
Introducing Azure
Kubernetes Service

A Practical Guide to
Container Orchestration
—
Steve Buchanan
Janaka Rangama
Ned Bellavance
Foreword by Brendan Burns,
Distinguished Engineer, Microsoft

Introducing Azure
Kubernetes Service

A Practical Guide to Container
Orchestration

Steve Buchanan
Janaka Rangama
Ned Bellavance
Foreword by Brendan Burns,
Distinguished Engineer, Microsoft

Introducing Azure Kubernetes Service: A Practical Guide to Container Orchestration

ISBN-13 (pbk): 978-1-4842-5518-6			 ISBN-13 (electronic): 978-1-4842-5519-3
https://doi.org/10.1007/978-1-4842-5519-3

Copyright © 2020 by Steve Buchanan, Janaka Rangama, Ned Bellavance

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484255186. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Steve Buchanan
Plymouth, MN, USA

Ned Bellavance
New Britain, PA, USA

Janaka Rangama
Victoria, VIC, Australia

https://doi.org/10.1007/978-1-4842-5519-3

Steve would like to dedicate this book to his wife Aya and kids
Malcolm, Sean, Isaac, and Jalen for the support on projects like this.

Janaka would like to dedicate this book to his mother Herath Menike,
his wife Aloka, and his daughter Omandi for being the three

musketeers in his life.

Ned would like to dedicate this book to his wife Andrea and
his kids James, Tess, and Genevieve for their support,

encouragement, and patience.

v

Chapter 1: Inside Docker Containers��� 1

The Value of Containers��� 1

What Is Docker��� 2

Containers vs. Virtual Machines��� 3

Images and Containers�� 6

Docker Components (Networking and Storage)��� 6

Networking��� 6

Storage��� 7

Installing Docker�� 8

Docker Command Cheat Sheet�� 10

Understanding the Dockerfile�� 12

Understanding Docker Build�� 13

Understanding Docker Compose�� 13

Running a Container�� 15

Orchestration Platforms��� 15

Summary��� 16

Table of Contents
About the Authors��� xi

Acknowledgments�� xiii

Foreword��xv

Introduction��xvii

vi

Chapter 2: Container Registries��� 17

Overview of Container Registries��� 17

Registries, Repositories, and Images��� 18

Private and Public Registries and Repositories�� 18

Basic Registry Operations�� 20

Image Tagging�� 25

Common Registries�� 26

Docker Hub and Docker Registry�� 26

Azure Container Registry�� 27

Azure Container Registry Expanded��� 28

Security�� 28

Permissions�� 29

Tasks and Automation�� 30

Azure Kubernetes Service Integration�� 33

Summary��� 33

Chapter 3: Inside Kubernetes�� 35

Kubernetes Interfaces�� 37

Docker Runtime��� 38

Master Nodes Overview��� 38

Worker Nodes Overview��� 40

Namespaces�� 40

Labels and Annotations�� 41

Pods��� 43

Replicasets�� 43

DaemonSets��� 44

Jobs��� 44

Services��� 44

Deployments�� 45

Table of Contents

vii

ConfigMaps�� 45

Secrets��� 47

Networking�� 47

Storage��� 48

Summary��� 50

Chapter 4: kubectl Overview��� 51

Introduction to kubectl��� 51

kubectl Basics�� 53

Common Operations with kubectl�� 58

Summary��� 62

Chapter 5: Deploying Azure Kubernetes Service��� 63

Azure Kubernetes Service Deployment Overview�� 63

Deployment Through the Azure Portal��� 63

Deployment Through Azure CLI�� 70

Deployment Through Azure Resource Manager Templates�� 72

Create an SSH Key Pair�� 72

Create a Service Principal�� 72

Using an Azure Resource Manager QuickStart Template��� 73

Deployment Through Terraform��� 76

Connecting to Your AKS Cluster��� 76

Summary��� 77

Chapter 6: Deploying and Using Rancher with Azure Kubernetes Service�������������� 79

What Is Rancher?��� 79

Why Use Rancher with Kubernetes?�� 80

How to Deploy Rancher on Azure��� 81

Authenticate Rancher with Azure Active Directory�� 90

Deploy AKS with Rancher��� 92

Summary��� 99

Table of Contents

viii

Chapter 7: Operating Azure Kubernetes Service��� 101

Cluster Operations in Azure Kubernetes Service��� 101

Manually Scaling AKS Cluster Nodes��� 102

Scaling Azure Kubernetes Service��� 110

Manually Scaling Pods or Nodes�� 110

Automatically Scaling Pods or Nodes��� 111

Storage Options for Azure Kubernetes Service�� 115

Volumes�� 116

Persistent Volumes��� 116

Storage Classes�� 117

Persistent Volume Claims��� 117

Networking in Azure Kubernetes Service�� 119

Kubenet vs. Azure Container Networking Interface (CNI)��� 119

Network Security Groups and Network Policies��� 122

Access and Identity in Azure Kubernetes Service�� 122

Kubernetes Service Accounts��� 122

Azure Active Directory Integration�� 123

Azure Role-Based Access Controls (RBACs)��� 123

Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings��� 123

Control Deployments with Azure Policy (Preview)�� 124

Security Concepts in Azure Kubernetes Service�� 128

Master Security�� 128

Node Security��� 128

Cluster Upgrades�� 130

Kubernetes Secrets�� 130

Monitoring Azure Kubernetes Service�� 131

Azure Monitor for Containers�� 131

Table of Contents

ix

Business Continuity and Disaster Recovery in Azure Kubernetes Service��������������������������������� 145

Thinking About SLAs and What You Need��� 146

Data Persistence and Replications��� 146

Protecting Against Faults�� 147

Summary��� 149

Chapter 8: Helm Charts for Azure Kubernetes Service�� 151

Helm Overview��� 151

Use Cases��� 152

Advantages over Kubectl�� 152

Key Components��� 153

Cloud Native Application Bundle��� 155

Installing Helm on AKS��� 155

Requirements��� 156

RBAC and Service Account��� 156

TLS Considerations��� 157

Helm init��� 159

Helm Charts��� 163

Chart Contents�� 163

Chart Repositories�� 170

Deployment Process��� 171

Creating a Helm Chart�� 173

Deploying a Helm Chart�� 178

Updating a Release��� 181

Removing a Release��� 184

CI/CD Integrations�� 185

Automating Deployments��� 185

Testing Helm Charts��� 186

Unattended Helm Chart Installs�� 187

Integrating Helm with Azure DevOps�� 187

Summary��� 189

Table of Contents

x

Chapter 9: CI/CD with Azure Kubernetes Service�� 191

CI/CD Overview�� 192

Continuous Integration��� 193

Shared Repository�� 194

Build Pipeline�� 195

Continuous Delivery/Deployment��� 201

Release Pipeline��� 202

Testing��� 212

Unit Testing��� 213

Integration Testing�� 213

System Testing��� 213

Acceptance Testing�� 214

Dev Spaces��� 214

CI/CD Best Practices with AKS��� 216

Cluster Operators��� 216

Application Developers��� 218

Summary��� 219

Index�� 221

Table of Contents

xi

About the Authors

Steve Buchanan is an enterprise cloud architect and Midwest Containers Services

Lead on the Cloud Transformation/DevOps team with Avanade, the Microsoft arm of

Accenture. He is an eight-time Microsoft MVP and the author of six technical books. He

has presented at tech events, including Midwest Management Summit (MMS), Microsoft

Ignite, BITCon, Experts Live Europe, OSCON, and user groups. He is active in the

technical community and enjoys blogging about his adventures in the world of IT on his

blog at buchatech.com.

Janaka Rangama is a Microsoft Azure MVP and a Microsoft Certified Trainer. He is

originally from Sri Lanka, “the Pearl of the Indian Ocean,” and now lives in Australia,

“the Land Down Under.” Currently a Senior Principal Product Technologist at Dell EMC

Azure Stack Product Engineering Team, he is one of the leading hybrid cloud experts in

the APAC region. He is a well-known speaker in many international conferences and an

expert in both Microsoft and OSS technologies. He co-leads the Melbourne Azure Nights

user group and is one of the founding members of the Sri Lanka IT PRO Forum.

Ned Bellavance is a Microsoft Azure MVP and Founder of Ned in the Cloud LLC. As a

one-man tech juggernaut, he develops video courses, runs the Day Two Cloud Podcast

for Packet Pushers, and creates original content for technology vendors. He is passionate

about learning new technologies and sharing that knowledge with others, whether that

is through courses, speaking, blogging, or authoring books. He has presented at tech

events, including Microsoft Ignite, Cloud Expo NYC, and the Midwest Management

Summit (MMS). You can find his musings on the IT industry at his web site at

nedinthecloud.com.

xiii

Acknowledgments

Steve would like to thank the co-authors Ned and Janaka for taking on this project, the

tech reviewers Mike Pfeiffer and Keiko Harada, Brendan Burns for writing the foreword,

and the Microsoft teams who do all the cool container things in Azure!

Janaka would like to thank the co-authors Ned and Steve for encouraging him to

become part of this book, Keiko Harada (Senior Program Manager, Microsoft Azure)

and Nirmal Thewarathanthri (Cloud Solutions Architect, Microsoft Australia) for their

continuous guidance and support through his Kubernetes journey, and the Microsoft

Azure Product group for their amazing work to augment humanity with the intelligent

(cloud + edge).

Ned would like to thank Nigel Poulton for getting him tangled up in the Kubernetes

mess, Steve Buchanan for encouraging him to be part of the book, and Justin Luk for

sharing his team’s knowledge and insight.

xv

Foreword

Kubernetes has revolutionized the way that people approach building and operating

distributed systems. Over the last five years, Kubernetes has gone from a small open

source project to a ubiquitous part of a broad cloud-native landscape. Kubernetes

enables application developers to de-compose their monolithic applications into

smaller “two-pizza” teams which radically accelerates autonomy and agility in software

development. Additionally Kubernetes includes capabilities for online, self-healing

management of applications that also makes distributed systems on Kubernetes more

reliable too.

Kubernetes is a critical component of modern application development and digital

transformation for many organizations. But it is also a distributed system unto itself. This

means that the care and feeding of a Kubernetes cluster is a complicated endeavor. This

is made even more complex by the rapid pace of change in the Kubernetes ecosystem,

with new versions of Kubernetes released every three to four months and patch releases

with fixes and security updates pushed even more quickly.

Because of the complexity of managing your own Kubernetes cluster, consuming it

as a managed cloud service becomes a very attractive option. In Microsoft Azure, the

Azure Kubernetes Service (AKS) is a managed service for “Kubernetes as a Service.” With

AKS, users can harness the power of the Kubernetes API while having the confidence

that Azure is ensuring that their clusters are healthy and stable. When updates come,

AKS performs extensive testing and vetting of the release to ensure that a user of AKS can

upgrade to the latest fixes ensuring that it will work properly for their application. AKS

also deeply integrates into the Azure ecosystem and core technologies like Azure Active

Directory (AAD). For most people, Kubernetes is only a part of their overall Azure usage,

and this integration means that the rest of their digital estate can seamlessly integrate

with the Azure ecosystem.

xvi

Whether you are just getting started or a Kubernetes expert, Introducing Azure

Kubernetes Service is a great resource for ensuring that you get the best out of managed

Kubernetes on Azure. I’m grateful to Steve, Janaka, and Ned for providing our users with

such great reference material. In Azure, we work tirelessly to ensure that we meet our

customers where they are and set them up for greater success.

This book shares those goals and will help you achieve your goals with Kubernetes

and Azure. Enjoy!

Brendan Burns
Distinguished Engineer, Microsoft

Foreword

xvii

Introduction

This book is a practical guide to Microsoft’s Azure Kubernetes Service (AKS), a container

orchestration platform. The goal of this book is to take the reader from 0 to 100 deploying

and running a Kubernetes cluster on Microsoft Azure cloud. For anyone embarking

on this book, it is ideal to have experience in the IT industry in system administration,

DevOps, Azure cloud, or development. Some Docker experience would also be helpful

but not required.

This practical guide on AKS scales back on theory content, giving just enough to

grasp important concepts while focusing on practical straight to the point knowledge

that can be used to go spin up and start running your own AKS.

The book will take the reader on a journey inside Docker containers, container

registries, Kubernetes architecture and components, and critical Kubectl commands,

along with the deployment and operation of Azure Kubernetes Service including topics

such as using Rancher for management, security, networking, storage, monitoring,

backup, scaling, identity, package management with HELM, and finally Kubernetes in

Continuous Integration and Continuous Delivery/Deployment (CI/CD).

1
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_1

CHAPTER 1

Inside Docker Containers
Welcome to Introducing Azure Kubernetes Service: A Practical Guide to Container

Orchestration. Before diving into Azure Kubernetes Service, it is important to understand

the building blocks and road leading up to Kubernetes and finally Azure Kubernetes

Service.

This chapter is not a deep dive into Docker and building applications with Docker.

Docker is a large topic and can fill an entire book. The goal of this chapter is to give both

those who are not familiar with Docker enough knowledge to get started and those

that are familiar with Docker a refresher as must have knowledge as a prerequisite to

Kubernetes.

In this first chapter, we are going to dive inside Docker containers. By the end of

this chapter, you will have a greater understanding of Docker; images; containers and

their value; the underlying Docker components; how to install Docker, run Docker

commands, and build Docker images; and Docker Compose and finally an introduction

into orchestration platforms.

�The Value of Containers
Containerization is not new. In fact, container technology has been around in the

Linux world since the 1980s. Containers however only become widely popular with

tremendous growth in part due to the launch of the Docker container format in 2013.

Containers are an abstraction of the application layer in an isolated user-space

instance. Containers share the operating system (OS) kernel storage and networking

from the host they run on. Containers can be thought of like the core components

needed for an application running as a process. Containers allow the packaging of an

application and its dependencies running in an instance. Containers allow software

engineers to develop their applications and replicate across environments such as dev,

stage, and prod in a consistent manner. Containers can move through Continuous

2

Integration and Continuous Deployment pipelines in a manner that keeps the OS,

dependencies, and application unchanged, providing ultimate flexibility and agility.

The value of containers from a technical standpoint can be summed under

the following: greater density of applications on the same hardware than any other

technologies, optimization for developers resulting in improved developer productivity

and pipelines, operational simplicity, and cloud and infrastructure agnostic for true

platform independence and ultimate portability.

The value of containers to the business are lower TCO, increased speed and time to

market, higher customer satisfaction, predictability and dependability, increased agility,

and improved operational velocity.

�What Is Docker
There are many container formats available; however, Docker has become the de facto

standard for both Windows and Linux containers. Docker is an open source container

format. Docker can be used to build, run, and store container images and containers.

Per Docker, 3.5 million + applications have been containerized. And according to the

RightScale 2018 State of the Cloud report, Docker adoption in 2018 rose from 35% to

49%. Let’s dive into the Docker components:

•	 Docker Engine is the core of the Docker solution. It is a Client-server

application with the following components:

•	 Docker Client is the way users interact with Docker. Docker

Client comes with a command line interface (CLI) in which users

execute Docker commands. Docker Client can run on the same

computer as a Docker daemon or a client computer and connect

remotely to a Docker daemon.

•	 Docker host runs the Docker daemon. The Docker daemon is a

background process that manages Docker images, containers,

networks, and storage volumes. The Daemon listens for

commands on a REST API or receives commands via the CLI. It

also can communicate with other Docker daemons to manage

Docker services.

Chapter 1 Inside Docker Containers

3

•	 Docker registry is a repository service where you can host and

download container images. A Docker registry can be local,

public, or private. Docker has a public registry service named

Docker Hub. Most cloud providers offer private Docker registries.

•	 Docker Objects

•	 Docker images are read-only templates used to build Docker

containers. These contain the instructions for creating a Docker

container. Images include the application code, runtime, system

libraries, system tools, and settings.

•	 Docker containers are simply the images running at runtime.

Docker containers run on the Docker Engine.

•	 Docker services allow container scaling across multiple Docker

daemons. These multiple daemons act together as a swarm with

multiple managers and workers.

Docker is available in two editions:

•	 Community Edition (CE)

•	 CE is a good option for developers, small teams, and anyone

starting out with containers.

•	 Enterprise Edition (EE)

•	 EE is good for enterprise teams and production needs.

It is important to know that Kubernetes supports multiple container runtimes;

however, overall Docker is the most common image and container format in the tech

space today. It is worth investing some time into diving deeper into learning Docker.

�Containers vs. Virtual Machines
In IT for a while now, virtual machines (VMs) have pretty much been the standard when

there is a need to stand up a server to run an application. Virtual machines require a

hypervisor to run on. There are many hypervisors but the popular ones are VMWare

and Hyper-V. The hypervisor is installed on top of a physical machine, and then virtual

machines are deployed on top of the hypervisors. This allowed the IT industry to pack

many virtual machines on physical servers increasing the density and getting more ROI

Chapter 1 Inside Docker Containers

4

out of physical hardware. Virtual machines emulate physical servers including storage,

networking, and an operating system. They are more portable and faster than physical

servers but are still full servers requiring boot up time and the same level of management

as physical servers.

Containers take the density and optimizing to the next level. Containers are still a

form of virtualization but only virtualize what is core to running an application. With

containers, there is no need for a hypervisor as they run directly on the kernel. You can

pack many more containers on a physical server. Containers are more lightweight and

boot up faster, and the management is streamlined.

With containers some of the underlying components are shared across all the

containers running on a host such as storage and networking. Figure 1-1 gives a visual

representation of the differences in the architecture between containers and virtual

machines.

Figure 1-1.  Containers vs. virtual machines

Chapter 1 Inside Docker Containers

5

As you can see from the image, containers are isolated at an OS-level process,

whereas virtual machines are isolated at the hardware abstraction layer. The growth of

containers does not mean that virtual machines will go away anytime soon. There are

reasons you would use containers over virtual machines due to the benefits. Let’s look at

some of the reasons you would use containers:

Speed: Docker containers are extremely fast compared to

virtual machines. It can take a container anywhere from a few

milliseconds to a few seconds to boot up, while it will take a virtual

machine at least a few minutes to boot up.

Portability: Containers can be moved and shared across multiple

teams, development pipelines, cloud, and infrastructure with the

application behaving the same wherever the container runs. This

reduces human errors and potential environmental dependency

errors.

Microservices: Containers are a good way to decouple and run

an applications component to support a microservices-based

architecture.

Now let’s look at some reasons you may still want to use virtual

machines over containers.

Stateful: If you have applications that need state, virtual machines

might be a better fit because containers were designed to run

stateless applications.

Co-located: If an applications component must all be installed

together on the same server, a virtual machine will be a

better option as a focus of containers is often to break out an

application’s services across multiple containers.

With the increase in containers, the footprint of virtual machines will decrease.

However, virtual machines are not going to disappear as there are still use cases for them

and many workloads today are running just fine on virtual machines.

Chapter 1 Inside Docker Containers

6

�Images and Containers
Earlier in this chapter, the differences between container images and containers were

briefly covered. Let’s dive in a little deeper as to what images and containers are. In a

nutshell, a container is simply a running instance of an image.

Images are read only. Containers can be modified with changes, but those changes

are lost when the container stops. Changes to a container can be retained if they are

committed to a new image. Images are a representation of the code, runtime, filesystem,

libraries, and settings. An image is a set of commands in a file named Dockerfile that

defines the environment inside a container. Listing 1-1 is an example of a simple image

Dockerfile that runs on an Ubuntu Linux OS and executes a command that will output

Hello World!.

Listing 1-1.  Dockerfile content

FROM ubuntu:latest

CMD echo Hello World!

After a Dockerfile is built, the docker build command is used to build the actual

image. Built docker images are stored locally by default and can be run as a container

from there or pushed to a Docker registry. Docker images get a unique ID by default

but can be named and tagged. That wraps up this summary of Docker images and

containers. Later in this chapter, we will explore the Dockerfile in more detail, using

docker build and running a container.

�Docker Components (Networking and Storage)
�Networking
In your container journey, you will get to a point where you need to expose it to the

outside world or you may need to connect several containers together either on the same

host or across other hosts. Docker containers have networking options available to fit all

scenarios. There is a layer of networking in container technology for the containers to

communicate with other containers, the host machine, and the outside world. Docker

Chapter 1 Inside Docker Containers

7

supports a few different types of networks. Let’s look at each type of network to get a

better understanding of how networking works in containers:

•	 Bridge is the default network for containers. When Docker starts, a

bridge network is created, and the containers will be connected to

this network unless otherwise specified. With this network type, port

mapping is needed for the outside world to access the container. This

network type is for containers running on the same Docker daemon

host. If containers need to communicate with containers running on

other daemon hosts, routing needs to be done at the OS level, or the

overlay network type should be used.

•	 Host uses the host’s networking directly. Containers will be accessed

using an IP address of the host. This networking type only works

on Linux hosts. This is not supported on Docker Desktop. This

networking type is also used with swarm.

•	 Overlay also known as ingress connects Docker daemons together for

multi-host network communication. The overlay type runs several

layers of network abstraction on top of a physical network. An overlay

network is a single layer 2 broadcast domain among containers that

are hosted on multiple Docker hosts.

•	 Macvlan lets you assign MAC addresses directly to containers. When

Macvlan is used, containers appear as if they are physically on the

network. When this is used, containers can be assigned a public

IP address that is accessible from the outside. This type of network

connects the container to the host network interfaces. This type

uses layer 2 segmentation, and there is no need for network address

translation (NAT) or port mapping.

�Storage
Containers can store changes made to them. Any container changes will be saved to

a writeable layer. This writeable layer requires a storage driver to store these changes.

Now by default, containers have nonpersistent storage. What nonpersistent means

is that when a container is restarted, the storage is destroyed. In order to retain data

indefinitely when a container is restarted or turned off, persistent storage is needed.

Chapter 1 Inside Docker Containers

8

With Docker containers, we have four options for persistent storage. The persistent

storage options are

•	 Data volumes sit on the host filesystem outside of the container.

These allow you to create persistent storage and manage the volumes

such as list them, list the container they are associated with, and

rename them.

•	 Data volume container is when a container is dedicated for hosting

a volume for other containers. You can mount the volume from

this container in other containers. For example, you may have an

application container to host the application and a volume container

that hosts the volume for the application container.

•	 Directory mounts are when you mount the host’s local directory into

a container.

•	 Storage plug-ins work with underlying storage devices and can

connect to external storage solutions. This can map to external

storage solutions including cloud providers Azure, AWS, and GCP;

storage arrays like EMC, HPE 3PAR, and NetApp; and storage

appliances.

�Installing Docker
When you start to work with Docker, you will need to install Docker Desktop on your

local machine. Docker Desktop is typically used for local development purposes. Docker

Desktop includes Docker Engine, Docker Client, Docker Compose, Docker Machine,

and Kitematic. Kitematic is something we have not discussed yet. Kitematic is a GUI

for working with Docker images and containers. Kitematic also automates the Docker

installation and setup process.

Docker is cross-platform, so it can be installed on Linux, Mac, or Windows. In this

section, we are going to cover the steps for installing Docker on Windows. Let’s dive right

into the steps for installing Docker on Windows.

Chapter 1 Inside Docker Containers

9

Requirements:

•	 Cluster and node management

•	 Windows 10, 64 bit: Pro, Enterprise, or Education (build 15063

or later)

•	 Virtualization enabled in the BIOS

•	 CPU SLAT-capable feature

•	 Microsoft Hyper-V

•	 At least 4 GB of RAM

Install steps:

	 1.	 Download Docker Desktop Installer.exe from https://

download.docker.com/win/stable/Docker%20for%20Windows%20

Installer.exe.

	 2.	 Double-click Docker Desktop Installer.exe to run the installer.

	 3.	 A wizard will pop up. Follow the steps in the wizard including

accept the license, authorize the installer, and proceed with the

install.

	 4.	 Click Finish to complete the Docker Desktop install.

	 5.	 Docker will not start automatically. Docker will need to be started.

To do this, use Windows search to search for Docker. Click Docker

Desktop for Windows.

Note  If Hyper-V is not enabled, the Docker Desktop installer will automatically
enable it and will reboot the computer if needed.

Chapter 1 Inside Docker Containers

https://download.docker.com/win/stable/Docker for Windows Installer.exe
https://download.docker.com/win/stable/Docker for Windows Installer.exe
https://download.docker.com/win/stable/Docker for Windows Installer.exe

10

You can set Docker Desktop to automatically start upon login into Windows as

shown in Figure 1-2.

After Docker is installed, you should see the Docker icon in your task bar tray to

reflect that Docker is installed and running. Let’s dive more into utilizing Docker in the

next sections.

�Docker Command Cheat Sheet
Interacting with Docker is done via command line. Docker was written in Go. Docker

stores its configuration files in a directory called .docker. Let’s break down the docker

command structure. All docker commands start with docker, and then there is a space

and then the command, another space, and then the management category or option.

The docker management command syntax can be seen in Figure 1-3.

Figure 1-2.  Start Docker Desktop on login setting

Chapter 1 Inside Docker Containers

11

Docker commands that refer directly to a container are slightly different. Commands

start with docker, and then there is a space and then the command, another space, and

then the container name. The docker command syntax referring to a specific container

can be seen in Figure 1-4.

Here is a list of critical Docker CLI commands you should know as you get started

with docker:

•	 docker info: This will show system-wide information for Docker.

•	 docker version: This will list your current Docker version.

•	 docker [COMMAND] help: This will list the help info about

a command.

•	 docker images: This will list the images on your local system.

•	 docker run: This will create and run a container based on an image.

•	 docker start: This will start an existing container.

•	 docker stop: This will stop a running container.

•	 docker build: Used to build an image from a Dockerfile.

Figure 1-3.  Docker management command structure

Figure 1-4.  Docker command structure

Chapter 1 Inside Docker Containers

12

•	 docker login: This will log you into a Docker registry.

•	 docker logout: This will log you out of a Docker registry.

•	 docker pull: This will pull an image from a container registry.

•	 docker ps: This will list running containers.

•	 docker inspect: This will show all info on a container including

IP addresses.

•	 docker rm: This will delete an image.

•	 docker logs: This will print the docker logs.

�Understanding the Dockerfile
A Dockerfile consists of a set of instructions for building an image. A Dockerfile should

be named “Dockerfile” with no extension. When an image is built from a Dockerfile,

all files that need to be included in the image should be within the same folder as the

Dockerfile. Here is an example of a Dockerfile:

FROM python:alpine3.7

COPY . /app

WORKDIR /app

RUN pip install -r requirements.txt

EXPOSE 5000

CMD python ./index.py

Let’s break down the commands from our example Dockerfile to gain a better

understanding of the Dockerfile structure:

•	 FROM: This defines base image used for the container.

•	 COPY: This will copy files from a source to the container.

•	 WORKDIR: This sets the path where the command, which is defined

with CMD, will be executed.

•	 RUN: This defines a set of commands to run within the container

when it is first created.

Chapter 1 Inside Docker Containers

13

•	 EXPOSE: This will expose a port to the outside world to enable

networking access to the container.

•	 CMD: This will execute a specific command within the container

when it runs.

The docker build command is used as a way to automate the build of an image from

the Dockerfile. In the next section, we will take a closer look at docker build.

�Understanding Docker Build
As stated in the previous section, docker build is the command that runs the process to

create an image from a Dockerfile. This should be run from within the same directory

that contains the Dockerfile. Here is an example of the docker build syntax:

docker build --tag pythonapp:dev

The --tag and: dev will tag the image with a name and dev. This makes it easier to

identify the image. Tags are a way to document information about a container image’s

variant and/or version. Think of tags as adding an alias to container images. After the

image build process runs, you can run docker images to list the images and verify your

name image was created.

�Understanding Docker Compose
Dockerfile is a single image. You can create a single image to run a single container using

Dockerfile. If you need to create a multi-container application where the containers are

connected, then you can use a tool named Docker Compose. We will not dive deep into

Docker Compose as this is an advanced topic and out of the scope this chapter. We will

however give an overview of Docker Compose.

Docker Compose files are in YAML. Within the Docker Compose file, you reference

images; therefore, you still need to build the container images in Dockerfiles. With

Docker Compose, you can run a single command to launch all of the containers that

make up your application in one shot. Here is an example of a multi-container-based

Chapter 1 Inside Docker Containers

14

WordPress application in a docker-compose.yml file made up of a WordPress site and a

backend MySQL database server:

version: '1.0'

services:

 db:

 image: mysql:latest

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: secret3241

 MYSQL_DATABASE: wp

 MYSQL_USER: wpadmin

 MYSQL_PASSWORD: secret3241

 wordpress:

 depends_on:

 - db

 image: wordpress:latest

 ports:

 - "8000:80"

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wpadmin

 WORDPRESS_DB_PASSWORD: secret3241

 WORDPRESS_DB_NAME: wp

volumes:

 db_data: {}

Chapter 1 Inside Docker Containers

15

Docker Compose basically works in the following three steps:

	 1.	 Define the needed container images with Dockerfiles.

	 2.	 Define the services that make up your multi-container application

within a docker-compose.yml file.

	 3.	 Run the docker-compose up command within the directory

that has the docker-compose.yml file to start and run the multi-

container application.

�Running a Container
You have learned how to create a container image. You learned about a Dockerfile and

then how to create an image using docker build and how to list the image. The next step

is to create and run the container from the image. You can run the following syntax to

create and build the container:

docker run pythonapp:dev

After the container has been created for the first time, you cannot stop and start the

container using docker stop pythonapp:dev and docker start pythonapp:dev.

�Orchestration Platforms
Throughout this chapter, so far you have learned all about containers, Docker, and the

many facets of containerization. It is fairly straightforward to build container images

and run containers while developing software. Running hundreds or even thousands of

containerized applications in production, enterprise ready, and at scale requires a different

set of tools and skills not discussed yet. When you need to run containers in production

is where container orchestration platforms enter the picture. Container orchestration is

all about managing the life cycle of containers. Production container environments are

dynamic and require heavy automation. Container orchestration handles

•	 Cluster and node management

•	 Container provisioning and deployment

•	 Container configuration and scheduling

Chapter 1 Inside Docker Containers

16

•	 Container availability and redundancy

•	 Autoscaling of cluster nodes and containers

•	 Container load balancing, traffic routing, external access, and

service discovery

•	 Resource management and movement of containers

•	 Container and host health and performance monitoring

•	 Container security and access management

Orchestration systems need to cover a lot of ground to handle the life cycle

management of containers. There are many container orchestration platforms out

there in the market. The top container orchestration platforms are Docker Swarm,

Docker Enterprise, Mesosphere, OpenShift, and Kubernetes. Kubernetes is an open

source orchestration platform that was developed at Google. Kubernetes has quickly

become the de facto standard for container orchestration. The top three cloud providers

Microsoft, Amazon, and Google all offer a managed Kubernetes service on their cloud

platform. In the rest of this book, we are going to dive deep into Kubernetes and

specifically Azure Kubernetes Service.

Note D ocker Compose is often referred to as an orchestration tool; however,
it is also important to note that Docker Compose is for a dedicated single node
compared to orchestration platforms that run many nodes.

�Summary
That brings us to a close of this first chapter. In this chapter, we took a journey into the

world of Docker containers as this information is foundational to have along the journey

into Kubernetes and eventual Azure Kubernetes Service. Within this first chapter, we

specifically covered the value of containers, containers compared to virtual machines,

all about Docker itself including how to install it, core commands needed for Docker,

and all about creating and running container images. Finally, in this chapter, we touched

lightly on container orchestration platforms.

Chapter 1 Inside Docker Containers

17
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_2

CHAPTER 2

Container Registries
Kubernetes is used to deploy applications and services that are based on containers.

In many ways, container-based applications are what drove the need for container

orchestration technologies like Kubernetes. As mentioned in the previous chapter,

containers are instantiated from a read-only copy called an image. Images are often

stored in a construct called a container registry.

In this chapter, we will discuss the various options for the storage, management,

and distribution of images. We will investigate the different types of container registries

and further expand on the Azure Container Registry (ACR) in particular. By the end of

this chapter, you will be able to perform basic operations on a container registry and

understand concepts like image tagging, security, and permissions.

Note  For the sake of simplicity, we are going to be focusing on images that use
the Open Container Initiative (OCI) image spec and containerd runtime. There are
other container image formats (ACI) and container runtimes (rkt), but the essential
concepts remain the same.

�Overview of Container Registries
When you are deploying an application to a Kubernetes cluster, that application is going

to be made up of one or more containers. Kubernetes needs to be able to access the

images to instantiate those containers on each node in the Kubernetes cluster. You could

create an image on your workstation and manually copy it to each node and then repeat

the process each time you update the image. But that would be incredibly inefficient,

error prone, and unscalable. A more elegant solution would be a shared location that all

nodes can access and download images from that location into their local image cache.

That is the basic principle behind a container registry.

18

�Registries, Repositories, and Images
Before we dive into an examination of container registries, it is useful to understand

the differences between a registry, a repository, and an image. As we mentioned in

Chapter 1, “Inside Docker Containers,” container images are the read-only construct

from which a container is instantiated. Each image has a name and optional tags

associated with it. Let’s examine the example of an image pulled from Docker Hub

shown in Listing 2-1.

Listing 2-1.  Image listing of nginx container image

REPOSITORY TAG IMAGE ID

Nginx latest 53f3fd8007f7

The image comes from the nginx repository. It has been tagged as latest. And it has

a unique image ID. There are other images stored in the nginx repository, including an

image tagged as alpine and another tagged as perl. After pulling both of those images,

the updated output of docker image ls is shown in Listing 2-2.

Listing 2-2.  Image listing of nginx container images

REPOSITORY TAG IMAGE ID

nginx alpine dd025cdfe837

nginx perl 4d95835f5c94

nginx latest 53f3fd8007f7

Each of the images comes from the same repository, but they all have different tags

and image IDs. They are unique images. We will dive into tagging and how it is related to

images further on in the chapter.

In summary, a container repository contains one or more images. A container

registry contains one or more repositories. The images in a particular repository may or

may not be related to each other.

�Private and Public Registries and Repositories
When it comes to choosing a container registry to host your images, the first question

is often whether to create a private or public registry. A public registry is hosted on the

Internet and is accessible to anyone. It may contain a mix of both public and private

Chapter 2 Container Registries

19

repositories within the registry. A private registry is hosted on an internal network

and only accessible to systems and users on that internal network. The repositories in

a private registry can also hold a mix of public and private repositories, but in this case

the scope of a public repository is necessarily more restricted since it is only available

to resources on the internal network. While most public registries are run as a managed

service, private registries are usually managed by the internal IT team of the organization

hosting the registry.

The images in a public repository are accessible to anyone who can access the

registry’s network location. It does not mean that anyone can add, update, or remove

images from the repository, but they can download images without any type of

authentication. The images in a private repository require that anyone wishing to

access the repository is authenticated and granted the relevant permissions to

download images.

Public registries and repositories are most often used to distribute open source

projects and software that are meant to be shared with the world. For instance, the

Microsoft repository on Docker Hub is public and is used to publish base images for

applications like Microsoft/dotnet and Microsoft/powershell. Obviously, Microsoft is

hoping that you will download these images and use them to build something amazing.

