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PART I

DARE TO KNOW



. . . in this world there is nothing certain but death and taxes.
Benjamin Franklin

1

UNCERTAINTY

Susan’s Nightmare

During a routine medical visit at a Virginia hospital in the mid-1990s, Susan, a
26-year-old single mother, was screened for HIV. She used illicit drugs, but not
intravenously, and she did not consider herself at risk of having the virus. But a
few weeks later the test came back positive—which at the time amounted to a
terminal diagnosis. The news left Susan shocked and distraught. Word of her
diagnosis spread, her colleagues refused to touch her phone for fear of contagion,
and Susan eventually lost her job. Finally, she moved into a halfway house for
HIV-infected patients. While there, she had unprotected sex with another
resident, thinking, “Why take precautions if the virus is already inside of you?”
Out of concern for her 7-year-old son’s health, Susan decided to stop kissing
him and began to worry about handling his food. The physical distance she kept
from him, intended to be protective, caused her intense emotional suffering.
Months later, she developed bronchitis, and the physician who treated her for it
asked her to have her blood retested for HIV. “What’s the point?” she thought.

The test came back negative. Susan’s original blood sample was then retested
and also showed a negative result. What had happened? At the time the data
were entered into a computer in the Virginia hospital, Susan’s original blood test
result seems to have been inadvertently exchanged with those of a patient who



was HIV positive. The error not only gave Susan false despair, but it gave the
other patient false hope.

The fact that an HIV test could give a false positive result was news to Susan.
At no point did a health care provider inform her that laboratories, which run
two tests for HIV (the ELISA and Western blot) on each blood sample,
occasionally make mistakes. Instead, she was told repeatedly that HIV test
results are absolutely conclusive—or rather, that although one test might give
false positives, if her other, “confirmatory” test on her initial blood sample also
came out positive, the diagnosis was absolutely certain.

By the end of her ordeal, Susan had lived for 9 months in the grip of a
terminal diagnosis for no reason except that her medical counselors believed
wrongly that HIV tests are infallible. She eventually filed suit against her doctors
for making her suffer from the illusion of certainty. The result was a generous
settlement, with which she bought a house. She also stopped taking drugs and
experienced a religious conversion. The nightmare had changed her life.

Prozac’s Side Effects

A psychiatrist friend of mine prescribes Prozac to his depressive patients. Like
many drugs, Prozac has side effects. My friend used to inform each patient that
he or she had a 30 to 50 percent chance of developing a sexual problem, such as
impotence or loss of sexual interest, from taking the medication. Hearing this,
many of his patients became concerned and anxious. But they did not ask
further questions, which had always surprised him. After learning about the
ideas presented in this book, he changed his method of communicating risks. He
now tells patients that out of every ten people to whom he prescribes Prozac,
three to five experience a sexual problem. Mathematically, these numbers are the
same as the percentages he used before. Psychologically, however, they made a
difference. Patients who were informed about the risk of side effects in terms of
frequencies rather than percentages were less anxious about taking Prozac—and
they asked questions such as what to do if they were among the three to five
people. Only then did the psychiatrist realize that he had never checked how his
patients understood what “a 30 to 50 percent chance of developing a sexual
problem” meant. It turned out that many of them had thought that something



would go awry in 30 to 50 percent of their sexual encounters. For years, my
friend had simply not noticed that what he intended to say was not what his
patients heard.

The First Mammogram

When women turn 40, their gynecologists typically remind them that it is time
to undergo biennial mammography screening. Think of a family friend of yours
who has no symptoms or family history of breast cancer. On her physician’s
advice, she has her first mammogram. It is positive. You are now talking to your
friend, who is in tears and wondering what a positive result means. Is it
absolutely certain that she has breast cancer, or is the chance 99 percent, 95
percent, 90 percent, 50 percent, or something else?

I will give you the information relevant to answering this question, and I will
do it in two different ways. First I will present the information in probabilities,
as is usual in medical texts.1 Don’t worry if you’re confused; many, if not most,
people are. That’s the point of the demonstration. Then I will give you the same
information in a form that turns your confusion into insight. Ready?

The probability that a woman of age 40 has breast cancer is about 1 percent.
If she has breast cancer, the probability that she tests positive on a screening
mammogram is 90 percent. If she does not have breast cancer, the probability
that she nevertheless tests positive is 9 percent. What are the chances that a
woman who tests positive actually has breast cancer?

Most likely, the way to an answer seems foggy to you. Just let the fog sit there
for a moment and feel the confusion. Many people in your situation think that
the probability of your friend’s having breast cancer, given that she has a positive
mammogram, is about 90 percent. But they are not sure; they don’t really
understand what to do with the percentages. Now I will give you the same
information again, this time not in probabilities but in what I call natural
frequencies:



Think of 100 women. One has breast cancer, and she will probably test
positive. Of the 99 who do not have breast cancer, 9 will also test positive.
Thus, a total of 10 women will test positive. How many of those who test
positive actually have breast cancer?

Now it is easy to see that only 1 woman out of 10 who test positive actually
has breast cancer. This is a chance of 10 percent, not 90 percent. The fog in
your mind should have lifted by now. A positive mammogram is not good news.
But given the relevant information in natural frequencies, one can see that the
majority of women who test positive in screening do not really have breast
cancer.

DNA Tests

Imagine you have been accused of committing a murder and are standing before
the court. There is only one piece of evidence against you, but it is a potentially
damning one: Your DNA matches a trace found on the victim. What does this
match imply? The court calls an expert witness who gives this testimony:

“The probability that this match has occurred by chance is 1 in
100,000.”

You can already see yourself behind bars. However, imagine that the expert
had phrased the same information differently:

“Out of every 100,000 people, 1 will show a match.”

Now this makes us ask, how many people are there who could have
committed this murder? If you live in a city with 1 million adult inhabitants,
then there should be 10 inhabitants whose DNA would match the sample on
the victim. On its own, this fact seems very unlikely to land you behind bars.

Technology Needs Psychology



Susan’s ordeal illustrates the illusion of certainty; the Prozac and DNA stories are
about risk communication; and the mammogram scenario is about drawing
conclusions from numbers. This book presents tools to help people to deal with
these kinds of situations, that is, to understand and communicate uncertainties.

One simple tool is what I call “Franklin’s law”: Nothing is certain but death
and taxes.2 If Susan (or her doctors) had learned this law in school, she might
have asked immediately for a second HIV test on a different blood sample,
which most likely would have spared her the nightmare of living with a
diagnosis of HIV. However, this is not to say that the results of a second test
would have been absolutely certain either. Because the error was due to the
accidental confusion of two test results, a second test would most likely have
revealed it, as later happened. If the error, instead, had been due to antibodies
that mimic HIV antibodies in her blood, then the second test might have
confirmed the first one. But whatever the risk of error, it was her doctor’s
responsibility to inform her that the test results were uncertain. Sadly, Susan’s
case is not an exception. In this book, we will meet medical experts, legal
experts, and other professionals who continue to tell the lay public that DNA
fingerprinting, HIV tests, and other modern technologies are foolproof—period.

Franklin’s law helps us to overcome the illusion of certainty by making us
aware that we live in a twilight of uncertainty, but it does not tell us how to go
one step further and deal with risk. Such a step is illustrated, however, in the
Prozac story, where a mind tool is suggested that can help people understand
risks: When thinking and talking about risks, use frequencies rather than
probabilities. Frequencies can facilitate risk communication for several reasons, as
we will see. The psychiatrist’s statement “You have a 30 to 50 percent chance of
developing a sexual problem” left the reference class unclear: Does the percentage
refer to a class of people such as patients who take Prozac, to a class of events
such as a given person’s sexual encounters, or to some other class? To the
psychiatrist it was clear that the statement referred to his patients who take
Prozac, whereas his patients thought that the statement referred to their own
sexual encounters. Each person chose a reference class based on his or her own
perspective. Frequencies, such as “3 out of 10 patients,” in contrast, make the
reference class clear, reducing the possibility of miscommunication.



My agenda is to present mind tools that can help my fellow human beings to
improve their understanding of the myriad uncertainties in our modern
technological world. The best technology is of little value if people do not
comprehend it.



Dare to know!
Kant

2

THE ILLUSION OF CERTAINTY

The creation of certainty seems to be a fundamental tendency of human minds.1
The perception of simple visual objects reflects this tendency. At an unconscious
level, our perceptual systems automatically transform uncertainty into certainty,
as depth ambiguities and depth illusions illustrate. The Necker cube, shown in
Figure 2-1, has ambiguous depth because its two-dimensional lines do not
indicate which face is in front and which is in back. When you look at it,
however, you do not see an ambiguous figure; you see it one way or the other.
After a few seconds of fixating on the cube, however, you experience a gestalt
switch—that is, you see the other cube instead, but again unambiguously.



FIGURE 2-1. The Necker cube. If you fixate on the drawing, your perceptual
impression shifts between two different cubes—one projecting into and the
other out of the page.



FIGURE 2-2. Turning the tables. These two tables are of identical size and
shape. This illusion was designed by Roger Shepard (1990). (Reproduced with
permission of W. H. Freeman and Company.)



Roger Shepard’s “Turning the Tables,” a depth illusion shown in Figure 2-2,
illustrates how our perceptual system constructs a single, certain impression from
uncertain cues. You probably see the table on the left as having a more elongated
shape than the one on the right. The two surfaces, however, have exactly the
same shape and area, which you can verify by tracing the outlines on a piece of
paper. I once showed this illustration in a presentation during which I hoped to
make an audience of physicians question their sense of certainty (“often wrong
but never in doubt”). One physician simply did not believe that the areas were
the same shape. I asked him how much he wanted to bet, and he offered me
$250. By the end of my talk, he had disappeared.

What is going on in our minds? Unconsciously, the human perceptual system
constructs representations of three-dimensional objects from incomplete
information, in this case from a two-dimensional drawing. Consider the longer
sides of each of the two tables. Their projections on the retina have the same
length. But the perspective cues in the drawings indicate that the longer side of
the left-hand table extends into depth, whereas that of the right-hand table does
not (and vice versa for their shorter sides). Our perceptual systems assume that a
line of a given length on the retina that extends into depth is actually longer
than one that does not and corrects for that. This correction makes the left-hand
table surface appear longer and narrower.

Note that the perceptual system does not fall prey to illusory certainty— our
conscious experience does. The perceptual system analyzes incomplete and
ambiguous information and “sells” its best guess to conscious experience as a
definite product. Inferences about depth, orientation, and length are provided
automatically by underlying neural machinery, which means that any
understanding we gain about the nature of the illusion is virtually powerless to
overcome the illusion itself. Look back at the two tables; they will still appear to
be different shapes. Even if one understands what is happening, the unconscious
continues to deliver the same perception to the conscious mind. The great
nineteenth-century scientist Hermann von Helmholtz coined the term
“unconscious inference” to refer to the inferential nature of perception.2 The
illusion of certainty is already manifest in our most elementary perceptual
experiences of size and shape. Direct perceptual experience, however, is not the
only kind of belief where certainty is manufactured.



Technology and Certainty

Fingerprinting has enjoyed an impeccable reputation. The fingerprints
themselves are unique features of an individual and persist unchanged from early
youth into advanced age. Even identical twins have different fingerprints despite
having the same genes. If the fingerprints of a suspect matched those found at
the scene of the crime, what jury would acquit the suspect? Fingerprint evidence
seems absolutely certain—the great exception to Franklin’s law, it would seem.

The use of fingerprinting acquired a scientific basis through the work of Sir
Francis Galton, a nineteenth-century English gentleman scientist and Charles
Darwin’s first cousin. Galton looked at the arches, whorls, and loops of which
fingerprints consist and estimated the chance that two fingerprints would match
randomly as 1 in 64 billion.3 Galton did not look at the whole fingerprint, but
at points (“points of similarity”) where the ridges in the fingerprint either end or
split. His estimate was based on using every point, and there are typically 35 to
50 such points in a fingerprint. However, current practice has been to declare a
match between the fingerprints of a suspect and those found at a crime scene
when 8 to 16 of these points match. (This practice varies widely.) But in
England an alternative technique is being implemented that relies on an
examiner’s overall impression of a match, not on counting the matches between
points. This alternative makes the determination of a match a subjective
judgment. The validity of neither of the two techniques—determining points of
similarity and overall impression—however, has been scientifically investigated.
Fingerprint experts have few statistics on which they can base their conclusions.

When actual fingerprints are found at a crime scene, two complicating factors
enter: fingerprints are typically incomplete, and they are “latent.” With
incomplete fingerprints, one cannot compare whole prints, only fragments.
Galton’s statistical analysis and its modern equivalents do not help much in this
case. The second complication is that most fingerprints found at the scene are
latent; that is, they require treatment with chemicals or illumination with
ultraviolet light to make them visible enough to work with. How reliable is it to
compare such filtered evidence with the suspect’s clean fingerprints taken under
controlled conditions? Given these uncertainties and differences in procedure,



how certain is fingerprint evidence? The answer is that we do not know; there
seem to be no reliable scientific studies.

Recently, however, the Federal Bureau of Investigation performed a test of
the reliability of fingerprint evidence that had never been done before. In 1998,
Byron Mitchell appealed his conviction for having driven the getaway car in a
robbery in Pennsylvania in 1991. The conviction was based on two latent
fingerprints, one found on the steering wheel and the other on the gearshift of
the car. The FBI decided to test the reliability of the reported match and sent
the latent fingerprints along with Mr. Mitchell’s inked prints to the laboratories
of 53 various state law enforcement agencies. From the 35 laboratories that
responded, 8 failed to find a match for one of the prints, and 6 failed to find a
match for the other, making the average failure rate one in five tests. This
troublesome result casts considerable doubt on the reliability of fingerprinting.
America’s National Institute of Justice has finally provided funding to study how
good fingerprinting actually is.4

Fingerprint evidence has been accepted as certain for more than a century,
following Galton’s estimate. This calculation was made for ideal conditions,
which are not found in the real world of incomplete and latent prints. When
DNA fingerprinting was introduced into the courts, almost a hundred years
after Galton’s seminal work, the public and many experts projected the illusion
of certainty onto this new technology. As we see in Chapter 10, DNA
fingerprinting has also been declared “failsafe.” The fiction that fingerprinting,
DNA fingerprinting, HIV tests, or other excellent new technologies are
absolutely foolproof is like a dream that comes back night after night, fulfilling a
deep unconscious wish.

Authority and Certainty

When I was a child, I was told on good authority never to drink water after
eating cherries, or I would get very sick and might even die. It never occurred to
me to doubt this warning. One day I shared an ample serving of cherries with an
English friend who had never heard of this danger. To my horror, I saw him
reach for a glass of water after eating some of the cherries. I tried to stop him,
but without success; he just laughed. He took a sip, and nothing happened. Not



only did he not die; he did not even get sick. That experience cured me.5 My
belief about cherries was groundless, as many convictions about food and dieting
are. However, this is not always the case. The general disposition to uncritically
accept such a belief is not unfounded when beliefs involve food, health, or other
things that directly concern survival. Here, illusory certainty seems to be an
adaptive response that for ages has protected humans, especially children, from
trying to learn first-hand about possible dangers, such as which kinds of food are
poisonous and which are not. Similarly, young children are prepared to believe
in values, rules, and stories without question, which facilitates their integration
into their social group and culture. Social conventions— whether learned from
one’s family or one’s wider culture—are, like elementary perception, a source of
the illusion of certainty.

Illusory certainty is part of our perceptual, emotional, and cultural
inheritance. It can provide us with images of our environment that are useful,
although not always correct, as well as with feelings of comfort and safety. The
esoterica sections in today’s bookstores attest to the idea that many people crave
fast faith. Throughout history, humans have created belief systems that promise
certainty, such as religion, astrology, and divination, systems in which people—
particularly those experiencing terrible suffering—can find comfort. Certainty
has become a consumer product. It is marketed the world over—by insurance
companies, investment advisers, election campaigns, and the medical industry.
In seventeenth-century Europe, buying life insurance meant making a bet on the
duration of a prominent person’s life, such as whether the mayor of Paris would
die within three years. If he died within the period on which you had wagered,
you made a small fortune. Nowadays, insurance agencies have persuaded us that
life insurance is about safety and certainty and that it is morally responsible to
bet against our own lives for the sake of our survivors’ economic security.6
Political parties likewise fuel the desire for security. Before Germany’s national
elections of 1998, streets all over the country were plastered with Christian
Democratic campaign posters that read: “CERTAINTY, NOT RISK.” This promise
was not unique to the platform of Chancellor Helmut Kohl and his party; other
parties in the elections also advertised certainty.

The illusion of certainty can be created and exploited as a tool for political
and economic goals. In recent years, for instance, when mad cow disease (bovine



spongiform encephalopathy, or BSE) raged in Great Britain, Ireland, Portugal,
France, and Switzerland, the German government declared its country BSE-free.
“German beef is safe”—this phrase was repeated again and again by the
president of the Farmers’ Association, the minister of agriculture, and a choir of
other government officials.7 The German people liked to hear this message.
English beef had been banned, and customers were advised to ask their butcher
for beef bred in Germany. In other countries, so they were told, there was a
marked lack of care and control.

When, in the year 2000, the Germans finally began to actually perform a
substantial number of tests on their own herds for BSE, the disease was found,
and the public was caught totally by surprise. Ministers were forced to resign,
beef prices toppled, and other countries banned German beef. The government
finally admitted that it had clung too long to the illusion that German cattle
were entirely free of the disease.

However, the game of promising certainty did not stop; only the players
changed. Supermarkets and butchers now put up signs and set out pamphlets
reassuring their customers: “Our beef is guaranteed BSE-free.” Some explained
that this was because their cows had, luckily, grazed on ecological meadows, and
others that their cows had actually been tested—none mentioned that these tests
contain a large number of errors. When the newspapers finally reported the case
of a cow that tested negative despite, indeed, having BSE, the public was again
given a shock. Yet another illusion of certainty disappeared. Reassurance rather
than information concerning BSE was the primary goal of both the government
and the butchers and supermarkets.

Political and marketing campaigns show that illusory certainty does not begin
or end with the individual mind. Many parties may be involved in the creation
and selling of certainty, such as members of a profession who publicly deny the
possibility that their products could be flawed, and clients who want to hear and
trust this message and surrender to social authority. The illusion is also not
intended for or created in all minds; it may be conjured up for specific
audiences. For instance, the Yale Law School professor Dr. Jay Katz recounted a
discussion he had had with a surgeon friend about the uncertainties that plague
breast cancer treatment, during which they had agreed that nobody knows what
the single best treatment is.8 When Katz asked his friend how he advised his



patients, the surgeon recounted telling his most recent patient with breast cancer
that the single best treatment is radical surgery and impressing upon her the
need to have the operation. Katz challenged his friend about this inconsistency:
How could he suddenly be so sure what the best course of action was? Although
he admitted that he hardly knew the patient, the surgeon insisted that his
patients—this woman included—would neither comprehend nor tolerate
knowledge of the uncertainties inherent in choosing treatment. In his view,
patients want the illusion of certainty, and this patient got it.

In what follows, I invite you to have a closer look at the tangled web of
motives from which the illusion of certainty is fabricated. We will take a look at
the physician-patient relationship from the inside, from the point of view of
physicians who discuss the pros and cons of the illusion of certainty.

Physicians on Certainty and Responsibility

In 2000, 1 attended a meeting of 60 physicians, including representatives of
physicians’ organizations and health insurance companies. All of them were
interested in evidence-based medicine, in which physician and patient base
medical decisions on the available evidence rather than on mere conviction,
preference, or habit. These people came from several countries in Europe and
the United States to a scenic vacation spot to spend two days together. The topic
of the meeting was how to improve risk communication, physician-patient
interaction, and public knowledge about medical screening. The atmosphere was
casual. The organizer’s warm personality and the beautiful setting helped us to
develop a sense of trust and a common agenda. On the second day, an intense
discussion took place on physicians’ responsibility and patients’ illusory
certainty. Here is an exchange from the middle of this discussion:9

Dr. A: We doctors are the victims of the images we have of our patients: we
think the patient is not capable of informing himself.

Representative of the World Health Organization (WHO): In the U.S., the
average physician-patient contact is five minutes. Most of the
information is presented in a vocabulary that is unintelligible to the



patient. Patients tend to develop views of “fate” or “Inshallah” rather
than learning to practice informed consent. All is God’s will, or the
physician’s; why should they worry? The Institute of Medicine estimated
that some 44,000 to 98,000 patients are killed every year in U.S.
hospitals by preventable medical errors and misadventures. It’s as if one
lived in a culture where death is a desirable transition from one life to a
better one.

Dr. B: Isn’t that a bit much? That’s saying more people die from hospital
accidents than from motor vehicle accidents, or from AIDS.

WHO: It’s based on the records of hospitals in New York, Colorado, and
Utah. These errors were preventable, such as when a physician
prescribed an antibiotic to a patient with a history of documented
allergic reactions without consulting the medical records. The general
problem in medicine is that, unlike in aviation, there is no system for
reporting errors without punishing the individual doctor. Pilots
anonymously report “near misses” to a central database so that other
pilots can learn from them and improve air transport safety. Aviation has
focused on building safe systems since World War II, and U.S. airline
fatalities have decreased ever since. In 1998, there were no deaths in the
United States in commercial aviation. Health care has no such system.

Dr. A: Women go to screening to be sure that they do not have cancer. But
mammograms don’t deliver certainty; they miss some 10 percent of
cancers. And screening has both possible benefits and harms, of which
most women are not informed. They just don’t know.

Dr. B (after murmuring skeptically): Informed consent—that’s just a
politically correct tale. If I were to start explaining to patients the
benefits and harms of a potential treatment, they would hardly
comprehend it. And if I were, in addition, to tell them what we do not
know, they would get very nervous.



Dr. C: I agree. Sixty percent of patients, conservatively estimated, do not
have the intellectual capacity to make decisions about treatments
themselves.

Breast cancer specialist: Let’s talk about physicians, not patients. The major
source of continuing education for physicians is seminars run by
pharmaceutical firms. The best hotel in town, opulent dinners, partners
invited. When we offer seminars for continuing education, with a more
unbiased view of the matter, all my institute can afford is a dull lecture
room, and there is no money for drinks or even fast food. We can attract
few physicians. Concerning the intellectual capacities of patients, I have
decided to discuss with patients the pros and cons of hormone therapy—
such as less depression on the one side and higher risk, a factor of 1.4, of
breast cancer on the other. The problem is not that women have too low
an IQ to make their own decisions. They do make them if you provide
the information. My problem is that since my patients have started
making their own decisions, my colleagues send me fewer of their
patients.

Dr. A: When our organizer gave a talk at our institute, women left,
unnerved, in droves. Some went to natural healers, back to the promise
of certainty.

Dr. B: But how could I allow a patient to decide for herself? How can one
be a responsible physician and still allow the patient to make the
decision?

Professor O: Look, I have two sons; both attend school. In that school the
rule is if pupils want to go home because they feel sick, they are sent to a
school physician. This man routinely X-rays every child; that is, if a boy
complains that his hand hurts, his hand is X-rayed; if his chest hurts, his
chest is X-rayed. Just to be on the safe side. Typically, the physician
concludes that there is no fracture, only serious bruising. Some children
just want to cut class so they pretend to be in pain and are X-rayed. I
told my boys that they are not allowed to have these X rays, and that



they should tell the doctor that their dad is a physician. As a father, I
have the responsibility for my children, and I should not delegate this to
the next physician.

Dr. B: I think all this talk about informed consent—benefits and costs—
misses the point. The meeting between physician and patient is a ritual.
False positives have no place in this ritual.

Several physicians (agitated): That’s right, rituals. That’s what it is all about.

President of a medical association: Patients want to be reassured. They want
to be relieved of their anxiety, to be in the right hands, even if they do
not feel better than before. They want a label for their suffering. A
physician who takes anxiety away from the patient is a good doctor. One
has to do something; one cannot do nothing; the patient would be
disappointed or even angry. Most prescriptions have no proven effect,
but when the patient applies the ointment, the doctor, the patient, and
the pharmaceutical company are happy.

Radiologist: It is not money that drives physicians—it is salvation. The
physician as a hero. Heroism is self-deception and the greatest obstacle
towards progress.

President: If the doctor explains to the patient the risk in terms of “number
needed to treat,” then the placebo effect is gone. After all, “number
needed to treat” means how many people have to suffer treatment so
that just one can be saved. A patient visits a doctor to be cured, not to
learn how many have to be harmed so that one can be cured.

Dr. C: When it comes to health, rituals are unavoidable. From an economic
point of view, screening often does not pay; the tax dollars could be
spent on other things that are more beneficial. But for the physician-
patient relationship, it pays.



President: The areas where medicine has made real progress quickly
disappear from public attention. Everything concentrates on areas and
treatments of questionable value. There are too many doctors, too little
money, and false incentives—a situation that reminds one of rats
crowded together that do strange things. And there is the ideal of
infallibility. Patients want to believe in a doctor who never errs, and
doctors try to foster this illusion.

WHO: Uncertainty is a threat to practitioners. It’s hard to say “I don’t
know.”

This discussion reveals physicians’ complex motives, emotions, and beliefs
about the illusion of certainty, the existence of which none of the discussants
denied. Different physicians struggle with this conundrum in different ways.
Should a physician destroy patients’ illusions and reveal to them the
uncertainties involved in a treatment? Should a physician always say “I don’t
know” when she or he doesn’t know?

One group of physicians at this meeting was convinced that uncertainties
should not be fully disclosed. Some believed that most patients would not
understand the uncertainties in the first place, would become more confused
upon learning of them, and might even decide to go to another healer, one who
offers certainty. Others hinted at pragmatic constraints; it is hard to fully inform
patients about risks during an interaction that lasts an average of five minutes. In
these physicians’ view, the patient wants to be reassured, not informed; they see
this interaction as a ritual for generating the feeling that the patient is being
taken care of.

A second group of physicians, in contrast, felt strongly that authority and
emotional reassurance are not all that patients need and that many patients are
capable of dealing with uncertainty. The breast cancer specialist, for instance,
had little respect for his colleagues’ patronizing attitude toward the patient as an
intellectual inferior. He pointed out that there is ignorance on both sides of the
physician-patient relationship and that informed patients are not always
welcome in physicians’ offices. In his experience, informing patients meant
losing referrals.



The president made the challenging argument that neither reassurance nor
informed consent is the best choice in every situation. He used the placebo effect
to illustrate his point. The placebo effect is a well-known phenomenon in
medicine and psychotherapy in which a treatment tends to have at least some
positive effect if patients believe it is beneficial. One explanation for this effect is
that a patient’s belief mobilizes forces in the immune system that have been kept
in reserve, much as a distance runner can mobilize all his reserves the moment he
realizes that the finish line is near.10 The president called attention to the
phenomenon that the placebo effect might disappear as soon as the physician
explained to patients the actual risks inherent in the treatment, that is, as soon as
the physician assumed a role founded on reason rather than authority. If
illusions can sometimes cure, then there is a problem—the benefit of knowing is
not absolute; there is also the potential efficacy of faith.11

This discussion also highlights the possibility that physicians and patients can
have different or even opposing goals. The school physician routinely performs
X rays; his goal is to protect himself from possible accusations of overlooking a
fracture. However, Professor O’s goal is to protect his sons from being harmed
by the X rays. Each of the two alternatives—to X-ray or not—involves potential
benefits and costs for his boys, but these are not the same as those for the school
physician. The breast cancer expert informs patients about the pros and cons of
hormone therapy so that each woman can make her own decision, depending on
what is more important to her. For instance, a woman may prefer lowering her
chance of depression over reducing her chance of developing breast cancer, or
vice versa. The expert’s tutorial is in the women’s interest, but not necessarily in
that of his fellow physicians who definitely want women to receive hormone
therapy, not to reflect about it. The representative of WHO reported the
shocking number of patients killed every year in U.S. hospitals by preventable
errors, but safety systems such as in commercial aviation that would be in the
interest of patients have not been set up in hospitals. In aviation, safety is in the
immediate interest of the pilot; if the passengers die in a crash, the pilot will very
likely die too. The situation for the patient vis-à-vis the doctor is different.

Because costs and benefits typically differ for physicians and patients, it is
imperative that patients be informed and be in a position to choose their
treatment on this basis. Patients’ choices will not be, and should not always be,



the same as their physician’s, and a good doctor will reveal to the patient when
their interests diverge. The illusion of certainty—such as that treatments have
only benefits but not any harm; that there is one and only one best treatment;
that a diagnostic test is absolutely certain—is a mental obstacle toward making
up one’s own mind.

Kant’s Dream

In his essay “What Is Enlightenment?” the philosopher Immanuel Kant begins
thus:

Enlightenment is man’s emergence from his self-imposed nonage.
Nonage is the inability to use one’s own understanding without
another’s guidance. This nonage is self-imposed if its cause lies not in
lack of understanding but in indecision and lack of courage to use one’s
own mind without another’s guidance. Dare to know!12

These are lucid and lovely sentiments. The key term is “courage.” Courage is
necessary because using one’s own mind can bring not only feelings of liberation
and autonomy, but also punishment and pain. Kant himself had to experience
this. A few years after he wrote these lines, he was required by the government—
out of fear that his rational thinking would undermine the certainty of the
Christian doctrine—to cease writing and lecturing on religious subjects. In
general, overcoming nonage can mean detecting holes in stories, facts, and values
in which one has always believed. Questioning certainties often means
questioning social authority.

Learning to live with uncertainty is a daring task for individuals as well as
societies. Much of human history has been shaped by people who were
absolutely certain that their kin, race, or religion was the one most valued by
God or destiny, which made them believe they were entitled to get rid of
conflicting ideas along with the bodies polluted with them. Modern societies
have come a long way toward greater tolerance of uncertainty and diversity.
Nevertheless, we are still far from being the courageous and informed citizens



whom Kant envisaged—a goal that can be expressed in just two Latin words:
Sapere aude. Or in three English words: “Dare to know.”



Math is hard. Let’s go shopping!
Barbie1

3

INNUMERACY

At the beginning of the twentieth-century, the father of modern science fiction,
H. G. Wells, is reported to have predicted, “Statistical thinking will one day be
as necessary for efficient citizenship as the ability to read and write.”2 At the end
of the century, the mathematician John Allen Paulos investigated how far we
had—or, rather, hadn’t—come in this respect. In his best-selling book,
Innumeracy, Paulos related the story of a weather forecaster on American
television who reported that there was a 50 percent chance of rain on Saturday
and a 50 percent chance of rain on Sunday, from which he concluded that there
was a 100 percent chance of rain that weekend!

The inability to reason appropriately about uncertainties is by no means
strictly an American affliction. The word “percentage” has become one of the
most frequent nouns in the German media. In a survey, 1,000 Germans were
asked what “40 percent” means: (a) one-quarter, (b) 4 out of 10, or (c) every
40th person. About one-third of respondents did not choose the right answer.3
Political decision makers are, likewise, not immune to innumeracy. For example,
commenting on the dangers of drug abuse, a Bavarian minister of the interior
once argued that because most heroin addicts have used marijuana, most
marijuana users will become heroin addicts. Figure 3-1 shows why this
conclusion is mistaken. Most heroin addicts indeed have used marijuana, as the
dark section of the small circle shows. However, this does not mean that most



marijuana users are heroin addicts—the same dark section that covers most of
the heroin addicts covers only a small portion of the marijuana users. On the
basis of his mistaken conclusion, the minister of the interior asserted that
marijuana should therefore remain illegal. Whatever one’s views on the
legalization of marijuana, the minister’s conclusion was based on clouded
thinking.

In Western countries, most children learn to read and write, but even in
adulthood, many people do not know how to think with numbers. This is the
problem that Paulos and others have called innumeracy. I focus on the most
important form of innumeracy in everyday life, statistical innumeracy—that is,
the inability to reason about uncertainties and risk. Henceforth, when I use the
term “innumeracy,” I mean statistical innumeracy. How is the illusion of
certainty connected to innumeracy? Here is an overview.

• Illusion of certainty. Franklin’s law is a mind tool to overcome the
illusion of certainty, to help make the transition from certainty to
uncertainty. For instance, when Susan, the woman introduced in
Chapter 1, finally learned (the hard way) that laboratory errors occur
in HIV testing, she made the transition from certainty to uncertainty.



FIGURE 3-1. Marijuana users and heroin addicts. Most heroin addicts are
marijuana users (the dark part of the smaller circle). Can we conclude from this
that most marijuana users are heroin addicts?



• Ignorance of risk. This is an elementary form of innumeracy in which a
person does not know, not even roughly, how large a personally or
professionally relevant risk is. This differs from the illusion of certainty
in that the person is aware that there may be uncertainties, but does
not know how great these are. The major tool for overcoming the
ignorance of risk consists of various forms of information search (for
example, scientific literature). For instance, Chapter 7 gives details
about the various risks involved in HIV testing, including false
positives.

• Miscommunication of risk. In this form of innumeracy a person knows
the risks but does not know how to communicate these so that others
understand them. The mind tool for overcoming miscommunication is
representations that facilitate understanding. For instance, the Prozac
story in Chapter 1 illustrates the miscommunication of risk—the
failure to communicate risk in an understandable way—and how to
overcome it.

• Clouded thinking. In this form of innumeracy a person knows the risks
but not how to draw conclusions or inferences from them. For
instance, physicians often know the error rates of a clinical test and the
base rate of a disease, but not how to infer from this information the
chances that a patient with a positive test actually has the disease
(Chapter 1). Representations such as natural frequencies are a mind
tool that facilitate the drawing of conclusions (Chapter 4).

Innumeracy—ignorance of risk, miscommunication of risk, and clouded
thinking—becomes a problem as soon as one is driven out of the promised land
of certainty into the world in which Franklin’s law reigns. Innumeracy, I
emphasize, is not simply a problem within an individual mind; ignorance and
miscommunication of specific risks can, for example, be produced and
maintained by various groups within society to their own benefit.

Risk



The term “risk” has several senses. The one I intend has to do with uncertainty,
but not necessarily regarding a dangerous event, such as a plane crash, because
one can also be uncertain about a positive outcome, such as a successful landing.
Another reason not to use the term to refer exclusively to negative outcomes is
that there are situations in which a negative outcome from one perspective is a
positive outcome from another. For instance, losing a month’s salary in a
gambling casino is a negative outcome for the gambler but a positive one for the
casino.

In this book, I call an uncertainty a risk when it can be expressed as a number
such as a probability or frequency on the basis of empirical data. The number
need not be fixed—it may be updated in light of experience. In situations in
which a lack of empirical evidence makes it impossible or undesirable to assign
numbers to the possible alternative outcomes, I use the term “uncertainty”
instead of “risk.”4 Uncertainty does not imply chaos; for instance, when a cure
for cancer will be found is uncertain, but this does not have anything to do with
chaos.

When does an uncertainty qualify as a risk? The answer depends on one’s
interpretation of probability, of which there are three major versions: degree of
belief, propensity, and frequency. Degrees of belief are sometimes called subjective
probabilities. Of the three interpretations of probability, the subjective
interpretation is most liberal about expressing uncertainties as quantitative
probabilities, that is, risks. Subjective probabilities can be assigned even to
unique or novel events.

Degrees of Belief. Consider the surgeon Christiaan Barnard’s account of
his first encounter with Louis Washkansky, who was then soon to
become the first man to have a heart transplant. Washkansky was
propped up in bed, reading a book. Barnard introduced himself and
explained that he would exchange Washkansky’s heart for a healthy one
and that “there’s a chance you can get back to normal life again.”5

Washkansky did not ask how great the chance was, how long he would
survive, or what the transplant operation involved. He just said he was
ready to go ahead and turned back to his book, a Western. Barnard was
deeply disturbed that Washkansky was more interested in pulp fiction



than in this great moment in medical history and the risk it posed to
him. But Washkansky’s wife, Ann, did ask Barnard, “What chance do
you give him?” Without hesitation or further explanation, he answered,
“An 80 percent chance.”6 Eighteen days after the operation, Washkansky
died. Barnard’s “80 percent” reflected a degree of belief, or subjective
probability. In the subjective view, uncertainties can always be
transformed into risks, even in novel situations, as long as they satisfy the
laws of probability—such as that the probabilities of an exhaustive and
exclusive set of alternatives such as survival and death add up to 1. Thus,
according to the subjective interpretation, Barnard’s statement that
Washkansky had an 80 percent chance of survival is meaningful
provided that the surgeon also held that there was a 20 percent chance of
his patient not surviving. In this interpretation, Barnard’s “80 percent”
would qualify as quantified uncertainty, that is, as risk.

Propensities. The possibility of translating uncertainties into risks is much
more restricted in the propensity view. Propensities are properties of an
object, such as the physical symmetry of a die. If a die is constructed to
be perfectly symmetrical, then the probability of rolling a six is 1 in 6.
The reference to a physical design, mechanism, or trait that determines
the risk of an event is the essence of the propensity interpretation of
probability. Note how propensity differs from the subjective
interpretation: It is not sufficient that someone’s subjective probabilities
about the outcomes of a die roll are coherent, that is, that they satisfy the
laws of probabilty. What matters is the die’s design. If the design is not
known, there are no probabilities. According to this view, Barnard’s
estimate of 80 percent would not qualify as a probability, or risk, because
not enough is known about the heart operation for its propensities to be
assessed.

Frequencies. For a frequentist, a probability must be based on a large
number of observations and is defined as the relative frequency of an
event in a specified reference class, such as the relative frequency of lung
cancer in white American males who smoked cigarettes for at least 20



years. No reference class, no probability. Frequentists would not be
interested in what someone believes about the outcome of rolling a die,
nor would they need to study the design of the die to determine the
probability of rolling a six. They would determine the probability
empirically by rolling the die many times and computing the relative
frequency with which the outcome was a six. Therefore, frequentists
would declare Barnard’s estimate of 80 percent meaningless (because
there were no comparable transplants at the time he made the estimate),
and hard-line frequentists would reject altogether the notion of assigning
probabilities to a single event such as the survival of a specific man.
Clearly, frequentists are cautious about moving from uncertainties to
risks. For them, risks refer only to situations for which a large body of
empirical data exists. The courts, for instance, tend to adhere to the
frequentist position, admitting statements about risks as evidence only
when they are based on empirical frequencies rather than opinion.

These different interpretations of probability can produce drastically different
estimates of risk. A few years ago, I enjoyed a guided tour through Daimler-Benz
Aerospace (DASA), which produces the Ariane, a rocket that carries satellites
into orbit. Standing with my guide in front of a large poster that listed all 94
rockets launched so far (Ariane models 4 and 5), I asked him what the risk of an
accident was. He replied that the security factor is around 99.6 percent. That
was surprisingly high because on the poster I saw eight stars, which meant eight
accidents. To be sure, several of the stars were next to early launchings, but
launch numbers 63, 70, and 88 were also accidents. I asked my guide how eight
accidents could translate into 99.6 percent certainty. He replied that DASA did
not count the number of accidents, but rather computed the security factor from
the design features of the individual parts of the rocket. He added that counting
accidents would have included human errors, and pointed out that behind one
of these stars, for instance, was a misunderstanding between one worker who
had not installed a screw, and the worker on the next shift who had assumed
that his predecessor had done so. The reported risk of an Ariane accident was,
hence, based on a propensity, not a frequency, interpretation.



In this book, I will focus on risks that can be quantified on the basis of
frequency data. This is not to say that frequencies are the whole story in
estimating risks, but—when they are available—they provide a good starting
point.

Ignorance of Risk

Who is informed about risks? The answer depends on one’s culture and the
event or hazard in question. For instance, the weather forecast might say that the
chances of rain tomorrow are 30 percent, and we at least think we understand
what that means. Although it seems natural to express the uncertainty of weather
in terms of probabilities, this is a recent cultural phenomenon. Before 1965, the
U.S. National Weather Service expressed its forecasts in all-or-none terms such
as “it will not rain tomorrow,” perhaps preceded by “it is unlikely that. . . .” In
Germany, probabilities began to be reported in weather forecasts only around
1990; in France, weather forecasts are still largely probability-free. Some cultures
have an insatiable appetite for numbers—batting averages, SAT scores, and
market indices— while others are more reluctant to express uncertainties in
numerical form. In general, democracies tend to have a greater desire for
numbers and a greater motivation to make risks transparent than most other
social systems.

PROMOTING PUBLIC IGNORANCE

However, democracies also host groups that have little interest in the public’s
knowing about certain risks. For instance, in the 1950s, the American tobacco
industry began a massive campaign to convince the public that cigarette smoking
was safe. This was around the time when the American scientific community
began to reach a consensus that cigarettes are a major cause of illness, and the
industry invested hundreds of millions of dollars in the creation of an illusion of
certainty.7 After the illusion crumbled following a report by the U.S. Surgeon
General in 1964, the tobacco industry launched a second campaign of
obfuscation to engender “doubt” about the extent of the actual risks involved.
For decades, the scientific evidence concerning the hazards of smoking was rarely
if ever discussed in the leading national magazines in which the tobacco industry



advertised. Large segments of the public got the impression that the question of
the effects of smoking on health was still open. As early as the mid-1950s,
however, the American Cancer Society had evidence that people who smoked
two packs of cigarettes a day were dying about seven years earlier, on average,
than nonsmokers. Most experts today agree that tobacco is the cause of 80 to 90
percent of all cases of lung cancer. Tobacco kills upward of 400,000 Americans
every year, primarily through lung cancer and heart disease; in Germany, the
number is estimated to be 75,000. In China, the number of people who die
from lung cancer will soon be close to 1 million a year. The case of cigarette
smoking illustrates how public awareness of a health hazard can be diluted by a
double defense line. First, the illusion of certainty is manufactured: Smoking is
safe—period. When this illusion breaks down, uncertainty is acknowledged, but
doubt is spread as to whether the actual risks are known or not.

BEYOND IGNORANCE: IT’S OFTEN ONLY A SIMPLE CALCULATION

Not all ignorance is driven by trade lobbies or other parties that have an interest
in keeping people ignorant of risks. There are also situations in which the facts
are plainly in view and people have only to make a small mental effort to put
them together.

What is the chance of one’s dying in a motor vehicle accident over the course
of a lifetime? It does not take much time to figure this out. In an average year,
40,000 to 45,000 people die on the roads in the United States.8 Given that the
country has about 280 million inhabitants, this means that about 1 in 7,000 of
them is killed on the road each year. Assuming that this figure remains fairly
stable over time, we can also figure out the chance of dying on the road during
one’s life. Given a life span of 75 years, the result is roughly 1 in 90. That is, 1
out of every 90 Americans will lose his or her life in a motor vehicle accident by
the age of 75. Most of them die in passenger car accidents.

Are Americans in greater danger of being killed on the road than people in
Germany or in Great Britain? In an average year, about 8,000 people die on the
roads in Germany. Given its population of about 80 million, one can calculate
that about 1 in 10,000 is killed in a motor vehicle accident. Over a life span of
75 years, this is equivalent to about 1 in every 130 people. Again, the majority of
these people are killed while driving or riding in a passenger car.9 Note that the



higher fatality rate of Americans does not imply that they drive more
dangerously than Germans; they just drive more, in part because of the lack of
public transportation. In Great Britain (including Northern Ireland), the roads
are safer than in the United States and Germany. There, again over a life span of
75 years, “only” about 1 in 220 people is killed in a motor vehicle accident.

American roads are, however, definitely not the most dangerous in the
Western world. There are two European countries that stand out from the
others, Portugal and Greece, where about 1 in 4,000 citizens is killed on the
road every year. This means that over a life span of 75 years, about 1 out of every
50 people in Portugal and Greece is killed on the roads.10

All that is needed to make these estimates is the number of people who die of
the cause in question each year and the population of the country. Both can be
looked up easily for any country or state. These estimates are only rough because
they do not take account of the possibility that driving behavior or safety
technology might drastically change over time. I do not present the striking risks
of driving to make every reader switch to public transportation. Many people
have heard arguments of the sort “planes are safer than cars,” yet these
arguments do not change their behavior—because of habit, fear of flying, or love
of driving. However, knowing the actual risk allows individuals to make up their
own minds, to weigh the risk against the individual benefits of driving, and to
arrive at an informed decision. For instance, the terrorist attack on September
11, 2001, cost the lives of some 3,000 people. The subsequent decision of
millions to drive rather than fly may have cost the lives of many more.

PUBLIC NUMBERS

Public ignorance of risk has a historical basis. Unlike the stories, mythologies,
and gossip that have been shaping our minds since the beginning of human
culture, public statistics are a recent cultural achievement. During much of the
eighteenth and nineteenth centuries, statistical information was a state secret
known only by an elite and withheld from the public. The power of statistical
information, such as population figures, has been recognized among political
leaders for centuries. Napoleon’s appetite for facts from his bureau de statistique
was legendary.11 And he always wanted the numbers immediately. At the
Napoleonic court, the saying was, If you want something from Napoleon, give



him statistics. Willingness to make economic and demographic figures public is
a recent phenomenon. It was not until around 1830 that statistics, or at least
some of them, became public. Since then, an “avalanche of printed numbers,” to
borrow the philosopher Ian Hacking’s phrase, has turned modern life into a vast
ocean of information conveyed by media such as television, newspapers, and the
Internet. In this sense, one can say that, although uncertainties are old, risks are
relatively new.

As already mentioned, the widening dissemination of statistical information
to the public during the nineteenth and twentieth centuries has been linked to
the rise of democracies in the Western world.12 A democracy makes lots of
information available to everyone, but its citizens often have very selective
interests. It is more likely that a young American male knows baseball statistics
than that his chance of dying on a motorcycle trip is about 15 times higher than
his chance of dying on a car trip of the same distance.13 Today, numbers are
public, but the public is not generally numerate.

From Miscommunication to Risk Communication

The Prozac story in Chapter 1 illustrates the miscommunication of risk— the
failure to communicate risk in an understandable way. Some forms of
communication enhance understanding; others don’t. Miscommunication of
risk is often the rule rather than the exception and can be difficult to detect, as
the ambiguous probabilities in the Prozac story illustrate. Statements about the
probabilities of single events—such as “you have a 30 to 50 percent chance of
developing a sexual problem”—are fertile ground for miscommunication. One
mind tool that can overcome this problem is specifying a reference class, which
occurs automatically when one uses statements about frequencies rather than
single events.

There are three major forms of risk communication that invite
miscommunication: the use of single-event probabilities, relative risks, and
conditional probabilities. As it happens, these seem to be the most frequently used
forms of risk communication today.

SINGLE-EVENT PROBABILITIES



To communicate risk in the form of a single-event probability means to make a
statement of this type: “The probability that an event will happen is X percent.”
There are two reasons why such a statement can be confusing. First, as
illustrated by the Prozac case, a probability of a single event, by definition, does
not state what the reference class is. Second, if the event is unique, that is, there
are no comparable events known, then the probability estimate itself is likely to
be nothing but a wild guess that may suggest precision where, in fact, only
uncertainty reigns. Let me give you some examples.

The statement “there is a 30 percent chance that it will rain tomorrow” is a
probability statement about a singular event—it will either rain or not rain
tomorrow. In contrast, the statement that it will rain on 10 days in May is a
frequency statement. The latter statement can be true or false; a single-event
probability by itself, however, can never be proven wrong (unless the probability
is zero or one). Single-event probabilities can lead to miscommunication because
people tend to fill in different reference classes. This happens even with such
familiar statements as “there is a 30 percent chance that it will rain tomorrow.”
Some think this statement means that it will rain 30 percent of the time, others
that it will rain in 30 percent of the area, and a third group believes it will rain
on 30 percent of the days that are like tomorrow. These three interpretations are
about equally frequent.14 What weather forecasters actually have in mind is the
last interpretation. However, people should not be blamed for different
interpretations; the statement “there is a 30 percent chance that it will rain
tomorrow” is ambiguous.

Dr. Barnard’s 80 percent estimate illustrates specific problems with
statements about unique events. Ann Washkansky may have gotten the
impression that this high probability offered hope, but what it meant was
ambiguous. Barnard did not say to what the number referred: the probability of
Washkansky’s surviving the operation, surviving the following day or year, or
something else. Furthermore, the probability referred to the first heart transplant
in history; there were no comparable cases on which Barnard could have based
his estimate. Barnard’s answer may have reassured, but did not inform,
Washkansky’s wife.

RELATIVE RISKS



What is the benefit of a cholesterol-lowering drug on the risk of coronary heart
disease? In 1995, the results of the West of Scotland Coronary Prevention Study
were presented in a press release: “People with high cholesterol can rapidly
reduce . . . their risk of death by 22 per cent by taking a widely prescribed drug
called pravastatin sodium. This is the conclusion of a landmark study presented
today at the annual meeting of the American Heart Association.”15 The benefit
of this cholesterol-reducing drug, just like that of most medical treatment, was
reported by the press in the form of a relative risk reduction. What does “22
percent” mean? Studies indicate that a majority of people think that out of
1,000 people with high cholesterol, 220 of these people can be prevented from
becoming heart attack victims.16 This, however, is not true. Table 3-1 shows the
actual result of the study: Out of 1,000 people who took pravastatin over a
period of 5 years, 32 died, whereas of 1,000 people who did not take pravastatin
but rather a placebo, 41 died. The following three presentations of the raw result
—a total mortality reduction from 41 to 32 in every 1,000 people—are all
correct, but they suggest different amounts of benefit and can evoke different
emotional reactions in ordinary citizens.

TABLE 3-1 Reduction in total mortality for people who take a cholesterol-
reducing drug (pravastatin). The people in the study had high-risk levels of
cholesterol and participated in treatment for 5 years. (From Skolbekken,
1998.)

Treatment Deaths (per 1,000 people with high cholesterol)

Pravastatin (cholesterol-reducing drug) 32

Placebo 41

Three Ways to Present the Benefit

Absolute risk reduction: The absolute risk reduction is the proportion of
patents who die without treatment (placebo) minus those who die with
treatment. Pravastatin reduces the number of people who die from 41 to
32 in 1,000. That is, the absolute risk reduction is 9 in 1,000, which is
0.9 percent.



Relative risk reduction: The relative risk reduction is the absolute risk
reduction divided by the proportion of patients who die without
treatment. For the present data, the relative risk reduction is 9 divided
by 41, which is 22 percent. Thus, pravastatin reduces the risk of dying
by 22 percent.

Number needed to treat: The number of people who must participate in
the treatment to save one life is the number needed to treat (NNT). This
number can be easily derived from the absolute risk reduction. The
number of people who needed to be treated to save one life is 111,
because 9 in 1,000 deaths (which is about 1 in 111) are prevented by the
drug.

The relative risk reduction looks more impressive than the absolute risk
reduction. Relative risks are larger numbers than absolute risks and therefore
suggest higher benefits than really exist. Absolute risks are a mind tool that
makes the actual benefits more understandable. Another mind tool serving as an
alternative to relative risks is presenting benefits in terms of the number needed
to treat to save one life. With this mind tool, one can see right away that out of
111 people who swallow the tablets for 5 years, 1 had the benefit, whereas the
other 110 did not. The situation here is quite different from that of penicillin
and other antibiotics whose positive effects when first introduced were dramatic.

CONDITIONAL PROBABILITIES

One can communicate the chances that a test will actually detect a disease in
various ways (see Chapter 1). The most frequent way is in the form of a
conditional probability: If a woman has breast cancer, the probability that she will
test positive on a screening mammogram is 90 percent. Many mortals, physicians
included, confuse that statement with this one: If a woman tests positive on a
screening mammogram, the probability that she has breast cancer is 90 percent. That
is, the conditional probability that an event A occurs given event B is confused
with the conditional probability that an event B occurs given event A. This is
not the only confusion. Others mistake the probability of A given B with the



probability of A and B. One can reduce this confusion by replacing conditional
probabilities with natural frequencies, as explained in the next chapter.

A RIGHT TO CLEAR INFORMATION

Despite the potential confusion created by single-event probabilities, relative risk
reduction, and conditional probabilities, these forms of risk communication are
standard. For instance, relative risks are the prevalent way in which the press and
drug company advertising report the benefits of new treatments. There is a
consensus today that the public has a right to information. But there is not yet a
consensus that the public also has a right to get this information in a way that is
clear and not misleading. I strongly urge medical, legal, and other associations to
subscribe to an ethical policy that demands reporting risks in clear terms such as
absolute risks and natural frequencies, rather than in ways that are more likely to
confuse people. In this book, I introduce various mind tools for communicating
risk in ways people can understand.

From Clouded Thinking to Insight

Ignorance of relevant risks and miscommunication of those risks are two aspects of
innumeracy. A third aspect of innumeracy concerns the problem of drawing
incorrect inferences from statistics. This third type of innumeracy occurs when
inferences go wrong because they are clouded by certain risk representations.
Such clouded thinking becomes possible only once the risks have been
communicated. The mammography example in Chapter 1 illustrates a tool for
achieving mental clarity, that is, a device for translating conditional probabilities
—which impede not only risk communication but also correct inference from
risks—into natural frequencies.

Why is it so difficult for even highly educated people to make inferences on
the basis of probabilities? One reason might be that the theory of probability,
which is concerned with drawing inferences from uncertain or incomplete
information, is a relatively recent development in human history. Ian Hacking,
who is fond of precise numbers, has dated this discovery to 1654, when the
mathematicians Blaise Pascal and Pierre Fermat exchanged a now-famous series
of letters about gambling. The fact that the notion of mathematical probability



developed so late—later than most key philosophical concepts—has been called
the “scandal of philosophy.”17 The difficulty that even great thinkers had in
understanding risk before then is best illustrated by Girolamo Cardano, a
sixteenth-century Italian physician and mathematician and the author of one of
the first treatises on probability. Cardano, a notorious gambler, asserted that
each face of a die will occur exactly once in any given six rolls. This assertion,
however, flew in the face of his lifelong experience at the gambling tables. He
resolved the conflict with an appeal to the intervention of luck (he was a great
believer in his own). Cardano’s intuition recalls that of the little girl who, as the
story goes, was scheduled to receive an injection from her pediatrician. Upset
that her father signed a consent form stating that he understood that 1 out of
10,000 children experience a serious allergic reaction, she insisted on speaking to
the doctor. “I want to know,” the little girl asked, “what number you’re on.”

The remainder of this book presents mind tools for overcoming innumeracy
that are easy to learn, apply, and remember. I focus on three kinds of tools:
Franklin’s law for overcoming the illusion of certainty, devices for
communicating risk intelligibly, and the use of natural frequencies for turning
clouded thinking into insight. Overcoming innumeracy is like completing a
three-step program to statistical literacy. The first step is to defeat the illusion of
certainty. The second step is to learn about the actual risks of relevant events and
actions. The third step is to communicate the risks in an understandable way
and to draw inferences without falling prey to clouded thinking. The general
point is this: Innumeracy does not simply reside in our minds but in the
representations of risk that we choose.



Solving a problem simply means representing it so as to make the
solution transparent.

Herbert A. Simon, The Sciences of the Artificial

4

INSIGHT

After leaving a restaurant in a charming town in Tuscany one night, I was
looking for my yellow-green Renault in the parking lot. It wasn’t there. Instead,
I saw a blue Renault—the same model but the wrong color. I can still feel my
fingers hesitating to put the key into the lock, but the door of the blue car
opened. I drove the car home. When I looked out the window the next
morning, I saw a yellow-green Renault standing in bright sunlight outside. What
had happened? My color constancy system had failed in the parking lot’s
artificial light but was functioning correctly under the next day’s sun. Color
constancy, an impressive adaptation of the human perceptual system, allows us
to see an object as having the same color under diverse conditions of natural
illumination—for instance, in the bluish light of day as well as in the reddish
light of sunset. Under conditions of artificial illumination, such as that produced
by sodium or mercury vapor lamps, color constancy can break down.

Human color vision is adapted to the spectral properties of natural sunlight.
More generally, our perceptual systems have been shaped by the environment in
which our ancestors evolved, often referred to as the “environment of
evolutionary adaptedness.”1 These adaptations can be exquisite, though not
foolproof. The human visual system is far better than any camera at registering
constant colors with changing illumination. Similarly, human morphology and



physiology and the human nervous and immune systems all reflect ingenious
adaptations. The tubular structure of bones, for instance, maximizes strength
and flexibility while minimizing weight; pound for pound, bones are stronger
than solid steel bars. The best manmade heart valves cannot match the way
natural heart valves open and close. Like color constancy, however, these
adaptations may break down— in the case of bones, even in the literal sense—
when stable properties of the environment to which they are adapted change.2

We can understand innumeracy by using the analogy of failures of color
constancy. Just as certain types of illumination can enhance or interfere with
color constancy, certain numerical representations can help or hinder sound
statistical thinking. In my view, the problem of innumeracy is not essentially
“inside” our minds as some have argued, allegedly because the innate
architecture of our minds has not evolved to deal with uncertainties. Instead, I
suggest that innumeracy can be traced to external representations of
uncertainties that do not match our mind’s design—just as the breakdown of
color constancy can be traced to artificial illumination. This argument applies to
the two kinds of innumeracy that involve numbers: miscommunication of risks
and clouded thinking. The treatment for these ills is to restore the external
representation of uncertainties to a form that the human mind is adapted to.

A Physician’s Thinking

Dr. Konrad Standing3 is chief of a department in a university teaching hospital,
a prominent figure in research and teaching with more than three decades of
professional experience. A few years ago, I asked him whether the physicians at
his institution would participate in a study of diagnostic intuitions being
conducted by my colleagues and me at the Max Planck Institute for Human
Development. Seeming quite interested in the subject, he agreed to encourage
his colleagues to participate. To set an example, he volunteered himself. The first
diagnostic task he worked on concerned the routine breast cancer screening of
women, as described briefly in Chapter 1:

To facilitate early detection of breast cancer, starting at a particular age,
women are encouraged to participate at regular intervals in routine



screening, even if they have no obvious symptoms. Imagine that you
conduct such breast cancer screening using mammography in a
particular region of the country. The following information is available
about asymptomatic women aged 40 to 50 in such a region who
participate in mammography screening:

The probability that one of these women has breast cancer is 0.8 percent. If a
woman has breast cancer, the probability is 90 percent that she will have a
positive mammogram. If a woman does not have breast cancer, the
probability is 7 percent that she will still have a positive mammogram.
Imagine a woman who has a positive mammogram. What is the probability
that she actually has breast cancer?4

Department chiefs are not used to having their reasoning tested. Dr.
Standing was visibly nervous while trying to figure out what he would tell the
woman. After mulling the numbers over, he finally estimated the woman’s
probability of having breast cancer, given that she has a positive mammogram,
to be 90 percent. Nervously, he added, “Oh, what nonsense. I can’t do this. You
should test my daughter; she is studying medicine.” He knew that his estimate
was wrong, but he did not know how to reason better. Despite the fact that he
had spent 10 minutes wringing his mind for an answer, he could not figure out
how to draw a sound inference from the probabilities.

