
T E C H N O L O G Y I N A C T I O N ™

Machine
Learning with
the Raspberry Pi

Experiments with Data and
Computer Vision
—
Donald J. Norris

Machine Learning
with the Raspberry Pi

Experiments with Data and
Computer Vision

Donald J. Norris

Machine Learning with the Raspberry Pi: Experiments with Data and
Computer Vision

ISBN-13 (pbk): 978-1-4842-5173-7		 ISBN-13 (electronic): 978-1-4842-5174-4
https://doi.org/10.1007/978-1-4842-5174-4

Copyright © 2020 by Donald J. Norris

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.
com/978-1-4842-5173-7. For more detailed information, please visit http://www.apress.
com/source-code.

Printed on acid-free paper

Donald J. Norris
Barrington, NH, USA

https://doi.org/10.1007/978-1-4842-5174-4

iii

Chapter 1: Introduction to machine learning (ML) with the
Raspberry Pi (RasPi)���1

RasPi introduction��1

Writing the Raspbian Image to a micro SD card���4

Updating and upgrading the Raspbian distribution��15

ML facts��24

Chapter 2: Exploration of ML data models: Part 1��������������������������������49

Installing OpenCV 4��49

Download OpenCV 4 source code���51

Building the OpenCV software��52

Seaborn data visualization library��59

Underlying big principle���77

Naive Bayes��91

k-nearest neighbor (k-NN) model��101

KNN demonstration��102

Decision tree classifier��106

Decision tree algorithm��107

Decision tree classifier demonstration with scikit-learn������������������������������122

Table of Contents

About the Author���vii

About the Technical Reviewer��ix

iv

Chapter 3: Exploration of ML data models: Part 2������������������������������135

Principal component analysis��136

PCA script discussion���137

Linear discriminant analysis��150

LDA script discussion���152

Support vector machines���162

SVM demonstration – Part 1���166

SVM demonstration – Part 2���169

Learning vector quantization���177

LVQ basic concepts���178

LVQ demonstration���180

Bagging and random forests��190

Introduction to bagging and random forest��190

Bootstrap resampling demonstration���193

Bagging demonstration��195

Random forest demonstration��204

Chapter 4: Preparation for deep learning��213

DL basics���213

Machine learning from data patterns���214

Loss functions��221

Optimizer algorithm��225

Artificial neural network��235

How ANNs are trained and function���238

Practical ANN weight modification example��258

ANN Python demonstration – Part 1���262

ANN Python demonstration – Part 2���267

Table of ContentsTable of Contents

v

Chapter 5: Practical deep learning ANN demonstrations������������������279

Parts list���280

Recognizing handwritten number demonstration��280

Project history and preparatory details��284

Adjusting the input datasets���293

Interpreting ANN output data values��295

Creating an ANN that does handwritten number recognition�����������������������297

Initial ANN training script demonstration���299

ANN test script demonstration���301

ANN test script demonstration using the full training dataset���������������������309

Recognizing your own handwritten numbers���313

Handwritten number recognition using Keras���324

Introduction to Keras��324

Installing Keras���325

Downloading the dataset and creating a model���326

Chapter 6: CNN demonstrations��335

Parts list���335

Introduction to the CNN model���336

History and evolution of the CNN���342

Fashion MNIST demonstration���358

More complex Fashion MNIST demonstration���369

VGG Fashion MNIST demonstration���373

Jason’s Fashion MNIST demonstration��378

Chapter 7: Predictions using ANNs and CNNs�����������������������������������387

Pima Indian Diabetes demonstration���388

Background for the Pima Indian Diabetes study��388

Preparing the data��389

Table of ContentsTable of Contents

vi

Using the scikit-learn library with Keras���408

Grid search with Keras and scikit-learn���411

Housing price regression predictor demonstration��416

Preprocessing the data��417

The baseline model��421

Improved baseline model���425

Another improved baseline model��428

Predictions using CNNs��431

Univariate time series CNN model��433

Chapter 8: Predictions using CNNs and MLPs for
medical research���453

Parts list���454

Downloading the breast cancer histology Image dataset����������������������������������455

Preparing the project environment���459

Using a MLP model for breast cancer prediction���491

Chapter 9: Reinforcement learning��501

Markov decision process���503

Discounted future reward���505

Q-learning���506

Q-learning and neural networks��547

Index��555

Table of ContentsTable of Contents

vii

About the Author

Donald J. Norris is an avid electronics hobbyist and maker. He is also an

electronics engineer with an advanced degree in Production Management.

Don is retired from civilian government service with the US Navy, where

he specialized in acoustics and digital signal processing. He also has more

than a dozen years’ experience as a professional software developer

using C, C#, C++, Python, and Java, and 5 years’ experience as a certified

IT security consultant.

ix

About the Technical Reviewer

Ahmed Fawzy Gad is a machine learning

engineer who holds B.Sc. and M.Sc. in

Information Technology. Ahmed is a teaching

assistant and a researcher who is interested

in machine/deep learning, computer vision,

and Python. He is a machine learning

technical reviewer and consultant helping

others do their projects. Ahmed contributes

written tutorials and articles to a number of

blogs including Paperspace, Real Python,

KDnuggets, Heartbeat, and Towards Data

Science. 

Ahmed has authored three books titled TensorFlow: A Guide to

Build Artificial Neural Networks Using Python (Lambert 2017), Practical

Computer Vision Applications Using Deep Learning with CNNs (Apress,

2018), and Building Android Apps in Python Using Kivy with Android

Studio (Apress, 2019).

He welcomes you to connect with him through LinkedIn

(linkedin.com/in/AhmedFGad), Facebook (fb.com/AhmedFGadd), and

e-mail (ahmed.f.gad@gmail.com).

https://blog.paperspace.com/author/ahmed
https://realpython.com/team/agad
https://kdnuggets.com/author/ahmed-gad
https://heartbeat.fritz.ai/@ahmedfgad
https://towardsdatascience.com/@ahmedfgad
https://towardsdatascience.com/@ahmedfgad
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Building-Android-Python-Using-Studio/dp/1484250303
https://www.amazon.com/Building-Android-Python-Using-Studio/dp/1484250303
https://www.linkedin.com/in/ahmedfgad
https://www.facebook.com/ahmed.f.gadd

1© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_1

CHAPTER 1

Introduction to
machine learning (ML)
with the Raspberry
Pi (RasPi)
This chapter will provide you with introductions to both RasPi and

ML. The RasPi discussion will be first, which will help you understand the

hardware platform that will be used to run all the book’s demonstrations.

An introductory ML discussion follows, which will provide you with a

framework to comprehend what ML is all about and why it is such an

exciting and rapidly evolving field of study.

�RasPi introduction
You will need to use a RasPi in order to run this book’s demonstrations. In

the next few sections, I will show you how to set up and configure a RasPi 3

Model B or B+ as a workstation that will run the scripts and programs

required for the various ML demonstrations. Figure 1-1 shows a RasPi 3

Model B+, which is used in this book.

2

There are a few differences between the RasPi 3 Model B and B+. They

are basically the same except that the B+ has a slightly faster processor

clock speed increase and has some improvements in the wireless functions

as compared to the B model. Neither of these improvements will have a

significant impact on running this book’s projects if you use a B instead of

a B+ model.

I will not discuss what constitutes a RasPi single-board computer

because that is already adequately covered by many available books and

blogs. As mentioned earlier, I used a RasPi 3 Model B+ in a workstation

configuration. This setup is where a RasPi is connected with a USB

keyboard, USB mouse, and HDMI monitor. In my setup, the RasPi is

powered by a 2.2A, 5V supply with a micro USB connector.

The RasPi does not use a mechanical disk drive for implementing a file

system which includes an operating system (OS). All recent RasPi versions

rely on using a pluggable micro SD card to serve as the secondary storage.

While it is possible to connect a traditional disk drive to a RasPi, it will only

serve as an auxiliary storage device and not as the primary storage for the

OS or as the bootable partition. I will next show you how to download and

Figure 1-1.  Raspberry Pi 3 Model B+

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

3

install an OS on a micro SD card in order to enable the RasPi to serve as a

functional ML microcontroller.

Undoubtedly the simplest way to get up and running is to purchase

a preprogrammed micro SD card. Such cards are ready to go and only

need to be configured to match your particular workstation configuration,

including your WiFi network. The WiFi configuration process will be

discussed in a later section, but first I would like to discuss how to create

your own micro SD card if you so desire.

The micro SD card software to be loaded is known as a Raspbian

Image and is available without charge from many online web sites,

with my recommended site being the Raspberry Pi Foundation site

at raspberrypi.org. The latest OS Image is always available from the

Downloads section of the web site. There are two types of the OS Image

that you can download. The first type is named NOOBS, which is an

abbreviation for “New Out of the Box Software.” There are two versions of

NOOBS available. One version is named NOOBS, and the other version is

named NOOBS Lite. Both versions are identified as v3.0.0 as of the time of

this writing. NOOBS has an easy operating system installer which contains

the Raspbian OS as well as another popular OS named LibreELEC.

Additionally, the NOOBS version provides a selection of alternative

operating systems which are subsequently downloaded from the Internet

and installed. NOOBS Lite contains the same operating system installer

without Raspbian pre-loaded and no LibreELEC option. However, this

version provides the same operating system selection menu allowing

Raspbian and other OS Images to be downloaded and installed.

The NOOBS and NOOBS Lite Images are just collection of files and

sub-directories that can be downloaded either using the BitTorrent

application or simply as a raw Zip file. The BitTorrent and Zip downloads

are approximately 1.2 GB in size. The extracted Image is 1.36 GB in size,

but the final installed size is over 4 GB. This means that you will need to

use at least an 8 GB micro SD card to hold the final Image. However, to

replicate all the ML demonstrations in this book, I strongly recommend

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

http://raspberrypi.org/

4

that you use at least a 16 GB, class 10 micro SD card to ensure there is

plenty of storage available as well as to maximize the data throughput with

the operating RasPi.

The second Image type is a direct OS download. The currently

available Image is the Raspbian Linux distribution with a code name of

Stretch. This Raspbian version may be downloaded using BitTorrent or as a

Zip file with final Image sizes similar to the NOOBS Image.

A micro SD card must be configured after an Image is downloaded.

I will only discuss the direct Raspbian download type because I believe

the readers of this book are sufficiently experienced with basic computer

operations and also with the RasPi so that they will overwhelmingly

choose to use the direct downloaded approach.

�Writing the Raspbian Image to a micro SD card
The micro SD card does not need to be formatted prior to writing the

Image. That portion of the process is automatically done by the application

that writes the Image to the card. You just need to set up an appropriate

application based on your host computer. For a Windows machine, I highly

recommend that you use the Win32DiskImager available from

https://sourceforge.net/projects/win32diskimager/files/latest/

download.

The download is a Zip file, which will need to be extracted prior to

use. Then just run the application, select where the disk Image is located,

and also select the micro SD card logical file letter. Figure 1-2 shows my

configuration screen for writing the Raspbian Stretch version to a micro SD

card on a Windows machine.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

https://sourceforge.net/projects/win32diskimager/files/latest/download
https://sourceforge.net/projects/win32diskimager/files/latest/download

5

If you are using a Mac, I recommend using the Etcher program to write

the disk Image. It is available from https://etcher.io/. This application

functions in a similar fashion to the Win32DiskImager program. Figure 1-3

is a screenshot of it being run on my MacBook Pro.

Figure 1-2.  Win32DiskImager screenshot

Figure 1-3.  Etcher screenshot

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

https://etcher.io/

6

The OS Image must next be configured once you have written it onto

the micro SD card. I have divided the configuration process into two

sections. The first one concerns what I consider configurations that are

mandatory in the sense that if they are not done, then the OS can function

as you expect for your situation. The second set of configurations concern

“fine-tuning” the already broadly tuned OS to suit your particular needs.

Note T he RasPi configuration process is dynamic and constantly
evolving. By this statement, I mean to convey that the following
instructions, while applicable at the time of this writing, may not be
applicable when you attempt to replicate the instructions. This fact
is simply due to the nature of open source software. However, I am
convinced that whatever procedures are in place, they will be clear
and simple to follow.

�Mandatory configurations

Figure 1-4 shows the opening screen after the RasPi boots.

Figure 1-4.  The initial configuration screenshot

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

7

You must click the Next button to begin the configuration process just

as it is stated in the figure. Figure 1-5 will immediately appear showing the

defaults for country, language, and timezone.

It is important for you to at least select the appropriate country

and language, or you will have great difficulty in entering any scripts or

programs due to conflicts between the way your physical keyboard is set

up and the desired characters you wanted to enter. The timezone menu

will also be automatically adjusted to reflect the timezones available in the

selected country.

Figure 1-6 shows this box after I made my particular selections.

Figure 1-5.  Default Set Country dialog box

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

8

Clicking the Next button will bring up a Change Password dialog box

as shown in Figure 1-7.

Changing the default password of raspberry, which is likely

universally known, should improve your system’s security. This choice is

entirely up to you and frankly will have no impact on replicating any of

this book’s demonstrations. You will just have to remember the password

or else you will need to install a fresh Image. I do not believe there is an

Figure 1-6.  Customized Set Country dialog box

Figure 1-7.  Change Password dialog box

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

9

easy way to recover a forgotten password with the Raspbian OS. If you

choose not to change the password, simply click the Next button and

the Select WiFi Network dialog box should appear. Figure 1-8 shows the

dialog box for my situation after I clicked the button.

You will need to click the appropriate WiFi network SSID in order to

establish a WiFi communications link. Another dialog box will appear

prompting you to either press a button on the physical router or enter the

passphrase associated with the selected WiFi SSID. I choose not to show

this particular dialog box for obvious security reasons. Clicking the Next

button will bring up the Check For Updates dialog box, which is shown in

Figure 1-9.

Figure 1-8.  Select WiFi Network dialog box

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

10

You cannot check for updates if you did not set up a WiFi connection.

I am actually unsure if this dialog box will even appear if there is no

working WiFi link setup. Presuming that you did in fact set up a WiFi link,

then clicking the Next button will cause the RasPi to go out to the Internet

and check on the status of the currently installed software contained in the

new Image. However, you do not need to run the check at this point in the

configuration because I will shortly show you how to do an update using a

terminal window command. The choice is up to you. In reality, it will do no

harm to do both other than cost you some extra time in the configuration

process. If you want to use the manual update process, just click the Skip

button; otherwise, click the Next button. Figure 1-10 shows how the Check
For Updates dialog box changed after I clicked the Next button.

