

Solve it with PYTHON!

.

Solve it with PYTHON!

A programming guide to ease your
science and engineering challenges

Javier Riverola Gurruchaga

Solve it with PYTHON!
by Javier Riverola Gurruchaga

Copyright © 2019 by Javier Riverola Gurruchaga. All rigths reserved.

Independently published in the United States of America by Amazon KDP.

Front cover ilustration: The Flammarion engraving (Camille Flammarion’s 1888
book L’atmosphère: météorologie populaire) coloured by Houston Physicist,
available under Creative Commons Attribution-Share Alike 4.0 International
license.

ISBN: 9781689604109

No part of this book may be reproduced in any form, without written permission
from the author, except for the use of brief quotations in a book review.

To my mother and my wife, the women of my life.

Contents

Preface . 1

1 Solving Equations 3
1.1 Systems of Linear Equations 3
1.2 Systems of Non Linear Equations 5
1.3 Optimization . 17

2 Engaging with Numbers and Functions 23
2.1 Interpolation . 23
2.2 Approximating Functions 28
2.3 Some Interesting Numbers 31

3 Integration 37
3.1 Indefinite Integral 38
3.2 Improper Integral 39
3.3 Areas . 41
3.4 Arc Length . 43
3.5 Volume of Revolution 45
3.6 Moment of inertia 47
3.7 Double and Triple Integrals 49
3.8 Integration of Data Sets 52
3.9 Fourier Transform 54
3.10 Montecarlo Integration 57

i

4 Differential Equations 61
4.1 Ordinary Differential Equations 61
4.2 Partial Differential Equations 77

5 Data Science 91
5.1 Univariate Methods - Statistics 92
5.2 Bivariate Methods 98
5.3 Multivariate Methods 104
5.4 Data Mining . 112
5.5 Genetic Algorithms 126
5.6 Neural Networks 129
5.7 Big Data . 135

6 Control Methods 139
6.1 Methods in the Frequency Domain 140
6.2 Methods in the Time Domain - The State Space . . 151
6.3 Lyapunov Stability 159

A Python Primer 167

B Packages Contents 191

C Some files for you! 197

ii

Preface

This book is intended for students and professionals in science and
engineering who face problems that frequently arise in the mathem-
atical arena. Instead of going to generic recipes, I have preferred to
be practical and illustrate the programming techniques with simple
examples that go straight to the point, without going into a detailed
explanation of each step. Besides, I have given up impressing the
reader with the superpower and sophistication that Python is capable
of reaching in favor of readability and comprehension.

The methods and solutions presented cover a wide range of en-
gineering problems, illustrated with inspiring examples. Some of
them emanate from classical mathematics such as integration, equa-
tion solving, and differential equations, and others are cutting-edge
topics such as optimization, data mining, genetic algorithms, neural
networks, and machine learning. On the other hand, it is not a book
for computer experts and a general programming knowledge is suffi-
cient. Even so, an elementary aid to the Python language is included
in an appendix to the book.

Since its irruption in the playground of programming languages,
Python has earned an honorary place, at the level of Java or C, and
its use is intensive in companies and universities. Every day new
libraries arise that extend the use of this cool language to almost
any scientific or technical discipline. Take as an example the use of
Python based libraries such as Astropy andMatplotlib among others
for the composition of the breathtaking photo of the super-massive

1

"Pōwehi" or The adorned fathomless dark creation taken from an
ancient Hawaiian chant. Black hole at M87 in Virgo Constellation

black hole in the center of the galaxy M87, from many thousands of
partial images. As far as I’m concerned, I use Python because there
is a very active community of users on the Internet, and above all,
... because it’s fun.

I have allowed myself to include images related to the content of
the book in one way or another, and I encourage the reader to reflect
on their relationship to the themes, sometimes clear but sometimes
arguable, sometimes subtle or distant, or simply a personal tribute
to people who deserve our admiration.

I have had a great time writing this book and I hope that you also
enjoy reading it and that it will be of benefit to you in your studies
and professional life.

Javier Riverola Gurruchaga
Madrid, August 2019

2

Chapter 1

Solving Equations

1.1 Systems of Linear Equations

Many coupled physical systems ideally obey to linear laws. Because
of this, linear systems are well known to all students from college
courses, and they are present in a multitude of engineering fields. In
matrix form, a linear system is:

a00 a01 ... a0n

a10 a11 ... a1n
...
an0 an1 ... ann



x0
...

xn

 =


y0

y1
...
yn


where [a00, ..., ann] are linear coefficients, {x0, ..., xn} are the

unknown values, and {y0, ..., yn} are the given outputs. There is a
number of solution methods such as row reduction, elimination of
variables, matrix solution, Gaussian elimination, and others.

The following example resolves a linear system using the numpy
linalg Python library and as an alternative, using the inverse matrix.
Obviously, the results are identical.

3

x+ 2y + 5z + 6t = 1

4x− 4y − 6z + 8t = 6

−12x+ y + 3z + 9t = 7

18x+ 6t = 2

System of linear equations

from numpy import array , matmul , linalg

my_matrix = array([[1, 2, 5, 6],
[4, -4,-6, 8],
[-12, 1, 3, 9],
[18, 0, 0, 6]])

my_vector = array([1, 6, 7 , 2])

solution = linalg.solve(my_matrix , my_vector)
print(’Solution is x1, x2, x3, x4 =’, solution)

Alternative method

solution1 = matmul(linalg.inv(my_matrix), my_vector)
print(’Solution is x1,x2,x3,x4 by inv[A]*y =’,

solution1)

Solution is x1 , x2, x3, x4 =
[-0.18245614 3.27368421 -2.12982456 0.88070175]

Solution is x1 ,x2,x3,x4 by inv[A]*y =
[-0.18245614 3.27368421 -2.12982456 0.88070175]

4

1.2 Systems of Non Linear Equations

Sooner or later, engineers and scientists face the challenge of solving
one or more nonlinear equations whose solution is not immediate
because the unknown variables cannot be isolated and the solution
cannot be obtained easily by substitution, or another direct method.
In these cases we can follow an iterative method in which we start
with a first guess and then we approach the solution by successive
approximations. The following examples will show the generic use
of these iterative routines for systems of one, two, or more nonlinear
equations.

1.2.1 Let’s go! Poyekhali!

I see the Earth! It is so beauti-
ful ... Mankind, let us preserve
and increase this beauty, and not
destroy it! (Yuri Gagarin)

Yuri Gagarin aboard Vostok-1 entered
space and history for the first time on
April 12, 1961. Despite many risks
and serious complications, the flight
was an unquestionable achievement.
His courage, his emotional words dur-
ing the flight, and his position in favor
of world peace in troubled times honor
him forever.

As a tribute to him, we calculate
in this exercise the orbit of Vostok-1
with only two data: the maximum and
minimum height (apogee and perigee)
reached during his flight. The iterative resolution of the Kepler im-
plicit equation for the implicit eccentric anomaly M(E) = E −
e sin(E) justifies its inclusion in this section.

5

Vostok1 Orbital flight

from numpy import *
from scipy.optimize import fsolve
import matplotlib.pyplot as plt

Vostok1 Orbital Data

apogee = 327e3 # m
perigee = 169e3 # m

Earth data

R = 6378000 # Earth radius , m
M = 5.972 e24 # Earth mass , kg
G = 6.672e-11 # Universal Gravity Constant , N m2/kg2

Ellipse characteristics

mu = M*G
c = (apogee - perigee)/2
a = a = R + apogee -c # major semi axis
b = sqrt(a**2 - c**2) # minor semiaxis
e = sqrt(1-(b/a)**2) # eccentricity

print("a, b, e ", a, b, e)

Kepler equation for Mean anomaly

def Ecc_anomaly(E):
err = t - (a**1.5) *(E-e*sin(E))/mu **0.5
return err

Calculation of height vs time

tt = []
hh = []
for t in range (0 ,60*108 ,20):

#
E = fsolve(Ecc_anomaly ,(0))

6

r = a*(1 - e*cos(E))
tanthetamed = ((1+e)/(1-e))**0.5* tan(E/2)
theta_rad = 2* arctan(tanthetamed)
#print ("h, theta ",r-R,theta_rad *180/pi)
tt.append(t)
hh.append(r - R)

#
ttarray= asarray(tt)
hharray = asarray(hh)

Now , plot and print results

plt.close(’all’)
plt.figure (1)
plt.plot(ttarray /60, hharray /1000 ,0 ,0)
plt.title(’Vostok 1’)
plt.xlabel(’Time , min’)
plt.ylabel(’Altitude , Km’)
plt.grid()
plt.show()

vmax = sqrt(mu *((2/(R+perigee)) -1/a))
print("vmax =",vmax ," m/s")

T_minutes = 2*pi*sqrt(a**3/mu)/60
print("T =",T_minutes , "min")

vmax = 7847.66441335 m/s
T = 89.4783252633 min

The script above can be modified to calculate distance traveled, po-
sitions on the Earth’s sphere, and other orbital parameters.

7

Vostok-1 flight was 108 minutes long, reaching a maximum velo-
city of 7847 m/s at perigee.

1.2.2 Dear Supernova

It is possible to estimate the time since the Big Bang by taking the
inverse of the Hubble constant, which results in the colossal figure
of 13.8 billion years. The next cosmic event of great interest is the
moment of synthesis of the elements beyond iron within massive
stars, and the formation of heavy elements during the explosion of
several supernovae and neutron star collisions that gave rise to the
residues and cosmic dust from which the planets of our solar system
were formed.

Can we estimate how long ago these explosions occurred? Yes,
indeed. When heavy elements were formed by nuclear fusion reac-
tions in neutron-rich environments, the slow process of disintegra-
tion began, each isotope at its own rate of disintegration.

8

We are star dust (Carl Sagan)

All uranium isotopes on our planet
were created in the course of almost
simultaneous stellar explosions on a
cosmic scale. Considering that the
current proportion of both isotopes
is 0.73%, that according to Nuclear
Physics the yield of the formation of
U-235 is 65% higher than that of U-
238, a more massive nucleus, and
knowing the constants of disintegra-
tion of both isotopes, it is possible to
reach the following expression:

N235

N238

=
N235(0) exp(−λ235T)

N238(0) exp(−λ238T)

Although the unknown time T can be cleared from this equation,
we are going to make an implicit treatment to illustrate the method
of nonlinear equations.

Non linear equations - Supernova Age

from scipy.optimize import fsolve
from numpy import *

Data

half_life_u235 = 7.038e8 # years
half_life_u238 = 4.468e9 # years

tau_235 = log(2) / half_life_u235
tau_238 = log(2) / half_life_u238

todays_ratio = 0.0073

9

Solving the equation

def equation(p):
T = p
a = exp(-tau_235*T)
b = exp(-tau_238*T)
err1 = todays_ratio - 1.65*a/b
return err1

T = fsolve(equation , (1000))

print(’T =’, T/1e6, ’million years’)

T = [6533.05238345] million years

This value is approximately the accepted one for primordial su-
pernovae explosion. Since then, there have been many more inter-
esting events: the formation of planets, the formation of the atmo-
sphere and the oceans, the irruption of life, ..., and finally the ap-
pearance of man. But that is another story.

1.2.3 A message in a bottle!

The previous case is a system with a single implicit equation. In this
section we are going to solve a system of two equations, taking as
an example a nice problem of terrestrial location.

I was enjoying a nice walk along the shore of the beach on a sunny
day, when something bright insistently caught my attention. After
wetting my shoes and pants, how wonderful! I recovered a bottle
with a touching message inside:

10

This is a problem with two unknowns: latitude and longitude.
Although it is hard to believe, the castaway has given us enough
data, as we will see hereunder.

We know that the hourly position of the Sun can be well de-
scribed by the sun equation, which can be particularized to sunrise
and sunset as follows:

cos(φr) = sin(lat) sin(decl) + cos(lat) cos(decl) cos(har),

cos(φs) = sin(lat) sin(decl) + cos(lat) cos(decl) cos(has).

where φ is the zenith angle to vertical, lat is the latitude of the
observer, decl is the declination of sun, and ha is the hour angle
from the local meridian.

The accurate calculation of declination involves very specific para-
meters like eccentricity, Julian day, and other, as a function of the
fractional year (γ). Besides, conversion between hour angle and
hour needs a correction known as the equation of timewhich also de-
pends on the fractional year. These equations are clearly explained
in many references, please refer to the National Oceanic and Atmo-
spheric Administration of the USA 1.
1https://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF

11

At sunrise and sunset, the zenith angle is 90 degrees, plus 0.833 de-
grees due to atmospheric refraction, so we already have two equa-
tions that we need to solve.

The Python code below includes the NOAA equations together
with the embedded explanations.

Non linear equations - Outcast

from numpy import *
from scipy.optimize import fsolve

Some data

sunrise_LST = 8 + 22/60 # sun rise time
sunset_LST = 21 # sun set
time_zone = -8 # Pacific Time zone
hour = 12 # reference noon
day_of_year = 31 + 28 +31 + 15

Fractional year , equation of time and declination

gamma = 2*pi /365*(day_of_year - 1 +(hour - 12) /24)
gamma_d = gamma *180/pi

eqtime_m = 229.18*(0.000075+0.001868* cos(gamma)\
-0.032077* sin(gamma)\
-0.014615* cos(2* gamma)\
-0.040849* sin(2* gamma))

decl = 0.006918 -0.399912* cos(gamma)\
+ 0.070257* sin(gamma)\
-0.006758* cos(2* gamma)\
+0.000907* sin(2* gamma)\
-0.002697* cos(3* gamma)\
+0.00148* sin (3* gamma)

decl_d = decl *180/pi

12

Solve sunrise and sunset for latitude and
longitude

def solar(p):

lati ,longg = p
ha=arccos(cos (90.833* pi/180)/ \

(cos(lati*pi/180)*cos(decl))\
- tan(lati*pi/180)*tan(decl))

ha_d = ha *180/pi
err1 = sunrise_LST -((720 -4*(longg + ha_d)\

-eqtime_m)/60 + time_zone)
err2 = sunset_LST - ((720 -4*(longg - ha_d)\

-eqtime_m)/60 + time_zone)

return err1 ,err2

lati ,longg = fsolve(solar ,(10,-90))

print(’lat , lon’, lati ,longg)

lat , lon 21.8398685852 -160.189899833

Now, we just have to search the latitude and longitude in Google
maps to locate the island of Niihau, a remote island west of the
Hawaiian Islands. Quick, let’s save Robb!.

1.2.4 Pressure Drop in a Pipe

Now, an example with three equations and three unknowns. Sup-
pose we have a conveniently instrumented pipe with pressure taps
at both ends. As a result, we read a pressure difference of 1000

13

N/m2. The diameter of the pipe is D = 0.190 m, the length of the
pipe L = 2 m, the temperature of the water is T=20 ºC (viscosity is
1004e-6 Pa.s, density ρ=0.998 kg/m3). Can we calculate the flow of
water flowing into the pipe?

The problem can be approached in several ways. Let us choose
the following set of equations:

∆P = fD
L

D
ρ

(
ṁ

Aρ

)2

1√
fD/4

= 4log10

[
Re
√
fD/4

1.255

]
Re =

ṁD

Aµ

Non linear equations - Pipe

from scipy.optimize import fsolve
from numpy import sqrt ,log10

Data

deltap = 1000
D = 0.10
L = 2
mu = 1004e-6
rho = 998
A = 0.00785

Solving the equations

def equations(p):
Mdot , fd , Reynolds = p
err1 = deltap - (1/2)*fd*(L/D)\

rho(Mdot/(A*rho))**2
err2 = 1/sqrt(fd/4) - 4*log10(Reynolds\

14

*sqrt(fd/4) /1.255)
err3 = Reynolds - Mdot*D/(A*mu)
return err1 , err2 , err3

x, y, z = fsolve(equations , (10, 0.01, 100000))

Print the solution

print(’Solution is:’)
print(’Mdot =’, x, ’kg/s’)
print(’fd = ’, y)
print(’Re =’, z)

Solution is:
Mdot = 20.3260787498 kg/s
fd = 0.0148854732663
Re = 257899.342119

This type of systems is very common in scenarios of modeling
different coexisting phenomena with properties dependent on an ex-
ternal parameter, for example temperature or pressure. Although
nature behaves linearly on a very small scale, on the other hand on
a large scale different phenomena can interact, which are reflected
in gradual or abrupt changes of trend.

1.2.5 One step further!

In this last example we deal with a broader system of nonlinear equa-
tions. Higher order systems are resolved identically. It is important
to remember that non-linear systems can have several solutions, so
it is convenient to try different starting points or first guess values.
The system that we propose is the following one:

15

x2 + 2
√
y

= 1.1

xy/2 = 15

y + zt2 = 4

x+ y = −z/t
(xy − zt)u = 0

v − 30 = 0

System of nonlinear equations

from scipy.optimize import fsolve
from numpy import sqrt

def Equations(p):
x,y,z,t,u,v = p

Equations writen as F(x)=0

err1 = (x**2 + 2)/sqrt(y) - 1.1
err2 = x*y/2 - 15
err3 = y - 4 + z*t**2
err4 = x + y + z/t
err5 = (x*y - z*t)*u
err6 = v - 30
return err1 , err2 , err3 , err4 , err5 , err6

x,y,z,t,u,v = fsolve(Equations ,[1,1,1,1,1,1])

print(’Solution is x,y,z,t,u,v =’,x,y,z,t,u,v)

16

Solution is x,y,z,t,u,v =
1.64320097451 18.257048567 -17.8066500834
0.894795316054 2.33469435623e-10 30.0

1.3 Optimization

Optimization problems arise in a multitude of scientific and tech-
nical fields such as economics, physics, biology, and even sociology.
In this type of problemswemaximize orminimize an objective func-
tion f depending on control variables xj whose domain is either
unrestricted or restricted by constraints in the form of inequalities,
equations, or both.

The Python based method given here is general and valid for
linear and nonlinear functions.

Example of optimization

Minimize f = x(xy − sqrt(z)) with the following constraints:

x+ 2y − 6z < 0

x− y < 8

xyz ≥ 100

−10 ≤ x ≤ 12

Optimize with restrictions and bounds

from numpy import *
from scipy import *
from scipy.optimize import minimize

17

Function to minimize

def myfunction(p):
x,y,z = p
return x*(x*y-sqrt(z))

Constraints , rewrite as >=0

def c1(p):
x,y,z = p
return -(x+2*y-6*z)

def c2(p):
x,y,z = p
return -(x-y)+8

def c3(p):
x,y,z = p
return (x*y*z) -100

constraints = [{’type’: ’ineq’, ’fun’:c1},
{’type’: ’ineq’, ’fun’:c2},
{’type’: ’ineq’, ’fun’:c3}]

bounds = ((-10, 12), (-inf , +inf), (-inf , +inf))

Minimize

results = minimize(myfunction , (1, 1, 1), bounds =
bounds , constraints = constraints)

print(results)

fun: -41.798989870425274
jac: array([-3.07106781 , 67.94112539 , -0.58284235 , 0.

])
message: ’Optimization terminated successfully.’

nfev: 267
nit: 48

njev: 46

18

status: 0
success: True

x: array([8.24264069 , 0.24264069 , 50.])

The chosen starting point does not always lead to success. There-
fore, it is essential to verify that the message "Optimization termin-
ated successfully" has been obtained, and it is frequent that one has
to explore the state space to find an adequate starting point.

Proposed exercises

• Solve the following linear system:

x+ 2y − z = −3

−2x+ y + 4z = 1

x− y + 2z = 5

Ans. x = 2, y = −1, z = 1

• Solve the following linear system:

x+ 2y + z − t = 4

y + z = 1

x− 2z − 2t = 3

z + t = −1

Ans. x = 1, y = 0, z = 1, t = −2

• Solve the following linear system:3 5 2
0 8 2
6 2 8


x
y
z

 =


8
−7
26


Ans. x = 4, y = −1, z = 1/2

19

• Solve the following non-linear system:

x2 + y = 5

xy − z = 2

x
√
y/z = 1

Ans. x = 1, y = 4, z = 2

• Solve the following non-linear system:

x+ yz/t = 2

t
√
xy = 2.82

x+ y − z − t = 1

yz = 0

Ans. x = 2, y = 1, z = 0, t = 2

• Solve the following non-linear system:

xyz = 2

x+ y + z = 4

xy + yz = 3

Ans. x = 1, y = 1, z = 2

• Minimize the value of f within the given constraints.

f = x+ y
√
z

x+ y ≥ 21

x− z ≥ 31

y + z ≥ 52

20

Ans. x = 12, y = 71, z = −19

• Minimize the value of f within the given constraints.

f = x+ y − xz
x+ y ≥ 18

x− 2z − 10 ≥ 0

−y − z < 0

Ans. fmin = 6, x = 12, y = 6, z = 1

• Maximize the value of f within the given constraints.

f = 10x1 + 8x2 + 5x3

3x1 + x2 ≤ 450

2x2 + 3x3 ≤ 900

2x1 + x2 ≤ 350

Ans. x1 = 12, x2 = 326, x3 = 82.66, fmax = 3141.33

21

Let me see: four times five is twelve, and four times six is thirteen,
and four times seven is-oh dear! I shall never get to twenty at that
rate! Poor Alice, she is doing calculations in base 10 but the an-
swers are coming out in different bases. She is expressing 4n in
base 3+3n.
Drawing by Petter Newell, public domain {{PD-US}}

22

Chapter 2

Engaging with Numbers and
Functions

2.1 Interpolation

The general problem of interpolation is to estimate the unknown y
value for a given x among pairs of values (x0, y0),..., (xn, yn). For
instance, this might be the case that we require a thermophysical
property of a material (conductivity, density, ...) but we have only
tables with a few pairs of values, or perhaps it might be the case that
we need to estimate a credible result between actual results of a test
or calculations.