If your mind, like Dr. Standing’s, is clouded by this problem, don’t despair.
This feeling is at the crux of the point I would like to demonstrate. Innumeracy?
Yes, arising from clouded thinking. Treatment? The same as for failures of color
constancy.

When color constancy fails under sodium vapor lamps, the solution lies
outside of the mind, not inside. One needs to restore the type of input that the
brain has encountered during most of its evolution and to which the color
constancy mechanism is therefore adapted: sunlight. In this analogy,
probabilities are like sodium vapor lamps. What then corresponds to natural
light in the mammography problem? I propose that the answer is natural
frequencies, that is, simple counts of events.



Let us try to turn Dr. Standing’s innumeracy into insight by communicating
in natural frequencies rather than probabilities:

Eight out of every 1,000 women have breast cancer. Of these 8 women with
breast cancer, 7 will have a positive mammogram. Of the remaining 992
women who don’t have breast cancer, some 70 will still have a positive
mammogram. Imagine a sample of women who have positive mammograms
in screening. How many of these women actually have breast cancer?

The information is the same as before (with rounding) and it leads to the
same answer. But now it is much easier to see what that answer is. Only 7 of the
77 women who test positive (70 + 7) actually have breast cancer, which is 1 in
11, or 9 percent—much lower than the estimate of 90 percent that Dr. Standing
had given. When he received the information in natural frequencies, his
innumeracy turned into insight. With frequencies, he “saw” the answer,
remarking with relief, “But that’s so easy” and even “That was fun.” His
daughter’s help was no longer needed.

How to Turn Physicians’ Innumeracy into Insight

Do natural frequencies help to clear physicians’ minds in general, as they did for
Dr. Standing? Ulrich Hoffrage and I tested 48 physicians with an average of 14
years of professional experience from two major German cities. About two-thirds
of these physicians worked in private, public, or university hospitals, and the rest
in private practice. They included radiologists, gynecologists, internists, and
dermatologists, among others. Their professional status ranged from being fresh
out of medical school to heading their respective medical departments. As with
Dr. Standing, we asked each physician to estimate the chances of breast cancer
in a woman aged 40 to 50 given a positive mammogram in a routine screening.
Half of the physicians received the relevant information in probabilities; the
other half received the same information in natural frequencies.5

With probabilities, there was alarmingly little consensus, as the left side of
Figure 4-1 shows. The estimates ranged between 1 percent and 90 percent. Like
Dr. Standing, one-third of the physicians (8 out of 24) concluded that the



probability of breast cancer given a positive mammogram is 90 percent. Another
third of physicians estimated the chances to be between 50 percent and 80
percent. Another 8 thought the chance was 10 percent or less, and half of these
estimated the probability as 1 percent, which corresponds to the base rate. The
median estimate was 70 percent. If you were a patient, you would be justly
alarmed by this diversity of medical opinion. Only 2 of the physicians reasoned
correctly, giving estimates of about 8 percent. Another 2 estimated the chances
to be near this value, but for the wrong reasons. For instance, 1 physician
confused the false positive rate with the probability that the patient has breast
cancer given that she has a positive mammogram.



FIGURE 4-1. Estimated chances of breast cancer given a positive screening
mammogram. Of 48 physicians, half received the relevant information in
conditional probabilities, the other in natural frequencies. Each point represents
one physician. The ordinate shows their estimates of the probability or
frequency of breast cancer after a positive test. With probabilities, the physicians
were highly inconsistent; with natural frequencies, this inconsistency largely
disappeared—except for five “hopeless” cases—and the physicians’ estimates
clustered around the correct one. (From Gigerenzer, 1996a; Hoffrage and
Gigerenzer, 1998.)



When the information was presented in probabilities, the majority of
physicians in our study grossly overestimated the risk of breast cancer given a
positive mammogram, just as Dr. Standing did. They did so despite having
spent considerable time thinking about the problem. It was evident that they
didn’t take the test lightly—many of them were nervous and tense about being
tested, a situation that they rarely, if ever, encounter.

How did physicians manage with natural frequencies? The right side of
Figure 4-1 shows that the disquieting variability in responses largely disappeared.
The majority of the physicians in this group responded with the correct answer,
or close to it. Only five of the physicians who received the information in
natural frequencies concluded that the chance of breast cancer given a positive
mammogram was above 50 percent. Simply stating the information in natural
frequencies turned much, though not all, of the physicians’ innumeracy into
insight.

Is clouded thinking specific to the German physicians in our study? It seems
not. David Eddy, former consultant to the Clinton administration on health
care reform, asked a number of American physicians to estimate the probability
that a woman has breast cancer given that she has a positive mammogram,
providing essentially the same information as we did.6 Eddy gave all the
physicians the relevant information in probabilities, not in natural frequencies.
Ninety-five out of 100 of them estimated the probability of breast cancer to be
about 75 percent, about 10 times more than the realistic estimate.

I am grateful to the physicians who volunteered to participate in our study.
They enabled us to demonstrate, for the first time, that frequency
representations can help experienced physicians make better diagnostic
inferences. The implication of this finding is not to blame physicians’ (or
patients’) inability to reason about probabilities. Rather, the lesson is to
represent risks in medical textbooks and in physician-patient interactions in a
way that comes naturally to the human mind. Natural frequencies are a simple,
inexpensive, and effective method of improving diagnostic insight.

Insight from Outside



Why does representing information in terms of natural frequencies rather than
probabilities or percentages foster insight? For two reasons. First, computational
simplicity: The representation does part of the computation. And second,
evolutionary and developmental primacy: Our minds are adapted to natural
frequencies.

THE REPRESENTATION DOES PART OF THE COMPUTATION

Figure 4-2 illustrates the difference between natural frequencies and
probabilities. On the left side is a tree with natural frequencies, which represents
how a person would encounter statistical information through direct experience.
On the right side is the same information in probabilities, the format in which
most information is represented for medical students in textbooks. The numbers
are the same as those in the breast cancer problem that Dr. Standing struggled to
solve. The thought bubbles show the calculations needed to answer the question
we asked in each case.



FIGURE 4-2. How natural frequencies facilitate Bayesian computations.
The happy person received the relevant information in natural frequencies and
has an easy time estimating the chances of disease given a positive test (or
symptom). The reason is that she only has to pay attention to two numbers, the
number of patients with a positive test and the disease (a = 7) and the number of
patients with a positive test and no disease (b = 70). The person with the
unhappy face has received the same information in probabilities and has a hard
time making this estimation. The structure of his equation is exactly the same as
the one the happy person used— a/(a + b)—but the natural frequencies a and b
have been transformed into conditional probabilities, making the formula for
probabilities much more complex.



Both equations are versions of Bayes’s rule,7 which is named after the English
dissenting minister who is thought to have discovered it, Reverend Thomas
Bayes (1702(?)-1761).8 You can see that calculating the probability of a disease
given a positive test is easier when the information is in natural frequencies:

Bayes’s rule for natural frequencies

In Figure 4-2, a is the number of people who test positive and have the disease
(7) and b is the number of people who test positive and do not have the disease
(70).9 With probabilities, in contrast, the calculation is more demanding:

Bayes’s rule for conditional probabilities

This rule is the same as the simpler one above; both show the proportion of
correct positives (numerator) among all positives (denominator). The difference
in this version of the rule is that each of the natural frequencies has been
replaced by the product of two probabilities. Table 4-1 explains these
probabilities.

In general, a test has four possible outcomes. When a person has a disease,
the test can be either positive (a true positive) or negative (a false negative). The
probability p(positive|disease) is the sensitivity of the test. The sensitivity of
mammography is the proportion of women who test positive among those who
have breast cancer. It usually ranges between 80 percent and 95 percent, with
lower values among younger women. The rates of these two outcomes—the
sensitivity and the false negative rate—add up to 1.

TABLE 4-1. Test outcomes. A test can have four possible outcomes: (a) a positive
result given disease (or some other unknown condition), (b) a positive result
given no disease, (c) a negative result given disease, and (d) a negative result
given no disease. The rates with which these four results occur are called (a)
sensitivity (or true positive rate), (b) false positive rate, (c) false negative rate,



and (d) specificity (true negative rate). The two shaded areas indicate the two
possible errors. The frequency of true positives and false positives are a and
b, respectively, in Bayes’s rule.

Test Result
Disease

Yes No

Positive (a) sensitivity (b) false positive rate

Negative (c) false negative rate (d) specificity

When a person does not have the disease, the test can be either positive (a
false positive) or negative (a true negative). The rates of these two outcomes, the
false positive rate and the specificity, also add up to 1. The probability
p(positive|no disease) is the false positive rate of a test. The false positive rate of
mammography is the proportion of women who test positive among those who
do not have breast cancer. It ranges between about 5 and 10 percent, with the
higher values among younger women.

The two of the four possible outcomes that are errors are shaded in Table 4-
1. The rates of the two errors are dependent on one another: Decreasing the false
positive rate of a test increases the false negative rate, and vice versa. The four
probabilities in Table 4-1 are called conditional probabilities, because they express
the probability of some event (for example, a positive test) conditional on the
occurrence of some other event (for example, disease)—that is, given that this
other event has occurred. The non-conditional probability p(disease) is the base
rate of having the disease. That is, the base rate is the proportion of individuals
with a certain disease in a particular population at a specific point in time. In
contrast to the base rates, conditional probabilities are notoriously confusing.

We can now understand exactly why this is the case. When natural
frequencies are transformed into conditional probabilities, the base rate
information is taken out (this is called normalization). The benefit of this
normalization is that the resulting values fall within the uniform range of 0 and
1. The cost, however, is that when drawing inferences from probabilities (as
opposed to natural frequencies), one has to put the base rates back in by
multiplying the conditional probabilities by their respective base rates.10



To summarize: Natural frequencies facilitate inferences made on the basis of
numerical information. The representation does part of the reasoning, taking
care of the multiplication the mind would have to perform if given probabilities.
In this sense, insight can come from outside the mind.

MINDS ARE ADAPTED TO NATURAL FREQUENCIES

Natural frequencies result from natural sampling, the process by which humans
and animals have encountered information about risks during most of their
evolution. In contrast, probabilities, percentages, and other normalized forms of
representing risk are comparatively recent. Animals can monitor the frequencies
of important events fairly accurately. Rats, for instance, are able to “count” up to
about 16, as evidenced by their ability to learn to press a lever a fixed number of
times in order to get a dose of food.11 Humans can also monitor frequencies
fairly accurately, although not as accurately as David Hume believed when he
claimed that humans can detect the difference between an event that occurs
10,000 times and one that occurs 10,001 times intuitively, that is, without
externally recording the number of occurrences. The human mind records the
frequencies of events, like the spatial and temporal locations of objects, with
little effort, awareness, or interference from other processes.12 Human babies are
reportedly able to discriminate between groups of one, two, or three objects
(such as black dots and Mickey Mouse toys) just a few days after birth.13 Studies
of counting in children also indicate that intuitions about numbers naturally
focus on discrete cases rather than fractions (such as conditional probabilities).
For instance, if 3- or 4-year-old children are shown five forks, one of which is
broken into two parts, and are asked how many forks they can see, most say
six.14

Like children, mathematicians began by thinking in terms of frequencies and
only later turned to fractions, percentages, and probabilities. (For Pythagoras
and his followers, numbers meant positive integers, not fractions or negative
numbers. According to legend, the mathematician Hip-pasus of Metapontum
was thrown off a ship for proving the existence of irrational numbers and
thereby shattering the Pythagorean view that the world is ruled by integers.)15

Probabilities and percentages are historically recent representations of
uncertainty. The mathematical theory of probability emerged only in the mid-



seventeenth century. Percentages became common notations during the
ninteenth century after the metric system was instituted in Paris following the
French Revolution, but were mainly used to express interest rates and taxes
rather than uncertainty.16 Only in the second half of the twentieth century did
probabilities and percentages become entrenched in everyday language as
expressions of uncertainty, such as in weather reports and baseball statistics.
Over the course of most of its evolution, the human mind did not learn about
risks from probabilities or percentages.

Representation Matters

Good numeric representation is a key to effective thinking that is not limited to
understanding risks. Natural languages show the traces of various attempts at
finding a proper representation of numbers. For instance, English does not
denote numbers consistently in the base-10 system. Instead, it has special names
for the numbers 1 to 12 that are vestiges of an earlier base-12 system. This base-
12 system was also used for units of money and length—for example, there were
12 pennies to a shilling and there are 12 inches to a foot. Children in English-
speaking countries also have to learn special words for the numbers between 13
and 20, such as “thirteen” and “fourteen,” which hearken back to an earlier base-
20 system. French children have to deal with other remnants of the base-20
system, such as quatre-vingt-dix (“four twenty ten”), which means 90. German-
speaking children, like their English-speaking counterparts, have to learn a
similar hodgepodge of words for the numbers up to 20—and face an additional
challenge. In German, the written sequence of two-digit numbers is reversed
when spoken, for example, the word vierundzwanzig (“four and twenty”) means
24. Chinese, in contrast, denotes numbers consistently in the base-10 system.
For instance, the Chinese words for two-digit numbers can be generated by a
simple rule: 11 is expressed as “ten one,” 12 as “ten two,” and so on; 20 is
expressed as “two ten,” 21 as “two ten one,” and so on.

Different linguistic representations of numbers can speed up or slow down
learning for speakers of different languages. The psychologist Kevin Miller and
his colleagues asked matched groups of American and Chinese children to recite
the counting sequence from the number l.17 At age four, the American children



could count up to 15, on average, whereas the Chinese children could count up
to 40. One reason for the relatively poor performance of American children
seems to be that two-digit numbers are less transparently represented in English
than in Chinese.

The key role of representation in thinking is often downplayed because of an
ideal of rationality that dictates that whenever two statements are
mathematically or logically the same, representing them in different forms
should not matter. Evidence that it does matter is regarded as a sign of human
irrationality. This view ignores the fact that finding a good representation is an
indispensable part of problem solving and that playing with different
representations is a tool of creative thinking. The physicist Richard Feynman
observed that different representations of the same physical law, even if they are
mathematically equivalent, can evoke different mental images—and trigger new
discoveries as a result.18

External representations are not just passive inputs to an active mind. They
can do part of the reasoning or calculation, making relevant properties of the
same information more accessible. In an arabic-numeral representation, for
instance, one can quickly see whether a number is a power of 10, but not
whether it is a power of 2. The converse holds for binary numbers. In addition,
arabic numerals are better suited to multiplication and division than roman
numerals—a difference that may help to explain the superior development of
mathematics in early arabic cultures relative to Roman and early medieval
European culture. Imagine trying to multiply the roman numbers XIX and
XXXIV. In the arabic system, one simply multiplies each of the two digits in the
first number (19) by each digit in the second number (34) and writes the results
such that consecutive digits represent Is, 10s, 100s, and so on. This is impossible
using the roman numerals—although they also constitute a base-10 system—
because each digit does not denote a power of 10. As a result, the roman-
numeral system does not facilitate multiplication and division.

In this chapter, I have described a tool that can help to defog minds:
changing risk representations from probabilities into natural frequencies.
Probabilities—or more precisely, conditional probabilities—tend to impede
human inference, whereas natural frequencies demand less computation and
have a form in which the human mind has experienced events over most of its



evolution. As the case of Dr. Standing illustrates, natural frequencies help not
only laypeople, but experts as well. Restoring this “original” representation can
turn innumeracy into insight.



PART II

UNDERSTANDING UNCERTAINTIES IN THE REAL
WORLD



I hope very much that pressure is not put on women to attend [breast
cancer screening]. The decision must be theirs, and a truthful account of
the facts must be available to the public and the individual patient. It
will not be what they want to hear.

M. Maureen Roberts, Clinical director, Edinburgh Breast Cancer Screening Project

5

BREAST CANCER SCREENING

Shortly before dying of breast cancer, the clinical director of an initiative called
the Edinburgh Breast Cancer Screening Project, Maureen Roberts, wrote of
mammography screening, “We can no longer ignore the possibility that
screening may not reduce mortality in women of any age, however disappointing
that may be.” She went on to remark on what she called the “brainwashing” of
physicians and the public: “There is also an air of evangelism [in the national
screening programs], few people questioning what is actually being done.”1 Dr.
Roberts was referring to mammography screening, not to the use of
mammography per se. Mammography screening is mass screening, primarily of
healthy women. In this situation, statistical thinking becomes of the utmost
relevance, as we will see. Mammography is also used in other situations, for
instance for patients with known symptoms of breast cancer, such as a tumor
mass detected in a clinical exam. The benefits and hazards of mammography
screening cannot be directly generalized to these other situations.

Mass screening for breast cancer was first introduced in Germany in the
1930s. The reason was not so much that X rays were discovered in Germany,
but rather that Germans were among the first to recognize the cancer hazards of



cigarettes, asbestos, tar, and radium, prompted by the unions and political
parties that represented the interests of the working class.2 Physicians were
exhorted to recognize the value of early detection, and those who did not
perform mammography screening were accused of being complicit in the deaths
of thousands of women each year. Radio and newspaper announcements urged
women over the age of 30 to participate in annual or biennial screening.
Hundreds of thousands were screened using mammograms, and monthly breast
self-examination was declared to be the moral duty of every woman. World War
II, however, put a damper on German physicians’ hopes of combating cancer.
Comparable American campaigns did not get started until 30 years later.

More than 10 years after Dr. Roberts expressed her professional opinion
about screening, women in North America are still getting contradictory
recommendations.3 The disagreements concern each of the three screening tests:
mammography, clinical breast examination, and breast self-examination. The
main disagreement about mammography has to do with the age at which it has a
benefit for women. The American Cancer Society and the National Cancer
Institute recommend that women have mammograms and clinical breast exams
annually or every one to two years, respectively, beginning at age 40. The U.S.
Preventive Services Task Force and the Canadian Task Force on the Period
Health Exam, in contrast, recommend mammography screening every one to
two years beginning at age 50. The main disagreement about the clinical and
self-exams concerns whether they should be recommended at all. The U.S.
Preventive Services Task Force asserts that mammography screening may as well
be performed without the clinical exam because, it argues, there is no evidence
that the clinical exam increases the benefit of mammography, whereas the other
three organizations recommend the clinical breast exam as well. Finally, the
American Cancer Society also recommends that women perform self-exams
every month starting at age 20. None of the other organizations recommends
self-exams at any age.

Given these different recommendations, which ones, if any, should women
follow? To answer this question, they need to be well informed about the costs
and benefits of screening. And this decision can vary by individual, because the
same benefits and hazards have different values for different women.



Knowledge concerning screening is less universal than one might believe. For
example, in surveys, more than one-third of a sample of African American
women in south Florida and one-third of a sample of Hispanic women in
Washington State reported never having heard of mammography. Others do not
understand the nature of screening. In a survey of Australian women and men, 4
out of 5 did not know that screening tests are for asymptomatic people.4 Five of
the most common confusions about screening are listed below.

Clarifying Five Common Misunderstandings

• Are screening tests meant for patients with known symptoms? No,
screening is for asymptomatic people. Its purpose is early detection.

• Does screening reduce the incidence of breast cancer? No, it does not.
Early detection does not amount to prevention.

• Does early detection imply mortality reduction? Not in all cancers. Early
detection can, but need not, lead to mortality reduction. For instance,
if there is no effective therapy, early detection has no effect on
mortality. Here, early detection does not increase life expectancy, but
only the time the patient consciously has to live with the cancer.

• Do all breast cancers progress? No. Mammography can detect a form of
breast cancer that is called “ductal carcinoma in situ.” Most cancers
found in the screening of younger women are ductal carcinomas in
situ. Although their clinical course is not well understood, half or more
of the lesions do not seem to progress.

• Is early detection always a benefit? No. For instance, when a cancer does
not progress or progresses so slowly that it has no effect during a
woman’s life, early detection does not help this woman. Rather, she
will suffer harm without benefits: Most likely she will undergo invasive
treatment, such as mastectomy or lumpectomy with radiation, and her
quality of life will substantially decrease.



These basic misunderstandings aside, what are the costs and benefits, both
real and perceived, of mammography screening?

Benefits

The goal of mammography screening is to reduce mortality from breast cancer
by early detection; screening cannot prevent cancer. How can one determine
whether and when screening actually serves that goal? The best evidence comes
from randomized trials, in which a large number of women are randomly
assigned to either a screening group or a control group. Women in the screening
group participate in screening at regular intervals. They are called back if they
have a positive mammogram, and additional mammograms or biopsies are
performed. And if they are diagnosed with breast cancer, they receive treatments
such as a mastectomy (total removal of the breast), a lumpectomy (removal of
only the affected tissue), and radiation therapy. Women in the control group do
not participate in screening. After a fixed period, say 10 years, the two groups are
compared to determine how many lives screening actually saved. Because the
participants are randomly assigned, any difference in mortality that is observed
can be attributed to the screening rather than to initial differences between the
groups on dimensions such as age, social status, or health.

Ten large randomized trials have been conducted to determine whether
undergoing mammography screening decreases women’s chances of dying from
breast cancer. These trials involved a total of half a million women in Canada,
Scotland, Sweden, and the United States.5 What were the results?

HOW TO COMMUNICATE BENEFITS?

The results will look different, and may even be misunderstood, depending on
how they are presented. Consider first the overall benefit of mammography
screening across all age groups (age 40 and older) covered by four Swedish
randomized trials.6 Table 5-1 shows the results of the screening.

Four Ways to Present the Risk

Relative risk reduction. One way to present the risk is to say that
mammography screening reduces the risk of dying from breast cancer by



25 percent, that is, the relative risk reduction is 25 percent. Health
organizations favor reporting benefits in terms of relative risk, thereby
opening the door to miscommunication. What does a relative risk
reduction of 25 percent mean? Many believe incorrectly that this means
that out of 100 women who participate in screening, the lives of 25 will
be saved. Yet to understand what relative risks mean, let us translate
them into the mind’s hard currency, that is, concrete cases. Consider
1,000 women who did not participate in screening and another 1,000
who did (Table 5-1). Within 10 years, 4 women in the first group and 3
in the second group died of breast cancer.7 The decrease from 4 to 3 is a
relative risk reduction of 25 percent.

Absolute risk reduction. The absolute risk reduction is 4 minus 3, that is,
1 out of 1,000 (which corresponds to 0.1 percent). In other words, if
1,000 women participate in screening for 10 years, one of them will
probably be saved from dying of breast cancer.

Number needed to treat. There is a third way to communicate the benefit
of screening: the number needed to treat in order to save one life. The
smaller this number is, the better the treatment. In the present case, this
number is 1,000, because this many women must participate in order to
save one life.

Increase in life expectancy. Finally, one can express the benefit as an
increase in life expectancy. Women who participate in screening from the
age of 50 to 69 increase their life expectancy by an average of 12 days.8

TABLE 5-1: Reduction in breast cancer mortality for women (age 40 and
above) over a period of 10 years. The raw result is from four Swedish
randomized trials with some 280,000 women (numbers rounded). (Data
from Nystrom et al., 1996, in Mühlhauser and Höldke, 1999.)

Treatment Deaths (per 1,000 women)

No mammography screening 4



Mammography screening 3

All four presentations of the raw data are correct, but they suggest different
amounts of benefits and evoke different degrees of willingness to participate in
screening and different emotional reactions in women. When risk reduction is
expressed in relative terms, misunderstanding is likely. Relative risks are bigger
numbers than absolute risks—compare, for instance, a 25 percent relative risk
reduction and the absolute risk reduction of 1 life in 1,000. Counting on their
clients’ innumeracy, organizations that want to impress upon clients the benefits
of a treatment generally report them in terms of relative risk reduction. Relative
risks do not carry information about the absolute benefits of a treatment: For
example, a 25 percent reduction means many lives saved if the disease is
frequent, but only a few if the disease is rare. Transparent risk communication
can be achieved by means of absolute risks, number needed to treat, and
increases in life expectancy. But health organizations rarely use these,
communicating with the public in terms of relative risk reduction instead. In
Chapter 12, we will see that there are often institutional reasons for presenting
benefits in terms of relative risks; for instance, given the innumeracy of health
authorities who evaluate proposals for medical research funding, applicants often
feel compelled to report relative risk reductions because they sound more
impressive.

Transparency can also be achieved by expressing the benefit of a treatment in
terms of a more familiar situation. For instance, participating in annual
mammography screening that affords a 25 percent risk reduction has roughly
the same effect on life expectancy as reducing the distance one drives each year
by 300 miles.9

DOES SCREENING BENEFIT WOMEN IN THEIR 40S?

None of the 10 randomized trials suggested that mammography screening of
women aged 40 to 49 reduces breast cancer mortality in the nine years following
the beginning of screening. Nine out of the 10 trials also found no evidence of a
mortality reduction after 10 to 14 years, although one— conducted in
Gothenburg, Sweden—did. Why this trial found a reduction while the others
did not remains unclear. This study was not specifically designed for women in



their 40s, whereas the Canadian National Breast Cancer Study—the only trial
designed for this age group, and including twice as many women as the
Gothenburg trial—did not find a mortality reduction after 10.5 years. When the
results of all 10 randomized trials were pooled, no reduction in breast cancer
mortality was detectable even after 10 to 14 years.10 Thus, there is yet no
evidence that mammography screening reduces mortality from breast cancer for
women in their 40s.

Why would screening women under 50 fail to reduce mortality from breast
cancer? There are some possible reasons, but no conclusive answers. For
instance, it has been posited that breast density is generally higher in younger
women, making screening less likely to detect cancers at a curable stage. An
alternative explanation is that, in younger women, a greater proportion of
invasive breast cancers are aggressive and therefore grow more rapidly, which
results in more cancers not detected between regular screening examinations. In
addition, women under 50 are less likely to have breast cancer, which means that
fewer women in this group can benefit from screening in the first place.11

DOES SCREENING BENEFIT WOMEN 50 AND OVER?

Eight of the 10 randomized clinical trials included women who began screening
at or over age 50. Three of these studies found a significant reduction in breast
cancer mortality; four found reductions that were too small to be distinguishable
from zero; and one found no reduction at all. The reductions in mortality rates,
which were computed seven to nine years after the first screening, appeared as
early as four years after the first screening. When the results of all the trials are
pooled, one finds a relative risk reduction of about 27 percent. But how many
lives are saved, that is, how large is the absolute risk reduction? Consider women
who start screening at age 50 and have a mammogram every other year for the
next 20 years. For every 270 of these women, the life of one is saved. Thus, the
absolute risk reduction is 1 in 270, or about 4 in 1,000. Still, the benefits are
greater in this age group than across all age groups (Table 5-1). From age 50 on,
mammography screening seems to reduce mortality from breast cancer.12

ARE CLINICAL BREAST EXAMS AND SELF-EXAMS WORTHWHILE?



Common sense suggests that using all three methods of screening for breast
cancer would be better than using just one. However, this does not seem to be
the case. Among women aged 50 and older, the clinical breast exam does not
contribute to decreasing breast cancer mortality compared to mammography
alone. On the other hand, mammography contributes little to the benefit of the
clinical breast exam if the exam is performed by a skilled practitioner.13

Similarly, several studies with women between the ages of 35 and 65 found that
performing regular self-exams had no effect on breast cancer mortality, despite
increasing the number of breast cancers detected. Yet the costs of clinical exams
and self-exams can be high, because women who consult an oncologist after
finding a suspicious change may go through months or even years of physical
and psychological strain without any benefit, as described below. Self-exams,
which are recommended on a monthly rather than a yearly basis, are particularly
likely to generate a steady stream of suspicion and anxiety, and many women
obtain mammograms to gain peace of mind.14

SUMMARY OF BENEFITS

On the benefit side, the situation does not seem as bleak as Maureen Roberts
described it. There is evidence that mammography screening reduces mortality
from breast cancer in women aged 50 and older. As a consequence, early
detection in this age group might also reduce the chance of invasive therapy and
improve quality of life. But the situation for women in their 40s is unclear.
There is currently no evidence that there is a benefit before 10 years after the
beginning of screening. There is also no evidence that the clinical breast exam or
self-exam has any additional benefit when performed in addition to
mammography screening. These findings have led to the reversal of earlier
recommendations made by health organizations with respect to the best way to
screen for breast cancer. For instance, whereas 10 years ago health organizations
still recommended that women between 35 and 39 have a baseline
mammogram, today no responsible organization recommends baseline
mammograms or screening of women in their 30s.

Finally, does annual screening for breast cancer result in a higher risk
reduction than biennial screening? No. Whether women underwent
mammography annually or biennially made no difference in the randomized



trials15—apparently because the length of time that must pass before many
tumors become detectable by mammography is around 3.5 years, which leaves
enough time for biennial screening to detect cancer.

In a recent consensus statement, the National Institutes of Health put the
decision explicitly into the hands of patients: “The available data do not warrant
a blanket recommendation for mammography for all women in their forties.
Each woman should decide for herself whether to undergo mammography.”16

This statement has upset many people who expect firm guidelines. In the past,
only a few women seem to have decided to undergo screening of their own
accord; most followed their physician’s recommendation. When the physician
recommended a screening mammogram, some 90 percent complied; when the
physician did not, only 10 percent of women had screening mammograms.17

How can a woman make up her own mind about screening? To make a
decision independently and wisely, she needs to know mammography’s potential
costs in addition to its benefits.

Costs

The costs of mammography screening are not as well documented as their
benefits. These costs include physical and psychological harm and financial
expense. Three groups of women pay the costs incurred by breast cancer
screening.18

FALSE POSITIVES

The first group is made up of women who do not have breast cancer, but have a
positive mammogram (that is, a false positive). Women in this group are called
back for further investigation. Almost all of them are then subjected to another
mammogram, an ultrasound, or a biopsy, and an unlucky few then undergo a
lumpectomy or mastectomy. For many women, mammograms are painful and
upsetting. For some, mammography screening is psychologically traumatic and
results in an extended period of anxiety or depression and a loss of
concentration. Biopsies, too, can have psychological costs, as well as physical
costs such as wound infections, hematomas, scarring, and the loss of breast
tissue. While some women might be grateful at first to find out that the result



was a false positive, the emotional shock of a positive mammogram and its
follow-up sometimes persists even after a negative biopsy. Three months after
receiving false positive mammograms, 1 out of 2 women reported feeling
considerable anxiety about mammograms and breast cancer. Moreover, 1 in 4
women reported that this anxiety affected their daily mood and functioning.19

How large is this group of women? In other words, how common are false
positive mammograms?

First mammogram. In an investigation of 26,000 women who underwent
mammography screening for the first time, only 1 out of 10 who tested
positive was found to have breast cancer at some point during the 13-
month period thereafter.20 In other words, 9 out of 10 positive results
later proved to be false positives. Figure 4-2 illustrates this result: For
every 1,000 women who have their first mammogram between 40 and
50 years of age, 70 of them can expect to receive false positives compared
with only 7 true positives. Among younger women, the proportion of
false positives among all positives is even higher.21

Repeated mammograms. What about women who undergo
mammography regularly, that is, annually or biennially? After
undergoing a series of 10 annual or biennial mammograms, 1 in 2
women without breast cancer can expect to receive at least one false
positive result.22 How many women pay some kind of physical and
psychological costs owing to false positives each year? In Germany, some
3 million to 4 million screening mammograms are performed annually.
(Although German health insurance companies do not cover screening,
German physicians often contrive reports of symptoms so that the
companies will pay for screening mammograms.)23 Out of these, some
300,000 come back as false positives. As a consequence of this large
number of false positives, an estimated 100,000 women—none of them
with breast cancer—are subjected to some form of invasive surgery every
year. If the more than 50 million American women aged 40 or over
followed the recommendation of the American Cancer Society to
undergo annual screening, every year several million American women



would get a false positive result. Many of these would also have their
breasts biopsied. Estimates indicate that every year more than 300,000
American women who do not have breast cancer undergo a biopsy.24

Is there any way to stem this flood of false positives? Physicians in the
Netherlands have attempted to do so by introducing more restrictive criteria for
defining a positive mammogram. This policy has reduced the rate of false
positives, but at the cost of increasing the rate of false negatives. In other words,
more cancers are now missed during screening.

What can be reduced easily is the emotional impact of a false positive, that is,
its psychological costs. Physicians could inform women about how frequent false
positives are—for instance, by telling them that 1 in 2 women without cancer
can expect to get one or more false positive results in a series of 10
mammograms. A woman who knows this will not be as shaken by a positive
mammogram as a woman who does not. Nevertheless, I have met few women
who have been informed by their physicians about how common false positives
are.

False positives take a considerable toll on women’s bodies and psyches. About
half of women who participate in regular screening are affected by this cost of
mammography screening.

NONPROGRESSIVE BREAST CANCER

Eleanor was 49 years old when screening detected an early-stage breast cancer.
Her surgeon removed part of her breast, and after radiation therapy, she finally
got the good news that all cancer cells had been destroyed. Joyfully, Eleanor told
all her friends that mammography and surgery had saved her and she could now
live a carefree life. It is likely, however, that she might be mistaken and would
have led an equally long and even happier life without having undergone the
rigors of treatment.

She could have been in the second group of women who share the costs of
mammography screening: They have a type of breast cancer that would never
have been noticed during their lifetime but for the mammogram. There are two
reasons for this phenomenon. First, there is a heterogeneous group of lesions
called ductal carcinoma in situ, because the cancer is confined to the milk ducts



of the breast and has not spread to the surrounding tissue. It cannot be detected
by a breast exam, but it can be detected by mammography. Most breast cancers
detected by mammography in women in their 30s, and about 40 percent in
women in their 40s, are ductal carcinomas in situ. With higher age, the
incidence decreases.25 The clinical course of these cancers is not well
understood, but it is thought that between 1 and 5 out of 10 ductal carcinomas
eventually progress, becoming invasive cancer within 20 or 30 years. The other
ductal carcinomas in situ seem never to spread at all and would not be noticed
during a woman’s lifetime except for the mammogram.26 If a cancer is not
invasive, neither the cancer itself nor treatment of it will affect how long the
person lives. Physicians cannot predict which will become invasive and which
will not. At present, almost every woman found to have a ductal carcinoma in
situ is treated by lumpectomy or mastectomy. But half or more of these women
would never have developed symptoms if left alone.

The second reason why a woman might have a cancer that would never have
been detected in her lifetime is that some breast cancers, specifically if they are
diagnosed in old age, progress so slowly that the women who have them will die
before cancer can kill them. Like those women who have ductal carcinomas in
situ that would not have proved fatal, these women typically undergo painful,
traumatizing, and unnecessary therapy without the benefit of living any longer.

Most women are not aware that some cancers are nonprogressive. A survey of
a random sample of American women revealed that few had heard about ductal
carcinomas in situ, and 94 percent of the women surveyed doubted the existence
of nonprogressive breast cancer.27

Women with nonprogressive or slow-progressive cancer pay a higher price for
participating in mammography screening than women who receive false
positives. The therapy they usually undergo as a result of having a positive
mammogram lengthens not their lives, but the period during which they must
live with a diagnosis of cancer and suffer through the treatment. For these
women, early detection can decrease their quality of life.

RADIATION-INDUCED BREAST CANCER

A third group of women who bear some of the costs of screening are those who
would not have developed breast cancer were it not for radiation exposure from



mammography. The carcinogenic potential of radiation was recognized during
the first decade of the twentieth century, when skin cancers of the hand were
discovered among X-ray technicians. The earliest evidence of X ray-induced
breast cancer was collected by German physicians in 1919, when chest X rays
became a common method of diagnosing tuberculosis and other lung diseases.28

The question of how large the risk is can be answered only indirectly—for
example, based on the prevalence of breast cancer among women with
tuberculosis who have frequent chest X rays or of various cancers among
survivors of the nuclear attacks on Hiroshima and Nagasaki. Today there is
general agreement that mammography can induce breast cancer, but researchers
have come to different conclusions about how often this happens.29

The effect of radiation increases linearly with the dose: When the dose is
halved, half as many women develop radiation-induced breast cancer; when the
dose is doubled, this number also doubles, and so on. It does not seem to matter
whether the total radiation dose is received in multiple exposures or in a single,
brief exposure. The risk peaks 15 years to 20 years after the time of exposure.
There is no evidence that radiation-induced breast cancer develops during the 10
years after the time of exposure or in women under the age of 25. The risk of
radiation-induced breast cancer is lowest among women who start menstruating
late, have their first child at an early age, breast-feed over a long period, and
experience menopause early. Thus, the same hormonal factors that protect
women from (nonradiation-induced) breast cancer seem also to decrease the risk
of radiation-induced breast cancer.

The risk of radiation-induced breast cancer depends strongly on the age at
exposure (Figure 5-1). For instance, when women in their 30s have a
mammogram, the risk is twice as high as that for women in their 40s. The risk
peaks around puberty and shows a sharp decline thereafter. During puberty, the
usual source of radiation is not mammograms but thoracic and other types of X
rays. For women over 60, the risk of radiation-induced breast cancer appears to
be negligible, most likely because radiation-induced cancer typically takes up to
two decades to develop.

According to current estimates, out of 10,000 women, between 2 and 4 who
participate in mammography screening starting at age 40 will develop radiation-
induced breast cancer, and one of them will die.30 It is important to keep in



mind that these figures are rough estimates that are based only on indirect
evidence and can vary considerably with the imaging film used, the quality of
the radiation, and other technical factors. For instance, the dose of radiation
administered during a mammography in the early 1970s was about 10 times
higher than that used today.

Mammography and other sources of radiation cause breast cancer in a small
number of women. The best predictor of whether a woman will develop
radiation-induced breast cancer is her age at exposure: the older she is, the lower
the risk.

FALSE NEGATIVES

Besides these three groups of women who pay serious costs for mammography
screening, there is another group who are not physically harmed but are falsely
assured. This group consists of women with cancer who receive a negative test
result. The false negative rate is between 5 and 20 percent, with the higher rates
in younger women. That is, out of 100 women with breast cancer, 80 to 95 will
correctly get a positive result, but the others will be wrongly reassured by a
negative result. False reassurance can result in forgoing the possibility for
therapy, but this should not be counted as a cost of screening because not
participating in screening would have had the same consequence.



FIGURE 5-1. Deaths from radiation-induced breast cancer. The number of
women who die from radiation-induced breast cancer depends strongly on age
of exposure. (From Jung, 1998.)



A radiologist can try to decrease the number of false negatives, but at a price.
A radiologist who wishes to minimize the possibility of missing a tumor has to
classify more of the ambiguous results as suspicious (positive), thereby increasing
the rate of false positives. There is a trade-off between false positives and false
negatives. Radiologists who are highly accurate in detecting cancers (have few
false negatives) typically have high rates of false positives.

FINANCIAL COSTS

Mammography screening is most cost-effective in woman aged 50 to 69 years.
Screening women in this group biennially for 20 years results in costs of $21,000
per year of life saved.31 For every $100 spent on screening, an additional $33 is
spent following up on false positive results.32 For breast cancer screening to
benefit women who are not affluent or covered by generous health insurance,
the quality of mammography will have to be improved or more cost-effective
techniques will have to be discovered.

SUMMARY

Mammography screening can produce both costs and benefits for women. There
are three major types of costs. First, every second woman who does not have
breast cancer will have one or more false positive mammograms (in a series of 10
mammograms), and the resulting diagnostic follow-up can cause physical and
psychological harm, such as the removal of breast tissue and increased anxiety.
Second, a majority of women with a nonprogressive (or slow-progressive) breast
cancer would never have noticed the existence of these abnormal cells during
their lifetime except for the mammogram. In these cases, where the cells would
never develop into invasive cancer, the treatment by lumpectomy, mastectomy,
chemotherapy, and/ or radiation therapy with all their associated physical and
psychological consequences are a second cost women have to bear. Finally,
roughly 2 to 4 out of 10,000 women who do not have breast cancer will develop
radiation-induced breast cancer because of mammography and one of them will
die.

These are the main hazards of mammography screening from the point of
view of the patient. I have not dealt here with the costs from the point of view of
the physician. Physicians need to worry about protecting themselves against



patients and lawyers who sue them for failing to detect an instance of cancer.
This reality puts misses (false negatives) rather than false positives at the top of
their worries, because lawyers tend to zero in on misses, not false positives. To
decrease the possibility of false negatives, physicians tend to subject patients to
batteries of tests—at the price of increasing false positives.

Before age 50, mammography does not seem to have benefits, only costs.
Women at age 50, however, face the question of whether the potential benefits
outweigh the costs. Each woman must decide for herself what the answer is. Her
physician can help her understand what the benefits and costs are, but not how
to weigh them. Her decision depends crucially on her goals, such as peace of
mind, keeping her body unscarred, or a willingness to take (or not to take) the
chance that she is one of the few who benefit from screening.

To choose wisely, women need to be informed about the risks. Are they?

What Are the Perceived Benefits of Screening?

Recall that mammography screening cannot decrease the incidence of breast
cancer, only the mortality owing to breast cancer; no mortality reduction has
been proven among women who participate in screening before age 50, and the
mortality reduction from age 50 on is about 4 in 1,000 women.

INCIDENCE

A substantial proportion of women believe that screening actually decreases the
incidence of breast cancer. These women mistake early detection for prevention.
This confusion is fueled by leaflets from health organizations that emphasize the
incidence of breast cancer, discussed later in this chapter. An organization that
has an interest in getting as many women to participate in screening as possible
has a conflict of interest when it attempts to inform women about the disease for
which it offers screening. For instance, in a trial breast cancer screening program
in the Swiss region of Morges (near Lake Geneva), women were informed about
the screening and asked to participate.33 Among these “informed” women, the
proportion who mistakenly believed that screening would reduce their chance of
developing breast cancer was higher than in the rest of Switzerland. As one Swiss
colleague explained to me, “If we cannot get 70 to 80 percent of the women to



participate, then the results of the study will be questionable.” Therefore, health
organizations are tempted to emphasize information that encourages women to
participate rather than to correct their possible misunderstandings.

MORTALITY

The majority (55 percent) of more than 600 female patients who visited one
urban medical practice in Chicago answered that mammography screening
should start at age 30-35. It is unlikely that they got this mistaken belief from
their physicians because, when questioned, none of the physicians in the practice
stated that screening should start prior to age 40.34 In a random sample of
American women, some 40 percent believed that screening should start between
the ages 18 and 39, and more than 80 percent believed that mammography had
a proven benefit for women aged 40 to 49 years.35 These women also believed
that breast self-examination is even more beneficial than 10 years of annual
mammograms.36 These results indicate a striking degree of misinformation
among American women. This is not to say that women in other countries are
better informed; American women are just better studied.

How large is the perceived benefit of screening? In one study, 145 American
women in their 40s were interviewed.37 Their education and socioeconomic
levels were above average—most had a college or postgraduate degree and a
family income over $50,000. None of these women had had breast cancer.
Nevertheless, consistent with the widespread and mistaken belief that screening
before age 50 has proven benefits, more than 90 percent of them had had at least
one mammogram. These women were asked:

Imagine 1,000 women exactly like you. Of these women, how many do
you think would die from breast cancer during the next 10 years if they
are not screened for breast cancer by mammography or a physician’s
exam?

and

Imagine 1,000 women exactly like you. Of these women, how many do
you think would die from breast cancer during the next 10 years if they



are screened every year or two for breast cancer by mammography or a
physician’s exam?

How many lives did these women think would be saved by 10 years of
screening? Their average estimate—that is, the difference between their answers
to the two questions—was 60 lives saved out of 1,000.38 Recall that screening
has no proven effect for women in their 40s, and across all ages, the benefit in a
sample of 1,000 is only 1 life, not 60 lives, saved. A benefit of this size is illusory.
Note that most of these well-educated women had had a mammogram. When
they consented to screening, we have no reason to think that this was informed
consent.

What Are the Perceived Costs of Screening?

In a survey of a random sample of American women, 92 percent said they
believed that mammography cannot harm a woman who does not have breast
cancer.39 Of the rest, 3 percent referred to exposure to radiation as a potential
hazard, 1 percent cited stress and anxiety, and an even smaller percentage raised
the issue of false positives. Not one woman mentioned the unnecessary and
traumatic consequences of a mammogram that detects a nonprogressive cancer.

Sources of the Mammography Illusion

The picture that emerges from these studies is this: Many women ascribe almost
magical powers to mammography, and virtually none see harm in it. Where does
this mammography illusion come from? People get their health information
from three main sources: the media (including television, radio, newspapers,
magazines, and the Internet), physicians, and leaflets from health
organizations.40 I will focus here on leaflets. How well do health organizations
inform women about the costs and benefits of mammography screening? In
1997, Emma Slaytor and Jeanette Ward of the Central Sydney Area Health
Service analyzed the information leaflets on mammography disseminated by all
the cancer organizations, health departments, and mammography screening



programs in Australia.41 Does the content of the leaflets mirror what is and what
is not in women’s minds?

TABLE 5-2: Information about mammography screening in 58 leaflets
distributed by Australian health organizations. For instance, in 60 percent
of the leaflets the lifetime risk of developing breast cancer was mentioned.
(Adapted from Slaytor and Ward, 1998.)

Information How often
provided

Lifetime risk of developing breast cancer 60%

Lifetime risk of dying from breast cancer 2%

Survival of breast cancer 5%

Relative risk reduction of death from breast cancer 22%

Absolute risk reduction of death from breast cancer Never

Number that must be screened to avert one death from breast cancer Never

Proportion of screened women who would be examined further 14%

False negative rate, or sensitivity 26%

False positive rate, or specificity Never

Proportion of women with a positive mammogram who have breast cancer
(positive predictive value)

Never

The information most frequently reported in the leaflets was breast cancer
incidence (Table 5-2). Sixty percent of the leaflets specified a woman’s lifetime
risk of developing breast cancer (ranging from 1 in 11 to 1 in 16 in various
leaflets). Two percent informed readers of a woman’s lifetime risk of dying from
breast cancer (which is lower). Although it is useful to know what the incidence
of breast cancer is, this information does not reveal the costs or benefits of
mammography screening. Screening cannot reduce incidence, only mortality.
The leaflets’ emphasis on incidence may be one reason for many women’s belief
that screening reduces incidence.



What did the leaflets say about mortality reduction? Only 22 percent
reported mortality reduction at all. When this benefit was mentioned, it was
invariably communicated in terms of relative risk reduction, which—as
discussed earlier in this chapter—typically misleads laypeople into
overestimating the benefits of screening. In other words, none of the leaflets
reported benefits in terms of absolute risk reduction, number needed to treat, or
other easily understandable ways.

The leaflets were uniformly silent about the possible costs of screening. For
instance, not a single one mentioned the test’s false positive rate despite the fact
that about half the women undergoing repeated screening will experience one or
more false positives. One-quarter of the leaflets mentioned that the test can lead
to false negatives—for example, “mammograms pick up 90 percent of breast
cancers” and are “not 100 percent accurate.” Finally, how many of the leaflets
informed women that only a few women who test positive in screening—1 out
of 10 among 40-year-olds—actually do have breast cancer? Not one. The most
striking feature of the leaflets is the information they left out.

This information policy does not seem to be peculiar to Australia.42 The
omissions—such as the possible costs of screening and the meaning of a positive
test—correspond closely to the “blind spots” found in studies of American
laypeople. The use of relative risks to report mortality reduction is consistent
with women’s overestimation of the possible benefits of screening. The omission
of information about false positives is consistent with women’s unnecessarily
exaggerated anxiety about a positive result: A woman who has never heard that
about 9 out of 10 women with a positive screening test do not have cancer will
be unduly frightened when she has a positive result. As long as perceived benefits
and costs are grossly distorted in the public mind, informed consent will remain
out of reach when it comes to mammography screening.

Upon being asked why this is so, a psychologist who had interviewed
hundreds of German women and found them ignorant about breast cancer and
screening replied that many simply do not want to know any details about the
disease or screening, and that this ignorance can almost be described as a
collective defense mechanism.43 Whatever the validity of this speculation, the
analysis of the information leaflets summarized here demonstrates that the
problem is not simply inside women’s minds. There are those in the health



information field who seem to prefer that potential participants in
mammography screening not know too much.

From Innumeracy to Fear

It is impossible to weigh possible benefits against costs if one believes that there
are no costs in the first place. Making an informed choice about breast cancer
screening is further hindered by the specific anxiety surrounding breast cancer,
fueled by the systematic exaggeration of its total incidence, of its incidence
compared to other serious diseases, and of its incidence in young women. Of
course, it is completely rational to fear developing a serious disease—what I am
referring to is the added and unnecessary anxiety owing to misleading
information provided by leaflets and the media.

“1 WOMAN IN 10”

In October 1999, the German weekly news magazine Stern ran a 13-page feature
on breast cancer. In the subtitle, readers were told that every 10th woman
develops breast cancer, a message repeated in the text. This was the only
statistical information provided. The rest of the article played on readers’
emotions through personal stories of hope and despair and the obligatory
sensational photos (this time of a bevy of topless women wearing blue lace
underwear and red boxing gloves—each of whom is missing a breast). The figure
“1 woman in 10” (sometimes “1 woman in 9”) has become a mantra in the
popular press and breast cancer screening programs. This number has terrified
many. But what does it mean?

What Stern did not report is that the l-in-10 figure refers to a woman’s
cumulative chances of developing breast cancer by the age of 85. But most
women die before then, and those who contract cancer at this advanced age will
most likely die from some other cause. Table 5-3 explains how the l-in-10 figure
plays out for a group of 1,000 women.44 Four women developed breast cancer
in their 30s and 13 during their 40s. By age 85, the total number of cases of
breast cancer added up to 99 cases, which corresponds to the l-in-10 figure.
Thirty-three of these will have died of breast cancer. Using this natural
frequency representation, we see that the majority of women with breast cancer



did not die of the disease; about 3 in 100 women will die of it by age 85. And
we also see that about six times as many women die of cardiovascular disease.

TABLE 5-3. Risks of breast cancer and cardiovascular disease for 1,000
women, and the meaning of the “l-in-10” figure. The data are based on the
incidence and mortality rates reported in the Ontario Cancer Registry. (After
Phillips et al., 1999.)

Age Alive at
beginning of

interval

Incidents of
breast cancer

Deaths from
breast cancer

Deaths from
cardiovascular

causes

Deaths from
other causes

0-9 1,000 0 0 0 7

10-
19

993 0 0 0 2

20-
29

991 0 0 0 3

30-
34

988 1 0 0 2

35-
39

986 3 0 0 3

40-
44

983 5 1 1 4

45-
49

977 8 2 1 6

50-
54

968 11 3 2 11

55-
59

952 12 3 5 15

60-
64

929 12 3 9 25

65-
69

892 14 4 16 36



70-
74

836 13 5 28 51

75-
79

752 11 6 52 70

80-
84

624 9 6 89 95

>85 434 5 7 224 203

Of course, the numbers in Table 5-3 need to be adjusted for different
populations. The goal here is simply to clarify the widely cited l-in-10 figure.
The tool that fosters insight into the l-in-10 figure is the same as in Figure 4-2:
Start with a population of concrete cases, and break it down into subgroups.
These frequencies are easily understood.

The l-in-10 figure is rarely, if ever, explained in terms of frequencies as in
Table 5-3. How do women interpret this statistic? Recall the group of well-
educated American women aged 40 to 49 who had no history of breast cancer,
each of whom was asked to imagine 1,000 women exactly like herself and to
estimate how many of these women would die from breast cancer in the next 10
years. Their average estimate was 100, that is, exactly “1 woman in 10.” 45

According to the authors of the study, this is a more than 20-fold overestimation
of the actual risk of dying from breast cancer, consistent with Table 5-3. Among
1,000 45-year-olds (which is the average age of the women in this study), 5 died
of breast cancer, not 100, within the next 10 years. Thus, on the assumption
that most of these women had heard about the l-in-10 figure, they apparently
believed that it refers to the next 10 years rather than to the cumulative lifetime
risk at age 85, not to mention mortality rather than incidence. Each of these
misinterpretations fuels unnecessary levels of fear. Exaggerated fears of breast
cancer may serve certain interest groups, but not the interests of women.

IS BREAST CANCER THE MOST DEADLY DISEASE FOR WOMEN?

Why does breast cancer arouse more anxiety than other threatening diseases?
The leading cause of death among North American women is not cancer but
cardiovascular disease, which attacks the heart and blood vessels (see Table 5-3).



In a survey conducted by the American Heart Association, very few women (8
percent) reported knowing this fact. Similarly, in a survey by The National
Council on Aging only 9 percent of women said the disease they most feared was
heart disease compared with 61 percent who most feared cancer, predominantly
breast cancer. Even among cancers, lung cancer—not breast cancer—is the
leading cause of death among American women (Figure 5-2). Only 25 percent
of women were aware of this fact.46

In the United States, prostate cancer is more frequent than breast cancer
(Figure 5-2). It also takes almost as many lives. But there is no anxiety among
men about prostate cancer comparable to women’s anxiety about breast cancer.
Interestingly, unlike breast cancer, prostate cancer is presented in the media as
an old person’s disease. However, its incidence, mortality rate, and the mean age
at diagnosis are in fact very similar to those of breast cancer.47 Colorectal cancer
is the third most deadly cancer among women (after lung and breast cancer).
“Colorectal cancer” is an umbrella term for colon cancer and rectal cancer, colon
cancer being the more common of the two. Like lung cancer, colorectal cancer
rarely makes it into the headlines or onto the front pages. Consistent with what
the media presents, relative to breast cancer the public tends to underestimate
the risk of cardiovascular disease and other cancers. A defender of the media
might retort that it is public perception that the media coverage follows, not vice
versa. There need be no contradiction—each probably follows the other.



FIGURE 5-2. Mortality (dark area) and incidence (dark plus white area) of
the four most frequent cancers in the United States. For instance, out of
100,000 men, 77 were diagnosed every year of lung cancer and 71 died from it
(1990-1995, Caucasians only). (Based on the figures reported by Wingo et al.,
1998).



TARGET THE YOUNG

In a 1991 issue featuring an article on breast cancer, Time ran on its front cover
a picture of a young woman with highlighted, bare breasts. In the years since
then, many other magazines have followed suit, thus creating the impression
that young women have the most to fear from breast cancer.48 In one study,
some 85 percent of the case stories and anecdotes about breast cancer presented
in magazines such as Glamour, Vogue, Scientific American, Time, and Reader’s
Digest were found to be about women under 50.49 When the breast cancer
incidence rose dramatically in the 1980s and early 1990s, popular magazines
portrayed this increase as a mysterious epidemic targeting young, liberated,
professional women.50

Age is indeed the highest risk factor for breast cancer—but it is the old, not
the young, as suggested by popular magazines, who are most at risk. The average
age at diagnosis is around 65 years (see Table 5-3). Moreover, the increase in
incidence has not been observed in younger women, and the largest upsurge has
been among women over 60. Most, if not all, of this increase can be attributed
to the increased use of mammography, which detects many cancers that may
never become clinically relevant (such as ductal carcinoma in situ).51 Consistent
with this view, mortality rates from breast cancer have remained fairly stable as
incidence has increased. The incidence of breast cancer finally leveled off in the
early 1990s, after the “bubble” of increased screening had passed through the
health system.

What has remained relatively constant over the years is the prevalence among
men, who account for about 0.5 percent of all breast cancer diagnoses.52 Men
do not participate in screening. But if they did, we might observe an increase in
incidence among them as well.

Do women’s beliefs mirror the emphasis in the media on young victims of
breast cancer? Some 700 female patients at a Chicago academic internal
medicine practice staffed by 31 physicians were asked whether breast cancer is
more common among women aged 65 or women aged 40. Only 28 percent
knew that the prevalence is higher among 65-year-olds than 40-year-olds.53

Similarly, a study of women in North Carolina found that 80 percent did not
know that older women have a higher prevalence of breast cancer.54 Yet in the



Illinois study, all the physicians in the practice correctly answered that breast
cancer risk increases with age. This finding suggests that the patients did not get
this misconception from their physicians, though the physicians also failed to
correct it. The media focus on the threat that breast cancer poses to the young is
badly misdirected. Older women have the most grounds for concern.

From Innumeracy to Prophylactic Mastectomy

A combination of innumeracy and fear can contribute to women allowing
themselves to be subjected to treatments that they would otherwise reject as
needlessly alarmist or even dangerous in themselves. The psychologist Robyn
Dawes reported on a dramatic example involving a Michigan surgeon whom a
newspaper hailed as a pioneer in the treatment of breast cancer.55 The surgeon
urged all women over 30 to have an annual mammogram. Moreover, he
advocated removing the breasts of healthy women and replacing them with
silicone implants. If you cannot follow his argument justifying this practice,
don’t worry—but be wary.

The surgeon argued that 57 percent of women in the general population are
in a group at high risk of developing breast cancer, and that 92 percent of all
breast cancers are found in this group. Furthermore, he claimed that 1 in 13
women in the general population (whether at high or low risk) develops breast
cancer between the ages of 40 and 59. From this he concluded that 1 in every 2
or 3 women in the high-risk group will develop breast cancer between the ages
of 40 and 59.

On the basis of these “estimates,” the surgeon recommended that women
without breast cancer who are in the high-risk group—that is, the majority of
women—have prophylactic (preventive) mastectomies. This measure, he argued,
would save them from having to face the risk of cancer and its consequences,
including the possibility of death. Over the course of two years, he removed the
“high-risk” breasts of 90 cancer-free women and replaced them with silicone
implants.

Persuaded by the surgeon’s argument, these women may have believed they
were sacrificing their breasts in a heroic exchange for the certainty of saving their
lives and protecting their loved ones from suffering and loss. None of them, and



none of their loved ones, seem to have questioned the surgeon’s numbers and
reasoning.

