check the following references:

Configuring MiniKube: https:/ ​/​kubernetes. ​io/ ​docs/ ​setup/ ​minikube/ ​.
Kubernetes documentation: https:/ ​/​kubernetes. ​io/​docs/ ​home/ ​.
Kubernetes API conventions: https:/ ​/​kubernetes. ​io/ ​docs/ ​reference/ ​using-
api/​.

Using secrets with Kubernetes
In the Using secrets with Docker Swarm recipe, we showed how you can use secrets to
store your passwords in a safe way using Docker Swarm. Kubernetes has a similar feature,
so let's look at how it works.

https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/
https://kubernetes.io/docs/reference/using-api/

Docker Orchestration and Hosting a Platform Chapter 8

[249]

Getting ready
You will need a Kubernetes cluster set up and configured, as described in the previous
recipe.

How to do it...
Follow these steps:

Add your secret to a file on your local machine:1.

 $ echo -n "MyS3cRet123" > ./secret.txt

Add your secret to Kubernetes:2.

 $ kubectl create secret generic my-secret --from-file=./secret.txt
 secret/my-secret created

View the secret to make sure it was added correctly:3.

 $ kubectl describe secrets/my-secret

Use your secret in a pod using a volume.4.

Create a file called secret_pod.yml and put the following inside it. We will
use the file to create a pod that has a volume where we will mount our
secret:

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:

Docker Orchestration and Hosting a Platform Chapter 8

[250]

 containers:
 - name: shell
 image: alpine
 command:
 - "bin/ash"
 - "-c"
 - "sleep 10000"
 volumeMounts:
 - name: secretvol
 mountPath: "/tmp/my-secret"
 readOnly: true
 volumes:
 - name: secretvol
 secret:
 secretName: my-secret

Create a pod using secret_pod.yml:5.

 $ kubectl create -f ./secret_pod.yml

View the secret in the pod:6.

How it works...
When you create a secret, Kubernetes will base64 encode it, and store that secret in the
data store that is backing the REST API, for example, etcd. If you create a pod that
references a secret, when the pod is created, it will get permission to use that secret. When it
is deployed, it will create and mount a secret volume, and the secret values are base64
decoded and stored in this volume as files. Your application will need to reference these
files in order to access the secrets.

Docker Orchestration and Hosting a Platform Chapter 8

[251]

There's more...
Even though it isn't recommended, you can also expose secrets as environmental variables.
To accomplish this, create a new file called secret_env_pod.yml that looks like the
following and refer the below screenshot:

apiVersion: v1
kind: Pod
metadata:
 name: myenvpod
spec:
 containers:
 - name: shell
 image: alpine
 env:
 - name: MY_SECRET
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: secret.txt
 command:
 - "bin/ash"
 - "-c"
 - "sleep 10000"

See also
You can view the Kubernetes secret documentation at https:/ ​/​kubernetes. ​io/ ​docs/
concepts/​configuration/ ​secret/ ​ for more information.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Docker Orchestration and Hosting a Platform Chapter 8

[252]

Scaling up and down in Kubernetes cluster
In the previous section, we mentioned that a ReplicaSet ensures that the user-specified
number of pod replicas is running at any given time. To manage replicas with the
ReplicaSet, we have to define a configuration file with a replica count for a pod. This
configuration can be changed at runtime.

Getting ready
Make sure that the Kubernetes setup is running, as described in the preceding recipe, and
that you are in the Kubernetes directory, which was created with the preceding installation.

How to do it...
Follow these steps:

Start the nginx container with a replica count of 3:1.

 $ kubectl run my-nginx --image=nginx --replicas=3 --port=80

This will start three replicas of the nginx container. List the pods to get the2.
status as shown in the following screenshot:

 $ kubectl get pods

Get the ReplicatSet configuration:3.

 $ kubectl get rs

Docker Orchestration and Hosting a Platform Chapter 8

[253]

As you can see, we have a my-nginx controller, which has a replica count of 3.

Scale down to a replica of 1 and update the ReplicaSet:4.

 $ kubectl scale --replicas=1 deployment/my-nginx
 $ kubectl get rs

Get the list of pods to verify that this has worked; you should see only one pod5.
for nginx:

 $ kubectl get pods

How it works...
We request the ReplicSet service running on the master to update the replicas for a pod,
which updates the configuration and requests that the nodes/minions act accordingly to
honor the resizing.

There's more...
Use the following code to get the services:

$ kubectl get services

As you can see, we don't have any service defined for our nginx containers that we started
earlier. This means that, although we have a container running, we cannot access from
outside because the corresponding service is not defined.

Docker Orchestration and Hosting a Platform Chapter 8

[254]

Setting up WordPress with Kubernetes
clusters
In this recipe, we will use the WordPress example given in the Kubernetes documentation
(https:/​/​kubernetes. ​io/ ​docs/ ​tutorials/ ​stateful- ​application/ ​mysql- ​wordpress-
persistent-​volume/ ​). There are three parts to this example: creating a secret, deploying
MySQL, and deploying WordPress.

Getting ready
Follow these prerequisites:

Make sure that the Kubernetes cluster has been set up, as described in the
previous recipe.
There are two pod files that we need to download. You can find them here:

https:/ ​/ ​kubernetes. ​io/ ​examples/ ​application/ ​wordpress/
mysql- ​deployment. ​yaml

https:/ ​/ ​kubernetes. ​io/ ​examples/ ​application/ ​wordpress/
wordpress- ​deployment. ​yaml

These YAML files describe pods and services for MySQL and WordPress,
respectively.
MySQL and WordPress each require a place to store their data. In Kubernetes,
this is called a PersistentVolume. When we deploy our pod, the
PersistentVolumeClaims will be created. Different clusters have different default
storage classes, ensuring that the StorageClass you are using fits your usage
model.

How to do it...
Follow these steps:

We learned about Kubernetes secrets in the previous recipe. We will need to1.
create one to store the MySQL password. Run the following command to create
your secret, and make sure you change THE_PASSWORD to something unique:

 $ kubectl create secret generic mysql-pass --from-
literal=password=THE_PASSWORD

https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml

Docker Orchestration and Hosting a Platform Chapter 8

[255]

Check to make sure that the secret was created successfully:

 $ kubectl get secrets

Deploy the MySQL pod using the mysql-deployment.yaml file:2.

 $ kubectl create -f ./mysql-deployment.yaml

Make sure the PersistentVolume was created.

It may take a few minutes, so if it isn't ready right away, wait a little
longer.

We can check its status by looking at the output of the following command.
If it looks like the following example, you are good to go:

 $ kubectl get pvc

Verify that the pod is up and running:

 $ kubectl get pods

Now that we have the MySQL database up and running, we need to deploy3.
WordPress. This pod also has persistent storage, and it uses the secret we created
in Step 1 as the MySQL password. Since we want to accept traffic from outside
of the cluster, we also need to set up a loadbalancer.

Deploy the WordPress service and deployment with the wordpress-
deployment.yaml file:

 $ kubectl create -f ./wordpress-deployment.yml

Verify that PersistentVolume was created:

 $ kubectl get pvc

Verify that the service is up and running:

 $ kubectl get services wordpress

Docker Orchestration and Hosting a Platform Chapter 8

[256]

If you are using Minikube for this example, it can only expose services
through NodePort. NodePort, as the name implies, opens a specific port
on the host, and any traffic that is sent to this port is forwarded to the
service. Since Minikube doesn't offer an integrated load balancer, the
EXTERNAL-IP is always going to be pending.

Now that we have the service up and running, we need to get the IP address:

 $ minikube service wordpress --url

Using your favorite web browser, connect to the IP address; you should then
see the WordPress setup page.

Make sure you complete the setup wizard by creating a username and
password. If you do not, someone else can find it, and set it up for you. If
you won't be using it, make sure that you delete it.

How it works...
In this recipe, we first created a secret to store our MySQL password. Then we started up a
MySQL database using the password we provided in the secret, and we stored the data in a
PersistentStore on the host so that we don't lose data between container restarts. Next, we
deployed a WordPress service that used our secret to get the password to connect to our
MySQL database. We also configured a load balancer so that traffic outside of our cluster is
able to hit our WordPress install.

There's more...
To clean up your WordPress installation, run the following commands:

 $ kubectl delete secret mysql-pass
 $ kubectl delete deployment -l app=wordpress
 $ kubectl delete service -l app=wordpress
 $ kubectl delete pvc -l app=wordpress

See also
You can view the Kubernetes documentation at https:/ ​/​kubernetes. ​io/ ​docs/ ​home/ ​ for
more information.