Interpolation is a kind of routine task but you ought to be careful
to avoid unpleasant surprises. There is a suitable method of inter-
polation for each situation, depending on the risk that you want to
assume. This is critical depending on whether you can infer any
smooth or abrupt behavior beforehand, or if you know the trends at
the extremes of the interpolation interval. We will explore some of
these possibilities in this chapter.

23

2.1.1 Linear Interpolation

According to a conservative strategy, linear interpolation is useful
when you do not want to take risks, even at the cost of giving up
on obtaining a more accurate prediction. In general, this is the most
commonly used type of interpolation.

The idea is quite simple: just find the interval i that contains the
x value to interpolate, an draw a straight line passing through both
extremes of the interval, so you can estimate the y value as follows:

y ' fi + (x− xi)
fi+1 − fi
xi+1 − xi

This is easy with Python:
y = interp(x, xdata, ydata)

We obtain the same result with:
y = float(interp1d(xdata, ydata,’linear’)(x))

The latter form is more sophisticated but more interesting because
one can change easily from ’linear’ to ’quadratic’, or ’cubic’,
as needed. These options are included in the example below.

2.1.2 Pure Polynomial Interpolation

We search for a polynomial that passes through all n+1 points,

Pn(x) = a0 + a1x+ a2x
2 + ...+ anx

n,

so we can interpolate y' Pn(x).

24

As the pursued polynomial must pass through all points, we can
write the linear system of equations as a matrix system as follows:

1 x0 x2
0 ... xn0

1 x1 ... xn1
...
1 ... xnn



a0
...

an

 =


y0

y1
...
yn


and the unknown coefficients can be easily calculated:

{a} = [X]−1 · {Y }
However, this system is ill conditioned with both small and large

numbers together and rounding errors may emerge and ruin the out-
come. There are several popular techniques to calculate {ai}without
the need to solve the system such as the Newton’s, Langrange’s, and
Aitken’s interpolation methods. With Python, this task is immedi-
ate:

y = poly1d(polyfit(xdata,ydata,len(xdata)-1))(x)

It seems tricky but it works. Besides, if we need the values of
the polynomial coefficients, then just run:

a = polyfit(xdata, ydata, len(xdata)-1) , where {ai}
array is ordered from highest to lowest degree term (an, ...a0).

Warnings!

/ Pure polynomial may oscillate especially near extremes, and near to ab-
rupt changes in data trends. For this reason, a polynomial larger than fifth
degree is rarely used. If there are many data points, it is better to perform
interpolations based on least squares fit or splines.

/ In general, extrapolating information beyond the range of data is not
recommended. But if necessary, a linear extrapolation is safer than a pure
polynomial extrapolation.

25

2.1.3 Cubic Splines

A spline is a differentiable curve defined in portions by polynomials.
It is an interpolation method consisting of dividing the set of points
into pieces between which continuity is ensured. This strategy has
many advantages and it is consistent with many physical phenom-
ena. We can imagine a spline as a flexible and resistant rod that
passes through each of the data points in a smooth manner.

Here, we are going to sketch only the most relevant spline for-
mulation, the cubic spline with continuous second derivative (C2).
If our data points are (x0, y0). . . (xn, yn), the spline is a cubic poly-
nomial such as:

s(x) = A
(x− xj)3

h3
j

+B +
(x− xj)2

h2
j

+ C
(x− xj)
hj

+D

where xj is the lower end of the interval containing x, and hj =
xj+1 − xj . Parameters A, B, C, and D are obtained by imposing
conditions to the first and second derivatives to be the same at both
sides of each data point. These conditions are applied to all points
except the first and the last one, where boundary conditions are ar-
bitrarily defined, so a system of equations is obtained. Fortunately,
Python includes the scipy.interpolate module that totally auto-
matizes the process:

y = float(interp1d(xdata, ydata,’cubic’)(x))

26

2.1.4 Example of Interpolation Methods

This example shows the different methods afore mentioned.

Interpolation Methods - Example

from numpy import array , poly1d , polyfit
from scipy.interpolate import interp1d

Data

xdata = array ([2, 3, 4, 6, 12, 18, 22, 33, 40, 45,
50, 57])

ydata = array ([4.5, 10, 16, 37, 120, 100, 83.9, 65,
64, 66, 70, 71])

xv = 3.5 # value to interpolate

Linear
yv_lin = interp1d(xdata , ydata ,

kind=’linear ’)(xv)

Pure polynomial
yv_pol = poly1d(polyfit(xdata , ydata ,

len(xdata) -1))(xv)

Quadratic spline
yv_qspl = interp1d(xdata , ydata ,

kind=’quadratic ’)(xv)

Cubic spline
yv_cspl = interp1d(xdata , ydata ,

kind=’cubic’)(xv)

print("y_lin =",yv_lin ,
"\ny_pol =",yv_pol ,
"\ny_qspl =",yv_qspl ,
"\ny_cspl =",yv_cspl)

27

y_lin = 13.0
y_pol = 12.7535196168
y_qspl = 13.188152688568351
y_cspl = 12.74574808523611

Note that the estimates can be very different, depending onwhether
we are in a tense zone or in a convex zone.

2.2 Approximating Functions

2.2.1 Taylor Series

Since their formal appearance in the early 18th century, Taylor series
have been used extensively to study the local behaviors of a function,
to calculate limits, to estimate integrals, and to calculate the sum
of series, apart from the obvious use of obtaining an approximate
polynomial function from a more complicated one.

The formal expression of a Taylor series of a function f(x) in
the vicinity of x = a, is:

f(x) ' f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2 + ...+

f (n)(a)

n!
(x−a)n

The greater the degree of the polynomial, and the closer we are to
the point x = a, the more accurate the prediction is. In the attached
script we get the series for f = sin(x). The method is simple and
applicable to other functions with no singular points.

28

Taylor series expansion

from sympy import *
import numpy as np
from sympy.functions import *
import math

Define the variable and the function to
approximate

x = Symbol(’x’)
f = sin(x)

Set the reference

x0 = 0

Set the degree of Taylor series

j=5

Perform the calculations

def taylor(function ,x0,n):
i = 0 ; p = 0
while i <= n:

p = p + (function.diff(x,i).subs(x,x0))\
/(math.factorial(i))*(x-x0)**i

i += 1
return p

func = taylor(f,x0,j)

print(’Taylor expansion of f=’,f,’\n at n=’+str(j),’
\n’,func)

29

Taylor expansion of f= sin(x)
at n=5
x**5/120 - x**3/6 + x

2.2.2 Chebyshev Polynomials

Unlike Taylor polynomials, which are accurate only in the neighbor-
hood of the central point of the series, approximations of functions
based on Chevishev Tn(x) orthogonal polynomials lead to polyno-
mials that are very close to optimal within a closed interval. This
is achieved by accumulating interpolating nodes at both ends of the
interval. Their high precision makes them very interesting for prac-
tical applications

In the attached script we calculate the polynomial of Chebyshev
for f = sin(x) in the interval [0, π/2]. This powerful method is
applicable to many other functions.

Chebyshev Polynomials

from sympy import *
import numpy as np
from sympy.functions import *
from math import factorial

Set the symbol an function to approximate

x = Symbol(’x’)
f = sin(x)

order and interval of Chevishev approximation

n = 4

30

Limits of the interval

a = 0
b = pi/2

Calculate Chebishev Polynomial

sum = 0
for i in Range(n):

xi=(a+b)/2 + ((b-a)/2)*cos(pi*(2*i+1) /(2*n+1))
sum = sum+ f.subs(x,N(xi)) *legendre(i,x)

print(sum)

0.456790034326054*x**3 + 0.906603197889339*x**2
+ 0.649805511915654*x + 0.696677407683594

2.3 Some Interesting Numbers

2.3.1 The Ramanujan Number

The Hardy-Ramanujan number has its origin in a story of friendship
between two great men. The famous British mathematician G. H.
Hardy went to visit the Indian genius S. Ramanujan, who was hos-
pitalized. Already in his room, he commented that he had written
down the taxi number, 1729, in his opinion a "boring number", and
added that he hoped it was not a bad omen. "No, Hardy," Ramanu-
jan said, "it’s a very interesting number. It is the smallest number
expressible as the sum of two positive cubes in two different ways".

31

An equation has no meaning for me unless it expresses a thought
of God

From a generalization of this property arise the so-called taxi
numbers. In this exercise we will calculate this number from the
definition itself.

Calculation of Ramanujan -Hardy number

click=0
num=1

while (click < 1):
found = 0
A = int(num **(1/3))+1
for alpha in range(1, A):

B = int(num **(1/3))+1
for beta in range(alpha + 1, B):

if (alpha **3 + beta **3 == num):
found = found + 1

if (found == 2):

32

click=click+1
print("Ramanujan number ", num)

num=num+1

Ramanujan number 1729

2.3.2 The Golden Ratio

The golden ratio is an irrational number with interesting mathemat-
ical properties. It is the subject of many brainy disquisitions in the
fields of arithmetic, biology, astronomy, and has profound philo-
sophical implications. As a geometric proportion it is present in
things as different as the spirals of galaxies, the shell of a snail, the
distribution of the leaves of a stem, the rings of a sectioned trunk, or
even the crystalline growth. In addition, it is recognizable in the pro-
portions of the canons of aesthetic perfection. The attached script
calculates this value, starting from its definition as the limit of the
ratios of two consecutive terms of the Fibonacci series.

Golden ratio

f=[0,1]
for i in range (2,20):

a = f[i-1]+f[i-2]
f.append(a)
fibo = f[i]/f[i-1]

print(fibo)

33

1.618034055727554

The golden ratio is embedded in multiple chambers, spirals
and envelopes of the mysterious Nautilus.

34

Proposed exercises

• Obtain an estimate of y for x = 6, with hypotheses of linear-
ity, pure polynomial regression, quadratic splines, and cubic
splines. The known data are:
x 2 5 7 8 12
y 5 9.2 4.8 9 9.5

Ans. ylin = 7, ypol = 5.1, yquad = 4.79, ycspl = 5.46

• Calculate the pure polynomial that passes through the x,y data-
set above.

Ans. y = −0.09x4 + 2.45x3 − 22.7x2 + 83.1x− 88.5

• Obtain a Taylor polynomial for f = tan(x)/(1 − x), with
n=4, and x=0.

Ans. f ' 4x3/3 + 4x3/3 + x2 + x

• Obtain a Taylor polynomial of f = cos(x)/sin(x), with n=5,
and x = 1.5.

Ans. f ' −1.00502x− 0.13908(x− 1.5)5 + 0.0478727(x−
1.5)4−0.340063(x−1.5)3 + 0.0712714(x−1.5)2 + 1.57845

• Obtain a third degree Chevishev polynomial of f = tan(x)/(1−
x), inside [−π/2, π/2]

35

Ans. f ' −2.94728160x3 − 0.329681439x2 +
6.42816132x− 21.9976721

• Obtain a fourth degree Chevishev polynomial of
f = cos(x)/ sin(x), inside [0,3]

Ans. f ' 18.0245346x4 + 2.07986450x3− 15.6650790x2−
2.5382639x− 3.25743228

We are just an advanced breed of monkeys on a minor planet of a
very average star. But we can understand the Universe. That makes
us something very special. (Stephen Hawking)

36

Chapter 3

Integration

If I have seen further it is by standing
on the shoulders of Giants. (Isaac
Newton)

Integral calculus is present in vir-
tually any physics or math book.
Finding the primitive form of a
function often has been a non-
negligible challenge. Since the first
college courses, the appearance of
these pitfalls in exercises or ex-
ams, has put us in trouble. But
in reality, the integral is one of
the most powerful concepts of Cal-
culus, and the search for resolu-
tion methods has captivated more
than one clear mind such as New-
ton himself, Leibnitz, and Riemann
among others. In this chapter we
will learn that the solution of integrals of all kinds with Python is
easy and indefinite, improper, and even multidimensional integrals
will no longer be a problem for us.

37

3.1 Indefinite Integral

The calculation of primitives of rational and trigonometric expres-
sions is tricky, and usually requires a change of variable. The res-
ult is another expression of the same nature. Python includes the
SymPy module and the integrate function, which in a simple way
automates the calculation of the primitive.

Example. Find the primitive of the following indefinite integral∫
1

u2 − a2
du

symbolic integration of indefinite integral

from sympy import *

u = Symbol ("u")
a = Symbol("a")

ii = integrate (1/(u**2-a**2), u)

print ("Result is ", ii)

Result is (log(-a + u)/2 - log(a + u)/2)/a

Note that u and a have been declared as symbolic variables, since
this is a necessary step before performing any symbolic operation.
In the lines that follow, the reader is invited to solve more symbolic
integrals whose resolution by hand is somewhat tedious but with
Python is immediate. The mechanics is exactly the same as in the
example above.

38

Proposed exercises

• Solve
∫

cos(u) sin(u)du

Ans. sin(u)2/2 + C

• Solve
∫
eu(u2 − 1)du

Ans. eu(u2 − 2u+ 1) + C

• Solve
∫

(u2 − 6u
u2+2

)du

Ans. u3/3− 3 log(u2 + 2) + C

• Solve
∫

1√
u2+a2

du

Ans. arcsinh(u
a
) + C

Note that C integration constant has been added in all cases.

3.2 Improper Integral

This class of integrals has one or two limits that approximate a real
number or infinity. There are several techniques to solve improper
integrals, such as calculation of residuals or other. Next example
ilustrates a Python based method.

39

Example. Solve the following improper integral∫ ∞
0

dx

1 + x2

This integral can be solved by first integrating in definite limits [0,b]
and then calculating the limit b→∞, or it can also be considered as
a Lebesgue integral over the interval [0,∞]. In this example, we take
advantage of the simplicity of Python in just a few lines as follows.

Improper integral

from scipy.integrate import quad
from scipy import *

Fun = lambda x : 1/(1+x*x)
I = quad (Fun , 0, inf)
print ("Result is ", I)

Result is (1.5707963267948966 , 2.5777915205989877e-10)

The result of this operation is an array with two values, being
the first the value of the improper integral (π/2), and the second an
estimate of the error.

Proposed exercises

• Solve
∫∞

0
dx√
x

Ans. 2

• Solve
∫∞

0
e−x

2
dx

Ans.
√
π/2

40

3.3 Areas

3.3.1 Area between a curve and x−axis

Occasionally, we need to find the area under a curve. Normally, to
integrate this curve between the limits is enough, but we must be
careful to consider only the positive part of the area to avoid the
mutual cancellation of the areas above and below the axis.

Example. Find the area between y = x3 − 7x2 + 10 and x-axis
from x=0 to x=5.

∫ 5

0

| x3 − 7x2 + 10x | dx

This curve is positive from 0 to 2, and turns negative from 2 to
5. Therefore, it is necessary to bracket it as an absolute function;
otherwise both areas would be mutually canceled.

41

Area of a function

from scipy.integrate import quad
from scipy import *
from numpy import *

Fun = lambda x : abs(x**3-7*x**2+10*x)
Area = quad (Fun , 0 , 5)
print ("Area curve to x-axis is ",Area)

Area curve to x-axis is
(21.083333334213776 , 2.2229220064673427e-07)

3.3.2 Area between two curves

Example. Find the area between y = 3x− x2 and y = x.

This case is trivial if one realizes that both curves can be sub-

42

tracted.

S =

∫ b

a

f2(x)− f1(x)dx =

∫ 2

0

(
3x− x2

)
− xdx

Area between two curves

from scipy.integrate import quad
from scipy import *
from numpy import *

Fun = lambda x : 3*x - x**2 - x
S = quad (Fun , 0 ,2)
print ("Area between two curves is ",S)

Area between two curves is
(1.3333333333333333 , 1.4802973661668752e-14)

3.4 Arc Length

The arc length of a curve between two given abscissas, a and b, can
be calculated as follows:

La =

∫ b

a

√
1 +

(
dy

dx

)2

dx

The term with the derivative inside the formula could be a nuis-
ance, but Python has a specific function for it.

Example. Find the arc-length of y = x2 between x = 0 to x = 1.

43

Arc -length

from scipy.misc import derivative
from scipy.integrate import quad

Fun = lambda x: x**2
lon = lambda x: sqrt (1+ derivative(Fun ,x,1e-5) **2)
arc_length1 = quad (lon , 0, 1)
print ("La is ", arc_length1)

La is
(1.478942857542138 , 1.402135532654134e-13)

Example. Find the arc-length of a cycloid given by x = 5(θ −
sin(θ)), y = 5(1 − cos(θ)), between (0 ≤ θ ≤ π). Note that this
curve is defined as both x and y dependent of parameter θ.

Arc -length

from scipy.misc import derivative
from scipy.integrate import quad

xFun = lambda t : 5*(t-sin(t))
yFun = lambda t : 5*(1-cos(t))

lon = lambda t : (derivative(xFun ,t, 1e-5)**2 +
derivative(yFun , t, 1e-5) **2) **0.5

arc_length = quad (lon , 0, 2*pi)
print ("La is ", arc_length)

La is
(39.99999999917042 , 4.440892098408524e-13)

44

Proposed exercises

• Find the arc length of y = x3 − 7x2 + 10x, from x = 0 to
x = 5.

Ans. La = 25.4

• Find the arc length of the catenary curve y = cosh(x), from
x = 0 to x = ln(2).

Ans. La = 3/4

• Find the arc length of the curve y = ln[sec(x)], from x = 0
to x = π/4.

Ans. La = ln
(√

2 + 1
)

3.5 Volume of Revolution

Vx = π

∫ b

a

[f(x)]2 dx

Example. Find the volume of revolution of y = 2x2 between
x = 1 to x = 3.

volume of revolution

from scipy.integrate import quad
from scipy import *
from numpy import *

Fun = lambda x : 2*x**2

45

vol0 = lambda x : pi*Fun(x)*Fun(x)
volume = quad (vol0 , 1, 3)

print ("Volume of rev around x-axis is ", volume)

Volume of rev around x-axis is
(608.2123377349841 , 6.752513412144713e-12)

If the body is rotated about the y-axis rather than the x-axis, the
we use:

V y = π

∫ b

a

x2dy

where x = f−1(y).

Proposed exercises

• Find the volume of revolution of y=5 around x-axis, from x =
1 to x = 3.

46

Ans. V = π524

• Find the volume of revolution of x2 +y2 = 102 around x-axis,
from x = 0 to x = 10.

Ans. V = 4π103/3

3.6 Moment of inertia

The moment of inertia around the y axis is calculated as follows:

Iyy =

∫ b

a

x2f(x)dx

Example. Find the moment of inertia of y = 4− x2 around y-axis.

Moment of Inertia around yy
#
from scipy.integrate import quad
from scipy import *
from numpy import *

Fun = lambda x : 4-x**2
Fun1 = lambda x : x**2* Fun(x)

Iyy = quad (Fun1 , -2, 2)
print ("Iyy is ",Iyy)

Iyy is (8.533333333333331 , 9.473903143468e-14)

47

On the other hand, when the moment of inertia is around the x
axis, a change of integration base must be made.

Ixx =

∫ b

a

y2g(y)dy

Example. Find the moment of inertia of y = 4− x2 around x-axis.

48

Moment of inertia around xx

from scipy.integrate import quad
from scipy import *
from numpy import *

Fun = lambda y : sqrt(4-y)
Fun2 = lambda y : 2*y**2* Fun(y)

Ixx = quad (Fun2 , 0, 4)
print ("Ixx is ", Ixx)

Ixx is
(39.00952380952331 , 1.2706752983149272e-07)

3.7 Double and Triple Integrals

The double and triple integrals require maintaining the order of in-
tegration while defining the functions and limits. The following ex-
amples illustrate the method.