To check whether the surgeon’s reasoning is sound, let us take a minute to
draw a tree like that in Figure 5-3. Think of 1,000 women. According to the
surgeon, 570 (57 percent) of them belong to the high-risk group. According to
him, 77 of the 1,000 women (that is, 1 in 13) will develop breast cancer
between the ages of 40 and 59, of whom 71 (that is, 92 percent) are in the high-
risk group. Thus, 71 out of the 570 high-risk women will develop breast cancer,
which is about 1 in 8—not 1 in 2 or 1 in 3 as the surgeon concluded.



FIGURE 5-3. A frequency representation of the risks communicated by a
Michigan surgeon to his clients. The surgeon wrongly concluded that 1 out of
2 or 3 women in the high risk group will develop breast cancer. When we
transform his percentages into frequencies, we can easily see that this number is
about 1 in 8 (71 in 570), not 1 in 2 or 3. When, in addition, we use realistic
figures instead of his subjective ones, this number is about 1 in 17.



Now we can see the flaw in the surgeon’s reasoning: He drew the wrong
conclusions from the risks he specified. Just as alarming, the numbers he used in
his computations are themselves inflated (1 in 13 is unrealistically high for
women between 40 and 59). In Table 5-3, we can see that in a group of 1,000
women, 36 women will develop breast cancer between the ages of 40 and 59.
From this more realistic figure, we would expect that only 1 in 17 high-risk
women will develop breast cancer between the ages of 40 and 59.56 This result
indicates that out of the 90 women on whom the surgeon performed
prophylactic mastectomy, some 85 would not have developed breast cancer
anyway. (And several of the others could most likely have been treated less
radically—for instance, by a lumpectomy.) In this case, the joint innumeracy of
the surgeon and his patients had tragic costs—for the patients.

What is the actual benefit of prophylactic mastectomy? A recent study
followed up 639 women with a family history of breast cancer who had
undergone prophylactic mastectomy of both breasts at the Mayo Clinic in
Minnesota.57 The women were classified as either high risk (for example,
women with a mutation in the breast cancer genes BRCA1 and BRCA2; women
with one or more first-degree relatives with breast cancer) or moderate risk; their
median age at mastectomy was 42 years and the median follow-up time was 14
years. The result is shown in Table 5-4.

Ways to Present the Benefit

High-risk group

Absolute risk reduction. Prophylactic mastectomy reduces the number of
women who die from breast cancer from 5 to 1 in 100. That is, the
absolute risk reduction is 4 women in 100 (4 percent).

Relative risk reduction. Prophylactic mastectomy reduces the risk of dying
from breast cancer by 80 percent (because 4 saved out of 5 is 80
percent). Remember that the relative risk reduction is the absolute risk
reduction (4 in 100) divided by the proportion of patients who die
without treatment (5 in 100).



Number needed to treat. The number of women who need to undergo
prophylactic mastectomy to save one life is 25 because 4 in 100 (or 1 in
25) deaths are prevented by prophylactic masctectomy.

Moderate-risk group

Absolute risk reduction. Prophylactic mastectomy reduces the number of
women who die from breast cancer from 2.4 to 0 in 100. That is, the
absolute risk reduction is 2.4 women in 100 (2.4 percent).

Relative risk reduction. Prophylactic mastectomy reduces the risk of dying
from breast cancer by 100 percent.

Number needed to treat. The number of women who need to undergo
prophylactic mastectomy to save one life is 42.

All three presentations of the result are correct, but can suggest different
amounts of benefits and evoke different emotional reactions in women. For
instance, for high-risk women, prophylactic mammography reduced the risk of
dying from breast cancer by 80 percent, or by 4 percent, depending on whether
the benefit is presented as a relative or an absolute risk reduction. Moreover, in
terms of the number needed to treat, out of every 25 women at high risk, the life
of one was saved, whereas the other 24 had no benefit from mastectomy
(because most high-risk women do not die of breast cancer, even if they keep
their breasts, and a few die of breast cancer even after they had both breasts
removed). In the moderate risk group, one life was saved for every 42 women
who underwent treatment, which also means that 41 out of every 42 women lost
their breasts without a benefit.

Women who are contemplating prophylactic mastectomy should know these
numbers in order to be able to make an informed decision. Furthermore, it is
essential that they understand what the numbers mean, that is, the difference
between the absolute risk reduction, the relative risk reduction, and the number
needed to treat. As the cases of the 639 women at the Mayo Clinic show,
prophylactic mastectomy can save lives. At the same time, however, it does not
provide absolute certainty because seven women got breast cancer even after a



prophylactic mastectomy, and for the vast majority of women treated, the
treatment led to a loss in quality of life without a prolongation of life.

TABLE 5-4: Reduction in breast cancer mortality resulting from prophylactic
mastectomy (Hartmann et al., 1999).

 Deaths (per 100 women)

Treatment High-risk group Moderate-risk group

Prophylactic mastectomy 1 0

Control (no mastectomy) 5 2.4

Conclusions

Breast cancer is a fairly unpredictable disease, with some tumors growing quickly
and others so slowly that they never would cause any symptoms; and there are
yet others in-between. In making a decision about breast cancer screening,
women face a situation in which the illusion of certainty and all three kinds of
innumeracy interact. The illusion of certainty is fostered by physicians who
routinely present patients with a choice between certainty and risk, although the
real choice is always between two risks, namely, the risks of screening and those
of not screening. The illusion of certainty is fueled by leaflets distributed by
health organizations that report the benefits of screening without mentioning its
hazards. Ignorance of risks seems to be the rule rather than the exception: for
instance, the massive number of false positives is rarely remarked upon, nor is
the existence of nonprogressive cancers where early detection has no benefits,
only costs. Furthermore, benefits are often communicated in terms of relative
risk reduction, which impress and mislead laypeople. As a result, knowledge of
the benefits and costs among women is disturbingly low, and informed consent
is hardly possible. Finally, the accuracy of mammography is often
communicated in terms of probabilities, which befuddles the minds of most
physicians—not to mention their patients.

Of course, innumeracy is only one factor perpetuating this deplorable state of
affairs in modern medicine. There are also institutional factors such as



physicians’ attempts to avoid being sued, conflicts of interest within health
organizations that want both to inform patients and to get them to participate in
screening, and—last but not least—emotional reasons such as many patients’
preference for reassurance over realistic information.

Of the various means capable of changing this state of affairs—legal,
professional, and other—the tools for combating innumeracy are the most cost-
effective and easiest to use. These tools include transparent methods of risk
communication and mental defogging. Once insight has replaced the
innumeracy that now prevails, calls for reform may bring about the necessary
institutional and professional changes.



Perform all [these duties] calmly and adroitly, concealing most things
from the patient while you are attending to him. Give necessary orders
with cheerfulness and serenity, turning his attention away from what is
being done to him; sometimes reprove sharply and emphatically, and
sometimes comfort with solicitude and attention, revealing nothing of
the patient’s future or present condition.

Hippocrates

6

(UN)INFORMED CONSENT

The nineteenth century saw a struggle among three different visions of the
physician: the artist, the statistician, and the determinist. The French medical
professor Risueño d’Amador, for one, promoted the vision of the physician as an
artist who relies on medical “tact” and his intuitions about the individual
patient. His rival Pierre-Charles-Alexandre Louis, in contrast, had little respect
for medical tact and wanted instead to see the evidence. Louis became famous
for rejecting the established doctrine of bloodletting as a medical treatment. By
collecting data, he showed that slightly more people who were bled died than
people who were not, concluding: “We shall hear no more of medical tact, of a
kind of divining power of physicians.”1

At that time, using statistics to test the effectiveness of medical practices was
revolutionary. The idea was inspired by the statistical methods of Pierre-Simon
Laplace in astronomy and Adolphe Quetelet in social science. But statistical
evidence was frowned upon not only by medical “artists.” The French
physiologist Claude Bernard rejected the images of both the physician-artist and



the physician-statistician. For Bernard, science meant certainty. He ridiculed the
use of statistical information:

A great surgeon performs operations for [kidney] stone by a single
method; later he makes a statistical summary of deaths and recoveries,
and he concludes from these statistics that the mortality law for this
operation is two out of five. Well, I say that this ratio means literally
nothing scientifically and gives us no certainty in performing the next
operation.2

Averages were, for Bernard, no substitute for the laws that determine each
individual case, and a true determinist would settle for nothing less. The way to
discover these laws, in this view, was by experimentation, not the use of
statistics. In the nineteenth century, statistical data were still considered
antithetical to the scientific method. Whereas science was about certainty,
statistics was about uncertainty; therefore, statistics was not a proper scientific
tool. The German-Hungarian physician Ignaz Semmel-weis’s statistical studies
of childbed fever and scurvy are as legendary as the reluctance of the relevant
authorities to enact the preventive measures that his statistics suggested. Unlike
in physics, statistical thinking emerged slowly in medical diagnosis and
treatment.

The distinction that Bernard drew between statistics and experimentation
was finally closed in the 1920s and 1930s, when the English statistician Sir
Ronald Fisher united statistics and experiment into what he called the “scientific
method.” The medical statistician Austin Bradford Hill pioneered the
application of Fisher’s randomized control experiments to randomized trials in
medicine and was knighted for this achievement in 1961. Praised for its
“concern for the welfare of the individual,” his work reconciled medical statistics
with experimentation, thereby reconciling the aggregate with the individual.3

These visions of the physician have shaped today’s conflicting attitudes about
who is entitled to make medical decisions. The physician? The patient? Both?
For physicians who see themselves as artistic virtuosi of medical tact, the patient
is an uninitiated audience who may applaud, but not participate in, decision
making. After all, a conductor would not ask his audience for advice on how to



play Beethoven. Consistent with the image of the physician-artist, doctors made
virtually all the decisions; patients felt reassured and did what they were told.
The patient’s body was treated as if it were the property of the doctor, who
decided whether it was to be given drugs or subjected to surgery. Some
physician-artists did not even allow patients to look at their own medical
records.4

Today, medical decision making is changing; patients have become more and
more involved. This change was marked by the publication of the book The
Silent World of Doctor and Patient by a Yale physician, Jay Katz. When the book
appeared in 1984, surgeons almost uniformly attacked Katz’s view that patients
should have a say in what happens to their bodies. The magnificent vision of the
physician as an artist was at odds with the idea of an informed and mature
patient.

Bernard’s deterministic ideal has left a different mark on medical decision
making. Physicians who believe in this ideal see medical decisions as choices
between certainty and risk. The book Medical Choices, Medical Chances, written
by a team led by Dr. Harold Bursztajn of Harvard Medical School, however, has
been influential in making clear that medical choices are almost never between
certainty and risk, but rather between two risks. Tests and treatments are often
inconclusive and can have side effects, and certainty is usually out of reach.

The book opens with the case of a 21 -month-old boy who was admitted to a
leading American teaching hospital. The boy, who had an ear infection, was
pale, withdrawn, and severely underweight. Though starving, he often refused to
eat. The team of well-meaning doctors who treated the boy believed that its
responsibility was to identify the cause of his illness with “certainty.” Although
they considered all actions not directed toward this goal to be risky, they saw no
serious risk in attempting to reach certainty through relentless testing, which
required repeatedly drawing blood from the emaciated child. Once the
diagnostic machinery was turned on, distinguished specialists performed
numerous biopsies, six spinal taps, and a host of further tests—many of them
designed to diagnose what were then untreatable diseases. The doctors felt they
couldn’t take the chance of failing to identify the cause of the boy’s illness. What
did the tests reveal? Nothing certain. Between each invasive test and the next,
however, the little boy refused food more and more often, and after six weeks of



a struggle for certainty, he died.5 In an uncertain world, certainty can be a
dangerous ideal.

Louis’s vision of the physician who bases diagnostic and treatment decisions
on statistics, on the other hand, lends itself to the development of a type of
doctor-patient interaction in which both parties can discuss what to do on the
basis of the available evidence and the patient’s preferences. The modern
descendent of this vision has been termed evidence-based medicine. Fortunately,
an increasing number of physicians practice evidence-based medicine. That is,
they base their diagnostic and treatment decisions on the available evidence
rather than on local clinical procedure and personal preference. Ideally, the
physician and the patient decide on medical care together, with the physician
being the expert on possible treatments and the patient the expert on what she
or he wants and needs.

Unfortunately, real medical decision making often fails to live up to this
laudable ideal. It is telling that the term “evidence-based medicine” had to be
coined at all—think about a group of natural scientists in need of promoting
evidence-based physics. A representative of the World Health Organization
recently estimated that only 40 percent of medical practitioners in the United
States choose treatments for their patients on the basis of scientific evidence; the
others use treatments that are possibly ineffective. One reason for the reluctance
in medicine to rely on evidence—which persists today, more than 100 years after
Bernard—is that many physicians still have difficulties drawing diagnostic
inferences from statistics.

Informed Consent

What do physicians think about informed consent and shared decision making?
Below, the second part of the discussion among the 60 physicians, introduced in
Chapter 2, shows that their opinions differ radically.

President: Medicine today still resembles the church in the sixteenth
century. In surgery, it’s mostly men, they speak a strange language, and
their clients are reassured after confession. The men wear strange
wardrobes and perform ritualistic operations on the appendix. What we



need is a reformation. Martin Luther brought the Bible to the people by
translating it from Latin into German. We have to bring the evidence to
the patients by translating relative risks and other confusing language
into natural frequencies and transparent language.

Organizer: Let me expand. A main target of criticism for the Reformation
was the buying of indulgences, where people were made to believe that
they could buy God’s absolution of every sin. This is what priests told
them, and people believed it because they had no access to the Bible
itself. Today’s analogy is the medical business, where patients are made
to believe that they can buy a cure for every disease. And there is a
second parallel: new information technology. The printing press was the
vehicle of the Reformation; it spread the word translated by Luther to
the people. For the first time, everyone could read the text rather than
depend on what a priest said. Today we have a second revolution in
information technology: the Internet. The Internet allows access to
medical information that was difficult to obtain before. Noncommercial
groups of physicians, such as www.cochrane.org, distribute the
information patients need to know over the Internet.6 Luther leveled the
disparity between priest and layperson, the initiated and the ignorant.
The Internet can help us to level the disparity between the physician and
the patient, the infallible and the uninformed. This is my vision of a
reformation: Have doctors making decisions about treatments use the
best available evidence and consider the patients’ goals.

Gynecologist: Well, I agree with this vision, but my reality is different. I tell
women about costs and benefits so that they can make up their minds.
But few are interested in the numbers—most decide irrationally. This
woman’s neighbor had breast cancer—this is why she goes to be
screened.

Professor M: But we do have a responsibility to inform patients. Women are
badly informed about mammography screening. Many physicians just
invoke feelings of guilt to make them participate. “I hope you finally
went. You still didn’t?” Many women even believe that mammography
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could prevent breast cancer, [the way] brushing your teeth prevents
cavities. Feminist groups have fought for screening. But few feminists
have been informed that early detection is not always a benefit—for
instance, when a slow-growing cancer is detected that never would have
progressed into an invasive one. The minimum a patient needs to be told
is the goal of screening, how often false positives and false negatives
occur, the benefits and costs of mammography, and the financial
consequences. A physician must reveal to a woman that he will earn
money from performing a mammogram, but not when she declines it.

Dr. B: But patients do not like the prospect that screening can also be
harmful. There are those who, in despair, fixate on mammography and
think it’s their rescue from breast cancer. It’s their hope.

Professor M: Only 1 out of 1,000 women benefits from 10 years of
screening. In other words, 99.9 percent who participate in screening
have no benefits, only potential harm. However, this is not the complete
story. Swedish studies found that the total number of deaths— from
breast cancer or some other cause—is the same for women who are
screened and those who are not.

Dr. B: Why is this?

Dr. C: Maybe from car accidents on the way to screening.

Professor M: We don’t know. And despite excellent studies on
mammography screening, we continue to live with uncertainty.

Organizer: We must learn to admit that there are different opinions, that
there is no final answer. The question is: Go to screening and run the
risk of possible costs, such as an early detection and treatment of a cancer
without reducing mortality, resulting in a loss of quality of life? Or not
go, betting that I am among the 999 out of 1,000 who will not benefit
from screening, as Professor M pointed out, but run the risk that I am
actually the one woman whose life would be saved?



Dr. A: Physicians in Essen, Germany, amputated one or both breasts of
some 300 women, despite most of them not having cancer. When this
was proven, one physician set fire to his records and then himself. A
Swedish study resulted in 4,000 unnecessary breast amputations. Is all
this worth the 1 in 1,000 benefit?

Dr. C: Why so many unnecessary breast amputations?

Dr. A: In the German case, shoddy diagnoses. But in general, the diagnoses
of histologists are consistent with one another in only 70 percent of
cases.

(Breast cancer specialist shakes head in disagreement.)

Organizer: The pressure on women to participate in mammography
screening is enormous. “Come back after six months, you should have a
follow up mammogram . . .”

Dr. D: But why do you insist on informing? Most patients do not want to
be informed. It’s all psychology. They are anxious; they fear the worst;
they want to be reassured. They do not want to see numbers.

Gynecologist: After a mammogram, it is me, the physician, who is reassured.
I fear not recommending a mammogram to a woman who may later
come back with breast cancer and ask me “Why didn’t you do a
mammogram?” So I recommend that each of my patients be screened.
Yet I believe mammography screening should not be recommended. But
I have no choice. I think this medical system is perfidious, and it makes
me nervous.

Dr. A: Do you yourself participate in mammography screening?

Gynecologist: No, I don’t.

Organizer (addressing the audience): I would like to know how many of you
participate in mammography screening. For men, the question is “If you



were a woman, would you participate?”

Organizer (seeing that no one has raised his or her hand): Hmm. How many
of you do not participate, or would not participate? How many are
undecided?

Organizer (after counting hands): No one here participates herself in
screening. Fifty-five say they do not participate. Five are undecided—
men, who haven’t thought about it.

President: We need to put hard evidence into patients’ minds and let the
illusions out. At the same time, we need to take their anxieties and their
need for rituals seriously. Every doctor practices a bit of voodoo and
mysticism, even the star surgeon. Patients expect this. But most
important, we need to learn to use our brains and finally enter the age of
Enlightenment, which Kant asked us to do long ago. If not perfectly
rational, then at least enlightened.

Dr. F: Informed consent is not just prevented by the anxious patient who
refuses to think. Many physicians do not understand the risks in the first
place, and this may affect women’s emotions and anxieties.

Breast cancer specialist: I admit that until a few years ago, I emotionally
overestimated the power of technology. In my field, doctors focus only
on not overlooking a cancer. When a false positive is revealed after
cutting into a breast, the patient is happy, and the doctor is too. The
patient does not ask, “Why did you cut in the first place? Why not a
needle biopsy or other minimally invasive diagnostics?”

Organizer: The patient says to herself, “Thank God that they looked so
carefully, and now everything is OK.” Invasive surgery with a benign
result relieves the patient and makes her grateful to the physician.

Decision researcher: An AIDS counselor once told me that there were never
any false positives. I asked him, “Would you actually notice a false



positive?” That made him pause, and he thought for a while and
remarked, “Actually, most likely I would not.” Similarly, radiologists do
not follow up on patients, do not keep statistics, and do not conduct
quality control studies. They don’t keep track of which positives turn
out to be false positives. In addition, to talk with physicians about false
positives often evokes anxiety and a defensive attitude on their part.

Dr. A: I sit through many a seminar for continuing education for
physicians, where we explain at length what “sensitivity” [true positive
rate] and “specificity” [true negative rate] mean. Then we ask a
participant what the probability of a positive test is called given the
presence of a disease. One physician answers “specificity.” I say, not
exactly, try again. “Oh,” he corrects himself; “I wanted to say’l minus
specificity.’ ” I say, try again.

President: Few doctors are trained to judge and evaluate a scientific study. I
myself chose to be trained as a surgeon in order to avoid two things:
statistics and psychology. Now I realize they are both indispensable.

The discussion reveals different views on informed consent and shared
decision making. One group of physicians perceive patients as emotional beings
who want reassurance rather than information. Others emphasize that physicians
have a moral obligation to inform their patients, and that the lack of informed
decision making is due not just to emotionally or intellectually handicapped
patients, but also to physicians’ faults, including their innumeracy. Finally, as
Professor M points out, informed consent must also entail the physician’s
revealing when his or her own costs and benefits concerning a treatment differ
from those of the patient. This situation is illustrated clearly in the disturbing
fact that physicians recommend screening to their patients although they do not
participate themselves.

PHYSICIAN AND PATIENT

Is it “natural” that patients are expected to trust their doctors’ judgment without
question, that they have little say in medical decision making and are badly
informed? Although the omnipotent role that physicians play in modern society



has been defended as a long-standing tradition, there is nothing natural about
this form of doctor-patient relationship. For instance, records in Bologna dating
from the late sixteenth century through the seventeenth century reveal a
strikingly different doctor-patient relationship. Patients were expected to pay
only if they were healed.7 The practitioners were contractually bound by “an
agreement of cure” to heal the patient within a specified time and for a specified
sum. This “horizontal” as opposed to “hierarchical” model of the physician-
patient relationship empowered patients. There was a tribunal before which
patients could sue the practitioners, licensed or unlicensed, when they broke the
cure contract. By the end of the eighteenth century, however, patients no longer
received a promise of cure but instead a promise of orthodox treatment and
protection. Payment according to results more or less disappeared with the pro-
fessionalization of modern medicine. The status of American physicians today—
known as “allopaths”—reflects the outcome of a century-long struggle among
competing groups of healers including homeopaths, mid-wives, barber-surgeons,
and wise women. Well into the nineteenth century, American physicians were
little respected and were underpaid. The twentieth century witnessed the
emergence of a powerful medical monopoly and the birth of a highly respected
profession. Jay Katz sees a link between physicians’ historical struggle for
dominance and their relationship with patients today: “Physicians’ quest for
political power mirrors the quest for interpersonal domination of the physician-
patient relationship.”8

The dominance of physicians and submission of patients in modern medicine
began to change when, on October 22, 1957, Justice Absalom F. Bray of the
California Court of Appeals coined the term “informed consent.” A man with
paralyzed legs had sued his physician for failing to warn him of the risk of
paralysis inherent in the treatment for limping that he had undergone. At the
end of his opinion, Justice Bray wrote: “In discussing the element of risk a
certain amount of discretion must be employed consistent with the full
disclosure of facts necessary to an informed consent.”9 His opinion marked the
beginning of the legal history of informed consent. The fact that Bray left room
for “discretion” as well as “informed consent” reflects a tension that still exists
today. Informed consent refers to an ideal practice in which the physician
informs the patient of the risks associated with a treatment, including its side



effects, on the basis of which the physician and the patient jointly decide what to
do. Informed consent is more appropriately called “shared decision making.”
The two parties bring different knowledge to the decision—the physician knows
about diagnostic tools and treatment options, while the patient knows what his
or her goals and values are. For instance, a woman might or might not prefer to
keep her reproductive organs intact at the risk of lowering her life expectancy.
Expressed in general terms, a patient might judge the possible benefits of a
treatment as worth its costs, or the patient might find the costs too high and the
benefits too small to be worth the trouble.

IPHIGENIA

Consider the case of a woman whom Katz called Iphigenia (to protect her
anonymity)—after the classical Greek playwright Euripides’ Iphigenia, who was
saved by the goddess Artemis from sacrifice by her father. The case illustrates
how physicians and patients can make the transition from a relationship
founded on authority to one based on informed consent.10 Iphigenia, a 21-year-
old single woman, discovered a lump in her breast, which a biopsy revealed to be
a malignant lesion. She agreed to a mastectomy, the extent of which her surgeon
would determine by what he discovered during the operation. The surgeon had
not explained the pros and cons of alternative therapies to Iphigenia because he
firmly believed that they all were inferior to surgery. As the day of the operation
approached, however, he began to doubt the wisdom of proceeding without
giving her details about alternatives, particularly radiation therapy. On the
evening before the operation, he went to the hospital and finally told her about
his concerns about remaining silent. After they talked for a long time, Iphigenia
decided to postpone the operation and eventually opted for a lumpectomy
(excision of the tumor only) followed by radiation therapy. At a panel discussion
on the treatment of breast cancer some time later, Iphigenia spoke
knowledgeably about why she had made this decision and movingly expressed
her joy at being able to start her impending marriage physically intact. The
discussion was heated. The physicians defended their preferred treatment and
attacked those defended by their colleagues—just as financial advisors tend to
favor their own methods. Despite the disagreements, however, the physicians
were fairly united in the belief that it was irrational of Iphigenia’s surgeon to



allow her to make the decision whether to have surgery. Even physicians have
trouble deciding which treatment is best, they reasoned, so how can a physician
allow a patient to decide?

NANCY REAGAN

Iphigenia decided for a lumpectomy over a mastectomy. Faced with early-stage
breast cancer, former First Lady Nancy Reagan weighed the pros and cons
differently and decided to have a radical mastectomy. In her words:

At the time of my operation, there were some people, including doctors,
who thought I had taken too drastic a step in choosing the mastectomy
instead of a lumpectomy, which involved removing only the tumor itself
and a small amount of tissue—but also weeks of radiation. I resented
these statements, and I still do. This is a very personal decision, one that
each woman must make for herself. This was my choice, and I don’t
believe I should have been criticized for it. For some women, it would
have been wrong, but for me it was right. Perhaps, if I had been 20 years
old and unmarried, I would have made a different decision. But I’ve
already had my children and I have a wonderful, understanding
husband.11

Not only can values differ from person to person, but they can change over
the course of a lifetime. As soon as physicians agree to share information and
responsibility, patients become more knowledgeable about treatments and
physicians more aware of patients’ values. To use an analogy, the question of
how to build a power plant is a technical one best handled by engineers. The
question of whether and where a power plant should be built, however, is only
partly technical; it is also a social and political question that should not be
decided solely by engineers.

Uninformed Consent

Informed consent is a beautiful ideal, but why is it still so rare? The silent world
between doctor and patient is one reason: Patients often do not know what



questions to ask. The emotional world of the patient is another: Many do not
dare taking an active part in the decision process. And then there is innumeracy
among physicians, which puts informed consent out of reach. The fundamental
building block of the uninformed, immature patient, however, is a world of
illusionary certainty.

THE ILLUSION OF CERTAINTY

Some physicians argue that disclosing the uncertainties of diagnosis and
treatment to patients would be counterproductive because the patients would
not understand them, would not want to know the numbers or want to hear
that treatments have potential hazards as well as benefits— and they might seek
out a physician who offered them certainty instead. In this view, the physician’s
main task is to reassure the patient. According to the physician Jay Katz, until
recently physicians have assumed an attitude of certainty toward their patients,
despite a wide variety of competing treatments for the same ailment. Without
the tools of controlled experiments and statistics, it was difficult to evaluate the
claims of various therapies.12 Every proposed treatment, however reasonable or
absurd, found its enthusiastic adherents. These included surgery, a variety of
medications (mineral, vegetable, and animal), dieting, bleeding, purging,
exorcism, inducing perspiration, the laying on of Queen Elizabeth I’s royal
hands, and applying goat dung. When one treatment fell into disrepute, it was
quickly replaced by another one, which was then touted as the single best one.
Even in medieval times, surgeons removed part or all of diseased breasts, and
leading surgeons accused colleagues who did not remove every bit of tissue for
being too timid in a debate that is still going on today.

Many a physician confronts the patient with an apparent choice between
certainty and risk rather than a choice between risks. Each alternative carries its
own uncertain consequences, which need to be compared for an informed
decision to be made. Consider, for instance, Dr. Standing’s statement that he
would not inform a patient of evidence about errors in mammography and
would perform a biopsy on a patient with a positive mammogram in any case.
This course may sound harmlessly prudent, but for the patient a biopsy carries
costs. In an article in The New Yorker entitled “Whose Body Is It, Anyway?” the
surgeon Atul Gawande related the case of a woman in her 40s whose annual



mammogram revealed an area of “suspicious” calcification in her left breast on
three separate occasions.13 Each time, a surgeon took her to the operating room
and removed the tissue in question. Each time, the tissue proved to be benign.
Now the woman is again confronted with a suspicious mammogram of the same
breast, and the doctor tells her that she ought to have a biopsy to exclude the
possibility of malignancy. She already has three raised scars scattered across the
breast, one of them almost 3 inches long, and so much tissue has been removed
that her left breast is markedly smaller than her right one. Should she really have
another biopsy?

This woman’s choice is between two risks, not between certainty and a risk.
To choose, she needs to know the costs and benefits of each option and to
evaluate these in light of her own goals, which may differ from her physician’s.
And she may have to live with a residual uncertainty, because not everything is
known as precisely as we would wish. The lifeblood of the illusion of certainty,
however, is thinking in black-and-white terms rather than in shades of gray:
“Either my mammogram will be normal, and I do not have to worry about
breast cancer, or it will not be and I will die an agonizing, horrible death.”14

Neither of these two outcomes is truly certain.

DO PATIENTS ASK QUESTIONS?

By definition, informed consent requires an informed patient, not just a
consenting one. However, many patients are poorly informed about risks—and
not only concerning breast cancer. In one study, patients in the waiting rooms of
a Colorado clinic serving army personnel and an Oklahoma clinic serving a low-
income urban population were asked about the standard tests for diagnosing
common illness and other diseases such as strep throat infection, HIV, and acute
myocardial infarction.15 Each patient judged (1) the probability that a person
such as himself has the disease before being tested, (2) the sensitivity of the test,
(3) the specificity of the test, and (4) the probability of his having the disease
given a positive test result. Most patients estimated these four probabilities to be
essentially the same for all the diseases—whether the disease was rare or not and
whether the test was accurate or not. To find out if patients’ ignorance stemmed
from the fact that they had no experience with these diseases, for each illness or
disease the authors looked at only those patients who had been tested or treated



for it or had attended an office visit with a family member or friend who had
been tested or treated for it. In the Oklahoma clinic, the estimates of patients
who had experience with the illness or disease were only slightly more accurate
than other patients’ estimates, and in the Colorado clinic, they were no more
accurate. Even the experienced patients made very inaccurate judgments, which
suggests that their physicians had never explained the risks to them or had done
so in a way that was hard to understand or at least hard to remember.

Do patients ask for information concerning risks that doctors fail to deliver,
or do patients rarely ask for it in the first place? Audiotapes of 160 adult
patients’ visits to doctors in central North Carolina showed that in only one out
of four visits did the patient and physician actually discuss risks. Risk discussion
was defined as any discussion about behavior change, tests, or treatments, and
their future consequences (such as “You could cut your risk of getting a heart
attack in half by . . .”). In the majority of these discussions, the physician stated
the risk with certainty (for example, “You will have a heart attack if you don’t
lose weight”). Only a small proportion of the discussions (about one in six) were
initiated by the patient.16 Moreover, of the 42 patients who said they had
discussed risk with their physicians, only 3 could recall the content of the
discussion immediately after the visit. But the patients did not seem to mind.
More than 90 percent felt that they had had their questions answered, had
understood all that was said, and had enough information.

In short, patients felt that their questions had been answered by the doctor,
although they asked few questions and remembered even fewer answers. This
lack of communication between physicians and patients poses a serious threat to
the possibility of “informed” consent.

GEOGRAPHY IS DESTINY

Too often in health care, “geography is destiny.” For instance, 8 percent of the
children in one community in Vermont had their tonsils removed, but in
another, 70 percent had. In Maine, the proportion of women who have had a
hysterectomy by the age of 70 varies between communities from less than 20
percent to more than 70 percent. In Iowa, the proportion of men who have
undergone prostate surgery by age 85 ranges from 15 percent to more than 60
percent. The Dartmouth Atlas of Health Care documents the surprisingly wide



variability in the use of surgical treatments across all regions in the United
States.17 Why do these regional differences exist? According to the physician
David Eddy, the tendency to follow the local pack is the single most important
explanation for regional variations in medical practice.18 These local customs are
fueled by the uncertainty about the outcomes of many surgical treatments.
Unlike new drugs, which the Food and Drug Administration assures are tested,
surgical procedures and medical devices are not systematically subjected to
evaluation.

Aside from geography, the physician’s specialization all too frequently
determines treatment. The treatment of localized prostate cancer in the United
States, for instance, generally depends on whom the patient visits. A study found
that some 80 percent of urologists recommend radical surgery, whereas some 90
percent of radiation oncologists recommended radiation treatment.19 This
pattern of variation suggests that patients are not generally advised about their
options in a way that encourages them to participate in decision making.

PROSTATE CANCER SCREENING

When the former mayor of New York, Rudolph Giuliani, was diagnosed as
having prostate cancer, he was reported in the newspapers to make a pitch that
all men participate in prostate cancer screening. “I urge everyone to get the PSA
test,” Mr. Giuliani said, “If the PSA is normal or low, you don’t have a problem.
If it’s high, then you have.”20 Screening for prostate cancer is typically
performed using the prostate-specific antigen (PSA) test or digital rectal
examination or both. The case of prostate cancer is a striking example of many
men’s inability to ask the right kind of questions. For example, I had the
following conversation with a friend who is professor of business at a leading
American university:

GG: How did you decide whether or not to participate in PSA screening?

Friend: My doctor told me that I am old enough, that it’s time, so I went.

GG: Did you ask your doctor about the pros and cons of screening?



Friend: What do you mean? The pros are that the test can detect cancer in
an early state.

GG: Did you ask about anything else?

Friend: Not really. The test is so simple, it’s cheap, and you can only
benefit; it can’t hurt.

Note that my friend is an academic who knows how to get information from
libraries and the Internet. But rather than using his brain, he displayed respectful
docility when he consented to screening. He did not look up information, nor
did he ask his doctor the relevant questions: What are the benefits and what are
the costs of prostate cancer screening? If he had looked into the relevant medical
literature, he would have found that there is no evidence that screening reduces
mortality from prostate cancer. In other words, people who take PSA tests die
equally early and equally often from prostate cancer compared to those who do
not. My friend confused early detection with mortality reduction. PSA tests can
detect cancer, but because there is as yet no effective treatment, it is not proven
that early detection increases life expectancy.21

“It can’t hurt,” responded my friend. He simply assumed that screening has
no costs. He erred again; there is no free lunch here. The test produces a
substantial number of false positives, and therefore, when there is a suspiciously
high PSA level, in most of these cases there is no cancer. That means, many men
without prostate cancer may go through unnecessary anxieties and often painful
follow-up exams. Men with prostate cancer are likely to pay more substantial
costs. Many of these men undergo surgery or radiation treatment that can result
in serious, lifelong harm such as incontinence and impotence. Most prostate
cancers are so slow-growing that they might never have been noticed except for
the screening. (See Figure 5-2), which shows that out of 154 people with
prostate cancer, only 24 died of the disease.) Autopsies of men older than 50
who die of natural causes indicate that about one in three of them has some
form of prostate cancer.22 More men die with prostate cancer than from prostate
cancer.

Because of the lack of benefit and the likelihood of harm, the U.S. Preventive
Services Task Force explicitly does not recommend routine screening for prostate



cancer, either using prostate-specific antigen (PSA) or digital rectal
examinations.23 There is currently no evidence that early detection reduces
mortality, whereas the evidence of possible harm due to follow-up diagnosis and
treatment (including incontinence and impotence) is overwhelming. Even when
prostate cancer is detected, the prolongation of life by the available treatments is,
for all stages of prostate cancer, unproven.24 Note that in cases of already
invasive prostate cancer, treatment can reduce pain; but this should not be
confused with reducing mortality. Nevertheless, more and more men are
participating in prostate cancer screening, and largely as a result, the number of
prostate cancer cases reported in the United States has more than tripled since
1990.

“Doctor’s orders!” How, after our conversation, did my friend react? He
shook off his respectful docility and looked up the scientific evidence himself.
Being an economist by training, he made a calculation of how much money
could be reallocated to research effective therapies for prostate cancer if it was
not spent on screening. He had taken the first step.

COLORECTAL CANCER SCREENING

To turn the ideal of informed consent into reality, physicians, not only patients,
need specific education. Ulrich Hoffrage and I have used natural frequencies to
help physicians understand the outcomes of standard tests for colorectal cancer,
phenylketonuria, and Bechterew’s disease.25 I will only report the results for the
hemoccult test here (also known as FOBT, or fecal occult blood test), which is a
standard test for colorectal cancer. The same 48 physicians from Chapter 4—
who had an average of 14 years of professional experience—estimated the chance
of colorectal cancer given a positive hemoccult test in routine screening. Half of
the participants received the information in conditional probabilities, the other
half in natural frequencies. The two representations are given here.

Introduction—All Participants

To diagnose colorectal cancer, the hemoccult test—among others—is
conducted to detect occult blood in the stool. This test is used from a
particular age on, but also in routine screening for early detection of
colorectal cancer. Imagine you conduct a screening using the hemoccult test in



a certain region. For symptom-free people over 50 years old who participate
in screening using the hemoccult test, the following information is available
for this region:

Conditional Probabilities Format—First 24 Participants

The probability that one of these people has colorectal cancer is 0.3 percent. If
a person has colorectal cancer, the probability is 50 percent that he will have
a positive hemoccult test. If a person does not have colorectal cancer, the
probability is 3 percent that he will still have a positive hemoccult test.
Imagine a person (over age 50, no symptoms) who has a positive hemoccult
test in your screening. What is the probability that this person actually has
colorectal cancer? _________percent

Natural Frequencies Format—Remaining 24 Participants

Thirty out of every 10,000 people have colorectal cancer. Of these 30 people
with colorectal cancer, 15 will have a positive hemoccult test. Of the
remaining 9,970 people without colorectal cancer, 300 will still have a
positive hemoccult test. Imagine a sample of people (over age 50, no
symptoms) who have positive hemoccult tests in your screening. How many of
these people actually have colorectal cancer? ______out______of

Figure 6-1 (left side) shows that when the information was represented in
probabilities, there was remarkable disagreement among physicians’ estimates,
which ranged from 1 to 99 percent. The most frequent estimate (50 percent)
was 10 times higher than the correct answer, which only 1 out of the 24
physicians reached when they received the information in probabilities. A few
others came close to it, but for the wrong reasons. For instance, one physician
confused the false positive rate (3 percent) with the probability of colorectal
cancer given a positive test, which happened to be not much larger. Thus, we
observed the same result as for breast cancer screening: When physicians try to
draw a conclusion from probabilities, their minds tend to cloud over.

Did natural frequencies dispel the mental confusion and increase consensus?
Again, yes. When the information was expressed in frequencies, the estimates
were less scattered, ranging from 1 percent to 10 percent (Figure 6-1, right side).



In this group, all of the physicians came up with the correct, or nearly correct,
answer. As with breast cancer screening, physicians’ clouded thinking about
what a positive hemoccult test means can be remedied simply by presenting
statistical information differently than it is presented in standard medical
textbooks.

The answer to the question “What does a positive test mean?” can be
illustrated by drawing a frequency tree (Figure 6-2). Out of every 315 people
who test positive in hemoccult screening, only 15 are expected to have colorectal
cancer, which corresponds to a probability of 4.8 percent. Just as in breast cancer
screening, most hemoccult tests that are performed for purposes of screening and
that turn out positive are false positives. The reason is the same: When a disease
is rare, as is colorectal cancer in the general population, the number of true
positives will be low and most positives will be false (the exact figures depend on
the false positive rate). For instance, one study found that between 94 and 98
percent of patients with positive tests did not have colon cancer.26 Whether
colorectal cancer screening is worth the cost, given this large number of false
positives, rests, as with breast cancer screening, in the values of the patient. The
physician can assist the patient by explaining clearly what a positive test means.



FIGURE 6-1. The impact of representation on colorectal cancer diagnosis.
Forty-eight physicians estimated the chances of colorectal cancer given a positive
screening test. Half of the physicians received the relevant information in
conditional probabilities, the other in natural frequencies. Each point represents
one physician. The ordinate axis shows physicians’ estimates of the probability
or frequency of colorectal cancer given a positive test.



FIGURE 6-2. Frequency tree for colorectal cancer screening. Out of every 315
people with a positive hemoccult test (shown in boldface), some 15 will have
colorectal cancer. This corresponds to a probability of 4.8 percent. (Data from
Gigerenzer, 1996a; Hoffrage and Gigerenzer, 1998.)



Despite the fact that the benefit of colorectal cancer screening seems to be
about as high as that for breast cancer, this type of screening has few advocates
outside the medical profession. Whereas the vast majority of women who are
asked to participate in breast cancer screening comply,27 according to reports
from community screening programs, rates of compliance for the hemoccult test
are only 15 to 30 percent, and even lower for sigmoidoscopy, another screening
test experienced by patients as uncomfortable, embarrassing, and expensive. If
routine hemoccult and sigmoido-scopic screening of all people over the age of
50 were recommended and implemented in the United States, the cost would be
more than $1 billion per year in direct charges.

ANATOMY OF THE MEDICAL MIND

How did the physicians go about solving the diagnostic tasks when they gave
incorrect answers? From their notes, estimates, and subsequent interviews, we
were able to identify most of the intuitive strategies. The reasoning was
strikingly different with probabilities than with frequencies. The two dominant
strategies among physicians who were given probabilities were “sensitivity only”
and “sensitivity minus false positives,” both of which are illustrated in Figure 6-3
for the colorectal cancer task. Physicians who reasoned by the sensitivity-only
strategy inferred that the chance of colorectal cancer given a positive test was 50
percent, since 50 percent was the sensitivity of the test. Physicians who used the
sensitivity-minus-false-positives strategy inferred that the chance was 47 percent,
that is, the sensitivity of the test minus the false positive rate (3 percent).28 In
general, these two strategies lead to gross overestimates of the actual risk of
someone’s having a disease given a positive test result—because both strategies
ignore the disease base rate (0.3 percent) and most diseases are relatively rare.



FIGURE 6-3. How physicians reason. The arrows show which information is
used by the most common diagnostic strategies. For instance, physicians who
use the strategy “sensitivity only” infer that the probability that the patient has
colorectal cancer given a positive test is 50 percent, which is the sensitivity of the
test. Note that physicians’ reasoning strategies change when the information is
presented in natural frequencies (bottom) rather than conditional probabilities
(top). The analysis is based on 48 physicians. (See Hoffrage and Gigerenzer,
1998.)



How consistently did physicians apply these strategies—for instance, did a
physician who used the sensitivity-only strategy to solve one diagnostic task also
use it to solve the others? When confronted with probabilities, the physicians
showed little consistency. For instance, one department chief added the
sensitivity to the false positive rate to infer the chance of cancer given a positive
test, and in the next diagnostic task he multiplied the sensitivity by the disease
base rate. Only 1 out of 5 physicians used the same strategy to solve both
probability tasks that they received, such as the breast cancer and colorectal
cancer tasks. With frequencies, consistency increased: More than half of the
physicians used the same strategy in both tasks.29

Although the physicians were much more likely to answer correctly in the
tasks expressed in frequencies, even there their estimates were sometimes
incorrect. With frequencies, the two most frequent non-Bayesian strategies were
“base rate only” and “positives only.” In the colorectal cancer task, the base-rate-
only strategy leads to the inference that 30 out of 10,000 people with a positive
hemoccult test actually have colorectal cancer, and the positives-only strategy
leads to an estimate of 315 out of 10,000. The first is an underestimation of the
actual risk; the second (about 3 percent) is close to the right estimate, but for the
wrong reason. The two strategies follow a common logic, however: Both focus
on one of the two base rates—either that of the underlying disease or that of the
observable result (a positive hemoccult test). Thus, the use of natural frequencies
not only fosters correct Bayesian inferences but, barring that, encourages the use
of strategies that rely on base rates.

On the basis of physicians’ poor diagnostic reasoning using probabilities,
previous researchers concluded that physicians confuse the two conditional
probabilities, namely, the test sensitivity and the probability of the disease given
a positive test.30 The analysis of the medical mind that Ulrich Hoffrage and I
made provides some empirical evidence for this hypothesis (the sensitivity-only
strategy), but it also reveals that multiple inappropriate strategies—not just this
one—are sometimes used in diagnostic inference. When information is
presented in probabilities, the high variability in diagnostic judgments can be
traced to the high variability in diagnostic strategies.

We also found in our studies that the younger physicians are better at
thinking statistically than their older counterparts. Dr. Standing—the



department chief we met in Chapter 4—was not the only one who, despairing
of his ability to make a diagnostic inference using statistical information, referred
to a daughter or a son as someone who would know better. During one of the
interviews conducted for our study, the 18-year-old daughter of a 49-year-old
private practitioner happened to come in and asked to take the test too. Her
father had worked for 30 minutes and failed on all four diagnostic tasks, shifting
desperately between two strategies (sensitivity-only and base-rate-only). In his
case, even natural frequencies were no help. His daughter, in contrast, solved all
four tasks by drawing frequency trees such as those shown in Figures 4-2 and 6-
2. When she discovered which strategies her father had been using, she gave her
father a quizzical look and said: “Daddy, look, the frequency problem is not
hard. You couldn’t do this either?”

Are physicians aware of their innumeracy? In general, yes, but they tend not
to be aware that proper representations can turn their innumeracy into insight.
A few physicians even celebrate their ignorance, in an attitude reminiscent of the
physician-as-artist. For instance, a university professor who was an ear, nose, and
throat specialist—one of three physicians who declined to participate in our
study—declared, “This is not the way to treat patients. I throw all these journals
[with statistical information] away immediately. One can’t make a diagnosis on
such a basis. Statistical information is one big lie.” However, the majority of
physicians in our studies who declared themselves to be mathematically illiterate
had feelings of regret: “But this is mathematics. I can’t do that. I’m too dumb
for this.” “I can’t do much with numbers. I am an intuitive being. I treat my
patients in a holistic manner and don’t use statistics.” With natural frequencies,
to their own surprise, these self-diagnosed innumerate physicians reasoned as
well as those of their fellows who did not claim to suffer from innumeracy. Their
nervousness and tension turned into relief. “Now it’s different. It’s quite easy to
imagine. There is a frequency; that’s more visual,” said one, and another said, “A
first grader could do this. Wow, if someone couldn’t solve this!”

With reference to the desirability of informed consent, it must be realized
that such consent is about more than just signing a form; it is about risk
communication. This fact should have consequences for medical training.31

Every medical student needs to be trained in the use of mind tools that facilitate
communication. And judging from the feedback we got from the physicians in



our studies, such training would not be unwelcome. After participating, one of
them wrote to us: “Participating in this study and learning its results is of great
importance to me professionally. I’m sure that from now on I will represent
medical data to myself in frequencies rather than just glancing over them or
being content with some vague idea.”

Why Informed Consent Is Not Easy to Achieve

Once I had such a stiff neck that I could hardly turn my head. My chiropractor
sent me to a radiologist, Dr. Best,32 for an X ray. Dr. Best, a gentle man with
empathetic eyes, ran a large radiology institute that also offered mammography
screening. White-clad assistants whirled through the hallways, and the waiting
rooms overflowed with patients. After my X ray was taken, Dr. Best mounted it
on a lighted screen and explained to me what he saw. I soon realized that my
chiropractor had told him on the phone that I study decision making under
uncertainty. Dr. Best was overjoyed to have someone to talk to about his work:
“You cannot imagine how boring my life is, the same routine every day—X rays
for 25 years.” He complained about patients’ fears of X rays, about having to
perform all kinds of analyses on patients to protect himself from being sued for
malpractice, and about many patients’ inclination to delegate every bit of
decision making to the doctor.

As we discussed fear and responsibility, I took the opportunity to ask him
what he would do in the following situation: “Imagine I were a woman in her
early 40s who came to your institute for breast cancer screening— not because I
had any symptoms, just because my regular doctor told me to do so every other
year. Now suppose that the mammogram came out positive, and I wanted to
know what the chances are that I actually have breast cancer. What would you
tell me?” “That it looks like you have breast cancer, but it’s not certain,”
answered Dr. Best, who went on to emphasize the importance of empathizing
with patients. His credo was never to deny the patient hope. I reminded him of
the actual probabilities involved (see Chapter 4), which he knew, and explained
that it follows that only about 1 out of 10 asymptomatic women who test
positive actually have breast cancer. He looked at me and said: “Hmm. . . . You
know, at my university, we never learned how to think with probabilities. And



now, just look in the waiting room—I don’t have time to read professional
journals after a 12-hour workday.” And on he went to explain how to
distinguish between patients who can bear the report of a positive test and those
with whom he has to be more sensitive about disclosing the diagnosis.

After 15 minutes of talking about patients’ personalities and physicians’
empathy, I posed the question about breast cancer screening to Dr. Best again.
“What would you tell a woman in this situation?” I asked. “The truth,” he
answered. “What is the truth?” I rejoined. “That it looks like she has breast
cancer.” “But 15 minutes ago,” I reminded him, “we just agreed that only about
1 in 10 asymptomatic women who test positive actually has breast cancer, that
is, an asymptomatic woman who tests positive is more likely not to have breast
cancer than to have it.” “That is also true,” Dr. Best replied. “We physicians
should be taught about these things. But when can I take the time? It’s all a cost-
benefit question.”

The reader may ask how one could perform mammography screening for 25
years and not notice that most women who test positive do not have breast
cancer. Similarly, the majority of physicians in Figure 4-1 (left side) also did not
seem to have noticed. If physicians and patients do not know the facts, there
may be consent, but not informed consent. The possibility of informed consent
does not—or does not only—depend on the patient’s intelligence, maturity, and
ability to cope; it also depends on the constraints under which physicians work.
The 12-hour workday of Dr. Best is such a constraint. What are the major
constraints that prevent physicians such as Dr. Best from realizing that most
women who test positive do not have cancer? More generally, what are the
institutional constraints that work against the ideal of informed consent?33

Division of labor. First, there is a division of labor, which can obstruct
the flow of information. Radiologists who perform mammography
examinations typically do not find out whether a patient later develops
cancer. Most health care systems do not monitor and disseminate follow-
up information, and there is little incentive for physicians to try tracking
down the numbers themselves. This explanation applies to radiologists,
such as Dr. Best, but not, however, to gynecologists, who do see the
relevant information.



Legal and financial incentive structure. The second reason concerns
professional fear and pride, and the legal and financial incentives
associated with it. The error physicians fear most is to miss a cancer—
the emotional distress at having had the power to detect a cancer and
missing the opportunity. A miss can damage their reputation; fellow
physicians may take notice. Equally important, a miss also makes them
vulnerable to being sued. Erring on the side of overestimating the
chances of cancer protects physicians from being sued because it means
they will rarely miss one. At the same time, this policy brings in more
revenue to hospitals and private practices, owing to additional diagnoses
and treatment. The costs of this policy—a large number of false positives
and their potential physical, psychological, and monetary costs to the
patient —vanish in the face of the physician’s fear of missing a cancer.
As the organizer of the earlier discussion mentioned, female patients are
generally grateful for false positives. However, women might be less
grateful for what turn out to be false positives (and less terrified to begin
with) if they were informed that some 9 out of 10 women who test
positive in screening do not have breast cancer in the first place.

Conflicts of interest. The third reason is various conflicts of interest. A
breast cancer specialist told me that he no longer routinely recommends
that women visit a radiologist just “because it is time and every woman
should go.” Instead, he decided to inform each woman about the
benefits and costs of mammography screening so that she can make a
reasoned decision as to whether and when to participate. When he spoke
to a radiologist friend over dinner about his change in policy, the friend
got so upset that he dropped his knife and fork, stood up to leave the
restaurant, and exclaimed, “Where did you get these numbers?” “From
several hundred thousand women studied in America, Sweden, and
other countries,” was the reply. “In America,” the radiologist exclaimed
in anger, “they don’t know how to read mammograms!” But his problem
in reality was not with America; it was economic. For years, he had
screened the women whom breast cancer specialists had sent to him. If
half of the women were to decide not to participate in screening or to



begin participating at a later age, the radiologist would face financial
ruin. I admire the breast cancer expert for his willingness to risk losing
outraged friends for the sake of informing his patients.

Innumeracy. Last but not least, there is innumeracy. Many physicians are
poorly educated in statistical thinking and have little incentive to engage
in this alien form of reasoning. If patients start to look up numbers,
physicians might be forced to do so too.

The first three reasons for many physicians’ failure to inform patients arise
from institutional, professional, and economic structures that are beyond the
power of this book to change. But as for the fourth reason—innumeracy—there
is cause for hope: This book presents highly effective and inexpensive, simple
tools for turning innumeracy into insight. Once a sufficient number of
physicians and patients master these tools, the insight they gain will put pressure
on the institutional, professional, and economic structures to change.



A positive result means antibodies to HIV were found in your blood.
This means you have HIV infection. You are infected for life and can
spread HIV to others.

Illinois Department of Public Health

I will kill myself if I test positive.

A client

7

AIDS COUNSELING

Betty

One day in November 1990, Betty’s phone rang. She lived in Florida and was
45 years old and the mother of three teenage sons; their father had died. She was
asked to come to the local health clinic, where she had had a checkup for a
thyroid problem and a blood sample had been taken for testing. When she
arrived, she was told she had AIDS. The doctors were not sure how long she had
to live. In the months that followed, she watched television constantly to block
out thoughts of the disease. But the thoughts came back during the night: What
dress do I want to be buried in? How are my kids going to take it? How will
people treat them?

In 1992, her doctor put her on didanosine (an anti-HIV replication drug),
which caused vomiting, fatigue, and other side effects. When she joined a local
group for AIDS patients, the counselors noted that her T-cell count had
remained consistently high. They suggested that she be retested. In November



1992, Betty’s phone rang and she was again asked to come to the clinic. When
she arrived, she was told, “Guess what? Your HIV test came out negative!”

Betty sued her doctor, the clinic, and the Florida Department of Health and
Rehabilitation Services, the agency that had performed the initial test. A jury
awarded her $600,000 for two years of pain and suffering.1

David

The Chicago Tribune published the following letter and response on March 5,
1993, under the headline “A False HIV Test Caused 18 Months of Hell”:

Dear Ann Landers,

In March 1991, 1 went to an anonymous testing center for a routine
HIV test. In two weeks, the results came back positive. I was devastated.
I was 20 years old and doomed. I became severely depressed and
contemplated a variety of ways to commit suicide. After encouragement
from family and friends, I decided to fight back. My doctors in Dallas
told me that California had the best care for HIV patients, so I packed
everything and headed west. It took three months to find a doctor I
trusted. Before this physician would treat me, he insisted on running
more tests. Imagine my shock when the new results came back negative.
The doctor tested me again, and the results were clearly negative.

I’m grateful to be healthy, but the 18 months I thought I had the
virus changed my life forever. I’m begging doctors to be more careful. I
also want to tell your readers to be sure and get a second opinion. I will
continue to be tested for HIV every six months, but I am no longer
terrified.

David in Dallas

Dear David:

Yours is truly a nightmare with a happy ending, but don’t blame the
doctor. It’s the lab that needs to shape up. The moral of your story is



this: Get a second opinion. And a third. Never trust a single test. Ever.

Ann Landers

David does not say what, if anything, his doctors told him about the chances
that he actually had the virus given the positive HIV (human immunodeficiency
virus) test result. He seems to have inferred that a positive test meant that he had
the virus, period. Betty was simply told that she had AIDS. Susan, the single
mother we met in Chapter 1, was told that a positive test meant, with absolute
certainty, that she had HIV. Susan had unprotected sex with an HIV-infected
person, believing that it did not matter because she already had the virus; Betty’s
life turned into two years of suffering; David contemplated suicide—only to
learn the hard way that HIV tests can result in false positives.

What does a positive HIV test mean? A negative result? And how can a
counselor communicate this to a client, so that he or she understands the result?
In this chapter, I address these questions for the testing of people who do not
practice risky behavior, such as the use of IV drugs. First, however, let us have a
closer look at the test, the disease, and the social stigma attached to HIV
positives.

HIV and AIDS

When is a test result declared positive? HIV testing typically involves the
following sequence. The first test, called the ELISA (enzyme-linked im-
munoabsorbent assay), is designed to detect antibodies against HIV in blood
samples. It was originally used to screen donated blood, where maximizing test
sensitivity (the true positive rate)—at the cost of an increased false positive rate
—was imperative. If the result is negative, then the client is notified that he or
she is HIV-negative. If the result is positive, then at least one more ELISA
(preferably from a different manufacturer) is conducted on the sample. If the
result is still positive, a Western blot test, which is more expensive and time-
consuming to conduct than ELISA, is performed. If the Western blot is also
positive, the client is notified that he or she is HIV-positive. In some cases, a



second blood sample is obtained and analyzed before the client is notified.2 The
exact procedure varies across institutions and countries.

AIDS (acquired immune deficiency syndrome) is defined primarily by a
severe immune deficiency. Unlike other diseases, it has no constant, specific
symptoms. Once the immune system has begun to malfunction, a broad
spectrum of health complications can set in, and there are some 26 opportunistic
infections known. If a person tests positive for HIV and has one or more of these
infections, she or he is diagnosed with AIDS. AIDS is the final stage of a viral
infection caused by HIV (but individuals can express AIDS for reasons other
than HIV). HIV is a retrovirus—that is, a virus that inserts its genetic material
into that of the human host cell, probably for the lifetime of the host. It destroys
the T cells in the immune system. Two strains are distinguished, HIV-1,
discovered in 1983 and the cause of most AIDS cases worldwide, and HIV-2,
discovered in 1987 in West African women. HIV-2 is rare in the United States
and in Europe. HIV-2 seems to be less harmful to the immune system and
reproduces more slowly.3

Is there a cure? Not at present. Some of the problems associated with finding
a cure can be illustrated by a comparison with the syphilis epidemic in the early
part of the twentieth century. The syphilis campaigns closely paralleled today’s
AIDS campaigns. There were educational programs to reduce high-risk sexual
behavior, scare tactics were spread through the media, and serological testing was
made mandatory before one could obtain a marriage license in certain states in
the United States. All of these measures, however, had little effect on the spread
of the epidemic. By the 1930s, almost 1 in 10 Americans was infected with
syphilis. The syphilis epidemic was finally brought under control—not by
changes in human sexual behavior, but by the discovery of penicillin, a cheap
and effective drug.