Figure 1-9.  Check For Updates dialog box

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

11

The activity bar will remain active for several minutes depending upon

how many updates are detected. Once the updates have completed, you

will see an information box informing you that the configuration process

has almost finished and you will need to click a Reboot button to complete

the process. I would suggest you do that and don’t forget to enter your new

password if you changed it.

I now recommend that you enter the following command into a

terminal window to check the status of your WiFi connection:

Ifconfig

Figure 1-11 shows the result of entering this command on my RasPi

system.

Figure 1-10.  Active Check For Updates dialog box

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

12

You should be able to see in the wlan0 section that a local IP address

of 192.168.0.6 was assigned to the RasPi by the home WiFi router. This

assignment confirms that the RasPi is able to be connected to the Internet.

Check to see that your home router is set up for DHCP in case you do not

see an IP address similar to the one shown in the figure.

�Optional configurations

The optional configuration process uses a utility named raspi-config. This

utility is provided in the initial downloaded Image. You can run the raspi-

config utility by opening a terminal window and entering the following

command:

sudo raspi-config

Figure 1-11.  The ifconfig command display

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

13

Figure 1-12 shows the opening screen for the raspi-config utility.

Selecting the Interfacing Options from the menu will cause the sub-menu

shown in Figure 1-13 to appear.

Figure 1-12.  raspi-config opening screen

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

14

This menu has eight selections, as shown in the figure. Which options

you enable will depend on the types of devices you employ in your

RasPi system. I recommend enabling the following options to match the

demonstrations and procedures discussed in this book:

Camera

SSH

SPI

I2C

Serial

1-Wire

Figure 1-13.  Interfacing Options menu

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

15

You can easily add or subtract interfacing options at any time by

rerunning the raspi-config utility. In any case, adding an interfacing option

only minimally increases the size of the overall OS. Also note that enabling

an interface only invokes the associated driver(s) for that particular device.

You will again need to reboot the RasPi to finish these optional

configuration choices. Enter the following in the terminal window to

reboot the computer:

sudo reboot

At this point, you have successfully set up and configured your RasPi

system. You next need to update and upgrade your system to ensure that

the latest Raspbian OS software is installed.

�Updating and upgrading the Raspbian
distribution
The Raspbian Linux distribution is always being improved, as mentioned

earlier. It is very easy to ensure that you have the latest updated and

upgraded distribution once you have established Internet connectivity. Enter

the following command in a terminal window to update the installed OS:

sudo apt-get update

The update action changes the internal system’s package list to match

the current online package list. It does not actually change any of already

installed packages if they are obsolete or outdated. Those changes are

effected by entering the following command in a terminal window:

sudo apt-get upgrade

The update is reasonably quick if that original installed distribution is

not too old. However, the upgrade action could take quite some time if a

lot of outdated packages are already installed.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

16

Just remember to always update prior to upgrading. All the projects

in this book were created using an updated and upgraded Stretch

Raspbian distribution. I have found that failing to update and upgrade

can sometimes lead to some odd errors and system failures that are

unexpected and puzzling.

You should have a completely functional RasPi system at this point in

the installation and configuration process. At this point I need to introduce

the concept of a virtual Python environment before proceeding to the ML

discussion.

�Python virtual environment

This section answers two questions:

What is a Python virtual environment?

Why are they needed?

I will initially address the second question. Python, like many similar

object-oriented languages, depends on many supporting libraries and

routines to function. In Python, these libraries are known as dependencies

and are stored in one of two directories depending on their point of origin.

The point of origin means those libraries which are considered to be

essential or core to the Linux kernel are stored in the System-packages

directory. All others, while they may be extremely important for proper

Python operations, are stored in the Site-packages directory. Every time

there is a new Python language revision issued, the System-packages

directory is updated and modified as needed to support the latest revision.

Consequently, there is only the version of each of the necessary system

libraries stored in this directory. This is not the case for the Site-packages

directory. This is because the user typically installs desired software and

any and all libraries or dependencies required for that software. It is

entirely possible to have one or more versions of the same dependency in

the Site-packages directory simply due to multiple software installs.

A problem quickly arises due to the fact that Linux installs a dependency

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

17

based solely on its name and neglects any version checking. It is entirely

possible to have Project A require software library X, version 1, while

Project B requires software library X, version 2. Linux cannot disambiguate

the version inconsistencies, and one or both projects will fail to run

properly. Python virtual environments are designed to eliminate this issue.

The primary purpose of Python virtual environments is to create

an isolated environment for each Python project. This means that each

project will have its own dependencies, regardless of the dependencies

required for other projects.

Creating separate virtual environments for both projects A and B

would eliminate the version inconsistency issue. Each environment would

be able to depend on whatever version of software X that is required,

independent of any other project.

One of the nice things about virtual environments is that there are

no limits to the number of environments you create, except for any

constraints imposed by physical memory. Answering the first question

posed earlier is simple. Python virtual environments are just a hierarchical

set of directories containing some scripts and symbolic links, nothing

more. There is no black magic or black arts involved in creating them. I

believe that once you start using them, there will be no turning back. Many

developers routinely use them, saving themselves many potential hours

of frustration and angst while attempting to troubleshoot unknown errors

caused by inadvertent dependency issues.

�Installing a Python virtual environment

Please ensure that Python 3 is installed and operating correctly before

following these instructions. Also ensure that you have updated and

upgraded the Raspbian Stretch Linux distribution as previously discussed

in this chapter.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

18

There are six steps in this procedure. Please follow them in order to

successfully create a Python virtual environment that you will use to work

with the data models:

	 1.	 Install pip, which is a Python package manager

utility. This utility is very similar to advanced

packing tool (apt), but uses a separate distribution

repository. Enter the following commands:

wget https://bootstrap.pypa.io/get-pip.py

sudo python3 get-pip.py

Note T he latest pip version was 19.0.3 at the time of this writing.

	 2.	 Install the virtualenv and virtualenvwrapper

utilities. The virtualenv utility is used to create

the virtual environment within Python 3. The

virtualenvwrapper utility creates the links between

the Python language and the Python code to

be executed within the environment. Enter the

following command:

sudo pip install virtualenv virtualenvwrapper

sudo rm -rf ~/get-pip.py ~/.cache/pip

	 3.	 A hidden file named .profile located in the

home directory must be edited to include some

initialization data. I recommend that you use the

nano editor and append the data as shown here:

cd ~

sudo nano .profile

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

19

The data to be appended follows the last line in the

existing file:

virtualenv and virtualenvwrapper

export WORKON_HOME=$HOME/.virtualenvs

export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3

source /usr/local/bin/virtualenvwrapper.sh

Alternately, you may directly enter the initialization

data at the command-line prompt using the

following commands:

echo -e "\n# virtualenv and virtualenvwrapper" >>

~/.profile

echo "export WORKON_HOME=$HOME/.virtualenvs" >> ~/.profile

echo "export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3"

>> ~/.profile

echo "source /usr/local/bin/virtualenvwrapper.sh" >>

~/.profile

	 4.	 The ~./profile file must now be sourced. The

source command is used to load functions

contained in the named file into the current shell for

execution.

source ~/.profile

Note Y ou should see the text shown in Figure 1-14 displayed after
you run the preceding command for the first time.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

20

	 5.	 This step actually generates a virtual environment

using the virtualenv and virtualenvwrapper

utilities previously installed in step 2. You will need

to provide a unique name for the environment. The

one used in this example is py3cv4_1. If you plan on

generating multiple environments, then a naming

scheme such as py3cv4_1, py3cv4_2, py3cv4_3, and

so on might be used. The name py3cv4_1 refers to

the fact that the virtual environment uses Python 3

and it also contains the OpenCV 4 software package.

Additionally, it would be very desirable to document

the reason for creating each environment or you will

quickly become confused. Enter the following to

generate the py3cv4_1 Python virtual environment:

mkvirtualenv py3cv4_1 -p python3

It takes about 40 seconds to create the virtual

environment. Figure 1-15 shows the result of running

this command. You should notice the (py3cv4_1)

Figure 1-14.  Initial source command results

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

21

prepended to the regular command-line prompt. This

indicates that a virtual environment is currently in

effect.

You can easily shut down the py3cv4_1 virtual

environment by simply closing the terminal window.

I recommend doing that.

	 6.	 Open a new terminal window to verify that you can

start the py3cv4_1 virtual environment. Enter the

following command:

source ~/.profile

workon py3cv4_1

The workon command is included in the

virtualenvwrapper software package. This

command allows for the easy and quick startup of

any Python virtual environment. Figure 1-16 shows

the result of the preceding commands.

Figure 1-15.  mkvirtualenv command results

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

22

This figure appearing will confirm that you have a working virtual

environment and are ready to proceed with the next steps to create the

data model framework.

�Installing dependencies

The next demonstration requires a number of software packages to be

installed in support of it. Some packages are already pre-installed in the

original downloaded Image, while others must be explicitly installed.

The following commands will install all the packages. You will get an

informational statement if the package is already installed; otherwise, the

full installation will happen. These commands will take some time because

the packages can be large and complex to install:

pip install numpy

pip install scipy

pip install matplotlib

pip install pandas

sudo apt-get install libatlas-base-dev

pip install -U scikit-learn

The following Python script is named checkLib.py and will return

the version numbers for all of the software packages loaded. I would

recommend you run to confirm that all the dependencies are installed.

This script is available from the book’s companion web site:

Figure 1-16.  workon command results

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

23

Check library versions

Python version

import sys

print('Python: {}'.format(sys.version))

scipy

import scipy

print('scipy: {}'.format(scipy.__version__))

numpy

import numpy

print('numpy: {}'.format(numpy.__version__))

matplotlib

import matplotlib

print('matplotlib: {}'.format(matplotlib.__version__))

pandas

import pandas

print('pandas: {}'.format(pandas.__version__))

scikit-learn

import sklearn

print('sklearn: {}'.format(sklearn.__version__))

Figure 1-17 shows the results after I ran the script.

Figure 1-17.  Results for the checkLib.py script

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

24

The versions you display will likely differ from the figures to some

degree because open source software is constantly being revised. However,

the packages should function in the same way as earlier versions unless

some radical and unforeseen changes were made. This is not normally

done for consistency’s sake.

You will now be ready to tackle the ML demonstration once all the

dependencies are installed and operational.

�ML facts
ML is a significant sub-topic within the parent field of artificial intelligence

(AI). Figure 1-18 is a Venn diagram highlighting the relationships between

AI, ML, and deep learning (DL).

Figure 1-18.  Venn diagram for AI, ML, and DL

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

25

It should be clear from the figure that ML is an important portion

of AI and DL is an important portion of ML. In terms of current interest

and development, the figure should be inverted with DL receiving the

most attention with decreasing importance to ML and then AI in general.

The hierarchy of DL receiving the preponderance of attention will also

be followed in this book simply because DL is the essential ingredient to

implement computer vision, which is currently the hottest topic in AI and

ML. I will deep dive into DL in later chapters; however, I must first explore

some fundamental ML topics before attempting the more complex DL

matters.

�ML basics

If you ask a dozen AI/ML researchers what ML is, you would likely

get a dozen different, yet mildly similar responses. I have studied

many definitions, and I believe the following one I developed is about

appropriate as any other one that I have found.

Machine learning is the science and art of creating algorithms
to enable computers to learn from data without being explic-
itly programmed.

Interestingly, I found multiple definitions which used exactly the same

phrase “without being explicitly programmed,” which confirmed my belief

that any pure ML application must exclude all algorithms or systems that

encapsulate expert knowledge. Just note that expert systems are a very

important part of AI, but just not in ML. However, there are likely to exist

hybrid systems which incorporate both ML and expert systems, taking

advantage of the best capabilities provided by each of these technologies.

Machine learning was first defined back in 1959 by MIT Professor

Arthur Samuel, a recognized pioneer in both computer science and

artificial intelligence. Professor Samuel stated in part “...gives computers

the ability to learn without being explicitly programmed.” What essentially

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

26

he was driving at was that computers could be programmed with

algorithms that both can learn from input data and then make consequent

predictions based on that same data. This means these learning algorithms

could be completely divorced from any preprogrammed or static

algorithms and would be free to make data-driven decisions or predictions

by building models based on the input data.

ML models are primarily used for prediction and classification. It is

worthwhile to introduce you to some fundamental concepts regarding

these operations before discussing more complex ML applications. This

introduction will be in the form of a small, but complete ML project.

�Linear prediction and classification

This project is based primarily on a June 2016 blog titled “Your First

Machine Learning Project in Python Step by Step” and written by Dr. Jason

Brownlee, who is presently an active ML researcher living in Australia. I

would recommend looking at his blog at MachineLearningMastery.com,

which contains a wealth of ML information and resources. Jason suggests

and I heartily agree that you should start all ML projects with a structured

approach consisting of the following steps, which I have paraphrased from

the blog:

	 1.	 Define the problem.

	 2.	 Prepare and cleanse all the relevant data.

	 3.	 Evaluate any and all applicable algorithms.

	 4.	 Continually improve the results until the point of

diminishing returns.

	 5.	 Present results in a clear and unambiguous fashion

as possible.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

http://machinelearningmastery.com/

27

This beginning ML project is a famous one concerning Iris flower

classification. The Iris flower data is a multivariate dataset presented by the

British statistician and biologist Ronald Fisher in his 1936 paper “The Use

of Multiple Measurements in Taxonomic Problems” as an example of linear

discriminant analysis (LDA). The dataset is sometimes called Anderson’s

Iris dataset because Edgar Anderson collected the data to quantify the

morphologic variation of Iris flowers of three related species. Two of the three

species were collected in the Gaspé Peninsula, Quebec, Canada, “all from the

same pasture, and picked on the same day and measured at the same time

by the same person with the same apparatus” as cited in Anderson’s paper.

Photographs of the three species of the Iris flower are shown in Figure 1-19.

The dataset consists of 50 samples from each of three species of Iris

(Iris setosa, Iris virginica, and Iris versicolor). Four features were measured

from each sample: the length and the width of the sepals and petals,

Figure 1-19.  Three species of the Iris flower

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

28

in centimeters. Fisher developed a linear discriminant model based on the

combination of these four features to distinguish the Iris species from each

other. A sepal is a part of the flower of angiosperms (flowering plants) and

is usually green. Sepals typically function as protection for the flower in

bud and often as support for the petals when in bloom. Petals are modified

leaves that surround the reproductive parts of flowers. They are often

brightly colored or unusually shaped to attract pollinators, that is, bees.

