
Python

Pawel Lachowicz, PhD

QuantAtRisk eBooks

for Quants

Volume

Fundamentals of Python 3.5
Fundamentals of NumPy

Standard Library





Python for Quants 
Volume I 

Paweł Lachowicz, PhD 

QuantAtRisk eBooks 





To My Mother, for Her Love 



Cover design by Paweł Lachowicz, Adobe Photoshop Illustrator  

Python for Quants. Volume I. 
1st Edition, November 2015 

Published by Paweł Lachowicz, ABN 58 495 201 605 
Distributed solely by quantatrisk.com 

QuantAtRisk eBooks 
Sydney, Wrocław 

Proofreading:  John Hedge 

Copyright © 2015 Paweł Lachowicz  
All rights reserved. 

All programming codes available in this ebook are being released under a BSD license as 
follows. 

Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met: 

Redistributions of  source code must retain the above copyright notice, this list of  conditions and 
the following disclaimer. 

Redistributions in binary form must reproduce the above copyright notice, this list of  conditions 
and the following disclaimer in the documentation and/or other materials provided with the 
distribution. 

The names QuantAtRisk, QaR, or Paweł Lachowicz may NOT be used to endorse or promote 
products derived from this software without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER OF PAWEŁ 
LACHOWICZ AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OF PAWEŁ 
LACHOWICZ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

Paweł Lachowicz does not take any responsibility for the use and any consequences of  
the use of  the codes available in this e-book in any form. 

http://abr.business.gov.au/SearchByAbn.aspx?abn=58495201605


 7

Table of Contents     

Preface       11 

About the Author     13 

Acknowledgements     15 

1. Python for Fearful Beginners………………….17 
1.1.  Your New Python Flight Manual 17 
1.2.  Python for Quantitative People 21 
1.3.  Installing Python 25 

 1.3.1.  Python, Officially    25 
 1.3.2.  Python via Anaconda (recommended)  29 

1.4.  Using Python 31 
 1.4.1.  Interactive Mode    31 
 1.4.2.  Writing .py Codes    31 
 1.4.3.  Integrated Developments Environments (IDEs) 32   

   PyCharm     32  
   PyDev in Eclipse    34   
   Spyder     37   
   Rodeo     38   
   Other IDEs     39   
 

2. Fundamentals of Python………………………41 
2.1.  Introduction to Mathematics 41 

 2.1.1.  Numbers, Arithmetic, and Logic   41  

   Integers, Floats, Comments   41 
   Computations Powered by Python 3.5  43 
   N-base Number Conversion    44 
   Strings      45 
   Booleans     46 
   If-Elif-If     46 



 8

   Comparison and Assignment Operators  47 
   Precedence in Python Arithmetics   48 

 2.1.2.  Import, i.e. "Beam me up, Scotty!"  49 
 2.1.3.  Built-In Exceptions    51 
 2.1.4.  math Module    55 
 2.1.5.  Rounding and Precision   56 
 2.1.6.  Precise Maths with decimal Module  58 
 2.1.7.  Near-Zero Maths    62 
 2.1.8.  fractions and Approximations of Numbers 64 
 2.1.9.  Formatting Numbers for Output   66 

2.2.  Complex Numbers with cmath Module 71 
 2.2.1.  Complex Algebra    71 
 2.2.2.  Polar Form of z and De Moivre’s Theorem  73 
 2.2.3.  Complex-valued Functions   75 
 References and Further Studies   77 

2.3.  Lists and Chain Reactions 79 
 2.3.1.  Indexing     81 
 2.3.2.  Constructing the Range   82 
 2.3.3.  Reversed Order    83 
 2.3.4.  Have a Slice of List    85 
 2.3.5.  Nesting and Messing with List’s Elements 86 
 2.3.6.  Maths and statistics with Lists  88 
 2.3.7.  More Chain Reactions    94 
 2.3.8.  Lists and Symbolical Computations with 
   sympy Module    98 
 2.3.9.  List Functions and Methods   102 
 Further Reading     104 

2.4.  Randomness Built-In 105 
 2.4.1.  From Chaos to Randomness Amongst the Order 105 
 2.4.2.  True Randomness    106 
 2.4.3.  Uniform Distribution and K-S Test  110 
 2.4.4.  Basic Pseudo-Random Number Generator  114 

   Detecting Pseudo-Randomness with re and  
   collections Modules   115 

 2.4.5.  Mersenne Prime Numbers   123 
 2.4.6.  Randomness of random. Mersenne Twister. 126 

   Seed and Functions for Random Selection  129 

   Random Variables from Non-Random Distributions 131 

 2.4.7.  urandom     132 
 References     133 
 Further Reading     133 



 9

2.5.  Beyond the Lists 135 
 2.5.1.  Protected by Tuples    135 

   Data Processing and Maths of Tuples  135 

   Methods and Membership   137 

   Tuple Unpacking    138 

   Named Tuples    139 
 2.5.2.  Uniqueness of Sets    139 
 2.5.3.  Dictionaries, i.e. Call Your Broker  141 

2.6.  Functions 145 
 2.6.1.  Functions with a Single Argument  146 

 2.6.2.  Multivariable Functions   147 
 References and Further Studies   149 

3. Fundamentals of NumPy for Quants………….151 
3.1.  In the Matrix of NumPy 151 

  Note on matplotlib for NumPy   153 

3.2.  1D Arrays 155 
 3.2.1.  Types of NumPy Arrays   155 

   Conversion of Types    156 
   Verifying 1D Shape    156 
   More on Type Assignment   157 
 3.2.2.  Indexing and Slicing    157 

   Basic Use of Boolean Arrays   158 
 3.2.3.  Fundamentals of NaNs and Zeros  159 
 3.2.4.  Independent Copy of NumPy Array  160 
 3.2.5.  1D Array Flattening and Clipping  161 
 3.2.6.  1D Special Arrays    163 

   Array—List—Array    164 
 3.2.7.  Handling Infs    164 
 3.2.8.  Linear and Logarithmic Slicing   165 
 3.2.9.  Quasi-Cloning of Arrays   166 

3.3.  2D Arrays 167 
 3.3.1.  Making 2D Arrays Alive   167 
 3.3.2.  Dependent and Independent Sub-Arrays  169 
 3.3.3.  Conditional Scanning    170 
 3.3.4.  Basic Engineering of Array Manipulation  172 

3.4.  Arrays of Randomness 177 
 3.4.1.  Variables, Well Shook    177 

   Normal and Uniform    177 
   Randomness and Monte-Carlo Simulations  179 
 3.4.2.  Randomness from Non-Random Distributions 183 



 10

3.5.  Sample Statistics with scipy.stats Module 185 
 3.5.1.  Downloading Stock Data from Yahoo! Finance 186 
 3.5.2.  Distribution Fitting. PDF. CDF.   187 
 3.5.1.  Finding Quantiles. Value-at-Risk.  189 

3.6.  3D, 4D Arrays, and N-dimensional Space 193 
 3.6.1.  Life in 3D     194 
 3.6.2.  Embedding 2D Arrays in 4D, 5D, 6D  196 

3.7.  Essential Matrix and Linear Algebra 203 
 3.7.1.  NumPy’s ufuncs: Acceleration Built-In   203 
 3.7.2.  Mathematics of ufuncs    205 
 3.7.3.  Algebraic Operations    208 

   Matrix Transpositions, Addition, Subtraction  208 
   Matrix Multiplications    209 
   @ Operator, Matrix Inverse, Multiple Linear Regression 210 
   Linear Equations    213 
   Eigenvectors and Principal Component Analysis (PCA) 
       for N-Asset Portfolio    215 

3.8.  Element-wise Analysis 223 
 3.8.1.  Searching      223 
 3.8.2.  Searching, Replacing, Filtering    225 
 3.8.3.  Masking      227 
 3.8.4.  Any, if Any, How Many, or All?    227 
 3.8.5.  Measures of Central Tendency    229 

Appendixes……………………………………….231 
A.  Recommended Style of Python Coding 231 
B.  Date and Time 232 
C.  Replace VBA with Python in Excel 232 
D.  Your Plan to Master Python in Six Months 233 



 11

Preface 
This is the first part out of  the Python for Quants trilogy, the book-
series that provides you with an opportunity to commence your 
programming experience with Python—a very modern and 
dynamically evolving computer language. Everywhere. 

This book is completely different than anything ever written on 
Python, programming, quantitative finance, research, or science. It 
became one of  the greatest challenges in my career as a writer—
being able to deliver a book that anyone can learn programming 
from in the most gentle but sophisticated manner—starting from 
absolute beginner. I made a lot of  effort not to follow any rules in 
book writing, solely preserving the expected skeleton: chapters, 
sections, margins. 

It is written from a standpoint of  over 21 years of  experience as a 
programmer, with a scientific approach to the problems, seeking 
pinpoint solutions but foremost blended with a heart and soul—
two magical ingredients making this book so unique and alive. 

It is all about Python strongly inclined towards quantitative and 
numerical problems. It is thought of  quantitative analysts (also 
known as quants) occupying all rooms from bedrooms to Wall 
Street trading rooms. Therefore, it is written for traders, 
algorithmic traders, and financial analysts. All students and PhDs. 
In fact, for anyone who wishes to learn Python and apply its 
mathematical abilities.  

In this book you will find numerous examples taken from finance, 
however the content is not strictly limited to that one single field. 
Again, it is all about Python. From the beginning to the end. From 
the tarmac to the stratosphere of  dedicated programming. 

Within Volume I, we will try to cover the quantitative aspects of  
Fundamentals of  Python supplemented with most useful language’s 
structures taken from the Python’s Standard Library. We will be 
studying the numerical and algebraical concepts of  NumPy to 
equip you with the best of  Python 3.5. Yes, the newest version of  
the interpreter. This book is up to date. 



 12

If  you hold a copy of  this ebook it means you are very serious 
about learning Python quickly and efficiently. For me it is a dream 
to guide you from cover to cover, leaving you wondering "what’s 
next?", and making your own coding in Python a truly remarkable 
experience. Volume I is thought of  as a story on the quantitatively 
dominated side of  Python for beginners which, I do hope, you will 
love from the very first page. 

If  I missed something or simply left anything with a room for 
improvement—please email me at pawel@quantatrisk.com. The 
1st edition of  Volume II will come out along with the 2nd edition 
of  Volume I. Thank you for your feedback in advance.  

Ready for Python for Quants fly-thru experience? If  so, fasten 
your seat belt and adjust a seat to an upright position. We are now 
clear for take-off! 

Enjoy your flight! 

Paweł Lachowicz, PhD 
November 26th, 2015 



 13

About the Author 

Paweł Lachowicz was born in Wrocław, Poland in 1979. At the age of  twelve 
he became captivated by programming capability of  the Commodore Amiga 
500. Over the years his mind was sharply hooked on maths, physics, and 
computer science, concurrently exploring the frontiers of  positive thinking and 
achieving "the impossible" in life. In 2003 he graduated from Warsaw University 
defending his MSc degree in astronomy; four years later—a PhD degree in 
signal processing applied directly to black-hole astrophysics at Polish Academy 
of  Sciences in Warsaw, Poland. His novel discoveries secured his post-doctoral 
research position at the National University of  Singapore in 2007. In 2010 Pawel 
shifted his interest towards financial markets, trading, and risk management. In 
2012 he founded QuantAtRisk.com portal where he continuously writes on 
quantitative finance, risk, and applied Python programming. 

Today, Pawel lives in Sydney, Australia (dreaming of  moving to Singapore or to 
the USA) and serves as a freelance financial consultant, risk analyst, and 
algorithmic trader. Worldwide. Relaxing, he fulfils his passions as a writer, 
motivational speaker, yacht designer, photographer, traveler, and (sprint) runner. 

He never gives up. 



 14



 15

Acknowledgments 
To all my Readers and Followers. 

To Dr. Ireneusz Baran for his patience in the process of  waiting 
for this book. For weekly encouragement to go for what valuable I 
could do for people around the world. For his uplifting words 
injected into my subconscious mind. It all helped me. A lot. 

To Aneta Glińska-Broś for placing a bar significantly higher than I 
initially anticipated. Expect the unexpected but never back down. 
You kept reminding me that all the time. I did listen to You. I 
rebuilt myself  and re-emerged stronger. Thank You! 

To Dr. Yves Hilpisch, Dr. Sebastian Raschka, and Stuart Reid, CFA 
for the boost of  motivation I experienced from your side by 
providing the examples to follow. 

To John Hedge for the effort of  reading my book and truly great 
time we shared in Sydney. For courage you gave me. 

To Lies Leysen, Dr. Katarzyna Tajs-Zielińska, Professor Iwona and 
Ireneusz Tomczak, and Armando Favrin for an amazing support, 
positive energy, long hours spent on memorable conversations, 
and for reminding me a true importance of  accomplishing what I 
have started. 

To Iain Bell and Dr. Chris Dandre for giving me a chance. 

To Les Brown for motivation. 

To all who believed in me. 

And to all who did not. You made my jet engines full of  thrust. 



 16



 17

1.  Python for Fearful Beginners 

1.1.  Your New Python Flight Manual 
Have you heard the news? With Python you can fly! ☺ 

For many reasons Python appears to be a perfect language to kick 
off  your very first programming experience. Programming a 
machine to do what you want compute is truly an exciting thing! I 
still remember my very first code in BASIC language written in 
the early 90s. Nothing to be proud of  today but at least I could 
find the solution for a system of  two linear equations just by 
entering a couple of  input parameters from the keyboard. It was 
really fun, believe me, and I was only twelve. I also learnt that one 
of  the best ways to become a good programmer, if  you actually 
start from the ground up, was to copy and re-run someone’s else 
codes—the beginner’s basic instinct. This is that moment when 
your imagination and logical thinking simultaneously kick in. Your 
mind creates a whole spectrum of  ideas guiding you through the 
modification process of  a given code. Instantly you notice that 
you can derive so many amazing things just by altering a few lines 
of  code or feeding that code with different data sets. 

Writing on programming is a skill. It is a combination of  what is 
really essential to be grasped and injected into a bloodstream in 
order to become prepared for more advanced and demanding 
challenges. If  you scan a list of  books on Amazon.com devoted 
to only Python, its number reaches about thirty now. And what I 
mean by a book is a quality book that you can take and learn from 
it quite a lot. My writing this book-series has nothing to do with 
making a stunning impression of  how great my command of  
Python is. In fact, I continuously learn something new every time 
I put my hands on it. What this book is about is more on what a 
man or a woman of  a quantitative mind can do with an attractive 
programming language to make it work for his or her benefits. 

This book series will be useful for all those who would like to start 
coding in Python straight away. It is intentionally designed for 
quantitative analysts with an interest in finance, algorithmic 



 18

trading, and risk management. But again, not limited to those 
fields whatsoever. It will require some knowledge of  advanced 
maths, statistics, data analysis, time-series, and modelling. By 
studying this trilogy as a whole you will learn everything you need 
to turn your quantitative problems into a Python code. Efficiently, 
exhaustively, and effortlessly. 

Many great books exist. As a reader you are strongly encouraged 
to cross-check and study them too. There always be something 
that I skipped or was not aware of. However, my goal is to take 
you on the journey through Python; to present a way of  thinking 
you should develop in order to cope with any problem that could 
be solved by programming. You will be convinced yourself  how 
beautifully Python does the job for you, shortly. 

Please excuse my direct and personal tone in this book but I want 
you to feel comfortable with my style of  communication. No stiff  
and boring writing. Not another book on programming language. I 
will try to make your reading time truly enjoyable. 

Even if  you have some idea of  Python or you are pretty good at 
it, you will benefit from this Volume anyway. Interestingly, the 
introductory chapters are true mines of  knowledge before 
heading to the Moon. We start small. We aim high! 

The most recommended way of  reading Python for Quants series is 
from cover-to-cover. I designed the text in an experimental way 
as no one has ever done it before. Just by reading it you learn and 
connect the dots. Nothing complicated disturbs you or frustrates 
you. Some people write books in the way that you look for 
another book, immediately. It will not be the case this time. 

I dare to implement the wisdom of  Prof. Andrzej A. Zdziarski 
who was my Master’s thesis supervisor in 2003. He taught me the 
way you should always approach an unknown piece of  knowledge 
and how to read scientific books or publications. He used to say: 
“When I read something and I do not understand it, I read it 
again. And again, and again, until I get it.” Over the past ten years 
I turned this philosophy into a style of  writing aimed at passing 
the knowledge on which avoids coming back to the same part of  
the material too frequently. Have I succeeded doing that? You will 
tell me at the end of  this journey. 

Along the text, in the left margin you will find some extra notes, 
tips, or pieces of  supplementary Python codes. It is intended 
to help you as you progress. Study the variations of  all the codes. 
Try to capture what can be written differently and always think 
about the ways of  how you could do the same — only better?! By 
doing so, you can bend your learning curve dramatically upwards. 
The pressure drops with altitude so do not worry: you will enjoy 
the view anyway! 

English is my second language so please forgive me any mistakes.  
John made a great effort to polish my English. Some sentences I 

How to do “it” in-line? 
An alternative way to define a 
function is via lambda keyword: 

>>> g = lambda x: x**2 
>>> f = g(3); f 
9 



 19

build differently—on purpose. Katharine Hepburn said: “If  you 
obey all the rules you miss all the fun!” ☺ 

This book-series may contain some traces of  sexual content or 
references. A strong parental guidance is advised for the readers 
below the 12th year of  age. ☺ 

I will keep my writing style for all Python codes to its absolute 
minimum, namely, this is a plain code: 

 # An exemplary program in Python 
 # ver. 1.0.0, by Johnny Cash 

 from bank import cash as c 

 wallet = c.amount 
 print("You have $%.2f in your wallet" % wallet) 

and the output will be denoted as follows: 

 You have $98.50 in your wallet 

while for all commands executed in an interactive mode: 

 >>> from bank import cash as c 
 >>> wallet = c.amount 
 >>> print("You have $%.2f in your wallet" % wallet) 
 You have $98.50 in your wallet 

Some examples will be provided in the latter manner just to show 
you instant results by altering tiny things in the code itself. Study 
them carefully. All together will form a logical library of  ready-to-
use methods in your daily work with Python. 

In addition, across all chapters, I will mark new commands or/and 
functions in the margin for your quick reference, for example: 

Given a vector of  integer numbers, add 4.1 to each element of  it, 
and sort all elements in ascending order. 

 >>> import numpy 
 >>> b = numpy.array([3, 2, 1, 4]) 
 >>> a = b + 4.1 
 >>> a.sort(); a 
 array([ 5.1,  6.1,  7.1,  8.1]) 

This method comes from my working practice with MATLAB 
language some ten years ago. I found it pretty useful as a quick 
look at the correctness of  syntax. I used to memorise when and 
where within my notes I made a comment on a specific function 
for the first time. Therefore, next time, I could jump into the 
corresponding page straight away. I hope the same method will 
work for you too.  

Annotations on new problems or projects will be formulated 
explicitly as computational challenges denoted in the margin by 
Code x.x. Since we challenge ourselves in the process of  learning, 

.sort()

Code 0.0



 20

a term “challenge” sounds more optimistic than a “problem”. 
Problems are all around us. Why would you like to read another 
book delivering you more problems?! 

Lastly, some new features of  the language need to appear in the 
text before their official "premiere" in the book. One of  such 
examples is a custom function, e.g. 

 def canwedoit(a, b): 
     c = a + b 
     return (c/(c-1) < 2.5) 

 a = 2 
 b = 4 
 if canwedoit(a, b): 
     print("Yes we can!") 

 Yes we can! 

to be described in Section 2.6. Another example could be plotting 
with a help of  matplotlib external library. Therefore, those actions 
are inevitable but making new Python’s elements more memorable 
and user-friendly before their scheduled touchdown. 

Having that in mind, let’s address the question "Why Python?" 
first. There must be some "Because…", right? 

  



 21

1.2.  Python for Quantitative People 
Python language is not exactly like "emerging markets" in finance 
but one may think of  it that way too. Its cornerstones are dated 
back to the early 80s and linked to its creator in the person of  
Guido van Rossum. All began at the Old Continent, in the 
Netherlands. A wishful thinking of  making programming more 
personalised, touchy, and easily learnable. Fast and sophisticated. 
Attractive and sexy. I hope Guido would be able to confirm those 
adjectives looking back in time. Certainly he will. 

Python displays complexity through simplicity. Somehow, this 
feature has been winning people’s hearts for the past 20 years. It’s 
readable. It’s clear and concise. For sure it’s free and downloadable 
as a part of  an open source software. Anyone can contribute to 
the language itself  by Python Enhancement Proposals (PEPs;  see 
more at https://www.python.org/dev/peps/). The language 
blends object-oriented programming with procedural or 
functional solutions. It is high-level in its design and dynamically 
typed. You can use it in Windows, Linux, Mac OS X, and within 
other system environments. Python is a super-glue: it combines 
the power of  simple operations with hacking possibilities across 
the Web (and not only that!).  

It became strongly recognised as a tool for superbly efficient 
numerical computations leaving the same things in C++ more 
time consuming. By breaking the "sound barrier" in the form of  
Global Interpreter Lock (GIL) across many applications, now, 
Python can do things in a parallel mode. It gains more and more 
support for Graphical Processing Unit (GPU) computations and 
recent and ongoing improvements in its best supplementary data-
processing/numerical libraries (e.g., numpy, scipy, pandas, numba, 
scikit-learn, blaze, dask; just to name a few out of  a very rich 
sample) shape the future of  quantitative Python as extremely 
attractive to all newcomers. Once the student becomes a master—
your own libraries may become accessible to all as an open-source 
contribution to the Python community. I believe that exactly right 
now is your time to convince yourself  how far you can fly with 
Python on board. This book is your boarding pass. 

For the past five years, the language has been gradually introduced 
into computational finance—a brave decision to make things 
more beautiful. My colleague, Dr. Yves Hilpisch, in his recent 
book Python for Finance (2014) concisely described and summarised 
the dawn of  the Python era in quantitative finance: it all starts 
from a need, the need for speed and work efficiency. Lots of  
financial institutions, banks, and hedge funds continuously 
increase the spending as an investment in modern technology. 
Every four years the amount of  data doubles and computers gain 
computing power in a notable way. The problem of  having 
stronger and better technological facilities requires new ways of  
building applications and hiring people being able to act quickly 
and re-program software in a strictly limited window of  time. The 



 22

global trends in the financial markets as viewed by front-end 
quants has been dramatically changing. 

Dedicated solutions for trading and managing the financial risks 
on the daily basis commenced "the push" within the software 
development gently moving core developers from C++/C# 
platforms towards more user-friendly languages as JavaScript or 
Python. The key was to recognise the requirements of  clients and 
for the products. The ease in creating computational tools meeting 
current demands for speed, volume of  data, high-frequency, and 
accuracy of  data transmission and processing became of  the 
paramount importance. We entered the century dominated by new 
ways of  creating financial and economical news, reports, and 
analyses powered by machine learning techniques and novel 
visualisation methods. This is a land where solid theoretical 
foundations of  quantitative finance had been asked to comply 
with the vision of  a future world that we will live in. 

Sarah Butcher in her article Goldman Sachs is replacing old school 
traders with junior finance grads who know how to code pointed out: 
Keen to maintain their employability (…) some senior 
traders are going back to university and studying masters 
programs in computer science after eight or nine years in 
the industry. There’s an awareness that people need to keep 
up to date with new methods. High-frequency traders need to 
know C++, C# or Python. Systematic traders need to know 
scripting languages like MATLAB and SQL. 

/businessinsider.com, 16.09.2015/ 

A serious evolution in the consciousness among those who 
already work in the field could not be overlooked any longer. In 
financial markets, the decisions need to be taken swiftly based on 
the most recent stream of  data. The pressure increases. There is 
no room for human error. Survival in today’s financial market 
place equals information plus unique skill. The better you adopt, 
the higher chances you’ve got to make your mark and become a 
valuable asset to the company. 

Python offers a flexibility of  programming numerous financial 
solutions: from time-series processing through real-time analytics 
down to CPU/GPU-based exhausting Monte-Carlo simulations 
for, e.g., new derivative products. Some of  its core numerical 
libraries are written and optimised for speed (e.g. numpy). By 
putting your hands on the programming abilities of  Python you 
experience an acceleration in turning your models into results 
delivered on screen nearly instantly. You cannot replace SQL with 
Python completely. However, MATLAB or R can be overtaken by 
speed and associated multi-level Python’s techniques for data 
streaming and distributions. 

The language would not gain such rapidly expanding popularity if  
not for the people using it so passionately. Worldwide. The 
Python community is one of  the largest. We observe a linear 
growth in the private sector of  high-tech companies offering 
dedicated Web platforms based on inter alia Python engine (see 



 23

for example: Quant Platform; http://www.pythonquants.com/
index.html#platform). The same we observe in the algo-trading 
domain where Python is more than a tool. It is the main tool (e.g. 
Interactive Brokers; https://www.interactivebrokers.com). 
Leading world quant bloggers make use of  Python more and 
more frequently not only as a great educational language but 
foremost as a demonstration of  quantitative applicability for 
finance (see for instance: TuringFinance.com, QuantStart.com, 
QuantAtRisk.com). 

Python captures people’s minds going beyond financial territories. 
It is a superb tool for students, researchers, scientists, IT staff, and 
Web developers. There is no better way to prove it as by recalling 
a number of  Python conferences and meet-ups organised around 
the world every year, from Sydney to Seattle. 

Thinking about joining, following, and learning Python? Just type 
and start watching selected YouTube recordings of  PyCon, SciPy 
Con, or PyData conferences. Already hooked? Sign up, fly, and 
attend one. Don’t forget about For Python Quants Conference 
brought by CQF Institute and The Python Quants (http://fpq.io). 
Still hesitating? Don’t worry. I’ve got three words for you: 

Buy, my, book… 

/Gordon Gekko in 
Wall Street Money Never Sleeps 2010/ 

    "Python for Quants" series—my all three ebooks. ☺

   

  References 

 Yves Hilpisch, 2014, Python for Finance: Analyze Big Financial Data, 
  1st Ed., O’Reilly Media 

  Points of Interest 

 Subscribe for weekly newsletters: Python Software Foundation 
 News (http://pyfound.blogspot.com) and Python Weekly (http://
 www.pythonweekly.com). Both constitute a great gateway to the 
 latest tectonic movements of  Python across the globe. 

 Visit my Twitter account (https://twitter.com/quantatrisk) and 
 scan a whole list of  people or organisations I follow. Choose and 
 become the follower of  all bodies tweeting on Python daily. You 
 will learn a lot! 

http://python.org/psf/


 24



 25

1.3. Installing Python 

    1.3.1.  Python, Officially. 
No matter if  you are a proud owner of  a machine running 
Microsoft Windows, Linux, or Mac OS X as your favourite 
operation system, you can enjoy Python in every galaxy at the 
same level of  comfort. The official Python download site is 
http://www.python.org/download that offers you: (i) the Python 
interpreter, (ii) the Standard Library, and (iii) a couple of  built-in 
modules (e.g. cmath for complex analysis) in one delivery to your 
doorsteps. You can treat that as the basic Python platform. You 
can go this way and install it or make use of  one of  the ready-to-
install-and-manage Python distributions (e.g. Anaconda). 

At the same webpage you will be offered with two choices 
between Python version of  2.7+ and 3.5+ (or older). Surprised? 
Well, there is an ongoing "battle" of  what you should install first 
and start using as a newcomer to the Python’s world. The former 
version of  2.7+ is still much more popular and has a wide 
spectrum of  additional libraries (open source) while the release of  
3.5+ is making its way to become a new standard for Python. 

If, for some reasons, you need to deal with Python code written 
for 2.7+ version, the portability to version 3.5+ might require 
some extra effort and knowledge. Therefore, it is wise to get 
familiarised with the background information at https://
wiki.python.org/moin/Python2orPython3 referring to both 
versions if  you have not done it so far. 

This book will assume codes written and verified to be executable 
by Python 3.5. Underlined by many key world Python advocates, 
Python 3+ should be thought of  as the future of  Python. Version 
3.5 grew in its richness of  new language features and extended 
applicability since the introduction of  Python 3.0.0 in 2008. You 
can track the change log in 3.5+ evolution at https://
docs.python.org/3.5/whatsnew/changelog.html#python-3-5-0-
final. Guido van Rossum in his keynotes at PyCon 2015 made a 
point that still ca. 10,000 open-source batteries had not been 
ported from Python 2 to Python 3 (https://www.youtube.com/
watch?v=G-uKNd5TSBw). It will take time but eventually the 
Pythonists ought to make version 3 their new home and habit. 

In order to install Python 3.5+ the official way, first, visit the 
website http://www.python.org/download, download the most 
appropriate version for your computer system (Windows, Linux, 
etc.) and install. Simple as that.  

Let me show you an example of  how it looks like within Mac 
OS X’s operating system. It takes a few minutes to make all ready 
to work. The official installer comes with a nice wizard guiding 
you painlessly through the whole installation process: 

It became a custom to refer to all 
available open-source Python 
libraries as batteries. If  you meet 
with a term batteries included, you will 
know what the Python guys are 
talking about.



 26

 

Once accomplished, you can verify the default location of  Python 
3.5+ by typing: 

and you are ready to work with Python in its, so-called, interactive 
mode. In our case the directory storing all additional batteries is: 

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/
site-packages/ 

No matter what is inside it right now, there is always a good way 
to install/upgrade those libraries that you wish to use. You can 
achieve it by typing, e.g.: 

$ python3.5 -m pip install --upgrade numpy scipy matplotlib seaborn 
numexpr sympy pandas 

Collecting numpy 
  D o w n l o a d i n g n u m p y - 1 . 1 0 . 1 - c p 3 5 - c p 3 5 m -
macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_
intel.macosx_10_10_x86_64.whl (3.7MB) 
    100% |████████████████████████████████| 3.7MB 128kB/s  
Collecting scipy 
  D o w n l o a d i n g s c i p y - 0 . 1 6 . 1 - c p 3 5 - c p 3 5 m -
macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_
intel.macosx_10_10_x86_64.whl (19.7MB) 
    100% |████████████████████████████████| 19.7MB 27kB/s  
Collecting matplotlib 
  D o w n l o a d i n g m a t p l o t l i b - 1 . 5 . 0 - c p 3 5 - c p 3 5 m -
macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_
intel.macosx_10_10_x86_64.whl (49.6MB) 



 27

    100% |████████████████████████████████| 49.6MB 10kB/s  
Requirement already up-to-date: seaborn in /Library/Frameworks/
Python.framework/Versions/3.5/lib/python3.5/site-packages 
Collecting numexpr 
  D o w n l o a d i n g n u m e x p r - 2 . 4 . 6 - c p 3 5 - c p 3 5 m -
macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_
intel.macosx_10_10_x86_64.whl (133kB) 
    100% |████████████████████████████████| 135kB 1.8MB/s  
Collecting sympy 
  Downloading sympy-0.7.6.1.tar.gz (6.4MB) 
    100% |████████████████████████████████| 6.4MB 78kB/s  
Collecting pandas 
  D o w n l o a d i n g p a n d a s - 0 . 1 7 . 0 - c p 3 5 - c p 3 5 m -
macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_
intel.macosx_10_10_x86_64.whl (8.8MB) 
    100% |████████████████████████████████| 8.8MB 61kB/s  
Collecting pyparsing!=2.0.0,!=2.0.4,>=1.5.6 (from matplotlib) 
  Downloading pyparsing-2.0.5-py2.py3-none-any.whl 
Collecting pytz (from matplotlib) 
  Downloading pytz-2015.7-py2.py3-none-any.whl (476kB) 
    100% |████████████████████████████████| 479kB 436kB/s  
Requirement already up-to-date: python-dateutil in /Library/
Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages 
(from matplotlib) 
Collecting cycler (from matplotlib) 
  Downloading cycler-0.9.0-py2.py3-none-any.whl 
Collecting six>=1.5 (from python-dateutil->matplotlib) 
  Downloading six-1.10.0-py2.py3-none-any.whl 
Installing collected packages: numpy, scipy, pyparsing, pytz, six, 
cycler, matplotlib, numexpr, sympy, pandas 
  Found existing installation: numpy 1.9.2 
    Uninstalling numpy-1.9.2: 
      Successfully uninstalled numpy-1.9.2 
  Found existing installation: scipy 0.16.0 
    Uninstalling scipy-0.16.0: 
      Successfully uninstalled scipy-0.16.0 
  Found existing installation: pyparsing 2.0.3 
    Uninstalling pyparsing-2.0.3: 
      Successfully uninstalled pyparsing-2.0.3 
  Found existing installation: pytz 2015.4 
    Uninstalling pytz-2015.4: 
      Successfully uninstalled pytz-2015.4 
  Found existing installation: six 1.9.0 
    Uninstalling six-1.9.0: 
      Successfully uninstalled six-1.9.0 
  Found existing installation: matplotlib 1.4.3 
    Uninstalling matplotlib-1.4.3: 
      Successfully uninstalled matplotlib-1.4.3 
  Found existing installation: numexpr 2.4.3 
    Uninstalling numexpr-2.4.3: 
      Successfully uninstalled numexpr-2.4.3 
  Found existing installation: sympy 0.7.6 
    Uninstalling sympy-0.7.6: 
      Successfully uninstalled sympy-0.7.6 
  Running setup.py install for sympy 
  Found existing installation: pandas 0.16.2 
    Uninstalling pandas-0.16.2: 
      Successfully uninstalled pandas-0.16.2 
Successfully installed cycler-0.9.0 matplotlib-1.5.0 numexpr-2.4.6 
numpy-1.10.1 pandas-0.17.0 pyparsing-2.0.5 pytz-2015.7 scipy-0.16.1 
six-1.10.0 sympy-0.7.6.1 

what initiates a download process or an update of  numpy, scipy, 
matplotlib, seaborn, numexpr, sympy, pandas libraries (mentioned in 
this book). You may find that the installation of  other modules 
requires some other (supporting) libraries. If  so, use the same 
command and refer to the names of  missing modules. If  lost, 
look for solutions on the Web. There were people going the same 



 28

way before you stepped on that path. Someone left the clues. For 
sure. Find them. 

Any time you wish to check the version of  any library linked to 
your Python 3.5+, type, e.g.: 

where modulename.__version__ command requires the import of  the 
module in first place. On the other hand, if  you would like to 
obtain a full list of  all modules that are at your disposal, write and 
execute the following piece of  code: 

 >>> import pip 
 >>> lst = sorted(["%s %s" % (i.key, i.version) for i in 
                 pip.get_installed_distributions()]) 
 >>> for elem in lst: print(elem) 
 ...    press Enter 

 ccycler 0.9.0 
 gnureadline 6.3.3 
 ipython 3.2.1 
 jinja2 2.8 
 jsonschema 2.5.1 
 markupsafe 0.23 
 matplotlib 1.5.0 
 nose 1.3.7 
 numexpr 2.4.6 
 numpy 1.10.1 
 pandas 0.17.0 
 patsy 0.4.0 
 pep8 1.6.2 
 pip 7.1.2 
 pyparsing 2.0.5 
 python-dateutil 2.4.2 
 pytz 2015.7 
 pyzmq 14.7.0 
 requests 2.7.0 
 scikit-learn 0.16.1 
 scipy 0.16.1 
 seaborn 0.6.0 
 setuptools 18.2 
 six 1.10.0 
 statsmodels 0.6.1 
 sympy 0.7.6.1 
 theano 0.7.0 
 tornado 4.2.1 
 urllib3 1.11 
 zmq 0.0.0 

Make sure that pip module has been installed prior to your action. 

Update of  Anaconda 
From time to time it is advised 
to update your Anaconda 
Python distribution. It makes 
sure that all libraries are up to 
date. You can do it from the 
shell typing two commands: 

$ conda update conda 
$ conda update anaconda 



 29

    1.3.2.  Python via Anaconda (recommended) 
Installing Python via the "Official Way" can be more problematic. 
The devil resides in all the links (requirements) between different 
libraries. It takes a lot of  time to install/update them all after 
every new version comes out.  

A quick fix to that roadblock is the installation of  Python 3.5 via 
Anaconda Python distribution provided by Continuum 
Analytics: http://continuum.io/anaconda. It is a completely free 
enterprise-ready distribution for large-scale data processing, 
predictive analytics, and scientific computing. It contains, all-in-
one, over 300 most popular Python and third-party packages. 
Therefore, you do not need to worry about looking for any of  
them separately across the Web and installing on your own. 
Anaconda does it for you and keeps its eye on their most recent 
updates. The full list of  extra modules (libraries) can be found 
here: http://docs.continuum.io/anaconda/pkg-docs.html. 
Anaconda Python 3.5 supports 317 packages (not every one has 
been included in the installer). Interestingly, in this book, we will 
make use of  less than ten of  them. That should give you an idea 
on the power that Python gains with every new update and 
uninterrupted Python community contributions. 

The installation process has been greatly simplified since version 
3.4. First, visit https://www.continuum.io/downloads. Second, 
choose the correct version for your computer (Mac OS X, 
Windows, Linux) and 32 or 64-bit release. Click and follow the 
graphical installer and its wisdom:  

Again, in case of  Mac OS X as an example, the downloadable file 
with Python 3.5 is 280.4 MB large and you will be asked to point 
at the destination (hard drive) of  your choice. 

Once the Anaconda 2.4+ installer has terminated with success, 
the PATH system variable within your ~/.bash_profile file has also 
been updated: 

 # added by Anaconda3 2.4.0 installer 
 export PATH="//anaconda/bin:$PATH" 

In this case, executing: 



 30

 

in a "freshly" opened Terminal, a simple command: 

 $ python 

enters Python 3.5 in its interactive mode. To exit the Python shell 
and come back to the bash, click Control+D or type: 

 >>> exit() 

as a Python command. 

Having that behind you, you are ready to use Python! 



 31

1.4. Using Python 

    1.4.1.  Interactive Mode 
Python is an interpreted language. That means it reads every line 
and “interprets” or “executes” it as specified and coded by a 
programmer. There are two ways you can use your Python 
interpreter. The first one is, as already mentioned earlier, the 
interactive mode. You launch Python in Terminal (Mac/Linux) 
or from the command prompt in Windows and start coding 
immediately. For example, 

 >>> x = 5 
 >>> y = x**2  # rise x to the power of 2 
 >>> print(y) 
 25 
 >>> for i in range(5): press Enter 
 ...     print(i) press Space 4x before ‘print(i)’ 
   ...   press Enter 2x to see the results 
 0 
 1 
 2 
 3 
 4 

where sign >>> denotes a Python prompt sign and ... markers 
stand for the continuation of  the Python structure of  the for 
loop. The interactive mode is a great place to start your adventure 
with programming. It can be used directly to test results or the 
correctness of  the code itself. One tiny advantage can be 
attributed to the possibility of  entering a variable’s value from the 
keyboard, for instance: 

 >>> name = "John" 
 >>> mood = raw_input("How are you today %s? " % name) 
 How are you today John? Never been better! 
 >>> print(mood) 
 Never been better! 
  

This option is nice if  you really really have no clue of  what to do 
with Python or wish to recall the good times of  BASIC language 
where RAM was 64 kBytes on your Commodore 64 and nothing 
could be stored on the hard drive. Today, it is highly impractical to 
write the code that waits for a raw input. Moreover, the command 
of  raw_input only works within Python 2.7.10. Therefore you 
see… Good times are gone. 

    1.4.2.  Writing .py Codes 
Dealing with complicated and complex programming problems 
both of  quantitative and big-data nature requires writing more 
than a few lines of  code. It can be re-run many times and 
modified freely. Programmers use a variety of  solutions here 
ranging from simple text editors to more advanced and specially 
dedicated Integrated Development Environments (IDEs). For the 
former, you can write your Python code in a plain text file, e.g. 

raw_input



 32

 from cmath import sqrt 
 x = -1 
 y = sqrt(x) 
 print(y) 
  

save it under the name of  isqrt.py and run the code from the level 
of  your operating system: 

 $ python isqrt.py 
  

to see the outcome: 

 1j 
  

i.e. a complex number as the result of  taking a square root of  -1. I 
do not have to tell you what .py stands for, right? 

The second option seems to be more mature. Modern IDEs are 
stand-alone applications designed to facilitate computer 
programmers and their work in software development. A typical 
IDE consists of  a source code editor, build automation tools, and 
debugger. The idea is to create a separate software project in IDE 
of  your choice, keep all files of  the project in one place and link 
them together (if  required).  

    1.4.3. Integrated Development Environments for Python 

    PyCharm 
For the need of  writing and running your Python codes you may 
choose among a few solid IDEs accessible across the Web. Here, I 
would recommend you to download and install PyCharm as your 
favourite IDE. Why? Well, it is elegant, free, and sufficient to cope 
with complex Python codes as you progress in time. It also offers 
an easy way to switch between Python interpreters (2.7.x and 
3.4.x) for your code portability checks. You can download 
PyCharm for Mac OS X, Linux, and Windows visiting https://
www.jetbrains.com/pycharm/download/. You can choose 
between PyCharm Community Edition (completely free) or a paid 
(recommended) Professional version. 

When run for the first time, you will be welcomed with a charm. 
Click on “Create New Project” and when a window pops up 
define the project name, choose location, and select a desired 
interpreter (e.g. Anaconda’s python3.5.0, if  already installed). 

By clicking “OK” you enter into proper PyCharm’s interactive 
development environment which, from now on, will be your 
playground (see the figure on the next page). 

The main workspace is, by default, divided into three panels: 
Project Files and External Libraries (left), Source Code Editor 
(right), and if  you press control+option+r (Mac) you will see the 
results from executing your Python code (bottom). 



 33

Working within PyCharm project is fairly easy. From a main menu 
select “New…” and next “Python file”. In our example (above) it 
caused the opening of  the source code editor’s field where we 
wrote a short Python program aimed at displaying on the screen 
the value of  π and e. In the same way you can add more .py files 
to your project and switch between them or open and edit some 
plain text files (under the same source code editor) containing data 
(e.g. in the .csv file format). 

If  you click on and expand the item of  site-packages (in left panel) 
you have direct access and preview of  all modules recognisable by 
and linked to your /anaconda/bin/python interpreter.  

In our example, above, we imported a numerical library of  
NumPy (more on NumPy in Chapter 3) by typing a command: 

 import numpy as np 
  

It is obvious that importing a non-existing library or making a 
reference  to a .py file that is not present in the Project directory 
will cause an error.  

It is too early to mention that but if  you work with two files 
within your project, say, Main.py and Add.py, the latter storing a 
simple Python function, AddNumbers, designed to add two numbers 
and return the result,  

 def AddNumbers(x, y): 
     return x+y 
  

in your main code of  Main.py you can import AddNumbers function 
and use it in your calculation as follows: 



 34

A full list of  available modules plus the possibility to edit (the 
link/system path) of  your current/desired Python interpreter is 
accessible by reaching Preferences > Project: Name > Python 
Interpreter from the main menu, e.g.: 

     

    PyDev in Eclipse 
Some of  Java or C/C++ software developers are used to working 
within Eclipse IDE. However not many are aware that it is 
possible to build Python projects in Eclipse too. The latter is 
available making use of  PyDev module. 



 35

If  you want to setup Eclipse as your preferable IDE for Python, 
first download and install Eclipse IDE for C/C++ Developers from 
https://eclipse.org/downloads/. In Mac OS X, as an example, 
you will see: 

when your Eclipse IDE is launched.  

Now, to turn it into Python factory, you need to make sure you 
have installed the newest version of  Java SE Runtime 
Environment (8 or higher) from Oracle’s page of  http://
www.oracle.com/technetwork/java/javase/downloads/jre8-
downloads-2133155.html (e.g. jre-8u66-macosx-x64.tar.gz file for 
Mac OS X, etc.). Next, do the same but for Java SE 
Development Kit 8 which is downloadable from http://
www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html webpage. These two URL addresses 
may change with a new release of  JRE and JDK but at least you 
know that oracle.com website is the right place to look for their 
new versions. 

Having that, adding PyDev into Eclipse IDE for C/C++ 
Developers requires following an illustrated manual provided at 
http://pydev.org/manual_101_install.html as an example for 
Microsoft Windows users. The process is identical for Mac and 
Linux programmers. Make sure you reset your computer to allow 
Eclipse link PyDev and set it up automatically. 

From this moment you can begin your new Python project by 
selecting from the main menu New > PyDev Project and 
specifying its path and interpreter. New > File will create a first 
plain file (e.g. you can name it as FirstCode.py) containing the 
following listing: 



 36

 import numpy as np 

 x = np.pi 
 print(x) 

Run it, Run > Run, to see the result of  x holding the value of  π: 

If  you want to make sure that you are using Anaconda Python 
interpreter, set it up in the Preferences of  Eclipse: 

by selecting from the left-hand menu PyDev > Interpreters > 
Python Interpreter and pointing at System Python path to be of  
Anaconda. 

Both IDEs, PyCharm and Eclipse, are standalone pillars of  great 
programming software designed around professional developers. 
If  you touch them for the first time you can be overwhelmed with 



 37

a number of  submenus and hundreds of  options and the settings 
available. Spend some time reading about them all. Watch some 
tutorials on YouTube.  

As a challenge (or homework) try to work out the correct steps in 
the process of  debugging of  the Python code. Bugs will appear. 
Finding them and fixing your programs is a skill. With the right 
tools at your disposal you will kill the fear and calm down your 
anxiety. 

    Spyder 
Every Anaconda distribution arrives equipped with Spyder. 
According to http://spyder-ide.blogspot.com, Spyder is a free 
open-source development environment for the Python 
programming language providing MATLAB-like features in a 
simple and light-weighted software, available for all major 
platforms (Windows, Linux, MacOS X).  

You can install it independently following the procedures 
provided at https://pythonhosted.org/spyder/installation.html. 
The main screen of  Spyder appears to resemble PyCharm, i.e. 

By default, its console is set to IPython. The code in a current 
editor, when run, returns the output in the IPython shell as in the 
example above. Spyder is very easy in use and its unique feature 
that has been winning people’s heart is a MATLAB-like variable 
explorer (e.g. still missing in PyCharm!).  

In long-haul, Spyder seems to display delays between code 
executions and during frequent interactions with the IDE itself. 



 38

    Rodeo 
One alternative to Spyder may become Rodeo brought to you by 
yhat (http://blog.yhathq.com/posts/introducing-rodeo.html).  

Rodeo is an IDE that is built expressly for doing data science in 
Python. Think of  it as a light weight alternative to the IPython 
Notebook. Given the minimal requirements, i.e. a terminal with 
autocomplete, a text editor, and the ability to see plots—Rodeo is 
a project under construction attracting a fair circle of  least-
demanding Python programmers who wish to work with Python 
quickly and not in a sophisticated way.  

You can install and run it in the Terminal by typing: 

 $ pip3.5 install rodeo 
 $ rodeo . 
  

 Rodeo launches itself  in a browser: 

and provides a user with a minimalistic working environment. Zen 
of  Python says Simple is better than complex. If  the IDEs could 
follow PEP20 (https://www.python.org/dev/peps/pep-0020/), 
Rodeo would gain more interest. For sure. 



 39

    Other IDEs 
As one goes deeper into the Web, you discover more possibilities 
for running your projects. Those ones that I mentioned here are 
plausible alternatives you may wish to consider.  
The first one is NetBeans (https://netbeans.org) and its IDE’s 
Python plugin (http://plugins.netbeans.org/plugin/56795/
python4netbeans802). But why would you go for a major player 
that plays in the different leagues (Java, HTML5, C++)? The 
second one would be KomodoIDE for Python (http://
komodoide.com/python/). 21 day free trial, nice layout; simple. 
The third and forth option you’ve got is the same class of  plain 
but tuned code editor with the Python starters: TextMate 
(http://macromates.com; for Mac only) and Sublime Text 2 
(http://www.sublimetext.com/2). I loved the latter because it is so 
clean and sexy, elegant and intelligent. The fifth could be 
KDevelop (https://www.kdevelop.org) aimed for Linux and Mac 
users. Somehow, oldish today. 

What attracts more attention, especially for MS Windows fans 
using Visual Studio, is Python Tools for Visual Studio (https://
www.visualstudio.com/en-us/features/python-vs.aspx). Their 
latest overview video on YouTube (https://www.youtube.com/
watch?v=GtN73hfXsXM) may redirect your curiosity towards this 
brand new product. 

You are also strongly encouraged to explore the solution of  
IPython as well as IronPython (Python for the .NET Framework; 
http://ironpython.net) and Cython (a superset of  the Python 
language that additionally supports calling C functions and 
declaring C types on variables and class attributes; see http://
cython.org). 

In this book we will skip a discussion of  IPython (http://
ipython.org) that offers a supplementary workplace in the form of  
so-called, IPython Notebooks. It will be introduced fully within 
Python for Quants. Volume II. when we will be working with financial 
data and time-series employing pandas module as the main engine. 
For many reasons it is a very convenient way of  starting coding 
however let’s keep our focus clear: The Fundamentals of  Python. 

Shall we? 



 40



 41

2.  Fundamentals of Python 

2.1. Introduction to Mathematics 

Do you remember your first maths lesson at primary school? I 
guess it was a while ago. Let me rephrase my question: Would you 
like to enjoy your very “first time” once again? The good news is 
that you can do it with Python anytime you want. When you learn 
programming in a new language, somehow, you always start from 
the same level: the level of  fundamental mathematics and the 
concepts of  variables within a computer language. This is where 
our journey begins. 

 2.1.1.  Numbers, Arithmetic, and Logic 

Integers, Floats, Comments 
It is an excessive extravagance to install and use Python as a simple 
calculator. However, it is possible: to add, subtract, perform any 
calculations that follows the rules of  arithmetic. Run the 
following code using Python 2.7.10 interpreter first. 

Basic arithmetical operations in Python 2.7.10 vs Python 3.5. 

  
 # Here we go! 
 x = 2 
 y = 9 
 z = 13.513 
  
 a = x + x 
 b = (x - 3*x)*7.32 + x/y 
 c = y**(1/x)         # ** stands for 'rise to the power of' 
 txt = 'is derived'   # string 
  
 print(a) 
 print "b= ", b       # runnable only in Python 2.7+ 
 print('The value of a = %g while c= %f %s' % (a, c, txt)) 

Here we defined three variables x, y, and z and assigned some 
random values. Next, we performed simple arithmetical operations 

Comments in Python 
If  you would like to add some 
lines of  comments to your code, 
there are three ways to do it: 
  (1) a full line comment: 
      # girls just wanna have  
      # fun 
  (2) a comment as a 'suffix': 
      sex=True  # go Tiger, go! 
  (3) a block-comment: 
       x=7 
      ''' 
      x=x+1 
      ''' 
      print(x) 
       will ignore all lines between      
      triple quotes returning: 
      7

Code 2.1



 42

and the derived values of  right-hand side expressions are assigned 
to a set of  three new variables, namely, a, b, and c. Finally, using a 
Python command of  print we check the outcomes: 

 4 
 b=  -29.28 
 The value of a = 4 while c= 1.000000 is derived 

This is your first lesson on what Python assumes about your style 
of  coding. It resembles a never-ending discussion among women: 
does the size matter? I don’t know. Just ask them! But all we know is 
that for Python the type of  its variables does matter. Have a 
closer look at variable a. It returns 4 as expected. How about b? It 
displays a number with two-digit precision. Why there are no 
decimal numbers in case of  print(a)? Good question! Python 
deduces, based on the input of  x that a must be of  the same type, 
i.e. to be an integer number. 

When at least one number in the arithmetic statement is explicitly 
defined with some decimal precision then the result of  all 
operations will be of  the floating-point type (or float, in short). 
That is why b returns -29.28 instead of  -29.  