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

9
Docker Security

In this chapter, we will cover the following recipes:

Setting Mandatory Access Control (MAC) with SELinux
Allowing writes to volumes mounted from the host with SELinux ON
Removing capabilities to break down the power of the root user inside the
container
Sharing namespaces between the host and the container

Introduction
Docker containers, actually, are not Sandbox applications, which means they are not
recommended to run random applications on the system as root with Docker. You should
always treat a container running a service/process as a service/process running on the host
system, and put all the security measures inside the container you put on the host system.

We saw in Chapter 1, Introduction and Installation, how Docker uses namespaces for
isolation. The six namespaces that Docker uses are Process, Network, Mount, Hostname,
Shared Memory, and User. Not everything in Linux is namespaced, for example, SELinux,
Cgroups, Devices (/dev/mem, /dev/sd*), and Kernel Modules. Filesystems under /sys,
/proc/sys, /proc/sysrq-trigger, /proc/irq, and /proc/bus are also not
namespaced, but they are mounted as read-only by default with the containerD container
runtime.

Docker Security Chapter 9

[258]

To make Docker a secure environment, a lot of work has been done in the recent past, and
more work is underway.

As Docker images are the basic building block, it is very important that we
choose the right base image to start with. Docker has this concept of official
images, which are maintained by either Docker, the vendor, or someone else. If
you recall from Chapter 2, Working with Docker Containers, we can search images
on Docker Hub using the following syntax:

 $ docker search <image name>

For example, consider the following command:

 $ docker search ubuntu

We will see a column, OFFICIAL, and if the images are official, you will see
[OK] against that image in that column. There is a feature in Docker that
does Digital Signal Verification of official images after pulling them. If the
image is tampered, be will be notified but will not be prevent the user from
running it.

More details about official images can be found at https:/ ​/​github. ​com/
docker- ​library/ ​official- ​images.

In Chapter 6, Docker APIs and SDKs, we saw how we can secure a Docker remote
API, when Docker daemon access is configured over TCP.
We can also consider turning off the default inter-container communication over
the network with --icc=false on the Docker host; though containers can still
communicate through links, which overrides the default DROP policy of
iptables, they get set with the --icc=false option.
We can also set Cgroups resource restrictions, through which we can prevent
Denial of Service (DoS) attacks through system resource constraints.

https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images

Docker Security Chapter 9

[259]

Docker takes advantage of the special device, Cgroups, that allows us to specify
which device nodes can be used within the container. It blocks processes from
creating and using device nodes that could be used to attack the host.
Any device node pre-created on the image cannot be used to talk to the kernel
because images are mounted with the nodev option.

The following are some guidelines (they may not be complete) you can follow to achieve a
secure Docker environment:

Run services as non-root and treat the root in the container, as well as outside the
container, as root.
Use images from trusted parties to run the container; avoid using the -
insecure-registry=[] option.
Don't run the random container from the Docker registry or anywhere else.
Have your host kernel up to date.
Avoid using --privileged whenever possible, and drop container privileges as
soon as possible.
Configure Mandatory Access Control (MAC) through SELinux or AppArmor.
Collect logs for auditing.
Do regular auditing.
Run containers on hosts, which are specially designed to run containers.
Consider using Project Atomic, CoreOS, or similar solutions.
Mount devices with the --device option rather than using the --privileged
option to use devices inside the container.
Prohibit SUID and SGID inside the container.

Docker and the Center of Internet Security (http:/ ​/​www. ​cisecurity. ​org/ ​) released a best
practices guide for Docker security, which covers most of the preceding and more
guidelines at https:/ ​/​blog. ​docker. ​com/ ​2015/​05/ ​understanding- ​docker- ​security- ​and-
best-​practices/​.

In Chapter 1, Introduction and Installation, we described how to install Docker on CentOS
7.5. Let's use that default installation to try an experiment:

Disable SELinux using the following command:1.

 $ sudo setenforce 0

http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
http://www.cisecurity.org/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

Docker Security Chapter 9

[260]

Create a user and add it to the default Docker group so that the user can run2.
docker commands without sudo:

 $ sudo useradd dockertest
 $ sudo passwd dockertest
 $ sudo groupadd docker
 $ sudo gpasswd -a dockertest docker

Log in using the user we created earlier, and start a container as follows:3.

 $ su - dockertest
 $ docker container run -it -v /:/host alpine ash

From the container, chroot to /host and run the shutdown command:4.

 $ chroot /host
 $ shutdown

As we can see, a user in a Docker group can shut down the host system. Docker currently
does not have authorization control, so if you can communicate to the Docker socket, you
are allowed to run any Docker command. It is similar to /etc/sudoers:

USERNAME ALL=(ALL) NOPASSWD: ALL

This is really not good. Let's see how we can guard against this and more in the rest of the
chapter.

Docker Security Chapter 9

[261]

Setting Mandatory Access Control (MAC)
with SELinux
It is recommended that you set up some form of MAC on the Docker host, either through
SELinux or AppArmor, depending on the Linux distribution. In this recipe, we'll see how to
set up SELinux on a Fedora/RHEL/CentOS installed system. Let's first look at what SELinux
is:

SELinux is a labeling system
Every process has a label
Every file, directory, and system object has a label
Policy rules control access between labeled processes and labeled objects
The kernel enforces the rules

With Docker containers, we use two types of SELinux enforcement:

Type enforcement: This is used to protect the host system from container
processes. Each container process is labeled svirt_lxc_net_t, and each
container file is labeled svirt_sandbox_file_t. The svirt_lxc_net_t type
is allowed to manage any content labeled with svirt_sandbox_file_t.
Container processes can only access/write container files.
Multi Category Security enforcement: By setting type enforcement, all container
processes will run with the svirt_lxc_net_t label, and all content will be
labeled with svirt_sandbox_file_t. However, with just these settings, we are
not protecting one container from another because their labels are the same.

We use Multi Category Security (MCS) enforcement to protect one container from another,
which is based on Multi Level Security (MLS). When a container is launched, the Docker
daemon picks a random MCS label, for example, s0:c41,c717 and saves it with the
container metadata. When any container process starts, the Docker daemon tells the kernel
to apply the correct MCS label. As the MCS label is saved in the metadata, if the container
restarts, it gets the same MCS label.

Docker Security Chapter 9

[262]

Getting ready
You'll require a Fedora/RHEL/CentOS host with the latest version of Docker installed,
which can be accessed through a Docker client.

How to do it…
Fedora/RHEL/CentOS gets installed by default with SELinux in enforcing mode, and the
Docker daemon is set to start with SELinux. To check whether these conditions are being
met, perform the following steps.

Run the following command to make sure SELinux is enabled:1.

 $ sudo setenforce 1
 $ getenforce

If the preceding command returns Enforcing, then it's all good. If not, then we
need to change it by updating the SELinux configuration file
(/etc/selinux/config) and rebooting the system.

Docker should be running with the --selinux-enabled option. You can check2.
the Docker daemon configuration (/etc/docker/daemon.json) file. Also,
cross-check whether the Docker service has started with the SELinux option:

 $ docker info

Docker Security Chapter 9

[263]

The preceding command assumes that you are not starting Docker in daemon mode
manually.

Let's start a container (without the privileged option) after mounting a host directory as a
volume and try to create a file in that:

Docker Security Chapter 9

[264]

As expected, we see Permission denied because a container process with the
svirt_lxc_net_t label cannot create files on the host's filesystem. If we look at the
SELinux logs (/var/log/audit/audit.log) on the host, we will see messages similar to
the following:

The s0:c24,c960 label is the MCS label on the container.

How it works…
SELinux sets both Type and Multi Category Security enforcement when the right options
are set for SELinux and Docker. The Linux kernel enforces these enforcements.

There's more...
There is a lot we can do with SELinux to help make our system more secure. The following
are a few more tips:

If SELinux is in the enforcing mode and the Docker daemon is configured to use
SELinux, then we will not be able to shut down the host from the container, like
we did earlier in this chapter:

As we know, by default, all the containers will run with the svirt_lxc_net_t
label, but we can also adjust SELinux labels for custom requirements. Try visiting
the Adjusting SELinux labels section of http:/ ​/​opensource. ​com/ ​business/ ​15/ ​3/
docker-​security- ​tuning.

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

Docker Security Chapter 9

[265]

Setting up MLS with Docker containers is also possible. Try visiting the Multi
Level Security mode section of http:/ ​/​opensource. ​com/ ​business/ ​15/​3/ ​docker-
security- ​tuning.

See also
The SELinux Coloring Book is available at https:/ ​/​people. ​redhat. ​com/​duffy/ ​selinux/
selinux-​coloring- ​book_ ​A4- ​Stapled. ​pdf. ​

Allowing writes to volumes mounted from
the host with SELinux ON
As we saw in the earlier recipe when SELinux is configured, a non-privileged container
cannot access files on the volume created after mounting the directory from the host
system. However, sometimes it is needed to allow access to host files from the container. In
this recipe, we'll see how to allow access in such cases.