The important difference between syphilis and AIDS is that the bacterium
that causes syphilis (a spirochete) does not mutate and change as rapidly as HIV
does. When HIV replicates itself, it makes so many copying errors that by the
time a person is diagnosed with AIDS, that person may have a billion or more
HIV variants in his or her body. Some of these mutations will weaken HIV and
expose it to attack by the immune system; others will strengthen HIV, increasing
its chances of evading the immune system. This rapid Darwinian-type evolution



of the virus seems to exceed the capacity of the immune system to recognize and
respond to it, and it helps the virus become resistant to drug therapies. Between
the time of the infection and the illness itself, there is an asymptomatic phase of
ten to twelve years on average; however, this may not be a real latency phase, but
a time of continuous struggle between HIV and the immune system, with the
balance slowly shifting in favor of the virus.4

There is no cure, but there is hope. Drugs that interfere with the virus’s
ability to replicate have been developed. Because the virus can rapidly become
resistant to each of them, a combination of drugs is used. This so-called AIDS
drug cocktail therapy can prolong the life of an infected person, but it is not a
cure. It uses a mixture of drugs, including didanosine and zidovudine. The
downside of this positive development is that these cocktails are very expensive
and are therefore more readily available to the rich than to the many in poverty;
in addition, these drugs have severe to moderate side effects, including burning
pains in the hands and feet, hair loss, and a dangerous swelling of the pancreas.

Screening for HIV is most important for high-risk groups. Although the
possibility of therapy is very limited because of the relentless course of the
disease, there is another reason for screening. Early detection can reduce the
prevalence of HIV. Recall that mammography does not reduce prevalence, only
mortality. HIV, however, is different because it is transmitted from person to
person. Early detection can reduce the spread of the virus, and thereby its
prevalence, if the infected persons disclose their status to their sexual partners
and take precautions.

Stigma and Sexual Ethics

Ryan White was 12 years old when he was diagnosed with AIDS. He was a
hemophiliac, and he lived in Kokomo, Indiana, where the disease was socially
unacceptable. He got the virus from a blood transfusion essential to his survival.
Ryan suffered from the acrimony and lies of his classmates and their parents,
who accused him of spitting on them to infect them with the virus, among
other, similar fabrications. Ryan said he understood that this discrimination was
due to ignorance, fear, and misconceptions about how the virus is transmitted.
His fight to be allowed to attend school, to be able to leave his home and walk



about without being ridiculed, and to become socially acceptable gained him the
respect of millions across the United States. Ryan died in 1990 at the age of 18.

The first AIDS cases in America (in 1981) were gay men. The Reverend Billy
Graham said, “AIDS is a judgment of God.”5 Initial public reaction was denial:
by the media, which were not ready to talk about homosexuality, needles, or
condoms, as well as by gay men, who were not ready to rethink their sexual
liberation won in the 1970s. A 1988 Cosmopolitan magazine article by Robert
Gould assured women that there was practically no risk of AIDS with ordinary
vaginal or oral sex—even when the partner was HIV-positive.

The event that stopped the denial happened in 1985. The Hollywood star
Rock Hudson disclosed in public that he was suffering from AIDS. Other
celebrities followed. The pianist and entertainer Liberace died two years later of
AIDS, and the professional basketball player Magic Johnson announced in
1991, “Here I am saying it can happen to anybody, even me, Magic Johnson.”

Today, the virus is spread worldwide primarily through heterosexual contact.
However, this insight has not halted the stigmatization of the victims. In
Hinton, West Virginia, one woman was killed by three bullets and her body
dumped beside a remote road; another woman was beaten to death, run over by
a car, and left in the gutter. Both had told people that they had AIDS, and the
authorities said that this was the reason they had been killed. In Ohio, a man
with a positive HIV test lost, within 12 days, his job, his home, and—almost—
his wife. The day he was going to commit suicide he was notified that he had
received a false positive test result.

Others choose not to speak up, but rather to deceive or to lie. Many HIV-
infected individuals do not disclose their status to their sexual partners. For
instance, patients who were in primary care for HIV infection in Boston City
Hospital and Rhode Island Hospital were asked whether they had disclosed their
infection to their sexual partners. Forty percent said that they did not tell their
partners, and most of them did not use condoms all the time.6 Women disclosed
more often than men did, and individuals with one sexual partner more often
than those with multiple partners. Southern California college students report
similar deceptive behaviors. Among some 500 sexually experienced students, 47
percent of the men and 60 percent of the women reported that they had been
told a lie in order to be induced to have sex. However, only 35 percent of the



men and 10 percent of the women said that they had lied in order to have sex.
That is, more report having been the victim rather than the perpetrator—which
is only consistent with the extent of lying and deception admitted. One in five
male students said that if he were HIV-positive, he would lie and claim to have a
negative HIV test in order to have sex.7 The virus can take advantage not only of
human lies to spread itself, but also of myths. At the 13th International AIDS
conference in July 2000, Dr. Zweli Mkhize, the health minister of a South
African province, urged for education to combat false but widespread beliefs,
such as that having sex with a virgin will cure AIDS, a myth that has led to
violence and rape.8 This is a contemporary version of the ancient myth of the
power of virgins: only someone so pure can absorb pollution.

The Illusion of Certainty

At a conference on AIDS held in 1987, former Senator Lawton Chiles of Florida
reported that of 22 blood donors in Florida who were notified that they had
tested HIV-positive with the ELISA, 7 had committed suicide. (At that time,
ELISA plus Western blot was not yet standard procedure.) The medical text
documenting this tragedy many years later informed the reader that “even if the
results of both AIDS tests, the ELISA and WB [Western blot] are positive, the
chances are only 50-50 that the individual is infected.”9 This figure applies when
people in a low-risk group—such as blood donors who are screened and selected
for not having infectious diseases—test positive. The unfortunate donors
mentioned by Senator Chiles were tested only with the ELISA, which has a
higher false positive rate than the combination of the ELISA and the Western
blot. Thus, the chance that they were infected was probably even lower than the
50 percent estimated by the text. If the donors had been informed of their actual
risk of having HIV given a positive test, some or all of the seven unfortunate
donors might still be alive today.

Not knowing about the possibility of false positives is one form of the illusion
of certainty, but it is not the only one. The feeling “it cannot happen to me” is
another. According to several studies, half of American teenagers are not worried
about being infected with HIV and consequently do not change their sexual
behavior. At the same time, one out of four new HIV infections occurs in people



between the ages of 13 and 20. As one teenager explained, “When you’re a
teenager, your hormones are raging and you think you’re indestructible. But sex
is how I got AIDS.”10 Two groups, adolescent gay men and teenage women
infected via heterosexual contact, make up some 75 percent of all teenage HIV
infections. Both forms of the illusion of certainty—not realizing that tests can
err and not realizing that one can be vulnerable—have similar consequences:
some people have contemplated suicide, some have committed suicide, and
others have turned to a fatalistic or careless lifestyle that endangered themselves
and others.

We may not be able at present to win the war against the virus with
biological weapons, but we can help people to understand the risks better. Better
understanding can reduce some of the toll the disease takes every year. As the
cases of Susan, Betty, David, and the Florida blood donors indicate, there seems
to be a problem with counseling. I invite you to take a closer look into the
counseling room, at the counseling of people who do not practice high-risk
behavior.

Low-Risk Clients

Populations with the highest risk of HIV infection are homosexual men,
intravenous drug users, heterosexual partners of intravenous drug users,
hemophiliacs, and children of HIV-infected mothers. However, a large
proportion of people at high risk choose not to be tested, whereas those at low
risk increasingly undergo HIV tests. In the United States alone, about 50
million blood and plasma samples are tested each year.11 About 60 percent of
the general population in Switzerland has had at least one HIV test.12 A large
number of these are people engaging in low-risk behavior.

People at low HIV risk have HIV tests for various reasons: voluntarily,
because they want to find out whether they are infected before starting a
relationship, getting married, having children, or for other reasons; and
involuntarily, because they are blood donors, immigrants, applicants for health
insurance, military personnel, or members of other groups required by law to
take the test. For instance, a friend of mine and her fiancé chose to be tested for
HIV before they got married—just to be sure. The Swedish government has



encouraged voluntary testing to the point that “people who are unlikely to be
infected are the ones who take the test, in droves.”13

Involuntary testing is a legal possibility in several countries, and insurers can
exploit this to protect themselves against losses. For instance, in 1990, Bill
Clinton, then governor of Arkansas, had to take an HIV test to get his life
insurance renewed. In the late 1980s, Illinois and Louisiana required couples
applying for marriage licenses to be tested for HIV, and disclosed the results to
both partners. These programs incurred great social and financial cost; they
falsely identified some people as being infected with HIV, resulting in broken
engagements, aborted pregnancies, and psychological distress.14 The American
Medical Association has endorsed mandatory HIV testing of all pregnant
women and newborn babies, and New York, in 1996, was the first state to pass
legislation mandating HIV testing of newborns—known as the “Baby AIDS”
bill.15 Compulsory testing has been forced by courts on individuals, and by
governments on prisoners, prostitutes, and persons seeking to immigrate. People
at low risk may even be subjected to HIV tests without their knowledge—for
instance, large companies in Bombay reportedly tested their employees for AIDS
without telling them; when the tests came out positive, the employees were fired.

Counseling people at low HIV risk requires giving particular attention to
false positives, that is, to the possibility that the client may receive a positive
HIV test result despite not being infected. The reason is that the lower the
prevalence (base rate) of HIV in a given group, the larger the proportion of false
positives among the positive results. In other words, if someone with high-risk
behavior tests positive, the probability that he is actually infected with HIV is
very high, but if someone in a low-risk group tests positive, this probability is
considerably lower.

What Does a Positive Test Mean?

A number of years ago, as a citizen of Germany, I applied for a U.S. green card
so that I could accept a professorship at the University of Chicago. The U.S.
immigration office demanded that I have blood taken for an HIV test and
informed me that a positive result would mean a denial of the green card. So one
morning I drove to the U.S. consulate in Frankfurt to have the test done. On



the way, I asked myself, How likely is it that a man who tests positive for HIV
(ELISA and Western blot test, one blood sample) actually has the virus? At this
time, I had the following information concerning German men with no known
risk behavior:

About 0.01 percent of men with no known risk behavior are infected with
HIV (base rate). If such a man has the virus, there is a 99.9 percent chance
that the test result will be positive (sensitivity). If a man is not infected, there
is a 99.99 percent chance that the test result will be negative (specificity).

What is the chance that a man who tests positive actually has the virus? Most
people think it is 99 percent or higher—however, their minds are clouded by the
probabilities. One way to find the answer is to take pencil and paper and insert
these probabilities into Bayes’s rule—but I was driving. Even on the autobahn,
however, it is easy to mentally transform this information into natural
frequencies:

Imagine 10,000 men who are not in any known risk category. One is
infected (base rate) and will test positive with practical certainty (sensitivity).
Of the 9,999 men who are not infected, another one will also test positive
(false positive rate). So we can expect that two men will test positive.

How many of the men who test positive are actually infected? Using this
mental representation, I could easily see that my chances of having the virus—
given a positive test result—would be approximately 1 in 2, or 50 percent. The
tree in Figure 7-1 illustrates this result. That is, testing positive for HIV would
be no reason to contemplate suicide or a move to California, nor should such a
result by itself be sufficient to bar entry to the United States. It would be a
reason to have another test with a new blood sample.

How could Susan, Betty, and David have been spared their nightmares? How
could the suicides in Florida have been prevented? The answer is, by counselors
using the same transparent risk communication as I did while driving. If a client
had practiced risky behavior—for example, if David were homosexual and
belonged to a group with a 1.5 percent base rate of HIV infection—



transparency could be achieved in the same way. In that case, the physicians
might have explained:



FIGURE 7-1. What does a positive HIV test mean? Out of 10,000 men with
no known risk behavior, two will test positive (shown in boldface) and one of
these will have the virus. (Data from Gigerenzer et al., 1998)



Think of 10,000 homosexual men. We expect 150 to be infected with the
virus, and most likely all of them will test positive. Of the 9,850 men who
are not infected, we expect that 1 will test positive. Thus, we have 151 men
who test positive, of whom 150 have the virus. Your chances of not having
the virus are therefore 1 out of 151, that is, less than 1 percent.

This would be bad news—only slightly better than leaving the counselor’s
office with the belief that it is absolutely certain that one has an HIV infection.
One can see that the meaning of a positive test result depends on the reference
class, which determines the base rate of HIV. If the reference class included only
gay men who practice safe sex, the chances of not having the virus after a
positive test result would be better.

What about Ann Landers’s comment? Her advice to “get a second opinion”
is right to the point. But her response that David should not blame the doctor
but rather the lab overlooks the fact that whatever the reasons for false positives,
doctors should inform patients that false positives occur and should say about
how often. Some, but not all, false positives can be traced to laboratory errors,
which include blood samples being confused or contaminated in the lab and
errors when entering the data into the computer (as in Susan’s case in Chapter
1). False positives can also result from certain medical conditions that have
nothing to do with HIV, such as rheumatological diseases, liver disease, various
cancers, malaria, and alcoholic hepatitis.16 The estimates of a sensitivity of 99.9
percent and a specificity of 99.99 percent are the best I know of for combined
ELISAs and Western blot (one blood sample), but they are approximations.17

Is the inadequate counseling that Susan, Betty, and David seem to have
received an exception, or is it the rule? How do professional AIDS counselors
communicate risks to their clients?

Inside the Counseling Room

I have been lucky in having not only smart students, but also brave ones. To
find out firsthand how risk is communicated, a student of mine, Axel Ebert,
volunteered to go undercover to 20 public health centers to have 20 HIV tests.18

The centers were located in 20 German cities, including the three largest



German cities of Berlin, Hamburg, and Munich, and they offer free HIV tests
and counseling to the general public. Pretest counseling is mandatory, and this
allowed Ebert to ask the relevant questions, such as “Could I ever test positive if
I do not have the virus? And if so, how often does this happen?”

Ebert first contacted the health centers by phone and made an appointment.
He was able to visit two centers in succession. Then he waited at least 2 weeks to
allow the bruises from the perforation of his veins in both arms to heal. These
pauses were necessary, because needle marks would have suggested to a
counselor that Ebert was a drug addict and therefore in the high-risk category.

Of the 20 professional counselors, 14 were physicians and the others were
social workers. Counseling before HIV testing is intended to help the client
understand the testing procedure, the risks of HIV infection, and the meanings
of a positive and a negative result. A report of the German government explicitly
guides counselors to perform a “quantitative and qualitative assessment of the
individual risk” and to “explain the reliability of the test result” before the test is
performed.19

Ebert asked each counselor the following questions, unless the counselor
offered the information spontaneously:

Sensitivity. If one is infected with HIV, is it possible to receive a negative
test result? How reliably does the test identify the virus if it is present?
False positives. If one is not infected with HIV, is it possible to receive a
positive test result? How reliable is the test with respect to false positive
results?
Prevalence in low-risk clients. How frequent is the virus in my risk group,
that is, among heterosexual men between 20 and 30 years old with no
known risk factor such as intravenous drug use?
Positive predictive value. What are the chances that men in my risk group
actually have HIV given a positive result?

The positive predictive value is the probability of being infected with HIV
given a positive test. During the counseling session, Ebert never used technical
terms such as “positive predictive value” but everyday language, as illustrated
above. When the counselor gave a quantitative answer (a number or a range) or



said that he or she could not give a more precise answer, then Ebert went on to
another question. If the answer was qualitative (for example, “fairly certain”) or
if the counselor misunderstood or avoided answering the question (for example,
“don’t worry, the test is very reliable, trust me”), then Ebert asked for further
clarification and, if necessary, repeated the request for clarification one more
time. If the third attempt failed, he did not push further, because some
physicians get defensive or angry when clients continue to insist on clarification.
When Ebert asked about the prevalence of HIV and about the positive
predictive value, he always reminded the counselor of his low-risk status (a 25-
year-old heterosexual man who does not use intravenous drugs and has no other
known risk factors).

Ebert used a coding system to record the relevant information in shorthand
during each counseling session. After each session but three, he had an HIV test
performed. In two cases he would have had to wait several hours to have the test,
and in one case the counselor suggested that he sleep on it before deciding
whether to be tested. Investigating AIDS counselors’ behavior without telling
them that they are being studied raised ethical questions; we, therefore, obtained
the clearance of the Ethics Committee of the German Association of Psychology.
We apologize to the counselors for having employed this covert method, but
believe that the results of this study justify it. They indicate how AIDS
counseling can be improved.

COUNSELING SESSIONS

Let us first look at a few individual counseling sessions and then at the overall
results. Session 1 took place in 1994 in a public health center in a city with a
population of about 200,000. Ebert’s questions are in italics and abbreviated
using the technical terms. The counselor’s answers are marked in the subsequent
text. If there is more than one answer to a question, these are answers to Ebert’s
clarifying questions.

Session 1: The Counselor Was a Female Social Worker

Sensitivity?



• False negatives really never occur. Although, if I think about the
literature, there were reports of such cases.

• I don’t know exactly how many.

• It happened only once or twice.

False positives?

• No, because the test is repeated; it is absolutely certain.

• If there are antibodies, the test identifies them unambiguously and
with absolute certainty.

• No, it is absolutely impossible that there are false positives; because it is
repeated, the test is absolutely certain.

Prevalence?

• I can’t tell you this exactly.

• Between about 1 in 500 and 1 in 1,000.

Positive predictive value?

• As I have now told you repeatedly, the test is absolutely certain.

The counselor was aware that HIV tests can lead to a few false negatives, but
incorrectly informed Ebert that there are no false positives. Ebert asked for
clarification twice, in order to make sure that he correctly understood that a false
positive is impossible. The counselor asserted that a positive test result means,
with absolute certainty, that the client has the virus; this conclusion follows
logically from her (incorrect) assertion that false positives cannot occur. In this
counseling session, Ebert was told exactly what Susan had been told by her
Virginia physicians: If you test positive, it is absolutely certain that you have the
virus. Period.

The next session took place in a city with a population of about 300,000.



Session 2: Counselor Was a Male Physician

Sensitivity?

• When there are enough antibodies, then the test identifies them in
every case. Two tests [ELISA and Western blot] are performed; the
first test is in its fourth generation and is tuned to be very specific and
sensitive. Nevertheless, it is tuned in such a way that it is more likely to
identify positives than negatives.

• 99.8 percent sensitivity and specificity. But we repeat the test, and
when it comes out positive, then the result is as solid as cast iron.

False positives?

• With certainty, they do not occur; if there are false results, then only
false negatives, occurring when the antibodies have not yet formed.

• If you take the test here, including a confirmatory test, it is extremely
certain: in any case the specificity is 99.7 percent. This is as solid as
cast iron. We eliminate confusion by using two tests.

Prevalence?

• The classification of individuals into risk groups is now outdated;
therefore one cannot look at this that way.

• I don’t remember this. There is a trend in which the virus is spreading
into the general public. Statistics are of no use for the individual case!

Positive predictive value?

• As I already have said: extremely certain, 99.8 percent.

This counselor initially denied the existence of false positives. Unlike the
counselor in Session 1, however, he changed his mind when the client asked for
clarification and estimated the false positive rate for the combination of ELISAs
and Western blot to be 0.3 percent (this follows from a specificity of 99.7



percent). This rate is much higher than the literature indicates. When the
counselor estimated the positive predictive value, he confused it with the
sensitivity, as reflected by the phrase “as I already have said.” As a consequence,
the information he gave is contradictory: it is internally inconsistent. We can see
through this confusion by translating this counselor’s probabilities into natural
frequencies, using as the base rate (which he did not specify) the median
estimate of all counselors, 1 in 1,000. Think of 1,000 low-risk male clients. One
has the virus and will test positive with practical certainty. Of the remaining 999
uninfected men, 3 will test positive. Thus we expect that out of 4 men who test
positive, only 1 has HIV. One in four is not 99.8 percent.

Unlike the first counselor, who suffered from an illusion of certainty, the
second counselor did not deny the existence of false positives. However, he did
not know how to express the risks so that he and his clients could understand
them. His way of talking about risk was to use conditional probabilities,
expressed as percentages, and his mind was clouded. This counselor did not even
realize that his figures were impossible.

The phrase “when the antibodies have not yet formed” refers to the window
period, that is, the time interval between infection and the formation of a
sufficient number of antibodies to be detected by the tests. For instance,
infection by sexual intercourse has an average window period of about 6
months.20 During this period, false negatives are likely.

Session 3 took place in a city with more than 1 million inhabitants.

Session 3: The Counselor Was a Female Physician

Sensitivity?

• The test is very, very reliable, that is, about 99.98 percent.

False positives?

• The test will be repeated. After the first test, one does not speak of
positive, only of reactive. When all tests are performed, then the result
is certain.

• It is hard to say how many false positives occur.



• How many precisely? I would have to look in the literature to see if I
could find this information there.

Prevalence?

• That depends on the region.

• Of the circa 67,000 infected people in Germany, 9 percent are
heterosexual.

• In this city we have 10,000 infected people, that is, 1 percent of the
population. But these are only numbers that tell you nothing about
whether you have the virus or not.

Positive predictive value?

• As I already mentioned, the result is 99.98 percent sure. If you receive
a positive result, you can trust it.

As in the previous session, the counselor at first suggested that there are no
false positives. When Ebert asked for clarification, however, she made it clear
that false positives exist, but that she could not say how many. Like the
counselor in Session 2, she confused the sensitivity, that is, the chance that an
infected person receives a positive result, with the positive predictive value, that
is, the chance that a low-risk client who tests positive actually has HIV.

Session 4 was different. This counselor was the only one among all 20
counselors who explained that the proportion of false positives among all
positive tests depends on the prevalence of HIV; that is, when low-risk clients
test positive, the proportion of false positives can be substantial. Session 4 took
place in a public health center in a large city with a population of more than
1,000,000.

Session 4: The Counselor Was a Female Social Worker

Sensitivity?

• Very, very reliable.



• No, not absolutely sure, such a thing doesn’t exist in medicine, because
it’s possible that the virus cannot be identified.

• Close to 100 percent; I don’t know exactly.

False positives?

• They exist, but are extremely rare.

• On the order of one tenth of a percent. Probably less. However, in
your risk group, compared to high-risk groups, false positives are
proportionally more frequent.

• I don’t know the exact value.

Prevalence?

• With the contacts you have had, the infection is unlikely.

• Generally, one can’t say. In our own institution, out of some 10,000
tests in the last 7 years, there were only 3 or 4 heterosexuals, non-drug
addicts, or similar non-risk-group people who tested positive.

Positive predictive value?

• As mentioned, the test is not 100 percent sure. If the test confounds
the [HIV] antibodies with others, then other methods, such as
repeated tests, do not help. And if someone like you does not have any
real risk, then I could imagine that even 5 to 10 percent of those who
receive a positive result will have gotten a false positive result.

The counselors in Sessions 2 and 3 had dropped remarks suggesting that
prevalence had little value for evaluating Ebert’s case. In contrast, the counselor
in Session 4 understood the relationship between prevalence and the positive
predictive value: If a client who is in a group with a low prevalence tests positive,
the danger of a false positive is particularly high. This counselor was also the
only one to explain that false positives cannot be completely eliminated by
repeated testing—for instance, the test may react to antibodies that it confuses



with HIV antibodies. The counselor still probably overestimated the positive
predictive value, but her estimate was on the right order of magnitude.

What information did the rest of the counselors provide, and how did they
communicate it?

TWENTY COUNSELORS

One physician in a small Bavarian city declined to give the client any
information whatsoever concerning the HIV test’s sensitivity, specificity, and
positive predictive value before the result was obtained, which left us with
responses from 19 counselors. Most of the counselors gave the client realistic
information concerning sensitivity, although 5 incorrectly claimed that false
negatives are impossible except during the window period. The exchange of test
results in Susan’s case (Chapter 1) illustrates one source of false negatives; while
she got a false positive, the person whose result was confused with hers got a false
negative. The question concerning the prevalence proved to be a hard one for the
counselors; most could not find the information. Several searched in their files
and brochures for an answer, but found only irrelevant prevalences, such as the
larger number of HIV positives in West Berlin than in East Berlin. “The Wall
was the best condom East Berlin had,” one counselor joked in desperation after
failing to find an answer.

The counselors at the public health centers were not ignorant; on the
contrary, several gave lengthy and sophisticated lectures concerning im-
munodiagnostic techniques, the nature of viruses, antibodies, and proteins, and
the pathways of infection. But when it came to explaining Ebert’s risk of being
infected if he tested positive, most counselors lacked the ability even to estimate,
much less to communicate the risks.

To summarize, the principal deficits in the counseling of low-risk clients
were:

• Nontransparent risk communication. All of the counselors
communicated information in probabilities and percentages rather
than in a format, such as natural frequencies, that helps their clients
(and themselves) attain insight. As a consequence, several counselors
did not notice that the numbers they supplied were internally



inconsistent. For instance, one counselor told the client that the
prevalence of HIV in men like the client was 0.1 percent or slightly
higher, and that the sensitivity, specificity, and positive predictive value
were each 99.9 percent. However, these figures are impossible, as a
frequency representation can quickly demonstrate.

• Denial of false positives. The majority of the counselors (13) incorrectly
assured the client that false positives never occurred. Counselors had a
simple, deterministic explanation for this: Any false positives would be
eliminated through repeated testing, that is, through two ELISAs and
one Western blot test. One counselor claimed that false positives
occurred only in countries such as France, but not in Germany, while
others acknowledged that false positives had occurred in the 1980s, but
not since. In addition to these 13 counselors, 3 others first claimed that
false positives would not occur (for example, Sessions 2 and 3), but
then had second thoughts.

• Failure to understand that the proportion of false positives is higher in low-
risk clients. Only one counselor (Session 4) explained that the lower the
prevalence, the higher the proportion of false positives among positive
tests. In other words, the ratio of false positives to true positives is
particularly high among low-risk people such as Ebert.

• Illusion of certainty. Ten of the counselors asserted incorrectly that if a
low-risk man tests positive, it is absolutely certain (100 percent) that he
is infected with the virus (see Session 1), and 5 others told Ebert that
the probability is 99.9 percent or higher (see Session 3). Based on the
best figures available, this probability is, in fact, around 50 percent (see
Figure 7-1). If Ebert had tested positive and trusted the information
provided by one of these 15 counselors, he might indeed have
contemplated suicide, as had others before him. Two other counselors
successfully avoided answering the question concerning the positive
predictive value. Only three counselors estimated this probability to be
less then 99.9 percent (all three estimates exceeded 90 percent).
Counselors arrived at this prevailing illusion of certainty by one of two



routes. Some confused the positive predictive value with the sensitivity.
Others assumed that there are no false positives because tests are
repeated, which implies that a positive test indicates an infection with
absolute certainty.

The lesson of this study is this: First, counselors need to be trained to
overcome the illusion of certainty, and second, they need to be taught how to
communicate the risks so that clients (and they themselves) understand them.
The following model session illustrates how a counselor could communicate the
meaning of a positive test transparently.

Model Session
The counselor is trained in communicating risks in natural frequencies.

Sensitivity?

• The test will be positive for about 998 of 1,000 people infected with
HIV. Depending on circumstances, such as the specific tests used, this
estimate can vary.

False positives?

• About 1 in 10,000. False positives can be reduced by repeated testing
(ELISA and Western blot), but not completely eliminated. They are
caused by certain medical conditions as well as by laboratory errors.

Prevalence?

• About 1 in 10,000 heterosexual men with low-risk behavior is infected
with HIV.

Positive predictive value?

• Think of 10,000 low-risk men like you. One is infected and will test
positive with practical certainty. Of the 9,999 noninfected men, 1 will
also test positive. Thus we expect that out of 2 men who test positive,



only 1 has HIV. This is the situation you would be in if you were to
test positive; your chance of having the virus would be about 1 in 2.21

Depending on the region and risk behavior, the numbers can be adjusted
accordingly. The counselor might add that in the case of a positive result, a
second blood sample should be tested. A second sample can rule out certain
sources of error, but not all. The same holds for a negative test, as one extreme
case illustrates. In the VA Medical Center in Salt Lake City, a man with HIV
had 35 negative tests within a 4-year period.22 This case is unusual because the
man had a strain of HIV typical to the United States, but the tests could not
detect his antibodies. We cannot expect complete certainty, but we certainly can
improve the present state of affairs with medical and psychological research, that
is, with medical weapons against the virus and with mind tools to support
human reasoning in understanding risks.

Information Leaflets

Do the leaflets and brochures available in public health centers help clients
understand what a positive test means when prevalence is low? To answer this
question, we analyzed 78 leaflets and brochures available on AIDS and HIV
testing in the 20 German public health centers. Some of these were given to Axel
Ebert by the counselors.

The strengths and weaknesses of these brochures mirrored those of the
counselors. Their strength was to provide plenty of relevant and useful
information on how the HIV virus is transmitted and how to live with HIV.
Their blind spots concerned what a positive test means and how this meaning
depends on the risk behavior of the client. Several brochures mentioned that
false negatives and false positives can occur. For instance, in the newsletters
edited by the Federal Center for Health Education, the reasonable
recommendation is made that people at no known risk who nevertheless test
positive should ask for a second test.23 (One wonders what those counselors who
believe that a positive result is definitive will tell such a client.) However, none
of the leaflets and brochures gave estimates of how often false negatives and false
positives occur. Rather, one promised that antibody tests that identify HIV-1



and HIV-2 infections with certainty will be available “in the near future.” None
explained that the chance of being infected given a positive test strongly depends
on risk behavior. The most recent newsletter only stated, “A positive HIV test
only means that an infection with the virus has occurred. It does not necessarily
mean that you have AIDS now and all is lost.”24 Reading this brochure, one gets
the impression that a positive test means being infected with HIV; there is no
distinction between high- and low-risk behavior, and no mentioning of false
positives. A handbook for counselors, in contrast, correctly explained that the
false positive rate is less than 1 in 1,000, but then confused the definitions of
sensitivity and specificity.25 With brochures of such mixed quality, neither
counselor nor client is likely to understand the outcomes of HIV tests.

Do Americans receive better information? An analysis of 21 AIDS leaflets
distributed at the University of Chicago Hospital, the Howard Brown Memorial
Clinic, and other medical institutions in Chicago would suggest not.26 These
leaflets classified various sexual behaviors as safe, risky, or in-between and made
recommendations about how to prevent HIV infection. Some mentioned the
possibility of false negatives in the window period. Not a single one mentioned
the possibility of false positives. For instance, one leaflet “Coping with HIV
Disease,” distributed by the Illinois Department of Public Health, left no room
for uncertainty: “A person who is HIV positive has HIV disease.”

The major difference between the American and the German leaflets was that
the former did not even mention the possibility of false positives. Not having
this basic information makes it hard to understand that the proportion of false
positives is particularly high among low-risk clients who test positive.

Should Anything Be Done?

Yes. Counselors need to be cured of their illusion of certainty and trained in
communicating risks transparently. This will not prevent AIDS, but it will
prevent some of the avoidable consequences. These include the danger that
people with false positives will have unprotected sex with people infected with
HIV, that they may suffer for months or years believing they are infected, and
that they think of committing suicide or actually do commit suicide. As many as



30 percent of people seeking HIV testing at a New York hospital reported
having suicidal thoughts during pretest counseling.27

Since the first AIDS cases were described in 1981, more manpower and
money have been poured into researching HIV than any other disease in history.
Little, in contrast, has been done to educate the general public about what an
HIV test result means. An educated public that understands what a test result
means will be even more crucial the moment self-administered HIV tests
become commercially available. The Food and Drug Administration had for
years opposed home-based HIV testing because of the lack of face-to-face
counseling. In 1996, however, it reversed its position and approved two self-
administered test kits. One of the reasons was the hope that home-based kits
could reach those estimated 80 percent of people with high-risk behavior who
are not willing to visit HIV testing sites.28 These kits can be purchased by
individuals of any age. All one has to do is to prick one’s finger, place three
drops of blood on a card, mail it anonymously to a laboratory, and call in a week
later and punch one’s identification number into the phone. If the test is
positive, one will be connected to a phone counselor; if negative, to an
automatic recording. Given the problems present in face-to-face counseling
documented in this chapter, problems arising from telephone counseling are
likely to be even more serious.

As I write these lines, a friend of mine notifies me of the case of a young man
whose doctor informed him on the phone that he had tested HIV-positive. The
man immediately committed suicide—there was no post-test counseling and no
second test with a new blood sample. If David from Dallas had committed
suicide, too, we would probably never have known that his result was a false
positive.



The courtroom oath—“to tell the truth, the whole truth and nothing
but the truth”—is applicable only to witnesses. Defense attorneys,
prosecutors, and judges don’t take this oath— they couldn’t! Indeed, it is
fair to say the American justice system is built on a foundation of not
telling the whole truth.

Alan M. Dershowitz, The Best Defense

8

WIFE BATTERING

Los Angeles, USA

The verdict was to be announced at 10:00 A.M. on October 3, 1995. The Los
Angeles Police Department was on full alert, and nationwide security measures,
on which President Clinton had been briefed, were taken in case of rioting. As
the hour approached, long-distance call volume dropped by 50 percent, exercise
machines in gyms stood idle, work ceased in factories, and trading volume on
the New York Stock Exchange fell by 40 percent. An estimated 100 million
people switched on their televisions and radios to hear what the jury had decided
in the O. J. Simpson trial. How would 12 jurors, two-thirds of whom were black
women, judge a black man accused of murdering his ex-wife, Nicole Brown
Simpson, a white woman, and her male companion? At the appointed hour,
Judge Lance Ito called the courtroom to order. Then the jury delivered the
verdict: not guilty.

Images of college students watching the verdict swept across the world: young
black women jumping up, cheering, hugging, and clapping hands; young white



women sitting, stunned into silence, chins propped on their hands. The
acquittal of the American football star divided people along racial lines. Race
trumped gender.

But the trial might as easily have turned on gender as race. The most
dangerous piece of evidence facing the Simpson defense threatened to divide the
jury along gender rather than racial lines—namely, Simpson’s history of spousal
abuse. There had been at least one incident in which Simpson treated his wife
violently, and numerous other incidents that suggested that he exhibited sexual
jealousy and a tendency toward violence. The prosecution argued that a history
of spousal abuse reflects a motive to kill and spent the first 10 days of the trial
calling witnesses of the 18-year relationship between Simpson and his wife to the
stand. As one prosecutor put it, “a slap is a prelude to homicide.”1

Alan Dershowitz, a renowned Harvard law professor, advised the Simpson
defense team. In his best-selling book Reasonable Doubts: The Criminal Justice
System and the O. J. Simpson Case, Dershowitz explained the team’s success in
quashing the prosecution’s argument that spousal abuse leads to murder.
Dershowitz claimed repeatedly that evidence of abuse and battering should not
be admissible in a murder trial: “The reality is that a majority of women who are
killed are killed by men with whom they have a relationship, regardless of whether
their men previously battered them. Battery, as such, is not a good independent
predictor of murder.”2

What was the evidence for Dershowitz’s claim? The defense told the court
that some studies estimated that

as many as 4 million women are battered annually by husbands and
boyfriends [in the United States]. . . . Yet in 1992, according to the FBI
Uniform Crime Reports, a total of 913 women were killed by their
husbands, and 519 were killed by their boyfriends. In other words, while
there were 212 to 4 million incidents of abuse, there were only 1,432
homicides. Some of these homicides may have occurred after a history of
abuse, but obviously most abuse, presumably even most serious abuse,
does not end in murder.3



From these figures Dershowitz calculated that there is less than 1 homicide
per 2,500 incidents of abuse: “we were convinced from the very beginning that
the prosecutors’ emphasis on what they called ‘domestic violence’ was a show of
weakness. We knew that we could prove, if we had to, that an infinitesimal
percentage—certainly fewer than 1 of 2,500—of men who slap or beat their
domestic partners go on to murder them.” Dershowitz concluded: “There is
never any justification for domestic violence. But neither is there any
scientifically accepted evidence that domestic abuse— even of the sort attributed
to Simpson in the worst-case scenario—is a prelude to murder.”4

Sounds convincing, doesn’t it? In the jargon of the law, Dershowitz argued
that evidence of wife battering is more “prejudicial” than “probative.” If this
were true, acquittals of men like O. J. Simpson, known to have battered his
murdered wife on at least one occasion, could be better justified in the future.
But Dershowitz’s argument is misleading. And it may have misled the court.
Given the “scientifically accepted evidence” available, if a woman has been
battered by her partner and later murdered, the case against the batterer is in fact
fairly strong. Why?

Dershowitz omitted one crucial piece of evidence from his calculation: that
Nicole Brown Simpson had been murdered, not just battered. The relevant
percentage is not how many men who slap or beat their domestic partners go on
to murder them, as Dershowitz would have us believe. Instead, the relevant
probability is that of a man murdering his domestic partner given that he
battered her and that she was murdered.5 This probability is not 1 in 2,500.
What is it?

There are two ways to estimate this probability, just as in the breast cancer
and other medical examples in the previous chapters. One is to insert
probabilities into Bayes’s rule, which can cause confusion in jurors and judges
and even in experts who perform such calculations. The other is to present the
information in more easily understandable natural frequencies. In the following
explanation of the flaw in Dershowitz’s argument, I use his estimate that 1 in
2,500 battered women is killed annually by her husband or boyfriend. This
corresponds to 40 in 100,000. What we need in addition is the number of
battered women who are killed each year by someone other than their partners.
Assuming that this number is about the same as for all American women



(whether battered or not), the Uniform Crime Reports for the United States and Its
Possessions (1993) estimated 5 women in 100,000 who are murdered each year.6
Using frequencies, we can now easily understand how many battered and
murdered women have been murdered by their husbands or boyfriends (Figure
8-1).

Think of 100,000 battered women. Within one year, we can expect about 40
to be murdered by their batterers and another 5 to be murdered by someone
else. Therefore, 40 out of every 45 murdered and battered women have been
killed by their batterers. That is, in only 1 out of 9 cases is the murderer
someone other than the batterer.

The frequency tree makes this reasoning transparent. It is like the tree that
helped to make the chances of breast cancer after a positive mammogram
transparent. In each case, a sample of concrete cases—in this case, battered
women—is broken into subclasses, as would occur during natural sampling.
Thus, the chances that a batterer actually murdered his partner given that she
has been killed is about 8 in 9, or approximately 90 percent. This probability
must not be confused with the probability that O. J. Simpson is guilty; a jury
must take into account much more evidence than battery to convict him beyond
a reasonable doubt. But this probability shows that battering is a fairly good
predictor of guilt for murder, contrary to Dershowitz’s assertions. Evidence of
battery is probative, not prejudicial.



FIGURE 8-1. Is there a relationship between wife battering and spousal
murder in the United States? The Harvard law professor Alan Dershowitz, who
advised the O. J. Simpson defense team, argued that battering does not
constitute evidence against the husband (or partner) when his wife has been
murdered. If one draws a frequency tree based on Dershowitz’s numbers,
however, one sees the flaw in the argument. At the time of the trial, evidence
suggested that out of every 100,000 battered women, 45 were murdered every
year. In 40 of these cases, the murderer was the victim’s partner. Thus, wife
battering is evidence against the partner of a murdered woman.



I cannot judge whether Dershowitz confused himself with his numbers, or
whether he just confused the court, the public, and the readers of his book about
the Simpson case. And this may not even be an important question for
Dershowitz, given his baseball analogy of the legal system, according to which
“most prosecutors (and defense attorneys) are as concerned about their won-lost
ratio as any major-league pitcher.” In his words, “nobody really wants justice.
Winning is ‘the only thing’ to most participants in the criminal justice system—
just as it is to professional athletes.”7 Either way, the moral is the same. Baseball
grew up from sandlots and city streets in a culture of working men and farm
boys, and professionals today play the statistics as well as playing ball. Little boys
are familiar with batting averages, won-lost percentages, and lots of other
statistics. The same cannot be said of the court. Many students who spent much
of their education avoiding math and statistics become lawyers, and are
unfamiliar with conditional probabilities, match probabilities, and other
statistical evidence. Representing statistical information in natural frequencies
can help courts—and the public—win arguments and gain insight into the
actual relationship between wife battering and murder.

Battering: The Larger Context

Unlike cancer and HIV, wife battering is a social disease that is manmade. A
look into its history may help us see how this phenomenon might be changed, at
least slowly. Knowing how frequent violence is against women, even today in
Western democracies, can perhaps help to expose the often hidden problem.

In 1874, Richard Oliver arrived home drunk one morning, threw a cup and a
coffee pot on the floor objecting to his wife’s cooking, brought in two tree
branches and whipped her, and could be stopped only after witnesses intervened.
Neither of the branches was as thick as a man’s thumb. Nevertheless, Judge J.
Settle affirmed that he was guilty of assault and battery, because the “rule of
thumb” doctrine was not law in North Carolina. According to this old doctrine,
a husband had a right to whip his wife, provided he used a stick no thicker than
his thumb. This court case established that, at least in North Carolina “the
husband has no right to chastise his wife under any circumstances.”8 Around the
same time, Judge Charles Pelham wrote: “The privilege, ancient though it be, to



beat her with a stick, to pull her hair, choke her, spit in her face or kick her
about the floor, or to inflict upon her like indignation, is not now acknowledged
by our law.” Some 120 years after Judge Pelham condemned this sort of wife
beating, samples of affidavits filed in U.S. courts show that the same violent
behaviors are still reported by American women.

The evolutionary psychologists Martin Daly and Margo Wilson argue that
most cases of wife battering arise from husbands’ jealous and proprietary
responses to their wives’ real or imagined infidelity or desertion.9 In a small
percentage of these cases, battering “boils over” into murder. (Recall that Nicole
Brown Simpson was murdered along with a male companion, whom her
husband—were he the murderer—could have viewed as a sexual competitor.)
Battered women often report that their partners threaten to kill them. In fact, of
all American women murdered every year, some 30 to 40 percent are killed by
their intimate partners.10 A recent national study of hospital emergency rooms
found that assaults by intimate partners or former partners accounted for more
than 45 percent of women’s violence-induced injuries (among all cases where an
assailant could be identified).11 In a random sample of San Francisco women, 1
out of 5 women reported having been beaten. Women receiving welfare
assistance seem to be at greater risk than the general population; for instance, 2
out of 3 Massachusetts women on welfare reported having been victims of wife
beating. Little research has been conducted among the economically privileged
in America, except by journalists. (The Pulitzer Prize-winning Seymour Hersh,
for example, claimed that former President Richard Nixon beat his wife Pat and
hospitalized her a number of times.)12

Physical abuse of women is not restricted to partners. Every year, about 1 in
1,000 American women aged 12 and older is raped.13 This figure is the reported
forcible rape rate; because of the underreporting of rape, the actual number is
higher. Estimates are that one in five or six American women has been the
victim of a completed rape at some point in her life.14

Coercive control over women seems to have existed in all or most cultures
and can still be observed. However, this does not mean that abuse cannot be
drastically reduced. Adultery laws exemplify one such change. Ancient
Egyptians, Syrians, Hebrews, Romans, Spartans, and other Mediterranean
cultures defined adultery solely in terms of the marital status of the woman—



that is, as an affair between a married woman and a man, married or not.
Adultery was seen as a kind of theft from the husband, sexual access to the wife
being the commodity stolen. Consistent with this view, until 1974, Texas law
(Texas Penal Code 1925, article 1220) allowed a husband to kill a man whom
he found in the act of adultery with his wife, without any penalty whatsoever.
Texas is an extreme case in being so late to change. In 1852, Austria became the
first country to explicitly treat male and female adultery as legally equivalent. In
1996, Austria once again took the lead by passing an exceptional law against
wife battering. As a consequence of this law, battered women need not seek
refuge in homes for battered women; they need only call the police, who will
instantly turn up at the door and take the husband out of the home if the wife
wishes it. The police will confiscate his keys to the house and can forbid him
from entering the neighborhood for up to 3 months.

Men’s susceptibility to violence can shift with changes in the economic and
political environment. In the Soviet Union, for example, the number of women
killed by their partners was reported to be about 1,600 in 1989, 1,900 in 1990,
and 5,300 in 1991.15 After the Soviet Union’s disintegration, the Russian
Federation’s National Report noted that 14,500 women were killed by male
partners in 1993 (in Russia only), a figure that rose to 15,000 and then 16,000
in the following two years. The rate of spousal murder in the Russian Federation
surpassed that in every Western country, even the high rate in the United States,
by an order of magnitude. The worsening economic, political, and social
conditions in Russia during the turmoil that followed the fall of the Communist
regime—notably, unemployment and many Russian men’s increased flight into
alcoholism—may have fueled the growing violence.16

Wife battering is not just a Russian or an American problem. The fact
illustrated in Figure 8-1—that a large majority (8 out of 9) of battered women
who are murdered are killed by their partners—seems to hold in Western
countries generally. Men are also much more likely to kill their spouses than are
women, a fact that also seems to hold in all countries. In the relatively few cases
in which women kill their partners, the women have typically been abused and
beaten by their partners for years. An analysis of German court cases showed
that in four out of five cases in which a woman was convicted of homicide, she
had murdered her partner and that the majority of these women had been



battered by their partners.17 Rural and urban Mexican women have reported
that most of the violence they experience comes from their partners, whether
owing to alcoholism, financial problems, jealousy, women’s true or imagined
infidelity, or the birth of a child of the “wrong” sex (that is, a girl).18 A recent
report on domestic violence in Chile describes the commonly accepted belief in
Chilean culture that men may demonstrate love through violent acts. Together
with machismo and alcoholism, this mind-set makes violence against women
and children a “way of life.”19 Until 1989, Chile’s Civil Code legally sanctioned
the disregard of human rights for women, stating that a wife owes obedience to
her husband, who protects her and has authority over her possessions and
person.

Why is there wife battering all around the world? And why do many more
men than women kill their partners? Although there are many contributing
variables, such as alcoholism, the classic explanation is paternal uncertainty.
Unlike in the majority of mammalian species, in which males contribute
nothing to the upbringing of their offspring, in the human species males and
females cooperate in providing parental care. Fathers face a problem that
mothers do not, and which according to evolutionary theory is so serious that
most mammalian fathers opt out of paternal investment entirely. This problem
is cuckoldry. That is, a man has to accept some degree of uncertainty about
whether he actually is the father of his children. A woman, in contrast, can be
certain that she is the mother of her children (barring an accidental exchange of
babies in the hospital). Paternal uncertainty can be reduced by many means, one
of which is for a man to control his partner physically to ensure that she is not
consorting with other men. According to this argument, the cost of male
parental investment brings with it male sexual jealousy, which leads men to use
methods ranging from vigilance to violence to controlling sexual access to their
mates.

How certain should human fathers be about their paternity? Probably not as
certain as is conceivably possible since the mid-1980s, when DNA fingerprinting
became available as a highly reliable method for paternity testing. Using DNA
fingerprinting, researchers found that 5 to 10 percent of children in Western
countries who had been studied have a different biological father from the one
they thought they had.20



DNA fingerprinting has understandably played a critical role in paternity
suits, and its potential and limitations in criminal cases were also highlighted in
the O. J. Simpson trial. Interpreting a DNA match, like seeing through
Dershowitz’s denial of the connection between wife battering and murder,
requires clear statistical thinking. In Chapter 10, we will take a closer look at
DNA technology.



. . . the theory of probabilities is at bottom only common sense reduced
to calculus . . .

Pierre-Simon, Marquis de Laplace, A Philosophical Essay on Probabilities
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EXPERTS ON TRIAL

Los Angeles, USA

On June 18, 1964, Juanita Brooks walked down an alley toward her home in
the San Pedro area of Los Angeles. With one hand she held her cane, and with
the other she pulled behind her a wicker carryall containing groceries, with her
purse on top of the packages. Suddenly, she was pushed to the ground by a
person she neither saw nor had heard approach. She managed to look up to see a
young woman running from the scene. Mrs. Brooks’s purse, which contained
between $35 and $40, was missing. A witness who lived at the end of the alley
reported that the running woman was blond, had a ponytail, was dressed in dark
clothing, and fled from the scene in a yellow car that was driven by a black man
with a beard and a mustache.1 Armed with this description, the police arrested a
couple, Janet and Malcolm Collins, who fit the description. The couple had
married just two weeks before, at which time they had only $12, a portion of
which was spent on a trip to Tijuana. Since the marriage ceremony, Malcolm
had not worked, and Janet’s earnings as a housemaid were not more than $12 a
week. During the 7-day trial, the prosecution ran into difficulties. Although he
identified Malcolm Collins in the courtroom as the driver of the getaway car, the
witness had admitted at a preliminary hearing that he was uncertain of his



identification of a beardless Mr. Collins in a police lineup. Mrs. Brooks could
not identify either defendant.

To make a case, the prosecutor in People v. Collins called a mathematics
instructor from a state college to the stand as an expert witness. The prosecutor
provided a chart similar to Table 9-1 to answer the following question: What is
the chance that Mr. and Mrs. Collins are innocent given that they match the
descriptions of the perpetrators on all six characteristics? The expert witness
testified that the probability of a combination of characteristics, or their joint
probability, is given by the product of their individual probabilities. Then the
prosecutor provided estimates of the probabilities of each of the six
characteristics and multiplied them to compute what he claimed to be the
probability that a randomly selected couple would have all six characteristics; his
answer was 1 in 12 million.2 Based on this calculation, the prosecutor concluded
that the chance that the defendants were innocent was only 1 in 12 million. He
added that this estimate was conservative and that, in reality, “the chances of
anyone else besides these defendants being there . . . is something like 1 in a
billion.”3 The jury later convicted the Collinses of second-degree robbery.

The defense appealed the verdict, and the California Supreme Court reversed
the conviction on four grounds. First, the probabilities in the prosecutor’s chart
lacked evidentiary foundation; they were merely estimates. Second, multiplying
the six probabilities requires assuming that the six characteristics are
independent, for which there was insufficient proof. Beards and mustaches, for
instance, are not independent: a man who has a beard is more likely than a
randomly drawn man to have a mustache. Third, the prosecutor’s calculation
assumed that the six characteristics were certain, ignoring the possibility that the
perpetrators were disguised or that the witnesses inaccurately reported one or
more of the perpetrators’ characteristics. For instance, the report that the female
perpetrator had a ponytail was actually uncertain: the victim was not able to
state whether she had one—although the victim had observed her as she ran
away—whereas the witness was sure she did. Or, the female perpetrator might
have been a light-skinned black woman with bleached hair rather than a white
woman. Fourth, and most important, there was a fundamental flaw in the
prosecution’s reasoning. The prosecution inferred that the probability of
observing all six characteristics in a randomly drawn couple is the probability



that Mr. and Mrs. Collins were innocent. This error is known as the prosecutor’s
fallacy.4

TABLE 9-1. Probabilities provided by the prosecution in People v. Collins.
These probabilities are estimated relative frequencies, such as that 1 out of 3
girls have blond hair and 1 out of 10 girls have a ponytail. (Data from
Koehler, 1997, p. 215.)

Evidence Probability

Girl with blond hair 1/3

Girl with ponytail 1/10

Partly yellow automobile 1/10

Man with mustache 1/4

Negro man with beard 1/10

Interracial couple in car 1/1,000

To understand this fallacy, we need to separate two questions. First, what is
the probability that an individual (or couple) will match the perpetrator on all
known characteristics? Second, what is the probability that an individual (or
couple) is guilty, given that this individual matches the perpetrator on all known
characteristics? The prosecutor’s fallacy refers to the conflation of these two
probabilities:

p(match) is mistaken for p(not guily|match) Prosecutor’s fallacy

In words, the prosecutor’s fallacy is to reason that the probability of a random
match is the same as the probability that the defendant is not guilty, or
equivalently, that the guilt probability is 1 minus the probability of a random
match. For instance, assume that p(match) is 1 in 1,000. The person who
commits the fallacy reasons that, therefore, the chances that the defendant is not
guilty are 1 in 1,000, or, equivalently, that the chances that the defendant is
guilty are 999 in 1,000. In fact, however, these two probabilities are not the
same.



The probability p(match) is a random match probability of a trait or
combination of traits (for example, ponytail) in a defined population (for
example, all people in the United States). The probability p(not guilty| match),
in contrast, is the probability that the defendant is not guilty given a match. The
confusion between these two probabilities can be seen easily if we use a trait that
matches frequently such as being male if we think about the next U.S. president.
The probability p(male) that a randomly drawn American is male is about 50
percent. But this probability is not the same as the probability that any random
person will be the next U.S. president if he is male, p(president|male); the vast
majority of men never become president.

The attorney and social psychologist William Thompson and his student
Edward Schumann seem to have coined the term “prosecutor’s fallacy.” They
used it to describe an experienced deputy district attorney’s argument that if a
defendant and perpetrator match on a blood type found in 10 percent of the
population, there is a 10 percent probability that the defendant would have this
blood type if he were innocent, and therefore, that there is a 90 percent
probability that the defendant is guilty.5 If you find this argument confusing,
that is because it is a confused argument: A random match probability does not
determine a guilt probability. As we have seen in earlier chapters, the
prosecutor’s fallacy is not specific to prosecutors. The same impeded inferences
can occur when other experts reason with probabilities. The prosecutor’s fallacy
is related to the reasoning of several of the AIDS counselors in Chapter 7 who
confused the sensitivity of the HIV test with its positive predictive value, when,
in fact,6

p(positive test|HIV) is not the same as p(HIV|positive test)

The prosecutor’s fallacy is also related to the reasoning of those physicians in
Chapter 5 who confused the sensitivity of mammography with the probability
that a woman actually has breast cancer if she tests positive, when, in fact,

p(positive test|breast cancer) is not the same as p(breast cancer|positive test)

Experts who commit the prosecutor’s fallacy often use the phrase “someone
other than the defendant”:



Because the probability of a match between the defendant and the evidence
sample is 1 in 10,000, the probability that someone other than the defendant
is guilty is only 1 in 10,000.

How can this form of innumeracy be avoided? A simple solution would be
for the courts to require that evidence be presented in frequencies rather than
single-event probabilities. In the case of the Collinses, the confusing probability
statement is this:

“The probability of the defendant matching on these six characteristics is
1 in 12 million.”

The probability statement looks like bad news for the defendant.
Transformed into the more transparent language of frequencies, it draws
attention to other possible suspects:

“Out of every 12 million couples, we expect that 1 couple shows these
six characteristics.”

Here one immediately asks how many couples are out there who could have
committed the crime. Frequencies make it apparent that we need to know the
number of couples in the relevant reference population to estimate the chance
that the Collinses are innocent. For instance, if the reference population was all
couples in California, and there were about 24 million couples in California,
then the natural frequency statement reveals that we can expect two couples to
have all six characteristics. This would mean the chance that the Collinses are
innocent is 1 in 2, not 1 in 12 million.7 In the appeal, the Supreme Court of
California made a similar calculation, concluding that convicting the Collinses
was like convicting person X on the grounds that a witness saw either X or X’s
twin commit the crime. The report continues with a telling remark about the
state of statistical insight in the courtroom: “Again, few defense attorneys, and
certainly few jurors, could be expected to comprehend this basic flaw in the
prosecution’s analysis.”8

People v. Collins is one in a long line of legal cases in which experts, not just
laypeople, were confused by probabilities. In the notorious case in late



nineteenth-century France, for example, the conviction of Dreyfus for espionage
was ultimately reversed and the statistical arguments that had supported it were
discredited, just as in the Collins case.9 Thus, expert testimony using
probabilities, and the confusion it can engender, has played a role in the
courtroom for more than a century now. Yet it is still common practice in
today’s courts to present statistical arguments in probabilities rather than in
frequencies. This practice makes it difficult for people to spot flawed arguments.

Wuppertal, Germany

On a summer evening in Wuppertal, a city in the industrial belt of Germany, a
40-year-old painter took a walk in the woods with his 37-year-old wife.
Suddenly, they were attacked by a stranger who shot the man three times in the
throat and the chest. The man fell to the ground. Then the stranger attempted
to rape the woman. When she defended herself and, unexpectedly, her husband
rose to his feet to help her, the stranger shot her twice in the head and fled. The
man survived the attack; his wife did not. Three days later, a forest ranger
discovered, 20 kilometers from the scene of the crime, a car belonging to a 25-
year-old chimney sweep who used to spend his weekends in the same woods.
The husband at first thought he recognized the chimney sweep in a photo,
became less certain after seeing him in person, and later leaned toward believing
another suspect to be the murderer. But when the other suspect was proven
innocent, the prosecution put the chimney sweep on trial. The chimney sweep,
who had no previous convictions, pled not guilty.

Among the pieces of evidence against the defendant was the blood found
under the fingernails of the murdered woman, which matched the defendant’s.
At the trial, a university lecturer testified that 17.3 percent of Germans share
that blood type. A second piece of evidence was the blood found on the chimney
sweep’s boots, which matched the murdered woman’s. The expert testified that
15.7 percent of Germans share this blood type. Multiplying these two
probabilities gives a joint probability of 2.7 percent that these two matches
would occur by chance. Therefore, the expert witness concluded that the
probability is 97.3 percent that the chimney sweep was the murderer.10



To see why the conclusion of the expert witness does not hold water, let us
assume that any of roughly the 100,000 men in Wuppertal could have
committed the crime. One of them, the murderer, will show both matches with
practical certainty (unless the samples are confused with other samples in the
laboratory, or other errors occur). Out of the 99,999 other residents, we can
expect some 2,700 (or 2.7 percent) also to show these two matches.11 Thus, the
probability of the defendant being the murderer given the two matches is not
97.3 percent, as the expert witness testified, but 1 in 2,700, that is, less than
one-tenth of 1 percent.

A second kind of evidence was textile fibers found on the clothes of both the
victim and the chimney sweep. Based on the match between these fibers, a
second expert witness, from the State Crime Department, used the same
reasoning—that is, he committed the prosecutor’s fallacy— in order to compute
a comparably high probability that the chimney sweep was the murderer. These
expert calculations collapsed when the court found conclusive evidence that the
defendant was in his hometown, 100 kilometers away from the scene, at the
time of the crime.