Do not be misled by the operation of  division in case of  c 
variable. Consider the following code: 

 >>> print(y/x)   
 4   # if run in Python 2.7.10 

Therefore memorise the rule: 

 >>> print(9.0/2.0, 9.0/2, 9./2, 9/2.0, 9/2.) 
 4.5 4.5 4.5 4.5 4.5  

Anytime, if  you lose a track of  types, feel free to check the type of  
your variables making use of  type, e.g: 

 >>> print(type(a), type(b), type(c)) 
 (<type 'int'>, <type 'float'>, <type 'int'>)  

Now, let’s have a look at c once again. Consider the code: 

 print(c) 
 c = float(y**(1/float(x))) 
 print(c) 
 c_i = int(c) 
 print(c_i)  

returning in Python 2.7.10 the following: 

 1 
 3.0 
 3 

The previous value of  c was equal 1 of  the integer type. By 
applying the external function of  float() acting upon the same 
expression we force c to be of  the float type. A transition from 
float to integer numbers we achieved with int() function. 

float() 
int()

type()

sys.maxint 
If  you are using 32-bit Python 
runtime the full range for integers 
will be between [-2e31,+2e31).   
For the sake of  curiosity you can 
find the maximal integer value for 
the current platform as follows: 
>>> import sys 
>>> print("%.5e3" % 
          float(sys.maxint)) 
9.22337e+183 

sys.float_info 
Similarly, a rich information on the 
current floating-point number 
representation you find by typing: 
>>> sys.float_info 

sys.float_info(max=1.797693134
8623157e+308, max_exp=1024, 
max_10_exp=308, 
min=2.2250738585072014e-308, 
min_exp=-1021, 
min_10_exp=-307, dig=15, 
mant_dig=53, 
epsilon=2.220446049250313e-16, 
radix=2, rounds=1)



 43

Python handles long integers very well. When displayed in the 
interactive mode, a letter “L” may be added to mark the long type: 

 >>> p = 219 
 >>> r = 3**p 
 >>> r 

30871290436659589031997859934150465556725743116640932942113508973
2346509723631627417356013073234099809467L 

>>> type(r) 
<type 'long'> 

but a direct comparison with the float-like version returns negative 
result: 

 >>> s = 3.**float(p) 
 >>> s == y  # is s equal y ? 

False       # the same result is obtained for s = pow(3.0, 219.0) 

due to the difference in number representation in the memory. 
Note that it is easier to store a correct long integer number than its 
floating-point equivalent though it is not so obvious. We will 
discuss the precision of  mathematical operations with floats, 
shortly. 

If  for some reasons you would like to obtain information on the 
number of  bits that any given integer consumes in memory, 
simply use: 

 >>> r_bytes = r.bit_length() 
348 

Computations Powered by Python 3.5 
Rerunning the Code 2.1 and all following operations (described 
above) in Python 3.5 will deliver completely different results. A 
classical test entitled Are we working with Python 3? is a two-liner: 

 >>> print 5 
 >>> print 5/2 

For the former command, if  your Python returns an error: 

   File "<stdin>", line 1 
     print 5 
    ^ 
 SyntaxError: Missing parentheses in call to 'print' 

and for the latter the result of  a correct form, i.e. 

   2.5 

you can be sure that, in general, you’re dealing with Python 3.x. 
The command of  print requires the use of  parentheses (round 
brackets) that is optional in Python 2.x. The division of  integer by 
integer in Python 3.x has been programmed to perform the float-
point type arithmetic by default. 

.bit_length() 
It works with integer and long 

integers only.

// 
Floor Division 

Additional arithmetic operation 
in Python is a floor division, i.e.  
the division of  operands where 
the result is the quotient in which 
the digits after the decimal point 
are removed: 
>>> 5/2 
2.5 
>>> 5//2 
2 

however 
>>> 5.0//2 
2.0 



 44

Pay attention to your results if  you use Python 2.7.x. A lack of  
care in handling integer-involved operations could be the source 
of  unnecessary mistakes and frustration. 

N-base Number Conversion 
This section would leave some of  you disappointed if  we had 
skipped a mention of  conversion of  the integer numbers from 
“our” decimal system to n-base systems and back. As you may 
guess, Python delivers handy solutions also in the field. 

For the binary representation of  decimal numbers we have a 
whole spectrum of  ready-to-use tools. Analyse the following cases: 

 >>> t = 10 
 >>> b = bin(t); b 
 '0b1010'             # 0b is added as a prefix for binaries 
 >>> type(b) 
 <class 'str'> 
 
 >>> B = bin(t+t); B  # never: b+b nor bin(t)+bin(t) 
 '0b10100' 
 >>> int(B, 2) 
 20 

 >>> B = bin(t+int(6./2.*4.)); int(B, 2) 
 22 

 >>> x = format(t+int(6./2*4), 'b')  # use format with 'b' 
 >>> x 
 '10110' 
 >>> type(x) 
 <class 'str'>  

Similarly to decimal-to-binary number conversion, we may use 
oct() and hex() functions to achieve the same step for octal and 
hexadecimal integers, respectively, e.g. 

 >>> x = oct(2015); x   # 0o is added as a prefix for octals 
 '0o3737' 
 >>> y=int(x, 8); y 
 2015 
  
 >>> print("%g in hex is %s" % (int(hex(y), 16), format(y,'x'))) 
 >>> 2015 in hex is 7df 

The abovementioned methods limit our options down to three of  
the most frequently used systems. For more advanced conversions 
we need to program a dedicated solution with a little help of  a 
special custom function, e.g.: 
  
 def int2base(num, b): 
        numerals = "0123456789abcdefghijklmnopqrstuvwxyz" 
        return ((num == 0) and numerals[0]) or \ 
               (int2base(num//b, b).lstrip( 
         numerals[0]) + numerals[num % b]) 

 x = 2015 
 x2 = int2base(x, 2) 
 x8 = int2base(x, 8) 
 x16 = int2base(x, 16) 
 x24 = int2base(x, 24) 

 print("binary %12s = %g decimal" % (x2,int(x2, 2))) 

int(x, n) 
The same function of  int() can 
be used to convert any number x 
specified in n-base system.  

format(x, code) 
code is 'b', 'o', and 'x' for binary, 
octal, and hexadecimal integers, 
respectively.

oct()

hex()

\ 
Breaking the Line 

If  the line of  your Python 
code exceeds 80 characters or 
it needs to be broken at any 
point—use backslash. The use 
of  a good IDE software, for 
example PyCharm, helps you 
to follow the rules defined by 
PEP8 (see Appendix).



 45

 print("octal  %12s = %g decimal" % (x8,int(x8, 8))) 
 print("hex    %12s = %g decimal" % (x16,int(x16, 16))) 
 print("24     %12s = %g decimal" % (x24,int(x24, 24)))      

The output produced by our program is: 

binary  11111011111 = 2015 decimal 
octal          3737 = 2015 decimal 
hex             7df = 2015 decimal 
24              3bn = 2015 decimal 

We will cover the construction of  custom functions soon. As for 
now, try to grasp the beauty and elegance of  blending a 
supplementary function with the main code and its calling.  

Interestingly, int(x24, 24) handles the conversion back to decimal 
system from 24-base system quite effortlessly. Pay attention that 
the function of  int2base has a limitation as it should raise an error 
if  not(2 ≤ base ≤ 36). 

Strings 
In Code 2.1 we defined a txt variable. A quick check reveals that: 

 >>> type(txt) 
 <class 'str'> 
  

what stands for string. Any non-numerical or semi-numerical 
sequence of  characters embedded in single ( ' ) or double quotes 
( " ) is treated as a string. Do you remember a Hollywood movie 
“No Strings Attached”? Just by placing that title between two 
double quotes I created a string (for more on print and format and 
their use in formatting numbers for output see Section 2.1.9). 

There exists a more formal way of  checking wether any given 
variable is of  the string type or not. Analyse the following code: 
 
 test = False 
 x = 3 
 y = 4 
 k = y**(1/float(x)) 
 k = float(k) 

 c = str(k) 
 print(c) 
 print(type(c)) 

 if isinstance(c, int): 
        print("c is an integer") 
 elif(isinstance(c, str)): 
        print("c is a string") 
        test = True 
 else: 
        print("c is probably of a float type")  

displaying: 

 1.5874010519681994 
 <class 'str'> 
 c is a string  

if-elif-else 
Testing mult iple logical 
conditions in Python never 
been easier. Don’t forget 
about colon (:) at the end. 
That’s the part of  the syntax. 
Embedding conditions-to-
check in round brackets helps 
Python in their evaluation 
(and order).

Code 2.2

str()



 46

 
In the beginning we force an integer operation using y and x to be 
c converted to the float via k. Applying str function we convert 
float-to-string and next with the help of  isinstance function we 
compare c with int or str class-type in order to determine its type. 

Boolean 
Python, as nearly all modern computer language, offers a logical 
type for its variables: a boolean type. We created such variable 
(test) in Code 2.2. Its value is either True or False. As you can 
convince yourself  in the interactive mode, True corresponds to 1 
whereas False to 0. Examine the following: 

 >>> test = True 
 >>> type(test) 
 <class 'bool'> 
 >>> test2 = False 
 >>> test*3 + test2 
 3  

It is important to remember that spelling of  true or false is 
incorrect and Python returns a NameError: 

 >>> test = false 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 NameError: name 'false' is not defined   

Therefore choose your words wisely Spartan as they may be your last! 

If-Elif-Else 
As we speak about logic, it is difficult to omit a few additional 
comments on if-elif-else construction. Women say: “If I have a 
headache today we won’t have sex or else (elif) you better have 
protection otherwise (else) leave me alone!” The same logical 
thinking can be coded in Python for any statement under 
examination. If  its value has been evaluated to either True or False, 
in first place, a body of  indented code beneath if  is executed. 
Otherwise the alternatives are considered instead.  

A classical way of  the representation of  the following function of  
f(n), defined as, 

would be: 

 n = 2.1   # a random value 
 if(n >= 0): 
        f = n/3 
 else: 
        f = -(n+5)/6 

 print(f)  

isinstance()

f(n) =

⇢
n/3 if n � 0
�(n+ 5)/6 if n < 0

A False Truth 
If  you work with Python 2.7.10 
you may be trapped by a false 
side of  truth: 
>>> True = False 
>>> False = True 
>>> True 
False 
>>> False  
False 

Fortunately, Python 3.5 prevents 
such behaviour returning: 
SyntaxError: can't assign to  
     keyword 



 47

since we have only two options to consider. How would you go 
about that one… ? 

Some of  the functions which we need to use here can be imported 
directly from the Python’s Standard Library. In our case that 
requires uploading of  the math module. In addition, we need a 
function which can handle a square root for negative numbers—
cmath. An exemplary code defining f(x) could take the following 
form: 

 from math import cos, log, exp, tanh 
 from cmath import sqrt as csqrt 

 x = -4.11   # a random value 

 if(x < 0): 
        f = csqrt(x) 
 elif((x >= 0) and (x < 1)): 
        f = 4*cos(2*pi*x) 
 else: 
        f = x*log((exp(x)*tanh(x)),2) 

 print(f)   

The library of  cmath is a special collection of  functions designed 
for complex analysis. We will cover its usefulness in Section 2.2. 

Between if and else you can place more than one elif. There is 
even no need to end a block with else. Keep that in mind. Test on 
your own. 

Comparison and Assignment Operators 
The reason lot of  people fall for Python is its English-like way of  
writing the code. The best example showing and proving that are  
Python logical expressions. Every day, we human, process 
information without particularly thinking about the logic of  
sentences or statements that reach our ears. If something is not 
right for you, you do something else or look for help and support. 
Programming in Python, intuitively, follows the same rules when it 
comes to the construction of  logical conditions. 

Try to assimilate the way of  expressing the following logical 
statements to be evaluated to boolean values. As homework check 
the outcomes in the interactive mode by yourself: 

 >>> a = 2 
 >>> b = 9 
    >>> c = -20 
   >>> not(a <= 0) or (b == (10-1)) 
 ? 
 >>> (c != -20) 
 ? 

f(x) =

8
<

:

p
x if x < 0

4 cos(2⇡x) if x � 0 and x < 1

x log2[e
x

tanh(x)] if x � 1

Code 2.3



 48

 >>> (c == 20) 
    ? 
 >>> ((a+b > 10) or (not(c-9) >= 30)) and (not(a) < 0) 
 ? 

It is good habit is to group your conditions in round brackets in 
order to determine the priority for their evaluation. Some IDEs 
may suggest the use of  parentheses to be omitted however, 
personally I do think their inclusion improves the overall logic and 
readability of  your code. Sometimes, it’s good to break the rules. The 
PEP8 rules. 

In terms of  simple arithmetic keep in mind some handy shortcuts 
engaging so-called assignment operators. You may know them 
already from C or C++ or elsewhere: 

 >>> a = 2 
 >>> a += 2;              # equivalent to a = a+2 
    4 
   >>> a -= 6; a          # equivalent to a = a-6 
 -2 
 >>> a *= 13; a           # equivalent to a = a*13 
 -26 
 >>> a /= 2; a            # equivalent to a = a/2 
    -13.0 
 >>> a += 20; a %= 5; a   # equivalent to a = a%5 (modulo) 
 2.0 
 >>> a -= 6; a //= 5; a  # floor division 
 -1.0 

Precedence in Python Arithmetic 
What is worth noticing is the precedence for all Python operators, 
i.e. the order the interpreter will evaluate the expression if  no 
parentheses have been used. Here is a complete list of  operators 
from the highest to the lowest precedence: 

Operator Description 

**  Exponentiation 
~ + - Complement, unary plus and minus (method 
  names for the last two are +@ and -@) 

* / % // Multiply, divide, modulo and floor 
  division 
+ -  Addition and subtraction 
>> << Right and left bitwise shift 
&  Bitwise AND 
^ |  Bitwise exclusive OR and regular OR 
<= < > >= Comparison operators 
<> == != Equality operators 

= %= /= //= -= += *= **= Assignment operators 
is is not Identity operators 
in not in Membership operators 
not or and Logical operators 

We will cover some types of  Python operators from that list later 
in the book. Again, the use of  parentheses forces higher priority. 



 49

 2.1.2.  Import, i.e. “Beam me up, Scotty” 

Have a look again at Code 2.3 where we made use of  cos(expr), 
log(expr, base), and tanh(expr) functions. Before we explore all 
goodies of  the math module, it is an excellent time to make a side 
note on the import function in Python. 

As you have probably already noticed, Python allows us to import 
existing functions from various libraries (modules) in a very 
flexible way. math and cmath is a good starting point towards 
exploration of  all existing variants. In order to get an access to all 
functions included in any module, it is sufficient to specify, e.g.: 

 import math 
   

Having that, you can use a function computing the cosine for any 
argument (expressed in radians) and to call a pre-defined constant 
storing the value of  π as follows: 

 x = math.cos(math.pi/2) 
   

Convince yourself  that the following line of  code will not work: 

 x = cos(pi/2) 
   

We need to provide a prefix pointing at the module’s name. The 
latter becomes possible if  the import is defined as: 

 from math import * 
 x = cos(pi/2) 
   

You can read Python syntax in a number of  instances nearly as you 
read plain English, here in this example: “from math import all 
functions”. 
 
It is also possible to write: 

 import math as mth 
 x = mth.cos(mth.pi/2) 
   

what we have seen earlier, e.g.: 

 import numpy as np 
   

A problem can take place when we try to import two different 
libraries containing functions of  the same name. Analyse the 
following: 

 >>> import cmath, math 
 >>> x1 = math.sqrt(-1) 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 ValueError: math domain error 
 >>> x2 = cmath.sqrt(-1) 
 1j 
   

In this case we have implicitly specified the sqrt function to be 
taken from the math and cmath module, respectively. ValueError 
occurred for the former as expected. However, if  by mistake you 
specify two import functions as below: 

import

import .. as ..

import *



 50

 >>> from cmath import * 
 >>> from math import * 
 >>> x = sqrt(-1) 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 ValueError: math domain error 
   

an error will occur again. Why? Well, just by importing all 
functions from the math module we have overwritten the functions 
imported from the cmath module. Any solution? There are couple 
as you might suspect. 

We can limit a number of  functions to be imported from a specific 
library, e.g. 

 >>> from cmath import sqrt as csqrt 
 >>> from math import exp, sqrt as sq, log10     
 >>> x = csqrt(-2) 
 >>> x 
 1.4142135623730951j 
   

or write a dedicated function that examines the input and returns 
the correct solution, e.g. 

 def Sqrt(x): 
        if(x < 0.0): 
            from cmath import sqrt 
            return sqrt(x) 
        else: 
            from math import sqrt 
            return sqrt(x) 

 print(Sqrt(1)) 
 print(Sqrt(-1)) 
   

displaying 

 1.0 
 -1j 
   

In general, PEP8 guideline does not recommend the use of  

 >>> from module import * 
   

By doing that we run the increased risk among all functions  to be 
misused, that are imported from different sources to be misused. 
As shown above.  

Therefore, by marking only those functions which we intentionally 
want to use, it resembles beaming the individuals up from one to 
another place of  the spacetime as we know it well from the Star 
Trek movie series. Importing antigravity in Python is also possible! 

Lastly, Code 2.3 still has not been exhausted in its description yet. 
Can you tell me why? Try to re-run the code with: 

 x = 10000 
   

You will get an OverflowError: 

 Traceback (most recent call last): 
   File <>, line 11, in <module> 
      f = x*log((exp(x)*tanh(x)),2) 

from .. import .. as ..

Indentation in Python 
Python assumes four (4) white 
spaces as its default indentation. 
Unlike some other programming 
languages, this style of  writing of  
the Python code allows its simpler 
and quicker readability.  

Try to memorise the way how we 
format the main code and the 
functions. Everything what has 
been indented is treated as a block 
of  statements and executed 
accordingly. There is no need to 
close those blocks with any 
“end”-like functions (as required 
in MATLAB or FORTRAN) nor 
curly braces (as in C/C++).



 51

 OverflowError: math range error 
   

which causes your program to be terminated. No so great, isn’t it? 

 2.1.3.  Built-in Exceptions 

So far, we have familiarised ourselves with three kinds of  errors in 
Python, namely: NameError, ValueError, and OverflowError. They all 
belong to a class of  Built-in Exceptions in the Python module of  
exceptions. This module never needs to be imported explicitly with 
the use of  the import function. 

Python provides us with a handy way to capture any error that 
might occur while running a code. Analyse the following: 

 from math import sqrt 

 a = -1.0 
 b = 1.0 

 try: 
        c = sqrt(a/b) 
        test = True 
    except Exception as e: 
        # Something went wrong! 
        print("Detected error: %s" % e) 
        test = False 
 finally: 
        if(test):  # an equivalent of "if test is True" 
            print(c) 
   

When executed the result will be: 

 Detected error: math domain error. 
    

Now, by changing: 

 a = -1.0 
 b = 0.0 
   

we get 

 Detected error: float division by zero 
    

while for 

 a = -1.0j 
 b = 0.0 
   

the bad news is: 

 Detected error: complex division by zero. 
    

As you can see try-except-as-finally block defined above allows us 
to understand what sort of  error occurred. If  so, the message with 
a name of  an error is displayed for our knowledge. Playing safe, we 
add a boolean variable, test, in order to proceed if  all went okay. 

The inclusion of  the finally block segment is optional. Consider 
the  following variant of  the same code: 

Code 2.4

try .. except .. finally



 52

 
 from math import sqrt 

 a = 1.0 
 b = 1.0 

 try: 
        c = sqrt(a/b) 
        test = True 
    except Exception as e: 
        # Something went wrong! 
        print("Detected error: %s" % e) 
        test = False 
  
  if(test):   
        print(c) 
   

It will return a value of  c in the screen because the try-except test 
has been passed. In general, here we use a smart way of  
controlling the flow based on actions that were taking place along 
the lines. Though tempting, be cautious about overusing them. 
Python offers more elegant control over your code’s behaviour and 
the use of  such boolean-based logic of  the flow should be limited 
to specific and local fragments of  your code. 

Python recognises the following built-in exceptions: 

BaseException 
 +-- SystemExit 
 +-- KeyboardInterrupt 
 +-- GeneratorExit 
 +-- Exception 
      +-- StopIteration 
      +-- StandardError 
      |    +-- BufferError 
      |    +-- ArithmeticError 
      |    |    +-- FloatingPointError 
      |    |    +-- OverflowError 
      |    |    +-- ZeroDivisionError 
      |    +-- AssertionError 
      |    +-- AttributeError 
      |    +-- EnvironmentError 
      |    |    +-- IOError 
      |    |    +-- OSError 
      |    |         +-- WindowsError (Windows) 
      |    |         +-- VMSError (VMS) 
      |    +-- EOFError 
      |    +-- ImportError 
      |    +-- LookupError 
      |    |    +-- IndexError 
      |    |    +-- KeyError 
      |    +-- MemoryError 
      |    +-- NameError 
      |    |    +-- UnboundLocalError 
      |    +-- ReferenceError 
      |    +-- RuntimeError 
      |    |    +-- NotImplementedError 
      |    +-- SyntaxError 
      |    |    +-- IndentationError 
      |    |         +-- TabError 
      |    +-- SystemError 
      |    +-- TypeError 
      |    +-- ValueError 
      |         +-- UnicodeError 
      |              +-- UnicodeDecodeError 
      |              +-- UnicodeEncodeError 
      |              +-- UnicodeTranslateError 

Code 2.4a



 53

      +-- Warning 
           +-- DeprecationWarning 
           +-- PendingDeprecationWarning 
           +-- RuntimeWarning 
           +-- SyntaxWarning 
           +-- UserWarning 
           +-- FutureWarning 
    +-- ImportWarning 
    +-- UnicodeWarning 
    +-- BytesWarning 
   

I’ve marked those we have encountered so far in red. Having that 
list you are able to supplement your Python code with extra lines 
of  a forced protection which would vouchsafe its smoothness of  
running in the future. 
 
Consider the following example: 

 from math import sin, erf, sqrt, fabs 
 import random 

 i = 1 
 while(i <= 10): 
     x = random.randint(-100, 100) 
     y = random.randint(-1000, 1000) 
        try: 
            z = sin(x/y)*erf(x-y)*1./sqrt(fabs(x**y)) 
            print(i, x, y, z) 
            i += 1 
     except ValueError: 
         print("  ValueError: math domain error") 
     except ZeroDivisionError: 
         print("  ZeroDivisionError: integer division or modulo by zero") 
     except OverflowError: 
         print("  OverflowError: long int too large to convert to float") 
   

The heart of  this code is to derive a mathematical expression for z 
given as: 

where erf denotes an error function and the input variables of  x 
and y are drawn randomly from a uniform distribution of  integer 
numbers in the range [-100; 100] and [-1000; 1000], respectively. 
Ignore for a second the details related to the Python’s Standard 
Library module of  random as we will spend some time with it a little 
bit later. Instead, pay attention to try-except-except-except block in 
action. 

The code that follows a try keyword aims at derivation of  z first, 
next printing i, x, y, and z on the screen, and (if  that block is 
executed without errors), increasing i by 1. In other cases, which 
now have been tested for a specific error type separately, the 
corresponding message on error that occurred will be displayed 
for your knowledge. 

An exemplary outcome we might obtain is: 

   OverflowError: long int too large to convert to float 
   OverflowError: long int too large to convert to float 

Code 2.5

z = sin

✓
x

y

◆
erf (x� y)

1p
|xy|

while-else 
A classical loop for the execution 
of  indented block of  code while a 
defined condition is True . 
Otherwise, well, you know what. 

It is easy to make while-else loop 
executable endlessly. Therefore, 
keep an eye on a rolling ball.



 54

   ZeroDivisionError: integer division or modulo by zero 
   ZeroDivisionError: integer division or modulo by zero  
 1, 66, 58, 1.4396768283572388e-53 
   OverflowError: long int too large to convert to float 
   ZeroDivisionError: integer division or modulo by zero 
     ZeroDivisionError: integer division or modulo by zero 
     ZeroDivisionError: integer division or modulo by zero 
 2, -26, -111, 0.0 
 3, 55, 4, 0.00013889819399227798 
     OverflowError: long int too large to convert to float 
     OverflowError: long int too large to convert to float 
     ZeroDivisionError: integer division or modulo by zero 
     ZeroDivisionError: integer division or modulo by zero 
     OverflowError: long int too large to convert to float 
 4, -24, -17, -453768871475.1213 
      OverflowError: long int too large to convert to float 
 5, -2, 781, 2.359531820868905e-118 
 6, -4, -183, 0.0 
     OverflowError: long int too large to convert to float 
     ZeroDivisionError: integer division or modulo by zero 
     ZeroDivisionError: integer division or modulo by zero 
 7, -1, 690, 0.8414709848078965 
     ZeroDivisionError: integer division or modulo by zero 
     OverflowError: long int too large to convert to float 
     OverflowError: long int too large to convert to float 
     ZeroDivisionError: integer division or modulo by zero 
     OverflowError: long int too large to convert to float 
 8, 54, -28, -1.6301163358314728e+24 
     ZeroDivisionError: integer division or modulo by zero 
 9, 74, 69, 2.732403385235102e-65 
 10, -99, 98, 1.48792632248559e-98 
    

The bad news is that errors in finding z did occur. We designed the 
code in the way to see what sort of  errors took place but skipping 
information for which x and y that happened. The good news is 
that our program terminated with success and we found ten pairs 
of  x and y for which z could be calculated. That was possible due 
to application of  while loop. 

A quick modification of  the same code that suppresses 
information on errors and returns digestible results could be 
shortened to: 

 from math import sin, erf, sqrt, fabs 
 import random 

 i = 1 
 while(i < 11): 
        x = random.randint(-100, 100) 
        y = random.randint(-1000, 1000) 
    try: 
        z = sin(x/y)*erf(x-y)*1./sqrt(abs(x**y)) 
        print(i, x, y, z) 
       i += 1 
   except: 
        pass 
   

where, as in poker, pass means “pass”. In that case, we get, e.g. 

 1, 92, 79, 2.2668352909869005e-78 
 2, 33, 93, -0.0 
 3, -96, -156, 0.0 
 4, 98, -38, -9.613555342337808e+36 
 5, 27, -17, -1334436638310.783 
 6, 86, 76, 2.5947648025557632e-74 
 7, 56, -49, -6.15619862771058e+42 
 8, 10, 266, -0.0 

pass

Code 2.5a



 55

 9, -71, 103, 3.847992229849534e-96 
 10, -25, -130, 0.0 

Putting all together, by now you should grasp the essence of  
protection against potential errors. In this book we limit its 
presence to a required minimum. And as in life—some people 
prefer sex without condoms, right? ☺ 

 2.1.4.  math Module 

The math module from the Python’s Standard Library provides us 
with a range of  both fundamental and useful functions. It is 
initially thought to assume non-complex-analysis maths. If  this is 
not the case, cmath should be imported instead. 
 
Below we display a list of  most frequently used functions from the 
math library. Within some examples so far, we have seen how one 
can get access to any of  them. 

Constants 

pi π = 3.141592653589793 
e, exp(1) e = 2.718281828459045 

Powers and Logarithms 
exp(x) ex 
log(x) the natural logarithm of x (to base e) 
log(x, base) the natural logarithm of x (to base base) 
  log(4, 12) =log(4)/log(12) 
log1p(x) the natural logarithm of 1+x (to base e) 
log10(x) the base-10 logarithm;  
  more accurate than log(x, 10) 
pow(x,y) xy; converts x and y to floats, unlike x**y 
sqrt(x) the square root of x 

Trigonometric Functions 
sin(x) the sine of x, in radians 
cos(x) the cosine of x, in radians 
tan(x) the tangent of x, in radians 
asin(x) the arc sine of x, in radians 
acos(x) the arc cosine of x, in radians 
atan(x) the arc tangent of x, in radians 

atan2(y, x) atan(y/x), the result is between -π and π 
degrees(x) converts x from radians to degrees 
radians(x) converts x from degrees to radians 
  sin(radians(30)) =0.5 
hypot(x,y) the Euclidean norm, =sqrt(x**2 + y**2)  

Hyperbolic Functions 
sinh(x) the hyperbolic sine of x 
cosh(x) the hyperbolic cosine of x 
tanh(x) the hyperbolic tangent of x 
asinh(x) the inverse hyperbolic sine of x 
acosh(x) the inverse hyperbolic cosine of x 
atanh(x) the inverse hyperbolic tangent of x 

Special Functions 
erf(x) the error function of x 
erfc(x) the complementary error function of x 
gamma(x) the Gamma functions of x 

Merchant ID: 49129 
Trans Type: Auth 

Amount: _  73.86 

Tip:      ___________ 

Total: ___________ 



 56

lgamma(x) the natural logarithm of |gamma(x)| 

Other Functions 
fabs(x) |x| 
factorial(n) n! 
x % y x mod y; apply for integers 
fmod(x, y) x mod y; apply for floats 
frexp(x) returns the mantissa and exponent of x as (m,e) 
  such x=m*2**e 
  frexp(1)=(0.5,1)  
ldexp(x) for above does the opposite 
  ldexp(0.5, 1)=1 
modf(x) returns the fractional and integer part of x 
  modf(pi)=(0.14159265358979312, 3.0) 
trunc(x) the real value of x truncated to integer 
  trunc(pi)=3 
  trunc(3.91)=3 

 2.1.5.  Rounding and Precision 

So far we have not mentioned anything about rounding of  float 
numbers nor their precision. As we know, the RAM memory and 
a domination of  64-bit (sometimes 128-bit) number representation 
extends our abilities to use larger and larger numbers. However, 
the upper boundary still exists. Python may display a number 
which is not quite right, i.e. it differs substantially from our logical 
expectation. Therefore, it is advised to understand the how, the 
what, the why, and the when. 

As an example, let’s repeat a historical test of  the Intel Pentium 
FPU (Floating Point Unit; coprocessor) reported in 1994 by Dr. 
Thomas Nicely in his email: 

http://www.trnicely.net/pentbug/bugmail1.html 

where a simple derivation of  the following expression: 

 (824633702441.0)*(1/824633702441.0) 

was supposed to return 1 but returned: 

 0.999999996274709702 

to the surprise of  a new Pentium processor user. At that time that 
event became huge and embarrassing. Today, twenty one years 
later, employing Python 2.7.10 run in Mac OS X 10.10 of  my 
MacBook Pro with the 2.6 GHz Intel Core i7 processor, I get: 

 >>> x = (824633702441.0)*(1/824633702441.0) 
 >>> x 
 0.9999999999999999 

which is 1, right? Well, 

 >>> print(x) 
 1.0 



 57

et voila! The use of  the print command facilitates inspecting 
numbers and their precision. We will understand its full syntax and 
possibilities within the next sections. For now, let’s see what we can 
obtain: 

 >>> from math import pi, tan 
 >>> x = tan(2/pi); x 
 0.7393029504866041 
 print("%1.1f" % x ) 
 0.7 
 print("%1.2f" % x ) 
 0.74 
 print("%1.6f" % x ) 
 0.739303 

If  we specify the printing format as %1.2f then x, which is a float, 
will be displayed with 2-digit precision. Moreover, 0.739 has been 
rounded by the print command to 0.74. If  this is a desired result, 
we are fine with that. However, what if  we would like to round x 
in a more controlled manner? 

It is tempting to begin your adventure with rounding of  floats with 
the use of  the round command. Hold on and check this out: 

 >>> round(0.438)          # returns a float in Python 2.7.10 
 0                         # of <class 'int'> 
 >>> round(0.4999999) 
 0 
 >>> round(0.5) 
 0                         # 1.0 in Python 2.7.10 
 >>> round(0.501) 
 1 

It seems that 0.4999999 is approximately equal to 0.5 but somehow 
Python’s round function has a different opinion about that. The 
same for 0.5 itself. 

The math module equips us with two dedicated functions to handle 
rounding in the intended direction. Analyse the following: 

 >>> from math import floor, ceil 
 >>> from math import e, trunc 

 >>> floor(0.499999)      # returns an integer in Python 3.5 
 0 
 >>> floor(0.5) 
 0 
 >>> floor(1.98) 
 1 

 >>> ceil(0.0021)         # returns an integer too 
 1 
 >>> ceil(3.4999999999) 
 4 
 >>> ceil(9.50000) 
 10 
  
In other words, what goes down must go down, what goes up 
must go up. Keep these difference in mind. 

floor

ceil

round



 58

A superbly handy function in math arsenal is trunc which provides a 
stiff  separation of  the real number from its fractional part: 
 
 >>> e 
 2.718281828459045 
 >>> y = trunc(e) 
 2 
 >>> type(y) 
 <class 'int'> 
 >>> y == floor(e) 
 True 

where the last logical test is positive despite the type of  y is an 
integer and floor(e) is a float. It is always better to use trunc than 
floor function if  you want to get the real value of  your number. In 
certain cases (big numbers) rounding to the floor may fail. That is 
why the trunc function is a perfect choice. 

 2.1.6.  Precise Maths with decimal Module 

Python’s Standard Library goes one step forward. It grants us 
access to its another little pearl known as decimal module. Now the 
game is all about precision of  calculations. When we use 
floating-point mathematical operations usually we do not think 
how computer represents the floats in its memory. The truth is a 
bit surprising when you discover that: 

 >>> r = 0.001 
 >>> print("r= %1.30f" % r)  # display 30 decimal places 
 r= 0.001000000000000000020816681712 
  
instead of  

 r= 0.001000000000000000000000000000 
  
It is just the way it is: the floats are represented in a binary format 
that involves a finite number of  bits of  their representation. When 
used in calculations, the floats provide us with a formal assurance 
up to 17 decimal places. However, the rest is not ignored and in 
case of  heavy computations those false decimal digits may 
propagate. In order to “see” it—run the following code: 

 r = 0.001 
 t = 0.002 
 print("r   = %1.30f" % r) 
 print("t   = %1.30f" % t) 
 print("r+t = %1.30f" % (r+t)) 
  
You should get: 

 r   = 0.001000000000000000020816681712 
 t   = 0.002000000000000000041633363423 
 r+t = 0.003000000000000000062450045135 
  
It is now clear how those “happy endings” accumulate an error. 
The question you may ask is: “Should I be worried about that?” 

trunc()

Code 2.6

In many cases the function of  
trunc can be replaced with the 
operation of  the floor division: 

from math import trunc 
from random import random as r 
x = r()*100  # float 
print(x//1 == trunc(x)) 

True 

thought the former returns a float 
and trunc an integer if  x is float. 

You may obtain a pure fractional 
part of  the float as follows, e.g: 

>>> from math import pi 
>>> pi 
3.141592653589793 
>>> pi - pi//1 
0.14159265358979312



 59

Well, I think that in some instances you ought to be (at least) aware 
of  what is going on and why. 

Let’s try to take the same variable of  r = 0.001 and inside of  a 
simple loop of  for add it 10,000,000 times. The expected value, E(s), 
is 10000. Really? Have a look: 

 r = 0.001 

 s = 0.0 
 for i in range(1, 10000001): 
        s = s + r 

 print("r    = %40.30f" % r) 
 print("E(s) =     10000.000000000000000000000000000000") 
 print("s    = %40.30f" % s) 
  
The code returns: 

 r    =         0.001000000000000000020816681712 
 E(s) =     10000.000000000000000000000000000000 
 s    =     10000.000001578517185407690703868866 
  
From an initial false precision detected at the 20th decimal place in 
r we end up with an error in our sum at the 6th decimal place! This 
is an excellent example of  how much trust you can put in floats—
not only in Python but in any computer language today. 

Is there any cure for that? Of  course! This is exactly where 
Python’s decimal module earns its place in a spotlight. 

Briefly speaking, the module has been created to handle imprecise 
floating-point accuracy. It is very complex in its structure and 
settings (see its full doc at https://docs.python.org/3.5/library/
decimal.html). However, for our needs of  precise computations we 
are going to use only two functions out of  its full package, namely, 
Decimal and getcontext.  

Here is a modification of  the previous code: 
  
 from decimal import Decimal as d 
 from decimal import getcontext as df 

 r = 0.001        # float! 
 rfloat = r 

 df().prec = 3    # set decimal precision for ‘r’ 
 r = d(str(r)) 

 df().prec = 30   # set decimal precision for ‘s’ 
 s = d(0.0) 
 for i in range(1, 10000001): 
        s = s + r 

 print("r    = %40.30f" % rfloat) 
 print("E(s) =     10000.000000000000000000000000000000") 
 print("s    = %40.30f" % s) 
 print("s'   = %40.30f" % float(s)) 
  
By now the first two lines should be well understood. We import 
both functions but shorten their names to d and df, respectively. 

Code 2.7

getcontext 
Decimal

for .. in 
Another classical loop across 
various computer languages. 
With its help we control the 
exact number of  times the 
underlying indented block of  
commands will be executed. 
Here we make use of  the 
range function to specify that 
i will run from 1 to 10000000 
or/i.e. the loop will be 
repeated ten million times.

Code 2.8



 60

You can skip this step if  you would like to enforce the use of  the 
full names or control the readability of  your Python programs. 
Next, we set a fixed precision for r to be considered from now on 
up to 3 decimal places only. By writing r = d(0.001) we create in 
Python an object to be viewed as a Decimal class.  

From a side note you can understand that Decimal function acting 
upon specific float, e.g. r = d(0.001), carries float’s “false” 
representation of  0.001. This is exactly what we want to avoid! 
decimal module solves this problem if  we either turn 0.001 into a 
string with a help of  str command or (in case of  known fractional 
representation of  0.001 which is easy to guess, right?) we 
implement a “Decimal” division. 

In the code above, we turn float of  r = 0.001 into Decimal r = 
0.001. specifying the precision of  r to 3 decimal places. When it 
comes to derivation of  

we do not limit ourselves to the same precision. With decimal 
module we can obtain results precisely accurate up to the desired 
precision. We select 30 decimal places for s. The party begins: 

 r    =          0.001000000000000000020816681712 
 E(s) =      10000.000000000000000000000000000000 
 s    =      10000.000000000000000000000000000000   # Decimal 
 s'   =      10000.000000000000000000000000000000   # float! 
  
Excellent! Please note that s' is a Decimal number converted to 
float. This sort of  result we were expecting from the beginning. 
Eventually we’ve got it! Well, yes and no. Do you know why?  

I chose the formatting of  the output in the print function the same 
way that magicians make you believe that the impossible is in fact
— possible. The use of  the decimal module vouchsafes the 
precision of  computation. However, a simple conversion from 
Decimal to float number does not do the magic for us. See a side 
note on number conversion. 

You can convince yourself  that by running code 2.8 you will notice 
a much longer execution time. Therefore, the application of   
decimal makes sense if  you really want to assure the exact precision 
for all floating-point computations. In finance and accounting it 
may be of  a paramount importance when it comes to reporting. 
Consider the following challenge. 

Given US$10,000.00 in a savings account in a bank find a 
compound return if  the bank pays you 3.65% of  interest per 
annum, you leave your deposit for 10 years, and compounding 
takes place daily. 

>>> r = d(0.001) 
>>> type(d) 
<class 'decimal.Decimal'> 
>>> r 
Decimal('0.00100000000000000002
0816681711721685132943093776702
880859375') 

>>> r = d(1) / d(1000) 
>>> r 
Decimal('0.001') 

>>> r = d(str(0.001)) 
>>> r 
Decimal('0.001')

s =
10000000X

i=1

r = r + r + ...+ r

 Decimal-to-Float Conversion 
Please be aware that Decimal 
operations keep the precision while 
computing but a "tricky" conversion 
from a Decimal to float simply does 
not work as you might think. Have a 
look: 

>>> x = 0.007 
>>> print('%.20f' % x) 
0.00700000000000000015 
>>> from decimal import Decimal 
  as d  
>>> from decimal import  
 getcontext as df 
>>> df().prec = 5 
>>> x = d(str(x)); x 
Decimal('0.001') 
>>> x = float(x) 
>>> print('%.20f' % x) 
0.00700000000000000015 

Code 2.9



 61

The exact formula for solving this problem is: 

or 

if  we hold our deposit for m periods (i.e. 3650 days) between dates 
(t-m). The Python code that finds requested compound return 
utilising both methods is presented below. First, we use floats to 
solve the puzzles. Next, we re-write everything with the application 
of  the decimal module and compare precision of  all results. 

 from decimal import getcontext as df 
 from decimal import Decimal as d 

 pa = 0.0365     # interest rate p.a. 
 m = 3650        # number of payments (365 days times 10 years) 
 Ri = pa/(m/10)  # interest rate per period p.a. 

 print("Ri  = %1.30f" % Ri) 

 # formula (floats) 
 compR0 = pow(1.+Ri, m) - 1.0 

 tmp = 1.0 
 for i in range(1, m+1): 
        tmp = tmp*(1.0+Ri) 

 # compound return (floats) 
 compR = tmp - 1.0 

 df().prec = 5 
 dRi = d(pa) / (d(m)/d(10.)) 
 print("dRi = %s\n" % repr(dRi)) 

 # formula (Decimals) 
 df().prec = 30 
 dcompR0 = (d('1.0')+dRi)**d(str(m)) - d('1.0') 
  
 tmp = d('1.0') 
 for i in range(1, m+1): 
        tmp = tmp * (d('1.0')+dRi) 

 # compound return (Decimals) 
 dcompR = tmp - d('1.0') 

 print("(formula)  compR = %1.30f" % compR0) 
 print("(loop)     compR = %1.30f" % compR) 
 print() 
 print("(formula) dcompR = %1.30f" % dcompR0) 
 print("(loop)    dcompR = %1.30f" % dcompR) 
  
Our computations deliver: 

compR = Rt[k] =
m�1Y

j=0

(1 +Rt�j)� 1 =

m�1Y

j=0

✓
1 +

0.0365

365

◆
� 1

compR =

✓
1 +

0.0365

365

◆3650

� 1

repr()



 62

 Ri  = 0.000099999999999999991239646446 
 dRi = Decimal('0.00010000') 

 (formula)  compR = 0.440487720760861511948291990848 
 (loop)     compR = 0.440487720760853074253304839658 

 (formula) dcompR = 0.440487720760919465590177424019 
 (loop)    dcompR = 0.440487720760919465590177424019 
  
Interestingly, the application of  floats loses the precision starting 
at the 14th decimal place and, in addition, reveals a loss of  
coherence between the exact solution (formula) and the one found 
using multiplication. In contrast, the values of  compound returns 
computed with the use of  Decimals are the same regardless of  the 
method we choose and selected/requested decimal precision. In 
other words, decimal module ensures precision of  computations 
as displayed, here, with 30 significant decimal digits. 

We have found that our $10,000 would grow by a bit more than 
44% in 10 years, i.e. up to $14,404.88. The absolute difference 
between floats and Decimals would be $0.00000000058 then. So, 
would you care about those fractions of  cents? Nah… ☺ 

 2.1.7.  Near-Zero Maths 

Taking into account a limited precision of  floats we may encounter 
some problems when calculating standard mathematical function 
like log or exp for very small values. Again, you must become aware 
of  that fact but keep your sanity intact. Python’s math module takes 
care of  tiny details. Therefore, if  you are a perfectionist below 
there are some candies you may love. Let’s analyse the log case 
first: 

 from math import * 

 a = 1.001e-20   # a very small number 

 x = log(a, 10) 
 y = log10(a) 
 print("x     = %1.30f" % x) 
 print("y     = %1.30f" % y) 
 print("|y-x| =   %1.30f = %1.1e" % (fabs(y-x), fabs(y-x))) 
 print() 
  
log10(a) is an equivalent to log(a, base=10) function and has been 
introduced to handle the precision better. Have a look: 

 x     = -19.999565922520677219154094927944 
 y     = -19.999565922520680771867773728445 
 |y-x| =   0.000000000000003552713678800501 = 3.6e-15 
  
The imprecision between both methods is captured at the 15th 
decimal place. The algorithm used in log10 provides higher 
accuracy. 

A very similar case we may observe for a to be very small: 

Code 2.10

log10()



 63

 
 a = 1.0047e-21 

 x = log(a+1) 
 y = log1p(a) 
 print("x = %1.30f = %1.5E" % (x, x)) 
 print("y = %1.30f = %1.5E" % (y, y)) 
 print() 

 a = 1 - exp(y) 
 a2 = expm1(y) 
 print("a  = %1.30f = %1.5E" % (a, a)) 
 print("a' = %1.30f = %1.5E" % (a2, a2)) 
 print() 
  
where expm1(y) is the inverse of  log1p(a). Therefore for the latter 
function we expect (as promised) higher accuracy than for a 
standard use of  log(a+1) and expm1(y) should derive a as initially 
defined, i.e. 1.0047e-21 in the beginning. We check: 

 x = 0.000000000000000000000000000000 = 0.00000E+00 
 y = 0.000000000000000000001004700000 = 1.00470E-21 

 a  = 0.000000000000000000000000000000 = 0.00000E+00 
 a' = 0.000000000000000000001004700000 = 1.00470E-21 
  
Indeed! 

The same idea of  improved accuracy for very small x’s had been 
standing for a complementary error function, erfc(x), used 
heavily in statistics: 

where erf(x) denotes a normal error function. The name of  the 
error function has nothing to do with any errors nor error 
measurements — the same as The October Revolution leading to 
creation of  Soviet Russia took place in November and not in 
October of  1917 according to the Gregorian calendar ☺. Thus, 
 
 x = -3.0006e-16 

 a = 1 - erf(x) 
 b = erfc(x) 
 print("%1.30f" % a) 
 print("%1.30f" % b) 
  
 we find that, 

 1.000000000000000444089209850063 
 1.000000000000000444089209850063 
  
a dedicated function of  erfc(x) does not improve the performance 
somehow. Don’t ask me why. I don’t know. However, you are 
welcome to use it anytime you wish. 

erfc(x) = 1� erf(x) = 1� 2p
⇡

Z
x

0
e

�t

2

dt =
2p
⇡

Z 1

x

e

�t

2

dt

erf(),  erfc()

log1p()

expm1()

Code 2.11



 64

 2.1.8.  fractions and Approximations of Numbers 

If  you are 11 years young and you are studying this book because 
you have some problems with solving fractions at school, I’ve got 
something for you too! Python is able to perform computations 
and display results in a form of  nominator over denominator. 
Hurrah!  

Let’s say, for x = 0.25 = 1/4 we want to calculate the value of  a 
simple expression: 

and display result exactly as a fraction of  11/24. It is possible with 
the use of  fractions module from the Standard Library: 

 from fractions import Fraction as fr 
  
 x = 1./4         # float 
 xf = fr(str(x))  # fractional form 

 yf = xf + 5*xf/6 

 print("x  = %1.5f" % x) 
 print("xf = %s" % xf)     # use string 
 print("yf = %s" % yf)     #    for output 
  
 returning 

 x  = 0.25000 
 xf = 1/4 
 yf = 11/24 
  
The input value of  x for Fraction function needs to be firstly 
converted to a string-type variable. In the 4th line of  2.12 we can 
see how easily then our calculations can be coded. Both xf  and yf 
variables are recognised by Python as <class 'fractions.Fraction'> 
objects and we obtain the conversion of  yf to float-type 
representation simply by writing: 

 y = float(yf) 
 print(y) 
  
 0.458333333333 
  
 Now, how accurate this outcome is? 

 from math import fabs 
 y0 = 11./24 
 print("|y-y0| = %1.30f" % fabs(y-y0)) 
  
 |y-y0| = 0.000000000000000000000000000000 
  
Well, as for rational numbers—so far, so good. How about 
irrational numbers? Can they be approximated by fractions and 
how would such approximations look?  

y = x+ 5 · x
6
=

1

4
+

5

6
· 1
4
=

1

4
+

5

24
=

6 + 5

24
=

11

24

Code 2.12

Fraction()

You can also represent any float 
number without fractions module: 

>>> x = 1.334 
>>> y = x.as_integer_ratio(); y 
(3003900951456121, 2251799813685248) 

>>> x = 0.75 
>>> y = x.as_integer_ratio(); y 
(3, 4) 
>>> type(y) 
<class 'tuple'> 
>>> (nom, den) = y 
>>> nom 
3 
>>> den 
4 
>>> type(nom) 
<class 'int'> 

More on tuples in Section 2.5.1.



 65

Let’s analyse the case of  the square root of  3. Hold on as we are 
increasing the complexity of  coding! This is what will make you a 
better programmer. Arnold Schwarzenegger said: When it burns, it 
grows!  Do you get my analogy? ☺ 

Find the approximation of  the irrational number sqrt(3) by 
fractions changing their dominator values using upper limits. 

 from math import sqrt, fabs 
 from fractions import Fraction as fr 

 x = sqrt(3) 
 xf = fr(str(x)) 

 print("x  = %1.30f" % x) 
 print("xf = %s" % xf) 
 
 tmp = 0 
 for i in range(10, int(1e6)+1, 10): 
        xf_approx = xf.limit_denominator(i) 
        xfloat = float(xf_approx) 
        diff = fabs(x-xfloat) 
 
        # Convert Fraction(nom,den) to Floats 
        xf_string = str(xf_approx)       # covert Fraction to string 
        j = xf_string.find('/')          # find index/location of “/“ 
        nom = float(xf_string[0:j])      # extract nominator; float 
        den = float((xf_string[j+1:]))   # extract denominator; float 

        if(den != tmp): 
            print("   = %15s = %1.15f  (%1.0e)" % (xf_approx,  
                                   xfloat, diff)) 
            tmp = den 
  
First, we define x and express it as fraction (Fraction object) of  xf. 
The default output for that is: 

 x  = 1.732050807568877193176604123437 
 xf = 4330127018922193/2500000000000000 

Such fractional representation (as displayed) seems to have a finite 
precision. The denominator is 2.5e15 therefore accuracy would be 
2.5e-15. 

What comes next in the code is a loop. Here we use the function 
of   limit_denominator(i) out of  fractions module. What it does is it 
puts the upper limit of  i for the denominator. We employ 
range(from,to,step) function (as discussed previously) to select all 
numbers from 10 to 1,000,000 with a step of  10 so 10, 20, etc. A 
new variable of  xf_approx is still of  Fraction-like type but its 
denominator is as close to i as possible. 

We convert such i-th approximation of  x to float-type number and 
compare the absolute difference, diff. Since Fraction object is 
neither not iterable nor callable, we write a manual conversion of  
both nominator and denominator to floats. We call a standard 
Python function of  string.find(token) which by acting upon the 
string of  xf_approx returns the location (index) where the first 
appearance of  the “/“ token is. That allows us to extract and 

.limit_denominator()

.find()

Notice that in Python you cannot 
use range(10,1e6,10) as this 
function accepts input parameters 
defined by integer numbers. That 
is why in 2.13 we are converting 
1e6 with int(1e6) function into 
1000000.

Code 2.13



 66

separate nominator and denominator, respectively, and turn them 
into floats. 

As you can verify, the results may produce the same output for 
several the same values of  i. Therefore, we add one additional 
condition to check where the approximation has been already 
displayed for a given denominator or not. Usually, such shortcuts 
in programming are pretty handy. 

The loop generates the final output:  

   =            12/7 = 1.714285714285714  (2e-02) 
   =           26/15 = 1.733333333333333  (1e-03) 
   =           45/26 = 1.730769230769231  (1e-03) 
   =           71/41 = 1.731707317073171  (3e-04) 
   =           97/56 = 1.732142857142857  (9e-05) 
   =          168/97 = 1.731958762886598  (9e-05) 
   =         265/153 = 1.732026143790850  (2e-05) 
   =         362/209 = 1.732057416267943  (7e-06) 
   =         627/362 = 1.732044198895028  (7e-06) 
   =         989/571 = 1.732049036777583  (2e-06) 
   =        1351/780 = 1.732051282051282  (5e-07) 
   =       2340/1351 = 1.732050333086603  (5e-07) 
   =       3691/2131 = 1.732050680431722  (1e-07) 
   =       5042/2911 = 1.732050841635177  (3e-08) 
   =       8733/5042 = 1.732050773502578  (3e-08) 
   =      13775/7953 = 1.732050798440840  (9e-09) 
   =     18817/10864 = 1.732050810014728  (2e-09) 
   =     32592/18817 = 1.732050805123027  (2e-09) 
   =     51409/29681 = 1.732050806913514  (7e-10) 
   =     70226/40545 = 1.732050807744481  (2e-10) 
   =    121635/70226 = 1.732050807393273  (2e-10) 
   =   191861/110771 = 1.732050807521824  (5e-11) 
   =   262087/151316 = 1.732050807581485  (1e-11) 
   =   453948/262087 = 1.732050807556270  (1e-11) 
   =   716035/413403 = 1.732050807565499  (3e-12) 
   =   978122/564719 = 1.732050807569782  (9e-13) 
   =  1694157/978122 = 1.732050807567972  (9e-13) 
  
where in brackets we display the precision of  our approximations 
for sqrt(3). This is the first example on that topic. We will come 
back to the approximations of  mathematical functions later on. 