Getting ready
You'll require a Fedora/RHEL/CentOS host with the latest version of Docker installed,
which can be accessed through a Docker client. Also, the SELinux should be set to
enforcing, and the Docker daemon configured to use SELinux.

How to do it...
Mount the volume with the z or Z option, as follows:

$ docker container run -it -v /tmp:/tmp/host:z alpine ash

$ docker container run -it -v /tmp:/tmp/host:Z alpine ash

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Docker Security Chapter 9

[266]

How it works…
While mounting the volume, Docker will relabel the volume to allow access.

The z option tells Docker that the volume content will be shared between
containers. Docker will label the content with a shared content label. The
shared volume label allows all containers to read/write content. The Z
option tells Docker to label the content with a private unshared label.
Private volumes can only be used by the current container.

See also
The Volume mounts section at http:/ ​/ ​opensource. ​com/​business/ ​14/ ​9/​security- ​for-
docker.​

Removing capabilities to break down the
power of a root user inside a container
In simple terms, with capabilities we can break down the power of a root user. Note the
following from the main capabilities page:

For the purpose of performing permission checks, traditional UNIX implementations
distinguish two categories of processes: privileged processes (whose effective user ID is 0,
referred to as superuser or root), and unprivileged processes (whose effective UID is non-
zero). Privileged processes bypass all kernel permission checks, while unprivileged
processes are subject to full permission checking based on the process's credentials
(usually: effective UID, effective GID, and supplementary group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with
superusers into distinct units, known as capabilities, which can be independently enabled
and disabled. Capabilities are a per-thread attribute.

Some examples of capabilities are as follows:

CAP_SYSLOG: This modifies kernel printk behavior
CAP_NET_ADMIN: This configures the network
CAP_SYS_ADMIN: This helps you to catch all the capabilities

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker

Docker Security Chapter 9

[267]

There are only 32 slots available for capabilities in kernel. There is one capability,
CAP_SYS_ADMIN, that catches all capabilities; this is used whenever in doubt.

Docker has the ability to add or remove capabilities for a container. It uses the chown,
dac_override, fowner, kill, setgid, setuid, setpcap, net_bind_service, net_raw,
sys_chroot, mknod, setfcap, and audit_write capabilities by default, and removes the
following capabilities for a container by default:

CAP_SETPCAP: This modifies process capabilities
CAP_SYS_MODULE: This inserts/removes kernel modules
CAP_SYS_RAWIO: This modifies Kernel Memory
CAP_SYS_PACCT: This configures process accounting
CAP_SYS_NICE: This modifies the priority of processes
CAP_SYS_RESOURCE: This overrides Resource Limits
CAP_SYS_TIME: This modifies system clock
CAP_SYS_TTY_CONFIG: This configures tty devices
CAP_AUDIT_WRITE: This writes the audit log
CAP_AUDIT_CONTROL: This configures audit subsystem
CAP_MAC_OVERRIDE: This ignores kernel MAC Policy
CAP_MAC_ADMIN: This configures MAC Configuration
CAP_SYSLOG: This modifies kernel printk behavior
CAP_NET_ADMIN: This configures network
CAP_SYS_ADMIN: This helps you catch all containers

We need to be very careful what capabilities we remove, as applications can break if they
don't have enough capabilities to run. To add and remove capabilities for the container, you
can use the --cap-add and --cap-drop options, respectively.

Getting ready
You'll require a host with the latest version of Docker installed, which can be accessed
through a Docker client.

Docker Security Chapter 9

[268]

How to do it...
If you want to use the add-and-drop capability feature, you will need to know how to use
it. Here are some common use case examples:

To drop capabilities, run a command similar to the following:1.

 $ docker container run --cap-drop <CAPABILITY> <image> <command>

Similarly, to add capabilities, run a command similar to the following:2.

 $ docker container run --cap-add <CAPABILITY> <image> <command>

To remove setuid and setgid capabilities from the container so that it cannot3.
run binaries, which have these bits set, run the following command:

 $ docker container run -it --cap-drop setuid --cap-drop setgid
alpine ash

To add all the capabilities and just drop sys_admin, run the following4.
command:

 $ docker container run -it --cap-add all --cap-drop sys_admin
alpine ash

How it works...
Before starting the container, Docker sets up the capabilities for the root user inside the
container, which affects the command execution for the container process.

There's more...
Let's revisit the example we saw at the beginning of this chapter, where we saw the host
system shut down through a container. Let SELinux be disabled on the host system;
however, while starting the container, drop the sys_choot capability:

 $ docker container run -it --cap-drop sys_chroot -v /:/host alpine
ash
 $ chroot /host

Docker Security Chapter 9

[269]

See also
Dan Walsh's articles at http:/ ​/ ​opensource. ​com/ ​business/ ​14/​9/ ​security- ​for-
docker.

There are efforts to selectively disable system calls from container processes to
provide tighter security. Visit the Seccomp section at http:/ ​/​opensource. ​com/
business/ ​15/ ​3/ ​docker- ​security- ​future.
Similar to custom namespaces and capabilities, Docker run supports the --
cgroup-parent flag to pass a specific Cgroup to run containers. Try visiting
https:/​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​commandline/ ​run/ ​#options. ​

Sharing namespaces between the host and
the container
As we know, while starting the container, by default, Docker creates six different
namespaces: Process, Network, Mount, Hostname, Shared Memory, and User, for a
container. In some cases, we might want to share a namespace between two or more
containers. For example, in Kubernetes, all containers in a pod share the same network
namespace.

In some cases, we might want to share the namespaces of the host system with the
containers. For example, we share the same network namespace between the host and the
container to get near line speed inside the container. In this recipe, we will see how to share
namespaces between the host and the container.

Getting ready
You'll require a host with the latest version of Docker installed, which can be accessed
through a Docker client.

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
http://opensource.com/business/15/3/docker-security-future
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options

Docker Security Chapter 9

[270]

How to do it...
Perform the following steps:

To share the host network namespace with the container, run the following1.
command:

 $ docker container run -it --net=host alpine ash

If you see the network details inside the container, run the following command:

 $ ip a

Docker Security Chapter 9

[271]

You will see a result the same as the host:

To share the host network, PID, and IPC namespaces with the container, run the2.
following command:

 $ docker container run -it --net=host --pid=host --ipc=host alpine
ash

How it works...
Docker does not create separate namespaces for the container when such arguments are
passed to the container.

10
Getting Help and Tips and

Tricks
In this chapter, we will look at the following recipes:

Starting Docker in debug mode
Building a Docker binary from the source
Building images without using cached layers
Building your own bridge for container communication
Changing the default OCI runtime
Selecting the logging driver for containers
Getting real-time Docker events for containers

Introduction
We'll become more curious as we learn more about Docker. Mailing lists and IRC channels
are the best places to get help, learn, and share knowledge about Docker. Docker has a few
IRC channels on freenode.net such as, #docker and #docker-dev to discuss Docker in
general and dev-related stuff, respectively. If you prefer Slack over IRC, there is also a
Slack community, and you can sign up here: https:/ ​/​community. ​docker. ​com/ ​network-
groups.

While working on Docker, if you find any bugs, you can report them on GitHub at https:/
/​github.​com/​moby/ ​moby/ ​issues. Similarly, if you have fixed a bug, you can send the pull
request, which will get reviewed and then get merged to the code base.

http://freenode.net/
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://community.docker.com/network-groups
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues
https://github.com/moby/moby/issues

Getting Help and Tips and Tricks Chapter 10

[273]

Docker also has a forum and YouTube channel, which are great learning resources as well,
at https:/​/​forums. ​docker. ​com and https:/ ​/ ​www.​youtube. ​com/ ​user/ ​dockerrun,
respectively.

There are many Docker meetup groups around the world where you can meet like-minded
individuals and learn by sharing experiences at https:/ ​/ ​events. ​docker. ​com/ ​chapters/ ​.

In this chapter, I'll also run through a few tips and tricks that will help you work better with
Docker.

Starting Docker in debug mode
We can start Docker in debug mode to debug logs.

Getting ready
I hope you already have Docker installed on your system by now.

How to do it...
Follow these steps:

Start the docker daemon with the debug option, -D. To start from the command1.
line, you can run the following command:

 $ dockerd -D

You can also add the debug option in the Docker configuration file to start in2.
debug mode:

 $ cat /etc/docker/daemon.json
 { "debug": true }

https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://forums.docker.com
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://www.youtube.com/user/dockerrun
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/
https://events.docker.com/chapters/

Getting Help and Tips and Tricks Chapter 10

[274]

How it works...
The preceding command will start Docker in daemon mode. You will see lots of useful
messages as you start the daemon, such as loading up existing images, settings for firewalls
(iptables), and so on. If you start a container, you will see messages like the following:

$ docker container run alpine echo "hello world"

On Ubuntu 18.04, the Docker daemon logs can be viewed by running this command:

$ journalctl -u docker.service

If you are using something other than Ubuntu 18.04, your Docker logs
might be located somewhere else. Refer to this page in the documentation
to see where to find the logs for your system: https:/ ​/​docs. ​docker. ​com/
config/ ​daemon/ ​#read- ​the- ​logs.