The assumption that 100,000 men could have committed the crime was
made here strictly for the purpose of illustration. If one has independent
evidence that limits the population of potential suspects, as in the murder case
considered in Chapter 10, the estimate can be changed accordingly. In the
Wuppertal case, such evidence was not available. The assumption of a certain
population size generally remains an assumption. By taking upper and lower
limits on possible population sizes (for example, all men in Europe versus all
men in Wuppertal), however, we can derive upper and lower bounds on the
probability that a defendant is the source of a forensic sample. In any case, the
method of thinking of a concrete population and breaking it down into natural
frequencies can provide us with ballpark estimates that prevent the prosecutor’s
fallacy.

The reasoning of the two expert witnesses in this case was the same as that of
the prosecutor in People v. Collins. It is no coincidence that this type of clouded
thinking is known as the prosecutor’s fallacy rather than the defense attorney’s
fallacy. This is because the fallacy usually involves inflating the probability that
the defendant is guilty of a crime. For instance, in the Collins case, the



probability of a match was said to be 1 in 12 million, which, via the prosecutor’s
fallacy, was equated with the probability of another couple being guilty of the
crime; this left the Collinses looking very guilty indeed. Thanks to the
prosecutor’s fallacy, match probabilities— which are usually very small—
miraculously turn into huge guilt probabilities.

Some legal scholars have argued that statistics should be excluded from court
because they are easily manipulated and difficult to understand.12 I believe that
statistical evidence should not be excluded, but that professionals working in
criminal law should be provided with tools to understand statistical information.
In law school, students should be taught using cases such as the two in this
chapter and then asked to imagine playing the two following roles. Assume you
are a prosecutor and intend to confuse the court; how would you present the
evidence? Now assume you are a defense attorney who hears the prosecutor’s
probability statement; how would you explain, in simple words that a juror can
understand, what is wrong with this argument?

Prosecutors, defense attorneys, and judges need to realize that the important
question is not only whether evidence is admissible and true, but also whether it
is presented in a way that clouds thinking or facilitates insight. Unless courts rule
how statistical information should be presented in a trial, we can expect the same
errors to be repeated again and again. DNA fingerprinting is a case in point. But
it is also a point of hope because if there is one development that has forced the
legal profession to learn statistical thinking, it is the admissibility of DNA
evidence. Appropriately understood, this new technology promotes the cause of
justice.

The Law and Uncertainty

Many students who spent much of their life avoiding statistics and psychology
become lawyers. Out of some 175 accredited law schools in the United States,
only one requires a course in basic statistics or research methods.13 When I was a
visiting professor at one of the top schools of law in the United States, I was
impressed with how smart and rhetorically apt the students were and yet how
ignorant they were of basic statistical principles. The same students who excelled
in critical thinking could not evaluate whether a conclusion drawn from



statistical evidence was correct or incorrect. Similarly, most students were equally
ignorant of psychology, including how to communicate statistical information in
a way that other minds understand it. These students, however, soon realized
that both statistics and psychology are relevant to their careers, since many legal
issues are decided on the basis of uncertain evidence. Polygraphs, fiber analysis,
hair analysis, DNA fingerprinting, blood-type analysis, and handwriting
identification are all techniques that provide evidence that is uncertain and must
be evaluated. The courts tend to call in expert witnesses, but as we have seen, the
experts that courts select can have clouded minds themselves.

How can this situation be changed? The first step is that legislators,
administrators, and law professors recognize that there is a problem. The second
step requires looking across the disciplinary boundaries to knowledge of what is
helpful in solving the problem and including it as part of law curricula and
guidelines for court procedures. Until such a program is instituted, students can
try to implement a self-help program, open to any student of law and other
sufferers of this problem. As one legal scholar proposed, why not “Innumerates
Anonymous”?14



Behavioral research should be carried out . . . to assess how well various
ways of presenting expert testimony on DNA can reduce . . .
misunderstandings.

National Research Council, The Evaluation of Forensic DNA Evidence
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DNA FINGERPRINTING

Oldenburg, Germany

In April of 1998, more than 15,000 men between the ages of 18 and 30 went to
public schools in Oldenburg, Germany, to have their DNA fingerprints taken.
These men, who came from a number of small towns in the area, took this
screening very seriously. All were volunteers, and some even had postponed their
Easter vacation to participate. The procedure was fast and painless: their DNA
was extracted from saliva samples collected using mouth swabs. The cost of this,
the largest DNA screening ever conducted in Germany, was estimated at more
than $2 million. What had impelled these men to participate was a dreadful
crime. One evening in March of the same year, 11-year-old Christina Nytsch
(“Nelly”) did not come home from swimming at the local public pool. Her
alarmed parents called the police, who, after five days of searching, found the
child raped and stabbed in the woods.

The DNA traces found on Christina matched those found on another girl
who had been raped two years earlier in a neighboring town. That girl had
survived. From her testimony, the police were able to make a rough estimate of
the perpetrator’s age and infer that he lived in the rural region where Christina



had lived. Thus, they hypothesized that the population group from which the
perpetrator came was that of men between 18 and 30 in that region. The police
decided to screen all of them. However, they could not legally force any man to
participate; instead, they counted on the locals’ moral outrage at the rape and
murder of Christina and on the peer pressure that would be brought to bear on
anyone who refused to participate.

The police were right. On Good Friday, an unemployed 30-year-old man,
married and the father of three small children, was asked by two acquaintances
to join them in going to the screening site. The man went. He may have felt he
had little choice unless he wanted to be singled out as a suspicious case. After his
DNA profile was found to match the one found at the scene of the crime, he
confessed to Christina’s rape and murder. He also confessed to the rape of the
other girl two years earlier. In the case of Christina, a unique combination of
social peer pressure and a new technology helped the police to identify a
murderer.1

In this chapter, I examine the chain of inference from an observed DNA
match to a defendant’s guilt. This chain involves statistical reasoning that often
goes awry. I begin with a brief history of fingerprinting and DNA evidence.

DNA Evidence

Sir Francis Galton (1822-1911), a first cousin of Charles Darwin’s, was a
romantic figure in the history of statistics and perhaps the last gentleman
scientist.2 He was a man of ideas and a pioneer in diverse fields, including
meteorology, the study of heredity, and the measurement of intelligence and the
efficacy of prayer. For instance, he collected data to test whether prayer affords
any advantage to its intended beneficiaries, and found none: sovereigns for
whom whole nations prayed lived no longer than other members of the
prosperous classes, nor did clergymen. He also pioneered the use of fingerprints
for personal identification. The Galton-Henry system of fingerprint
classification was introduced at Scotland Yard in 1901 and quickly adopted in
English-speaking countries. In 1924, two large fingerprint collections were
consolidated to form the basis of the FBI Identification Division’s current



database. By the late twentieth century, the division’s files contained the
fingerprints of more than 90 million people.

In the early 1950s, the chemical basis of heredity was discovered: a sequence
of four bases (represented by the letters A, C, G, and T) called DNA
(deoxyribonucleic acid). In the 1980s, a new “fingerprinting” technique— DNA
fingerprinting, or somewhat less fashionably, DNA profiling—was developed by
Sir Alec Jeffreys of the University of Leicester in England. Jeffreys developed a
method for viewing fragments of DNA extracted from blood or other biological
samples. The fragments that interested Jeffreys were noncoding regions of the
human genome, that is, DNA that has no known function in the cellular
production of protein.3 Because noncoding DNA is subject to less selection
pressure than coding DNA, it shows a higher variability among individuals. This
higher variability makes it a better tool for discriminating among people, leading
to the development of a tool with enormous potential. The fingerprint analogy
is not perfect; for example, identical twins have identical DNA, but not identical
fingerprints. However, unlike fingerprints, DNA can be extracted from all kinds
of biological traces, such as hair, saliva, and blood, and it lasts much longer.

DNA fingerprinting was widely hailed as the greatest breakthrough in
forensic science in the twentieth century because of its evident applicability to
criminal cases and paternity suits. Because it is not possible to observe DNA
directly using instruments such as high-powered microscopes, DNA
fingerprinting typically involves the following indirect method. Forensic
laboratories break the long DNA strands into fragments by adding an enzyme to
the sample; the fragments are then separated by electrophoresis, plotted onto a
nylon membrane, and exposed to X-ray film. This process produces a series of
fuzzy lines or bands called an autoradiogram, which resembles a supermarket bar
code. This pattern is the DNA profile. If the bands in the DNA profile line up
within a specified error range with those of a particular sample, a “match” is
declared.4 Computer-based data banks with DNA fingerprints have been, or are
in the process of being, installed all over the world. For instance, one month
after the murder of Christina, the German Federal Crime Bureau established a
DNA data bank to facilitate the capture of sexual offenders.

DNA fingerprinting has a vast potential for identifying criminals. For
instance, in the investigation of the Unabomber, the FBI obtained a DNA



sample from the saliva left on the stamp affixed to one of the bomber’s letters
and was able to demonstrate a match with Theodore Kaczynski’s DNA.5

DNA evidence is a valuable tool not only for identifying criminals, but also
for preventing false convictions. The defense lawyers Peter Neufeld and Barry
Scheck, celebrated for their work on behalf of the O. J. Simpson defense team,
run a program, the Innocence Project, the mission of which is the exoneration of
people who have been wrongly convicted of crimes. With the help of New York
City law student volunteers, they have used DNA fingerprinting to check
convictions and have helped overturn the convictions of several dozen wrongly
incarcerated people.6 Similarly, the London Metropolitan Police Forensic
Science Laboratory has found that about 20 percent of suspects in rape cases can
be excluded by DNA fingerprinting.7 The possibilities afforded by DNA
technology have since spread into the world of science fiction, as in the best-
selling novel Jurassic Park and the movie based on it, in which extinct dinosaur
species are resurrected with the help of as yet fictional biotechnology.

DNA fingerprinting was introduced into U.S. criminal proceedings in 1986.
Ten years later, in Britain, the first court case was reported in which the
prosecution relied solely on DNA evidence and charged the defendant with rape,
despite contrary evidence—for example, that he was considerably older than the
description of the assailant by the victim, that the victim did not pick him out of
a line-up, and that he had an alibi supported by his girlfriend. The number of
suspects who are prosecuted on the basis of DNA evidence alone will possibly
increase in the future as a consequence of the creation of national DNA
databases, which allow the police to search the computer rather than for further
evidence at the scene of the crime.8

DNA fingerprinting was initially received by the courts and the media as a
nearly foolproof means of identifying criminals who left biological traces at
crime scenes, as well as men implicated in paternity suits. However, like all new
technologies, DNA fingerprinting depends on psychology to be understood.
That is, a great technology can be foiled by a lack of understanding of the
uncertainties involved. Two reports by the National Research Council have
addressed the technical and psychological challenges posed by DNA
fingerprinting. One of the recommendations in a report in 1996 was that
“behavioral research should be carried out to identify any conditions that might



cause a trier of facts to misinterpret evidence on DNA profiling and to assess
how well various ways of presenting expert testimony on DNA can reduce any
such misunderstandings.”9 I hope that this chapter helps to serve that goal.

The Chain of Inference

One would think that a match between a defendant’s DNA and the DNA found
at a crime scene would prove that the defendant is the source of the trace. But a
reported match does not guarantee that the defendant is guilty of the crime or
even that he or she is the source of the trace. The chain of uncertain inference
from a DNA match to the guilt of a specific person is depicted in Figure 10-1.
First, a reported match may not be a true match because of laboratory errors,
whether human or technical, that produce false positives, just as in the case of
HIV testing. Second, a defendant who provides a true match may not be the
source of the trace if the match is coincidental; even rare DNA patterns can
occur in more than one person, particularly in biological relatives. Third, a
defendant who is truly the source of a DNA trace may not have been present at
the crime scene if the real perpetrator or someone else deliberately, or
unintentionally for that matter, transferred the defendant’s biological material to
the scene. In the O. J. Simpson case, for instance, the defense forcefully alleged
that some of the blood evidence at the murder scene was introduced by the
police. The defense’s success in cutting the inferential chain between “Source”
and “Present at crime scene” was critical to Simpson’s acquittal. Finally, a
defendant who had been present at the crime scene may not be guilty; he may
have left the trace before or after the crime was committed.

Like the physicians, AIDS counselors, and expert witnesses we have met in
previous chapters, attorneys and DNA experts tend to talk about the
uncertainties involved in DNA fingerprinting in terms of probabilities. As
described in the preceding chapter, the random match probability is the
probability that a person randomly selected from a population would match the
trace evidence as closely as the suspect. The source probability, in contrast, is the
probability that the suspect is actually the source of the recovered trace evidence.
The guilt probability is yet something else, because, as mentioned above, even if
the suspect is the source of the trace, he may not have committed the crime. The



confusion of the random match probability with the other two probabilities
leads to two errors. The source probability error occurs when someone overlooks
the first two steps of the inferential chain and wrongly infers the source
probability directly from the random match probability, that is:



FIGURE 10-1. The chain of uncertain inference in DNA typing: from
reported match to guilt. (After Koehler, Chia & Lindsay, 1995.)



p(match) is mistaken for p(not source|match) Source probability error

For instance, if the random match probability is 1 in 100,000, then the source
probability error occurs when someone infers that this is the probability that the
defendant is not the source, or, equivalently, that the probability that the
defendant is the source would be 99,999 out of 100,000. The prosecutor’s
fallacy, introduced in the previous chapter, involves jumping from the first
element of the chain to the last, that is:

p(match) is mistaken for p(not guilty|match) Prosecutor’s fallacy

The Fabrication of Certainty

Let us have a closer look at the first step in the inferential chain, “Reported
match.” If a match is declared, the only error that can be introduced at that step
in the inferential process is a false positive result, that is, a match is reported
although no true match exists. False positives do occur; unfortunately, it is hard
to estimate exactly how often. One reason is that DNA laboratories prefer to
conduct in-house proficiency tests rather than to submit to independent external
tests of their accuracy.

The FBI, for instance, has fought hard to prevent outsiders from seeing the
results of such in-house proficiency tests. The attorney William Thompson
reports that the “defense counsel were able to gain access to the FBI’s internal
proficiency test results only after protracted litigation to overcome the FBI’s
insistence that these data were protected by a ‘self-critical evaluation privilege.’
FBI memoranda . . . show that John W. Hicks, the FBI’s Assistant Director in
Charge of the Laboratory Division, in 1990 unsuccessfully sought authorization
to destroy the FBI’s DNA proficiency testing data at a time when the FBI was
resisting efforts by several defense counsel (including myself) to obtain discovery
of those very data.”10 Hicks claimed that “there were no false positive or false
negative results in any of the FBI’s proficiency tests.”11

In the few cases in which forensic laboratories agreed to external proficiency
testing, the tests were rarely blind, that is, the laboratories and technicians were
aware that they were being tested. In the first blind test reported in the



literature, three major commercial laboratories were each sent 50 DNA samples.
Two of the three declared one false match; in a second test one year later, one of
the same three laboratories declared a false match.12 From external tests
conducted by the California Association of Crime Laboratory Directors, the
Collaborative Testing Services, and other agencies, the psychologist Jonathan
Koehler and his colleagues estimated the false positive rate of DNA
fingerprinting to be on the order of 1 in 100.13 Cellmark Diagnostics, one of the
laboratories that found matches between O. J. Simpson’s DNA and DNA
extracted from a recovered blood stain at the murder scene, reported its own
false positive rate to the Simpson defense as roughly 1 in 200.14

What causes false positives? The reasons can be either technical, such as
enzyme failures that produce misleading DNA banding patterns, or human,
such as the contamination or mislabeling of samples and errors in pattern
interpretation. There is a need for more public data on false positives and
negatives in DNA fingerprinting.

In court, several forensic scientists have been reluctant to acknowledge the
possibility of false positives. Excerpted here is an illustrative exchange between
an attorney and a forensic expert in a 1991 trial in Texas:

Attorney: Now, you’re telling us that you can only get a result or no result; is
that correct?

Expert: That’s correct.

Attorney: And you couldn’t get a false positive?

Expert: There’s nothing like a false positive in this, no.

Attorney: How about if you use the wrong sample?

Expert: If you use the wrong sample?

(Attorney nods head.)

Expert: You either get a result, or you don’t get a result. There’s no false
positives.15



Here the expert witness repeats his claim that there are no false positives even
after being asked about the possibility of an inarguable human error (using the
wrong sample). This expert is not alone in promising absolute certainty.
American expert witnesses have testified that “there have never been any false
positives made with DNA testing at this point”; that “a false positive finding [is]
impossible because if the procedures were not correctly followed, no match
could be obtained”; and that the accuracy rate is 100 percent and DNA
fingerprinting is “failsafe.”16 In Germany, the president of the Society for
Forensic Medicine is reported to have publicly asserted that a DNA match
“identifies a perpetrator with 100 percent certainty.”17 In other cases, forensic
scientists have tried to claim certainty by excluding human error from
consideration and reducing the meaning of a false positive to technical error. But
this amounts to an illusion of certainty; both technical and human errors
contribute to false positives.

Clouded Thinking

Clouded thinking means drawing incorrect inferences from statistics without
noticing. The source probability error is one form. Here, the random match
probability is confused with the probability that the defendant is the source of
the evidence.

IN THE PRESS

The front page of The Boston Globe on July 5, 1995, reported on the “big
numbers” in the O. J. Simpson trial. The following three paragraphs show how
the journalist switches back and forth between confusing random match
probabilities and source probabilities, unable to keep them straight:

As it prepares to wind up its case this week, the prosecution in O. J.
Simpson’s trial wants jurors to remember the big numbers: The odds are
1 in 170 million, for instance, that someone other than the defendant
dripped blood on the scene of Nicole Brown Simpson’s murder.

But even figures that sound less stunning—9 percent of all Americans
wear size 12 shoes; 1 in 200 people share the “genetic markers” in the



assailant’s blood; and the odds are 1 in 1,600 that the blood on the
killer’s glove came from someone other than Simpson—point in the
same direction when they’re combined.

The chance of anyone fitting all three descriptions is 1 in 3.5 million,
and it soars to astronomical levels when factoring in other statistics.

The first paragraph provides a version of the source probability error: The
author confuses a random match probability (1 in 170 million) with the source
probability, p(not source|match), that someone other than the defendant
dripped the blood, when, in fact,

p(match) is not the same as p(not source|match).

In the second paragraph, the first two figures are correctly presented as
random match probabilities, but the third is phrased in the form of odds (the
ratio of two probabilities) and is mistaken as a source probability. In the third
paragraph, the author switches back to referring correctly to a random match
probability.

IN THE COURTROOM

It is not only the press that is easily confused by probabilities. In the courtroom,
confusion often emerges when experts respond to attorneys’ questions. For
instance, in a 1992 trial for aggravated sexual assault in Texas, State v. Glover,
the prosecutor questioned the expert witness on direct examination. (In the
United States, a lawyer first questions his or her own witness on direct
examination; then the other side questions the witness on cross-examination;
then the first side is entitled to question the witness again, and then the other
side may do so again.) The attorney first asked the expert about a random match
probability and then restated this value as a source probability, and the expert
corroborated both statements:

Attorney: And are you able to compile all four of those probabilities and
determine what is the likelihood of the DNA found in Billy Glover just
randomly occurring in some other DNA sample?



Expert: Yes.

Attorney: What is the likelihood of that?

Expert: The way that is done is to multiply each one of those four numbers
that I mentioned before together, because each one is separate and
independent, and the final number comes out as one in about 18 billion.

Attorney: So the likelihood that DNA belongs to someone other than Billy
Glover is one in 18 billion?

Expert: That is correct.18

Here again, a random match probability is confused with a source
probability. The source probability error has been documented, not only in
Texas, but also in other states. For instance, a court transcript from a 1991
California trial involving murder and attempted robbery makes the statement
“that the frequency of that DNA banding pattern in the Hispanic population is
approximately 1 in 6 billion . . . meant that the chance that anyone else but the
appellant left the unknown hairs at the scene of the crime is 6 billion to 1.” A
transcript from a Kansas trial for rape and murder states that “according to the
State’s three experts, there was more than a 99 percent probability that Smith
was a contributor of the semen found in the swab.”19 In these cases, random
match probabilities were erroneously interpreted as source probabilities.

Clouded thinking does not always prevail, however. In Britain, the Court of
Appeal quashed the conviction of Andrew Deen for rape because the forensic
scientist had committed the source probability error. The scientist described the
match probability as the “probability of the semen having originated from
someone other than Andrew Deen” and concluded that “the likelihood of this
[the source] being any other man but Andrew Deen is 1 in 3 million.”20

Isn’t One in a Billion Enough?

But what if the random match probability is as low as 1 in 57 billion, perhaps
the most widely reported figure in the O. J. Simpson case and a figure with a



denominator larger than the total population of the earth? Isn’t that chance
small enough? It is true that the discrepancy between the random match
probability and the source probability becomes less significant with smaller
random match probabilities. However, there are two reasons a matching suspect
might not be the source: one is a coincidental match, the likelihood of which
decreases with smaller random match probabilities; the other is a false positive.

False positives play a role in the first link of the chain of inference shown in
Figure 10-1, from “Reported match” to “True match,” whereas the random
match probability plays a role in the second link, from “True match” to
“Source.” When a false positive occurs in the first link, the second link doesn’t
matter—the chain is already broken. Specifically, when the probability of a false
positive is many orders of magnitude larger than the random match probability,
it makes little difference whether the latter is 1 in a million or 1 in a trillion.21

For instance, if the false positive rate is around 1 in 200, as Cellmark, one of the
labs involved in the O. J. Simpson trial, reported, we would expect one
erroneous match in each of 200 cases where the defendant is innocent. If a
match is false, the random match probability does not matter, however small it
is. The match is still false.

One might think that the problem of miscommunicating risks could be
solved if attorneys, expert witnesses, and judges understood the relevant
probabilities. But even when the prosecution carefully avoids the confusion of
the random match and source probabilities, untrained jurors may still confuse
them. In the words of one juror, “You can’t really argue with science.” The
DNA evidence “was very conclusive the way the experts explained it.”22

From Innumeracy to Insight

Does mental defogging work with legal minds as well as with medical minds? To
answer this question, Sam Lindsey, Ralph Hertwig, and I asked 127 advanced
law students and 27 professionals, mostly lecturers and professors of law at the
Free University of Berlin, to evaluate two criminal case files.23 The files were
nearly identical to those in two real rape and murder cases in Germany; the only
changes made were those necessary for performing the experimental
manipulation and protecting anonymity. In both cases a match was reported



between the DNA of the defendant and a trace on the victim, but aside from the
match, there was little reason to suspect that the defendant was the perpetrator.
Situations in which DNA evidence is the only, or at least the major, evidence
against a defendant are likely to occur more and more often. In 1996, the
German Federal Constitutional Court ruled that in serious crimes, a judge may
order blood samples for DNA analysis even if there is no strong suspicion
against the person from whom it is taken. Thus, screening of people for DNA is
permissible and does not constitute a violation of civil rights.

Can law students and legal scholars come to understand the uncertainties
involved by using frequency representations? Does the representation affect their
verdicts, that is, their judgment of whether or not the defendant is guilty? Half
of the law students and professionals got the relevant information in
probabilities, the other half in natural frequencies. The authentic nature of the
case files was highly motivating to the participants, and they spent, on average,
more than an hour and a half reading and evaluating the two cases. Since
criminal case files are long and detailed, I summarize below the relevant passages
for one of the two rape-and-murder cases. As mentioned above, aside from the
DNA match there was little reason to suspect that the defendant was the
perpetrator.

Conditional Probabilities

The expert witness testifies that there are about 10 million men who could
have been the perpetrator. The probability of a randomly selected man
having a DNA profile, that is identical with the trace recovered from the
crime scene is approximately 0.0001 percent. If a man has this DNA profile,
it is practically certain that a DNA analysis shows a match. If a man does
not have this DNA profile, current DNA technology leads to a reported
match with a probability of only 0.001 percent.

A match between the DNA of the defendant and the traces on the victim
has been reported.

Question 1. What is the probability that the reported match is a true match,
that is, that the person actually has this DNA profile?

Question 2. What is the probability that the person is the source of the trace?



Question 3. Please render your verdict for this case: Guilty or not guilty?

The three questions concern three steps in the chain of inference from
reported match to guilt (see Figure 10-1). The first question is about the
probability that the reported match is a true match, the second question is about
the source probability, and the third about the guilt of the defendant.

Natural Frequencies

The expert witness testifies that there are about 10 million men who could
have been the perpetrator. Approximately 10 of these men have a DNA
profile that is identical with the trace recovered from the crime scene. If a
man has this DNA profile, it is practically certain that a DNA analysis
shows a match. Among the men who do not have this DNA profile, current
DNA technology leads to a reported match in only 100 cases out of 10
million.

A match between the DNA of the defendant and the traces on the victim
has been reported.

Question 1. How many of the men with a reported match actually do have
a true match, that is, that the person actually has this DNA profile?

Question 2. How many of the men with a reported match are actually the
source of the trace?

Question 3. Please render your verdict for this case: Guilty or not guilty?

When the information was in probabilities, the legal students and experts
were lost. Consider the inference from a reported match to a true match
(Question 1). The problem here is false positives. Only very few could figure out
what to conclude from a match probability of 0.0001 percent and a false positive
rate of 0.001 percent. As Figure 10-2 shows, only about 1 percent of the
students and 10 percent of the professionals were skilled enough to do this.
When the information was in natural frequencies, these numbers increased to 40
percent and more than 70 percent, respectively. In terms of frequencies, it is
easier to see that there are 10 men with an identical DNA profile in the



population, and an additional 100 men where a match is reported although
there is no identical DNA profile. That means, only 10 of 110 men for whom a
match is reported actually have the DNA profile.

Consider now Question 2, concerning the probability that the defendant is
actually the source of the trace found at the crime scene. When the information
was in terms of probabilities, a similarly small number of students and
professionals were able to figure out what it implied. With frequencies, however,
insight emerged at the same rate as with Question 1. Many could now
understand that only 1 in 110 men reported to match the trace was actually the
source of the trace.



FIGURE 10-2. How the representation of uncertainties (probabilities versus
frequencies) affects the reasoning of legal students and professionals. When
the information about DNA evidence was presented, as usual, in terms of
conditional probabilities, few could draw the correct (Bayesian) inference; with
natural frequencies more than 40 percent of the students and the majority of the
professionals “saw” the answer. Two questions were asked: p(Profile), whether a
reported match indicates that the defendant actually has the profile (a true
match); and p(Source), whether a reported match indicates that the defendant is
the source of the trace. These two questions correspond to the first two steps in
the chain of inference shown in Figure 10-1. (Adapted from Hoffrage et al.,
2000.)



The final decision in a criminal trial is about the defendant’s guilt or
innocence, and it is cast in yes-no terms rather than in probabilities (Question
3). Did the representation of the DNA evidence make a difference to their
verdicts? Yes. More students and professionals voted “guilty” when the evidence
was presented in terms of probabilities, that is, when their minds were clouded
(Figure 10-3). This effect was slightly larger among the students, but it was
observed in both groups. Overall, guilty verdicts increased by 50 percent when
the law students and professionals looked at probabilities.

This study illustrates two points: the low level of understanding of the
uncertainties involved in the chain of inference (Figure 10-1) by law students
and professionals, and how an effective tool—natural frequencies— can help
overcome innumeracy in the legal profession.24



FIGURE 10-3. Does the representation of uncertainties (probabilities versus
frequencies) affect the verdict (guilty or not guilty) of legal students and
professionals? When the information about DNA evidence was presented in
conditional probabilities, more students and professionals judged “guilty.”
(Adapted from Hoffrage et al., 2000.)



Paternity Uncertainty

Apart from criminal cases, the second major use of DNA testing is in paternity
testing. DNA fingerprinting is a significant improvement over the earlier ABO
blood group analysis, which could sometimes exclude the possibility that a man
was the father, but never come close to proving fatherhood. Before DNA testing,
court proceedings were often colored by the public humiliation of unmarried
mothers, in which the man who denied being the father and his friends tried to
prove that the mother was of bad character. For instance, until the Legitimacy
Act of 1959 was passed in England, hearings usually took place in open court, to
which the public and the press had a right of admission, and the evening papers
provided detailed reports including the names and addresses of the persons
involved.25 DNA testing has helped to dispense with the humiliating character
that court hearings had in the past. Now that DNA evidence for paternity exists,
courts rarely subject mothers to cross-examinations about their sex lives. The
prospect of a DNA test can change denial into confession, as the following case
in Great Britain illustrates.

Both parents were aged 18. The putative father’s mother tried to remain in
court during the initial hearing and had to be removed by the usher. On leaving,
she shouted to her son “say what I’ve told you to say.” He denied paternity, and
the case was adjourned for him to arrange legal aid and consider DNA tests. He
admitted paternity immediately at the next hearing, said he had no wish to see
the baby, and was ordered to pay maintenance of £1 a week.26

My point is that the mere possibility of DNA fingerprinting can be sufficient
to end denial, to spare the mother an inquisition into her sex life, and to oblige
the father to pay child support. Yet this British court seems to have assumed that
baby care is a rather low-cost proposition.

In order to estimate the probability that a man is the father of a particular
child, one needs a prior probability, or base rate, as in medical diagnoses (see
Chapter 5). But what could that prior probability be? Many laboratories deal
with this problem simply by assuming that the nongenetic evidence in every
paternity case indicates that there is a prior probability of .5 that the defendant
in a paternity case is the father.27 The laboratories defend this arbitrary value by



citing the principle of indifference: either the alleged father is the father or he is
not, therefore the prior probability is .5 for each possibility. This practice is
controversial because it implies that, in every paternity case, the defendant is as
likely to be the father as all other men put together. The principle of indifference
has a long history in the law. In the early nineteenth century, jurisprudence was
still one of the main arenas for the application of probability theory, such as in
the evaluation of the credibility of witnesses. One issue, which then as today
divided liberals from conservatives, was how to weigh the two possible errors a
judge can commit: to convict an innocent person or to acquit a guilty person. If
one tries to minimize the possibility of convicting innocent defendants, one has
to pay the price of acquitting more guilty persons as well. If, however, one tries
to minimize the possibility of acquitting guilty persons, one will pay the price of
imprisoning more innocent ones. The French mathematicians Denis Poisson
and Pierre Laplace advocated the conservative view over the earlier liberal
reforms envisaged by Condorcet, the Enlightenment philosopher and politician.
Poisson emphasized societal security over individual rights even more than
Laplace, arguing that the prior probability of a defendant’s guilt should be at
least .5. In the supposed service of jurisprudence, twentieth-century DNA
paternity testing assumed a similar moral stance.28

Paternity testing can also be of concern to fathers. A man can never really be
sure that he is the biological parent of his children, unlike mothers, who can be
sure, except for the possibility of babies being switched in the hospital. As
pointed out in Chapter 8, recent DNA analyses of populations in Western
countries indicate that some 5 to 10 percent of children have a different genetic
father from the man who thinks he is the father. Despite its usually being to the
benefit of the children that such deception remain veiled, the market for
paternity testing is growing. According to the American Association of Blood
Banks, 240,000 paternity tests were performed in the United States in 1997,
more than three times as many as 10 years before. Above one of Chicago’s
busiest motorways, a neon-pink billboard asks “Who’s the father?” Call a certain
phone number and the answer is available for $500, provided one supplies cheek
swabs from mother, child, and the alleged father.29

Uncertainties Don’t Go Away with DNA



Like every new technology, DNA fingerprinting not only reduces old
uncertainties, such as paternity, but poses new uncertainties as well.

WHAT IS THE POPULATION OF SUSPECTS?

In the case of Christina’s murder, described at the beginning of this chapter, the
police had information from a former victim to generate a hypothesis about the
population of which the perpetrator was a member (that is, men between 18 and
30 who lived in Oldenburg and its environs). This is not to say that this
hypothesis was certain, as one can infer from the fact that the murderer turned
out to be 30 years old—just at the fringe of the age range that defined the
suspect population. Yet, it worked in the case of Christina. In other criminal
cases the definition of a reasonable population of suspects may be less clear.
However, if one wants to compute a source probability—that is, to move from
the second to the third link in the chain of inference—one needs a base rate,
that is, a population of suspects. (Courts tend not to accept a merely subjective
prior probability.) One way to deal with this uncertainty is to make a lower and
an upper estimate of the population size, that is, to start with two extreme base
rates. For instance, one could consider the 18,000 men in the age range 18 to 30
as the lower base rate, and the larger number of men age 16 to 50 as the upper
limit. This would allow the calculation of a lower and upper bound on the
source probability.

This problem of specifying the population of suspects exists not only in
criminal cases, but also in paternity testing, as we have seen in the previous
section. Uncertainty about the population of suspects remains a fundamental
issue in making an inference from a DNA match to a source probability.

DOES THE SUSPECT HAVE BROTHERS?

The random match probability is for unrelated people. Therefore, a problem in
interpreting a match is the possibility that a defendant has close relatives. For
instance, identical twins have the same DNA profile, and close relatives have
more similar DNA profiles than unrelated individuals. In one case in Scotland, a
forensic scientist reported a DNA match probability of 1 in 49,000 for unrelated
individuals, but a match probability of 1 in 16 for a brother of the defendant. It
happened that the defendant had five brothers.30 Thus, if there is no further



evidence that distinguishes among the brothers, the DNA match per se is only
weak evidence. Close relatives who could have committed a crime or parented a
child need to be figured into the interpretation of a DNA match.

HOW CERTAIN IS A MATCH? A RANDOM MATCH PROBABILITY?

A further reason for caution about the DNA profiling process is that subjective
judgments are an integral part of it. These arise both in the judgment as to
whether or not there is a match and about the size of the match probability. As
mentioned earlier, a match is declared when the bands of two DNA profiles line
up with one another. However, because they do not always line up exactly, a
match is defined when two profiles line up within a specified error range. Thus,
a match is not a black-and-white observation, but depends on what deviation
one tolerates. This arbitrary cutoff point has the undesirable consequence that
one profile deemed not to match can be arbitrarily close to another that is
declared a match.

Similarly, the random match probability is not just a matter of looking up
the population statistics. For instance, in 1987, Vilma Ponce and her 2-year-old
daughter were stabbed. José Castro, a Hispanic male and neighbor, was
interrogated, and a small bloodstain from his watch was sent for analysis. Castro
claimed that the blood was his own. Lifecodes Corporation, which carried out
the test, however, reported a match between the DNA in the bloodstain and the
victim’s blood, and reported a random match probability of smaller than 1 in
100 million. Harvard University and the Massachusetts Institute of Technology
examined the same data and arrived at a probability of 1 in 24.31 Such huge
discrepancies can arise when samples are corrupted by chemical or biological
contaminants, or exposed to potentially harmful environmental factors such as
sunlight, and when laboratory practices are poor or results inadequately
analyzed.

A THREAT TO PRIVACY?

The biological function of DNA molecules is to provide a genetic message, the
gene, encoded in a sequence of bases. Therefore, DNA databases contain
information of such a personal nature that they seem to pose a significant threat
to privacy. Some people fear that if we learn to “read” DNA, then others will be



able to read our genetic future like a script. To judge the reality of this fear, we
need to keep in mind that DNA databases do not contain entire DNA
sequences, only DNA profiles, which contain information about several loci
(sites) rather than the entire genome. Moreover, the databases generally contain
“noncoding” loci, that is, loci that are not believed to contain genes. Recall that
part of the DNA—sometimes referred to as “junk DNA”—does not seem to
have coding functions as genes have. The reason for focusing on noncoding loci
is not to protect privacy. Instead, it is to discriminate better between
individuals.32 Thus, given current technologies, DNA databanks afford little
information about any particular individual.

That said, we need to be cautious about predicting that the future will be like
the present. Historically, new technologies tend to change conceptions of civil
liberty. When ordinary fingerprinting was first introduced in the United States,
many courts saw its use in jurisprudence as a violation of civil rights. It is not
inconceivable that, in the near future, mouth swabbing of job applicants, health
insurance applicants, and immigrants will be considered as unproblematic as
fingerprinting is now. Unlike the human genome project, which catalogues the
coding part of DNA, data banks suitable for DNA fingerprinting contain
samples of noncoding DNA. There are obvious benefits from the latter for
quickly identifying the perpetrator in sexual assault cases and other criminal
cases. The availability of the technology supported by data banks might, in the
long run, deter some potential criminals, at least those who know they are
recorded in the data bank. Even if there were only little or no deterrence, data
banks will help to determine criminals after the crime and keep them from
committing multiple crimes.

New Technology Can Alter the Law

The traces on O. J. Simpson’s gloves and Monica Lewinsky’s blue dress33 have
made Americans familiar with DNA evidence. At the same time, the
introduction of DNA evidence in criminal cases has put pressure on the law and
new demands on legal professionals.

The statute of limitations for rape prosecutions is one example of pressure for
change. For instance, in New York, rape cases expire after five years. That is,



there is no possibility of prosecuting a case after it is more than five years old. As
one victim, a Lower East Side student who was raped two years ago and whose
case is unsolved put it: “I don’t understand how there can be a timetable on this
crime. Rape has completely changed my whole life.”34 The rationale for this
statute of limitations was to give defendants a fair chance because as time goes
by, evidence disappears and memories fade, and consequently, defendants will
face difficulties proving where they were on a particular day or at a particular
hour many years before. This historic rationale is now being strained by the
availability of DNA fingerprinting, which can give much more conclusive
evidence than any technology before. As a consequence, several states, including
Florida, Nevada, and New Jersey, have recently abolished the time limits in cases
of sexual assault. Science has revolutionized the investigation of rape cases, and
the law is catching up with the new situation.

A second law that may be put under pressure through the introduction of
DNA fingerprinting is the death penalty. Among the large democracies, only the
United States, India, and Japan still put prisoners to death. A Gallup poll in
2000 indicated that the proportion of Americans favoring the death penalty was
decreasing (although some two-thirds are still in favor if it) and the number of
people who believe that innocent people are at least occasionally wrongly
sentenced to death is increasing. The Gallup researchers suggest that this
changing situation is linked to the advent of DNA technology, which in some
cases has shown that innocent people are being sentenced to death.

DNA fingerprinting has also put new demands on the legal profession. These
include overcoming the illusion of certainty and learning how to understand and
communicate uncertainties. In this chapter, I have pointed out various sources
of uncertainty in the chain of inference from a DNA match to a guilty verdict,
and showed that the same tools that helped physicians and counselors can help
legal professionals. For instance, using natural frequencies instead of
probabilities can greatly reduce sources of confusion, such as the prosecutor’s
fallacy. Our experiments indicate that proper representation of uncertainties not
only fosters insight in legal students and professionals, but also changes the
number of “guilty” verdicts they are willing to deliver.

Now it is up to the courts to recognize the relevance of how to represent
uncertainty in trials. A few attorneys and judges in Great Britain and America



have taken notice. A British Court of Appeal recently recommended that DNA
evidence be presented in a frequency format.35 However, this recognition is still
occurring in an accidental way rather than as a systematic part of legal training
and procedures. For instance, one of my colleagues who had been writing an
article for a legal journal on the importance of frequency representations
happened to be acquainted with an attorney who was then on the O. J. Simpson
defense team. As a consequence, the defense team asked Judge Ito not to allow
the prosecution DNA expert, Professor Bruce Weir, to testify in terms of
conditional probabilities and likelihood ratios, which are ratios of conditional
probabilities. The team requested that the jurors hear the information in
frequencies instead, arguing that they might confuse random match probabilities
with statements about the probability that Mr. Simpson was actually the source
of the samples.36 Judge Ito and the prosecution agreed. The prosecution expert
then used likelihood ratios anyway! Statisticians (such as Weir) are not always
aware of the psychology of risk communication.



Can we know the risks we face, now or in the future? No, we cannot;
but yes, we must act as if we do.

Mary Douglas and Aaron Wildavsky, Risk and Culture

11

VIOLENT PEOPLE

In Chapter 1 we met a psychiatrist who told his patients that they have a 30 to
50 percent chance of developing a sexual problem when taking Prozac. The
psychiatrist and his patients understood this statement differently. For the
psychiatrist, it referred to the proportion of his patients who develop such a
problem as a result of taking the drug. For the patients, it referred to the
proportion of their sexual encounters in which something would go wrong. Each
side construed the reference class from its own point of view—for the
psychiatrist, the reference class was “my patients,” whereas for the patients, it
was “my sexual encounters.” A probability of a single event leaves open what the
reference class is—by definition. But people tend to assume, at least implicitly, a
specific reference class when they try to understand a single-event probability,
opening the door to interpretations that contradict one another and the
intended meaning. The same ambiguity can occur in legal and clinical settings
in which the aim is to predict violent behavior.

Foretelling Violence

Violence is part of our lives. People are afraid to walk in their neighborhoods at
night. Kids with guns wound and kill their peers and teachers in American



schools. Adolescents and young right-wingers attack foreigners in the former
East Germany with knives, fists, and boots. Wife battering and the beating of
children are part of family life in modern Western societies. Why and when are
people turning to violent acts?

Forecasting violent behavior is difficult. According to the American
Psychiatric Association in a communication to the U.S. Supreme Court, its “best
estimate is that two out of three predictions of long-term future violence made
by psychiatrists are wrong.”1 Nevertheless, the U.S. Supreme Court has ruled
repeatedly that such testimony is legally admissible as evidence. The Court
concluded that mental health professionals’ predictions were “not always
wrong . . . only most of the time.”2 The weakness of these forecasts illustrates a
larger problem. When expertise plays a role in criminal justice, it is often in
situations that are badly understood and where testimony is only marginally
grounded in scientific knowledge.

Probation officers are professionals who supervise criminal offenders who
have been granted conditional freedom, whether they are on parole, bail,
probation, or weekend release. A probation officer faces the task of foretelling
violence. He or she can make either of two errors: recommend freedom for
someone who will commit another violent act or deny freedom to someone who
will not commit such an act. An error of the first kind was committed by the
expert who recommended releasing the man who eventually murdered
Christina, as related in the previous chapter.

How do experts such as probation officers advise the court about the
potential risks posed by a criminal offender? Until recently, experts have used
yes-no labels such as “dangerous” and “not dangerous.” In a Texas capital
sentencing case, for instance, Thomas Barefoot was convicted of killing a police
officer after being stopped in an arson investigation. One of the experts who
testified at Barefoot’s sentencing hearing, a psychiatrist popularly known as Dr.
Death, commented that it was “one hundred percent and absolute [ly]” certain
that Barefoot would be violent in the future.3 (The psychiatrist had neither
interviewed nor even met Barefoot.) As in weather forecasting, however,
statements that acknowledge uncertainty have since become more common in
professional predictions concerning violent behavior. For instance, the
psychologists John Monahan and Paul Slovic and others have advocated that



mental health professionals use probability estimates, rather than verbal labels, to
communicate the chances that violent behavior will occur.4 As a result,
probation officers were asked to estimate the probability that a person would
commit another violent act if he were given parole or probation.

Yet these experts were reluctant to use numerical probabilities to
communicate risk of violent behavior. They preferred categorical labels,
believing that there was too much uncertainty to justify numbers and did not
want to be held accountable for being precise. In a series of seminal studies,
Slovic and Monahan investigated experts’ numerical risk judgments, with
striking results.

SINGLE-EVENT PROBABILITY VERSUS FREQUENCY JUDGMENTS

In one study, Slovic, Monahan, and MacGregor tested more than 400 members
of the American Academy of Psychiatry and Law (AAPL) and more than 400
members of Division 41 of the American Psychological Association, that is, the
American Psychology-Law Society. These experts received information about
four actual patients in the form of one-page abstracted discharge summaries
taken from the records of patients discharged in 1996 from an acute care
inpatient facility.5

What follows is the first half of one discharge summary for a woman
described as restless, anxious, and having poor judgment and concentration.

Case 22-190 Discharge Summary

History of Present Illness
This is a 52-year-old divorced Hispanic female with a history of
psychiatric illness, including bipolar and schizo-affective disorders. She
has a low level of cognitive functioning, and is borderline mentally
retarded. Her sister states that the patient struck her several times on the
day of admission because the sister opened the window to let some
smoke out. The sister had to grab onto the patient’s shoulder and bring
her to her room. The patient complained, “My sister grabbed my face
and hurt me.” The patient has been paranoid of her sister, and has had
auditory hallucinations. She has also had illusions of a man at her
window and sitting in her living room, as well as illusions of lice in her



hair. She has been scratching and picking at her head, and washing
herself excessively. The patient denies [feeling homicidal and suicidal],
and has been compliant with medications.

Family and Social History
The patient is divorced with four children. Her ex-husband is an
alcoholic. She currently lives in her sister’s house with her sister’s
husband, sister’s father, and the patient’s brother. The brother carries a
diagnosis of schizophrenia. The sister also cares for a grandson who has
severe mental retardation. The patient lived in an orphanage as a child,
and has a history of being sexually abused. She was taken out of school
in the first grade because of an inability to perform.

The second half of the discharge summary describes the medication the
patient is receiving and her family’s wish to have her return home. Is this woman
likely to harm someone other than herself during the six months following
discharge?

One half of the experts were asked to judge the probability that this woman
(or one of the other three cases) would harm someone other than herself during
the six months following discharge, that is, would commit a violent act. The
other half were asked to judge how many out of 100 women like this woman
would commit a violent act in the same period. One might think that the
answer would be about the same because all professionals read the same
discharge summary. This was not the case. The two questions produced two
systematically different responses. The probability judgments were about 50
percent higher than the frequency judgments. Figure 11-1 shows the predictions
of violent acts averaged across the four patients. The average frequency estimate
of the members of the American Academy of Psychiatry and Law was 20 out of
100, whereas their average probability estimate of a violent act was .30. The
members of the American Psychology-Law Society estimated the risk of violent
acts generally higher, but showed about the same difference between judgments
of frequencies and probabilities.



FIGURE 11-1. The predicted average likelihood that a patient will commit a
violent act. More than 400 members of the American Academy of Psychiatry
and Law (left) and more than 400 members of Division 41 of the American
Psychological Association, that is, the American Psychology-Law Society (right),
predicted the likelihood that each of four patients would commit a violent act.
One half of the members in each group were asked for a probability judgment,
the other half for a frequency judgment. The members of the American
Psychology-Law Society had, in addition, received a tutorial on the definition of
harm and probability theory. Nevertheless, both groups of experts made
systematically different predictions when asked for frequency and probability
judgments. (After Slovic, Monahan, and MacGregor, 2000.)



It is hard to believe that professionals’ estimates of the chances of a patient
harming someone would rise when they are asked to give a probability. Is there
an explanation? Assume that these professionals, like many ordinary people,
think of probabilities in terms of classes of concrete cases. As in the Prozac case
in Chapter 1, one’s interpretation of a single-event probability depends on the
reference class to which one implicitly assumes the probability refers. One may
take the reference class to be a set of events, such as the set of repeated occasions
on which a particular patient leaves the hospital on weekend release and then
returns. In that case, the question will be interpreted as being about one patient
who is repeatedly granted conditional freedom. Alternatively, one may take the
reference class to be a set of patients who are granted weekend release on one
occasion. The answers to the question “What is the probability that this person
will commit a violent act in the next six months” need not be the same given the
two interpretations.6

In contrast, the frequency question “How many out of 100 women like this
patient would commit a violent act in the next six months?” clearly specifies one
reference class: other patients like the violent patient. This argument explains
why differences between frequency and probability judgments can arise, but not
the direction of the difference. With respect to the question of direction, that is,
why probability judgments are numerically higher than frequency judgments, I
can only offer speculation, not an answer. If an expert assumes that the
likelihood of a violent act increases the more often a patient is granted
conditional freedom, such as weekend release, then it follows that the relative
frequency of violent acts of 100 patients given conditional freedom one time
(that is, the first time) should be lower than that of one patient given conditional
freedom multiple times. Because the probability question leaves open which of
the two situations is meant, this speculation can explain why frequency
judgments resulted in lower predicted risks.

Judgments of single-event probabilities and frequencies can differ
systematically—in the case of the former, the reference class can be interpreted
in many ways; in the case of the latter it is clearly specified. The ambiguity
introduced by a question such as “What is the probability that this person will
commit another violent act?” can lead to systematically different judgments on
the part of experts, as was found in the study summarized above.



DO RESPONSE CATEGORIES INFLUENCE EXPERTS’ JUDGMENTS?

Probabilities of violent behavior, like those of rain, are too imprecise to be
expressed by numbers like 31 percent. They are more readily expressed in
categories, such as 5 percent, 10 percent, 20 percent, and 30 percent. Assume
you are designing a form showing a set of categories that experts can use to judge
how dangerous a patient is. Which categories should you use? Is this choice
merely aesthetic, or would the spacing of these categories matter to the resulting
judgments? To answer this question, Slovic and his collaborators gave each
member of the American Academy of Psychiatry and Law who participated in
their study one of the two response scales shown in Figure 11-2. Members in
one group made their predictions of violent acts using response categories of 1
percent, 10 percent, 20 percent, and so on in increments of 10 percentage points
(“Large probabilities”); members in the other group made theirs with categories
that were more finely graded at the lower end (“Small probabilities”).

Does the spacing of categories influence judgments of violent acts? In an
earlier study, Slovic and Monahan had found that probabilities of harm were
indeed systematically higher when people were given the scale with large
probability categories (Figure 11-2).7 I will call this effect of the spacing of
category on judgment the “category effect.” However, this category effect was
reported for laypeople making predictions of harm for hypothetical persons
described in vignettes, not experts considering real cases. Would the choice of
categories also influence professionals’ judgments of real cases?



FIGURE 11-2. What is the probability that the patient will harm someone?
Two response scales showed different categories for probabilities. (From Slovic,
Monahan, and MacGregor, 2000.)

FIGURE 11-3. Does the choice of response scale influence judgments of the
predicted probability of a violent act? Although there are differences between
laypeople and experts, the choice of response scales (large versus small



probabilities, see Figure 11-2) does consistently influence judgments. The
members of the American Psychology-Law Society had in addition received a
tutorial on the definition of harm and probability theory. (After Slovic et al.,
2000.)



As shown in Figure 11-3, the members of the American Academy of
Psychiatry and Law exhibited the same type of category effect found in lay-
people. In experts, the effect was smaller but still substantial. One might suspect
that the experts did not really understand what a probability judgment is. To
test for this possibility, Slovic and his colleagues gave the members of the
American Psychology-Law Society a tutorial in probability theory that explained
what is meant by harm, what a probability is, and how probabilities are assessed.
It even included an explanation of and a warning about the category effect. Yet
this tutorial made no difference: The category effect was about the same size
among the experts who had received the tutorial as among those who had not.
When the participants were further divided into those who frequently make
numerical risk assessments in their profession and those who never or rarely do
so, the category effect remained equally strong in both groups.8

Thus, the choice of response categories influences the probability judgments
of experts as well as laypeople. A similar category effect was found when experts
were asked for judgments of frequency. However, in neither experts nor
laypeople did the category effect influence the ordering of patients according to
judged harm. These results indicate that experts can reliably judge whether a
patient is more dangerous than another, but their quantitative estimates are
influenced by the categories with which they express those estimates. In other
words, the experts can reliably give judgments about the order of patients with
respect to the probability of their doing harm but not the magnitude of the
probability of harm.

Reliability does not imply accuracy. That is, the fact that a particular ordering
of patients with respect to probability of doing harm remains stable across the
two category scales does not imply that this ordering reflects the actual ordering
of the patients with respect to whether they later commit violent acts. Slovic,
Monahan, and MacGregor did not report how accurate the experts’ judgments
proved to be. However, recall the American Psychiatric Association’s estimate
that two out of three predictions are wrong; furthermore, studies of actual parole
decisions suggest that the predictive accuracy of these judgments is quite low.9

RESPONSE CATEGORIES AS CUES



The category effect is not limited to forecasting violence. It has been observed in
judgments concerning events other than risks, such as in reports about
innocuous habits and behaviors.10 The effect seems to occur in situations that
involve uncertainty, such as when a person has limited knowledge and is asked
to report or predict behavior. A category effect would not occur in situations
where people have, or believe they have, definite knowledge, such as when a
person is asked “How many kids do you have?” Here, the person would simply
scan the scale in search of the right number. Situations that involve some degree
of uncertainty, however, are abundant.

One such situation is survey studies, in which respondents are asked to report
their behavior by selecting a category. For instance, Norbert Schwarz and his
colleagues asked German adults how many hours a day they spend watching TV
on a typical day.11 The researchers gave one group of participants a response
scale with six categories “up to V2 hour; ½ to 1 hour; 1 to 1½ hours; . . . more
than 2½ hours.” This was called the “low-category” scale. A second group was
given a high-category scale on which the six categories were “up to 2½ hours;
2½ to 3 hours; . . . more than 4 hours.” The choice of categories influenced
people’s reports of how much time they spent watching TV. For instance, 16
percent of the participants given the low-category scale said they watched more
than 2½ hours per day. Among those given the high-category scale, 38 percent
reported doing so. This is a remarkable phenomenon, and it once more
demonstrates how judgments are influenced by the choice of the category scale.
Similarly, the reported frequency of sexual behaviors, of consumer behaviors,
and of physical symptoms is influenced by the categories given to the
respondent.12 These results highlight the dangers of taking survey data at face
value—even when people are not lying or trying to give answers that reflect
favorably on themselves. The category effect is a quite general phenomenon that
affects judgments of risk and more.

What is the explanation for the category effect? A necessary condition seems
to be that people be uncertain about what the answer to the question really is.
People do not keep records of the number of hours they watch TV. When asked
to estimate this number given their incomplete knowledge, they can use the
response categories as a clue to guide them. Someone who thinks herself an
average TV watcher will tend to choose a category in the middle of the range,



whatever that range may be. Similarly, a psychiatrist who is uncertain about how
the risk of violent behavior is distributed in a population of patients will tend to
distribute his judgments over the response categories, assuming that the
categories reflect the true range of the behavior in the population. The
professional, just as the TV watcher does, acts on the assumption that the
researcher knows the range in the general population and has chosen the
categories appropriately. Using their social intelligence, they both make the
seemingly reasonable inference that the researcher’s choice of response categories
is relevant to what they have been asked to do. Survey researchers or public
relations agencies, however, who want to produce results that are favorable to
their economic, social, or political position can easily exploit the category effect
and produce results in the direction they would like to see. The measurement
instrument is not a neutral mirror of an underlying belief; instead, it becomes
part of the judgment.

How can the category effect be reduced in assessments of risk? There are two
ways. The first is to reduce the uncertainty in the minds of risk assessors, for
instance, by providing them with statistical information about the actual violent
behavior of inmates on parole or patients on weekend release. As their
knowledge increases, their uncertainty diminishes, and the category effect will
eventually disappear. A second way is to dispense with response categories and
use other tools for risk assessment, for example, an open-ended response format:
“Think of 100 patients like Mr. Jones. How many will turn violent within six
months?______ out of 100.” In general, laypeople and experts need to take the
category effect into account when interpreting forecasts and survey responses.

CAN A SINGLE-EVENT PROBABILITY BE WRONG?

D. A. Cloud, a 26-year-old Seattle man, was convicted of the shooting death of
his former middle-school teacher, who had abused him and other students. At
his trial, the prosecution offered him the chance to plead guilty to second-degree
murder in exchange for a recommended sentence of 15 years (a plea bargain)
rather than stand trial on first-degree murder charges with an uncertain
outcome. But according to Cloud, his lawyer— one of Seattle’s best-known
criminal defense attorneys—told him that he had a 95 percent chance of
acquittal of the more serious charge based on an insanity plea.13 With this high



probability in mind, Cloud rejected the offer, stood trial, and was sentenced to
20 years in prison for first-degree murder. The disappointed Cloud filed a
motion to set aside this verdict, accusing his lawyer of having given him
unrealistic probabilities. After an extraordinary 12-day hearing, the court denied
the motion.

Note that the lawyer used a single-event probability to express Cloud’s
situation: a 95 percent chance of acquittal, which implies a 5 percent chance of
conviction. Can such a probability ever be wrong? Can it be unrealistic? It does
not seem that it can be wrong because it refers to one case only, that of Mr.
Cloud. The defendant will either be acquitted or he will not, and the probability
estimate allows for both—unless the probability is stated to be 0 or 1, which it
was not in Mr. Cloud’s case. A frequency prediction, in contrast, can be wrong.
The statement that 95 out of 100 defendants (in similar cases of homicide after
abuse) will be acquitted, for example, can be shown to be right or wrong in light
of data from legal records.

The Question Is Part of the Answer

Surveys have been designed to measure people’s perceptions of everything from
their risk of acquiring mad cow disease after having eaten British beef to that of
developing cancer from living close to a nuclear power plant. Typically, such
surveys use response categories to facilitate the analysis of data, and the
underlying assumption is that people have subjective risks in their minds and
straightforwardly map them onto the response categories. The response scale is
seen as a neutral measurement tool, like a typewriter, which is merely a device
for recording thoughts in the form of letters and punctuation marks. The studies
reported in this chapter show that this assumption is incorrect. When experts
estimate the risk that a violent person will do harm to another person in the near
future, the spacing of the categories substantially influences their judgments. So
does the choice of question—that is, whether it pertains to a probability or a
frequency. Indeed, the question and the response categories are part of the
answer.

What can be done with fragile probabilities, that is, probability estimates that
rest on assumptions about reference classes and response categories? The effect of



response categories can be eliminated by using open-ended response formats.
Concerning the ambiguity of the reference class, my recommendation is this: If
you want to make a single-event statement, make a frequency statement first. The
frequency statement forces you to clarify what the reference class is and reduces
the possibility of miscommunication: “Out of every 100 inmates similar to Mr.
Bold, 20 are expected to behave violently within six months if let out on parole.
In other words, Mr. Bold has a 20 percent likelihood of violence.” The initial
frequency statement clarifies the reference class behind the probability statement
that follows.

Asking for a probability versus a frequency judgment and providing category
spacing can both be used to influence predictions and estimates obtained from
laypeople and experts. In the next chapter, I will show how various
representations of benefits and costs, such as relative risk reduction, can be used
to influence policy decisions by exploiting others’ innumeracy. The power of
playing with representations in public policy affairs is of deep concern, because it
illustrates how people can be exploited without their noticing it. At the same
time, however, some of these stories also reveal a funny side, as instances of
innumeracy often do when they are, indeed, noticed.



PART III

FROM INNUAAERACY TO INSIGHT



If an unfriendly foreign power had attempted to impose on America the
mediocre educational performance that exists today, we might well have
viewed it as an act of war.