 2.1.9.  Formatting Numbers for Output 

Up till now, you should familiarise yourself  with the syntax of  the 
print function which we have been using intensively. We also have 
seen that numbers can be displayed making use of  the format 
function. Understanding the calling of  both functions and their 
usability will allow you to adjust your output according to your 
intentions. 

Let’s begin with the print function. Its basic use is: 

 >>> i = 7 
 >>> f = 7.00001 
 >>> b = (i == f)  # boolean-type based on comparison 
 >>> l = 2**128 
 >>>> print(i) 
 7 
 >>> print(i, f, b, l) 
 7 7.00001 False 340282366920938463463374607431768211456 

>>> from fractions import \ 
... Fraction as fr 
>>> x = 0.25 
>>> y = fr(x)  # or y=fr(str(x)) 
>>> y 
Fraction(1,4) 
>>> type(y) 
<class 'fractions.Fraction'> 
>>> s = str(y) # convert to string 
>>> s 
'1/4' 
>>> j = s.find('/'); j 
1 

Just for now keep in mind that you can 
have an access to any letter or any slice 
of  the string type variable by making a 
reference via indexing, for example: 

>>> z = "sex4free" 
>>> z[0:3] 
'sex' 
>>> z[-2:] 
'ee' 
>>> z[0:3]+”y”+z[-1:]*2 
'sexyee' 

We will talk more on operations on 
strings in Volume II.

print



 67

  
where the last result has been displayed in the form of  a tuple-type 
variable (more on tuples in Section 2.5.1). 

Usually we aim at a proper formatting of  numbers when using 
print. The history dates back to the origins of  printf command in 
C language and its syntax widely adopted by many new languages 
since then. In certain sense it established a benchmark. In today’s 
Python its final form does not differ a lot from those 
implementations which you could meet in Matlab, C++, etc. The 
starting point is displaying a string in its closed form confined by 
single or double quotes: 

 >>> print("x= ")           # alternatively print('x= ') 
 x= 
  
By default, when the string has been redirected to the output (e.g. 
screen) the cursor jumps to the next line below. You can use a 
special character of  \n as many times in as many lines as you want 
to skip, for example: 

 >>> print("x= \n3") 
 x= 
 3 
 >>> print("\nx=\n\n\n4") 
  
 x= 

 4 
  

On the other hand, keeping the cursor in the same line requires 
additional parameter: 

 >>> print("pi = 3.141592", end=" "); print("roughly") 
 pi = 3.141592 roughly 

what has been differently solved in Python 2.7.10, i.e. by placing a 
comma character right after print or variable: 

 >>> print("pi = 3.141592"),; print("roughly") 
 pi = 3.141592 roughly 
   

where the semi-colon separates two commands in the same line. 
The same example is much better presented when you run it as a 
part of  your Python code, e.g. 
  
 print("pi = 3.141593", end=" ") 
 print("roughly") 
 e = 2.71828 
 print("\tand", end=" ") 
 print(e, end=" ") 
 print("is more or less equal to exp(1)") 

  
 pi = 3.141593 roughly 
     and 2.71828 is more or less equal to exp(1) 

A special character of  \t acts as a tab, i.e. moves the cursor 
position by fixed four (4) spaces. 

Though it is still possible to 
use a notation of  print var 
in Python 2.7.x, make a habit 
to use print(var) instead (a 
new standard in Python 3.x).



 68

The general formatting for print function can be summarised as 
presented in the following table: 

Format Description with examples (a=9, b=4.1, c=4.3e-5) 
%d  integer    
    >>> print("$%d" % a) 
    $9 

%xd  integer right-adjusted in a field of width x 
    >>> print("%10d$" % a) 
             9$ 

%-xd integer left-adjusted in a field of width x 
    >>> print("%-10d$" % a) 
    9         $ 

%0xd integer padded with x leading zeros 
    >>> print("%010d$" % a)  
    0000000009$ 

%f  decimal notation with six decimals 
    >>> print("%f" % a) 
    9.000000 
    >>> print("%f" % b) 
    4.100000 

%xf  decimal notation right-adjusted in a field of width x 
    >>> print("%10f$" % c) 
    0.000043$ 

%-xf decimal notation left-adjusted in a field of width x 
    >>> print("%-10f$" % c) 
    0.000043  $ 

%.yz format z with y decimals 
    >>> print("%.8f$" % c) 
    0.00004300$ 

%x.yz format z with y decimals in a field of width x 
    >>> print("%12.7f$" % c) 
       0.0000430$ 
    >>> print("%12.7g$" % b) 
             4.1$ 

%e, %E compact scientific notation, with e or E in the exponent 
    >>> print("%e" % b) 
    4.100000e+00 
    >>> print("%E" % c) 
    4.300000E-05 
    >>> print("%12.10E" % c) 
    4.3000000000E-05 

%g, %G compact decimal or scientific notation, with e or E 
    >>> d=61.7775e9 
    >>> d 
    61777500000.0 
    >>> print("%g" % d) 
    6.17775e+10 
    >>> print("%14G" % d) 
       6.17775E+10 

%s, %xs string, string in a field of width x 
    >>> s="Python for Quants" 

For displaying boolean results use 
formatting for strings, e.g. 

>>> x = 3; y = 4.1 
>>> test = not(y <= x) 
>>> print("test: %s" % test) 
test: True 

Regardless of  a sign, you can place 
"+" or "-" as a prefix. Analyse the 
following lines: 

>>> x = 25.981 
>>> y = -x 
>>> print("%+10.3f" % x) 
   +25.981 
>>> print("%+10.3f" % y) 
   -25.981



 69

    >>>  print("%20s" % s) 
       Python for Quants 
    >>> print("%s" % s[-6:]) 
    Quants 

%%  the percentage sign 
    >>> print("%d is %.2f%% of 11" % (a, a/11.) ) 
    9 is 0.82% of 11 

  many numbers in one calling 
    >>> print("%d %f %G %.2e" % (a,b,c,d)) 
    9 4.100000 4.3E-05 6.18e+10 

In all examples we use %  sign to inform Python’s print that all 
defined formats of  numbers/strings within precedent string-type 
expression will correspond to specific variables as provided after % 
token. Simple? I believe so. 

A similar but slightly different case of  formatting numbers for 
output we achieve making use of  the format function. Analyse the 
following exemplary cases: 

 >>> c = 4.3e-5 
 >>> format(c, "1.6f") 
 '0.000043'              # the returned value is of a string-type 

 >>> txt = "We find that 8*c = " + format(8*c,"1.6f") 
 >>> print(txt) 
 We find that 8*c = 0.000344 

 >>> format(8*c,">12.6f") 
 '    0.000344'   # right-adjusted 

 >>> format(8*c,"<12.6f") 
 '0.000344    '   # left-adjusted 

 >>> format(8*c,"^11.6f") 
 ' 0.000344  '   # centered 

 >>> format(8*c,">15.2E") 
 '       3.44E-04' 

 >>> format(-8*c,"g") 
 '-0.000344' 

 >>> t = "interest rate" 
 >>> r = 0.046 
 >>> "at " + format(r*100, "1.1f") + "% " + t 
 'at 4.6% interest rate' 
  
where a quite useful option, 

 sav = 21409.657239 
 sav = float(format(sav, ".2f"))   
 print("You have £%s in your account" % format(sav, ",")) 
  
 You have £21,409.66 in your account 
  
delivers format(x,",") function which adds thousands separator and 
returns any float in so-called bank format for numbers. 

  

format

With this method the largest 
number "nicely" formatted is 
99999999999.99, displaying: 

£99,999,999,999.99 

Adding 0.01 makes the output 
to be a bit incorrect: 

£100,000,000,000.0



 70

  



 71

2.2. Complex Numbers with cmath Module 

A set of  complex numbers is introduced where no real number 
satisfying the polynomial equation 

is found. We consider z as a complex number having the form of  

where both a and b are real numbers and i denotes the so-called 
the imaginary unit such i 2 = -1. In this notation, a and b are 
called the real and imaginary parts of  z denoted by Re{z} and 
Im{z}, respectively. Two complex numbers are equal if  their real 
and imaginary parts are equal, respectively. If  the imaginary part of  
the complex number z is zero, then we consider z as a real 
number. If  Re{z}=0 we talk about the pure imaginary number. 
The complex conjugate for any z is defined usually as 

 The Python’s module of  cmath allows you for the fundamental 
operations on complex numbers. In this Section we will see how to 
use them efficiently for solving mathematical problems. 

 2.2.1.  Complex Algebra 

 With no bigger difference, if  compared to the algebra of  real 
numbers, the fundamental operations with complex numbers 
become available in a similar manner. For four basic operations 
(addition, subtraction, multiplication, division) as given for two 
numbers of  

it is easy to prove that: 

In Python we create complex variables in the following way: 

 >>> z = 3+2j; z  # j, instead of i, is used 
 (3+2j) 
 >>> type(z) 
 <class 'complex'> 

1 + x

2 = 0

z = a+ bi

z̄ ⌘ z⇤ = a� bi

z1 = a+ bi

z2 = c+ di

z1 + z2 = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

z1 � z2 = (a+ bi)� (c+ di) = (a� c) + (b� d)i

z1z2 = (a+ bi) + (c+ di) = (ac� bd) + (ad+ bc)i

z1/z2 =

(a+ bi)

(c+ di)
=

ac+ bd

c2 + d2
+

bc� ad

c2 + d2
i

for c 6= 0, d 6= 0

>>> from cmath import e, pi, sqrt 
>>> e**(pi*sqrt(-1)) 
(-1+1.2246467991473532e-16j) 

Indeed!



 72

  
where a pure imaginary number would look like: 

 >>> z0 = 1j; z0  # z0 = j will raise an error! 
 1j  
 
For z = 5-2.17j we can find its Re{z} and Im{z} parts: 

 >>> z.real 
 5.000 
 >>> z.imag 
 -2.17 
  
both returned as floats. 

Solve the following cases and check their correctness in Python. 

(a) 

 We derive: 

 >>> (3+2j)+(-7-1j) 
 (-4+1j) 
 
  

(b) 

 >>> (3-2j)/(-1+1j) 
 (-2.5-0.5j) 

  

(c) 

 >>> (3*1j**30-1j**19)/(-1+2j) 
 (1+1j) 
  

(d) For                                derive: 

  

(3 + 2i) + (�7� i) = 3� 7 + 2i� i = �4 + i

Code 2.14

3� 2i

�1 + i
=

3� 2i

�1 + i
· �1� i

�1� i
=

�3� 3i+ 2i+ 2i2

1� i2
= �5

2
� 1

2
i

3i30 � i19

�1 + 2i
=

3(i2)15� (i2)9i

�1 + 2i
=

3(�1)15 � (�1)9i

�1 + 2i

=
�3 + i

�1 + 2i
· �1� 2i

�1� 2i
=

5 + 5i

5
= 1 + i

z = �1

2
+

p
3

2
i

(z⇤)4 =

 
�1

2
�

p
3

2
i

!4

=

2

4
 
�1

2
�

p
3

2
i

!2
3

5
2

=

"
1

4
+

p
3

2
i+

3

4
i2
#2

=

 
�1

2
+

p
3

2
i

!2

=
1

4
�

p
3

2
i+

3

4
i2 = �1

2
�

p
3

2
i

.real 
  

.imag



 73

At this point, make sure you group the float number (Im{z}) in 
brackets, then multiply it by i. Otherwise, you may arrive at a 
different destination! 

 >>> from math import sqrt 
 >>> z = -0.5+(sqrt(3)/2)*1j  # not: -0.5+sqrt(3)/2j, etc. 
 >>> z 
 (-0.5+0.8660254037844386j) 

 >>> z.conjugate()**4 
 (-0.5-0.8660254037844384j) 

 2.2.2.  Polar Form of z and De Moivre’s Theorem 

A complex number, z=x+y*1j, can be represented graphically in the 
plane with two axis: real and imaginary. That allows us to express it 
in polar form, namely: 

where 

the modulus (absolute value) of  z is 

and the argument of  z is often denoted as: 

For any two complex numbers one can show that: 

what in case of  multiplication of  z n-times 

leads to so-called De Moivre’s theorem expressed as: 

Now, if  we assume the infinite series expansion of: 

we arrive at: 

.conjugate()

x = r cos ✓, y = r sin ✓

modz ⌘ |z| = r =

p
x

2
+ y

2
= |x+ iy|

✓ = Arg z

z = x+ iy = r(cos ✓ + i sin ✓)

z1z2 = r1r2[cos (✓1 + ✓2) + i sin (✓1 + ✓2)]

z1/z2 = r1/r2[cos (✓1 � ✓2) + i sin (✓1 � ✓2)]

z1z1 · · · z1 = [r(cos ✓ + i sin ✓)]n

zn = rn(cosn✓ + i sinn✓)

ei✓ = cos ✓ + i sin ✓

e

x

= 1 + x+ (x

2
/2!) + (x

3
/3!) + ... then for x = i✓



 74

what constitutes a well known Euler’s formula. With its help, De 
Moivre’s theorem reduces to (modulus skipped) 

Python’s module of  cmath equips us with special functions that help 
to represent complex numbers both in polar and rectangular 
forms. Let’ have a look at exemplary implementation. 

Express the following number in polar form and ask Python to 
display it using Euler’s formula, additionally. 

First, we find modulus and next Arg{z}. We will also need to 
import the function of  degrees from the math module. To 
accomplish the task a nice custom function would be most 
welcomed, don’t you think? Therefore, 

 

The polar form of  z is 

Now, let’s utilise our current knowledge of  Python programming 
and number formatting for output, and design a lovely function 
returning a string holding the solution as above. 

from cmath import polar, exp 
from math import sqrt, degrees, pi 
 

def zpolar(z): 
    r, theta_rad = polar(z) 

    t = format(z.real, 'g') 
    if(z.imag < 0): 
        t = t + format(z.imag, 'g') + "j" 
    elif(z.imag == 0): 
        pass 
    else: 
        t = t + "+" + format(z.imag, 'g') + "j" 

    Pi = u"\u03C0"  # unicode for symbol of pi; string 

    t2 = t + " = \n\t"+"\t\tr[cos(Arg z)+isin(Arg z)]" + \ 
      " = \n\t\t\t" 
    t2 += format(r, "g") 
    t2 += "[cos("+format(degrees(theta_rad), "g")+"deg)" 
    t2 += "+isin("+format(degrees(theta_rad), "g")+"deg)]" 
    t2 += " =\n\t\t\t" 

(ei✓)n = ein✓ .

Code 2.15

z = 2 + 2
p
3i

r = |2 + 2
p
3i| =

p
4 + 12 = 4

Arg z = sin�1(2
p
3/4) = sin�1(

p
3/2) = 60o = ⇡/3 (rad)

z = r(cosArg z + i sinArg z) = 4(cos 60

o

+ i sin 60o) =

4(cos⇡/3 + i sin⇡/3) = 4ei⇡/3

polar()



 75

    t2 += format(r, "g")+"exp(i"+format(theta_rad, "g") 
    t2 += ") = \n\t\t\t" 
    t2 += format(r, "g") 
    t2 += "exp(i"+format(theta_rad/pi, "g")+Pi+") =" 
    t2 += "\n\t\t\t\t\t\t\t\t\t" 

    ze = r*exp(theta_rad*1j) 

    t2 += format(str(ze), "s") 

    return t2 

    # main program 

    z = 2+(2*sqrt(3))*1j     # provide any complex number 
    print(zpolar(z)) 

Our program returns the following output: 
  
 2+3.4641j =  
      r[cos(Arg z)+isin(Arg z)] =  
      4[cos(60deg)+isin(60deg)] = 
      4exp(i1.0472) =  
      4exp(i0.333333π) = 
     (2+3.46410161514j)  

Thus, we wrote a simple custom function of  zpolar. Its main body 
could be given as an integrated part of  the main program but for 
sake of  elegance, it is more handsome to keep its beauty 
individually preserved. We made use of  the polar function from 
the cmath module. Based on an input parameter to be a complex 
number that function returns modulus and argument of  z in a 
form of  a tuple. By assigning two variables (r and theta_rad) we 
exactly control what is what. The latter holds Arg{z} expressed in 
radians. What follows is a longer series of  formatted text where 
you can analyse a practical application of  the format function 
discussed in the previous Section. I realise it is not the most 
charming way of  programming but it delivers results in the way 
that we asked for. Finally, at the end of  zpolar we engage a 
complex function of  exp() to make sure that the use of  Euler’s 
formula indeed works and returns the same complex number of  z 
where we started our journey from. 

Please also note the order of  both import functions. The first one 
imports all available functions from cmath. By executing the second 
line of  the code we overwrite a complex function of  sqrt, only(!) 
(you can use complex sqrt alternatively too; see a side note).  

 2.2.3.  Complex-valued Functions 

The examples provided within precedent subsections are sufficient 
to give you the right tools to start programming Python solutions 
for mathematical problems involving complex numbers. Complex 
Analysis may require the use of  series expansions, calculations of  
sums, limits, etc. We can achieve this with the application of  loops 
or Python’s list.  

We obtain a complex number 
based on its polar form 
making use of  rect function, 
for example: 

>>> from cmath import * 
>>> z = -5.1+sqrt(2)*1j 
>>> z 
(-5.1+1.4142135623730951j) 
>>> r, arg = polar(z) 
>>> z2 = rect(r,arg) 
>>> z2 
(-5.1+1.414213562373096j) 



 76

For now, let’s note down the remaining functions from the cmath 
library. Their application in quantitative finance is limited as we 
are usually not interested in derivation of  a complex hyperbolic 
tangent in a portfolio optimisation problem. Complex numbers are 
part of  Fourier transform and can be used for option pricing (e.g. 
http://www3.imperial.ac.uk/pls/portallive/docs/1/40346.PDF). 

For the sake of  completion, in cmath, we recognise: 

Constants (float) 

pi π = 3.141592653589793 
e, exp(1) e = 2.718281828459045 

Let z=a+b*1j be a complex number and a, b real numbers, then: 

Powers and Logarithms (complex) 
exp(z) ez 
log(z) the natural logarithm of z (to base e) 
log(z,base) the natural logarithm of z (to base base) 
log10(z) the base-10 logarithm;  
  more accurate than log(z,10) 
sqrt(z) the square root of z 

Trigonometric Functions (complex) 
sin(z) the sine of z 
cos(z) the cosine of z 
tan(z) the tangent of z 
asin(z) the arc sine of z 
acos(z) the arc cosine of z 
atan(z) the arc tangent of z 

Hyperbolic Functions (complex) 
sinh(z) the hyperbolic sine of z 
cosh(z) the hyperbolic cosine of z 
tanh(z) the hyperbolic tangent of z 
asinh(z) the inverse hyperbolic sine of z 
acosh(z) the inverse hyperbolic cosine of z 
atanh(z) the inverse hyperbolic tangent of z 

Other Functions 
isinf(z) True if Re{z} and Im{z} is -inf or +inf 
isnan(z) True if Re{z} and Im{z} is not a number 

phase(z) the phase of z to be in [-π; π]; 
       an equivalent of math.atan2(z.imag, z.real) 

An operation of  raising a complex number to the power of  a real 
number we can obtain by using a standard operator of  ** or 
default function of  pow, e.g. 
  
 >>> z 
 >>> z**2 
 (-85.51728900000002-39.8286j) 
 >>> pow(complex(-2.1, 9.483), 5.13) 
 (-112590.56145182674+28581.502958481673j) 

The latter function does not need to be imported from math. The 
same methods can be used to find the result of  raising a complex 
number to the power of  a complex number, for example: 
  
  

complex(a,b) 
Alternatively, you can create a 
new complex variable using 
complex(a,b) function for any 
a+b*1j number.

ii = ei ln i = ei ln(cos
⇡
2 +i sin ⇡

2 ) = ei ln e
i⇡
2 = e�

⇡
2



 77

 >>> from cmath import exp, pi 
 >>> 1j**1j 
 (0.20787957635076193+0j) 
 >>> exp(-pi/2.) 
 (0.20787957635076193+0j)  

Is it the only solution? I’ll leave it with you. 

 References 

Silverman, R. A., 2013, Introductory Complex Analysis, Dover 
 Publications, Inc., New York 

Spiegel M. R., Lipschutz S., Schiller J. J., Spellman D., 2009, 
 Complex Variables, 2nd Ed., Schaum’s Outlines 

 Further Reading 

cmath—Mathematical functions for complex numbers 
 https://docs.python.org/3.5/library/cmath.html 



 78



 79

2.3. Lists and Chain Reactions 

Python introduces four fundamental data structures: lists, tuples, 
sets, and dictionaries. When encountered for the very first time, 
the concept may cause mixed feelings on data aggregation, 
manipulation, and their use. As a beginner in Python you just need 
to take a leap of  faith that such clever design, in fact, pays huge 
dividends in practice. 
  
For many reasons and by many people Python’s lists are 
considered as one of  the language’s greatest assets. You can think 
of  lists as of  data collectors or containers. The fundamental 
structure is a sequence, e.g. of  numbers, strings, or a mix of  
numbers and strings. Data are then organised in a given order and 
each element of  such data sequence has its assigned position, thus 
an index. By making a reference by index we gain an immediate 
access to data or sub-data structures in a given list. 

Not only we can build single lists containing data of  different 
types but also use them concurrently to generate new lists or to 
gather results from (many) numerical calculations in one place. I 
dare to call this process—the chain reactions—a bit of  nuclear power 
of  Python at your private disposal.☺ 

The Python’s lists may seem a bit uncomfortable in the beginning. 
This are two reasons: (a) the indexing starts from zero and not 
from one; (b) slicing the list requires an odd use of  indexing. The 
pain vanishes with practice and those two obstacles become your 
natural instinct.  

Similarly as applied in C++ or Java languages, the indexing starting 
at 0th-position is highly unnatural. We usually do not start the 
counting process of  fruits in a box from zero, right? The only 
example that could justify counting something from zero is: money 
in your wallet. First, you have nothing: 
  
 >>> wallet = []  # an empty list in Python; square brackets 
 >>> wallet 
 [] 
 >>> type(wallet) 
 <class 'list'> 

or 
  
 >>> wallet = [None]; wallet 
 [None] 

where None is of  <class 'NoneType'>. Next, you earn $1.50 by selling, 
say, an apple to your first customer and you jot this transaction 
down (add it to your Python’s list) for the record: 
  
 >>> wallet = [None, 1.50] 
 >>> wallet[0]    # there is no physical value assigned 
 >>> wallet[1]             # index=1 :: 2nd position in the list 
 1.5 



 80

If  you continue your merchandising experience you may end up at 
the end of  the day with a track record of  your income, e.g.: wallet 
= [None, 1.50, 4.50, 3.00, 9.00, 1.50, 15.00, 10.50, 6.00]. 

Awesome! So, how many apples have you sold in each transaction 
and in total? What is your gross income? You can find it very 
easily. Analyse the following program: 

Trivial mathematics with Python’s lists. 
  
 wallet = [None, 1.50, 4.50, 3.00, 9.00, 1.50, 15.00, 10.50, 6.00] 

 income = 0;  
 quantity = 0 
 apples = [] 
 for dollars in wallet: 
    if(isinstance(dollars, float)):  # check: is it a float or not? 
        q = dollars/1.50   # a quantity per transaction  
     quantity + =q   # a sum over apples sold 
        income += dollars 
       apples.append(int(q))  # create a new list! 

 print("%g apples sold for $1.50 each\ngross income: $%1.2f" 
       % (quantity,income)) 
 print("quantity of apples sold per transaction:\n  %s" % apples) 
  
what generates the following output: 

 34 apples sold for $1.50 each 
 gross income: $51.00 
 quantity of apples sold per transaction:  
   [1, 3, 2, 6, 1, 10, 7, 4]  

Given a list of  wallet we employ a for-in loop to perform the 
required calculations. What the loop does is it iterates the list—
element by element. In Python we have freedom of  naming a 
variable which refers to an element of  the list. Therefore, in our 
case, the variable of  dollars refers to the list’s value None (in its first 
iteration), next to 1.50, and so on. You can understand it better by 
printing bucks in your wallet as follows: 

 for bucks in wallet: 
        print(bucks, end=" ") 

 None 1.5 4.5 3.0 9.0 1.5 15.0 10.5 6.0  

All values of  our list are of  the float type except the first one. If  
we wish to perform a simple calculation of  gross income or to 
find an individual number of  items sold (and save them in a 
separate list; a list of  apples sold), we need to be sure we deal with 
the list’s elements of  the float type only. In Code 2.16 we make use 
of  isinstance function again. We have already seen it in action in 
Code 2.2. If  the boolean value of  isinstance(dollars,float) is  True 
then we proceed with statistics. 

You can create a new list by hand anytime. However, as in the case 
of  apples in our program, we add only one value (here: a float 
object) coming from a new transaction by the .append(obj) function 
that changes the list in-place, i.e. it modifies the old list directly, e.g. 

You can find a number of  
transactions (number of  list’s 
elements) with a help of  len 
function: 

len(apples) 

or 

len(wallet)-1

.append()

Code 2.16



 81

 >>> a = []  # create/initiate an empty list 
 >>> x = 9 
 >>> a.append(x); a 
 [9] 
 >>> a.append(x*2); a 
 [9, 18]  

The function of  .append belongs to a group of  operations referred 
to in Python as list methods. We will discuss them all very soon. 

 2.3.1.  Indexing 

The excitement related to Python’s lists is enormous if  you are a 
savvy data analyst. With progress of  your studies you will embrace 
their usefulness. They can be utilised as a raw input for NumPy 
functions (Chapter 3) or applied anytime you need to organise 
your data without applying the third-party Python modules. 

However, first, we need to make you fluent in the basics. 
Therefore, let’s have a look at indexing — the way that data living 
in the lists are referred to. We’ve already spoken about it. The first 
element in a list has 0th index, 

 >>> a = [3, 4, 9, 2, -3, 9, -14, 1, 0, 20] 

 >>> a[0] 
 3 
 >>> a[1] 
 4 
 >>> a[2] 
 9 

and the last one is indexed at (len(list)-1), i.e. 

 >>> n = len(a)  # number of elements in a list 
 >>> n 
 10 
 >>> a[n-1] 
 20 
 >>> a[n] 
 Traceback (most recent call last): 
       File "<stdin>", line 1, in <module> 
 IndexError: list index out of range 

Here, the IndexError is raised when your (running) index-variable 
exceeds the accessible set of  list’s elements. Again, pay attention 
that although the list of  a is 10-element long, just by making a 
reference a[10] you commit a faux pas. ☺ 

It is also handy to denote that the last element of  a list can be 
accessed by: 

 >>> a[-1] 
 20 

and, looking from the end towards the beginning of  a list: 

 >>> a[-2] 
 0 
 >>> a[-3] 
 1 



 82

 >>> a[-n] 
 3 

That is exactly what I meant telling you about the odd use of  
indexing. However, if  now you memorise all those rules now 
nothing else will be difficult in Python for you any more. All right, 
let’s move on. 

 2.3.2.  Constructing the Range 

A natural consequence of  list indexing is a construction of  a range 
of  numbers or list’s elements. We achieve that with a help of  two 
Python’s functions: range and xrange. Let’s consider printing of  a 
list’s members first: 

 a = [3, 4, 9, 2, -3, 9, -14, 1, 0, 20]  
 for i in range(len(a)):   # or xrange(len(a)) in Py 2.7+ only 
        print(i,a[i]) 

 (0, 3) 
 (1, 4) 
 (2, 9) 
 (3, 2) 
 (4, -3) 
 (5, 9) 
 (6, -14) 
 (7, 1) 
 (8, 0) 
 (9, 20) 

This code prints all elements indexed, in fact, from 0 to 9, as we 
have discussed in the previous section. 

xrange(len(a)) and xrange(0, len(a)) have the same effect similarly 
to range(len(a)) and range(0, len(a)). So, what’s the difference? 
Well, 

 >>> xr = xrange(0,10); xr  # only in Python 2.7.10 
 xrange(10) 
 >>> type(xr) 
 <type 'xrange'> 

 >>> r = range(0, 10); r 
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 >>> type(r) 
 <class 'range'> 
 

where the latter returns a list and the former is an internal Python’s 
iterator. Tip: make a habit to use xrange in Python 2.7.x and range 
in 3.4.x (see the side note). Both functions have been optimised for 
speed. 

How about skipping some elements while printing (or accessing) a 
list? It is sufficient if  you remember that in order to obtain even 
elements, 2nd, 4th, 6th, … from the list you use, e.g. 

 >>> range(1, 10, 2) # an equivalent to range(1, 11, 2) 
 [1, 3, 5, 7, 9] 

i.e. 

In Python 3.4+ xrange has been 
removed and now range behaves 
in the same way as xrange used to 
in Python 2.7.x, i.e: 

$ python3 
Python 3.5.0b4 (v3.5.0b4:c0d641054635, 
 Jul 25 2015, 16:26:13)  
[GCC 4.2.1] on darwin 
Type "help", "copyright", "credits" or 
 "license" for more information. 

>>> xrange(10) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
NameError: name 'xrange' is not defined 

>>> r = range(10) 
>>> type(r) 
<class 'range'> 

range 
xrange

Italic style has been used to display 
the results. Run in Python 2.7.10 to see 
the list’s elements as given or use list 
function in Python 3.5; see below: 

>>> x = range(1, 11) 
>>> x 
range(1, 11)  # Python 3.5 
>>> list(x) 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



 83

 a = [3, 4, 9, 2, -3, 9, -14, 1, 0, 20] 
 for i in range(1, len(a), 2): 
     print(a[i], end=" ") 

 4 2 9 1 20 

whereas odd elements: 1st, 3rd, 5th, etc. we get: 

 >>> range(0, 10, 2)  # not(!) the same as range(0, 11, 2) 
 [0, 2, 4, 6, 8] 
 

for instance: 

 a = [3, 4, 9, 2, -3, 9, -14, 1, 0, 20] 
 for i in range(0, len(a), 2): 
     print(a[i], end=" ") 

 3 9 -3 -14 0 

where the latter example is an equivalent to writing a code: 

 for i in range(len(a)): 
     if(i % 2 == 0): 
         print(a[i], end=" ") 

 3 9 -3 -14 0 

i.e., we check if  the index modulo 2 is an even number then print 
odd elements of  the list. But, this is much more confusing. 

The general rules for the use of  range and xrange functions are: 

 range(n) 0, 1, …, n-1 
 range(start,stop) start, …, stop-1 
 range(start,stop,step) start, start+step, start+2*step, …, stop-1 

 2.3.3.  Reversed Order 

You can reverse the order with a reversed function: 

 a = [3, 4, 9, 2, -3, 9, -14, 1, 0, 20] 
 for i in reversed(range(10)): 
     print(a[i], end=" ") 

 20 0 1 -14 9 -3 2 9 4 3 

but keep in mind the most important difference in the application 
of  reversed and .reverse() functions, namely: 

 >>> reversed(range(10)) 
 <listreverseiterator object at 0x1005e5850>  
  
 >>> x = range(10); x  # works in Python 2.7.10 and 3.5 
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 >>> x.reverse()  # only in Python 2.7.10 
 >>> x 
 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 

The function of  .reverse() changes the list in-place as you can see, 
however it only works in Python 2.7.10. To avoid the modification 

Also notice that: 

>>> x = range(10) 
>>> x 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
>>> x[::2] 
[0, 2, 4, 6, 8] 
>>> range(0, 10, 2) == x[::2] 
True

>>> range(0, 10, 2) 
[0, 2, 4, 6, 8] 
>>> range(0, 11, 2) 
[0, 2, 4, 6, 8, 10]



 84

of  x and still to be able to generate a new list with reversed order 
of  its elements, use: 

 >>> x = range(10) 
 >>> x[::-1] 
 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 
 >>> x 
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

Saying that, every second element as counted from the end of  the 
list (including, unfortunately, the last one) is: 

 >>> x = range(1, 11); x 
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 >>> x[::-2] 
 [10, 8, 6, 4, 2] 

and 

 >>> x[::-3] 
 [10, 7, 4, 1] 

In fact, we can get exactly every second element as counted from 
the end by typing rather bizarre constructions of: 

 >>> x = range(1, 11); x 
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

 >>> x[7::-2]  # remember: x[7] equals 8, not 7! 
 [8, 6, 4, 2] 

 >>> x[::-2][1::] # an equivalent to x[::-2][1:] 
 [8, 6, 4, 2] 

By now your mind should be getting the rhythm of  how does 
indexing works. Study it over and over again and one day, maybe it 
will be tomorrow, you will be fluent in Python indexing.  

The devil is never as bad as they paint it. For example, the very last 
command makes a lot of  sense: first, we generate a list by x[::-2] 
returning [10, 8, 6, 4, 2] and next we directly apply indexing 
(more precisely: slicing) starting at 1st index position (not 0th). 

A reversed order has another cool application: a countdown. We 
can use range function to display a number of  "seconds" to the 
closure of  a trading session on Wall Street: 
  
 for seconds in range(-10, 1): 
     if(seconds < 0): print(-seconds, end=" ") 
     else: print("Session closed!") 

 10 9 8 7 6 5 4 3 2 1 Session closed! 

In this case, the same rules apply: 1 is not a member of  the list 
generated by range(-10, 1) with 0 being the last one. 

  



 85

 2.3.4.  Have a Slice of List 

Having said that, grasping the concept of  slicing the list should 
take you a fraction of  a second. Let’s summarise what we already 
know on that subject just within a few lines of  code that say 
absolute everything: 

 >>> x = range(11,21) 
 >>> x 
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

 >>> x[0:0]  # 1st element without the 1st element 
 [] 

 >>> x[0:1]  # 1st element;  equivalent to x[0] 
 [11] 

 >>> x[0:2]   
 [11, 12] 

 >>> x[5:7]   
 [16, 17, 18] 

From 6th list’s element till the end of  the list: 

 >>> x[5:] 
 >>> x[5::]   
 [16, 17, 18, 19, 20] 

Over all elements of  the list—so-called show off —due to its 
complete impracticality but possibility to be executed in Python 
without any errors: 

 >>> x 
 >>> x[:] 
 >>> x[::]   
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

With some steps, from the beginning and from the end: 

 >>> x[5::2]     # x[5:2] will not work at all; an empty list 
 [16, 18, 20] 
 >>> x[5::3] 
 [16, 19] 
 >>> x[5::4] 
 [16, 20] 
 >>> x[4::5] 
 [15, 20] 

 >>> x[::-1] 
 [20, 19, 18, 17, 16, 15, 14, 13, 12, 11] 
 >>> x[::-2] 
 [20, 18, 16, 14, 12] 
 >>> x[5::-2] 
 [16, 14, 12] 
 >>> x[5::-1]      # everything from x[i] down to x[0] 
 [16, 15, 14, 13, 12, 11] 
 >>> x[5::-5]      # works because of 5th and 0th index 
 [16, 11] 

Playing with slicing can bring a lot of  joy and confusion, all in one. 
Try to figure out what is going on in the following mind puzzle. 
Run it in Python 2.7.10: 

 x = range(11, 21) 



 86

 print("x\t= %s" % x) 
 for i in range(1, 6): 
     print("x[%d:%d] = %s" % (5, -i, x[5:-i])) 

 x = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 
 x[5:-1] = [16, 17, 18, 19] 
 x[5:-2] = [16, 17, 18] 
 x[5:-3] = [16, 17] 
 x[5:-4] = [16] 
 x[5:-5] = [] 
  
Got it? It’s simple. Start always at 6th position in the list but finish 
at i-th position before the last list’s element. Compare x[5:-2] and 
x[5::-2]. Close in notation but completely different in result! 

 2.3.5.  Nesting and Messing with List’s Elements 

Do you still remember a definition of  the Python’s list? It is a good 
quality "container". You can put other lists in it, e.g. of  your 
favourite stock tickers, current prices, or other data in a form of  
Python’s strings, tuples, sets, or even dictionaries. Therefore, a list 
may contain a mixture of  numbers and strings: 

 msg = ["Risk", "is", 4, "brave", "people!"] # a message 
 for word in msg: 
     if(word == 4): print("for", end=" ") 
     else: print(word, end=" ")  

 Risk is for brave people! 
  
Here we print a sentence built from string-type objects in list msg 
and if  a number 4 is found, we substitute it with a word "for". 

A simple manipulation may go beyond a single list! What follows is 
a more complicated version of  the abovementioned code. Let’s 
analyse step by step this very first chain reaction: 

 num = [[4, "for"], [2, "to"]]        # numbers in slang 
 sc = ["!", "#", "@", "^", ".", ";", "+"]  # special characters 
 msg = ["Come", 2, "me," ,"baby", "."]     # the message 

 for elem in msg: 
        if(isinstance(elem, int)): 
            # try to find 'elem' in 'num' 
            is_in_num = [(elem in num[i]) for i in range(len(num))] 
            if(sum(is_in_num) > 0): 
                ind = is_in_num.index(True) 
                print(num[ind][1], end=" ") 
        else: 
            if(elem in sc): 
                print(elem*3, end=" ") 
            else: 
                print(elem, end=" ")  

 Come to me, baby ... 
  
The main loop for..in iterates over all elements in the list of  msg. 
First we check with already a well-known to us function of  
isinstance whether a given element is of  an integer type or not? If  
so, we try to locate its value (if  present) in the list of  num which 
stores some numbers and their slang-spoken equivalents. The list 

in 
Python also allows you to check 
whether a given element (object) 
is a member of  a list or not. It is 
so-called a membership check 
that returns a boolean value as a 
result, e.g.: 

>>> a=[-4,"nice",7,"profit"] 
>>> not "nice" in x 
False 
>>> "nice" and "profit" in x 
True 
>>> "nice" and "ass" in x 
False 
>>> ("lucky" and 7) not in x 
True

Code 2.17



 87

of  num is our first example of  nesting objects (here: two sub-
lists) in a list, such that indexing: 

 >>> num[1]  
 [2, "to"] 

can be used anytime. In this point you can convince yourself  that a 
membership test of  the following form does not work: 

 >>> elem = 2 
 >>> elem in num 
 False 

however, 

 >>> [2, "to"] in num 
 True 

That is why we need to search for the number of  2 in num list in a 
more sophisticated manner. The construction used as the output 
for is_in_num variable is worth considering separately: 

 >>> [(elem in num[i]) for i in range(len(num))]   # is_in_num 
 [False, True] 

namely: 

 >>> (elem in num[0]) 
 False 
 >>> elem in num[1] 
 True 
  
What we do is in fact a creation of  an inner list with outcomes 
dependent on variable i changing its value from 0 to len(num), e.g. 

 >>> x = [-i for i in range(-5, -1)] 
 >>> x 
 [5, 4, 3, 2] 
 >>> 
 >>> y = [x[i]**2 for i in reversed(range(len(x)))] 
 >>> y 
 [4, 9, 16, 25] 
  
Soon you will see how frequently this handy operation is for 
various mathematical calculations and data analysis. I love it for 
two more reasons: you talk to Python in English and you may 
complicate the latter list even more profoundly: 

 >>> x 
 [5, 4, 3, 2] 
 >>> y2 = [x[i]**2 for i in reversed(range(len(x))) if i % 2 != 0] 
 >>> y2 
 [4, 16] 
  
or 

 >>> x 
 [5, 4, 3, 2] 
 >>> y3 = [x[i]**2 for i in reversed(range(len(x))) if x[i] 
    % 2 != 0]; y3 
 [9, 25] 

Beautiful, isn’t it?

This notation is often referred to 
as a list comprehension. Make 
an effort to experiment with it a 
lot to make yourself  comfortable 
with this very Pythonic style. You 
will see it many, many times from 
now on. Everywhere.



 88

Coming back to the analysis of  Code 2.17, now you understand 
what a variable of  is_in_num holds: a list of  boolean values as a 
result of  our check for elem’s membership. You can sum all list’s 
elements since False equals 0 and True equals 1. If  the sum is non-
zero we have a certainty that the sought number of  2 is in! Its 
position (index) in is_in_num we find with a help of  the Python 
list’s function of  .index(elem).  

Have a look at the following exemplary code: 
 
 >>> x = ["She gave me", 4,"kisses", 4, "free"] 
 >>> x.index("free") 
 4 
 >>> x.index("kisses") 
 2 

  
however: 

 >>> x.index(4) 
 1 

  
despite the fact that number 4 is present twice in the list: .index 
function returns an index corresponding to its first occurrence. Of  
course, you can find the second position of  4 by typing: 

 >>> -x[::-1].index(4) + (len(x)-1) 
 3 

  
but it’s too complex and still fails if  4 occurs more than two times. 
Solution? Based on what we have discussed so far we get: 

 >>> [i for i in range(len(x)) if x[i] == 4] 
 [1, 3] 

  
Smoothly and painlessly. 

Therefore, in Code 2.17, a function is_in_num.index(True) will work 
solely for the first entry of  2 in num. The rest of  2.17 follows a 
requested logic of  building a sentence in English. Note that if  a 
special character of  "." is in sc list then we print it three times 
applying a simple string multiplication (see more in Section 2.8). 

 2.3.6.  Maths and statistics with Lists 

Some of  the abovementioned methods used in creation of  
Python’s lists can be accomplished with the enumerate object as 
provided by enumerate(list) function. Analyse the following 
program being a modification of  Code 2.10. 

A bank pays on average 4% p.a. for keeping your money in its 
savings account. However, the interest rate fluctuates month-over-
month. Write a code in Python that (i) simulates those monthly 
fluctuations; (ii) computes a compound return and your capital 
growth if  you hold $1,000 for a half  of  a year and compounding 
takes place monthly. 

.index()

Code 2.18



 89

It is a great exercise where Python’s lists can be utilised! First, let’s 
create in a fancy way a temporary list storing 4% interest rate: 

 r = [i*0.01 for i in [4]*6] 

 [0.04, 0.04, 0.04, 0.04, 0.04, 0.04] 

  
Next, it would be nice to get a list of  numbers with different signs. 
Initially assuming that a negative number represents a decrease of  
the interest rate month-over-month and a positive number denotes 
its increase, we start from a simple list: 

 tmp = [] 
 for i in range(1, 6+1): 
        if(i % 2 == 0): tmp.append(-1) 
        else: tmp.append(1) 

 [1, -1, 1, -1, 1, -1] 

  
which is a short and elegant way to generate 1, -1, 1, … sequence 
in Python. But we need pseudo-random fluctuations preserving 
the sign. With a help of  modulo operation, we do it, e.g.: 

 fluct = [] 
 for i in range(1, 6+1): 
        if(i % 2 == 0): fluct.append(-1*(i % (i+2*i/10.)/1600.)) 
       else: fluct.append((i % (i+103.5*i/20.)/1600.)) 

 [0.000625, -0.00125, 0.001875, -0.0025, 0.003125, -0.00375] 
  
Since this sequence is still periodic we wish to rearrange the order 
of  those elements. We may employ a function of  shuffle(list) 
from the random module in the following way: 

 from random import shuffle, seed 
 seed(2016) 
 shuffle(fluct) 

 [-0.00125, 0.000625, 0.003125, 0.001875, -0.0025, -0.00375] 

  
where a quoted shuffled list is obtainable for seed(2016) function 
when executed. Therefore, the resultant 4% numbers destabilised 
month-over-month we derive as: 

 R = [sum(e) for e in zip(r, fluct)] 

 [0.03875, 0.040625, 0.043125, 0.041875, 0.0375, 0.03625] 
  
Let me take this opportunity to tell you a few words on the use of  
a new function of  zip. Its name suggests that it zips parallel 
elements (an index-wise zipping) coming from different lists. Have 
a look at some examples below: 

 >>> x = range(1, 6); y = [X**2 for X in x]; x 
 [1, 2, 3, 4, 5] 
 >>> y 
 [1, 4, 9, 16, 25] 
 >>> z = [e for e in zip(x, y)] 
 [(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)] 
 >>> z[2] 
 (3, 9) 
 >>> type(z[2]) 
 <class 'tuple'> 

zip

Modulo operation %  is often used 
as a function to deliver random 
numbers. As we will see in 
Section 2.4 on Randomness Built-
In, it still has some applications in 
modern era of  programming (e.g. 
in Java).



 90

  
and 

 >>> z = [list(e) for e in zip(x, y)] 
 [[1, 1], [2, 4], [3, 9], [4, 16], [5, 25]] 
 >>> type(z[2]) 
 <class 'list'> 
  
In fact, we can zip more than two lists. Consider the following: 

 >>> w = [i**3 for i in range(1, 7)] 
 >>> x 
 [1, 2, 3, 4, 5] 
 >>> y 
 [1, 4, 9, 16, 25] 
 >>> w 
 [1, 8, 27, 64, 125, 216]      # one element more than in x and y 
 >>> 
 >>> z = [list(e) for e in zip(x, y, w)] 
 >>> z 
 [[1, 1, 1], [2, 4, 8], [3, 9, 27], [4, 16, 64], [5, 25, 125]] 
  
but if  

 >>> w = [i**3 for i in range(1, 4)]; w 
 [1, 8, 27] 
 >>> 
 >>> z = [list(e) for e in zip(x, y, w)]; z 
 [[1, 1, 1], [2, 4, 8], [3, 9, 27]] 
  
the process of  zipping takes the length of  all three lists x, y, and w 
into account and trims the output accordingly. 

Therefore, the line of: 

 R = [sum(e) for e in zip(r, fluct)] 

 [0.03875, 0.040625, 0.03625, 0.0375, 0.041875, 0.043125] 
  
in our Code 2.18 returns zipped elements of  e being the tuples 
storing [(0.04, -0.00125), (0.04, 0.000625), ...  respectively, and by 
acting upon each of  them with the function of  sum, we add both 
tuple’s elements together (more on sum, next). 

The remaining part of  the 2.18 is trivial: 

  
The entire Python program being the solution to challenge 2.18 
could be compiled as follows: 

 # a complete Code 2.18 
 from random import shuffle, seed 

 r = [i*0.01 for i in [4]*6] 
 fluct = [] 
 for i in range(1, 6+1): 
        if(i % 2 == 0): fluct.append(-1*(i % (i+2*i/10.)/1600.)) 
       else: fluct.append((i % (i+103.5*i/20.)/1600.)) 

list 
Converts a set into a list element.

1 + compR =

6�1Y

i=0

⇣
1 +

ri
12

⌘



 91

 seed(2016) 
 shuffle(fluct) 

 R = [sum(e) for e in zip(r, fluct)] 
 tmp = [(1+r/12.) for r in R] 

 compR = 1 
 for r in enumerate(tmp): 
       compR *= r[1] 
 compR -= 1 

 sav0 = float(format((1000.), ".2f")) 
 sav = float(format((1000.*(1+compR)), ".2f")) 

 print("compR = %.5f%%" % (100.*compR)) 
 print("Capital growth from $%s to $%s"\ 
        % (format(sav0, ","), format(sav, ","))) 
  
returning the final output: 

 compR = 2.00084% 
 Capital growth from $1,000.00 to $1,020.01 

  
The use and functionality of  a new enumerate function you can 
grasp by the careful analysis of  the following code: 

 r = [-7, -5, -1, 9] 
 for k in enumerate(r): 
        print(k) 
        print(k[0]) 
        print(k[1]) 
        print() 

 (0, -7) 
 0 
 -7 

 (1, -5) 
 1 
 -5 

 (2, -1) 
 2 
 -1 

 (3, 9) 
 3 
 9 
  
The running variable of  k is a tuple with its first element to be the 
index of  0, next 1, 2, etc. If  there is a need, both running index of  
i and list’s i-th element, they can be processed concurrently. For a 
more complete picture, consider the following modification: 

 r = [[-7, 7], [-5, 5], [-1, 1], [9, -9]] 
 for k in enumerate(r): 
        print(k) 
        print(k[0]) 
        print(k[1]) 
        print(k[1][0]) 
        print(k[1][1]) 
        print() 
  
 (0, [-7, 7]) 
 0 
 [-7, 7] 
 -7 

enumerate



 92

 7 

 (1, [-5, 5]) 
 1 
 [-5, 5] 
 -5 
 5 

 (2, [-1, 1]) 
 2 
 [-1, 1] 
 -1 
 1 

 (3, [9, -9]) 
 3 
 [9, -9] 
 9 
 -9 

  
No doubt, it is now much easier to understand the logic standing 
behind the applicability of  the enumerate function. 

Ready for more nesting, indexing, and slicing? I bet you are! So, 
here we go again: 

For the following list of  s containing some information about two 
stocks given by tickers, display two most recent prices of  their 
shares at the closure of  the trading session and make sure that the 
latest price is being displayed as the first one. 

 s = [["AAPL", (409.34, 410.23, 410.98, 399.45)], \ 
        ["IBM", (125.53, 124.95, 125.01, 125.99)]] 

 for stock in s: 
     print("%s" % stock[0]) 
       prices = stock[-1][-2:]  # more nesting, indexing, slicing! 
        for p in reversed(prices): 
           print("  $%.2f" % p)  

 AAPL 
    $399.45 
   $410.98 
 IBM 
    $125.99 
    $125.01 
  
In this code I used indexing and slicing of  stock (a list variable) 
just to show you how effectively we can refer to any nested 
element in the list using Python. In this case, a list of  s is 
composed of  two inner lists, each storing a string (a ticker) and 
tuple (close prices of  a stock for last four days).  

Therefore the price of  IBM four days ago pulled out from our 
"database" would be: 

 >>> s[1][1][0]  # or s[-1][1][0] since IBM is the last 
 125.53  # element of the list 's' 
  
and the average price of  AAPL over past three days: 

 >>> sum(s[0][1][-3:])/3 
 406.8866666666667 

sum(list/tuple)

Code 2.19



 93

  
Please mark in your notes that the sum() function works well for 
lists and tuples though, as discussed in Section 2.1, to ensure there 
would be no issues with precision of  floats, it is advised applying a 
function of  fsum() from the math module when working with 
Python 2.7.10 interpreter. For the latter, the benefit is two-fold, 
namely: 

 >>> from math import fsum 
 >>> fsum([1, 2, 3])/3        # better when used in Python 2.7.10 
 2.0 
  
returns float-type number even if  a list or tuple contains integers 
and we divide the sum by integer. 

Python 3.5 comes with a handy module of  statistics that equips 
us with an alternative and quick way to compute of  basic 
mathematical statistics functions, i.e.: the mean, sample and 
population variance, standard deviation, median, and mode. 
Those methods work fluently with Python’s lists. Let’s consider a 
couple of  the most useful examples. 

For any plain list of  numbers: 

 >>> import statistics as st 
 >>> x = range(1, 5)  # a list or Python 3.5’s iterator 
    1, 2, 3, 4 
 >>> sum(x) 
 10 

 >>> st.mean(x) 
 2.5 
 >>> st.variance(x) 
 1.6666666666666667 
 >>> st.stdev(x) 
 1.2909944487358056 

the last two results have been computed with one degree of  
freedom, i.e. for the variance defined as a sample variance: 

As we will see in Chapter 3, the same is accessible in numpy by: 

 >>> import numpy as np 
 >>> np.var(x, ddof=1) 
 1.6666666666666667 
 >>> np.std(x, ddof=1) 
 1.2909944487358056 

In order to account for the population measure of  spread (zero 
d.o.f.), use st.pvariance and st.pstdev instead. For measures of  
central location use st.median(x) or st.mode(x). Visit https://
docs.python.org/3.5/library/statistics.html for more detail. 