Some common public registries are

•	 Docker Hub

•	 Google Container Registry

•	 Azure Container Registry

•	 Amazon Elastic Container Registry

Private registries and private repositories are used when images are meant to be kept

within a company or organization, and access to those images should be controlled. In

addition, private registries are often hosted on an internal network that is not accessible

by the wider Internet. You may have images that have proprietary software installed that

is considered important intellectual property. For instance, let’s say your company is

developing software for genomics and deploying it using containers. The images would

contain extremely valuable algorithms that should not be available to competitors.

Therefore, you would choose to host your images on a private repository and possibly on

a private registry as well.

Chapter 2 Container Registries

20

Some common private registries are

•	 Docker Trusted Registry

•	 JFrog Artifactory

•	 Harbor

•	 GitLab

�Basic Registry Operations
All container registries support the same basic operations. These operations include

•	 Logging into the registry to interact with image repositories

•	 Searching image repositories for a specific image

•	 Pulling an image down to the local filesystem

•	 Pushing an image up to an image repository hosted on the registry

For the following examples, we are going to show operations being performed

against Docker Hub. You can create a Docker Hub account for free and follow along with

the examples.

�Login

Logging into a container registry can be accomplished by using the Docker CLI. The

following command will start the login process.

docker login [SERVER]

The SERVER value can refer to whichever registry you intend to log into. The

command also accepts supplying a username and password. If no SERVER value is

specified, the Docker CLI will assume that you are logging into Docker Hub. Listing 2-3

shows an example of logging into Docker Hub using the account iaks.

Chapter 2 Container Registries

21

Listing 2-3.  Logging into Docker Hub

$ docker login

Login with your Docker ID to push and pull images from Docker Hub. If you

don't have a Docker ID, head over to https://hub.docker.com to create one.

Username: iaks

Password: ************

Login Succeeded

�Search

The Docker Hub registry has over 100,000 container images available to the public.

Private registries will obviously have far fewer images, but there is a need to be able

to search through available images to find the one that meets your needs. The docker

search command provides this functionality. The syntax of the command is

docker search [OPTIONS] TERM

Let’s say we are looking for an nginx image to run and host a web server. The search

command to do so is shown in Listing 2-4.

Listing 2-4.  Searching Docker Hub for nginx images

$ docker search nginx

NAME DESCRIPTION STARS OFFICIAL

nginx Official build of Nginx. 11498 [OK]

.

.

[output truncated]

By default, the Docker CLI will search the Docker Hub registry for images. Other

registries can be searched by including their address in the search TERM. You will need

to be authenticated with the registry you are attempting to search prior to executing the

search command.

Chapter 2 Container Registries

22

�Pull

Pulling an image from a container registry is the act of downloading the hosted image

to a local file repository. The location where the files are stored is determined by which

storage drive is being used by the Docker daemon. When an image is pulled, Docker first

checks the layers included in the image to determine if any of the layers have already

been downloaded. Any layers that are not already cached locally will be downloaded

from the source repository. Listing 2-5 shows an example of pulling the alpine/terragrunt

image with one layer already existing on the local filesystem.

Listing 2-5.  Pulling the alpine/terragrunt image from Docker Hub

$ docker pull alpine/terragrunt

Using default tag: latest

latest: Pulling from alpine/terragrunt

e7c96db7181b: Already exists

622c94c90cb1: Pull complete

[output truncated]

68ced3bc2ce4: Pull complete

Digest: sha256:4363c7ea68ae6b648d803753884afed380f106eb23e902641ae919b7b02f

e95a

Status: Downloaded newer image for alpine/terragrunt:latest

docker.io/alpine/terragrunt:latest

In the case of a public registry, anyone can pull an image whether they are

authenticated or not. With private registries, the user must first be authenticated and

have permissions to pull a given image.

An image can be pulled by issuing the docker pull command. The syntax is as follows:

docker pull [OPTIONS] NAME[:TAG | @DIGEST]

The name refers to the name of the image. Docker will assume that the source

repository is on Docker Hub, unless it has been configured otherwise, or the name

includes a different registry. For instance, an image can be pulled from Microsoft’s public

container registry by running

docker pull mcr.microsoft.com/azuredocs/aci-helloworld

Chapter 2 Container Registries

23

If no TAG is specified, then docker will grab the image in the repository tagged latest.

There is nothing special about the latest tag, and it does not mean that the image pulled

will in fact be the latest or most up-to-date image. Generally, it is always best to specify a

tag along with the name of the image to be pulled.

�Push

Pushing is the act of taking a local image and copying it to a target repository. The

repository can be on a public or private registry. In either case, both types of registries

will require authentication and proper authorization before allowing the image to be

copied.

A new image can be created from a Dockerfile using the docker build command

and then pushed to the target registry. It is also possible to use an existing image that was

pulled from a separate repository and push it to a different repository. Listing 2-6 shows

an example Dockerfile that could be used to build a new image.

Listing 2-6.  Dockerfile content

FROM nginx:stable-alpine

COPY IAKS /usr/share/nginx/html

The FROM command will pull the nginx image tagged as stable-alpine from the nginx

repository. The COPY command will copy the contents of the IAKS directory to the path /

usr/share/nginx/html. We can create this new image by running the following command

from the directory containing the Dockerfile:

docker build --tag iaks/nginx:v1.

By naming it iaks/nginx:v1, we are indicating that the target repository for this

image will be the iaks Docker Hub account and the name of the image is nginx. We have

tagged it as v1, which for the moment is an arbitrary tag. By running docker image ls,

we can see, in Listing 2-7, that we now have a new image on the local filesystem.

Listing 2-7.  Listing the image created by docker build

$ docker image ls

REPOSITORY TAG IMAGE ID

iaks/nginx v1 bbbdb4e15efd

Chapter 2 Container Registries

24

Finally, we can push the image from our local filesystem to our Docker Hub

repository by running the docker push command. The syntax for the command is

docker push [OPTIONS] NAME[:TAG]

In this case, we would run the command shown in Listing 2-8 to push the image.

Listing 2-8.  Pushing the image to Docker Hub

$ docker push iaks/nginx:v1

The push refers to repository [docker.io/iaks/nginx]

7dd2de43c03e: Pushed

2bdf88b2699d: Mounted from library/nginx

f1b5933fe4b5: Mounted from library/nginx

v1: digest: sha256:00caf...f4997cea1 size: 94

Viewing our Docker Hub account through a browser, we can see in Figure 2-1 that

the image has been successfully pushed to our repository.

Figure 2-1.  Successful push of an image to Docker Hub

It would now be possible to pull this image and run it on any container host with

Internet access. That includes worker nodes in an Azure Kubernetes Service cluster.

Chapter 2 Container Registries

25

�Image Tagging
Image tags are additional metadata associated with a specific image. As we saw in the

section on registries, repositories, and images, an image has a repository, tag, and ID. In

Listing 2-9, three nginx images have been pulled, all with different tags and image IDs.

Listing 2-9.  Listing of different nginx images

REPOSITORY TAG IMAGE ID

nginx alpine dd025cdfe837

nginx perl 4d95835f5c94

nginx latest 53f3fd8007f7

Multiple tags can be associated with a single image through the use of the docker

image tag command. Adding another tag to an image does not create a new image and

does not take up more space on your local filesystem. Docker simply assigns this new

metadata information to the existing image ID. The docker image tag command has

the following syntax:

docker image tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TAG]

For instance, we can take the existing nginx:alpine image and tag it with v1.

docker image tag nginx:alpine nginx:v1

Upon viewing the local image listing in Listing 2-10, both images are present, and

both have the same image ID.

Listing 2-10.  Logging into Docker Hub

$ docker image ls

REPOSITORY TAG IMAGE ID

nginx alpine dd025cdfe837

nginx v1 dd025cdfe837

nginx perl 4d95835f5c94

nginx latest 53f3fd8007f7

We can also tag the image for a totally different repository and then push the image

to that repository.

docker image tag nginx:alpine iaks/custom

Chapter 2 Container Registries

26

The three entries shown in Listing 2-11 will all have the same image ID.

Listing 2-11.  Logging into Docker Hub

$ docker image ls

REPOSITORY TAG IMAGE ID

nginx alpine dd025cdfe837

nginx v1 dd025cdfe837

iaks/custom latest dd025cdfe837

Tags are simply metadata associated with an image. That includes the mysterious latest

tag. If no tag is provided for an image – as we did in the preceding command – Docker will

automatically give it the latest tag. When an image is being pulled or used to instantiate a

container, Docker will likewise assume the latest tag if no other tag is provided. The latest

tag does not mean that the image being pulled is the most up-to-date or even the proper

image to pull. It is simply the image that was tagged with the latest label, whether that

was done on purpose or through omission. For that reason, it is always recommended to

specify the tag of an image when pulling an image or running a container.

�Common Registries
�Docker Hub and Docker Registry
The most common registry that users get started with is Docker Hub, shown in

Figure 2-2. Hosted at docker.io, Docker Hub provides a free home for new users to

get started with their first repository. Unless otherwise configured, the Docker CLI

assumes that Docker Hub is the registry being used. Many software companies choose

to host their publicly available containers on Docker Hub, as do several open source

projects. Docker Hub supports both public and private repositories, although the private

repositories are not free.

Figure 2-2.  Docker Hub web site

Chapter 2 Container Registries

27

Docker Hub is based on the open source project Docker Registry. Docker Registry

can also be used to deploy a private registry in your datacenter. Microsoft uses the

Docker Registry project as a basis for their deployment of the Azure Container Registry,

as do several other public and private registry implementations.

�Azure Container Registry
The Azure Container Registry (ACR) is a Software-as-a-Service offering from Microsoft

hosted on Azure. ACR is based on the Docker Registry open source project, but it has

additional functionality which we will explore later in the chapter. Repositories created

on ACR are private in nature and always require some type of authentication for access.

ACR has a few different SKUs available – Basic, Standard, and Premium – with the higher

tiers offering more robust storage, performance, and replication options.

Images that are stored on ACR can be in the following formats:

•	 Docker Image Manifest V2, Schema 1

•	 Docker Image Manifest V2, Schema 2

•	 Open Container Image Format Specification

The ACR service can also host Helm charts, which we will explore more in Chapter 8,

“Helm Charts for Azure Kubernetes Service.”

In order to create a registry on ACR, you need to have an Azure subscription.

A new ACR registry can be created through the Azure Portal, Azure PowerShell, or the

Azure CLI. The examples in the remainder of this section and the next section will use

the Azure CLI.

The commands in Listing 2-12 will create a new ACR registry using the Azure CLI.

Listing 2-12.  Creating a new ACR registry

Create an Azure Container Registry

Login to Azure and select subscription

az login

az account set --subscription "AZURE_SUBSCRIPTION_NAME"

Create a resource group and Container Registry

az group create --name RESOURCE_GROUP_NAME --location "LOCATION_NAME"

az acr create --resource-group RESOURCE_GROUP_NAME --name ACR_NAME --sku Basic

Chapter 2 Container Registries

28

The ACR_NAME must be globally unique. It will be appended to azurecr.io to create

the publicly addressed fqdn for your registry.

In the next section, we will explore some components of the Azure Container

Registry in more depth, including how it integrates with the Azure Kubernetes Service.

�Azure Container Registry Expanded
While the Azure Container Registry (ACR) service is based on the Docker Registry open

source project, it has a number of additional enhancements that are worth making note

of. ACR makes use of Azure Active Directory (Azure AD)-powered role-based access

control (RBAC) to control access to repositories hosted on the service. ACR has been

extended beyond a basic registry to support the capability of running simple or

multi-step tasks as part of the service. Since ACR is running in Azure, it has some custom

integrations with other Azure services including the Azure Kubernetes Service.

�Security
There are three different ways to authenticate with the ACR:

Azure AD individual login: An individual logging into ACR uses

their Azure Active Directory account to authenticate against

ACR. They are issued a token that is good for one hour before they

are required to authenticate again.

Azure AD service principal: Similar to an individual login, however,

the service principal can be used for headless authentication and is

most commonly used with automation platforms.

Admin account: The admin account is an account not linked to

Azure Active Directory. The admin account has full permissions

to perform any action on the ACR registry. By default, the admin

account is disabled, and it should only be used for testing and

emergency scenarios.

In order to log into the ACR we created in the previous section, we can use the

following command:

az acr login --name ACR_NAME

Chapter 2 Container Registries

29

Since we are already logged into Azure, ACR takes our existing credentials and

generates a token for use with ACR that is good for one hour. After that time period, the

token expires, and the az acr login command must be run again. Service principal

logins use a username and password when logging in and therefore do not have a token

issued based on cached credentials. Service principal logins are the preferred login type

when using ACR with an automated process.

Whether using the individual login or service principal option, permissions are

assigned through well-defined roles.

�Permissions
As with many of the services within Microsoft Azure, permissions within Azure

Container Registry are assigned using role-based access control (RBAC). At the time of

writing, there are seven roles defined by the service. Table 2-1 outlines the roles and their

permissions.

Table 2-1.  RBAC for Azure Container Registry

Permission/Role Owner Contributor Reader AcrPush AcrPull ArcDelete AcrImageSigner

Access Resource

Manager

✓ ✓ ✓

Create/delete

registry

✓ ✓

Push image ✓ ✓ ✓

Pull image ✓ ✓ ✓ ✓ ✓

Delete image data ✓ ✓ ✓

Change policies ✓ ✓

Sign images ✓

The assignment of these roles should follow the principle of least privilege, where

the person or service is assigned the least number of permissions required to perform

a particular task. The AcrPush, AcrPull, AcrDelete, and AcrImageSigner roles are

especially designed for services and automation processes that perform specific tasks

over their lifetime. For instance, let’s say we are using an Azure Kubernetes Service to

Chapter 2 Container Registries

30

deploy containers that are stored in ACR. Assinging the service principal used by the

AKS cluster the AcrPull role will grant it sufficient privileges to access the container

images needed, without also granting access to Resource Manager, a permission which

the Reader role includes. Likewise, any CI/CD pipelines that build new container images

could be granted the AcrPush permission to push the new images up to ACR.

�Tasks and Automation
In addition to the storage of container images, the Azure Container Registry service also

includes the ability to run simple and multi-step tasks and emit webhooks when certain

actions are completed. The tasks and webhooks provide the ability to leverage ACR for

common tasks related to image management and assist with integration into a CI/CD

pipeline.

Tasks within ACR can be broken into simple tasks, which can be initiated using the

az acr build or az acr task command, and multi-step tasks that are defined by a

YAML file and submitted via the az acr run command.

�Simple Tasks

Simple tasks are used to build a newer version of a container image. The building of

the image can be triggered manually by using the az acr build command. Doing so

off-loads the burden of a container build from your local workstation to ACR, as well as

placing the resulting image in ACR without having to push it from your local filesystem.

Creating a new image from a local Dockerfile would be performed using the following

command:

az acr build --registry iaks --image web:v2.

The command will build an image tagged v2 in the image repository web on the

container registry iaks. In addition to off-loading the build process from your local

workstation, the same command could be used by a service principal in a CI/CD

pipeline to automate new container image builds without using the resources on one of

the pipeline agent machines.

Instead of running a task manually, it can be triggered by a git commit or the update

of a base image. While the idea of updating based on a git commit makes intuitive sense,

the concept of updating an image when a base image is updated bears some explaining.

Chapter 2 Container Registries

31

ACR understands the image dependencies of images stored in its repositories. For

instance, your shiny new web container image might be based on the alpine:stable image

from Docker Hub. When that base image is updated, you may want your web image to be

updated as well to include whatever was changed in the base image. ACR supports the

creation of a build task that will be triggered if it detects that the base image for an image

in the repository has been updated. The command in that case would look something

what is in Listing 2-13.

Listing 2-13.  Creating an ACR task to update an image based on base

image updates

az acr task create \

 --registry iaks \

 --name task-web-service \

 --image web:v2 \

 --arg REGISTRY_NAME=iaks.azurecr.io \

 --context https://dev.azure.com/iaks/_git/iaks.git \

 --file Dockerfile-web \

 --branch master \

 --git-access-token $TOKEN

Within the definition of the Dockerfile-web file is a referral to the base image of

alpine:stable. ACR in turn creates a hook to listen for changes to that base image and will

start a build task if a change is detected.

�Multi-step Tasks

Mutli-step tasks in ACR build on the existing simple tasks while adding more

capabilities. The actions in a multi-step task include

•	 Build: Builds one or more container images

•	 Push: Pushes images to a private or public container registry

•	 Cmd: Runs a container using similar arguments as docker run

The actions performed as part of a multi-step task are defined in a YAML-formatted

file that is submitted to ACR using the command in Listing 2-14.

Chapter 2 Container Registries

32

Listing 2-14.  Creating a multi-step task in ACR

az acr run \

 --registry iaks \

 -f multi-step-task.yml \

 https://dev.azure.com/iaks/iaks.git

The command instructs ACR to run a task on the registry iaks using the file multi-

step-task.yml found on the referenced git repository.

Multi-step tasks can be used in a workflow to build and test a set of images that make

up a container-based application and then update a Helm chart if the tests defined in

the task pass. While this is not a replacement for a fully feature CI/CD pipeline, it does

provide a way to define workflows in code and have them execute when a new commit is

made to a git repository.

�Webhooks

When an action is completed in Azure Container Registry, it can notify other services via

a webhook. This can assist with sending simple notifications or firing off an automation

workflow. The supported actions for triggering a webhook are

•	 image push

•	 image delete

•	 image quarantine

•	 Helm chart push

•	 Helm chart delete

Triggering a webhook sends a POST request to the Service URI defined in the

webhook configuration. The POST request includes JavaScript Object Notation

(JSON)-formatted information that is dependent on the action that triggered the

webhook. Custom headers can also be defined in the webhook configuration to be

sent with each POST request. These can be leveraged if the target Service URI requires

authentication or some other custom data not included in the POST payload.

Creating a webhook that contacts the Postman echo service for an image push would

look like Listing 2-15.

Chapter 2 Container Registries

33

Listing 2-15.  Logging into Docker Hub

az acr webhook create \

 --registry iaks \

 --name postmanhook \

 --actions push \

 --uri https://postman-echo.com/post

The Postman echo service will simply reply back with the contents of the initial

POST request, which makes it useful for understanding the information being sent by

the webhook.

�Azure Kubernetes Service Integration
The Azure Kubernetes Service (AKS) uses both container images and Helm charts to

deploy applications to the nodes in an AKS cluster. Conveniently, Azure Container

Registry is capable of storing both of those resources and making them available to AKS

for consumption. In order to access the resources stored on an ACR registry, AKS can use

Azure Active Directory authentication.

When a new AKS cluster is created, it is assigned a service principal in Azure Active

Directory. The service principal can be assigned roles to registries hosted in the Azure

Container Registry, including the AcrPull role. With this role, the AKS cluster will be able

to pull container images and Helm charts that are hosted in that container registry.

Using ACR in tandem with AKS allows you to keep your images hosted in a private

registry and use the native authentication service Azure AD to provision a proper level

of access for the AKS cluster. You can also make use of ACR Tasks to automate the build,

test, and release of container-based applications to your AKS cluster.

�Summary
Container registries are a critical component of deploying applications on Kubernetes.

Without an image repository, the images would have to be manually copied to every

node in the cluster. That’s not exactly an ideal situation. Before building and operating

applications in Azure Kubernetes Service, it is important to have a proper grounding in

container registries and how they are operated.

Chapter 2 Container Registries

34

In this chapter, you learned about the different types of container registries – private

and public. We discussed the commands and tools used to interact with an image

repository hosted on a container registry, including actions like push, pull, and tagging.

Then, we examined the features of the Azure Container Registry service and how it

integrates with the Azure Kubernetes Service.

Chapter 2 Container Registries

35
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_3

CHAPTER 3

Inside Kubernetes
The first part to a container journey is selecting a container runtime, learning the ins and

outs of it, and containerizing applications. The next level is being prepared to run the

containers in production at an enterprise level. For running containers in production,

you will want an orchestration platform.

The containerization of applications often includes the decoupling of them from

monolithic into microservices-based architecture with the components split across many

containers. This results in hundreds or even thousands of containers that need to be

managed with many of them sharing the same life cycle needing to be managed together.

An orchestration platform is a solution for managing the life cycles of containers.

Orchestration platforms control and automate containers in dynamic enterprise

environments consisting of the following functionality:

•	 Provisioning nodes

•	 Instantiating and scheduling containers

•	 Container availability and redundancy

•	 Distribution of containers evenly across nodes

•	 Allocation of resources across containers

•	 Scaling of cluster nodes as needed

•	 Host and container health and performance monitoring

•	 Scaling up or removing containers as needed

•	 Moving containers from host to host as needed if there is a shortage

of resources on a host, or if a host goes down

•	 Load balancing of service discovery across containers

36

•	 External access to services running in containers

•	 Application configuration management in relation to the containers

that run the application

There are many orchestration platforms on the market. Enter Kubernetes, the most

popular container orchestration platform. Kubernetes was created by Google and was

designed to work in the environment of your choice such as on-premises on bare metal

servers, virtual servers, and public clouds.

Kubernetes has become the gold standard of container orchestration platforms; in

fact, the top three cloud providers AWS, GCP, and Azure all offer a managed Kubernetes

service as well. Kubernetes is a tightly integrated platform that includes hosting of the

Kubernetes components, Docker runtime or Moby runtime, as well as provisioning the

host nodes and orchestration of the containers.

Key features of Kubernetes include

•	 Deployment and replication of containers

•	 Scale in and out of containers

•	 Load balancing of containers

•	 Rolling upgrades of nodes in the cluster

•	 Resiliency and automated rescheduling of failed containers

•	 External exposure of container network ports to the outside world

The Kubernetes architecture can be seen as complex. The architecture does have

many moving parts, and it is important to understand them. Figure 3-1 is a visual

representation of the Kubernetes architecture.

Chapter 3 Inside Kubernetes

37

As a precursor to working with Azure Kubernetes Service (AKS), it is ideal to have a

solid understanding of Kubernetes. In the following sections within this chapter, we will

dive deeper into the various components of Kubernetes.

�Kubernetes Interfaces
There are multiple ways to interface with Kubernetes. Kubernetes has a REST API, and

you can interact with the API directly using REST calls. There are some third-party tools

out there that utilize this method such as Rancher bringing Kubernetes management

into the Rancher interface.

The second most common way to interface with Kubernetes is through the kubectl

command line interface. You can use Kubectl to pretty much do anything in Kubernetes.

Some of the tasks you can perform with Kubectl are deployment of pods, inspect and

management of cluster resources, work with nodes, view logs, and upgrade the cluster.

In Chapter 4, “kubectl Overview,” you will take a deeper dive into Kubectl.

In addition to the Kubectl command line interface, there is a web-based user

interface for Kubernetes known as the Kubernetes dashboard. This dashboard can be

used for basic management operations of Kubernetes. You can manage resources such

as pods, deployments, jobs, nodes, volumes, replica sets, and more. It also can be used to

Figure 3-1.  Kubernetes architecture

Chapter 3 Inside Kubernetes

38

get state and health information on your Kubernetes resources. Figure 3-2 is a screenshot

of the Kubernetes dashboard.

�Docker Runtime
A runtime is needed to run containers. Kubernetes supports both Docker and RKT

runtimes. As covered in Chapter 1, “Inside Docker Containers,” of this book, the most

widely adopted runtime in the container space is Docker. In Kubernetes, the most

common runtime you will find running is Docker. With Docker, you can run Linux- or

Windows-based containers. When running Docker in Kubernetes, you can also run

Linux or Windows containers.

�Master Nodes Overview
In Kubernetes there is a master node that controls and coordinates the cluster. The

master node is essentially responsible for managing the cluster. This master node

coordinates any activity that happens in the cluster such as provisioning nodes,

node-to-node communication, serving as interface for working with Kubernetes,

Figure 3-2.  Kubernetes dashboard

Chapter 3 Inside Kubernetes

39

scheduling containers on the nodes, maintaining the desired state of the containers and

applications working through rolling updates, and more. Here are the components that

make up the master node:

•	 Etcd is a simple, distributed, consistent key-value store. Etcd stores

data about the Kubernetes cluster. It stores data such as nodes, pods,

scheduled jobs, services, API objects, namespaces, and another

configuration about the cluster. In order to stay secure, it can only be

accessed via the API server component.

•	 Apiserver is the central entry point for all REST requests to the

Kubernetes cluster. The REST requests can be used to control

the cluster and perform actions on components such as pods,

deployments, replica sets, services, and more. The Apiserver is also

used to communicate with etcd.

•	 Kube-controller-manager watches the shared state of the

Kubernetes cluster and makes changes as needed to ensure the

cluster meets desired state. An example is ensuring that the correct

number of pods are currently running, and the service that points

to the pods is running and tracking the pods if they move. The

controller manager gets the shared state from the Apiserver. The

controller manager also performs controller processes routine tasks

in the background.

•	 Cloud-controller-manager is exactly like the Kube-controller-

manager except the cloud-controller-manager handles controller

processes that depend on an underlying cloud provider. For example,

if Kubernetes is running on Azure and is utilizing Azure load

balancers, the cloud-controller-manager can ensure the needed load

balancers are running.

•	 Kube-scheduler is the component that handles all the scheduling

(placement) of pods (containers) on various nodes in the Kubernetes

cluster. The scheduler has information about resources available in

each node in the cluster so it can place pods properly on nodes that

have available capacity.

Chapter 3 Inside Kubernetes

40

�Worker Nodes Overview
Worker nodes are where the pods and applications run. Worker nodes are virtual

machines. In Kubernetes you can have either Linux or Windows worker nodes. The Linux

nodes would run containers and applications such as Java, Apache Tomcat, and other

Linux-based workloads. A Windows node would run containers and applications such

as IIS, .Net, ASP.net, and more. Worker nodes contain all the necessary services such as

runtime, networking, scheduling, maintaining container state, and communications to

the master node. Here are the components that make up the worker node:

•	 Docker is the runtime engine that runs the containers. The Docker

runtime is on each node in a Kubernetes cluster.

•	 Kubelet is a service that handles communication with the master

node and etcd. It gets information about new and existing services.

Kubelet ensures that the desired containers are healthy and running.

•	 kube-proxy acts as a network proxy and load balancer to expose

services to the external world on the worker node. It handles the

network routing for TCP and UDP connections.

•	 kubectl is the Kubernetes command line interface that interacts with

the Apiserver pushing to the master node.

�Namespaces
Namespaces are used as a way to logically segment and organize resources in a

Kubernetes cluster between multiple teams. Resources are deployed into a namespace

in a Kubernetes cluster. These resources are grouped together for the ability to filter and

control them as a single unit.

Namespaces are used to avoid collisions. For example, when teams scale to having

thousands of pods, it is possible that deployments could have the same name. In this

scenario, you could have multiple namespaces with the deployments with overlapping

names existing in different namespaces to avoid collision and for ease of management,

organization, and security such as access policies (RBAC). Sometimes namespaces are

used for life cycle environments such as development, staging, and production. With

namespaces for each of these environments, the same resources could exist in each at the

same time because they will be logically separated and will not conflict with each other.

Chapter 3 Inside Kubernetes

41

In every Kubernetes cluster, there is a “default” namespace. When deploying

resources, if you do not specify a namespace, it will deploy into the default namespace.

With Kubernetes, two other namespaces are also deployed by default. These namespaces

are kube-system (used for storing Kubernetes components) and kube-public (used for

storing public resources globally readable to all users with or without authentication). It

is easy to create a custom namespace in a YAML file or by using the Kubectl command.

Here is the syntax to do this:

kubectl create namespace namespace1

Here is an example YAML file:

kind: Namespace

apiVersion: v1

metadata:

 name: namespace1 labels:

 name: namespace1

Syntax to apply the YAML file to create the namespace:

kubectl apply -f namespace1.yaml

You can a Kubectl command to list current namespaces:

kubectl get namespace

To deplete a namespace run:

kubectl delete namespace namespace1

�Labels and Annotations
In Kubernetes when you need to organize, identify, and simply store data about objects,

labels and annotations are the go-to features to help with this. If you have spent any

time working with a public cloud such as Microsoft Azure, you will be familiar with this

need as you may have used tags to help organize your cloud infrastructure. Like public

clouds, Kubernetes has a similar set of features in labels and annotations. Labels and

annotations take the whole tagging concept to another level. Let’s explore labels and

annotations.

Chapter 3 Inside Kubernetes

42

Labels are key-value pairs. The keys must be unique. The keys also must have 63 or

fewer characters, and the values must be 253 or fewer characters. Labels are designed to

be used to organize, query, and identify a set of objects. Labels can be attached to objects

when created or at any time:

"metadata": {

 "labels": {

 "appname" : "webappX",

 "environment" : "dev"

 }

}

Annotations are also key-value pairs. Annotations can have more characters

compared to labels. Data in annotations is arbitrary, can be structured or unstructured,

and is able to include characters not supported in labels. It’s important to note that

annotations can’t be queried. Annotations can be a good way to place metadata to

objects in Kubernetes. External systems and tools can consume annotation data. Here

are some examples of annotation data: environment such as dev, stage, prod, git branch,

pull request number, image information like timestamp or date, version info, app owner,

department, and so on. Here is an example of what an annotation looks like:

"metadata": {

 "annotations": {

 "gitbranch": "brancha",

 "department": "marketing"

 }

}

To sum this up, use labels when you will need to query objects in a Kubernetes

cluster and use annotations when you need to store general information about objects

in Kubernetes but don’t need to query it but may also need this information in external

systems. Also, labels should be used for identifying objects, and annotations should be

used when non-identifying data is needed on objects.

Chapter 3 Inside Kubernetes

43

�Pods
A pod is one or more containers within Kubernetes that share resources and are coupled

together. It represents a unit of deployment. A pod encapsulates an application including

the container/s, storage, network IP, and configuration of how to run the containers.

Think of pods as a wrapper around containers. Pods are typically deployed into one of two

patterns: the first pattern being a pod that runs a single container and the second pattern

being a pod that runs multiple containers that need to be tightly coupled together.

The single-container pod is the more common use case in Kubernetes. A multi-container

pod is an advanced scenario used when multiple containers make up a single

application, share the same life cycle, and need to share resources such as storage

and networking. When multiple containers belong to the same pod, they are a single

managed entity. When the pod is scheduled, the containers will be placed on the same

node, and if the pod needs to be moved to another node, all encompassed containers are

moved. Here is an example of what a pod looks like in code:

apiVersion: v1

kind: Pod

metadata:

 name: app1-pod

 labels:

 app: app1

spec:

 containers:

 - name: app1-container

 image: nginx

�Replicasets
A replicaset defines a set of replica pods. A replica set can be used to specify how many

identical pods are needed. For example, if you want four copies of a pod to run, you can

specify this as in a replicaset. Kubernetes will ensure the four pod replicas are running at

all times. If a pod fails, a new one will automatically be deployed to ensure the replicaset

maintains running the desired four.

Chapter 3 Inside Kubernetes

44

Note D eployments which are covered later in this chapter are able to manage
replicasets. Replicasets are typically defined in deployments. It is recommended to
utilize deployment sets vs. defining replicasets directly.

�DaemonSets
DaemonSets manage groups of replicated pods. They can be used to ensure that all

nodes in a Kubernetes cluster run a copy of a specific pod. DaemonSets are typically

used when you have some administrative function that is needed on all or specific

nodes. An example of when to use a DaemonSet is if you need to perform log collection

on all nodes using fluentd. Another example is when you need a monitoring agent such

as new relic, AppDynamics, Log Analytics, or Datadog on all nodes.

�Jobs
Jobs in Kubernetes supervises pods that run batch processes that run for a finite time to

completion. Typical use cases or jobs would be backup, sending emails, transcoding, or

calculation operations. Jobs do support parallel and nonparallel.

�Services
A service in a Kubernetes cluster is the abstraction that defines a logical set of pods.

Service is also a mechanism used to expose external access to pods or an application

running on pods. A service is the abstraction on the top of the pod which provides a

single IP address and DNS name by which pods can be accessed. It is easy to think of a

service as a pointer to a pod or set of pods. When pods are moved from node to node in

a Kubernetes cluster service, automatically keep track of where the pods live. There are

three types of services as follows:

•	 ClusterIP is the default type used when deploying a service. ClusterIP

exposes an IP internal to the cluster only accessible within the cluster.

•	 NodePort exposes a service on a static port on the node.

•	 LoadBalancer is used with cloud providers. LoadBalancer exposes

the service externally using the cloud providers load balancer.

Chapter 3 Inside Kubernetes

45

Here is an example of what a service looks like in code:

apiVersion: v1

kind: Service

metadata:

 name: app1-service

spec:

 selector:

 app: App1

 ports:

 - protocol: TCP

 port: 80

 targetPort: 9523

�Deployments
Deployments describe the desired state of a replica set and pod. Deployments are

manifest yaml files. A deployment controller reconciles the Kubernetes cluster to match

the desired state by creating, updating, or deleting replica sets or pods accordingly.

�ConfigMaps
With containerized applications, environment configurations should be abstracted from

the applications and handled outside of the container and application. This essentially

is how configuration management is handled with containers. Keeping configuration

separate from containers and applications is one of the techniques to make containers

portable. ConfigMaps are a functionality in Kubernetes that helps with configuration

management. ConfigMaps hold key-value pairs of configuration data used in pods.

ConfigMaps tie configuration artifacts to pods, containers, and system components at

runtime. Configuration artifacts consist of command line arguments, configuration files,

environment variables, and port numbers.

Chapter 3 Inside Kubernetes

46

Note  ConfigMaps should be used for nonsensitive configurations that don’t need to be
secured. For sensitive configurations or data, Secrets within Kubernetes should be used.

ConfigMap key-value data can be literal or from files. ConfigMaps are created using

Kubectl. Here is syntax for creating a ConfigMap:

EXAMPLE: kubectl create configmap [NAME] [DATA]

EXAMPLE: kubectl create configmap app1-data –from-file app1-

configs/

kubectl create configmap is used to create a ConfigMap holding the key-value pairs.

And --from-file points to a directory. The files in the directory are used to populate a key

in the ConfigMap. The name of the key is the filename. The value of the key is from the

content of the file:

EXAMPLE: kubectl create configmap app1-config --from-

literal=app1-config.app1name=myapp1

After the ConfigMap is created, it can be consumed by a pod via a yaml file. Here is

an example yamle file:

apiVersion: v1

kind: Pod

metadata:

 name: app1-pod

 labels:

 app: app1

spec:

 containers:

 - name: app1-container

 image: nginx

 env:

 - name: app1name

 valueFrom:

 configMapKeyRef:

 name: app1-config

 key: app1name

Chapter 3 Inside Kubernetes

47

�Secrets
In Kubernetes when you need to secure information, you can use Secret objects. Secrets

are a way to store and manage sensitive information in a Kubernetes cluster such as

passwords, tokens, SSH keys, and so on. You are able to then reference the secret in pods

or container images vs. putting the secret such as a password indirectly. Secrets can be

created from a file or literally. Here is an example of creating a secret using literal:

kubectl create secret generic app1-pass –from-

literal=password=PASSWORDHERE

You would then reference the secret in your pod yaml file. Here is an example of this:

env:

– name: APP1_PASSWORD

valueFrom:

secretKeyRef:

name: app1-pass

key: password

�Networking
Networking with containers is complicated. At the core, Kubernetes sets out to make the

networking with containers easier and more flexible. Kubernetes treats networking with

pods are similar to the way it works with virtual machines when it comes to naming, load

balancing, port allocation, and even application configuration. Kubernetes by default

utilizes an overlay network. Kubernetes gives each pod its own routable unique IP

address and single DNS name. This IP is shared by all the containers within the pod.