Figure 1-20 shows a flower (not an Iris) with the sepal and petal identified.

Step 1 of the problem solution approach is reasonably simple. Identify

the Iris species given four dimensions describing sepal height and

width as well as petal height and width. The dimensions should all be in

centimeters to match the units in the underlying dataset.

The next step in the solution process is to address the dataset. There

are several online sources available to download the original Iris dataset

in a CSV format. I used Jason’s Iris CSV dataset that he made available

on github.com. The first part of this chapter’s demonstration will be

concerned with becoming familiar with the dataset.

Figure 1-20.  Sepal and petal

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

29

�Iris demonstration – Part 1

The following listed Python script is named irisDemo.py and was created

to work through a number of the following steps to familiarize you with the

data properties and characteristics. Being familiar with the data will help

you choose the proper algorithms that will best suit your requirements.

These steps are

•	 Load dependencies.

•	 Load the dataset.

•	 Display the dataset dimensions.

•	 Display the first 20 records in the dataset.

•	 Display dataset statistics.

•	 Display dataset classes and associated sizes.

•	 Univariate and multivariate data plots.

The following script in its entirety is available from the book’s

companion web site. I discuss the entire script results after the code listing.

Usage

python irisDemo.py

Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

30

Display the shape

print('Dataset dimensions')

print(dataset.shape)

Display the first portion of the data

print('Head of the data')

print(dataset.head(20))

Display data statistics

print('Statistics')

print(dataset.describe())

Display class distribution

print('Class distribution')

print(dataset.groupby('class').size())

Visualize data with box and whisker diagrams

dataset.plot(kind='box', subplot=True, layout=(2,2),

sharex=False, sharey=False)

plt.show()

Visualize data with histograms

dataset.hist()

plt.show()

Visualize data with scatter plots

scatter_matrix(dataset)

plt.show()

Figure 1-21 shows the first portion of the irisDemo script results.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

31

The first two lines show the dataset dimensions, which are 150 rows

with 5 columns. Following that is the first 20 rows of the dataset. The

column headers are clearly shown with all the row data displayed in a

tabular fashion. This listing should provide you with a good insight into the

data that is to be processed.

Next follows a small statistical display showing classic statistical

measures for the dataset columns including means, standard deviations,

min/max values, as well as values for the 25, 50, and 75 percentile levels.

Figure 1-21.  Initial portion of the irisDemo results

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

32

Finally, there is a display showing how many items were counted for

each class of Iris in the dataset. Unsurprisingly, there are 50 reported in

each class, which precisely matches the expected values.

Figure 1-22 shows “box and whisker” plots for each of the four class

attributes.

These univariate plots are a useful adjunct to help you understand the

numeric distributions associated with each attribute. It may turn out that

some models can handle wide numerical distributions while others are

more sensitive, which can lead to undesired results. Reviewing the plots

indicates a somewhat wider numerical distribution for the petal-length

Figure 1-22.  Box and whisker plots for class attributes

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

33

and petal-width attributes as compared to the same sepal attributes.

Additionally, there appears to be a few data outliers with the sepal-width

attribute, which might cause problems with certain models. These plots

are just designed to provide further insight into the data to help explain

any strange model results.

Another approach to visualize the data is to create histograms for

each input variable. Figure 1-23 shows these histograms for all four Iris

attributes.

Figure 1-23.  Histograms for class attributes

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

34

It appears that two of the sepal attributes have a Gaussian or near-

Gaussian distribution. This information can be useful in selecting an

appropriate model or algorithm for prediction purposes. The petal

attributes seem to have bimodal histograms, which is an interesting fact

that may help in selecting an algorithm such as Otsu’s binarization.

Another approach to inspect the dataset is to check for structured

relationships between attributes. This approach is known as multivariate

analysis. Figure 1-24 shows the scatterplots of all pairs of class attributes.

Figure 1-24.  Scatterplots for all class attributes

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

35

These plots are helpful in visualizing relationships not easily detected

when only reviewing numerical listings. You should note the diagonal

grouping of some pairs of attributes in the figure. This strongly suggests

a high correlation between the attributes and that a likely quantifiable

relationship exists.

The next portion of the demonstration is where the data will be input

into a series of models and predictions run. I must warn you that I will be

committing a cardinal sin for technical book writing by simply using the

models without a prior introduction. Just know that I will catch up and

discuss the model algorithms in detail as part of the book’s ML basics in

either this chapter or following chapters.

�Iris demonstration – Part 2

The following listed Python script is named irisDemoTest.py and was

created to test a number of models using the Iris dataset and determine

how accurate they are in describing an Iris species given a set of Iris

attributes. The tests will be conducted in a series of steps in a manner

similar to what was done in part 1. These steps are

•	 Import all the models.

•	 Create training and validation datasets.

•	 Set up a test harness using tenfold cross-validation.

•	 Use six different models to describe Iris species from

attribute measurements.

•	 Select an accurate model.

The following listed Python script is named irisDemoTest.py and is

available from the book’s companion web site. I will discuss each portion

of the script as it relates to the steps after the listing.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

36

Usage

python irisDemoTest.py

Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

from sklearn import model_selection

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

Create training and validation datasets

array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

37

X_train, X_validation, Y_train, Y_validation = model_selection.

train_test_split(X, Y, test_size=validation_size, random_

state=seed)

Set the scoring criteria

scoring = 'accuracy'

Build all the models

models = []

models.append(('LR', LogisticRegression(solver='liblinear',

multi_class='ovr')))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC(gamma='auto')))

Evaluate each model

results = []

names = []

for name, model in models:

 �kfold = model_selection.KFold(n_splits=10, random_

state=seed)

 �cv_results = model_selection.cross_val_score(model,

X_train, Y_train, cv=kfold, scoring=scoring)

 results.append(cv_results)

 names.append(name)

 �msg = "%s: %f(%f)" % (name, cv_results.mean(), cv_results.

std())

 print(msg)

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

38

The imports list was changed considerably from the first script. It

now includes six models from the sklearn package. The list of models in

alphabetical order is

•	 DecisionTreeClassifier

•	 GaussianNB

•	 KNeighborsClassifier

•	 LinearDiscriminantAnalysis

•	 LogisticRegression

•	 SVC

I will not be discussing any specifics regarding the models function as I

mentioned earlier.

The dataset is then loaded in exactly the same manner it was done in

the first script. It is important to use this exact dataset as I found out by

trying an Iris dataset from a different source. I suspect that minor changes

in formatting were the issue when trying to use the new dataset.

The next portion of the script deals with the step regarding creating

both training and validation datasets. Eighty percent of the original dataset

will be used for model training, and 20% will be allotted for validation.

During the validation process, a small sub-set of the original data will be

input into models that have not been trained with it. The resulting output

from the models will then be compared to the species label for each record

in the validation dataset. The percentage accuracy will then be calculated

as a simple ratio between the number of correctly identified species and

the total number of records in the dataset.

The next step in the testing process is to set up a loop that implements

a tenfold cross-validation procedure for every model. This means that the

input dataset is initially divided into ten parts, with training done with

nine of the ten parts and validation done using only the tenth part.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

39

The results are recorded and the dataset is then randomly divided

again into ten parts, and the process is repeated for a total of ten times,

hence, the name tenfold. I do want to point out something that might be

confusing to readers. The dataset being used in the tenfold cross-validation

procedure is only the training dataset and not the validation dataset. The

validation dataset will not be used until the next script is discussed where a

model’s prediction accuracy is discussed in detail.

The loop in the script runs cross-validation scores for each of the

models. The results are shown in Figure 1-25.

You can see that they all score in the high nineties, meaning that all

likely good describers of Iris species given a set of class attributes. The

numbers in the parentheses are the standard deviations for each model’s

result. You should be able to see that the deviations are relatively small,

which means the models are again good describers. Looking at the figure,

it appears that the support vector machine (SVM) model has the best

result with a score of 0.991667 and a standard deviation of only 0.025. But

is it really the best model for our purposes? That will be discussed in part 3

of this demonstration.

Figure 1-25.  Cross-validation scores for six models

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

40

�Iris demonstration – Part 3

This next discussion compares the accuracy of the six models using box

and whisker diagrams. The script used is named irisDemoSelection.py

and is essentially the same as the previous script except for the addition

of plotting functions as well as a few algorithms used to detail the

performance of a selected model. The six models’ accuracy display was

also eliminated in this script:

Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

from sklearn import model_selection

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

Create training and validation datasets

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

41

array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = model_selection.

train_test_split(X, Y, test_size=validation_size, random_

state=seed)

Set the scoring critera

scoring = 'accuracy'

Build all the models

models = []

models.append(('LR', LogisticRegression(solver='liblinear',

multi_class='ovr')))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC(gamma='auto')))

Evaluate each model

results = []

names = []

for name, model in models:

 �kfold = model_selection.KFold(n_splits=10, random_

state=seed)

 �cv_results = model_selection.cross_val_score(model,

X_train, Y_train, cv=kfold, scoring=scoring)

 results.append(cv_results)

 names.append(name)

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

42

Plot model results

figure = plt.figure()

figure.suptitle('Algorithm Comparison')

algPlot = figure.add_subplot(1, 1, 1)

plt.boxplot(results)

algPlot.set_xticklabels(names)

plt.show()

KNN prediction

knn = KNeighborsClassifier()

knn.fit(X_train, Y_train)

predictions = knn.predict(X_validation)

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions)

Figure 1-26 shows the results for all models in a box and whisker

diagram.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

43

You can observe that the box and whisker plots are squashed at the

top of the y-axis range, illustrating that half the models is achieved at or

near 100% accuracy. Selecting the top performer in this situation is almost

impossible; however, I did select the KNN model for a more detailed

examination of its performance. The KNN is a simple and accurate model.

The formal name for the KNN model is K-nearest neighbors algorithm

and is one of the simplest classification algorithms existing and quite

likely one of the most widely used ones. KNN is a non-parametric, lazy

learning algorithm. It’s primarily used with a dataset in which the data

points are separated into several classes to predict the classification of

a new data point or sample. In simpler terms, KNN has been described

Figure 1-26.  Box and whisker diagram for model results

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

44

as an algorithm which implements this catch phrase, “tell me who your

neighbors are and I will tell you who you are.”

I described KNN as non-parametric, which means that the model does

not make any assumptions regarding the underlying data distribution. In

other words, the model structure is determined from the data. Given this

fact, KNN probably should be one of your first choices for a classification

study when there is little or no prior knowledge about how the data is

distributed.

KNN is also a lazy algorithm as opposed to an eager algorithm.

What this means is that it does not use the training data points to do any

generalization. In other words, there is no explicit training phase or it is

very minimal. This implies that any training phase is likely to be minimal

in duration, an important point for large datasets. Lack of generalization

also means that KNN keeps all the training data. More precisely, no

generalization means most, if not all, training data is used during the

validation/testing phase.

The KNN algorithm is based on feature similarity. This means how

closely an out-of-sample feature resembles the training set determines

how a given data point is classified. This process should make clearer by

examining Figure 1-27, a graphical example for KNN classification.

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

45

The test sample (inside circle) can be classified either to the first class

of blue squares or to the second class of red triangles. If k = 3 (outside

circle), it is assigned to the second class because there are 2 triangles and

only 1 square inside the inner circle. If, for example, k = 5, the new sample

would be assigned to the first class (3 squares vs. 2 triangles outside the

outer circle).

The final portion of the script runs the KNN model directly with

the validation dataset. The summary results for a final accuracy score,

confusion matrix, and classification report are shown in Figure 1-28.

Figure 1-27.  KNN classification

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

46

The first line shows an accuracy score of 0.9 or 90%. This accuracy

score is a summary rating showing the ratio of correct predictions to

the overall dataset size. In this case, the dataset was 30 records and the

number of correct predictions was 27, which produces the 0.9 result. Recall

that this accuracy score is based on using the validation dataset, which was

20% of the original Iris dataset. The accuracy score shown in Figure 1-28 is

artificially higher due to the nature of the tenfold cross-validation testing.

This lower accuracy score is reflective of real-world conditions and should

be considered more trustworthy.

The confusion matrix (error matrix) provides an indication of where

the three errors were made. Table 1-1 details the actual classes vs. the

predicted classes.

Figure 1-28.  KNN model validation results

Table 1-1.  Actual vs. predicted classes

Actual class
Iris setosa Iris versicolor Iris virginica

Predicted class Iris setosa 7 0 0

Iris versicolor 0 11 1

Iris virginica 0 2 9

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

47

Finally, the classification report provided by sklearn metrics is a

breakdown of the class results by precision, recall, F1-score, and support.

This report shows very good to excellent results even though the validation

dataset was small. I explain each of the metrics in Table 1-2.

The precision is intuitively the ability of the classifier not to label as

positive a sample that is negative.

The recall is intuitively the ability of the classifier to find all the positive

samples.

The f1-score (F-beta) can be interpreted as a weighted harmonic mean

of the precision and recall, where an F-beta score reaches its best value at 1

and worst score at 0.

I will refer you to the sklearn documentation to read more about the

micro, macro, and weighted avgs. The page is

https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.precision_recall_fscore_support.html

Table 1-2.  sklearn learn metrics analysis

Metric Iris setosa Iris versicolor Iris virginica Remarks (see notes)

precision 1.00 0.85 0.90 precision = tp / (tp + fp)

recall 1.00 0.92 0.82 recall = tp / (tp + fn)

f1-score 1.00 0.88 0.86 mean(precision + recall)

support 7 12 11 class size

Notes: tp = true positive
fp = false positive
fn = false negatives

Chapter 1 Introduction to machine learning (ML) with the Raspberry Pi (RasPi)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

49© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_2

CHAPTER 2

Exploration of ML
data models: Part 1
This chapter will be mostly about discussions and demonstrations of

basic data models used in ML. However, before I can get into the heart of

data model operations, I need to show you how to install OpenCV 4 and

the Seaborn software packages. Both these packages will be needed to

properly support the running and visualization of the basic data models.

These packages will also support other demonstrations presented in later

book chapters.

�Installing OpenCV 4
This section is about installing the open source OpenCV software

package. I will be using OpenCV for various ML demonstrations

including making use of the great variety of visualization utilities

contained in the package. OpenCV version 4 is the latest one and is not

yet available for direct download and installation from any of the popular

repositories. It must be loaded in a source code format and built in place.

The following instructions will do this task. It is important to precisely

follow these instructions or else you will likely not be successful with the

OpenCV install.