Example. Calculate
∫ 1

y=0

(∫ 2

x=0
xy2dx

)
dy

Double Integral

from scipy.integrate import dblquad

f = lambda x, y: x*y**2
x,y above same order of integration as dx dy

I_box = dblquad(f, 0, 1, lambda x: 0, lambda x: 2)

49

outer limits , then inner limits

print(’Result is ’, I_box)

Result is
(0.6666666666666667 , 2.2108134835808843e-14)

Example. The limits can be variable expressions:∫ 1

0

∫ y2+1

y

x2y dx dy

Limits are Variable Expressions - Example

from scipy.integrate import dblquad

I_9 = dblquad(lambda x,y : x*x*y,
0, 1,
lambda y: y, lambda y: y*y+1)

x,y above same order of integration as dx dy
outer limits , then inner limits

print(’Result is I_9 =’,I_9)

Result is I_9 =
(0.5583333333333333 , 2.56811395902259e-14)

Example. We can also integrate with reverse order dy dx.∫ 1

x=0

∫ ex

y=0

(
x+ y2

)
dy dx

50

from scipy.integrate import dblquad

I_7 = dblquad(lambda y,x : x + y**2, 0, 1, lambda x:
0, lambda x: exp(x))

y,x above same order of integration as dy dx
outer limits , then inner limits

print(’Result is I_7 =’,I_7)

Result is I_7 =
(3.1206152136875187 , 1.038969199265395e-13)

Example. A tripple integral :∫ 2

x=1

∫ x2

y=0

∫ 2−x−y

z=0

(
x2 + y2 + z2

)
dz dy dx

Triple Integral

from scipy.integrate import tplquad

f = lambda z, y, x: x**2 + y**2 + z**2
ext1 = 0
ext2 = 2
mid1 = lambda x: 0
mid2 = lambda x: 2-x
int1 = lambda x, y: 0
int2 = lambda x, y: 2-x-y

I_box3 = tplquad(f,
ext1 , ext2 ,
mid1 , mid2 ,
int1 , int2)

print(I_box3)

51

(1.6, 2.935005303331644e-14)

3.8 Integration of Data Sets

In engineering, it is common that we do not have an analytical func-
tion, but only a set of (x,y) pairs of values. This is the normal case of
tables of mechanical, thermophysical, or other properties. The in-
tegral can not be done with the previous methods and it is necessary
to use the so-called numerical quadratures, in which the integral is
replaced by a weighted sum:∫ b

a

[{X} → {Y }] · dx '
n∑
0

wi · f(xi)

Some quadratures are based on interpolation and others based on
adaptive polynomials. Among the first, themost known and used are
those of sum of rectangles by intervals, sum of trapezoids by inter-
vals, Simpson’s rule (2nd degree polynomials in equispaced points),
Newton-Cotes quadratures (equispaced trapezoids), and
Gaussian quadratures (variable integration points). The use of these
quadratures is appropriate when the integration points or nodes co-
incide with data, or when data are equispaced, but this is not always
the case. Another difficulty that may arise is that the integration
limits may not coincide with any of the known abscissas xi.

The simplest way is to assume an interpolation function that
passes through all the points and integrate this function in the inter-
val with one of the previously exposed techniques. In the example
of this section, we will assume linear interpolation and also splines
interpolation for comparison purposes, and we will see that the res-
ult may differ. We must discern always which is the behavior that

52

best fits our data. In general,unless there is a compelling reason, the
linear interpolation is safer.

Integration of data sets

from scipy.integrate import quad
from scipy.interpolate import interp1d
from numpy import array

My data points

x1 = array ([100, 130, 170, 190, 230, 270, 320, 370])
y1 = array ([.598 , 1.496, 4.122, 6.397, 13.99 , 28.09,

64.72, 203.0])

Integrate assuming linearity

I_linear = quad(lambda x: interp1d(x1, y1, ’linear ’)
(x), 150, 300)

Integrate assuming smoothness (splines)

I_spline = quad(lambda x: interp1d(x1, y1, ’cubic’)(
x), 150, 300)

print("Ilinear =", I_linear)
print("Ispline =", I_spline)

Ilinear = (2596.210000517 , 1.86111856237402e-06)
Ispline = (2434.506338741 , 2.93566422165013e-05)

53

3.9 Fourier Transform

The integral known as the Fourier Transform deserves special at-
tention for its applications in various branches of science. One of
the most widespread uses is to decompose a time signal f(t) into
its frequency components. The analysis of time signals and their
decomposition into frequencies allows us to reveal hidden charac-
teristics of the signals. It is widely used in sound compression pro-
cesses, analysis of the response of complex dynamic systems, not to
mention the study of signals received in radio telescopes.

f̂(ω) =
1√
2π

∫ ∞
−∞

f(t)eiωt

Often, the time signal f(t) is a discrete sample, so the Discrete
Fourier Transform is applicable.

yk =
n−1∑
n=0

exp(−2πj
kn

N
)fn

The following example is a good exercise of applying the Four-
ier transform of a signal in the time domain to break it down into its
main frequencies.

3.9.1 Listen to that whale!

On the internet you will find many
interesting sounds. In this exercise
we analyze the song of humpback
whales. The reader is invited to

54

download the file "whale1a.wav",
available on the website of NOAA
(National Oceanic and Atmospheric Administration). Note that, be-
fore performing the Fourier analysis itself, we apply a Hann filter or
window to dampen the aliasing effect of the ends.

We also suggest the reader to analyze other interesting sounds
such as "LaughingChild.wav" (a child’s laughter), "rwbl10.wav" (black-
bird song), and "thunder3.wav". To download them just enter these
IDs in Google.

Humpback whale calling

from scipy.io import wavfile
import numpy as np
from matplotlib import pyplot as plt
import os

Read the wav file

filein = ’whale1a.wav’
samplerate , data = wavfile.read(filein)
N = len(data)

set a times axis , for plotting

times = np.arange(len(data))/float(samplerate)
dt=times[1]- times [0]

Plot the wave

plt.close(’all’)
plt.figure (1)
plt.plot(times , data)
plt.title(’Time Domain Signal ’)
plt.xlabel(’Time , s’)
plt.ylabel(’Amplitude ($Unit$)’)

Set and apply a Hann window

55

hann = np.hanning(len(data))
data_hann = hann*data # apply Hann

Perform FFT

YY = np.fft.fft(data_hann) # Calc FFT
f = np.linspace(0, samplerate , N, endpoint=True)

Normalize to /N

YYnorm = YY*2/N

Discard 2nd half

fhalf = f[:int(N/2)]
YYnormhalf = YYnorm [:int(N/2)]

Plot spectrum

plt.figure (2)
plt.plot(fhalf , abs(YYnormhalf))
plt.title(’Frequency Domain Signal ’)
plt.xlabel(’Frequency (Hz)’)
plt.ylabel(’Amplitude ($Unit$)’)

Print some results

print("\nAnalysis of "+filein)
print(’number of data N=’,N)
print(’Sampling dt=’,dt)
print(’Fmin Hz=’,fhalf[0],’ Fmax Hz=’,fhalf [-1])

56

Whale calling in frequency domain. Two peaks emerge at 717 Hz
and 915 Hz.

3.10 Montecarlo Integration

Now, some fresh air! Let us calculate number
π with a Montecarlo integration.

We know that the area inside a circle of ra-
dius r=1 is just the number π. Therefore, we
may perform the following integral:

π =

∫∫
Ω

dx dy

being Ω a circle of prescribed radius. To this end, we generate a
very large number of trials inside a box of sides x[-1 to 1] and y[-1
to 1], and compute success if x2 + y2 < 1.

57

Calculate pi with Montecarlo

from numpy import random

bounding box
x1, x2= -1, 1
y1, y2= -1, 1

generate x,y samples
n = 500000 ; sum = 0

x_sample = random.uniform(x1, x2, n)
y_sample = random.uniform(y1, y2, n)

for i in range(0,n):
x = x_sample[i]
y = y_sample[i]

check if x,y inside bounds
if (x**2 + y**2 < 1): inside = 1
else: inside = 0

accumulate function when inside
fun = 1
sum = sum + fun*inside

I_montec=sum/n*(x2-x1)*(y2-y1)
print(’PI_Montecarlo = ’, I_montec)

PI_Montecarlo = 3.141488

which is close to the true value of π = 3.14159265359... Although
the sample has a large number of cases, the result will never be exact.
Every time we run the script we get a different estimate of π, always
around the real value.

58

Nothing in life is to be feared, it is only to be understood. Now
is the time to understand more, so that we may fear less. (Marie
Sklodowska Curie, first person to win the Nobel prize twice)

59

60

Chapter 4

Differential Equations

Differential equations are of great importance in science and engin-
eering, because many physical relationships such as laws of con-
servation, laws of dynamics, of electromagnetism, of physics and
chemistry, and many others, appear mathematically in the form of
differential equations. There are homogeneous and non-homogeneous,
linear and non-linear, ordinary and partial derivatives differential
equations.

4.1 Ordinary Differential Equations

It is a differential equation with only one independent variable, usu-
ally time. In order to solve a set of ordinary diferential equations,
we write it in the form:

y(n) = F (t, y, y(1), ..., y(n−1)).

The study of ordinary differential equations (ODE) and their
solution is a matter of complete courses at college, a discipline of
Calculus that is approached with different techniques such as dir-

61

ect integration, variable separation, linearization, Fourier series and
Laplace transformations, and also with numerical methods such as
Euler and Runge-Kutta. In the following examples we are going to
use the scipy.integrate Python library.

4.1.1 A First Example

In this first case, we are going to integrate a non-linear ODE as an
initial value problem and then draw the phase diagram. Already in
this first example, the reader will perceive the power and simplicity
of the method exposed here.

dx
dt

= x− y + xy
1000

dy
dt

= 6x− 2y + 9

System of Differential Equations

from scipy.integrate import odeint

from numpy import arange

set a time scale

t = arange(0, 15, 0.1)

Define the ODE system

def derivatives(state ,t):
x, y = state
x_dot = x - y + 2 + x*y/100
y_dot = 6*x - 2*y + 9
return [x_dot , y_dot]

Solve the ODE system

62

solution_x_y = odeint(derivatives , [2, 3], t)

Unpack the solution

x = solution_x_y [:, 0]
y = solution_x_y [:, 1]

Draw phase plot and run plot

import matplotlib.pyplot as plt
plt.close(’all’)

fig = plt.figure (1)
plt.plot(x[0], y[0], ’o’, x, y, ’r’)

plt.title(’Phase Diagram ’)
plt.xlabel(’x’)
plt.ylabel(’y’)
plt.legend ((’start’, ’run’))

fig = plt.figure (2)
plt.plot(t, x, ’--’, t, y)
plt.title(’x and versus time’)
plt.xlabel(’time , s’)
plt.ylabel(’x and y’)
plt.legend ((’x’,’y’))

63

x and y run plots and phase diagram

4.1.2 The Buttered toast mystery!

Murphy’s law, quintessence of
pessimism, states that "If some-
thing bad can happen, it will hap-
pen". However, this statement de-
liberately ignores that there are
many daily events with a good out-
come; just have your eyes wide
open to honestly notice it. One of the classic examples used to illus-
trate Murphy’s law is the mystery of toast that tends to land butter-
side down when ot falls. Actually, there are physical reasons for this
outcome and has been the subject of interesting studies, such as the
nice paper Which side up? Falling bread revisited, by Koupil and
Dvorak1, wich includes the dynamic equations of motion:

1http://kdf.mff.cuni.cz/j̃anek/pocitace/falling_bread.pdf

64

Fp =
Jc

Jc+mr2
m
(
g cosφ− 2ṙφ̇

)
φ̈ =

r

Jc
Fp

r̈ = −Ff
m

+ rφ̇2 + g sinφ

being Fp, the normal force on the toast, Ff , the friction on the
toast lower surface, Jc, the moment of inertia, m, the toast mass, r,
distance of c.o.g. to the contact corner of the table, and φ, the angle
of the toast at any moment.

Falling bread

from scipy.integrate import odeint
from numpy import arange , cos , sin , argmax , pi
import matplotlib.pyplot as plt

Some data in SI of Units

m = 0.1 # loaf mass
L = 0.11 # length of loaf
r0 = 0.01 # initial c.o.g. displacement
f = 0.25 # friction
H = 0.75 # Height of table
g = 9.81 # gravity

Jc = (1/12)*m*L**2

set a time scale

t = arange(0, 5, 0.001)

Define the ODE system

def derivatives(state ,t):
phi , om, r, vr = state

65

#
Fp = (Jc/(Jc+m*r**2))*m*(g*cos(phi) -2*vr*om)
if Fp <0: Fp=0
Ff = f*Fp
#
phi_p = om
r_p = vr
om_p = r*Fp/Jc
vr_p = -Ff/m + r*om**2 + g*sin(phi)
return [phi_p , om_p , r_p ,vr_p]

Solve the ODE system

solutions = odeint(derivatives , [0, 0, r0 , 0], t)

Unpack solutions

phi = solutions[:, 0]
om = solutions[:, 1]
r = solutions[:, 2]
vr = solutions[:, 3]

Fp = (Jc/(Jc+m*r**2))*m*(g*cos(phi) -2*vr*om)
xc = r*cos(phi)
yc = r*sin(phi)

Position of the toast when yc in landing range

pos1=argmax(yc<-H+L/2)
phi1 = phi[pos1]

res="unknown"
if phi1 > pi/2:

if phi1 < 3*pi/2:
res="buttered down :-("

else:
res="buttered up :-)"

print(res)

When the center of the toast is in the landing position, if the

66

angle φ is between π/2 and 3π/2, the butter side is down. If we run
this script a large number of times with different initial values, in
the vast majority of cases the toast falls down the butter side, which
is in line with popular belief. Thus, the annoying behavior of the
toast is due to the inexorability of the laws of mechanics, obedient
in their journey of only 0.75 meters high. But note, if the table were
higher, say 1.5 meters high, the toast would always land right!

4.1.3 Complex Pendulum

In this example we assume that we have a ruler hanging from a hole
near one end and let it swing like a pendulum. This problem is often
presented as a case study of solid dynamics because it allows the
validity of mechanical equations to be illustrated in a simple way
with a reproducible elementary experiment: it is enough to have
a real ruler, a fixed point and a stopwatch. After establishing the
balance of forces it is easy to arrive at the following equation of
motion:

d2θ

dt2
= −mgx

I0

sin(θ)

being I0 = mL2/12 + mx2, the moment of inertia of the rule
around the fixed point.

The aim is to visualize the free oscillation of this rule and com-
pare the period of oscillation with the theoretical one T = 2π

√
I0
mgx

.

Oscillating ruler

from scipy.integrate import odeint
from numpy import *

Data

67

L = 0.46 # m
m = 0.042 # m
x = 0.18 # m
g = 9.81 # m/s2

I0 = m*(L**2/12) + m*x**2

Set a time scale

t = arange(0, 5, 0.05)

Define the ODE system

def deriv(state , t):
psi , theta = state
psi_dot = -m*g*x*sin(theta)/I0
theta_dot = psi
return [psi_dot , theta_dot]

Solve the ODE system

soluc = odeint(deriv , [0,pi/4],t)

Unpack the solution

psi = soluc[:, 0]

68

theta = soluc[: ,1]

Plot results

import matplotlib.pyplot as plt
plt.close(’all’)
plt.plot(t, theta , t, psi)
plt.legend ((’Theta’, ’Psi’))
plt.title(’Complex Pendulum ’)
plt.xlabel(’time , s’)
plt.ylabel(’Psi , theta , rad’)

The time lapse between two peaks is 1.1 sec. It is the same
time as calculated with the anlytical period
T = 2π

√
I0
mgx = 1.1 sec

69

4.1.4 The Butterfly Effect

The butterfly effect first appears in
the science fiction story The Thun-
der by Ray Bradbury in 1952. It
shows that under certain circum-
stances, a small variation of the ini-
tial conditions can have great con-
sequences in the medium or long
term. It is one of the paradigms of chaos theory. In 1963, Edward
Lorenz developed an atmospheric model of an oscillating solution
known as the Lorenz Attractor. It was found by chance that for cer-
tain combinations of σ (Prandtl number), and ρ (Rayleigh number),
the oscillations of the attractor lead to chaotic behavior. In addi-
tion, the phases or trajectories of the solution describe clear butterfly
wings, so it has become the perfect example to illustrate this effect.
The Lorentz attractor equations are:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

In this exercise we will solve these equations from a chaotic con-
figuration (σ = 10, ρ = 28 and β = 8/3), starting from the point [0.0,
0.0001, 0.0] and with a time step small enough for the wings to ap-
pear.

Curiously, if starting from slightly different initial conditions (ie
[0.0, 0.0002, 0.0]), the solution obtained is almost identical during
the first 30 seconds of simulation, but after that moment, the traject-
ory follows a remarkable bifurcation. The emergence of this abrupt
temporal phenomenon gives rise to interesting philosophical spec-
ulations.

70

The Butterfly Effect

from numpy import *
from scipy.integrate import quad , odeint
import matplotlib.pyplot as plt

Data

sigma = 10
rho = 28
beta = 8/3

Set a time scale

t = arange(0, 200, 0.05)

Define the ODE system

def derivatives(state ,t):
x,y,z = state
xdot = sigma*(y-x)
ydot = x*(rho - z)-y
zdot = x*y - beta*z
return [xdot , ydot , zdot]

Solve the ODE system

sols = odeint(derivatives , [0, 0.0001 , 0], t)

Unpack the solution

x = sols[:, 0] ; y = sols[:, 1] ; z = sols[:, 2]

Results

from mpl_toolkits.mplot3d import Axes3D
plt.close(’all’)
fig = plt.figure (1)
ax = plt.axes(projection=’3d’)
ax.plot(x,y,z)

71

The solution of the Lorentz attractor deploys as butterfly wings.
This plot is extremely sensitive to very small departure from the
initial condition.

4.1.5 Dancing Planets

Kepler crater on the moon
(NASA)

After reviewing the meticulous ob-
servations of Tycho Brahe, Johannes
Kepler surpassed himself by abandon-
ing his belief in the Theory of Har-
mony of the Celestial Spheres. He
realized that the planetary movement
does not fit circles or ovals, but only
ellipses. In 1609 he published his fam-
ous three laws being recognized imme-
diately as the best astronomer of his
time.

In this exercise we will verify the fulfillment of the three laws
of Kepler’s planetary motion, establishing the equilibrium of forces

72

on the planet Mars according to the Law of Universal Gravitation
and the Fundamental Law of Mechanics, both due to the great Isaac
Newton. We will calculate the trajectory of the planet taking as ini-
tial condition the furthest point from the Sun. The resulting dynamic
equations of motion are:

ẍ = −GMx

r3

ÿ = −GMy

r3

being x, and y, the Sun centered coordinates of the planet, r, is
the distance to Sun, G, is the gravity constant, and M the mass of
the planet.

Planetary motion

from scipy.integrate import odeint
from numpy import *

Mars Data

G = 6.67408e-11 # Gravity , km3/s/kg
UA = 1.49600 e8 *1000 # Astronomic Unit in meters
a = 1.523705* UA # semi -major axis
e = 0.093404 # eccentricity
M = 1.989 e30 # mass , kg
velocity = 21958.3 # m/s
aphelion = 1.66602514182* UA

Set a time scale

tmax = 2*365*24*3600 # two years in seconds
dt = 500 # time step , sec
t = arange(0, tmax , dt) # set a time axis

73

Define the ODE system

def derivs(state , t):
#
x, y, vx, vy = state
r = (x**2 + y**2) **0.5
#
vxdot = -G*M*x/r**3
vydot = -G*M*y/r**3
xdot = vx
ydot = vy
return [xdot , ydot , vxdot , vydot]

Solve the ODE system

init_cond = [-aphelion , 0, 0, velocity]
solutions = odeint(derivs , init_cond , t)

Unpack the solution

x = solutions [:,0]
y = solutions [:,1]
vx = solutions [:,2]
vy = solutions [:,3]

tyear = t/(365*24*2600)

Polar coordinates

r = (x**2 + y**2) **0.5
theta = arctan2(y, x)*180/pi

sweep areas versus time

da_dt = 0.5* diff(theta)/diff(t)*r[0: -1]**2
variation_over_mean = std(da_dt [0: 100000])\

/mean(da_dt [0:100000]) *100
print(’sigma(da_dt) / mean(da_dt) %’,

variation_over_mean)

74

(a) Elliptical orbit (b) Coordinates x(t), y(t)

Plots of Mars trajectory

Draw phase plot and run plot

import matplotlib.pyplot as plt
plt.close (’all’)
fig = plt.figure (1)
plt.plot (x/UA,y/UA,’-’)
plt.title (’Phase Diagram ’)
plt.xlabel (’x’)
plt.ylabel (’y’)
plt.legend ((’start’,’run ’))
plt.grid(True)

fig = plt.figure (2)
plt.plot(t/(365*24*3600) ,x/UA,t/(365*24*3600) ,y/UA)
plt.xlabel (’t years’)
plt.ylabel (’Ynorm UA’)
plt.grid(True)

Kepler’s First law: The orbit of a planet is an ellipse with the Sun
at one of the two foci.

In Figure (a) we see that the trajectory of the planet describes an
ellipse, and the Sun is precisely located at point (0,0).