  

fsum(list/tuple)

var(x) =
1

N � 1

NX

i=1

(xi � x̄)2

.mean() 
.variance() 

.stdev()

.pvariance(), .pstdev() 
.median(), .mode()

statistics



 94

 2.3.7.  More Chain Reactions 

Python’s list comprehensions are so powerful for the needs of  
numerical computations that they require more examples in order 
to fully appreciate what they have to offer. Since examples tell the 
whole story, let’s see how complicated Pythonic structures can be 
created from an innocent, simple list. 

A classical gateway would be: 

 >>> [s for s in [3.14]] 
 [3.14] 

  
Generation of  n elements of  the same kind we may achieve by: 

 >>> n = 5  
 >>> [s for s in [3.14]*n] 
 [3.14, 3.14, 3.14, 3.14, 3.14] 

  
where doubling the result: 

 >>> n = 5  
 >>> [s*2 for s in [3.14]*n] 
 [6.28, 6.28, 6.28, 6.28, 6.28] 

  
However if  we aim at taking 3.14 first, and generating iteratively 
the i-th element as 3.14*i for i = 1, 2, … then: 

 >>> n = 5  
 >>> [s*i for s in [3.14] for i in range(1, n+1)] 
 [3.14, 6.28, 9.42, 12.56, 15.70] 

  
or 

 >>> n = 5 
 >>> [3.14*i for i in range(1, n+1)] 
 [3.14, 6.28, 9.42, 12.56, 15.70] 

  
in short. As we have seen before, if  the odd (or even) values of  i 
are sought after, then apply additional condition, e.g.: 

 >>> n = 5 
 >>> [3.15*i for i in range(1, n+1) if (i % 2 != 0)] 
 [3.14, 9.42, 15.70] 

  
You can generate a streak of  sublists inside a list taking some trial 
values from the specific list: 

 >>> x = [[i, 2**i] for i in [4, 5, 6, 7, 8]] 
 >>> x 
 [[4, 16], [5, 32], [6, 64], [7, 128], [8, 256]] 
 >>> x[2] 
 [6, 64] 

  
A conditional modification may filter the results, e.g.: 

 >>> from math import log 
 >>> [[i, 2**i] for i in [4, 5, 6, 7, 8] if  
                                       (log(i, 2)-log(i, 2)//1 == 0)] 

 [[4, 16], [8, 256]]  



 95

where we forced to display those results for which the fractional 
part of  expression log(i, 2) is equal zero (opposite of  the math’s 
function of  trunc). 

A sequence of  sublists we may get by: 

 >>> x = [list(range(1, n)) for n in range(2,7)] 
 >>> x 
 [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]] 

  
where flattening it takes a fancy construction employing the for 
function, e.g.: 

 >>> f = [z for y in x for z in y] 
 >>> f 
 [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5] 

or 

 >>> f = sum(x, []) 
 >>> f 
 [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5] 

Having that, the unique values of  f list you may find by: 

 >>> unique = list(set(f)) 
 >>> unique 
 [1, 2, 3, 4, 5] 

If  for some reasons the order of  the original (by first occurrence) 
must be preserved then apply: 

 >>> x = [1, 1, 5, 2, 2, 4, 3, 3, 4, 5, 1, 2] 
 >>> unique2 = sorted(list(set(x)), key=lambda z: x.index(z)) 
 >>> unique2 
 [1, 5, 2, 4, 3] 

Our chain reactions may be more complicated than that. Have a 
look at the following case: 

 >>> x = [list([n, list(range(1, n+1))]) for n in range(2, 5)] 
 >>> x 
 [[2, [1, 2]], [3, [1, 2, 3]], [4, [1, 2, 3, 4]]] 

Here, each x’s element is a sublist composed of  a number and 
(subsub)list. Flattening of  that list is more complicated than you 
think. I will leave it with you as an exercise. 

What is appealing is the use of  _ (underscore) token for chain 
reactions. Analyse the following: 

 >>> x = [3, 4, 5, 6, 7] 
 >>> len(x) 
 5 
 >>> y = [0.01 for _ in x] 
 [0.01, 0.01, 0.01, 0.01, 0.01] 

By doing so, we generate a new list, y, that contains 0.01 numbers 
in quantity corresponding to the number of  elements of  list x. A 
very useful trick. Memorise it! 



 96

In this case, you can check that "adding" x and y lists does not 
work as an algebraic (element-wise) addition: 

 >>> z = x + y 
 >>> z 
 [3, 4, 5, 6, 7, 0.01, 0.01, 0.01, 0.01, 0.01] 

but a plain list concatenation. Disappointed a bit? No worries! The 
element-wise addition employing a list comprehension process you 
may achieve by: 

 >>> x = [3, 4, 5, 6, 7] 
 >>> y = [0.01 for _ in x] 
 [0.01, 0.01, 0.01, 0.01, 0.01] 

 >>> z = [x+y for x, y in zip(x, y)] 
 [3.01, 4.01, 5.01, 6.01, 7.01] 

where we used the zip function discussed earlier. 

Significantly high level of  complexity involving list comprehension 
is illustrated by the following example. Imagine you have three 
stocks (AAPL, IBM, JNJ) and you would like to generate a list of  
pseudo-prices for n consecutive days for all three assets (without 
using pandas library). Here is the first step. You may wish to define 
a custom function randomprice that returns a random number, say, 
between $80 and $120. Given a list of  stocks, tickers, you may 
combine all the information into one list by writing: 

 def randomprice(): 
     import random 
     return random.uniform(80, 121)  # float 

 tickers = ["AAPL", "IBM", "JNJ"] 
 n = len(tickers)  # 3 

 lst = [[i, stock, price] for i in range(1, n+1) \ 
                            for stock in tickers \ 
                          for price in [randomprice()]] 
 print(lst) 

 [[1, 'AAPL', 109.50214139219915],  
  [1, 'IBM',   97.65676759901652],    
  [1, 'JNJ',  109.09379544608493],  
  [2, 'AAPL',  84.35342747568366], 
  [2, 'IBM',  115.60531620970514],  
  [2, 'JNJ',   80.21930868253156],  
  [3, 'AAPL',  89.71910886539594],  
  [3, 'IBM',  106.60642865139782],  
  [3, 'JNJ',  106.29613079231312]] 

We used an inner product property of  the Python lists. Please note 
that our first variable, i, can take only three values: 1, 2, and 3. 
stock variable goes over all elements in the tickers list. As it 
comes to price — it looks into 1-element sublist where we put a 
call to the external function of  randomprice that returns a single 
number (a random float). For the latter, every time the call is made, 
a new random number is returned. Therefore, by this example, you 
can see how much flexibility Python has to offer—in one line of  
code. 

Code 2.20



 97

You may get a completely different outcome if  you generate lst as: 

 lst = [[i, stock, price] for i in range(1, n+1) \ 
                            for stock in tickers \ 
                          for price in [randomprice()*n]] 

what would cause a triple loop over all possible elements.  

As a supplement to the abovementioned code, it is a slightly 
modified version (for a single stock only) that might look like this: 

 import random 
 from datetime import datetime, timedelta 

 def randomprice(): 
     return random.uniform(115, 121)  # float 

 def randomvolume(): 
     return random.randrange(100000, 1000000)  # integer 

 lst2 = [[(datetime.now()+timedelta(days=i)).strftime("%d-%m-%Y"),     
           stock, price, volume] \ 
          for i in range(10) \ 
                                 for stock in ['AAPL'] \ 
                               for price in [randomprice()] \ 
                               for volume in [randomvolume()]] 
 print(lst2) 

 [['08-05-2015','AAPL', 119.36081566260756, 771321],  
 ['09-05-2015', 'AAPL', 118.89791980293758, 142487],  
 ['10-05-2015', 'AAPL', 115.78468917663126, 771096],  
 ['11-05-2015', 'AAPL', 119.37994620603668, 936208],  
 ['12-05-2015', 'AAPL', 118.92154718243538, 540723],  
 ['13-05-2015', 'AAPL', 119.59934410132043, 242330],  
 ['14-05-2015', 'AAPL', 119.29542558713318, 725599],  
 ['15-05-2015', 'AAPL', 117.59180568515953, 465050],  
 ['16-05-2015', 'AAPL', 115.18821876802848, 771109],  
 ['17-05-2015', 'AAPL', 118.07603557924027, 408705]] 

Above, we added more functionality from the Standard Library in 
the form of  a (formatted) string storing a date. Without additional 
documentation on the datetime module you may decipher that we 
are using a running index i from 0 to 9 as a forward-looking time 
delay: the first entry is as for "now", i.e. for a current date (e.g., 
"08-05-2015") and the following nine dates are shifted by i i.e. by 
1, 2, …, 9 days. The function .strftime("%d-%m-%Y") helps us to 
convert the datetime object into a readable date (a string variable). 

Having that, the quickest way to extract a list of  prices or volumes 
is via an alternative application of  the zip function—the 
argument unpacking: 

 date, _, prices, vol = zip(*lst2)  # use _ to skip a sublist 
 print(list(prices[-3:])) 

 [117.59180568515953, 115.18821876802848, 118.07603557924027] 

where we displayed last three stock prices from the unpacked list 
of  prices. In addition, if  you look for the day when the volume 
was largest, try to add: 

zip(*list) 
Argument unpacking for lists

datetime 
is a handy module to convert or 
combine time and dates into more 
useful forms. We will cover it in 
greater detail within Appendix. For 
now, a few examples: 

>>> d = datetime.now() 
>>> d 
datetime.datetime(2015, 7, 7,  
              12, 42, 5, 384105) 
>>> d.year 
2015 
>>> d + timedelta(seconds=-11) 
datetime.datetime(2015, 7, 7,  
             12, 41, 54, 384105)

Code 2.21 



 98

 i = vol.index(max(vol))  # finding index; 3 
 print("Largest volume on day: %s" % date[i]) 

 Largest volume on day: 11-05-2015 

In short—advanced chain reactions in action!☺ 

 2.3.8.  Lists and Symbolical Computations with sympy Module  

Within the past 20 years, products like Wolfram’s Mathematica or 
MathCAD established a solid position when it came to symbolic 
computations. It was my pleasure to share the very first moments  
of  MathCAD Plus 6.0 (1995) software when I came across some 
heavy statistical problems that only a computer could help me in 
simplifying complex mathematical formulae into digestable form, 
easy to evaluate, plot, and seek for results. The major problem was 
(and still is) around hefty licence fees you need to pay in order to 
enjoy your work without limitations. 

Python’s response to symbolic computations delivering pinpoint 
solutions (free of  charges) is its sympy module. It grew to the 
position of  a serious threat to Mathematica and has been winning 
the hearts and minds of  many mathematicians, scientists, and 
researchers over the past few years. 

Symbolic computations helps financial quants too. Continuous 
efforts in searching for stable solutions in model validation, exotic 
derivative pricing and backtesting, risk hedging and applications 
development is often based on results derived by machines.  

You can find the sympy module’s full documentation at http://
docs.sympy.org website. It is too extensive to describe here its 
complete spectrum of  possibilities here. The typical applications 
cover calculus, algebra, and dedicated solvers. I do strongly 
encourage you to explore it further if  you’re seeking for analytical 
solutions related to your current work, projects, or problems. 

From our current point of  view, let’s see how one can easily 
combine Python’s lists with sympy’s selected goodies. 

 
Derivation of  n-th derivative of  log(1+x) function: (a) based on n-
th term's formula; (b) with a help of  sympy module. 

It is easy to find iteratively that for: 

its first four derivatives are: 

 

f(x) = ln(1 + x)

Code 2.22



 99

Given the n-th term, first, let’s generate the Python’s list that stores 
the values of  derivatives for x = 3 at n = 10. 

 from math import factorial 

 def df(x, n): 
        return (-1)**(n-1) * factorial(n-1) / (1+x)**n 

 x2 = 3  # x = 3 
 n = 10 
 res = [] 
 for i in range(1, n+1): 
        res.append(df(x2, i)) 
        print("%10.3f" % res[-1]) 

We define a custom function, df, that accepts two input parameters 
x and n and returns the value of  derivative for n-th term. In a loop 
we iterate over i to be between 1 and 10 and append a list of  res 
with computed value of  the i-th derivative and print its last item 
out by making a reference to the last list’s element by res[-1]. 
When run, the output is: 

     0.250 
    -0.062 
     0.031 
    -0.023 
     0.023 
    -0.029 
     0.044 
    -0.077 
     0.154 
    -0.346 

Excellent. Now, let’s employ symbolical computations of  n 
derivatives of  log(1+x) with a help of  the sympy module in the 
following way: 
 
    from sympy import symbols, diff 

 x = symbols("x") 
 f = "log(1+x)"  # string 
 
 res2 = [] 
 for i in range(1, n+1): 
        f = diff(f, x)  # find i-th derivative of f 
        print("%2g-th derivative is %20s" % (i, f)) 
        v = f.subs(x, x2)  # derivative value at x = 3 

f

0(x) =
1

1 + x

f

00(x) = � 1

(1 + x)2

f

000(x) = (�1)(�2)
1

(1 + x)3

f

0v(x) = (�1)(�2)(�3)
1

(1 + x)4
= (�1)3

3!

(1 + x)4

...

f

0n(x) = (�1)n�1 (n� 1)!

(1 + x)n
9 n � 1

sympy.symbols()

sympy.diff() 
.subs()



 100

        res2.append(v) 
        print("\t\tits value at x = 3 is %10.3f\n" % res2[-1]) 

    print(res == res2) 

We make use of  two functions, namely, symbols and diff. The 
former informs Python that a new variable x is from now on 
"symbolical". The latter allows for a symbolical differentiation of  
any expression containing such defined x. Therefore, our 
fundamental function, log(1+x), is given as a string variable in f.  

What follows is the equivalent of  the loop we created a moment 
ago. In the loop, first, we compute a symbolical expression of  the 
i-th derivative of  function and with the assistance of  the .subs 
function we find its value at point x = 3. The results we save in a 
new list, res2, and in the end with check have we derived the 
identical derivatives’ values in both approaches: 

    1-th derivative is            1/(x + 1) 
  its value at x = 3 is      0.250 

  2-th derivative is        -1/(x + 1)**2 
  its value at x = 3 is     -0.062 

  3-th derivative is         2/(x + 1)**3 
  its value at x = 3 is      0.031 

  4-th derivative is        -6/(x + 1)**4 
  its value at x = 3 is     -0.023 

  5-th derivative is        24/(x + 1)**5 
  its value at x = 3 is      0.023 

  6-th derivative is      -120/(x + 1)**6 
  its value at x = 3 is     -0.029 

  7-th derivative is       720/(x + 1)**7 
  its value at x = 3 is      0.044 

  8-th derivative is     -5040/(x + 1)**8 
  its value at x = 3 is     -0.077 

  9-th derivative is     40320/(x + 1)**9 
  its value at x = 3 is      0.154 

 10-th derivative is  -362880/(x + 1)**10 
  its value at x = 3 is     -0.346 

True 

Too easy. Please note that sympy delivers the results in a form of  a 
string variable when f is inspected. The final test is a simple list 
comparison, element-wise. As we will learn in the next Chapter, 
the latter can be obtained if  we apply: 

 import numpy as np 
 print(np.all(res == res2)) 
  
 True 

instead of  print(res == res2) what enforces a boolean check, 
element-wise, vouchsafing that all elements of  both lists are 
matching and are the same (in terms of  floating-point precision). 



 101

Using sympy verify that for n > 2: 

and find for what n one reaches 99.0% of  the limit accuracy 
making use of  Python’s list. Add "*" to the list after the 
corresponding value.  

In this example we will try to supplement the .append with 
the .insert function for the lists. The latter allows us to specify a 
position (index) at which a new object will be added to the list. By 
adding "*" to the list we may wish to make a mark inside the list 
itself. Such construction may be used for data separation into 
segments within further data processing or analysis. 

Let’s have a look at the complete code first: 

 from sympy import Symbol, limit 
 from sympy import init_printing 
 from math import trunc 

 init_printing()  # a lovely sympy’s printing included 

 n = Symbol("n") 
 expr = n**(-1/(n-1))  # define an expression 

 print("lim_{n -->   9} %s = %.5f" % (expr, limit(expr, n, 9))) 
 print("lim_{n --> +oo} %s = %.5f\n" %  
                                  (expr, limit(expr, n, "+oo"))) 
 print("%8s %12s %17s" % ("n", "exact", "approx")) 

 values = [] 
 N = 1000 

 for i in range(3, N+1): 
        x = float(expr.subs(n, i)) 
        values.append(x) 

        if(i < 10) or (i == N): 
            print("%8d %10.10f %17s" % (i, x, expr.subs(n, i))) 
        elif(i == N-1): 
            print("     ...") 

 # find 1st item corresponding to 99% of the limit accuracy 
 tmp = [trunc(x*100)/100 for x in values] 
 i = tmp.index(0.99)  # find index; 642 

 print() 
 print(values[i-1:i+3]) 

 # add "*" token to the list 
 values.insert(i+1, "*") 
 print(values[i-1:i+4]) 

We employ the limit function from the sympy module for deriving 
limits. As you will find, the syntax is intuitive. In the next step, 
inside the loop, we derive the exact value for the limit at each n->i 
and append it to the global list with results, values. Solely for 
printing purposes, we allow a comparison of  the exact value with 
the best approximation of  it found by sympy. In order to inspect its 

Code 2.23

lim
n!1

1
n�1
p
n
= 1

sympy.limit

sympy.init_printing()

.insert(index, object)



 102

form, the function of  init_printing() has be initialised in the 
beginning. 

99.0% of  the limit we find by making use of  list comprehension. 
An expression trunc(x*100)/100 creates a temporary list with exact 
values in values list, limited to three decimal places only. Though 
slow for large N, this step allows us quickly to localise the very first 
element equal to 0.99. We achieve that with the help of  the .index 
function (as discussed earlier in this Chapter). 

Adding "*" to the list at any requested position (index) is done 
by .insert. Painlessly. The output of  Code 2.23 delivers: 

 lim_{n -->   9} n**(-1/(n - 1)) = 0.75984 
 lim_{n --> +oo} n**(-1/(n - 1)) = 1.00000 

       n        exact            approx 
       3 0.5773502692         sqrt(3)/3 
       4 0.6299605249        2**(1/3)/2 
       5 0.6687403050        5**(3/4)/5 
       6 0.6988271188        6**(4/5)/6 
       7 0.7230200264        7**(5/6)/7 
       8 0.7429971446        2**(4/7)/2 
       9 0.7598356857        3**(3/4)/3 
     ... 
    1000 0.9931091814  10**(332/333)/10 

 [0.98999, 0.99000, 0.99001, 0.99003] 
 [0.98999, 0.99000, '*', 0.99001, 0.99003] 
 
where a funny "+oo" sign stands for         in sympy. 99% accuracy of  
the limit at             is achieved for 642th term. 

 2.3.9.  List Functions and Methods 

In general, Python 3.5 offers the user with a finite number of  
built-in functions and, so-called, list methods. The table below 
summarises the key players in the game. 

 Let x = [1, 3, 4], else otherwise specified 

 Function  Description 

 list(y)   coverts y (tuple) into a list 
     >>> list((1, 3, 4)) 
     [1, 3, 4] 
 min(x)   returns an item with minimal value 
     >>> min(x) 
     1 
 max(x)   returns an item with maximal value 
     >>> max(x) 
     4 
 len(x)   number of elements in the list 
     >>> len(x) 
     3 
 reverse(x)  returns x with reversed order of items; 
    raw iterator 
     >>> list(reversed(x)) 
     [4, 3, 1] 
  

+1
n ! 1



 103

 Methods   Description 

 x.append(obj)  appends an object at the end of x; 
    in-place 
     >>> x.append(5.6); x 
     [1, 3, 4, 5.6] 
     >>> x.append([6, 7]); x 
     [1, 3, 4, 5.6, [6, 7]] 

 x.extend(y)  extends the list by adding y; 
    in-place 
     >>> x.extend([4.5]); x 
     [1, 3, 4, 4.5] 
     >>> x.extend([9, 10])) 
     [1, 3, 4, 4.5, 9, 10] 

 x.count(y)  returns the number of times y appeared 
    in x 
     >>> x.count(4) 
     1 
     >>> [1, [2, 3], [2, 3]].count(2) 
     0 
     >>> [[2, 3],[2, 3]].count([2, 3]) 
     2 

 x.index(y[, i1[, i2]]) the index of the first occurrence of y 
     >>> i = [1,2,3,5,3].index(3); i 
     2 
     >>> [1,2,3,5,3].index(3, i+1) 
     4 

 x.insert(i, y)  inserts y at i-th index position 
    in-place 
     >>> x.insert(1, "IBM"); x 
     [1, IBM, 3, 4] 
     >>> x.insert(-1, "AAPL") 
     [1, IBM, 3, AAPL, 4] 

 x.pop(i)  returns item at i-th position, then 
            it removes it from x 
    in-place 
     >>> x.pop(1) 
     3 
     >>> x 
     [1, 4] 

 x.remove(y)  removes the 1st occurrence of y 
    in-place 
     >>> x = [6, "a", 7, "a", 9] 
     >>> x.remove("a"); x 
     [6, 7, a, 9] 

 x.sort()  a tricky sort function 
    in-place 
     >>> ["b", 7, "a", "c", 9].sort() 
     Traceback (most recent call last): 

       File "<stdin>", line 1, in <module> 

     TypeError: unorderable types: int() < str() 
     >>> x = [5, 7, 1, 6] 
     >>> x.sort(); x 
     [1, 5, 6, 7] 

     >>> x = ["c", "ac", "ab", "D"] 
     >>> x.sort(); x 
     [D, ab, ac, c] 

 x.copy()  does a copy of x; breaks the links 
     >>> y = x.copy(); y[0] = 2; x 
     [1, 3, 4] 

  



 104

 Further Reading 

More on Lists, https://docs.python.org/3.5/tutorial/ 
        datastructures.html#more-on-lists 

Statistics module, https://docs.python.org/3.5/library/ 
       statistics.html 
Sympy module, http://docs.sympy.org



 105

2.4. Randomness Built-In 

 2.4.1. From Chaos to Randomness Amongst the Order 

You do not need Python to create chaos. Everything just happens fortuitously. 
At random. In a haphazard order. — I thought while studying the 
science standing behind. Behind what? Chaos, randomness, and 
order. 

From the day when we are born and grow up we intuitively feel the 
difference between chaos and order as two opposite states of  
being. As kids we learn how to create mess in a room while it was 
tidy. We, men, laugh when women behave in a chaotic way but 
amongst the havoc in their heads they act in a surprisingly 
organised fashion. At school they tell us that in the beginning there 
was a Bing Bang where our Universe took its origin from. Funny 
enough when we discover how different religions deliver 
contradictory explanations on the same topic. We observe the 
movement of  celestial bodies, a structure of  the DNA double 
helix, a landing on the Moon with a finite precision. So many 
things seem to be arranged or deterministic at any point in time.  
Regretfully, we cannot predict the exact numbers of  seconds our 
heart will pump life through our veins. 

A thin line between what we consider to be a truth and false sets 
all reference points we need for functioning. It is easier that way. 
We usually think of  the order as of  something that can be 
determined, organised, aligned, predicted, known from its initial 
state, derived, more than just estimated or foreseen. Chaos seems 
to be a tiny and turbulent perturbation introduced to the state of  
order. You cannot place an ideally polished spherical ball on a tip 
of  a pyramid-like object at your desk. It will fall down. While the 
ball’s initial position can be determined in a three-dimensional 
cartesian space, its final location is unknown. The moment you 
release the ball small vibrations of  your fingers make an impact on 
its fate. Every single time you repeat that experiment the final 
location of  the ball is non-deterministic. So where is a randomness 
in it? The best answer is if  we think of  randomness as of  the 
characteristic of  a process whose outcome is unpredictable. We 
may say that the ball always rolls down in a random direction 
therefore its behaviour is chaotic. 

Comets orbiting the Sun are good examples of  bodies in order. 
Their trajectories can be calculated and positions precisely found. 
But if  any of  them passes in a close vicinity of  Jupiter, its gravity 
may cause a major disruption. The gravitational perturbation is too 
complex to be described by a closed-form analytical solution thus 
it introduces an element of  chaos into the life of  a comet. If  
different spatial configurations of  the Jupiter’s four biggest moons 
are considered, we expect different outcomes as it comes to the 
comet’s position in time. By changing the initial moons’ locations 
on their orbits we may generate a random set of  the comet’s 
possible (new) trajectories. Such process some people call as using 

She is  
delightfully 
chaotic. 
A beautiful  
mess. 

Steve Maraboli



 106

chaos in order to generate randomness. Here, the chaos is generated 
through a local strength of  the gravitational force field. Now, by 
studying random (a large collection of  possible) paths for that 
comet, we may determine the most likely trajectory as it passes 
Jupiter in its closest point. Therefore, randomness has its direct 
application in helping us to find the best approximation of  a 
deterministic problem. We know that the comet will change its 
course but how much? We can predict it with the use of  
randomness (also referred to as Monte Carlo simulations). 

What does it mean that something is unpredictable or random? I 
am of  the opinion that it simply cannot be determined with a 
finite precision. There is no single equation that could be used to 
definitely derive the result in the next (time) step. 

In quantitative finance we make use of  randomness for a 
number of  reasons. Option pricing is one example. The process 
contains the randomness built-in. In order to price the option 
correctly we need to run a huge number of  simulations. The 
outcomes will differ and based on the final distribution, the most 
likely result can be selected. The process is specified by the model. 
The randomness used—it’s not. A gentle distinction between true 
and pseudo-randomness ought to be introduced for the clarity of  
their usefulness and pitfalls. 

 2.4.2. True Randomness 

Do we need a chaotic process to describe a random process? Not 
necessarily. Again, the observation of  nature delivers us some 
remarkable hints. Consider a thunderstorm. There is no way we are 
able to say when exactly the next lightning will take place (not 
even with a help of  the Poisson process). If  recorded, neither two-
dimensional projection of  the lightning on the sky plane nor the 
intensity of  the thunder’s noise can be predicted. Both are great 
examples of  true randomness around us. 

The physicists by observing the decays of  unstable isotopes 
understood that they were unable to say when exactly the decay 



 107

could take place either! They only managed to describe in a 
quantitatively way the probability of  a given transition. 

The above diagram presents a decay chain of  Radon-220 with the 
half-lives τ’s as given in (nano)seconds, minutes, and hours. A 
striking feature of  that decay series of  220Rn is its branching after 
the 212Bi isotope. There is 64% of  chances it will decay to unstable 
212Po before reaching stable 208Pb and only 36% it will "choose" 
an alternative way via decay to 208Tl. Both possible routes and the 
exact moment of  212Bi decay are truly random!  

The probability of  212Bi decay in the time interval of  length t given 
r could be described roughly by: 

where τ of  60.6 minute is the half-life of  212Bi and r is a random 
variable drawn from a uniform distribution of  real numbers 
between 0 and 1. A term in round brackets represents the 
probability of  decay itself. This is the first step towards  
understanding how random processes can be discretised and used 
in Monte-Carlo simulations. If  we drew r one million times 
counting how many times its value was between 0 and 0.64, 

 from random import random 

 for k in range(5): 
     n = 0 
     for i in range(int(1e6)): 
            r = random()    # drawn from a uniform distribution 
            if(r > 0 and r <= 0.64): n += 1 
      print(100*n/1.0e6)  # percent 

we would get in five trials, e.g. 

 63.9041 
 63.9982 
 63.9002 
 64.0736 
 63.9802 

Still the biggest unknown is: when in time t the decay will occur!? 
The probability of  212Bi decay in the time interval of  1 sec is 
0.00019. If  we divide 1 sec into a time-series of  nanoseconds, 

we will end up with N=1,000,000,000 or 109 discrete values of  the 
time moments. From our point of  view that would be an 
approximated description of  the set of  all possibilities when the 
decay might happen.  They seem to be equally probable. The 
question remains: which ti, which one, Paweł? Well, we will never 
guess. That is the domain of  quantum physics! 

However, what we can do is we can simulate the decay process by 
drawing a random variable that represents the probability of  decay. 

p(t|r) =
⇣
1� 2

�t/⌧
⌘
!

⇢
decay to

212
Po if r 2 (0; 0.64]

decay to

208
Tl if r 2 (0.64; 1]

t1, t2, ..., tN

random.random()

Code 2.24



 108

If  it is smaller than 0.00019 we assume that the decay took place.  
That’s it. Simple as that! Analyse the following code: 
 
 from random import random 

 tau = 60.6*60         # half-time of 212Bi (sec) 
 t = 1                 # time interval (sec) 
 p = 1 - pow(2, -t/tau) 

 for nsim in range(5):  # number of simulations 
        n1 = 0 
        n2 = 0 
        for trial in range(int(1e6)): 
            if(random() < p):  # we have a decay! 
                r = random() 
                if(r > 0 and r <= 0.64): 
                    n1 += 1   # a decay to 212Po 
                else: 
                    n2 += 1   # a decay to 208Tl 
        print(n1, n2) 

We run five simulations of  212Bi decay and count a number of  
times the decay to 212Po and 208Tl occurred. For one million of  
trials in each simulation we get a fractions of  events, for example: 

 114 64 
 121 57 
 108 64 
 127 59 
 139 70 

This is, of  course, justified by a very small probability of  the decay 
process itself. As expected we observe a greater number of  212Bi 
to 212Po transitions. 

The simulation of  212Bi decay to stable 208Pb decay as shown in 
the diagram earlier we obtain by: 

 from random import random 

 for nsim in range(100):  # number of simulations 
        n1 = 0 
     n2 = 0 
        for trial in range(int(1e6)): 
            p = 1 - pow(2, -1/(60.6*60)) 
            if(random() < p): 
                r = random() 
                if(r > 0 and r <= 0.64):  # 212Bi to 212Po 
                    p = 1 - pow(2, -1/299.0e-9) 
                    if(random() < p):  # 212Po to stable 208Pb 
                        n1 += 1 
                else:  # a decay of 212Bi to 208Tl 
                    p = 1-pow(2, -1/(3.05*60)) 
                    if(random() < p):  # 208Tl to stable 208Pb 
                        n2 += 1 
        print(n1, n2) 

what, surprisingly, reveals 

 (128, 1) 
 (121, 0) 
 (127, 0) 
 (117, 2) 
 (105, 0) 
 ... 

Code 2.25

Code 2.26



 109

that per 100 simulations we observe exactly two decays (per 1 
million simulations) to 208Pb via 208Tl less than ten times. Without 
computers this sort of  result would be nearly impossible to be 
estimated. 

The abovementioned case studies and Python codes, in fact, 
constitute a bridge between true and pseudo-randomness. We were 
trying to describe a truly random process observed in nature 
making use of  a large set of  the discrete random numbers 
generated by computer. By now, we have only assumed that those 
numbers had been "magically" random and we have trusted the 
process of  their selection. The devil resides in the Standard 
Library’s module of  random and the engine responsible for desired 
outcomes can be neglected. Is it so? 

In case of  random we deal with a certain pseudo-random number 
generator (PRNG; an algorithm) that appears to be efficient, fast, 
and highly reliable. We may deduce that it passed lots of  tests 
before it has been approved for a use within the Python language. 
Most probably the algorithm is complex and it took years of  
research to design and test it. How unique it is? We will see, soon. 

A link between true random number generators (TRNGs) and 
PRNGs has been explored widely. For instance, if  we assume the 
source of  true randomness as a radioactive decay or the noise of  a 
semiconductor diode, then what we may consider by true random 
numbers would be the output of  TRNGs, i.e. the results of  
physical experiments which are considered to be random. 
However, true random numbers are relatively difficult to be 
collected. The process requires plenty of  external devices, specific 
environmental conditions to be met, storage, and proper 
distribution channels. Additionally, such a setup may be biased and 
returns quasi-true random numbers due to technical issues or data 
processing. 

Certain hardware solutions appeared. The most noticeable one was 
Lavarand — designed by Sillicon Graphics—a hardware random 
number generator (HRNG) that produced a stream of  "seed" 
numbers for internal PRNG based on the photo-documentation 
and analysis of  patterns of  the flowing material inside the lava 
lamps. Since the seeds were considered to be truly random—that 
made Lavarand nearly perfect TRNG. Nearly. 

The technological solutions in the domain of  HRNG stepped fast 
forward after 2000. Nowadays, one considers devices utilising 
physical phenomena with or without the quantum-random 
properties, e.g. nuclear decay, photons traversing materials, shot 
noise, thermal noise, atmospheric noise — just to name few. The 
cost of  construction may vary and is mainly dictated by a 
technology used and the customers’ demand.  

The general purpose of  HRNG is to deliver a device both portable 
and of  the cryptographic security. The latter plays a huge role in 



 110

information transmission, e.g. on the Web (bank transfers, ATMs, 
credit card payments, etc.). 
 
One example of  a modern HRNG is Quantis of  ID Quantique SA, 
Genève, Switzerland — a hardware random number generator 
which uses the fundamentally random nature of  quantum optics 
as a source of  true randomness (http://www.idquantique.com/
random-number-generation/quantis-random-number-generator). 
The company offers its HRNG in three versions: as a USB device, 
PCI Express (PCIe) board, and PCI board with a random stream 
between 4Mbits/sec and 16Mbits/sec. Its application range spans 
from lotteries and gaming, to cryptography, IT security 
applications, quantum cryptography, password and PIN number 
generation, random seed generation, mobile prepaid systems, 
numerical simulations, and statistical research. 

Within a price range between €990 and €2990 we gain the 
"quantum" true random numbers in our computer. HRNG is not 
PRNG. The former generates a series of  bits. They may be uniform 
random if  they have expectation 0.5 and are independent. The term 
uniform random can be thought of  as a sequence of  n bits 
interpreted as a binary number that will be uniform on the integers 
0 to 2n-1. Therefore, the output of  HRNG should be oriented 
towards seeing (testing) how closely the output from the generator 
is uniform random.  

The same approach applies to PRNGs which use a formula for 
generating numbers. Notably, they are all available to us—free of  
charge. Python’s random engine falls into that category too. ☺ 

Let’s inspect some acres of  the devil’s playground in order to 
understand the most crucial aspects of  the randomness built-in. 

 2.4.3. Uniform Distribution and K-S Test 

There is a lot of  power standing behind the concept of  the 
uniform distribution of  (random) numbers in (a, b) interval, or in 
(0, 1) for simplicity. As we have convinced ourselves in Section 
2.4.2, every number picked at random and to be between 0 and 1 
seems to be equally probable.  

The uniform distribution is defined by the function: 

of  the uniform density between a and b, with the expected value 
and variance equal to: 

E(X) =
b+ a

2
, V ar(X) =

(b� a)2

12
,

f(x) =

(
1

b�a for a � x � b

0 otherwise

Disclaimer 
The author of  this book has no 
business connection nor interest 
in advertising the products of  ID 
Quantique SA, Switzerland. The 
information included is solely for 
the educational purposes.



 111

respectively. For (0, 1) interval the variance is simply 1/12 and 
suggests a fairly simple design of  a test for randomness: we draw 
a large number of  "uniform random" numbers from (0, 1) interval 
and compute their variance, Var(X). It should be near a theoretical 
value, i.e.: 

However, the distance (or precision) is parametrised and does not 
constitute, in fact, any solid proof  that we might deal with a 
sample of  the uniformly distributed random numbers. 

A much more elegant way to test any sample of  random variables 
(rvs) is the application of  the Kolmogorov-Smirnov test (or K-S 
test) for goodness of  fit. Within this test, we compare the 
cumulative distribution function (c.d.f.) of  sample data with, in 
our case, the uniform cumulative distribution function, i.e. X(x) 
against U(x). Under the null hypothesis these two distributions are 
identical, X(x) = U(x). The alternative hypothesis can be either 
two-sided, less or greater. K-S test aims at the verification of  the 
maximal distance between both cumulative distributions, returning  
p-value as a result. For the case when: 

i.e. p-value is less than assumed significance level, we reject the null 
hypothesis at that level. Let’s analyse the following case. 

Say, we have a set of  65 rvs to be in (0, 1) interval and stored as a 
Python list x. The source of  data is unknown. Making use of  
scipy.stats submodule (more on scipy in Volume II of  Python for 
Quants) we employ K-S test directly to x. In addition, we generate a 
new list of  rvs with a help of  the random library and compare the 
cumulative distributions of  both data sets: 

 from random import random 
 import statistics as st 
 import numpy as np 
 import scipy.stats as stats 
 import matplotlib.pyplot as plt 

 # an unknown data set 
 x = [0.85906464, 0.45391992, 0.30094518, 0.35947101, 0.65084560, 
      0.59774770, 0.85093582, 0.67892358, 0.57949969, 0.51680545, 
      0.53016296, 0.36267706, 0.51915569, 0.34386377, 0.56175338, 
      0.63607077, 0.35634497, 0.52965109, 0.46146248, 0.27364399, 
      0.51165262, 0.38406413, 0.63410533, 0.86702544, 0.45153084, 
      0.79633974, 0.80685862, 0.44867997, 0.68959574, 0.86788886, 
      0.24311945, 0.35210901, 0.57610074, 0.49695454, 0.16283205, 
      0.55022556, 0.45003607, 0.45194890, 0.30506118, 0.44786555, 
      0.49293125, 0.77768506, 0.37584660, 0.56049562, 0.76204812, 
       0.74261763, 0.63438029, 0.47814883, 0.35056373, 0.57848429, 
      0.49396983, 0.92532668, 0.38941321, 0.16282464, 0.59157518, 
      0.17022039, 0.77477934, 0.81258861, 0.38457275, 0.50546050, 
      0.62353637, 0.62423579, 0.37363242, 0.41314893, 0.42630024] 
 x.sort() 

 # a list of uniformly distributed rvs 
 u = [random() for _ in x] 

����V ar(X)� 1

12

���� < ✏

p-value < ↵

Code 2.27



 112

 u.sort() 

 # Perform K-S test (deriving p-values) 
 _, px = stats.kstest(x, 'uniform')  # X(X) vs U(X) 
 _, pu = stats.kstest(u, 'uniform')  # u(X) vs U(X) 

 print(px, pu); print() 
  
 print(st.mean(x), abs(st.variance(x)-1/12)) 
 print(st.mean(u), abs(st.variance(u)-1/12)) 

 # a large set of uniform rvs 
 t = [random() for _ in range(1000)]; t.sort() 

 # Plot cumulative distribution functions 
 plt.figure(1) 
 plt.step(x, np.cumsum(x)/np.sum(x), label="c.d.f. for x") 
 plt.step(u, np.cumsum(u)/np.sum(u), 'r', label="c.d.f. for u") 
 plt.legend(loc=2) 
 plt.show() 

The scipy.stats’s function of  kstest works as a black-box returning 
two arguments: K-S statistics (suppressed by underscore token in 
the code) and p-value. First, we test the cumulative distribution 
function of  data sample x against the uniform cumulative 
distribution function, deriving the corresponding p-value of  px. 
Next, we perform the same test for a sample u containing random 
variables, now, ensured to be drawn from the uniform distribution 
thanks to the random function from the random module. 

By printing results, we obtain: 

 0.00113077233788 0.729760346867 

 0.5283342367692307 0.04904732615158596 
 0.49189508566570306 0.0040929025816235365 

The first line displays p-values, px and pu. Immediately, we notice 
that for our unknown sample, px is less than, say, 0.05 (95% 
confidence level) allowing us to reject the null hypothesis. For the 
case of  u set, as expected, the K-S test indicates at the agreement 
of  the tested cumulative distribution functions at the 0.05 level. 
The absolute difference between the computed sample variances 
and the theoretical 1/12 is least for u set too.  

The visualisation of  our results we present as a comparison of  
both cumulative distribution functions for x and u data set, 
employing some helping functions from the numpy module and the 
plotting library of  matplotlib. For now, we skip the discussion of  
those functions however their appearance has been aimed at the 
introduction of  new features for the completeness of  our analysis. 

From the plot (see next page) one can notice that a cumulative 
distribution function for 1000 uniform rvs (black line) is a good 
representation of  the "model" c.d.f. assumed by the kstest 

function as a reference level. The maximal distance for x’s c.d.f  is 
greater than for u’s c.d.f., as expected. 

scipy.stats.kstest()

Try to deduce why in Code 2.27 
we sort all three lists (x, u, and 
t) with random numbers.



 113

Okay, let’s raise the bar.  

So far, still, we haven’t said anything about the engine generating 
uniformly distributed rvs. All we know is that the function of  
random.random() returns a floating-point number between 0 and 1. 
The question is: can we use K-S test in order to verify "how much" 
those uniform random numbers are random? And the answer is: 
sure! However, this time, we need to increase our confidence level 
from 95% to 99.99% to see what is going to happen. 

Have a look: 

 from random import random 
 import scipy.stats as stats 
 import numpy as np 

 num_tests = 100000 
 num_rejects = 0 
 alpha = 0.0001 

 for i in range(num_tests): 
        data = [random() for _ in range(1000)] 
        _, pval = stats.kstest(data, 'uniform') 
        if pval < alpha: 
            num_rejects += 1 
 ratio = float(num_rejects) / num_tests 
  print('{}/{} = {:.5f} rejects at rejection level {}'.format( 
          num_rejects, num_tests, ratio, alpha)) 

In this code, we run 100,000 simulations. In each of  them, we 
generate a list of  1000 uniform rvs (data list). Based on our 
previous knowledge, we reject the null hypothesis at 0.0001 
significance level if  the computed p-value is less than that the 
threshold. If  so, we count the total number of  rejects. In the end, 
we use an old-school style of  print function (which description 
has been omitted within this book; you are encouraged to explore 

  

  

Code 2.28 

You may gain a significant speed-up 
if  you replace: 

[random() for _ in range(1000)] 

with 

np.random.random(1000)



 114

it elsewhere) to check a number of  unsuccessful tests in num_tests 
simulations. 

Surprisingly, we note that, for example: 

 13/100000 = 0.00013 rejects at rejection level 0.0001 

i.e. 0.013% of  the uniform random samples occurred not to pass 
K-S test at 0.0001 significance level. Now, by increasing the 
confidence level to 99.999% and re-running Code 2.28, we get: 

 0/100000 = 0.00000 rejects at rejection level 1e-05 

That allows us to reach the statistical confidence around the 
function of  random.random() responsible for the sophisticated 
randomisation of  numbers we asked for. However, do not be 
excited so much! We know it well that in statistics all is about the 
confidence level and you may find a number of  statistical tests that 
would reject the null hypothesis at the same level.  

Wishfully, we want to believe we remain "certain enough" to claim 
highly significant randomness. Before we make a remark on much 
more advanced tests for randomness, let’s begin from the most 
simplistic algorithm for a pseudo-random numbers delivery to our 
doorsteps—the Linear Congruential Generator. 

 2.4.4. Basic Pseudo-Random Number Generator 

The idea standing behind PRNGs is simple. We demand the 
highest possible degree of  randomness, the irreproducibility after 
any given period (of  time, of  digits, etc.), fast computation times, 
uniqueness of  the algorithm, and difficulty in prediction of  the 
next random number. What appears to be random at first glance 
may, in fact, be periodic! 

Linear Congruential Generators is the family of  PRNGs 
defined by their fundamental iterative formula: 

where for i = 0 the R0 is called the "seed", a, c, and m are constant, 
and the family is often denoted by LCG(a, c, m) of  mixed type (c > 
0) or MLCG(a, m) of  multiplicative (c = 0) type. A LCG returns a 
sequence of  pseudo-random integers R1, R2, … between 0 and m 
− 1. Each Ri is, in next step and if  required, scaled into the interval 
of  [0,1). If  the multiplier a is a primitive root modulo m and m is 
prime, the period of  this generator is m − 1. In Python we obtain 
the corresponding solution in the following way: 

 R = 2016      # the "seed" 
 a = 45319     # the "multiplier" 
 c = 171       # the "increment" 
 m = 2**5      # the "modulus" 

 N = 2*m - 1 

Ri+1 = (aRi + c) mod m

Code 2.29



 115

 # LCG(a,c,m) 
 rnd = [] 
 for i in range(N): 
        R = (a*R + c) % m 
        rnd.append(R) 

 print(rnd) 

which generates a list of  the integer random numbers: 

 [11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11,  
 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 
 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 
 8, 3, 0, 11, 24, 19, 16, 27, 8, 3] 

The repeatability of  the sequence can be quickly visually detected.  

Since the algorithm is plain and iterative, one can generate a 
sequence of  pseudo-random numbers with "undetected" pattern 
of  periodicity. How? Simply by making m large enough. That’s not 
all. A special combination of  a and c is also important. For 
example in the Java’s java.util.Random function: a = 25214903917, c 
= 11, and m = 281474976710656.  

Though fast, LCGs are highly unreliable for many computational 
tasks and simulations. It cannot be used for the parallel computing 
purposes where different threads may call and use the same seeds 
while running concurrently. Jones (2000) discusses why the 
importance of  using "your own" PRNG is so crucial. He also 
provides with some hints on the selection of  a good PRNG and 
C/C++ codes of  the modern, state-of-the-art generators. 

Detecting Pseudo-Randomness with re and collections Modules 
A simple formula which defines LCG—eventually can be hacked. 
Below we will write two simple Python programs that perform 
that task. Both will employ some tricks with a help of  the re 
(regular expressions) module from the Python’s Standard Library. 
Namely, we will aim at conversion of  any sequence of  random 
numbers generated by LCG into a single long string expression 
and detection of  the similar, repeatable patterns. 
 
We begin as previously: 

LCG Test for Non-Periodic Randomness 

 import re 

 R = 2016      # the "seed" 
 a = 45319     # the "multiplier" 
 c = 171       # the "increment" 
 m = 2**5      # the "modulus" 
 N = 2*m - 1 

 # LCG(a,c,m) 
 rnd = [] 
 for i in range(N): 
        R = (a*R + c) % m 
        rnd.append(R) 

Code 2.30 



 116

 print("rnd:\n%s\n" % rnd) 

 # cover rnd list into single string expression 
 seq = "".join(str(s) for s in rnd) 
 print("rnd sequence:\n%s" % seq) 

where a list of  random numbers rnd is transformed into a single 
string, seq, making use of  "".join(par) function. Though it may 
look odd, the function takes its input as defined by a par parameter. 
In our case, it is a list comprehension that converts every item 
from rnd list (a random number) into an individual string by 
str(item) and next, .join(par) function joins (glues) all those strings 
together with a separator specified between "" (here: no space nor 
any token assumed). If  you run that fragment of  code, you will 
obtain the following output: 

 rnd: 
 [11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11,  
 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 
 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 
 8, 3, 0, 11, 24, 19, 16, 27, 8, 3] 

 rnd sequence: 
 1124191627830112419162783011241916278301124191627830112419162783 
 011241916278301124191627830112419162783 

Continuing 2.30, 

 k = int(len(seq)/2.) 

 T = [] 
 npatt = 0 
 ntimes = 0 

 while(k >= 2): 
        patt = seq[0:k+1] 
        n = 0 
        pos = [] 

        for match in re.finditer(patt, seq): 
  # print(match) 
            s = match.start() 
            e = match.end() 
            if(s != 0 and e != 0): 
                n += 1 
                pos.extend([s, e]) 

by k we define a half  of  the length of  string seq what in our case 
gives k=51 at len(seq)=103. Since the half  of  the sequence is the 
longest possible repeatable pattern in seq, we extract it first and 
store the result within patt variable.  

The loop for is the goodie which we find in the Standard Library. 
It looks for pattern (patt) within a whole sequence of  seq. If  you 
uncomment the print(match) function in the code, for the first 
iteration you will see the Hell’s Kitchen at work: 

 <_sre.SRE_Match object; span=(0, 52), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(0, 51), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(52, 103), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(0, 50), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(52, 102), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(0, 49), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(52, 101), match='1124191627830112419162783011241916278301124191627> 
 <_sre.SRE_Match object; span=(0, 48), match='112419162783011241916278301124191627830112419162'> 

.extend 
A list method. See Section 2.3.9.

re.finditer



 117

 <_sre.SRE_Match object; span=(52, 100), match='112419162783011241916278301124191627830112419162'> 
 <_sre.SRE_Match object; span=(0, 47), match='11241916278301124191627830112419162783011241916'> 
 <_sre.SRE_Match object; span=(52, 99), match='11241916278301124191627830112419162783011241916'> 
 <_sre.SRE_Match object; span=(0, 46), match='1124191627830112419162783011241916278301124191'> 
 <_sre.SRE_Match object; span=(52, 98), match='1124191627830112419162783011241916278301124191'> 
 <_sre.SRE_Match object; span=(0, 45), match='112419162783011241916278301124191627830112419'> 
 <_sre.SRE_Match object; span=(52, 97), match='112419162783011241916278301124191627830112419'> 
 <_sre.SRE_Match object; span=(0, 44), match='11241916278301124191627830112419162783011241'> 
 <_sre.SRE_Match object; span=(52, 96), match='11241916278301124191627830112419162783011241'> 
 <_sre.SRE_Match object; span=(0, 43), match='1124191627830112419162783011241916278301124'> 
 <_sre.SRE_Match object; span=(52, 95), match='1124191627830112419162783011241916278301124'> 
 <_sre.SRE_Match object; span=(0, 42), match='112419162783011241916278301124191627830112'> 
 <_sre.SRE_Match object; span=(52, 94), match='112419162783011241916278301124191627830112'> 
 <_sre.SRE_Match object; span=(0, 41), match='11241916278301124191627830112419162783011'> 
 <_sre.SRE_Match object; span=(52, 93), match='11241916278301124191627830112419162783011'> 
 <_sre.SRE_Match object; span=(0, 40), match='1124191627830112419162783011241916278301'> 
 <_sre.SRE_Match object; span=(52, 92), match='1124191627830112419162783011241916278301'> 
 <_sre.SRE_Match object; span=(0, 39), match='112419162783011241916278301124191627830'> 
 <_sre.SRE_Match object; span=(39, 78), match='112419162783011241916278301124191627830'> 
 <_sre.SRE_Match object; span=(0, 38), match='11241916278301124191627830112419162783'> 
 <_sre.SRE_Match object; span=(39, 77), match='11241916278301124191627830112419162783'> 
 <_sre.SRE_Match object; span=(0, 37), match='1124191627830112419162783011241916278'> 
 <_sre.SRE_Match object; span=(39, 76), match='1124191627830112419162783011241916278'> 
 <_sre.SRE_Match object; span=(0, 36), match='112419162783011241916278301124191627'> 
 <_sre.SRE_Match object; span=(39, 75), match='112419162783011241916278301124191627'> 
 <_sre.SRE_Match object; span=(0, 35), match='11241916278301124191627830112419162'> 
 <_sre.SRE_Match object; span=(39, 74), match='11241916278301124191627830112419162'> 
 <_sre.SRE_Match object; span=(0, 34), match='1124191627830112419162783011241916'> 
 <_sre.SRE_Match object; span=(39, 73), match='1124191627830112419162783011241916'> 
 <_sre.SRE_Match object; span=(0, 33), match='112419162783011241916278301124191'> 
 <_sre.SRE_Match object; span=(39, 72), match='112419162783011241916278301124191'> 
 <_sre.SRE_Match object; span=(0, 32), match='11241916278301124191627830112419'> 
 <_sre.SRE_Match object; span=(39, 71), match='11241916278301124191627830112419'> 
 <_sre.SRE_Match object; span=(0, 31), match='1124191627830112419162783011241'> 
 <_sre.SRE_Match object; span=(39, 70), match='1124191627830112419162783011241'> 
 <_sre.SRE_Match object; span=(0, 30), match='112419162783011241916278301124'> 
 <_sre.SRE_Match object; span=(39, 69), match='112419162783011241916278301124'> 
 <_sre.SRE_Match object; span=(0, 29), match='11241916278301124191627830112'> 
 <_sre.SRE_Match object; span=(39, 68), match='11241916278301124191627830112'> 
 <_sre.SRE_Match object; span=(0, 28), match='1124191627830112419162783011'> 
 <_sre.SRE_Match object; span=(39, 67), match='1124191627830112419162783011'> 
 <_sre.SRE_Match object; span=(0, 27), match='112419162783011241916278301'> 
 <_sre.SRE_Match object; span=(39, 66), match='112419162783011241916278301'> 
 <_sre.SRE_Match object; span=(0, 26), match='11241916278301124191627830'> 
 <_sre.SRE_Match object; span=(26, 52), match='11241916278301124191627830'> 
 <_sre.SRE_Match object; span=(52, 78), match='11241916278301124191627830'> 
 <_sre.SRE_Match object; span=(0, 25), match='1124191627830112419162783'> 
 <_sre.SRE_Match object; span=(26, 51), match='1124191627830112419162783'> 
 <_sre.SRE_Match object; span=(52, 77), match='1124191627830112419162783'> 
 <_sre.SRE_Match object; span=(78, 103), match='1124191627830112419162783'> 

For every entry, seq’s index corresponding to match’s first and last 
character is extracted (s and e variables) and both added to the list 
with positions, pos. A number of  the same patterns patt in seq is 
denoted by running n variable. 