The National Commission on Excellence in Education
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HOW INNUMERACY CAN BE EXPLOITED

In front of me is a wonderful little book entitled How to Lie with Statistics.1 It
begins with five epigraphs, the first of which reads “There are three kinds of lies:
lies, damned lies, and statistics. —Disraeli.” Everyone loves this quotation,
which was tentatively attributed by Mark Twain to Benjamin Disraeli, a prime
minister under Queen Victoria.2 The second epigraph reads “Statistical thinking
will one day be as necessary for efficient citizenship as the ability to read and
write. —H. G. Wells.” Statisticians love this quotation, which has been
reproduced in statistical textbooks again and again. The author of How to Lie
provides no source for the second quotation—he simply attributes it to the
science fiction writer H. G. Wells, as do the many others who love to quote it.
When I tried to find this quotation in Wells’s writings, however, I couldn’t. In
any case, How to Lie is not actually about lying, but about how to represent
information correctly yet misleadingly. Similarly, the chapter you have begun to
read is not about lying but instead about choosing representations that mislead
the innumerate without being inaccurate. Given that the number of
“innumerates” is supposedly legion, the opportunities to mislead them are
endless. When John Q. Public does not understand relative risks, single-event
probabilities, or conditional probabilities, it’s his own fault, isn’t it?

Why doesn’t everyone communicate risks transparently? I have asked this
question of myself many times. One answer is that innumerates can be



exploited. It can be to the advantage of “numerates” to be nontransparent as
long the number of innumerates is sufficiently large. As a consequence,
transparent risk communication is unlikely to emerge as long as a large
proportion of people are innumerate. How do the numerate exploit others’
innumeracy?

How to Get Funding

Why do researchers and health agencies continue to report the benefits of
treatments in terms of relative risks, even though this type of risk
communication is known to mislead people about the degree of a treatment’s
benefit?

A team of British researchers studied the decision making of members of the
Anglia and Oxford regional health authorities. This group included executive
members, who are responsible for purchasing and financial and personnel
management, as well as nonexecutive members, who are appointed by the Home
Secretary to act as public representatives of their local populations. The members
were asked whether they would support purchasing each of four cardiac
rehabilitation programs and each of four breast cancer screening programs.3 The
alternative programs had the same benefits and differed only in the way the
benefits were described. For each program, one proposal reported relative risk
reduction, the second absolute risk reduction, the third the number of patients
who need to be treated to prevent one death, and the fourth the proportion of
“event-free” (that is, surviving) patients.

Table 12-1 shows data about the relative effectiveness of coronary artery
bypass surgery (the cardiac rehabilitation program).

Four Ways to Present the Benefit

The absolute risk reduction of bypass surgery is 4.1 percent (404 - 350 =
54; 54/1,325 = 4.1%).

The relative risk reduction of bypass surgery is 13.4 percent (4.1/ 30.5 =
13.4%).



The percentages of event-free (surviving) patients are 73.6 percent and
69.5 percent, respectively, for surgery and medical therapy.

The number of patients needed to be treated to save one life is 25.

Whereas the relative risk reduction with bypass surgery is 13.4 percent, the
absolute risk reduction is 4.1 percent. The number of patients who need to be
treated with bypass surgery to save one more life than by medical treatment is 25
(note that 1 out of 25 corresponds to 4.1 percent). In other words, out of each
25 patients who receive a bypass, 1 patient’s death (within 10 years) will be
prevented; the other 24 will have no benefit in terms of mortality reduction
from the operation. Finally, the number of event-free patients (here the number
of patients who survive) is 73.6 percent for bypass surgery versus 69.5 percent
for medical treatment. All these are equivalent descriptions of one and the same
outcome of an actual randomized trial in which the two treatments were
compared.

One might think that in deciding which treatment programs to fund, the
British health authorities would not have been influenced by differences in
representations of the same outcome. As it turned out, though, they were. In the
case of both cardiac rehabilitation and breast cancer screening, the authorities
saw the program as having the greatest merit— and were most willing to fund it
—when its benefits were expressed in terms of relative risk reduction (Figure 12-
1). When its benefits were expressed in terms of absolute risk reduction or the
proportion of event-free patients, the authorities saw the treatments as having
the least merit. (After all, 13.4 percent is more than 4.1 percent.) When the
benefits were reported in terms of the number of patients who needed to be
treated to save one life, their willingness to fund was in-between. Given these
results, one might wonder how many of these professionals noticed that the
benefits of the four programs were the same. In fact, only 3 out of the 140
experts realized that all four reflected the same clinical results.

TABLE 12-1: What are the benefits of coronary artery bypass surgery versus
medical therapy? This table shows the actual results of a clinical study; the
text shows four ways to present the result. (After Fahey et al., 1995.)



Treatment No. of Patients Deaths

Coronary artery bypass surgery 1,325 350 (26.4%)

Medical therapy (nonsurgical) 1,324 404 (30.5%)



FIGURE 12-1. Does the willingness of members of health authorities to fund
a program depend on how the benefit is presented? Willingness to fund is
highest when the proposal reports benefits in terms of relative risk reduction
(RRR), followed by number needed to treat (NNT), absolute risk reduction
(ARR), and event-free patients (EFP). (After Fahey et al., 1995.)



How to Sell Your Treatment

In Chapter 5 we learned of a study of the information brochures on breast
cancer screening distributed by Australian health organizations in which it was
found that the benefits of screening, when they were reported at all, were
expressed in terms of relative risks. These leaflets were written for the public, not
for professionals. In no case were the benefits of screening explained so that
laypeople could easily understand them. Similarly, the benefits of a diet or
medical treatment are often reported in terms of a relative risk reduction or
relative risk increase. Consider a newspaper article in which it is reported that
men with high cholesterol have a 50 percent higher risk of heart attack. The
figure of 50 percent sounds frightening, but what does it mean? It means that
out of 100 fifty-year-old men without high cholesterol, about 4 are expected to
have a heart attack within 10 years, whereas among men with high cholesterol
this number is 6. The increase from 4 to 6 is the relative risk increase, that is, 50
percent. However, if one instead compares the numbers of men in the two
groups who are not expected to have a heart attack in the next 10 years, the same
increase in risk is from 96 to 94, that is, about 2 percent. Now the benefit of
reducing one’s cholesterol level no longer looks so great. This trick doesn’t work
with absolute risks. The absolute risk increase is 2 out of 100, or 2 percent, no
matter whether one counts those with or without heart attacks. Absolute risks do
not leave room for playing with such numbers.

Consider a woman trying to decide whether or not she should have hormone
replacement therapy. Hormone therapy has potential benefits and costs. If one
wants to help patients to make an informed decision, these should be reported in
the same “currency,” such as absolute risks. But some physicians would like to
influence women’s decisions, not only inform them. One technique is to exploit
patients’ ignorance concerning risk representations. To increase the patient’s
willingness to participate in therapy, one simply reports the benefits in terms of
relative risks (which appear larger) and the costs in terms of absolute risks (which
appear smaller). To decrease the patient’s willingness, one simply does the
opposite. To take an example, the following information leaflet written by 12



physicians was made available in the waiting rooms of German gynecologists.4
The relevant passages are translated below.

Hormones and Cancer
Up-to-Date Information

Dear Patient,

The media continually report a threatening increase in cancer in
connection with the use of hormone replacement therapy during
menopause. In what follows we give you an up-to-date review of the
proven facts so that you have an objective basis for making a decision.

Breast Cancer. About 60 extensive studies on this topic have been
conducted to date. The results are not unanimous. A summary of these
studies shows that hormone therapy may be associated with a minimal
increase in the incidence of breast cancer.

Usually, about 60 out of 1,000 women develop breast cancer in their
lifetime; after 10 years of hormone therapy, 6 more women develop
breast cancer. That is, the risk may possibly increase by 0.6 percent (6 in
1,000). . . .

Other Cancers. Not only does hormone therapy not increase
colorectal cancer, which is relatively frequent, but it has been proven to
protect women against colorectal cancer (by up to more than 50
percent). That is, women who receive hormone therapy develop
colorectal cancer only half as often. . . .

It is easy to guess in which direction these physicians were trying to influence
their patients. The potential cost (an increased risk of breast cancer) was
reported as an absolute risk and the potential benefit (a decreased risk of
colorectal cancer) as a relative risk, making the cost appear smaller and the
benefit larger. If these physicians had reported both the benefit and cost in
relative risks, the “minimal increase” in breast cancer would have been 10
percent, not 0.6 percent. In addition, the cost was marked with the qualifier
“possibly,” whereas the benefit was described as “proven.” This choice of words
and representations is unlikely to have been accidental. Rather, these physicians



were almost certainly trying to exploit their patients’ inability to see that apples
and oranges were being compared—with the aim of getting them to agree to
hormone replacement therapy.

How to Raise Anxiety

Since the introduction of the contraceptive pill in the 1960s, women have gone
through several “Pill scares.” A few years ago, information concerning side effects
of oral contraceptives was publicized in Britain. The official statement said that
“combined oral contraceptives containing desogestrel and gestodene are
associated with around a two-fold increase in the risk of thromboembolism.”5

(“Thromboembolism” means blockage of a blood vessel by a clot.) The warning,
which was phrased as a relative risk increase, caused great concern among
women and their physicians. Many women stopped taking the Pill, which
resulted in an increase in unwanted pregnancies and abortions.6

If the same information about thromboembolism had been expressed as an
absolute risk, it would have been clear how frequent this dangerous side effect
actually is. The relative risk says only how much more likely thromboembolism
is if one takes the Pill than if one does not take the Pill, not how often
thromboembolism actually occurs. In terms of absolute risks, the chance of
thromboembolism increases from about 1 to 2 in 14,000 women.7 In terms of
relative risks, the chance doubles.

Reporting relative risks can raise people’s anxieties. These anxieties, in turn,
can change people’s behavior and encourage them to disregard the side effects of
not taking the Pill, such as abortions and unwanted pregnancies, that also pose
hazards to their health. Note that the choice is not between risk
(thromboembolism) and certainty (no thromboembolism), but between two
options, each with its own set of risky consequences. Absolute risks help women
understand how often each of these consequences may occur. Once again,
however, transparency helps reduce unnecessary anxieties, and abortions as well.

How to Make More Money



Assume you suffer from a serious illness and that without proper medication,
you will surely die. The medication you have been taking so far reduces your risk
of dying to a probability of .0006, at a cost of $185. The company that produces
this medication plans to market an improved version that would reduce your
risk to .0003. How much would you be willing to pay for the improved version?

This question was posed to a group of Swiss university students. They said
they were willing to pay a slightly higher price (an average of $213) for the
improved medication. Another group was given the risk reduction in absolute
frequencies, that is, the group was told that the new medication would reduce
the risk of dying from 600 to 300 out of 1 million. These students were willing
to pay substantially more (an average of $362) for the improved medication.8
Thus, when the benefit was represented in frequencies rather than single-event
probabilities, the perceived monetary worth of the improved medication was
substantially higher.

Two caveats should be mentioned here. First, the possibility of increasing the
perceived worth of a product by expressing risk reduction in frequencies rather
than single-event probabilities is not boundless, especially when the hazard is
extremely rare in the first place. For instance, the students’ willingness to pay
more when the risks were explained in frequencies disappeared when the risks
were extremely small (for example, 3 or 6 in 1 million). Second, unlike most
studies covered in this book, this study tested students rather than experts and
hypothetical illnesses rather than real ones. As a consequence, the participants’
statements about their willingness to pay had no real consequences for them. It
remains to be shown whether one can use this technique to increase profits from
real patients with real illnesses who need real medications. But expressing risk
reduction in frequencies may enable businesses to charge consumers more for
health-enhancing products.

How to Present Losses as Gains

Your firm has had quite a few ups and downs in the last three business quarters.
Your eager-beaver assistant has made a plot of sales over this period (Figure 12-
2) that shows that your firm experienced an overall loss in sales. Aside from your
assistant, you are the only person who has seen this graph. It is in your best



interest not to make this loss transparent because you fear it will make some of
your stockholders nervous. What should you do?

Instead of publishing the graph, you describe it verbally. You release a press
notice stating that between January and May, your firm suffered a 50 percent
decrease in sales, which was regrettable but consistent with the market as a
whole. However, the notice says, by taking countermeasures, the firm was able
to compensate for this loss. Between May and September, the firm increased its
sales by 60 percent. Overall, then, the dip in sales in the first five months was
more than outweighed by a steeper climb in the following months. Thus,
according to the notice, the overall result looks positive because 60 percent is
more than 50 percent. In actuality, the initial 50 percent loss was $500,000, and
the later increase of 60 percent amounted to only $300,000.



FIGURE 12-2. Losses and gains. The loss in sales visible in this figure can be
masked by the statement “There was a 50 percent loss in the first part of this
period, but this was compensated for by a 60 percent increase in the second
part.” However, a 50 percent loss from January to May is not cancelled by a 60
percent gain from May to September.



In the late 1970s, the Mexican government faced the problem of how to
increase the capacity of the Viaducto, a four-lane motorway.9 Rather than
building a new highway or extending the existing one, the government
implemented a clever, inexpensive solution: It had the lines on the four-lane
highway repainted to make it six-lanes wide. Increasing the number of lanes
from four to six meant a 50 percent increase in capacity. Unfortunately, the
much narrower lanes also resulted in an increase in traffic fatalities, which, after
a year, forced the government to turn the highway back into a four-lane road.
Reducing the number of lanes from six to four meant a 33 percent decrease in
capacity. In an effort at touting its progress in improving the country’s
infrastructure, the government subtracted the decrease from the increase and
reported that its actions had increased the capacity of the road by 17 percent. In
reality, of course, the capacity returned to what it had been, resulting in no net
benefits. The net costs were the price of the paint and an increase in traffic
fatalities.



Life is the game that must be played.
E. A. Robinson

13

FUN PROBLEMS

In this chapter, I invite you to leave the real world and enter the world of games
and brain teasers. Entering this world can enlighten you, entertain you, and
sharpen your thinking. The first problem is one of the oldest of the genre.

The First Night in Paradise

It is the night after Adam and Eve’s first day in Paradise. Together, they
watched the sun rise and illuminate the marvelous trees, flowers, and birds.
At some point the air got cooler, and the sun sank below the horizon. Will it
stay dark forever? Adam and Eve wonder, What is the probability that the
sun will rise again tomorrow?

With hindsight, we might think that Adam and Eve should have been certain
that the sun would rise again. However, they had seen the sun rise only once.
What should they expect? The classical answer to this problem is as follows. If
Adam and Eve had never seen the sun rising, they would assign equal
probabilities to both possible outcomes. Adam and Eve represent this initial
belief by placing one white marble (a sun that rises) and one black marble (a sun
that does not rise) into a bag. Because they have actually seen the sun rise once,
they put another white marble in the bag. Now that the bag contains two white



marbles and one black marble, their degree of belief that the sun will rise
tomorrow has increased from 1/2 to 2/3. After observing the sunrise on the
following day, they add a third white marble to the bag, reflecting the fact that
their degree of belief has increased again, this time from 2/3 to 3/4. Thus, after
having seen the sun rise once, Adam and Eve’s degree of belief that it will rise
again the next morning is 2/3 (Figure 13-1).

According to the rule of succession, introduced by the French mathematician
Pierre-Simon Laplace in 1812, your degree of belief that the sun will rise again
after you have seen the sun rise n times should be (n +1)/ (n+2).1 When you are
27 years old, the sun has risen 10,000 times in your life, so by the rule of
succession your confidence that it will rise again tomorrow should be
10,001/10,002.

Unlike in the medical situations in the previous chapters, in which the disease
base rates were known, Adam and Eve initially had no base rate for sunrises. In
other words, their initial assignment of one marble to each of the possible
outcomes was not based on experience. If they had been pessimists, Adam and
Eve might have begun with 1 white marble and 10 black marbles in the bag; or,
if they had been optimists, they might have done the opposite. The practice of
assigning equal probabilities to the possible outcomes when one has no basis on
which to estimate their probabilities is known as the principle of indifference. It
remains controversial. Its proponents defend it by arguing that the initial
assignment of probabilities to outcomes has less impact the more observations
one makes. For instance, after 10 years of sunrises, one’s estimate of the
probability that the sun will rise again tomorrow becomes practically the same
whether one was a pessimist or an optimist to begin with.2



FIGURE 13-1. The principle of indifference. This principle can be applied
when one does not know which of two events (the sun will rise tomorrow or it
will not) is more likely to occur. This indifference is represented by one black
and one white sun, resulting in a probability of 1/2. When Adam and Eve
actually observe a sunrise, one white sun is added and the resulting probability
increases to 2/3, and so on.



The Base-Rate Fallacy

The story of Adam and Eve enlightens us about making predictions under
conditions of almost complete ignorance. The following brain teaser was not
meant to enlighten, but to demonstrate the existence of cognitive illusions in
ordinary humans. It is one of the earliest demonstrations of a cognitive illusion
that later came to be called the base-rate fallacy. The psychologist M.
Hammerton posed the following problem to housewives in Cambridge,
England:

1. A device has been invented for screening a population for a disease
known as psylicrapitis. 2. The device is a very good one, but not perfect.
3. If someone is a sufferer, there is a 90 percent chance that he will be
recorded positively. 4. If he is not a sufferer, there is still a 1 percent
chance that he will be recorded positively. 5. Roughly 1 percent of the
population has the disease. 6. Mr. Smith has been tested, and the result
is positive. The chance that he is in fact a sufferer is:__________3

The housewives failed. Their average estimate of the probability that Mr. Smith
suffered from the fictional disease was 85 percent, whereas the correct answer—
according to Bayes’s rule (introduced in Chapter 4)—is 50 percent. Hammerton
suggested that his finding had to do with housewives’ lack of experience with
medical diagnosis. The real reason, however, may be easier to overcome. The
information was presented in conditional probabilities. As I have shown in
earlier chapters, there is a simple way to turn innumeracy into insight in this
problem: Translate the probabilities into natural frequencies (here the
frequencies are rounded).



FIGURE 13-2. Frequency tree for a fictional disease. A proper representation
makes it easy to see that between two people who test positive, only one has the
disease.



Think of 100 people. One has the disease psylicrapitis, and he is likely to test
positive. Of those 99 who do not have the disease, 1 will also test positive.
How many of those who test positive do have the disease? ________ out of
________.

The answer is clearly 1 out of 2 (Figure 13-2). The difficulty did not reside in
the housewives’ inexperience with medical diagnosis. If they had received the
information in natural frequencies, the problem would not have clouded their
minds in the first place.4 A proper representation can help to make even the
most puzzling “cognitive illusions” disappear.

Why Most Drivers Are Better Than Average

When people are asked how safe their driving is, most respond that they are
better than average. Researchers of risk perception have argued that “it is no
more possible for most people to be safer [drivers] than average than it is for
most to have above average intelligence.”5 The finding that most drivers believe
they are better than average has been used as another illustration of people’s
cognitive illusions, much to the amusement of students of business, psychology,
and beyond. It has been variously attributed to people’s overconfidence,
optimism, or illusion of control—that is, over-estimation of their own power to
avoid accidents.

Let us have a second look at this phenomenon. It is not possible that most
people have above-average IQs because the IQ distribution is, by definition,
symmetric. In other words, the number of people with IQs above the average
(arithmetic mean) is the same as the number below the mean. Is it possible that
most people drive more safely than average? Yes, because safety in driving is not
symmetrically distributed around the mean. One can see this result by drawing a
frequency distribution. Let me explain.

For illustration, I take the number of car accidents in which a driver is
involved over the course of a lifetime as a measure of safety in driving. Imagine
100 drivers. The average number of accidents per driver is 3. If the numbers of
accidents were symmetrically distributed around this arithmetic mean of 3, the
distribution would look like Figure 13-3 (top). There would be 5 drivers



without accidents, 10 with one accident, and so on. The distribution would look
the same on both sides of the mean—it would be symmetrical. (The “safe”
drivers are shaded in the figure.) Assuming a symmetric distribution such as this
one, half of the drivers—and no more—can be better than average.

In reality, however, safety in driving is not symmetrically distributed.6 A
minority of drivers actually have large numbers of accidents. Figure 13-3
(bottom) shows such a distribution, again with 100 drivers. There are a few very
unsafe drivers on the right side, and many safe drivers who have had no
accidents or one accident on the left side. Rather than being symmetric, this
distribution is skewed. The average number of accidents is shifted to the right—
to 4.5 accidents—because the few very bad drivers push up the mean. Now it is
clear that more than 50 percent of the drivers—63 out of the total of 100—are
better than average.7

The general point is that a graphical representation can help us to see whether
a distribution is symmetric or skewed. When events are distributed
symmetrically, 50 percent of cases are above the arithmetic mean and 50 percent
below. When a distribution is skewed, as is the case for the number of car
accidents people have, there is no longer the same number of people on both
sides of the mean. The conclusion that people overestimate their driving prowess
may be premature. A bit of statistical thinking can show that most drivers
actually drive more safely than “average.”



FIGURE 13-3. Can most drivers be better than average? When the
distribution of accidents is symmetrical (as in the top panel), half of the drivers
are better than average (shaded) and half are worse. However, when the
distribution is skewed (as in the bottom panel), most drivers can be better than
average. Here, the mean number of accidents per person is 4.5. Because of the
skewed distribution, most drivers—63 out of 100—have fewer than the average
number of accidents.



The Monty Hall Problem

For about three decades, Monty Hall hosted a popular American game show
called Let’s Make a Deal. His final contestant on each show was given the chance
to win a big prize. Here is the situation the contestant faced, as described in
Parade magazine by the columnist Marilyn vos Savant—allegedly the person
with the highest recorded IQ. (Figure 13-4):

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say number 3, which has a goat. He says to you,
“Do you want to pick door number 2?” Is it to your advantage to switch
your choice of doors?8



FIGURE 13-4. The three-doors problem. The guest on the Monty Hall show
has a choice among one of three doors. Behind one is a car, and behind the
others are goats. The guest (left) picked door 1. Monty, who knows where the
car is, opens door 3 and shows a goat. Should the guest switch to door 2 or stay
with 1?



What would you do? Stay or switch? I asked a graphic designer this question.
Our conversation appears below.

Designer: I would stay.

GG: Why?

Designer: You should not revise a decision you’ve made.

GG: Why?

Designer: I would feel bad if the car were behind the door I chose and then I
had switched to one with a goat.

GG: You would feel worse if you switched from a door with a car than if
you stayed with a door with a goat, although you would lose in both
cases?

Designer: Definitely.

GG: Now imagine there were 100 doors with 99 goats and one car. You
choose door number 1, and Monty opens all the doors except number
37, and each of the doors he opens shows a goat. Would you switch to
number 37?

Designer: No. I would stay. There are two doors closed, and the chances are
50-50. No reason to switch.

GG: The chance of choosing the right door is 1 in 100, isn’t it? So, in 99
out of 100 cases, you will have picked a door with a goat, and Monty
will show you all the other doors with goats, leaving the door with the
car closed. In these 99 cases, staying loses and switching wins. In only
one case, the case in which you are lucky enough to have picked the door
with the car, is switching to your disadvantage.

Designer: I’m getting confused. I still would not switch.



The vast majority of people think, as the graphic designer did, that switching
and staying are equally likely to win them the car—and decide to stay.9 But vos
Savant recommended that the contestant switch doors. Her solution to this
brain teaser caused a nationwide debate. The New York Times featured a front-
page article that explored the fuss about switching or not switching, and
thousands of opinion letters swamped Parade and other magazines.10 The
authors of most of the letters insisted that Marilyn was wrong. A professor of
mathematics wrote the following letter:

Dear Marilyn:

Since you seem to enjoy coming straight to the point, I’ll do the same.
In the following question and answer, you blew it! Let me explain. If one
door is shown to be a loser, that information changes the probability of
either remaining choice, neither of which has any reason to be more likely,
to 1/2. As a professional mathematician, I’m very concerned with the
general public’s lack of mathematical skills. Please help by confessing
your error and in the future being more careful.

Another writer got down to the very essence of the problem:

You cannot correctly apply feminine logic to odds. The new situation is
one of two equal chances.

In a final illustration, a college professor defends three of his colleagues who
were all of one opinion with him:

. . . As an educator, I find your . . . column reprehensible, and urge you
to reconsider your future endeavors. In my opinion, you no longer
provide a useful service to your readers. . . . I am encouraging Parade
magazine to drop your column. I would also encourage your publisher to
print a strong apology to the three scholars whose wisdom was
impugned by your illogical babble. I hope they sue you!



As far as I know, the scholars never sued vos Savant, and they were well
advised not to. To switch or not to switch—that is the question. To answer it,
we have to make a few assumptions that were left out of vos Savant’s version of
the Monty Hall problem. The first assumption is that Monty always gives guests
a chance to switch, or at least that whether he gives them a chance to switch does
not depend on which door they choose. For instance, if he offered a chance to
switch only when the guest picks the door with the car, then not switching is
obviously the winning strategy. The second assumption is that Monty always
opens a door with a goat, never the door with the car. The third assumption is
that Monty makes all other relevant choices randomly, including the choice of
behind which door to place the car and the choice of which door to open when
he has a choice between two doors with goats. If the situation is clarified in this
way, then one can show that vos Savant was right: Switching increases the
contestant’s chance of winning from 1/3 to 2/3. However, as in the previous
problems, one can see the answer best with the help of a proper information
representation. There are several representations that illustrate that switching is
to the contestant’s advantage.11

Frequency judgments. Don’t ask whether you should switch or stay, but
in how many cases switching pays. In other words, don’t ask about a
single event, but rather ask about repeated events. This frequency
question reveals that—at the point where you are deciding whether to
switch—there are three possible cases: (1) You have picked a door with a
goat, (2) you have picked the door with the car, or (3) you have picked
the other door with a goat. If you don’t switch, in only one out of the
three cases—the second one—will you win the car (Figure 13-5). If you
switch, you will win the car in two out of the three cases. This occurs in
the two cases in which you picked a door with a goat, Monty opened the
other door with a goat, and you switched to the remaining door—the
one with the car.

Perspective change. Picture yourself in the role of Monty rather than in
the role of the guest. In other words, imagine standing behind the doors
rather than in front of them. As the host, you know where the car is.



Assume the car is behind door 3 and the guest has already made her first
choice. Three scenarios are possible. If the guest picked door 1, you are
forced to open door 2. If she now switches, she will win the car. If the
guest picked door 2, you are forced to open door 1. If the guest now
switches, she will win the car. If the guest picked door 3, you will
randomly open either door 1 or door 2. Out of the three scenarios, only
in this last one will switching result in the guest’s not winning the car. In
short, a guest who switches will win in two out of the three cases, and a
guest who stays will win in only one out of the three cases. Through
Monty’s eyes, it is easier to see that switching increases the chance of
winning from 1 in 3 to 2 in 3.



FIGURE 13-5. Does switching pay? The guest can choose either door 1, 2, or
3. I f she stays with her choice of door 1, she will win the car in only one out of
three cases. I f she switches, she will win the car in two out of three cases.



Repeated play. A third way to see that switching pays is to simulate
playing the game repeatedly. Take three coffee cups, turn them up-side
down, choose one at random, and put a $10 bill underneath it. Ask a
contestant to pick one cup. Then let her watch you turn over a cup with
no money underneath it, and proceed as Monty Hall would. Your friend
can either stay with the cup she originally picked or switch to the other
cup that has not yet been turned over. Repeat this game 100 times with
a contestant who does not switch, and observe how many $10 bills she
collects. Then do the same with a contestant who switches all the time.
You will observe that the person who never switches will win about $300
to $350, that is, about one-third of the games. In contrast, the person
who always switches will win about $600 to $700, that is, about two-
thirds of the games.

The bottom line is this: The best strategy in the Monty Hall dilemma is to
switch. Those who don’t switch leave money on the table. Lessons learned by
winning or losing money are hard to forget.

So it seems that we should advise a contestant on Let’s Make a Deal to switch.
But wait a moment. Recall that this chapter is about fictional problems, not
problems in the real world or even on game shows. Switching is the best strategy
in the word problem above, with the assumptions added, but the real game show
may have had different rules. Take the assumption that Monty always gave the
final guest a chance to switch. When asked whether this was true, the real
Monty Hall recalled that he rarely offered guests the switching option and could
not say how often it was accepted. However, his longtime production assistant,
Carol Andrews, asserted that Monty never offered the last guest an opportunity
to switch. Barry Nalebuff, who wrote one of the first articles on the Monty Hall
problem, says that in watching the show he saw the switch option offered, but
he cannot recall whether Monty made the offer in every show or whether his
making the offer depended on which door the guest had picked in the first
place.12 In the real world, even game shows are uncertain. And in this case, the
uncertainty is not merely a product of imperfect memory. The real game show
revolved around Monty Hall, and part of his personality was to make
spontaneous decisions rather than to follow a strict protocol. In other words,



part of the suspense of the game arose from contestants’ uncertainty about
Monty Hall’s motives and actions, and this suspense might have been lost if he
had followed the same rules in show after show.13

Three Prisoners on Death Row

In a country far away, three prisoners—Tom, Harry, and Dick—are
awaiting execution in separate cells. They have just heard the news that a
healthy daughter has been born to the king and that the king has decided to
express his gratitude to God by pardoning one of the prisoners. Because the
monarch does not care which prisoner is spared, the lucky one has been
chosen by lottery. Each prisoner has a 1/3 chance of being pardoned. The
warden, who already knows the result of the lottery, has been instructed not
to let any of the prisoners know if he is the one who will be pardoned.
Arguing that everyone knows for sure that either Tom or Harry will be
executed (because only one or the other—or neither—of them will be
spared), Dick persuades the warden that it would not be a violation of his
instructions to tell Dick whether Tom or Harry will be executed. The
warden tells Dick that Harry will be executed. Dick cheers up. Either he or
Tom is the one who will be pardoned, so he concludes that his chance of
survival has increased from 1/3 to 1/2. Is his reasoning correct?

The story of the three prisoners usually generates lively discussion.14 Listen to
two students consider the question:

Ilona: Two prisoners are left; therefore each has a 50-50 chance. It’s that
simple.

Lara: No, Dick still has a 1/3 chance. How can Dick’s chance increase?

Ilona: Count to two! At first, there were three guys, and the chance was 1/3
for everyone; now two guys are left, which makes 1/2 for each. If there
were only one guy left, his chance would be 1. It’s that simple.



Lara: No, I don’t think so. Dick has still a 1/3 chance—nothing more. The
warden did not tell him anything about himself; he knows nothing new
about his situation. No news, no change.

Ilona: Come on, that doesn’t make sense. Just think about what you’re
saying. If nothing changed, then Dick would keep his 1/3 chance, and
Tom his 1/3 chance, and since Harry lost his 1/3, there is something
missing. Just use your brain. Chances can’t disappear!

Lara: They don’t—Tom has now a 2/3 chance of being pardoned.

Ilona: You’ve got to be kidding me. That’s not fair.

Lara: Stop driving me crazy. Dick has a 1/3 and Tom a 2/3 chance. You
think that because the warden named Harry, Dick’s chances increased to
50-50. Look, if the warden had named Tom, you also would think that
Dick’s chances increased to 50-50. Whatever the warden says, you think
that Dick’s chances increase. Dick doesn’t even have to listen to the
warden, because his chances increase anyway! The warden could be deaf!
Or mute. Or Dick could just dream of the warden and his chances
would still miraculously increase to 50-50 because the warden’s answer
doesn’t matter! You can’t believe such nonsense, can you?

Ilona: Calm down, you are getting emotional. Just use your brain. Imagine
what would have happened if Tom had asked the warden. Whatever the
warden answers, with your argument, Tom’s chance would remain 1/3.
But you can’t tell me that Tom’s chance depends on who asked the
warden. You argue that if Dick asked, Tom’s chance would be 2/3; but
you tell me that if Tom asked, Tom’s chance would be only 1/3. That’s
not logical.

Lara: No, it is—the problem is in your story. You tell me that merely
asking the warden makes a prisoner’s chance of pardon increase to 1/2—
whatever the warden’s answer is. You can’t make anyone believe this. If
Tom, Dick, and Harry—I mean, each and every one of them—asked the



warden, then you’re telling me that each one would return to his cell
thinking that his chance is 1/2. All three are happy! You’re telling me
that’s logical?

Do Dick’s chances increase to 50-50 or not? To answer this question, we
need to spell out some assumptions, just as we did in the Monty Hall problem.
First, the warden would not tell Dick that he is the one to be spared (just as
Monty Hall would not open the door with the car); and second, if the warden
has a choice between naming Harry or Tom—that is, in the event that Dick is
the one to be pardoned—the warden would make the choice randomly (just as
Monty Hall would randomly choose which of the two doors with goats to open
when the guest had already picked the door with the car). Given these
assumptions, Lara is right: Dick’s chance has not changed in light of what the
warden told him—it is still 1/3. The reason is the same as in the Monty Hall
problem: The probability that the car is behind the door that the contestant has
chosen does not change after Monty Hall opens a door with a goat. Similarly,
the probability that Dick will be pardoned does not change after the warden
reveals the name of a prisoner who will be executed.

The guest on Let’s Make a Deal corresponds to Dick, Monty Hall to the
warden, winning the car to being pardoned, and the opening of a door with a
goat to the naming of a prisoner who will be executed. If Dick could
metamorphose into one of the other men, he should chose to become Tom
because Tom has a better chance of being the lucky one. To better understand
this, let’s take a look at the same representations we used in the Monty Hall
problem.

Frequency judgments. In the Monty Hall problem, we recast the question
of whether the guest should stay or switch as how often switching pays.
Similarly, in the three prisoners problem, we can recast the question of
whether asking the warden “pays” to how often asking pays. As in the
Monty Hall problem, this question focuses attention on the three
possible cases: (1) Tom has been pardoned, (2) Harry has been
pardoned, and (3) Dick has been pardoned (Figure 13-6). Initially, each
prisoner’s probability of being spared is 1/3. If Tom is to be pardoned,



the warden tells Dick that Harry will be executed. In this case, Dick will
also be executed. If Harry is to be pardoned, the warden tells Dick that
Tom will be executed. In this case, Dick will also be executed. If Dick is
to be pardoned, the warden tells Dick (at random) either that Harry or
that Tom will be executed. Only in this case will Dick be spared. Now
we can see that Dick will be executed in two out of the three cases. In
other words, his probability of being pardoned remains 1/3, even after
the warden answers his question.



FIGURE 13-6: Three prisoners on death row. Is Dick right in believing that
his chances of being spared have increased from one-third to one-half? There are
three possibilities: Either Tom, Dick, or Harry will be spared. In two of the
three cases, Dick will be executed, whatever the warden tells him. Thus, Dick’s
chances of being spared do not increase, but the chances of the person whom the
warden did not name increase from one-third to two-thirds.



Perspective change. Picture yourself in the role of the warden rather than
in the role of Dick. You know who is going to be freed. Now one of the
prisoners asks you to name one of the prisoners who will be executed.
You know that in two out of three cases, the prisoner who asks will be
one of the prisoners marked for execution. For instance, assume that all
three prisoners ask you to name one of the prisoners who will be
executed. Two of them will be marked for execution. Through the
warden’s eyes, it is easier to see that after asking the warden, the
prisoner’s chance of being pardoned is still 1/3.

Repeated play. A third way to understand the problem is to play the game
repeatedly. Take three coffee cups, each marked with the name of one of
the three prisoners, and randomly choose one cup under which to put a
slip of paper that says “Spared.” Playing the role of the warden, now turn
over one of the cups that does not have the slip of paper under it—that
is, reveal that either Harry or Tom will be executed, just as described
above. Repeat this game 100 times and see how often “Spared” is
underneath the cup marked “Dick.” You will observe that Dick is spared
in about 1/3 of the cases, not in 1/2 of the cases.

Playing with Representations

Many of us have been tricked by fun problems. In retrospect, we wonder why
we did not see the solution before. Just as with the real problems discussed in the
previous chapters, proper representations can facilitate insight. Fun problems
can be a motivating start to learning how to reckon with risk by playing with
representations. Because of their relative simplicity, fun problems can also easily
clarify the assumptions one needs to make to actually determine an answer. In
the next and final chapter, I will deal with the larger issue of teaching thinking,
and I now invite you to reenter our modern, technological world.



I know no safe depository of the ultimate powers of the society but the
people themselves; and if we think them not enlightened enough to
exercise their control with a wholesome discretion, the remedy is not to
take it from them, but to inform their discretion.

Thomas Jefferson, Letter to William Charles Jarvis, 1820
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TEACHING CLEAR THINKING

In the United States, an estimated 44,000 to 98,000 people die in hospitals each
year because of documented and preventable medical errors.1 In Germany,
between 8,000 and 16,000 patients in hospitals die every year because they are
administered the wrong medication or the right medication in the wrong
amount, and several hundred thousand others develop serious illnesses as a result
of such errors.2 An unknown number of people who are not infected with HIV
commit suicide because they test positive in screening, not realizing that false
positives occur. Each year, some 100,000 German women without breast cancer
have part of their breasts surgically removed in the follow-up after a positive test,
and only a few of them know that most positive screening mammograms are
false positives. As mentioned in a previous chapter, after learning of his own
prostate cancer, Mayor Rudolph Giuliani of New York is reported to have urged
“everyone to get the PSA test.”3 Thousands of men have followed this advice,
many of them not knowing there is no evidence that early detection of prostate
cancer reduces mortality. These men can expect no benefit from treatment—
only the risk of its side effects, which include incontinence and impotence.4 In
the courts, jurors and attorneys struggle with random match probabilities, which



lead to confusion and even convictions that later had to be revised.5 The list goes
on. The mind tools presented in this book can contribute to reducing
unnecessary anxiety and stress and to saving lives.

How can we prepare the next generation to understand the risks it will face?
Our children will live in a world with new technologies, including tests for many
genetic diseases. The information afforded by these technologies, and the risks
that their use implies, need to be understood—in terms of both benefits and
costs. At present, high school education in some countries covers only little, if
any, statistical thinking. Algebra, geometry, and calculus teach thinking in a
world of certainty—not in the real world, which is uncertain. Medical schools
routinely teach statistics, but focus on methods such as significance tests rather
than the kind of statistical thinking needed for sound diagnosis and risk
assessment, as the widespread innumeracy in the medical profession,
documented in Chapters 5, 6, and 7, attests. Furthermore, in the medical and
social sciences, data analysis is typically taught as a set of statistical rituals rather
than a set of methods for statistical thinking.6 The situation in the law
profession seems to be even worse. With one or two notable exceptions, law
schools do not teach students how to reason on the basis of uncertain evidence
—although virtually all evidence is uncertain. The mind tools described in this
book are mostly unknown in all these disciplines.

The time is ripe for an educational campaign aimed at teaching school-
children, undergraduate and graduate students, ordinary citizens, and
professionals how to reckon with risk. What would a curriculum for teaching
thinking in an uncertain world look like? The three steps elaborated below
outline an educational program that can be adapted to any specific discipline or
level of study. The first step is to teach people to recognize types of uncertainties,
including uncertainties disguised as certainties. The second step is to teach
turning uncertainty into risk—that is, estimating degrees of uncertainty. The
third step is to teach people to experiment with representations so as to discover
the most transparent way to communicate and reason with risks. All these steps
have been described in this book; in this final chapter, they are integrated into a
single program for fostering statistical insight.

Step One: Franklin’s Law



Recall Benjamin Franklin’s aphorism “In this world nothing is certain but death
and taxes.” This statement reminds us that almost all real-world events are
uncertain and that we need to learn to deal with—rather than deny—this fact.
Giving up the illusion of certainty enables us to enjoy and explore the
complexity of the world in which we live. The first step in the educational
program is to make people aware of Franklin’s law. The flip side of this goal is to
reduce the illusion of certainty. The tools for taking the first step include (1) real
stories that illustrate the uncertainty inherent in everyday situations and (2)
causal understanding of uncertainties and errors. The best educational material is
found in real events, not in hypothetical examples. Described below is a true
story of an extreme instance of certainty turning into uncertainty.

35 NEGATIVE TESTS

In April 1995, a previously healthy 36-year-old American construction worker
suffering from fatigue was tested for HIV.7 The ELISA, a test for HIV approved
by the U. S. Food and Drug Administration, returned a negative result. Two
months later, the man, who had lost 27 pounds, was admitted to a hospital with
shortness of breath, diarrhea, and other symptoms. A second ELISA test
indicated that he was HIV-negative, and routine laboratory tests turned up no
other illness. The patient was discharged without a diagnosis. In August of the
same year, the man was hospitalized again. An ELISA and a Western blot
performed by the Utah Department of Health laboratory came back negative. At
that point, the physicians decided to interview his wife, from whom he had
separated two years previously. She reported having had sexual contact with an
HIV-infected partner before their marriage and told the doctors that this earlier
partner had recently died of AIDS. In 1994, she developed pneumonia and
tested positive for HIV, a fact of which the construction worker was unaware.
He reported that during their marriage, he had had sex with his wife without
using a condom, but he had had no sexual contact with her since their
separation. Because of his history of exposure and the strong clinical evidence
that his immune system was compromised, the doctors performed a series of
additional laboratory tests, which eventually revealed that he had the same strain
of HIV as his ex-wife.



During his examination, the construction worker made it known that he had
—in good faith—donated blood more than 30 times in the previous four years.
In each case, the routine ELISA—which is used to screen all blood donations for
the HIV virus—returned a negative result. The consequences for those who
received the construction worker’s blood are unknown. This HIV-infected man
had tested negative for HIV no fewer than 35 times over a four-year period.

How can this incredibly long series of false negative results—which may have
had devastating consequences for recipients of the man’s donated blood—have
occurred? To begin with, we do not know whether all the man’s negative results
were false negatives, because the point at which he became infected is not
known. He continued to receive false negatives, however, even after he
developed clear signs of severe immunosuppression, including the opportunistic
infections and low lymphocyte counts characteristic of AIDS. There are two
main reasons why HIV tests sometimes return false negatives. First, there is a
period—usually about six months— after the time of infection during which
HIV antibodies cannot be detected. But the construction worker’s test results
were negative far beyond the usual window period. Second, new strains of HIV,
which arise from the virus’s ability to mutate quickly (see Chapter 7), cannot
always be detected by routine HIV tests. But the strain of HIV carried by this
patient was practically identical to that carried by his wife, who had tested
positive.

Why the construction worker tested negative for HIV despite having been
infected has yet to be explained. A case like this is very rare; nevertheless, it could
happen again. The ELISA and other HIV tests are among the best antibody tests
ever devised, yet certainty remains out of their reach.

THE ILLUSION OF CERTAINTY

This extreme case illustrates how broadly Franklin’s law applies. Starting in
Chapter 1, we encounter numerous cases of illusory certainty in this book. Many
people, of varying levels of education, believe that the results of HIV tests, DNA
fingerprinting, and the growing number of genetic tests are absolutely certain.
These technologies are formidable, but not foolproof. Like just about everything
else, they are subject to Franklin’s law.8



Step Two: Beyond Ignorance of Risks

Why do American boys know the batting averages, earned-run averages, and
won-lost records of their home baseball teams, while most of their adult
counterparts are largely ignorant of the statistics that describe the world outside
the baseball stadium, such as the number of Americans killed by handguns every
year? How can European boys know the record of their favorite soccer team for
the last several years, while most of their adult counterparts have no idea what
their chance is of being killed driving on the highway? Why are most women
unaware of the benefits and costs of breast cancer screening, and why are most
men unaware of those of prostate cancer screening?

John Q. Public’s ignorance of risks is not entirely his fault; it originates not
only inside but also outside his mind. Internal sources of ignorance include a
preference for distraction over information or for passivity over responsibility.
But ignorance of risks is also fueled by external factors ranging from peer
pressure to lobbying by trade associations. Step Two in the program of teaching
thinking entails overcoming both internal and external sources of ignorance.
The goal is (1) to teach people how to use tools for estimating risks, including
the uncertainty around these estimates, and (2) to make people aware of the
forces aimed at preventing them from estimating risks.

“DOUBT IS OUR PRODUCT”

The United States is home to thousands of trade associations promoting
everything from asbestos to zinc. The Beer Institute defends brewers against
claims that drunk driving causes car accidents. The Asbestos Information
Association protects citizens from their “fiber phobia.” The Global Climate
Coalition represents scientists who question the evidence for global warming.
Washington, D.C., alone, is home to 1,700 such trade associations. Estimates
indicate that more than $1 billion is spent by such organizations every year on
“image advertising” and “issues management.” Trade associations have become
active in the manufacture of knowledge and ignorance. Consider, as an example,
the Tobacco Institute’s “spin” on the hazards of cigarette smoking.9

At the beginning of the twentieth century, lung cancer was an exceptionally
rare type of cancer—so rare that Isaac Adler, who wrote the first book-length



medical review on lung cancer, apologized for writing about such an uncommon
and insignificant disease.10 By the end of the twentieth century, lung cancer had
become the most frequent cause of cancer deaths worldwide. Why? At the
beginning of the century, cigarette smoking was rare; people smoked pipes and
cigars. Smoking cigars causes different kinds of cancer than smoking cigarettes
does. To take an example, Sigmund Freud developed cancer of the mouth as a
result of his heavy cigar smoking. The cancer cast a shadow over the last 16 years
of his life, causing him continuous pain and discomfort and requiring some 30
operations to remove cancerous and precancerous growths.

Cigarettes first became popular during World War I. Unlike cigar and pipe
smoke, cigarette smoke is generally inhaled, exposing lung tissue to irritants. The
link between cigarette smoking and lung cancer was first demonstrated by
German researchers in the 1920s and 1930s but was largely ignored in America,
possibly because this research was associated with the Nazis. In the early 1950s,
however, a consensus developed in the American scientific community that
cigarettes are a major source of illness, including lung cancer. By the mid-1950s,
there was strong evidence that a two-pack-a-day smoker lived, on average, about
seven years fewer than a nonsmoker. Most scientists came to agree that tobacco
kills about 400,000 Americans every year and that tobacco is the cause of 80
percent to 90 of lung cancers.11

The Tobacco Institute was founded in 1958 as an offshoot of the Council for
Tobacco Research, which was established by tobacco manufacturers, growers,
and warehouse owners. Since then, it has argued the case for cigarette “safety” by
creating doubt in the public mind about the hazards of smoking. In the 1960s,
spokesmen tried to undermine and distract from the growing consensus in the
scientific community. For instance, they asserted that the link between cigarettes
and cancer was “merely statistical,” that the evidence was uncertain and the
conclusions premature, and that there might be a gene that both leads to
smoking and predisposes certain people to developing cancer. In 1962, a Gallup
survey found that only 38 percent of American adults knew that cigarettes cause
lung cancer. Although many physicians quit smoking after the Surgeon
General’s Report in 1964 made it clear that cigarettes are a major cause of
illness, many members of the public remained under the impression that the
question about the effects of smoking on health was still open. The silence in



popular magazines about the hazards of smoking played a crucial role in
maintaining public ignorance; cigarette advertisers discouraged magazine
publishers from covering the topic of smoking hazards. A 1978 article in the
Columbia Journalism Review noted that it could not find a single article in a
leading national magazine that had discussed the health effects of smoking in the
last seven years. The less sophisticated, popular press was more straightforward.
A headline in a 1968 National Enquirer read: “Most Medical Authorities Agree,
Cigarette Lung Cancer Is Bunk: 70 Million Americans Falsely Alarmed.”12

Much later, in 1989, the Surgeon General’s Report explicitly linked the tobacco
lobby’s suppression of media coverage to the general public’s ignorance of the
nature and extent of the hazards of smoking.

More recently, the Tobacco Institute has tried to challenge evidence of the
hazards of “passive smoking” or “secondhand smoke.” Strong evidence of the
negative health effects of breathing smoke from others’ cigarettes emerged in the
1980s, when Tokyo’s National Cancer Center Research Institute showed that
lung cancer was twice as common among the nonsmoking wives of smokers as
among those of nonsmokers.13 In the 1990s, the Environmental Protection
Agency released data indicating that secondhand smoke was responsible for 20
percent of all lung cancer deaths among nonsmokers, that is, for the deaths of
about 3,000 Americans a year. The Tobacco Institute dismissed this study as
“characterized by a preference for political correctness over sound science.”14

The case of the tobacco lobby epitomizes the manufacture of ignorance and
confusion. Its efforts at obfuscation shifted constantly; as soon as one argument
from the tobacco lobby was discredited, new arguments were constructed to
engender fresh confusion. Their arguments and slogans evolved in the following
way:

Smoking doesn’t hurt your health; it’s safe.
OK, smoking may or may not hurt your health, but the scientific evidence is
still insufficient and inconclusive.
OK, the evidence is conclusive that smoking does cause lung cancer, but we
didn’t know until now.
OK, we knew, but we didn’t know that nicotine was addictive.
OK, we knew that nicotine was addictive when we added chemicals to



cigarettes to make nicotine enter the bloodstream faster, but this was
long ago. Today we have low-tar and low-nicotine cigarettes.
OK, low-tar and low-nicotine cigarettes do not actually reduce the
risk of lung cancer, but this is people’s own fault because they now
smoke more cigarettes.
OK, it is in our interest that people smoke more, but they smoke more by
their own free choice.

A similar sequence of claims has been made to cloud people’s minds
concerning the risks of passive smoking. As the historian Robert Proctor reports,
this goal was privately admitted in an internal document produced by a cigarette
company: “Doubt is our product since it is the best means of competing with
the ‘body of facts’ that exists in the mind of the general public.”15

WHAT DOES JOHN Q. PUBLIC FEAR?

A few years ago, I booked a flight across the Alps from Munich to Florence.
Entering the small Italian airplane with a boarding card labeled seat 14A, I
walked down the narrow aisle, squinting to read the row numbers. When I had
almost reached the end of the aisle, I saw row 12, after which there was only one
more row. I thought I was in the wrong plane. Then I noticed that the last row
was row 14 and that there was no row 13. A light went on in my head: The
airline had skipped row 13 in deference to Europeans’ superstition that the
number 13 is a bad omen, much as the designers of elevators in many American
skyscrapers know to “skip” the 13th floor. In India, where this superstition is
unknown, 13 is treated just like 12 and 14.16

What John Q. Public most fears is not always what threatens him most.
Psychological research has identified, among others, the following three sources
of fear.17

Preparedness. Fear of natural, recurrent threats that have endangered us
throughout our evolution is easy to learn, whereas fear of evolutionarily
novel threats is often hard to learn. This ability to learn to fear an object
from only one or very few observations is called preparedness. Rhesus
monkeys reared in the laboratory, for instance, show no fear of



venomous snakes. However, when a youngster watches an adult
exhibiting fear of a snake, the youngster typically acquires this fear just
by observing it once. The logic behind this genetic preparedness to learn
some things faster than others is obvious. If the youngster had to learn
from experience that a snake is poisonous, its chance of survival would
be slim. Hence, evolutionary learning accelerates individual learning. But
preparedness holds only for certain stimuli. For instance, when the
youngster sees another monkey exhibiting a fear reaction towards a
flower, it does not acquire a fear of flowers.18 Humans show similar
preparedness for learning. It is easy to get a child to fear spiders, snakes,
and tigers. All that is needed is that a parent express fear in the presence
of a spider and that the child observe the parent’s fear. It is hard to get a
child to fear electrical outlets. Yet, in modern, industrialized societies,
children are much more likely to be harmed by electrical outlets than by
spiders. Fears and phobias tend to settle on stimuli that have been
dangerous in the past. Darkness, to provide another example, is
something that we do not need to teach our children to fear. But
humans have changed their world dramatically in the evolutionarily
recent past. This is one reason why the things that we fear most are not
necessarily the ones most likely to hurt us.

Disasters. People tend to fear situations that can take many lives at once.
Situations that cause the same number of deaths spread over time tend
to be less feared.19 For instance, the causes of death that people tend to
fear most, such as plane crashes and nuclear accidents, often have
catastrophic potential. Car accidents and cigarette smoking, in contrast,
cause a continuous stream of deaths, and despite their having killed
many, many times more people than plane crashes or nuclear power
accidents, they do not evoke similar levels of fear. Like preparedness for
learning, the fear of disasters has an evolutionary rationale. When a
group drops below a certain size, the group may be extinguished. When
a loss of the same size is distributed over time, however, the community
or species may be in a better position to compensate and survive.



Unknown hazards. People tend to fear dangers that are new and
unknown. Examples include genetic engineering and nuclear technology,
as opposed to drinking alcohol. When the new and potentially
dangerous technology is additionally perceived to be in the control of
unfamiliar people such as the rulers of a foreign country, fear tends to
skyrocket.

In sum, John Q. Public does not always fear the situations that are actually
most likely to hurt or kill him and other people. The objects and situations we
tend to fear are often those that were dangerous in our evolutionary past—such
as snakes, spiders, large cats, darkness, being alone, and being exposed in an
open place—though most of them are no longer the greatest threats in our
modern technological world.

HELPFUL SOURCES

Many sources can provide information to help us find out the risks associated
with specific behaviors and courses of action. For instance, the National Safety
Council publishes an annual booklet, Accident Facts, that lists all the ways in
which Americans die accidentally according to the frequency with which they
occur. The National Research Council has a series of publications on matters
such as understanding and preventing violence20 and the evaluation of DNA
evidence.21 The Guide to Clinical Preventive Services by the U.S. Preventive
Services Task Force informs the public on questions about health and medical
screening,22 and so does the Canadian Guide to Clinical Preventive Health Care
by the Canadian Task Force (see www.ctfphc.org). Noncommercial groups of
physicians, such as the Cochrane Centers (see www.cochrane.org) and Bandolier
at the University of Oxford (see www.jr2.ox.ac.uk/bandolier), distribute the
information patients need to know over the Internet. The Dartmouth Atlas of
Health Care offers information about the puzzling variations in rates of common
surgical procedures performed in different hospital referral regions in the United
States.23 A number of other relevant sources are available in any library. A good
source not only gives the risks, but also indicates the uncertainty involved in
estimating the risk. Many potential hazards, however, such as the possible link
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between brain cancer and cellular phones, are new, and scientific studies are few.
With respect to these hazards, we continue to live in the twilight of uncertainty.

Step Three: Communication and Reasoning

Information needs representation. The idea that it is possible to communicate
information in a “pure” form is fiction. Successful risk communication requires
intuitively clear representations. Playing with representations can help us not
only to understand numbers (describe phenomena) but also to draw conclusions
from numbers (make inferences). There is no single best representation, because
what is needed always depends on the minds that are doing the communicating.
If you want to inform someone about false positives in screening, what
constitutes a “good” representation depends on whether the person is a
statistician, a physician, or the patient being examined.

With frustration, one of the physicians who tried in vain to determine the
probability that a person with a positive screening test actually has colorectal
cancer (Chapter 6) exclaimed: “I know there is a rule; I learned it in school, but
I have forgotten it.” He was referring to Bayes’s rule. In this book, we have
encountered many situations in which Bayes’s rule can help one to draw
conclusions from numbers, such as how to estimate the chance of a disease given
a positive diagnostic test result. And we have seen that this type of inference is
difficult for laypeople and experts to make when numbers are represented in
probabilities, yet comparatively easy when they are represented in natural
frequencies. Representation matters to statistical thinking.

One of the goals of formal education that has been neglected in most
Western countries is to teach people to reckon with risk, that is, to reason
effectively in an uncertain world. One tool for reaching this goal—without
engendering “math anxiety”—is to use intuitively understandable
representations of numbers. The didactic power of representations does not
seem to be widely recognized in the classroom. Consider, for instance, the usual
method of teaching Bayes’s rule in German high schools. Bayes’s rule is taught
in some, but not in all, German states. (Many of the teachers my colleagues and
I have interviewed believe that Bayes’s rule is not particularly important because
it is not part of the nationwide high school curriculum.) German-language



textbooks that include Bayes’s rule explain it exclusively in terms of probabilities
or relative frequencies; natural frequencies, which would help students
understand the problems better, are never used.24 Similarly, a survey of teachers
revealed that in the classroom almost all of them express risks in terms of
probabilities and percentages, and very few teachers tried to foster insight by
using natural frequencies. This situation is worsened by the fact that the
examples used to introduce Bayes’s rule are usually, from a teenager’s point of
view, thoroughly boring (such as the standard problem of having to guess the
probability of there being a golden coin in a particular drawer).

I have heard adults argue that teenagers are not much interested in statistics
and that their lack of motivation accounts for our failure to educate them in
statistical thinking. However, there is clear evidence to the contrary. In one
study, German mathematics teachers reported that, when it comes to statistics,
there is a striking discrepancy between students’ motivation and performance.
They observed that students’ interest in statistics is considerably higher than in
other mathematical topics, as is their attention and motivation. Sadly, however,
the teachers also reported that students’ performance was at a considerably lower
level in statistics than in other areas of mathematics. This discrepancy indicates
that what is lacking is not motivation on the part of students, but rather
adequate tools for helping students gain insight into uncertainty and risk—such
as intuitively understandable representations of numbers.

COMPUTER TUTORIALS

One class of tools for teaching thinking is computerized tutorial programs. Peter
Sedlmeier and I designed such a program to teach people to draw conclusions
from numbers. The program instructs the student to solve problems—such as
the medical and legal problems described in this book—by translating
probabilities into natural frequencies. We call this “representation training.”25

More specifically, the tutorial teaches the student to construct frequency
representations by means of trees (as in Figure 4-2). Its goals are to improve
people’s performance in the short run and to keep them from forgetting how to
solve such problems in the long run.

We compared this representation training with traditional “rule training,” in
which the learner is taught how to insert probabilities into Bayes’s rule. Both



types of training were implemented as computer tutorials. Each has two parts.
The first part guides the learner through two training tasks step by step:
inferring the presence of cancer from a positive test and inferring the presence of
sepsis from a high fever, chills, and skin lesions. The representation training
program showed participants how to transform probability information into a
frequency tree. The rule-training program instructed learners how to insert
probability information into Bayes’s rule. In the second part of the tutorial, the
learner is asked to solve eight additional problems with the help of step-by-step
feedback. If participants have difficulties or make mistakes, both programs
provide immediate assistance or feedback. The help was sufficient to ensure that
all participants could complete all the steps of each problem correctly and
complete the training.