The address space inside the Kubernetes cluster is flat allowing pods to

communicate with each other directly without a proxy. Pods can also communicate with

each other across nodes. Kubernetes uses iptables for the network connections between

pods. The routable IPs and IP tables make it so you don’t have to map host ports to

container ports like in Docker.

You may be asking yourself as you read this, “Pod-to-pod communication is good,

but how can one get Internet traffic from the Internet to pods?” Services in Kubernetes

group pods together logically to provide network connectivity to the applications

Chapter 3 Inside Kubernetes

48

running on the pods. There are multiple service types, and these can be used to route

traffic to pods. The following service types exist in Kubernetes:

•	 NodePort is a port mapping on the node running the pod, allowing

direct access to the application via the node IP and port.

•	 ClusterIP is an internal IP address used within the Kubernetes

cluster for internal-only communication.

•	 LoadBalancer is the underlying cloud providers cloud-based load

balancer with an external IP address. The load balancer backend

pool is connected to the requested pods.

•	 ExternalName is a DNS entry for access to an application running on

pods.

In addition to the aforementioned four service types, you also have the Ingress

Controller. An Ingress Controller works at layer 7 of the networking OSI model. An

Ingress Controller provides configurable traffic routing, TLS termination, and reverse

proxy. An Ingress Controller has ingress rules and routes to Kubernetes services.

A common use of an Ingress Controller is the ability to route from a single public

IP address to multiple services in a Kubernetes cluster. The most common Ingress

Controller in Kubernetes is the NGINX ingress controller.

�Storage
Files in containers are ephemeral. When containers are restarted, files are lost. If there

is a need to preserve data even when a container restarts, Kubernetes volumes can be

used. Kubernetes supports many types of volumes; however, the most common options

are volumes or persistent volumes. With volumes, when a container is destroyed,

the volume will cease to exist as well. With persistent volumes, when a container is

destroyed, the data will continue to exist. There are two types of persistent volumes in

Kubernetes: the first being persistent volume and the second being persistent volume

claim. Persistent volume is a resource in the cluster independent of any pod. Persistent

volume claim is requested for a specific pod in the namespace where the pod is. At the

Chapter 3 Inside Kubernetes

49

core, a volume is just a directory with data in it that containers in a pod can access. Here

is the full list of volumes Kubernetes supports:

awsElasticBlockStore

azureDisk

azureFile

cephfs

cinder

configMap

csi

downwardAPI

emptyDir

fc (fibre channel)

flexVolume

flocker

gcePersistentDisk

gitRepo (deprecated)

glusterfs

hostPath

iscsi

local

nfs

persistentVolumeClaim

projected

portworxVolume

quobyte

rbd

scaleIO

secret

storageos

vsphereVolume

In Kubernetes we also have something known as storage classes. Storage classes

work with dynamic provisioning of persistent storage volumes in Kubernetes. Dynamic

storage provisioning is when storage is ordered with a predefined type and configuration

without having to know the details about how to provision the physical or cloud storage

Chapter 3 Inside Kubernetes

50

device. Storage classes abstract all the details of a specific storage type that is then used

by developers or cloud providers. Storage classes give administrators a way to describe

the “classes” of storage they offer. Classes map to service levels and/or backup policies.

�Summary
In this chapter, we introduced you to Kubernetes. As you embark on this journey into

Azure Kubernetes Service, you will now be equipped with core knowledge of Kubernetes

and its components. Throughout this chapter, we explored Kubernetes architecture

and learned about master and worker nodes and key features such as namespaces,

labels, jobs, services, and replicasets. We also learned about configuration management

using ConfigMaps and Secrets when information needs to be secured. We learned that

Kubernetes has a web-based user interface that can be used for some management

tasks. Last but not least, we explored how networking and storage work in Kubernetes.

Chapter 3 Inside Kubernetes

51
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_4

CHAPTER 4

kubectl Overview
kubectl is a command line interface for executing commands against Kubernetes

clusters. You can use kubectl to deploy applications, check and manage Kubernetes

cluster resources, and examine logs.

In this chapter, we will discuss the various kubectl commands that you will use for

your cluster operations. We will cover the basic commands and provide examples of how

to use kubectl for common operations such as application management, debugging,

and cluster management. By the end of this chapter, you will be able to perform basic

operations on a Kubernetes cluster using kubectl.

�Introduction to kubectl
When you execute an operation in kubectl, it looks for a file named config in the

$HOME/.kube directory. If you want to use kubeconfig files stored in a different directory,

you can do so by either setting the KUBECONFIG environment variable or by setting the

--kubeconfig flag.

kubeconfig files are used to organize information about clusters, users, namespaces,

and authentication mechanisms. kubectl uses kubeconfig files to choose a cluster and

communicate with the API server of a cluster. Also, you can also define contexts to switch

between clusters and namespaces quickly.

In a kubeconfig file, A context element is used to group access parameters under a

convenient name. There are three parameters for each context: cluster, namespace, and

user. kubectl uses parameters from the current context to communicate with the cluster

by default.

52

Note  kubectl is installed by default in Azure Cloud Shell. For a complete guide
on organizing cluster access using kubeconfig files, refer to the official Kubernetes
documentation found on the following URL: https://kubernetes.io/docs/
concepts/configuration/organize-cluster-access-kubeconfig/.

Almost all kubectl commands will typically belong to one of the categories listed in

Table 4-1.

Table 4-1.  kubectl Command Categories

Command Type Usage Description

Declarative Resource

Management

Development and

operations

Used to manage Kubernetes workloads using

Resource Config declaratively.

Imperative Resource

Management

Development only Use these commands to manage Kubernetes

workloads using command line arguments and flags.

Printing Workload State Debugging Includes commands for operations such as printing

summarized state and information about resources,

printing complete state and information about

resources, printing specific fields from resources,

and query resources matching labels.

Interacting with

Containers

Debugging Used for debugging operations such as Exec, Attach,

Cp, and Logs and includes commands for operations

such as printing container logs, printing cluster

events, executing or attaching to a container, and

copying files from containers in the cluster to a

user’s filesystem.

Cluster Management Debugging Users need to perform operations on cluster

nodes, and kubectl supports commands for cluster

operations such as drain and cordon nodes.

Note  kubectl is installed by default in Azure Cloud Shell. To install kubectl
locally, execute az aks install-cli command in Azure CLI.

Chapter 4 kubectl Overview

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

53

�kubectl Basics
This section provides a high-level overview for the basic kubectl commands. Throughout

the book, you will notice various kubectl commands in use. We will only cover the most

commonly used commands in this section. The examples shown in this section relates to

deploying a simple ngnix cluster in Kubernetes.

�kubectl Syntax

The following is the syntax to run kubectl commands from a terminal:

kubectl [command] [TYPE] [NAME] [flags]

•	 command: This specifies the operation a user wants to perform on

resources, such as create, get, and delete.

•	 TYPE: This denotes the resource. Remember that resource types are

case-insensitive, and you can use singular, plural, or abbreviated

forms to reference a resource type.

•	 NAME: This denotes the resource name. A resource name is case-

sensitive. If you do not provide a name, details of all the resources

will be displayed.

•	 flags: flags are optional. For instance, you can leverage the -s or

--server flag to specify the address and port of the Kubernetes API

server.

Note  For a complete reference of operations you can perform with kubectl,
visit kubectl reference at https://kubernetes.io/docs/reference/
kubectl/kubectl/.

You can list all the supported resource types and their alias by running

kubectl api-resources in a terminal.

Chapter 4 kubectl Overview

https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/kubectl/

54

�Formatting Output in kubectl

The default output for any kubectl command is plain text. In order to generate an output

in a specific format, you can use the -o or --output flag. The following is the syntax you

need to use:

kubectl [command] [TYPE] [NAME] -o <output_format>

Table 4-2 lists the output formats supported depending on the kubectl operation

that you have executed.

Table 4-2.  kubectl Output Formats

Output Format Description

-o custom-columns=<spec> Displays a table using a comma-separated list of custom columns.

-o custom-columns-

file=<filename>

Displays a table using the custom columns template in the

<filename> file.

-o json Prints a JSON-formatted API object.

-o jsonpath=<template> Displays the fields defined in a jsonpath expression.

-o jsonpath-file=<filename> Displays the fields defined by the jsonpath expression in the

<filename> file.

-o name Displays only the resource name and nothing else.

-o wide Displays in the plain text format with any additional information. For

pods, the node name is included.

-o yaml Displays a YAML-formatted API object.

�Listing Kubernetes Resources

When you work with Kubernetes clusters, you may need to list the Kubernetes

deployment resources in a namespace. Here the deployments are the resources that

manage pod replicas. The following example lists the deployments in the kube-system

namespace as shown in Listing 4-1.

kubectl get deployments --namespace kube-system

Chapter 4 kubectl Overview

55

Listing 4-1.  Deployment information for kube-system namespace

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

event-exporter-v0.2.3 1 1 1 1 14d

fluentd-gcp-scaler 1 1 1 1 14d

heapster-v1.6.0-beta.1 1 1 1 1 14d

kube-dns 2 2 2 2 14d

kube-dns-autoscaler 1 1 1 1 14d

l7-default-backend 1 1 1 1 14d

metrics-server-v0.3.1 1 1 1 1 14d

If you want to print detailed information about a specific deployment in a

namespace, you can use the following syntax. In this example, we are printing the

information about the kube-dns deployment which you can see in Listing 4-2.

kubectl describe deployment kube-dns --namespace kube-system

Listing 4-2.  Getting deployment information for kube-dns

Name: kube-dns

Namespace: kube-system

CreationTimestamp: Wed, 29 May 2019 00:28:50 +1030

Labels: addonmanager.kubernetes.io/mode=Reconcile

 k8s-app=kube-dns

 kubernetes.io/cluster-service=true

Annotations: deployment.kubernetes.io/revision: 2

...

�Creating a Resource from Config

You can create or update Kubernetes resources from either a remote config hosted in a

remote repository such as GitHub or a local config stored in your computer.

Remote Config

kubectl apply -f https://k8s.io/examples/application/deployment.yaml

Chapter 4 kubectl Overview

56

Local Config

kubectl apply -f ./examples/nginx/nginx.yaml

Listing 4-3 shows the common output in both these scenarios.

Listing 4-3.  Output of kubctl apply

service/nginx created

deployment.apps/nginx-deployment created

�Generating a Config from a Command

You can generate config for a deployment resource, and the config can then be applied

to a Kubernetes cluster by writing the output to a file and then executing kubectl apply

-f <yaml-file-name>. In the following example, we are creating a deployment called

ngnix from the ngnix image and redirecting the output to a yaml file:

kubectl create deployment nginx --dry-run -o yaml --image nginx

Listing 4-4 shows the output of the yaml file.

Listing 4-4.  ngnix deployment yaml file

apiVersion: apps/v1

kind: Deployment

metadata:

 creationTimestamp: null # delete this

 labels:

 app: nginx

 name: nginx

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 strategy: {} # delete this

 template:

 metadata:

Chapter 4 kubectl Overview

57

 creationTimestamp: null # delete this

 labels:

 app: nginx

 spec:

 containers:

 - image: nginx

 name: nginx

 resources: {} # delete this

status: {} # delete this

�Viewing Pods Associated with Resources

One of the most common scenarios users will encounter while working with Kubernetes

clusters is listing pod information. In the following example, we are listing all the pods

created by the ngnix deployment using pod labels. Listing 4-5 shows the output of this

operation.

kubectl get pods -l app=nginx

Listing 4-5.  Listing all the pods of ngnix deployment

NAME READY STATUS RESTARTS AGE

nginx-deployment-5c678s55ff-b2xfk 1/1 Running 0 10m

nginx-deployment-5c678s55ff-rx569 1/1 Running 0 10m

nginx-deployment-5c678s55ff-s7xcv 1/1 Running 0 10m

�Debugging Containers

When users want to debug the containers running on their Kubernetes clusters, first

thing to examine are the logs. In the following example, we list the logs from all the pods

of the ngnix deployment:

kubectl logs -l app=nginx

If you want to obtain a shell into a specific pod’s container, you can leverage exec

operation with kubectl as follows:

kubectl exec -i -t nginx-deployment-5c678s55ff-b2xfk bash

Chapter 4 kubectl Overview

58

Events are a resource type in Kubernetes that are automatically created when other

resources have state changes, errors, or other messages that need to be broadcasted to

the system. For an example, kubectl describe pod <podname> will list the events at the

end of the output for a given pod.

Using kubectl get events will allow you to extract the events from the resource’s

API directly.

Listing 4-6 illustrates filtering events with kubectl get events command.

Listing 4-6.  kubectl get events

#Filter warning only

kubectl get events --field-selector type=Warning

#Filter no pod events only

kubectl get events --field-selector involvedObject.kind!=Pod

#Filter events for a single node named "minikube"

kubectl get events --field-selector involvedObject.

kind=Node,involvedObject.name=mi

�Common Operations with kubectl
To familiarize yourself with how you can use kubectl for common operations, we have

provided some following examples. Though the following code excerpts don’t cover the

entire breadth of using kubectl for application management, debugging, and cluster

management, they provide adequate information to the reader on the most common

scenarios they might encounter.

Note  As we don’t expect to cover every kubectl command in this chapter,
we would recommend readers to refer the kubectl cheat sheet available at
https://kubernetes.io/docs/reference/kubectl/cheatsheet/ for
further reading.

Chapter 4 kubectl Overview

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

59

�kubectl apply

The apply operation will apply or update a Kubernetes resource from a file or stdin. The

resource name must be specified, and it will be automatically created if it doesn’t exist.

Listing 4-7 shows some common examples of using the apply operation.

Listing 4-7.  kubectl apply

Creating a service using the definition in my-service.yaml.

kubectl apply -f my-service.yaml

Creating a replication controller using the definition in my-controller.yaml.

kubectl apply -f my-controller.yaml

Creating the objects that are defined in any .yaml, .yml, or .json file

within the <mydirectory> directory.

kubectl apply -f <mydirectory>

�kubectl get

The get operation lists one or more resources. You can use kubectl api-resources

command for a complete list of supported resources with get.

Listing 4-8 shows some common examples of using the get operation.

Listing 4-8.  kubectl get

List all pods in plain text output format.

kubectl get pods

List all pods in plain text output format and include additional

information such as node name.

kubectl get pods -o wide

List the replication controller with the specified name in plain text

output format.

kubectl get replicationcontroller <rc-name>

List all replication controllers and services together in plain text

output format.

kubectl get rc,services

Chapter 4 kubectl Overview

60

List all daemon sets, including uninitialized ones, in plain text output

format.

kubectl get ds --include-uninitialized

List all pods running on node srv01

kubectl get pods --field-selector=spec.nodeName=srv01

Note  You can shorten and replace the “replicationcontroller” resource type with
its alias “rc” as seen in the preceding listing.

�kubectl describe

The describe operations shows the detailed information of a specific resource(s),

including the uninitialized ones by default. You can use kubectl api-resources

command for a complete list of supported resources with describe.

Listing 4-9 shows some common examples of using the describe operation.

Listing 4-9.  kubectl describe

Displaying the details of the node with name <my-node>.

kubectl describe nodes <my-node>

Displaying the details of the pod with name <my-pod>.

kubectl describe pods/<my-pod>

Displaying the details of all the pods that are managed by the

replication controller named <rc-myrepctl>.

kubectl describe pods <rc-myrepctl >

Describe all pods, not including uninitialized ones

kubectl describe pods --include-uninitialized=false

Note  Any pods that are created by a replication controller get prefixed with the
name of that replication controller.

Chapter 4 kubectl Overview

61

�kubectl delete

You can use delete operation to delete resources by their filenames, stdin, or specifying

label selectors, names, resource selectors, or resources. Keep in mind that only one type

of the arguments can be provided: they can be either filenames or resources and names

or resources and label selector.

Listing 4-10 shows some common examples of using the delete operation.

Listing 4-10.  kubectl delete

Deleting a pod using the type and name specified in the pod.yaml file.

kubectl delete -f pod.yaml

Deleting all the pods and services that have the label name=<my-label>.

kubectl delete pods,services -l name=<my-label>

Deleting all the pods and services that have the label name=<my-label>,

including uninitialized ones.

kubectl delete pods,services -l name=<my-label> --include-uninitialized

Deleting all pods, including uninitialized ones.

kubectl delete pods --all

�kubectl exec

The exec operation executes a command against a container in a pod.

Listing 4-11 shows some common examples of using the exec operation.

Listing 4-11.  kubectl exec

Get output from running 'date' from pod <my-pod>. By default, output is

from the first container.

kubectl exec <my-pod> date

Get output from running 'date' in container <my-container> of pod <my-pod>

kubectl exec <my-pod> -c <my-container> date

Get an interactive TTY and run /bin/bash from pod <my-pod>. The default

output is always from the first container in the pod.

kubectl exec -ti <my-pod> /bin/bash

Chapter 4 kubectl Overview

62

�kubectl logs

The logs operation can print the logs for a specific container in a pod or for a specified

resource in a Kubernetes cluster. If there is only one container in a pod, providing the

container name is optional.

Listing 4-12 shows some common examples of using the logs operation.

Listing 4-12.  kubectl logs

Returns a snapshot of the logs from pod <my-pod>.

kubectl logs <my-pod>

Start streaming the logs from pod <my-pod>. This is similar to the 'tail

-f' Linux command.

kubectl logs -f <my-pod>

�Summary
kubectl is the primary tooling that you will use to manage your Kubernetes

environment. You can use kubectl to declaratively manage applications in Kubernetes,

perform debugging, and administer your Kubernetes clusters.

In this chapter, you learned about the basics of kubectl commands. We discussed

the basic operations in kubectl by examining code samples on deploying a ngnix image

in a Kubernetes cluster. Finally, we explored the most common kubectl operations and

their usage.

Chapter 4 kubectl Overview

63
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_5

CHAPTER 5

Deploying Azure
Kubernetes Service
Azure Kubernetes Service (AKS) simplifies the deployment of a Kubernetes cluster by

providing a managed Kubernetes-as-a-Service platform. The operational complexity of

managing Kubernetes is reduced by off-loading routine tasks such as health monitoring

and maintenance as well as master node management to the Azure platform.

In this chapter, we are going to explore how to deploy an AKS cluster using the Azure

Portal, Azure CLI, Azure Resource Manager (ARM) templates, and Terraform. We will

review the process for each deployment option followed by explanations on additional

feature configurations such as advanced networking, Azure Active Directory integration,

and monitoring. By the end of this chapter, you will have a good knowledge about the

AKS deployment process, options, and procedure.

�Azure Kubernetes Service Deployment Overview
You can deploy an AKS cluster using several methods. Each method has its own merits,

and choosing how you want to deploy an AKS cluster is dependent on your preference

and scenario. However, you will have to provide a few mandatory parameters that are

required to deploy an AKS cluster in all these methods. We will discuss what these

parameters are in the upcoming sections.

�Deployment Through the Azure Portal
Creating an AKS cluster using the Azure Portal is a straightforward process. The following

explains the procedure to do so.

64

In the Azure Marketplace, select + Create a resource ➤ Containers ➤ Kubernetes
Service. In the Create Kubernetes Cluster page, configure the following options:

	 1.	 On the Basics section, the following options need to be

configured:

	 a.	 Project details: Under this section, select the Azure subscription where you

need the AKS cluster to be created.

	 b.	 Cluster details: Select or create an Azure resource group for the AKS

cluster, provide a value for Kubernetes cluster name, provide an Azure

region to deploy the AKS cluster, select the desired Kubernetes version,

and finally provide a DNS name prefix for the AKS cluster.

	 c.	 Primary node pool: In this section, you need to select a VM size for the

AKS nodes from the Azure VM SKUs. Remember that once an AKS cluster is

created, the VM size cannot be changed. Select the VM size and the node
count. You can start by setting the Node Count to 1.

	 d.	 Click Next: Scale ➤.

Chapter 5 Deploying Azure Kubernetes Service

65

	 2.	 Keep the default options at the Scale section; after that, click Next:
Authentication ➤.

Figure 5-1.  Create a Kubernetes cluster Basics section

Chapter 5 Deploying Azure Kubernetes Service

66

Note  We will be discussing the scaling options for AKS in detail in Chapter 7,
“Operating Azure Kubernetes Service.”

	 3.	 In the Authentication section:

	 a.	 You can either create a new service principal by leaving the Service

Principal field as it is or choose Configure service principal to use an

existing one. Remember if you chose to use an existing one, you will have to

provide the service principal name (SPN) client ID and secret in the next

pop-up blade.

	 b.	 Enable RBAC: Set this option to Yes to allow Kubernetes role-based access

controls (RBAC) which provides more fine-grained control over access AKS

cluster resources

	 c.	 Click Next: Networking ➤.

Chapter 5 Deploying Azure Kubernetes Service

67

	 4.	 Leave the Network configuration radio button to Basic settings

under the Networking section to use kubenet with a default VNet

configuration. Selecting Advanced will redirect you to configure

the following which allows you to use an Azure CNI with further

options to customize your VNet. Click Next: Monitoring ➤.

Figure 5-2.  Create a Kubernetes cluster Authentication section

Chapter 5 Deploying Azure Kubernetes Service

68

	 5.	 Under Monitoring section, leave the Enable container
monitoring option to Yes. Here you can either create a new Log

Analytics workspace for your new AKS cluster or create a new one.

Once done, click the Review + Create button at the bottom of the

screen. Once the validation is completed, click Create.

Figure 5-3.  Create a Kubernetes cluster Networking section

Chapter 5 Deploying Azure Kubernetes Service

69

The process to create an AKS cluster will take few minutes to complete the

deployment. Once the deployment is completed, you can see the status of your AKS

cluster by visiting its dashboard by clicking Go to resource under Next steps or by

searching the resource group name or AKS cluster name in the search bar on top of the

screen.

Figure 5-4.  Create a Kubernetes cluster Validation section

Chapter 5 Deploying Azure Kubernetes Service

70

�Deployment Through Azure CLI
Azure CLI is a command line tool for managing your Azure resources. It is designed as

a cross-platform tool that can be deployed on Windows, Linux, or MacOS systems. To

provide a greater Azure CLI experience, the Azure portal provides Azure Cloud Shell,
which is an interactive shell environment that you can use using your browser. The

advantage of using Azure Cloud Shell is that you can use it with either preinstalled bash

or PowerShell Azure CLI commands without installing anything on your local computer.

Note  For the purpose of trying the instructions in this section, you may choose to
either use Azure CLI installed in your local computer or leverage Azure Cloud Shell.

	 1.	 Launch an Azure Cloud Shell session by clicking the Cloud Shell
button on the top-right menu bar in the Azure Portal.

Figure 5-5.  AKS cluster dashboard

Figure 5-6.  Launch an Azure Cloud Shell

Chapter 5 Deploying Azure Kubernetes Service

71

	 2.	 Create a resource group to deploy your AKS cluster by entering the

following Azure CLI command.

Listing 5-1.  Create a resource group for the AKS cluster

az group create --name jcbaksrg01 --location eastus

You should see the following output if the resource group creation was successful.

Listing 5-2.  Create a resource group output

{

 "id": "/subscriptions/<guid>/jcbaskrg01",

 "location": "eastus",

 "managedBy": null,

 "name": "jcbaskrg02",

 "properties": {

 "provisioningState": "Succeeded"

 },

 "tags": null,

 "type": "Microsoft.Resources/resourceGroups"

}

	 3.	 Use the az aks create command to create the AKS cluster. The

following example creates a cluster named jcbaksclu02 with one

node, and the --enable-addons monitoring parameter will

enable Azure Monitor for containers for this cluster. After few

minutes, once the cluster creation is completed, Azure CLI will

return a JSON-formatted cluster information in the Azure Cloud

Shell window.

Listing 5-3.  Create an AKS cluster

az aks create --resource-group jcbaksrg01 --name jcbaksclu01 --node-count 1

--enable-addons monitoring --generate-ssh-keys

Chapter 5 Deploying Azure Kubernetes Service

72

�Deployment Through Azure Resource Manager
Templates
Azure Resource Manager (ARM) templates introduce infrastructure as code capabilities

for your Azure deployments. ARM templates are JavaScript Object Notation (JSON)

files that define the infrastructure and configuration of an Azure deployment. An ARM

template uses a declarative syntax, and you can specify the resources you intend to

deploy and their respective configuration by using an ARM template.

Before creating an AKS cluster using an ARM template, you need to provide an SSH

public key and Azure Active Directory service principal first.

�Create an SSH Key Pair
An SSH key pair is required to connect and access your AKS nodes. By executing the

ssh-keygen command in an Azure Cloud Shell session according to the following

example, you will be generating an SSH public and private key pair with RSA encryption

of a 2048-bit length in the ~/.ssh directory inside your Azure Cloud Shell file storage.

Listing 5-4.  Create an SSH key pair in Azure Cloud Shell

ssh-keygen -t rsa -b 2048

�Create a Service Principal
An Azure Active Directory service principal name (SPN) is required to allow an AKS

cluster to interact with other Azure resources in your Azure environment. By executing

the az ad sp create-for-rbac CLI command, you can create the necessary service

principal for this exercise. The --skip-assignment parameter prevents any additional

permissions being assigned. By default, this service principal is valid only for a year.

Listing 5-5.  Create a service principal in Azure Cloud Shell

az ad sp create-for-rbac --skip-assignment

Make a note of the appId and password values from the output generated. These are

required to populate parameters in the ARM template.

Chapter 5 Deploying Azure Kubernetes Service

73

Listing 5-6.  JSON output of the create service principal operation

{

 "appId": "141b2bef-9350-4e80-a0fa-a6aa456750a9",

 "displayName": "azure-cli-2019-09-30-01-39-37",

 "name": "http://azure-cli-2019-09-30-01-39-37",

 "password": "182bb4e7-b53f-4cc4-811d-c72ba828a75d",

 "tenant": "<tenant id>"

}

�Using an Azure Resource Manager QuickStart Template
If you are not an expert on ARM templates, you can always leverage an Azure Resource

Manager QuickStart template to start with.

Note I n this example, we are going to use the 101-aks QuickStart template to
explain the process of deploying an AKS cluster using an Azure Resource Manager
template. For more examples, visit the following URL:

https://azure.microsoft.com/en-au/resources/templates/?term=
Azure%20Kubernetes%20Service

	 1.	 Navigate to the following URL to open the 101-aks QuickStart

template and click Deploying to Azure:

https://azure.microsoft.com/en-au/resources/templates/101-aks/

Chapter 5 Deploying Azure Kubernetes Service

https://azure.microsoft.com/en-au/resources/templates/?term=Azure Kubernetes Service
https://azure.microsoft.com/en-au/resources/templates/?term=Azure Kubernetes Service
https://azure.microsoft.com/en-au/resources/templates/101-aks/

74

	 2.	 Enter and/or configure the following values in the template:

	 a.	 Subscription: Select the Azure subscription where you want to

deploy the AKS cluster.

	 b.	 Resource group: You can either select an existing resource

group or select Create new to provide a unique name to create a

new resource group and click OK.

	 c.	 Location: Select the Azure region for your AKS cluster.

	 d.	 Cluster name: Provide a unique name for the AKS cluster.

	 e.	 DNS prefix: Provide a unique DNS prefix for your cluster.

	 f.	 Linux admin username: Provide a username to connect

using SSH.

	 g.	 SSH RSA public key: Enter the public part of your SSH key pair

(by default, the contents of ~/.ssh/id_rsa.pub).

	 h.	 Service principal client ID: Provide the appId value generated

in the previous section.

	 i.	 Service principal client Secret: Provide the password generated

in the previous section.

	 j.	 Click the I agree to the terms and conditions stated above:

checkbox to agree to the terms and conditions.

Figure 5-7.  Azure QuickStart template 101-aks

Chapter 5 Deploying Azure Kubernetes Service

75

	 3.	 Click Purchase. Your AKS cluster deployment will take few

minutes to complete.

Figure 5-8.  Deployment screen for 101-aks QuickStart template

Chapter 5 Deploying Azure Kubernetes Service

76

Note Y ou can use the Edit Template or Edit parameters buttons to either
customize the ARM template or edit the parameters provided in this QuickStart
template.

�Deployment Through Terraform
Terraform is an Infrastructure-as-Code (IaC) tool designed for building, changing, and

versioning infrastructure safely and efficiently. Configuration files in Terraform define

the components required to run an application. An execution plan is generated in

Terraform to describe the instructions to reach the desired configuration state, and then

it is executed to build the described infrastructure. In case of a configuration change,

Terraform is able determine the changes and to create incremental execution plans

which can then be applied.

The steps to create an AKS cluster with Terraform is well documented at

(https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-

cluster-with-tf-and-aks).

Note T erraform is preinstalled by default in the Azure Cloud Shell. If you need to
set up Terraform locally to follow the instructions in the preceding article, please
refer to the following URL:

https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/terraform-install-configure#install-terraform

�Connecting to Your AKS Cluster
You can use kubectl, the Kubernetes command line client, in order to manage your AKS

cluster. If you are using Azure Cloud Shell, kubectl is preinstalled. If you want to install

kubectl locally on your local computer (where Azure CLI is already installed), you can

use the following command.

Listing 5-7.  Installing kubectl on a local installation of Azure CLI

az aks install-cli

Chapter 5 Deploying Azure Kubernetes Service

https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks
https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-configure#install-terraform
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-configure#install-terraform

77

By using the az aks get-credentials command, you can configure kubectl to

connect to your Kubernetes cluster. This downloads the required credentials and

configures the Kubernetes CLI to use them.

Listing 5-8.  az aks get-credentials command

az aks get-credentials --resource-group jcbaksrg01 --name jcbaksclu01

Then, you can execute the kubectl get command to verify the connection to you

cluster and see if it returns a list of cluster nodes.

Listing 5-9.  kubectl get command

kubectl get nodes

The following is the sample output that shows the nodes in the Kubernetes cluster

jcbaksclu01 created through the previous methods. The status should be Ready for all

the nodes before you deploy any application to your AKS cluster.

Listing 5-10.  kubectl get command output for jcbaksclu01

NAME STATUS ROLES AGE VERSION

aks-agentpool-26412741-0 Ready agent 120m v1.13.10

�Summary
You can deploy Azure Kubernetes Service using several methods. As explained earlier in

this chapter, it is up to you to decide which method suits your deployment requirements.

This chapter serves as an introduction to deploying AKS and configuring the basic

parameters required to get your AKS cluster up and running.

In this chapter, you learned about what creates an AKS cluster using four different

methods, through Azure Portal, Azure CLI (either via a locally installed instance or via

Azure Cloud Shell), Azure Resource Manager templates, and finally a very popular third-

party Infrastructure-as-a-Code tool called “Terraform.” We reviewed the process of initial

configuration for your AKS using each of these methods. Lastly, we briefly discussed

about how you can connect to your AKS cluster using kubectl, the command line tool

for Kubernetes.

Chapter 5 Deploying Azure Kubernetes Service

79
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_6

CHAPTER 6

Deploying and Using
Rancher with Azure
Kubernetes Service
As you continue along your journey into the container world, you will get to the point

of critical mass. There will be a need to run an orchestration platform to handle the life

cycle of containers. Within Chapter 3, “Inside Kubernetes,” we dove into Kubernetes,

the most common orchestration platform. In Chapter 5, “Deploying Azure Kubernetes

Service,” we covered how to deploy Azure Kubernetes Service (AKS). Kubernetes can be

complex for anyone starting out with container orchestration platforms.

Microsoft’s managed Kubernetes service AKS removes some of the complexity from

running a Kubernetes cluster; however, it can still be a challenge to run a Kubernetes

cluster, including all the things that come along with it such as operating multiple

Kubernetes clusters, scaling in the cluster, networking, RBAC, monitoring, deploying

bundled solutions via HELM charts (to be covered in a later chapter), and more. There

are third-party solutions on the market that can reduce the complexity of running

Kubernetes. Rancher is one of this solution if not arguably the best.

In this chapter, we are going to give an overview of Rancher and also will explore how

Rancher can be used together with AKS.

�What Is Rancher?
In a nutshell, Rancher is an open source solution that can be used to deploy and operate

a single or many Kubernetes clusters. Rancher can deploy and manage Kubernetes

clusters across on-premises or cloud providers such as AWS, GCP, Digital Ocean, and

80

Azure. It can be used to deploy and manage your own Kubernetes cluster on your own

infrastructure or even managed cluster services from cloud providers, for example,

Azure Kubernetes Service.

Unlike many other open source solutions out there on the market, Rancher is

completely free. It does not have a community edition and an enterprise edition

you have to pay for. With Rancher, you get all of the features when you deploy it. The

way Rancher supports itself financially is through paid support options designed for

organizations that run Rancher in production.

Because Rancher can operate Kubernetes clusters virtually anywhere, it can also be

utilized to migrate resources between providers.

Rancher overall helps simplify the administration of Kubernetes. Some of the

ways it simplifies the administration are by centralizing the authentication and access

control, bringing in monitoring out of the box with Prometheus and Grafana, having an

application library of its own, and HELM charts and streamlined Kubernetes version

upgrades.

While Rancher abstracts much of the complexity of managing a Kubernetes cluster,

it also allows for advanced administration if desired. For example, a Kubernetes

administrator can access kubectl right through the Rancher portal.

�Why Use Rancher with Kubernetes?
One of the most common questions that come up when someone learns about Rancher

is: “Why should I use Rancher with Kubernetes vs. just using Kubernetes on its own?”

The answer to this is there are many reasons to use Rancher with Kubernetes; however,

there may be scenarios where it does not make sense to use Rancher. Here we will look at

the reasons to use Rancher. Let’s go through them:

•	 Deployment and upgrade of Kubernetes clusters: Deploying

and upgrading Kubernetes clusters via Rancher is streamlined and

seamless.

•	 User interface and API: Rancher provides a streamlined user

interface for those that use Kubernetes. Rancher also provides an API

to interface with.

•	 Centralize the management of multiple Kubernetes clusters:

Many organizations are taking a multi-cloud approach, and therefore

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

81

it is likely they will run a Kubernetes cluster across multiple cloud

providers. When Kubernetes clusters are deployed across cloud

providers and even on premises, Rancher can be used to centralize

the management of all the clusters from one place. Rancher

centralizes management of RBAC, security policy management,

capacity management, delegated administration, cluster backup and

recovery, logging and monitoring, and more.

•	 Centralize and streamline the RBAC of Kubernetes: Kubernetes

authorization and access can be managed easily from Rancher.