Now, writing further 2.30, 

     if(n > 2) and (float(patt)/N > 10): 
        print("\npattern: '%s'" % patt) 
        print(" detected %d times" % n) 
         for i in range(0, len(pos)-1, 2): 
                print("\tat %d:%d" % (pos[i], pos[i+1])) 

            dist = [] 
            dist = [(pos[i+1]-pos[i]) for i in range(1, len(pos)-1) 
    if i % 2 != 0] 

         print(" distances between patterns: %s" % dist) 
         test = dist.count(dist[0]) == len(dist) 
         print(" equally separated: %s" % test) 
         T.append(test) 
         if(test): 
                npatt += 1 
                ntimes += n 

    k -= 1 

if  at least three the same patterns occur, we display information on 
the pattern (the kind, number of  occurrences, start:end index 
position) and compute the distance, dist, between those patterns 
in seq. It is important for the further test. Namely, we want to 
make sure that all n > 2 patterns are equally placed in seq among 
each other. The variable of  dist is a Python’s list and test employs 



 118

the list method of  x.count(y) counting a number of  y in x (see the 
previous Chapter).  

After all, we reduce k by 1, i.e. we look for a new pattern shorter 
by one character. The output of  this section is: 

 pattern: '1124191627830112419162783' 
     detected 3 times 
        at 26:51 
        at 52:77 
        at 78:103 
     distances between patterns: [1, 1] 
     equally separated: True 
     
    pattern: '112419162783011241916278' 
     detected 3 times 
        at 26:50 
        at 52:76 
        at 78:102 
     distances between patterns: [2, 2] 
     equally separated: True 
     
    pattern: '11241916278301124191627' 
     detected 3 times 
        at 26:49 
        at 52:75 
        at 78:101 
     distances between patterns: [3, 3] 
     equally separated: True 
     
    ... 
     
    pattern: '11241' 
     detected 7 times 
        at 13:18 
        at 26:31 
        at 39:44 
        at 52:57 
        at 65:70 
        at 78:83 
        at 91:96 
     distances between patterns: [8, 8, 8, 8, 8, 8] 
     equally separated: True 
     
    pattern: '1124' 
     detected 7 times 
        at 13:17 
        at 26:30 
        at 39:43 
        at 52:56 
        at 65:69 
        at 78:82 
        at 91:95 
     distances between patterns: [9, 9, 9, 9, 9, 9] 
     equally separated: True 

We add the final test for detection of  the naive periodic patterns 
within any sequence of  numbers considered as a string: 

 test1 = (len(T) == sum(T)) 
 test2 = (sum(T) > 0) 

 print("\n%s" % ("-"*55)) 
 print(" LCG Test for Non-Periodic Randomness:"), 
 if(test1 and test2): 
       print(" FAILED") 
      print(" %d distinct pattern(s) detected, in total, %d times" 
    % (npatt, ntimes)) 



 119

 elif(test1 and not test2): 
       print(" PASSED\n Increase N from %d to %d and re-run" % 
            (N, N*10)) 
 print("%s" % ("-"*55)) 

displaying: 

 ------------------------------------------------------- 
  LCG Test for Non-Periodic Randomness: 
  FAILED 
  22 distinct pattern(s) detected, in total, 105 times 
 ------------------------------------------------------- 

Within Code 2.30 we have shown a new feature of  Python at 
work: operations on strings used to break LCG and detect the 
periodicity in its random numbers. Interestingly, if  we omit, in the 
very beginning, the list of  rnd to be generated by LCG algorithm 
and, instead of  it, we replace that fragment with: 

 from random import random 

 N = 103 
 rnd = [random() for _ in range(N)] 

the output from our test will be: 

 ------------------------------------------------------- 
  LCG Test for Non-Periodic Randomness: 
  PASSED 
  Increase N from 103 to 1030 and re-run 
 ------------------------------------------------------- 

Somehow, any sequence of  pseudo-random numbers generated by 
random.random function (regardless of  N) passes our simple test. 

Now, one may think of  a very similar test employing the 
functionality of  the re library as shown above, however, this time 
slightly modified: 

LCG Test for Non-Periodic Randomness based on examination of  
the frequency distribution of  the random numbers in seq.  

    from re import finditer 
    from random import randrange, random 
    from collections import Counter 
    import statistics as st 
     
    R = 2016      # the "seed" 
    a = 45319     # the "multiplier" 
    c = 171       # the "increment" 
    m = 2**5      # the "modulus" 
    N = 2*m - 1 
     
    # LCG(a,c,m) 
    rnd = [] 
    for i in range(N): 
        R = (a*R + c) % m 
        rnd.append(R) 
     
    rnd2 = [randrange(0, max(rnd)) for _ in range(len(rnd))] 
    # rnd = rnd2 
     

Code 2.31 



 120

    seq = "".join(str(s) for s in rnd) 
     
    print("rnd:\n%s\n" % rnd) 
    print("rnd sequence:\n%s\n" % seq) 
     
    ra = [] 
    for j in range(max(rnd)): 
        patt = str(j) 
        pos = [] 
        n = 0 
     
        for match in finditer(patt, seq): 
            s = match.start() 
            e = match.end() 
            if(s != 0 and e != 0): 
                n += 1 
                pos.extend([s, e]) 
     
        if(n > 1): 
            dist = [] 
            dist = [(pos[i+1]-pos[i]) for i in range(1, len(pos)-1) 
    if i % 2 != 0] 
            dist.sort() 
            print("\nPattern '%s' detected %d times, dist: %s" % 
         (patt, n, dist)) 
            c = Counter(dist) 
            v = c.values() 
            # print(c) 
            # print(list(v)) 
            # print(list(v).count(1))  # how many "1" in list "v"? 

            ratio = 1.0 - list(v).count(1)/float(len(v)) 
            ra.append(ratio) 
     
    print("\n%s" % ("-"*45)) 
    print(" LCG Test for Non-Periodic Randomness (2)"), 
    if(st.mean(ra) == 1.0): 
        print(" FAILED") 
    else: 
        print(" PASSED") 
    print("%s" % ("-"*45)) 

delivering the following results: 

 rnd: 
 [11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11,  
 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 
 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 8, 3, 0, 11, 24, 19, 16, 27, 
 8, 3, 0, 11, 24, 19, 16, 27, 8, 3] 

 rnd sequence: 
 1124191627830112419162783011241916278301124191627830112419162783 
 011241916278301124191627830112419162783 

    Pattern '0' detected 7 times, dist: [12, 12, 12, 12, 12, 12] 
    Pattern '1' detected 31 times, dist: [0, 0, 0, 0, 0, 0, 0, 1, 1, 
             1, 1, 1, 1, 1, 1, 2, 2, 2, 
             2, 2, 2, 2, 2, 6, 6, 6, 6, 
             6, 6, 6] 
    Pattern '2' detected 16 times, dist: [5, 5, 5, 5, 5, 5, 5, 5, 6, 
             6, 6, 6, 6, 6, 6] 
    Pattern '3' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '4' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '6' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '7' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '8' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '9' detected 8 times, dist:  [12, 12, 12, 12, 12, 12, 12] 
    Pattern '11' detected 7 times, dist: [11, 11, 11, 11, 11, 11] 
    Pattern '12' detected 8 times, dist: [11, 11, 11, 11, 11, 11, 11] 

collections.Counter 



 121

    Pattern '16' detected 8 times, dist: [11, 11, 11, 11, 11, 11, 11] 
    Pattern '19' detected 8 times, dist: [11, 11, 11, 11, 11, 11, 11] 
    Pattern '24' detected 8 times, dist: [11, 11, 11, 11, 11, 11, 11] 

--------------------------------------------- 
 LCG Test for Non-Periodic Randomness (2) 
 FAILED 
--------------------------------------------- 

As you may see in the code, we have not done too much till the 
definition of  dist list inside the loop. However, the design of  the 
loop has been thought differently. We scan the whole space of  
integer numbers from 0 to the maximal number found in the list 
of  random numbers, rnd, generated by LCG. In this test, for each 
number to be assumed as a pattern (patt), we want to compute all 
distances as in 2.30, however, this time, additionally to examine the 
frequency of  the pattern appearance. 

By the introduction of  that modification to the previous code, we 
gain an opportunity to use a new function of  Counter from the 
collections module. If  any number, say, 3, is present in the list: 

 >>> x = [1, 3, 4, 1, 5, 3, 7] 

the result of  the Counter function, applied onto x would be: 

 >>> c = Counter(x) 
 >>> c 
 Counter({1: 2, 3: 2, 4: 1, 5: 1, 7: 1}) 

i.e. we quickly find that 3 appears two times in x. Extracting the 
values and/or keys follows: 

 >>> list(c.keys()) 
 [1, 3, 4, 5, 7] 
 >>> list(c.values()) 
 [2, 2, 1, 1, 1] 

as Counter returns data in the form of  Python’s dictionary (more 
on dictionaries in Chapter 2.5). 

If  we detect the pattern patt, say, of  11 in seq seven times to be 
equidistant, the calculated ratio must be equal 1. This is not the 
case if  we uncomment in 2.31: 

 rnd2 = [randrange(0, max(rnd)) for _ in range(len(rnd))] 
    rnd = rnd2 

and re-run the program. First, by doing so, we overwrite LCG list 
of  rnd with the uniform integer random numbers falling between 
0 and maximal value found in rnd. It is a very handy function 
coming from the random module you may wish to use a number of  
times in your future programs. Secondly, the output delivers, e.g. 

 rnd: 
 [6, 7, 17, 24, 14, 9, 23, 17, 14, 1, 20, 10, 6, 3, 6, 0, 6, 11, 
 18, 24, 13, 25, 25, 24, 15, 21, 9, 4, 19, 18, 26, 26, 20, 5, 1, 
 23, 20, 8, 2, 2, 21, 1, 0, 13, 6, 3, 22, 16, 14, 7, 14, 2, 12,  
 16, 8, 21, 14, 14, 2, 16, 25, 17, 6] 

random.randrange 
returns a uniform integer rv in [a, b) 
interval. For example: 

>>> [randrange(0, 11) for _ in 
     range(10)] 
[5, 3, 3, 2, 5, 10, 7, 7, 9, 4]



 122

 rnd sequence: 
 67172414923171412010636061118241325252415219419182626205123208 
 222110136322161471421216821141421625176 

 Pattern '0' detected 6 times, dist: [1, 3, 5, 6, 30] 
 Counter({1: 1, 30: 1, 3: 1, 5: 1, 6: 1}) 
 [1, 1, 1, 1, 1] 
 5 

 Pattern '1' detected 28 times, dist: [0, 0, 0, 0, 1, 1, 1, 1, 1, 
  1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8] 
 Counter({1: 7, 2: 6, 0: 4, 3: 4, 8: 2, 4: 1, 5: 1, 6: 1, 7: 1}) 
 [4, 7, 6, 4, 1, 1, 1, 1, 2] 
 4 

 Pattern '2' detected 23 times, dist: [0, 0, 0, 1, 1, 1, 1, 1, 1, 
  2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 7, 12] 
 Counter({1: 6, 3: 4, 0: 3, 7: 3, 2: 2, 4: 1, 5: 1, 6: 1, 12: 1}) 
 [3, 6, 2, 4, 1, 1, 1, 3, 1] 
 4 

 ... 

 Pattern '24' detected 3 times, dist: [6, 23] 
 Counter({6: 1, 23: 1}) 
 [1, 1] 
 2 

 Pattern '25' detected 3 times, dist: [0, 59] 
 Counter({0: 1, 59: 1}) 
 [1, 1] 
 2 

 --------------------------------------------- 
  LCG Test for Non-Periodic Randomness (2) 
  PASSED 
 --------------------------------------------- 

Since we deal with the highest degree of  randomisation delivered 
by the random.randrange function, we do not expect to detect the 
equidistant spaces between the same numbers (patterns) in seq. 
For example, pay attention to the pattern ’24’. It is detected 3 times 
in seq but separated, first, by 23 and next by 6 digits: 

 67172414923171412010636061118241325252415219419182626205123208 
 222110136322161471421216821141421625176 

A variable v in 2.31 stores information of  how many different 
distances between the patterns occurred. If  ’24’ were equally 
separated, ratio would be equal 1. This time, for all patterns, the 
mean value for all derived ratios is different than 1 what justifies 
the result of  the test. 

A similar test one can perform by employing random.random() 

function. Code 2.31 could be supplemented with a manual 
conversion, e.g.: 

 from math import trunc 
 rnd2 = [trunc(random()*10e5) for _ in range(len(rnd))] 
 rnd = rnd2 

The possibilities of  modifications of  both codes 2.30 and 2.31 are 
nearly endless. Try yourself. Happy hacking! ☺
  



 123

 2.4.5. Mersenne Prime Numbers 

As we have mentioned in the previous Section, the choice of  the 
proper constants for the usefulness of  the fundamental Linear 
Congruential Generator is peculiar. LCG may reach the full period 
of  m, inter alia, if  m itself  is a co-prime. A much "stronger" prime 
numbers constitute so-called Mersenne Primes defined as: 

where n is a prime number. It has been shown that such condition 
is weak and an additional test which would allow for a quick 
discovery of  the Mersenne prime numbers is the Lucas-Lehmer 
test for primality, namely, let: 

then Mn is prime if  and only if  xn-2 is divisible by Mn. Thanks to 
that, the search for "large" primes becomes accessible for anyone 
with an access to a personal computer. 

Up to date, the largest, 48th (found but unconfirmed) Mersenne 
Prime corresponds to  n = 57885161. The number itself  has over 
17 million digits and has been found in 2013 within the Great 
Internet Mersenne Prime Search (GIMPS) Project. 

It is not too difficult to understand why the "large" Mersenne 
Primes are so attractive for the needs of  simple LCGs. The key is 
the period of  a generator. The longer the better. If  fact, if  any 
complex but efficient algorithm generating a stream of  pseudo-
random numbers displays a very long period of  repetition, in the 
limit of  its usefulness, it remains safe for various applications. 

As an exercise in Python, let’s provide with a full algorithm for the 
search of  Mersenne Primes (courtesy of  Joe Kelley) supplemented 
with a new language feature: the measurement of  time. 

Mersenne Prime Search 

 import time 

    def mersenne(n): 
        return 2 ** n - 1 
         
    def mersenneisprime(n): 
        if not(simpleisprime(n)): 
            return False 
        if(n == 1): 
            return False 
        if(n == 2): 
            return True 
        m = mersenne(n) 
        x = 4  # Lucas-Lehmer test for primality 
        for i in range(n-2): 
            x = (x*x-2) % m 
        return (x == 0) 
     
     

Mn = 2n � 1

x0 = 4 and xi = x

2
i�1 � 2

Code 2.32 

After the 23rd Mersenne prime was 
found at the University of  Illinois, 
the mathematics department was 
so proud that the chair of  their 
department, Dr. Bateman, had their 
postage meter changed to stamp 
211213-1 is prime on each envelope.



 124

    def simpleisprime(n): 
        if(n == 1): 
            return False 
        div = 2 
        while(div*div <= n): 
            if(n % div == 0): 
                return False 
            div = div+1 
        return True 

     
    # main program 
    n = 0 
    t0 = time.time() 

    while True: 
        if mersenneisprime(n): 
            t = time.time() - t0 
            print("M_"+str(n)+" = "+str(mersenne(n))) 
            print("\tlength:\t\t %g digits" % len(str(mersenne(n)))) 
            print("\tfound in:\t %.5fs (%.5fh)\n" % (t, t/3600.)) 
        n += 1 

In our program we define three custom functions. The last one, 
simpleisprime, checks whether a number is a simple prime number. 
The second one, mersenneisprime, makes use of  the last one and 
additionally applies Lucas-Lehmer test assuming any given n based 
on which we define a Mersenne number utilising a simple mersenne 
function. 

A real joy delivers the main program which we commence by 
defining a time-related variable of  t0. Python’s Standard Library of  
time facilitates the measurement of  the elapsed time between 
any two lines of  code. In our case, the command of: 

 t0 = time.time() 

stores an inner integer number (expressed in seconds from some 
initial time marker). This is where we start counting time since the 
inception of  our private "Mersenne Prime Search". Next, in the 
loop, we apply a quick test for the Mersenne primality, i.e., 

 if mersenneisprime(n): 

and if  its boolean value is True then we know that a new Mn prime 
has been discovered and, immediately, we perform the another 
measurement of  time in order to calculate the time consumed for 
its search; defined as a difference. 

Simple in coding. More exciting in execution! Have a look: 

 M_2 = 3 
        length:   1 digits 
        found in:  0.00000s (0.00000h) 

    M_3 = 7 
        length:   1 digits 
        found in:  0.00005s (0.00000h) 

    M_5 = 31 
        length:   2 digits 

time.time() 

while True: 
An infinite loop that never 

terminates itself.

More on time module and time 
measurements see Appendix.



 125

        found in:  0.00006s (0.00000h) 

    M_7 = 127 
        length:   3 digits 
        found in:  0.00008s (0.00000h) 

    M_13 = 8191 
        length:   4 digits 
        found in:  0.00010s (0.00000h) 

    M_17 = 131071 
        length:   6 digits 
        found in:  0.00011s (0.00000h) 

    M_19 = 524287 
        length:   6 digits 
        found in:  0.00013s (0.00000h) 

    M_31 = 2147483647 
        length:   10 digits 
        found in:  0.00016s (0.00000h) 

    M_61 = 2305843009213693951 
        length:   19 digits 
        found in:  0.00033s (0.00000h) 

    M_89 = 618970019642690137449562111 
        length:   27 digits 
        found in:  0.00055s (0.00000h) 

    M_107 = 162259276829213363391578010288127 
        length:   33 digits 
        found in:  0.00074s (0.00000h) 

    M_127 = 170141183460469231731687303715884105727 
        length:   39 digits 
        found in:  0.00092s (0.00000h) 

    M_521 = 68647976601 … 115057151 
        length:   157 digits 
        found in:  0.02121s (0.00001h) 

    M_607 = 53113799281 … 393219031728127 
        length:   183 digits 
        found in:  0.03308s (0.00001h) 

    M_1279 = 10407932194 … 55703168729087 
        length:   386 digits 
        found in:  0.35498s (0.00010h) 

    M_2203 = 14759799152 … 6697771007 
        length:   664 digits 
        found in:  2.33282s (0.00065h) 

    M_2281 = 446087557 … 418132836351 
        length:   687 digits 
        found in:  2.68216s (0.00075h) 

    M_3217 = 2591170860 … 60677362909315071 
        length:   969 digits 
        found in:  9.29050s (0.00258h) 

    M_4253 = 1907970075 … 87815350484991 
        length:   1281 digits 
        found in:  26.13799s (0.00726h) 

    M_4423 = 285542542 … 2608580607 
        length:   1332 digits 
        found in:  29.79591s (0.00828h) 

    M_9689 = 4782202788 … 826225754111 



 126

        length:   2917 digits 
        found in:  551.35114s (0.15315h) 

    M_9941 = 3460882824908 … 883789463551 
        length:   2993 digits 
        found in:  611.11865s (0.16976h) 

    M_11213 = 28141120 … 91476087696392191 
        length:   3376 digits 
        found in:  921.22742s (0.25590h) 

    M_19937 = 43154247 … 39030968041471 
        length:   6002 digits 
        found in:  8018.67913s (2.22741h) 

    M_21701 = 448679166119 … 8353511882751 
        length:   6533 digits 
        found in:  11050.95511s (3.06971h) 

    M_23209 = 4028741157789 … 523779264511 
        length:   6987 digits 
        found in:  14460.4163s (4.01678h) 

As we can see, running Code 2.32 on MacBook Pro equipped with 
Intel i7 2.6GHz CPU and 16GB RAM—the "discovery" of  the 
26th number took a bit over 4 hours (1 CPU core).  

You can verify the results at http://www.mersenne.org/primes/ 
webpage that lists all confirmed numbers as well as those still 
waiting for confirmation. The 26th number has been found in 
February 1979. At this point, it is worth reflecting upon the power 
of  computing at our disposal — today. 

Try to run the code for a week. I wonder how many Mn you can 
find? E-mail me then. We will come back to the multi-core Python 
programming in Volume II. 

 2.4.6. Randomness of random. Mersenne Twister. 

So far we understood that, in general, the output in a form of  a 
random number came out from a dedicated computer PRNG 
function. To be perfectly honest, it is like a refined gentleman, of  a 
sophisticated quality recognised by its efficiency when a great 
number of  drafts is requested.  

In Python 3.5 (2.7.10) the algorithm being responsible for delivery 
of  pseudo-random numbers is known as Mersenne Twister (MT) 
developed by two Japanese researchers Makoto Matsumoto and 
Takuji Nishimurain in 1997 and has become "the standard" 
worldwide.  

Its basic version uses a 32-bit word generation and is labeled as 
MT19937. It has been designed with a consideration on the flaws 
of  the various past and currently existing PRNGs. The 
mathematics standing behind the algorithm itself  is beyond the 
scope of  this book. However, as one might suspect, the algorithm 



 127

must repeat itself  and in case of  our Japanese hero, its period is 
very long, defined by the 24th Mersenne Prime number, i.e. 

We derived it in the previous Section.  

A full story about the research on MT you may find at http://
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html — the 
official website of  MT. For the sake of  curiosity, below, we will 
scan across one of  the accessible Python implementation of  the 
Mersenne Twister algorithm. Although the code is possible to be 
found on the Web (e.g. http://code.activestate.com/recipes/
578056-mersenne-twister/) its functionality may not be perfect.  

In this exercise we aim at the inspection of  the complexity of  the 
MT algorithm itself  and at showing an example of  implementation 
utilising some additional Python elements, for instance, bitwise 
operators (omitted in this Volume) or global variables. 

Mersenne Twister in Python. 

from datetime import datetime 

     
    def initialize_generator(seed): 
        global MT 
        global bitmask_1 
        MT[0] = seed 
        for i in range(1,624): 
            MT[i] = ((1812433253 * MT[i-1]) ^ ((MT[i-1] >> 30) + i)) 
     & bitmask_1 

     
    def extract_number(): 
        global index 
        global MT 
        if index == 0: 
            generate_numbers() 
        y = MT[index] 
        y ^= y >> 11 
        y ^= (y << 7) & 2636928640 
        y ^= (y << 15) & 4022730752 
        y ^= y >> 18 
     
        index = (index + 1) % 624 
        return y 
     
    def generate_numbers(): 
        global MT 
        for i in range(624): 
            y = (MT[i] & bitmask_2) + (MT[(i + 1 ) % 624] &  
       bitmask_3) 
            MT[i] = MT[(i + 397) % 624] ^ (y >> 1) 
            if y % 2 != 0: 
                MT[i] ^= 2567483615 
     
     
    # main program 
    MT = [0 for i in range(624)] 
    index = 0 
    bitmask_1 = (2 ** 32) - 1 
    bitmask_2 = 2 ** 31 

M19937 = 219937 � 1 = 431542479...968041471

Code 2.33 



 128

    bitmask_3 = (2 ** 31) - 1 
     
    now = datetime.now() 
    initialize_generator(now.microsecond) 
     
    # printing 10 random numbers 
    for i in range(10): 
        rnd = extract_number()  # an integer! 
        print(rnd) 

A possible output could be: 

 3489063849 
 884313957 
 3591573376 
 4172670803 
 3535921056 
 2614888581 
 229773391 
 3718065951 
 1387448252 
 4277039060 

As for today, the Mersenne Twister established its firm position 
among numerous PRNGs as a fast and reliable random number 
source. It has passed a lot (though not all) of  tests for randomness.  
Jones (2000) points at more reliable and newer algorithms 
characterised even by much longer periods. Explore them. 

Every new random number generator needs to pass a rich set of  
tests, such as—the NIST Suite (http://csrc.nist.gov/groups/ST/
toolkit/rng) composed of  more than 15 cryptographic tests for 
randomness, in order to determine whether it is sufficient for the 
cryptographic use. 

The Python version of  NIST Suite has been recently provided by 
my friend and quant fellow Stuart Reid (2015). Earlier the same 
year, I described a novel approach making use of  the Walsh–
Hadamard Transform and found a strong evidence of  randomness 
for Mersenne Twister algorithm as implemented in Python 2.7.10 
and 3.4 (http://www.quantatrisk.com/2015/04/07/walsh-
hadamard-transform-python-tests-for-randomness-of-financial-
return-series/). 

Now, one the easiest ways to obtain a float number (e.g. of  a 12+ 
digit precision and to be in (0; 1) interval) out of  the provided 
output is to modify the last four lines of  Code 2.33 in the 
following way: 

 # printing 10 random numbers (float) 
 for i in range(10): 
        rnd = '0.' + str(extract_number()) + str(extract_number()) 
       rnd = float(rnd) 
       print(rnd) 

leading to, e.g.: 

 0.38811813362753395 
 0.6571432443750916 



 129

 0.3169495821382487 
 0.8952493993946118 
 0.9744576171808691 
 0.9519982367771294 
 0.2890105433198552 
 0.4355670321291 
 0.4654332166969249 
 0.7070961503032999 

Quite handy flexibility of  using both strings, integers, and floats—
all together. Nothing new. Just a few seconds of  knowledge mixed 
with our imagination.

As an exercise, try to apply K-S Test for the output obtained based 
on Code 2.33. Can you confirm uniform distribution for those 
random numbers? Write your own program that merges Code 2.33 
as an input and Code 2.28 as a testing framework. What are your 
findings? You should be surprised. Tell me why. ☺ 

Seed and Functions for Random Selection 
When you plant a seed of  an oak tree, eventually it will grow 
reaching an impressive size. The problem is that you cannot 
recreate exactly the same tree from the same seed. It does not 
apply to PRNGs like the built-in Mersenne Twister. If  exactly the 
same stream of  random numbers has to be generated, one can 
employ the random.seed function. 

In Code 2.33 the seed value is taken from the current value of  
time read out with a help of, mentioned earlier, datetime module. 
We assumed the seed is an integer number corresponding to a 
microsecond: 

 >>> from datetime import datetime 
 >>> now = datetime.now() 
 >>> now 
 datetime.datetime(2015, 3, 21, 20, 39, 34, 610531) 
 >>> now.microsecond 
 610531 

Such method can be effective but limited by 999999, i.e.  the total 
number of  possible combinations. Analyse the following code: 

 from datetime import datetime 
 import random as r 

 x = datetime.now() 
 x = x.microsecond 

 r.seed(x) 
 print("seed = %g" % x) 
 print("rv   = %.10f" % r.random()) 
 
 # shuffle the list 
 lst = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] 
 r.shuffle(lst, r.random) 
 print(lst) 

 # random sample from the list 

Code 2.34 

random.seed 

random.shuffle 



 130

  
print(r.sample(lst, 3)) 

where one of  possible outputs is: 

 seed = 319303 
 rv   = 0.5248070368 
 ['c', 'e', 'b', 'f', 'd', 'g', 'a'] 
 ['a', 'g', 'e'] 

First of  all, we specified the seed based on the current value of  
microsecond. If  the function is called as seed() or completely 
omitted, the current system time is used in generating the seed (by 
default). Therefore, the use of  seed(seed) makes sense if  we want 
to repeat all "random" calculations with the same seed. 

Secondly, for a list lst we employed the shuffle function which 
returns a new order of  the items in a random manner. The 
function works in-place. On the other hand, the sample(lst, 3) 
function picks randomly three items from the list. The latter can 
be easily used in order to build a simple LOTTO simulator: 

 import random 

 x = range(1, 50) 
    lucky6 = list(random.sample(x, 6)) 
   lucky6.sort() 
    print(lucky6) 

where we pick 6 lucky numbers among the numbers between 1 
and 49, e.g: 

 [10, 14, 21, 29, 41, 45] 

The total number of  combinations is 13983816. The same result 
we can get with the application of  the choice function. It returns a 
random element from the non-random sequence: 

 import random 
     
    x = range(1, 50) 
    newlucky6 = [] 
     
    for i in range(1, 7): 
        num = random.choice(x) 
        while num in newlucky6: 
            num = random.choice(x) 
        else: 
            newlucky6.append(num) 
     
    newlucky6.sort() 
    print(newlucky6) 

returning, e.g.: 

 [7, 11, 12, 25, 26, 46] 

Here, we ensure that the numbers picked by the choice function are 
not the same. 

random.sample 

random.choice 



 131

 
Random Variables from Non-Random Distributions 
The random module comes with some basic ready-to-use functions 
allowing us to draw random numbers associated with a specific 
distribution. Say, you need to generate a sample of  rvs based on 
the underlying lognormal distribution described by two 
parameters. Employing the lognormvariate function your wish is 
possible: 

 import random 
 from matplotlib import pyplot as plt 

 mu = 1.21 
 sigma = 0.43 
 r = [random.lognormvariate(mu, sigma) for i in range(100000)] 

 plt.figure(figsize=(8, 5)) 
 plt.hist(r, bins=50) 
 plt.show() 

where the empirical histogram of  the lognormal rvs we plot for 
the visual verification (see above). 

In summary, the random module offers the following functions: 

random. Functions 

randrange(stop) 
randrange(start, stop, [step]) 
randint(a, b) 
random() 
uniform(a,b) 
triangular(low, high, mode) 
betavariate(alpha, beta) 
expovariate(lambda) 
gammavariate(alpha, beta) 
gauss(mu, sigma) 
lognormvariate(mu, sigma) 
paretovariate(alpha) 
weibullvariate(alpha, beta) 

See References for further exploration of  the topic. More on random 
numbers you will learn in Section 3.4. 

random.lognormvariate 

Code 2.35 



 132

 2.4.7. urandom 

Lastly, a short comment on a viable alternative to the Mersenne 
Twister implemented within the random module. A computer may 
be used as source of  randomness. Think for a moment that 
anything from the your keystrokes to the vibration of  the cooling 
fan may be considered as a source of  entropy. The operating 
system has a continuously running method of  generating random 
numbers from the kernel space. The generator keeps the estimate 
of  a number of  bits of  noise in the entropy pool. In Linux and 
Mac OS X, that information is stored at the location of  /dev/
urandom. There exists an abundant documentation across the Web 
arguing on /dev/urandom as an attractive source of  pseudo-random 
numbers of  the cryptographic quality. I strongly encourage you to 
explore this field for your own curiosity. Trust me. It’s fascinating! 

In Python 3.5, we can use /dev/urandom in the following way: 

 from matplotlib import pyplot as plt 
    import array 
    import os 
     
   # Generates n random floats in the range [0, 1) using  
 # os.urandom() as source of randomness 
    def urandom_random(n): 
        data = os.urandom(n * 8) 
        arr = array.array("Q", data) 
        return [float(ulong)/(2**64+1) for ulong in arr.tolist()] 
     
  # Generates n random ints in the range [a, b] using os.urandom() 
 # as source of randomness 
    def urandom_randint(n, a, b): 
        random = urandom_random(n) 
        return [int(r * (b-a+1) + a) for r in random] 
     
    r = urandom_random(1000000) 
    rint = urandom_randint(1000000, 5, 19) 
     

    plt.figure(figsize=(8, 5)) 
    plt.hist(r, bins=50)  # or (rint,  
    plt.show() 

what returns a lovely uniform distribution for floats (see above). 
More on /dev/urandom at you will find at: https://en.wikipedia.org/
wiki//dev/random webpage. 

Code 2.36 



 133

 References 

Jones, D., 2000, Good Practice in (Pseudo) Random Number Generation 
for Bioinformatics Applications, src: http://www0.cs.ucl.ac.uk/staff/
d.jones/GoodPracticeRNG.pdf  

Matsumoto, M., Nishimura, T., Mersenne Twister: A 623-dimensionally 
equidistributed uniform pseudorandom number generator, ACM 
Transactions on Modeling and Computer Simulation Vol. 8, No. 1, 
January pp.3-30 1998 

Reid, S., 2015, Random walks down Wall Street, Stochastic Processes in 
Python, src: http://www.turingfinance.com/random-walks-down-
wall-street-stochastic-processes-in-python/ 

 Further Reading 

Janke W., 2002, Pseudo Random Numbers: Generation and Quality 
Checks, Quantum Simulations of  Complex Many-Body Systems: 
From Theory to Algorithms, Lecture Notes, J. Grotendorst, D. 
Marx, A. Muramatsu (Eds.), John von Neumann Institute for 
Computing, Julich, NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 
447-458, src: https://www.physik.uni-leipzig.de/~janke/Paper/
nic10_447_2002.pdf  

Hardy, S., 2004, Pseudorandom Number Generation, Entropy Harvesting, 
and Provable Security in Linux, src: http://www.blackhat.com/
presentations/bh-europe-04/bh-eu-04-hardy/bh-eu-04-hardy.pdf  

Malone M., 2015, TIFU by using Math.random(), src: https://
med ium.com/@betab l e/ t i fu -by -us ing -ma th - r andom-
f1c308c4fd9d#.mt0nz380p 

Rock, A., 2005, Pseudorandom Number Generators for 
Cryptographic Applications, src: https://www.rocq.inria.fr/secret/
Andrea.Roeck/pdfs/dipl.pdf  



 134



 135

2.5. Beyond the Lists 

Python offers us with three more built-in data structures: tuples, 
sets, and dictionaries. Together with lists, we become equipped 
with an appealingly powerful arsenal for data manipulation. This 
Section addresses the most practical aspects of  the remaining three 
musketeers. 

 2.5.1.  Protected by Tuples 

Tuples are some kind of  isolated and immutable creatures, in many 
instances and behaviour resembling Python’s lists. However, they 
are different. Playing with tuples is like exploring new living 
organisms that can be immediately distinguished. A trait of   the 
immutability for tuples means that once created they cannot be 
altered so easily when it comes to their size and content. 

The most elementary form of  a tuple would be: 
 
 >>> t = 1, 
 >>> t 
 (1,) 
 >>> type(t) 
 <class 'tuple'> 

possible to be defined in a few alternative ways, e.g.: 
 
 >>> x = 1 
 >>> tuple([x])  # assume an input as a direct list 
 (1,) 
  
while 

 >>> tuple(x) 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: 'int' object is not iterable 
  
returns an error.  

A bit more sexy and mature look of  the tuple would be: 

 >>> t = (3.14, -12, 'call me', [-9, -8, -7], 3-7.1j) 
 >>> t  
 (3.14, -12, 'call me', [-9, -8, -7], (3-7.1j)) 
  
where we stored a collection of  numbers, a string, list, and even 
one complex number. Again, the main difference between the lists 
and tuples is in their brackets’ shape, [] vs. (), respectively. 

Data Processing and Maths of Tuples 
A primary reason for using tuples is not only data grouping but 
protecting the content of  a tuple from outside. It is a kind of  an 
inverse concept of  the astronomical black-hole: you can retrieve 

Note that the following conversion 
won’t work too: 

>>> x = 1 
>>> tuple(list(x)) 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
TypeError: 'int' object is not iterable

The main characteristic of  a tuple 
are round brackets, if  present, and 
at least one comma after the first 
element.

tuple



 136

something from a tuple but it is impossible to amend what has 
been already put and placed there. Have a look: 

 >>> t = (3.14, -12, 'call me', [-9, -8, -7], 3-7.1j) 

 >>> t[0] 
 3.14 
 >>> t[1] 
 -12 
 >>> t[-2] 
 [-9, -8, -7] 
  
but 

 >>> t[0] = 2.71 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: 'tuple' object does not support item assignment 
  
Above, we have seen that an extraction of  an indexed item for a 
tuple works the same way as for the lists. Slicing? The same story: 

 >>> t[-3:-1] 
 ('call me', [-9, -8, -7]) 
 >>> c = t[-1] 
 >>> c 
 ((3-7.1j),) 
 >>> type(c) 
 <class 'tuple'> 
  
and the outputs come out as tuples. Pay attention to the form of  c 
variable in this example. The additional round brackets around the 
complex number may be misleading and it does not mean we deal 
with a tuple inside the tuple. You may check it quickly that: 

 >>> c[0] 
 (3-7.1j) 
 >>> type(c[0]) 
 <class 'complex'> 

 >>> c[1] 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 IndexError: tuple index out of range 
  
Tuples have built-in tuple functions, i.e.: 

 >>> t = tuple(list(range(6))); t 
 (0, 1, 2, 3, 4, 5) 
 >>> min(t) 
 0 
 >>> max(t) 
 5 
 >>> len(t)  # a number of elements inside the tuple 
 6 
  
With a help of  math, statistics or numpy module, you can perform 
the basic operations on tuples storing numbers, for instance: 

 >>> import math 
 >>> import statistics as st 
 >>> import numpy as np 

 >>> math.fsum(t) 
 15.0 
 >>> np.sum(t) 
 15 



 137

 >>> st.mean(t) 
 2.5 

however: 

 >>> -t 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: bad operand type for unary -: 'tuple' 

 >>> x = -1*t 
 >>> x 
 () 
 >>> type(x) 
 <class 'tuple'> 
 >>> x[0] 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 IndexError: tuple index out of range 
  
where the last operation returns an empty tuple without any 
elements inside. Honestly, a bit bizarre organism that you can, in 
fact, sometimes meet in the Python’s ecosystem. 

Methods and Membership 
The arithmetics of  tuples is counterintuitive, pointing at no 
element-wise operations as we know from algebra: 

 >>> t 
 (0, 1, 2, 3, 4, 5) 
 >>> t + 1 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: can only concatenate tuple (not "int") to tuple 
   
and 

 >>> t + 10, 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: can only concatenate tuple (not "int") to tuple 
   
but 

 >>> t + (10,) 
 (0, 1, 2, 3, 4, 5, 10) 
 >>> t + ('Volvo', 4, 'Life') 
 (0, 1, 2, 3, 4, 5,  'Volvo', 4, 'Life') 
 >>>('Counting',":") + t  
 ('Counting', ':', 0, 1, 2, 3, 4, 5) 
   
extends tuple by appending another tuple. Unfortunately, tuples do 
not have .extend(), .append(), .remove(), nor .pop() methods as we 
have witnessed for the lists. However, the following operations 
work: 

 >>> t 
 (0, 1, 2, 3, 4, 5) 
 >>> t * 2 
 (0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5) 
 >>> tuple([t[i] for i in range(2, 6)])  
 (2, 3, 4, 5) 
   



 138

A verification of  the membership may be tricky, therefore try to 
memorise what returns an invalid output: 

 >>> t 
 (0, 1, 2, 3, 4, 5) 
 >>> (2, 3) in t 
 False 
 >>> (2,) in t  
 False 
 >>> 2 in t  
 True 

   
Tuple Unpacking 
Probably the most useful application of  the tuples in Python is so-
called tuple unpacking. Say, we want to store in a tuple the 
geographical coordinates of  the Changi Airport in Singapore. 
Next, we wish to unpack them into two separates variables: the 
first one storing the N (north) and the second one storing E (east) 
coordinate expressed in degrees, respectively. We achieve it by: 

 >>> changi = 1.364667, 103.991563 
 >>> n, e = changi 
 >>> n 
 1.364667 
 >>> e  
 103.991563 
   
If  for some reason, we are solely interested in N value then the use 
of  an underscore character will suppress E while unpacking: 

 >>> del e  # removes e variable, if defined earlier  
 >>> n, _ = changi 
 >>> n 
 1.364667 
   
however 

 >>> n = changi 
 >>> n 
 (1.364667, 103.991563) 
   
will return n as a tuple.  

The same method is very popular for returning results computed 
within a custom function, say: 

 def changi2city(a, b, unitprice): 
        from math import sqrt 
        x, y = a 
        x1, y1 = b 
        distance = sqrt((x-x1)**2 + (y-y1)**2) 
        fuel_consumption = distance * unitprice 
        return distance, fuel_consumption  # return a tuple 

 changi = 1.364667, 103.991563 
 singapore = 1.292073, 103.861430 

 dist, fc = changi2city(changi, singapore, 1.2) 
 print(dist, fc) 

 0.1490116992890162 0.17881403914681943 

Swapping with tuples: 

>>> e, n =  n, e 
>>> e 
1.364667 
>>> n 
103.991563



 139

Named Tuples 
Lastly, Python’s Standard Library offers a brilliant feature that one 
can utilise as a fancy part of  your code—the named tuples. They 
become available if  the namedtuple function is being imported from 
the collections module. 

Named tuples allow us to assign physical names to the tuple’s 
elements and use them as a tuple object with specified labels.  

In the following example, we will employ this procedure for 
describing the market (tangent) portfolio defined by risk, return, 
and risk-free asset values, and next, by selecting a portfolio placed 
randomly in a risk-return plane, we will check its validity assuming 
an approximated shape of  the efficient frontier: 

 from collections import namedtuple 
 

 frontier = namedtuple('Frontier', ['risk', 'ret', 'riskfree']) 
 market = frontier(0.236, 0.21, 0.04) 

 print(frontier) 
 print(market.risk) 
 print(market.ret) 

 # random portfolio (risk, return) 
 portfolio = 0.13, 0.4 

 if(portfolio[0] < market.risk): 
        if(portfolio[1] > market.ret): 
           print('Invalid portfolio') 

 <class '__main__.Frontier'> 
 0.236 
 0.21 
 Invalid portfolio 
   
Here, by creating a new variable of  market (a market portfolio 
placed on the effective frontier line), we assign an object defined 
by the named tuple of  frontier. Thanks to that, market.risk and 
market.ret can be easily understood while further operations. 

 2.5.2.  Uniqueness of Sets 

The title of  this Section reveals a widely spread and the most 
useful application of  sets—from a group of  elements return the 
gems. Sets are officially declared as the unordered collections of  
unique elements with a limited number of  operations one can 
perform upon them. They differ from lists and tuples in a number 
of  ways, with a basic syntax: 

 >>> s = {1}  # alternatively:  s = set([1]) 
 >>> s 
 {1} 
 >>> type(s) 
 <class 'set'> 
   
where a new function of  set has been used to convert the list. 

collections.namedtuple 

Code 2.37 

{ }, set



 140

The first striking surprise is the behaviour: 

 >>> s = {3, -1j, 6, 'python', 4, 'quants'} 
 >>> s 
 {3, 4, 6, 'python', (-0-1j), 'quants'} 
   
i.e. after providing the input, the order is rearranged. The second 
surprise comes when we try to extract any element from a set: 

 >>> s[1] 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: 'set' object does not support indexing 
 >>> s[1:3] 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: 'set' object is not subscriptable 
   
revealing that neither indexing nor slicing for sets do not work.  

Therefore, what is all that ado about sets? Well, as it has been said 
in the beginning, we are able to convert a collection of  repeatable 
elements into a unique set, for instance: 

 >>> rvs = [random.randrange(20) for i in range(15)] 
 >>> rvs 
 [19, 8, 15, 9, 18, 8, 11, 9, 13, 14, 1, 17, 2, 11, 9] 

 >>> s = set(rvs) 
 >>> s 
 {1, 2, 8, 9, 11, 13, 14, 15, 17, 18, 19} 
   
where all duplicates have been removed. 

Having two different sets, we can perform certain operations upon 
them. Analyse the following examples: 

 >>> u1 = [random.randrange(20) for i in range(15)] 
 >>> u2 = [random.randrange(20) for i in range(15)] 
 >>> s1 = set(u1) 
 >>> s2 = set(u2) 
 >>> s1; s2 
 {0, 3, 5, 6, 7, 9, 11, 13, 14, 16, 17} 
 {2, 3, 4, 7, 9, 11, 13, 14, 18} 

 >>> s1.intersection(s2)  # common elements  
 {3, 7, 9, 11, 13, 14} 

 >>> s1.union(s2)         # all elements of s1 and s2 together  
 {0, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 16, 17, 18} 

 >>> s1.difference(s2)    # s1 - s2, or missing elements of 
 {0, 16, 5, 6, 17}                   s1 in s2 

 >>> s2.difference(s1)    # s2 - s1, or missing elements of 
 {2, 18, 4}                          s2 in s1 
   
Updating the set cannot be done by a simple addition, i.e.: 

 >>> {1, 2, 3} + {'a', '7'} 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 TypeError: unsupported operand type(s) for +: 'set' and 'set' 
   
however, with an aid of  a special function, namely, 



 141

 >>> s1 
 {0, 3, 5, 6, 7, 9, 11, 13, 14, 16, 17} 
 >>> s1.update({99, 100}) 
 {0, 3, 99, 5, 6, 7, 100, 9, 11, 13, 14, 16, 17} 
   
and the miracles can happen. What could be pretty useful is: 

 >>> s1 
 {0, 3, 5, 6, 7, 9, 11, 13, 14, 16, 17} 
 >>> s3 = {11, 13} 
 >>> s1.intersection_update(s3) 
 {11, 13} 
   
You may apply this method in order to update s1 set leaving it 
solely with those elements which have been common between s1 
and a new set of  s3. 

For more information on other operations available for Python’s 
sets see, e.g.: https://docs.python.org/2/library/sets.html. 

 2.5.3.  Dictionaries, i.e. Call Your Broker 

The forth attractive form of  storing and arranging the data are the 
Python’s dictionaries. The elements of  the dictionaries enter the 
barn being labeled by key : value. Similarly to sets, the dictionaries 
are surround by curly brackets, and their keys are immutable. 

Let’s introduce the fundamentals of  dictionaries using an example 
of  brokers’ details gathered together in one place (phonebook) 
where every one of  them is described by name and phone number. 
We start with: 

 >>> brokers = ["Lucky Luc", "Fat Joe", "Filthy Richard"] 
 >>> phones = [555432032, 555221891, 555988913] 

 >>> d = dict(zip(brokers, phones)) 
 >>> d 
 {'Fat Joe': 555221891, 'Filthy Richard': 555988913, 
  'Lucky Luc': 555432032} 
   
where, first, we zip both lists and next we create a dictionary with a 
help of  the dict function. The key is given by the broker’s name 
while the corresponding value by his phone number. Adding a new 
broker’s detail we achieve thanks to: 

 >>> new = {"Johnny Cash" : 555443677} 
 >>> new 
 {'Johnny Cash': 555443677} 
 >>> d.update(new) 
 >>> d 
 {'Fat Joe': 555221891, 'Johnny Cash': 555443677,  
  'Filthy Richard': 555988913, 'Lucky Luc': 555432032}   

therefore finding a phone number of  Fat Joe in your phonebook is 
as easy as: 

 >>> d["Fat Joe"] 
 555221891   

{ },  dict()



 142

Listing the names of  your brokers or, alternatively, only all saved 
phone numbers in d requires: 

 >>> list(d.keys()) 
 ['Fat Joe', 'Johnny Cash', 'Filthy Richard', 'Lucky Luc'] 
 >>> list(d.values()) 
 [[555221891, 555443677, 555988913, 555432032] 

Looking the broker’s name up follows: 

 >>> "Fat Joe" in d 
 True 

however 

 >>> 555443677 in d 
 False 
 >>> 555443677 in d.values() 
 True 

Updating the key’s value is fairly straightforward, namely: 

 >>> new_phone_number = 555666777 
 >>> d["Fat Joe"] = new_phone_number 
 >>> d["Fat Joe"] 
 555666777 

The application of  Python’s dictionaries in quantitative finance 
or algorithmic trading is rather limited. However, you may find 
them practical if  you fetch some data online and they are returned 
in a JSON file format as in the following case of  the Google 
Finance query for the latest update on AAPL stock: 
http://finance.google.com/finance/info?client=ig&q=AAPL:NASDAQ 

The body of  the JSON file can be saved as a dictionary: 

 >>> stock = { "id": "22144" ,"t" : "AAPL" ,"e" : "NASDAQ" ,"l" : 
   "117.75" ,"l_fix" : "117.75" ,"l_cur" : "117.75" ,"s": 
   "1" ,"ltt":"4:00PM EST" ,"lt" : "Nov 23, 4:00PM EST" , 
  "lt_dts" : "2015-11-23T16:00:01Z" ,"c" : "-1.55" , 
  "c_fix": "-1.55" , "cp" : "-1.30" ,"cp_fix" : "-1.30" , 
  "ccol" : "chr" ,"pcls_fix" : "119.3" , 
  "el": "117.18" ,"el_fix": "117.18" ,"el_cur": "117.16" , 
  "elt" : "Nov 24, 7:31AM EST" ,"ec" : "-0.59" , 
  "ec_fix" : "-0.59" ,"ecp" : "-0.50" , 
  "ecp_fix" : "-0.50" ,"eccol" : "chr" , 
  "div" : "0.52" ,"yld" : "1.77" } 

which corresponds to the information provided online, i.e.: 

Having that, the last close-price of  Apple Inc. and the most 
current price of  the stock in pre-market can be extracted by: 



 143

 >>> stock["l"] 
 '117.75' 
 >>> stock["el"] 
 '117.18' 

respectively. More on hacking Google Finance for algo traders see: 
http://www.quantatrisk.com/2015/05/07/hacking-google-
finance-in-pre-market-trading-python/.  

If  you find the Python’s dictionaries particularly appealing in your 
research or for the projects, please visit https://docs.python.org/
3.5/library/stdtypes.html#dict to learn more. 



 144



 145

2.6. Functions 

One of  the coolest thing people love about Python is its flexibility 
in defining and creating functions. Those of  you who are more 
familiarised with other languages like Fortran or C++ remember 
how much pain it causes to make sure that a function is of  a 
specific type and it returns a right result. There exists a certain 
trade-off  between the final speed of  the code execution and the 
time dedicated to doubly verify that all has been written correctly. 

The simplest Python syntax that defines a custom function, i.e. the 
function that you write on your own (or your girlfriend sitting on 
your laps). I introduced the term custom in this book in order to 
mark a distinction among functions available to us in the standard 
version of  Python or provided by the third-party modules, and the 
ones you compose from a scratch.  

A void function would take a form of: 

 def donothing(): 
        return 

 donothing() 

that does absolutely nothing while called. We define a function by 
typing a keyword def first, followed by the function’s name (best to 
use lowercase with/out underscore token) and with double round 
brackets empty inside (if  no parameters/arguments are specified 
or required to be passed on).  

A good style of  writing a code in Python suggests to keep double 
blank lines between the function(s) and/or the rest of  the main 
program. This rule can be neglected but it makes all future Python 
codes easily readable and understoodable worldwide. Therefore, 
learn now how to keep your style at the highest level. 

Every function which does not return any output is not asked be 
ended with a return keyword, e.g. 

 def donothing(): 
        x = 1 

 donothing() 

or 

 def justprint(): 
     print("_"*20) 
        print("Name and Date") 

 justprint() 

 ____________________ 
 Name and Date 

def,  return 



 146

 2.6.1.  Functions with a Single Argument 

The mathematics imprinted upon us a firm and long-lasting 
framework of  things to be calculated as a function with a single 
argument, say y = f(x). Thus, when it comes to programming, we 
expect the same to repeat and appear in the same form. Somehow. 