[info] POST /v1.30/containers/create
[99430521] +job create()
......
......

In the proceeding log snippet, you will be able to see the API request from the Docker client
to the Docker daemon for creating a new container. If something isn't working, looking at
the logs is a good way to get more information to help you diagnose what is causing your
problems.

See also
See the Docker daemon configuration documentation for more information: https:/ ​/​docs.
docker.​com/​config/ ​daemon/ ​.

Building a Docker binary from the source
Docker recently reorganized the Docker Engine and broke it up into different parts. The
main parts are runC (https:/ ​/​github. ​com/ ​opencontainers/ ​runc), containerD (https:/ ​/
containerd.​io), and Moby (https:/ ​/ ​mobyproject. ​org). Some of these projects were
donated to other organizations to maintain. Docker, the product, is now a combination of
these different projects.

https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/#read-the-logs
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://docs.docker.com/config/daemon/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://containerd.io
https://mobyproject.org
https://mobyproject.org
https://mobyproject.org
https://mobyproject.org
https://mobyproject.org
https://mobyproject.org
https://mobyproject.org

Getting Help and Tips and Tricks Chapter 10

[275]

Sometimes, it is necessary to build a Docker binary from the source to test a patch. It is very
easy to build a Docker binary from the source. In order to build one, you will need to use
the source code from the Moby project. Follow these steps to build your own binaries.

Getting ready
Follow these prerequisites:

Download the Moby source code using Git:1.

 $ git clone https://github.com/moby/moby.git

Install make on Ubuntu, like so:2.

 $ apt-get install -y make

Make sure Docker is running on the host you are building the code and that you3.
can access it through the Docker client, since the build we are discussing here
happens inside a container.

How to do it...
Follow these steps:

Go inside the cloned directory:1.

 $ cd moby

Run the make command:2.

 $ sudo make

This will take a little while and require more then 1 GB of RAM. If you do
not give it enough resources, the build might fail.

Getting Help and Tips and Tricks Chapter 10

[276]

How it works...
This will create a container and compile the code from the master branch inside it. Once
finished, it will spit out the binary inside the bundles/binary-daemon/ directory.

There's more...
You can also run tests with the following command:

 $ sudo make test

See also
Look at the documentation on the Moby website for more information: https:/ ​/​github.
com/​moby/​moby/​blob/ ​master/ ​docs/ ​contributing/ ​set- ​up-​dev- ​env. ​md.

Building images without using cached
layers
By default, when we build an image, Docker will try to use the cached layers so that it takes
less time to build. However, at times, it is necessary to build from scratch. For example, you
will need to force a system update, such as the yum -y update. Let's see how we can do
that in this recipe.

Getting ready
Get a Dockerfile to build the image. For this example, we will be using the following
Dockerfile, which installs the nginx web server in an Alpine Linux container:

FROM alpine:3.8
RUN apk add --update nginx && mkdir /tmp/nginx && rm -rf /var/cache/apk/*
EXPOSE 80 443
CMD ["nginx", "-g", "daemon off;"]

https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md

Getting Help and Tips and Tricks Chapter 10

[277]

How to do it...
While building the image, pass the -no-cache option as follows:

 $ docker image build -t test --no-cache - < Dockerfile

Getting Help and Tips and Tricks Chapter 10

[278]

How it works...
The --no-cache option will discard any cached layer and build one Dockerfile from
scratch.

There's more...
Sometimes, we also want to discard the cache after a few instructions. In such cases, we can
add any arbitrary command that doesn't affect the image, such as creation or setting up an
environment variable.

Building your own bridge for container
communication
As we already know, when the Docker daemon starts, it creates a bridge called docker0,
and all the containers will get the IP from it. Sometimes, we might want to use a different
bridge for some of our containers. Let's see how we can do that in this recipe.

Getting ready
I am assuming you already have Docker set up.

How to do it...
Follow these steps:

Create a new custom bridge with the name br0:1.

 $ docker network create br0 --subnet 192.168.2.1/24

Getting Help and Tips and Tricks Chapter 10

[279]

Confirm that the network has been created:2.

 $ docker network ls

Start a container using the new network and make sure that it is using the correct3.
subnet:

 $ docker container run -d --network br0 --name br0demo redis
 $ docker container inspect br0demo

Getting Help and Tips and Tricks Chapter 10

[280]

How it works...
The preceding steps will create a new bridge and it will assign the IP from
the 192.168.2.0 subnet to any of the containers that are assigned to that network.

There's more...
If you no longer need the network, you can remove it by running this command:

$ docker network rm br0

See also
See the documentation on the Docker website for more information: https:/ ​/​docs. ​docker.
com/​network/​.

Changing the default OCI runtime
The Docker daemon relies on an OCI compliant runtime in order to interface with the
Linux kernel. By default, Docker uses runC, but you can switch this out for any OCI
compliant runtime if needed. In this recipe, we will show you how to change the runtime to
another OCI compliant runtime, that is, Intel Clear Containers.

Getting ready
Install Docker on an Ubuntu 16.04.5 system, if you haven't done so already.

Install the Intel Clear Containers 3.0 components with the following commands:

$ sudo sh -c "echo 'deb
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-cont
ainers-3/xUbuntu_$(lsb_release -rs)/ /' >> /etc/apt/sources.list.d/clear-
containers.list"
$ wget -qO -
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-cont
ainers-3/xUbuntu_$(lsb_release -rs)/Release.key | sudo apt-key add -
$ sudo -E apt-get update
$ sudo -E apt-get -y install cc-runtime cc-proxy cc-shim

https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/

Getting Help and Tips and Tricks Chapter 10

[281]

Intel Clear containers will not run on every machine – it will only run on those with KVM
enabled, which means it will not work if you are using a VM inside of VirtualBox. Be sure
to check the system requirements to ensure that your machine is compatible before running
this recipe: https://github.com/clearcontainers/runtime. You can also run the
following command, which will check your system and let you know if your system is
capable of running it:

$ cc-runtime cc-check

How to do it...
Follow these steps:

Change the Docker daemon configuration (/etc/docker/daemon.json) so that1.
Clear Containers is the default runtime:

 {
 "default-runtime": "cc-runtime",
 "runtimes": {
 "cc-runtime": {
 "path": "/usr/bin/cc-runtime"
 }
 }
 }

2. Reload the Docker daemon and restart it:

 $ systemctl daemon-reload
 $ systemctl restart docker

3. Start a container using Intel Clear Containers:

 $ docker container run -it busybox sh

How it works...
Docker uses runC to access kernel features such as namespaces and CGroups to run
containers. We switched runC with another OCI compliant runtime, called Intel Clear
Containers.

https://github.com/clearcontainers/runtime

Getting Help and Tips and Tricks Chapter 10

[282]

See also
See the documentation on the Docker website for more information at: https:/ ​/​docs.
docker.​com/​engine/ ​reference/ ​commandline/ ​dockerd/ ​#docker- ​runtime- ​execution-
options.

Selecting the logging driver for containers
Docker allows you to select the logging driver while starting the Docker daemon. With the
release of Docker 18.03, eleven types of logging drivers are supported:

Driver Description

None No logs are available for the container and docker container logs does
not return any output.

json-file (default) The logs are formatted as JSON.
syslog Writes log messages to the syslog daemon on the host machine.
journald Writes log messages to the journald daemon on the host machine.

gelf
Writes log messages to a Graylog Extended Log Format (GELF) endpoint such as
Graylog or Logstash.

fluentd Writes log messages to the fluentd daemon on the host machine.
awslogs Writes log messages to Amazon CloudWatch Logs.
splunk Writes log messages to splunk using the HTTP Event Collector.

etwlogs
Writes log messages as Event Tracing for Windows (ETW) events (Windows
only).

gcplogs Writes log messages to Google Cloud Platform (GCP) logging.
logentries Writes log messages to Rapid7 log entries.

Getting ready
Install Docker on the system, if you haven't done so already.

https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options
https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options

Getting Help and Tips and Tricks Chapter 10

[283]

How to do it
Follow these steps:

Start the Docker daemon with the required logging driver, as follows:1.