75

Second Law: A line segment joining a planet and the Sun sweeps
out equal areas during equal intervals of time.

This is verified by seeing that the variation to mean ratio (0.00038
%) is an insignificant value, and it is not zero due to the limited
precision of the calculation.

Third Law: The square of the orbital period of a planet is dir-
ectly proportional to the cube of the semi-major axis of its orbit:
a3

T 2 ' 7.496x10−6 AU3

days2
is a constant value, the Kepler’s constant.

We can verify this point by measuring the period between two peaks
in Figure (b), resulting T=1.88 UA, and performing the calculation
which results in 7.662x10−6. Close enough!

Proposed exercises

• TheLotka-Volterra equations predict the evolution of an eco-
logical predator-prey dual system in a closed world:

ẋ = Ax−Bxy
ẏ = −Cy +Dxy

Solve these equations for the following parameters: A = 1.5
(the growth rate of prey), B =1 (the rate at which predators
destroy prey), C =3 (the death rate of predators), and D = 1
(the rate at which predators increase by consuming prey), with
initial conditions x = 10 (prey), and y = 10 (predator).

• Solve the Continuous-time logistic growth equation:

dN

dt
= rN

(
1− N

K

)
where K = 100 (population carrying capacity), r = 3 (growth
rate), and N0 = 1.

76

• Solve the double pendulum equations with arbitrary lengths,
masses, and initial conditions θ1 and θ2:

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2)+

m2l2θ̇2
2

sin(θ1 − θ2) + g(m1 +m2) sin θ1 = 0

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2)−
m2l1θ̈1 sin(θ1 − θ2) +m2g sin θ2 = 0

Drawing by Jabber Wok (Creative Commons)

4.2 Partial Differential Equations

Laws of conservation of mass, energy, momentum, and other mag-
nitudes such as electric charge, probability, stress and strain, are
normally described with partial differential equations (PDE). What
makes PDE special is that the solution depends on space, and pos-
sibly on time, i.e. multiple independent variables.

There are elliptical equations (e.g. Laplace and Poisson equa-
tions), parabolic equations (heat equation) and hyperbolic equations
(wave equation), and they are prescribed by contour conditions of

77

the Dirichlet or Newmann type. The solution methods are different,
and in addition, they depend on the type of problem, the geometry,
and whether it is a dynamic or static system. Except in very simple
geometries, there is usually no simple analytical solution, and it is
necessary to use numerical methods based on finite differences, fi-
nite elements, and contour volumes.

In this book only two examples of the first method is given, since
the other ones are beyond the scope of this book due to their com-
plexity.

4.2.1 Finite Differences

Laplace equation in square geometry

Let us illustrate the method with a simple exercise. We want to solve
the Laplace equation in a squared geometry which is 16x16 cm. The
boundary conditions are: 20ºC along west and south borders, 250
ºC along north, and no heat transfer (adiabatic) at the east border.

∂2T

∂x2
+
∂2T

∂y2
= 0.

After replacing space derivatives by finite differences, the equa-
tion above becomes:

Ti+1,j − 2Ti,j + Ti−1,j

(∆x)2 +
Ti+1,j − 2Ti,j + Ti−1,j

(∆y)2 = 0

78

Here the central scheme is used, it can be generalized to any
differentiation scheme.

Partial Differential Equations - Example

from numpy import meshgrid , arange , full , linalg

Build a mesh

X, Y = meshgrid(arange(0, 50), arange(0, 50))

Initialize

U0 = 30 # first guess
U=full ((50, 50), U0, dtype = float)
V=full ((50, 50), U0, dtype = float)

Boundary contitions

Unorth = 80
Usouth = 20
Uwest = 20
Ueast = 0

U[49,:] = Unorth # Dirichlet
U[0,:] = Usouth # Dirichlet
U[:, 0] = Uwest # Dirichlet
U[:, 48:] = Ueast # Neumann

Iteration settings

ii=0
dxy = 1
imax = 10000

Iterate

while ii < imax:
#
Calculate central point

79

for i in range(1, 49, dxy):
for j in range(1, 49, dxy):

U[i, j] = (U[i-1,j]
+ U[i+1,j]
+ U[i,j-1]
+ U[i,j+1])/4

ii+=1
error = (linalg.norm(U) -linalg.norm(V))\

/linalg.norm(U)

for i in range (0,50):
for j in range (0,50): V[i][j]=U[i][j]

if error < 0.0001: ii=imax

Contour plot of the solution U(x,y)

import matplotlib.pyplot as plt
plt.contourf(X, Y, U, 25, cmap = plt.cm.jet)
plt.colorbar ()
plt.show()

80

Temperature distribution in the plate.

"Out of the Box"

I insist upon the view that all
is waves. (E. Schrodinger)

Time independent Schrodinger equa-
tion is the following one:

− ~
2m

d2ψ

dx2
+ v · ψ = E · ψ

where ψ is the wave function, x is
the spatial dimension, m is the mass
of the particle, E is the kinetic energy,
V is the height of the potential bar-
rier, and ~ is the constant of the Plate.
This equation is the basis for analyz-
ing the stationary states of atomic sys-
tems, and in certain circumstances, there is only a solution for spe-
cific (quantified) energy states. The direct analytical solution is not
trivial, and one must employ numerical methods that allow approx-
imate solutions to a variety of scenarios. In this example we use the

81

finite difference approach.

If we replace x by xj , ψ by ψj , v by Vj , E by Ej , and d2ψ
dx2

by
ψj+1−2ψj+ψj−1

∆x2
, we obtain:

ψj+1 =

[
2−∆x2 2m

~
(Ej − vj)

]
ψj − ψj−1

Let us write this equation in more comfortable units:

ψj+1 =

[
2−∆x2 2m

~
1.362 · 10−28(Ej − Vj)

]
ψj − ψj−1

where m is the mass of the particle in uma, E and V energies are
given in electron-volt, and x is the distance in Armstrong.

Now, we assume that an electron is inside a box with a potential
barrier of 20 electron-volt between 2 and 3 Armstrong, and zero be-
fore and after the barrier. We are going to find one or more energy
levels for this electron inside the box and the associated wave func-
tion. The boundary conditions are: dψ

dx
= 0, and ψ=0 in a remote

point, say x = 6 A.

In general terms the procedure that we are going to follow is the
following:

1. First, we generate a large number of nodes, say n = 601

2. Assume a guess value for energy E, and ψ0 = ψ1 = E, that is,
the same value in order to force the zero gradient condition.
This E guess value is irrelevant, becausewewill normalize the
wave function later, but it is necessary to start the iteration.

3. Calculate Vj for all nodes

82

4. Calculate ψj from j = 2 to n

5. After the recursive calculation we will see that that ψn at the
last node will be not zero. Now, we change E guess manually
or with an automatic iterative process until you get ψn=0.

6. We normalize the wave function:∫ +∞

−∞
|ψ(x)|2 = 1

7. Finally, we plot the probability function.

83

Schrodinger Equation

from numpy import *
from scipy.optimize import fsolve

global f

Data

m = 5.48e-4 # electron mass
h2 = (6.58e-16) **2 # Square of Plank constant
E0 = 1
dx = 0.01

Set the x axis

x = arange(0, 6, dx)

Set the Potential barrier

def V(x):
if (x > 2 and x < 3):

y=20
else:

y=0
return y

Function to generate the wave function
It returns the wave function and error at x=6

def psiend(p):
E = p
global fa
f = [E] ; f.append(E)
for i in range(1, len(x) -1):

f[i] = (2 - (dx**2) *(2*m/h2)*1.362e-28*
(E-V(x[i])))*f[i-1]-f[i-2]

f.append(f[i])
fa = asarray(f)
error = f[599]

84

return error
Iterate E until psi(x=6)=0

E = fsolve(psiend ,(E0))
print("E=", E)

Normalize the psi function and plot

fa = fa/(sum(fa*fa))**0.5
import matplotlib.pyplot as plt
pdf = fa*fa
fig = plt.figure (1)
plt.plot(x, pdf)

Plot the wave function

fig = plt.figure (2)
plt.plot(x, fa , [0, 2, 2.001, 3, 3.001, 6], [0, 0,

max(fa), max(fa), 0, 0])
plt.title(’Wave function Ψ’)
plt.xlabel(’Distance , uma’)

85

This result is very remarkable: the particle cannot have any en-
ergy level, but a specific level. The first level compatible with the
Schrodinger equation is E = 1.251 ev; it is a quantum level. In addi-
tion, this particle inside the box and with an energy of just 1.251 ev,
can surprisingly overcome a much higher barrier of 20 ev, i.e. it has
a non-zero probability of crossing this barrier. This result is typical
in quantum mechanics, but impossible in classical mechanics and
contrary to human intuition. Finally, it is very cool that if the guess
energy is progressively increased in the script, different calculated
quantum levels emerge (2.5 ev, 9.58 ev, 11.22 ev, 21.08 ev, ...) and
the calculated wave functions are progressively more complex than
the fundamental wave. But all of them are possible!.

86

4.2.2 Finite Elements and Finite Volumes

The finite difference method described above is more academic than
practical. There are formulations in finite differences that manage
to model non-regular geometries although they are somewhat tricky.
Currently, the advanced numerical methods used in engineering are
the Finite Element Method (FEM) and the Finite Volume Method
(FVM). Although both methods are applicable to any system of
differential equations in multiphysical partial derivatives, the use
of FEM is more consolidated for problems of structural analysis,
elastic field, and heat transfer, while FVM takes advantage of the
Gauss theorem to simplify the integral equations when it is possible
to apply them, and is more dedicated to fluid mechanics (Navier
Stokes). There are formulations of both types for Maxwell equa-
tions, for gravitational field equations, and other mixed situations.

A detailed description of thesemethods is out of the scope of this
introductory book, and the reader is invited to explore the capabil-
ities of Python applications that use FEM and FVM formulations.
Some of these are given below:

• FEniCS. The FEniCS Project Version 1.5 M. S. Alnaes, J.
Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-
son, J. Ring, M. E. Rognes and G. N. Wells Archive of Nu-
merical Software, vol. 3, 2015, [DOI] Automated Solution of
Differential Equations by the Finite ElementMethodA. Logg,
K.-A. Mardal, G. N. Wells et al. Springer, 2012. See

https://fenicsproject.org/

• SfePy. R. Cimrman. SfePy - write your own FE application.
In P. de Buyl and N. Varoquaux, editors, Proceedings of the
6th European Con- ference on Python in Science (EuroSciPy
2013), pages 65–70, 2014.

http://arxiv.org/abs/1404.6391.

87

• FiPy. J. E. Guyer, D.Wheeler and J. A.Warren, “FiPy: Partial
Differential Equations with Python,” Computing in Science
and Engineering 11 (3) pp. 6-15 (2009). See

https://www.nist.gov/publications/
finite-volume-pde-solver-using-python-fipy

88

Science is global. [...] Science is a beautiful gift to human-
ity, we should not distort it. Science does not differentiate
between multiple races. (Abdul Kalam)

89

When you have eliminated all the impossible, then whatever re-
mains, however improbable, must be the truth (Sherlock Holmes,
in Arthur Conan Doyle´s tale Sign of the Four)

90

Chapter 5

Data Science

Data Science is a recent sci-
entific discipline that combines
classical methods such as stat-
istics, regression, data capture
from different sources, and their
treatment to obtain non-obvious
or hidden information (data
mining). Sometimes sources
are incomplete and must be re-
fined (data munging), other times they are massive (big data) and
we must resort to unconventional techniques. In this section we
will delve into these concepts assembled on robust concepts such
as estimation, adjustments, and data mining, and others more typ-
ical of artificial intelligence such as automatic learning, clustering
and genetic algorithms. We will see these concepts approaching
the problems in a simple way. Although there are many public and
commercial software packages for this area of knowledge, Python
is consolidating itself as a reference language, almost necessary for
the data researcher.

91

5.1 Univariate Methods - Statistics

Whenever we perform an experiment in which we observe some
quantity (strength, number of defects, weight of people, etc.), it is
associated with a random variable xdata. In Statistics we draw con-
clusions about the population from the properties of the samples.
We do this by calculating point estimates, confidence intervals, up-
per and lower limits, inference of an adjustment distribution, and
other relevant parameters.

In these lines, we will limit ourselves to tiptoe around some es-
sential aspects in this matter. For advanced use, the Python libraries
provide a very complete set of functions, tests, and routines to deal
with almost any need of the statistics researcher.

5.1.1 Mean and Standard Deviation

Mean and variance of a sample are defined as

x̄ =
1

n

n∑
j=1

xj

s2 =
1

n− 1

n∑
j=1

(xj − x̄)2

Both samplemean x̄, and sample variance s2, are point estimates
of the population mean µ, and population variance σ2.

In the attached example both magnitudes are calculated with a
very small data set but the method is identical for large volumes of
information.

92

Sample Statistics

from statistics import *

Sample data
xdata = [10.7, 10.9, 8.6, 8.2, 11.8, 9.9, 6.6,

9.8, 10.1, 10.1, 9.8, 12.3, 8.5, 12.1,
11.0, 9.2, 9.2, 7.1, 11.8, 6.0, 14.2,
10.0, 13.1, 9.0, 11.6, 9.6, 8.5, 10.2,
9.1, 9.3, 7.5, 10.2, 10.2, 9.6, 8.0,

11.8, 9.7, 7.3, 8.2, 10.0, 10.5, 11.1,
9.1, 10.2, 7.5, 11.3, 9.8, 7.9, 8.4,
6.8 , 7.0, 12.4, 8.9, 7.0, 9.8, 10.4,

10.0, 9.3, 10.0]

Calculate point estimators

n = len(xdata)
x_sample = mean(xdata)
s_sample = stdev(xdata)

Print and plot results

print(’Results are: ’)
print(’x_sample =’, x_sample)
print(’s_sample =’, s_sample)
print(’n =’,n)
#
import matplotlib.pyplot as plt
plt.hist(xdata , color = ’skyblue ’, edgecolor=’blue’)
plt.title("Histogram of xdata")
plt.xlabel("Value")
plt.ylabel("Frequency")

Results are:
x_sample = 9.63050847457627
s_sample = 1.6984023158989985
n = 59

93

5.1.2 Confidence Limits of µ and σ2

In general, knowledge of point estimates of population mean and
variance is not sufficient, and you want to estimate each parameter
within a range that covers a high percentage of the possible values
with a high degree of confidence. These are the Confidence Limits.
Assuming our data comes from a Normal distribution,

x̄− tα
2

s√
n
≤ µ ≤ x̄+ tα

2

s√
n

(n− 1)s2

χ2
α
2

≤ σ2 ≤ (n− 1)s2

χ2
1−α

2

where t and χ2, are the Student and Chi2 distributions, and α is
the significance level (probability of taking a bad decision), typically
5 %.

94

... continuation

from scipy.stats import t, chi2
from numpy import sqrt

significance level

alpha = 0.05

Confidence intervals for the pop. mean

tstudent = t.ppf(1-alpha/2, n-1)
mu_max = x_sample + tstudent*s_sample/sqrt(n)
mu_min = x_sample - tstudent*s_sample/sqrt(n)

Confidence interval for the population std dev

Smin = sqrt((n-1)*s_sample **2 / \
chi2.ppf(1-alpha/2, n-1))

Smax = sqrt((n-1)*s_sample **2 / \
chi2.ppf(alpha/2, n-1))

print(’Confidence Intervals are:’)
print(mu_min ,’ <= mu <=’, mu_max)
print(Smin ,’ <= Sigma2 <=’, Smax)
print(’\nwith significance level alpha=’, alpha)
print(’Confidence level gamma = 1-alpha =’, 1-alpha)

Confidence Intervals are:

9.18790242067 <= mu <= 10.0731145285

1.43775470204 <= Sigma2 <= 2.07536904664

with significance level alpha= 0.05
Confidence level gamma = 1-alpha = 0.95

95

5.1.3 Population Bounds

Another very useful quantity in statistical inference is the value that
covers a given percentage (say 95%) of all possible population val-
ues. This is the so-called upper bound.

If you knew the exact values of µ and σ of the population, it
would suffice to calculate the upper bound as x95% = µ + 1.645σ.
But these values are unknown. Instead, starting from the known
sample values, x̄ and s, the upper bound value can also be estimated
with Owen’s distribution,

x95% ' x̄+ k95% · s

... continuation

Estimation of the 95/95 upper bound of population

owen2 = lambda n: 1.96 + 2.1758/ sqrt(n) + 5.7423/n
owen1 = lambda n: 1.6449 + 2.4417/ sqrt(n) + 3.8171/n

up95_1tail = x_sample + owen1(n)*s_sample
up95_2tail = x_sample + owen2(n)*s_sample

print(’Upper bounds of the population are:’)
print(’Up95_1tail =’,up95_1tail ,’: 5% at right ’)
print(’Up95_2tail =’,up95_2tail ,
’: 2.5% at right and left’)

Upper bounds of the population are:
Up95_1tail = 13.07398328 : 5% at right
Up95_2tail = 13.60577560 : 2.5% at right and left

96

5.1.4 Test for a Distribution

Given a sample [x1,, xn], we want to test the hypothesis that a
given function F(x) is the distribution function fromwhich the sample
was taken. There are a number of different tests to verify the hypo-
thesis. Currently, the recommended are Shapiro-Wilk (just to check
normality) and the Anderson-Darling tests, both described below.

Shapiro-Wilk Normality Test

... continuation

Shapiro -Wilk Normality test

from scipy.stats import shapiro

sw = shapiro(xdata)
print(’Shapiro -Wilks Test p=’,sw[1],’ W=’,sw[0])
print(’If p < w, do not reject Normality ’)

Shapiro -Wilks Test
p= 0.7642765641212463 W= 0.9866541028022766
If p < w, do not reject Normality

In this case, we do not reject the hypothesis that the sample comes
from a normal distribution.

97

Anderson-Darling Test

... continuation

Anderson Darling test

from scipy.stats import anderson

AD=anderson(xdata , dist=’norm’)

print(AD)

AndersonResult(statistic = 0.3259179212011 ,

critical_values =
array ([0.543 , 0.619, 0.742, 0.866, 1.03]) ,

significance_level =
array([15., 10., 5., 2.5, 1.]))

Here, since AD = 0.3259 is lower than critical value 0.742 at a 5%
significance level, the hypothesis of normality is not rejected.

5.2 Bivariate Methods

5.2.1 Least Squares

The least-squares (LS)method hasmany applications such as smooth-
ing and correcting experimental data, performing interpolations, and
the applicationwe are interested in in this section, establishingmath-
ematical relationships between two variables. The result is a poly-
nomial that fits the data consistently, and that can be used instead

98

of the data itself as a formula, although it does not necessarily go
through all of them. It is a tool widely used in many fields of engin-
eering.

The first formulations of the least-squares method date back to
1805 (Legendre andGauss), when the predictive power of themethod
was shown in situations where observational data incorporate some
degree of error.

Our goal is to find a polynomial Pm =
∑m

i=0 aix
i of lesser de-

gree than the pure polynomial, which passes near the points with
non-oscillating behavior. The coefficients a0, ...an are determined
in such a way as to minimize the quadratic error of the fit at all
points. In matrix form:


n+ 1

∑
xi

∑
x2
i ...

∑
xmi∑

xi
∑
x2
i

∑
xm+1
i∑

x2
i

∑
xm+2
i

...∑
xmi

∑
xm+1
i

∑
x2m
i



a0

a1
...
am

 =


∑
yi∑
xiyi
...∑
xmi yi


and solve for a.

Normally we have many n+1 points and look for a polynomial of
lesser degree m<n. The higher the grade of the adjustment polyno-
mial, the closer it gets to the real data points at which it is executed.
But keep in mind that we are not looking for a pure interpolation
polynomial, but a smoother, lesser order polynomial that does not
oscillate, and that somehow compensates for inherent data errors.

As a suggestion, you can represent the dots on a scatter plot.
Next, you can test a degree that is equal to the number of trend
changes plus one, and then increase the degree of adjustment of LS.
A plot with all the cases can be of great help. Many authors indicate
that the best adjustment is the one that results in a higher regres-
sion coefficient. However, generalization of this criterion leads to
a pure interpolation polynomial, which by definition will give the
maximum adjustment of 100% through all points, but that is not

99

what we are looking for. Instead, it is more advisable to gradually
increase the degree of the LS regression polynomial, and graph the
result to observe behavior, not only at the data but also in the in-
termediate intervals. In the following example, the polynomial ad-
justment was increased to an eighth degree, but beyond that, the
polynomial began to oscillate. It depends entirely on the data set.