In Python, we use: 

 def domath(x): 
        return x**2 

 print(domath(4)) 

 16 

We have a freedom of  calling and/or passing the argument on: 

 def domath2(x): 
     y = x**2      # inner computations 
        return y 

 z = 5 - 1 
 print(domath2(z)) 

 16 

and so on. How about that one: 

 def domath3(x=5): 
        return x**2 

 print(domath3(4)) 

Do you think that the function will return 25 or rather 16? You 
may guess the answer if  I say to you that: 

 def domath3(x=5): 
        return x**2 

 print(domath3()) 

 25 

This method is safe. If  you forget to pass any value on to the 
function, by default, it will assume then that x should be 5. 

The complexity of  operations inside the function can be of  a 
different magnitude and the result can be found or not. In the 
following example, we will try to derive a value of  a simple 
mathematical expression where x will be in range between 0 and 4, 
and division by zero will need to be considered as a potential 
roadblock preventing the function from ending with success: 

 def simplemath(x): 
        import math 
        try: 
            c = 1/x + x*(math.exp(1/x)) 
            return True, c 
        except: 
            return False, None 

Code 2.38



 147

 for x in range(5): 
        ok, y = simplemath(x) 
        if(ok): 
           print("f(%g) = %.5f" % (x, y)) 
        else: 
           print("f(%g) = skipped because of x equal 0" % x) 

 f(0) = skipped because of x equal 0 
 f(1) = 3.71828 
 f(2) = 3.79744 
 f(3) = 4.52017 
 f(4) = 5.38610 

Knowing about the problem with an argument equal 0, we protect 
our calculations with a help of  the try-except block. For x > 0 the 
function returns a tuple with a boolean variable (True) and the 
derived value of  the expression. In other case, False and no result is 
returned. And this is a fantastic way if  you think about further 
data/results processing. Why? Well, if  ok is True (as returned by 
the function) then we print the results. If  not, an alternative output 
can be considered. For more on good practices in that domain see 
Slatkin (2015). 

 2.6.2.  Multivariable Functions 

There is no much hassle if  we want to make our functions working 
for two or more variables. Analyse first: 

 def f(x, y): 
        import cmath 
        return cmath.sqrt(-x) * y 

 print(f(1, 2)) 
 print(f(-1, 2)) 
 print(f(0, 0)) 
 print(f(0, 3)) 

 2j 
 (2+0j) 
 0j  
 0j 

Again, it may be called as follows and still to deliver the same 
results: 

 def f(x=10, y=10): 
        import cmath 
        return cmath.sqrt(-x) * y 

 print(f(1, 2)) 
 print(f(-1, 2)) 
 print(f(0, 0)) 
 print(f(0, 3)) 
 print(f()) 

 2j 
 (2+0j) 
 0j  
 0j 
 31.622776601683796j 



 148

where the calling of  the function without any input arguments is 
possible thanks to the fact that we assigned some default values in 
the definition of  the function itself. Similarly, the 

 def f(x, y=10): 
        return x + y 

 print(f(1, 6)) 
 print(f(1)) 
 print(f(1, y=1)) 
 print(f(y=1, x=4)) 

 7 
 11 
 2 
 5 

combinations are possible, i.e. the order may be different as long as  
the assignment is done correctly. 

There is a way to call the function with an arbitrary number of  
arguments. However, that requires an inclusion of  the * character 
before the name of  a variable, e.g: 
  
 def func(x=5, *y): 
        import math 
        print(x) 
        print(y) 
        out = tuple([x]) + y 
        return out, math.fsum(out)  # return tuple and a sum 

 t, s = func(1.1, -3.5, 4.0, 6.9, 3.14) 
 print(t) 
 print(s) 

 t, s = func(1.1) 
 print(t) 
 print(s) 

 1.1    # the first call 
 (-3.5, 4.0, 6.9, 3.14)          
 (1.1, -3.5, 4.0, 6.9, 3.14) 
 11.64 

 1.1    # the second call 
 () 
 (1.1,) 
 1.1 

Note how much the results differ when additional arguments (y) 
are added while the function’s calling.  

That’s not all. The use of  ** character before the name of  an 
additional argument variable helps us to turn our function into a 
sophisticated engine at work. Analyse possible outputs for: 

 def func(x=5, *y, **z): 
        import math 
        print(x) 
        print(y) 
        print(z) 

 func(1.1, -3.5, 4.0, 6.9, 3.14, a=3, b=4) 
 func(1.1, a=3, b=4, c=5) 



 149

 1.1 
 (-3.5, 4.0, 6.9, 3.14) 
 {'b': 4, 'a': 3} 

 1.1 
 () 
 {'b': 4, 'a': 3, 'c': 5} 

You may notice that if  within the list of  arguments, we specify two 
additional parameters, say a=3, b=4, then they are stored in a form 
of  a dictionary. A practical aspect of  ** could be: 

 def func(x=5, *y, **z): 
        import math 
        par = [item[1] for item in z.items()] 
        return x + math.fsum(y)*par[0] + par[1] 

 # a sum should be equal 1 + (2+4)*10 + 20 = 1 + 60 + 20 = 81 
 y = func(1, 2, 4, a=10, b=20) 
 print(y) 

 81 

Having that said, you gain an extra choice. From now, only your 
imagination may limit you. 

 Reference and Further Studies 

Beazley, D., Jones, B. K., 2003, Python Cookbook, 1st Ed., O'Reilly 
Media 

Slatkin, B., 2015, Effective Python: 59 Specific Ways to Write Better 
Python, Addison-Wesley Professional 

Slatkin, B., PyCon 2015, How to Be More Effective with Functions, 
YouTube: https://www.youtube.com/watch?v=WjJUPxKB164 

van Rossum, G., 2001, PEP 8—Style Guide for Python Code, https://
www.python.org/dev/peps/pep-0008/ 



 150



 151

3. Fundamentals of NumPy for Quants 

3.1. In the Matrix of NumPy 

At some stage of  your daily work with the applied mathematics, 
statistics, and data analysis you notice that the majority of  operations 
are, in fact—the matrix operations. From a plain vector addition, 
through square matrix multiplication, to more abstract 5D dataset 
slicing—all seems to be based on the matrix algebra. And the 
applications are endless: the time-series analysis, data comparison, 
extraction, filtering, image processing, etc. 

Python facilitates programming of  any matrix-based operations 
thanks to NumPy (Numerical Python)—a dedicated library for 
sophisticated mathematical computations. From the very beginning, 
NumPy has captured the eyes of  scientists and researchers and 
nowadays it establishes one of  the most well-known extensions for 
Python. Its current NumPy Reference manual (release 1.10.1; Oct 18, 
2015) accessible at http://docs.scipy.org/doc/ contains over 1500 
pages written by the NumPy Community. 

NumPy constitutes a gateway to pandas, a second in line the most 
powerful library designed for data analysis every quantitative analyst, 
algorithmic trader, or risk investigator should learn. Combined with 
SciPy (a library of  efficient numerical routines) and matplotlib for 
plotting, today, NumPy equips you with “more than enough” skill-set 
to face demanding computational problems and its visualisation. 

NumPy becomes alive by typing: 

 import numpy as np 
  

which is a recognisable way of  referring to the NumPy’s functions 
worldwide these days. In this book we will be working with NumPy’s 
release 1.10.1 accessible via Anaconda Python 3.5 distribution or so 
(see to Section 1.3 for additional information on the installation). 



 152

NumPy makes use of  the concept of  N-dimensional array (ndarray). 
According to its definition, the ndarray is a (usually fixed-size) 
multidimensional container of  items of  the same type and size. The 
number of  dimensions and items in an array is defined by its shape, 
which is a tuple of  N positive integers that specify the sizes of  each 
dimension. The type of  items in the array is specified by a separate 
data-type object (dtype), one of  which is associated with each 
ndarray. As with other container objects in Python, the contents of  an 
ndarray can be accessed and modified by indexing or slicing the array 
(using, for example, N integers), and via the methods and attributes 
of  the ndarray. Different ndarrays can share the same data, so that 
changes made in one ndarray may be visible in another. That is, an 
ndarray can be a “view” to another ndarray, and the data it is referring 
to is taken care of  by the “base” ndarray. ndarrays can also be views to 
memory owned by Python strings or objects implementing the buffer 
or array interfaces. Graphically, the holistic picture of  ndarray can be 
represented as follows: 

Still confused? All right. Let’s make it much simpler now. Imagine, 
you wish to represent the following matrix of  x of  two rows and 
three columns, storing the integer numbers: 

 
NumPy allows you for that in the following way: 

 >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) 
 >>> x 
 array([1, 2, 3], 
       [4, 5, 6], dtype=int32) 
  

Each row must be in square brackets separated by comma(s). The 
same applies to the outer matrix bracket. np.array function creates an 
ndarray object and an additional parameter np.int32 specifies 32-bit 
integer type of  the object. You can verify that anytime by: 

 >>> type(x) 
 <class 'numpy.ndarray'> 
  

In order to extract a number of  rows and columns (shape) of  your 
matrix use .shape function in one of  a few possible ways: 

 >>> x.shape 
 (2, 3) 

x =

✓
1 2 3
4 5 6

◆

np.array

.shape

Alternatively: 
>>> x.dtype 
dtype('int32')



 153

  
 >>> n, m = x.shape  # tuple unpacking 
 >>> n 
 2 
 >>> m 
 3 

 >>> x.shape[0]  # indexing 
 2 
 >>> x.shape[1] 
 3 

Note on matplotlib for NumPy 

Within this Chapter (as we have also done it within the previous one), 
we will make a few references to matplotlib—a special library 
dedicated for visualisation of  your numerical results. Since it will be 
a subject of  the Python for Quants Supplement Series book of  matplotlib for 
Quants (2016), today, I strongly encourage you to study the 
fundamental plotting functions of  matplotlib, concurrently. The best 
Web sources that I can recommend include:  

• The matplotlib Official Page (http://matplotlib.org); 
• Matplotlib tutorial by Nicolas Rougier (http://www.labri.fr/perso/

nrougier/teaching/matplotlib/); 
• Sebastian Raschka’s Gallery (https://github.com/rasbt/matplotlib-

gallery) 

Additionally, the module of  seaborn for statistical data visualisation 
should find itself  on your list of  the graphical libraries for Python to 
explore (see http://stanford.edu/~mwaskom/software/seaborn/). 



 154



 155

3.2.  1D Arrays 

In the beginning there was an emptiness in NumPy, 

 >>> x = np.array([]) 
 >>> x 
 array([], dtype=float64) 

so NumPy developers added some numbers and arranged them in 
one line as a row vector: 

 >>> x = np.array([1,2,3,4]) 
 >>> x 
 array([1, 2, 3, 4]) 
 >>> x.size   
 4 
 >>> x.shape 
 (4,) 

 >>> x.dtype 
 dtype('int64') 

And it was good. ☺ 

As a custom in algebra, the term of  a row vector can be used 
interchangeably with one row matrix (array), 1D matrix, or its 
transposed version of  a column vector that you can obtain by: 

 >>> x = np.array([1,2,3,4]) 
 >>> x.T 
 array([1, 2, 3, 4]) 

but 

 >>> x = np.array([[1,2,3], [5,6,7]]) 
 >>> x.T 
 array([[1, 5], 
        [2, 6], 
        [3, 7]]) 

 3.2.1.  Types of NumPy Arrays 

As we have learnt in Section 2.1, Python offers different types of  
numbers as represented, used, and stored by computer. In NumPy, all 
arrays of  numbers are referred to by their dtype as follows: 

 >>> x=np.array([1,2,3,4], dtype=np.int32) 
 >>> x=np.array([1,2,3,4], dtype=np.int64) # default 
 >>> x=np.array([1,2,3,4], dtype=np.float32) 
 >>> x=np.array([1,2,3,4], dtype=np.float64) # default 
 >>> x=np.array([1,2,3,4], dtype=np.float128) 
 >>> x=np.array([1,2,3,4], dtype=np.complex64) 
 >>> x=np.array([1,2,3,4], dtype=np.complex128) # default 
 >>> x=np.array([1,2,3,4], dtype=np.complex256) 

where default denotes a default type, i.e. you can skip its specification 
as an additional parameter if  you aim to have your array’s elements to 
be integer or float or complex in type, for example: 

.size 
It counts the number of  all 
elements in the matrix.

.dtype

.T



 156

 >>> x = np.array([1, 2, 3, 4], dtype=np.int32) 
 >>> x 
 array([1, 2, 3, 4], dtype=int32) 

while 

 >>> x = np.array([1, 2, 3, 4]) 
 >>> x 
 array([1, 2, 3, 4]) 
 >>> x.dtype 
 dtype('int64') 

or 

 >>> x = np.array([1.0, 2.6, 3., 4.3]); x 
 array([ 1. ,  2.6,  3. ,  4.3]) 
 >>> x.dtype 
 dtype('float64') 

Conversion of Types 
In the abovementioned definitions of  x arrays, for both .floatXXX and 
complex .complexXXX types, we may obtain a conversion of  the 
integer-type elements into requested matrix type by, e.g.: 

 >>> x = np.array([1, 2, 3, 4], dtype=np.float128) 
 >>> x 
 array([ 1.0,  2.0,  3.0,  4.0], dtype=float128) 
  
 >>> x = np.array([1, 2, 3, 4], dtype=np.complex256) 
 >>> x 
 array([ 1.0+0.0j,  2.0+0.0j,  3.0+0.0j,  4.0+0.0j],    
      dtype=complex256) 

what can be very useful in many instances of  your work with data 
analysis.  

Alternatively, we can convert array’s type using a dedicated function: 

 >>> x = np.array([1., -2., 3., 4.]) 
 >>> y = x.astype(np.float32) 
 >>> y 
 array([ 1., -2.,  3.,  4.], dtype=float32) 
  

what, fortunately, does a transformed and independent copy of  x 
(more on creating the copies of  arrays, shortly). 

Also, 

 >>> x = np.array([1., -2., 3., 4.]) 
 >>> z = x.astype(np.complex64) 
 >>> z 
 array([ 1.+0.j, -2.+0.j,  3.+0.j,  4.+0.j], dtype=complex64) 

Verifying 1D Shape 
Checking the shape of  matrix x may deliver an Index Error. Analyse 
the following outputs: 



 157

 >>> x = np.array([1, 2, 3, 4]) 
 >>> x.shape[0] 
 4 

 >>> x.shape[1] 
 Traceback (most recent call last): 
     File "<stdin>", line 1, in <module> 
 IndexError: tuple index out of range 

Therefore, in order to make sure we deal with a row vector, run a 
quick check utilising .ndim or len function: 

 x = np.array([1, 2, 3, 4]) 
 if(x.ndim == 1):     # alternatively  if(len(x.shape)==1): 
     print('A row vector') 

 A row vector 

where x.shape returns a tuple (4,) and its number of  elements is one. 

More on Type Assignment 
It is possible to specify an array type only once and do it as a string 
variable. Therefore, every new matrix can have an assigned type, for 
example: 

 >>> dt = np.dtype('complex256')  # or dt=np.dtype(np.complex256) 
 >>> x = np.array([1,2,3,4], dtype=dt) # or x=np.array([1,2,3,4], dt) 
 >>> x 
 array([ 1.0+0.0j,  2.0+0.0j,  3.0+0.0j,  4.0+0.0j],  
      dtype=complex256) 
  

or alternatively: 

 >>> dt = np.dtype(np.complex256) 
 >>> x = np.array([1,2,3,4], dt) 
 >>> x 
 array([ 1.0+0.0j,  2.0+0.0j,  3.0+0.0j,  4.0+0.0j],  
      dtype=complex256) 

  

 3.2.2.  Indexing and Slicing 

An access to 1D array’s elements is pretty much the same as for the 
standard Python’s list. Analyse the following examples. You should 
notice a striking resemblance: 

 >>> x = np.array([1.0, 2.6, 3., 4.3, 7.7]) 

 >>> y = x[0] 
 >>> z = x[-1] 
 >>> print(y+z)       # add the first and last element of matrix x 
    8.7 

 >>> x[1:]      # elements starting from index=1 till the end 
 array([ 2.6, 3., 4.3, 7.7]) 

 >>> x[-2:]      # last two elements of x 
 array([ 4.3, 7.7]) 

.ndim 
len

np.dtype



 158

 >>> x[0:4] # elements indexed from 0 to 3 (without 4th) 
 array([ 1., 2.6, 3., 4.3]) 

 >>> x[1:2] # 2nd element of x 
 array([ 2.6])  
  
 >>> x[1:2] == x[1]  # checking a logical condition of equality 
 array([ True], dtype=bool) 
  

and so on.  

Basic Use of Boolean Arrays 
Interestingly, the last command opens up an access to a few useful 
ways of  thinking in Python with NumPy. Firstly, we notice a new type 
of  an array to be boolean with True or False elements. We can use 
them, as follows: 

 >>> x = np.array([1.0, 3. , 2.6, 4.3, 7.7, 5.6]) 
 >>> y = np.array([1. , 2.6, 3.,  4. , 7. , 5.6]) 
 >>> cmp = (x == y)  # test for equality 
 >>> cmp 
 array([ True, False, False, False, False, True], dtype=bool) 
  

what returns an array with the results of  an index-wise comparison.  

If  we are interested in verifying whether all elements are the same, 
then, instead of  writing: 

 if(cmp.sum() == len(x)): # sums all elements in cmp; True=1, False=0 
     print('The same!') 
 else: 
     print('Different') 
  

we can use a better method, namely: 

 import numpy as np 
     
    x = np.array([1.0, 3. , 2.6, 4.3, 7.7, 5.6]) 
    y = np.array([1. , 2.6, 3.,  4. , 7. , 5.6]) 
    cmp = (x == y)  # test for equality 
    print(cmp) 
     
    i = 0 
    if(cmp.all()): 
        print("All elements are the same") 
    elif(cmp.any()): 
        print("Some elements are the same, i.e.:") 
        # Test1: 
        # index-wise 
        for e in cmp: 
            if(e):  # tests if e==True (a useful trick!) 
                print("%.1f" % x[i]) 
            i += 1 
        # Test2: 
        # element-wise 
        print('---') 
        for e in x: 
            j = np.where(e == y) # a tuple containing arrays with  
         indexes 
            print(j) 
            if(j[0].size != 0): 
                print(y[j]) 
    else: 
        print("All elements are different")  

.sum()

.all() 
.any()

np.where

Code 3.1



 159

what results in the following output: 

 [ True False False False False  True] 
 Some elements are the same, i.e.: 
 1.0 
 5.6 
 --- 
 (array([0]),) 
 [ 1.] 
 (array([2]),) 
 [ 3.] 
 (array([1]),) 
 [ 2.6] 
 (array([], dtype=int64),) 
 (array([], dtype=int64),) 
 (array([5]),) 
 [ 5.6] 

and brings us to a few new great NumPy features. Let’s analyse them 
step by step now. 

The Test1 delivered, as expected, values of  1.0 and 5.6 based on cmp 
test of  equality (index-by-index). However, as noticed, both arrays, x 
and y, contain some identical elements. Therefore, a new Test2 scans 
all elements in x and checks the corresponding indexes in y where the 
values of  its elements are the same. We employ where function that 
returns a tuple with its elements returned as arrays listing indexes in y. 
Since we work with 1D matrixes, each tuple is of  1 or 0 (empty) in its 
number of  elements and we verify it using .size function applied to 
the tuple’s first element.  

It may sound complicated but with a bit of  practice, it will become 
your second nature as it comes to that sort of  simple technical 
operations on NumPy arrays. 

Code 3.1 fails if  cmp returns all Falses even if  some elements had 
been the same. As homework, try to modify it to take this issue into 
account. 

 3.2.3.  Fundamentals of NaNs and Zeros 

It is often a case in the time-series or image processing that our 
matrixes have some gaps or missing numbers. By convention, we 
mark them as NaNs (Not a Number).  

In case of  1D arrays, we can create any row vector with nans using a 
ready-to-use function of  np.nan, as in the following example: 

 >>> x = np.array([1, 2, np.nan, 3, 4, np.nan, 5]) 
 >>> x 
 array([  1.,   2.,  nan,   3.,   4.,  nan,   5.]) 
 
If  we want to filter out all non-nan values, we type: 

 >>> y = x[~np.isnan(x)] 
 >>> y 

np.isnan

np.nan



 160

 array([ 1.,  2.,  3.,  4.,  5.]) 

Finding the sum of  vector x follows: 

 >>> s = x[~np.isnan(x)].sum() 
 >>> s 
 15.0 

Now let’s add some zeros and see what can we do more with such 
extended vector: 

 >>> x = np.array([0, 1, 2, 0, np.nan, 3, 0, 4, np.nan, 5]) 
 >>> x 
 array([  0.,   1.,   2.,   0.,  nan,   3.,   0.,   4.,  nan,   5.]) 

A function .nonzero() acting on any matrix returns an array of  indexes 
corresponding to non-zero values. Analyse: 

 >>> x = np.array([0, 1, 2, 0, np.nan, 3, 0, 4, np.nan, 5]) 
 >>> x 
 array([  0.,   1.,   2.,   0.,  nan,   3.,   0.,   4.,  nan,   5.]) 
 >>> i = x.nonzero() 
 >>> x[i] 
 array([  1.,   2.,  nan,   3.,   4.,  nan,   5.]) 

Good. Having that, a new version of  x with zeros and nans removed, 
we may obtain in two steps: 

 >>> x = np.array([0, 1, 2, 0, np.nan, 3, 0, 4, np.nan, 5]) 
 >>> x = x[x.nonzero()] 
    >>> x = x[~np.isnan(x)] 
 >>> x 
 array([ 1.,  2.,  3.,  4.,  5.]) 

 3.2.4.  Independent Copy of NumPy Array 

For those of  you who are familiar with programming, it is nearly 
intuitive that when you create a matrix-variable, say a, and you wish to 
create its (modified) copy, say b = a + 1, b in fact will be independent 
of  a. This is not a case within older versions of  NumPy due to the 
"physical" pointing at the same object in the memory. Analyse the 
following case study: 

 >>> a = np.array([1,2,3,4,5]) 
 >>> b = a + 1 
 >>> a; b 
 array([1, 2, 3, 4, 5]) 
 array([2, 3, 4, 5, 6]) 

but now, if: 

 >>> b[0] = 7 
 >>> a; b 
 array([7, 2, 3, 4, 5]) 
 array([7, 3, 4, 5, 6]) 

we affect both 0-th elements in a and b arrays. In order to “break the 
link” between them, you should create a new copy of  a matrix using a 
.copy function: 

.nonzero()



 161

 >>> a = np.array([1,2,3,4,5]) 
 >>> b = a.copy() 
 >>> b = a + 1 
 >>> b[0] = 7 
 >>> a; b 
 array([1, 2, 3, 4, 5]) 
 array([7, 3, 4, 5, 6]) 

Fortunately, in Python 3.5 with NumPy 1.10.1+ that problem ceases 
to exist: 

 >>> import numpy as np 
 >>> np.__version__ 
 '1.10.1' 
 >>> a = np.array([1,2,3,4,5]) 
 >>> b = a + 1 
 >>> a; b 
 array([1, 2, 3, 4, 5]) 
 array([2, 3, 4, 5, 6]) 
 >>> b[0] = 7 
 >>> a; b 
 array([1, 2, 3, 4, 5]) 
 array([7, 3, 4, 5, 6]) 

however, keep that pitfall in mind and check for potential errors 
within your future projects. Just in case. ☺ 

 3.2.5.  1D Array Flattening and Clipping 

For any already existing row vector you can substitute its elements 
with a desired value. Have a look: 

 >>> a = np.array([1,2,3,4,5]) 
 >>> a.fill(0); 
 >>> a 
 array([0, 0, 0, 0, 0]) 

or 

 >>> a = np.array([1,2,3,4,5]) 
 >>> a.flat = -1 
 >>> a 
 array([-1, -1, -1, -1, -1]) 

It is so-called flattening. On the other side, clipping in its simplistic 
form looks like: 

 >>> x = np.array([1., -2., 3., 4., -5.]) 
 >>> i = np.where(x < 0) 
 >>> x.flat[i] = 0 
 >>> x 
 array([ 1.,  0.,  3.,  4.,  0.]) 
  

Let’s consider an example. Working daily with financial time-series, 
sometimes we wish to separate, e.g. a daily return-series into two sub-
series storing negative and positive returns, respectively. To do that, in 
NumPy we can perform the following logic by employing a .clip 
function.  

.copy()

.fill

.flat 

np.where 
Returns an array with the 
indexes corresponding to a 
specified condition (see 
Section 3.3.3 and 3.8)



 162

Say, the vector r holds daily returns of  a stock. Then: 
 
 >>> r = np.array([0.09,-0.03,-0.04,0.07,0.00,-0.02]) 

 >>> rneg = r.clip(-1, 0) 
 >>> rneg 
 array([ 0.  , -0.03, -0.04,  0.  ,  0.  , -0.02]) 
 >>> rneg = rneg[rneg.nonzero()] 
 >>> rneg 
 array([-0.03, -0.04, -0.02]) 

Here, we end up with rneg array storing all negative daily returns.  

The .clip(-1, 0) function should be be understood as: clip all values 
less than -1 to -1 and greater than 0 to 0. It makes sense in our case as 
we set a lower boundary of  -1 (-100.00% daily loss) on one side and 
0.00% on the other side. Since zero is usually considered as a 
“positive” return therefore the application of  the .nonzero function 
removes zeros from the rneg array.  

The situation becomes a bit steeper in case of  positive returns. We 
cannot simply type rneg=r.clip(0, 1). Why? It will replace all negative 
returns with zeros. Also, if  r contains daily returns equal 0.00, extra 
zeros from clipping would introduce an undesired input. We solve this 
problem by replacing “true” 0.00% stock returns with an abstract 
number of, say, 9 i.e. 900% daily gain, and proceed further as follows: 

 >>> r2 = r.copy(); r2 
 array([ 0.09, -0.03, -0.04,  0.07,  0.  , -0.02]) 
 >>> i = np.where(r2=0.); r2[i] = 9  # alternatively  r2[r2==0.] = 9 
 >>> rpos = r2.clip(0, 9) 
 >>> rpos 
 array([ 0.09,  0.  ,  0.  ,  0.07,  9.  ,  0.  ]) 
 >>> rpos = rpos[rpos.nonzero()] 
 >>> rpos 
 array([ 0.09,  0.07,  9.  ]) 
 >>> rpos[rpos == 9.] = 0. 
 >>> rpos 
 array([ 0.09,  0.07,  0.  ]) 

If  you think for a while, you will discover that in fact all the effort can 
be shortened down to two essential lines of  code providing us with 
the same results: 

 >>> r = np.array([0.09,-0.03,-0.04,0.07,0.00,-0.02]) 
 >>> rneg = r[r < 0]   # masking 
 >>> rpos = r[r >= 0]  # masking 
    >>> rneg; rpos 
 array([-0.03, -0.04, -0.02]) 
 array([ 0.09,  0.07,  0.  ]) 

however by doing so you’d miss a lesson on the .clip function ☺. 
More on masking for arrays in Section 3.8. 

As you can see, Python offers more than one method to solve the 
same problem. Gaining a flexibility in knowing majority of  them will 
make you a good programmer over time. 

By separating two return-series we gain a possibility of  conducting an 
additional research on, for instance, the distribution of  extreme losses 

.clip



 163

or extreme gains for a specific stock in a given time period the data 
come from. In the abovementioned example our return-series is too 
short for a complete demonstration, however in general, if  we want 
to extract from each series two most extreme losses and two highest 
gains, then: 

 >>> rneg.sort()  
 >>> rpos.sort() 
 >>> el = rneg[0:2] 
 >>> el 
 array([-0.04, -0.03]) 
 >>> hg = rpos[-2:] 
 >>> hg 
 array([ 0.07,  0.09]) 
  

If  repeated for, say, 500 stocks (daily return time-series) traded within 
S&P 500 index, the same method would lead us to an insight on an 
empirical distribution of  extreme values both negative and positive 
that could be fitted with a Gumbel distribution and tested against 
GEV theory. 

 3.2.6.  1D Special Arrays 

NumPy delivers an easy solution in a form of  special arrays filled 
with: zeros, ones, or being “empty”. Suddenly, you stop worrying 
about creating an array of  specified dimensions and flattening it. 
Therefore, in our arsenal we have: 
 
 >>> x = np.zeros(5); x 
 array([ 0.,  0.,  0.,  0.,  0.]) 
 >>> y = np.empty(5); y 
 array([ 0.,  0.,  0.,  0.,  0.]) 
 >>> z = np.ones(5); z 
 array([ 1.,  1.,  1.,  1.,  1.]) 

where in fact 

 >>> np.zeros(5) == np.empty(5) 
 array([ True,  True,  True,  True,  True], dtype=bool) 

The alternative way to derive the same results would be with an aid of  
the .repeat function acting on a 1-element array: 

 >>> x = np.array([0]) 
 >>> z = np.array([1.]) 

 >>> x = x.repeat(5); x 
 array([0, 0, 0, 0, 0])        # dtype('int64') 

 >>> z = z.repeat(5); z 
 array([ 1.,  1.,  1.,  1.,  1.])   # dtype('float64') 
 
or with a help of  .full function: 

 >>> x1 = np.full((1, 5), 0) 
 >>> x1 
 array([[ 0.,  0.,  0.,  0.,  0.]]) 

 >>> x2 = np.full((1, 5), 1, dtype=np.int64) 

.sort() 
By default this function 
sorts all elements of  1D 
array in an ascending order 
and alters the matrix itself  
(in-place).

np.zeros 
np.empty 

np.ones

.repeat

FutureWarning: in the future, 
full((1, 5), 0) will return an 
array of  dtype('int64')



 164

 >>> x2 
 array([[1, 1, 1, 1, 1]]) 

where the shapes of  the arrays, x1 and x2, have been provided within 
the inner round brackets: 1 row and 5 columns. 

An additional special array containing numbers from 0 to N-1 we 
create using the arange function. Analyse the following cases: 

 >>> a = np.arange(11) 
 >>> a 
 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 

 >>> a = np.arange(10) + 1 
 >>> a 
 array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 

 >>> a = np.arange(0, 11, 2) 
 >>> a 
 array([ 0,  2,  4,  6,  8, 10]) 

 >>> a = np.arange(0, 10, 2) + 1 
 >>> a 
 array([1, 3, 5, 7, 9]) 

and also 

 >>> b = np.arange(5, dtype=np.float32)    
 >>> b 
 array([ 0.,  1.,  2.,  3.,  4.], dtype=float32) 

Array—List—Array 
The conversion of  1D array into Python’s list one can achieve by the 
application of  the .tolist() function: 

 >>> r = np.array([0.09,-0.03,-0.04,0.07,0.00,-0.02]) 
 >>> l = r.tolist() 
 >>> l 
 [0.09, -0.03, -0.04, 0.07, 0.0, -0.02] 

On the other hand, to go from a flat Python list to NumPy 1D array 
employ the asarray function: 

 >>> type(l) 
 <class 'list'> 

 >>> a = np.asarray(l) 
 >>> a 
 array([ 0.09, -0.03, -0.04,  0.07,  0.  , -0.02]) 

 >>> a.dtype 
 dtype('float64') 

   
 3.2.7.  Handling Infs 

Quite often you may encounter a problem of  the infinite numbers 
in your arrays. They appear denoted by inf. Below, we will see how 

np.arange

.tolist()

np.asarray



 165

this may occur and what is the best way to get rid of  infs from any 
array.  

A typical error can be overlooked if  you compute: 

 >>> a = np.array([1., 2., 3., 4., 5.]) 
 >>> b = np.array([1., 2., 3., 0., 5.]) 
 >>> c = a/b 
 __main__:1: RuntimeWarning: divide by zero encountered in  
      true_divide 
    >>> c 
 [  1.,   1.,   1.,  inf,   1.] 

From this point we can allow our program (a) to inform us about 
existing infs in our vector or (b) remove them. For the latter, we write 
a function preceding the main code: 

 import numpy as np 

 def removeinf(x): 
        i = np.where(x != np.inf) 
        return x[i] 

 a = np.array([1.,2.,3.,4.,5.]) 
 b = np.array([1.,2.,3.,0.,5.]) 
 c = a/b 
 print(c) 

 try: 
        np.asarray_chkfinite(c) 
    except ValueError: 
        c = removeinf(c) 

    print(c) 

what returns: 

 [  1.   1.   1.  inf   1.] 
 RuntimeWarning: divide by zero encountered in divide 
 c=a/b 
 [ 1.  1.  1.  1.] 

usually supplemented with a warning that Python encountered a 
division by zero. A special function of  asarray_chkfinite(c), coming 
from the asarray family, is expected to return ValueError if  inf has/
have been found in the array of  c. 

 3.2.8.  Linear and Logarithmic Slicing 

Our mind operates in a linear scale. Not too many of  us even realise 
that our eyes react to the amount of  light in a logarithmic manner. 
Getting used to the log scale is a challenge itself. Portioning the 
numbers into equidistant fragments may be helpful once we work 
with the histograms or empirical distributions. 

As we have seen above, the use of  the asarray function returns the 
numbers based on step, if  provided. In case when the boundaries are 
known but a desired number of  equidistant points is given instead, 
we derive: 

np.inf

np.asarray_chkfinite

Code 3.2



 166

 
 >>> x = np.linspace(0, 10, num=5) 
 >>> x 
 array([  0. ,   2.5,   5. ,   7.5,  10. ]) 

however 

 >>> x = np.linspace(0, 10, num=5, endpoint=False) 
 >>> x 
 array([ 0.,  2.,  4.,  6.,  8.]) 

what is an equivalent to: 

 >>> x = np.linspace(0, 8, num=5) 
 >>> x 
 array([ 0.,  2.,  4.,  6.,  8.]) 

and the number of  bins, num, has been set to 5. 

In case of  the logarithmic scales, we use a function of  logspace with 
similar input parameters: 

 >>> x = np.logspace(1, 4, num=4, base=10) 
 >>> x 
 array([    10.,    100.,   1000.,  10000.]) 

where not only we control the number of  bins but also the range for 
exponents the base is raised to. 

   
 3.2.9.  Quasi-Cloning of Arrays 

NumPy also allows for a convenient way to create a new array based 
on the other array’s properties. It is sort of  copying the object’s 
initial setup but filling an array with the arbitrary numbers.  

Analyse the following lines: 

 >>> x = np.array([.2,-4.5,3.43,9.8,-0.02,1.7], np.float128) 
 >>> x 
 array([ 0.2, -4.5,  3.43,  9.8, -0.02,  1.7], dtype=float128) 

 >>> y = np.empty_like(x) 
 >>> y 
 array([ 0.0,  0.0,  0.0,  0.0,  0.0,  0.0], dtype=float128) 
 >>> y = np.zeros_like(x) 
 >>> y 
 array([ 0.0,  0.0,  0.0,  0.0,  0.0,  0.0], dtype=float128) 
 >>> y = np.ones_like(x) 
 >>> y 
 array([ 1.0,  1.0,  1.0,  1.0,  1.0,  1.0], dtype=float128) 

By employing this method, we make sure that the resultant array 
keeps the same type and has been pre-allocated in RAM. 

Some GPU solutions utilising CUDA in Python make use of  this 
approach (e.g. numbapro which offers developers the ability to target 
multicore and GPU architectures with Python code for both ufuncs 
and general-purpose code; see http://docs.continuum.io/numbapro/
index). 

np.linspace

np.logspace

np.empty_like 

np.zero_like 

np.ones_like



 167

3.3.  2D Arrays 

 3.3.1.  Making 2D Arrays Alive 

Within the previous two Sections we have seen the explicit method of  
creating 2D array in NumPy: 

 >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) 
 >>> x 
 array([1, 2, 3], 
       [4, 5, 6], dtype=int32) 
  

and 

 >>> y = x.T 
 >>> y 
 array([[1, 4], 
        [2, 5], 
        [3, 6]], dtype=int32) 
  

Looks innocent? Just recall our knowledge on copying of  arrays. You 
may find its application in case of  2D arrays very useful. How? Have 
a look. First we change a single value in the array by specifying the 
index (cell address): 

 >>> y[2, 1] = 10  # [row, column] 
 >>> y 
 array([[ 1,  4], 
        [ 2,  5], 
        [ 3, 10]], dtype=int32) 
  

however: 

 >>> x 
 array([ 1,  2,  3], 
       [ 4,  5, 10], dtype=int32) 
  

has been changed too. That is why I strongly encourage you to keep 
the copies of  working arrays intact with a help of  the .copy function 
(see Section 3.2.4). 

We have also learnt that 2D array could be created by conversion of  
2D Python’s list into NumPy object, e.g.: 

 >>> x = np.array([range(i-1, i + 4) for i in [1, 2, 3, 4]]) 
 array([[0, 1, 2, 3, 4], 
        [1, 2, 3, 4, 5], 
          [2, 3, 4, 5, 6], 
        [3, 4, 5, 6, 7]]) 
 >>> x.shape 
 (4, 5) 
  
and the extraction of  any row or column we achieve by, e.g.: 

 >>> x[2, :] 
 array([2, 3, 4, 5, 6]) 
 >>> x[:, 4] 
 array([4, 5, 6, 7]) 
  
In addition, the special arrays come into the light nearly intuitively.  



 168

Let’s start with the np.empty function: 

 >>> np.empty((5, 2)) 
 array([[  4.94065646e-324,   9.88131292e-324], 
        [  1.48219694e-323,   1.97626258e-323], 
        [  2.47032823e-323,   2.96439388e-323], 
        [  3.45845952e-323,   3.95252517e-323], 
        [  4.44659081e-323,   4.94065646e-323]]) 
  
next, 

 >>> np.zeros((2, 2)) 
 array([[ 0.,  0.], 
        [ 0.,  0.]]) 

 >>> np.eye(4) 
 array([[ 1.,  0.,  0.,  0.], 
        [ 0.,  1.,  0.,  0.], 
        [ 0.,  0.,  1.,  0.], 
        [ 0.,  0.,  0.,  1.]]) 
  
where a special function of: 

 >>> np.identity(4) == np.eye(4) 
 array([[ True,  True,  True,  True], 
        [ True,  True,  True,  True], 
        [ True,  True,  True,  True], 
        [ True,  True,  True,  True]], dtype=bool) 
  
is an equivalent of  the previous one (element-wise). 

If  for some reason you need to add three square matrices 3x3, the 
first one filled fully with value of  3, the second one with 2, and the 
forth one with zeros, apply: 

 >>> np.full((3, 3), 3) + np.full((3, 3), 2) + np.zeros((3, 3)) 
 array([[ 5.,  5.,  5.], 
        [ 5.,  5.,  5.], 
        [ 5.,  5.,  5.]]) 
  
The operation of  addition is element-wise. 

How would you get those two arrays: 

 array([[0, 0, 0], 
        [1, 1, 1], 
        [2, 2, 2]]) 

 array([[0, 1, 2], 
        [0, 1, 2], 
        [0, 1, 2]]) 
  
It is accessible through the fromfunction function in connection with 
the inner inclusion of  the lambda function in the following way: 

 >>> np.fromfunction(lambda i, j: j , (3, 3), dtype=int) 
 >>> np.fromfunction(lambda i, j: i , (3, 3), dtype=int) 
  

In a need of  creating an empty 2D array with the specified diagonal 
elements, try: 

np.eye 
Returns a 2-D array with 
ones on the diagonal and 
zeros elsewhere.

np.identity

np.full 
np.zeros

np.fromfunction



 169

 >>> x = np.diagflat([[1, -2, 3, 4]]); x 
 array([[ 1,  0,  0,  0], 
        [ 0, -2,  0,  0], 
        [ 0,  0,  3,  0], 
        [ 0,  0,  0,  4]]) 

where the operation of  fetching diagonal elements from the 2D array 
requires: 

 >>> d = np.diag(x) 
 >>> d 
 array([ 1, -2,  3,  4]) 
  

and the trace of  x (a sum over diagonal elements) we get: 

 >>> trace = np.trace(x) 
 >>> trace 
 6 
  

Simple as that. 

 3.3.2.  Dependent and Independent Sub-Arrays 

Given any N x M array, one may look at it from different points of  
view. Say, the array is 4096 x 4096 however, we would like to work 
with a selected K x L fragment of  it. In this case, there are two 
options. The first one is: extract a sub-array and work over it 
independently aside. The second option is: do the same, i.e. extract it 
but while working with the sub-array, make sure that all conducted 
operations are reflected in the original, larger array. 

Let’s consider the Vandermonde matrix for which the columns of  
the output matrix are powers of  the input vector: 
 
 >>> a = np.array([1, 2, 3, 4, 5]) 
 >>> n = 5 
 >>> v = np.vander(a, n); v 
 array([[  1,   1,   1,   1,   1], 
        [ 16,   8,   4,   2,   1], 
        [ 81,  27,   9,   3,   1], 
        [256,  64,  16,   4,   1], 
        [625, 125,  25,   5,   1]]) 

The array is 5 x 5. Our goal is (1) to extract two fragments,  

 >>> x = v[0:2, 3:5]; x 
 array([[1, 1], 
        [2, 1]]) 
  
 >>> y = v[3:5, 0:2]; y 
 array([[256,  64], 
        [625, 125]]) 

next (2) to transpose y: 
  
 >>> y = y.T; y 
 array([[256, 625], 
        [ 64, 125]]) 

Now, those operations: 

np.diagflat

np.diag

np.trace

np.vander



 170

  
 >>> v 
 array([[  1,   1,   1,   1,   1], 
        [ 16,   8,   4,   2,   1], 
        [ 81,  27,   9,   3,   1], 
        [256,  64,  16,   4,   1], 
        [625, 125,  25,   5,   1]]) 

does not affect the original Vandermonde matrix. Therefore, both 
sub-array x with y are not linked to v. However, by executing what 
follows, e.g.: 
  
 >>> v[0:2, 3:5] = y 
 >>> v[3:5, 0:2] = x 

surprisingly we get: 
  
 >>> v 
 array([[  1,   1,   1, 256, 625], 
        [ 16,   8,   4,  64, 125], 
        [ 81,  27,   9,   3,   1], 
        [256, 625,  16,   4,   1], 
        [ 64, 125,  25,   5,   1]]) 

what is not what we expected. Somehow, the sub-array of  x has lost 
its corrected values. The error may remain undetected for a longer 
while as it goes against our logical and mathematics intuition. That is 
why, it is so important to apply .copy function as often as possible. In 
our code, first add it while typing: 

 >>> x = v[0:2, 3:5].copy()  # an independent copy 
 >>> x 
 array([[1, 1], 
        [2, 1]]) 
  
 >>> y = v[3:5, 0:2].copy()  # an independent copy 
 >>> y 
 array([[256,  64], 
        [625, 125]]) 

to ensure that in the end: 
  
 >>> v 
 array([[  1,   1,   1, 256, 625], 
        [ 16,   8,   4,  64, 125], 
        [ 81,  27,   9,   3,   1], 
        [  1,   1,  16,   4,   1], 
        [  2,   1,  25,   5,   1]]) 

This tricky example reveals how cautious you should be when it 
comes to trivial operations on NumPy arrays. In the process of  
learning, use interactive shell of  Python to verify some steps that 
you are taking. Otherwise, the errors can become a source of  the 
undesired stress and anxiety. 

 3.3.3.  Conditional Scanning 

The NumPy’s N-dimensional array can be scanned for specified 
logical sentence (conditions) with a help of  the np.where function. It 



 171

offers us with two basic scenarios: (a) searching and indexing, (b) 
array filtering. Analyse the following: 
  
 >>> np.random.seed(1) 
 >>> x = np.random.randint(100, size=(3, 3)); x 
 array([[37, 12, 72], 
        [ 9, 75,  5], 
        [79, 64, 16]]) 

Here we employ a function returning a 3 x 3 array of  random integers 
(more on randomness in NumPy in Section 3.4) which we will assume 
as an input. 

We would like to find in x all values that are greater equal 5 and less 
than 20. The first method is: 
  
 >>> r, c = np.where((x >= 5) & (x < 20)) 
 >>> r  # row index 
 array([0, 1, 1, 2]) 
 >>> c  # column index 
 array([1, 0, 2, 2]) 

Having that and: 
  
 >>> values = x[r, c]  # values.sort() next, if required 
 array([12,  9,  5, 16]) 

we extract from x all possible value meeting our searching criteria. A 
list storing index coordinates can be created as a list of  tuples: 
  
 >>> i = list(zip(r,c)) 
 >>> i 
 [(0, 1), (1, 0), (1, 2), (2, 2)] 

therefore 
  
 >>>[x[j] for j in i] 
 [12, 9, 5, 16] 

However, if  we wish to display x putting all array’s values not meeting 
the requested condition equal 0, then: 
  
 >>> a = np.where((x >= 5) & (x < 20), x, 0) 
 array([[ 0, 12,  0], 
        [ 9,  0,  5], 
        [ 0,  0, 16]]) 

unless our goal is achieve an opposite effect, then: 
  
 >>> b = np.where(~((x >= 5) & (x < 20)), x, 0) 
 array([[37,  0, 72], 
        [ 0, 75,  0], 
        [79, 64,  0]]) 

Both method can be thought of  as a quick array filtering or clipping 
as we have seen in the previous Section. It is important to note that a 
and b are independent of  x: 
  
 >>> x[0, 0] = -100 
 >>> x 
 array([[-100,  12,  72], 
        [   9,  75,   5], 
        [  79,  64,  16]]) 

np.where

In defining logical conditions 
we make use of  bitwise 
logic operators (&, |, ^, ~).  

More practical examples on 
searching and NumPy array 
screening you will find in 
Section 3.8.



 172

 >>> b 
 array([[37,  0, 72], 
        [ 0, 75,  0], 
        [79, 64,  0]]) 

i.e. the initial value 37 in b is not effected by any change applied in x. 

 3.3.4.  Basic Engineering of Array Manipulation 

NumPy delivers a few useful functions for the array manipulation and 
creation through the basic engineering: reshaping, concatenating, 
and splitting. As we will witness in a moment, it enriches our 
experience in understanding how certain solutions have been coded in 
NumPy. Let’s start with some working matrixes: 
  
 >>> np.random.seed(2) 
 >>> x = np.random.rand(3, 3); x 
 array([[ 0.4359949 ,  0.02592623,  0.54966248], 
        [ 0.43532239,  0.4203678 ,  0.33033482], 
        [ 0.20464863,  0.61927097,  0.29965467]]) 
 >>> y = x.copy() + 1; y 
 array([[ 1.4359949 ,  1.02592623,  1.54966248], 
        [ 1.43532239,  1.4203678 ,  1.33033482], 
        [ 1.20464863,  1.61927097,  1.29965467]]) 

and 
  
 >>> z = y[2, :].copy(); z 
 array([ 1.20464863,  1.61927097,  1.29965467]) 

A fast method to transform a row vector, z, into N x 3 matrix for, say, 
N = 4, is the application of  the np.vstack function: 
  
 >>> np.vstack([z, z, z, z]) 
 array([[ 1.20464863,  1.61927097,  1.29965467], 
        [ 1.20464863,  1.61927097,  1.29965467], 
        [ 1.20464863,  1.61927097,  1.29965467], 
        [ 1.20464863,  1.61927097,  1.29965467]]) 
 
or 
  
 import numpy as np 

 np.random.seed(2) 
 x = np.random.rand(3, 3) 
 y = x.copy() + 1 
 z = y[2, :].copy() 

 for i in range(5): 
        if i > 1: 
            tmp = np.vstack([tmp, z]) 
        else: 
            tmp = z.copy() 

 print(tmp) 

what allows for a vertical duplication of  z. Yes, the horizontal 
expansion is also possible. This time with a help of  the np.hstack 
function acting on the column vector. The transposition of  the 
original z you may obtain in two ways: 

np.vstack

Code 3.3



 173

  
 >>> z1 = z.T 
 array([[ 1.20464863], 
        [ 1.61927097], 
        [ 1.29965467]]) 
 

or 
  
 >>> z1 = = np.reshape(z, (3, 1)) 

if  you specify the dimensions as an input in the np.reshape function. 
Therefore, 
  
 >>> np.hstack([z, z, z, z]) 
 array([[ 1.20464863,  1.20464863,  1.20464863,  1.20464863], 
        [ 1.61927097,  1.61927097,  1.61927097,  1.61927097], 
        [ 1.29965467,  1.29965467,  1.29965467,  1.29965467]]) 

Reshaping, in its most popular application, is mainly used for the 
transformation of  1D arrays into 2D matrixes. The dimensions have 
to be selected in the way to allow for the transformation itself: 
  
 >>> x 
 array([[ 0.4359949 ,  0.02592623,  0.54966248], 
        [ 0.43532239,  0.4203678 ,  0.33033482], 
        [ 0.20464863,  0.61927097,  0.29965467]]) 

 >>> xflat = np.reshape(x, x.size) 
 >>> xflat 
 array([ 0.4359949 ,  0.02592623,  0.54966248,  0.43532239, 
         0.4203678 ,  0.33033482,  0.20464863,  0.61927097,   
         0.29965467]) 

Here, np.reshape flattens 3x3 NumPy array of  x. Something went 
wrong? No problem. Rebuilding the 3x3 array from a flat row vector 
takes a second: 
  
 >>> np.reshape(xflat, (3, 3)) 
 array([[ 0.4359949 ,  0.02592623,  0.54966248], 
        [ 0.43532239,  0.4203678 ,  0.33033482], 
        [ 0.20464863,  0.61927097,  0.29965467]]) 

In general, for any row vector, say v, of  the total number of  elements 
v.size please check: 
  
 (np.sqrt(v.size) - np.sqrt(v.size) // 1) == 0) 

in order to ensure that you can apply np.reshape without an error, e.g.: 

 >>> xflat 
 array([ 0.4359949 ,  0.02592623,  0.54966248,  0.43532239, 
         0.4203678 ,  0.33033482,  0.20464863,  0.61927097,   
         0.29965467]) 
 >>> xs = xflat.size; xs 
 9 
 >>> xd = int(np.sqrt(xs)); xd 
 3 
 >>> xs = xflat.size; xs 
 9 
 >>> test = (np.sqrt(xs) - np.sqrt(xs) // 1) == 0; test 
 True 
 >>> if(test): 
 ...     np.reshape(xflat, (xd, xd)) 
 ...  
     

np.reshape 
a row vector into a column 
vector.

np.hstack



 174

 array([[ 0.4359949 ,  0.02592623,  0.54966248], 
        [ 0.43532239,  0.4203678 ,  0.33033482], 
        [ 0.20464863,  0.61927097,  0.29965467]]) 

Splitting of  a row vector, a, 
  
 >>> a = np.arange(12) + 1 
 >>> a 
 array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12]) 

 
into sub-arrays can be achieved by: 

 >>> a1, a2 = np.split(a, [6]) 
 >>> a1; a2 
 array([1, 2, 3, 4, 5, 6]) 
 array([ 7,  8,  9, 10, 11, 12]) 

where we specify a split point. For a 2D array, we can perform vertical 
and horizontal splitting, depending on our goal: 
  
 >>> a = np.arange(24).reshape(4, 6) 
 >>> a 
 array([[ 0,  1,  2,  3,  4,  5], 
        [ 6,  7,  8,  9, 10, 11], 
        [12, 13, 14, 15, 16, 17], 
        [18, 19, 20, 21, 22, 23]]) 

 >>> h1, h2, h3 = np.hsplit(a, [2, 4]) 
 >>> h1 
 array([[ 0,  1], 
        [ 6,  7], 
        [12, 13], 
        [18, 19]]) 
 >>> h2 
 array([[ 2,  3], 
        [ 8,  9], 
        [14, 15], 
        [20, 21]]) 
 >>> h3 
 array([[  4,  5], 
        [ 10, 11], 
        [ 16, 17], 
        [ 22, 23]]) 
 

and 
  
 >>> v1, v2 = np.vsplit(a, [2]) 
 >>> v1 
 array([[ 0,  1,  2,  3,  4,  5], 
        [ 6,  7,  8,  9, 10, 11]]) 
 >>> v2 
 array([[12, 13, 14, 15, 16, 17], 
        [18, 19, 20, 21, 22, 23]]) 

Lastly, a plain concatenation of  row vectors is possible thanks to the 
np.concatenate function. Have a look: 
  
 >>> c = np.array([1, 2, 4, -3]) 
 >>> np.concatenate([c, c]) 
 array([ 1,  2,  4, -3,  1,  2,  4, -3]) 

or by the application of: 

  

np.concatenate

np.split

np.hsplit

np.vsplit



 175

 >>> np.tile(c, 2) 
 array([ 1,  2,  4, -3,  1,  2,  4, -3]) 

Also 

 >>> np.tile(h1, 3) 
 array([[ 0,  1,  0,  1,  0,  1], 
        [ 6,  7,  6,  7,  6,  7], 
        [12, 13, 12, 13, 12, 13], 
        [18, 19, 18, 19, 18, 19]]) 

works great with 2D arrays, too. 

np.tile 
constructs an array by 
repeating c x times.