 $ dockerd --log-driver=none
 $ dockerd --log-driver=syslog

You can also add this option in the Docker configuration file
(/etc/docker/daemon.json):

 {
 "log-driver": "json-file",
 "log-opts": {
 "labels": "production_status",
 "env": "os,customer"
 }
 }

If you want to start a container that is using a different logging driver from the2.
system default, you can use the --log-driver option:

 $ docker container run -it --log-driver syslog alpine ash

How it works...
Depending on the log driver configuration, Docker daemon selects the corresponding
logging driver.

There's more...
The docker logs command is only available for the following two drivers: json-
file and journald.

See also
See the documentation on the Docker website for more information at: https:/ ​/​docs.
docker.​com/​config/ ​containers/ ​logging/ ​configure/ ​.

https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/

Getting Help and Tips and Tricks Chapter 10

[284]

Getting real-time Docker events for
containers
As we will be running many containers in production, it will be helpful if we can watch the
real-time container events for monitoring and debugging purposes. Docker containers can
report events such as create, destroy, die, export, kill, oom, pause, restart, start,
stop, and unpause. In this recipe, we will see how to enable event logging and then use
filters to select specific event types, images, and containers.

Getting ready...
Make sure that the Docker daemon is running on the host and that you can connect
through the Docker client.

How to do it...
Follow these steps:

Start the Docker events logging with the following command:1.

 $ docker events

From the other terminal, do some container/image-related operations and you2.
will see a result similar to the following screenshot on the first terminal:

After the events collection started, I created a container to just write a message to the
console. As we can see from the preceding screenshot, a container was created, started, and
died.

Getting Help and Tips and Tricks Chapter 10

[285]

How it works...
With Docker events, Docker starts listing events.

There's more...
You can use the --since or --until options with Docker events to narrow down results
for the selected timestamp:

 --since="" Show all events created since timestamp
 --until="" Stream events until this timestamp

Consider the following example:

 $ docker events --since '2015-01-01'

With filters, we can further narrow down the events log based on the event, container, and
image, as follows:

To list only the start event, use the following command:

 $ docker events --filter 'event=start'

To list events only from image Alpine, use the following command:

 $ docker events --filter 'image=alpine:3.5'

To list events from a specific container, use the following command:

 $ docker events --filter 'container=b3619441cb444b87b4'

With the format option, you can control the output of the event
messages:

To only display some of the event information, you can change the format like
this:

 $ docker events --format 'ID={{.ID }} Type={{.Type}} Status=
 {{.Status}}'

If you want the events to be streamed as valid JSON lines, then you can use the
following command:

 $ docker events --format '{{json .}}'

Getting Help and Tips and Tricks Chapter 10

[286]

See also
The Docker events documentation can be found here: https:/ ​/​docs. ​docker. ​com/ ​engine/
reference/​commandline/ ​events/ ​.

https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/events/

11
Docker on the Cloud

In this chapter, we will cover the following recipes:

Docker for AWS
Deploying WordPress on Docker for AWS
Docker for Azure
Deploying Joomla! on Docker for Azure

Introduction
In the previous chapters, we talked a lot about how to use Docker on a single host, and in
Chapter 8, Docker Orchestration and Hosting Platform, we even talked about how to use it on
multiple hosts using orchestration. One of the most popular ways to use Docker these days
is in the cloud. There are a number of popular cloud platforms available, and getting
Docker set up and running on each of them is a little different. To make the process easier,
Docker has come out with two new products: Docker for AWS, and Docker for Azure.

The goals of these products is to make bootstrapping your Docker environment as easy as
possible. Each product uses the cloud platforms' native tools to set up a Docker Swarm
cluster. You should be able to go from nothing to a full cluster in a few minutes. Once the
cluster is up and running, it is similar to any other Swarm cluster, and you would manage
it using the same Docker tools that we learned about previously.

In this chapter, we will learn how to set up Docker for AWS and Docker for Azure, and
deploy an application to each.

Docker on the Cloud Chapter 11

[288]

Docker for AWS
Amazon Web Services (AWS) is the largest and most popular cloud platform available
today. AWS provides a few different ways of running Docker workloads on their cloud.
You can use Elastic Beanstalk, Elastic Container Service (ECS), or Elastic Container
Service for Kubernetes (EKS). Each of these products have different capabilities, which
allow you to do different things. None of these products are Docker native, and require you
to learn a new set of tools and libraries in order to get your Docker application up and
running.

Docker for AWS uses the same cloud-native tools that these products use, but provides a
more Docker-native experience. Once Docker for AWS is set up, you can use the same
Docker tools and APIs that you already know about to deploy your Docker workload to
AWS.

Getting ready
Before we can install Docker for AWS, you will need to make sure that you have satisfied
all of the prerequisites:

You will need an active AWS account with either login access to the console, or
API keys for making CLI/API calls.
Your account will either need to be an admin account, or an account with the
correct IAM permissions.

For a full list of permissions, look at the documentation at: https:/ ​/​docs.
docker. ​com/ ​docker- ​for- ​aws/ ​iam-​permissions/ ​.

SSH keys need to be created and added to your AWS account.

https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.docker.com/docker-for-aws/iam-permissions/

Docker on the Cloud Chapter 11

[289]

See the following Amazon documentation for more information: https:/ ​/
docs. ​aws. ​amazon. ​com/ ​AWSEC2/ ​latest/ ​UserGuide/ ​ec2- ​key- ​pairs. ​html.

How to do it...
Docker for AWS uses CloudFormation for building and configuring your Swarm cluster.
There are two ways to deploy a CloudFormation stack: you can do it via the AWS web
console, or the AWS Command Line Interface (CLI). Using the web console is going to be
easier to get up and running, because all you need to do is fill out a web form. I
recommended that approach if you are not familiar with CloudFormation. This is what I'll
be showing you here.

We are going to deploy the latest available stable version, and let Docker for AWS build a
new Virtual Private Cloud (VPC) for us. There is another option where we can install it on
an existing VPC, but that is out of the scope of this recipe.

Log in to the AWS console and go to the CloudFormation section. Then, click on1.
the Create new stack button:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Docker on the Cloud Chapter 11

[290]

Under Choose a template, select the Specify an Amazon S3 template URL radio2.
button, enter the following URL, and click Next: https:/ ​/​editions- ​us-​east- ​1.
s3.​amazonaws. ​com/ ​aws/ ​stable/ ​Docker. ​tmpl:

3. Fill out the form, as shown in the following screenshot:

The rest you can change, or leave as the default values.

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl
https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Docker on the Cloud Chapter 11

[291]

Hit the Next button.4.

Add any optional tags if you want to, otherwise, feel free to leave everything as it5.
is and hit the Next button:

Docker on the Cloud Chapter 11

[292]

Click the I acknowledge that AWS CloudFormation might create IAM6.
resources checkbox, and hit the Create button:

It will take a few minutes to create your stack, and when it is completes, you7.
should go to the Outputs tab and click on the link next to Managers:

Docker on the Cloud Chapter 11

[293]

Pick one of the Public IP addresses for one of the managers:8.

SSH into one of the manager nodes, like so:

$ ssh docker@52.201.109.15
$ docker node ls

When you SSH into the swarm manager, you are not actually logging in to
the EC2 host directly – you are logging in to a special SSH container that is
running on that host.

Docker for AWS is now ready to use.

How it works...
CloudFormation will take the information that we provided in the form, and it will build a
new Virtual Private Cloud (VPC), subnets, internet gateway, routing tables, security
groups, Elastic Load Balancer (ELB), and two EC2 AutoScaling Groups (ASG) – one ASG
for the managers and one for the workers. The manager nodes in the manager ASG will
create new EC2 instances with Docker installed on them. The manager instances will then
create a new Docker Swarm and join together to form a manager quorum.

Docker on the Cloud Chapter 11

[294]

Once the manager nodes are up and running, the worker ASG will start up worker EC2
instances with Docker on them, and they will also join the same Swarm and start accepting
tasks. After all of these steps are complete, the Swarm is ready for action.

There's more
Getting Docker for AWS up and running is only half the battle. Now that it is running, you
will need to deploy an application, which we will show you in the next recipe. In the
meantime, here are a few common tasks that you should know how to do:

Scaling more workers: If you want to change the number of workers that you
have in your Swarm cluster, you can do this by updating the CloudFormation
stack.

Go to the CloudFormation management page and click the checkbox next to the stack you
want to update. Then, click on the Actions button at the top and select Update Stack:

Docker on the Cloud Chapter 11

[295]

Pick Use current template, and then click Next:

Fill out the same parameters you specified previously, but this time, change your worker
count to the new count, and click Next:

Docker on the Cloud Chapter 11

[296]

On the last page, it will let you preview your changes. If they look good, select the checkbox
and click the Update button:

CloudFormation will then update the worker ASG setting and scale the number of worker
nodes appropriately. To confirm that the nodes are up and have successfully joined the
Swarm, you can log in to a Manager node and run the following command:

$ docker node ls

Deleting the Stack: Go to the CloudFormation management page and click the checkbox
next to the stack you want to delete. Then, click on the Actions button at the top and select
Delete Stack:

CloudFormation will then remove all of the items in your stack, including any services you
had running on your Swarm.