50

The first step is to install the CMake utility along with three other key

utilities. Enter the following:

sudo apt-get install build-essential cmake unzip pkg-config

Next, install three imaging and video libraries that support the three

most popular Image formats, jpeg, png, and tiff. Enter the following:

sudo apt-get install libjpeg-dev libpng-dev libtiff-dev

For successful execution of the preceding command, make sure apt-get

is updated according to the following command:

sudo apt-get update

Now install three imaging utilities used for common video processing

functions. Enter the following command. Similarly, make sure apt-get is

updated.

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev

Next install two supplemental video processing libraries. Enter the

following:

sudo apt-get install libxvidcore-dev libx264-dev

The next command installs the GTK library. GTK will be used to

implement the OpenCV GUI backend. Enter the following:

sudo apt-get install libgtk2.0-dev

The next command reduces or eliminates undesired GTK warnings.

The “*” in the command ensures that the proper modules supporting the

ARM processor are loaded. Enter the following:

sudo apt-get install libcanberra-gtk*

Chapter 2 Exploration of ML data models: Part 1

51

The next two software packages are used for OpenCV numerical

optimizations. Enter the following:

sudo apt-get install libatlas-base-dev gfortran

You will now be ready to download OpenCV 4 source code once all the

preceding dependencies have been loaded.

�Download OpenCV 4 source code
Ensure that you are in the virtual environment and also in the home

directory prior to starting the download. Enter the following command to

go to your home directory if you are not there:

cd ~

Next, use the wget command to download both the latest OpenCV

and opencv_contrib modules. At the time of this writing, the latest version

was 4.0.1. It will likely be different when you try this download. Simply

substitute the latest version wherever you see a version entered in this

discussion. The opencv_contrib module contains open source community

contributed supplemental functions, which will be used in this book’s

projects and demonstrations. Enter the following command to download

the OpenCV zipped file from the GitHub web site:

wget -O opencv.zip https://github.com/opencv/opencv/

archive/4.0.1.zip

Enter the following command to download the opencv_contrib zipped

file from the GitHub web site:

wget -O opencv_contrib.zip https://github.com/opencv/opencv_

contrib/archive/4.0.1.zip

Chapter 2 Exploration of ML data models: Part 1

52

The downloads will now have to be extracted and expanded using

these commands:

unzip opencv.zip

unzip opencv_contrib.zip

Next, rename the newly generated directories to the following to ease

the access to the OpenCV packages and functions and ensure that the

directories are named as expected for CMake configuration file. Enter the

following command:

mv opencv-4.0.1 opencv

mv opencv_contrib-4.0.1 opencv_contrib

You should be ready to start building the OpenCV package once the

source code downloads have been completed.

�Building the OpenCV software
You will need to ensure that the numpy library has been installed prior to

commencing the build. I discussed installing numpy along with several

other dependencies in Chapter 1. If you haven’t installed numpy yet, then

it is easily installed using the following command:

pip install numpy

The next step set ups a directory where the build will take place. Create

and change into the build directory by entering these commands:

cd ~/opencv

mkdir build

cd build

Chapter 2 Exploration of ML data models: Part 1

53

Upon completing the preceding commands, enter the following to

run the CMake command with a number of build options. Note that “\”

symbol (backward slash) is required for the command-line interpreter

(CLI) to recognize that a single command is spread over multiple lines.

Don’t overlook the two periods at the tail end of the following complex

command. Those periods indicate to the CLI to execute all that was

entered before the periods.

cmake -D CMAKE_BUILD_TYPE=RELEASE \

 -D CMAKE_INSTALL_PREFIX=/usr/local \

 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \

 -D ENABLE_NEON=ON \

 -D ENABLE_VFPV3=ON \

 -D BUILD_TESTS=OFF \

 -D OPENCV_ENABLE_NONFREE=ON \

 -D INSTALL_PYTHON_EXAMPLES=OFF \

 -D BUILD_EXAMPLES=OFF ..

Note T he option OPENCV_ENABLE_NONFREE=ON ensures that all
third-party functions are made available during the compilation step.
The line

"Non-free algorithms: YES"

in Figure 2-1 results screen confirms that the condition was set.

Chapter 2 Exploration of ML data models: Part 1

54

Having the non-free algorithms available is applicable for non-

commercial applications. If you are intending to develop an application

for sale or licensing, then you must comply with any and all applicable

licensing agreements. There are several patented algorithms contained

in the OpenCV software package, which cannot be used for commercial

development without paying royalty fees.

You should also confirm that the virtual environment points to the

proper directories for both Python 3 and numpy. Figure 2-2 shows the

correct directories within the cv virtual environment.

Figure 2-1.  Confirmation of non-free algorithms availability

Chapter 2 Exploration of ML data models: Part 1

55

The default disk swap size of 100 MB must be changed to 2048 MB

to have a successful compilation. The swap space will be restored to the

default value after the compilation is done. It is important to realize that

swap size has a significant impact on the longevity of the micro SD card,

which is used as the secondary memory storage for the RasPi. These

cards have finite number of write operations before failing. The number

of write operations dramatically increases with the swap size. It will be of

no consequence to card life by changing the swap size for this one-time

process. First use the nano editor to open the swap configuration file for

editing as follows:

sudo nano /etc/dphys-swapfile

Figure 2-2.  Confirmation for Python 3 and numpy directories within
the py3cv4_1 virtual environment

Chapter 2 Exploration of ML data models: Part 1

56

Next comment out the line CONF_SWAPSIZE=100 and add the line CONF_

SWAPSIZE=2048. It is important to add the additional line, instead of just

changing the 100 to 2048. You will undo the change after completing the

compilation. The revised portion of the file is shown here:

set size to absolute value, leaving empty (default) then uses

computed value

you most likely don't want this, unless you have a special

disk situation

CONF_SWAPSIZE=100

CONF_SWAPSIZE=2048

Note F ailing to change the swap size will likely cause the RasPi to
“hang” during the compilation.

After making the edit, you will need to stop and start the swap service

using these commands:

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

This next step is the compilation from source code to binary. It will take

approximately 1.5 hours using all four RasPi cores. You should be aware of

an issue known as a race condition that can randomly occur when a specific

core needs a resource currently in use by another core. The problem happens

due to very tight timing issues where a using core cannot release a resource

and a requesting core does not drop the request for that resource. The result

is the processor simply hangs “forever.” A very bad situation. Fortunately,

there is a solution of simply not requesting the forced use of four cores. I do

not know how long a complete compilation would take, but suspect it would

be at least 3 hours. The command to compile using four cores is

make -j4

Chapter 2 Exploration of ML data models: Part 1

57

The command to compile not using any specific number of cores is

simply make.

There is a bit of good news, that is, if the initial compilation hangs while

trying the -j4 option, you can redo the compilation using only the make

command and the system will find and use all the code already compiled.

This will considerably shorten the compile time. I know this is true

because I experienced it. My first compilation hung at 100%. I restarted the

compilation using only the make command, and it successfully completed

in about 15 minutes. Figure 2-3 shows the screen after the success

compilation.

Finish the OpenCV 4 installation by entering these next commands:

sudo make install

sudo ldconfig

This is the last step which has some finishing and verification

operations. First restore the swap size to the original 100 MB by

uncommenting the line

CONF_SWAPSIZE=100

and commenting out the newly added line

CONF_SWAPSIZE=2048

Figure 2-3.  Successful compilation

Chapter 2 Exploration of ML data models: Part 1

58

Next create a symbolic link to OpenCV so that it can be used by

new Python scripts created in the virtual environment. Enter these

commands:

cd ~/.virtualenvs/py3cv4_1/lib/python3.5/site-packages/

ln -s /usr/local/lib/python3.5/site-packages/cv2/python-3.5/

cv2.cpython-35m-arm-linux-gnueabihf.so cv2.so

cd ~

Failure to create the symbol link will mean that you will not be able to

access any OpenCV functions.

Finally, test your completed installation by entering these commands:

source ~/.profile

workon cv

python

>>> import cv2

>>> cv2.__version__

'4.0.1'

>>> exit()

The first two commands start the py3cv4_1 virtual environment. The

next one starts the Python interpreter associated with this environment,

which is Python 3. The next command imports OpenCV using the

symbolic link you just created. This line should demonstrate to the

importance of the symbolic link. The next command requests the OpenCV

version, which is reported back as 4.0.1 as may be seen in the following line

with the version request. The last command exits the Python interpreter.

Figure 2-4 shows the py3cv4_1 version verification.

Chapter 2 Exploration of ML data models: Part 1

59

At this point, you should now have a fully operational OpenCV

software package operating in a Python virtual environment. To exit

OpenCV, simply close the terminal window.

�Seaborn data visualization library
Visualizing the data, you will be using an important step when dealing

with ML models as I discussed in the previous chapter. There are a

number of useful Python compatible utilities and software packages,

which will help you in accomplishing this task. Hopefully, you have

already installed the Matplotlib library as part of the dependency load

described in the previous chapter. The OpenCV package also contains

useful visualization routines and algorithms. In this section I will

introduce the Seaborn library, which is another useful data visualization

tool and is considered a supplement to the data visualization functions

in both Matplotlib and OpenCV.

Seaborn specifically targets statistical data visualization. It also works

with a different set of parameters than the ones used with Matplotlib.

The first step required in this section is to install the Seaborn software

package. That is easily accomplished by entering the following command:

pip install seaborn

Figure 2-4.  py3cv4_1 version verification

Chapter 2 Exploration of ML data models: Part 1

60

Figure 2-5 shows the results of installing the Seaborn software package.

You should notice from the figure that the Seaborn package requires a fair

number of dependencies including numpy, Pandas, Matplotlib, scipy,

kiwisolver, and several other Python utilities.

Figure 2-5.  Seaborn package installation results

Chapter 2 Exploration of ML data models: Part 1

61

Once installed, I believe the easiest way to explain Seaborn is to

use it to visualize the Iris dataset that was introduced in Chapter 1. One

extremely convenient Seaborn feature is the immediate availability of a

limited number of datasets contained in the package. The Iris dataset is

one of those organic datasets (no pun intended). To use the Iris dataset,

you just need to incorporate these statements in your script

import seaborn as sns

iris = sns.load_dataset("iris")

where sns is the reference to the Seaborn import.

There are 15 datasets available in the Seaborn package. These are listed

as follows for your information:

anscombe

attention

brain_networks

car_crashes

diamonds

dots

exercise

flights

fmri

gammas

iris

mpg

planets

tips

titanic

Chapter 2 Exploration of ML data models: Part 1

62

Judging from the titles, the Seaborn datasets are diverse and a bit

unusual. They were apparently selected to demonstrate Seaborn package

capabilities for analysis and visualization. I will use some of these datasets

during the data model discussions, in addition to the Iris dataset.

Table 2-1 shows the first five records in the Iris dataset, which was

generated by the following command:

iris.head()

Data visualization is an important initial step when selecting an

appropriate data model which best handles the dataset. Seaborn provides

many ways of visualizing data to assist you in this critical task. I will

be introducing a series of scripts that will help you visualize data. The

multivariate Iris dataset will be used in all the following scripts.

�Scatter plot

Starting the data visualization process with a scatter plot is probably

the easiest way to approach the data visualization task. Scatter plots are

simply two-dimensional or 2D plots using two dataset components that

are plotted as coordinate pairs. The Seaborn package uses the jointplot

method as the plotting function indicating the 2D nature of the plot.

Table 2-1.  Head command results for the Iris dataset

Rec # sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 Setosa

1 4.9 3.0 1.4 0.2 Setosa

2 4.7 3.2 1.3 0.2 Setosa

3 4.6 3.1 1.5 0.2 Setosa

4 5.0 3.6 1.4 0.2 Setosa

Chapter 2 Exploration of ML data models: Part 1

63

I used the following script which is named jointPlot.py to create the

scatter plot for sepal length vs. petal height. This script is available from

the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the scatter plot

sns.jointplot(x="sepal_length",y="sepal_width",

data=iris,size=6)

Display the plots

plt.show()

The script is run by entering

python jointPlot.py

Figure 2-6 shows the result of running this script.

Chapter 2 Exploration of ML data models: Part 1

64

Looking at the figure, you can easily see that the data points are spread

out through the plot, which indicates there is no strong relationship

between these two dataset components. The histogram at the top for sepal

length indicates a broad value spread as compared to the sepal width

histogram on the right-hand side, which shows a peak mid-range value of

approximately 3.0. Just be mindful that this plot covers all the Iris species

Figure 2-6.  Scatter plot for sepal length vs. sepal height (all species)

Chapter 2 Exploration of ML data models: Part 1

65

and could conceivably be masking an existing data relationship for one or

more individual species. Other visualization tools could unmask hidden

relationships as you will shortly see.

�Facet grid plot

A facet grid plot is a variant of the scatter plot just presented in the

previous section. However, all the dataset components are clearly

identified in a facet grid plot as opposed to being unclassified and

ambiguous in a scatter plot. I used the following script which is

named facetGridPlot.py to create the facet grid plot for sepal length

vs. petal height. This script is available from the book’s companion

web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the Facet Grid plot

sns.FacetGrid(iris,hue="species",size=6) \

.map(plt.scatter,"sepal_length","sepal_width") \

.add_legend()

Display the plot

plt.show()

The script is run by entering

python facetGridPlot.py

Figure 2-7 shows the result of running this script.

Chapter 2 Exploration of ML data models: Part 1

66

I do acknowledge that the grayscale figure will be hard to decipher in the

published book, but you should be able to discern that a group of dots in the

upper left-hand side of the plot appear to form a meaningful relationship,

wherein a linear, sloped line could be drawn through the dot group to

represent the relationship. These dots are all from the Iris Setosa species.

This same dot group was plotted in Figure 2-6, but there was not

differentiation between the dots as regards to the species they represented

and this relationship could not have been easily identified. Visualizing a

probable relationship is an important first step in selecting an appropriate

data model. In this case, using a linear regression (LR) model would be

a good choice for this particular data sub-set. I will discuss the LR data

model later in this chapter.

Figure 2-7.  Facet grid plot for sepal length vs. sepal height

Chapter 2 Exploration of ML data models: Part 1

67

The remaining dots in Figure 2-7 belong to the remaining Iris species

and do not appear to have any obvious visual relationships as far as I can

determine. However, I am still proceeding to show you some additional

plots which may help with the analysis.