 176



 177

3.4.  Arrays of Randomness 

One of  the greatest, unseen at the first glance, benefits of  NumPy's 
arrays is their speed of  creation, transformation, and abundant 
numerical operations. With the backbone buried in C, NumPy equips 
the quants with the light-fast results. That has been applied, inter alia, 
within the np.random module implemented within NumPy. 

In this Section, we will scan across most frequently used functions for 
randomisation and random selection. As you may guess—yes—the 
Mersenne Twister engine finds its implementation in NumPy, too. 

 3.4.1.  Random Variables, Well Shook 

Normal and Uniform 
Working with the np.random module, the alias that we will be using 
through the entire book is: 

 >>> from numpy import random as npr 

It is not a must to apply the same rule in your code. The choice is 
yours. However, if  more programmers make a habit of  the same kind, 
our future codes will become more readable. 

A random variable drawn from the Standard Normal distribution 
we obtain by: 

 >>> npr.randn() 
 2.2922080128149576    

The input parameters for the NumPy’s random functions, in general, 
follow the same fashion: 

 # a row vector 
 >>> npr.randn(4)  
 array([-1.11792545,  0.53905832, -0.5961597 , -0.0191305]) 

 # 2D array (5x2) 
 >>> npr.randn(5, 2)  

 # 3D array (3x2x4) 
 >>> npr.randn(3, 2, 2)  
 array([[[-0.82913529,  0.08771022,  1.00036589, -0.38109252], 
         [-0.37566942, -0.07447076,  0.43349633,  1.27837923]], 

    [[-0.63467931,  0.50839624,  0.21611601, -1.85861239], 
         [-0.41931648, -0.1323289 , -0.03957024,  0.32600343]], 

        [[-2.04032305,  0.04625552, -0.67767558, -1.43943903], 
         [ 0.52429643,  0.73527958, -0.65325027,  0.84245628]]]) 
  

however, always check the syntax to avoid mistakes.  

A transition of  the Gaussian distribution into the normalised Normal 
distribution is possible through a transformation or rv: 

np.random.randn



 178

 

 
well known from the course on statistics. In Python we achieve it by: 

 from numpy import random as npr 
    from matplotlib import pyplot as plt 
     
    mu = 3.5 
    sig = 3.0 
     
    X = npr.normal(mu, sig, size=10000) 
    Z = (X - mu)/sig 
     
     

where we allowed to generate a 1D array with 10,000 random 
numbers drawn from the Normal distribution described by the mean 
of  3.5 and standard deviation 3.0, and to ensure that Z ~ N(0, 1). 

Uniform random variables populating one- and multi-dimensional 
NumPy arrays one can generate in one of  the following ways. In 
general, and as usual, the distinction is made between integer and 
floating-point random numbers. The 

 >>> npr.rand(4) 
 array([ 0.84511312,  0.9885097 ,  0.04886809,  0.23211825]) 
  

command returns uniform rvs in (0, 1) interval. For 2D arrays, apply: 

 >>> npr.rand(4, 3) 
 array([[ 0.64331143,  0.16146656,  0.87014589], 
        [ 0.21740243,  0.74175504,  0.65302051], 
        [ 0.79888551,  0.03124756,  0.22957403], 
        [ 0.7046275 ,  0.08756251,  0.03058948]]) 
 

The function of  npr.randf makes sure the rvs are in (0, 1] interval: 

 >>> npr.ranf(4) 
 array([ 0.35713493,  0.58978199,  0.05222273,  0.06566367]) 

 >>> npr.random(4) 
 array([ 0.04350119,  0.39515076,  0.66842705,  0.19802711]) 

the equivalent of  the npr.random function. 

If  solely the integer random numbers are requested, try to employ 
either npr.randint or npr.random_integers. The former ensures random 
integers from low (inclusive) to high (exclusive) while the latter random 
integers between low and high, inclusive: 

 >>> npr.randint(10, 20, 4) 
 array([19, 10, 13, 14]) 

 >>> npr.random_integers(10, 20, 4) 
 array([16, 12, 20, 10]) 

and 

Code 3.4

np.random.normal

np.random.rand

np.random.ranf  

  

np.random.random

np.random.randint

np.random. 
random_integers

Z =
X � µ

�



 179

 >>> npr.randint(10, 20, size=(2, 2)) 
 array([[17, 19], 
        [13, 11]]) 

Randomness and Monte-Carlo Simulations 
The random choice can have two forms. Namely, one can assume 
that our array’s elements are equally probable to be selected (default), 
or there is some probability, prob, of  picking corresponding to every 
item. Therefore, within a default setup we can obtain: 

 >>> x = np.array([1, 2, 3, 4, 5, 6]) 
 >>> prob = np.array([1/6, 1/6, 1/6, 1/6, 1/6]) 
  
 >>> npr.choice(x, 3) 
 array([5, 2, 3]) 

equivalent to: 

 >>> npr.choice(x, 3, p=prob) 
 array([5, 2, 3]) 

However, if  we set a new probability vector, then: 

 prob = np.array([1/6, 5/6, 0, 0, 0, 0]) 
 for i in range(8):  # 8 simulations 
     print(npr.choice(x, 3, p=prob)) 

 [2 1 2] 
 [2 2 1] 
 [2 2 2] 
 [1 2 1] 
 [2 2 2] 
 [2 2 2] 
 [1 2 2] 

as expected. For the latter, if  you want to be double sure, run: 
 
 import numpy as np 
 from numpy import random as npr 

 x = np.array([1, 2, 3, 4, 5, 6]) 
 prob = np.array([1/6, 5/6, 0, 0, 0, 0]) 

 n1, n2, n3, n4, n5, n6 = 0, 0, 0, 0, 0, 0  # setting initial values 
 Nsim = 1000000 

 for i in range(Nsim): 
        tmp = npr.choice(x, 3, p=prob) 
        n1 += list(tmp).count(1) 
        n2 += list(tmp).count(2) 
        n3 += list(tmp).count(3) 
        n4 += list(tmp).count(4) 
        n6 += list(tmp).count(5) 
        n5 += list(tmp).count(6) 

 print(1/6, 5/6, 0., 0., 0., 0.) 
 print(n1/Nsim/3, n2/Nsim/3, n3/Nsim/3, 
          n4/Nsim/3, n5/Nsim/3, n6/Nsim/3) 

Code 3.5

np.random.choice



 180

which is a simple Monte-Carlo simulation with 1,000,000 trials run 
to verify that the assumed probabilities are in agreement with those 
we can get from the simulation. The output is: 

 0.16666666666666666 0.8333333333333334 0.0 0.0 0.0 0.0 
 0.166619 0.833381 0.0 0.0 0.0 0.0 

Well… excellent! Let’s have a drink. Bottoms up! ☺ 

 Heading to Las Vegas? A good shuffle is a skill the machines can 
display a mastery in. Python’s NumPy does it without breathing. We 
may shuffle, in a random way, a random (already!) array as follows: 

 >>> npr.seed(3) 
 >>> m = npr.randint(1, 10, size=(2, 2)) 
 >>> x = m.copy() 
 >>> m 
 array([[9, 4], 
        [9, 9]]) 

 >>> npr.shuffle(x) 
 array([[9, 9], 
        [9, 4]]) 

No big deal, right? Hold on. 

Let’s conduct a Monte-Carlo simulation (using the np.random.shuffle 
function) trying to estimate what is the probability of  finding exactly 
the same shuffled 3x3 array. First, analyse the code: 

 from numpy import random as nor 

 npr.seed(3) 
 m = npr.randint(1, 10, size=(3, 3)) 
 x = m.copy() 

 npr.shuffle(x)  # works in-place 
 print(x) 
 print() 

 Nsim = 100000000  # a number of simulations 
 n = 0 

 for i in range(Nsim): 
        tmp = npr.randint(1, 10, size=(3, 3)) 
        cmp = (tmp == x) 
        if(cmp.all()): 
            n += 1 

 print("n    = %g" % n) 
 print("Prob = %.9f" % (n/Nsim)) 

In the beginning, we use the npr.seed(3) function for making 3x3 array 
of  x —frozen: 

 [[9 1 6] 
  [9 4 9] 
   [4 6 8]] 

Next, we run 100,000,000 simulations. In the loop, the local variable 
tmp generates a temporary matrix 3x3 with the integer random 

Code 3.6

np.random.seed



 181

numbers to be between [1, 10). The boolean array of  cmp stores the 
results of  a comparison between tmp and x. If  all elements of  cmp 
are of  value True then we increase the total number of  "lucky" counts. 
Finally, the results are displayed: both n and the estimated probability. 
And if  you are a truly lucky guy, you may see the following output 
from this simulation: 

 n    = 1 
 Prob = 0.000000001 

I wasn’t! ☺ Can you find out "why"? Well, the probability of  hitting: 

 [[9 1 6] 
  [9 4 9] 
   [4 6 8]] 

matrix is: 

based on the definition of  the npr.randint function. 

Let’s consider another two examples. 

Personally, I love the game of  LOTTO. As previously highlighted, it is 
all about picking 6 numbers to be between 1 and 49. Randomly. Let’s 
use npr.choice function again in order to estimate the probability of  
hitting a lucky "6". We know that it is equal: 

i.e. 0.000000071511 with nearly 14 millions of  all combinations. 
Surprisingly, even those odds do not stop some people from getting 
rich! ☺  
 
Our mission can be accomplished if  we run: 

 from numpy import random as npr 

 Nsim = int(1e9) 
 n = 49 
 k = 6 

 data = [] 

 for i in range(Nsim): 
        tmp = npr.choice(n, k) 
        tmp = set(tmp) 
        if (tmp not in data) and (len(tmp) == k): 
            data.append(tmp) 

 print("N    = %g" % len(data)) 
 print("Prob = %.12f" % (1/len(data))) 

1

99
= 2.58⇥ 10�9 = 0.00000000258

Prob =

1

C6
49

=

✓
49!

6!(49� 6)!

◆�1

=

1

13983816

Code 3.7



 182

After few hours, we find: 

 N    = 13983816 
 Prob = 0.000000071511 

What is interesting about Code 3.7 is the use of  Python’s sets. The 
function of  npr.choice returns an array with k numbers drawn from a 
n-large sample. Unfortunately, those numbers may be the same in tmp 
therefore converting NumPy array into a set makes a lot of  sense. 
Only when a number of  elements of  tmp is equal k, we allow to 
append it to data (a plain list), if  tmp has not been in it so far. 

 A second useful thing you may derive for our LOTTO game is the 
probability of  hitting your lucky six-number combination—one more 
time! I used to play with this system in late 90s what, in fact, brought 
me a lot of  fun and hope to fulfil my dreams—sooner. 

Say, you are like me, and you randomly pick 6 out of  49 numbers—
your lucky "6". The strategy is to play two times a week and… to wait 
for your earlier retirement. With NumPy library in Python, the 
estimation of  the waiting time is straightforward. Analyse: 

 import numpy as np 
  
 def lotto_numbers(): 
        ok = False 
        while not ok: 
            x = np.random.choice(49, 6, replace=False) 
            x.sort() 
            tmp = np.where(x == 0) 
            (m, ) = tmp[0].shape 
            if(m == 0): 
                ok = True 
        return x 
  
 fav = lotto_numbers()  # choose your favourite 6 numbers 
 print(fav) 
  
 match = False 
 i = 0  # iterations 
 while not match: 
        tmp = lotto_numbers() 
        cmp = (tmp == fav) 
        i += 1 
        if cmp.all(): 
           match = True 

 print(tmp)  # print matching number when found 
 print("Iterations: %g\nProbability = %.2e" % (i, 1./i) ) 

First, we create a custom function lotto_numbers with a 6-element array 
of  random integers drawn from a set [0, 49] and we sort them all. 
Because 0 is not the part of  the game, we need to check for its 
presence and draw again, if  detected. A temporary array, tmp, inside 
lotto_numbers stores an index where x has a zero-element. Since we use 
the random.choice function with a parameter replace=False, we can be 
sure that there is only one zero in x, if  drawn. Therefore, m should 
be equal 0 or 1. 

Code 3.7a



 183

In the main program of  Code 3.7a the loop is alive until we find the 
match between a (random) selection of  our favourite 6 numbers, fav, 
and a new LOTTO draw. The array of  cmp holds six boolean 
elements as the result of  comparison. Therefore, making the arrays 
sorted is an essential part of  the code. Finally, the function of  .all() 
returns True or False if  all elements are True (or not), respectively. And, 
as in life, the Truth is better than false, right? ☺ 

An exemplary outcome you can get is: 

 [ 1  2  4 11 13 18] 
 [ 1  2  4 11 13 18]  
 Iterations: 37763 
 Probability = 2.65e-05 

meaning that playing with the system defined above, we would need 
to wait: 

 >>> 37763/(2*52) 
 363.1057692307692 

years for your lucky combination to repeat itself ! Note, that the 
outcome is just a single run of  the simulation. As a homework, could 
you run 10,000 simulations (modifying Code 3.7a respectively) and 
plot the distribution of  "years" derived as int(i/(2*52)). Also, what 
could be modified to make 3.7a faster?  

Aside a random choice powered by Mersenne Twister, permutations 
of  N-array are accessible in NumPy by: 

 >>> np.random.permutation(6) 
 array([3, 5, 2, 4, 1, 0]) 

or 

 >>> x = np.identity(3) 
 >>> x 
 array([[ 1.,  0.,  0.], 
        [ 0.,  1.,  0.], 
        [ 0.,  0.,  1.]]) 
 >>> npr.permutation(x)  # in-place 
 >>> x 
 array([[ 1.,  0.,  0.], 
        [ 0.,  0.,  1.], 
        [ 0.,  1.,  0.]]) 
  
Saying that, here is one more challenge: modify Code 3.6 and find a 
number of  all permutations for 3x3 identity array. Compare. 

 3.4.2.  Randomness from Non-Random Distributions 

As we have tasted at the beginning of  this Section, NumPy provides 
us with some ready-to-use functions for generating N-dimensional 
array filled with random numbers. Our choice in confined solely to 
the distribution which we wish to use. 

np.random.permutation



 184

What follows, is a full list of  the function names and the 
corresponding distributions. The detailed information on the proper 
call and syntax you may find if  you look at: http://docs.scipy.org/
doc/numpy-1.10.1/reference/routines.random.html.  

A typical way to call those functions is: 

 >>> import numpy as np 
 >>> np.random.gumbel(0.1, 2.5, size=(1, 4)) 
 array([[ 1.57207262,  1.29800811, -2.9606535 , -1.32470797]]) 
  

or, as we have mentioned earlier: 

 >>> from numpy import random as npr 
 >>> npr.pareto(0.1, size=(3, 1)) 
 array([[  2.94280749e-01], 
        [  3.79999371e+00], 
        [  4.24316547e+02]]) 
  

  
 Function  Distribution 

 beta   Beta distribution 
 binomial  binomial distribution 
 chisquare  chi-square distribution 
 dirichlet  Dirichlet distribution 
 exponential  exponential distribution  
 f    F distribution 
 gamma   Gamma distribution 
 geometric   geometric distribution 
 gumbel   Gumbel distribution 
 hypergeometric  Hypergeometric distribution 
 laplace   Laplace or double exponential distribution 
 logistic  logistic distribution 
 lognormal  log-normal distribution 
 logseries   logarithmic series distribution 
 multivariate_normal multivariate normal distribution 
 negative_binomial negative binomial distribution 
 noncentral_chisquare noncentral chi-square distribution 
 noncentral_f   noncentral F distribution 
 normal   normal (Gaussian) distribution 
 pareto    Pareto II or Lomax distribution 
 poisson    Poisson distribution 
 power   power distribution 
 rayleigh   Rayleigh distribution 
 standard_cauchy   standard Cauchy distribution with mode = 0 
 standard_exponential standard exponential distribution 
 standard_gamma   standard Gamma distribution 
 standard_normal   standard Normal distribution, N(0,1) 
 standard_t   standard Student’s t distribution 
 triangular   triangular distribution 
 uniform    uniform distribution 
 vonmises   von Mises distribution 
 wald    Wald, or inverse Gaussian, distribution 
 weibull    Weibull distribution 
 zipf    Zipf distribution 
  

The problem with those functions is in their limited application. If  a 
cumulative distribution function or percent point function is sought 
after, you have to reach for SciPy’s library of  scipy.stats. The 
scipy.stats module will be addressed in greater detail within Volume II, 
however, now, for fulfilling your curiosity, let’s consider a practical 
example of  the MasterCard Inc. stock data and its statistical analysis 
—in the next Section. 



 185

3.5.  Sample Statistics with scipy.stats Module 

SciPy is an open source Python library used by scientists, analysts, 
and engineers. It contains a rich set of  tools and useful functions for 
optimization, linear algebra, integration, interpolation, special 
functions, Fourier transform, signal and image processing, and not 
forgetting about ODE solvers. It also constitutes the established and 
respected gateway to the computational statistics in Python. 

The module of  scipy.stats equips us with over one hundred functions 
including continuous, multivariable and discrete distributions; 81 
statistical functions; circular and contingency table function; and plot-
tests. Depending on the complexity of  our data and problem to be 
solved, scipy.stats is a right place where you can commence exploring 
a variety of  options Python has to offer. Below, we will make use of  a 
tiny fraction from the scipy.stats’s arsenal (see http://docs.scipy.org/
doc/scipy/reference/stats.html).  

Our goal is to provide the fundamental data description based on the 
financial data fetched from the Wall Street trading sessions. We will 
perform the analysis of  the daily returns of  MA (MasterCard Inc.) 
stock. All the steps can be summarised as follows: 

1. Using Yahoo! Finance data provider retrieve a daily adjusted-
close stock prices-series for a period of  5 years; 

2. Transform price- into return-series and treat it as an input data 
sample; 

3. Assuming that our dataset can be described by the Normal 
distribution, fit the data with the Normal probability density 
function (pdf) and estimate a daily mean return and standard 
deviation; 

4. Transform data to the standardised Normal distribution and 
confirm in the process of  fitting of  pdf  that both model’s 
parameters are equal 0 and 1, respectively; 

5. Find the cumulative distribution function; 
6. Assuming the significance level of  0.05, find the Value-at-Risk 

for MA daily returns; reconfirm that for such VaR, the 
probability is 0.05; use the analytical model; 

7. Write a function which derives VaR based on the empirical 
integration of  MA’s returns histogram; compare both VaRs. 

In this case study, we will demonstrate the essential functions required 
to perform those basic statistical analyses—a good start to building 
your own experience with scipy.stats and Python (have a look at 
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html for an 
introductory tutorial on scipy.stats). 

Ready? Let’ do it… 

scipy.stats delivers an independent method for generating arrays 
filled with random numbers drawn from a specific distribution. In 
case of  the Normal distribution: 



 186

 
 from numpy import random as npr 
 from scipy.stats import norm 

 mu = 0.001 
 sig = 0.02 

 rvs1 = npr.normal(mu, sig, 100000)  # NumPy 
 rvs2 = norm.rvs(mu, sig, 100000)    # SciPy’s stats 
  

the random array of  rvs2 is generated with a help of  the SciPy’s stats 
module while rvs in the way we have discussed within the previous 
Section. Both methods are equivalent.  

The difference you may notice is that SciPy contains a broader sample 
of  the statistical distributions than NumPy. 

 3.5.1. Downloading Stock Data From Yahoo! Finance 

For many years Yahoo! Finance has been a great source of  financial 
data—free of  charge. That includes stock daily price-series for almost 
all stocks traded within major stock exchanges. Here, we are 
interested in MA’s adjusted-close price series. 

The easiest way to fetch Yahoo! Finance data in Python is by 
employing a dedicated module of  pandas-datareader which, very soon, 
will replace pandas.io (see https://github.com/pydata/pandas-
datareader). If  you use Anaconda Python 3.5 distribution, most 
probably you need to install it, if  not present already: 

 $ conda install pandas-datareader 

 Fetching package metadata: .... 
 Solving package specifications: ............................... 
 Package plan for installation in environment //anaconda: 

 The following packages will be downloaded: 

    package                    |            build 
    ---------------------------|----------------- 
    pandas-datareader-0.2.0    |           py35_0          40 KB 
    ------------------------------------------------------------ 
                                           Total:         213 KB 

 The following NEW packages will be INSTALLED: 

    pandas-datareader: 0.2.0-py35_0  

 Fetching packages ... 
 pandas-datarea 100% |###################| Time: 0:00:00  63.42 kB/s 
 Extracting packages ... 
 [      COMPLETE      ]|###################| 100% 
 Unlinking packages ... 
 [      COMPLETE      ]|###################|100% 
 Linking packages ... 
 [      COMPLETE      ]|###################|100% 
  

Code 3.8

.rvs



 187

In other case, install via : 

 $ pip3.5 install pandas-datareader 
  

typed and executed in the Terminal. Now, we are ready! 

Sample Statistics for NYSE:MA daily stock returns. 

 import numpy as np 
 from scipy.stats import norm 
 import matplotlib.pyplot as plt 
 import pandas_datareader.data as web 

 # 1. DATA DOWNLOAD 
 # 
 #  Fetching Yahoo! for MasterCard Inc. (MA) stock data 
 data = web.DataReader("MA", data_source='yahoo', 
                      start='2010-05-13', end='2015-05-13')['Adj Close'] 
 cp = np.array(data.values)  # daily adj-close prices 
 ret = cp[1:]/cp[:-1] - 1    # compute daily returns 
  

In this part, we download five years of  MA price-series in the form 
of  pandas’ DataFrame (more on pandas for quantitative finance 
within Volume II of  Python for Quants). Next, we solely extract values 
from data DataFrame and store them as a NumPy 1D array of  cp 
(adjusted-close). At last, the price-series is converted into array of  
daily returns, ret.  

 3.5.2. Distribution Fitting. PDF. CDF. 

Continuing Code 3.9, 

 # 2. APPLIED STATISTICS 
 # 

 # Fit ret with N(mu, sig) distribution and estimate mu and sig 
 mu_fit, sig_fit = norm.fit(ret) 
 print("Daily") 
 print("  mu_fit, sig_fit = %.4f, %.4f" % (mu_fit, sig_fit)) 
 print("Annualised") 
 print("  mu, stdev = %.4f, %.4f" % ((mu_fit+1)**364-1, 
      sig_fit*(252**0.5))) 
 # Find PDF 
 dx = 0.001  # resolution 
 x = np.arange(-5, 5, dx) 
 pdf = norm.pdf(x, mu_fit, sig_fit) 

 print("Integral pdf(x; mu_fit, sig_fit) dx = %.2f" %  
       (np.sum(pdf * dx))) 
  
Every distribution class of  scipy.stats has the same methods. The 
method of  norm.fit takes as an argument the array with numbers and 
making use the Normal distribution, scipy.stats.norm, as the model—
it fits the data with a corresponding probability density function 
(pdf). As the output, the best estimates of  the mean and standard 
deviation are returned. We display their values and, in addition, 
compute the annualised expected return and volatility for MA stock: 

Code 3.9

.fit

.pdf

np.sum



 188

 Daily 
   mu_fit, sig_fit = 0.0013, 0.0175 
 Annualised 
   mu, stdev = 0.5854, 0.2779 
  

Given the annualised return of  58.5% at 27.8% of  risk, it makes MA 
quite attractive stock to invest (as of  May 13, 2015), would you agree? 

The probability density function of  the Normal distribution can be 
derived as: 

 pdf = norm.pdf(x, mu_fit, sig_fit) 

for the estimated parameters of  the model. By x we describe a set of  
all possible discrete values defining "x-axis" domain. Therefore, pdf 
function will be spanned from -5 to 5 with 0.001 resolution of  dx. 
Lastly, by employing integration (conducted with an aid of  np.sum 
function) we verify that: 

where N is the pdf  of  the Normal distribution, 

 Integral pdf(x; mu_fit, sig_fit) dx = 1.00 
 

The cumulative density function (cdf) can found by: 

 cdf = norm.cdf(x, mu_fit, sig_fit) 

and plotted, if  necessary. 

What appears to be a simple academic exercise in statistics, in Python 
is at the same level of  simplicity, namely, a transformation of  a data 
sample from (assumed by model; confirmed by fitting) Normal 
distribution to the standardised Normal distribution. Continuing 
Code 3.9, we add: 

 # --standardised Normal distribution 
 z = (ret - mu_fit)/sig_fit  # transformation 
 mu_fit2, sig_fit2 = norm.fit(z)  # estimation 
 print("\nmu_fit2, sig_fit2 = %.4f, %.4f" % (mu_fit, sig_fit)) 
 stdpdf = norm.pdf(x, mu_fit2, sig_fit2)  # N(0,1) pdf 
 print("Intgral pdf(x; mu_fit2, sig_fit2) dx = %.2f" %  
           (np.sum(stdpdf * dx))) 

where we use: 

transformation of  the normal random variables to Z ~ N(0, 1). Also 
in this case: 

 Integral pdf(x; mu_fit2, sig_fit2) dx = 1.00 

and 

Z 1

�1
N(x;µ,�)dx = 1

Z =
X � µ

�

.cdf



 189

 mu_fit2, sig_fit2 = -0.0000, 1.0000 

as expected. As far as the numbers are lovely, the picture tells a whole 
story. Extending further 3.9: 
 
 # --Plotting PDFs 
 fig, ax1 = plt.subplots(figsize=(10, 6)) 
 # 
 plt.subplot(211) 
 plt.hist(ret, bins=50, normed=True, color=(.6, .6, .6)) 
 plt.hold(True) 
 plt.axis("tight") 
 plt.plot(x, pdf, 'r', label="N($\mu_{fit}$,$\sigma_{fit}$)") 
 plt.legend() 
 # 
 plt.subplot(212) 
 plt.hist(z, bins=50, normed=True, color=(.6, .6, .6)) 
 plt.axis("tight") 
 plt.hold(True) 
 plt.plot(x, stdpdf, 'b', label="N($\mu_{fit2}$,$\sigma_{fit2}$) = 
            N(0,1)") 
 plt.legend() 
 plt.show() 

we combine both pdf ’s with the original (upper) and transformed 
(bottom) MA daily returns distributions (see the chart above). 

 3.5.3.  Finding Quantiles. Value-at-Risk. 

The starting point is trivial. For any given distribution, k is called α-
quantile such: 

It means that in case of  the Normal distribution, we have to perform 
the integration in the interval: 

Pr(X < k) = ↵



 190

To 3.9, we add: 

 # --Finding k such that Pr(X<k)=alpha given alpha 
 alpha = 0.05 
 k = norm.ppf(alpha, mu_fit, sig_fit) 
 print("\nk  = %.5f" % k) 
 

where .ppf function stands for the inverse of  the cumulative density 
function or percent point function (ppf). The task can be reversed 
and formulated as follows: given k find α. In Python we solve it by: 

 # --Finding Pr(X<k) given k 
 pr = norm.cdf(k, mu_fit, sig_fit) 
 print("Pr(X<k) = %.5f" % pr) 

what delivers the output: 

 k  = -0.02753 
 Pr(X<k) = 0.05000 

if  the same value of  k is used for the latter computation. This result, 
derived here based on MA stock data, simply communicates that 
there is 5% of  chances that on the next day, MA may lose 2.75% or 
more. Saying so, in fact, we define a quantitative measure of  risk—
VaR or Value-at-Risk described more formally as: 

where by L we denote a loss (in percent) that an asset can experience 
on the next day. Having that, there are at least two methods of  
finding VaR for the sample data: analytical and empirical. 

The analytical way is based on (1) fitting the distribution with the 
model, e.g. the Normal distribution, and (2) finding α-quantile or, 
saying in terms of  finance, (1-α)VaR, based on the model integration 
as have performed above. The empirical method is through a 
"manual" integration of  the distribution. It requires a design of  a 
special custom function: 

 def findvar(ret, alpha=0.05, nbins=200): 
        # Function computes the empirical Value-at-Risk (VaR) for  
     #  return-series 
        #   (ret) defined as NumPy 1D array, given alpha 
        # 
        # compute a normalised histogram (\int H(x)dx = 1) 
        #  nbins: number of bins used (recommended nbins>50) 
        hist, bins = np.histogram(ret, bins=nbins, density=True) 
        wd = np.diff(bins)  # resolution of H(x) 
        # cumulative sum from -inf to +inf 
        cumsum = np.cumsum(hist * wd) 
        # find an area of H(x) for computing VaR 
        crit = cumsum[cumsum <= alpha] 
        n = len(crit) 
        # (1-alpha)VaR 
        VaR = bins[n] 
        return VaR 

.ppf

Pr(L  �VaR1�↵) = ↵

np.histogram

np.cumsum

Z k

�1
N(x;µ,�)dx = ↵



 191

We employ the np.histogram function for creating the histogram with 
nbins in resolution. Next, the application of  the np.cumsum function 
generates a 1D array with a running cumulative sum for all histogram 
bars. Using it, we screen for the region less than α. Now it is easy to 
find VaR since it is the last value of  the bins vector returned by the 
np.histogram function. 

Lastly, we compare both approaches finalising Code 3.9 with: 

 # --Compare Value-at-Risk numbers 
 cl = 100*(1 - alpha) # confidence level 
 print("\n%g%% VaR (analytical) = %.5f" % (cl, -k)) 
 VaR = findvar(ret, alpha=0.05) 
 print("%g%% VaR (empirical)  = %.5f" % (cl, -VaR)) 

what delivers: 

 95% VaR (analytical) = 0.02753 
 95% VaR (empirical)  = 0.02555 

and points at the very good agreement between both methods we 
have tested. Although for a single investor, the difference of  0.198% 
in VaR is negligible, for a bank it may a huge headache. ☺ 



 192



 193

3.6.  3D, 4D Arrays, and N-dimensional Space 

Moving in 3D (three dimensional) space is natural to us and is 
intuitively described by length, width, and height. The latter sets a 
system of  coordinates from day one when we are born. We learn it, 
was assimilate it. Our body is, in its first approximation, defined as a 
3D object and there is no question about it. When we move across 
space, we traverse in time. Therefore, the time introduces 4D (the 
forth dimension) to our description. Are we able to imagine the fifth 
dimension using the same example? I believe so. If  you look at your 
body moving along the invertible axis of  time, the changes of  your 
skin colour or skin texture in time could be regarded as information 
defining the fifth dimension or 5D (hyper-)space. 

Can we visualise 5D data collection? The answer is yes and no. No 
because we cannot plot a static image showing full 5D information in 
"one shot". Yes because we can create an animation where the slices 
of  5D data are captured and displayed on the screen.  

One of  the greatest examples of  the Python code (but too 
complicated to be explained within this book) is Animator5D written 
by Ben Bartlett which you can reach and download from https://
github.com/bencbartlett/Animator5D GitHub repository. 
Animator5D uses a simple framework for rendering 5-dimensional 
animations (x, y, z, time, some colour value) as an animated GIF. 
Originally written to reconstruct electromagnetic (EM) scattering (a 
shower) in the CMS detector (http://cms.web.cern.ch/news/cms-
detector-design) over time, the program was designed to visualise the 
energy deposited per layer as the fifth quantity. What follows are two 
slices of  information in such defined 5D space: 

Output of Animator5D 
(c) 2015 by Ben Bartlett 

  



 194

 3.5.1.  Life in 3D 

In Python’s NumPy, a manual construction of  3D array out of  2D 
arrays takes the following steps, e.g.: 

 >>> x = np.array([[1,2], [4,5], [7,8]]) 
 >>> x 
 array([[1, 2], 
        [4, 5], 
        [7, 8]]) 
 >>> y = -1 * x.copy() 
 >>> y 
 array([[ -1, -2], 
        [ -4, -5], 
        [ -7, -8]]) 
 >>> x.ndim; y.ndim  # confirm we deal with 2D arrays 
 2 
 2 
 >>> z = np.array([x, y])  # 3D array 
 >>> z 
 array([[[ 1,  2], 
            [ 4,  5], 
          [ 7,  8]], 

          [[-1, -2], 
          [-4, -5], 
    [-7, -8]]]) 
 >>> z.ndim 
 3 
 >>> z.shape 
 (2, 3, 2) 

i.e, we end up with 2x(3x2) 3D array. Pay a closer attention of  how 
the use of  the inner square brackets is made. We also can confirm: 

 >>> (z[0] == x).all(); (z[1] == y).all() 
 True 
 True 

therefore by indexing: 

 z[1] 

we get an access to the 2nd slice of  3D "cube". As expected, the 
addition: 

 >>> z[0] + z[1] 
 array([[0, 0], 
        [0, 0], 
        [0, 0]]) 

flattens 3D structure via element-wise projection onto 2D plane. 
That operation is different than: 

 >>> f = z.flatten(); f 
 array([ 1,  2,  4,  5,  7,  8, -1, -2, -4, -5, -7, -8]) 

that creates a 1D array containing all 3D elements as a plain "list". In 
some cases, it is convenient to work with all data regardless of  the 
number of  dimensions.  

A reversal is possible, i.e. going from 1D to 3D shape: 



 195

 >>> f.reshape(2, 3, 2) 
 array([[[ 1,  2], 
            [ 4,  5], 
          [ 7,  8]], 

          [[-1, -2], 
          [-4, -5], 
    [-7, -8]]]) 

The element-wise sum can be achieved with a help of  the np.sum 
function where the direction (axis) along which the summation takes 
place appears in the function calling as an additional parameter: 

 >>> np.sum(z, axis=0) 
 array([[0, 0], 
        [0, 0], 
        [0, 0]]) 
 >>> np.sum(z, axis=1) 
 array([[ 12,  15], 
        [-12, -15]]) 
 >>> np.sum(z, axis=2) 
 array([[  3,   9,  15], 
        [ -3,  -9, -15]]) 

The extension of  2x3x2 3D array of  z by inclusion of  an additional 
3x2 2D array of  ones 

 >>> z 
 array([[[ 1,  2], 
            [ 4,  5], 
          [ 7,  8]], 

          [[-1, -2], 
          [-4, -5], 
    [-7, -8]]]) 
 >>> o = np.ones((3, 2)) 
 array([[ 1.,  1.], 
        [ 1.,  1.], 
        [ 1.,  1.]]) 
 
(depending on the desired position of  o slice) is accessible by: 

 >>> z1 = np.vstack([z, o[np.newaxis, ...]]) 
 array([[[ 1,  2], 
            [ 4,  5], 
          [ 7,  8]], 

          [[-1, -2], 
          [-4, -5], 
    [-7, -8]], 

        [[ 1.,  1.], 
         [ 1.,  1.], 
         [ 1.,  1.]]]) 

or 

 >>> z2 = np.vstack([o[np.newaxis,...], z]) 

and 

 >>> z1.ndim; z1.shape  # z2.ndim; z2.shape 
 3 
 (3, 3, 2)  

np.sum(x, axis=k)

np.newaxis



 196

 3.5.2.  Embedding 2D Arrays in 4D, 5D, 6D 

As we have discussed, if  we consider K 2D arrays (NxM) stacked 
"slice-by-slice" as a 3D array then its dimensions will be KxNxM. The 
best way to image that case is an index card drawer. A card index is 
described by length and width, NxMx0 cm, and we place K of  them 
stacked together inside. Therefore, K cards can be described by 
KxNxM 3D-cuboid. The operation of  stacking K cards up can be 
thought of  as embedding 2D objects in 3D space. 

Can we take it higher and talk about embedding 2D objects in 4D or 
even higher dimensions? Yes. Let this journey to begin… 

Imagine the following Monte-Carlo simulation. The design of  this 
simulation is to show you the evolution of  2D array in time (in 3D) in 
K discrete time steps. In the beginning with have a 3x3 array filled 
with zeros, a. Next, we create a temporary 2D array of  zeros, tmp, 
and randomly select two indexes, i and j and assign some random 
value, val, to be between 1 and 10 such that: 

 tmp[i, j] = val 

In time step #2, we take the last slice of  a and add (element-wise 
addition) matrix tmp to it. The resultant matrix is added to a 
therefore the dimensions of  a array change from: 

 (1, 3, 3) 

to 

 (2, 3, 3) 

and so on. Let’s assume K to be equal 69 (a number of  simulated time 
steps). Using the knowledge from the precedent Section, we write: 

 import numpy as np 

 np.random.seed(2) 

 a = np.zeros((1, 3, 3)) 

 for k in range(1, 70): 
        i = np.random.random_integers(0, 2) 
        j = np.random.random_integers(0, 2) 
        val = np.random.random_integers(1, 10) 
        tmp = np.zeros((3, 3)) 
        tmp[i, j] = val 
        b = a[-1].copy() + tmp 
        a = np.vstack([a, b[np.newaxis, ...]]) 

For k = 1, the arrays of  tmp, b, and a are: 

 [[ 0.  9.  0.]     # tmp 
  [ 0.  0.  0.] 
  [ 0.  0.  0.]] 

 [[ 0.  9.  0.]     # b 
  [ 0.  0.  0.] 
  [ 0.  0.  0.]] 

Code 3.10



 197

 [[[ 0.  0.  0.]  # a 
   [ 0.  0.  0.] 
   [ 0.  0.  0.]] 

  [[ 0.  9.  0.] 
   [ 0.  0.  0.] 
   [ 0.  0.  0.]]] 

For k = 2 we may end up with a given as: 

    [[[ 0.  0.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  0.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  0.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  9.]]] 

After k = 4 we can see: 

    [[[ 0.  0.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  0.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  0.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 0.  0.  9.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 0.  6.  9.]] 

     [[ 0.  9.  0.] 
      [ 0.  0.  0.] 
      [ 5.  6.  9.]]] 

By adding to Code 3.10 three more lines: 

 print(a.ndim) 
 print(a.shape) 
 print(a[-1])    # display the last slice from the pile 

after all 1+69 time-steps we print the final outcomes: 

 3 
 (70, 3, 3) 
 [[ 29.  28.  42.] 
  [ 40.  62.  60.] 
  [ 46.  24.  20.]] 

i.e, our 3D array of  a stores 70 two-dimensional slices and the last 
"frame" stores the end result of  the simulation.  

For the need of  reproduction of  the results, we make use of  the 
np.random.seed(2) function at the beginning of  Code 3.10. 



 198

If  you look closer at what we obtained, i.e. 

 [[ 29.  28.  42.] 
  [ 40.  62.  60.] 
  [ 46.  24.  20.]] 

then it is obvious that we can enumerate both rows and columns with 
indexes equal [1, 2, 3]. If  so, what would you say to plot that final 
result in a form of  a 3D bar plot?! The values of  a[-1] become the 
heights of  the bars. Therefore, by extending 3.10: 

 # Plot 3D bar plot for 3D array of a[-1] 
 xpos = [1, 1, 1, 2, 2, 2, 3, 3, 3] 
 ypos = [1, 2, 3, 1, 2, 3, 1, 2, 3] 
 zpos = np.zeros(9) 
 dx = np.ones(9) 
 dy = np.ones(9) 
 dz = a[-1].flatten() 
 # 
 ax.bar3d(xpos, ypos, zpos, dx, dy, dz,  color='#f2b158', alpha=0.7) 
 # 
 ax.view_init(ax.elev, ax.azim+0) 
 plt.xticks([1, 2, 3]) 
 plt.yticks([1, 2, 3]) 
 plt.xlabel("Row No.") 
 plt.ylabel("Column No.") 
 plt.show() 

the visualisation of  a[-1] emerges: 

Within our exercise we built a simulation of  2D matrix in time by 
adding into a random cell a random value chosen between 1 and 10, 
and every next step we assigned the sum over all previous cells. As 
one might expect, the end result is purely random since we have not 
included any analytical model in the background nor we did not 
multiply any of  a[i] slices by some fixed 3x3 probability matrix (i.e. 
assigning 9 weights to all 9 cells in a[i] array).  

You are more than welcome to modify the code and experiment a bit 
with it. 



 199

Now, let’s study the fundamentals of 4D space in NumPy. It will act 
on your imagination and (hopefully) inspire you on the ways of  how 
to manipulate L different experiments based on K simulations of  the 
time-evolution of  NxM 2D arrays. 

The simplest way to create 4D array in NumPy would be, e.g.: 

 >>> x4 = np.array([[[[1, 2, 3]]]]) 
 >>> x4.ndim 
 4 
 >>> x4.shape 
 (1, 1, 1, 3) 

but, somehow, it does not look sexy. Not at all. It is flat and there is 
not too much to touch, to embrace, including the view… ☺ 

So, how about that one: 

 >>> x4 = np.array([[ [[1]], [[2]], [[3]] ]]) 
 >>> x4.ndim 
 4 
 >>> x4.shape 
 (1, 3, 1, 1) 
 >>> x4 
 array([[[[1]], 

         [[2]], 
 
         [[3]]]]) 

All inner arrays are 1x1. They are located in 3D space, therefore the 
dimensions are 3x(1x1). It is tempting to substitute those 1x1 arrays, 
for example, with 3x3 2D arrays which we choose as follows: 

 >>> a = np.array([[1,1,1], [1,2,1], [1,1,1]]) 
 >>> b = np.array([[1,-1,1], [-1,1,-1], [1,-1,1]]) 
 >>> c = np.array([[-2,1,-2], [1,1,1], [-2,1,-2]]) 

then 

 >>> x4 = np.array([[ a, b, c ]]) 
 >>> x4.ndim 
 4 
 >>> x4.shape 
 (1, 3, 3, 3) 
 >>> x4 
 array([[[[ 1,  1,  1], 
          [ 1,  2,  1], 
          [ 1,  1,  1]], 

         [[ 1, -1,  1], 
          [-1,  1, -1], 
          [ 1, -1,  1]], 

         [[-2,  1, -2], 
          [ 1,  1,  1], 
          [-2,  1, -2]]]]) 

The 4D array of  x4 can be interpreted as the storage of  the end-
results of  K=3 independent simulations (e.g. conducted with a help 
of  Code 3.10).  

A quick check reveals that: 
>>> x4[0][1] 
array([[2]]) 

is 1x1 2D array. Note double 
inner square brackets.



 200

The first dimension of  x4 points at the first "experiment" (L=1),  

 >>> x4.shape 
 (1, 3, 3, 3) 

Now, imagine that by repeating the whole experiment once again 
(L=2) we have obtained exactly the same results but due to some 
background noise each end-2D matrix (3x9 elements) has been 
altered (contaminated) at the same level. The noise matrix was: 

 >>> np.random.seed(9) 
 >>> n = np.random.random((3, 3))/10 
 >>> n 
 array([[ 0.00103742,  0.05018746,  0.04957733], 
        [ 0.01338295,  0.01421111,  0.02185587], 
        [ 0.04185082,  0.02481012,  0.00840597]]) 

such that the noise is additive to a, b, and c: 

 >>> x4 = np.array([[ a, b, c ], [a+n, b+n, c+n]]) 
 >>> x4.ndim; x4.shape 
 4 
 (2, 3, 3, 3) 

therefore, x4 becomes: 

 >>> x4 
 array([[[[ 1.        ,  1.        ,  1.        ], 
          [ 1.        ,  2.        ,  1.        ], 
          [ 1.        ,  1.        ,  1.        ]], 

         [[ 1.        , -1.        ,  1.        ], 
          [-1.        ,  1.        , -1.        ], 
          [ 1.        , -1.        ,  1.        ]], 

         [[-2.        ,  1.        , -2.        ], 
          [ 1.        ,  1.        ,  1.        ], 
          [-2.        ,  1.        , -2.        ]]], 

        [[[ 1.00103742,  1.05018746,  1.04957733], 
          [ 1.01338295,  2.01421111,  1.02185587], 
          [ 1.04185082,  1.02481012,  1.00840597]], 

         [[ 1.00103742, -0.94981254,  1.04957733], 
          [-0.98661705,  1.01421111, -0.97814413], 
          [ 1.04185082, -0.97518988,  1.00840597]], 

         [[-1.99896258,  1.05018746, -1.95042267], 
          [ 1.01338295,  1.01421111,  1.02185587], 
          [-1.95814918,  1.02481012, -1.99159403]]]]) 

By repeating the experiment 100 times, we may simulate that all 
3x(3x3) end-arrays return the same integer values (as given by a, b, 
and c arrays) affected by the noise level of  the same magnitude. 

The following code addresses this scenario: 
 
 import numpy as np 

 a = np.array([[1,1,1], [1,2,1], [1,1,1]]) 
 b = np.array([[1,-1,1], [-1,1,-1], [1,-1,1]]) 
 c = np.array([[-2,1,-2], [1,1,1], [-2,1,-2]]) 

Code 3.11



 201

 x4 = np.array([[a, b, c]])  # template 
 x4_model = x4.copy() 

 for nsim in range(100-1): 
        n = np.random.random((3,3))/10 
        noisy = np.array([a+n, b+n, c+n]) 
        x4 = np.vstack([x4, noisy[np.newaxis, ...]]) 

 print(x4.ndim) 
 print(x4.shape) 

We start with a pure template of  4D array x4 (1x3x3x3) and in each 
simulation we add a random noise. Conducting 100 experiments we 
end up with: 

 4 
 (100, 3, 3, 3) 

4D array of  x4. Someone may wish to inspect the results. One of  the 
best methods is to average 3 different outcomes (3x3) over 100 
experiments. Extending Code 3.11 by adding: 

 avg = np.mean(x4, axis=0) 
 print() 
 print(avg) 

we display the averaged results: 

[[[ 1.04871494  1.05082341  1.05504118] 
  [ 1.0490031   2.04724781  1.04314526] 
  [ 1.05434021  1.05296299  1.05146649]] 

 [[ 1.04871494 -0.94917659  1.05504118] 
  [-0.9509969   1.04724781 -0.95685474] 
  [ 1.05434021 -0.94703701  1.05146649]] 

 [[-1.95128506  1.05082341 -1.94495882] 
  [ 1.0490031   1.04724781  1.04314526] 
  [-1.94565979  1.05296299 -1.94853351]]] 

Since the model "values" have been saved in x4_model object, we 
can find the residuals for every 3x3 "averaged" array by: 

 res = avg - x4_model 

what accomplishes our interesting investigation of  L experiments of  
K=3 different simulations. 

Ready to move into 5D space? Nah… Looks like a mounting 
headache. Have a break. However, let me just denote that one can 
combine both Codes 3.10 and 3.11 in order to describe a time-
evolution of  NxM 2D arrays in K steps, repeated L times (number of  
independent experiments), conducted on P different days.  

Having that, adding 6D would be painless, i.e. (…) in R different 
laboratories dotted around the world. Averaging the end-results over 
world locations would be as easy as avg6 = np.mean(x6, axis=0). ☺ 

np.mean(x, axis=k)



 202



 203

3.7.  Essential Matrix and Linear Algebra 

 3.7.1.  NumPy’s ufuncs: Acceleration Built-In 

When you buy a nice car with 300 horsepower under the hood, you 
expect it to perform really well in most road conditions. The amount 
of  torque combined with a high-performance engine gives you a lot 
of  thrust and confidence while overtaking. The same level of  
expectations arises when you decide, from now on, to use Python for 
your numerical computations. 

Everyone heard about highly efficient engines of  C, C++, or Fortran 
when it comes to the speed of  the code execution. A magic takes 
place while the code is compiled to its machine-digestible version in 
order to gain the noticeable speed-ups. The trick is that within these 
languages every variable is declared, i.e. its type is known in advance 
before any mathematical operation begins. This is not the case of  
Python where variables are checked on-the-way as the interpreter 
reads the code. For example, if  we declare: 

 r = 7 

Python checks the value on the right-hand side first and if  it does not 
have a floating-point representation, it will assume and remember that 
r is an integer. So, what does it have to do with the speed? Analyse the 
following case study. 

Let’s say we would like to compute the values of  the function: 

for a grid of  x defined between 0.00001 and 100 with the resolution 
of  0.00001. Based on our knowledge till now, we can find all 
corresponding solutions using at least two methods: list and loop or 
list comprehension. The third method employs so-called NumPy’s 
universal functions (or ufuncs for short). As we will see below, the 
former two methods are significantly slower than the application of  
ufuncs. The latter performs vectorised operations on arrays, i.e. a 
specific ufunc applies to each element. Since the backbone of  ufuncs 
is CPython, the performance of  our engine is optimised for speed. 

Compute f(x) as given above using three different methods: (1) list 
and loop, (2) list comprehension, and (3) NumPy’s ufuncs. Measure 
and compare the time required to reach the end result. 

 from math import sin, cos, exp, pi, sqrt, pow 
 from time import time 
 import numpy as np 
 from matplotlib import pyplot as plt 

 def fun(x): 
        return sqrt(abs(sin(x-pi)*pow(cos(x+pi), 2)) * (1+exp(-x/ 
    sqrt(2*pi)))) 

Code 3.12

f(x) =

r
|sin(x� ⇡) cos

2
(x+ ⇡)|

⇣
1 + e

�xp
2⇡

⌘



 204

 # method 1 (loop and list) 
 t = time() 
 f1 = [] 
 for i in range(1, 10000001): 
        x = 0.00001*i 
        f1.append(fun(x)) 
 t1 = time()-t 

 # method 2 (list comprehension) 
 t = time() 
 x = [0.00001*i for i in range(1, 10000001)]  # len(x) = 10,000,000 
 f2 = [fun(a) for a in x] 
 t2 = time()-t 

 # method 3 (NumPy’s ufuncs) 
 t = time() 
 x = np.arange(1, 10000001) * 0.00001 
 f3 = np.sqrt(np.abs(np.sin(x-np.pi)*np.power(np.cos(x+np.pi), 2)) * 
                (1+np.exp(-x/np.sqrt(2*pi)))) 
 t3 = time()-t 

 print(np.array(f1 == f2).all()) 
 print(np.array(f2 == f3).all()) 
 print("t1, t2, t3 = %.2f sec, %.2f sec, %.2f sec" % (t1, t2, t3)) 
 print("speedups t2/t3, t1/t3 = %.2fx, %.2fx" % (t2/t3, t1/t3)) 

 plt.figure(figsize=(8, 5)) 
 plt.plot(x, f3, color='b') 
 plt.xlabel("x") 
 plt.axis("tight") 
 plt.ylabel("f(x)") 
 plt.show() 

Having a pretty complex function, f(x), it is convenient to define it as 
a custom function, fun. The method #1 performing the computations 
in the loop is a classical way the most of  programmers would think 
of  to apply in the first place. It’s plain and logical as all steps are easily 
separated. However, it’s not the best solution. In method #2, the use 
of  a list comprehension is more "Pythonic" way of  calling the 
function of  fun and accumulating all results directly inside the list. 
The grid is huge and fine and covers 10 million points.  