Least Squares
#

from numpy import array , poly1d , polyfit , arange
from scipy.interpolate import interp1d

Data

xdata = array ([2, 3, 4, 6, 12, 18, 22, 33, 40,
45, 50, 57])

ydata = array ([4.5, 10, 16, 37, 120, 100, 83.9,
65, 64, 66, 70, 71])

Calculate all LS fits

a2 = polyfit(xdata , ydata , 2)
a3 = polyfit(xdata , ydata , 3)
a8 = polyfit(xdata , ydata , 8)

Finer x range just for plotting

xvals = arange (2,57, 0.5)
yvals_LST2 = poly1d(a2) (xvals)
yvals_LST3 = poly1d(a3) (xvals)
yvals_LST8 = poly1d(a8) (xvals)

Plot LS fits

import matplotlib.pyplot as plt
plt.close(’all’) # erase old plots
fig = plt.figure (1)
plt.plot(xvals , yvals_LST2 , ’b-’,

100

xvals , yvals_LST3 , ’r-’,
xvals , yvals_LST8 , ’y-’,
xdata , ydata , ’bo’)

plt.legend ((’LS2’,’LS3’,’LS8’,’data’))

Print results

print(’Coefficients are:’,a8)

Coefficients are: [1.21242621e-09 -3.31174174e-07
3.75413629e-05 -2.27553315e-03
7.89102201e-02 -1.54036561e+00
1.51737533e+01 -5.36623265e+01
6.55567161e+01]

The array is ordered from highest to lowest degree term (an, ...a0).

5.2.2 Correlate twoVariableswithMultipleChoices

In some occasions, after representing the points with a scatter dia-
gram, we perceive that there can be alternative regressions or more
suitable than a simple polynomial. Perhaps we want to explore an
exponential relationship, or logarithmic, or potential, or other types
of functions. In the attached script this type of exploration is per-
formed on a very small set of data pairs.

Fit many equations

from numpy import *
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

Data to fit

101

xd = array([2, 5, 7, 12, 13, 18, 33, 50, 66, 72])
yd = array([5, 23, 50, 130, 135, 250, 1000,

1300, 2010, 1800])

Define functions

def func1(x, a, b): return a*x + b
def func2(x, a, b, c): return a*x**b + c
def func3(x, a, b, c): return a*x**2 + b*x + c
def func4(x, a, b, c): return a*exp(-b*x) + c
def func5(x, a, b): return a*log(x) + b
def func6(x, a, b): return 1/(a + b*x)
def func7(x, a, b): return 1/(a + b*log(x))
def func8(x, a, b): return exp(a + b*log(x))

Fit all equations

p1, p = curve_fit(func1 , xd, yd)
p2, p = curve_fit(func2 , xd, yd)
p3, p = curve_fit(func3 , xd, yd)
p4, p = curve_fit(func4 , xd, yd)
p5, p = curve_fit(func5 , xd, yd)
p6, p = curve_fit(func6 , xd, yd)
p7, p = curve_fit(func7 , xd, yd)
p8, p = curve_fit(func8 , xd, yd)

Some statistics (f)its , s(igma), (r)egression
coef.

f1 = func1(xd , *p1) ; s1 = std(yd-f1)
r1 = corrcoef(f1, yd)[1,0]

f2 = func2(xd , *p2) ; s2 = std(yd-f2)
r2 = corrcoef(f2, yd)[1,0]

f3 = func3(xd , *p3) ; s3 = std(yd-f3)
r3 = corrcoef(f3, yd)[1,0]

f4 = func4(xd , *p4) ; s4 = std(yd-f4)

102

r4 = corrcoef(f4, yd)[1,0]

f5 = func5(xd , *p5) ; s5 = std(yd-f5)
r5 = corrcoef(f5, yd)[1,0]

f6 = func6(xd , *p6) ; s6 = std(yd-f6)
r6 = corrcoef(f6, yd)[1,0]

f7 = func6(xd , *p7) ; s7 = std(yd-f6)
r7 = corrcoef(f7, yd)[1,0]

f8 = func6(xd , *p8) ; s8 = std(yd-f6)
r8 = corrcoef(f8, yd)[1,0]

Print results

print(’\n’, 1,p1, ’rho ’, r1,’sigma ’, s1)
print(’\n’, 2,p2, ’rho ’, r2,’sigma ’, s2)
print(’\n’, 3,p3, ’rho ’, r3,’sigma ’, s3)
print(’\n’, 4,p4, ’rho ’, r4,’sigma ’, s4)
print(’\n’, 5,p5, ’rho ’, r5,’sigma ’, s5)
print(’\n’, 6,p6, ’rho ’, r6,’sigma ’, s6)
print(’\n’, 7,p7, ’rho ’, r7,’sigma ’, s7)
print(’\n’, 8,p8, ’rho ’, r8,’sigma ’, s8)

1 [29.7937406 -157.96598862]
rho 0.986540071992 sigma 122.123676816

2 [26.16754764 1.02930359 -141.0862143]
rho 0.986584107494 sigma 121.925094571

3 [-2.98160679e-02 3.19732973e+01 -1.77280301e+02]
rho 0.986669046694 sigma 121.541111603

4 [-94.35437572 52.19799414 670.29999874]
rho nan sigma 746.843899352

5 [589.75840766 -984.77289774]
rho 0.885746319527 sigma 346.662266109

6 [2.73843105e-03 -3.14078488e-05]
rho 0.892645787896 sigma 353.924040304

103

7 [0.00585923 -0.00125729]
rho 0.305853230166 sigma 353.924040304

8 [2.34910938 1.23021951]
rho -0.690755869662 sigma 353.924040304

In this case, observing the correlation coefficients and the stand-
ard deviation of each regression, we conclude that the first three are
adequate, and the remaining ones are not. Taking for example the
second one, we have:

y = 26.167x1.0293 − 141.08, ρ = 98.6%

5.3 Multivariate Methods

In scientific or industrial research environments, there is an occa-
sional need to find expressions that relate several inputs to one or
more outputs. These inputs and outputs, in original form or trans-
formed with simple functions, may be adjusted to multiple linear re-
gressions with maximum likelihood or least squares methods. The
reader will notice that some of the concepts in this section have
already been introduced previously. The example that we are going
to follow is very simple, both in the number of variables (fields) and
in the number of records, although it will serve to expose a practical
technique of multiple regression.

5.3.1 Read and Describe Data

The example data source is an Excel file with only 18 rows but the
method is applicable to a much larger size, perhaps several thousand

104

records.
To read the Excel file, we use the Pandas library, widely used in

Python applications for Data Sciences. With it we create a Python
object called dataframe, which can then be interrogated with the
commands keys, describe, head, and dtypes, to have clear informa-
tion of what is in each of the fields.

Multivariate Regression

from numpy import corrcoef , transpose , around
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
import os

os.system("cls") # clear screen

(1) Read all data

mydata = pd.read_excel("Data_prod.xlsx", "Sheet1")
print("\n(1) Read data")

(2) Description

print("\n(2) Fields description")
print(’keys are \n’, mydata.keys())
print(’Describe \n’, mydata.describe ())
print(’Head is \n’, mydata.head())
print(’Types are \n’, mydata.dtypes)

(1) Read data

(2) Fields description
keys are
Index([’Coal ’, ’Iron ’, ’Wood ’, ’Nickel ’, ’Gas ’, ’Prod ’], dtype=’object ’)
Describe

Coal Iron Wood Nickel Gas Prod
count 18.000000 18.000000 18.000000 18.000000 18.000000 18.000000
mean 9.723501 34.495216 19.509280 4.513004 203.454656 36.183973
std 3.137497 6.254158 3.590165 1.642908 59.972480 41.724941
min 5.159120 26.455069 12.453450 2.072828 103.645979 -18.966415
25% 7.212349 29.246786 17.009680 3.315510 151.586670 2.333159

105

50% 9.828290 34.839651 19.529569 4.389162 211.009096 29.259057
75% 11.834043 38.594353 22.731731 5.862938 245.656210 73.524070
max 14.940519 48.794617 23.808247 6.973731 286.441744 105.355848
Head is

Coal Iron Wood Nickel Gas Prod
0 7.445735 29.410907 22.235706 6.154254 228.400468 18.553170
1 12.236518 26.455069 14.346276 4.220295 286.441744 82.790689
2 14.552268 39.016811 19.439719 4.390807 285.368261 85.221445
3 14.289527 27.160074 17.980871 6.670089 135.749267 105.355848
4 7.881015 35.927669 17.568952 2.394150 190.091056 11.448009

Types are
Coal float64
Iron float64
Wood float64
Nickel float64
Gas float64
Prod float64
dtype: object

At this point, we have already read the data and we know the
names of each of the fields, and we have some elementary statistics
(mean, standard deviation, etc.), as well as the type of data (integer,
float, or other). If there were any empty positions, then a munging
method would have to be used as explained in the example in the
next section "Data Mining".

The next step is to rename each variable in a short name to handle
them comfortably.

...

(3) Set shorter names for convenience

print("\n(3) Set shorter names")
c = mydata[’Coal’]
i = mydata[’Iron’]
w = mydata[’Wood’]
n = mydata[’Nickel ’]
g = mydata[’Gas’]
p = mydata[’Prod’]

106

5.3.2 Are the data correlated with each other?

This question refers to whether the variations of some variables are
explained by the variations of other variables. To answer this ques-
tion we calculate the correlation matrix, in which each component
is the Pearson coefficient that can be used to measure the degree
of relationship of two variables as long as both are quantitative and
continuous.

...

(4) Correlation R-coeff (Pearson) to ALL
candidates

YDEP = p
XALL = [c, i, w, n, g, c*c, i*i, c*w*n]

matrix = corrcoef(YDEP , XALL)
print(’\n(4) Correlation matrix (Pearson) of YDEP vs

. XALL:\n’, around(matrix , 2))

(4) Correlation matrix (Pearson) of YDEP vs. XALL:
[[1. 0.96 -0.46 -0.06 0.09 0.36 0.95 -0.45 0.59]
[0.96 1. -0.18 -0.1 0.15 0.32 0.99 -0.16 0.64]
[-0.46 -0.18 1. -0.09 0.16 -0.24 -0.2 1. -0.03]
[-0.06 -0.1 -0.09 1. 0.04 0.03 -0.11 -0.12 0.25]
[0.09 0.15 0.16 0.04 1. -0.07 0.16 0.17 0.78]
[0.36 0.32 -0.24 0.03 -0.07 1. 0.32 -0.26 0.12]
[0.95 0.99 -0.2 -0.11 0.16 0.32 1. -0.18 0.64]
[-0.45 -0.16 1. -0.12 0.17 -0.26 -0.18 1. -0.04]
[-0.09 -0.12 -0.06 1. 0.04 0.01 -0.14 -0.09 0.22]
[0.59 0.64 -0.03 0.25 0.78 0.12 0.64 -0.04 1.]]

107

5.3.3 Regression

(1) The correlation matrix calculated in the previous step gives us a
clue as to which are the strongest candidates to enter the regression.
In the example we see that the highest correlations are obtained with
c and with c2, both with a similar ρ value. In general, all things be-
ing equal, we prefer the simplest form and therefore we introduce
XCANDIDATES = [c] as the first trial, and then run the script be-
low.

(2) After executing the first trial we see that residuals have zero cor-
relation with c but instead they have a high degree of correlation
(r = 0.98) with i . This indicates that we can include this variable
into the candidates, XCANDIDATES = [c, i].

(3) A new execution results in a correlation matrix whose terms are
all quite reduced, indicating that it is no longer another candidate
for regression, and we are done.

...

(5) Try a regression
#
Add or remove vars into XCANDIDATES array
until residuals show no significant
correlation with remaining vars.

XCANDIDATES = [c, i] # Candidates. First run is []
intercept = 1 # 1 or 0

--- No changes below this line!

if XCANDIDATES != []:
if intercept ==1:

stat = sm.OLS(YDEP , sm.add_constant(
transpose(XCANDIDATES))).fit()

108

else:
stat = sm.OLS(YDEP ,(transpose(

XCANDIDATES))).fit()

Print and plot relevants

plt.figure (1)
plt.plot(YDEP ,ypred ,’o’,[min(YDEP),max(YDEP)],[
min(YDEP),max(YDEP)],’-’)
plt.xlabel(’y read’)
plt.ylabel(’y predicted ’)

plt.figure (2)
plt.plot(YDEP ,rsid ,’*’)

matrixr = corrcoef(rsid , XALL)
print(’\n(5) Correlation matrix (Pearson) of
RESIDUALS vs XALL:\n’,around(matrixr ,2))
print(’\n(6) Regression of YDEP vs. XCANDIDATES\
n’,stat.summary ())

option print estimates and residuals

print(’\n(7) Predicted values :\n’, ypred)
print(’\n(8) Residuals :\n’,rsid)

(5) Correlation matrix (Pearson) of RESIDUALS vs XALL:
[[1. -0. 0.98 -0.12 0.2 -0.19 -0.02 0.98 -0.09 0.08]
[-0. 1. -0.18 -0.1 0.15 0.32 0.99 -0.16 -0.12 0.64]
[0.98 -0.18 1. -0.09 0.16 -0.24 -0.2 1. -0.06 -0.03]
[-0.12 -0.1 -0.09 1. 0.04 0.03 -0.11 -0.12 1. 0.25]
[0.2 0.15 0.16 0.04 1. -0.07 0.16 0.17 0.04 0.78]
[-0.19 0.32 -0.24 0.03 -0.07 1. 0.32 -0.26 0.01 0.12]
[-0.02 0.99 -0.2 -0.11 0.16 0.32 1. -0.18 -0.14 0.64]
[0.98 -0.16 1. -0.12 0.17 -0.26 -0.18 1. -0.09 -0.04]
[-0.09 -0.12 -0.06 1. 0.04 0.01 -0.14 -0.09 1. 0.22]
[0.08 0.64 -0.03 0.25 0.78 0.12 0.64 -0.04 0.22 1.]]

(6) Regression of YDEP vs. XCANDIDATES
OLS Regression Results
==
Dep. Variable: Prod R-squared: 0.912
Model: OLS Adj. R-squared: 0.907
Method: Least Squares F-statistic: 166.5
Date: Thu , 11 Jul 2019 Prob (F-statistic): 7.13e-10
Time: 10:53:24 Log -Likelihood: -70.278
No. Observations: 18 AIC: 144.6

109

Df Residuals: 16 BIC: 146.3
Df Model: 1
Covariance Type: nonrobust
==

coef std err t P>|t| [95.0% Conf. Int.]
--
const -87.3293 10.031 -8.706 0.000 -108.594 -66.065
x1 12.7026 0.984 12.904 0.000 10.616 14.789
==
Omnibus: 1.416 Durbin -Watson: 2.135
Prob(Omnibus): 0.493 Jarque -Bera (JB): 1.099
Skew: -0.564 Prob(JB): 0.577
Kurtosis: 2.563 Cond. No. 34.4
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is co
rrectly specified.

(7) Predicted values:
[7.25052937 68.10571286 97.52165431 94.1841668 12.77969848
-12.41694769 -21.79532186 102.45342166 35.30926689 58.85037781
34.4107002 39.72086698 46.17727223 -2.20046537 3.29772748
44.60328454 64.37420495 -21.31463313]

(8) Residuals:
0 -11.302640
1 -14.684976
2 12.300209
3 -11.171681
4 1.331690
5 -13.362864
6 -2.828906
7 4.939448
8 28.814378
9 -7.222617
10 5.802361
11 9.811093
12 -14.599349
13 10.831047
14 14.251860
15 5.689690
16 -11.633557
17 -6.965186
Name: Prod , dtype: float64

(4) Now is the time to look at the P and t values associated with
each coefficient. The P value tells you how confident you can be
that each individual variable has some correlation with the depend-
ent variable. The t statistic is the coefficient divided by its standard
error. It can be thought of as a measure of the precision with which
the regression coefficient is measured. If a coefficient is large com-
pared to its standard error, then it is probably different from 0.

Since we have obtained r2 = 1.00 and also the P value of each
coefficient is much less than 0.05, which is the cut-off value to accept
or reject a coefficient, our result is very satisfactory. Therefore, the
final regression becomes:

110

P = −11.0956 + 11.984c− 2.0074i ' −11 + 12c− 2i

The calculated regression predicts Y values very close to the real
ones. A representation of this type is the one that best visualizes if
there are potential local deviations that need to be investigated.

111

5.4 Data Mining

Truth is what it is and it’s
still true even if you think the
other way around. (Antonio
Machado)

Aristotle in antiquity, and recently
Francis Bacon coined the idea that in-
formation is power. It is well known
that the amount of information stored
by humanity is growing at an exponen-
tial rate, with a doubling rate of ap-
proximately 15 years. We live in a his-
torical moment in which there is much
more information than we can digest,
with the added difficulty of discerning
what is significant and what is not.

The general problem of data min-
ing is to extract that valuable hidden
information, find the truth from a set of
data with different structures and ori-
gins, establish relationships between
parameters, fill gaps, discriminate sig-
nificant variables, and discover un-
declared categories. It is a highly de-
manded branch of data science in in-
dustry and science, which is constantly evolving.

The following exercise is a small demonstration of some of the
techniques currently being used for data mining with Python.

5.4.1 Reading File and Initial Description

The basic structure for data mining is the creation of a dataframe
with the Pandas library, because the information is stored with a
comfortable structure for further treatment. In this exercise we im-

112

port a file in csv format.
Once we have read the file with the raw data we generate a de-

scription of each field.

Data Mining

import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from numpy import transpose , around , corrcoef
import os ; os.system("cls") # clear console

(1) Import the csv file into a dataframe

dfraw = pd.read_csv(’Data_mining_example_voids.csv’,
sep=";", header =0)

print("\n(1) Read data")

(2) Describe fields

print(’\n(2) Describe fields of raw file’)
print(dfraw.describe ())
print(’Are there empty records? \n’, dfraw.isnull ().

any())

(1) Read data

(2) Describe fields of raw file
xdata ydata zdata adata bresult \
count 5023.000000 5019.000000 5023.000000 5021.000000 5011.000000
mean 5.001061 10.009881 20.023828 16.011884 4.979437
std 1.003738 2.011106 2.840323 8.009033 5.267090
min 1.417394 1.879635 15.000503 2.012465 -18.506657
25% NaN NaN NaN NaN NaN
50% NaN NaN NaN NaN NaN
75% NaN NaN NaN NaN NaN
max 8.816980 17.230994 24.999100 29.997229 27.395848

cresult
count 5009.000000
mean 54.941322
std 13.188443
min -12.586850
25% NaN
50% NaN

113

75% NaN
max 106.713544
Are there empty records?
xdata True
ydata True
zdata True
adata True
bresult True
cresult True
dtype: bool

5.4.2 Data Munging and Final Data Description

The statistics of each field is eloquent: the count of each field is not
the same, in addition it is not possible to determine the percentiles,
and there are even empty records. To continue with the analysis it
is necessary to clean the dataframe in a process known as munging.
In this example we will eliminate the records in which there is an
empty field of type "NaN", although another good possibility could
be to fill in the gaps with the average value of the field, or a rolling
average, or a clever interpolation, among other possibilities.

Once the Munging is done, we have a complete dataframe. With
the instructions of step (4) in script below we obtain a very complete
description of each field: its elementary statistics, format, appear-
ance and type, and in step (6) we draw the histogram of each field.
On the other hand, we know that the independent parameters or in-
puts are xdata, ydata, zdata, adata, and the dependent or outputs are
bresult and cresult.

... continuation

(3) Clean: remove rows with empty info

print(’\n(3) Clean raw file’)
dfclean=dfraw.dropna(axis=0,how=’any’)

Option fill with means - uncomment if needed

114

dfclean=dfraw
dfclean.fillna(dfclean.xdata.mean(),inplace=True)

(4) Provide basic information of clean file

print(’\n(4) Information abaout clean file’)
print(’keys are \n’, dfclean.keys())
print(’describe \n’, dfclean.describe ())
print(’Head is \n’, dfclean.head())
print(’types are \n’, dfclean.dtypes)

(5) Set shorter names for convenience

x, y, z = dfclean.xdata , dfclean.ydata , dfclean.
zdata

a, b, c = dfclean.adata , dfclean.bresult ,
dfclean.cresult

print(’\n(5) set shorter names’)

(6) Plot histograms for each field

index is plots file , col
plt.figure (0)
plt.subplot (221) ; plt.hist(x) ; plt.ylabel(’x’)
plt.subplot (222) ; plt.hist(y) ; plt.ylabel(’y’)
plt.subplot (223) ; plt.hist(z) ; plt.ylabel(’z’)
plt.subplot (224) ; plt.hist(a) ; plt.ylabel(’a’)
plt.show()

plt.figure (1)
plt.subplot (131) ; plt.hist(x) ; plt.ylabel(’b’)
plt.subplot (132) ; plt.hist(y) ; plt.ylabel(’c’)
plt.subplot (133) ; plt.hist(z) ; plt.ylabel(’d’)
plt.show()
print(’\n(6) Plot histograms ’)

115

(3) Clean raw file

(4) Information abaout clean file
keys are
Index([’xdata ’, ’ydata ’, ’zdata ’, ’adata ’, ’bresult ’, ’cresult ’], dtype=’object ’)
describe
xdata ydata zdata adata bresult \
count 4965.000000 4965.000000 4965.000000 4965.000000 4965.000000
mean 5.002651 10.009529 20.023915 16.004759 5.004645
std 1.003833 2.013321 2.839494 8.013139 5.155863
min 1.417394 1.879635 15.000503 2.012465 -13.185724
25% 4.342196 8.655697 17.591869 9.239606 1.423812
50% 4.989011 10.003275 20.039535 15.946807 5.089917
75% 5.680604 11.361209 22.415602 22.957083 8.584430
max 8.816980 17.230994 24.999100 29.997229 24.398357

cresult
count 4965.000000
mean 55.054071
std 12.901013
min 6.865223
25% 46.408883
50% 55.250589
75% 63.699205
max 106.713544
Head is
xdata ydata zdata adata bresult cresult
0 4.832916 11.067964 21.567132 7.314386 5.050946 60.031814
1 5.658365 8.809022 15.334497 16.152045 7.184497 54.739681
2 4.694674 6.063163 19.607394 13.449413 -3.057900 30.922837
3 4.567958 9.412653 23.489065 3.634557 0.180001 46.434540
4 5.943290 10.790661 24.931207 14.782276 2.217208 57.754122
types are
xdata float64
ydata float64
zdata float64
adata float64
bresult float64
cresult float64
dtype: object

(5) set shorter names

(6) Plot histograms

116

Histograms of x and y (top), z and a (bottom)

Histograms of b, c, and d

Correlations

Now, in step (7) we find out the extent to which paired variables
move together. To do this, we calculate the correlation matrix (Pear-

117

son) for each pair of variables. Also, we can represent the graphs of
the input - output pairs that will give us a good idea of the depend-
encies.