Docker on the Cloud Chapter 11

[297]

See also
Docker for AWS documentation: https:/ ​/​docs. ​docker. ​com/​docker- ​for- ​aws/​

How to upgrade Docker for AWS: https:/ ​/​docs. ​docker. ​com/​docker- ​for- ​aws/
upgrade/ ​

Using a persistent datastore: https:/ ​/ ​docs. ​docker. ​com/ ​docker- ​for- ​aws/
persistent- ​data- ​volumes/ ​

Deploying WordPress on Docker for AWS
Now that we have an active Docker for AWS installation set up, let's deploy an application
to see how it works. In this recipe, we will be installing WordPress on top of Docker for
AWS.

Getting ready
Before we proceed, you will need to make sure that you have satisfied all of the
prerequisites:

You will need to have your Docker for AWS stack from the previous recipe up1.
and running.
SSH into one of the manager nodes. Instructions on how to do this are also2.
available in the previous recipe.

How to do it...
Once we are logged in to one of the manager nodes, the first thing we need to do is create
some swarm secrets for our database passwords:

$ echo "myDbP@SSwods" | docker secret create root_db_password -
$ echo "myWpressPw" | docker secret create wp_db_password -

https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/

Docker on the Cloud Chapter 11

[298]

We also need to create an overlay network so that our services can talk with each other:

$ docker network create -d overlay wp

Let's create the MariaDB database service that WordPress is going to use; we will use the
secrets and the network we created previously. We will then check the status of the service
to make sure it started correctly:

$ docker service create \
 --name mariadb \
 --replicas 1 \
 --constraint=node.role==manager \
 --network wp \
 --secret source=root_db_password,target=root_db_password \
 --secret source=wp_db_password,target=wp_db_password \
 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
 -e MYSQL_PASSWORD_FILE=/run/secrets/wp_db_password \
 -e MYSQL_USER=wp \
 -e MYSQL_DATABASE=wp \
 mariadb:10.3

$ docker service ps mariadb

Docker on the Cloud Chapter 11

[299]

Now that we have our database, let's create our WordPress service; we will use the same
secrets and network that we used with the mariadb service, but this time we will create
three replicas. We will then check the status of the service to make sure it started correctly:

$ docker service create \
 --name wp \
 --constraint=node.role==worker \
 --replicas 3 \
 --network wp \
 --publish 80:80 \
 --secret source=wp_db_password,target=wp_db_password,mode=0400 \
 -e WORDPRESS_DB_USER=wp \
 -e WORDPRESS_DB_PASSWORD_FILE=/run/secrets/wp_db_password \
 -e WORDPRESS_DB_HOST=mariadb \
 -e WORDPRESS_DB_NAME=wp \
 wordpress:4.9

$ docker service ps wp

Now that we have the WordPress service up and running, let's check to see whether we can
connect to it from our browser.

Docker on the Cloud Chapter 11

[300]

To find out the correct URL, we will go back to the CloudFormation Outputs tab again, but
this time we will look at the DefaultDNSTarget, copy that value, and enter it into our
browser:

Success! As you can see, the service is up and running:

Docker on the Cloud Chapter 11

[301]

If you are not going to be completing the setup wizard right away, please
remove or stop the service, or else someone else could come by and do it
for you, and take over your WordPress install.

How it works...
In this recipe, we created two new services. One was a database to store the information for
the other web service. We used secrets to protect our passwords, and we used those secrets
instead of hardcoding our passwords in the image, or passing them in as environmental
variables.

Docker on the Cloud Chapter 11

[302]

We also created a custom overlay network for our application, so that the two services
could talk to each other across the cluster and that traffic was encrypted by default, which
means that all communications between our two services is secure.

Docker for AWS has a service that listens for new services that get added to the Swarm and,
when a new service has ports exposed, it will automatically configure the external load
balancer to accept traffic for that service. When someone hits the load balancer, it will send
the traffic to one of the Swarm managers, and then the Swarm will route the traffic to the
correct host and container.

There's more...
In the preceding recipe, we were only accepting traffic over HTTP. With AWS, you can get
a free SSL/TLS certificate using the AWS Certificate Manager (ACM), and if you have one
of those, you can configure the load balancer and Docker for AWS to support SSL/TLS
traffic as well. Follow these directions for more information: https:/ ​/​docs. ​docker. ​com/
docker-​for-​aws/​load- ​balancer/ ​.

To destroy the services, we can just remove them from the Swarm, and it will take the site
down:

$ docker service rm wp
$ docker service rm mariadb

Docker for Azure
Microsoft Azure is a cloud computing platform created by Microsoft for building, testing,
deploying, and managing applications. It is currently the second most popular cloud
platform behind Amazon. In this recipe, we will discuss how to install Docker for Azure, a
product from Docker that makes it easy to get a Docker native stack up and running on
Azure.

https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/
https://docs.docker.com/docker-for-aws/load-balancer/

Docker on the Cloud Chapter 11

[303]

Getting ready
Before we can get started, there are a few things you will need:

Access to a Microsoft Azure account with admin privileges
An SSH key, which you will use when accessing the Docker for Azure Manager
nodes
An Azure Service Principal (SP), which is used by Docker for Azure to
authenticate with the Azure APIs

Docker has made it easy to create a Service Principal by using a Docker image they provide.
Follow these steps to create a Service Principal. The first thing you will do is run the Docker
image, passing in a few parameters:

$ docker container run -ti docker4x/create-sp-azure [sp-name] [rg-name rg-
region]

sp-name: The name of the service principal (for example, sp1).
rg-name: The name of a new resource group, which will be used when
deploying Docker for Azure (for example, swarm1).
re-region: The name of the Azure region where the resource group will be
created (for example, eastus). For a full list of available regions, go to the
following page: https:/ ​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​global- ​infrastructure/
regions/ ​:

https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/

Docker on the Cloud Chapter 11

[304]

It will then ask you to visit a web page and enter a code to authenticate. This will verify
your account and link it to the Docker container, which will let it complete the creation of
the Service Principal:

When complete, you should see your Service Principal credentials. Save this information in
a safe place; you will need it in a minute:

How to do it...
Docker for Azure uses the Azure Resource Manager (ARM) to create all of the required
resources tha

Docker on the Cloud Chapter 11

[305]

Open the following web page and select the Stable channel version: https:/ ​/​docs.
docker.​com/​docker- ​for- ​azure/ ​:

https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure

Docker on the Cloud Chapter 11

[306]

This will take you to the Azure portal and start a custom deployment using the Docker for
Azure ARM template. Add the Service Principal credentials that you have from before, and
answer the other questions. Don't forget to include your SSH public key. When the form is
complete, select the I agree... checkbox and click on the Purchase button:

Docker on the Cloud Chapter 11

[307]

This will start creating the resources you need and show you the progress of the
deployment:

Docker on the Cloud Chapter 11

[308]

When it is finished, click on the Outputs tab and make note of the three outputs. You will
need these a little later. Copy the value for SSH TARGETS and open the URL in a new
browser window:

This is the list of Manager nodes that are in your Swarm. To connect to this node, we can
SSH to the destination IP address on the Custom TCP port:

Using that information, let's SSH into that Manager and make sure it is working correctly
by listing the nodes in the Swarm:

$ ssh -p 50000 docker@40.76.49.102
$ docker node ls

If everything is working correctly, you should see the list of all of your manager and
worker nodes with a Status of Ready.

Docker on the Cloud Chapter 11

[309]

When you SSH into the swarm manager, you are not actually logging into
the Azure host directly, you are logging into a special SSH container that
is running on that host.

How it works...
Docker for Azure has an Azure Resource Manager (ARM) template that, when applied,
will create all the required resources on Azure and configure them together to create the
Swarm cluster. Docker for Azure uses the Service Principal to make the required API calls
to configure all of the nodes, as well as to manage the cluster once it is up and running.

There's more...
When the time comes to remove Docker for Azure, you will need to go into the Azure
portal, find the deployment, select all of the resources, and delete them:

Docker on the Cloud Chapter 11

[310]

Confirm the resources that you want to remove:

Docker on the Cloud Chapter 11

[311]

Due to some resource dependencies, you might have some resources that
can't be removed until their dependent resources are deleted. This means
you will probably need to delete the resources a few times before they will
all be removed.