•	 Rancher comes out of the box with Prometheus and Grafana:

Monitoring Kubernetes is critical. Prometheus and Grafana are

common monitoring and visualization tools. Being that these are

packaged with Rancher and ready to Monitor Kubernetes reduces the

effort of deploying these solutions and getting them ready to monitor

Kubernetes.

•	 Rancher streamlines Helm charts: Rancher allows you to load a

Helm chart library and/or a Rancher library. These libraries make it

easy to deploy applications as pods with ease.

•	 Kubernetes adoption: Drive Kubernetes adoption by lowering

the Kubernetes learning curve and allowing coders to focus on

developing applications vs. running the applications.

As you can see from the previous list, there is a lot of value in using Rancher in

combination with Kubernetes. Next, let’s look at deploying Rancher and using it with AKS.

�How to Deploy Rancher on Azure
Rancher runs as a container on top of Docker. You can deploy Rancher on-premises or

on a cloud provider. In this section, we are going to deploy Rancher on an Ubuntu server

running Docker on an Azure IaaS VM.

We will deploy this VM and Rancher using an Azure ARM Template. The ARM

Template that we will use deploys an Ubuntu VM with Docker and the latest version of

Rancher as a container. The Rancher container is deployed from (https://hub.docker.

com/r/rancher/rancher) on Docker Hub. This ensures that the latest Rancher version

will always be deployed.

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

https://hub.docker.com/r/rancher/rancher
https://hub.docker.com/r/rancher/rancher

82

The ARM Template we will use is named RancherNode.JSON. Here is the ARM

Template code:

{

 �"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "adminUsername": {

 "type": "string",

 "metadata": {

 �"description": "Username for the Rancher Node Virtual

Machine."

 }

 },

 "adminPassword": {

 "type": "securestring",

 "metadata": {

 �"description": "Password for the Rancher Node Virtual

Machine."

 }

 },

 "dnsNameForPublicIP": {

 "type": "string",

 "metadata": {

 �"description": "Unique DNS Name for the Public IP used to

access the Rancher Portal."

 }

 },

 "vmSize": {

 "type": "string",

 "defaultValue": "Standard_F1",

 "metadata": {

 "description": "VM size for the Rancher Node."

 }

 },

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

83

 "ubuntuOSVersion": {

 "type": "string",

 "defaultValue": "14.04.4-LTS",

 "metadata": {

 �"description": "The Ubuntu version for deploying the Docker

containers. This will pick a fully patched image of this

given Ubuntu version. Allowed values: 14.04.4-LTS, 15.10,

16.04.0-LTS"

 },

 "allowedValues": [

 "14.04.4-LTS",

 "15.10",

 "16.04.0-LTS"

]

 },

 "location": {

 "type": "string",

 "defaultValue": "[resourceGroup().location]",

 "metadata": {

 "description": "Location for all resources."

 }

 }

 },

 "variables": {

 "imagePublisher": "Canonical",

 "imageOffer": "UbuntuServer",

 "nicName": "RancherNodeNic",

 "extensionName": "DockerExtension",

 "addressPrefix": "10.0.0.0/16",

 "subnetName": "RancherSubnet",

 "subnetPrefix": "10.0.0.0/24",

 "diskStorageType": "Standard_LRS",

 "publicIPAddressName": "RancherNodePublicIP",

 "publicIPAddressType": "Dynamic",

 "vmName": "RancherNode",

 "virtualNetworkName": "RancherVNet",

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

84

 �"subnetRef": "[resourceId('Microsoft.Network/

virtualNetworks/subnets', variables('virtualNetworkName'),

variables('subnetName'))]"

 },

 "resources": [

 {

 "apiVersion": "2017-04-01",

 "type": "Microsoft.Network/publicIPAddresses",

 "name": "[variables('publicIPAddressName')]",

 "location": "[parameters('location')]",

 "properties": {

 �"publicIPAllocationMethod": "[variables('publicIPAddress

Type')]",

 "dnsSettings": {

 "domainNameLabel": "[parameters('dnsNameForPublicIP')]"

 }

 }

 },

 {

 "apiVersion": "2017-04-01",

 "type": "Microsoft.Network/virtualNetworks",

 "name": "[variables('virtualNetworkName')]",

 "location": "[parameters('location')]",

 "properties": {

 "addressSpace": {

 "addressPrefixes": [

 "[variables('addressPrefix')]"

]

 },

 "subnets": [

 {

 "name": "[variables('subnetName')]",

 "properties": {

 "addressPrefix": "[variables('subnetPrefix')]"

 }

 }

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

85

]

 }

 },

 {

 "apiVersion": "2017-04-01",

 "type": "Microsoft.Network/networkInterfaces",

 "name": "[variables('nicName')]",

 "location": "[parameters('location')]",

 "dependsOn": [

 �"[concat('Microsoft.Network/publicIPAddresses/', variables

('publicIPAddressName'))]",

 �"[concat('Microsoft.Network/virtualNetworks/', variables

('virtualNetworkName'))]"

],

 "properties": {

 "ipConfigurations": [

 {

 "name": "ipconfig1",

 "properties": {

 "privateIPAllocationMethod": "Dynamic",

 "publicIPAddress": {

 �"id": "[resourceId('Microsoft.Network/

publicIPAddresses',variables('publicIP

AddressName'))]"

 },

 "subnet": {

 "id": "[variables('subnetRef')]"

 }

 }

 }

]

 }

 },

 {

 "apiVersion": "2017-03-30",

 "type": "Microsoft.Compute/virtualMachines",

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

86

 "name": "[variables('vmName')]",

 "location": "[parameters('location')]",

 "dependsOn": [

 �"[concat('Microsoft.Network/networkInterfaces/',

variables('nicName'))]"

],

 "properties": {

 "hardwareProfile": {

 "vmSize": "[parameters('vmSize')]"

 },

 "osProfile": {

 "computerName": "[variables('vmName')]",

 "adminUsername": "[parameters('adminUsername')]",

 "adminPassword": "[parameters('adminPassword')]"

 },

 "storageProfile": {

 "imageReference": {

 "publisher": "[variables('imagePublisher')]",

 "offer": "[variables('imageOffer')]",

 "sku": "[parameters('ubuntuOSVersion')]",

 "version": "latest"

 },

 "osDisk": {

 "name": "[concat(variables('vmName'),'_OSDisk')]",

 "caching": "ReadWrite",

 "createOption": "FromImage",

 "managedDisk": {

 �"storageAccountType": "[variables('diskStorage

Type')]"

 }

 }

 },

 "networkProfile": {

 "networkInterfaces": [

 {

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

87

 �"id": "[resourceId('Microsoft.Network/network

Interfaces',variables('nicName'))]"

 }

]

 }

 }

 },

 {

 "type": "Microsoft.Compute/virtualMachines/extensions",

 �"name": "[concat(variables('vmName'),'/',

variables('extensionName'))]",

 "apiVersion": "2017-03-30",

 "location": "[parameters('location')]",

 "dependsOn": [

 �"[concat('Microsoft.Compute/virtualMachines/',

variables('vmName'))]"

],

 "properties": {

 "publisher": "Microsoft.Azure.Extensions",

 "type": "DockerExtension",

 "typeHandlerVersion": "1.0",

 "autoUpgradeMinorVersion": true,

 "settings": {

 "compose": {

 "rancher": {

 "image": "rancher/rancher:stable",

 "ports": [

 "80:80",

 "443:443"

],

 "volumes": [

 "/opt/rancher:/var/lib/rancher"

]

 }

 }

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

88

 }

 }

 }

]

}

This ARM Template can also be downloaded here: https://github.com/Buchatech/

DeployRanchertoAzure.

Deploy the ARM Template using your deployment option of choice. You will need to

provide data for the following parameters:

•	 Subscription

•	 Resource group

•	 Location

•	 Admin username

•	 Admin password

•	 Dns name for public IP

•	 Vm size

•	 Ubuntu OS version

After the Ubuntu VM is deployed, you should see the resources in the new resource

group as shown in Table 6-1.

Table 6-1.  Rancher on Azure

Resources in Resource Group

Name Type

RancherVNet Virtual network

RancherNode Virtual machine

RancherNodePublicIP Public IP address

RancherNodeNic Network interface

RancherNode_OSDisk Disk

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

https://github.com/Buchatech/DeployRanchertoAzure
https://github.com/Buchatech/DeployRanchertoAzure

89

In order to complete the Rancher deployment, you need to complete the setup via

the Rancher portal. The URL is the DNS name of the Rancher Node VM we deployed.

You can find the DNS name by clicking the Rancher Node VM in the Azure portal on the

overview page. Here is an example of the URL:

https://NAMEOFTHEVM.centralus.cloudapp.azure.com

The Rancher portal will prompt you to set a password. This is shown in Figure 6-1.

After setting the password, the Rancher portal will prompt you for the correct

Rancher Server URL. This will automatically be the Rancher Node VM DNS name as

shown in Figure 6-2. Click Save URL.

Figure 6-1.  Rancher set password

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

https://nameofthevm.centralus.cloudapp.azure.com

90

You will then be logged into the Rancher portal directly on the You will see the

clusters page. That wraps up the deployment of deploying Rancher on Azure. Next, we

will explore deploying a new AKS cluster and connecting to an existing AKS cluster from

within Rancher.

�Authenticate Rancher with Azure Active Directory
You will need the authentication from Rancher to Azure working before you can deploy

or manage existing AKS clusters. In order to authenticate with Azure from Rancher, you

will need a service principal name (SPN) object in Azure Active Directory. This will be

used for the authentication to Azure.

To create this SPN, you only need to run one line of syntax. It is recommended that

you run this from Bash in Azure Cloud Shell.

Figure 6-2.  Rancher Save URL

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

91

Note  Use the following steps to open Bash in Azure Cloud Shell:

Log into the Azure Portal.

Launch Cloud Shell from the top navigation by clicking ➤.

If this is your first time running Cloud Shell, select a subscription to create a
storage account and Microsoft Azure Files share.

When Cloud Shell launches at the bottom of the Azure portal, be sure the
environment drop-down on the left-hand side of the Shell window shows Bash and
not PowerShell.

Placeholder text. Remove later when able to clean up the note formatting.

Note Y ou will need the subscription ID for the subscription that you want to
create your AKS cluster in. You can run the following syntax in Cloud Shell to get a
list of subscriptions for the account you are logged in with. This will list subscription
property information including IDs. Copy the subscription ID for later use.

az account list

Use the following syntax to create an SPN with a specific name and assign the

contributor role to a specified subscription:

az ad sp create-for-rbac --name NAMEOFTHESPNHERE --role contributor

--scopes /subscriptions/SUBSCRIPTIONIDHERE

For example:

az ad sp create-for-rbac --name rancherSPN --role contributor --scopes /

subscriptions/148727f76-9q1b-4941-coa6-92c5d153fe73

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

92

The output will be similar to:

Changing “rancherSPN” to a valid URI of “http://rancherSPN”, which is the

required format used for service principal names

Retrying role assignment creation: 1/36

{

 "appId": "012d8611-c9a3-4e90-80d9-ad6504c823g8",

 "displayName": " rancherSPN ",

 "name": "http:// rancherSPN",

 "password": "6a4b83fc-31qa-40f0-c4c6-rba8c5av460b",

 "tenant": "0pw0cc24-q010-4f7b-h08e-9o57a72t531d"

}

Remember to copy this information somewhere as you will need it to connect to

Azure from Rancher when creating your AKS cluster.

Note  appId is what you will use for the clientId field in Rancher.

That’s it! That was all you had to do to create the SPN and get the information you

need to authenticate to Azure from Rancher. In the next section, we are going to create a

new AKS cluster from Rancher.

�Deploy AKS with Rancher
At this point, we have Rancher deployed on Azure. Now let’s look at the process for

deploying a new AKS cluster using Rancher. Use the following steps to deploy a new AKS

from Rancher in Azure.

Note I n the following steps, we will call out the required settings such as DNS
prefix but not the optional settings such as Azure tags or advanced networking. You
can configure optional settings as needed when you deploy your AKS cluster.

Within the Rancher portal, click Clusters in the top navigation menu.

Click Add Cluster and select Azure AKS as shown in Figure 6-3.

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

http://www.rancherSPN

93

You will see the Account Access settings as shown in Figure 6-4.

Input a cluster name as shown in Figure 6-5.

Input the information you copied from the last section after creating the SPN into the

Account Access settings.

Click Next: Authentication & configure nodes.

Figure 6-3.  Azure AKS hosted Kubernetes provider

Figure 6-4.  Account Access settings

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

94

Next, under Cluster Options, give your cluster a DNS prefix as shown in Figure 6-6.

Under Nodes, input a name for your resource group in the Cluster Resource Group

field as shown in Figure 6-7.

Figure 6-5.  Rancher cluster name

Figure 6-6.  Cluster DNS prefix

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

95

Also, under Nodes, input an SSH public key and click Create.

Note P uTTY Key Generator is a free utility that can be used to generate a new
SSH key. You can download it here: www.puttygen.com.

The AKS cluster will begin to provision as shown in Figure 6-8.

Figure 6-7.  Cluster resource group and SSH key

Figure 6-8.  AKS cluster provisioning

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

http://www.puttygen.com

96

After the AKS cluster is deployed, it will show as Active in the Rancher portal. The

AKS cluster is now deployed, and you could go the Azure portal, navigate to the resource

group it created, and see the resources Rancher deployed including the AKS cluster, Log

Analytics workspace, and a Containers Insights solution as shown in Figure 6-9.

Back in the Rancher portal, you can now click the AKS cluster to access dashboards,

monitoring, and the cluster settings, install apps from the Rancher or Helm catalogs,

launch Kubectl, and more. Figure 6-10 is an example of the dashboard for an AKS cluster

in Rancher.

Figure 6-9.  AKS cluster resources on Azure

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

97

The following two screenshots demonstrate some of the Grafana monitoring that is

available in Rancher for an AKS cluster. Figure 6-11 shows live cluster metrics.

Figure 6-10.  AKS cluster dashboard in Rancher

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

98

Figure 6-12 shows live metrics for the clusters and Kubernetes components.

Figure 6-11.  Grafana cluster metrics in Rancher

Figure 6-12.  Grafana Kubernetes components metrics in Rancher

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

99

You also could access the full Grafana UI and system to get deeper insights into your

AKS cluster and its resources such as nodes and pods as shown in Figure 6-13.

�Summary
That brings us to the end of this chapter. Rancher is not as well-known as Docker and

Kubernetes are. However, as you learned in this chapter, Rancher is a useful solution

when it comes to streamlining aspects of your Kubernetes life cycle. Specifically, in this

chapter we covered what Rancher is, why you would use it with Kubernetes, deploying

Rancher on Azure, and finally connecting Rancher to Azure so you can deploy a new

AKS cluster.

Figure 6-13.  Grafana UI

Chapter 6 Deploying and Using Rancher with Azure Kubernetes Service

101
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_7

CHAPTER 7

Operating Azure
Kubernetes Service
Once you have deployed your first AKS cluster, it is important to understand how you

can configure, monitor, and manage the AKS environment. The role of an AKS operator

is critical when deploying applications to AKS clusters as cluster optimization is a key

operational process in AKS.

In this chapter, we will explore how to operate an AKS cluster from a cluster

operator perspective. We will review the processes for handling cluster operations, how

to configure data storage for AKS, and how networking, security, and authentication

work in AKS. Then, we will dive into the AKS monitoring realm with Azure Monitor for

containers. Finally, we will go through the processes and best practices for business

continuity and disaster recovery (DR) planning for Azure Kubernetes Service. By the end

of this chapter, you will have a thorough understanding of operating an AKS cluster from

a configuration, monitoring, and management perspective of an AKS operator.

�Cluster Operations in Azure Kubernetes Service
When operating an Azure Kubernetes Services cluster, it is important to get familiarized

with cluster common operations. The following sections provide an overview of some of

the common cluster operations that you will encounter while working with AKS.

Note  The explanations in the following sections are executed within an Azure
Cloud Shell. Make sure that you are running Azure CLI version 2.0.65 or later by
executing az –version if you are using a local installation.

102

�Manually Scaling AKS Cluster Nodes
Resource needs of applications do change time to time. In such scenarios, you can either

manually or automatically scale your AKS cluster to increase or decrease the node count.

In a scale-down operation, your AKS nodes are carefully cordoned and drained in order

to minimize application disruption. In a scale-up operation, until the worker nodes are

marked as Ready, AKS waits before pods are scheduled on them.

The following example first obtains the node pool name for the jcbaksclu01 cluster

in the jcbaksrg01 resource group.

Listing 7-1.  az aks show command

az aks show --resource-group jcbaksrg01 --name jcbaksclu01 --query

agentPoolProfiles

You can see the name is nodepool1 in the following output.

Listing 7-2.  az aks show command output

 {

 "count": 1,

 "maxPods": 110,

 "name": "nodepool1",

 "osDiskSizeGb": 30,

 "osType": "Linux",

 "storageProfile": "ManagedDisks",

 "vmSize": "Standard_DS2_v2"

 }

]

Then, you can use the az aks scale command to scale the cluster nodes. The

following example scales the node count of jcbaksclu01 from 1 to 3.

Listing 7-3.  az aks scale command

az aks scale --resource-group jcbaksrg01 --name jcbaksclu01 --node-count 3

--nodepool-name nodepool1

Chapter 7 Operating Azure Kubernetes Service

103

You should see the following similar output which shows that the cluster has

successfully scaled up to three nodes, as shown in the agentPoolProfiles section:

{

 "aadProfile": null,

 "addonProfiles": null,

 "agentPoolProfiles": [

 {

 "count": 3,

 "maxPods": 110,

 "name": "nodepool1",

 "osDiskSizeGb": 30,

 "osType": "Linux",

 "storageProfile": "ManagedDisks",

 "vmSize": "Standard_DS2_v2",

 "vnetSubnetId": null

 }

],

 [...]

}

�Upgrading an AKS Cluster

During the life cycle of an AKS cluster, you will need to upgrade it to the latest or a

specific Kubernetes version. The following example explains how you can upgrade the

master components of a single, default node pool in an AKS cluster.

First, check whether there are any new Kubernetes releases available for your cluster

by executing the az aks get-upgrades command against your cluster as the following.

Listing 7-4.  az aks get-upgrades command

az aks get-upgrades --resource-group jcbaksrg01 --name jcbaksclu01 --output

table

If there are any upgrades available, you should see an output similar to the following.

In this example, your cluster can be upgraded to Kubernetes versions 1.14.5 and 1.14.6.

Chapter 7 Operating Azure Kubernetes Service

104

Listing 7-5.  az aks get-upgrades command output

Name ResourceGroup MasterVersion NodePoolVersion Upgrades

------- --------------- --------------- ----------------- --------------

default jcbaksrg01 1.13.10 1.13.10 1.14.5, 1.14.6

If there are no upgrades available, you should see the following error message as

the output.

Listing 7-6.  No upgrades available error

ERROR: Table output unavailable. Use the --query option to specify an

appropriate query. Use --debug for more info.

Note  You cannot skip Kubernetes minor versions when upgrading an AKS cluster.
For instance, upgrades from 1.12.x to 1.13.x or 1.13.x to 1.14.x are allowed,
but upgrade from 1.12.x to 1.14.x is not. To upgrade, from 1.12.x to 1.14.x, first
upgrade from 1.12.x to 1.13.x and then upgrade from 1.13.x to 1.14.x.

Now we can upgrade our AKS cluster to Kubernetes version 1.14.5 using az aks

upgrade command.

Listing 7-7.  az aks upgrade command

az aks upgrade --resource-group jcbaksrg01 --name jcbaksclu01 --kubernetes-

version 1.14.5

Note  Depending on the number of nodes you have, it can take some time
to upgrade your AKS cluster. The time taken for an upgrade operation can be
calculated by 10 minutes x total number of nodes in the cluster. In this
example, the upgrade operation must succeed within 30 minutes, or AKS will fail
the operation in order to avoid an unrecoverable cluster state. If you encounter any
upgrade failure, retry the cluster upgrade operation after this time-out has been
reached.

Chapter 7 Operating Azure Kubernetes Service

105

You can confirm the cluster upgrade was successful by running the following

command.

Listing 7-8.  Verify AKS upgrade operation

az aks show --resource-group jcbaksrg01 --name jcbaksclu01 --output table

You should see an output that confirms the cluster version as 1.14.5

Listing 7-9.  Verify AKS upgrade operation output

Name Location

ResourceGroup KubernetesVersion ProvisioningState Fqdn

----------- ------------------ --------------- ------------------- ----

--------------- ---

jcbaksclu01 australiasoutheast jcbaksrg01 1.14.5

Succeeded jcbaksclu01-dns-6bede950.hcp.australiasoutheast.

azmk8s.io

�Deleting an AKS Cluster

Even though you can delete an AKS cluster using a single line of code as shown in

Listing 7-10, make sure that you have made backups for your configuration and data

before proceeding with this operation.

Listing 7-10.  az aks delete command to delete an AKS cluster

az aks delete --name jcbaksclu01 --resource-group jcbaksrg01

�Creating Virtual Nodes

You can use virtual nodes to rapidly scale application workloads in AKS. The advantage

of using virtual nodes is that you can quickly provision pods and only pay per second

of their execution time. If you are using the cluster autoscaler (preview feature), you

need to wait until the node deployment is completed before running additional pods.

Currently, virtual nodes are only supported with Linux nodes and pods.

Chapter 7 Operating Azure Kubernetes Service

106

Virtual nodes are supported in the following Azure regions as of now:

•	 Australia East (australiaeast)

•	 Central US (centralus)

•	 East US (eastus)

•	 East US 2 (eastus2)

•	 Japan East (japaneast)

•	 North Europe (northeurope)

•	 Southeast Asia (southeastasia)

•	 West Central US (westcentralus)

•	 West Europe (westeurope)

•	 West US (westus)

•	 West US 2 (westus2)

Bear in mind that the virtual nodes are dependent on the features available in Azure

Container Instances (ACI), and therefore the following scenarios are not yet supported

with them:

•	 Using service principal to pull ACR images. You can use Kubernetes

secrets as a work-around.

•	 Virtual network limitations include VNet peering, Kubernetes

network policies, and outbound traffic to the Internet with network

security groups.

•	 Init containers.

•	 Host aliases.

•	 Arguments for exec in ACI.

•	 Daemonsets will not deploy pods to the virtual node.

•	 Windows Server nodes (currently in preview in AKS) are not

supported alongside virtual nodes. However, you can use virtual

nodes to schedule Windows Server containers without the need for

Windows Server nodes in an AKS cluster.

Chapter 7 Operating Azure Kubernetes Service

107

Note  Complete step-by-step instructions to create and configure an AKS cluster
to use virtual nodes can be found from the following URLs:

Using Azure CLI (https://docs.microsoft.com/en-au/azure/aks/
virtual-nodes-cli?view=azure-cli-latest)

Using Azure Portal (https://docs.microsoft.com/en-au/azure/aks/
virtual-nodes-portal?view=azure-cli-latest)

�Using Virtual Kubelet with Azure Kubernetes Service

When using Azure Container Instances (ACI) you don’t have to manage the underlying

compute infrastructure as Azure does this for you. Containers running in ACIs are

charged by the second for each running container. You can use the Virtual Kubelet

provider for ACI, with both Linux and Windows containers, and it can be scheduled on a

container instance as if it were deployed in a regular Kubernetes node.

The following diagram illustrates how Virtual Kubelet works. Essentially, the Virtual

Kubelet registers itself as a node in a Kubernetes cluster. This allows developers to allow

own APIs to interact with pods and containers by masquerading as a regular kubelet by

connecting Kubernetes to other APIs.

Note  AKS now provides native support for scheduling containers on ACI
using virtual nodes which only supports Linux containers as of now. Hence, it is
recommended to use Virtual Kubelet only when you need to schedule Windows
container instances.

For step-by-step instructions on using Virtual Kubelet with AKS, refer to the

following URL: https://docs.microsoft.com/en-au/azure/aks/virtual-

kubelet?view=azure-cli-latest.

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-cli?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-cli?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-portal?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-nodes-portal?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-kubelet?view=azure-cli-latest
https://docs.microsoft.com/en-au/azure/aks/virtual-kubelet?view=azure-cli-latest

108

�Using Kubernetes Dashboard

The default dashboard experience for Kubernetes includes a web dashboard that you

can use for basic management tasks. This dashboard allows you to view and monitor

basic health status and metrices for you applications, create and deploy container

service, as well as modify existing applications. The dashboard is running under

kube-system namespace.

The following command starts the Kubernetes dashboard for jcbaksclus01 cluster in

the jcbaskrg01 resource group.

Figure 7-1.  Virtual Kubelet architecture

Chapter 7 Operating Azure Kubernetes Service

109

Note  For an RBAC-enabled AKS cluster, make sure that a ClusterRoleBinding is
created before you start the Kubernetes dashboard. The Kubernetes dashboard
is deployed with minimal reader access by default and can display RBAC access
errors. The following code snippets illustrate using the kubectl create
clusterrolebinding command to create the binding for our example:

kubectl create clusterrolebinding kubernetes-dashboard
--clusterrole=cluster-admin --serviceaccount=kube-
system:kubernetes-dashboard.

Listing 7-11.  Starting the Kubernetes dashboard with az aks browse command

az aks browse --resource-group jcbaksrg01 --name jcbaksclu01

You should be automatically redirected to a new tab in your web browser after

executing the preceding command in your Azure Cloud Shell unless pop-up windows

are blocked in your browser. If not, copy and paste the URL address displayed in the

Azure CLI in your web browser as the following.

Figure 7-2.  Open Kubernetes dashboard in Azure CLI

Chapter 7 Operating Azure Kubernetes Service

110

�Scaling Azure Kubernetes Service
When you deploy n of applications in Azure Kubernetes Service, it will be required

to increase or decrease allocated compute resources based on the demand. This will

require the underlying Kubernetes nodes to change accordingly. There will be instances

where it is required to quickly provision many additional application instances.

This section explores the core scaling concepts in AKS that will help you to achieve

the preceding goals.

�Manually Scaling Pods or Nodes
In order to test how your application responds to the resource availability changes in

your AKS cluster, you can manually scale pods (replicas) and nodes. By manually scaling

these resources, you can define a set number of resources in your AKS cluster. In order to

manually scale, first you define the pod or node count, and then the Kubernetes

API schedules the creation of additional pods or node draining depending on the pod or

node count.

Figure 7-3.  Kubernetes dashboard

Chapter 7 Operating Azure Kubernetes Service

111

A complete tutorial on scaling pods in an AKS cluster can be found from the following

URL: https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-

scale#manually-scale-pods. In section “Manually Scaling AKS Cluster Nodes,” we have

discussed the steps involved in manually scaling your AKS cluster nodes.

�Automatically Scaling Pods or Nodes
AKS cluster need a way to automatically scale pods or nodes in order to adjust to the

varying application demands, depending on the traffic received by an application. AKS

clusters can scale in one of two ways:

•	 The horizontal pod autoscaler (HPA): This leverages the Metrics

Server in a Kubernetes cluster to monitor the resource demand

of pods. In case if an application requests for more resources, the

number of replicas is automatically increased to meet that demand.

•	 The cluster autoscaler: Monitors for pods that cannot be scheduled

on nodes due to resource limitations. Then, the cluster can

automatically increase the number of nodes.

�Horizontal Pod Autoscaler

In Kubernetes, the horizontal pod autoscaler (HPA) is used to monitor the resource

demand and automatically scale the number of pods. The HPA checks the Metrics API

every 30 seconds for any required changes in pod count by default. When and if changes

Figure 7-4.  Horizontal pod autoscaler architecture

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#manually-scale-pods
https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#manually-scale-pods

112

are required at any point, the number of pods is increased or decreased, respectively.

In AKS, HPA is supported with AKS clusters with Metrics Server for Kubernetes

1.8+ deployed.

If you are configuring the horizontal pod autoscaler for an AKS cluster, you will

have to define the minimum and maximum number of pods that the cluster can run.

In addition to that, you can also declare a metric to monitor and on which to base any

scaling decisions, that is, CPU usage.

A complete tutorial on setting up a horizontal autoscaler in an AKS cluster can

be found from the following URL: https://docs.microsoft.com/en-au/azure/aks/

tutorial-kubernetes-scale#autoscale-pods.

Note P revious scale events in an AKS cluster may not have been successfully
completed between Metrics API checks that happen every 30 seconds. This
phenomenon could potentially cause the HPA to change the number of pods before
the previous scale event can grasp the application workload and adjust to the
resource demands accordingly. To minimize such race events, cooldown or delay
values are set in an AKS cluster. These values depict how long the HPA must wait
after a scale event before another scale event can be triggered. By doing so, it will
allow the new pod count to take effect and the Metrics API to reflect the newly
distributed workload. The default delay value on scale-up events is 3 minutes,
whereas it is 5 minutes on scale-down events. These cooldown values cannot be
set by the user as of now.

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#autoscale-pods
https://docs.microsoft.com/en-au/azure/aks/tutorial-kubernetes-scale#autoscale-pods

113

�Cluster Autoscaler (Preview)

Cluster autoscaler (in preview) can adjust the number of nodes depending on the

requested compute resources in the node pool to rapidly respond to varying pod

demands. The cluster autoscaler can increase or decrease the number of nodes in

your AKS cluster accordingly, if it decides a resource variation is required. The cluster

autoscaler feature is supported in RBAC-enabled AKS clusters that run Kubernetes 1.10.x

or higher.

Usually the cluster autoscaler is used together with the horizontal pod autoscaler.

The HPA increases or decreases the number of pods based on application demand, while

the cluster autoscaler adjusts the number of nodes require to run those additional pods.

Note  Cluster autoscaler is a preview feature in AKS.

A complete tutorial on getting started with cluster autoscaler can be found from the

following URL: https://docs.microsoft.com/en-au/azure/aks/cluster-autoscaler.

Figure 7-5.  Cluster autoscaler architecture

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/cluster-autoscaler

114

�Burst On Demand with Azure Container Instances

Integrating with Azure Container Instances (ACI) allows you to rapidly scale your AKS

clusters. The built-in components in Kubernetes can scale the pod and node count.

But if your application demands rapid scaling, the HPA may schedule more pods than

what can be provided using the existing compute resources in the node pool. This

phenomenon can trigger the cluster autoscaler to deploy additional nodes in the node

pool; however, it can take some time for those additional nodes to be provisioned and

allow the Kubernetes scheduler to run pods on them.

ACI connected to AKS becomes a secured and logical extension of your AKS cluster.

Currently there are two ways to enable ACI on AKS:

•	 The Virtual Kubelet: When installed in your AKS cluster, this

component can present ACI as a virtual Kubernetes node. It supports

both Linux and Windows nodes.

•	 Virtual nodes: Currently in preview, these are deployed to an

additional subnet in the same VNet as your AKS cluster. This VNet

allows the traffic between ACI and AKS to be secured. Supports Linux

nodes only as of now.

Figure 7-6.  Bursting with Azure Container Instances

Chapter 7 Operating Azure Kubernetes Service

115

�Storage Options for Azure Kubernetes Service
Applications deployed to an AKS cluster require storage to store and retrieve their data.

For some workloads, these storages can be local, fast storage on the node and can be

released when pods are deleted, while some other workloads may need persistent data

storage hosted in Azure. Multiple pods may require sharing the same data volumes

and/or reattaching the data volumes if the pods are rescheduled on a different node. It is

also may be required to present sensitive data or application configuration into the pods.

Figure 7-7 depicts the storage architecture for AKS clusters.

Figure 7-7.  Storage architecture in AKS

In this section, let’s explore the core concepts in AKS that explains how storage is

provided to your application workloads.

Chapter 7 Operating Azure Kubernetes Service

116

�Volumes
A volume represents a method to store, retrieve, and persist data across pods and

through the application life cycle. Usually the volumes required to store and retrieve data

on AKS is based on Azure storage. These data volumes can either be manually created

and then assigned to pods directly or AKS can automatically create and allocate them

when needed. These data volumes can either use

•	 Azure Disks: These can be used to create a Kubernetes DataDisk

resource. Azure Disks can use Azure Premium storage or Azure

Standard storage. For production and development workloads, it

is recommended to use Premium storage. These are mounted as

ReadWriteOnce and hence only available to a single node.

•	 Azure Files which are used to mount an SMB 3.0 share backed by

an Azure storage account to pods. With Azure Files, you share data

across multiple nodes and pods. Both Azure Premium storage and

Azure Standard storage are supported with Azure Files.

Kubernetes volumes can also be leveraged to inject data into a pod for use by the

containers. Additional volume types in Kubernetes include

•	 emptyDir: Used as temporary space for a pod

•	 secret: Used to inject sensitive data into pods, such as passwords

•	 configMap: Used to inject key-value pair properties into pods, such

as application configuration information

�Persistent Volumes
A persistent volume (PV) is created and managed by the Kubernetes API. It can exist

beyond the lifetime of an individual pod, whereas traditional volumes created as part of

a pod life cycle only exist until the pod is deleted. You can use either Azure Disks or Files

to provide a PV.

A persistent volume can be either manually created by a cluster admin or

dynamically generated by the Kubernetes API server. In case a scheduled requests

storage that is not currently available, Kubernetes will create the underlying Azure Disk

or Files storage and attach it to the pod. This scenario is called Dynamic provisioning

and it uses a StorageClass to determine what type of Azure storage is required.

Chapter 7 Operating Azure Kubernetes Service

117

�Storage Classes
In order to classify different storage tiers, you can create a StorageClass. The

StorageClass also defines the reclaimPolicy. The reclaimPolicy controls the behavior of

the Azure storage resource when the pod is deleted, and the persistent volume may no

longer be required. When a pod is deleted, the storage resource can either be deleted or

retained for use with a future pod.

There are two initial StorageClasses that can be created in AKS:

•	 default: Which utilizes Azure Standard storage to create a Managed

Disk. The reclaim policy states that when the corresponding pod is

deleted, the Azure Disk will also be deleted.

•	 managed-premium: Which utilizes Azure Premium storage to

create a Managed Disk. The reclaim policy states that when the

corresponding pod is deleted, the Azure Disk will also be deleted.

When no StorageClass is specified while creating a PV, the default StorageClass is used.

In the following YAML manifest, it is stated that Premium Managed Disks are to be

used and the Azure Disk must be retained when the pod is deleted:

Listing 7-12.  Defining a storage class in YAML

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: managed-premium-retain

provisioner: kubernetes.io/azure-disk

reclaimPolicy: Retain

parameters:

 storageaccounttype: Premium_LRS

 kind: Managed

�Persistent Volume Claims
If you want to create either disk or file storage of a defined StorageClass, access mode,

and size, define a PersistentVolumeClaim. If there are no existing resources to service the

claim based on its StorageClass, the Kubernetes API server can dynamically provision

Chapter 7 Operating Azure Kubernetes Service

118

the underlying storage resource. Once the volume has been connected to the pod, the

pod definition will include the volume mount as well.