Which was more effective: teaching people how to insert probabilities into
Bayes’s rule (rule training) or teaching them how to translate probabilities into
natural frequencies (representation training)? What is effective in the short run
need not be effective in the long run. Witness the frustration of devoted teachers
who observe that, after an exam, students forget the material at a faster rate than
they learned it. However, if natural frequencies touch a chord in the human
brain that has been there all along, students who learn a concept in natural
frequencies should forget it more slowly than students who learn the same
concept in probabilities.

We evaluated the tutorials with respect to both the immediate learning effect
and its stability over time. Note that all test problems were expressed in
probabilities in both types of training. Both tutorials also allowed participants to
work at their own pace. Figure 14-1 shows the results of two studies, one with
students from the University of Chicago (labeled “American students”), the
other with students from the University of Munich (labeled “German
students”). The American students took between one and two hours to complete
the tutorials, including the tests before and after training; the German students
took slightly more time.26

The performance of participants in both studies was very low before training.
After the representation training, the percentage of correct answers in the
American study increased from 10 to 90 percent, whereas after the rule training,
it increased from 0 to 60 percent. For the German students, who performed at a



slightly higher level before training, the effect of the representation training was
of comparable size. Overall, both tutorials showed strong immediate learning
effects, with the representation training showing a 10 to 30 percentage point
advantage over the rule training.



FIGURE 14-1. How quickly do students forget what they have learned? With
the traditional method of teaching people how to insert probabilities into
Bayes’s rule (rule training), both groups of students tend to forget what they
have learned. However, when they have been taught to use the mind tool of
representing probabilities as natural frequencies (representation training),
performance remains at a high level.



But how quickly did participants forget what they had just learned? The
American students were tested with new problems one week and then five weeks
after training. Consistent with the disheartening observations of many statistics
teachers, after 1 week the performance of students who received the rule training
had dropped to a median of 30 percent correct solutions, and after 5 weeks it
was down to only 20 percent. The performance of the students who received the
representation training did not show any decay. Five weeks after training, the
median percentage of Bayesian inferences was still 90 percent. These students
showed no sign of forgetting what they had learned.

The German students were tested after one week and after three months—a
more stringent test of forgetting. After one week, the students who had received
the rule training, unlike their American counterparts, showed no sign of
forgetting what they had learned. After three months, however, the effect of rule
training had eroded to 50 percent, a substantial drop but again a smaller one
than in the American study. The most striking result in the German study was
this: Three months after training, the performance of the students in the
representation training group still showed no sign of flagging. The initial
training effect of learning did not only remain stable after three months—it
increased to 100 percent correct solutions!

The results of these training studies indicate that when students learn to use
proper representations, the problem of memory decay—in this context,
forgetting how to think about uncertainties—can be largely overcome. At the
same time, when students learned to play with representations—as opposed to
mechanically inserting probabilities into equations—the differences between the
American and German students also disappeared.

TEACHING REPRESENTATIONS

These results bode well for efforts at teaching statistical thinking. Because the
representation training takes only one to two hours including testing, it can be
used, for instance, in high school curricula to teach young people how to
interpret pregnancy test results and statistics about the hazards of drug use.
Similarly, it can be used in medical schools to teach physicians how to estimate
the chance of cancer given a positive test and in law schools to teach students
how to draw conclusions on the basis of uncertain evidence such as a DNA



match. All this can be done by a computerized tutorial or a human teacher.
Computerized tutorials attract the attention of all kinds of people, and the
participants in our training studies showed a remarkable degree of involvement
and motivation to succeed.

These results may be good news for instructors who design college-
preparatory curricula that teach young people how to reckon with risk in a
technological world and for those heretofore unfortunate souls among us who
are charged with teaching undergraduate statistics. The struggle for statistical
literacy is more likely to succeed if educators and students arm themselves with
information representations suited to the human mind.

Dare to Know

Aristotle once divided our world into two realms, the heavenly world of
immutable regularities and certain knowledge and the messy world of change
and uncertainty. In Western culture, people wanted to live in the world of
certain knowledge, not in a world that is hard to understand and predict and
where accidents and errors reign. For centuries, mathematicians believed they
lived in the world of absolute certainty, as did theologians and their followers.
The Reformation and Counter-Reformation, however, greatly eroded the empire
of certainty. During the Inquisition, for instance, torture was seen as a means of
discovering definitive truth, and this noble goal was viewed as justifying its
ignoble means. It may not be an accident that the mathematical theory of
probability emerged only after this religious turmoil—or that as the new, more
modest standard of evidence that grew out of probability theory spread, the use
of torture began to decline. By the mid-seventeenth century, a new standard of
reason had emerged, one that did not aspire to certainty but to reasonable
judgments under uncertainty.27

In our modern technological societies, Aristotle’s two realms still coexist.
Most of us prefer to wander back and forth between them without much
reflection. In sports, for instance, we revel in the world of uncertainty. We know
that the outcomes of a game are a mixture of strategy and accident. In sports, as
well as in the stock market and other competitive situations, we enjoy
uncertainty; otherwise all the excitement, anticipation, and surprise would be



lost. In other aspects of our lives, however, we cherish the illusion of certainty
and turn our backs on the uncertainty we love so much in the realm of
competition and entertainment. For instance, when it comes to food and health,
many people take an authority’s or a journalist’s opinion as definitive without
checking to see if it is reasonable. One goal of this book is to make you, the
reader, aware of the illusion of certainty. A second goal is to provide you with
tools to help you understand risks and how to communicate these effectively to
others. These tools for turning innumeracy into insight, such as replacing
relative with absolute risks and probabilities with natural frequencies, are easy to
learn.

Many have argued that sound statistical thinking is not easily turned into a
“habit of mind.”28 This claim has been used by authorities ranging from
politicians to physicians to justify withholding information from the general
public. I disagree with this habit-of-mind story. The central lesson of this book
is that people’s difficulties in thinking about numbers need not be accepted,
because they can be overcome. These difficulties are not simply the mind’s fault.
Often, the solutions can be found in the mind’s environment, that is, in the way
numerical information is presented. With the aid of intuitively understandable
representations, statistical thinking can become a habit of mind.

This book began with Benjamin Franklin’s declaration that in this world
nothing is certain but death and taxes and H. G. Wells’s vision of a world in
which citizens master statistical thinking along with reading and writing. I
strongly believe that Wells’s dream is worthy of our time and effort. At the close
of the book, we see that this dream calls for two things: knowing and daring.
One without the other is like a pair of scissors with only one blade; both are
essential. So let me close with a reprise of Kant’s challenge: Sapere aude—dare to
know.
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GLOSSARY

Absolute risk reduction. A measure of the efficacy of a treatment in terms of
the absolute number of people saved. For instance, if a treatment reduces
the number of people who die of a disease from 6 to 4 in 1,000, then the
absolute risk reduction is 2 in 1,000, or 0.2 percent.

Average. A measure for the central tendency of a sample of observations.
The term average is most often used for the arithmetic mean, but
sometimes also for the median. For instance, suppose the yearly income
of five brokers is $80,000, $90,000, $100,000, $130,000, and
$600,000. The arithmetic mean is the sum of these values divided by
their number, that is, $200,000. The median is obtained by ranking the
values (as above) and taking the one in the middle, that is, $100,000.
When the distribution is asymmetric, as it is often with income, the
mean and the median are not the same, and it can be the case that most
people earn less than the mean.

Base rate. The base rate of an attribute (or event) in a population is the
proportion of individuals manifesting that attribute (at a certain point in
time). A synonym for base rate is prevalence. See also incidence rate.

Bayes’s rule. A procedure for updating the probability of some hypothesis in
the light of new evidence. The origin of the rule is attributed to the
Reverend Thomas Bayes. For the simple case of a binary hypothesis (H
and not-H, such as cancer and not cancer) and data D (such as a positive
test), the rule is:

p(H|D) = p(H)p(D|H)/[p(H)p(D|H) + p(not-H)p(D|not-H)]



where p(D|H) is the posterior probability, p(H) is the prior probability,
p(D|H) is the probability of D given H, and p(D|not-H) is the
probability of D given not-H.

Many professionals have problems understanding this rule. The
interesting point is that the calculation of p(H|D) becomes more
intuitive and much simpler when the input is in natural frequencies
rather than probabilities. For natural frequencies, the rule is:

p(H|D) = a/(a + b)

where a is the number of D and H cases, and b is the number of D and
not-H cases.

Clouded thinking. A form of innumeracy, in which a person knows about
the risks but not how to draw conclusions or inferences from them. For
instance, physicians often know the error rates of mammography and the
base rate of breast cancer, but not how to infer from this information the
chances that a woman with a positive test actually has breast cancer.
Mind tools for overcoming clouded thinking, such as natural
frequencies, are representations that facilitate drawing conclusions.

Conditional probability. The probability that an event A occurs given event
B, usually written as p(A|B). An example of a conditional probability is
the probability of a positive screening mammogram given breast cancer,
which is around .90. The probability p(A), for instance, is not a
conditional probability. Conditional probabilities are notoriously
misunderstood, and that in two different ways. One is to confuse the
probability of A given B with the probability of A and B; the other is to
confuse the probability of A given B with the probability of B given A.
One can reduce this confusion by replacing conditional probabilities
with natural frequencies.

Degrees of belief. One of the three major interpretations of probability
(besides relative frequencies and propensities). The probability of an
event is the subjective degree of belief a person has in that event.
Historically, degrees of warranted belief entered probability theory from



applications in the courtroom, such as the credibility of witnesses.
Degrees of belief are constrained by the laws of probability (for example,
probabilities need to add up to 1), that is, beliefs need to follow these
laws to qualify as subjective probabilities.

Early detection. Early detection of a disease is the goal of screening for it.
Early detection can reduce mortality. Early detection, however, does not
imply mortality reduction. For instance, if there is no effective therapy,
then early detection, including treatment, will not reduce mortality.

Error. A test can result in one of two errors, a false positive or a false
negative. These errors can result from various sources, including human
error (for example, the laboratory assistant confuses two samples or
labels, or enters the wrong result into the computer) and medical
conditions (for example, a positive HIV test can result from
rheumatological diseases and liver diseases that have nothing to do with
HIV). Errors can be reduced but not completely eliminated, and they
may even be indispensable to adaptation and survival, as the copying
errors (mutations) in DNA illustrate.

Evidence-based medicine. To treat patients consistent with the best scientific
evidence available, taking the values of the patient into consideration.

Expert witness. A person identified by the court as an expert allowed to
testify before the court to facts, to draw conclusions by bringing together
the available data, and to testify to matters not accessible to lay
knowledge, such as insanity, testament capacity, and standards of care.

False negative. A test result in which the test is negative (for example, a
pregnancy test finds no sign of pregnancy) but the event is actually there
(the woman is pregnant); also called a “miss.”

False negative rate. The proportion of negative tests among people with the
disease or condition. It is typically expressed as a conditional probability
or a percentage. For instance, mammography screening has a false



negative rate of 5 to 20 percent depending on age, that is, 5 to 20
percent of women with breast cancer receive a negative test result. The
false negative rate and the sensitivity (hit rate) of a test add up to 100
percent. The false negative rate and the false positive rate are dependent:
To decease one is to increase the other.

False positive. A test result in which the test is positive (for example, a
positive pregnancy test) but the event is not extant (the woman is not
pregnant); also called a “false alarm.”

False positive rate. The proportion of positive tests among people without
the disease or condition. It is typically expressed as a conditional
probability or a percentage. For instance, mammography screening has a
false positive rate of 5 to 10 percent depending on age, that is, 5 to 10
percent of women without breast cancer nevertheless receive a positive
test result. The false positive rate and the specificity (power) of a test add
up to 100 percent. The false positive rate and the false negative rate are
dependent: To decrease one is to increase the other.

Franklin’s law. “Nothing is certain but death and taxes.” A reminder that in
all human conduct, uncertainty is prevalent as the result of human and
technical errors, limited knowledge, unpredictability, deception, or other
causes.

Frequencies. A number of observations in a class of events. Frequencies can
be expressed as relative frequencies, absolute frequencies, or natural
frequencies.

Guilt probability. The probability p(guilt|evidence) that a person is guilty
given the evidence, such as a DNA match.

Ignorance of risks. An elementary form of innumeracy in which a person
does not know, not even roughly, how great a relevant risk is. It differs
from the illusion of certainty (for example, “smoking cigarettes does not



cause lung cancer”) in that the person is aware that there are
uncertainties, but does not know how great they are.

Illusion of certainty. The belief that an event is absolutely certain although it
may not be. For instance, people tend to believe that the results of
modern technologies, such as HIV testing, DNA fingerprinting,
ordinary fingerprinting techniques, medical tests, or even the mechanical
vote-counting machines used in elections are certain, that is, error-free.
The illusion can have benefits, such as reassurance, but also costs, such as
suicide after a false positive HIV test. With respect to morals, religion,
and political values, the illusion of certainty may be a requirement for
being accepted by a social group, fostering social control.

Incidence rate. Unlike prevalence (base rate), which refers to the proportion
of individuals in a population manifesting an attribute (or event) at a
certain point in time, the incidence rate is the proportion of individuals
in a given population developing this attribute within a specified time
interval. For instance, the proportion of men with prostate cancer at age
50 is a prevalence; the proportion of men who will develop prostate
cancer between 50 and 60 is an incidence rate.

Independence. Two events are independent if knowing the outcome of one
does not inform us about the outcome of the other. Formally, two events
A and B are independent if the probability p(A&B) that A and B occur
together is the product of p(A) times p(B). The concept of independence
is crucial, for instance, to evaluating a match between a defendant’s
DNA and that found on the victim. Assume only 1 out of 1 million men
show such a match. If the DNA of all a country’s citizens are in a data
bank, and one citizen’s DNA is randomly selected, then the probability
of a match is about 1 in a million. If the defendant, however, has an
identical twin, the probability that the twin also shows a match is 1
(except for procedural errors), not 1 in 1 million. Similarly, if the
defendant has brothers, the probability that they match is considerably
higher than for the general population. The DNA of relatives is not



independent; knowing that one matches increases the chances that the
relative also matches.

Informed consent. The ideal that the patient should be informed about the
pros and cons of a treatment and its alternatives, and on this basis should
decide whether he or she wants to enter treatment. Today’s medical
practice has not yet generally reached this ideal, partly because patients
want to be taken care of rather than be informed, and partly because
physicians prefer to decide what treatment to apply. The legal doctrine
of informed consent deals with the voluntary consent of humans to
biomedical research and medical treatment, the question of how much
disclosure is enough (an issue in malpractice trials), the competence of
the patient (an issue in children and the mentally retarded), and the right
to refuse treatment.

Innumeracy. The inability to think with numbers. Statistical innumeracy is
the inability to think with numbers that represent uncertainties.
Ignorance of risk, miscommunication of risk, and clouded thinking are
forms of innumeracy. Like illiteracy, innumeracy is curable. Innumeracy
is not simply a mental defect “inside” an unfortunate mind, but is in
part produced by inadequate “outside” representations of numbers.
Innumeracy can be cured from the outside.

Life expectancy. The expected number of years remaining to be lived by
persons of a particular age.

Mind tools. Means, such as Franklin’s law and proper representations of
risks, used to overcome the illusion of certainty and innumeracy.

Miscommunication of risks. A form of innumeracy, in which a person knows
the risks of some event or action but does not know how to
communicate these so that others understand them. Mind tools for
overcoming miscommunication are representations that facilitate
understanding.



Mortality reduction. A measure of the benefit of a treatment in terms of lives
saved. The mortality reduction can be represented in many ways,
including relative risk reduction, absolute risk reduction, and increased
life expectancy.

Natural frequencies. Numbers that correspond to the way humans
encountered information before the invention of probability theory.
Unlike probabilities and relative frequencies, they are “raw” observations
that have not been normalized with respect to the base rates of the event
in question. For instance, a physician has observed 100 persons, 10 of
whom show a new disease. Of these 10 persons, 8 show a symptom,
whereas 4 of the 90 without disease also show the symptom. Breaking
these 100 cases down into four numbers (disease and symptom: 8;
disease and no symptom: 2; no disease and symptom: 4; no disease and
no symptom: 86) results in four natural frequencies 8, 2, 4, and 86.
Natural frequencies facilitate Bayesian inferences. For instance, if the
physician observes a new person with the symptom, the physician can
easily see that the chance that this patient also has the disease is 8/(8 +
4), that is, 2/3. If the physician’s observations, however, are transformed
into conditional probabilities or relative frequencies (for example, by
dividing the natural frequency 4 by the base rate 90, resulting in .044, or
4.4 percent), then the computation of this probability becomes more
difficult and requires Bayes’s rule for probabilities. Natural frequencies
help people to make sound conclusions, whereas conditional
probabilities tend to cloud minds.

Negative test result. Typically good news. That is, no sign of a disease has
been found.

Number needed to treat (NNT). A measure of the efficacy of a treatment.
For instance, if mammogram screening eventually saves the life of 1 in
1,000 participating women, the NNT (to save one life) is 1,000. In
other words, 999 women do not benefit in terms of mortality reduction.
NNT is also used to measure the harm of a treatment, such as when
about 1 in 7,000 women who take oral contraceptives get



thromboembolism, the NNT (with oral contraceptives to cause one case
of thromboembolism) is 7,000. In other words, 6,999 do not show this
side effect.

Number of days/years gained or lost. A measure of the efficacy of a treatment
or habit in terms of increase or decrease in life expectancy. For instance,
30 years of smoking one or two packs of cigarettes a day results in an
average loss of 2,250 days, or about 6 years of life.

Number of people who match a characteristic. A transparent way to express
the meaning of an observed match between the characteristics of a
defendant and the evidence. An example is the statement “1 out of
10,000 men in this population shows a match.” In contrast, the
following single-event statement (a random match probability) is
mathematically equivalent but can easily lead to misunderstanding in
court: “The probability that this match occurred by chance is 1 in
10,000, or .01 percent.”

Odds. The ratio of two probabilities (of the two possible outcomes of an
event) is called odds. For instance, the probability of getting a six by
throwing a fair die is 1/6, and the probability of not getting a six is 5/6.
Thus the odds of getting a six are 1 to 5.

Percentages. There are three kinds of percentages. One is single-event
probabilities multiplied by 100 (as in, Washkansky has an 80 percent
chance of survival). With this type of statement one can produce the
same misunderstanding as with single-event probabilities. A second kind
is conditional probabilities multiplied by 100. With this form of
communication, one can produce the same confusion as with
conditional probabilities. A third kind of percentage is (unconditional)
relative frequencies multiplied by 100. An example is the finding of the
1962 Gallup poll that only 38 percent of adult Americans knew that
cigarettes caused lung cancer. Such a percentage is easy to comprehend
as long as the reference class is clear.



Placebo effect. A placebo operates through the mind instead of the body. For
instance, when a physician gives a patient a sugar pill or injection that
contains no ingredients known to influence the patient’s cold symptoms
or rash, but the patient nevertheless experiences relief, that is the placebo
effect. Placebo is Latin for “I shall please.” Placebos do not work all the
time or for all diseases; their effect seems to depend on how strongly the
patient believes that the treatment would actually be effective. Placebos
are a challenge to the ideal of informed consent.

Positive mammogram. The result of a mammography is typically classified as
positive (suspicious) or negative. Positive results are usually distinguished
into three levels of suspicion, such as “additional evaluation needed,”
“suspicion of malignancy,” and “malignant by radiological criteria.” The
vast majority of positive screening mammograms (more than 90 percent)
fall into the lowest level of suspicion.

Positive predictive value. The proportion of people among all those who test
positive who actually do have the disease (or condition): i.e. the true
positives divided by the total number who test positive.

Positive test result. Typically not good news. That is, a possible sign of a
disease has been found.

Posterior probability. The probability of an event after a diagnostic result,
that is, the updated prior probability. It can be calculated from the prior
probability using Bayes’s rule.

Prevalence. See base rate.

Principle of indifference. When the prior probabilities (or base rates) are not
known, the principle of indifference can be invoked. In the simplest case
with two alternatives, the principle of indifference would assign each
alternative a prior probability of one-half, for three alternatives the priors
would be one-third each, and so on.



Prior probability. The probability of an event prior to new evidence. Bayes’s
rule specifies how prior probabilities are updated in the light of new
evidence.

Probability. A measure that quantifies the uncertainty associated with an
event. If an event A cannot happen, the probability p(A) is zero; if an
event happens with certainty, p(A) is 1; otherwise the values of p(A) are
between zero and 1. For a set of events, A and B, which are mutually
exclusive and exhaustive, the probabilities of the individual events add
up to 1.

Proficiency tests. A method to estimate the accuracy of a diagnostic testing
procedure, such as DNA fingerprinting. For instance, a number of
samples (say, DNA fingerprints) are sent to a large number of
laboratories, which then independently analyze the evidence and
determine whether some of the samples match. Results can be used to
estimate the false negative and false positive rates, as well as the quality of
the individual laboratories. Proficiency tests can be blind (that is, the
laboratories and technicians do not know that they are being tested) or
not blind (they do know), and internal or external (the samples are only
analyzed in house or by external laboratories).

Propensities. One of the three major interpretations of probability (besides
relative frequencies and degrees of belief). The probability of an event is
defined by physical design. Historically, propensities entered probability
theory from gambling, such as from the physical design of dice and
roulette wheels. Propensities are limited to events whose underlying
design or causal mechanism is known.

Prosecutor’s fallacy. The confusion of the probability p(match) that the
defendant matches the characteristics of the evidence available with the
probability p(not guilty|match) that the defendant is not guilty given
that he or she shows a match. Because p(match) is typically very small,
such as when the evidence is a DNA trace, the confusion “serves” the



prosecution because it makes the probability that the defendant is
innocent appear equally small.

Randomized trial. A method for estimating the benefits of a treatment that
uses randomization as a method of control. Participants in a randomized
trial are randomly assigned to either a treatment (for example, prostate
cancer screening) or to a control group (no prostate cancer screening).
After a certain number of years, the two groups are compared on criteria,
such as mortality, to determine whether the treatment has been effective.
Randomization allows the control of variables—such as age, education,
and health—that could be alternative explanations (besides the
treatment) for an observed difference in mortality. The randomized
clinical trial uses the same idea of control as in experiments with random
assignment to groups.

Random match probability. The relative frequency of a trait, or combination
of traits, in a population. That is, the random match probability is the
probability that a match occurs between a trait (for example, a DNA
pattern) found on the scene of a crime and a person randomly drawn
from a population.

Reference class. A class of events or objects to which a probability or
frequency refers. In the frequency interpretation of the concept of
probability, there is no probability without a specified reference class.
This view excludes single-event probabilities, which, by definition,
specify no reference class.

Relative frequencies. One of the three major interpretations of probability
(the others are degrees of belief and propensities). The probability of an
event is defined as its relative frequency in a reference class. Historically,
frequencies entered probability theory through mortality tables that
provided the basis for calculating life insurance rates. Relative
frequencies are constrained to repeated events that can be observed in
large numbers.



Relative risk reduction. A measure of the efficacy of a treatment in terms of
the relative number of people saved. For instance, if a treatment reduces
the number of people who die from 6 to 4 in 1,000, then the relative
risk reduction is 33.3 percent. Reporting relative risks is popular because
the numbers look larger than the absolute risk reduction (which would
be 2 in 1,000, or 0.2 percent). Relative risks do not convey how large, in
absolute terms, the risk is, and as a consequence, are often
misunderstood. For instance, if a treatment reduces the number of
people who die from 6 to 4 in 10,000, the relative risk reduction is still
the same (33.3 percent), although the absolute risk reduction has
decreased to 0.02 percent.

Reliability. The extent to which a test produces the same results under
different conditions (such as repeated measurements). High reliability is
necessary but does not guarantee high validity.

Risk. Uncertainty associated with an event that can be quantified on the
basis of empirical observations or causal knowledge. Frequencies and
probabilities are ways to express risks. Unlike in its everyday use, the
term risk need not be associated with a harm; it can refer to a positive,
neutral, or negative event.

Screening. The testing of a symptomless population in order to detect cases
of a disease at an early stage. The term screening is also used outside of
medicine, for instance, when a population is screened for a DNA profile.

Sensitivity. The percentage of individuals with a disease who test positive in
a test, that is, who are correctly classified as having the disease. Formally,
the sensitivity is the conditional probability p(positive|disease) of a
positive test result given the disease. The sensitivity and the false negative
rate add up to 100 percent. The sensitivity is also called the “hit rate.”

Sensitivity of mammography. The proportion of women who test positive on
mammography among those who have breast cancer. It ranges between
about 80 and 95 percent, with the lower values in younger women. The



sensitivity of mammography depends primarily on the ability of the
radiologist to identify breast cancers and on the rate at which breast
cancers double in size between screening examinations.

Single-event probabilities. A probability associated with a singular event for
which no reference class is known or specified. For instance, the
statement “there is a 30 percent chance that it will rain tomorrow” is a
probability statement about a singular event—it either rains or does not
rain tomorrow. In contrast, the statement that it will rain on 10 days in
May is a frequency statement. The latter statement can be true or false; a
single-event probability by itself can never be proven wrong (unless the
probability is zero or 1). Single-event probabilities can lead to the
miscommunication because people tend to fill in different reference
classes. For instance, people understand that the statement “there is a 30
percent chance of rain tomorrow” means that it will rain for 30 percent
of the time, or in 30 percent of the area, or on 30 percent of the days
that are like tomorrow. This miscommunication can be avoided by using
frequencies instead of single-event probabilities because frequencies spell
out a reference class.

Source probability. The probability p(source|match) that a person is the
source of a trace given a match. (An example for a trace is blood found at
the scene of a crime.)

Specificity. The percentage of individuals without a disease who test negative
in a test, that is, who are correctly classified as not having the disease.
Formally, the specificity is the conditional probability p(negative|no
disease) of a negative test result given no disease. The specificity and the
false positive rate add up to 100 percent. The specificity is also called the
“power” of a test.

Specificity of mammography. The proportion of women who test negative on
mammography among those who do not have breast cancer. It ranges
between 90 and 95 percent, with the lower values for younger women.



Uncertainty. An event or outcome that is not certain but may or may not
happen is uncertain. When the uncertainty is quantified on the basis of
empirical observations, it is called “risk.”

Validity. The extent to which a test measures what it was intended to
measure. High reliability is necessary but does not guarantee high
validity.



REFERENCES

Adler, I. (1912). Primary malignant growths of lungs and bronchi. New York: Longmans,
Green, and Co.

Altman, L. K. (2000, July 16). Africa’s AIDS crisis: Finding common ground. The New
York Times, p. 4.

Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariants in neonates.
Child Development, 54, 695–701.

Atkinson, D. (1977). Society and sexes in the Russian past. In D. Atkinson, A. Dallin, &
G. W. Lapidus (Eds.), Women in Russia (pp. 3–38). Stanford, CA: Stanford University
Press.

Baines, C. J. (1992). Women and breast cancer: Is it really possible for the public to be
well informed? The Canadian Medical Association Journal, 142, 2147–2148.

Balding, D. J., & Donnelly, P. (1994). How convincing is DNA evidence? Nature, 368,
285–286.

Barsalou, L. W., & Ross, B. H. (1986). The roles of automatic and strategic processing in
sensitivity to superordinate and property frequency. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 12, 116–134.

Beck, U. (1986) Risikogesellschaft: Auf dem Weg in eine andere Moderne. Frankfurt am
Main: Suhrkamp.

Bernard, C. (1865/1957). An introduction to the study of experimental medicine (H. C.
Greene, Trans.). New York: Dover.

Berner, E. S. (1997). When to teach Bayesian reasoning (Letter to the editor). Journal of
Medical Decision Making, 17, 233.

Berry, D. A. (1991). Inferences using DNA profiling in forensic identification and
paternity cases. Statistical Science, 6, 175–205.

Berwick, D. M., Fineberg, H. V., & Weinstein, M. C. (1981). When doctors meet
numbers. American Journal of Medicine, 71, 991–998.

Black, W. C., Nease, R. F, Jr., & Tosteson, A. N. A. (1995). Perceptions of breast cancer
risk and screening effectiveness in women younger than 50 years of age. Journal of the
National Cancer Institute, 87, 720–731.

Bondy, K. (1999). Hack Barbie! [On-line]. Available:
http://www.zdnet.com/zdtv/thesite/0397w4/view/iview431jump2_031797.html.

http://www.zdnet.com/zdtv/thesite/0397w4/view/iview431jump2_031797.html


Bourguet, M.-N. (1987). Décrire, compter, calculer: The debate over statistics during the
Napoleonic period. In L. Krüger, L. Daston, & M. Heidelberger (Eds.), The
probabilistic revolution: Vol. I. Ideas in history (pp. 305–316). Cambridge, MA: MIT
Press.

Boyer, P. J. (2000, January 17). Annals of justice: DNA on trial. The New Yorker, 42–53.
Brase, G. L., Cosmides, L., & Tooby, J. (1998). Individuation, counting, and statistical

inference: The role of frequency and whole object representations in judgment under
uncertainty. Journal of Experimental Psychology: General, 127, 3–21.

Breast cancer [Cover story]. (1991). Time, 137, 42–49.
Brunswik, E. (1937). Psychology as a science of objective relations. Philosophy of Science,

4, 227–260.
Bundesamt für Gesundheit (BAG) in Zusammenarbeit mit der Eidgenössischen

Kommission für Aids-Fragen (EKAF). (2000). Informationen zum HIV-Test. Bern:
Bundesamt für Gesundheit, Schweiz.

Bundeszentrale für gesundheitliche Aufklärung (Ed.). (1988–1993). Wissenswertes über
den HIV-Test, Issues 1–10. Köln: Bundeszentrale für gesundheitliche Aufklärung.

Bundeszentrale für gesundheitliche Aufklärung (Ed.). (1993). Handbuch HIV-Test.
Arbeitshilfen zur Beratung und Testdurchführung. Köln: Bundeszentrale für
gesundheitliche Aufklärung.

Bundeszentrale für gesundheitliche Aufklärung (Ed.). (2000). Leben mit HIV: Wenn der
HIV-Test positiv ist. Informationen und Orientierungshilfe. Köln: Bundeszentrale für
gesundheitliche Aufklärung.

Bursztajn, H., Feinbloom, R. I., Hamm, R. M., & Brodsky, A. (1981). Medical choices,
medical chances: How patients, families, and physicians can cope with uncertainty. New
York: Delta/Seymour Lawrence.

Busch, M. P. (1994). HIV testing in blood banks. In G. Schochetman & J. R. George
(Eds.), AIDS testing: A comprehensive guide to technical, medical, social, legal, and
management issues (pp. 224–236). New York: Springer.

Butterworth, B. (1999). The mathematical brain. London: Macmillan.
Casscells, W., Schoenberger, A., & Grayboys, T. (1978). Interpretation by physicians of

clinical laboratory results. New England Journal of Medicine, 299, 999–1000.
Catalan, J., & Pugh, K. (1995). Suicidal behaviour and HIV infection—is there a link?

AIDS Care, 7, S117-S121.
Center for the Evaluative Clinical Sciences Staff (Ed.). (1996). The Dartmouth atlas of

health care. Chicago: American Hospital Association.
Chang, K. (2000, May 4). Findings fuel debate over prostate testing. International Herald

Tribune, p. 10.
Chivers, C. J. (2000, February 9). As DNA aids rape inquiries, statutory limits block

cases. The New York Times, late edition, section B, p. 1.



Cockburn, J., Redman, S., Hill, D., & Henry, E. (1995). Public understanding of
medical screening. Journal of Medical Screening, 2, 224–227.

Coleman, W. (1987). Experimental physiology and statistical inference: The therapeutic
trial in nineteenth-century Germany. In L. Krüger, G. Gigerenzer, & M. S. Morgan
(Eds.), The probabilistic revolution: Vol. II. Ideas in the sciences (pp. 201–226).
Cambridge, MA: MIT Press.

Collins, R., & Macleod, A. (1991). Denials of paternity: The impact of DNA tests on
court proceedings. The Journal of Social Welfare and Family Law, 3, 209–219.

Cooper, W. S. (1989). How evolutionary biology challenges the classical theory of rational
choice. Biology and Philosophy, 4, 457–481.

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all?
Rethinking some conclusions from the literature on judgment under uncertainty.
Cognition, 58, 1–73.

Cresanta, J. L. (1992). Epidemiology of cancer in the United States. Cancer Epidemiology,
Prevention, and Screening, 19, 419–441.

Daly, M., & Wilson, M. (1988). Homicide. New York: Aldine de Gruyter.
Daston, L. (1981). Mathematics and the moral sciences: The rise and fall of the

probability of judgments, 1785–1840. In H. N. Jahnke & M. Otte (Eds.),
Epistemological and social problems of the sciences in the early nineteenth century (pp. 287–
309). Dordrecht, Holland: D. Reidel Publishing Company.

Daston, L. (1987). The domestication of risk: Mathematical probability and insurance
1650–1830. In L. Kruger, L. Daston, & M. Heidelberger (Eds.), The probabilistic
revolution, Vol. 1: Ideas in history (pp. 237–260). Cambridge, MA: MIT Press.

Daston, L. (1988). Classical probability in the Enlightenment. Princeton, NJ: Princeton
University Press.

Dawes, R. M. (1986). Representative thinking in clinical judgment. Clinical Psychology
Review, 6, 425–441.

Dawes, R. M. (1990). The potential nonfalsity of the false consensus effect. In R. M.
Hogarth (Ed.), Insights in decision making: A tribute to Hillel J. Einhorn (pp. 179–199).
Chicago: The University of Chicago Press.

Dawes, R. M. (1994). House of cards: Psychology and psychotherapy built on myth. New
York: The Free Press.

Dawes, R. M. (2001). Everyday irrationality. Boulder, CO: Westview. Dehaene, S. (1997).
The number sense: How the mind creates mathematics. New York: Oxford University
Press.

A delicate question. (1999, 24 April). The Economist, 26.
Dershowitz, A. M. (1983). The best defense. New York: Vintage Books.
Dershowitz, A. M. (1996). Reasonable doubts: The criminal justice system and the 0. J.

Simpson case. New York: Simon and Schuster.



Deutscher Bundestag (Ed.). (1990). AIDS: Fakten und Konsequenzen. Final report of the
Enquete Committee of the 11th German Bundestag, 13/90. Bonn: Bonner Universitäts
Buchdruckerei.

Dolan, N. C., Lee, A. M., & McDermott, M. M. (1997). Age-related differences in breast
carcinoma knowledge, beliefs, and perceived risk among women visiting an academic
general medicine practice. Cancer, 80, 413–420.

Domenighetti, J. (2000). General public perception of mammography screening benefits.
Paper presented at the Einsiedler Symposium, Einsiedeln, Switzerland.

Douglas, M. (1992). Risk and blame: Essays in cultural theory. London: Routledge.
Douglas, M., & Wildavsky, A. (1982). Risk and culture: An essay on the selection of

technological and environmental dangers. Berkeley, CA: University of California Press.
Earman, J. (1992). Bayes or bust? A critical examination of Bayesian confirmation theory.

Cambridge, MA: MIT Press.
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and

opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under
uncertainty: Heuristics and biases (pp. 249–267). Cambridge: Cambridge University
Press.

Eddy, D. M. (1996). Clinical decision making: From theory to practice: A collection of essays
from the Journal of the American Medical Association. Boston: Jones and Barlett
Publishers.

Ellis, G. K. (1994). Oncology update: Breast cancer. Primary Care Update for OB/ GYNS,
1, 17–25.

Elmore, J. G., Barton, M. B., Moceri, V. M., Polk, S., Arena, P. J., & Fletcher, S. W.
(1998). Ten-year risk of false positive screening mammograms and clinical breast
examinations. The New England Journal of Medicine, 338, 1089–1096.

Ernster, V. L., & Barclay, J. (1997). Increases in ductal carcinoma in situ (DCIS) of the
breast in relation to mammography: A dilemma. Journal of the National Cancer
Institute/Monographs, 22,151–156.

Estes, W. K. (1976). The cognitive side of probability learning. Psychological Review, 83,
37–64.

Evers, M., Dworschak, M., Hackenbroch, V., Jaeger, U., Leick, R., Neubacher, A.,
Schmid, B., & Schreiber, S. (2000, 20 November). Deutschland—Ein BSE-
Risikostaat: Seuche aus dem Trog. Der Spiegel, 47, 288–292.

Evers, M., Neubacher, A., Pützl, N., Schreiber, S., & Vehlewald, H.-J. (2000, 27
November). Der deutsche Wahn: Jahrelang haben Politiker und Bauern die Bürger in
dem Glauben gelassen, ihr Land sei frei von der Rinderseuche BSE. Der Spiegel, 48,
22–24.

Fahey, T., Griffiths, S., & Peters, T. J. (1995). Evidence based purchasing: Understanding
results of clinical trials and systematic reviews. British Medical Journal, 311, 1056–



1059.
Faigman, D. L. (1999). Legal alchemy: The use and misuse of science in the law. New York:

W. H. Freeman and Company.
Falk, R. (1992). A closer look at the probabilities of the notorious three prisoners.

Cognition, 43, 197–223.
Fawcett, G. M., Heise, L. L., Isita-Espejel, L., & Pick, S. (1999). Changing community

responses to wife abuse: A research and demonstration project in Iztacalco, Mexico.
American Psychologist, 54, 41–49.

Feynman, R. P. (1967). The character of physical law. Cambridge, MA: MIT Press.
Fingering fingerprints. (2000, December 16). The Economist, 357, 103–104.
Fischhoff, B. (1982). For those condemned to study the past: Heuristics and biases in

hindsight. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under
uncertainty: Heuristics and biases (pp. 335–351). Cambridge: Cambridge University
Press.

Fischhoff, B., Lichtenstein, S., Slovic, P., Darby, S., & Keeney, R. (1981). Acceptable risk.
New York: Cambridge University Press.

Fisher, R. A. (1935).The design of experiments. (5th ed., 1951; 7th ed., 1960; 8th ed.,
1966). Edinburgh: Oliver & Boyd.

Franklin, B. (1987). Writings. New York: The Library of America.
Friedman, D. (1998). Monty Hall’s three doors: Construction and deconstruction of a

choice anomaly. The American Economic Review, 88, 933–946.
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation.

Cognition, 44, 43–74.
Gardner, M. (1959a). Mathematical games: How three mathematicians disproved a

celebrated conjecture of Leonard Euler. Scientific American, 201, 181–188.
Gardner, M. (1959b). Mathematical games: Problems involving questions of probability

and ambiguity. Scientific American, 201, 147–182.
Garnick, M. B. (1994). The dilemmas of prostate cancer. Scientific American, 270, 52–59.
Gawande, A. (1999, October 4). Whose body is it, anyway? What doctors should do

when patients make bad decisions. The New Yorker, 84–91.
Geary, D. C. (2000). Evolution and proximate expression of human parental investment.

Psychological Bulletin, 126, 55–77.
Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In G.

Keren & G. Lewis (Eds.), A handbook for data analysis in the behavioral sciences (pp.
311–339). Hilsdale, NJ: Erlbaum.

Gigerenzer, G. (1996a). The psychology of good judgment: Frequency formats and simple
algorithms. Medical Decision Making, 16, 273–280.

Gigerenzer, G. (1996b). Rationality: Why social context matters. In P. B. Baltes & U. M.
Staudinger (Eds.), Interactive minds: Life-span perspectives on the social foundation of



cognition (pp. 319–346). Cambridge: Cambridge University Press.
Gigerenzer, G. (1998). Ecological intelligence: An adaptation for frequencies. In D. D.

Cummins & C. Allen (Eds.), Evolution of Mind (pp. 9–29). New York: Oxford
University Press.

Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world. New York: Oxford
University Press.

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without
instruction: Frequency formats. Psychological Review, 102, 684–704.

Gigerenzer, G., & Hoffrage, U. (1999). Overcoming difficulties in Bayesian reasoning: A
reply to Lewis and Keren (1999) and Mellers and McGraw (1999). Psychological
Review, 106, 425–430.

Gigerenzer, G., Hoffrage, U., & Ebert, A. (1998). AIDs counselling for low-risk clients.
AIDS Care, 10, 197–211.

Gigerenzer, G., Hoffrage, U., & Kleinbälting, H. (1991). Probabilistic mental models: A
Brunswikian theory of confidence. Psychological Review, 98, 506–528.

Gigerenzer, G., & Murray, D. J. (1987). Cognition as intuitive statistics. Hillsdale, NJ:
Erlbaum.

Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Krüger, L. (1989). The
empire of chance. How probability changed science and everyday life. Cambridge:
Cambridge University Press.

Gigerenzer, G., Todd, P. M. & the ABC Research Group (1999). Simple heuristics that
make us smart. New York: Oxford University Press.

Gillispie, C. C. (1997). Pierre-Simon Laplace, 1749–1827: A life in exact science.
Princeton, NJ: Princeton University Press.

Good, I. J. (1995). When batterer turns murderer. Nature, 375, 541.
Good, I. J. (1996). When batterer becomes murderer. Nature, 381, 481.
Gotzsche, P. C., & Olsen, O. (2000). Is screening for breast cancer with mammography

justifiable? The Lancet, 355, 129–134.
Granberg, D., & Brown, T. A. (1995). The Monty Hall dilemma. Personality and Social

Psychology Bulletin, 21, 711–723.
Grisso, T., & Tomkins, A. J. (1996). Communicating violence risk assessments. American

Psychologist, 51, 928–930.
Größter Massen-Gentest ist noch nicht beendet: Der Mordfall Christina / Streit unter

Rechtsmedizinern. (1998, April 14). Frankfurter Allgemeine Zeitung, p. 13.
Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press.
Hacking, I. (1990). The taming of chance. Cambridge: Cambridge University Press.
Haley, N. J., & Reed, B. S. (1994). HIV testing for life insurance. In G. Schochetman &

J. R. George (Eds.), AIDS testing: A comprehensive guide to technical, medical, social,
legal, and management issues (2nd ed., pp. 252–265). New York: Springer.



Hamm, R. M., Lawler, F., & Scheid, D. (1999). Prophylactic mastectomy in women with
a high risk of breast cancer. New England Journal of Medicine, 340, 1837–1838.

Hamm, R. M., & Smith, S. L. (1998). The accuracy of patients' judgments of disease
probability and test sensitivity and specificity. The Journal of Family Practice, 47, 44–
52.

Hammerton, M. (1973). A case of radical probability estimation. Journal of Experimental
Psychology, 101, 252–254.

Hanks, G. E., & Scardino, R T. (1996). Does screening for prostate cancer make sense?
Scientific American, 275, 80–81.

Hansen, M. (1996, August). Jimmy the Greek he ain't. American Bar Association Journal,
30.

Harrington, A. (1997). Placebo: Conversations at the disciplinary borders. In A.
Harrington (Ed.), The placebo effect: An interdisciplinary exploration (pp. 208–248).
Cambridge, MA: Harvard University Press.

Harris, R. P., Fletcher, S. W., Gonzalez, J. J., Lannin, D. R., Degnan, D., Earp, J. A., &
Clark, R. (1991). Mammography and age: Are we targeting the wrong women? Cancer,
67, 2010–2014.

Hartmann, L. C. et al. (1999). Efficacy of bilateral prophylactic mastectomy in women
with a family history of breast cancer. The New England Journal of Medicine, 340, 77–
84.

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information:
The case of frequency of occurrence. American Psychologist, 39, 1372–1388.

Heilbrun, K., O'Neill, M. L., Strohman, L. K., Bowman, Q., & Philipson, J. (2000).
Expert approaches to communicating violence risk. Law and Human Behavior,
24,137–148.

Hicks, J. W. (1993). The facts about DNA typing. Judicature, 77, 5, 55, 57–58.
Hippocrates. (1967). Decorum, Hippocrates (Vol. II, pp. 297–299). Cambridge, MA:

Harvard University Press.
Hoffrage, U., & Gigerenzer, G. (1998). Using natural frequencies to improve diagnostic

inferences. Academic Medicine, 73, 538–540.
Hoffrage, U., Lindsey, S., Hertwig, R., & Gigerenzer, G. (2000). Communicating

statistical information. Science, 290, 2261–2262.
Horne, S. (1999). Domestic violence in Russia. American Psychologist, 54, 55–61.
Huff, D. (1954/1993). How to lie with statistics. New York: W. W. Norton & Company.
Humphrey, N. (2000). Great expectations: The evolutionary psychology of faith-healing and

the placebo effect [Keynote address]. Paper presented at the XXVII International
Congress of Psychology, Stockholm .

Illinois Department of Public Health (1992). Coping with HIV disease. San Francisco
AIDS Foundation.



Illinois Department of Public Health (1993). AIDS: Antibody testing. (Leaflet). Printed by
Authority of the State of Illinois. P.O. X302237 90,200 1/93.

Jain, B. P., McQuay, H., & Moore, A. (1998). Number needed to treat and relative risk
reduction. Annals of Internal Medicine, 128, 72–73.

Jasanoff, S., & Lynch, M. (1998). Contested identities: Science, law, and forensic practice.
Social Studies of Science, 28, 675–686.

Jonides, J., & Jones, C. M. (1992). Direct coding for frequency of occurrence. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 18, 368–378.

Jung, H. (1998). Mammographie und Strahlenrisiko. Fortschritte auf dem Gebiet der
Röntgenstrahlen, 169, 336–343.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics
and biases. New York: Cambridge University Press.

Kalet, A., Roberts, J. C., & Fletcher, R. (1994). How do physicians talk with their
patients about risks? Journal of General Internal Medicine, 9, 402–404.

Kant, I. (1784). Beantwortung der Frage: Was ist Aufklärung? Berlinische Monatsschrift,
Dezember-Heft, 481–494.

Katz, J. (1984). The silent world of doctor and patient. New York: The Free Press.
Kerlikowske, K. (1997). Efficacy of screening mammography among women aged 40 to

49 years and 50 to 69 years: Comparison of relative and absolute benefit. Journal of the
National Cancer Institute Monographs, 22, 79–86.

Kerlikowske, K. (2000). Breast cancer screening. In M. B. Goldman & M. C. Hatch
(Eds.), Women and health (pp. 895–906). New York: Academic Press.

Kerlikowske, K., Grady, D., Barclay, J., Sickles, E. A., & Ernster, V. (1996a). Effect of
age, breast density, and family history on the sensitivity of first screening
mammography. Journal of the American Medical Association, 276, 33–38.

Kerlikowske, K., Grady, D., Barclay, J., Sickles, E. A., & Ernster, V. (1996b). Likelihood
ratios for modem screening mammography: Risk of breast cancer based on age and
mammographic interpretation. Journal of the American Medical Association, 276, 39–
43.

Kleiter, G. D. (1994). Natural sampling: Rationality without base rates. In G. H. Fischer
& D. Laming (Eds.), Contributions to mathematical psychology, psychometrics, and
methodology (pp. 375–388). New York: Springer.

Knight, F. (1921). Risk, uncertainty and profit. Boston: Houghton Mifflin Co.
Koehler, J. J. (1992). Probabilities in the courtroom: An evaluation of the objections and

policies. In D. K. Kagehiro, & W. S. Laufer (Eds.), Handbook of psychology and law
(pp. 167–184). New York: Springer.

Koehler, J. J. (1993a). DNA matches and statistics: Important questions, surprising
answers. Judicature, 76, 222–229.



Koehler, J. J. (1993b). Error and exaggeration in the presentation of DNA evidence at
trial. Jurimetrics Journal, 34, 21–39.

Koehler, J. J. (1996). On conveying the probative value of DNA evidence: Frequencies,
likelihood ratios, and error rates. University of Colorado Law Review, 67, 859–886.

Koehler, J. J. (1997). One in millions, billions, and trillions: Lessons from People vs.
Collins (1968) for People vs. Simpson (1995). Journal of Legal Education, 47, 214–223.

Koehler, J. J., Chia, A., & Lindsey, S. (1995). The random match probability (RMP) in
DNA evidence: Irrelevant and prejudicial? Jurimetrics Journal, 35, 201–219.

Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (Eds.). (2000). To err is human:
Building a safer health system. Washington, DC: National Academy Press.

Koss, M. P., Koss, P. G., & Woodruff, J. (1991). Deleterious effects of criminal
victimization on women’s health and medical utilization. Archives of Internal Medicine,
151, 342–347.

Koubenec, H.-J. (2000). Mammographie-Screening: Überschätzen wir den Nutzen?
Berliner Ärzte, 8, 11–16.

Krauss, S., & Hertwig, R. (2000). Muss DNA-Evidenz schwer verständlich sein? Der
Ausweg aus einem Kommunikationsproblem. Monatsschrift für Kriminologie und
Strafrechtsreform, 83, 155–162.

Krauss, S., Martignon, L., & Hoffrage, U. (1999). Simplifying Bayesian inference: The
general case. In L. Magnani, N. Nersessian, & N. Thagard (Eds.), Model-based
reasoning in scientific discovery (pp. 165–179). New York: Plenum Press.

Krauss, S., & Wang, X. T. (2000). The psychology of the Monty Hall problem: Overcoming
difficulties in solving a tenacious brain teaser. Unpublished manuscript.

Krüger, L., Daston, L., & Heidelberger, M. (1987). The probabilistic revolution: Vol. 1.
Ideas in history. Cambridge, MA: MIT Press.

Krüger, L., Gigerenzer, G., & Morgan, M. S. (Eds.). (1987). The probabilistic revolution:
Vol. II. Ideas in the sciences. Cambridge, MA: MIT Press.

Kühberger, A. (1998). The influence of framing on risky decisions: A meta-analysis.
Organizational Behavior and Human Decision Processes, 75, 23–55.

Lantz, P. M., & Booth, K. M. (1998). The social construction of the breast cancer
epidemic. Social Science and Medicine, 46, 907–918.

Laplace, P.-S. (1814/1951). A philosophical essay on probabilities (F. W. Truscott and F. L.
Emory, Trans.). New York: Dover.

Lempert, R. (1991). Some caveats concerning DNA as criminal identification evidence:
With thanks to the Reverend Bayes. Cardozo Law Review, 13, 303–341.

Lerman, C., Trock, B., Rimer, B. K., Jepson, C., Brody, D., & Boyce, A. (1991).
Psychological side effects of breast cancer screening. Health Psychology, 10, 259–267.

LeRoy, S. E, & Singell, L. D., Jr. (1987). Knight on risk and uncertainty. Journal of
Political Economy, 95, 394–406.



Lewis, C., & Keren, G. (1999). On the difficulties underlying Bayesian reasoning: A
comment on Gigerenzer and Hoffrage. Psychological Review, 106, 411–416.

Lindsey, S., Hertwig, R., & Gigerenzer, G. (2001). Communicating DNA evidence.
Unpublished manuscript.

Lopes, L. L. (1981). Decision making in the short run. Journal of Experimental Psychology:
Human Learning and Memory, 7, 377–385.

Lopes, L. L. (1987). Between hope and fear: The psychology of risk. In L. Berkowitz
(Ed.), Advances in Experimental Social Psychology (Vol. 20, pp. 255–295). San Diego:
Academic Press.

Lopes, L. L. (1992). Risk perception and the perceived public. In D. W. Bromley & K.
Segerson (Eds.), The social response to environmental risk (pp. 57–73). Boston: Kluwer
Academic Publishers.

Malenka, D. J., Baron, J. A., Johansen, S., Wahrenberger, J. W., & Ross, J. M. (1993).
The framing effect of relative and absolute risk. Journal of General Internal Medicine, 8,
543–548.

Mandel, J. S., et al. (1993). Reducing mortality from colorectal cancer by screening for
fecal occult blood. New England Journal of Medicine, 328, 1365–1371.

Månsson, S. A. (1990). Psycho-social aspects of HIV testing—the Swedish case. AIDS
Care, 2, 5–16.

Marr, D. (1982). Vision: A computational investigation into the human representation and
processing of visual information. San Francisco: W.H. Freeman.

Marshall, E. (1993). Search for a killer: Focus shifts from fat to hormones. Science, 259,
618–621.

Marshall, K. G. (1996). Prevention. How much harm? How much benefit? 3. Physical,
psychological and social harm. Canadian Medical Association Journal, 155, 169–176.

Matthews, J. R. (1995). Quantification and the quest for medical certainty. Princeton, NJ:
Princeton University Press.

Mazur, D. J., & Metz, J. F. (1994). How age, outcome severity, and scale influence
general medicine clinic patients' interpretations of verbal probability terms. Journal of
General Internal Medicine, 9, 268–271.

McKenzie, C. R. (1994). The accuracy of intuitive judgment strategies: Covariation
assessment and Bayesian inference. Cognitive Psychology, 26, 209–239.

McNeil, B. J., Pauker, S. G., Sox, H. C., & Tversky, A. (1982). On the elicitation of
preferences for alternative theories. New England Journal of Medicine, 306, 1259–1262.

McWhirter, P. T. (1999). La violencia privada: Domestic violence in Chile. American
Psychologist, 54, 37–40.

Metsch, L. R., McCoy, C. B., McCoy, H.V., Pereyra, M., Trapido, E., & Miles, C.
(1998). The role of the physician as an information source on mammography. Cancer
Practice, 6, 229–236.



Miller, K., Smith, C., Zhu, J., & Zhang, H. (1995). Preschool origins of cross-national
differences in mathematical competence: The role of number-naming systems.
Psychological Science, 6, 56–60.

Mineka, S., & Cook, M. (1988). Social learning and the acquisition of snake fear in
monkeys. In T. R. Zentall & B. G. Galef (Eds.), Social learning: Psychological and
biological perspectives (pp. 51–73). Hillsdale, NJ: Erlbaum.

Monahan, J. (1981). The clinical prediction of violent behavior. Washington, DC: U.S.
Government Printing House.

Monahan, J., Steadman, H. J., Silver, E., Appelbaum, P. S., Robbins, P. C., Mulvey, E.
P., Roth, L. H., Grisso, T., & Banks, S. (2001). Rethinking risk assessment: The
McArthur study of mental disorder and violence. New York: Oxford University Press.

Monahan, J., & Wexler, D. B. (1978). A definite maybe: Proof and probability in civil
commitment. Law and Human Behavior, 2, 37–42.

Mosteller, F. (1965). Fifty challenging problems in probability with solutions. Reading, MA:
Addison-Wesley.

Mueser, P. R., & Granberg, D. (1999). The Monty Hall dilemma revisited:
Understanding the interaction of problem definition and decision making. Under
revision.

Mühlhauser, I., & Höldke, B. (1999). Übersicht: Mammographie-Screening—
Darstellung der wissenschaftlichen Evidenz-Grundlage zur Kommunikation mit der
Frau. Sonderbeilage arznei-telegramm, 10/99, 101–108.

Mushlin, A. I., Kouides, R. W., & Shapiro, D. E. (1998). Estimating the accuracy of
screening mammography: A meta-analysis. American Journal of Preventive Medicine,
14, 143–153.

National Academy of Sciences Committee on the biological effects of ionizing radiations.
(1990). Health effects of exposure to low levels of radiations. (BEIR V ed.). Washington,
DC: National Academy Press.

The National Commission on Excellence in Education. (1983). A nation at risk: The
imperative for educational reform (A Report to the Nation and the Secretary of
Education, United States Department of Education). Washington, DC: U.S.
Government Printing Office.

National Research Council. (1989). Improving risk communication. Washington, DC:
National Academy Press.

National Research Council. (1996). The evaluation of forensic DNA evidence. Committee on
DNA forensic science: An update. Washington, DC: National Academy of Sciences.

Nesse, R. M., & Williams, G. C. (1995). Why we get sick: The new science of Darwinian
medicine. New York: Vintage Books.

NIH Consensus Statement. (1997). Breast cancer screening for women ages 40–49. NIH
Consensus Statement, 15, 1–35.



Nyström, L., Larsson, L.-G., Wall, S., Rutqvist, L., Andersson, I., Bjurstam, N.,
Fagerberg, G., Frisell, J., & Tabär, L. (1996). An overview of the Swedish randomised
mammography trials: Total mortality pattern and the representativity of the study
cohorts. Journal of Medical Screening, 3, 85–87.

Oberlies, D. (1997). Tötungsdelikte zwischen Männern und Frauen: Eine Untersuchung
geschlechtsspezifischer Unterschiede anhand von 174 Gerichtsurteilen. Monatsschrift
für Kriminologie und Strafrechtsreform, 80, 133–147

Olsen, O. & Gotzsche, P. C. (2001). Cochrane review on screening for breast cancer with
mammography. Lancet, 358, 1340–1342.

Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review,
72, 407–418.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. New York:
Vintage Books.

The perils of percentages. (1998, April 18). The Economist, 84.
Phillips, K.-A., Glendon, G., & Knight, J. A. (1999). Putting the risk of breast cancer in

perspective. New England Journal of Medicine, 340,141–144.
Politser, P. E. (1984). Explanations of statistical concepts: Can they penetrate the haze of

Bayes? Methods of Information in Medicine, 23, 99–108.
Pomata, G. (1998). Contracting a cure: Patients, healers, and the law in early modern

Bologna (Translated by the author, with the assistance of Rosemarie Foy and Anna
Taraboletti-Segre, Trans.). Baltimore: The Johns Hopkins University Press.

Porter, T. (1986). The rise of statistical thinking, 1820–1900. Princeton, NJ: Princeton
University Press.

Proctor, R. N. (1996). Cancer wars: How politics shapes what we know and don't know
about cancer. New York: Basic Books.

Proctor, R. N. (1998). Tobacco testimony. Manuscript.
Proctor, R. N. (1999). The Nazi war on cancer. Princeton, NJ: Princeton University Press.
Ptacek, J. (1999). Battered women in the courtroom: The power of judicial responses. Boston:

Northeastern University Press.
Ransohoff, D. F., & Harris, R. P. (1997). Lessons from the mammography screening

controversy: Can we improve the debate? Annals of Internal Medicine, 127, 1029–
1034.

Reagan, N., & Novak, W. (1989). My turn: The memoirs of Nancy Reagan. New York:
Random House.

Real, L. A. (1991). Animal choice behavior and the evolution of cognitive architecture.
Science, 253, 980–986.