... continuation

(7) Correlations

print(’\n(7) Correlations ’)
matrix = corrcoef ([x, y, z, a, b, c])
print(’\nCorrelation matrix (Pearson) of ALL fields

:\n’, around(matrix , 2))

Plot X - Y relations

plt.figure (4)
plt.subplot (241) ; plt.plot(x, b, ’.’)
plt.xlabel(’x’) ; plt.ylabel(’b’)
plt.subplot (242) ; plt.plot(y, b, ’.’)
plt.xlabel(’y’) ; plt.ylabel(’b’)
plt.subplot (243) ; plt.plot(z, b, ’.’)
plt.xlabel(’z’) ; plt.ylabel(’b’)
plt.subplot (244) ; plt.plot(a, b, ’.’)
plt.xlabel(’a’) ; plt.ylabel(’b’)

plt.subplot (245) ; plt.plot(x, c, ’.’)
plt.xlabel(’x’) ; plt.ylabel(’c’)
plt.subplot (246) ; plt.plot(y, c, ’.’)
plt.xlabel(’y’) ; plt.ylabel(’c’)
plt.subplot (247) ; plt.plot(z, c, ’.’)
plt.xlabel(’z’) ; plt.ylabel(’c’)
plt.subplot (248) ; plt.plot(a, c, ’.’)
plt.xlabel(’a’) ; plt.ylabel(’c’)

plt.show()

118

(7) Correlations

Correlation matrix (Pearson) of ALL fields:
[[1. 0.01 -0.02 0.02 0.21 0.24]
[0.01 1. -0.03 -0.02 0.8 0.94]
[-0.02 -0.03 1. 0.02 -0.58 -0.26]
[0.02 -0.02 0.02 1. -0.02 -0.02]
[0.21 0.8 -0.58 -0.02 1. 0.93]
[0.24 0.94 -0.26 -0.02 0.93 1.]]

Main cross correlation plots

5.4.3 Regressions

Looking at the correlation matrix and the graphs, we conclude that b
and c depend on y and z. In (8) wewill look for the regressions using
the same library as in the previous example "Regression". The most
direct thing is to go testing with several variables systematically un-
til you find a good balance between low number of variables and

119

high R-squared value. Care should be taken not to introduce input
variables that are dependent on each other, since this complicates
the regression and also introduces a variability that is not necessary.
In this example, we reached the dependence that we had assumed
after the inspection of the correlation matrix and the graphs: b and
c depending on y and z.

... continuation

(8) Regressions

Define a regression function
def reg(X,Y,const):

if const ==1:
stat = sm.OLS(Y, sm.add_constant(transpose

(X))).fit()
else:

stat = sm.OLS(Y, (transpose(X))).fit()
return stat

print(’\n(8) Regressions ’)

**** Regression to b

X = [y, z] ; Y = b ; const=1
stat = reg(X, Y, const)
print(stat.summary ())
plt.figure (2)
plt.plot(Y, stat.predict (), ’.’)
plt.ylabel(’Ypred vs Y’)

**** Regression to c

X = [y, z] ; Y = c ; const=1
stat = reg(X, Y, const)
print(stat.summary ())
plt.figure (3)
plt.plot(Y, stat.predict (), ’.’)
plt.ylabel(’Ypred vs Y’)

120

(8) Regressions
OLS Regression Results
==
Dep. Variable: bresult R-squared: 0.949
Model: OLS Adj. R-squared: 0.949
Method: Least Squares F-statistic: 4.574e+04
Date: Tue , 09 Jul 2019 Prob (F-statistic): 0.00
Time: 18:55:34 Log -Likelihood: -7821.7
No. Observations: 4965 AIC: 1.565e+04
Df Residuals: 4962 BIC: 1.567e+04
Df Model: 2
Covariance Type: nonrobust
==

coef std err t P>|t| [0.025 0.975]
--
const 5.1307 0.146 35.024 0.000 4.844 5.418
x1 2.0031 0.008 242.784 0.000 1.987 2.019
x2 -1.0076 0.006 -172.240 0.000 -1.019 -0.996
==
Omnibus: 1.870 Durbin -Watson: 2.014
Prob(Omnibus): 0.393 Jarque -Bera (JB): 1.830
Skew: 0.010 Prob(JB): 0.401
Kurtosis: 2.908 Cond. No. 199.
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is cor
rectly specified.
OLS Regression Results
==
Dep. Variable: cresult R-squared: 0.943
Model: OLS Adj. R-squared: 0.943
Method: Least Squares F-statistic: 4.117e+04
Date: Tue , 09 Jul 2019 Prob (F-statistic): 0.00
Time: 18:55:35 Log -Likelihood: -12623.
No. Observations: 4965 AIC: 2.525e+04
Df Residuals: 4962 BIC: 2.527e+04
Df Model: 2
Covariance Type: nonrobust
==
coef std err t P>|t| [0.025 0.975]
--
const 15.3043 0.385 39.723 0.000 14.549 16.060
x1 6.0077 0.022 276.866 0.000 5.965 6.050
x2 -1.0180 0.015 -66.166 0.000 -1.048 -0.988
==
Omnibus: 0.303 Durbin -Watson: 2.040
Prob(Omnibus): 0.859 Jarque -Bera (JB): 0.278
Skew: 0.017 Prob(JB): 0.870
Kurtosis: 3.015 Cond. No. 199.
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

At the end of the process, we come to the regression lines:

121

b ' 5.13 + 2y − z
c ' 15.3 + 6y − z

Final regressions

122

5.4.4 Clustering

Within the scope of Data Science, a very impressive application
is the identification of data groupings or clusters. The scikit-learn
module is a machine learning application that includes classifica-
tion, regression and group analysis algorithms, among which are
support vectormachines, random forests, gradient boosting, K-means
and DBSCAN.

The example below consists of a cloud of points in which for
some reason we believe there are four groups. The Python script is
able to categorize each point and also finds the center of each cluster.

cluster analysis

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cluster import KMeans
import os; os.system("cls") # clear screen

Read and plot data

dfdata = pd.read_excel("locus.xlsx","Hoja1")

x = dfdata[’x’]
y = dfdata[’y’]

plt.figure (1)
plt.plot(x, y, ’x’)
plt.title(’Data before clustering ’)

Create 2D list

locus = np.column_stack ((x, y))
plt.ylim((-20, 25)); plt.xlim((-20, 15))

Create kmeans object

123

kmeans = KMeans(n_clusters = 4)

Fit kmeans object to data

kmeans.fit(locus)

Calculate cluster centers

cc = kmeans.cluster_centers_
print("Cluster centers =\n", cc)

Plot data after clustering

yk = kmeans.fit_predict(locus)

plt.figure (2)
plt.scatter(locus[yk ==0,0], locus[yk == 0,1],

s=22, c=’green’)
plt.scatter(locus[yk ==1,0], locus[yk == 1,1],

s=22, c=’red’)
plt.scatter(locus[yk ==2,0], locus[yk == 2,1],

s=22, c=’cyan’)
plt.scatter(locus[yk ==3,0], locus[yk == 3,1],

s=22, c=’blue’)

plt.scatter(cc[:,0],cc[:,1], s=100, marker=’s’,
facecolor=’yellow ’, edgecolors=’r’)

plt.title(’Data after clustering ’)

Cluster centers =
[[-5.33398595 -0.82875769]
[-2.19396073 10.40955769]
[1.70615288 -4.74432972]
[-3.48173682 -6.80165435]]

124

Each point is classified as belonging to a cluster automatically
determined by the algorithm. The four categories were hidden and
are now represented by a single point, the center of the cluster.

125

5.5 Genetic Algorithms

One of themost suggestive branches of artificial intelligence is prob-
lem solving with genetic algorithms. They consist of a series of
multi-stage instructions inspired by the essential mechanisms of the
evolution of living beings and have been shown to be suitable for ad-
dressing optimization problems. GA’s have some advantages over
classical optimization methods, mainly because they can explore
many solutions simultaneously, but also drawbacks, due to their rel-
atively lower efficiency. In any case, there are scientific applications
solidly based on them and, in addition, they are one of themost beau-
tiful applications of iterative calculation. There are some libraries
for Python that facilitate the implementation of the GA, such as Py-
volution, DEAP and Pyevolve.

In the example below, we will solve the same minimization ex-
ercise that was presented in section 1.3, following the fundamental
steps of the GA (1- Initialization, 2 - selection, 3 - crossover, and
4 - mutation) using directly the basic Python instructions. This ex-
ample is trivial and simple, as only three genes are involved, but it
is appropriate to illustrate this interesting method.

Genetic Algorithm

import random
from numpy import *
from scipy import *
from random import randint , uniform
import matplotlib.pyplot as plt

Ncr = 200
Nelite = 190
ngene = 3
ngenerations = 200

Fitness function and restrictions

126

def Fu(x1, x2, x3):

y = (-1)*x1*(x1*x2-sqrt(x3))
#
if x1+2*x2 -6*x3 > 0: y = -inf
if x1-x2 >= 8: y = -inf
if x1*x2*x3 < 100: y = -inf
if x1 < (-10): y = -inf
if x1 > 12: y = -inf
if x3 < -50: y = -inf
if x3 > 50: y = -inf
return y

Initialize population

f=zeros ((Ncr , ngene +1))
n=zeros ((Ncr , ngene +1))

for i in range(Ncr):

x1 = random.rand()*10
x2 = random.rand()*10
x3 = random.rand()*10

f[i,1] = x1
f[i,2] = x2
f[i,3] = x3
f[i,0] = Fu(x1, x2, x3)

For each generation ...

fitv = []

for g in range(ngenerations):

... Sort population from low to high fitness

fsort = f[f[:, 0]. argsort ()]
print(’g=’,g,fsort [-1])

127

for i in range(Ncr):

crossover

Discard low fitness chromosomes

ifather=randint(Nelite , Ncr -1)
imother=randint(Nelite , Ncr -1)

Crossover point is 2
x1=fsort[ifather , 1]
x2=fsort[imother , 2]
x3=fsort[imother , 3]

mutate

x1=x1 *(.95+.1* random.rand())
x2=x2 *(.95+.1* random.rand())
x3=x3 *(.95+.1* random.rand())

Set Offspring

n[i,1] = x1
n[i,2] = x2
n[i,3] = x3
n[i,0] = Fu(x1, x2, x3)

f = n

g= 0 [-19.933636 2.35482583 4.932130 9.91804844]
g= 1 [-16.724577 2.17250876 4.975966 9.68486987]
g= 2 [-14.142583 2.06611022 4.851424 10.10317408]
g= 3 [-12.920996 2.05540312 4.639764 10.56399667]
g= 4 [-11.595841 1.92571209 4.853851 11.05917124]
...
g= 195 [41.260327 8.1460726 0.24598728 49.9691766]
g= 196 [41.008998 8.2413695 0.25184911 49.7247078]
g= 197 [40.8446103 8.2502391 0.25510765 49.7789149]
g= 198 [40.648785 8.1187346 0.2503943 49.5569973]
g= 199 [40.636239 8.0970761 0.25021179 49.6266034]

128

The reader can verify that the solution obtained after 200 genera-
tions, although not identical, is very similar to the one obtained in
section 1.3.

5.6 Neural Networks

"There’s been some terrible
mistake. I’m programmed
for etiquette, not destruc-
tion!" (C3-PO during the
Battle of Geonosis)

In this section we are going to see an
interesting machine learning application.
Neural networks are inspired by the way
information is processed and stored in
biological systems. The neurons of liv-
ing beings receive a multitude of signals
through ramifications and, if conditions
are sufficient, the neuron activates a signal
or nerve impulse driven by the axon. The
nervous system, including memory re-
gions, involves the action of a large num-
ber of neurons interconnected in a net-
work of enormous complexity.

In contrast, the digital neural networks
used in artificial intelligence are compar-
ativelymuch simpler and organized in lay-
ers. In its simplest version, the input sig-
nals to a neuron are amplified by weights
(wi), and the output signal or response
is increased by a bias (bi). Normally, at
this stage, an activation function is applied
to turn an unlimited signal into a well-
dimensioned or dimensioned signal. The
most typical activation function is sigmoid, but there are other use-

129

ful functions such as Tanh, logistics, RELU, LEAKY, and others,
each with its advantages and disadvantages. This direct process in
which input signals are converted into an output signal is known as
Feedforward.

The awesome feature of a neural network is its ability to learn.
When a neural network is initialized, the weights and biases are un-
known and therefore the result is an erroneous prediction, a great
loss value. But by means of a training process, consisting of a pro-
gressive revision of the weights and biases in an algorithm that min-
imizes the loss known as retropropagation, one arrives at a network
capable of making very acceptable predictions. There are several
algorithms to minimize losses, such as stocastic gradient descent
(SGD), mini-batch gradient descent, RMSprop, and others.

In the following example we build a neural network for two input
signals with two neurons (x1, x2), a hidden layer with two neurons
(h1, h2), and an output signal with only one neuron (o1). The activ-
ation signals are the sigmoid of the binary output[0, 1], and the SGD
learning algorithm. This neural network is extremely very simple,
but adequate to illustrate the four fundamental steps: initialization,
learning, feedforward and backpropagation.

The reader is invited to explore the capabilities of Python’s power-
ful automatic learning libraries, such as Kera, PyTorch and Tensor-
�ow.

Neural Network

from numpy import *

Data

known = array ([[-19, -9, 1],
[168, 41, 0],
[-152, -62, 1],
[251, 60, 0],
[-69, -32, 1],
[200, 18, 0]])

130

XX, yy = known[:, :2], known[:, 2]

Some definitions

def sigmoid(x): # sigmoid
y = 1 / (1 + exp(-x))
return y

def dsig_dx(x): # derivative of sigmoid
y = sigmoid(x) * (1 - sigmoid(x))
return y

def L(y1, y2): # loss function
y = ((y1 - y2) ** 2).mean()
return y

def ru(): return random.uniform ()*2-1

Neural network processes

eps = []
ls = []

class Neuronet:

def __init__(W):

W.w1, W.w2, W.w3 = ru(), ru(), ru()
W.w4, W.w5, W.w6 = ru(), ru(), ru()
W.b1, W.b2, W.b3 = ru(), ru(), ru()

def feedforward(W, x):

h1 = sigmoid(W.w1 * x[0] + W.w2 * x[1] + W.b1)
h2 = sigmoid(W.w3 * x[0] + W.w4 * x[1] + W.b2)
o1 = sigmoid(W.w5 * h1 + W.w6 * h2 + W.b3)
return o1

def trainer(W, XX, yy):

lr = 0.20
epochs = 1000

nrecords = len(yy)
x = array ([1 ,1])
#
for epoch in range(epochs):
#

for i in range(nrecords):
#

131

x = XX[i]
yactual = yy[i]

Feedforward

sum_h1 = W.w1 * x[0] + W.w2 * x[1] + W.b1
h1 = sigmoid(sum_h1)

sum_h2 = W.w3 * x[0] + W.w4 * x[1] + W.b2
h2 = sigmoid(sum_h2)

sum_o1 = W.w5 * h1 + W.w6 * h2 + W.b3
o1 = sigmoid(sum_o1)
yypred = o1

Calculate partials

dL_dypred = -2 * (yactual - yypred)

Neuron o1
dypred_dw5 = h1 * dsig_dx(sum_o1)
dypred_dw6 = h2 * dsig_dx(sum_o1)
dypred_db3 = dsig_dx(sum_o1)

dypred_dh1 = W.w5 * dsig_dx(sum_o1)
dypred_dh2 = W.w6 * dsig_dx(sum_o1)

Neuron h1
dh1_dw1 = x[0] * dsig_dx(sum_h1)
dh1_dw2 = x[1] * dsig_dx(sum_h1)
dh1_db1 = dsig_dx(sum_h1)

Neuron h2
dh2_dw3 = x[0] * dsig_dx(sum_h2)
dh2_dw4 = x[1] * dsig_dx(sum_h2)
dh2_db2 = dsig_dx(sum_h2)

Recalculate weights

Neuron h1
W.w1 = W.w1 -lr * dL_dypred * dypred_dh1 * dh1_dw1
W.w2 = W.w2 -lr * dL_dypred * dypred_dh1 * dh1_dw2
W.b1 = W.b1 -lr * dL_dypred * dypred_dh1 * dh1_db1

Neuron h2
W.w3 = W.w3 -lr * dL_dypred * dypred_dh2 * dh2_dw3
W.w4 = W.w4 -lr * dL_dypred * dypred_dh2 * dh2_dw4
W.b2 = W.b2 -lr * dL_dypred * dypred_dh2 * dh2_db2

Neuron o1
W.w5 =W.w5-lr * dL_dypred * dypred_dw5

132

W.w6 =W.w6 -lr * dL_dypred * dypred_dw6
W.b3 =W.b3 -lr * dL_dypred * dypred_db3

if epoch % 10 == 0:
yypreds = apply_along_axis(W.feedforward , 1, XX)
loss = L(yy, yypreds)
print(epoch , loss)
eps.append(epoch)
ls.append(loss)

import matplotlib.pyplot as plt
plt.close(’all’)
plt.plot(eps ,ls)
plt.xlabel(’Epoch’)
plt.ylabel(’Loss’)

Train
netw = Neuronet ()
netw.trainer(XX, yy)

0 0.272965704604
10 0.0787910194698
20 0.0462235337578
30 0.0313770360383
...
960 0.000726441279604
970 0.000718548377904
980 0.000710822788982
990 0.000703259285671

133

This result is remarkable: based only on the six known data, the
system has been able to learn by adjusting over and over again the
weights and biases until a very small loss value is reached. Beyond
this point, the neuronet barely improves. As an immediate benefit,
once the neural network is trained, it can be questioned to make
predictions as we see below:

Make some predictions

a = array([-65, -35])
b = array ([150, 17])

print(netw.feedforward(a))
print(netw.feedforward(b))

0.978617158886
0.0304371767509

134

5.7 Big Data

Big Data is a general term referring to the use of a family of analysis
techniques applied to data originating from a variety of sources and
formats. Data of this nature is generated in large volumes and at
ever-increasing speed. This is known as the "three V’s". Sometimes
the true value of these data may be hidden, and it is necessary to
process the information for its usefulness to emerge.

These data sets are so voluminous, even petabytes, and some-
times so unstructured, that conventional data processing software
simply cannot handle them. And this trend is increasing more and
more, since with the advent of the Internet of Things (IOT), there is
an exponential growth in the amount of information of all kinds that
must be processed.

Fortunately, recent technological advances have drastically re-
duced the cost of process computing and data storage to the point of
being able to process a large amount of information almost in real
time. Both advantages combine to allow a task impossible until now,
facilitating decision making, product and service development, pre-
dictive maintenance, and exploiting the customer experience. Auto-
mated learning is also bringing a hitherto unknown dimension to
data analysis techniques.

There is a variety of software to approach Big Data efficiently
such as Aqua Data Studio, Microsoft HDInsight, Talend, SpliceMa-
chine, among others. With respect to the Python language, a num-
ber of libraries such as Pandas, PySpark, SciKit-Learn, Theano,
and Keras are useful tools for Big Data analysis. Some of the tech-
niques have already been introduced in the previous sections of this
book, but others are specific to handling large volumes of informa-
tion. However, the type of data and the associated problems are very
diverse, so an operational example is beyond the scope of this book.