A PV is bound to a PersistentVolumeClaim after an available storage resource has been

assigned to the pod that requests it. The mapping of persistent volumes to claims is 1:1

The following is a sample YAML manifest which denotes a PV claim with

managed-premium StorageClass and a disk 5 Gi in size.

Listing 7-13.  Defining a PersistentVolumeClaim in YAML

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: azure-managed-disk

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: managed-premium

 resources:

 requests:

 storage: 5Gi

A PV claim is specified to request the desired storage when a pod definition is

created. Here you can also specify the volumeMount for your applications to read and

write data. The following YAML manifest illustrates how the previous PV claim can be

used to mount a volume at /mnt/azure.

Listing 7-14.  Defining a volumeMount in a PersistentVolumeClaim in YAML

kind: Pod

apiVersion: v1

metadata:

 name: nginx

spec:

 containers:

 - name: myfrontend

 image: nginx

 volumeMounts:

Chapter 7 Operating Azure Kubernetes Service

119

 - mountPath: "/mnt/azure"

 name: volume

 volumes:

 - name: volume

 persistentVolumeClaim:

 claimName: azure-managed-disk

We have briefly discussed the storage options available for AKS workloads. Next

step is to create dynamic and static volumes for AKS. The following articles from the

Microsoft documentation provide a holistic overview on how to do so:

•	 Create a static volume using Azure Disks (https://docs.microsoft.

com/en-au/azure/aks/azure-disk-volume).

•	 Create a static volume using Azure Files (https://docs.microsoft.

com/en-au/azure/aks/azure-files-volume).

•	 Create a dynamic volume using Azure Disks (https://docs.

microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv).

•	 Create a dynamic volume using Azure Files (https://docs.

microsoft.com/en-au/azure/aks/azure-files-dynamic-pv).

�Networking in Azure Kubernetes Service
Application components in a microservices approach must work together to process

their desired tasks. This application communication can be achieved using a few

components provided by Kubernetes. For an example, the applications can be either

exposed internally or externally, can be load balanced for high availability, and have

SSL.TLS termination for ingress traffic as well as for routing of multiple components.

Furthermore, developers may need you to restrict the flow of network traffic into or

between pods and nodes due to security concerns.

In this section, we will dive into core networking concepts of AKS and some of the

examples of providing secure network connectivity to your pods and nodes.

�Kubenet vs. Azure Container Networking Interface (CNI)
An AKS cluster uses one of the following two networking models:

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/azure-disk-volume
https://docs.microsoft.com/en-au/azure/aks/azure-disk-volume
https://docs.microsoft.com/en-au/azure/aks/azure-files-volume
https://docs.microsoft.com/en-au/azure/aks/azure-files-volume
https://docs.microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-disks-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-files-dynamic-pv
https://docs.microsoft.com/en-au/azure/aks/azure-files-dynamic-pv

120

�Kubenet (Basic) Networking

This is the default configuration option for an AKS cluster. In kubenet, the AKS nodes

obtain an IP address from the Azure VNet subnet. Pods receive an IP address from a

logically different address space to the Azure VNet subnet of the nodes. For the pods

to reach resources on the Azure VNet, network address translation (NAT) is then

configured. The source IP address of the traffic is NAT’d to the node’s primary IP address.

Nodes use the kubenet Kubernetes plugin. You can either allow Azure Fabric to

create and configure the VNets for you or deploy your AKS cluster into an existing

subnet of a predefined VNet. Even though you are deploying to a predefined VNet, only

the nodes will receive a routable IP address; pods use NAT to communicate with other

resources external to the AKS cluster.

Azure Container Networking Interface (CNI) - Adavanced
Networking

Each pod gets an IP address from the subnet and can be accessed directly if you are

using the Azure CNI model. But remember that these IP addresses must be unique

across the VNet network space and must be planned in well advance. There is a

configuration parameter for the maximum number of pods that each node supports. An

equivalent number of IP addresses per node are then reserved for that node.

The following table lists the behavioral differences between kubenet and Azure CNI.

Table 7-1.  Behavioral Differences Between Kubenet and Azure CNI

Capability Kubenet Azure CNI

Deploy cluster in existing or new virtual

network

Supported – UDRs manually applied Supported

Pod-pod connectivity Supported Supported

Pod-VM connectivity; VM in the same

virtual network

Works when initiated by pod Works both ways

Pod-VM connectivity; VM in peered

virtual network

Works when initiated by pod Works both ways

On-premises access using VPN or

Express Route

Works when initiated by pod Works both ways

(continued)

Chapter 7 Operating Azure Kubernetes Service

121

Table 7-2 lists the advantages and disadvantages of kubenet and Azure CNI at a

high level.

Capability Kubenet Azure CNI

Access to resources secured by service

endpoints

Supported Supported

Expose Kubernetes services using a

load balancer service, App Gateway, or

ingress controller

Supported Supported

Default Azure DNS and Private Zones Supported Supported

Table 7-1.  (continued)

Table 7-2.  Advantages and Disadvantages of Kubenet vs. Azure CNI

Model Advantages Disadvantages

Kubenet •  Conserves IP address space.

•  �Uses Kubernetes internal or external load

balancer to reach pods from outside of the

cluster.

• � You must manually manage and

maintain user-defined routes

(UDRs).

•  Maximum of 400 nodes per cluster.

Azure CNI Pods get full virtual network connectivity and can

be directly reached from outside of the cluster.

Requires more IP address space.

Regardless of the network model you have selected, support policies for AKS depict

the network tuning capabilities such as service endpoints and UDRs that you can make

in your AKS clusters:

•	 If you manually create the virtual network resources for an AKS

cluster, you are supported when configuring your own UDRs or

service endpoints.

•	 If the Azure platform automatically creates the virtual network

resources for your AKS cluster, it is not supported to manually change

those AKS-managed resources to configure your own UDRs or

service endpoints.

Chapter 7 Operating Azure Kubernetes Service

122

Note  For a complete record of support policies for AKS, visit the following URL:
https://docs.microsoft.com/en-au/azure/aks/support-policies.

�Network Security Groups and Network Policies
It is not recommended to manually configure network security group rules to filter pod

traffic in an AKS cluster. The Azure platform will create and update the appropriate rules

as part of the AKS managed service. In order to automatically apply traffic filter rules to

pods, you can utilize Network Policies. On the one hand, it is a feature available in AKS

that allows you to control the traffic between pods. You can decide whether to allow

or deny traffic based on settings such as assigned labels, namespace, or traffic port.

Network security groups on the other hand are for the AKS nodes, not pods.

Note  For step-by-step instructions on securing pod traffic using Azure Network
Policies in AKS, visit the following URL: https://docs.microsoft.com/en-
au/azure/aks/use-network-policies.

�Access and Identity in Azure Kubernetes Service
In Azure, there are multiple methods to authenticate and secure AKS clusters. Role-based

access controls (RBACs) allow granting users or groups access to only the resources they

need. By integrating AKS with Azure Active Directory, you are able to further enhance

the security and permissions structure. This section provides a high-level overview of the

access and identity options available to you when operating an AKS cluster.

�Kubernetes Service Accounts
A service account is a primary user type in Kubernetes, and it exists in and is managed

by the Kubernetes API. The service account credentials are stored as Kubernetes

secrets, which allows them to be used by authorized pods to communicate with the API

server. API requests provide an authentication token for a service account or a regular

user account. Regular user accounts are leveraged to provide traditional access to

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/support-policies
https://docs.microsoft.com/en-au/azure/aks/use-network-policies
https://docs.microsoft.com/en-au/azure/aks/use-network-policies

123

administrators or developer who are using an AKS cluster, although Kubernetes API itself

doesn’t provide an identity management solution for such scenarios. By integrating AKS

with Azure Active Directory, you can achieve this goal.

�Azure Active Directory Integration
Azure Active Directory (AAD is a multi-tenant, cloud-based directory, and identity

management solution that provides core directory services, application access

management, and identity protection. You can integrate on-premises identities into AKS

clusters to provide unified account management and security processes by integrating

AKS with AAD.

For an example, in AAD-integrated AKS clusters, you can grant users or groups

access to Kubernetes resources within a namespace or across the cluster. To retrieve

a kubectl configuration context, a user can execute the az aks get-credentials

command. Afterwards, when a user interacts with the AKS cluster with kubectl, they will

be prompted to sign in with their respective Azure AD credentials. This way, the users

can only access the resources defined by the AKS cluster administrator.

�Azure Role-Based Access Controls (RBACs)
Apart from RBACs provided by Kubernetes API, AKS cluster access can be managed by

Azure role-based access controls (RBACs). The difference is that Kubernetes RBAC is

designed to work on resources within your AKS cluster, and Azure RBAC is designed to

work on resources within your Azure subscription. Azure RBAC enables you to create

role definitions that outline the permissions to be applied for your AKS clusters. You

can then assign a user or group for a role definition that includes a defined scope, which

could be an individual resource, a resource group, or across the Azure subscription.

�Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings
In Kubernetes RBAC, you first define permissions as a Role. Kubernetes roles grant

permissions, and there is no concept of a deny permission. Roles are used to grant

permissions within a namespace.

The purpose of a ClusterRole is like that of a role, but a ClusterRole can be applied to

resources across the entire cluster, not a specific namespace.

Chapter 7 Operating Azure Kubernetes Service

124

When you have roles defined, you assign those Kubernetes RBAC permissions with

a RoleBinding. In AAD-integrated AKS clusters, bindings are how Azure AD users are

granted permissions to perform actions within the cluster. Role bindings are used to

assign roles for a defined namespace where you can segregate access to individual

clusters.

A ClusterRoleBinding on the other hand works in the same way as role bindings

but can be applied to resources across the entire cluster, not a specific namespace. This

approach is ideal in situations where you need to grant admins or support engineers

access to all resources across the board in an AKS cluster.

�Control Deployments with Azure Policy (Preview)
Azure Policy can be integrated with AKS so that you can apply policy enforcement to

your AKS clusters in a centralized and consistent manner. Further complimented by

using GateKeeper, which is an admission controller webhook for Open Policy Agent

(OPA), Azure Policy allows you to centrally manage and report on the compliance state

of your Azure resources and AKS clusters.

Follow the following steps to enable and apply this feature to your AKS clusters.

�Enable the Preview

First, you must enable the Microsoft.ContainerService resource provider and the

Microsoft.PolicyInsights resource provider and then be approved to join the preview.

The following example illustrates how you can do so using Azure CLI in Azure Cloud Shell.

Listing 7-15.  Join the AKS Policy preview via Azure CLI

Provider register: Register the Azure Kubernetes Services provider

az provider register --namespace Microsoft.ContainerService

Provider register: Register the Azure Policy provider

az provider register --namespace Microsoft.PolicyInsights

Feature register: enables installing the add-on

az feature register --namespace Microsoft.ContainerService --name AKS-

AzurePolicyAutoApprove

Chapter 7 Operating Azure Kubernetes Service

125

Feature register: enables the add-on to call the Azure Policy resource

provider

az feature register --namespace Microsoft.PolicyInsights --name AKS-

DataplaneAutoApprove

�Azure Policy Add-On

This add-on, installed into the azure-policy namespace, connects the Azure Policy

service to the GateKeeper admission controller. The following are the functionalities of

this add-on:

•	 Checks with Azure Policy for assignments to the AKS cluster

•	 Downloads and caches policy details, including the rego policy

definition, as configmaps

•	 Runs a full scan compliance check on the AKS cluster

•	 Reports auditing and compliance details back to Azure Policy

Installation Prerequisites

You need to install the preview extension before you install the add-on in your AKS

cluster. Follow the following procedure to do so:

•	 Make sure that you are running Azure CLI version 2.0.62. Run az

--version to find the version.

•	 The AKS cluster must be version 1.10 or higher. The following Azure

CLI excerpt denotes how to check that.

Listing 7-16.  Check AKS version

az aks list

•	 Install version 0.4.0 of the Azure CLI preview extension for AKS, aks-

preview.

Chapter 7 Operating Azure Kubernetes Service

126

Listing 7-17.  Install Azure CLI preview extension for AKS

Install/update the preview extension

az extension add --name aks-preview

Validate the version of the preview extension

az extension show --name aks-preview --query [version]

Note  If the aks-preview extension has been deployed already, please uninstall any
updates executing the az extension update --name aks-preview command.

Installing the Azure Policy Add-on

Once the preceding perquisites are installed, you can proceed with installing the Azure

Policy add-on. The following Azure CLI excerpt illustrates how to do so.

Listing 7-18.  Install Azure Policy add-on

az aks enable-addons --addons azure-policy --name jcbaksclu01 --resource-

group jcbaksrg01

�Assigning Policy Definitions to AKS

Currently Azure Policy for AKS is in limited preview and only supports built-in policy

definitions. You can find the built-in policies for managing AKS using the Azure portal as

follows:

•	 Click All services in the left pane and then search and select Policy.

•	 In the Azure Policy page, select Definitions.

•	 From the Category drop-down list, click Select all and then select

Kubernetes service.

•	 Select the policy definition you want to apply, and then select the

Assign button.

Chapter 7 Operating Azure Kubernetes Service

127

Note  Make sure the Scope must include the AKS cluster resource, when
assigning the Azure Policy for AKS definition.

�Policy Validation

The Azure Policy add-on checks in with Azure Policy Service for changes in policy

assignments every 5 minutes. All configmaps in the azure-policy namespace are

removed and then recreated for GateKeeper during this refresh cycle by the add-on.

The add-on requests for a full scan of the cluster every 5 minutes. Once the details

are gathered from the full scan along with any real-time evaluations by GateKeeper of

attempted changes to the cluster, the results are reported back to the Azure Policy to

include compliance details such as Azure Policy assignment. During the audit cycle, only

results for active policy assignments are returned.

Note  It’s not recommended or supported to make changes to the namespace,
although a cluster admin may have permission to the azure-policy namespace and
any manual changes made are lost during the refresh cycle.

�Azure Policy Add-On Logs

The Azure Policy add-on logs are kept as a Kubernetes controller/container in the AKS

cluster. These logs are exposed in the Insights page of the AKS cluster.

GateKeeper Logs

You need to GateKeeper logs for new resource requests. Follow the procedure to enable

and review Kubernetes master node logs in AKS in the following URL: https://docs.

microsoft.com/en-au/azure/aks/view-master-logs.

Listing 7-19 is an example query to view denied events on new resource requests.

Listing 7-19.  KQL query to view denied events on new resource requests

| where Category == "kube-audit"

| where log_s contains "admission webhook"

| limit 100

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-au/azure/aks/view-master-logs
https://docs.microsoft.com/en-au/azure/aks/view-master-logs

128

To view logs from GateKeeper containers, follow the steps in the preceding article

and check the kube-apiserver option in the Diagnostic settings pane.

�Security Concepts in Azure Kubernetes Service
Security of an AKS cluster is paramount like any other resource in your datacenter.

Kubernetes security components such as network policies and secrets are complimented

by Azure features such as network security groups and orchestrated AKS cluster

upgrades.

�Master Security
The Kubernetes master components are part of the AKS managed service provided

by Azure. Each AKS cluster has its own single-tenant, dedicated Kubernetes master

to provide the API server, scheduler, and so on in Azure. This master is managed and

maintained by Azure. The default behavior for the Kubernetes API server to use a public

IP address and a fully qualified domain name (FQDN). Access to the API server can be

controlled by using Kubernetes RBACs and Azure Active Directory.

�Node Security
AKS nodes are Azure VMs that are managed and maintained by yourself. Linux AKS

nodes run on an optimized Ubuntu distribution with the Moby container runtime.

Windows Server nodes (currently in preview in AKS) run an optimized Windows Server

2019 release with the Moby container runtime. During the creation or a scale-up

operation in an AKS cluster, these nodes are automatically deployed with the latest OS

security updates and configurations.

The following are some of the facts and considerations when planning for AKS node

security:

•	 OS security patches are automatically applied by the Azure platform

to Linux nodes on a nightly basis.

•	 If a Linux OS security update requires a host reboot, it is not

automatically performed.

Chapter 7 Operating Azure Kubernetes Service

129

•	 You can either manually reboot the Linux nodes or use Kured, an

open source reboot daemon for Kubernetes.

•	 Windows Update does not automatically run and apply the latest

updates for Windows Server nodes.

•	 You should perform an upgrade on the Windows Server node pool(s)

in your AKS cluster by yourself. This upgrade process creates nodes

that run the latest Windows Server image and patches and then

removes the older nodes.

•	 Nodes are by default deployed into a private virtual network subnet,

with no public IP addresses assigned. SSH is enabled by default is

only available using the internal IP address for troubleshooting and

access purposes.

•	 The nodes use Azure Managed Disks for storage. For most VM

SKUs, these are Premium disks with the stored data automatically

encrypted at rest within the Azure platform.

•	 Additional security features such as Pod Security Policies or more

fine-grained role-based access controls (RBAC) are needed to secure

nodes from exploits that can occur with multi-tenant usage.

•	 For hostile multi-tenant workloads, you should use physically

isolated clusters by leveraging hypervisor-level security where the

security domain for Kubernetes becomes the entire cluster, not an

individual node.

•	 The best practice for multi-tenant workloads is to use logical isolation

to separate teams and projects. It is recommended to minimize

the number of physical AKS clusters you deploy to isolate teams or

applications.

Chapter 7 Operating Azure Kubernetes Service

130

�Cluster Upgrades
The AKS cluster upgrade process involves individually cordoning the nodes from the

cluster so that new pods cannot be scheduled on them. These nodes are then drained

and follow the following procedure to upgrade:

•	 A new node is deployed into the node pool which runs the latest OS

image and patches.

•	 One of the existing nodes is identified and marked for the upgrade.

Pods on this node are gracefully terminated and scheduled on the

other nodes in the node pool.

•	 This targeted node is then deleted from the AKS cluster.

•	 The next node in the cluster is cordoned and drained using the

same process until all nodes are successfully replaced as part of the

upgrade process.

�Kubernetes Secrets
Sensitive data such as access credentials or keys can be ingested into pods using a

Kubernetes Secret. The secret is first created using the Kubernetes API, and when you

define your pod or deployment, a specific Secret can be requested. These secrets are only

provided to nodes that have a scheduled pod, which requires a secret, and are stored in

tmpfs, not written in the disk. A Secret is deleted from the node’s tmpfs, when the last

pod on a node requests its deletion. Furthermore, Kubernetes secrets are stored within a

defined namespace and can only be accessed by pods within the same namespace.

By using Kubernetes secrets, you can minimize the sensitive information that is

defined in the pod or service YAML manifest. Here you will request the Secret stored in

the Kubernetes API server as part of your YAML manifest. By using this approach, you

are only providing specific pod access to the Secret.

Note  The raw secret manifest files contain the secret data in base64 format,
and hence, this file should be treated as sensitive information and should never be
committed to source control.

Chapter 7 Operating Azure Kubernetes Service

131

�Monitoring Azure Kubernetes Service
An important part of operating Azure Kubernetes Service is being able to monitor the

cluster, the nodes, and the workloads running in that AKS instance. Running production

workloads requires a solid level of reliability. Azure comes with Kubernetes, and

container monitoring out of the box is available in Azure Monitor. In this section, we are

going to dive into the Kubernetes and container monitoring services that are available in

Azure Monitor.

�Azure Monitor for Containers
�Overview

The monitoring service in Azure Monitor is called Azure Monitor for containers. Azure

Monitor for containers gives you monitoring from two perspectives: the first one

being directly from an AKS cluster and the second one being all AKS clusters in your

subscription/s. The monitoring looks at two key areas “health status” and “performance

charts” and consists of

Insights: Monitoring for the Kubernetes cluster and containers.

Metrics: Metric-based cluster and pod charts. It is based on a time

series db which collects the data directly from the AKS resource

provider for basic and standard performance metrics on pods and

nodes.

Log Analytics: K8s and container logs viewing and search. It is the

platform where Azure Monitor for containers store the data. You

can run KQL queries to view all telemetries that Azure Monitor

for containers collects such as perf, health, kubernetes events,

container logs, and inventory.

Chapter 7 Operating Azure Kubernetes Service

132

�Enable Monitoring

The easiest way to enable monitoring for AKS is while deploying the AKS cluster.

Refer to Chapter 5, “Deploying Azure Kubernetes Service,” for details on deploying an

AKS cluster.

Monitoring of an existing AKS cluster can be enabled using one of the following

methods:

•	 Within Azure Monitor or within the AKS cluster in the Azure portal

•	 Azure PowerShell cmdlet New-AzResourceGroupDeployment using

the ARM Template from here: https://docs.microsoft.com/en-us/

azure/azure-monitor/insights/container-insights-enable-

existing-clusters#enable-using-an-azure-resource-manager-

template

•	 Azure CLI

•	 Terraform

Figure 7-8.  Azure Monitor for containers architecture

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-enable-existing-clusters#enable-using-an-azure-resource-manager-template

133

The best and fastest way to enable monitoring for an AKS cluster is from the Azure

CLI in Azure Cloud Shell. To do this from a web browser, navigate to https://shell.

azure.com PowerShell and run the following.

Listing 7-20.  Enabling Azure Monitor for containers using Azure CLI

az aks enable-addons -a monitoring -n ExistingAKSCluster -g

ExistingAKSClusterResourceGroup

�Azure Monitor

In Azure Monitor, you will find Containers under Insights. Here you will see a health

summary across all AKS clusters in your Azure subscription. Also, you will see how many

nodes and system/user pods an AKS cluster has and if there are any health issues with a

node or pod. Click a cluster from here, and it will bring you to the Insights section on the

AKS cluster itself. Clicking the AKS cluster will bring you to the Insights section of Azure

Monitor for containers on the actual AKS cluster. Here you will see Insights, Metrics, and

Logs. Let’s now dive into each of these three areas.

Figure 7-9.  Azure Monitor for containers overview page

Insights

Within the Insights area, you will find a lot of useful data in regard to monitoring your

AKS cluster. Inside Insights, you have these four areas: Cluster, Nodes, Controllers, and

Containers.

Chapter 7 Operating Azure Kubernetes Service

https://shell.azure.com/
https://shell.azure.com/

134

Cluster

Within the Cluster tab, you will find charts with key performance metrics for your AKS

clusters’ health. It has performance charts for your node count with status and pod count

with status, along with aggregated node memory and CPU utilization across the cluster.

In here you can change the time range from real time, hours to days, and add filters to

scope down to specific information such as service, namespace, node pool, and nodes

that you want to see.

Nodes

On the Nodes tab, you will see the nodes running in your AKS cluster along with uptime,

number of pods on the node, CPU usage, memory working set, and memory RSS. You

can click the arrow next to a node to expand it, displaying the pods that are running on it.

This provides you a quick way to see the noisy neighbors in your AKS cluster.

Controllers

On the Controllers tab, you will find the health of the cluster’s controllers. Again, here

you will see CPU usage, memory working set, and memory RSS of each controller and

what is running a controller. For example, you could see a kubernetes-dashboard pod

running on the kubernetes-dashboard controller.

You can also view the properties of the kubernetes-dashboard pod. The properties

will give you information like the pod name, pod status, Uid, label, and more.

Containers

On the Containers tab, you will find all the containers in the AKS cluster. And as with the

other tabs, you can see CPU usage, memory working set, and memory RSS. You also will

see status, the pod it is part of, the node it’s running on, its uptime, and if it has had any

restarts.

You also can see a container logs in the containers tab. To do this, select a container

to show its properties. Within the properties, you can click View container live logs as

shown in the following screenshot or View container logs. Container log data is collected

every three minutes. STDOUT and STDERR is the log output from each Docker container

that is sent to Log Analytics.

Chapter 7 Operating Azure Kubernetes Service

135

Clicking View live data (preview) will bring you to the Log Analytics log search page

with that container’s logs and events shown in the results pane.

Note  Live data is available in node, controller, and containers tabs. They will
show you kubernetes events (per cluster, namespace, and/or nodes and/or pods)
and container logs.

Figure 7-10.  Azure Monitor for containers live logs and events

Figure 7-11.  Azure Monitor for containers analytics view

Chapter 7 Operating Azure Kubernetes Service

136

kube-system is not currently collected and sent to Log Analytics. If you are not

familiar with Docker logs, more information on STDOUT and STDERR can be found

on this Docker logging article here: https://docs.docker.com/config/containers/

logging.

Note  If you want to collect logs for kube-system, you can do so by changing
the configmap as per the following article: https://docs.microsoft.com/
en-us/azure/azure-monitor/insights/container-insights-agent-
config

�Metrics

In the metrics area, you can see metric-based nodes and pod charts that can help you

see information that is important to you about an AKS cluster. The following screenshot

shows a couple of example charts displaying pods by phase split based on namespace

and total of available cores in a cluster.

Figure 7-12.  Azure Monitor for containers metrics view

Chapter 7 Operating Azure Kubernetes Service

https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-agent-config

137

At the time of writing this book, the only available standard metric namespace is

microsoft.containerservice/managedclusters (from AKS resource provider) and

custom metrics namespaces insights.container/nodes and insights.container/pods

(from container insights). Aggregation can be Sum or Avg and the metrics you can see in

the following screenshot:

Figure 7-13.  Azure Monitor for containers available metrics

Within the metrics area, you can pin charts to your Azure dashboard, and you can

create an alert based on a condition such as when pods are in a failed state.

Figure 7-14.  Create alert rules for Azure Monitor for containers

Chapter 7 Operating Azure Kubernetes Service

138

�Log Analytics

Log Analytics is a feature of Azure Monitor. Log Analytics is utilized for many Azure

services for viewing logs and searches; to analyze data to identify trends, patterns, and

issues; for anomaly detection through Machine Learning; and more. In Log Analytics

you can get deep insights into your AKS cluster and containers. The following screenshot

shows the log schema that is collected in Azure Monitor for containers:

Figure 7-15.  Azure Monitor for containers log schema

The data types in the ContainerInsights schema are what appear in Log Analytics

search results. One way to show the Log Analytics search page is by clicking Logs from

within the AKS cluster. From the search page, you can filter down the results of a search

or run a query.

From the Log Analytics search page, you can build queries to retrieve scoped data.

Here are three example Log Analytics queries for retrieving AKS data.

Listing 7-21.  KQL query samples for retrieving AKS data

Pods that have a restart count greater than 0 in the last 48 hours

let startTimestamp = ago(48hrs);

KubePodInventory

| where ClusterName =~ "AKSCLUSTERNAME"

Chapter 7 Operating Azure Kubernetes Service

139

| where ContainerRestartCount > 0

| where isnotnull(Name)

Container lifecycle

ContainerInventory

| �project Computer, Name, Image, ImageTag, ContainerState, CreatedTime,

StartedTime, FinishedTime

| render table

Kubernetes events

KubeEvents_CL

| where not(isempty(Namespace_s))

| sort by TimeGenerated desc

| render table

Creating an Alert Rule Through Log Analytics

We are using the following sample query that returns pod phase counts based on all

phases – Failed, Pending, Unknown, Running, or Succeeded – to create an alert rule

through Log Analytics queries.

Listing 7-22.  KQL query sample to retrieve pod phase counts based on

all phases

let endDateTime = now();

 let startDateTime = ago(1h);

 let trendBinSize = 1m;

 let clusterName = '<your-cluster-name>';

 KubePodInventory

 | where TimeGenerated < endDateTime

 | where TimeGenerated >= startDateTime

 | where ClusterName == clusterName

 | distinct ClusterName, TimeGenerated

 �| �summarize ClusterSnapshotCount = count() by bin(TimeGenerated,

trendBinSize), ClusterName

 | join hint.strategy=broadcast (

 KubePodInventory

Chapter 7 Operating Azure Kubernetes Service

140

 | where TimeGenerated < endDateTime

 | where TimeGenerated >= startDateTime

 | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus

 | summarize TotalCount = count(),

 PendingCount = sumif(1, PodStatus =~ 'Pending'),

 RunningCount = sumif(1, PodStatus =~ 'Running'),

 SucceededCount = sumif(1, PodStatus =~ 'Succeeded'),

 FailedCount = sumif(1, PodStatus =~ 'Failed')

 by ClusterName, bin(TimeGenerated, trendBinSize)

) on ClusterName, TimeGenerated

 | �extend UnknownCount = TotalCount - PendingCount - RunningCount -

SucceededCount - FailedCount

 | project TimeGenerated,

 TotalCount = todouble(TotalCount) / ClusterSnapshotCount,

 PendingCount = todouble(PendingCount) / ClusterSnapshotCount,

 RunningCount = todouble(RunningCount) / ClusterSnapshotCount,

 �SucceededCount = todouble(SucceededCount) /

ClusterSnapshotCount,

 FailedCount = todouble(FailedCount) / ClusterSnapshotCount,

 UnknownCount = todouble(UnknownCount) / ClusterSnapshotCount

| summarize AggregatedValue = avg(PendingCount) by bin(TimeGenerated,

trendBinSize)

Note  The following procedure to create an alert rule for container resource
utilization requires leveraging a new log alerts API as in the following URL:
https://docs.microsoft.com/en-us/azure/azure-monitor/
platform/alerts-log-api-switch.

Follow the following steps to create a log alert in Azure Monitor by using Log

Analytics queries:

	 1.	 Log into the Azure portal, select Monitor from the left pane,

navigate to Insights, and then select Containers.

	 2.	 Select a cluster from the list in the Monitored Clusters tab.

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log-api-switch
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-log-api-switch

141

	 3.	 Select Logs to open the Azure Monitor logs page under

Monitoring. In this page, you can write and execute Azure Log

Analytics queries.

	 4.	 On the Logs page, select +New alert rule.

	 5.	 Under the Condition section, select Whenever the Custom log
search is <logic undefined> custom log condition. Since we're

creating an alert rule directly from the Azure Monitor logs page,

the custom log search signal type is automatically selected.

	 6.	 Paste the query from Listing 7-22 into the Search query field.

	 7.	 Follow the following steps to configure the alert:

	 a.	 Select Metric measurement under the Based on drop-down list.

Here a metric measurement creates an alert for each object in the

query that has a value above our specified threshold.

	 b.	 Under Condition, select Greater than, and enter 75 as an initial

baseline Threshold for the CPU and memory utilization alerts. For

the low disk space alert, enter 90. You can enter a different value that

meets your criteria.

	 c.	 Select Consecutive breaches, under the Trigger Alert Based On

section. In the drop-down list, select Greater than and enter 2.

	 d.	 If you want to configure an alert for container CPU or memory

utilization, select ContainerName under Aggregate on. If you want

to configure for cluster node low disk alert, select ClusterId.

	 e.	 Under the Evaluated based on section, configure the Period value to 60
minutes. By doing so, the rule will execute every 5 minutes and will return

records that were created within the last hour from the current time. When

you set the time span to a wider window that will result in potential data

latency to ensures that the query returns data to avoid any false negative

where the alert is never triggered.

	 8.	 Click Done.

	 9.	 Provide a meaningful name in the Alert rule name field. You can

also specify a Description that provides details about what this

alert does. Finally select an appropriate severity level for this alert.

Chapter 7 Operating Azure Kubernetes Service

142

	 10.	 Accept the default value for Enable rule upon creation, so that

the alert is immediately activated.

	 11.	 You can select an existing Action Group or create a new group.

This is how you can ensure that the same actions are taken every

time that this alert is triggered. You can configure this section,

depending how your ITSM team manages incidents.

	 12.	 Click Create alert rule to complete the alert rule. The rule starts

executing immediately.

For more information on the creating alerts using the Log Analytics query language,

you can visit the Microsoft documentation here: https://docs.microsoft.com/en-us/

azure/azure-monitor/insights/container-insights-alerts.

�Kubelet Logs

If you have issues with a node, you should start your troubleshooting using the node

monitoring available in Azure Monitor for containers. If there is a need to go beyond

Azure Monitor for containers, you can use the kubelet logs. You can view the kubelet

logs from any of the AKS nodes using journalctl. To do this, you need to first SSH to the

cluster node you want to see the logs for. Once connected to the node through SSH,

execute the following syntax.

Listing 7-23.  kubelet log retrieval

sudo journalctl -u kubelet -o cat

That will begin rolling through the kubelet logs giving you insight into activity

occurring on the node.

�Kubernetes Master Component Logs

It is important to note that with AKS the Kubernetes master node logs are not collected

by default. These logs are not collected because AKS is a managed service by Microsoft

and they manage the master Kubernetes nodes. Hence, it is not common to dig into

troubleshooting master nodes. In the event that you need to see logs from any of

the master nodes, you can turn on log collection sending the logs to a Log Analytics

workspace.

Chapter 7 Operating Azure Kubernetes Service

https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-alerts
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-alerts

143

To enable the master node log collection in the Azure portal, navigate to the

AKS resource group. Do not go to the AKS resource group with this name format

MC_ResourceGroupNAME_AKSClusterNAME_REGION. Once in the AKS resource

group, click Diagnostic settings. Click the AKS cluster.

Figure 7-16.  Diagnostics settings for AKS cluster

Then click Add diagnostic setting.

Figure 7-17.  Add diagnostics settings for AKS cluster

Configure the diagnostics settings like in the following screenshot to send the logs

to a Log Analytics workspace. You will give the diagnostics collection a name, select or

create a new Log Analytics workspace, and select the master nodes that you want to

collect logs from.

Chapter 7 Operating Azure Kubernetes Service

144

After you save the diagnostics log settings, you should now see this set on the AKS

resource group as shown in Figure 7-19.

To see the actual logs from the Kubernetes master nodes, go to the Log Analytics

workspace that you sent the logs to and run one of the search queries shown in

Listing 7-24.

Figure 7-19.  Diagnostics settings for AKS cluster configured

Figure 7-18.  Configure diagnostics settings for AKS cluster

Chapter 7 Operating Azure Kubernetes Service

145

Listing 7-24.  KQL queries to retrieve Kubernetes master logs

AzureDiagnostics

| Where Category == "kube-apiserver"

| project log_s

AzureDiagnostics

| where Category == "kube-controller-manager"

| project log_s

AzureDiagnostics

| where Category == "kube-scheduler"

| project log_s

AzureDiagnostics

| where Category == "kube-audit"

| project log_s

AzureDiagnostics

| where Category == "guard"

| project log_s

AzureDiagnostics

| where Category == "cluster-autoscaler"

| project log_s

�Business Continuity and Disaster Recovery in Azure
Kubernetes Service
The applications that run in your AKS cluster will have certain service-level objectives

and agreements (SLOs and SLAs) that are requested by the business. As an AKS operator,

one of your responsibilities is to consider how to deploy and manage AKS to meet

those SLAs and SLOs. All services will have outages of one kind or another, and Azure

Kubernetes Service is no different. By understanding the underlying components of

AKS and how they provide services, you can meet or exceed the expectations of the

application owners.

Chapter 7 Operating Azure Kubernetes Service

146

�Thinking About SLAs and What You Need
When thinking about disaster recovery, it is useful to understand some basic concepts.

There are a few primary measures of protection when in DR, namely, the recovery time

objective (RTO) and recovery point objective (RPO). The RTO defines the amount of

time it will take to recover service in the event of an outage. The RPO defines the amount

of data that is lost when such an outage occurs.