See also
Docker for Azure documentation: https:/ ​/​docs. ​docker. ​com/​docker- ​for-
azure/​

How to upgrade Docker for Azure: https:/ ​/​docs. ​docker. ​com/​docker- ​for-
azure/​upgrade/ ​

Using a persistent datastore: https:/ ​/ ​docs. ​docker. ​com/ ​docker- ​for- ​azure/
persistent- ​data- ​volumes/ ​

Deploying Joomla! on Docker for Azure
Now that we have an active Docker for Azure installation set up, let's deploy an application
to see how it works. In this recipe, we will be installing Joomla!, a popular open source
CMS, on top of Docker for Azure.

Getting ready
Before we can get started, there are a few things you will need:

You will need to have your Docker for AWS stack up and running from the1.
previous recipe.
SSH into one of the manager nodes. Instructions on how to do this are also2.
available in the previous recipe.

https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/

Docker on the Cloud Chapter 11

[312]

How to do it...
Once we are logged in to one of the manager nodes, the first thing we need to do is create
some Swarm secrets for our database passwords:

$ echo "DbP@SSwod1" | docker secret create root_db_password -
$ echo "myJ000mlaPw" | docker secret create jm_db_password -

Let's confirm that we added them correctly:

$ docker secret ls

They look good. Let's create a custom overlay network so that our services can talk with
each other over an encrypted connection on the cluster:

$ docker network create -d overlay joomla
$ docker network ls

Docker on the Cloud Chapter 11

[313]

Now, we are ready to add our services. Joomla! requires a database, so we are going to
create a MariaDB service, and we will use the network and secrets that we created earlier
for our passwords:

$ docker service create \
 --name mariadb \
 --replicas 1 \
 --constraint=node.role==manager \
 --network joomla \
 --secret source=root_db_password,target=root_db_password \
 --secret source=jm_db_password,target=jm_db_password \
 -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
 -e MYSQL_PASSWORD_FILE=/run/secrets/jm_db_password \
 -e MYSQL_USER=joomla \
 -e MYSQL_DATABASE=joomla \
 mariadb:10.3

Now that we have all of our dependencies created, we can add our Joomla! service. We will
use the same network as before, but you will notice that we are passing the database
password as an environment variable instead of using the Docker Secret we created earlier.
This is because the Joomla! image does not currently support secrets, but hopefully support
will be added in the near future, and we can switch it to use the secret at that time:

$ docker service create \
 --name joomla \
 --constraint=node.role==manager \
 --replicas 1 \
 --network joomla \
 --publish 80:80 \
 -e JOOMLA_DB_USER=joomla \

Docker on the Cloud Chapter 11

[314]

 -e JOOMLA_DB_PASSWORD="myJ000mlaPw" \
 -e JOOMLA_DB_HOST=mariadb \
 -e JOOMLA_DB_NAME=joomla \
 joomla:3.8

We should now have two services up and running. Let's check:

$ docker service ls

They look good. Let's see whether we can connect to the service. If you remember, when we
deployed Docker for Azure, there were some outputs. Two of those outputs were APPURL
and DEFAULTDNSTARGET. The first one is the load balancer URL, while the other is the
public IP address for the stack. You can use those values when configuring your DNS
records for your site:

Docker on the Cloud Chapter 11

[315]

If you enter one of the aforementioned addresses into a web browser, you should be able to
see the Joomla! configuration page. If so, our installation was successful:

Docker on the Cloud Chapter 11

[316]

If you are not going to be completing the configuration wizard right away,
please remove or stop the service, or else someone else could come by and
do it for you, and take over your Joomla! install.

How it works...
In this recipe, we created two new services. One was a database to store the information for
the Joomla! service. We used secrets to protect our passwords, and we used those secrets
for the database service instead of hardcoding our passwords in the image, or passing them
in as environmental variables as we did for the Joomla! service.

We also created a custom overlay network for our application, so that the two services
could talk to each other across the cluster. That traffic was encrypted by default, which
means all communication between our two services is secure.

Docker for Azure has a service that listens for new services that get added to the Swarm.
When a new service has ports exposed, it will automatically configure the external load
balancer to accept traffic for that service. When someone hits the load balancer, it will send
the traffic to one of the Swarm managers, and then the Swarm will route the traffic to the
correct host and container.

See also
Docker for Azure deployment documentation: https:/ ​/​docs. ​docker. ​com/
docker-​for- ​azure/ ​deploy/ ​

https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/
https://docs.docker.com/docker-for-azure/deploy/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Docker - Second Edition
Russ McKendrick, Scott Gallagher

ISBN: 978-1-78728-024-3

Become fluent in the basic components and concepts of Docker
Secure your containers and files with Docker's security features
Extend Docker and solve architectural problems using first- and third-party
orchestration tools, service discovery, and plugins
Leverage the Linux container virtualization paradigm by creating highly scalable
applications

https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition

Other Books You May Enjoy

[318]

Learn Docker - Fundamentals of Docker 18.x
Gabriel N. Schenker

ISBN:978-1-78899-702-7

Containerize your traditional or microservice-based application
Share or ship your application as an immutable container image
Build a Docker swarm and a Kubernetes cluster in the cloud
Run a highly distributed application using Docker Swarm or Kubernetes
Update or rollback a distributed application with zero downtime
Secure your applications via encapsulation, networks, and secrets
Know your options when deploying your containerized app into the cloud

https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x

Other Books You May Enjoy

[319]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
administer Docker
 nonroot user, adding 37
Amazon Web Services (AWS) 169, 288
Amazon
 reference link 168
Apache image
 building 96, 98
APIs
 used, for building Docker images 193, 195
 used, for launching containers 196, 199
 used, for performing container operations 199,

201

 used, for working with images 189, 191
automated builds
 with Bitbucket repository 101, 105, 111
 with GitHub repository 101, 105, 107, 111
AWS Certificate Manager (ACM) 302

B
Bitbucket repository
 used, for automated builds 101, 105, 107, 111

C
Center of Internet Security
 reference link 259
CentOS
 Docker, installing 22, 24
Certificate Authority (CA) 208
cgroups 14
CI/CD
 performing, with Heroku 156, 160, 162, 163
 performing, with Shippable 156, 158, 160, 162,

163

 performing, with TravisCI 164, 167, 168
client libraries, Docker remote API

 exploring 201, 204
cluster
 setting up, with Docker Swarm 237, 240
container communication
 used, for building bridge 278, 280
container format 17
container resource usage
 obtaining, with state feature 229
container
 image, creating from 73
containerD
 reference link 274
containers
 accessing, from outside 126, 129
 attaching, to host network 130, 131
 capabilities, removing to break down the power of

root user 266, 268
 discovering 141, 144
 executing 33, 36
 filtering 64, 67
 host device, accessing inside 60
 image, creating from 71
 IP addresses, sharing 133, 136
 labeling 64, 67
 launching, with APIs 196, 199
 launching, without network 132, 133
 listing 49, 51
 load balancing 141, 144
 logging driver, selecting 282, 283
 logs, viewing 51, 52
 metadata, reading 63, 64
 operations, performing with APIs 199, 201
 privileged access, obtaining 59, 60
 real-time Docker events, obtaining 284, 285
 removing 54, 55
 restart policy, setting 57, 58
 starting 46, 48

[321]

 stopping 53, 54
 zombie, reaping inside 67, 69
Continuous Delivery (CD) 153
Continuous Integration (CI) 153
CPU performance
 benchmarking 219, 222
custom base image
 creating 112, 113

D
data
 persisting, with volumes 145, 148
 sharing, between host and container 149, 151
debug mode
 Docker, starting 273, 274
disk performance
 benchmarking 223, 225
Docker binary
 building, from source 274, 276
Docker command line
 used, for finding help 38
Docker Compose
 reference link 234
 used, for executing applications 234, 236
Docker daemon
 configuring, for remote connectivity 204, 207
 remote connectivity, securing 208, 211, 213
Docker for AWS
 about 288, 290, 293, 294, 296
 WordPress, deploying 297, 298, 300, 302
Docker for Azure
 about 302, 305, 308, 310
 Joomla!, deploying 311, 313, 316
 reference link 305
Docker Hub
 about 36
 account, creating 74, 76, 77
Docker image hierarchy
 visualizing 119, 121
Docker image registry
 logging in 78, 80
 logging out 78, 80
 publishing 81, 83
Docker image
 building, in multiple stages 116, 119

 building, with APIs 193, 195
 building, with Dockerfile 90, 92, 96
 building, without cached layers 276, 278
 exporting 88, 89
 history 83, 84
 importing 89, 90
 pulling 33, 36
 removing 85, 87
 working with 189, 191
Docker installation
 requisites, verifying 18, 19
Docker Swarm
 used, for setting up cluster 237, 240
 using, with secrets 240, 242, 243
Docker
 CentOS, installing 22, 24
 installing, for Mac 30, 32
 installing, on Linux with automated script 25, 26
 installing, on Ubuntu 20, 22
 installing, on Windows 26, 29
 starting, in debug mode 273, 274
 used, for testing 153, 155, 156
Dockerfile
 used, for building Docker image 90, 92, 96