�Box plot

Box plots were first introduced in the previous chapter; however, I used

the Matplotlib package to generate those plots. The following box plot

was generated by a Seaborn method named boxplot. In reality, I suspect

that the actual plot is likely created by the Matplotlib software because the

Seaborn package has a strong linkage to Matplotlib.

I used the following script which is named boxPlot.py to create the

box plot for all sepal length attribute for all of the Iris species. This script is

available from the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the box plot

sns.boxplot(x="species",y="sepal_length", data=iris)

Display the plot

plt.show()

The script is run by entering

python boxPlot.py

Figure 2-8 shows the result of running this script.

Chapter 2 Exploration of ML data models: Part 1

68

Box plots are inherently univariate in nature because they are created

from only a single dataset dimension or 1D. Nonetheless, they provide

important insights into the dataset attribute ranges, variances, and means.

Box plots are useful to identify data outliers which can easily disrupt

certain data models, which in turn can cause unpredictable and uncertain

results from using those models with disruptive outliers inadvertently

included as inputs.

�Strip plot

A strip plot may be considered as augmented box plot because it includes

an underlying box plot as well as shows the actual data points that go into

creating that box plot. The data points would ordinarily be plotted along a

Figure 2-8.  Box plot for sepal length for all Iris species

Chapter 2 Exploration of ML data models: Part 1

69

single vertical line for each dataset class; however, the Seaborn stripplot

method has a jitter option that randomly shifts the dots away from the

vertical line. This random jitter does not affect the data display because

the vertical axis is the only one used to identify a dot’s value. This concept

should become clear after you study the example plot.

I used the following script which is named stripPlot.py to create the

strip plot for all sepal length attribute for all of the Iris species. This script is

available from the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the strip plot

ax = sns.boxplot(x="species",y="sepal_length", data=iris)

ax = sns.stripplot(x="species", y="sepal_length", data=iris,

jitter=True, edgecolor="gray")

Display the plot

plt.show()

The script is run by entering

python stripPlot.py

Figure 2-9 shows the result of running this script.

Chapter 2 Exploration of ML data models: Part 1

70

My preceding comments regarding the box plot apply here. The strip

plot just provides some additional insight regarding how the data points

that go into creating the box plot are distributed throughout the recorded

range of values.

�Violin plot

A violin plot is similar to a box plot, except it has a rotated kernel density

plot on each side of the vertical line that represents class data for the

dataset. These kernel densities represent the probability density of data at

different values and are smoothed by a kernel density estimator function.

The curious name for this plot should be readily apparent after you

examine the figure.

Figure 2-9.  Strip plot for sepal length for all Iris species

Chapter 2 Exploration of ML data models: Part 1

71

I used the following script which is named violinPlot.py to create the

violin plot for all sepal length attribute for all of the Iris species. This script

is available from the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the violin plot

sns.violinplot(x="species",y="sepal_length", data=iris, size=6)

Display the plot

plt.show()

The script is run by entering

python violinPlot.py

Figure 2-10 shows the result of running this script.

Figure 2-10.  Violin plot for sepal length for all Iris species

Chapter 2 Exploration of ML data models: Part 1

72

Violin plots overcome a big problem inherent to box plots. Box plots

can be misleading because they are not affected by the distribution of the

original data. When the underlying dataset changes shape or essentially

“morphs,” box plots can easily maintain their previous statistics including

medians and ranges. Violin plots on the other hand will reflect any new

shape or data distribution while still containing the same box plot statistics.

The “violin” shape of a violin plot comes from a class dataset’s density

plot. The density plot is rotated 90° and is placed on both sides of the

box plot, mirroring each other. Reading the violin shape is exactly how a

density plot is interpreted. A thicker part means the values in that section

of the violin plot have a higher frequency or probability of occurrence and

the thinner part implies lower frequency or probability of occurrence.

Violin plots are relatively easy to read. The dot in the middle is the

median. The box presents interquartile range. The whiskers show 95%

confidence interval. The shape of the violin displays frequencies of values.

The legend shown in Figure 2-10 points out these features.

�KDE plot

A KDE plot shows only the dataset class density plots. KDE is short for

kernel density estimators which are precisely the same plots used in violin

plots. A KDE plot is most useful if you simply focus on the data distribution

rather than data statistics as would be the case for box or violin plots.

I used the following script which is named kdePlot.py to create the

KDE plot for all sepal length attribute for all of the Iris species. This script is

available from the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Chapter 2 Exploration of ML data models: Part 1

73

Generate the kde plot

sns.FacetGrid(iris,hue="species",size=6) \

.map(sns.kdeplot,"sepal_length") \

.add_legend()

Display the plot

plt.show()

The script is run by entering

python kdePlot.py

Figure 2-11 shows the result of running this script.

Figure 2-11.  KDE plot for sepal length for all Iris species

Chapter 2 Exploration of ML data models: Part 1

74

The data distribution plot results were already discussed earlier.

�Pair plots

Pair plots are created when joint plots are generalized to large dimension

datasets. These plots are useful tools for exploring correlations between

multidimensional data, because all data pair values are plotted against

each other. Visualizing the Iris dataset multidimensional relationships is as

easy as entering the following script, which I named pairPlot.py. This script

is available from the book’s companion web site:

Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

Load the Iris dataset

iris = sns.load_dataset("iris")

Generate the pair plots

sns.pairplot(iris, hue='species', size=2.5)

Display the plots

plt.show()

Figure 2-12 shows the results of running the preceding script.

Chapter 2 Exploration of ML data models: Part 1

75

At first glance, this pair plot figure seems to be the most comprehensive

and complex plot shown to this point. Upon closer inspection, you will

quickly realize that the individual plots shown in the figure are either facet

grid or KDE plots, which have already been discussed. The plots on the

major diagonal from top left to bottom right are all KDE plots for the same

intersecting dataset classes. The non-intersecting plots, that is, those with

different classes for the x and y axes, are all facet grid plots. Class attribute

relationships should quickly become apparent to you as you inspect the

individual plots. For example, the Setosa attributes are clearly set apart

from the other species attributes in almost all pair plots. This would

Figure 2-12.  Iris dataset pair plots

Chapter 2 Exploration of ML data models: Part 1

76

indicate that clustering data model may work very well in this situation.

I believe spending significant time examining the pair plots will help you

understand the underlying dataset to a great degree.

I believe it is an imperative that anyone actively involved with ML

should be more than trivially acquainted with the underlying basic models

that serve as a foundation for ML core concepts. I introduced six models

in the previous chapter without delving into the details for these models.

These models were (in alphabetical order)

*Decision tree classifier

*Gaussian Naive Bayesian

*K-nearest neighbors classifier

Linear discriminant analysis

*Logistic regression

Support vector machines

There are four more additional models, which will also be covered in

this book:

Learning vector quantization

*Linear regression

Bagging and random forests

Principal component analysis

(* Discussed in this chapter)

Experienced data scientist cannot tell you which of these ten models

would be the best performer without trying different them all for a particular

problem domain. While there are many other ML models and algorithms,

these ten are generally considered to be the most popular ones. It would

be wise to learn about and use these ten as a solid starting point for an

ML education.

Chapter 2 Exploration of ML data models: Part 1

http://scholar.google.com/scholar?q=Gaussian+Naive+Bayesian&hl=en&as_sdt=0&as_vis=1&oi=scholart

77

�Underlying big principle
There is a common principle that underlies all supervised ML algorithms

used in predictive modeling.

ML algorithms are best described as learning a target function f() that

best maps input variable x to an output variable y or in equation form

y = f(x)

There is often a common problem where predictions are required

for some y, given new input values for the input variable x. However, the

function f(x) is unknown. If it was known, then the prediction would be

said to be analytical and solved directly and there would be no need to

“learn” it from data using ML algorithms.

Likely the most common type of ML problem is to learn the mapping

y = f(x) to make predictions of y for a new x. This approach is formally

known as predictive modeling or predictive analytics and the goal is to

make accurate predictions.

I will start the data model review with probably the most common

model ever used for predictions.

� Linear regression

Linear regression (LR) is a method for predicting an output y given a value

for an input variable x. The assumption behind this approach is that there

must exist some linear relationship between x and y. This relationship

expressed in mathematical terms is

y b b x e= + +0 1

where

b1 = slope of a straight line

b0 = y-axis intercept

e = estimation error

Chapter 2 Exploration of ML data models: Part 1

78

Figure 2-13 shows a simplified case with three data points and a straight

line that best fits between all the points. The ŷ points are the estimates

created using the LR equation for a given xi. The ri values are the estimation

errors between the true data point and the corresponding ŷ estimate.

The normal approach in creating an LR equation is to minimize the

sum of all the ri errors. Different techniques can be used to learn the linear

regression model from data, such as a linear algebra solution for ordinary

least squares and using a gradient descent optimization.

Linear regression has been around for more than 200 years and has

been extensively studied. Two useful rules of thumb when using this

technique are to remove independent variables that are very similar and to

remove any noise from the dataset. It is a quick and simple technique and

a good first-try algorithm.

LR demonstration

The following Python script is named lrTest.py and is designed to create

a pseudo-random set of points surrounding a sloped line with the

underlying equation

y x= -2 5

Figure 2-13.  Simple LR case example

Chapter 2 Exploration of ML data models: Part 1

79

The learn regression method contained in the scikit-learn package

uses the pseudo-random dataset to recreate the underlying equation. This

script is available from the book’s companion web site:

Import required libraries

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.linear_model import LinearRegression

generate the random dataset

rng = np.random.RandomState(1)

x = 10*rng.rand(50)

y = 2*x -5 + rng.randn(50)

Setup the LR model

model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

Generate the estimates

xfit = np.linspace(0, 10, 1000)

yfit = model.predict(xfit[:, np.newaxis])

Display a plot with the random data points and best fit line

ax = plt.scatter(x,y)

ax = plt.plot(xfit, yfit)

plt.show()

Display the LR coefficients

print("Model slope: ", model.coef_[0])

print("Model intercept: ", model.intercept_)

The script is run by entering

python lrTest.py

Chapter 2 Exploration of ML data models: Part 1

80

Figure 2-14 shows the result of running this script.

It should be readily apparent from viewing the figure that the best

fit line is placed perfectly within the dataset as would be expected from

the way the data was generated. This is a proper result because the sole

purpose of this demonstration was to illustrate how a linear regression

model worked.

Figure 2-15 shows the b0 and b1 coefficients that the LR model

computed. They are extremely close to the true values of 2 and –5,

respectively.

Figure 2-14.  Results for the lrTest script

Chapter 2 Exploration of ML data models: Part 1

81

� Logistic regression

Logistic regression (LogR) is often used for classification purposes. It

differs from LR because the dependent variable (x) can only take on

a limited number of values, whereas in LR the number of values is

unlimited. This arises because logistic regression uses categories for the

dependent variable. It becomes binary logistic regression when there are

only two categories.

In LR, the output is the weighted sum of inputs. LogR is a

generalization of LR in the sense that the weighted sum of inputs is not

output directly, but passes through a function that maps any real input

value to an output ranging between 0 and 1. In LR, an output can take on

any value, but for LogR, the values must be between 0 and 1.

Figure 2-16 shows the function which maps the sum of weighted

inputs. This is called the sigmoid function and is also known as an

activation function.

Figure 2-15.  Computed LR coefficients

Chapter 2 Exploration of ML data models: Part 1

82

The figure shows that the output value (y) of the sigmoid function

always lies between 0 and 1 and when x = 0, y= 0.5. In the case of two

categories, if y >= 0.5, then it can be stated that Class 1 was detected; else, it

must be Class 0.

Before I delve into the actual data model, it is important to review the

two underlying assumptions that must be met for a logistic regression to be

applied. These are

•	 The dependent variable must be categorical.

•	 The independent variables (features) must be

independent.

I will be using Professor Andrew Ng’s dataset regarding admission

to a university based on the results of two exam scores. The complete

dataset consists of 100 records with two exam scores or marks ranging

from 0 to 100. Each record also contains a 1 or 0, where 1 means the

applicant was admitted and 0 the reverse. The objective for this data

Figure 2-16.  Sigmoid function

Chapter 2 Exploration of ML data models: Part 1

83

model is to predict based on two exam marks whether or not an applicant

would be admitted. The raw data is taken from a CSV file named marks.

txt, which is available from

https://github.com/animesh-agarwal/Machine-Learning/blob/

master/LogisticRegression/data/marks.txt

The data is loaded into the following script as a DataFrame using

Pandas software. The data is also split into admitted and non-admitted

categories to help visualize the data and meet the categorical assumption.

This script named logRTest.py was used to generate a plot of the original

dataset. This script is available from the book’s companion web site:

Import required libraries

import matplotlib.pyplot as plt

import pandas as pd

def load_data(path, header):

 marks_df = pd.read_csv(path, header=header)

 return marks_df

if __name__ == "__main__":

 # load the data from the file

 data = load_data("marks.txt", None)

 # X = feature values, all the columns except the last column

 X = data.iloc[:, :-1]

 # y = target values, last column of the data frame

 y = data.iloc[:, -1]

 # Filter the applicants admitted

 admitted = data.loc[y == 1]

 # Filter the applicants not admitted

 not_admitted = data.loc[y == 0]

Chapter 2 Exploration of ML data models: Part 1

84

 # Display the dataset plot

 �plt.scatter(admitted.iloc[:, 0], admitted.iloc[:, 1], s=10,

label='Admitted')

 �plt.scatter(not_admitted.iloc[:, 0], not_admitted.iloc[:, 1],

s=10, label='Not Admitted')

 plt.legend()

 plt.show()

The script is run by entering

python logRTest.py

Figure 2-17 shows the result of running this script.

Figure 2-17.  Results for the logRTest script

Chapter 2 Exploration of ML data models: Part 1

85

LogR model development

By examining this figure, you might be able to Image a straight line drawn

from the upper left to the lower right, which would bisect the majority

of the data points with admitted students to the right and non-admitted

ones to the left. The problem becomes how to determine the coefficients

for such a classifier line. LR cannot determine this line, but a LogR data

model can.

At this point, I will attempt to explain how the LogR model was

developed. However, I will of necessity omit much of the underlying

mathematics because otherwise it will devolve this discussion into many

fine-grain details that will distract from the main purpose of simply

introducing the LogR data model. Rest assured that there are many good

blogs and tutorials available, which explore LogR mathematical details.