Both terms rely on the declaration of a formal disaster, where an entire site or service

is completely unavailable. There may also be situations where a site or service is in a

degraded mode and the determination is made to failover to another site or instance of

the service. The RTO and RPO are measured against when a disaster declaration is made.

Before a failure is declared, you can ensure that your AKS clusters are deployed in

such a way as to protect against common failures. Let’s take a look at the various levels of

failure that exist and how to use AKS and Azure features to protect against them.

�Data Persistence and Replications
Applications running within an AKS cluster may have stateful data that is written to

persistent storage. One point of consideration is the replication and protection level

afforded by that storage. The storage may be located on any of the following:

•	 Local storage on the Azure VM worker node

•	 Azure Managed Disks

•	 Azure Files

•	 Other NFS solutions

Local storage on the Azure VM worker nodes uses Azure Managed Disks, as does the

in-tree provisioning mechanism for persistent Managed Disk volumes. Managed Disks

provide locally redundant storage only, which provides protection against drive failures

within a datacenter, but does not provide protection against datacenter failures in Azure.

Azure Files can be configured to use Geo-redundant storage, where data is replicated

from one Azure datacenter to a paired datacenter in another region. Other NFS solutions

may provide different levels of redundancy.

If there is persistent data on the application volumes that must be protected against

a site failure, then some type of replication or data protection solution should be put in

place to protect that data in the event of a failure.

Chapter 7 Operating Azure Kubernetes Service

147

�Protecting Against Faults
In addition to protecting against data failure, there are a number of other faults that

can occur in AKS. The following sections will review each of those faults and possible

mitigation strategies to protect your applications.

�Master Node Failures

Azure Kubernetes Service is a managed service that does not provide visibility into the

master node layer of the cluster. In the event of a master node failure, the cluster will

automatically replace that master node with a new one. There is very little you can do as

an operator to protect against the failure of a master node.

�Worker Node Failures

The Azure VMs functioning as worker nodes are subject to occasion faults and failures.

In the event that a node fails, the AKS service will replace that node with a functional

one. However, there will be a period of time when you are running at reduced capacity.

For critical clusters, it is recommended to run with enough spare capacity to absorb an

individual node outage without compromising performance.

The cluster can be configured manually with enough nodes to support the current

performance requirements with enough overhead to maintain performance during an

outage. For instance, let’s assume you have a four-node cluster running at 75% capacity.

If a node is lost, the other three nodes will need to run at 100% capacity to match the

current performance objective until the fourth node is replaced. That is a less than

desirable situation. By adding a fifth node to the cluster, the overall cluster utilization will

now be at 60%, and a single node loss will result in an increase to 75% during the outage.

Configuring your cluster size manually is an option, but as well all know, cluster

consumption is going to be variable. For that reason, it makes more sense to monitor the

current utilization and trigger an action to scale the cluster as needed or make use of the

cluster autoscale feature currently in preview.

�Datacenter Failures

Microsoft Azure regions are comprised of multiple datacenters. Recently, the availability

zones have been introduced in many Azure regions. Each availability zone is a

geographically separate set of resources with high-bandwidth, low-latency connections

Chapter 7 Operating Azure Kubernetes Service

148

to other availability zones in the same region. The purpose of an availability zone is to

provide protection against datacenter failures in a given region.

AKS has a preview feature that allows an AKS cluster to span multiple availability

zones. In the event of a datacenter outage, your applications and the AKS management

plane will continue to operate uninterrupted, assuming that you have worker nodes

available in each availability zone. This feature is likely to become generally available

in the near future, but it will require redeploying your cluster to migrate it to availability

zones. For the time being, datacenter outages for AKS will need to be treated like

regional failures.

�Regional Failures

While it is highly uncommon, a regional outage of Azure is not completely unheard

of. AKS clusters do not stretch across regions, so the question becomes what level of

protection is required for the applications running on your cluster. There are a few

different operations models:

•	 Cold start

•	 Pilot light

•	 Warm cluster

•	 Hot cluster

Each has different cost and recovery characteristics. A cold start would involved the

creation of a new AKS cluster in another region. The persistent for applications in the

cluster would be recovered from a backup. Once the AKS cluster was provisioned and

operational, and the backups restored to the proper storage target, applications could be

spun up on the cluster. This is the lowest cost option and will have a high RTO and RPO.

A pilot light scenario would include a running AKS cluster in another region with

reduced capacity. Again the persistent data for the applications running in the cluster

would be recovered from a backup. In the event of a disaster, the cluster would be scaled

up, the backups restored, and applications deployed. This is a low-cost option, due to the

reduced capacity of the cluster, and still has a high RTO and RPO.

The warm cluster scenario involved running a fully provisioned AKS cluster in

another region with applications already running. Some type of storage replication

service would be in place with a lag of several minutes or hours. Recovery would simply

involve switching over public facing DNS entries to the warm site. This is a higher-cost

Chapter 7 Operating Azure Kubernetes Service

149

solution due to the higher capacity of the cluster and data replication, but the RTO and

RPO are both reduced greatly.

The hot cluster scenario would have a fully provisioned AKS cluster running in

another region, with applications already running and serving request. The storage

replication solution in this case would need to be nearly synchronous. A failure of one

region would simply require scaling up the cluster on the over region to handle the

additional load. This is the highest-cost solution by far, but the RTO and RPO approach

zero for a failure.

Each of the solutions has its pros and cons; therefore, it is up to the application

owners to determine what is an acceptable amount of downtime and data loss for their

application compared to the cost of additional protection.

�Summary
Before you deploy application in AKS, it is important to understand how to properly

administer your AKS resources. The role of an AKS cluster operator is the key here.

Although AKS is a managed Kubernetes service, there are management operations

such as scaling, identity and access, networking, securing, monitoring, and business

continuity planning that need to be planned out well ahead.

In this chapter, you learned about the common cluster management operations in

AKS that you will encounter frequently. We explored how to properly scale AKS clusters,

what are the storage options available for AKS, and the necessary AKS networking,

access and identity, and security concepts for you to get started with managing an AKS

cluster. Then, we examined how Azure Monitor for containers can help you to monitor

your AKS resources. Finally, we discussed the business continuity and disaster recovery

best practices for Azure Kubernetes Service deployments.

Chapter 7 Operating Azure Kubernetes Service

151
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_8

CHAPTER 8

Helm Charts for Azure
Kubernetes Service
Applications deployed on Kubernetes are typically made up of multiple parts. A common

practice is to combine multiple components into a single yaml file that will be submitted

to the cluster using kubectl apply with the -f switch. It is also common to deploy

the same application across multiple environments, whether those environments are

separate Kubernetes clusters or different namespaces within the same cluster. There

are several shortcomings to the approach of using a single yaml file and kubectl for

application deployment across multiple environments. Helm was created to address

some of these shortcomings.

In this chapter, we will explore the use cases for Helm and how it enhances the

application deployment experience on Kubernetes. We will review the process for

installing the Helm client and Tiller on an AKS cluster in both a development- and

production-type scenario. Then, we will dive into the structure of Helm charts – the basic

construct for application deployment in Helm. Finally, we will go through the process of

deploying and updating Helm chart releases in AKS. By the end of this chapter, you will

have a solid understanding of what Helm is and how it can be used with AKS to simplify

and enhance the application deployment process.

�Helm Overview
Helm is an open source project maintained by the Cloud Native Computing Foundation

in collaboration with Microsoft, Google, Bitnami, and more. The main goal of Helm is

to assist in the management of Kubernetes-based applications, including the definition,

installation, and upgrade of those applications. One useful way to think of Helm is

as a package manager for Kubernetes. In the same vein as apt, yum, or Chocolatey,

152

Helm has repositories with packages that can be copied and installed locally – locally

meaning Kubernetes. It can also handle the upgrade and removal of those applications.

The fundamental construct used by Helm for managing Kubernetes applications

is the Helm chart. The chart defines the components that make up an application in a

standardized format that can be shared and stored in source control. When a chart is

combined with configuration information and deployed on a Kubernetes cluster, it is

called a release.

�Use Cases
Helm is intended to simplify application management on Kubernetes. In that regard,

there are a few primary use cases that Helm simplifies. Kubernetes applications tend to

be composed of multiple resources and components. Helm charts help you manage the

complexity of these applications by describing the components and dependencies in a

declarative fashion.

Applications are not static deployments, rather they are routinely updated. The

update process on Kubernetes can be tricky. Helm provides a simpler update experience,

managing revisions and updates for the application as a whole instead of its component

parts. New versions of charts can include tests for validation, custom hooks for the

release process, and a simple rollback process if the newest chart has issues.

Developers try to follow the DRY principal of “don’t repeat yourself.” Helm expands

that concept to the deployment of Kubernetes applications. A Helm chart can reference

other charts for dependencies, for example, a single web front-end chart can be reused

for multiple applications in an environment. Sharing of the charts can be on a public or

private repository, and in the case of Azure Container Registry, the charts can be stored

in the same registry as the containers being used by the chart.

�Advantages over Kubectl
Kubectl is the CLI tool of choice for managing Kubernetes, and Helm is not intended to

replace kubectl for all activities. In fact, kubectl is often used in tandem with the Helm

CLI to troubleshoot, investigate, and track application deployments across the cluster.

Both kubectl and helm interact with the Kubernetes API to accomplish their work. Helm

has the advantage of being able to use the templates written for Helm, and it has several

higher-level commands that abstract away multiple kubectl commands. For instance,

Chapter 8 Helm Charts for Azure Kubernetes Service

153

when an application is deployed using helm install, the Helm software is interacting

with the Kubernetes API directly and orchestrating the deployment of resources on the

cluster in a way that would take multiple kubectl commands.

�Key Components
To perform the work of making Kubernetes application management simpler, Helm has

several key components that make up an installation.

Note T he current major version of Helm is version 2. Version 3 of Helm is in the
alpha stage of development and contains several large changes in how Helm is
constructed. In particular, the Tiller component will be removed in version 3. For the
purpose of this chapter, we will exclusively deal with version 2.

�Helm Client

The Helm client is a binary written in Go that runs on the local machine of the user or

on some type of CI/CD platform. It is equivalent to kubectl in that regard. The client can

be installed on multiple operating systems, including Windows, MacOS, and Linux. The

most current version of the Helm client binary can always be found on the Helm GitHub

releases page (https://github.com/helm/helm/releases). To install the client locally,

you can use Chocolately for Windows, Homebrew for Mac, or Snap for some Linux

distributions. Listing 8-1 shows an example of installing the Helm client on a Windows

machine with Chocolately.

Listing 8-1.  Installing the Helm client on a Windows machine

#Install the client

$ choco install kubernetes-helm -y

Chocolatey v0.10.3

Installing the following packages:

kubernetes-helm

By installing you accept licenses for the packages.

...

Chapter 8 Helm Charts for Azure Kubernetes Service

https://github.com/helm/helm/releases

154

The install of kubernetes-helm was successful.

 Software installed to 'C:\ProgramData\chocolatey\lib\kubernetes-helm\tools'

#Check the client version after installation

$ helm version

Client: &version.Version{SemVer:"v2.14.2", GitCommit:"a8b13cc5ab6a7dbef0a58

f5061bcc7c0c61598e7", GitTreeState:"clean"}

Since we have not yet configured a connection to a Kubernetes cluster, the server

version will come back with an error.

�Tiller

Tiller is the server-side component of Helm that takes the commands issued by the

Helm client and executes them on the cluster through the Kubernetes API. The Tiller

component is most often deployed on the Kubernetes cluster where it will deploy

applications, although this is not entirely necessary. It is also possible to run the Tiller

component outside of the Kubernetes cluster. The Tiller component is responsible for

four primary things:

	 1.	 Listening for requests from the Helm client

	 2.	 Deploying chart and config info as a release

	 3.	 Tracking releases through their life cycle

	 4.	 Upgrading or removing releases from the cluster

Tiller can run using a service account with RBAC rules that define what namespaces

Tiller has access to. Tiller will have the ability to create and destroy applications on

the Kubernetes cluster; thus, it makes sense to employ roles to restrict the actions an

instance of Tiller can take. In a production environment, or really any nondevelopment

environment, Tiller should be using a service account with proper restrictions in place to

control what resources it can manage in the cluster.

When Tiller is installed on a cluster, it creates an in-cluster gRPC endpoint that

is unauthenticated by default. Basically, this means that any process within the

cluster could issue commands to the Tiller endpoint, and they would be executed.

For a development cluster, that might be acceptable. All other cluster environments

should endeavor to use TLS to secure authentication on the Tiller endpoints. When

Chapter 8 Helm Charts for Azure Kubernetes Service

155

TLS is enabled with Tiller, all communication with the Tiller endpoints is mutually

authenticated with TLS certificates issued by a trusted root certificate authority.

�Helm Repository

The charts used by Helm can be stored in a repository. The repository can either be

hosted privately or publicly. The Helm project maintains an official, public chart

repository located on their GitHub site (https://github.com/helm/charts). This is a

great starting point to find official versions of Helm charts for common applications,

such as Wordpress, FluentD, and Jenkins.

The chart repository is simply a web server with an index.yaml file that lists out

all the charts being stored in the repository, along with some information about each

chart. Standing up a Helm repository is outside the scope of this book, but the process

is relatively simple and can be accomplished using ChartMuseum, GitHub Pages, or a

simple web server.

Azure Container Registry is also able to store Helm charts. An example of using ACR

to store a Helm chart will be given later in the chapter.

�Cloud Native Application Bundle
The Cloud Native Application Bundle (CNAB) is an open source project founded by

Microsoft and Docker to deal with the packaging of applications that leverage more

than just containers and Kubernetes for their deployment. For example, a three-tier

web application could be using Azure CosmosDB for database services, AKS for the

application and web tier, and Azure Functions for business logic processing. A CNAB

bundle would be able to deploy and manage all of these components. Helm is focused

solely on application components that are deployed in the context of Kubernetes. While

the landscape is still changing, CNAB and Helm accomplish two different, related goals.

�Installing Helm on AKS
As mentioned in the Helm components section, there are two basic components to

installing Helm. There is the Helm client running locally on a workstation and the Tiller

server-side component running on the Kubernetes cluster. To set Helm up to work with

AKS, there are a few requirements that need to be fulfilled.

Chapter 8 Helm Charts for Azure Kubernetes Service

https://github.com/helm/charts

156

�Requirements
Azure Kubernetes clusters are deployed with RBAC enabled by default. Getting the

Tiller component working properly with RBAC on the cluster requires that a service

account be created and associated with a cluster role. Enabling TLS is also best practice

for a nondevelopment environment. In the next two sections, we will walk through the

process of setting up the service account and provisioning the necessary certificates to

enable TLS authentication between Tiller and the Helm client.

�RBAC and Service Account
Role-based access control in Kubernetes includes several different components. The

role defines a set of actions that an assigned entity can perform on resources within

the cluster. There are built-in roles for the cluster, such as cluster-admin, admin, edit,

and view. A role can be one of two types, Role is namespace specific and ClusterRole

is cluster-wide. Roles can be assigned to service accounts, users, and groups by using

either the RoleBinding or ClusterRoleBinding type. In Listing 8-2, we are defining a

service account for use with Tiller.

Listing 8-2.  Definition for a Tiller service account

apiVersion: v1

kind: ServiceAccount

metadata:

 name: tiller

 namespace: kube-system

Once the service account has been created, it can be assigned a role. In Listing 8-3,

we are going to associate the tiller service account with the built-in ClusterRole cluster-

admin by using the ClusterRoleBinding type.

Listing 8-3.  Binding the cluster-admin role to the Tiller service account

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: tiller

Chapter 8 Helm Charts for Azure Kubernetes Service

157

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

 - kind: ServiceAccount

 name: tiller

 namespace: kube-system

Depending on the requirements of the environment, it is also possible to create a

custom Role and bind it using RoleBinding to a specific namespace where Tiller will be

allowed to deploy resources. For our purposes, Tiller will be allowed to deploy resources

across all namespaces in the cluster. In Listing 8-4, both of these configurations have

been saved to the file helm-rbac.yaml, and kubectl apply is being run against an AKS

cluster where Tiller will be configured.

Listing 8-4.  Binding the cluster-admin role to the Tiller service account

$ kubectl apply -f helm-rbac.yml

serviceaccount "tiller" created

clusterrolebinding.rbac.authorization.k8s.io "tiller" created

The service account for Tiller is now available and bound to the cluster-admin role.

�TLS Considerations
Deploying a full Public Key Infrastructure (PKI) is just a bit outside the scope of this

book. In fact, whole books have been written on just that topic. If your organization

already has an internal PKI set up, it would make sense to take advantage of it. In the

following examples, we are going to create the certificates using openssl. There are three

certificates in play: the root certificate authority, the tiller certificate, and the helm client

certificate. The tiller and helm client certificates will be approved and signed by the root

CA certificate, and Tiller and Helm will be configured to trust the root CA certificate.

Since they both trust the root CA, they will trust certificates signed by the root CA,

meaning that Tiller and Helm will trust each other’s certificates to be valid.

All of the commands in Listing 8-5 will create the certificates and keys in the current

working directory.

Chapter 8 Helm Charts for Azure Kubernetes Service

158

Listing 8-5.  Creating TLS certificates for Tiller and Helm communication

#First we must create the root CA.

#Big thanks to this article: https://medium.com/google-cloud/install-secure-

helm-in-gke-254d520061f7

$SUBJECT = "/C=US/ST=Pennsylvania/L=Springfield/O=IAKS, Inc./OU=IT/CN=iaks.sh"

#Create a CA key

openssl genrsa -out ca.key.pem 4096

#Creata a CA certificate

openssl req -key ca.key.pem -new -x509 -days 7300 -sha256 -out ca.cert.pem

-extensions v3_ca -subj $SUBJECT

#Then we need to create the certificate request for the Tiller certificate and

process it.

#Create a key for the tiller cert

openssl genrsa -out tiller.key.pem 4096

#Create a new certificate request

openssl req -new -sha256 -key tiller.key.pem -out tiller.csr.pem -subj

$SUBJECT

#Create the certificate from the request

openssl x509 -req -days 365 -CA ca.cert.pem -CAkey ca.key.pem -CAcreateserial

-in tiller.csr.pem -out tiller.cert.pem

#Finally, we need to create the certificate request for the Helm client

certificate and process it.

#Create a key for the helm client

openssl genrsa -out helm.key.pem 4096

#Create a new certificate request

openssl req -new -sha256 -key helm.key.pem -out helm.csr.pem -subj $SUBJECT

#Create the certificate from the request

openssl x509 -req -days 365 -CA ca.cert.pem -CAkey ca.key.pem -CAcreateserial

-in helm.csr.pem -out helm.cert.pem

Chapter 8 Helm Charts for Azure Kubernetes Service

159

Now we have all the necessary certificates and their matching private keys. Looking

in the current directory, we should see the files in Listing 8-6.

Listing 8-6.  Directory listing of TLS certificates and private keys

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 7/16/2019 1:39 PM 2070 ca.cert.pem

-a---- 7/16/2019 1:39 PM 3298 ca.key.pem

-a---- 7/16/2019 1:40 PM 18 ca.srl

-a---- 7/16/2019 1:40 PM 1946 helm.cert.pem

-a---- 7/16/2019 1:40 PM 1736 helm.csr.pem

-a---- 7/16/2019 1:40 PM 3298 helm.key.pem

-a---- 7/16/2019 1:40 PM 1946 tiller.cert.pem

-a---- 7/16/2019 1:40 PM 1736 tiller.csr.pem

-a---- 7/16/2019 1:39 PM 3294 tiller.key.pem

Each user who will use the Helm client to connect should be issued their own

certificate, including any automation accounts running in a CI/CD pipeline. In a

production scenario, issuance of certificates would be handled through a certificate

authority. While it would be possible to use a third-party certificate authority, an internal

CA would make more sense in this context. The Kubernetes cluster will likely be using

internal names and be accessed by internal users. Spending money on certificates from a

trusted third-party would be unnecessary.

�Helm init
Once the prerequisites for the installation of Tiller have been fulfilled, the next step is to

run the commend helm init to initialize the cluster. In a development environment, it

is enough to simply run helm init with all the defaults that the command implies. Since

we will be using a service account and certificates, we will need to add arguments to the

helm init command.

The commands in Listing 8-7 make use of the tiller service account and install

the tiller private key, certificate, and root CA certificate. Additionally, the certificate

information for Tiller is held in a ConfigMap by default. Due to the sensitive nature of the

information, the best practice is to override the default setting and instead use a Secret-

type resource to hold the data.

Chapter 8 Helm Charts for Azure Kubernetes Service

160

Listing 8-7.  Initializing Tiller on the AKS cluster

$ helm init /

 �--override 'spec.template.spec.containers[0].command={/tiller,--

storage=secret}' /

 --tiller-tls /

 --tiller-tls-cert ".\tiller.cert.pem" /

 --tiller-tls-key ".\tiller.key.pem" /

 --tiller-tls-verify /

 --tls-ca-cert ".\ca.cert.pem" /

 --service-account tiller

Tiller is installed as a deployment on Kubernetes. By default, it runs a single pod in a

replica set and includes a service with a ClusterIP associated with it. Both the pod and

the service are described in Listing 8-8.

Listing 8-8.  Tiller pod and service details

$ kubectl describe pod tiller-deploy-6656966795-7sxqx --namespace kube-system

Name: tiller-deploy-6656966795-7sxqx

Namespace: kube-system

Priority: 0

PriorityClassName: <none>

Node: aks-agentpool-28083664-0/10.240.0.4

Start Time: Tue, 16 Jul 2019 14:01:20 -0400

Labels: app=helm

 name=tiller

 pod-template-hash=6656966795

Annotations: <none>

Status: Running

IP: 10.244.0.8

Controlled By: ReplicaSet/tiller-deploy-6656966795

Containers:

 tiller:

 Container ID: �docker://fd05f519da5911b07e0d2aa476b0c9661fe3181ee63a043

ca5188eb675bbb64b

 Image: gcr.io/kubernetes-helm/tiller:v2.14.2

Chapter 8 Helm Charts for Azure Kubernetes Service

161

 Image ID: �docker-pullable://gcr.io/kubernetes-helm/tiller@sha256:b

e79aff05025bd736f027eaf4a1b2716ac1e09b88e0e9493c9626425

19f19d9c

 Ports: 44134/TCP, 44135/TCP

 Host Ports: 0/TCP, 0/TCP

 Command:

 /tiller

 --storage=secret

 State: Running

 Started: Tue, 16 Jul 2019 14:01:32 -0400

 Ready: True

 Restart Count: 0

 Liveness: �http-get http://:44135/liveness delay=1s timeout=1s

period=10s #success=1 #failure=3

 Readiness: �http-get http://:44135/readiness delay=1s timeout=1s

period=10s #success=1 #failure=3

 Environment:

 TILLER_NAMESPACE: kube-system

 TILLER_HISTORY_MAX: 0

 TILLER_TLS_VERIFY: 1

 TILLER_TLS_ENABLE: 1

 TILLER_TLS_CERTS: /etc/certs

 Mounts:

 /etc/certs from tiller-certs (ro)

 �/var/run/secrets/kubernetes.io/serviceaccount from tiller-token-2dbcn

(ro)

Conditions:

 Type Status

 Initialized True

 Ready True

 ContainersReady True

 PodScheduled True

Volumes:

 tiller-certs:

 Type: Secret (a volume populated by a Secret)

Chapter 8 Helm Charts for Azure Kubernetes Service

162

 SecretName: tiller-secret

 Optional: false

 tiller-token-2dbcn:

 Type: Secret (a volume populated by a Secret)

 SecretName: tiller-token-2dbcn

 Optional: false

QoS Class: BestEffort

Node-Selectors: <none>

$ kubectl describe svc tiller-deploy --namespace kube-system

Name: tiller-deploy

Namespace: kube-system

Labels: app=helm

 name=tiller

Annotations: <none>

Selector: app=helm,name=tiller

Type: ClusterIP

IP: 10.0.84.117

Port: tiller 44134/TCP

TargetPort: tiller/TCP

Endpoints: 10.244.0.8:44134

Session Affinity: None

Events: <none>

After running the initialization, connectivity to Tiller from the Helm client can be

tested by running the command in Listing 8-9.

Listing 8-9.  Testing helm client connectivity to Tiller

$ helm version --tls --tls-ca-cert ca.cert.pem /

 --tls-cert helm.cert.pem --tls-key helm.key.pem

Client: &version.Version{SemVer:"v2.14.2", GitCommit:"a8b13cc5ab6a7dbef0a58

f5061bcc7c0c61598e7", GitTreeState:"clean"}

Server: &version.Version{SemVer:"v2.14.2", GitCommit:"a8b13cc5ab6a7dbef0a58

f5061bcc7c0c61598e7", GitTreeState:"clean"}

Chapter 8 Helm Charts for Azure Kubernetes Service

163

In the command, we are specifying that we want to use TLS and also passing the CA

cert, the helm client cert, and the helm client key. Obviously, we don’t want to specify

these options each time we run a helm command. The helm client will look in the .helm

directory of the user’s home directory for TLS files when the --tls flag is used. The

commands in Listing 8-10 will copy the files to the correct path with the required file

names that the helm client expects.

Listing 8-10.  Copying the helm TLS certs and keys to the .helm directory

copy ca.cert.pem "~\.helm\ca.pem"

copy helm.cert.pem "~\.helm\cert.pem"

copy helm.key.pem "~\.helm\key.pem"

With those files copied, it is only necessary to specify --tls when running helm

client commands. If the --tls flag is not set on a command, then the helm client will

appear to hang indefinitely.

The Tiller service is up and running and ready to accept Helm commands. Now it’s

time to build a chart to submit to Tiller.

�Helm Charts
Helm charts are the fundamental structure that Helm uses to deploy applications.

The chart is combined with configuration settings and submitted to Tiller. Tiller will

synthesize the chart and settings into a release and provision that release on the

Kubernetes cluster. A chart is a well-defined collection of files and directories. Some files

and directories are required, such as the Chart.yaml file. Other files and directories are

optional depending on the chart.

For the remainder of the chapter, we will be referencing an existing chart called iaks

that deploys a voting application with a node.js front end and a redis backend.

�Chart Contents
A standard file and folder structure for a Helm chart is shown in Listing 8-11. Required

files are in bold.

Chapter 8 Helm Charts for Azure Kubernetes Service

164

Listing 8-11.  Standard chart file and folder structure

ChartName (parent directory)

Chart.yaml: Contains information about the chart

LICENSE: Human readable license for the chart

README.md: Human readable markdown file

requirements.yaml: Listing of chart dependencies

values.yaml: Default configuration values for the chart

charts: Directory of charts which this chart depends on

templates: Directory of templates

templates/NOTES.txt: Human readable file with usage notes

Although the charts and templates directories are not required, they are reserved for

use by Helm. Any other files added to the chart will be included, but don’t necessarily

have any special significance.

Listing 8-12 shows the structure of the iaks chart.

Listing 8-12.  iaks chart structure

C:.

│ .helmignore
│ Chart.yaml
│ values.yaml
│
└───templates
 NOTES.txt

 vote-back-deployment.yaml

 vote-back-service.yaml

 vote-front-deployment.yaml

 vote-front-service.yaml

�Chart.yaml

The Chart.yaml file defines values that Helm will use to interpret the chart. Listing 8-13

contains the potential file entries with required entries in bold.

Chapter 8 Helm Charts for Azure Kubernetes Service

165

Listing 8-13.  Chart.yaml file entries

•	 apiVersion: Always set to v1 for now

•	 name: The name of the chart

•	 version: A SemVer 2 version for this chart

•	 kubeVersion: SemVer range of compatible Kubernetes versions

•	 description: Single sentence describing the chart and its purpose

•	 keywords: A list of keywords

•	 home: Project homepage URL

•	 sources: Source code URLs for the project

•	 maintainers: List of maintainers for the project

•	 engine: Name of the template engine (defaults to gotpl)

•	 icon: SVG or PNG image URL

•	 appVersion: Version number for the application

•	 deprecated: Boolean value indicating if the chart is deprecated

•	 tillerVersion: SemVer range of compatible Tiller versions

Listing 8-14 shows the contents of the Chart.yaml file for the iaks chart.

Listing 8-14.  iaks Chart.yaml contents

apiVersion: v1

appVersion: "1.0"

description: A Helm chart for deploying the IAKS Voting App

name: iaks

version: 0.1.0

Note that the appVersion and the version entries are not the same. The version of

chart may change without the version of the application changing.

�Values.yaml

The values.yaml file defines the default settings to be used by the charts and templates

in the project. All charts and templates have access to the settings defined in the top-level

Chapter 8 Helm Charts for Azure Kubernetes Service

166

values.yaml file. It is also possible to supply values.yaml files in the templates and charts

subdirectories. The settings defined in the Values.yaml file can be overridden when the

chart is deployed by either supplying an additional yaml file with values or by using the

--set flag and supplying the settings at the command line.

Templates and charts will reference the settings defined in values.yaml by using

namespace style reference notation. The namespace starts with the . symbolizing the

top of the namespace, and then additional strings drill down through the values in the

file. For instance, the values.yaml file might have an entry like the one in Listing 8-15.

Listing 8-15.  Example values.yaml snippet

 image:

 repository: iaks/azure-voting-app

 tag: v1-alpine

A template would reference the tag by using the notation .Values.image.tag.

In addition to the values supplied by files or the command line, there are also

predefined values that are accessible to the charts and templates. These include

information about the release, chart, and files. An exhaustive list of predefined values is

available in Helm’s documentation.

Listing 8-16 shows the contents of the values.yaml file for the iaks chart.

Listing 8-16.  iaks values.yaml contents

Default values for iaks.

This is a YAML-formatted file.

Declare variables to be passed into your templates.

voteBack:

 replicaCount: 1

 appName: azure-vote-back

 image:

 repository: redis

 tag: 5.0.5

 pullPolicy: IfNotPresent

 ports:

 name: redis

 port: 6379

Chapter 8 Helm Charts for Azure Kubernetes Service

167

 service:

 port: 6379

voteFront:

 replicaCount: 1

 appName: azure-vote-front

 image:

 repository: iaks/azure-voting-app

 tag: v1-alpine

 pullPolicy: IfNotPresent

 ports:

 name: http

 port: 80

 vote1Value: "Chocolate"

 vote2Value: "Peanut Butter"

 title: "IAKS Voting App"

 service:

 type: LoadBalancer

 port: 80

 targetPort: http

 name: http

�License

The LICENSE file is written in plain text and is meant to lay out the software license

covered by the application being installed in the chart. The license is not read by the

Helm client. It is there for the user to parse and implicitly agree to, should they choose to

use the chart.

The iaks chart does not have a license file.

�README.md

The README.md is written in markdown and is meant to assist the user in properly using the

chart. At a minimum, it should describe what the chart does, prerequisites for running the

chart, and the settings included in the values.yaml file and what the defaults are set to. Any

other useful information for deploying the chart should also be included in this document.

The README file will be displayed if the chart is published on certain repositories.

Chapter 8 Helm Charts for Azure Kubernetes Service

168

If there are some quick getting started notes that should be displayed to the user after

deployment, they can be included in a NOTES.txt file in the templates directory. The

NOTES.txt file will be evaluated as a template and then displayed on the command line.

Listing 8-17 shows the truncated text from the iaks chart README.md.

Listing 8-17.  iaks README.md contents

IAKS Voting App

Example application for the Helm chapter of the Introducing Azure

Kubernetes Service book.

Install Chart

To install the IAKS Chart into your Kubernetes cluster :

Clone the chart down to your local file system.

```bash

helm install --namespace "iaks" --name "iaksv1" ./iaks

```

...

�Requirements.yaml

The chart being defined may use other charts as part of its deployment. Those charts

can be manually copied to the charts directory and kept there. For teams that need strict

control over the version and contents of the dependent charts, it may make sense to copy

them directly into the charts directory. However, this makes the charts static and requires

that they be updated manually.

Charts that are included in the requirements.yaml file are pulled dynamically when

the helm dependency update command is run. The resulting pulled charts are stored as

zipped-up charts – aka chart archives – in the charts directory. Within the requirements.

yaml file, each chart is listed out in the dependencies as shown in Listing 8-18.

Chapter 8 Helm Charts for Azure Kubernetes Service

169

Listing 8-18.  Example requirements.yaml entry

dependencies:

 - name: chart_name

 version: 1.2.3

 repository: http://mycharts.com/charts

When a new version is available for use, the version number can be updated in the

dependencies, and the helm dependency update command is run again. This will pull

the new version of the chart and store it in the charts directory.

There are a few additional optional fields that can be added to a dependency listing.

These optional fields are for more advanced deployment cases, and you likely will not

need them in your initial attempts with Helm.

If an application requires multiple copies of the same chart, or different versions of

the same chart, the alias field that can be included. The alias field will alter the name

of the downloaded chart to match the alias value.

The condition field specifies a comma-separated list of yaml entities in the top

parent’s values.yaml, each resolving to a Boolean value. Setting the value to false will

stop the chart from being included as a dependency in the chart.

The tags field is a list of labels associated with the chart. In the top parent’s values,

each tag can be enabled or disabled using the tag and a Boolean value. If any tag for a

dependent chart is enabled, it will be included in the dependencies.

The iaks chart does not have a requirements.yaml file.

�Charts Directory

The charts directory will contain the charts to be included as dependencies for the

parent chart. As mentioned in the Requirements.yaml section, the charts can be

populated by coping the files manually, or dynamically by using the requirements.yaml

file. The charts contained within the charts directory can either be an unpacked chart or

a chart archive. Each chart should be its own separate file if using an archive or its own

directory if the chart is unpacked.

The iaks chart does not use any other charts as dependencies.

�Templates Directory

The templates directory contains helm chart templates. When Helm is rendering charts

for a release, it evaluates all files contained within the templates folder. The template

Chapter 8 Helm Charts for Azure Kubernetes Service

170

files use the Go template language for the majority of their functions. Helm also borrows

some functions from the Sprig library and includes some specialized functions specific

to Helm.

The files in the template directory are used to create viable Kubernetes definition

files in yaml. The template language is used to manipulate the file content to produce

valid yaml files dynamically, incorporating the values supplied by the values.yaml file or

by the user when helm install is run.

The iaks chart has templates for the front-end and backend deployments and

services, as well as a NOTES.txt. We will examine these files in more detail in the section

dealing with template functions.

�Chart Repositories
Helm works with charts stored in repositories. The helm client has a subset of

commands for dealing with both the locally stored charts and remote repositories. Let’s

start by viewing the list of chart repositories available from a default install of Helm as

shown in Listing 8-19.

Listing 8-19.  Listing of Helm repositories

$ helm repo list

NAME URL

stable https://kubernetes-charts.storage.googleapis.com

local http://127.0.0.1:8879/charts

incubator http://storage.googleapis.com/kubernetes-charts-incubator

As you can see, Helm starts with the stable and incubator charts from the official

Helm repository. It has also created a local repository listening on port 8879. By default,

the local repository has no charts. We can confirm this by running the command in

Listing 8-20.