Method #3 beats the competitors delivering the same results over 10 
to 12 times faster, respectively: 

 True 
 True 
 t1, t2, t3 = 16.11 sec, 13.08 sec, 1.28 sec 
 speedups t2/t3, t1/t3 = 10.24x, 12.62x 

To make sure that all three methods return the same values, the 
boolean check with a help of  the .all() function has been applied. 

Having a choice of  performing the same task faster allows us to look 
at the mathematical functions—differently. In Code 3.12 we defined a 
vector of  arguments, x, as since the values of  f(x) are sought after, the 
vectorised operations can be applied, element-wise. 

Plotting of  the resultant NumPy array of  f3 takes only a few line of  
code and delivers: 



 205

 
The hunt for speed in Python continues. The projects like PyPy 
(http://pypy.org), Cython (http://cython.org), Continuum Analytics’ 
Numba (http://numba.pydata.org) or NumbaPro (http://
docs.continuum.io/numbapro/index) address independent solutions 
related to the code manipulation, compilation, and accelerated 
execution. You are more than welcome to explore them all. However, 
the first starting point you should get familiarised with is—the 
NumPy’s ufuncs. 

 3.7.2.  Mathematics of ufuncs 

Intuitively, the operations on matrixes should follow the rules of  
matrix algebra. Therefore, the basic arithmetics applied to two row 
vectors returns: 

 >>> a = np.array([-1, -2, -3, -4, 5]) 
 >>> b = np.array([5, 4, 3, 2, 1]) 

 >>> a + 1 
 array([ 0, -1, -2, -3, -4]) 

 >>> a - b 
 array([-6, -6, -6, -6, -6]) 

 >>> b*2 
 array([10,  8,  6,  4,  2]) 

 >>> b/a 
 array([-5. , -2. , -1. , -0.5, -0.2]) 

 >>> b**3 - a/2.1 
 array([ 125.47619048,   64.95238095,   28.42857143,    9.9047619 , 
           3.38095238]) 

 >>> (a//4) % 3 
 array([2, 2, 2, 2, 1]) 

As we can see, all operations are element-wise and work in the same 
fashion if  2D arrays are considered. What you do not see here is so-
called broadcasting, i.e. the method how certain operations are 
conducted. We will describe it in Volume II.  



 206

The application of  ufuncs is somehow natural as we have witnessed 
it in the introductory example. Focus and analyse what follows: 

 >>> a = np.array([[3, 4, 5], [6, 7, 8]]) 
 >>> b = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]) 
 >>> a 
 array([[3, 4, 5], 
        [6, 7, 8]]) 
 >>> b 
 array([[ 0.1,  0.2,  0.3], 
        [ 0.4,  0.5,  0.6]]) 
  

next: 

 >>> a + b 
 array([[ 3.1,  4.2,  5.3], 
        [ 6.4,  7.5,  8.6]]) 
 >>> a - b 
 array([[ 2.9,  3.8,  4.7], 
        [ 5.6,  6.5,  7.4]]) 
  

and 

 >>> np.abs(a - b) 
 array([[ 2.9,  3.8,  4.7], 
        [ 5.6,  6.5,  7.4]]) 

 >>> np.exp2(a) 
 array([[   8.,   16.,   32.], 
        [  64.,  128.,  256.]]) 
 >>> (np.exp2(a) == np.power(2, a)).all() 
 True 

 >>> np.log2(b/2+a) 
 array([[ 1.60880924,  2.03562391,  2.36457243], 
        [ 2.63226822,  2.857981  ,  3.05311134]]) 

  

A bit of  trigonometry required? 

 >>> x = np.arange(-np.pi, np.pi+np.pi/4, np.pi/4) 
 array([-3.14159265, -2.35619449, -1.57079633, -0.78539816,  0.     , 
         0.78539816,  1.57079633,  2.35619449,  3.14159265]) 

 >>> np.degrees(x) 
 array([-180., -135.,  -90.,  -45.,    0.,   45.,   90.,  135.,  
  180.]) 
 >>> np.radians(np.degrees(x)) 
 array([-3.14159265, -2.35619449, -1.57079633, -0.78539816,  0.     , 
         0.78539816,  1.57079633,  2.35619449,  3.14159265]) 

 >>> np.cos(x)**2 + np.sin(x)**2 
 array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]) 

 >>> np.log1p(1+np.cos(x)**3) 
 array([ 0.     ,  0.4986194 ,  0.69314718,  0.85592627,  1.09861229, 
         0.85592627,  0.69314718,  0.4986194 ,  0.        ]) 

 >>> np.arccos(np.cos(b)) 
 array([[ 0.1,  0.2,  0.3], 
        [ 0.4,  0.5,  0.6]]) 
  
  

The following table summarises the most important mathematical 
ufuncs and operations available to you in NumPy 1.10.1: 



 207

NumPy’s Universal Functions  Description (element-wise ops) 

abs(x)    an absolute value of x 
absolute(x)    an absolute value of x 

power(x, y)    the power x**y 
sqrt(x)    a square root of x 
reciprocal(x)   a reciprocal of x 
exp(x)    e**x 
exp2(x)    2**x 
expm1(x)    e**x-1 
log(x)    a natural logarithm 
log2(x)    a logarithm with base of 2 
log10(x)    a logarithm with base of 10 
log1p(x)    log(1+x) 
sign(x)    an array of signs (0 remains 0) 

mod(x, y)    x modulo y 
remainder(x, y)   a remainder from division x by y 

sin(x)    a sine of x 
cos(x)    a cosine of x 
tan(x)    a tangent of x 
arcsin(x)    an arcsine of x 
arccos(x)    an arccosine of x 
arctan(x)    an arctangent of x 
arctan2(x, y)   an arctangent of x/y 
sinh(x)    a hyperbolic sine of x 
cosh(x)    a hyperbolic cosine of x 
tanh(x)    a hyperbolic tangent of x 
arcsinh(x)    an inverse hyperbolic sine 
arccosh(x)    an inverse hyperbolic cosine 
arctanh(x)    an inverse hyperbolic tangent 
deg2rad(x)    np.radians(x) == np.deg2rad(x) 
rad2deg(x)    np.degrees(x) == np.rad2deg(x) 

  

A full list of  universal functions is available at http://docs.scipy.org/
doc/numpy-1.10.1/reference/ufuncs.html#available-ufuncs.  

That page also lists some useful floating functions that, very often, 
one can apply to obtain additional information on the arrays, e.g.: 

 >>> b = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]) 
 >>> np.iscomplex(b).all() 
 False 
 >>> b /= 0 
 >>> np.isinf(b).all() 
 True 

or 

Floating Functions  Description (element-wise ops) 

isreal(x)   do you deal with real numbers? 
iscomplex(x)  do you have complex numbers in x? 
isfinite(x)   any infs inside? 
isinf(x)   if so, say True 
floor(x)   the floor of x 
ceil(x)   the ceiling of x 
trunc(x)   neglect the rest 
     >>> np.trunc(np.array([np.pi])) 
     array([ 3.]) 
copysign(y, x)  copy the signs from y to x 
     >>> np.copysign(np.array([-1, 4]), 
                     np.array([-1, -1])) 
     array([-1., -4.]) 



 208

 3.7.3.  Algebraic Operations 

Algebra. A gateway to the Master degree in a quantitative field. At 
some point in time, you start to understand its importance. From the 
basic 1D and 2D array processing to the complex operations on data 
flowing through multiple channels. You cannot skip it. It’s somehow 
superbly essential if  you think about a serious number crunching. 

Let’s fly over the key concepts every quant will find most useful. 

Matrix Transpositions, Addition, Subtraction 
Say, 

 >>> X = np.array([[1, 3, 3], [2, -1, 9], [4, 5, 0]]) 
 >>> X 
 array([[ 1,  3,  3], 
        [ 2, -1,  9], 
        [ 4,  5,  0]]) 
 >>> Y = -X[2:].T.copy() + 1 
 >>> Y 
 array([[-3], 
        [-4], 
        [ 1]]) 
  

then the operations of  addition/subtraction, matrix transposition, 
Hermitian transposition (i.e., with complex conjugate) would look 
like: 

 >>> X + 2*X               # alternatively  X - 2*X 
 array([[ 3,  9,  9], 
        [ 6, -3, 27], 
        [12, 15,  0]]) 

 >>> Y.T 
 array([[-3, -4,  1]]) 

 # create a random complex 2D array 
 >>> complex_X = x + 1j*np.random.randint(-1, 2, size=(3, 3)) 
 array([[ 1.-1.j,  3.-1.j,  3.+1.j], 
        [ 2.+0.j, -1.-1.j,  9.+1.j], 
        [ 4.-1.j,  5.-1.j,  0.+0.j]]) 
 >>> np.array(np.matrix(complex_X).getH())  # Hermitian transpose 
 array([[ 1.+1.j,  2.-0.j,  4.+1.j], 
        [ 3.+1.j, -1.+1.j,  5.+1.j], 
        [ 3.-1.j,  9.-1.j,  0.-0.j]]) 
        

where to get the Hermitian transposition we had to convert a NumPy 
array into a NumPy matrix object (omitted in the book), to apply a 
function responsible for transposition, and to convert the result back 
to the NumPy array. 

Please also note on the quickest method (used in this example) of  
creating a random complex 2D array being, in fact, a mixture of  
real and complex numbers, all in one. 

.getH()



 209

Matrix Multiplications 
This one is tricky. And if  you have studied algebra in the past, you 
know what I mean! That is why let’s consider the following. As 
previously, we have two arrays: 

 >>> x = np.array([[1, 3, 3], [2, -1, 9], [4, 5, 0]]); x 
 array([[ 1,  3,  3], 
        [ 2, -1,  9], 
        [ 4,  5,  0]]) 
 >>> y = -X[2:].T.copy() + 1; y 
 array([[-3], 
        [-4], 
        [ 1]]) 
  

then an element-wise matrix multiplication returns: 

 >>> x*x 
 array([[ 1,  9,  9], 
        [ 4,  1, 81], 
        [16, 25,  0]]) 
 >>> np.abs(y*y*y) 
 array([[27], 
        [64], 
        [ 1]]) 
  

The inner product we obtain with a help of: 

 >>> np.inner(x, -x) 
 array([[-19, -26, -19], 
        [-26, -86,  -3], 
        [-19,  -3, -41]]) 
  

and it is not the same what 

 >>> x*(-x) 
 array([[ -1,  -9,  -9], 
        [ -4,  -1, -81], 
        [-16, -25,   0]]) 
  

The most classical algebraic 2D matrix multiplication is the one 
where the requirement for specific dimensions must be met: the 
number of  columns in a first array must be equal the number of  rows 
in a second array: 

 >>> np.dot(x, y) 
 array([[-12], 
        [  7], 
        [-32]]) 
  

where an additional NumPy function of: 

 >>> np.vdot(y, 2*y) 
 52 
  

returns a dot product of  two vectors. Please also note of  how the 
wrong input generates an error: 

 >>> np.dot(x, y.T) 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 ValueError: shapes (3,3) and (1,3) not aligned: 3 (dim 1) != 1  
 (dim 0) 

np.inner

np.dot

np.vdot



 210

@ Operator, Matrix Inverse, Multiple Linear Regression 
One of  the newest feature of  Python 3.5 is the acceptance of  the 
PEP 465 proposal related to the introduction of  a dedicated infix 
operator for matrix multiplication (source: https://www.python.org/
dev/peps/pep-0465/). The author of  the proposal, Mr. Nathaniel J. 
Smith, underlined the fact that there were two important operations 
which competed for use of  Python’s * operator: the element-wise 
multiplication, and matrix multiplication.  

Most numerical Python codes use the operator for element-wise 
multiplication, and function/method syntax for matrix multiplication. 
Nathaniel pointed that it usually led to ugly and unreadable code and 
misinterpretation. 

In February 2014 he proposed that the minimal change to Python 
syntax which would be sufficient to resolve a lot of  problems was a 
brand new infix operator for matrix multiplication: a @ operator. 

Recalling the previous subsection: 

 >>> np.dot(x, y) 
 array([[-12], 
        [  7], 
        [-32]]) 
  

is now possible by 

 >>> x @ y 
 array([[-12], 
        [  7], 
        [-32]]) 
  

The use of  @ operator is restricted to arrays (matrixes) therefore, a 
multiplication by scalar will return an error: 

 >>> x @ 3 
 Traceback (most recent call last): 
   File "<stdin>", line 1, in <module> 
 ValueError: Scalar operands are not allowed, use '*' instead 
  

though 

 >>> y @ (4*y.T) 
 array([[ 36,  48, -12], 
        [ 48,  64, -16], 
        [-12, -16,   4]]) 
  

works. 

The main benefit of  a new operator is to reduce the complexity of  
notation. Let’s study the following case study in order to compare the 
simplicity of  performing matrix dot products, now with @ when both 
the length of  notation extends itself  and the clarity of  Python code 
would be a nice thing to have. 

@ infix operator



 211

Based on the input data, find the solution for a multi-factor model (an 
equation of  a hyperplane of  regression) for Y based on examination 
of  X1, X2, X3. 

Within this challenge we may think of  the multi-factor model that 
tries to estimate the return of  a security, R, based on 3 factors we 
measured independently (1 = the factor had an influence, 0 = it did 
not), expressed as: 

where the last term is the error term standing before beta for the 
market. The above equation represents a subset of  the general 
formulation of  the problem in the form: 

All X’s are assumed to be random variables and all ak are known as 
the regression coefficients. The latter, in the framework of  a multiple 
linear regression, one estimates using the least square methods. 
Employing the matrix notation, we can express our model as: 

where there is a broadly accepted approach to find the unbiased 
estimator of  a based on X sample, namely: 

Therefore, we go for Ak (k = 1, …, k+1) coefficients. Notice the 
complexity of  matrix operations required for finding A. This is where 
the beauty of  a new @ operator enters the area in a full spotlight. Let’s 
start with a random sample of  X observations and we head for A. 

Let’s say we observe: 

then all intermediate steps can be derived: 

Y = Xa+ ✏

Y = a1X1 + a2X2 + ...+ akXk + ak+1 + ✏

Y = �1X1 + �2X2 + �3f3 + �M + ✏

A =

0

B@
A1
...

Ak+1

1

CA = (XTX)�1XTY

i 1 2 3 4 5 6 7 8

X1 0 1 0 0 1 1 0 1

X2 0 0 1 0 1 0 1 1

X3 0 0 0 1 0 1 1 1

Y 1 2 6 2 7 3 3 2



 212

 >>> X = np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1],  
     [0, 0, 1, 1], [1, 1, 0, 1], [1, 0, 1, 1],  
     [0, 1, 1, 1], [1, 1, 1, 1]]); X 
 array([[0, 0, 0, 1], 
        [1, 0, 0, 1], 
        [0, 1, 0, 1], 
        [0, 0, 1, 1], 
        [1, 1, 0, 1], 
        [1, 0, 1, 1], 
        [0, 1, 1, 1], 
        [1, 1, 1, 1]]) 

 >>> Y = np.array([1,2,6,2,7,3,3,2]).T; Y 
 array([1, 2, 6, 2, 7, 3, 3, 2]) 

 >>> np.dot(X.T, X) 
 array([[4, 2, 2, 4], 
        [2, 4, 2, 4], 
        [2, 2, 4, 4], 
        [4, 4, 4, 8]]) 
  

where the last operation is: 

Now, in order to be sure we can invert the matrix we have to ensure 
that its determinant: 

therefore: 

 >>> np.linalg.det(np.dot(X.T, X))  
 64 
  

and we are good to go for the matrix inverse: 

 >>> np.linalg.inv(np.dot(X.T, X))  
 array([[  5.00000000e-01,   0.00000000e+00,   0.00000000e+00, 
          -2.50000000e-01], 
        [  0.00000000e+00,   5.00000000e-01,   0.00000000e+00, 
          -2.50000000e-01], 
        [  0.00000000e+00,   2.08166817e-17,   5.00000000e-01, 
          -2.50000000e-01], 
        [ -2.50000000e-01,  -2.50000000e-01,  -2.50000000e-01, 
           5.00000000e-01]]) 

Next, we derive: 

as follows: 

 >>> np.dot(X.T, Y)  
 array([14, 18, 10, 26]) 
  

Eventually, we may apply: 

to find that: 

XTX

det(XTX) 6= 0

XTY

A = (XTX)�1XTY

np.linalg.det

np.linalg.inv



 213

 >>> A = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, Y)) 
 array([ 0.5,  2.5, -1.5,  2.5]) 

what solves our problem and delivers the regression line: 

terminating all calculations. 

Could you look again at that creature: 

 A = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, Y)) 

Does it look sexy? Nah… Can we shorten it? Of  course! Let’s call our 
new friend, the infix @ operator in Python 3.5, and rewrite A in a  
more compact way: 

 >>> from numpy.linalg import inv 

 >>> A = inv(X.T @ X) @ X.T @ Y 

 >>> A 
 array([ 0.5,  2.5, -1.5,  2.5]) 

Now we are talking… ☺

Linear Equations 
The NumPy’s linalg (linear algebra) submodule offers, as one might 
expect, a ready-to-use function for solving a linear matrix equation or 
system of  linear scalar equations. By splitting all coefficients of: 

into two separate matrixes of  a and b (see the Code 3.13 below), we 
derive: 

 import numpy as np 
 import matplotlib.pyplot as plt 
 from mpl_toolkits.mplot3d import Axes3D 

 a = np.array([[ -5,  3,  4],  
               [  3, -2,  1],  
        [  6,  3,  6]]) 
 b = np.array([-18, -7, 27]) 

 x = np.linalg.solve(a, b) 

 print("det(a) = %.2f" % np.linalg.det(a)) 
 for i, e in enumerate(x): 
        print("x%g\t= %.2f" % (i+1, e)) 

id est, 

y = 0.5x1 + 2.5x2 � 1.5x3 + 2.5

�5x1 + 3x2 + 4x3 = �18

3x1 � 2x2 + x3 = �7

6x1 + 3x2 + 6x3 = 27

Code 3.13

np.linalg.solve



 214

 det(a) = 123.00 
 x1 = 4.95 
 x2 = 8.56 
 x3 = -4.73 

In this case, the determinant is non-zero therefore the solution exists 
and one can interpret it as: for the planes (defined by equations 
above) there is one common point in 3D space (x1, x2, x3) where they 
cross each other. 

An attempt in visualisation of  all three planes one can achieve by 
finding the normal (p1, p2, p3) such that: if  a is not 0 a point on the 
plane is (-d/a, 0, 0); if  b is not 0 a point on the plane is (0, -d/b, 0); if  c 
is not 0 a point on the plane is (0, 0, -d/c); where 

denotes a general form of  the plane equations given in the linear 
system above. For each of  them we find the normal vector and the 
point on the plane.  

In Python, we execute it by extending Code 3.13: 

 n1 = a[0, :] 
 n2 = a[1, :] 
 n3 = a[2, :] 

 try: 
        point1 = np.array([-b[0]/n1[0], 0, 0]) 
 except: 
        point1 = np.array([0, 0, 0]) 
 try: 
        point2 = np.array([0, -b[1]/n2[1], 0]) 
 except: 
        point2 = np.array([0, 0, 0]) 
 try: 
        point3 = np.array([0, 0, -b[2]/n3[2]]) 
 except: 
        point3 = np.array([0, 0, 0]) 

 d1 = -1 * np.sum(point1*n1) 
 d2 = -1 * np.sum(point2*n2) 
 d3 = -1 * np.sum(point3*n3) 

 # create a mesh grid 
 xx, yy = np.meshgrid(range(-10, 10), range(-10, 10)) 

 z1 = (-n1[0]*xx - n1[1]*yy - d1)*1./n1[2] 
 z2 = (-n2[0]*xx - n2[1]*yy - d2)*1./n2[2] 
 z3 = (-n3[0]*xx - n3[1]*yy - d3)*1./n3[2] 

 # plot the surfaces 
 plt3d = plt.figure().gca(projection='3d') 
 cmap = plt.get_cmap('jet') 
 plt3d.plot_surface(xx, yy, z1, alpha=0.5, color=cmap(1200)) 
 plt3d.plot_surface(xx, yy, z2, alpha=0.5, color=cmap(190)) 
 plt3d.plot_surface(xx, yy, z3, alpha=0.5, color=cmap(550)) 
 plt.xlabel("x"); plt.ylabel("y") 
 plt.show() 

what brings us to: 

ax1 + bx2 + cx3 + d = 0



 215

 
Even with a capability of  the plot rotation in matplotlib’s default 
viewer, you may discover that it is tricky to "see" the crossing point at 

 [4.95, 8.56, -4.73] 

what does not mean it’s not there! ☺ 

Eigenvectors and Principal Component Analysis (PCA) for N-Asset Portfolio 
Probably the most famous application of  the algebra’s concept of  
eigenvectors in quantitative finance is the Principal Component 
Analysis (PCA) for N-Asset Portfolio. The PCA delivers a simple, 
non-parametric method of  extraction of  the relevant information 
from often confusing data sets.  

The real-world data usually hold some relationships among their 
variables and, as a good approximation, in the first instance we may 
suspect them to be of  the linear (or close to linear) form. And the 
linearity is one of  stringent, however, powerful assumptions standing 
behind PCA. 

Let’s consider a practical example everyone can use and reapply. 
Imagine we observe the daily change of  prices of  N stocks (being a 
part of  your portfolio or a specific market index) over last L days. We 
collect the data in X, the matrix (NxL). Each of  L-long vector lives in 
an N-dimensional vector space spanned by an orthonormal basis, 
therefore they all are a linear combination of  the set of  unit length 
basic vectors: BX = X where a basis B is the identity matrix I. Within 
PCA approach we ask a simple question: is there another basis which 
is a linear combination of  the original basis that represents our data 
set? In other words, we look for a transformation matrix P acting on 
X in order to deliver its re-representation PX = X. The rows of  P 
become a set of  new basis vectors for expressing the columns of  X. 
This change of  basis makes the row vectors of  P in this 
transformation the principal components (PCs) of  X. 



 216

The goal of  PCA is to find such P where Y = PX such that: 

is diagonalised, and cov(Y) denotes the covariance matrix. Finding 
principal components of  X is as simple as a computation of  
eigenvectors of  cov(Y) matrix where the row vectors’ values of  Y 
ought to be ~ N(0, 1). 

For a full explanation of  the Principal Component Analysis’ algebra I 
encourage you to study http://www.quantatrisk.com/2013/10/16/
anxiety-detection-model-for-stock-traders-based-on-principal-
component-analysis/. In the following case study, we will show how 
to find PCs for N-Asset Portfolio. 

PCA for N-Asset Portfolio 

In this exercise we won’t use real-market data. Instead we will learn 
how to use NumPy arrays to simulate close price time-series for N 
assets (e.g. stocks) spanned over L+1 days based on a given (NxL) 
matrix of  daily returns. In order to help you out with the visualisation 
of  this process we start from a naive position of: 

 import numpy as np 
 import matplotlib.pyplot as plt 

 np.random.seed(2014) 

 # define portfolio 
 N = 5  # a number of assets 
 L = 4  # a number of days 

 # asset close prices 
 p = np.random.randint(10, 30, size=(N, 1)) + \ 
        np.random.randn(N, 1)  # a mixture of uniform and N(0,1) rvs 

 print(p) 
 print(p.shape) 
 print() 

where we specify a number of  assets in portfolio and a number of  
days. L = 4 has been selected for the clarity of  printing of  the 
outcomes below, however, feel free to increase that number (or both) 
anytime you rerun this code.  

Next, we create a matrix (Nx1) with a starting random prices for all N 
assets to be between $10 and $30 (random integer) supplemented by 
(0, 1) fractional part. Printing p returns: 

 [[ 25.86301396] 
   [ 19.82072772] 
   [ 22.33569347] 
   [ 21.38584671] 
   [ 24.56983489]] 
 (5, 1) 

Now, let’s generate a matrix of  random daily returns over next 4 days 
for all 5 assets: 

cov(Y ) = (N � 1)�1XXT

Code 3.14



 217

 r = np.random.randn(N, L)/50  # ~ N(0,1) 
 print(r) 
 print(r.shape) 

delivering: 

 [[ 0.01680965 -0.00620443 -0.02876535 -0.03946471] 
   [-0.00467748 -0.0013034   0.02112921  0.01095789] 
   [-0.01868982 -0.01764086  0.01275301  0.00858922] 
   [ 0.01287237 -0.00137129 -0.0135271   0.0080953 ] 
   [-0.00615219 -0.03538243  0.01031361  0.00642684]] 
 (5, 4) 

Having that, our wish is, for each asset, take its first close-price value 
from p array and using information on daily returns stored row-by-
row (i.e. asset per asset) in r array, reconstruct close-price asset time-
series: 

 for i in range(r.shape[0]): 
        tmp = [] 
        for j in range(r.shape[1]): 
            if(j == 0): 
                tmp.append(p[i][0].tolist()) 
                y = p[i] * (1 + r[i][j]) 
            else: 
                y = y * (1 + r[i][j]) 
            tmp.append(y.tolist()[0]) 

        if(i == 0): 
            P = np.array(tmp) 
        else: 
            P = np.vstack([P, np.array(tmp)]) 

 print(P) 
 print(P.shape) 

That returns: 

 [[ 25.86301396  26.29776209  26.13459959  25.38282873  24.38110263] 
   [ 19.82072772  19.72801677  19.70230331  20.11859739  20.33905475] 
   [ 22.33569347  21.91824338  21.53158666  21.8061791   21.99347727] 
   [ 21.38584671  21.66113324  21.63142965  21.33881915  21.51156325] 
   [ 24.56983489  24.41867671  23.55468454  23.79761839  23.95056194]] 
 (5, 5) 

The operations applied within the loops may look a bit complex but 
they are based on what we have learnt so far in this book. ☺ 

Thus, we have two loops: the outer one over rows/assets (index i) and 
inner one over columns/days (index j). For j = 0 we copy the price of  
the asset from p as a "starting close price", e.g. on the first day. 
Concurrently, using the first information from r matrix we compute a 
change in price on the next day. In tmp list we store (per asset) the 
history of  close price changes over all L+1 days. These operations are 
based on a simple list processing. Finally, having a complete 
information on i-th asset and its price changes after r.shape[1] + 1 
days, we build a new array of  P with an aid of  np.vstack function (see 
Section 3.3.4). Therefore P stores the simulated close-price time-
series for N assets. 

We can display them by adding to 3.14: 
  



 218

 plt.figure(num=1, figsize=(8, 5)) 
 plt.plot(P.T, '+-') 
 plt.xlabel("Days") 
 plt.ylabel("Asset Close Price (\$)") 
 plt.show() 

what reveals: 

where the transposition of  P for plotting has been applied to deliver 
asset-by-asset price-series (try to plot the array without it and see what 
happens and understand why it is so). 

Recalling that P has been found as: 

 [[ 25.86301396  26.29776209  26.13459959  25.38282873  24.38110263] 
   [ 19.82072772  19.72801677  19.70230331  20.11859739  20.33905475] 
   [ 22.33569347  21.91824338  21.53158666  21.8061791   21.99347727] 
   [ 21.38584671  21.66113324  21.63142965  21.33881915  21.51156325] 
   [ 24.56983489  24.41867671  23.55468454  23.79761839  23.95056194]] 
 (5, 5) 

the computation of  the mean values, row-by-row, takes: 

 m = np.mean(P, axis=1) 

 [ 25.6118614,  19.94173999,  21.91703598,  21.5057584,  24.0582753 ] 

what should be understood more like this (row-wise): 

  25.6118614    
  19.94173999  
  21.91703598  
  21.5057584 
  24.0582753 

The same applies to the standard deviation row-wise: 

 s = np.std(P, axis=1)  # number of d.o.f = 0 

In next step, we aim at subtraction of  the mean value (as derived per 
asset) from P and its normalisation by the corresponding standard 
deviations. This is a requirement for PCA. Therefore, by adding: 

 m = np.mean(P, axis=1) + np.zeros((N, L+1)) 
 m = m.T 
 s = np.std(P, axis=1) + np.zeros((N, L+1)) 
 s = s.T 



 219

 print(m) 
 print() 
 print(s) 
 print() 

 # normalised P array 
 normP = (P-m)/s 
 print(normP) 

to 3.14, we come up with a desired output: 

 # m  
 [[ 25.6118614   25.6118614   25.6118614   25.6118614   25.6118614 ] 
   [ 19.94173999  19.94173999  19.94173999  19.94173999  19.94173999] 
   [ 21.91703598  21.91703598  21.91703598  21.91703598  21.91703598] 
   [ 21.5057584   21.5057584   21.5057584   21.5057584   21.5057584 ] 
   [ 24.0582753   24.0582753   24.0582753   24.0582753   24.0582753 ]] 

 # s 
 [[ 0.6890596   0.6890596   0.6890596   0.6890596   0.6890596 ] 
   [ 0.24770509  0.24770509  0.24770509  0.24770509  0.24770509] 
   [ 0.261526    0.261526    0.261526    0.261526    0.261526  ] 
   [ 0.12823091  0.12823091  0.12823091  0.12823091  0.12823091] 
   [ 0.38071781  0.38071781  0.38071781  0.38071781  0.38071781]] 

 # normP 
 [[ 0.36448598  0.99541561  0.7586255  -0.33238441 -1.78614268] 
   [-0.48853361 -0.86281319 -0.96661993  0.71398373  1.603983  ] 
   [ 1.60082551  0.00461675 -1.473847   -0.42388471  0.29228945] 
   [-0.93512318  1.21168011  0.98003868 -1.30186438  0.04526877] 
   [ 1.34367132  0.94663662 -1.32274021 -0.68464595 -0.28292178]] 

Displaying the normalised close-price time-series, 

we get thanks to: 

 # normalised P array 
 plt.figure(num=2, figsize=(8, 5)) 
 plt.plot(normP.T, '+-') 
 plt.xlabel("Days") 
 plt.ylabel("Normalised Asset Close Price") 
 plt.show() 

From this point, the computation of  the covariance matrix for our 
normalised N-asset price-series set requires: 

 c = np.cov(normP) 
 print(c) 

np.cov



 220

 plt.figure(num=3) 
 plt.imshow(c, cmap="RdGy", interpolation="nearest") 
 cb = plt.colorbar() 
 cb.set_label('Covariance Matrix Coefficients') 

which displays both the covariance matrix coefficients, 

 [[ 1.25       -1.21812086 -0.22780047  0.49015782  0.29037152] 
   [-1.21812086  1.25        0.20119748 -0.59820976 -0.28430998] 
   [-0.22780047  0.20119748  1.25       -0.59268253  1.07809658] 
   [ 0.49015782 -0.59820976 -0.59268253  1.25       -0.13182634] 
   [ 0.29037152 -0.28430998  1.07809658 -0.13182634  1.25      ]] 

and their visualisation, 

where the diagonal elements represent the variances. 

A derivation of  longly awaited eigenvalues and eigenvectors for the 
covariance matrix takes: 

 w, v = np.linalg.eig(c) 
  
 print(w); print() 
 print(v) 
 print(v.shape) 

where the np.linalg.eig function returns a tuple 

 [  3.01079265e+00   2.43631310e+00   7.40910779e-01   6.57724704e-17 
       6.19834710e-02] 

of  eigenvalues (w array) and 

 [[-0.57032118  0.25997416 -0.3637151  -0.58784     0.35958678] 
   [ 0.58459138 -0.25856444  0.23234816 -0.49389736  0.54173525] 
   [ 0.32889202  0.60571277  0.12841265 -0.46259987 -0.54263582] 
   [-0.47168761 -0.14169051  0.84636404 -0.18259553 -0.08809874] 
   [ 0.0482442   0.69180467  0.28443588  0.40394278  0.52440943]] 
 (5, 5) 

normalised (unit "length") eigenvectors (v array); the latter possible to 
be visualised by: 

 plt.figure(num=4, figsize=(8, 5)) 
 plt.imshow(v, cmap="bwr", interpolation="nearest") 
 cb = plt.colorbar() 
 plt.ylabel("Asset Number") 

np.linalg.eig



 221

 plt.xlabel("Principal Component Number") 
 plt.show() 

in the form of: 

Summarising, we computed PCA for five principal components in 
order to illustrate the process. If  all simulated assets time-series 
behaved in the same fashion (move up or down over all 5 days in a 
similar direction), we would expect to notice (at least) the first PC to 
display the same (or close) values. This is not the case for our 
randomly generated asset price-series. Interestingly, the forth PC is 
more coherent but, again, its interpretation remains meaningless due 
to randomness applied. 



 222



 223

3.8.  Element-wise Analysis 

Working with the data processing utilising raw NumPy arrays would 
not be so appealing without flexible and smartly designed boolean 
operations. As we have seen so far, the ability to scan, search, and 
filter the array for desired information is a natural need at some stage 
of  research. The boolean array is generated and all operations are 
element-wise. NumPy’s capabilities do not end here. Going one step 
further, we have an ability to apply a mask to extract only a portion of  
information out of  a whole array. 

Within this Section we will try to summarise the essentials of  all 
boolean (logical) operations available in NumPy by approaching the 
subject from the most practical point of  view. 

Imagine that the following (random) 3x5 matrix represents your data 
set. You may look at it as an image where the numbers represents the 
pixel’s residual values, or as a collection of  3 time-series 5 points long: 

 import numpy as np 

 np.random.seed(28) 

 x = np.random.randint(0, 12, size=(3, 5)) * \ 
     np.random.randint(-1, 2, size=(3, 5)) 

 print(x) 

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 y = x[2, :] + 1 
 print(y) 

 [-6  1  9 -7 -1] 

where y is a 1D row vector (e.g., an individual time-series). 

 3.8.1.  Searching 

The most intuitive operation of  finding out what elements of  the 
array meet a specified condition can be done by, e.g. 

 print(x > 4)   # greater than 4 

 [[False False False  True False] 
   [False False  True False False] 
   [False False  True False False]] 

 print(x == 0)  # equal 0 

 [[False False  True False False] 
   [ True False False  True False] 
   [False  True False False False]] 



 224

 print(y != 0)  # not equal 

 [ True  True  True  True  True] 

What appears to be intuitive here, in fact, for NumPy is a ufunc 
(universal function) performing an element-wise boolean operation. 
Therefore, 

 print(y >= 0) 
 print(np.greater_equal(y, 0)) 

are two equivalent methods in checking which element of  an array is 
greater or equal zero. The use of  a >= operator is made for a compact 
and understandable notation. Similarly: 

 ufunc   Operator 

 np.equal  == 
 np.not_equal  != 
 np.greater  > 
 np.greater_equal >= 
 np.less   < 
 np.less_equal  <= 

In order to construct a bit more complex condition, we have to use a 
special case of  the boolean operators: | (or) and & (and). Analyse: 

 print((x < 4) & (x >=0))  # both conditions must be met 

 [[False False  True False False] 
   [ True False False  True False] 
   [False  True False False False]] 

 print((x < -1) | (x == 0)) 

 [[False  True  True False False] 
   [ True  True False  True  True] 
   [ True  True False  True  True]] 

 print( (y < 0) & ((y != -6) | (y != -7))) 

 [ True False False  True  True] 

where a negation of  the last expression we achieve thanks to the ~ 
operator applied as follows: 

 print( ~((y < 0) & ((y != -6) | (y != -7))) ) 

 [False  True  True False False] 

It is also possible to combine two (or more) arrays and formulate 
your query such that it performs an element-wise comparison among 
those arrays. Say, we define: 

 z = np.ones((3, 5)) 
 print(z) 

 [[ 1.  1.  1.  1.  1.] 
   [ 1.  1.  1.  1.  1.] 
   [ 1.  1.  1.  1.  1.]] 



 225

then 

 print( (x > 0) | (z > 0) ) 

 [[ True  True  True  True  True] 
  [ True  True  True  True  True] 
  [ True  True  True  True  True]] 

 print( (x > 0) & (z > 0) ) 

 [[False False False  True  True] 
   [False False  True False False] 
   [False False  True False False]] 

what makes a perfect sense. 

 3.8.2.  Searching, Replacing, Filtering 

Recalling what we have already learnt on searching in NumPy, we may 
apply similar constructions inside the np.where function. However, the 
output we will see will be in a form of  the array(s) storing the indexes 
corresponding to our boolean condition, if  satisfied. Compare: 

 print(y) 
 print(y >= -1) 
 print(np.where(y >= -1)) 

 [-6  1  9 -7 -1] 
 [False  True  True False  True] 
 (array([1, 2, 4]),) 

and 
 
 print(x) 
 print(~(x != 0))  # another way to say that something is equal zero 
 print(np.where(~(x != 0))) 

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 [[False False  True False False] 
   [ True False False  True False] 
   [False  True False False False]] 

 (array([0, 1, 1, 2]), array([2, 0, 3, 1])) 

where the np.where function applied to x array returns 2D index-
coordinates, 

 0, 2   # row, column 
 1, 0 
 1, 3 
 2, 1 

of  the array’s cells for which the values are equal zero. Having the 
coordinates, we may pick all or only a few elements and change their 
values manually. In some cases this method may be very handy. 

Alternatively, as we already know, np.where function defined in the 
following way: 

Also try: 
>>> i, j = np.where(x == 0)) 
>>> print(i) 
[0 1 1 2] 
>>> print(j) 
[2 0 3 1] 
>>> print(type(i)) 
<class 'numpy.ndarray'>



 226

 print(x) 
 print(np.where((x > 0), 0, x)) 

 [[-1 -9  0  6  4] 
  [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 [[-1 -9  0  0  0] 
   [ 0 -3  0  0 -3] 
   [-7  0  0 -8 -2]] 

should be read: if  any element in x is greater than 0, replace it with 0 
otherwise leave it as it is. It is possible to change the position of  
arguments, i.e: 

 print(np.where((x > 0), x, 0)) 
 print(np.where((x < 0), 0, x)) 

 [[0 0 0 6 4] 
   [0 0 7 0 0] 
   [0 0 8 0 0]] 

 [[0 0 0 6 4] 
   [0 0 7 0 0] 
   [0 0 8 0 0]] 

where both callings of  the function of  np.where are equivalent.  

An advanced replacement across two arrays works well too: 

 z[1, 1] = -5 
 print(x) 
 print(z) 
 print(np.where((z < 0) & (x < 0), x, 0)) 

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 [[ 1.  1.  1.  1.  1.] 
   [ 1. -5.  1.  1.  1.] 
   [ 1.  1.  1.  1.  1.]] 

 [[ 0  0  0  0  0] 
   [ 0 -3  0  0  0] 
   [ 0  0  0  0  0]] 

In this case, first, we alter z array a bit, next we ask a question: if  any 
element in z is less than 0 and any element in x is less than 0 then print 
the corresponding elements of  x otherwise zeros. Therefore, we have 
applied a sort of  filter based on information (element-wise) taken 
from two independent arrays of  the same shape. Similarly, 

 print(np.where((z < 0) & (x < 0), 0, 7))  # otherwise print 7 

 [[7 7 7 7 7] 
   [7 0 7 7 7] 
   [7 7 7 7 7]] 

produces another output. Reasonably easy, don’t you think? 



 227

 3.8.3.  Masking 

The boolean result can be directly applied in order to extract (i.e. to 
apply a mask) those elements that meet a given condition, e.g.: 

 print(y) 
 print( y[y <= -2] ) 

 [-6  1  9 -7 -1] 
 [-6 -7] 

where we get an array with elements in y that are less than or equal -2. 
Also, 

 print(x) 
 print( x[x > 1] ) 
 print( x[(x > 1) | (x < -1)] ) 

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 [6 4 7 8] 

 [-9  6  4 -3  7 -3 -7  8 -8 -2] 
 

and, if  required to be sorted, then: 

 print(np.sort(x[(x > 1) | (x < -1)]))  # ascending order 

 [-9 -8 -7 -3 -3 -2  4  6  7  8] 

or 

 print(-np.sort(-x[(x > 1) | (x < -1)]))  # descending order 

 [ 8  7  6  4 -2 -3 -3 -7 -8 -9] 

where the function of  np.sort returns a sorted copy of  an array. More 
on sorting in Volume II. 

 3.8.4.  Any, if Any, How Many, or All? 

It is often the case when we are interested in counting non-zero or 
zero elements in an array. One can do it with a help of  the np.where 
and len functions. However, NumPy gives us a hand in performing 
this task in a quicker way: 

 print(x) 
 print(np.count_nonzero(x))           # a number of non-zero elements 
 print(x.size - np.count_nonzero(x))  # a number of zeros  

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
     [-7  0  8 -8 -2]] 

 11 
 4 

np.sort

np.count_nonzero



 228

Counting can be performed for a particular interval. For example, if  
we generate an array with a large number of  random variables drawn 
from a Normal distribution, rvs ~ N(0, 1), we may verify that 
between -1.96 and 1.96 the total number of  points constitutes 95% of  
a mass of  the distribution: 

 N = 100000000 
 rvs = np.random.randn(N) 

 print(np.sum((rvs > -1.96) & (rvs < 1.96))/N)  

 0.9500016 

By analysing this example you may grasp the idea of  counting for 
NumPy arrays. Are you sure? Have a closer look at the following two 
cases. Coming back to our x matrix, 

 print(x) 

 print(x[(x < 10) & (x > 4)]) 
 print(np.sum((x < 10) & (x > 4)))    

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 

 [6 7 8] 
 3 

while 

 print(x[(x < 10) & (x > 4)]) 
 print(np.sum(x[(x < 10) & (x > 4)]))  

 [6 7 8] 
 21 

In the first case, the use of  the np.where function returns a total 
number of  elements meeting (x < 10) & (x > 4) condition whereas in 
the second case, it returns a sum of  all elements. A gentle difference 
in notation, a huge difference in results. Keep that in mind! 

Based on a specified logical condition, if  only a general information is 
required to be obtained, one can use np.any and np.all functions: 

 print(x) 
 print(np.any((x > -2) | (x < -4))) 

 print(y) 
 print(np.all(y > 0)) 

 [[-1 -9  0  6  4] 
   [ 0 -3  7  0 -3] 
   [-7  0  8 -8 -2]] 
 True 

 [-6  1  9 -7 -1] 
 False 

np.any

np.all



 229

 3.8.5. Measures of Central Tendency 

If  you come to NumPy from Excel, your brain (still) works in 1D or 
2D frame for which the fundamental calculations of  the mean, 
variance, standard deviation, etc. (i.e. the measures of  central 
tendency) seem to be straightforward. Below, let me guide you on 
how to recalibrate your thinking and adopt your brain cells to  the 
Python’s version of  the same side of  the world we live in. 

For 1D arrays, say, we have: 

 a = x[(x > 0) & (x < 10)] 
 print(a) 

 print(a.size)         # number of elements 
 print(np.sum(a))               # sum 
 print(np.mean(a))              # mean 
 print(np.var(a, ddof=1))       # sample variance 
 print(np.std(a, ddof=1))       # sample standard deviation 
 print(np.median(a))            # median 

 from scipy import stats 
 print(stats.mode(a))           # mode 
 print(stats.mstats.mode(a))    # mode 

 [6 4 7 8] 

 4 
 25 
 6.25 
 2.91666666667 
 1.70782512766 
 6.5 

 ModeResult(mode=array([4]), count=array([1])) 
 ModeResult(mode=array([6]), count=array([1])) 

where last two functions return an array of  the modal (i.e., most 
common) value in the passed array (mode), and an array of  counts for 
each mode. There is a subtle difference in results for derived modes 
and, in our case, is caused by the implementation plus the uncertainty 
in finding the most common value for a set of  four numbers where 
each of  them occurs only once. Make sure to double check your 
results working with a larger data set. 

For 2D arrays, we use: 

 r = np.arange(15).reshape(3, 5) 
 print(r) 

 [[ 0  1  2  3  4] 
   [ 5  6  7  8  9] 
   [10 11 12 13 14]] 

 print(r.size)             # number of elements 
 15 

 print(np.sum(r, axis=0))  # sums for columns 
 print(np.sum(r, axis=1))  # sums for rows 

 [15 18 21 24 27] 
 [10 35 60] 

A number of  degrees of  
freedom ddof=1 denotes a 
sample variance and sample 
standard deviations here. 
Use ddof=0 for population 
measures.



 230

 print(np.mean(r, axis=0))  # mean values for columns 
 print(np.mean(r, axis=1))  # mean values for rows 

 [ 5.  6.  7.  8.  9.] 
 [  2.   7.  12.] 

 print(np.var(r, axis=0, ddof=1))  # sample variances for columns 
 print(np.var(r, axis=1, ddof=1))  # sample variances for rows 

 [ 25.  25.  25.  25.  25.] 
 [ 2.5  2.5  2.5] 

 print(np.std(r, axis=0, ddof=1))  # sample std devs for columns 
 print(np.std(r, axis=1, ddof=1))  # sample std devs for row  

 [ 5.  5.  5.  5.  5.] 
 [ 1.58113883  1.58113883  1.58113883] 

 from scipy import stats 
 print(stats.mode(r, axis=0))  # modes for columns 
 print(stats.mode(r, axis=1))  # modes for rows 

 ModeResult(mode=array([[0,1,2,3,4]]), count=array([[1,1,1,1,1]])) 
 ModeResult(mode=array([[ 0], 
        [ 5], 
           [10]]), count=array([[1], 
           [1], 
           [1]])) 

where, as previously, the values of  modes are inaccurate. 

Having that all said, we are now equipped with a powerful tool to 
perform fundamental operations on 1D and 2D arrays. The 
cornerstone of  NumPy for quants has been laid.  

In Volume II we will discover more advanced concepts of  NumPy and 
explore a greater number of  useful examples with numerous fruitful 
applications in quantitative finance. 



 231

Appendix 

A. Recommended Style of Coding in Python 
The best practices for writing a readable code in Python has been 
officially specified within so called PEP8 document available at: 
https://www.python.org/dev/peps/pep-0008. It is a part of  the 
Python Developer’s Guide which lists all accepted, and those that 
wait to be accepted, proposals. The main goal of  PEP8 is to 
describe all recommended practices while completing your code in 
order to make it widely (worldwide) and easily readable. 

If  you begin your journey with Python, I strongly encourage you 
to read PEP8 throughout. Most probably, you will not understand 
a lot at the very beginning. Therefore, don’t worry about that. 

I could give you tonnes of  examples here to guide you through 
however, what I have discovered to work really well for me, was 
the use of  one of  good IDE software solutions, e.g. PyCharm 
described in Section 1.4.3. Your IDE will make of  the effort to 
underline and remind you all mistakes you have committed while 
typing the entire Python code inside the editor. Have a look at the 
following screenshot where I tried (in PyCharm) to write a piece 
of  a code as a programmer with no knowledge of  PEP8: 



 232

The inner module responsible for checking the PEP8 rules while 
typing marked in the text (with a yellowish hue of  that colour) as 
well as in the right margin its remarks on violation of  the PEP8 
good practices.  

Firstly, it points at the definition of  the function to be written 
rather as: 

 def ulala(x, y=2): 

Next, it suggests to add an extra space in the following line, i.e.: 

 return math.sqrt(x + math.sqrt(y-1)) 

while the calling of  that function in the main body of  your 
program should be more warmly accepted if  you type it as: 

 a = ulala(4, y=1) 

Adding an additional line after the line #10 makes PEP8 to 
celebrate your maturity in that domain. Do not forget to separate 
every function with double empty lines before and after. 

Trust me, once you become a good Python developer, the world 
will thank you for your commitment to a precisely followed 
trajectory of  the PEP8 guide. ☺ 

B. Date and Time 
Python 3.5 offers the abundant set of  solutions for date and time 
formatting. It is a part of  the Standard Library. It is sufficient for 
you to explore and familiarise yourself  with a datetime module 
(https://docs.python.org/3.5/library/datetime.html). 

The measurements of  time in Python 3.5 you may study based on 
materials given at https://docs.python.org/3.5/library/time.html. 

C. Replace VBA with Python in Excel 
Quants love to use VBA. It is an embedded part of  the Microsoft 
Excel software. It is easy to learn (you do not need more than one 
day to be fluent in VBA just by studying the on-line random 
tutorials and examples). The main pain related to VBA is in its 
speed. A bunch of  sophisticated Monte-Carlo simulations may 
consume a lot of  time before the results appear in the 
spreadsheet. Is there any cure for that? 

And you might guess what I am going to tell you right now. Of  
course! Personally, I worked for a client who asked me to deliver an 
Excel-based tool to perform the analysis of  his on-line business. 
The project required the establishment of  a firm connection with 



 233

Google Analytics for the most recent data update and their 
further processing. Moreover, the client wanted a clear separation 
of  all data processed in a form of  a multi-sheet Excel workbook 
with some fancy plots included. Since his working environment 
was based on Microsoft Windows, I decided to create a whole 
workbook powered by computations in Python making use of  
DataNitro (see: https://datanitro.com). 

Already described in Python for Finance book written by my dear 
colleague Dr. Yves Hilpisch (O'Reilly Media, 2014), DataNitro is 
a perfect solution you can install in MS Windows' Excel for U$99 
per a single licence (one month free trial available). All its on-site 
documentation and guidance will help you to understand how to 
connect Python (e.g. Python’s NumPy-based computations) with 
Excel itself. 

That’s not the all. 

If  you operate not only in Windows, but in Linux or Mac OS X, 
you should consider making use of  the goodies of  another great 
tool for your all-day/night-long Python-Excel intercourse—the 
xlwings module (http://xlwings.org) delivered to you by my 
friend, Dr. Felix Zumstein of  Zoomer Analytics, LLC. His 
introductory videos and few examples allows you for an instant 
integration of  Python with Excel. Adding the plots from Python’s 
matplotlib to the Excel’s spreadsheet is no longer a problem.  

I have tried it and I love it! Just organise an extra hour of  your 
spare time and dive into it. For sure, xlwings will add wings to 
your Excel-based numerical solutions! Highly recommend!! 

D. Your Plan to Master Python in Six Months 
When I was at primary school, I had four years of  French. My 
teacher, Mrs. Halina Kowalska, gave a bullet-point list on how one 
should learn a foreign language. Let me use the best out of  her 
advice for your course of  actions when it comes to studying the 
Python language over next 6 months: 

1. Write Python codes every day for at least an hour. Forget 
about mistakes you do. There is no game without the pain. 

2. Study this book and try to embrace all examples I designed 
for you. They are individually crafted to make you aware 
what is going on inside the code. To teach you the way how 
you should inspect the Python code. From the very 
beginning.  

3. Stop and modify any Python code you come across. Try to 
wonder on the alternative solutions.  

4. Dedicate yourself  to be fluent in Python in six months 
from now. Why? Because only a clarity of  your goal pulls all 
required energy towards you. The more you devote time 
and effort to become the best in Python, the sooner is the 
day when you exceed your own expectations. 



 234

5. Don’t throw the towel in so quickly. Don’t give up just 
because something does not work. Be over the level of  the 
problems you detect. Inspect, instead. Be the first one who 
spends a whole night in order to find a correct solution. 

6. Support your journey with good resources. Buy books, scan 
multiple solutions for a similar problem on the Web. Trust 
me, the question you want to ask (in) Google, someone 
somewhere has already asked! 

7. Subscribe to the daily updates on StackOverflow website. 
Open your own account at http://stackoverflow.com and 
choose the keywords such as numpy, scipy, python, etc. to be 
included in your morning emails. This is the greatest source 
of  solutions for Python programmer I can thought of  right 
now! 

8. Subscribe to all possible accounts on Twitter that deliver 
news on Python. To kick off, visit my Twitter account 
(https://twitter.com/quantatrisk) and follow all other users 
I follow who publish on Python daily. 

9. Subscribe to PythonWeekly (pythonweekly.com) for 
updates. You may learn a lot from reading the stuff  they 
send out. 

10. Join all possible Python meet-ups around you. Make an 
effort to challenge your coding every week to be better. 
Never give up. Become unstoppable so one day you will 
know Python so well that no one will even think of  not 
hiring you in their company! You deserve it. Fight for what 
is best for You. Good luck! 



 235


		2015-12-06T02:00:37+0000
	Preflight Ticket Signature