Redmayne, M. (1998). The DNA database: Civil liberty and evidentiary issues. Criminal
Law Review, 437–454.



Redmayne, M. (2001). Expert evidence and criminal justice. New York: Oxford University
Press.

Reimer, L., Mottice, S., Schable, C., Sullivan, P., Nakashima, A., Rayfield, M., Den, R.,
& Brokopp, C. (1997). Absence of detectable antibody in a patient infected with
human immunodeficiency virus. Clinical Infectious Diseases, 25, 98–100.

Reiss, A. J., Jr., & Roth, J. A. (Eds.). (1993). Understanding and preventing violence.
Washington, DC: National Academy Press.

Roberts, M. M. (1989). Breast screening: Time for a rethink? British Medical Journal, 299,
1153–1155.

Ross, J. F. (1999). The polar bear strategy: Reflections on risk in modern life. Reading, MA:
Perseus Books.

Salzmann, P., Kerlikowske, K., & Phillips, K. (1997). Cost-effectiveness of extending
screening mammography guidelines to include women 40 to 49 years of age. Annals of
Internal Medicine, 127, 955–965.

Schindele, E., & Stollorz, V. (2000, March 17). Vorsicht Vorsorge! Die Woche.
Schmidt, J. G. (1990). The epidemiology of mass breast cancer screening—A plea for a

valid measure of benefit. Journal of Clinical Epidemiology, 43, 215–225.
Schmidt, J. G. (1994). Wie gross ist der Nutzen, wie gross der Schaden der Brustkrebs-

Früherkennung? Früherkennungs-Credo gegeniiber Wirklichkeit in der Praxis. In J. G.
Schmidt & R. E. Steele (Eds.), Kritik der medizinischen Vernunft: Schritte zu einer
zeitgemäßen Praxis—Ein Lesebuch (pp. 63–71). Mainz: Verlag Kirchheim.

Schochetman, G., & George, J. R. (Eds.). (1994). AIDS testing: A comprehensive guide to
technical, medical, social, legal, and management issues (2nd ed.). New York: Springer.

Schönhöfer, P. S. (1999). Klinik-basierte Erfassung Arzneimittel-bedingter Erkrankungen
in Pharmakovigilanz-System (ZKH Bremen). Arzneimitteltherapie, 17, 83–86.

Schräge, G. (1980). Schwierigkeiten mit stochastischer Modellbildung—Zwei Beispiele
aus der Praxis. Journal für Mathematik-Didaktik, 1, 86–88.

Schwartz, L. M., Woloshin, S., Sox, H. C., Fischhoff, B., & Welch, H. G. (2000). U.S.
women’s reactions to false positive mammography results and detection of ductal
carcinoma in situ: Cross-sectional survey. British Medical Journal, 320, 1635–1640.

Schwarz, N. (1999). Self-reports: How the questions shape the answers. American
Psychologist, 54, 93–105.

Schwarz, N., & Hippler, H.-J. (1987). What response scales may tell your respondents:
Informative functions of response alternatives. In H.-J. Hippler, N. Schwarz, & S.
Sudman (Eds.), Social information processing survey methodology (pp. 163–178). New
York: Springer.

Schwarz, N., Hippler, H.-J., Deutsch, B., & Strack, F. (1985). Response categories:
Effects on behavioral reports and comparative judgments. Public Opinion Quarterly,
49, 388–395.



Schwing, R. C., & Kamerad, D. B. (1988). The distribution of risks: Vehicle occupant
fatalities and time of week. Risk Analysis, 8, 127–133.

Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical
implications. Mahwah, NJ: Erlbaum.

Sedlmeier, P., & Gigerenzer, G. (2001). Teaching Bayesian reasoning in less than two
hours. Journal of Experimental Psychology: General, 130, 380–400.

Sedlmeier, P., Hertwig, R., & Gigerenzer, G. (1998). Are judgments of the positional
frequencies of letters systematically biased due to availability? Journal of Experimental
Psychology: Learning, Memory, and Cognition, 24, 754–770.

Selvin, S. (1975a). A problem in probability. American Statistician, 29, 67.
Selvin, S. (1975b). On the Monty Hall problem. American Statistician, 29, 134.
Shaughnessy, J. M. (1992). Research on probability and statistics: Reflections and

directions. In D. A. Grouws (Ed.), Handbook of research on mathematical teaching and
learning (pp. 465–494). New York: Macmillan.

Shepard, R. N. (1987). Evolution of a mesh between principles of the mind and
regularities of the world. In J. Dupré (Ed.), The latest on the best: Essays on evolution and
optimality (pp. 251–275). Cambridge, MA: MIT Press.

Shepard, R. N. (1990). Mind sights: Original visual illusions. New York: Freeman.
Shepard, R. N. (1992). The perceptual organization of colors: An adaptation to

regularities of the terrestrial world? In J. H. Barkow, L. Cosmides, and J. Tooby (Eds.),
The adapted mind: Evolutionary psychology and the generation of culture (pp. 495–532).
New York: Oxford University Press.

Sherman, L. W. (1992). Policing domestic violence: Experiments and dilemmas. New York:
The Free Press.

Siegrist, M. (1997). Communicating low risk magnitudes: Incidence rates expressed as
frequency versus rates expressed as probability. Risk Analysis, 17, 507–510.

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.
Sjónell, G., & Ståhle, L. (2000). Mammography screening does not significantly reduce breast

cancer mortality in Swedish daily practice [On-line].
http://www.famnetdoc.com/hhot.htm.

Skolbekken, J.-A. (1998). Communicating the risk reduction achieved by cholesterol
reducing drugs. British Medical Journal, 316, 1956–1958.

Slaytor, E. K., & Ward, J. E. (1998). How risks of breast cancer and benefits of screening
are communicated to women: Analysis of 58 pamphlets. British Medical Journal, 317,
263–264.

Slovic, P. (1987). Perception of risk. Science, 236, 280–285.
Slovic, P. (1999). Trust, emotion, sex, politics and science. Risk Analysis, 19, 689–701.
Slovic, P., & Monahan, J. (1995). Probability, danger, and coercion: A study of risk

perception and decision making in mental health law. Law and Human Behavior, 19,



49–65.
Slovic, P., Monahan, J., & MacGregor, D. G. (2000). Violence risk assessment and risk

communication: The effects of using actual cases, providing instruction, and
employing probability versus frequency formats. Law and Human Behavior, 24, 271–
296.

Spellman, B. A. (1996, October). Degree of difficulty. American Bar Association Journal,
10.

Spielberg, F., Kabeya, C. M., Ryder, R. W., Kifuani, N. K., Harris, J., Bender, T. R.,
Heyward, W. L., & Quinn, T. C. (1989). Field testing and comparative evaluation of
rapid, visually read screening assays for antibody to human immunodeficiency virus.
Lancet, 1, 580–584.

Statistisches Bundesamt (Federal Statistical Office) (Ed.). (2000a). Statistisches Jahrbuch
2000 für dasAusland (Statistical Yearbook 2000for foreign countries). Wiesbaden:
Statistisches Bundesamt.

Statistisches Bundesamt (Federal Statistical Office) (Ed.). (2000b). Statistisches Jahrbuch
2000 für die Bundesrepublik Deutschland (Statistical Yearbook 2000 for the Federal
Republic of Germany). Wiesbaden: Statistisches Bundesamt.

Stein, M. D., Freedberg, K. A., Sullivan, L. M., Savetsky, J., Levenson, S. M., Hingson,
R., & Samet, J. H. (1998). Sexual ethics: Disclosure of HIV-positive status to partners.
Archives of Internal Medicine, 158, 253–257.

Stigler, S. M. (1980). Stigler’s law ofeponymy. Transactions of the New York Academy of
Sciences, 39, 147–157.

Stigler, S. M. (1983). Who discovered Bayes’s Theorem? American Statistician, 37, 290–
296.

Stigler, S. M. (1986). The history of statistics. Cambridge, MA: Bellknap Press of Harvard
University Press.

Stigler, S. M. (1999). Statistics on the table: The history of statistical concepts and methods.
Cambridge, MA: Harvard University Press.

Stine, G. J. (1996). Acquired immune deficiency syndrome: Biological, medical, social, and
legal issues. (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.

Stine, G. J. (1999). AIDS update 1999: An annual overview of acquired immune deficiency
syndrome. Upper Saddle River, NJ: Prentice-Hall.

Svenson, O., Fischhoff, B., & MacGregor, D. (1985). Perceived driving safety and seat-
belt usage. Accident Analysis and Prevention, 17, 119–133.

Thinès, G., Costall, A., & Butterworth, G. (Eds.). (1991). Michotte’s experimental
phenomenology of perception. Hillsdale, NJ: Erlbaum.

Thompson, W. C. (1993). Worthwhile DNA questions. Judicature, 77, 57.
Thompson, W. C., & Schumann, E. L. (1987). Interpretation of statistical evidence in

criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy. Law and



Human Behavior, 11, 167–187.
Tierney, J. (1991, July 21). Behind Monty Hall’s doors: Puzzle, debate and answer? The

New York Times, p. Al.
Tjaden, P., & Thoennes, N. (2000). Full report of the prevalence, incidence, and

consequences of violence against women: Findings from the National Violence Against
Women Survey. Washington, DC: U.S. Department of Justice.

Tooby, J. & Cosmides, L. (1992). The psychological foundations of culture. In J. Barkow,
L. Cosmides & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the
generation of culture (pp. 19–136). New York: Oxford University Press.

Tribe, L. H. (1971). Trial by mathematics: Precision and ritual in the legal process.
Harvard Law Review, 84, 1329–1393.

Twain, M. (1924). Mark Twain’s Autobiography. (Vol. 1). New York: Harper and
Brothers Publishers.

U.S. Department of Transportation. (1998). Traffic safety facts 1998 [On-line]. National
Center for Statistics and Analysis. Available: http://www.nhtsa.dot.gov.

U.S. Preventive Services Task Force Staff. (1996). Guide to clinical preventive services:
Report of the U.S. preventive services task force. (2nd ed.). Baltimore, MD: Williams &
Wilkins.

vos Savant, M. (1990a, September 9). Ask Marilyn (1). Parade, 15.
vos Savant, M. (1990b, December 2). Ask Marilyn (2). Parade, 25.
vos Savant, M. (1996). The power of logical thinking: Easy lessons in the art of reasoning . . .

and hard facts about its absence in our lives. New York: St. Martin’s Press.
Ward, J. W. (1994). Testing for human retrovirus infections: Medical indications and

ethical considerations. In G. Schochetman & J. R. George (Eds.), AIDS testing: A
comprehensive guide to technical, medical, social, legal, and management issues (pp. 1–14).
New York: Springer.

Was bedeutet Prozent? (1998, December 31). Süddeutsche Zeitung Magazin, p. 3.
Windeler, J., & Köbberling, J. (1986). Empirische Untersuchung zur Einschätzung

diagnostischer Verfahren am Beispiel des Haemoccult-Tests [An empirical study of the
judgments about diagnostic procedures using the example of the Hemoccult test].
Klinische Wochenschrift, 64, 1106–1112.

Wingo, P. A., Ries, L. A. G., Rosenberg, H. M., Miller, D. S., & Edwards, B. K. (1998).
Cancer incidence and mortality, 1973–1995. Cancer, 82, 1197–1207.

Wittkowski, K. (1989). Wann ist ein HIV Test indiziert? Schlusswort. Deutsches
Ärzteblatt, 86, B-138–140.

Woloshin, S., Schwartz, L. M., Byram, S. J., Sox, H. C., Fischhoff, B., & Welch, G.
(2000). Women’s understanding of the mammography screening debate. Archives of
Internal Medicine, 160, 1434–1440.

http://www.nhtsa.gov/NCSA


Wynn, K. (1998). An evolved capacity for number. In D. D. Cummins & C. Allen
(Eds.), The evolution of mind (pp. 107–126). New York: Oxford University Press.



NOTES

CHAPTER 1. UNCERTAINTY

1. For details see Chapter 5.
2. Franklin (1789). In a letter, Benjamin Franklin wrote: “Our Constitution is in actual

operation; everything appears to promise that it will last; but in this world there is
nothing certain but death and taxes.”

CHAPTER 2. THE ILLUSION OF CERTAINTY

1. The tendency to see certainty instead of uncertainty, structure instead of noise, and cause
and effect instead of accidental contingencies has been described in other contexts by
historians and psychologists alike (e.g., Fischhoff, 1982; Thinès, Costall, and
Butterworth, 1991).

2. See Gigerenzer and Murray (1987, Chapter 3).
3. Stigler explains how Galton calculated this number (1999, Chapter 6).
4. Fingering fingerprints. (2000, December 16) The Economist, 103-104.
5. Dora Heller drew my attention to the possible origins of the alleged dangers of

consuming cherries and water at the same time. Fruit that has not been washed is covered
with microorganisms that can lead to fermentation processes in the stomach, which in
turn can cause pain. Normally, these microorganisms are destroyed by stomach acid.
However, if a person drinks a large amount of liquid while eating, the acid is diluted, and
is thus hindered from doing its job well, and stomach pain can result. But washing fruit
before eating it is very likely to take care of this problem.

6. Daston (1987).
7. Evers, Dworschak, et al. (2000); Evers, Neubacher, et al. (2000).
8. Katz (1984, pp. 166-169).
9. I have omitted details that reveal the identities of the participants, and report only their

professional status. I also have rearranged and shortened the discussion to make it easier
to follow.

10. Humphrey (2000).
11. Harrington (1997).
12. Kant (1784).



CHAPTER 3. INNUMERACY

1. In the 1990s, the toy maker Mattel came out with a talking Barbie doll that could utter a
few phrases, including the two quoted here. Feminist groups objected to the doll’s
unenlightened statements, which they alleged would encourage girls to be more
concerned with shopping than with school or careers. One group bought 500 talking
Barbie dolls and 500 talking G.I. Joe dolls just before Christmas, exchanged their voice
boxes, and returned them to the store. As a result, some little girls must have unwrapped
their talking Barbie on Christmas morning only to hear her say, “Eat lead, Cobra!”
(Bondy, 1999).

2. This statement is quoted from How to Lie with Statistics (Huff, 1954/1993), where it
serves as an epigraph. No reference is given. I have searched through scores of statistical
textbooks in which it has since been quoted and found none where a reference was given.
I could not find this statement in Wells’s work either. Thus, the source of this statement
remains uncertain, another example of Franklin’s law.

3. The survey was conducted by the Emnid Institute, a polling organization; see Süddeutsche
Zeitung Magazin (1998, December 31).

4. In the literature, the economist Frank Knight (1921) is credited with making the
distinction between risks and uncertainties, and it is almost universally claimed that his
distinction is that between uncertainties that can and cannot be quantified. However,
Knight in fact proposed a different distinction, that between objective probabilities, such
as empirical frequencies (“risk”) and subjective probabilities, such as degrees of belief
(“uncertainty”). In his own words, “We can also employ the terms ‘objective’ and
‘subjective’ probability to designate the risk and uncertainty respectively . . .” (p. 233). In
Knight’s view, people can assign subjective quantitative probabilities to every conceivable
event, but this alone does not qualify these uncertainties as risks (see LeRoy & Singell,
1987). With objective probabilities (that is, risks) Knight meant probabilities everyone
would agree on. The distinction I am making in this book is consistent with the one
Knight actually made, that is, between uncertain events where we do and do not have
empirical data to quantify (at least roughly) the uncertainties involved. The distinction
between “uncertainty” and “risk” is, of course, a continuum rather than an opposition,
because the amount of empirical evidence available falls on a continuum. Writers such as
Mary Douglas (1992) and Ulrich Beck (1986) use the term “risk” in a different way, one
that explicitly includes moral and political values. Difficulties in noticing, understanding,
and evaluating risks arise not only from the illusion of certainty, or from innumeracy, but
from a multitude of emotional, social, and political factors (e.g., Slovic, 1999).

5. Cited in Katz (1984, p. 136).
6. Katz (1984, p. 134).
7. Proctor (1998, 1999).



8. Ross (1999, p. 40).
9. Statistisches Bundesamt (Federal Statistical Office) (2000b, p. 230).

10. Statistisches Bundesamt (Federal Statistical Office) (2000a, p. 282-283).
11. Bourguet (1987).
12. Porter (1986). For more on Hacking’s work, see Hacking (1975; 1990).
13. U.S. Department of Transportation (1998, p. 2).
14. See National Research Council (1989).
15. See Skolbekken (1998).
16. Compare Malenka et al. (1993).
17. Hacking (1975).

CHAPTER 4. INSIGHT

1. This term was originally suggested by psychiatrist John Bowlby (see Nesse and Williams,
1995, p. 138). Anthropologists disagree about what conditions were like in the
environment of evolutionary adaptedness, such as the amount of time people spent
searching for and preparing food, child-rearing customs, divisions of labor, systems of
inheritance, and social group size. Some of these conditions may have varied widely over
space and time, whereas others did not. The properties of sunlight and the 24-hour
night-day cycle are examples of unvarying conditions.

2. On color constancy as an evolutionary adaptation, see Shepard (1987, 1992); on the
immune system as a collection of adaptations, see Nesse and Williams (1995); on
cognitive heuristics as adaptations see Gigerenzer et al. (1999).

3. I have changed his name to protect his identity.
4. The information corresponds to the results of the first screening mammography of

26,000 American women over 30 years old (Kerlikowske et al., 1996a, 1996b). During
the first screening, in about 0.8 percent of these women, breast cancer was identified.
Among women aged 40 to 49 with breast cancer, 87 percent had a positive
mammogram, and among women without breast cancer, 7 percent also had a positive
mammogram. The result “positive” meant one of three conditions: Most of the positive
results were reported as “additional evaluation needed” (93 percent); the others were
either “suspicious for malignancy” (5 percent) or “malignant” by radiological criteria (2
percent). Note that the base rate of cancer can vary with age, risk group, and country.

5. The values used in this study differed slightly from those shown in Figure 4-2. In this
study, the base rate, sensitivity, and false positive rate were .01, .8, and .1, respectively.
The probability of breast cancer given a positive mammogram was .075, or expressed in
frequencies, out of 100 persons with a positive mammogram, 7 or 8 actually had breast
cancer. The details of this study can be found in Gigerenzer (1996a) and Hoffrage and
Gigerenzer (1998).



6. David Eddy’s informal study is reported in Eddy (1982).
7. Bayes’s rule with probabilities is usually provided in today’s social science textbooks,

whereas the version with natural frequencies corresponds to Thomas Bayes’s (1763)
original Proposition 5 (see Earman, 1992).

8. As Franklin’s law admonishes, however, we would be wise not to take this attribution of
origin too literally. As with most rules and laws, it is uncertain who actually discovered
Bayes’s rule. According to Stigler’s law of eponymy, no scientific discovery is named after
its actual discoverer. Examples include the Pythagorean theorem, Pascal’s triangle, and
the Gaussian distribution. It remains to be discovered who actually discovered Stigler’s
law. In a gripping historical detective story, Stigler (1983) concluded that the odds are 3
to 1 that Nicholas Saunderson rather than Thomas Bayes discovered Bayes’s rule.
Despite being totally blind from the age of 1, Saunderson mastered all of mathematics
and natural philosophy very early in life. At 29, he held the most prestigious academic
chair in England, the Lucasian chair of mathematics at Cambridge, which Newton had
held before him. He died of scurvy, in 1739, at the age of 56. Bayes, of course, cannot be
accused of behaving in accord with the impolite but false interpretation of Stigler’s law,
namely, “Every scientific discovery is named after the last individual too ungenerous to
give due credit to his predecessors” (Stigler, 1980). Bayes never published his treatise, for
which the eminent statistician R. A. Fisher (1935) congratulated him. (Fisher opposed
the use of Bayes’s rule in the sciences; see Gigerenzer et al., 1989, Chapter 3.) It was
published posthumously by Richard Price in 1763.

9. Kleiter (1994); Gigerenzer and Hoffrage (1995, 1999).
10. Why do I refer to natural frequencies as such rather than simply to frequencies? Because

there are other frequencies that are normalized just like probabilities. For instance,
consider the following version of the mammography problem, which uses such
“unnatural” frequencies:

Eight out of every 1,000 women have breast cancer. Of 1,000 women with
breast cancer, 900 will have a positive mammogram. Of 1,000 women without
breast cancer, 70 will still have a positive mammogram. Imagine a sample of
women who have positive mammograms in screening. How many of these
women actually have breast cancer?

This representation causes as much clouded thinking as probabilities do, and for the
same reasons (Gigerenzer and Hoffrage, 1999; Lewis and Keren, 1999). It does not
correspond to the direct experience illustrated by the tree in Figure 4-2. A physician who
has seen 1,000 patients will have seen 8 with breast cancer (Figure 4-2), not 1,000 as
above. Of these 8 with cancer, 7 have a positive mammogram. However, in the above
version, the natural frequency 7 of 8 is normalized to 900 out of 1,000 (rounded), which



takes the information about the base rate (8 cases with cancer) out—just as .9, or 90
percent, does. These frequencies are not natural frequencies because they do not carry
information about the base rates. Similarly, it is conditional probabilities—not all
probabilities—that tend to cloud thinking. For instance, probabilities and percentages
that express simple frequencies (that is, unconditional frequencies), such as “1 percent of
women have breast cancer” are easily understood. In contrast, the conditional probability
that a woman has breast cancer given that she tests positive is apt to be confused with the
conditional probability that a woman tests positive given that she has breast cancer.

11. See Real (1991); Wynn (1998, p. 114); Dehaene (1997, p. 18).
12. See, for example, Barsalou and Ross (1986), Butterworth (1999), Hasher and Zacks

(1984), Jonides and Jones (1992), and Sedlmeier, Hertwig and Gigerenzer (1998). Estes
(1976) and, early in his career, Brunswik (e.g., 1937) proposed that probability learning
arises from frequency learning. Their studies focused on estimations of the frequency of
letters, words, and other objects. The question of which events (out of all possible events)
are automatically counted is addressed in Brase, Cosmides, and Tooby (1998).

13. Dehaene (1997, p. 50); Antell and Keating (1983).
14. For an overview, see Dehaene (1997) and Gallistel and Gelman (1992).
15. See Dehaene (1997, p. 87).
16. The emergence of mathematical probability—and a new conception of reasonableness

that acknowledges uncertainty rather seeking certainty—is described in Daston (1988)
and Hacking (1975). For more on the “probabilistic revolution,” see Kruger, Daston,
and Heidelberger (1987) and Krüger, Gigerenzer, and Morgan (1987). On how notions
of chance, randomness, and probability have changed the sciences and everyday life, see
Gigerenzer et al. (1989).

17. Miller, Smith, Zhu, and Zhang (1995).
18. Feynman (1967, p. 53). On the distinction between an algorithm and a representation,

see Marr (1982).

CHAPTER 5. BREAST CANCER SCREENING

1. Roberts (1989, pp. 1153-1154).
2. Proctor (1999). Wilhelm Conrad Röntgen, who discovered the X ray in 1895, called

these new rays “X rays” because he did not know what they were made of.
3. In this section, I draw on Kerlikowske (2000).
4. Cockburn (1995).
5. Kerlikowske (2000).
6. These trials included some 280,000 women (Nyström et al., 1996) and provided the raw

data so that the various representations of benefits could be calculated (I follow
Mühlhauser and Höldke, 1999, here).



7. To simplify the explanation, I have rounded the numbers up (4 and 3) rather than using
the actual raw numbers of the Swedish trials, which were 3.6 and 2.9. The actual
numbers give slightly smaller values for the benefits of mammography screening: a
relative risk reduction of about 20 percent, an absolute risk reduction of 7 in 10,000, and
a number needed to treat of 1,429. An important result in these trials is that the total
mortality—from breast cancer and other causes—was the same in the screening group as
in the control group. That is, screening seems to reduce the number of women who die
from breast cancer, but not the number of women who die.

8. Salzmann, Kerlikowske, and Phillips (1997). These authors found an average additional
increase in life expectancy of 2.5 days per woman when they included 40- to 49-year old
women who underwent screening every 18 months.

9. Schmidt (1994, p. 69).
10. Kerlikowske (2000). After 10 to 14 years there was, however, a trend toward a mortality

reduction. Does this mean that mammography screening of women in their 40s does not
immediately result in a mortality reduction, but rather only after ten or more years? The
answer seems to be no, because almost all of this reduction occurred in those women who
had breast cancer detected at age 50 or older. In other words, if these women had started
mammography screening at age 50 years or older (rather than already in their 40s), they
would have had the same benefit (Kerlikowske, 1997, p. 83).

11. Note that all benefits are expressed in terms of mortality reduction rather than survival
statistics. Survival statistics can be misleading. For instance, consider the general result
that there is no mortality reduction with mammography screening in women in their
40s. A woman with invasive breast cancer will die at the same age, say at age 55, whether
she had participated in mammography screening and her cancer was detected at age 43,
or she had not participated and her cancer was detected at age 45, when she found a
lump in her breast. With screening, she would have survived 12 years after the cancer was
detected; without screening, she would survived 10 years after detection. This example
clarifies that the reporting of survival statistics may be misleading and make screening
look useful when it is not. This woman only seemed to live longer with a cancer
diagnosis, because the diagnosis was earlier (Kerlikowske, 1997).

12. Kerlikowske (1997, 2000). This conclusion that mammography screening reduces
mortality in women age 50 or higher, however, has been debated. Gøtzsche and Olsen
(2000; see also Olsen and Gøtzsche, 2001) argue that there have been only two
adequately randomized trials for women aged 50 to 69. In the other trials, they argue,
there were differences between women in the screening and control groups before the
studies began that could have confounded the results (for instance, in the Edinburgh trial
the screening group included twice as many women from the highest socioeconomic
stratum as did the control group, and the New York trial excluded more women who
already had cancer from the screening group than from the control group). What the



authors deem to be the only two adequately randomized trials found no effect of
screening on breast cancer mortality (a relative risk reduction of 0.8 percent, which is
negligible) and an (unexplained) increase in the total number of deaths in the screening
group. The authors conclude that “screening for breast cancer with mammography is
unjustified” (p. 129). Similarly, Sjönell and Ståhle (2000) conclude—based on their
analysis of data from some 2 million mammograms performed in daily clinical practice
(as opposed to in randomized trials)—that screening leads to no significant reduction in
breast cancer mortality in women aged 50 to 69.

13. Kerlikowske (2000, pp. 897, 901).
14. Kerlikowske (2000, p. 902); see Lerman et al. (1991).
15. Kerlikowske (1997, 2000).
16. NIH Consensus Statement (1997).
17. Metsch et al. (1998).
18. Mühlhauser and Höldke (1999, pp. 105-106).
19. See Elmore et al. (1998); Lerman et al. (1991).
20. The University of California San Francisco Mobile Mammography Screening program

(Kerlikowske et al., 1996a; 1996b; see also Mühlhauser and Höldke, 1999, pp. 103-
104). This “1 out of 10” figure is averaged across age groups. The errors reported can
vary considerably depending on how the presence of cancer is measured. For instance,
one meta-analysis found false positive rates as low as 1 percent to 7 percent over a one-
year screening interval but as high as 29 percent over a two-year interval (Mushlin,
Kouides, and Shapiro, 1998). The proportion of women with cancer among those who
test positive during routine screening also depends on the specific type of “positive”
diagnosis. In the University of California San Francisco study, most positive
mammograms were labeled as needing “additional evaluation” (93 percent), and the
remainder as “suspicious for malignancy” or “malignant” by radiological criteria. Among
the latter two types of cases, about 1 in 2 women who tested positive actually had breast
cancer.

21. See Elmore et al. (1998); Kerlikowske et al. (1996a; 1996b).
22. Elmore et al. (1998). The results are based on the records of Harvard Pilgrim Health

Care, a health maintenance organization that serves nearly 300,000 adults in and around
Boston.

23. Koubenec (2000).
24. Lerman et al. (1991, p. 259).
25. Ernster and Barclay (1997).
26. Kerlikowske (2000, p. 900); Mühlhauser and Höldke (1999).
27. Schwartz et al. (2000).
28. Proctor (1999, p. 83).



29. National Academy of Sciences Committee (1990) on the biological effects of ionizing
radiations (see also Jung, 1998; Mühlhauser and Höldke, 1999, pp. 106-107). Schmidt
(1990) estimated the proportion of breast cancer cases induced by radiation to be 1
percent.

30. Jung (1998, p. 341); Mühlhauser and Höldke (1999, p. 106). The absolute risk in Figure
5-1 refers to a dose of radiation roughly corresponding to that emitted during two
screening mammograms. The dose is for two screening sessions, each including four
exposures, that is, two exposures of each breast.

31. Kerlikowske (2000). The costs of mammograms vary considerably. For instance, in
Germany, the cost of a mammogram ranges between about $20 if it is covered by health
insurance and $110 if it is not covered (as with screening).

32. Elmore et al. (1998).
33. Domenighetti (2000).
34. Dolan, Lee, and McDermott (1997).
35. Woloshin et al. (2000).
36. Schwartz et al. (2000).
37. Black, Nease, and Tosteson (1995, p. 730). The italicized words were bold in the original

source.
38. Black, Nease, and Tosteson (1995). Even by optimistic estimates, that is, if one were only

to look at those studies suggesting that mammography reduces mortality in this age
group, the absolute risk reduction would be 0.4 (not 60) women in 1,000.

39. Schwartz et al. (2000).
40. Metsch et al. (1998).
41. Slaytor and Ward (1998).
42. Baines (1992).
43. Schindele and Stollorz (2000).
44. Phillips, Glendon, and Knight (1999, p. 142).
45. Black, Nease, and Tosteson (1995, p. 730). The reported average was the median

estimate.
46. Admittedly, more than for other cancers, the risk of lung cancer can be strongly affected

by behavioral change: An estimated 80 to 90 percent of deaths could be prevented if
Americans stopped smoking cigarettes (Cresanta, 1992, p. 439).

47. Hanks and Scardino (1996); Garnick (1994); Wingo et al. (1998).
48. Breast cancer (cover story) (1991). Time, 137,42-49; Baines (1992).
49. Lantz and Booth (1998).
50. Lantz and Booth (1998).
51. See Lantz and Booth (1998).
52. Ellis (1994).
53. Dolan, Lee, and McDermott (1997).



54. Harris et al. (1991).
55. Dawes (1986; 2001).
56. Think of 1,000 women. Thirty-six of them have breast cancer, and 33 of these thirty-six

(92 percent) are in the “high-risk” group. Thus, 33 out of 570 high-risk women will
develop breast cancer, which is about 1 in 17. For information on how the risk of
developing breast cancer depends on age, see Marshall (1993).

57. Hartmann et al. (1999); Hamm, Lawler, and Scheid (1999).

CHAPTER 6. (UN)INFORMED CONSENT

1. Matthews (1995; p. 19); see also Coleman (1987), on the role of statistics in the
therapeutic trial in nineteenth-century medicine.

2. Bernard (1865/1957, p. 137).
3. See Matthews (1995, p. 141).
4. Gawande (1999).
5. Bursztajn et al. (1981, pp. 3-19).
6. German-speaking readers may wish to look up www.cochrane.de
7. Pomata (1998, p.xvi).
8. Katz (1984, p. 46).
9. Katz (1984, p. 61).

10. Katz (1984, pp. 90-100).
11. Reagan and Novak (1989, cited in Eddy, 1996, p. 13).
12. I rely here on Katz (1984, pp. 175-206).
13. See Gawande (1999).
14. Marshall (1996, p. 173).
15. Hamm and Smith (1998).
16. Kalet (1994).
17. Center for the Evaluative Clinical Sciences Staff (1996).
18. Eddy (1996, pp. 5, 319).
19. See Center for the Evaluative Clinical Sciences Staff (1996, p. 135).
20. Chang (2000).
21. The U.S. Preventive Services Task Force Staff (1996, p. 123) writes in its report: “Even if

the need for treatment is accepted, the effectiveness of available treatments is unproven.
Stage C [local extra-capsular penetration] and Stage D [metastatic] disease are often
incurable, and the efficacy of treatment for Stage B [palpable, organ-confined cancer] is
uncertain.”

22. Hanks and Scardino (1996).
23. The recommendation of the U.S. Preventive Services Task Force Staff (1996, p. 119)

reads as follows: “Routine screening for prostate cancer with digital rectal examination,

http://www.cochrane.de


serum tumor markers (e.g., prostate-specific antigen), or transrectal ultrasound is not
recommended.” The Canadian Task Force on the Periodic Health Examination (CTF)
also recommends against the routine use of PSA. It concluded that the evidence was not
sufficient to recommend that physicians discontinue the use of digital rectal exams in
men aged 50 to 70. The American Cancer Society, in contrast, recommends annual
screening with PSA starting at age 50, and annual screening with digital rectal exam
starting at age 40.

24. This includes radical prostatectomy, radiation therapy, and hormone treatment; see U. S.
Preventive Services Task Force Staff (1996). Although not a principal argument against
prostate cancer screening, the economic implications are interesting. The first year of
mass screening of all American men over the age of 50 would cost the country $12
billion to $28 billion.

25. Gigerenzer (1996a); Hoffrage and Gigerenzer (1998).
26. Mandel et al. (1993).
27. Metsch et al. (1998).
28. This strategy is also known as “delta R” and has been often proposed as the correct

strategy for estimating the degree of covariation between two dichotomous variables, such
as cause and effect or disease and symptom (McKenzie, 1994).

29. Independent evidence from experiments with laypeople confirms that there is little intra-
individual consistency in diagnostic inferences with probabilities (Gigerenzer and
Hoffrage, 1995).

30. Eddy (1982).
31. Berner (1997).
32. His name has been changed.
33. See also Koubenec (2000).

CHAPTER 7. AIDS COUNSELING

1. The case is reported in Stine (1999, p. 359).
2. Busch (1994); Haley and Reed (1994).
3. For more information on the issues discussed in this and the following paragraphs, see

Stine (1999).
4. Stine (1999, p. 126).
5. See Stine (1999, p. 31). The following cases are also reported in Stine, pp. 399-405.
6. Stein et al. (1998).
7. Cited in Stine (1999, p. 413).
8. Altman (2000).
9. Stine (1996, pp. 333, 338).

10. Stine (1999, p. 350).



11. Stine (1999, p. 358).
12. Bundesamt für Gesundheit (BAG) in collaboration with the Eidgenössische Kommission

für Aids-Fragen (EKAF) (2000).
13. Månsson (1990).
14. Stine (1999, p. 388).
15. Stine (1999, pp. 358, 389).
16. All studies agree that false positives occur, but how often is less clear. This uncertainty has

several reasons, including: What constitutes a positive Western blot test has not been
standardized (various agencies use different reagents, testing methods, and interpretation
criteria; see Stine, 1996, p. 335); the results of the repeated ELISAs and the Western blot
test are not independent (that is, one cannot simply multiply the individual false positive
rates of the tests to calculate the combined false positive rate; Spielberg et al., 1989); and
the higher the prevalence in a group, the lower the specificity seems to be for this group
(Wittkowski, 1989). For instance, the German Red Cross achieved a combined (that is,
ELISAs and Western blot) specificity for first-time blood donors of 99.98 percent
(Wittkowski, 1989). This corresponds to a false positive rate of 2 in 10,000. From a
review of the available data, Gigerenzer, Hoffrage, and Ebert (1998) estimated that the
false positive rate is around 1 in 10,000. We also reviewed estimates of false positive rates,
sensitivity, and prevalence.

The two principal methods of estimating the sensitivity and specificity of these tests
are screening and blind proficiency testing. In screening tests, large numbers of serum
samples, for instance, from blood donors, are tested. Blind proficiency testing more
closely resembles an experiment than does screening. Samples with and without HIV
antibodies are sent to laboratories for analysis (the laboratories are not informed that they
are taking part in a study). Details and problems with determining the sensitivity and
specificity are reviewed in Schochetman and George (1994).

17. For the calculation of these estimates see Gigerenzer, Hoffrage, and Ebert (1998).
18. This study is described in detail in Gigerenzer, Hoffrage, and Ebert (1998).
19. Enquete Committee of the German Bundestag (1990); Ward (1994).
20. Stine (1999, p. 177).
21. The report of the Enquete Committee of the German Bundestag (1990) estimates the

positive predictive value to be less than 50 percent. See Gigerenzer, Hoffrage, and Ebert
(1998).

22. See Chapter 14.
23. Bundeszentrale für gesundheitliche Aufklärung (1988-1993).
24. Bundeszentrale für gesundheitliche Aufklärung (2000).
25. Bundeszentrale für gesundheitliche Aufklärung (1993).
26. The analysis was performed by one of my students at the University of Chicago, Ken

Greif, in 1994.



27. Reported in Catalan and Pugh (1995).
28. Stine (1999, pp. 378-380).

CHAPTER 8. WIFE BATTERING

1. Dershowitz (1996, p. 101).
2. Dershowitz (1996, p. 105, italics in original).
3. Dershowitz (1996, p. 104).
4. Dershowitz (1996, pp. 101, 108).
5. I. J. Good (1995, 1996), author of Good Reasoning and emeritus professor of statistics at

the Virginia Polytechnic Institute, seems to have been the first to point out the possible
confusion between the probability that a husband will murder his wife given that he has
battered her and the probability that a husband has murdered his wife given that he has
battered her and that she was murdered by someone. I agree with Good’s argument, but
am concerned about the way in which he represented the uncertainties. He chose
probabilities and odds, as is customary in his profession, rather than natural frequencies,
which would have made it easier for readers to understand his compelling argument. To
demonstrate the difference, I summarize Good’s argument as he made it in the six
equations in his 1995 letter to Nature, using the corrected figures from his 1996 Nature
letter. If you have difficulties following the argument in probabilities and odds, you are
proving the very point I wish to make. So don’t be discouraged; the argument is
presented in natural frequencies in the text, where it should be straightforward enough to
understand.

Good’s argument was that the relevant probability in the Simpson case is not p(G|Bat)
but p(G|Bat and M), where G stands for “the husband is guilty” (that is, committed the
murder in 1994), “Bat” means that “the husband battered his wife,” and “M” means that
“the wife was actually murdered by somebody in 1994.”

Good based his calculations of p(G|Bat and M) on the odds version of Bayes’s rule:

posterior odds = prior odds × likelihood ratio,

which in the present case is

where  stands for “the husband is not guilty.”
Using the following six equations, marked Good-1 to Good-6, Good explained how

to estimate p(G|Bat and M). According to Dershowitz, the probability p(G|Bat) is 1 in



2,500 (Good used a slightly different estimate, 1 in 2,000, but this makes little difference
to the result):

p(G|Bat) = 1/2,500. (Good-1)

Therefore, the prior odds (O) are  

O(G|Bat) = 1/2,499 ≈ 1/2,500. (Good-2)

Furthermore, the probability of a woman being murdered given that her husband has
murdered her (whether he is a batterer or not) is unity, that is,

p(M|G and Bat) = p(M|G) = 1. (Good-3)

Because in the United States there are about 25,000 murders per year, a quarter of
these women, and a population of about 250,000,000, Good estimated the probability
of a woman being murdered by someone other than her husband as

p(M|  and Bat) = p(M| ) ≈ 1/20,000. (Good-4)

From Equations Good-3 and Good-4 it follows that the likelihood ratio is about
20,000/1; therefore the posterior odds can be calculated thus:

O(G|Bat and M) = 20,000/2,500 = 8. (Good-5)

That is, the probability that a murdered, battered wife was killed by her husband is

p(G|Bat and M) = 8/9. (Good-6)

Good added that he sent a copy of this note to both Dershowitz and the Los Angeles
Police Department and urged that Bayesian reasoning should be taught at the precollege
level. I believe that Good’s persuasive argument could be understood more easily by
experts and ordinary people alike if the information were presented in natural
frequencies, rather than probabilities and odds as in the six equations above.

6. Approximately one-quarter of the 25,000 people murdered in the United States each year
are female. For a population of about 250 million, half of whom are women, this means
that about 6,250 women (one-quarter of 25,000) are murdered out of about
125,000,000 women each year, which is 5 in 100,000. More precise estimates can be
made by adjusting for variables such as the woman’s age.

7. Dershowitz (1983, pp. xvi, xvii). On the relationship between baseball and statistics see
Gigerenzer et al. (1989, Chapter 7).

8. See Ptacek (1999, pp. 4, 74).



9. The following discussion of facts and possible causes of spousal homicide is based in part
on Daly and Wilson (1988).

10. Reiss and Roth (1993, p. 80).
11. For this and the following results see Ptacek (1999, pp. 8, 24). Sherman (1992) reports

the results of randomized trials conducted by the police to discover what action—such as
arrest and a night in jail for the man or simply verbal counseling for the couple—is most
effective at reducing the chance of an assailant beating a victim after the police have left
the scene.

12. See Ptacek (1999, p. 32).
13. Reiss (1993, p. 69).
14. This figure is the same for white and African American women. See the report of the

National Institute of Justice (Tjaden and Thoennes, 2000, and Koss, Koss, and
Woodruff, 1991).

15. See Horne (1999).
16. Violence against women increases and decreases according to changes in social and

political contexts. Before communism, Russian culture had, like many other cultures, a
long history and folklore in which women were believed to possess evil magical powers
and to be sinful, which called for rules and punishments to control them. For instance,
the Russian wedding custom in which the bride’s father passes a whip to her husband
seems to have lasted until the late nineteenth century. Atkinson (1977; cited in Horne,
1999).

17. Oberlies (1997, p. 135).
18. Fawcett et al. (1999).
19. McWhirter (1999).
20. Geary (2000, p. 65); A delicate question. (1999, 24 April). The Economist, 26.

CHAPTER 9. EXPERTS ON TRIAL

1. People v. Collins, 68 Cal.2d 319, *325; Koehler (1997).
2. The reader may wonder why “dark clothing” did not appear in the chart, despite the fact

that both the victim and the witness reported this characteristic. The omission by the
prosecution was not accidental; evidence had been introduced by the defense that Janet
Collins wore light-colored clothing on the day of the crime. For details, see People v.
Collins, 68 Cal.2d 319 and Koehler (1992).

3. People v. Collins, 68 Cal.2d 319, *325.
4. Thompson and Schumann (1987); Balding and Donnelly (1994).
5. Thompson and Schumann (1987).
6. In the case of the AIDS counselors, the confusion is between two conditional

probabilities. However, because p(match) is practically identical with p(match|not guilty),



one can also rewrite the prosecutor’s fallacy as the confusion of two conditional
probabilities. That is, the prosecutor’s fallacy corresponds to “p(not guilty| match) is the
same as p(match|not guilty).”

7. This is an expected value and does not mean that there are exactly two matches in the
population. There is some probability that there are zero, one, three, four, or more
matches in the population.

8. People v. Collins, 68 Cal.2d 319, *331.
9. Gigerenzer et al. (1989, Chapter 7).

10. Gigerenzer (1998); Schrage (1980).
11. Both the probability and the frequency calculations assume that all people in the

population of suspects have traces of other people’s blood somewhere on their person or
property (not necessarily on their boots). Such assumptions affect the size of the
population, but do not differentially affect the probability and frequency calculations.

12. Tribe, 1971 (cited in Koehler, 1997, p. 223).
13. Faigman (1999).
14. The term is from Faigman (1999, p. 198), who outlined 12 insights towards recovering

from innumeracy.

CHAPTER 10. DNA FINGERPRINTING

1. Later, however, the success of the police was overshadowed by one small discovery. After
the police had caught the murderer, they found out that he had been convicted in 1990
of raping his 17-year-old sister, but was released early on probation on the basis of an
expert’s testimony that he would pose no further danger. However, the police had not
entered his conviction into their computer database. If they had, the actual perpetrator
would have been a suspect in the first place, and the $2 million screening might have
been unnecessary.

2. Stigler (1986); Porter (1986).
3. See Jasanoff and Lynch (1998).
4. Berry (1991).
5. Faigman (1999, p. 85).
6. Boyer (2000).
7. Balding and Donnelly (1994).
8. R. v. Adams [1996] 2 Cr. App. R. 467; see Redmayne (2001, p. 58).
9. National Research Council (1996, p. 8).

10. Thompson (1993, p. 57).
11. Hicks (1993, p. 55).
12. Lempert (1991) reviews these and other cases of false positives in DNA matches; see also

Koehler (1993b).



13. Koehler, Chia, and Lindsey (1995).
14. Koehler (1997).
15. State v. Bethune (cited in Koehler, 1993b, p. 23).
16. For a collection of quotations from legal transcripts see Koehler (1993a; 1993b; 1996).
17. Frankfurter Allgemeine Zeitung, 14 April 1998, No. 86, p. 13.
18. State v. Glover, Texas, 1992, see Koehler (1993b, p. 30).
19. See Koehler (1993b, p. 28), for a collection of source probability errors in court.
20. Balding and Donnelly (1994, p. 285).
21. Koehler, Chia, and Lindsey (1995).
22. Koehler (1993a, p. 229).
23. Lindsey, Hertwig, and Gigerenzer (2001); Hoffrage et al. (2000); Krauss and Hertwig

(2000).
24. Note that in the DNA literature, the term “frequentist” is often applied to frequencies

that are not natural frequencies; instead, like single-event probabilities, they refer to a
particular person or to a randomly drawn person. For instance, the law professor Richard
Lempert describes the reporting of the match probability in the courts thusly: “In the
United States, experts typically give this probability in frequentist terms; for example,
‘there is one chance in fifty thousand that a randomly selected Caucasian male would
have the same DNA profile as that found in both the evidence sample and the sample
taken from the defendant.’ ” (Lempert, 1991, pp. 305-306). Using natural frequencies, in
contrast, the expert would say, “Out of every fifty thousand Caucasian males, one would
have the same DNA profile.” Unlike single-event statements, a statement in terms of
natural frequencies directs one’s thoughts to the question: How many males can possibly
have committed the crime? If we consider a city with 500,000 male inhabitants, we can
see that a DNA match by itself does not provide evidence beyond reasonable doubt: we
can expect that 10 men will have this profile.

25. Collins and Macleod (1991, p. 210).
26. Collins and Macleod (1991, p. 215).
27. Berry (1991). Jonathan J. Koehler (personal communication) described a Texas case

(State v. Griffith) in which the judge ruled that it was admissible to use a 50 percent prior
probability to generate posterior probabilities of paternity, even after Koehler had
testified that to do so would mean that there were hundreds of people who could be
deemed more than 99 percent likely to be the father of a particular child. An appellate
court upheld this judge’s ruling.

28. Daston (1981); Gigerenzer et al. (1989, Chapter 1).
29. A delicate question. (1999, 24 April). The Economist, 26.
30. This and the following examples are borrowed from Balding and Donnelly (1994). On

the problem of blood relatives and other sources of uncertainty, see Lempert (1991).
31. See Berry (1991, p. 178) and Collins and Macleod (1991, p. 213).



32. Redmayne (1998).
33. In 1998, Monica Lewinsky turned over to investigators a navy blue dress stained with

semen. DNA analysis revealed that the source of the semen was President Bill Clinton.
34. Chivers (2000).
35. [1997] 1 Cr. App. R. 369; cited in Redmayne (1998, p. 451) and Redmayne (2001, pp.

71-72).
36. Koehler (1996, p. 877); see also Redmayne (1998, p. 451).

CHAPTER 11. VIOLENT PEOPLE

1. See Monahan (1981). This number refers to the cases in which a psychiatrist predicts
future violent acts; that is, in only 1 out of 3 cases in which psychiatrists predict violent
acts does one actually occur. The second error—to wrongly predict that there will be no
violent act—seems to occur in about 1 out of 10 cases (John Monahan, personal
communication, 2000). The use of actuarial tools in risk assessment (see Monahan et al.,
2001) may help to improve predictive accuracy.

2. See Grisso and Tomkins (1996, p. 928).
3. Faigman (1999, p. 111).
4. See, for example, Monahan and Wexler (1978). On communicating violence risk, see also

the work of Kirk Heilbrun (e.g., Heilbrun et al., 2000).
5. Slovic, Monahan, and MacGregor (2000).
6. The same effect of reference classes has been demonstrated experimentally by Gigerenzer,

Hoffrage, and Kleinbölting (1991). I would like to note that Slovic et al.’s explanation
for their fascinating results differs from mine: they try to explain the discrepancy by the
“frightening images evoked by the frequency format” (p. 290), that is, by images of
harmful attacks. However, frequency judgments need not evoke more frightening images
than single-event judgments. The Prozac story (Chapter 1) illustrates such a case where a
single-event statement evokes more anxiety. The question of frightening images depends,
I believe, on the reference class (e.g., psychiatrist’s patients versus patient’s sexual
encounters) specified in the frequency judgment, not on frequency judgments per se.
Frequency judgments can refer to any reference class.

7. Slovic and Monahan (1995).
8. Slovic, Monahan, and MacGregor (2000). This result was replicated in a second study in

Slovic and Monahan (1995). Mazur and Merz (1994) report the same effect of response
scales in a medical judgment context, where the effect was almost as large among
experienced clinicians as with clinically naive persons.

9. See Dawes (1994, pp. 89-90); for tools to improve accuracy see Monahan et al. (2001).
10. Similar effects are known from psychophysics, see Parducci (1965).
11. Schwarz, Hippler, Deutsch, and Strack (1985).



12. See Schwarz (1999); Schwarz and Hippler (1987).
13. See Hansen (1996) and Spellman (1996).

CHAPTER 12. HOW INNUMERACY CAN BE EXPLOITED

1. Huff (1954/1993).
2. Twain (1924, p. 246).
3. Fahey, Griffiths, and Peters (1995).
4. The physicians shall remain unnamed. I am grateful to Dr. Ingrid Mühlhauser for

drawing my attention to this leaflet. Another method to influence patient’s choice of
treatment is called “framing,” that is, communicating an outcome in terms of either the
probability of dying or that of surviving. For instance, McNeil et al. (1982) report that
the preference for a therapy increased when its outcome was framed in terms of the
probability of surviving rather than dying. The size of framing effects, howerver, is not
very stable (Kühberger, 1998).

5. See Jain, McQuay, and Moore (1998). Desogestrel and gestodene are the main
ingredients of many oral contraceptives.

6. Jain, McQuay, and Moore (1998).
7. These numbers are themselves uncertain estimates; for instance, the risk of

thromboembolism for a woman on the pill ranges from 2 in 7,000 to 2 in 100,000 (Jain,
McQuay, and Moore, 1998).

8. Siegrist (1997).
9. The perils of percentages. (1998, April 18). The Economist, 84.

CHAPTER 13. FUN PROBLEMS

1. Laplace (1814/1951). On Laplace, see Gillispie (1997). The rule of succession can be
derived from Bayes’s rule if one assumes that the prior probabilities are equal, as in the
case in which the two hypotheses “the sun will rise every morning” and “the sun will not
rise every morning” are initially assigned equal probabilities. To illustrate, I show how the
probability of 2/3 (after one observed sunrise) can be obtained from the odds version of
Bayes’s rule (see Chapter 8, footnote 5):

Here, H (for “hypothesis”) stands for “the sun will rise every morning” and not-H for
“the sun will not rise every morning,” and D (data) for the observation that the sun rose
once (only one observation). Assuming uniform priors, p(H) = p(not-H) = 1/2, we get



The probability of observing the first sunrise, if H is true, is 1, that is, p(D|H) = 1. The
probability of the same observation, if H is not true, is unknown. In order to get the
result of the law of succession, one has to make another assumption of equal
probabilities: p(D|not-H) = p(not-D|not-H) = 1/2. This results in

Because p(not-H|D) = 1 – p(H|D), we get p(H|D) = 2 – 2p(H|D), which is equivalent to

3p(H|D) = 2;

and finally p(H|D) = 2/3.
2. The rule of succession can explain the false consensus effect (see Dawes, 1990). In one

study, students at Stanford University were asked to engage in activities such as walking
around the campus wearing a big sign that said “Repent!” After each student had
complied or refused, he or she was asked to estimate the proportion of Stanford students
who would comply. On average, those who had complied estimated that about 2/3 of the
others would also do so; those who refused estimated that only about 1/4 would comply.
The difference between the two groups’ estimates was considered an egocentric bias
because the students guessed what others would do on the basis of their own view of the
situation. However, a student most likely never has asked other students whether they
would be willing to walk around with this sign, but only knows what he or she
responded. If a student’s own answer was “comply,” then the rule of succession dictates
that she or he give a probability of 2/3 that the next student would also comply. This is
about equal to the average estimate given by the “compliers” in the study. If the student’s
answer was “refuse,” then the rule of succession dictates that she or he give a probability
of 2/3 that the next student would also refuse, or a probability of 1/3 that the next
student would comply. This is in the same direction as the average estimate given by the
“refusers” in the study. Thus, the false consensus effect can be seen as the product of a
rational process—the same used by Adam and Eve when they predicted that the sun
would rise on their second day in Paradise.

3. Hammerton (1973, p. 252).
4. The irony is that Hammerton used what he called a “ ‘commonsense’ verbal argument”

(p. 252)—which was expressed in terms of natural frequencies—to explain the problem
and its solution to the reader, but not the participants in his study.



5. Svenson, Fischhoff, and McGregor (1985, p. 119).
6. The idea that skewed distributions can account for the fact that most drivers report that

they are better than average is developed in Lopes (1992) and Schwing and Kamerud
(1988).

7. A different way to describe this phenomenon is to say that in the symmetrical distribution
of Figure 13-3 (top) the average number (arithmetic mean) of accidents coincides with
the median number of accidents. (The median is the point that cuts the distribution into
halves, with 50 percent of the drivers above the median and 50 percent below.) In the
asymmetrical distribution (bottom) the average and the median are different: the median
is 3 accidents, but the arithmetic mean is 4.5. This discrepancy can have puzzling
consequences for expected utility maximization theories (which are based on the
arithmetic mean rather than the median) when distributions are highly asymmetrical.
Examples are the St. Petersburg paradox in humans (Lopes, 1981) and “adaptive coin
flipping” in animals (Cooper, 1989; Gigerenzer, 1996b).

8. “Ask Marilyn,” Parade magazine, September 9, 1990, p. 15 (1990a), and December 2, p.
25 (1990b). The Monty Hall problem was first stated in the American Statistician by
Steve Selvin (1975a; 1975b).

9. See Granberg and Brown (1995); Krauss and Wang (2000).
10. Tierney (1991). For the three letters quoted in the text, see vos Savant (1996). The

second letter was on the three prisoners problem, which is structurally very similar (see
next section).

11. Krauss and Wang (2000) derived these methods from the reports of successful
participants and showed empirically that perspective change and frequency judgments
increased the proportion of people who switch. There are other creative solutions. One
person said, “I would walk up to each door and try to smell the goat.” The answer to the
Monty Hall problem can also be computed using Bayes’s rule. Assume the guest picks
door 1. The probability p(car = 1) that the car is behind door 1 is 1/3 and is the same for
the other two doors. Now Monty opens door 3 and shows a goat. What is the probability
p(car = 2|goat = 3) that the car is behind door 2 given that Monty opened door 3 and
showed a goat? In other words, what is the probability of winning the car if the guest
switches from door 1 to door 2? The answer can be calculated as follows: p(car = 2| goat
= 3) = p(car = 2)p(goat = 3|car = 2)/[p(car = l)p(goat = 3|car = 1) + p(car = 2)p(goat =
3|car = 2) +p(car = 3)p(goat = 3|car = 3)] = 1/3 × l/[l/3 × 1/2 + 1/3 × 1+1/3 × 0] = 2/3.

12. Friedman (1998).
13. Mueser and Granberg (1999).
14. Early versions of this problem appeared in Gardner (1959a; 1959b) and Mosteller

(1965), and Falk (1992) analyzes people’s intuitions about this problem.

CHAPTER 14. TEACHING CLEAR THINKING



1. Kohn, Corrigan, and Donaldson (2000).
2. Schönhofer (1999). This means that roughly one in a thousand hospital patients is killed

by medication errors. There are more than 50,000 drugs already on the market, too
many for a physician to evaluate, plus a constant stream of new drugs. The number of
serious conditions in Germany due to medication errors is estimated at 120,000 to
240,000 per year.

3. Chang (2000, p. 10).
4. Chang (2000, p. 10).
5. For instance, see discussion of People v. Collins (Chapter 9).
6. Gigerenzer (1993, 2000).
7. Reimer et al. (1997).
8. In his work of science fiction, 1984, the writer George Orwell warned that Big Brother

would deprive people of their books, autonomy, and freedom. As yet there is no Big
Brother to force us to believe in the illusion of certainty or ban us from reasoning about
risks. However, another writer of science fiction foresaw a more realistic and disturbing
society. In Aldous Huxley’s Brave New World, no Big Brother is needed to deprive people
of information and the ability to think; they simply have no desire to know. Instead of
wanting to understand their world, they have an almost boundless appetite for distraction
and entertainment. Huxley’s work highlights one threat to the teaching of statistical
thinking: lack of awareness of uncertainty and the curiosity that comes with it.

9. In his seminal book, Cancer Wars (1996), Robert Proctor draws attention to the role of
trade associations in generating “doubt.” This section draws on his work (pp. 101-110).

10. Proctor (1999).
11. Proctor (1998).
12. Proctor (1998, p. 10).
13. Proctor (1996, p. 107).
14. Proctor (1996, p. 108).
15. Proctor (1996, p. 110). The production of confusion and ignorance concerning the

health hazards of asbestos is strikingly similar (Proctor, 1996, pp. 110-122).
16. Dehaene (1997, p. 115).
17. E.g., Douglas and Wildavsky (1982); Fischhoff et al. (1981); Lopes (1987; 1992); Slovic

(1987); Tooby and Cosmides (1992).
18. Mineka and Cook (1988).
19. Hazards that have catastrophic potential, can get out of control, and have fatal

consequences are often called “dread” risks (Slovic, 1987).
20. Reiss and Roth (1993).
21. National Research Council (1996).
22. U.S. Preventive Services Task Force Staff (1996).
23. Center for the Evaluative Clinical Sciences Staff (1996).



24. Krauss, Martignon, and Hoffrage (1999).
25. Sedlmeier (1999); Sedlmeier and Gigerenzer (2001)
26. For details see Sedlmeier and Gigerenzer (2001).
27. Daston (1988).
28. See Gigerenzer (2000, Chapter 12).
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