Listing 8-20.  Contents of the local repository

$ helm search /local

No results found

Running the same command against the stable repository as shown in Listing 8-21

results in about 278 charts!

Chapter 8 Helm Charts for Azure Kubernetes Service

171

Listing 8-21.  Contents of the stable repository

$ helm search stable/

NAME CHART VERSION APP VERSION

DESCRIPTION

stable/acs-engine-autoscaler 2.2.2 2.1.1

DEPRECATED Scales worker nodes within agent pools

stable/aerospike 0.2.7 v4.5.0.5

A Helm chart for Aerospike in Kubernetes

stable/airflow 2.8.2 1.10.2

Airflow is a platform to programmatically author, schedul...

The list of charts is cached locally. To update the contents of a repository, the

command helm repo update can be executed. The process of packaging and pushing a

chart to a repository will be covered later in this chapter.

�Deployment Process
Deploying a Helm chart as a running application on a Kubernetes cluster is performed

through the command helm install. The install command allows values to be

submitted in the form of an additional yaml file or using the --set flag in the command.

The settings in the values submitted at runtime are merged with the values.yaml file in

the chart to produce an updated values.yaml file containing the final configuration data

that will be used during the installation.

For instance, suppose helm install -f myvalues.yaml ./mychart is run. The

contents of the existing values.yaml file in the chart are shown in Listing 8-22.

Listing 8-22.  values.yaml file with default configuration

voteBack:

 replicaCount: 1

 appName: azure-vote-back

 image:

 repository: redis

 tag: 5.0.5

 pullPolicy: IfNotPresent

Chapter 8 Helm Charts for Azure Kubernetes Service

172

 ports:

 name: redis

 port: 6379

The myvalues.yaml file has the contents shown in Listing 8-23.

Listing 8-23.  Contents of myvalues.yaml

voteBack:

 replicaCount: 2

 label: mylabel

The two files will be merged together with the contents of the myvalues.yaml

file taking precedence over the contents of the values.yaml file. Listing 8-24 has the

contents of the resulting file.

Listing 8-24.  Contents of the new values.yaml file

voteBack:

 replicaCount: 2

 label: mylabel

 appName: azure-vote-back

 image:

 repository: redis

 tag: 5.0.5

 pullPolicy: IfNotPresent

 ports:

 name: redis

 port: 6379

Tiller accepts the chart and values and creates a set of valid Kubernetes definitions,

which are submitted to the cluster through the Kubernetes API. The submitted

deployments are called a release in Helm parlance.

A Helm release contains several pieces of information describing the release

including the following:

•	 AppVersion: Version number based on the AppVersion setting in the

Chart.yaml

Chapter 8 Helm Charts for Azure Kubernetes Service

173

•	 Chart: The chart name with the version number appended from the

Chart.yaml

•	 Name: The name given to the release during the install

•	 Namespace: The namespace in which the release was installed

•	 Revision: Starts at 1 for the first install and increments each time an

update or rollback is executed

•	 Status: The current status of the release, typically DEPLOYED for a

release that has completed installation

•	 Updated: The last time some aspect of the release changed

The current list of releases can be retrieved by running helm list or the shortened

version helm ls. This command will only show releases with a status of DEPLOYED by

default. The flag --all can be added to see all releases with any status.

Helm releases can be updated by using one of the following commands:

helm delete: Deletes the release from the cluster and changes the

status of the release to DELETED

helm upgrade: Upgrades the current release with the submitted

values

helm rollback: Reverts the current release to the submitted

revision number

�Creating a Helm Chart
There are many excellent charts already available as a starting point for creating you own

Helm charts. Helm also includes the tools to begin a chart from a predefined template.

�Helm Create

Helm makes it simple to set up the file and directory structure for a new chart. The

helm create command will create a new directory at the path specified, and within the

directory it will create several of the required and optional files for a Helm chart. The

command helm create iaks-chart will create a new Helm chart called iaks-chart.

The command creates a directory called iaks-chart in the current path and populates

it with the files and directories shown in Listing 8-25.

Chapter 8 Helm Charts for Azure Kubernetes Service

174

Listing 8-25.  Contents of the new iaks-chart Helm chart

C:.

│ .helmignore
│ Chart.yaml
│ values.yaml
│
├───charts
└───templates
 │ deployment.yaml
 │ ingress.yaml
 │ NOTES.txt
 │ service.yaml
 │ _helpers.tpl
 │
 └───tests
 test-connection.yaml

The files contain a basic nginx application, including an ingress controller, a service

for the nginx pods, and a deployment of the nginx pods. It also includes a test to validate

that the deployment of the nginx application is successful.

�Template Functions

Templates in the helm chart use a combination of the Go template language functions,

Sprig functions, and custom functions from Helm. These functions take the contents

of the template file and the values submitted during installation and render out valid

Kubernetes definitions.

The Go template language is an advanced topic beyond the scope of this humble

chapter, but here are some pointers to get started with.

•	 Any values in the template file that should be evaluated by the

template engine will start and end with doubly curly braces {{ }}.

•	 Values from the value.yaml file are referenced using namespace path

notation, for example, .Values.dockerTag.

Chapter 8 Helm Charts for Azure Kubernetes Service

175

•	 Helm has a primer on getting started with template development.

You can learn more at this link (https://helm.sh/docs/chart_

template_guide/#getting-started-with-a-chart-template).

Looking at an example will help illustrate how the template language is used.

Listing 8-26 shows the contents of the vote-back-service.yaml file in the iaks chart.

Listing 8-26.  Contents of the new vote-back-service.yaml file

apiVersion: v1

kind: Service

metadata:

 name: {{ .Values.voteBack.appName }}

spec:

 ports:

 - port: {{ .Values.voteBack.service.port }}

 selector:

 app: {{ .Values.voteBack.appName }}

The {{ }} invokes the template engine to evaluate the contents within the double

curly braces. In the listing, metadata.name is evaluating the expression .Values.

voteBack.appName. That refers to the setting in the submitted values.yaml file for the

release. The default for that setting is azure-vote-back, and so the template engine will

render that portion of the file as shown in Listing 8-27.

Listing 8-27.  Rendered value for metadata.name

metadata:

 name: azure-vote-back

Functions can be added to the evaluation in the pipeline to manipulate the value.

For instance, suppose that the name needs to be in all lowercase. Listing 8-28 shows how

the value can be piped to lower to manipulate the text.

Listing 8-28.  Using the lower function on a value

metadata:

 name: {{ .Values.voteBack.appName | lower }}

Chapter 8 Helm Charts for Azure Kubernetes Service

https://helm.sh/docs/chart_template_guide/#getting-started-with-a-chart-template
https://helm.sh/docs/chart_template_guide/#getting-started-with-a-chart-template

176

This is a simple example of using template functions. More complicated evaluations

are possible depending on the needs of the application.

�Chart Tests

Helm doesn’t know what the application defined in the chart is supposed to do. If all

components of the release are created successfully, then Helm considers the release

a success. Chart tests provide a way for the user to validate that the application

components are functioning properly. They can also be used in an automation context to

validate a release in the pipeline.

Chart tests are template files that reside in the templates directory, or more often in

a tests subdirectory within the templates directory. Each test is a pod definition. The pod

should run some actions and then exit with a value, 0 being considered success and any

other value being considered a failure. The pod definitions can be part of a single yaml

file or broken up into multiple yaml files, one per test.

Helm has two test hooks that indicate whether the test should be successful or not,

test-success and test-failure. These hooks are added into the annotations of the pod

as shown in Listing 8-29.

Listing 8-29.  Helm test hooks

metadata:

 annotations:

 "helm.sh/hook": test-success

The annotations are what indicates to Helm that these pod definitions are tests, and

not part of the application. Tests are invoked by running helm test with the release

name to be tested.

�Packaging a Chart

Once a chart is ready for usage, it can be packaged and uploaded to a chart repository.

Packaging a chart creates a versioned archive of that chart. The contents of the chart are

zipped up into a tgz file. A chart can be packaged by using the helm package command

and pointing the command to the directory that contains the chart.

Listing 8-30 shows the process of packaging the iaks chart.

Chapter 8 Helm Charts for Azure Kubernetes Service

177

Listing 8-30.  Packaging the iaks chart

$ helm package .\iaks\

Successfully packaged chart and saved it to: C:\gh\Introducing-Azure-

Kubernetes-Service\Helm\aks\iaks-0.1.0.tgz

The name of the file is a combination of the chart name and the version of the chart.

Both values are found in the Chart.yaml file.

The process for uploading the chart archive to a repository will depend on the

repository type. The index.yaml file for a repository must be updated when the chart

is uploaded so that it will be included in repository searches and listings. The Azure

Container Registry (ACR) can host packaged helm charts. The first step is to log into an

existing ACR repository and add it as a repository for Helm as shown in Listing 8-31.

Listing 8-31.  Adding the ACR repo to Helm

$ az acr login --name iaks0

$ az acr helm repo add

"iaks0" has been added to your repositories

$ helm repo list

NAME URL

stable https://kubernetes-charts.storage.googleapis.com

local http://127.0.0.1:8879/charts

incubator http://storage.googleapis.com/kubernetes-charts-incubator

iaks0 https://iaks0.azurecr.io/helm/v1/repo

Once the repository has been added to Helm, it is a simple matter of pushing a

chart archive to the ACR repository as seen in Listing 8-32. Then the local index of the

repository must be updated so that it will show up in the search results.

Listing 8-32.  Pushing a package to the ACR repo

$ az acr helm push .\iaks-0.1.0.tgz

{

 "saved": true

}

Chapter 8 Helm Charts for Azure Kubernetes Service

178

$helm repo update

Hang tight while we grab the latest from your chart repositories...

...Skip local chart repository

...Successfully got an update from the "incubator" chart repository

...Successfully got an update from the "iaks0" chart repository

...Successfully got an update from the "stable" chart repository

Update Complete.

$ helm search iaks0

NAME CHART VERSION APP VERSION DESCRIPTION

iaks0/iaks 0.1.0 1.0 �A Helm chart for deploying

the IAKS Voting App

The chart archive is now available for consumption through the ACR repository for

any other users that have access.

�Deploying a Helm Chart
A Helm chart is deployed using the helm install command. The command will take

the chart, default values, and values submitted in the command and send them to Tiller.

Tiller will synthesize them into a release and instantiate that release on the Kubernetes

cluster.

�Helm Install

Listing 8-33 shows the process of installing the iaks chart in the default namespace of an

AKS cluster.

Listing 8-33.  Installing the iaks chart

$ helm install --tls --name iaksv1 ./iaks

NAME: iaksv1

LAST DEPLOYED: Wed Jul 17 11:40:30 2019

NAMESPACE: default

STATUS: DEPLOYED

Chapter 8 Helm Charts for Azure Kubernetes Service

179

RESOURCES:

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

azure-vote-back-78d97d47df-2hjbr 0/1 ContainerCreating 0 0s

azure-vote-front-948444d79-m2ms2 0/1 ContainerCreating 0 0s

==> v1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

azure-vote-back ClusterIP 10.0.40.25 <none> 6379/TCP 1s

azure-vote-front LoadBalancer 10.0.212.114 <pending> 80:30829/TCP 0s

==> v1beta1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

azure-vote-back 0/1 1 0 0s

azure-vote-front 0/1 1 0 0s

NOTES:

1. Get the application URL by running these commands:

 �NOTE: It may take a few minutes for the LoadBalancer IP to be

available.

 �You can watch the status of by running 'kubectl get --namespace

default svc -w azure-vote-front'

 �export SERVICE_IP=$(kubectl get svc --namespace default azure-vote-front

-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

 echo http://$SERVICE_IP:80

The installation process displays the resources being created and also prints out the

rendered NOTES.txt file found in the templates folder. The NOTES.txt file is evaluated

by the template engine and can provide simple directions for getting started with the

application.

Figure 8-1 shows the web page that is available once the external IP of the load

balancer finishes provisioning.

Chapter 8 Helm Charts for Azure Kubernetes Service

180

�Helm Status

The command helm status will get the current status of a release. Listing 8-34 shows the

current status of the iaksv1 release.

Listing 8-34.  Status of the iaksv1 release

$ helm status --tls iaksv1

LAST DEPLOYED: Wed Jul 17 11:40:30 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

azure-vote-back-78d97d47df-2hjbr 1/1 Running 0 4m36s

azure-vote-front-948444d79-m2ms2 1/1 Running 0 4m36s

Figure 8-1.  Voting App web page

Chapter 8 Helm Charts for Azure Kubernetes Service

181

==> v1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

azure-vote-back ClusterIP 10.0.40.25 <none> 6379/TCP 4m37s

azure-vote-front LoadBalancer 10.0.212.114 40.85.173.41 80:30829/TCP 4m36s

==> v1beta1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

azure-vote-back 1/1 1 1 4m36s

azure-vote-front 1/1 1 1 4m36s

NOTES:

1. Get the application URL by running these commands:

 �NOTE: It may take a few minutes for the LoadBalancer IP to be

available.

 �You can watch the status of by running 'kubectl get --namespace

default svc -w azure-vote-front'

 �export SERVICE_IP=$(kubectl get svc --namespace default azure-vote-front

-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

 echo http://$SERVICE_IP:80

The status gives essentially the same information as the initial installation, including

the NOTES.txt section.

�Updating a Release
Over the lifetime of the release, it may be necessary to update the chart, application, or

settings. The command helm upgrade is used to perform such an update. Listing 8-35

shows the process of updating the iaksv1 release with new values for the voting buttons.

Listing 8-35.  Upgrade of the iaksv1 release

$ helm upgrade --tls --set voteFront.vote1Value=Cats,voteFront.

vote2Value=Dogs iaksv1 ./iaks

Release "iaksv1" has been upgraded.

LAST DEPLOYED: Wed Jul 17 11:50:14 2019

The output has been truncated for brevity. By running helm ls as seen in Listing 8-36,

we can retrieve the status of the release and see that the revision number has incremented.

Chapter 8 Helm Charts for Azure Kubernetes Service

182

Listing 8-36.  Listing of the iaksv1 release

$ helm ls --tls iaksv1

NAME REVISION UPDATED STATUS

CHART APP VERSION NAMESPACE

iaksv1 2 Wed Jul 17 11:50:14 2019 DEPLOYED

iaks-0.1.0 1.0 default

Viewing the updated web page in Figure 8-2 shows the updated content of the buttons.

It is also possible to roll back to a previous version of the release by using the helm

rollback command. Listing 8-37 shows the output of rolling back a release.

Figure 8-2.  Voting App web page updated

Chapter 8 Helm Charts for Azure Kubernetes Service

183

Listing 8-37.  Rollback of the iaksv1 release

$ helm rollback --tls iaksv1 1

Rollback was a success.

$ helm ls --tls iaksv1

NAME REVISION UPDATED STATUS

CHART APP VERSION NAMESPACE

iaksv1 3 Wed Jul 17 11:54:45 2019 DEPLOYED

iaks-0.1.0 1.0 default

By looking at the revision number of the release, we can see that the revision is now

at 3 and not 1. The revision number will always increment when a release is altered,

regardless of whether the release is being upgraded or rolled back.

Looking at the web site again in Figure 8-3, we can see that the voting buttons have

reverted to their previous values.

Figure 8-3.  Voting App web page rollback

Chapter 8 Helm Charts for Azure Kubernetes Service

184

�Removing a Release
There comes a time in every release’s life cycle when it is no longer needed. The command

for deleting a release is helm delete. Listing 8-38 shows the output of deleting iaksv1.

Listing 8-38.  Delete of the iaksv1 release

$ helm delete --tls iaksv1

release "iaksv1" deleted

The resources in the Kubernetes cluster will be removed, but the release is not

entirely gone. Listing 8-39 shows all of the releases including deleted ones.

Listing 8-39.  Listing of all releases

$ helm ls --tls --all

NAME REVISION UPDATED STATUS

CHART APP VERSION NAMESPACE

iaksv1 3 Wed Jul 17 11:54:45 2019 DELETED

iaks-0.1.0 1.0 default

It is possible to use helm rollback to undo the deletion of the release from the

Kubernetes cluster.

Note H elm will not recover the exact pods and volumes from the deleted
release. Helm will only redeploy the version of the release specified in the rollback
command. Any data that was not persisted through other means will be lost during
deletion of a release.

To remove the release from Tiller permanently, the --purge flag must be used as

shown in Listing 8-40.

Listing 8-40.  Purge of the iaksv1 release

$ helm delete --tls iaksv1 --purge

release "iaksv1" deleted

Chapter 8 Helm Charts for Azure Kubernetes Service

185

�CI/CD Integrations
Continuous integration and continuous delivery – often abbreviated as CI/CD – are

the practice of creating an automated pipeline that moves code from a commit by a

developer to deployment into one or more environments. Helm can be incorporated

into the CI/CD process as a tool for deploying new releases to a Kubernetes cluster or

updating existing releases.

�Automating Deployments
When code is committed to a repository, it may kick off a pipeline of events. Using our

iaks chart example, the chart makes use of the container image iaks/azure-voting-app.

There could be a pipeline that is triggered when a developer commits a new version of

the Dockerfile that builds that image. Once the image has been updated and passes the

necessary tests in the pipeline, the iaks Helm chart can be tested with the new image

version. Assuming all tests pass, the iaks Helm chart could be updated to use the new

image as the default tag in the values.yaml file.

Figure 8-4 demonstrates a potential pipeline.

Figure 8-4.  Potential CI/CD pipeline

Chapter 8 Helm Charts for Azure Kubernetes Service

186

�Testing Helm Charts
Helm charts can be tested in several ways. A test could be run to validate that the chart

is syntactically correct using the helm lint command. Listing 8-41 shows the output of

running helm lint against the iaks chart.

Listing 8-41.  Linting the iaks chart

$ helm lint .\iaks\

==> Linting .\iaks\

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, no failures

The output is meant to be human readable, but it can be machine parsed to see if

there are any errors or warnings prior to moving the chart to the next stage of testing.

The next testing step could be locally rendering the templates with several different

possible values and validating that the generated Kubernetes definitions are valid.

Listing 8-42 shows the output of running helm template against the templates in the

iaks chart. The output has been truncated for brevity.

Listing 8-42.  Helm template rendering

helm template .\iaks\

Source: iaks/templates/vote-back-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: azure-vote-back

spec:

 ports:

 - port: 6379

 selector:

 app: azure-vote-back

Chapter 8 Helm Charts for Azure Kubernetes Service

187

The output from this command could be piped into kubectl to validate the content.

$ helm template .\iaks | kubectl apply --dry-run --validate -f -

The output could be scanned for errors to determine if any of the Kubernetes

definitions are invalid.

Once a chart has been validated according to requirements, it can be further

tested to validate that the application is functioning properly. Some of the tests can

be embedded in the chart using the Helm test functionality mentioned earlier in

this chapter. Most automation pipelines will have additional tests to perform on the

application that are beyond the basic testing performed by Helm. The tests included in

the Helm chart are meant to test basic functionality, and not more advanced scenarios.

There is an open source project related to Helm that is specifically centered around

testing Helm charts. The project is called Chart Testing and can be found on GitHub

(https://github.com/helm/chart-testing). The Chart Testing software is capable of

performing the linting, template validation, and even running the Helm tests contained

in the chart against a release.

�Unattended Helm Chart Installs
Installing Helm charts on a Kubernetes cluster can be performed in an automated fashion.

The values used to customize a given release can be generated as artifacts in a CI/CD

pipeline and then passed to the Helm client either as a file or through the --set flag.

The same process can be used for performing upgrades of existing releases,

including running the Helm tests afterwards and preparing to run a rollback operation

if the tests fail or other issues are identified. The pipeline should record the current

revision number of the Helm release prior to upgrade to assist in the rollback process

should it be deemed necessary.

�Integrating Helm with Azure DevOps
Azure DevOps (ADO) has a number of services that integrate with Helm to assist in

automating a development pipeline. Repos in ADO can serve as the source control for

Helm charts as they are developed. Artifacts can be used to store the generated values

for a Helm release. Pipelines can be used to set up a CI/CD pipeline that uses Helm to

deploy releases on an AKS cluster.

Chapter 8 Helm Charts for Azure Kubernetes Service

https://github.com/helm/chart-testing

188

The Pipelines portion of Azure DevOps includes multiple tasks that enable the use

of Helm with the AKS service. The Helm tool installer task will install the Helm binary

on the agent machine running the job. The Package and deploy Helm charts task allows

the running of basically any Helm client command, including options for using TLS

authentication. The task targets AKS clusters, making the installation of a Helm chart

on an AKS cluster relatively straightforward. Listing 8-43 shows an example yaml Build

pipeline in Azure DevOps.

Listing 8-43.  ADO Pipeline definition

Helm deployment pipeline

trigger:

- master

pool:

 vmImage: 'ubuntu-latest'

steps:

- task: HelmInstaller@1

 inputs:

 helmVersionToInstall: 'latest'

- task: DownloadSecureFile@1

 inputs:

 secureFile: 'ca.cert.pem'

- task: DownloadSecureFile@1

 inputs:

 secureFile: 'helm.cert.pem'

- task: DownloadSecureFile@1

 inputs:

 secureFile: 'helm.key.pem'

- task: HelmDeploy@0

 inputs:

 connectionType: 'Azure Resource Manager'

 azureSubscription: 'MAS(4d8e572a-3214-40e9-a26f-8f71ecd24e0d)'

 azureResourceGroup: 'iaks'

Chapter 8 Helm Charts for Azure Kubernetes Service

189

 kubernetesCluster: 'iaks1'

 namespace: 'iaks'

 command: 'install'

 chartType: 'FilePath'

 chartPath: 'Helm/aks/iaks'

 releaseName: '$(releaseName)'

 enableTls: true

 caCert: 'ca.cert.pem'

 certificate: 'helm.cert.pem'

 privatekey: 'helm.key.pem'

The pipeline pulls the TLS files from the Secure Files section of the build library,

installs Helm on the agent machine, and then runs helm install on the named AKS

cluster using the chart found at the path Helm/aks/iaks.

�Summary
Helm is a tool to assist with the management of applications on Kubernetes. By

providing charts, Helm increases the reusability of applications and allows for

customization of an application to different environments through well-defined

configuration values. Helm is CLI based and easily fits into existing automation

pipelines and source control. This chapter serves as an introduction to Helm and a

guide for getting started with Helm on AKS.

In this chapter, you learned about what Helm is and how it provides benefits over

kubectl and traditional application deployment on Kubernetes. We reviewed the

process of preparing your AKS cluster to use Helm for application management. Then,

we went over the Helm chart structure and what is included in a functioning Helm chart.

Armed with a functional chart, you learned the process for deploying and maintaining

Helm releases on a Kubernetes cluster. Lastly, we briefly went over how Helm fits into

the world of automation and CI/CD.

Chapter 8 Helm Charts for Azure Kubernetes Service

191
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3_9

CHAPTER 9

CI/CD with Azure
Kubernetes Service
Software development has been steadily moving toward a model of Continuous

Integration and Continuous Delivery. A key enabler along the way has been the

introduction of cloud-native applications. The Cloud Native Computing Foundation

defines cloud-native as

An open source software stack to deploy applications as microservices,
packaging each part into its own container, and dynamically orchestrating
those containers to optimize resource utilization.

Hopefully, some of those terms are starting to look a bit familiar to you. Each part

of the application is packaged up as a container, most likely using Docker images. The

microservices are deployed and maintained by an orchestrator, such as Kubernetes. As

we’ll see in this chapter, the process of continuously integrating and delivering software

can be more efficient if that software is packaged using containers and deployed in a way

that is consistent and repeatable. Kubernetes in tandem with a CI/CD pipeline tool, like

Azure DevOps Pipelines, empowers developers to iterate faster and create more reliable

applications.

In this chapter, we are going to break apart the mysterious CI/CD abbreviation

and dissect the components of both CI and CD. You’ll see what it means to continually

integrate software and how that is accomplished using a build pipeline. Then we’ll look

at continuous delivery and deployment and how to accomplish each using a release

pipeline. Finally, we’ll review a few best practices when it comes to using CI/CD with the

Azure Kubernetes Service.

192

We are going to be using the IAKS Voting Application from previous chapters to help

you apply the abstract concepts of integration, delivery, and deployment to a real-world

scenario. The voting application is a container-based application composed of a web

front-end running node.js and a storage backend running Redis as shown in Figure 9-1.

The project has manifest files for deployment to Kubernetes that have been packaged

up in a Helm chart. We are going to follow the process of updating the application and

rolling that update out to a development environment and then to Production.

�CI/CD Overview
You’ve probably seen the abbreviation CI/CD before and maybe wondered what it

means. It’s a weird-looking abbreviation, and marketing folks like to sprinkle it onto

products liberally as if it were some magic incantation. But CI/CD does actually stand

for something, or more specifically it stands for two things. The CI stands for Continuous

Integration, which is the idea that as developers write code, they should be checking

their code into a shared mainline several times a day. We’ll expand more on that thought

in a moment.

The CD stands for either Continuous Delivery or Continuous Deployment. The

primary idea is that an up-to-date build of the software should be available and ready

to deploy to Production at any given time. If the build is ready, but not running in

Figure 9-1.  Voting App

Chapter 9 CI/CD with Azure Kubernetes Service

193

Production, then we can say it has been delivered. If there is an automated process than

moves a delivered build into Production, then we can say it has been deployed. Both

options conveniently abbreviate to CD, and so the common abbreviation CI/CD works in

either case. Which “D” – Deployment or Delivery – is being used can be inferred through

context.

�Continuous Integration
Continuous Integration (CI) is a software development practice that has a few key

principles as illustrated in Figure 9-2. There should be a common shared code base that

developers are working from. Developers should check out the most recent version of code,

make their changes, and then merge their updated code back into the mainline. Before

check-in, developers will get the latest version of the mainline and integrate any changes

into their local version. By committing to the mainline often, developers will never be too

far off from the mainline version of the code, and therefore the integration process will be

simpler and less likely to require refactoring. The constant process of integrating a local

code copy with the mainline copy is what is known as Continuous Integration.

Figure 9-2.  Continuous Integration process

While CI is a good concept in theory, it wasn’t until supporting toolsets arrived

that the concept was turned into a reality. The primary components that enabled

the process were Source Control Management (SCM) software, build servers, and

automated pipelines. For our example of the IAKS Voting Application, we are going to

use Azure DevOps to provide these CI components. Azure Repos will provide a git-based

SCM. Azure Pipelines will provide the automation and build servers. Azure Container

Registry will be the target to store completed build artifacts.

Chapter 9 CI/CD with Azure Kubernetes Service

194

�Shared Repository
When developers are collaborating on code, there are often several copies of the code

floating around. Each developer will have a local copy on their workstation that they

will use to develop a new feature or function. There is also a shared repository of code,

usually in a SCM service, that developers will commit their changes to and get the most

recent version of the code from. The most common SCM in use today is Git, although

there are others such as Subversion, CVS, and TFS.

Note A full discussion of Git and version control for software development is
way outside the scope of this little chapter. We will assume that you are somewhat
familiar with the idea of source control and branches. If that seems totally alien
to you, then we recommend checking out the hello-world activity on GitHub
(https://guides.github.com/activities/hello-world/) as a primer.

The IAKS Voting Application is using Azure Repos to host the shared copy of its code

as seen in Figure 9-3. The source control mechanism being used to manage the code is

Git. The application has a master branch for production usage and a feature branch used

to develop new features. Once a new feature has been tested and approved, the branch

will be merged into master.

Chapter 9 CI/CD with Azure Kubernetes Service

https://guides.github.com/activities/hello-world/

195

�Build Pipeline
The build pipeline enables the integration of committed code with the larger code base.

The build pipeline is the portion of Continuous Integration that occurs after a developer

performs a push to the mainline. There are many different products that will run a build

pipeline for you. While the terminology may change slightly from product to product, the

core concepts are consistent.

A build pipeline is composed of a series of steps that are carried out by build agents

in a serial or parallel fashion. The output of a build pipeline is a set of artifacts that

represent the functional application. A release pipeline should be able to take those

artifacts and deploy the application into target environments.

The build agents are usually virtual machines with agent software running and

listening for new requests to come in. When the build pipeline is ready to execute

one of the tasks in a step, it will look for an available build agent that meets the task

requirements and have that build agent execute the task. The results of the task will be

Figure 9-3.  Voting App git repository

Chapter 9 CI/CD with Azure Kubernetes Service

196

reported back to the build pipeline, whether the task is successful or not. At that point,

the pipeline may continue or fail depending on the task settings.

The IAKS Voting Application will be using Azure Build Pipelines shown in Figure 9-4

as part of its CI process. Azure Build Pipelines express their configuration using yaml. The

pipeline definition can live in source control along with the rest of the application, ensuring

that changes to the pipeline are tracked and versioned along with the rest of the code.

�Triggers

The trigger in a pipeline defines the conditions under which the pipeline will execute.

A trigger is often scoped to a specific branch, tag, or feature so that the steps in the

pipeline will only execute when something in-scope is committed. For a large code base,

scoping the trigger is important to ensure that only the components that have changed

run through the build process.

The IAKS Voting Application uses a code branch called features to develop new

features for the application. The current version of the application only supports two

Figure 9-4.  Continuous Integration build pipeline

Chapter 9 CI/CD with Azure Kubernetes Service

197

voting options. There is a feature in development to add a third voting option. The code

to add that feature is using the branch feature/vote3/0.5. Listing 9-1 shows the code in

the pipeline file that contains the trigger conditions.

Listing 9-1.  Trigger conditions

trigger:

 branches:

 include:

 - master

 - feature/*

The pipeline will only kick off if a commit is made to master or a branch under

feature.

�Variables

A build pipeline won’t have all values being used by each task hardcoded into the file.

There will dynamic properties, secrets, and calculated values used as part of the pipeline.

For instance, a pipeline may need a database password or API key. That value should not

be stored in plaintext in a pipeline definition file; instead, it can be stored as a secret that

is injected at build time. Properties such as the build number, build branch, and build

date are also dynamic and can be used when naming artifacts. Listing 9-2 shows the

definition of variables for the IAKS Voting Application build pipeline.

Listing 9-2.  Build pipeline variables

variables:

 �versionNumber: $[format('{0}.{1}', variables['Build.BuildNumber],

variables['Build.BuildId'])]

 repositoryName: 'iaks'

While these values are being defined within the pipeline file, it is also possible to

override these values at runtime.

�Steps

A build pipeline is composed of steps to take as the pipeline progresses. A common set of

steps is shown in Figure 9-5.

Chapter 9 CI/CD with Azure Kubernetes Service

198

The build agent used to execute each step can be defined per step or at the beginning

of a pipeline. More complicated steps may require a build agent with a specific operating

system, specialized application, or geographic location. In the IAKS Voting Application,

the build agent in Listing 9-3 is defined as a hosted Ubuntu agent with the latest version

of the operating system.

Listing 9-3.  Build pipeline agent definition

pool:

 vmImage: 'ubuntu-latest'

Azure DevOps offers hosted Windows and Linux agents that are allocated on

demand. It is also possible to set up dedicated pools of build agents either in Azure or

another location.

The code will be tested, packaged, and placed in a designated location as a collection

of artifacts. The artifacts will be used by the release pipeline to deploy the application.

The IAKS Voting Application first builds the front-end web application container image

as shown in Listing 9-4.

Listing 9-4.  Build pipeline docker task

 - task: Docker@2

 inputs:

 containerRegistry: 'iaks'

 repository: 'azure-voting-app'

 command: 'buildAndPush'

 tags: '$(versionNumber)'

 Dockerfile: '**/CICD/azure-vote/Dockerfile'

Figure 9-5.  Continuous Integration pipeline

Chapter 9 CI/CD with Azure Kubernetes Service

199

The task builds the image on the hosted agent and then tags and pushes the image

up to an Azure Container Registry (ACR) using the versionNumber variable we defined

earlier as a tag to differentiate between multiple builds.

The next step shown in Listing 9-5 is to take the Helm chart being used to deploy the

application and package it up into a Helm archive file. The packaging process will also

update the Chart.yaml values with the submitted version and application version numbers.

Listing 9-5.  Build pipeline Helm install

 - task: HelmInstaller@1

 inputs:

 helmVersionToInstall: 'latest'

 - task: HelmDeploy@0

 inputs:

 command: 'package'

 chartPath: '**/Helm/aks/iaks'

 chartVersion: '$(versionNumber)'

 arguments: '--app-version $(versionNumber)'

The build agent does not have Helm installed by default, so the first task installs the

latest version of Helm, and the second task creates the Helm package locally using the

versionNumber variable for both the chart version and the application version.

We are going to store the packaged Helm chart in the same ACR as the web front-end

container image. An Azure CLI command is used to push the package since there is no

built-in task that will push a Helm package to ACR as shown in Listing 9-6.

Listing 9-6.  Build pipeline ACR task

 - task: AzureCLI@1

 inputs:

 azureSubscription: $(AzureSubscriptionId)

 scriptLocation: 'inlineScript'

 �inlineScript: 'az acr helm push $(System.ArtifactsDirectory)/$(reposi

toryName)-$(versionNumber).tgz --name $(AzureContainerRegistry);'

The last two tasks shown in Listing 9-7 place the version number for this build into

a text file and publish that text file as an artifact. The version number was defined in the

variables as a combination of the BuildNumber and the BuildId. The versionNumber

Chapter 9 CI/CD with Azure Kubernetes Service

200

variable was used to tag the container image and the Helm chart. The release pipeline

will need the proper version number when it runs to find the correct image and chart.

Listing 9-7.  Build pipeline bash script

 - task: Bash@3

 inputs:

 targetType: 'inline'

 �script: 'sudo echo $(versionNumber) > $(System.

DefaultWorkingDirectory)/versionNumber.txt'

 - task: PublishPipelineArtifact@1

 inputs:

 targetPath: '$(System.DefaultWorkingDirectory)/versionNumber.txt'

 artifact: 'versionNumber'

�Notifications

When a build pipeline completes, whether it is successful or not, a notification should be

sent out. There are many options when it comes to notification, the most common being

email, chat, or webhook.

Notifications for Azure DevOps are handled outside of the pipeline, defined in the

project settings. Third-party apps, such as Slack, can subscribe directly to a build or

release and provide notifications to a specific channel. The IAKS Voting Application is

being monitored on a Slack channel called iaks. When a build pipeline completes, the

following notification in Figure 9-6 appears in the channel.

Figure 9-6.  Azure Pipelines notification

Chapter 9 CI/CD with Azure Kubernetes Service

201

�Artifacts

A successful build pipeline will produce artifacts that can be used by the release pipeline

to deliver and possibly deploy the application. The artifacts being produced by the

build should be used consistently for any acceptance testing that happens in lower

environments as well as Production. That guarantees whatever code is deployed in

staging or QA will match what is deployed in Production. Tinkering with artifacts outside

of the build pipeline is strongly discouraged, as in don’t do it ever.

Why shouldn’t you tinker with the artifacts? Let’s say that you have built a new
version of the application and deployed it into QA and staging. There’s a small
issue in the staging environment, but you find that you can fix it by tweaking a
setting in a configuration file.