The fundamental hypothesis for this LogR example is to determine the

coefficients θi that “best fit” the following equation

h x x x() = + +q q q0 1 1 2 2

where

h x classification value

class if h x

class if h x() =
() =>
()<

ì

í
ï

î

1 0

0 0
ïï

x Category value1 1=

x Category value2 2=

In this binary LogR example, x1 is the Exam 1 score (mark) and x2 is the

Exam 2 score.

Chapter 2 Exploration of ML data models: Part 1

86

A cost function must be assigned to this hypothesis such that the gradient

method can be applied to minimize the cost and subsequently determine the

coefficients that are needed for a minimal cost solution. Without proof or a

derivation, I will just present the cost function as shown in Figure 2-18.

The cost for all the training examples denoted by J(θ) in the figure may

be computed by taking the average over the cost of all 100 records in the

training dataset.

LogR demonstration

The following script is named logRDemo.py and will compute the desired

coefficients as described earlier. In addition, the script will plot the

classifier line overlaid with the training dataset. Finally, the coefficients

are displayed in order to obtain a usable classifier equation. I have

included many comments within the script to help you understand

what is happening with the code. This script is available from the book’s

companion web site:

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import scipy.optimize as so

def load_data(path, header):

 # Load the CSV file into a panda dataframe

 marks_df = pd.read_csv(path, header=header)

 return marks_df

Figure 2-18.  LogR cost function for the example problem

Chapter 2 Exploration of ML data models: Part 1

87

def sigmoid(x):

 # Activation function

 return 1/(1 + np.exp(-x))

def net_input(theta, x):

 # Computes the weighted sum of inputs by a numpy dot product

 return np.dot(x, theta)

def probability(theta, x):

 # Returns the probability after Sigmoid function is applied

 return sigmoid(net_input(theta, x))

def cost_function(theta, x, y):

 # Computes the cost function

 m = x.shape[0]

 �total_cost = -(1/m)*np.sum(y*np.log(probability(theta,x))+

(1-y)*np.log(1-probability(theta,x)))

 return total_cost

def gradient(theta, x, y):

 #Computes the cost function gradient

 m = x.shape[0]

 return (1/m)*np.dot(x.T,sigmoid(net_input(theta,x))-y)

def fit(x, y, theta):

 # The optimal coefficients are computed here

 �opt_weights = so.fmin_tnc(func=cost_function, x0=theta,

fprime=gradient,args=(x,y.flatten()))

 return opt_weights[0]

if __name__ == "__main__":

 # Load the data from the file

 data = load_data("marks.txt", None)

 # X = feature values, all the columns except the last column

 X = data.iloc[:, :-1]

Chapter 2 Exploration of ML data models: Part 1

88

 # Save a copy for the output plot

 X0 = X

 # y = target values, last column of the data frame

 y = data.iloc[:, -1]

 # Save a copy for the output plot

 y0 = y

 X = np.c_[np.ones((X.shape[0], 1)), X]

 y = y[:, np.newaxis]

 theta = np.zeros((X.shape[1], 1))

 parameters = fit(X, y, theta)

 x_values = [np.min(X[:,1]-5), np.max(X[:,2] + 5)]

 �y_values = -(parameters[0] + np.dot(parameters[1], x_

values)) / parameters[2]

 # filter the admitted applicants

 admitted = data.loc[y0 == 1]

 # filter the non-admitted applicants

 not_admitted = data.loc[y0 == 0]

 # Plot the original dataset along with the classifier line

 �ax = plt.scatter(admitted.iloc[:, 0], admitted.iloc[:, 1],

s=10, label='Admitted')

 �ax = plt.scatter(not_admitted.iloc[:, 0], not_admitted.

iloc[:, 1], s=10, label='Not Admitted')

 �ax = plt.plot(x_values, y_values, label='Decision

Boundary')

 ax = plt.xlabel('Marks in 1st Exam')

 ax = plt.ylabel('Marks in 2nd Exam')

 ax = plt.legend()

 plt.show()

 print(parameters)

The script is run by entering

python logRDemo.py

Chapter 2 Exploration of ML data models: Part 1

89

Figure 2-19 shows the result of running this script.

The classifier line appears to be properly placed between the data

points separating admitted students from non-admitted students.

However, if you closely examine the classifier line, you find five admitted

student data points to the left of the classifier line. These points will cause

a false negative if the LogR classification model is used because students

with those exam scores were refused admission, but should have been

admitted. Similarly, there are six non-admitted students either on the line

or to the right of the classifier line. These points will cause false positives

if the LogR classification model is used because students with those exam

scores were admitted, but should have been refused admission. In all,

there are 11 either false negatives or false positives, which create an overall

89% accuracy for the LogR model. This is not terribly bad and likely could

be improved by increasing the size of the training dataset.

Figure 2-19.  Results for the logRDemo script

Chapter 2 Exploration of ML data models: Part 1

90

Figure 2-20 shows the θi coefficients that the LogR model computed.

The final LogR classifier equation using the computed θi coefficients is

h x x x() = - + +25 1613 0 2062 0 20151 2. . .

where

x Exam score1 1=

x Exam score2 2=

I tried a few random scores to test the classifier equation. The results

are shown in Table 2-2.

Figure 2-20.  Computed LogR coefficients

Table 2-2.  Random trials for LogR classifier equation

Exam 1 Exam 2 Classifier Admitted Not admitted

40 60 –4.825 x

80 60 3.423 x

50 60 –2.763 x

55 65 –0.7245 x

60 65 0.3065 x

(continued)

Chapter 2 Exploration of ML data models: Part 1

91

The last entry in the table is not random but instead is a false negative

taken from the original dataset. I did this to illustrate a potential issue with

relying solely on the classifier equation.

�Naive Bayes
Naive Bayes is a classification algorithm for both two-class (binary) and

multi-class classification problems. The technique best understands using

binary or categorical input values.

It is called Naive Bayes because the calculation of the probabilities for

each hypothesis is simplified to make their calculation possible. Rather

than attempting to calculate the values of each attribute value P(d1, d2|h),

they are assumed to be conditionally independent given a target data value

and calculated as P(d1|h) * P(d2|h).

Exam 1 Exam 2 Classifier Admitted Not admitted

80 90 9.468 x

70 75 4.4835 x

60 65 0.3065 x

60 75 2.3215 x

60 60 –0.701 x

62 63 0.3159 x

70 65 2.3685 x

65 70 2.1345 x

50 55 –3.7705 x

70 48 –1.057 x

56 59 –1.7273 x

Table 2-2.  (continued)

Chapter 2 Exploration of ML data models: Part 1

92

This is a very strong assumption which is not likely to hold for real-

world data. This assumption is based on a supposition that class attributes

do not interact. Nonetheless, this approach seems to perform well on data

where the basic assumption does not hold.

Before jumping into a real-world demonstration, I believe it would

be prudent to review some fundamental principles regarding Bayesian

logic.

�Brief review of the Bayes’ theorem

In a classification problem, a hypothesis (h) may be considered as a class

to be assigned for each new data instance (d). An easy way to select the

most probable hypothesis given the new data is to use any prior knowledge

about the problem. Bayes’ theorem provides a method to calculate the

probability of a hypothesis given the prior knowledge.

Bayes’ theorem is stated as

P(h|d) = (P(d|h) * P(h)) / P(d)

where

•	 P(h|d) is the probability of hypothesis h given the data

d. This is called the posterior probability.

•	 P(d|h) is the probability of data d given that the

hypothesis h was true.

•	 P(h) is the probability of hypothesis h being true

(regardless of the data). This is called the prior

probability of h.

•	 P(d) is the probability of the data (regardless of the

hypothesis).

It is plain to observe that the goal is to calculate the posterior

probability of P(h|d) from the prior probability P(h) with P(d) and P(d|h).

Chapter 2 Exploration of ML data models: Part 1

93

The hypothesis with the highest probability is selected after calculating

the posterior probability for a number of different hypotheses. This selected

h is the maximum probable hypothesis and is formally called the maximum

a posteriori (MAP) hypothesis. It can be expressed in several forms as

MAP(h) = max(P(h|d))

or

MAP(h) = max((P(d|h) * P(h)) / P(d))

or

MAP(h) = max(P(d|h) * P(h))

The P(d) is a normalizing term which allows for the calculation of

a normalized probability. It may be disregarded when only the most

probable hypothesis is desired because this term is constant and only used

for normalization, which leads to the last MAP equation shown earlier.

Further simplification is possible if there is an equal distribution of

instances in each class in the training data. The probability of each class

(P(h)) will be equal in this case. This would cause another constant term

to be part of the MAP equation, and it too could be dropped leaving an

ultimate equation of

MAP(h) = max(P(d|h))

�Preparing data for use by the Naive Bayes model

Class and conditional probabilities are required to be calculated before

applying the Naive Bayes model. Class probabilities are, as the name

implies, the probabilities associated with each class in the training set.

Conditional probabilities are those associated with each input data value

for a given class.

Training is fast because only the probability of each class and the

probability of each class given different input values are required to be

calculated. There are no coefficients needed to be fitted by optimization

procedures as was the case with the regression models.

Chapter 2 Exploration of ML data models: Part 1

94

The class probabilities are simply the frequency of instances that

belong to each class divided by the total number of instances.

For example, in a binary classification problem, the probability of an

instance belonging to class1 would be calculated as

P(class1) = count(class1) / (count(class0) + count(class1))

In the simplest case where each class had an equal number of

instances, the probability for each class would be of 0.5 or 50%.

The conditional probabilities are the frequency of each attribute value for

a given class value divided by the frequency of instances with that class value.

This next example should help clarify how the Naive Bayes model works.

Naive Bayes model example

The following is a training dataset of weather and a corresponding target

variable “Play” (suggesting possibilities of playing).

Table 2-3 shows a record of weather conditions and the Play variable value.

Table 2-3.  Weather/Play dataset

Weather Play

Sunny No

Overcast Yes

Rainy Yes

Sunny Yes

Sunny Yes

Overcast Yes

Rainy No

Rainy No

Sunny Yes

(continued)

Chapter 2 Exploration of ML data models: Part 1

95

The first step is to convert the training dataset to a frequency table as

shown in Table 2-4.

Weather Play

Rainy Yes

Sunny No

Overcast Yes

Overcast Yes

Rainy No

Table 2-3.  (continued)

Table 2-4.  Frequency table

Frequency table

Weather No Yes

Overcast 4

Rainy 3 2

Sunny 2 3

Total 5 9

The second step is to create a Likelihood table by finding the

probabilities. For instance, overcast probability is 0.29 and the overall

playing probability is 0.64 for all weather conditions. Table 2-5 shows the

Likelihood table.

Chapter 2 Exploration of ML data models: Part 1

96

The next step is to use the Naive Bayesian equation to calculate the

posterior probability for each class. The class with the highest posterior

probability is the outcome of prediction.

Problem statement: Players will play if weather is sunny. Is this

statement correct?

Solve this problem by using the method of posterior probability.

P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny)

Substituting actual probabilities yields

P (Sunny | Yes) = 3/9 = 0.33

P(Sunny) = 5/14 = 0.36

P(Yes)= 9/14 = 0.64

Therefore:

P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60

Table 2-5.  Likelihood table

Likelihood table

Weather No Yes Weather
probabilities

Overcast 4 4/14 0.29

Rainy 3 2 5/14 0.36

Sunny 2 3 5/14 0.36

Total 5 9

5/14 9/14

Playing

probabilities

0.36 0.64

Chapter 2 Exploration of ML data models: Part 1

97

Next compute the posterior probability for the other Play class

value of “No”.

P(No | Sunny) = P(Sunny | No) * P(No) / P (Sunny)

Substituting actual probabilities yields

P (Sunny | No) = 2/5 = 0.40

P(Sunny) = 5/14 = 0.36

P(No)= 5/14 = 0.36

Therefore:

P (No | Sunny) = 0.40 * 0.36 / 0.36 = 0.40

The probability P(Yes | Sunny) is higher than the P(No | Sunny) and is

the MAP or prediction. Note, you could have simply subtracted the P(Yes |

Sunny) from 1.0 to obtain the complementary probability, which is always

true for binary class values. However, that operation does not hold true for

non-binary class value situations.

Pros and cons

The following are some pros and cons for using a Naive Bayes data model.

Pros:

•	 It is easy and fast to predict class value from a test

dataset. It also performs well in multi-class predictions.

•	 When assumption of independence holds, a Naive Bayes

classifier performs better compare to other models like

logistic regression and less training data is needed.

•	 It performs well in case of categorical input variables

compared to numerical variable(s). For numerical

variables, a normal distribution is assumed, which is a

strong assumption.

Chapter 2 Exploration of ML data models: Part 1

98

Cons:

•	 If a categorical variable has a category in the test

dataset, which was not observed in training dataset,

then the model will assign a 0 probability and will be

unable to make a prediction. This case is often known

as “zero frequency.” A smoothing technique called

Laplace estimation is often used to resolve this issue.

•	 Naive Bayes is also known as a bad estimator, so

probability outputs can be inaccurate.

•	 Another limitation of Naive Bayes is the assumption of

independent predictors. In the real world, it is almost

impossible that we get a set of predictors which are

completely independent.

The scikit-learn library will be used shortly to build a Naive Bayes

model in Python. There are three types of Naive Bayes model available

from the scikit-learn library:

•	 Gaussian – It is used in classification and it assumes

that features follow a normal distribution.

•	 Multinomial – It is used for discrete counts. Consider

a text classification problem as a Bernoulli trial which

is essentially “count how often a word occurs in the

document.” It can be thought of as “number of times

outcome number xi is observed over n trials.”

•	 Bernoulli – The Bernoulli model is useful if the

feature vectors are binary (i.e., zeros and ones). One

application would be text classification with “bag of

words” model where the 1s and 0s are “word occurs

in the document” and “word does not occur in the

document,” respectively.

Chapter 2 Exploration of ML data models: Part 1

99

Based on your dataset, you can choose any of the preceding discussed

models.

Gaussian Naive Bayes

Naive Bayes can be extended to real-valued attributes, most commonly

by assuming a Gaussian distribution. This extension of Naive Bayes is

called Gaussian Naive Bayes. Other functions can be used to estimate the

distribution of the data, but the Gaussian or normal distribution is the

easiest to work with because it only needs the mean and the standard

deviation to be computed from the training data.