The reader is invited to consult the specialized literature on Data
Science and Big Data, such as the following magnificent works:

135

• Python for Data Analysis, by Wes McKinney

• Big Data: Principles and best practices of scalable realtime
data systems, by Nathan Warz

• Data Science for Beginners, by Leonard Deep

Computer scientist Katie Bouman reacting when the historical im-
age of the Powehi black hole was generated with the algorithm in-
vented by her team, based on artificial intelligence techniques. K.
Bowman.

136

This young man is the Turkana’s boy, who with his 850 cc
brain, sprinted on the evolution race 1.6 million years ago to
pass the torch of intelligence to later hominids and finally to
us, his successors.

Credits: Musée National de Préhistoire, in Les Eyzies-de-Tayac-Sireuil.

Photo by W. Sauber, licensed under the Creative Commons Attribution-Share

Alike 4.0 International licensed under the Creative Commons Attribution-Share

Alike 4.0 International

137

138

Chapter 6

Control Methods

In this section we will explore
some of the possibilities of Py-
thon in the slippery sand of the
theory of stability and control
of dynamic systems. These sys-
tems are presented in a wide
variety of fields of physics and
engineering, from mechanical,
electrical, hydraulic, chemical or even nuclear, to name a few, but
also biological, social or economic systems. It is common to ask
whether a given system is stable, what individual characteristics it
must have to provide a desired dynamic response, either as a single
system or combined with elements of compensation or control.

The study of the stability of a dynamic system can be approached
according to its behaviour in the time domain or in the frequency
domain. In this section we will see a combination of both. Some
of the material comes from the excellent tutorial prepared by the
University of Michigan and Carnegy Melon:

http://ctms.engin.umich.edu/CTMS/index.php?aux=Home.

139

6.1 Methods in the Frequency Domain

6.1.1 Welcome aboard!

1. Is this plane stable?

To illustrate some of the methods of classical control theory, let’s
focus on an interesting case. Suppose we want to design a control
system to define the angle of attack of a passenger plane. The pilot
can act on the elevation flaps at the rear and act in combination with
the horizontal stabilizers. Thus, a command signal δ induces a dy-
namic behavior in the plane and an angle of attack θ of the plane,
through a transfer function given by:

∆θ

∆δ
=

1.151s+ 0.1774

s3 + 0.739s2 + 0.921s

Input δ and output Θ

In the following Python script we introduce the transfer function
in open loop, analyze the poles and zeros of the dynamic system, and
get the response to a step and an impulse of the input.

140

Jet Airliner

from control import *
import matplotlib.pyplot as plt
from numpy import *

Open loop Transfer Function

P = tf([1.151 , 0.1774] ,
[1, 0.739, 0.921, 0])

print("P = ", P)

Poles and zeros

fig = plt.figure (1)
P_poles , P_zeros = pzmap(P)
print("P_Poles ", P_poles)
plt.title(’Poles and Zeros of P(s)_OL’)

step response of 0.2 rad

fig = plt.figure (2)
time = np.arange(0, 40, 0.1)
t, P_OL_step = step_response (0.2*P, time)
plt.plot(t, P_OL_step)
plt.ylabel(’P_OL_step ’)
plt.title(’Step response of P(s)_OL’)

impulse response

fig = plt.figure (3)
t, P_OL_impulse = impulse_response (0.2*P, time)
plt.plot(t, P_OL_impulse)
plt.ylabel(’P_OL_impulse ’)
plt.title(’Impulse response of P(s)_OL’)

141

P=
1.151 s + 0.1774

s^3 + 0.739 s^2 + 0.921 s

P_Poles [-0.3695+0.8857j -0.3695 -0.8857j 0.0000+0.j]

The poles of the system, i.e. zeros of the denominator, are either
zero or real-negative indicating that the system is marginally stable.
To understand how the dynamic response to an input signal is, it is
useful to inspect the step response and impulse response. With the
first one we observe that the command of a rear pitch angle puts the
plane at an increasingly higher angle. In the case of commanding
an instantaneous impulse, the plane first draws an important initial
oscillation and then ends up stabilizing at a non-zero elevation angle.
This means that there is a wrong angle remaining.

(a) Step Response (b) Impulse Response

These behaviors are inadequate.

To avoid this undesirable behavior, we are going to modify the
system by closing the loop and installing a compensator or a control.

2. Gain Determination - Root Locus

By closing the loop and feeding back the output, you can control
the error effectively. In its simplest version, the controller consists

142

only of a proportional multiplier of the error signal, C(s) = Kp.
Whether the H(s) feedback is a negative-unit or a more complex
function, the closed-loop transfer function can always be obtained
such as

Y (s)cl =
P (s)

1 +KpP (s)H(s)
.

Closing the loop to achieve controlability

Let us look at the denominator: 1 +KpP (s)H(s) = 0. It is the
characteristic equation of the system and the sign and magnitude of
its roots determine the dynamic behavior. The Root Locus method
is a graphical method that draws the location of the roots of this
equation in the complex plane sweeping Kp from 0 to infinity and
thus determining the range of values of Kp that make the closed-
loop system stable.

In the attached script, we first get the root position of
1 + KpP (s)H(s) = 0 finding that, in the example, all roots al-
ways remain on the negative side which indicates that the closed-
loop system is stable for any value of K. Next, the script calculates
the response to a step of the input signal showing that, although
the response is stable, the higher the value of the Kp multiplier, the
more oscillating the response, to the point that the control specific-
ation cannot be met. In the next subsection we are going to look for
another type of compensation.

143

#... continuation

Root Locus of equation 1+k*P(s) = 0

fig = plt.figure (4)
[rlist , klist] = rlocus(P, grid=True)

Closed Loop with various gains

K = 0.3 ; P1 = K*P/(1+K*P)
K = 1 ; P2 = K*P/(1+K*P)
K = 10 ; P3 = K*P/(1+K*P)

step response of 0.2 rad

fig = plt.figure (5)

t, P1_step = step_response (0.2*P1, time)
t, P2_step = step_response (0.2*P2, time)
t, P3_step = step_response (0.2*P3, time)

plt.plot(t,P1_step , t, P2_step , t, P3_step)
plt.ylabel(’CL Step response with several gains’)
plt.legend ([’K=0.3’, ’K=1’, ’K=10’])

144

No root is positive, indicating that the system is stable for any
K value.

The higher the K value, the faster the feedback system re-
sponds, but the trend to oscillate also increases.

145

3. PID Controller

This type of controllers is currently very widespread in the industry
due to its ease of implementation and generally satisfactory beha-
vior.

The PID control has three terms: the proportional term (Kp),
which gives sensitivity to the controller, the integral term (Ki/s),
which accelerates the movement and eliminates the error in steady
state although it can cause some overshoot, and the derivative term
(Kds), which stabilizes and flattens the response. Also, for signals
mixed with noise, the latter term can be complemented with a high
frequency filter τd.

C(s) = Kp +Ki/s+
Kds

τds+ 1

There are several techniques of varying complexity to determine the
values of Kp, Ki, and Kd, such as manual adjustment, the heuristic
method of Ziegler-Nichols, the Cohen-Coon method, the Astrom-
Hagglund method, and others.

In the exercise that we are following, we will consider that we
have the following specification for the controlled system for a step
reference of 0.2 radians:

• Overshoot less than 10%

• Rise time less than 2 seconds

• Settling time less than 10 seconds

• Steady-state error less than 2

In our example, we have determined the three constants manually,
by pure trial and error until the step specification is met. The PID
controller is as follows:

C(s) = 5 +
1.7

s
+ 3s

146

#... continuation

kp = 5
ki = 1.7
kd = 3
taud = 0

Define OL transfer function with PID

PID = tf([kd + kp*taud , kp+ki*taud , ki],
[taud ,1, 0])

Ppid_CL = PID*P/(1+ PID*P)

step response with PID controller

fig = plt.figure (6)
t, Ppid_CL_step = step_response (0.2* Ppid_CL , time)
plt.plot(t, Ppid_CL_step)
plt.ylabel(’Ppid_CL_step ’)

The plane with a PID controller already meets the spe-
cification.

147

4. Lead/Lag Compensator

Anotherway to achieve an adequate response is to introduce a lead/lag
compensator. The lead value is useful to improve the stability and
speed of response, and the lag is to eliminate the error in steady state.
Their values are usually determined by techniques of root locus or
with the frequency response method. In the case of our example, we
arrive at the following compensator:

C(s) = K
Ts+ 1

αTs+ 1

With the attached script we calculate the response to a step and
check that is a quick response and that meets the specification.

#... continuation

K = 10
T = 0.55
alpha = 0.04

Define OL transfer function

Compensator = K*tf([T,1],
[alpha*T,1])

Pcomp_CL = Compensator*P/(1 + Compensator*P)

step response with lag compensator

fig = plt.figure (7)
t, Pcomp_CL_step = step_response (0.2* Pcomp_CL , time)
plt.plot(t,Pcomp_CL_step)
plt.ylabel(’Pcomp_CL_step ’)

All together

fig = plt.figure (8)
plt.plot(t,Pcomp_CL_step ,’--’, t, Ppid_CL_step ,

148

’-’, t, P2_step , ".")
plt.legend ([’with compensator ’, ’with PID’,
’CL alone’], loc="lower right")

Comparison of the threemethods: closed loop, PID, and
lead/lag.

The control module includes also many useful functions that
help in analyzing and stabilizing dynamic systems, like Bode, Nich-
ols, and Nyquist, among others.

Proposed exercises

• Stability Gain Range. Assume a system with the following
open loop transfer equation:

G(s) =
s+ 1

s(s+ 2)(s+ 4)2
=

s+ 1

s4 + 10s3 + 32s2 + 32s

Close the loop with a negative unit feedback and show that
the controlled system is stable in the range K=1.9 to k=200.

149

Suggestion: plot the root locus of the characteristic equation
1+kG=0, and right click in the vicinity of the roots curve to
obtain the desired information.

• DC - Motor Speed
Assume that a motor controlled by electric field has the fol-
lowing transfer function

P (s) =
Θ̇(s)

V (s)
=

1000

50s2 + 600s+ 1001

This exercise consists of designing a PID controller to ensure
a given angular velocity in a reference. For practical reas-
ons, the desired operating specifications for a step input of 1
rad/sec are the following:

– Settling time less than 2 sec,
– Overshoot less than 5%, and
– steady state error less than 1%.

Test different combinations of values. Try also (Kp=75,Ki=1,
Kd=1) and (Kp=100, Ki=200, Kd=10).

• PID tunningwithZiegler-Nichols. Apopular heuristicmethod
for tunning a PID controller is the one due to John Ziegler and
Nathaniel Nichols. Asume we have a system with the follow-
ing plant transfer function:

P (s) =
1

(s+ 1)3
=

1

s3 + 3s2 + 3s+ 1

1. Set Ki=Kd=0, and increase Kp until the loop starts to
oscillate (Ku). Take note of the period Pc.

2. Now setKp=0.5Ku,Kd = KpPc/8, andKi = 2Kp/Pc.

150

6.2 Methods in theTimeDomain - The State
Space

Although the frequency domain method is extremely useful and is
one of the main tools in control engineering, its applicability is lim-
ited when there is more than one input and output signal.

In contrast, time-domain techniques can easily be used for non-
linear systems that vary in time and involvemultiple variables. Their
representation is a fundamental basis for modern control theory. A
dynamic system can be described as

ẋ(t) = A · x(t) +B · u
y(t) = C · x(t) +D · u

where x(t) is the state vector, y(t) is the output vector, u is the
input or control vector, and A,B,C,D are matrices. To control a
state-space system, a reference r(t) is set, and the state variables are
fed back with the multiplier matrix uf = −Kc ·x(t). In this section
we present a method to determine theKc multiplier and the eventual
N precompensator with Python.

State vector x(t) with feedback and precompensator.

151

Dynamics of a Motor

1. Is the system stable?

We are going to assume that we have a cd engine controlled by ar-
mor, whose dynamics are governed by:

d

dt

[
θ̇
i

]
=

[
−10 1
−0.02 −2

] [
θ̇
i

]
+

[
0
2

]
V

y =
[
1 0

] [θ̇
i

]
where i is the armature current, θ̇ is the shaft angular velocity

(output), and V is the voltage source (input). Besides, let’s suppose
we want such a controller that for a 1-rad/sec step reference input,
the design criteria are the following:

• Settling time less than 2 seconds

• Overshoot less than 5%

• Steady-stage error less than 1%s

In the following lines analyze the system and determine the con-
troller that meets the specifications. This system is analyzed in the
following script:

Control motor -speed

from numpy import *
from control import *
import matplotlib.pyplot as plt

global A,Q

Setup the system

152

A = array ([[-10. , 1.],
[-0.02, -2.]])

B = array ([[0.],[2.]])
C = array ([1 ,0])
D = 0
motor_ss = ss(A, B, C, D)

Stability , Observability and controlability

print("Eigvals ", linalg.eigvals(A))

observability = obsv(A, C)
controlability1 = ctrb(A, B)

print(’Rank is ’, linalg.matrix_rank(
controlability1))

print(’Det of controlability matrix is ’, \
linalg.det(controlability1))

Eigvals [-9.99749922 -2.00250078]
Rank is 2
Det of controlability matrix is -4.0

Since the eigenvalues of the system matrix A are all real-negative,
we know that our system is stable. Besides, since the controllability
matrix is full rank (det is not zero) the system is controllable. Now,
we will determine Kc

2. Regulator Kc

placing the poles of closed loop controller

p1 = -5 + 1j;
p2 = -5 - 1j;

153

Kc = place(A, B, [p1, p2])

print(’Kc ’,Kc)

Kc [[12.99 -1.]]

sys_cl = ss(A-B*Kc, B, C, D)

Plot step response

T, sys_cl_step = step_response(sys_cl ,
arange(0, 3, 0.01) ,0)

plt.figure (10)
plt.plot(T, sys_cl_step)
plt.title(’motor_ss closed loop’)

print("Last step value is ",sys_cl_step [-1])

Last step value is 0.0769230826985

3. Precompensator N

We observe that the closed-loop system meets the specification, but
does not reach the target reference value 1 rad/s, so we add a pre-
compensator N of 1/0.0769 =13. By doing this, the step response
already meets all the requirements of the specification.

Nbar = 13
#
Step response

154

T, y_sys_cl_N = step_response(sys_cl*Nbar ,
arange(0, 3, 0.01) ,0)

Plot step response

T, yout = step_response(sys_cl*Nbar ,
arange(0, 3, 0.01), 0)

plt.figure (1); plt.plot(T,yout)
plt.title(’motor_ss closed loop’)

Step response with regulator (blue) and also a precompensator (or-
ange)

6.2.1 Dynamics of an Airplane

1. Is the system stable? Controllable?

Now we are going to analyze the dynamics of the Jet airliner from
example 6.1.1. The differential equations of motion are as follows:

155

d

dt

αq
θ

 =

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

αq
θ

+

 0.232
0.0203

0

 [δ]

y =
[
0 0 1

] αq
θ


Jet Airliner

from numpy import *
from control import *
from numpy.linalg import matrix_rank

import matplotlib.pyplot as plt

Define the open loop state space system

A = matrix ([[-0.313 , 56.7, 0],
[-0.0139, -0.426, 0],
[0, 56.7, 0]])

B = matrix ([[0.232] , [0.0203] , [0]])

C = matrix ([0, 0, 1])

D = matrix ([[0]])

SSplane_ol = ss(A, B, C, D)

let us look at the eigenvalues
print("Eigenvals of A ", linalg.eigvals(A))

Plot OL step response
T, YSS_ol_step = step_response (0.2* SSplane_ol ,

time , 0)

156

plt.figure (20)
plt.plot(T, YSS_ol_step)
plt.title(’YSS_OL_step ’)

Observability and controlability
observability = obsv(A,C)
controlability1 = ctrb(A,B)
print(’Controlability matrix is ’, controlability1)
print(’Rank is ’, linalg.matrix_rank(

controlability1))
print(’Det of contr matrix is ’, linalg.det(

controlability1))

Eigenvals of A
[0.0000+0.j -0.3695+0.88596713j -0.3695 -0.88596713j]

Controlability matrix is
[[0.232 1.078394 -1.01071374]
[0.0203 -0.0118726 -0.00993195]
[0. 1.15101 -0.67317642]]

Rank is 3
Det of contr matrix is -0.00437266444181

Since the controllability matrix is 3x3, the rank has to be 3. Be-
sides, we know that our system is controllable since the controllab-
ility matrix is full rank (the determinant is not zero).

2. Regulator Kc and Precompensator N

Calculate the state space optimized [K] and [N]

from numpy import *
from scipy import *
from scipy import integrate
from scipy.optimize import minimize

global over

157

Yref = 0.2

Define IAE - Integral of the absolute error (IAE)

def IAE_step(p):
global over
k1 , k2 , k3,nbar = p
K = array([k1, k2, k3])
sys_cl = ss(A-B*K, B, C, D)
T, YSS_cl_step = step_response(Yref*sys_cl*nbar ,

time ,0)
er = Yref - YSS_cl_step
IAE = integrate.cumtrapz(abs(er), time ,

initial = 0)
return IAE[-1]

Define constraint for overshoot < 1.05

def f1(p):
global over
k1 , k2 , k3,nbar = p
K = array([k1, k2, k3])
sys_cl = ss(A-B*K, B, C, D)
#
T, YSS_cl_step = step_response(Yref*sys_cl*nbar ,

time ,0)
over = max(YSS_cl_step/Yref)
return -over +1.05

Define constraint for settling time < 10 s

def f2(p):
k1 , k2 , k3, nbar = p
K = array([k1, k2, k3])
sys_cl = ss(A-B*K, B, C, D)
T, YSS_cl_step = step_response(Yref*sys_cl*nbar ,

time ,0)
#

158

slope10 = (YSS_cl_step [101]\
-YSS_cl_step [100]) /0.1

return -abs(slope10)+0.0001

Minimize the IAE with restricted overshoot

constraints = [{’type’:’ineq’, ’fun’:f1},
{’type’:’ineq’,’fun’:f2}]

results = minimize(IAE_step , (1, 1, 1, 1),
options = {’maxiter ’:200},
constraints=constraints)

Print results for optimized system

k1, k2, k3, nbar = results.x
K = array ([k1 , k2, k3])
print(’[K]=’,K, ’Nbar=’, nbar)

sys_cl = ss(A-B*K, B, C, D)
T, YSS_cl_step = step_response(Yref*sys_cl*nbar ,

time ,0)
plt.figure (14)
plt.plot(T, YSS_cl_step)
plt.title(’YSS_CL_step for IAE min’)

[K]= [-5.07465031e+00 7.91544473e+03 4.99106358e+02]
Nbar= 499.620642432

6.3 Lyapunov Stability

In the previous sections we have studied the stability of dynamic
systems with methods of frequency domain and time domain. These
methods, especially the latter, are widely used because they are easy

159

to apply and because they are quite intuitive. In this section we deal
with Lyapunov’s concept of stability, which approaches the prob-
lem with an ingenious approach because it allows us to study the
stability of a system of differential equations and estimate the differ-
ent regions in the phase plane, without the need to solve the system
in time. Although on the one hand, it is a less direct method, on
the other hand it allows the formal study of dynamic systems based
solely on their mathematical properties.

In a simplified way, we will say that an equilibrium point X0 of
the homogeneous differential equation Ẋ = f(X) is stable if, after
a disturbance of the initial condition, all the solutions to the equation
that begin in the vicinity of this point X0 remain close to it forever.
This definition of stability is named after Aleksandr Liapunov, who
published his doctoral thesis The General Problem of Stability of
Motion in 1892.

In his method, the challenge is to find a positive function arbit-
rarily defined as V (X), which meets the following requirements

V̇ =
V (X))

dt
= ∇V · f(X) ≤ 0.

The existence of this function implies that the system f(X) is
asymptotically stable in the sense of Lyapunov, and the region Ω
where this is fulfilled, is the basin of stability. In the end, this V (X)
function is related to the concept of potential energy of a system.

Lyapunov studies stability with two methods. The first one con-
sists of analyzing the signs of the eigenvalues of the Jacobian of
f(X), associating stability to the non-existence of real-positive ei-
genvalues. The secondmethod gravitates around the definition given
in the previous paragraph. For practical purposes, for linear systems,
it is a mater of solving the following equation:

ATP + PA = −Q

where A is the Jacobian of f(X), Q is an arbitrary positive

160

defined matrix, an P the unknown matrix to be determined. Finally,
V (x) = X∗PX .

In the following exercise, we study the stability of a systemwhose
Jacobian is given by

A =

[
−1 3
0 −1

]

Lyapunov stability

System matrix

A = array ([[-1, 3],
[0, -1]])

Trial matrix

Q = array ([[1, 0],
[0, 1]])

print("eigvals of A ",linalg.eigvals(A))

eigvals of A [-1. -1.]

According to the first method of Lyapunov, since all eigenvalues
of the Jacobian are real-negative, the system is asymptotically stable.
Now, let us investigate whether a region of stability exists.