E
Elastic Container Service for Kubernetes (EKS)

288

Event Tracing for Windows (ETW) 282
Extended Page Tables (EPT) 30

F
features, cgroups
 accounting 15
 control 15
 prioritization 15
 resource limiting 15

G
GitHub repository
 used, for automated builds 101, 105, 107, 111
Google Cloud Platform (GCP) 282
Graylog Extended Log Format (GELF) 282

[322]

H
Heroku
 reference link 157, 168
 used, for performing CI/CD 156, 158, 160, 162,

163

host device
 accessing, inside container 60
host network
 containers, attaching 130, 131

I
image
 creating, from container 71, 73
 listing 40, 42, 45
 pulling 43, 44
 searching 40, 42
inter-process communication (IPC) namespace 13
IP addresses
 sharing, with container 133, 136

J
Joomla!
 deploying, on Docker for Azure 311, 313, 316

K
Kubernetes cluster
 scaling down 252, 253
 scaling up 252
 setting up 243, 244, 248
 WordPress, setting up 254, 256
Kubernetes
 reference link 169
 secrets, using 248, 251

L
Linux
 Docker, installing 26
 Docker, installing with automated script 25
logging driver
 selecting, for containers 282, 283

M
Mac

 Docker, installing 30, 32
Mandatory Access Control (MAC)
 about 257, 259
 setting, with SELinux 261, 263, 264
Memory Management Unit (MMU) 30
minimal image
 creating, with scratch base image 113, 115
mnt namespace 14
Moby
 reference link 276
Multi Category Security (MCS) 261
Multi Level Security (MLS) 261

N
namespaces
 about 11
 inter-process communication (IPC) namespace

13

 mnt namespace 14
 net namespace 12, 13
 PID namespace 11
 sharing, between host and container 269, 271
 user namespace 14
 UTS namespace 14
net namespace 12
network performance
 benchmarking 226, 229

O
OCI runtime
 changing 280, 281
Open Container Initiative (OCI) 17
OpenShift origin
 used, for setting up PaaS 168, 171, 172, 175,

177, 180, 181
OpenShift
 app, building from source code 181, 183, 185
 app, deploying from source code 181, 183, 185
 reference link 168

P
performance monitoring
 setting up 230, 232
PID namespace 11
Platform-as-a-Service (PaaS)

 about 153, 157, 168
 setting up, with OpenShift origin 168, 171, 172,

175, 177, 180, 181
private index
 setting up 99, 100
private registry
 setting up 99, 100
privileged access
 obtaining, inside container 59, 60

R
real-time Docker events
 obtaining, for containers 284, 285
REpresentational State Transfer 186
restart policy
 setting, on container 57, 58
runC
 reference link 274
running container
 process, injecting into 61

S
scratch base image
 used, for creating minimal image 113, 115
secrets
 using, with Docker Swarm 240, 242, 243
 using, with Kubernetes 248, 251
SELinux
 access, allowing to host files from containers

265, 266
 used, for setting Mandatory Access Control

(MAC) 261, 263, 264
Service Principal (SP) 303
Shippable
 reference link 157
 used, for performing CI/CD 156, 158, 160, 162,

163

Source-to-image (S2I) 170
stats feature
 used, for obtaining container resource usage

229

stopped containers

 removing 56, 57
SwarmKit
 reference link 237

T
testing
 with Docker 153, 155, 156
Transport Layer Security (TLS) 207
TravisCI
 reference link 164
 used, for performing CI/CD 164, 167, 168
types, SELinux enforcement
 Multi Category Security enforcement 261
 type enforcement 261

U
Ubuntu
 Docker, installing 20, 22
union filesystem 17
user namespace 14
user-defined bridge network
 creating 137, 139, 140
UTS namespace 14

V
virtual file system (VFS) 17
virtual machines (VMs) 9
volumes
 used, for persisting data 145, 148

W
Windows
 Docker, installing 26, 29
WordPress
 deploying, on Docker for AWS 297, 298, 300,

302

 setting up, with Kubernetes cluster 254, 256

Z
zombie
 about 67
 reaping, inside container 67, 69

	Cover

	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction and Installation
	Introduction
	Namespaces
	The PID namespace
	The net namespace
	The IPC namespace
	The mnt namespace
	The UTS namespace
	The user namespace

	Cgroups
	The union filesystem
	The container format

	Verifying requirements for Docker installation
	Getting ready
	How to do it…
	How it works…
	See also

	Installing Docker on Ubuntu
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Installing Docker on CentOS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing Docker on Linux with an automated script
	Getting ready
	How to do it
	How it works...
	There's more...

	Installing Docker for Windows
	Getting ready
	How to do it
	How it works...
	There's more
	See also

	Installing Docker for Mac
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Pulling an image and running a container
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Adding a nonroot user to administer Docker
	Getting ready
	How to do it...
	How it works…

	Finding help with the Docker command line
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 2: Working with Docker Containers
	Introduction
	Listing/searching for an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Pulling an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Starting a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the container logs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Stopping a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Removing all stopped containers
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Setting the restart policy on a container
	Getting ready
	How to do it...
	There's more...
	See also

	Getting privileged access inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing the host device inside a container
	Getting ready
	How to do it...
	How it works...
	See also

	Injecting a new process into a running container
	Getting ready
	How to do it...
	How it works...
	See also

	Reading a container's metadata
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Labeling and filtering containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reaping a zombie inside a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Chapter 3: Working with Docker Images
	Introduction
	Creating an image from the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating an account with Docker Hub
	Getting ready
	How to do it...
	How it works...
	See also

	Logging in and out of the Docker image registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Publishing an image to the registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the history of an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Exporting an image
	Getting ready
	How to do it...
	There's more...
	See also

	Importing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Building an image using a Dockerfile
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building an Apache image – a Dockerfile example
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a private index/registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Automated builds – with GitHub and Bitbucket
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a custom base image
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a minimal image using a scratch base image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images in multiple stages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Visualizing the image hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Network and Data Management for Containers
	Introduction
	Accessing containers from outside
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Attaching containers to a host network
	Getting ready
	How to do it...
	How it works...
	See also

	Launching containers with no network
	Getting ready
	How to do it...
	How it works...
	See also

	Sharing IP addresses with other containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a user-defined bridge network
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Discovering and load balancing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Persisting data using volumes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing data between the host and the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Docker Use Cases
	Introduction
	Testing with Docker
	Getting ready
	How to do it…
	How it works…
	There's more…

	Performing CI/CD with Shippable and Heroku
	Getting ready
	How to do it…
	How it works…
	See also

	Performing CI/CD with TravisCI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up PaaS with OpenShift origin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building and deploying an app on OpenShift from the source code
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 6: Docker APIs and SDKs
	Introduction
	Working with images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Building images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Launching containers using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Performing container operations using APIs
	How to do it...
	How it works...
	See also

	Exploring Docker remote API client libraries
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring the Docker daemon for remote connectivity
	How to do it...
	How it works...
	There's more...
	See also

	Securing the Docker daemon's remote connectivity
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Docker Performance
	Introduction
	Benchmarking CPU performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Benchmarking disk performance
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Benchmarking network performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Getting container resource usage using the stats feature
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up performance monitoring
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Chapter 8: Docker Orchestration and Hosting a Platform
	Introduction
	Running applications with Docker Compose
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Setting up a cluster with Docker Swarm
	Getting ready
	How to do it
	How it works…
	There's more...
	See also

	Using secrets with Docker Swarm
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using secrets with Kubernetes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scaling up and down in Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up WordPress with Kubernetes clusters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Docker Security
	Introduction
	Setting Mandatory Access Control (MAC) with SELinux
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Allowing writes to volumes mounted from the host with SELinux ON
	Getting ready
	How to do it...
	How it works…
	See also

	Removing capabilities to break down the power of a root user inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing namespaces between the host and the container
	Getting ready
	How to do it...
	How it works...

	Chapter 10: Getting Help and Tips and Tricks
	Introduction
	Starting Docker in debug mode
	Getting ready
	How to do it...
	How it works...
	See also

	Building a Docker binary from the source
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images without using cached layers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building your own bridge for container communication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing the default OCI runtime
	Getting ready
	How to do it...
	How it works...
	See also

	Selecting the logging driver for containers
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Getting real-time Docker events for containers
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: Docker on the Cloud
	Introduction
	Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Deploying WordPress on Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Docker for Azure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying Joomla! on Docker for Azure
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Index