Mean and standard deviation values of each input variable (x) for each

class value are computed using the following equations:

mean(x) = 1/n * sum(x)

standard deviation(x) = sqrt(1/n * sum(xi-mean(x)^2))

where

n = number of instances

x = values for input variables

Probabilities of new x values are calculated using the Gaussian

probability density function (PDF). When making predictions, these

parameters can be entered into the Gaussian PDF with a new input for

the x variable and in the Gaussian PDF will provide an estimate of the

probability of that new input value for that class.

pdf(x, mean, sd) = (1 / (sqrt(2 * PI) * sd)) * exp(-((x-mean^2)/

(2*sd^2)))

Where pdf(x) is the Gaussian PDF, sqrt() is the square root, mean and

sd are the mean and standard deviation, PI is the numerical constant,

exp() is the numerical constant e or Euler’s number raised to power, and x

is the value for the input variable.

Chapter 2 Exploration of ML data models: Part 1

100

The following demonstration uses the preceding equations, but they

are an integral part of the software package and are separately invoked.

Gaussian Naive Bayes (GNB) demonstration

The following Python script is named gnbTest.py and uses the GNB model

contained in the scikit-learn software package. A minimal training dataset

is contained in the script to have the model “learn” and make a prediction.

The dataset may be purely arbitrary, or it could actually represent real-

world attributes depending if the data has been encoded. In any case, the

predictor will function without any problem because it is based only on

numerical data. It is always the user’s responsibility to decode the final

results. This script is available from the book’s companion web site:

Import Library of Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

import numpy as np

Assigning predictor and target variables

x= np.array([[-3,7],[1,5], [1,2], [-2,0], [2,3], [-4,0],

[-1,1], [1,1], [-2,2], [2,7], [-4,1], [-2,7]])

y = np.array([3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4])

Create a Gaussian Classifier

model = GaussianNB()

Train the model using the training sets

model.fit(x, y)

Predict output

predicted= model.predict([[1,2],[3,4]])

print(predicted)

The script is run by entering

python gnbTest.py

Chapter 2 Exploration of ML data models: Part 1

101

Figure 2-21 shows the result of running this script.

The final results show [3 4] as the prediction. As I mentioned earlier,

what this means in the real world would depend on the way the dataset

was originally encoded.

�k-nearest neighbor (k-NN) model
I introduced the k-NN model in the previous chapter in the Iris

demonstration – part 3. However, I didn’t mention two major drawbacks to

using this model at that time. If neither of them is a problem, then a k-NN

model should definitely be considered for use because it is a simple and

robust classifier.

The first problem is the performance issue. Since it’s a lazy model,

all the training data must be loaded and used to compute the Euclidean

distances to all training samples. This can be done in a naive way or using

more complex data structures such as k-d trees. In any case, it can be big

performance hit when a large training set is involved.

The second problem is the distance metric. The basic k-NN model

is used with Euclidean distance, which is a problematic distance metric

when a high number of dimensions are involved. As the number of

dimensions rises, the algorithm performs worst due to the fact that the

distance measure becomes meaningless when the dimension of the

data increases significantly. Another related issue is when noisy features

Figure 2-21.  Results for the gnbTest script

Chapter 2 Exploration of ML data models: Part 1

102

are encountered. This problem happens because the model applies the

same weight for all features, noise or not. In addition, the same weights

are applied to all features, independent of their type, which could be

categorical, numerical, or binary.

In summary, a k-NN model is usually a best choice if a system has

to learn a sophisticated (i.e., non-linear) pattern with a small number of

samples and dimensions.

�KNN demonstration
This demonstration will use the automobile dataset from the UC Irvine

Repository. The two required CSV data files along with the kNN.py class

file may be downloaded from

https://github.com/amallia/kNN

Note T here is also a Jupyter notebook file available from this web
site. This file will not be used because I provide a Python script in the
following, which accomplishes the same functions as the notebook file.

The problem statement will be to predict the miles per gallon (mpg) of

a car, given its displacement and horsepower. Each record in the dataset

corresponds to a single car.

The kNN class file is listed in the following, which contains

initialization, computation, and prediction functions. This script is

named kNN.py and is available either from the listed web site or the

book’s companion web site. I have added comments in the script listing to

indicate what functions are being performed.

#!/usr/bin/env python

import math

import operator

Chapter 2 Exploration of ML data models: Part 1

103

class kNN(object):

 # Initialization

 def __init__(self, x, y, k, weighted=False):

 assert (k <= len(x)

 �), "k cannot be greater than training_set

length"

 self.__x = x

 self.__y = y

 self.__k = k

 self.__weighted = weighted

 # Compute Euclidean distance

 @staticmethod

 def __euclidean_distance(x1, y1, x2, y2):

 return math.sqrt((x1 - x2)**2 + (y1 - y2)**2)

 # Compute the PDF

 @staticmethod

 def gaussian(dist, sigma=1):

 �return 1./(math.sqrt(2.*math.pi)*sigma)*math.exp(-

dist**2/(2*sigma**2))

 # Perform predictions

 def predict(self, test_set):

 predictions = []

 for i, j in test_set.values:

 distances = []

 for idx, (l, m) in enumerate(self.__x.values):

 dist = self.__euclidean_distance(i, j, l, m)

 distances.append((self.__y[idx], dist))

 distances.sort(key=operator.itemgetter(1))

 v = 0

 total_weight = 0

Chapter 2 Exploration of ML data models: Part 1

104

 for i in range(self.__k):

 weight = self.gaussian(distances[i][1])

 if self.__weighted:

 v += distances[i][0]*weight

 else:

 v += distances[i][0]

 total_weight += weight

 if self.__weighted:

 predictions.append(v/total_weight)

 else:

 predictions.append(v/self.__k)

 return predictions

The following script is named knnTest.py where a k-NN model is

instantiated from the kNN class file. A series of predictions are made for

k = 1, 3, and 20 for both non-weighted and weighted cases. The resultant

errors are computed for all cases. This script is available from the book’s

companion web site:

Import required libraries

import pandas

from kNN import kNN

from sklearn.metrics import mean_squared_error

Read the training CSV file

training_data = pandas.read_csv("auto_train.csv")

x = training_data.iloc[:,:-1]

y = training_data.iloc[:,-1]

Read the test CSV file

test_data = pandas.read_csv("auto_test.csv")

x_test = test_data.iloc[:,:-1]

y_test = test_data.iloc[:,-1]

Chapter 2 Exploration of ML data models: Part 1

105

Display the heads from each CSV file

print('Training data')

print(training_data.head())

print('Test data')

print(test_data.head())

Compute errors for k = 1, 3, and 20 with no weighting

for k in [1, 3, 20]:

 classifier = kNN(x,y,k)

 pred_test = classifier.predict(x_test)

 test_error = mean_squared_error(y_test, pred_test)

 �print('Test error with k={}: {}'.format(k, test_error *

len(y_test)/2))

Compute errors for k = 1, 3, and 20 with weighting

for k in [1, 3, 20]:

 classifier = kNN(x,y,k,weighted=True)

 pred_test = classifier.predict(x_test)

 test_error = mean_squared_error(y_test, pred_test)

 �print('Test error with k={}: {}'.format(k, test_error *

len(y_test)/2))

The script is run by entering

python knnTest.py

Figure 2-22 shows the result of running this script.

Chapter 2 Exploration of ML data models: Part 1

106

This figure shows the first five records from each of the CSV data files.

The next three test error results are for the non-weighted prediction results

for k equal to 1, 3, and 20, respectively. The last three test error results are

for the weighted predictions for the same k values. Reviewing the error

results reveals a slight reduction in error values as k is increased and even

slightly lower error values for the cases when weighting is applied.

�Decision tree classifier
This will be the last data model discussed in this chapter. The decision tree

classifier data model is a clever solution for common business problems.

For instance, if you are a bank loan manager, you might use this model

to classify customers in safe or risky categories depending upon their

financial and credit histories. Classification usually is done in two steps,

the first being learning and the second being prediction. The model in the

Figure 2-22.  Results for the knnTest script

Chapter 2 Exploration of ML data models: Part 1

107

learning step is developed and tuned based solely on the available training

data. The model is then used to predict future outcomes using the trained

data and any appropriate hyper-parameters entered based on tuning and

user experience.

�Decision tree algorithm
A decision tree is a flowchart-like tree structure where an internal node

represents a feature or attribute, a branch represents a decision rule, and

every leaf node represents an outcome. The root node is the topmost

node in a decision tree. The model learns to partition on the basis of

attribute values. The tree is partitioned in a recursive manner naturally

called recursive partitioning. This flowchart-like structure is a reasonable

analogy to how humans perform a decision-making process. Visualizing

this process with a flowchart diagram will help you understand this model.

Figure 2-23 shows a portion of a generic decision tree.

Figure 2-23.  Generic flowchart for a decision tree

Chapter 2 Exploration of ML data models: Part 1

108

One nice characteristic of the decision tree algorithm is that the

decision-making logic can readily be known. This model is known as a

white box machine learning algorithm. Compare this openness to a black

box which is typical for an artificial neural network (ANN) where any

decision-making logic is generally unfathomable. In addition, training

times for decision tree algorithms are generally much faster than ANN.

The decision tree algorithm is not dependent on any particular type of

training data probability distribution, which makes it a non-parametric

method. Consequently, decision tree algorithms can handle high-

dimensional data with good accuracy.

A decision tree algorithm follows this simple three-step process:

	 1.	 Select the best attribute using attribute selection

measures (ASM) to split the records.

	 2.	 Make that attribute a decision node and break the

dataset into smaller sub-sets.

	 3.	 Start tree building by repeating this process

recursively for each child until one of the following

conditions remains:

•	 All the tuples belong to the same attribute value.

•	 There are no more remaining attributes.

•	 There are no more instances.

The ASM is heuristic for selecting the splitting criterion that partitions

data in an optimal manner. ASM is also known as splitting rules because

it helps determine breakpoints for tuples on a given node. ASM provides

a rank to each feature or attribute by explaining the given dataset. The

best scoring attribute will then be selected as the splitting attribute. In the

case of a continuous-valued attribute, branch split points will also need to

be defined.

Chapter 2 Exploration of ML data models: Part 1

109

The following aside provides a detailed discussion concerning

information entropy, information gain, Gini index, and gain ratio. While

not a prerequisite to running the decision tree demonstration, I would

recommend that you take the time to read it. It will definitely improve your

understanding on how this algorithm functions.

�Information gain

Information gain measures how much “information” a feature gives us

about a class. Any features that perfectly partitions should give maximal

information. Likewise, unrelated features should provide no information.

Information gain measures the reduction in entropy, where entropy is

a measure of the purity or impurity present in an arbitrary collection of

examples. A more formal entropy definition is

The average rate at which information is produced by a
stochastic source of data.

The measure of information entropy associated with each possible

data value is computed by the negative logarithm of the probability mass

function for the value.

Before jumping into the fine-grain details, it would be prudent to

review some fundamental principles underlying information gain.

Split criterion

Suppose it is desired to split on the variable (𝑥):

1 2 3 4 5 6 7 8

y 0 0 0 1 1 1 1 1

If we split at 𝑥1 < 3.5, we get an optimal split. If we split at 𝑥 < 4.5, we

make a mistake or misclassification. The idea is to position the split at such

point as to make the samples “pure” or homogeneous. Of course, there

is the need to measure how the split functions and that is accomplished

Chapter 2 Exploration of ML data models: Part 1

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Probability_mass_function

110

using an ASM of information gain, gain ratio, or Gini index. All of the

preceding discussion is predicated upon knowing how to measure

information. Accomplishing this is all based on the concept of information

entropy which was introduced by Claude Shannon in his seminal 1948

paper “A Mathematical Theory of Communication.” Incidentally, Dr.

Shannon is considered the “Father of Information Theory” due to his

monumental contributions to this field.

Measuring information

Consider the bar shown in Figure 2-24 as an information source where

regions are digitally encoded.

Larger regions in the figure are encoded with fewer bits, while

smaller regions require more bits. The expected value for this

information source is the sum of all the values of the product of the

probability of a value and the value itself. In this example the expected

value is computed as follows:

Expected Value = * + * + * + *
1

4
2

1

8
3

1

8
3

1

2
1

Each time a region in the figure was halved in size the number of bits

went up by one. The probability also decreased by 0.5 when the size was

halved. The conclusion to be drawn from this figure is that the information

Figure 2-24.  Digitally encoded information source

Chapter 2 Exploration of ML data models: Part 1

111

of a random event x is proportional to the logarithm (base 2) of the

reciprocal of the event’s probability. In equation form, this is

Information x
P D x

() =
=()

æ

è
çç

ö

ø
÷÷log2

1

In general, the expected information or “entropy” of a random

variable is the same as the expected value with the value filled in with the

information:

Entropy of D P D x Information x
x

 = =()* ()å

= =()*
=()

æ

è
çç

ö

ø
÷÷å

x

P D x
P D x

log2

1

= - =()* =()å
x

P D x P D xlog2(

Properties of entropy

Entropy is maximized when the constituent elements are heterogeneous

(impure):

If  p
kk =
1

then,

Entropy H K
k k

K= = - * * æ
è
ç

ö
ø
÷ = ()1 1

2 2log log

Chapter 2 Exploration of ML data models: Part 1

112

Conversely, entropy is minimized when elements are homogeneous

(pure):

if pi = 1 or pi = 0

then,

Entropy H= = 0

With entropy defined as

H p p
i

K

k k= - * ()
=
å

1
2log

then any change in entropy is considered as information gain and is

defined as

DH H
m

m
H

m

m
HL

L
D

D= - * - *

where 𝑚 is the total number of instances, with 𝑚𝑘 instances belonging to

class 𝑘, where 𝐾 = 1, … , 𝑘.

Information gain example

The following example may be considered as an extension of the example

shown in the Naive Bayes section. Table 2-6 has several additional features,

which will be computed in the decision whether or not to play given a

certain set of conditions.

Chapter 2 Exploration of ML data models: Part 1

113

Table 2-6.  Play decision

Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

The information value for the Play attribute is computed as follows:

H Y p p
i

K

k k() = - * ()
=
å

1
2log

= - æ
è
ç

ö
ø
÷-

æ
è
ç

ö
ø
÷

5

14

5

14

9

14

9

142 2log log

= -()* -()-()* -()0 357 1 486 0 643 0 637. . . .

Chapter 2 Exploration of ML data models: Part 1

114

= +0 531 0 410. .

= 0 941.

Now, consider the information gain when the Humidity attribute is

selected.

InfoGain Humdity H Y
m

m
H

m

m
HL

L
R

R() = ()- -

where

m = number of Humidity examples

mL = number of Humidity examples with value =

Normal

mR = number of Humidity examples with value =

High

HL = IV for Humidity examples with value = Normal

HR = IV for Humidity examples with value = High

Substituting yields

InfoGain Humdity H Y H HL R() = () = - -0 941
7

14

7

14
.