... continuation.

from scipy.optimize import fsolve

find the P matrix in Lyapunov eqn

def lyapunov4(p):

161

p11 , p12 , p21 , p22 = p
P = matrix ([[p11 , p12], [p21 , p22]])
#
em = A*P + P*A.transpose () + Q
#
return em[0,0], em[0,1], em[1,0], em[1,1]

Obtain P matrix

p11 , p12 , p21 , p22 = fsolve(lyapunov4 ,(1,1,1,1))
P = matrix ([[p11 , p12], [p21 , p22]])
print("eigvals of P ", linalg.eigvals(P))

eigvals of P [2.97708173 0.27291827]

Both eigenvalues are positive, indicating that function V (X) is
positive defined, and its time derivative is negative. Therefore, the
region is a stability basin. Let’s see what this function looks like:

... continuation

Plot 3D Surface

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

fig = plt.figure (12)
ax = fig.gca(projection=’3d’)

Make grid

X1 = np.arange(-5, 5, 0.5)
X2 = np.arange(-10, 10, 0.5)
X1, X2 = meshgrid(X1, X2)
Z = p11*X1**2 + X1*X2*(p12+p21)+p22*X2**2

162

Plot surface

ax. plot_surface (X1 , X2 , Z ,
cmap =plt.cm.jet ,rstride =1,
cstride =1, linewidth =0)

plt. xlabel ("x1")
plt. ylabel ("x2")
plt.show()

Plot contour map

from matplotlib.pyplot import contourf , colorbar
fig = plt. figure (18)
contourf (X1 ,X2 ,Z)
colorbar ()
plt. xlabel ("x1")
plt. ylabel ("x2")
plt.show()

3D plot of V (X) Contour plot of V (X)

163

Think of all the beauty still left around you and be happy [...] I
don’t want to live in vain like most people. I want to be useful or
bring enjoyment to all people, even those I’ve never met. I want to
go on living even after my death! (Anne Frank, 1944)

164

Appendices

165

Appendix A

Python Primer

This part is dedicated to those readers who have little or no know-
ledge of Python as a programming language. Certainly, people with
a real interest in something build knowledge from concrete informa-
tion, that is, they apply an inductive method with easy-to-understand
examples that synthesize some teaching. In many occasions, it is
enough to introduce the key information or to give some clues about
where to start walking freely.

In the following lines, the most elementary of Python will be
presented: how to execute the code, perform basic calculations,
write and execute a script, and things like that. Of course, if the
reader already knows this language, he or she can skip this appendix
without hesitation.

The basics

Python is a programming language for high-level scripts with very
interesting features: simplicity, power and versatility. Guido van
Rossum, who created the language, insisted that the language must
favour the writing of legible and well-structured scripts.

It is a powerful and fashionable language, such as Java or C,
widely used in academic and business environments, but muchmore

167

intuitive and simple. It can be used for web development, GUI devel-
opment, scientific and numerical calculation, software development
and operating system administration.

Python is multiplatform: It can run on Windows, Linux, and
macOS. Commands and statements can be executed interactively in
consolemode, or they can be stored and executed in a *.py script file.
Console mode is very useful for testing instructions before writing
them into the script.

There is a lot of information (tutorials, manuals, user groups,
Internet examples, etc.). The code, utilities, manuals, libraries, and
everything related to Python are in www.python.org. Also, you will
find a very good description in
https://es.wikipedia.org/wiki/Python..

Running Python

Today, there is a number of suites that greatly facilitate writing and
running Python. ForMS-Windows, theAnaconda/Spyder IDE,which
is an integrated development environment for the Python language,
i highly recommended. The suite is developed and distributed under
the MIT license, and it is multi-platform and free.

Anaconda/Spyder integrates useful libraries (modules) such as
NumPy, SciPy, and Matplotlib, and it gives easy access to many
others like Tkinter, Pandas,...

Basically, it shows three windows: (1) edition, (2) variables and
files, and (3) execution console. Do you want to run your first script?

168

Your first script!

Assignment of variables

Variables can be any combination of characters and numbers, upper-
case, and lower case. Assigned values can be reals or floats, integers,
complex, character chains or strings, etc.

This line is a comment

"""
This block is a LONG COMMENT. It is
bounded between triple quote marks.
As many lines as you want.
"""

mass = 36.12 # a real number (float)

gravity = 9.81 # another real number

jas = 32 # an integer

alpha = 2 + 3j # a complex number

169

beta = complex (2,3) # alternate definition of
complex

My_name = "Wonder123_4dogs" # alphanumeric string

Assignment of lists, dictionaries, and tuples

Lists of numbers and alphanumeric strings can be created easily.

Lists

primes = [2, 3, 5, 7, 11, 13]

days = [’monday ’, ’tuesday ’, ’Friday ’]

Movies = [["Star Wars", 1977],
["Superman II", 1980],
["Gremlins", 1984],
["Schindler ’s List", 1993]]

Dictionaries

my_dictionary = {
’cat’: ’Frisky ’,
’dog’: ’Spot’,
’fish’: ’bubbles ’

}

Tuples - are lists with fixed content
They cannot be modified.

tup1 = (’physics ’, ’chemistry ’, 1997, 2000)

tup2 = (1, 2, 3, 4, 5)

170

Arrays are like vector and matrix structures, and they can be
operated in algebraic operations as numbers. Before using arrays,
you need to import numpy library.

Arrays

from numpy import array

vec = array ([1,4,6])

Column array
vec_col = array ([1,2,3]).reshape (-1,1)

Column array , other method
vec_col1 = array ([[1] ,[2] ,[3]])

Column array , more visual
vec_col2 = array ([[1],

[2],
[3]])

Matrix
mat = array ([[1,2,6], [3,4,9],[1,-2,7]])

Matrix , more visual
mat1 = array ([[1,2,6],

[3,4,9],
[1,-2,7]])

Calculations and operations

You can perform all sort of mathematical operations with data. They
can be reals, integers, text chains, etc.

from scipy import *
from numpy import *

171

force = mass * gravity

alpha = log((sin(pi*gravity))**2) -0.5

Ux3 = pi*sin(alpha)*e

Vec2 = vec * vec

Vec3 = vec2 * 2/3

Mat3 = mat1 * mat1

Au = linalg.eigvals(mat1)

your_name = "hello "+ My_name + "abc"

Extract data from arrays

It is a very powerful syntax. Note that array indexing starts in 0, not
in 1.

aa = vec[2] # extract 3d coordinate of array

bb = vec [0:2] # extract from 1st to 3rd coordinate

cc = vec[:] # extract all

Evec = mat1[:, 1] # extract 2nd column

last = vec[-1] # get the last in array

Functions

A very useful feature in Python is the possibility of defining func-
tions. This is a good strategy when you need to execute a series

172

of sentences that can be arranged in a callable structure. Besides,
they add clearness to the reading. Functions can have any number
of inputs and outputs as can be seen in the following examples.

Example with one input , one output

def conductivity(t):
a = 2150
b = 1.05
y = a + b/((t+273) -73.15)
return y

Example with two inputs , three outputs

def hipot(x,y):
z = (x**2 + y**2) **0.5
l = x + y + z
v = x*y*z*l
return z,l,v

Once they have been declared, they can be called downstream in
the script, in the same way as any other intrinsic function.

...
T = conductivity (2200) / 235.12

gamma = 6.12* hipot (2,3)
...

Everything that has been declared inside a function is local. To
become accessible you need to include it in the return sentence, or
declare it as global. However, any variable that has been declared
out of the function bounds is accessible from the inside.

173

Importing modules (libraries)

There are many libraries in Python that allow you to perform calcu-
lations in different areas. Some of the most useful are scipy, numpy,
and matplotlib, and they are included in the Anaconda package, so
you only need to import the library from the script.

In order to see which modules are installed, open a command
prompt and type "> pip list". If you need a module that is not in-
stalled, open a command prompt and type "> pip modulename".
Check
https://docs.python.org/3/py-modindex.html for a list of availablemod-
ules.

You can import an entire module or only a portion of it. You
will find different practices on the Internet. We can simplify up to
four modes of importing a molule:

1 - Not bad , it imports the entire module
from numpy import *

2 - Import only a specific function
from numpy import array

3 - Import the entire module
import numpy

4 - Import the module and rename it
import numpy as np # 4 - import and rename it

Calling a portion depends on how we imported the module

g = array ([1 ,2]) # First and second method
g = numpy.array ([1 ,2]) # Third method
g = np.array ([1 ,2]) # Fourth method

174

Loops

Scripts often need some internal flow controls. In this section we
see examples of while, for, and if/then/else loops. Note that all
sentences inside a loop are indented, four spaces per looping level

While loop

i = 0
while i < 5:

print(i) # print numbers from 0 to 4
i = i+1 # i +=1 is an alternative

For loop

for i in (0, 1, 2, 3, 4): # or in range (4)
print (i) # print numbers from 0 to 4

If / then / else loop

a = 1
b = 2

if a == b:
print(’They are identical ’)

else:
print ("They are different")

Plotting 2D arrays

Data

x1 = array ([2.1, 3.2, 6, 9.5, 10, 12])
y1 = array ([4.1, 6., 37, 70, 92, 100])

175

The graph

import matplotlib.pyplot as plt # plotting module

plt.close(’all’) # Let us close all previous plots
fig = plt.figure (1) # number the figure
plt.plot(x1 ,y1 ,’g-o’, x1, y1*2,’r--x’)

plt.title(’Plot of x1 versus y1’)
plt.legend ((’y1’,’2*y1’))
plt.xlabel(’x1, meters ’)
plt.ylabel(’y1, pounds ’)

Note that the type of connections between data points is con-
trolled with ’g-o’ (green/line/circle) and ’r–x’ (red/dash/x). There
are many combinations of colors, lines, and marks. See Python
manual for options.

176

Plotting 3D arrays

from numpy import array

Data

x1 = array ([2.1, 3.2, 6, 9.5, 10, 12])
y1 = array ([4.1, 6., 37, 70, 92, 100])
z1 = array ([6., 6., 9., 15., 14., 13.])

Now , we plot the 3D line

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

fig = plt.figure (2)
ax = plt.axes(projection=’3d’)
ax.plot(x1, y1 , z1, ’-o’)

plt.title(’Example of 3D line plot’)
plt.xlabel(’x1 values ’)
plt.ylabel(’y1 values ’)

177

Plotting a Contour plot

Let us prepare data

from numpy import arange , meshgrid
from scipy import exp

Generate high resolution x and y axis and grid
x= arange (-2,2,.05)
y= arange (-2,2,.05)
xx,yy = meshgrid(x,y)

Assign zz for each mesh point
zz = xx*exp(-xx**2 - yy**2)

Now you can plot
from matplotlib.pyplot import contourf , colorbar
fig = plt.figure (3)
contourf(xx,yy ,zz)
colorbar ()
plt.title(’Example of 3D contour plot’)
plt.xlabel(’xx values ’)
plt.ylabel(’yy values ’)

178

Plotting a 3D surface

import matplotlib.pyplot as plt
from matplotlib.pyplot import axes , contourf ,

colorbar
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure (4)
ax = plt.axes(projection=’3d’)
ax.plot_surface(xx, yy, zz , cmap=plt.cm.jet , rstride

=1, cstride=1, linewidth =0)

plt.title(’Example of 3D surface plot’)
plt.xlabel(’xx values ’)
plt.ylabel(’yy values ’)

179

Reading data from txt files

First, we read the entire file and store it in a list

Read the txt file

arch1 = open("Humanrights.txt","r")

Lines = arch1.readlines ()

arch1.close

Reading from a text file

Once the file has been read and stored in ’lines’ we can search
inside, extract values, and so on. Some interesting things to do are:

Count the number of lines
Lon = len(lines)

Read text in line 3, columns 0 to 38
A = lines [3][0:38]

Read float number in line 3, columns 3 to 15
AA = float(lines [12][3:15])

180

Find line with with a specific text
i=0 ; click=0
for i in range(Lon -1):

if click ==0 and ("right to live" in lines[i]):
ilin=i ; click=1

Extract lists of values X and Y
X,Y = [],[]
for i in range (12 ,19): # between lines 12 and 19

X.append(float(lines[i][1:5])) # columns 1
to 5
Y.append(float(lines[i][6:12])) # columns 6
to 12

In the previous example, you need to know in advance the line
numbers that include your data. But, if you already know that num-
bers are in fields 0 and 1, the last two lines are simplified:

X.append(float(lines[i].split()[0]))
Y.append(float(lines[i].split()[1]))

Read data from txt file between some headers

Occasionally, your data is inside a file between two headers. If you
were to grab the data manually, first you should search for the begin
header, descend to where data start actually, then copy all the data
you need, and paste in a list or array. With Python this can be auto-
matized greatly. You have to tell the code the same orders as you
would do manually.

1- Open , count , and read lines in file
myfile = ’c:\ pyfiles\filedata.txt’
num_lines = sum(1 for line in open(myfile))
with open(myfile) as f: lines = f.readlines ()

181

2- Find lines with begin and end headers
click=0
for i in range(num_lines -1):

if click ==0 and ("begin text" in lines[i]):
istring1 = i; click=1

if click ==1 and ("end text" in lines[i]):
istring2 = i ; click=2

3- Extract information in selected fields.
Sometimes you need to adjust lines
TIMEv =[]
VPWIv =[]
for linea in range(istring1 +3 , istring2 -2):

time= float(lines[linea].split()[0])
vol = float(lines[linea].split()[5])

TIMEv.append(time)
VPWIv.append(vol)

Read data from txt file with pure columns

If data is arranged in pure columns in a text file, the reading is very
simple. In the example below, data are stored in several columns.
We want to read data in columns 1,2, and 5.

arch2 = open("columns.txt", "r")
t,x,y = [],[],[]

for l in arch2:
row = l.split()
print(row)
t.append(float(row [0]))
x.append(float(row [1]))

182

y.append(float(row [5]))
arch2.close()

Read data from an Excel xls file

Something that is extremely useful when performing analysis is the
possibility to read data from an Ms-Excel spreadsheet.

For cleanliness, in the example below we read only one value,
the contents of cell 2D, but you can read complete ranges of cells
both rows and columns. Remember that the first cell in Python is
indexed as (0,0).

import xlrd

Open xls file and go to sheet 0
book = xlrd.open_workbook("data.xlsx")
first_sheet = book.sheet_by_index (0)

Extract value in cell 2D
valor = first_sheet.cell (1,3).value

Read a csv file or an Excel xlsx file with Pandas

The Pandas module allows you to read and manage files from a vari-
ety of sources, and it is a great tool for Data Science. Information
is stored in a dataframe object.

import pandas as pd

Read an Excel file

my_dataframe = pd.read_excel("Data_prod.xlsx",
"Sheet2")

183

Read a csv file

my_dataframe1 = pd.read_csv("Data_mining", sep=";",
header = 0)

Read a pdf file

You can read also a pdf (Portable Document Format). PDFs in-
corporate hidden information, which are formatting and pagination
characters, and embedded graphics. For this reason, strange charac-
ters can be expected, in addition to the text itself.

import PyPDF2

pdfFileObject = open("C:\trees.pdf", ’rb’)

pdfReader = PyPDF2.PdfFileReader(pdfFileObject)

count = pdfReader.numpages

Create a list with a string per page

list = []

for i in range(count):
a = pdfReader.getPage(i).extractText ()
list.append(a)

pdfFileObject.close()

Writing in text files

The Python sentence ’write’, is used in order to write strings of
alpha-numeric characters. If your data are float or integer numbers,

184

you are ok. However, if they are combinations of numbers and char-
acters, first you need to convert them into strings with ’str’ sentence.
The example below illustrates the different posibilities.

Note that, we can also add information to the end of a file by
specificyng the option ’append’ when opening the file.

185

arch1 = open("newfile1.txt", "w") # w - write , r -
read , a - append

arch1.write("This is the first line\n")
arch1.write("and this is the second line.\n")
arch1.write(’3.14\n’)
arch1.write(str(mat))
arch1.close()

Writing to Excel files

Writing in an Excel file can be done from cell to cell. In addition,
you can perform algebraic operations between cells and write the
result in an additional cell.

import xlwt

wb = xlwt.Workbook ()
ws = wb.add_sheet(’Sheet1 ’)

Row and column

ws.write(0,0,"Tree")
ws.write(0,1,"Leaves")
ws.write(0,2,"Type")

ws.write(1,0,"Oak")
ws.write(1,1,"big")
ws.write (1,2,2)

ws.write(2,0,"Olive")
ws.write(2,1,"small")
ws.write (2,2,6)

ws.write(3,2, xlwt.Formula("C2+C3"))
wb.save(’example.xls’)

186

Download / upload files from a remote server

In many cases it is necessary to import or download files from a
remote server, and also the reverse operation.

Retrive a file

from ftplib import FTP

Remote access

ftp = FTP(remote_server , user , password)

Navigate to desired directory

ftp.cwd(directory_name)

Get a directory listing

ftp.retrlines("LIST")

Remote file we want to retrieve

fich_remoto = "file"

Local name
fich_local = "fule.txt"

Retrieval

mylocalfile = open(fich_local , ’wb’)
ftp.retrbinary(’RETR ’ + fich_remoto ,

mylocalfile.write , 1024)
ftp.quit()
mylocalfile.close()

Upload a file

import ftplib

187

session = ftplib.FTP(’example.com’,
’username ’,’password ’)

file = open(’cup.mp4’,’rb’)
session.storbinary(’STOR ’+’cup.mp4’, file)
file.close ()
session.quit()

188

It is not the mountain we conquer, but ourselves (E. Hil-
lary)

189

190

Appendix B

Packages Contents

Raw Python has a limited capability for Engineering and Science.
However, there are great packages or libraries that extend the possib-
ilities to almost any technical field. Very often, almost every week,
the Python Users Community improves the components of these lib-
raries or gives birth to new tools. In addition, the concept of pro-
gramming objects and platforms for the development of operating
systems has not been discussed in this book, but it is a fascinating
area in continuous expansion.

Themost important libraries from the scientific computing view-
point are summarized in this Appendix.

Scipy

SciPy is an open source library of mathematical functions. The
power of Python is greatly expanded with this suite. Some of the
areas with dedicated routines are the following ones:

https://www.scipy.org/

• cluster - Clustering algorithms

191

• constants Physical and mathematical constants

• fftpack - Fast Fourier Transform routines

• terpolate - Interpolation and smoothing splines

• io - Input and Output

• linalg - Linear algebra

• maxentropy - Maximum entropy methods

• ndimage - N-dimensional image processing

• odr - Orthogonal distance regression

• optimize - Optimization and root-finding

• signal - Signal processing

• sparse - Sparse matrices and associated routines

• spatial - Spatial data structures and algorithms

• special - Special functions

• stats - Statistical distributions and functions

• weave - C/C++ integration

Numpy

NumPy is the fundamental package for scientific computing with
Python. Some of the most interesting features are listed next.

http://www.numpy.org/

192

• Array creation routines

• Array manipulation routines

• Binary operations

• String operations

• C-Types Foreign Function Interface

• Datetime Support Functions

• Data type routines

• Linear algebra

• Mathematical functions with automatic domain

• Discrete Fourier Transform

• Financial functions

• Input and output

• Linear algebra (numpy.linalg)

• Logic functions

• Truth value testing

• Array contents

• Logical operations

• Mathematical functions

• Matrix library (numpy.matlib)

• Polynomials

• Random sampling

• Statistics

193

Other Packages

• Matplotlib - It is a versatile library to generate graphs and
plots from the many different sources of data generated in Py-
thon.
https://matplotlib.org/

• Pandas - This library is an extension to NumPy in order to
handle data from a variety of sources, and to perform statist-
ical analysis.
http://pandas.pydata.org/

• Sympy - A library to expand the Python universe with sym-
bolic handling of algebraic operations.
http://www.sympy.org/en/index.html

• Mayavi - Easy and interactive visualization of 3D data.
https://pypi.org/project/mayavi/

• Random - Generate pseudo-random numbers.
https://github.com/python/cpython/tree/3.7/
Lib/random.py

• Openpyxl - Read and write Excel files.
https://openpyxl.readthedocs.io/en/stable/

• Seaborn - Visualize statistical data.
https://seaborn.pydata.org/

• Bokeh - Web visualizing
https://bokeh.pydata.org/

• Tkinter - Interactive screens.
https://docs.python.org/2/library/tkinter.html

194

• Py2exe - Python scripts compiler.
www.py2exe.org/

195

196

Appendix C

Some files for you!

In this website you will find some of the files used in this book, just
enter the url or scan the QR code.

https://drive.google.com/drive/folders/1b7AlMPTQMxQ6J8M
Qa_3xgXQLO6Fx9uR3?usp=sharing

Solve it with Python!

197

.

	Cover (1).pdf (p.1)
	B07ZQSHQ3K.pdf (p.2-208)
	Sin título