You make the change and the testing now passes. Since you tweaked the artifact
in staging, the code being deployed no longer matches what is in source control.
On a subsequent build, your change will be missing, and the thing you fixed is now
broken again.

At best, you broke staging. At worst, the missing change makes it to Production
and breaks there. Morale of the story? Don’t alter artifacts. Make the change in
code and run a new build.

The IAKS Voting Application creates three artifacts. The web front-end container image,

the Helm chart, and the versionNumber text file. The container image and chart are stored

in an Azure Container Registry instance. The text file is published as an artifact from the

build, which makes it available to any release pipelines. As we move into the release pipeline

section, we’ll see how the artifacts from the build are ingested and used by the release.

�Continuous Delivery/Deployment
As mentioned in the beginning of this chapter, CD can stand for Continuous Delivery or

Deployment. The primary difference is at what point the automated process halts. In a

continuous delivery environment, the end of the CD pipeline is a production-ready release.

There is a manual step to formally deploy the release into production. A continuous

deployment environment automates that last step.

Chapter 9 CI/CD with Azure Kubernetes Service

202

Note  For the purposes of this section, we will be primarily looking at setting up a
continuous delivery pipeline. Continuous deployment will be explicitly noted when
applicable.

�Release Pipeline
The end result of a build pipeline is a set of artifacts that make up the application. These

artifacts should be in a deployable state. It is the job of a release pipeline to take those

artifacts and deploy the application to one or more environments, as well as run tests to

validate the functionality of the application. A common example of a release pipeline is

shown in Figure 9-7.

Figure 9-7.  Continuous Delivery pipeline

The pipeline will pull the artifacts created by a specific build. Then, it will deploy

the artifacts as an application to a development environment and run the system tests.

Assuming those system tests pass, the pipeline will create a pull request to merge the

feature branch into the master branch. Then, the pipeline will deploy the same artifacts

to a staging environment where acceptance testing will occur. If acceptance testing is

successful, the artifacts can be tagged as production ready or moved to a production-

only repository. The movement of artifacts to a production repository could serve as a

trigger to kick off another stage in the pipeline that deploys those artifacts to Production.

The IAKS Voting Application is using two release pipelines from Azure Pipelines to

handle Continuous Delivery. Code built from the feature branch will trigger the helm-

dev-release pipeline. That pipeline will take the artifacts from the feature build and

deploy them to the development namespace on the AKS cluster. Rather than using a

Chapter 9 CI/CD with Azure Kubernetes Service

203

single development namespace, it is also possible to enable the Dev Spaces feature on

the AKS cluster. Dev Spaces creates a dedicated development environment that can be

shared by multiple developers, with the ability to create per-user spaces within the larger

development environment to test new features in real time.

When code is merged to the master branch through a pull request, it will trigger the

helm-qa-release pipeline. That pipeline will take the artifacts from the last successful

build and deploy them to the qa namespace on the AKS cluster. Once acceptance testing

has been performed, a second phase will be invoked that takes the artifacts from the

build and copies them to a production repository on ACR. There is a third manual phase

that will deploy the production-tagged artifacts to the production AKS cluster.

Azure release pipelines are expressed using a graphical UI rather than through yaml

files. It is likely that this will change soon to make the interface consistent across build

and release pipelines. The release pipeline can be exported or imported using JSON files.

For the examples in this section, a screenshot will be used to display the relevant portion

of the release pipeline configuration.

�Triggers

A common trigger for a CD pipeline is the successful completion of a CI pipeline. There

may also be situations where the trigger is time-based and fires off on a daily schedule or

is based on a pull request from another branch.

The IAKS Voting Application is triggered by a successful build of code from the

feature branch or a pull request on the master branch. The configuration for the feature

branch trigger on the helm-dev-release pipeline is shown in Figure 9-8.

Chapter 9 CI/CD with Azure Kubernetes Service

204

Each time a new build from a branch on the feature path is available, this pipeline

will execute. The configuration for the helm-qa-release shown in Figure 9-9 is identical,

except that the build branch is set to master and there is a pull request trigger added.

�Stages

The terminology for the stages in a CD pipeline depends on the software, but broadly

there will be multiple stages in a CD pipeline. Each stage can be composed of one or

more jobs, and each job is composed of one or more tasks. The stages and jobs can be

sequential or run in parallel. The tasks within a job are usually run serially.

Figure 9-9.  Azure Pipelines QA Release

Figure 9-8.  Continuous Deployment trigger

Chapter 9 CI/CD with Azure Kubernetes Service

205

The artifacts for the stage are sourced from the build process. It is possible to have

more than one source for artifacts. In a large application with several microservices, the

artifacts might be sourced from the successful build of each microservice pipeline.

The helm-qa-release in Figure 9-11 is composed of three stages, each with one job.

Figure 9-10.  Azure Pipelines Dev Release

Figure 9-11.  Azure Pipelines Staging Release

The helm-dev-release pipeline in Figure 9-10 is composed of a single stage, with one job.

Chapter 9 CI/CD with Azure Kubernetes Service

206

The jobs for all the stages run on a release agent, in the same way that build tasks are

executed on a build agent. The Dev Release job is shown in Figure 9-12 for reference.

Figure 9-12.  Azure Pipelines agent configuration

In Figure 9-12, you can see that the agent first downloads the pipeline artifact that

contains the versionNumber.txt file. The following task is a bash script that gets the

version number out of the text file and sets a release pipeline variable with that version

number. Then the agent installs Helm and uses the Azure CLI to add the ACR repository

where the Helm chart for the deployment resides. Finally, in Figure 9-13 Helm runs an

upgrade on the AKS cluster in the development namespace using the Helm chart and

container image that were part of the artifacts from the build pipeline.

Chapter 9 CI/CD with Azure Kubernetes Service

207

Figure 9-13.  Azure Pipelines Helm deployment

Chapter 9 CI/CD with Azure Kubernetes Service

208

Figure 9-13.  (continued)

When the deployment is finished, the development namespace in the AKS cluster has

a new deployment of the IAKS Voting Application running as shown in Listing 9-8.

Listing 9-8.  Helm deployment listing

helm ls --tls --namespace development

NAME STATUS CHART APP VERSION

iaks-45 DEPLOYED iaks-20190725.4.45 20190725.4.45

iaks-46 DEPLOYED iaks-20190725.4.46 20190725.4.46

The naming of each release includes the BuildId property, so each successful build

will be created as its own deployment on the AKS cluster. The helm-qa-release uses the

same tasks to deploy a copy of the application to the qa namespace, but it does not use

the BuildId property to name the helm release. Therefore, when the helm-qa-release

pipeline is run, it upgrades any existing application in place.

Chapter 9 CI/CD with Azure Kubernetes Service

209

At the end of the deployment task in helm-qa-release, Figure 9-14 shows there is an

approval condition. Someone from the QA department needs to review the deployment

and verify that it has passed all the acceptance criteria.

By approving the Staging-Release stage, the next Tag Artifacts stage in the pipeline

as seen in Figure 9-15 is executed, which involves the movement of build artifacts to the

production repository. In Azure Container Registry, there is a separate registry instance

called acriaksprod. The goal of the Tag Artifacts stage is to take the artifacts stored in

acriaks and move them to acriaksprod.

Figure 9-14.  Azure Pipelines post-deployment

Chapter 9 CI/CD with Azure Kubernetes Service

210

The deployment process downloads the versionNumber.txt artifact and imports it

as a variable. Then, it installs both the Helm and Docker clients. The first Azure CLI task

adds the acriaks ACR as a Helm repository.

az acr helm repo add -n $(acrName)

Then, the Helm task gets the iaks chart from the acriaks repository and saves it

locally.

helm fetch $(acrName)/iaks

In the last task shown in Listing 9-9, the Azure CLI first pushes the Helm chart to the

acriaksprod repository. Then, it logs into both acriaks and acriaksprod. Using the docker

CLI, it pulls the current web front-end image from acriaks, retags it for acriaksprod, and

pushes the image to acriaksprod.

Figure 9-15.  Azure Pipelines Tag Artifacts

Chapter 9 CI/CD with Azure Kubernetes Service

211

Listing 9-9.  Azure CLI tasks

az acr helm push iaks-$(versionNumber).tgz --name $(acrName)prod

az acr login -n $(acrName)prod

az acr login -n $(acrName)

docker pull $(imagePath):$(versionNumber)

docker tag $(imagePath):$(versionNumber) $(prodImagePath):$(versionNumber)

docker push $(prodImagePath):$(versionNumber)

The Helm chart and web front-end image are now both stored in the production

repository and ready for deployment to Production. The Production environment

runs on a separate AKS cluster. We can configure an admission policy using the

ImagePolicyWebhook to allow only images stored on the acriaksprod registry to be

deployed to the Production cluster.

In helm-qa-release there is a separate stage shown in Figure 9-16 that can be

manually run to deploy to Production.

Figure 9-16.  Azure Pipelines Production Release

The tasks in the Production-Release stage mirror the tasks in the Staging-Release

stage, but some of the values have been changed as seen in Figure 9-17 to use the

correct ACR instance, acriaksprod, and to deploy to a separate AKS cluster reserved for

production use.

Chapter 9 CI/CD with Azure Kubernetes Service

212

Although the Production-Release stage is currently set to be triggered

manually – making it a continuous delivery pipeline – it could be updated to trigger after

the Tag Artifacts stage is completed and approved by a select group of people.

�Testing
An integral part to the entire CI/CD process is proper testing. There are different stages

at which testing will occur, each test building off the last. Ultimately, the goal of testing is

to produce reliable software that meets technical and business requirements. A portion

of the testing will occur on the developer’s workstation prior to code being pushed to

the shared repository. Once code is pushed to the shared repository, a CI pipeline will

begin execution. The steps of the CI pipeline will include automated and sometimes

manual testing, with the goal of producing stable software that is ready to be deployed

and tested in a QA or staging environment. The last set of tests in the CI/CD context will

be executed during the CD pipeline, hopefully culminating in an acceptable release that

can be deployed in Production.

Depending on the deployment model, testing doesn’t necessarily end with

deployment to Production. Code may be gradually rolled out to a subset of users or

to certain geographic locations. Telemetry gathered during the rollout can be used to

further validate that the software is working as expected.

In the following subsections, we will briefly look at some of the more common

testing phases and where they sit within the larger context of the CI/CD process.

Figure 9-17.  Azure Pipelines Production Helm Task

Chapter 9 CI/CD with Azure Kubernetes Service

213

�Unit Testing
When a new feature or function is being developed, there are requirements that it must

meet. For a given set of inputs, it should produce certain outputs. For instance, let’s say

you were developing a function that adds two integers together. The unit tests would

validate that given two integers – 1 and 2 – the function produces the expected out of 3.

The unit test would have several cases to test with, including invalid input like a floating-

point number or text instead of an integer. We might know that peanut butter and

chocolate equals awesome, but our adding function should probably throw an error.

Unit testing will occur either on the developer’s local workstation or during the early

stages of the CI pipeline.

�Integration Testing
After a feature or function is validated by itself, it then needs to be tested against the

other portions of the application it interacts with. In our example, there is a good chance

that portions of the application are already using a function to add integers together.

When you replace that function with your new one, you must test those portions of the

application to ensure that they are still working properly. In other words, you are testing

the integration of your code with the components it interacts with.

Integration testing will occur as a stage in the CI pipeline before the build is released

for deployment in the next testing stage.

�System Testing
A cloud-native application is made up of microservices, each providing a service to other

components of the application or to an external source. Although not all components

will interact directly with the portions of the code being updated, there may still be

unforeseen collateral effects. System testing is performed on the application as a whole,

and not only on those components that directly interact with the update. In our example,

this would be a standard suite of tests that apply to the entire application, and not just

pieces that are using your new and totally awesome adding function.

System testing will occur after the release is built, typically during a CD pipeline that

tests the release in a development or QA environment.

Chapter 9 CI/CD with Azure Kubernetes Service

214

�Acceptance Testing
System testing determines if the system is working as intended from a technical

perspective, but there are other criteria for validation. The security, compliance, and

QA teams may want to run their automated or manual test suites to validate that the

application meets their business requirements. Sometimes a group of users will also

be included in the testing to make sure that the user community is happy with the

functionality of the application.

Acceptance testing will occur after the CI pipeline is complete and before the

application is deployed to Production. There may be several rounds of acceptance

testing by different teams included in a CD pipeline which ultimately leads to a release

that is ready for Production rollout.

�Dev Spaces
Within AKS, there is a feature called Dev Spaces that is currently in preview. The

intention behind Dev Spaces is to make the development and testing process simpler for

individual developers. Essentially, a parent Dev Space is created within the AKS cluster

with one or more child spaces for each developer on a team as displayed in Figure 9-18.

In the parent space, a complete version of the application is deployed. As a developer

makes updates to their code, the resulting build is deployed in their unique space, but it

can interact with the parent space running the rest of the application.

Chapter 9 CI/CD with Azure Kubernetes Service

215

For instance, let’s think about a microservices application that contains a time

tracking service. You may be working on the time tracking service, and that service

interacts with many of the other services that make up the application. Rather than

trying to run the entire application on your workstation, instead an instance of the

application is running on AKS in a Dev Space called Development. When you commit

a new version of your time tracking service, Dev Spaces can deploy the resulting pods

in your personal space, a child space called Development/Dev1. For testing purposes,

you can now use the application in Development, but have your application endpoint

use the newer time tracking service in Development/Dev1. Once you have successfully

performed your unit and integration tests, you could merge your code into the

development branch and the application in the Development space would be updated.

Dev Spaces does require preparing code to use it, creating a Dev Spaces

configuration file, and using some client-side tooling to interact with it. The primary

benefit is that developers don’t have to try and maintain a local copy of the application

for testing, and everyone on the team is using a common environment already running

in Kubernetes to perform testing and debugging.

Figure 9-18.  Dev Spaces layout

Chapter 9 CI/CD with Azure Kubernetes Service

216

�CI/CD Best Practices with AKS
There are many best practices when it comes to CI/CD, and we won’t try to summarize

them here. Instead, we would like to focus on applying CI/CD to the Azure Kubernetes

Service. The best practices can be broken into two distinct areas, cluster operators and

application developers.

�Cluster Operators
Cluster operators are the folks responsible for managing and maintaining the AKS

clusters. They handle configuring the security of the cluster, updating the version of

Kubernetes, configuring scaling and node pools, and much more. You might be in

this category if you are often deploying and making changes to AKS clusters. Cluster

operators are primarily concerned with the Continuous Delivery portion of CI/CD,

although they may become involved in assisting developers with Dev Spaces or carving

out a permissioned namespace for integration testing.

�Separate Environments

When it comes to delivery and deployment, there are going to be several environments

that a release moves through: development, QA, staging, production, and so on. These

environments will require some level of separation, and there are two primary ways to

accomplish this, namespaces and clusters.

Namespaces in Kubernetes are a logical construct to separate workloads.

Namespaces can be used in RBAC rules, restricting which namespaces an account could

deploy to. Namespaces also have their own DNS space for name resolution, for example,

a service in the development namespace might have the address app.development.svc.

cluster.local. Namespaces may have resource quotas assigned to them, allowing you to

limit the amount of resources a namespace can use within the cluster.

For environments that do not need hard separation from each other, namespaces

make logical sense. Extra attention needs to be paid to firewall rules and restrictions,

since namespaces do not provide network separation or segmentation between each

other. A common best practice would be using namespaces to separate multiple

development environments, as well as other nonproduction environments.

Clusters in AKS provide a harder separation between environments. Each cluster

is completely separate from others from the perspective of Kubernetes administration.

Chapter 9 CI/CD with Azure Kubernetes Service

217

Creating a separate cluster provides an additional level of segmentation from a

networking standpoint that may be desirable for certain environments like Production.

Multiple clusters increase the administrative burden, as now the cluster operator is

responsible for managing and maintaining them. A common best practice would be

using a separate cluster for the Production environment or other environments that

might require a higher level of separation.

There is a third potential option, which would be the use of node pools in AKS. Node

pools are in preview for AKS but should be generally available in the not too distant

future. A cluster can have multiple node pools, with each pool comprised of the same

node size and type. By using node tainting and selectors, it is possible to separate

environments into different node pools, which would increase the isolation without

requiring another AKS cluster to manage.

�Restrict Access

With a proper release pipeline in place, developers should not be deploying directly

to AKS. They should be following the process of committing their code and letting the

CI and CD pipelines do the rest. Except for Dev Spaces, developers should not have

permissions to deploy directly to any of the environments in AKS.

Build and release pipelines can be associated with service principals in Azure, and

those service principals can be granted the necessary rights to deploy to AKS. Each

environment should be permissioned with its own service principal, and access to edit

pipelines should be restricted as well.

Restricting the developers access, as well as your own access, forces everyone to

follow the CI/CD process and stops them from making changes outside the process that

might be forgotten or overlooked in future deployments.

�Admission Controls

Admission controls on a cluster help determine whether a deployment will be accepted

or if anything about the deployment needs to be altered prior to acceptance. This can

include requiring specific labels, resource limits, or image registries. To protect against

possible tampering within a release pipeline, it is a best practice to create admission

policies that prevent certain deployments from being successful. AKS has several

admission control plug-ins enabled depending on what version of Kubernetes you are

running on your AKS cluster.

Chapter 9 CI/CD with Azure Kubernetes Service

218

�Azure Monitor for Deployment

Azure Monitor is the combination of multiple monitoring services in Microsoft Azure. A

big part of running an effective CI/CD operation is collecting feedback. Cluster operators

are primarily concerned about the health of applications after a deployment or cluster

maintenance. Azure Monitor can be configured to collect information from AKS for

operators to using in alerting or trend analysis.

�Application Developers
Cluster operators are concerned with the proper functioning and maintenance of the

AKS clusters in their purview. Application developers are focused on the health and

performance of their applications. You might be in this category if you are writing code

that will run on an AKS cluster. Application developers are concerned with both the

Continuous Integration and Continuous Delivery components of CI/CD.

�Debug on Kubernetes

Applications may function differently depending on what environment they are running

in. To that end, it makes sense to test and debug applications in an environment that

most closely mirrors Production conditions. AKS provides the ability to debug directly on

Kubernetes, either through a dedicated development environment for the whole team

or through Dev Spaces. Using Dev Spaces in particular provides a common baseline

environment for the whole team while still allowing individual development and

debugging for a specific component of the application.

�Store Credentials Externally

Credentials and other secret information should not be baked into code, deployment

files, or CI/CD pipelines. They should be stored in a secure vault that is accessible at

application runtime with proper permissions and security controls.

AKS and Azure DevOps are able to make use of Azure Key Vault. Both AKS and Azure

DevOps use Azure Active Directory to authenticate against Key Vault and get access

to the secrets, certificates, and keys stored there. AKS can use both Managed Security

Identities for its nodes and pod-level Azure AD authentication to access Key Vault.

Application developers should take advantage of the Azure Key Vault integration to

move any credentials, secrets, and certificates out of their code.

Chapter 9 CI/CD with Azure Kubernetes Service

219

�Azure Monitor for Development

Azure Monitor is the combination of multiple monitoring services in Microsoft Azure,

including App Insights and Log Analytics. Logs, traces, and debugging information

can all be sent to Azure Monitor for alerting and analysis. While the cluster operator is

concerned about the health of their AKS clusters, developers are more focused on the

health of their applications, especially when a new version of the application is deployed

or if there is a sudden spike in traffic. The CI/CD pipeline can also send information

to Azure Monitor as each stage executes, making that data available for alerting and

analysis.

Application developers should add hooks into their code and pipelines to enable

additional Azure Monitor integration.

�Summary
Continuous Integration and Continuous Delivery are massive topics within the larger

DevOps world. While we have just touched on some of the core concepts behind CI/

CD, we hope that you can see how AKS ties into automating the build and release

of software. Kubernetes, generally, and AKS, in particular, provide a consistent and

stable environment for developing and deploying cloud-native applications. Working

in tandem with CI/CD principles, it is possible to iterate rapidly and produce stable

applications for the end user.

In this chapter, you learned what CI/CD is and some of the fundamentals behind

source control, application builds, and release pipelines. We reviewed a build pipeline in

Azure DevOps and saw how a code commit results in usable artifacts for delivery. Then,

we looked at a release pipeline and how the same artifacts could be used to deploy the

application in multiple environments. Finally, we reviewed some of the best practices

around using AKS with CI/CD.

Chapter 9 CI/CD with Azure Kubernetes Service

221
© Steve Buchanan, Janaka Rangama, Ned Bellavance 2020
S. Buchanan et al., Introducing Azure Kubernetes Service, https://doi.org/10.1007/978-1-4842-5519-3

Index

A, B
Apiserver, 39
Azure Active Directory (AAD), 123, 124
Azure Container Instances (ACI), 17, 106,

107, 114
Azure Container Registry (ACR), 17

AKS integration, 33
formats, 27
overview, 27
permissions, 29, 30
registry creation, 27
security, 28, 29
tasks and automation, 30

mutli-step tasks, 31, 32
simple tasks, 30, 31
webhooks, 32, 33

Azure DevOps (ADO), 187–189
Azure Kubernetes Service (AKS), 33, 63

access and identity options, 122
AAD integration, 123
ClusterRole, 123
ClusterRoleBinding, 124
RBAC clusters, 123
RoleBinding, 124
roles, 123
service account, 122

ARM (see Azure Resource
Manager (ARM))

business continuity and disaster
recovery, 145

datacenter failures, 147
disaster recovery, 146
master node failures, 147
regional failures, 148, 149
replication and protection

level, 146
worker nodes, 147

cluster page
authentication section, 67
cluster dashboard, 70
configuration, 64
connection, 76
creation, 65
networking section, 68
validation section, 69

command line tool, 70–72
container monitoring (see Container

monitoring services)
control deployments

add-on, 125, 126
definitions, 126
GateKeeper logs, 124, 127
policy preview, 124, 125
prerequisites, 125, 126
validation, 127

deployment
Azure Portal, 63–69
overview, 63

Helm (see Helm charts)
master component logs

https://doi.org/10.1007/978-1-4842-5519-3

222

configuration, 144
diagnostic settings, 143
KQL queries-retrieve, 145

networking concepts
CNI model, 120–122
kubenet, 120
security groups and

policies, 122
scaling concepts, 110

ACI connection, 114
automatically scale pods

or nodes, 111
cluster autoscaler, 113
horizontal pod

autoscaler, 111
pods and nodes, 110
virtual kubelet and

nodes, 114
security concepts, 128

cluster upgrade
process, 130

Kubernetes Secret, 130
master components, 128
nodes, 128, 129

storage options
architecture, 115, 116
classes, 117
PersistentVolumeClaim

classes, 118–120
PV, 116
volumeMount, 118
volumes, 116, 117

Terraform, 76
Azure Resource Manager (ARM)

QuickStart template, 73–76
service principal, 72
SSH key pair creation, 72

C, D
Cloud Native Application Bundle

(CNAB), 155
Command line interface (CLI), 2, 70–72
Community Edition (CE), 3
Container Networking Interface

(CNI), 119
advantages and disadvantages of, 121
clusters, 121
kubenet, 120
kubenet vs. Azure CNI, 120

Container monitoring services, 131
alert rule creation, 139
analytics view, 135
architecture, 132
cluster tab, 134
component logs, 142–145
containers, 134–136
controllers, 134
enable option, 132
insights, 133
Kubelet logs, 142
log analytics, 138–143
metrics, 136, 137
nodes tab, 134
overview, 131–133

Container registries
ACR (see Azure Container

Registry (ACR))
definition, 17
differences, 18
Docker Hub web site, 26
images, 18
operations, 20

image tags, 25–27
login, 20, 21
pull option, 22

Azure Kubernetes Service (AKS) (cont.)

Index

223

push, 23, 24
search command, 21

principle, 17
private and public registry, 18–20
repositories

differences, 18
private and public

repositories, 19–21
Containers

definition, 1
Docker, 2, 3

build command, 13
command cheat sheet, 10–12
compose, 13–15
Dockerfile instruction, 12, 13
installation, 8
login screen, 10
management command

structure, 11
networking, 6, 7
orchestration systems, 16, 17
requirements, 9
running option, 15
steps of, 9
storage options, 8, 9
WordPress application, 14

images, 6
value of, 2
vs. virtual machines, 3–5

Continuous delivery/deployment (CD)
pipeline

IAKS voting application, 202
master branch, 203
stages, 204–212
triggers, 203, 204

stages
agent configuration, 206
CLI tasks, 211

composed of, 205
deployment, 206, 207
dev release, 205
development, 208
helm-qa-release, 205
helm task, 212
post-deployment, 209
production release, 211
tag artifacts, 210

Continuous integration and
continuous delivery
(CI/CD), 185

application developers, 218
credentials, 218
debug, 218
development, 219

automating deployments, 185
CD (see Continuous delivery/

deployment (CD))
CI (see Continuous

integration (CI))
cloud-native application, 191
cluster operators, 216

admission controls, 217
deployment, 218
restrict access, 217
separate environments, 216

DevOps, 187–189
installation, 187–189
overview, 192
testing, 186, 187

acceptance, 214
definition, 212
Dev Spaces, 214, 215
integration, 213
system, 213
unit testing, 213

voting application, 192

Index

224

Continuous integration (CI)
build pipeline, 195

artifacts, 201
bash script, 200
notifications, 200
steps, 197–200
triggers, 196
variables, 197

constant process, 193
shared repository, 194, 195

E, F, G
Enterprise edition (EE), 3

H, I
Helm charts

advantages, 152
chart contents

charts directory, 169
Chart.yaml file, 164, 165
deployment process, 171–173
license, 167
local repository, 170
myvalues.yaml file, 172
README.md, 167, 168
repositories, 170, 171
requirements.yaml, 168, 169
stable repository, 170
standard file and folder

structure, 163
templates directory, 169
values.yaml file, 165–167, 172

chart tests, 176
CI/CD integrations, 185

automating deployments, 185
Azure DevOps, 187–189

installation, 187
testing, 186, 187

CNAB project, 155
create command, 173, 174
deployment, 178

installation, 178–180
release, 181–183
remove option, 184, 185
status, 180
web page, 180

init (installation), 159
copying files, 163
pod and service details, 160–162
testing, 162
tiller service account, 159

key components, 153
client, 153, 154
repository, 155
Tiller, 154

overview, 151
package command, 176–178
primary use cases, 152
RBAC and service account, 156, 157
requirements, 156
template functions, 174–176
TLS considerations, 157–159

Horizontal pod autoscaler (HPA), 111, 112

J
JavaScript Object Notation (JSON) files,

32, 72, 82, 203

K, L
Kubectl commands, 51

categories, 52
formatting output, 54

Index

225

kubeconfig files, 51
operations, 58

apply, 59
delete, 61
describe, 60
exec operation, 61
get, 59
logs, 62

resources
debugging containers, 57, 58
deployments, 54, 55
generate config, 56, 57
remote and local config, 55
viewing pods associate, 57

syntax, 53
Kubenet (Basic) networking, 120
Kubernetes

annotations, 42
architecture, 37
cloud-controller-manager, 39
ConfigMaps, 45, 46
DaemonSets, 44
dashboard, 38
deployments, 45
Docker runtime, 38
features of, 36
functions, 35
interfaces, 37, 38
jobs, 44
Kube-controller-manager, 39
Kube-scheduler, 39
labels and annotations, 41, 42
master node, 39, 40
namespaces, 40, 41
networking, 47
orchestration platform, 35
pods, 43, 44
replicasets, 43

secrets, 47
services, 44, 45
storage, 48–50
worker node, 40

M
Macvlan, 7

N
Network address translation

(NAT), 7, 120

O
Open container initiative (OCI), 17
Open Policy Agent (OPA), 124
Operational process, 101

clusters
delete, 105
Kubelet architecture, 108
Kubernetes dashboard, 110–113
nodes, 102, 103
scale command, 102
show command, 102
upgrades commands, 103–105
virtual nodes, 105–107

Orchestration systems, 16, 17

P
Port mapping, 7 See also Network address

translation (NAT)
Public Key Infrastructure (PKI), 157

Q
QuickStart template, 73–76

Index

226

R
Rancher

administration, 80
AKS deployment, 92

account access settings, 93
cluster name, 94
components metrics, 98
dashboard, 97
DNS prefix, 94
Grafana UI, 99
Kubernetes provider, 93
metrics, 98
provision, 95
resource group and SSH key, 95
resources, 96

authentication, 90–92
deployment and management, 80
deployment option

ARM template code, 82–89
parameters, 88
password setting, 89
resources, 88
save URL, 90

Kubernetes, 80, 81
overview, 79
RancherNode.JSON, 82–89

Role-based access control
(RBAC), 29, 123, 156, 157

S
Service-level objectives and agreements

(SLOs and SLAs), 145
Service principal name (SPN),

72, 90, 92
Source control management

(SCM), 193, 194

T, U
Terraform, 76, 77, 132

V, W, X, Y, Z
Virtual machines (VMs), 3–5,

81, 128, 129, 146

Index

	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Inside Docker Containers
	The Value of Containers
	What Is Docker
	Containers vs. Virtual Machines
	Images and Containers
	Docker Components (Networking and Storage)
	Networking
	Storage

	Installing Docker
	Docker Command Cheat Sheet
	Understanding the Dockerfile
	Understanding Docker Build
	Understanding Docker Compose
	Running a Container
	Orchestration Platforms
	Summary

	Chapter 2: Container Registries
	Overview of Container Registries
	Registries, Repositories, and Images
	Private and Public Registries and Repositories
	Basic Registry Operations
	Login
	Search
	Pull
	Push

	Image Tagging

	Common Registries
	Docker Hub and Docker Registry
	Azure Container Registry

	Azure Container Registry Expanded
	Security
	Permissions
	Tasks and Automation
	Simple Tasks
	Multi-step Tasks
	Webhooks

	Azure Kubernetes Service Integration

	Summary

	Chapter 3: Inside Kubernetes
	Kubernetes Interfaces
	Docker Runtime
	Master Nodes Overview
	Worker Nodes Overview
	Namespaces
	Labels and Annotations
	Pods
	Replicasets
	DaemonSets
	Jobs
	Services
	Deployments
	ConfigMaps
	Secrets
	Networking
	Storage
	Summary

	Chapter 4: kubectl Overview
	Introduction to kubectl
	kubectl Basics
	kubectl Syntax
	Formatting Output in kubectl
	Listing Kubernetes Resources
	Creating a Resource from Config
	Remote Config
	Local Config

	Generating a Config from a Command
	Viewing Pods Associated with Resources
	Debugging Containers

	Common Operations with kubectl
	kubectl apply
	kubectl get
	kubectl describe
	kubectl delete
	kubectl exec
	kubectl logs

	Summary

	Chapter 5: Deploying Azure Kubernetes Service
	Azure Kubernetes Service Deployment Overview
	Deployment Through the Azure Portal
	Deployment Through Azure CLI
	Deployment Through Azure Resource Manager Templates
	Create an SSH Key Pair
	Create a Service Principal
	Using an Azure Resource Manager QuickStart Template

	Deployment Through Terraform
	Connecting to Your AKS Cluster
	Summary

	Chapter 6: Deploying and Using Rancher with Azure Kubernetes Service
	What Is Rancher?
	Why Use Rancher with Kubernetes?
	How to Deploy Rancher on Azure
	Authenticate Rancher with Azure Active Directory
	Deploy AKS with Rancher
	Summary

	Chapter 7: Operating Azure Kubernetes Service
	Cluster Operations in Azure Kubernetes Service
	Manually Scaling AKS Cluster Nodes
	Upgrading an AKS Cluster
	Deleting an AKS Cluster
	Creating Virtual Nodes
	Using Virtual Kubelet with Azure Kubernetes Service
	Using Kubernetes Dashboard

	Scaling Azure Kubernetes Service
	Manually Scaling Pods or Nodes
	Automatically Scaling Pods or Nodes
	Horizontal Pod Autoscaler
	Cluster Autoscaler (Preview)
	Burst On Demand with Azure Container Instances

	Storage Options for Azure Kubernetes Service
	Volumes
	Persistent Volumes
	Storage Classes
	Persistent Volume Claims

	Networking in Azure Kubernetes Service
	Kubenet vs. Azure Container Networking Interface (CNI)
	Kubenet (Basic) Networking
	Azure Container Networking Interface (CNI) - Adavanced Networking

	Network Security Groups and Network Policies

	Access and Identity in Azure Kubernetes Service
	Kubernetes Service Accounts
	Azure Active Directory Integration
	Azure Role-Based Access Controls (RBACs)
	Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings
	Control Deployments with Azure Policy (Preview)
	Enable the Preview
	Azure Policy Add-On
	Installation Prerequisites
	Installing the Azure Policy Add-on

	Assigning Policy Definitions to AKS
	Policy Validation
	Azure Policy Add-On Logs
	GateKeeper Logs

	Security Concepts in Azure Kubernetes Service
	Master Security
	Node Security
	Cluster Upgrades
	Kubernetes Secrets

	Monitoring Azure Kubernetes Service
	Azure Monitor for Containers
	Overview
	Enable Monitoring
	Azure Monitor
	Insights
	Cluster
	Nodes
	Controllers
	Containers

	Metrics
	Log Analytics
	Creating an Alert Rule Through Log Analytics

	Kubelet Logs
	Kubernetes Master Component Logs

	Business Continuity and Disaster Recovery in Azure Kubernetes Service
	Thinking About SLAs and What You Need
	Data Persistence and Replications
	Protecting Against Faults
	Master Node Failures
	Worker Node Failures
	Datacenter Failures
	Regional Failures

	Summary

	Chapter 8: Helm Charts for Azure Kubernetes Service
	Helm Overview
	Use Cases
	Advantages over Kubectl
	Key Components
	Helm Client
	Tiller
	Helm Repository

	Cloud Native Application Bundle

	Installing Helm on AKS
	Requirements
	RBAC and Service Account
	TLS Considerations
	Helm init

	Helm Charts
	Chart Contents
	Chart.yaml
	Values.yaml
	License
	README.md
	Requirements.yaml
	Charts Directory
	Templates Directory

	Chart Repositories
	Deployment Process
	Creating a Helm Chart
	Helm Create
	Template Functions
	Chart Tests
	Packaging a Chart

	Deploying a Helm Chart
	Helm Install
	Helm Status

	Updating a Release
	Removing a Release

	CI/CD Integrations
	Automating Deployments
	Testing Helm Charts
	Unattended Helm Chart Installs
	Integrating Helm with Azure DevOps

	Summary

	Chapter 9: CI/CD with Azure Kubernetes Service
	CI/CD Overview
	Continuous Integration
	Shared Repository
	Build Pipeline
	Triggers
	Variables
	Steps
	Notifications
	Artifacts

	Continuous Delivery/Deployment
	Release Pipeline
	Triggers
	Stages

	Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Dev Spaces

	CI/CD Best Practices with AKS
	Cluster Operators
	Separate Environments
	Restrict Access
	Admission Controls
	Azure Monitor for Deployment

	Application Developers
	Debug on Kubernetes
	Store Credentials Externally
	Azure Monitor for Development

	Summary

	Index