HL = -
æ
è
ç

ö
ø
÷-

æ
è
ç

ö
ø
÷

6

7

6

7

1

7

1

72 2log log

HL = 0 592.

Chapter 2 Exploration of ML data models: Part 1

115

HR = -
æ
è
ç

ö
ø
÷-

æ
è
ç

ö
ø
÷

3

7

6

7

4

7

4

72 2log log

HR = 0 985.

H Y() = - * - *0 941
7

14
0 592

7

14
0 985. . .

H Y() = 0 152.

Performing the preceding computations for all of the remaining

features yields

Outlook = 0.247

Temperature = 0.029

Humidity = 0.152

Windy = 0.048

The initial split will be done with Outlook feature because it has the

highest information gain value in accordance with the ASM process.

The optimum split for the next level is shown in Figure 2-25 with the

associated selected attributes and information gain for each split.

Chapter 2 Exploration of ML data models: Part 1

116

Figure 2-26 is the final decision tree.

Note that not all leaves need to be pure; sometimes similar (even

identical) instances have different classes. Splitting stops when data

cannot be split any further.

Figure 2-25.  Next level splits with information gain values

Figure 2-26.  Final decision tree diagram

Chapter 2 Exploration of ML data models: Part 1

117

Gini index

The decision tree algorithm CART (classification and regression tree) uses

the Gini method to create split points. The equation for computing the

Gini index is

Gini D p
k

K

i() = -
=
å1

1

2

where pi is the probability that a tuple in D belongs to class Ci.

The Gini index considers a binary split for each attribute. You can

compute a weighted sum of the impurity of each partition. If a binary split

on attribute A partitions data D into D1 and D2, the Gini index of D is

Gini D
D

D
Gini D

D

D
Gini DA () = () + ()1

1
2

2

In case of a discrete-valued attribute, the sub-set that gives the

minimum Gini index for that chosen is selected as a splitting attribute. In

the case of continuous-valued attributes, the strategy is to select each pair

of adjacent values as a possible split point and the point with smaller Gini

index chosen as the splitting point.

DGini A Gini D Gini DA() = () - ()

The attribute with minimum Gini index is chosen as the splitting

attribute.

This index is maximized when elements are heterogeneous (impure).

If

p
kk =
1

Chapter 2 Exploration of ML data models: Part 1

118

then

Gini
k kk

K

= - = -
=
å1

1
1

1

1
2

Correspondingly, the index is minimized when elements are

homogeneous (pure).

If

𝑝𝑖 = 1 or 𝑝𝑖 = 0

then

Gini = 1 − 1 − 0 = 0

Simple Gini index example

I will start with an arbitrary dataset shown in Table 2-7 with five features, of

which feature E is the predictive one. This feature has two classes, positive

or negative. There happens to be an equal number of instances in each

class just to simplify the computations.

Table 2-7.  Arbitrary dataset

Index A B C D E

1 4.8 3.4 1.9 0.2 positive

2 5 3 1.6 1.2 positive

3 5 3.4 1.6 0.2 positive

4 5.2 3.5 1.5 0.2 positive

5 5.2 3.4 1.4 0.2 positive

6 4.7 3.2 1.6 0..2 positive

7 4.8 3.1 1.6 0.2 positive

8 5.4 3.4 1.5 0.4 positive

(continued)

Chapter 2 Exploration of ML data models: Part 1

119

Index A B C D E

9 7 3.2 4.7 1.4 negative

10 6.4 3.2 4.7 1.5 negative

11 6.9 3.1 4.9 1.5 negative

12 5.5 2.3 4 1.3 negative

13 6.5 2.8 4.6 1.5 negative

14 5.7 2.8 4.5 1.3 negative

15 6.3 3.3 4.7 1.6 negative

16 4.9 2.4 3.3 1 negative

Table 2-7.  (continued)

The first in calculating the Gini index is to choose some random values

to categorize (initial split) for each feature or attribute. The values chosen

for this dataset are shown in Table 2-8.

Table 2-8.  Initial split attribute values

A B C D

>= 5.0 >= 3.0 >= 4.2 >= 1.4

< 5.0 < 3.0 < 4.2 < 1.4

Computing the Gini index for attribute A:

Value >= 5

Number of instances = 12

Number of instances >=5 and positive = 5

Chapter 2 Exploration of ML data models: Part 1

120

Number of instances >= 5 and negative = 7

GiniA >=() = -æ
è
ç

ö
ø
÷ -æ

è
ç

ö
ø
÷ =5 1

5
12

7
12

0 486
2 2

.

Value: < 5

Number of instances = 4

Number of instances >=5 and positive = 3

Number of instances >= 5 and negative = 1

GiniA <() = -æ
è
ç

ö
ø
÷ -æ

è
ç

ö
ø
÷ =5 1

3
4

1
4

0 375
2 2

.

Weighting and summing yields

GiniA = * + * =
12
16

0 486
4
16

0 375 0 458. . .

Computing in a similar manner for the remaining attributes yields

GiniB =0 335.

GiniC =0 200.

GiniD =0 273.

The initial split point when using the Gini index will always be the

minimum value. The final decision tree based on the computed indices is

shown in Figure 2-27.

Chapter 2 Exploration of ML data models: Part 1

121

�Gain ratio

Gain ratio is a modification of information gain that reduces its bias on

highly branching features. This algorithm takes into account the number

and size of branches when choosing a feature. It does this by normalizing

information gain by the “intrinsic information” of a split, which is defined

as the information need to determine the branch to which an instance

belongs. Information gain is positively biased for an attribute with many

outcomes. This means that the information gain algorithm prefers an

attribute with a large number of distinct values.

Intrinsic information

The intrinsic information represents the potential information generated

by splitting the dataset into K partitions:

IntrinsicInfo D
D

D

D

Dk

K
k k() = - *

æ

è
ç

ö

ø
÷

=
å

1
2log

Partitions with high intrinsic information should be similar in size.

Datasets with few partitions holding the majority of tuples have inherently

low intrinsic information.

Figure 2-27.  Final decision tree for the simple Gini index example

Chapter 2 Exploration of ML data models: Part 1

122

Definition of gain ratio

Gain ratio is defined as

GainRatio D
Gain D

IntrinsicInfo D
() = ()

()

The feature with the maximum gain ratio is selected as the

splitting feature.

ID3 is the acronym for Iterative Dichotomiser 3 and is an algorithm

invented by Ross Quinian to implement the gain ratio ASM. Ross later

invented the C4.5 algorithm, which is an improvement over ID3 and is

currently used in most machine learning systems using the gain ratio

algorithm. It should be noted that the term SplitInfo is used in the C4.5

algorithm to represent IntrinsicInfo. Other than that ambiguity, the basic

gain ratio algorithm is unchanged.

There will be no example presented for gain ratio simply because this

aside is just too extensive and you likely have a pretty good understanding

of the ASM process if you have read through to this ending.

�Decision tree classifier demonstration
with scikit-learn
This decision tree demonstration will use a classic dataset from the

machine learning community called the Pima Indian Diabetes dataset.

The dataset may be downloaded in CSV format from

www.kaggle.com/uciml/pima-indians-diabetes-database#diabetes.csv

This dataset is originally from the National Institute of Diabetes and

Digestive and Kidney Diseases. The objective of this demonstration is

to diagnostically predict whether or not a patient has diabetes based

on certain diagnostic measurements included in the dataset. Several

Chapter 2 Exploration of ML data models: Part 1

123

constraints were placed on the selection of these instances from a larger

database. In particular, all patients here are females at least 21 years old of

Pima Indian heritage.

The downloaded CSV file is archived and must be extracted before

being used. Furthermore, you must remove the first row from the file

because it contains string column header descriptions. Keeping this

row in place will cause the prediction function to fail because the string

contents cannot be converted to a float type. I recommend using any

spreadsheet application that can load the CSV file. I happened to use

Microsoft’s Excel program, but any of the open source Linux applications

will likely work.

I will develop the Python script in two stages while also discussing

the underlying methodology regarding the decision tree classifier

model. The first stage will load all the dependencies as well as the

CSV file. The CSV file head information is also displayed to confirm a

successful load. The second stage will be to build, train, and test the

decision tree model.

The first step is to load the required libraries, which include the

DecisionTreeClassifier data model from the sklearn software package.

This data model uses the Gini ASM process by default, but this can be

changed if another ASM process is desired.

Load libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier # Import

Decision Tree Classifier

from sklearn.model_selection import train_test_split # Import

train_test_split function

from sklearn import metrics #Import scikit-learn metrics module

for accuracy calculation

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',

'bmi', 'pedigree', 'age', 'label']

Chapter 2 Exploration of ML data models: Part 1

124

The next step is to load the required Pima Indian Diabetes dataset

using Pandas’ read CSV function. Ensure the downloaded dataset is in the

same current directory as the script.

Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_

names)

pima.head()

Figure 2-28 shows the CSV file head portion with the first five records.

Figure 2-28.  diabetes.csv head results

The next step is to divide the given columns into two types of variables

dependent (target) and independent (feature).

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age','glucose','

bp','pedigree']

X = pima[feature_cols] # Feature variables

y = pima.label # Target variable

Model performance requires the dataset to be divided into a training

set and a test set. The dataset can be divided by using the function train_

test_split(). Three parameters, namely, features, target, and test_set

size, must be passed to this method.

Chapter 2 Exploration of ML data models: Part 1

125

Split dataset into training set and test set

70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=1)

The next step is to instantiate a decision tree data model from the

sklearn software package. The model is named clf and is readily trained

using 70% of the training dataset split from the original dataset. Finally, a

series of predictions are automatically made with the remaining 30% of the

dataset using the model’s predict() method.

In the test data stored in X_test, the labels are regarded as sample to

be fed to the classifier in the predict() method. The sample is as given in

the following data. It is invalid to feed it to the predict() method as it is

string, not float. To remove it, the drop() function is used. This is the return

result of X_txt.drop(0) and is what is fed to the predict () method.

['Pregnancies','Insulin','BMI','Age','Glucose','BloodPressure',

'DiabetesPedigreeFunction']

Create Decision Tree classifer object

clf = DecisionTreeClassifier()

Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test.drop(0))

The last step is to measure the overall accuracy of the prediction set.

Accuracy is computed by comparing actual test set values vs. the predicted

values. The metrics module from the scikit-learn package was used for

this accuracy measurement.

Note that the y_test variable includes the label 'Outcome' which is

string. To remove it, the drop() function is used.

Model accuracy

print("Accuracy:",metrics.accuracy_score(y_test.drop(0), y_pred))

Chapter 2 Exploration of ML data models: Part 1

126

The final result is the following score:

Accuracy: 0.6753246753246753

The 67.5% is a reasonable accuracy score. However, it may be

improved by tuning the hyper-parameters used by the decision tree

algorithm, which I will demonstrate in later section.

The complete script listing is shown in the following and is named

diabetesDT.py. It is available from the book’s companion web site.

Load libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

Import Decision Tree Classifier

from sklearn.model_selection import train_test_split

Import train_test_split function

from sklearn import metrics #Import scikit-learn metrics module

for accuracy calculation

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',

'bmi', 'pedigree', 'age', 'label']

Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_names)

print(pima.head())

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose',

'bp', 'pedigree']

X = pima[feature_cols] # Features

y = pima.label # Target variable

Split dataset into training set and test set

70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3, random_state=1)

Chapter 2 Exploration of ML data models: Part 1

127

Create Decision Tree classifer object

clf = DecisionTreeClassifier()

Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test.drop(0))

Model accuracy

print("Accuracy:",metrics.accuracy_score(y_test.drop(0),

y_pred))

�Visualizing the decision tree

The scikit-learn’s export_graphviz function can be used to display the

decision tree. The pydotplus library is also needed for this display function.

These libraries are installed using the following commands:

pip install graphviz

pip install pydotplus

sudo apt-get install python-pydot

The export_graphviz function converts the final decision tree

classifier file into what is known as a dot file. The pydotplus application

then converts this dot file to a png-formatted file, which may be displayed

using the system’s Image viewer application.

The following script is named diabetesDT.py and is available from the

book’s companion web site:

Load all required libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.tree import export_graphviz

Chapter 2 Exploration of ML data models: Part 1

128

from sklearn.externals.six import StringIO

from sklearn import tree

import pydotplus

import collections

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',

'bmi', 'pedigree', 'age', 'label']

Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_names)

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose',

'bp', 'pedigree']

X = pima[feature_cols] # Features

y = pima.label # Target variable

Split dataset into training set and test set

70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3, random_state=1)

Create Decision Tree classifer object

clf = DecisionTreeClassifier()

Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

dot_data = tree.export_graphviz(clf, out_file=None,

filled=True, rounded=True, special_characters=True, feature_

names= feature_cols, class_names=['0','1'])

graph = pydotplus.graph_from_dot_data(dot_data)

colors = ('turquoise', 'orange')

edges = collections.defaultdict(list)

Chapter 2 Exploration of ML data models: Part 1

129

for edge in graph.get_edge_list():

 �edges[edge.get_source()].append(int(edge.get_

destination()))

for edge in edges:

 edges[edge].sort()

 for i in range(2):

 dest = graph.get_node(str(edges[edge][i]))[0]

 dest.set_fillcolor(colors[i])

graph.write_png('tree.png')

You can generate the png tree Image by entering this command:

python diabetesDT.py

Be a bit patient because this command took about 20 seconds to

complete. You will see nothing on the monitor screen other than the

prompt reappearing after the script completes running. However, there

will be a new Image named tree.png located in the home directory.

Figure 2-29 shows this Image.

Figure 2-29.  tree.png

Chapter 2 Exploration of ML data models: Part 1

130

I fully realize that it is impossible to read the extremely small text

shown in the Image, which is why I enlarged a small portion of the Image.

This portion is shown in Figure 2-30.

In this decision tree chart, each internal node has a decision rule that

splits the data. Gini referred as Gini ratio measures the impurity of the

node, which I discussed in the aside. A node is pure when all of its records

belong to the same class. Such nodes are called leaf nodes.

The resultant tree created by this script is unpruned. This unpruned

tree is essentially unexplainable and not easy to understand. I will discuss

how to optimize it by pruning in the next section.

Figure 2-30.  Enlarged portion of the tree Image

Chapter 2 Exploration of ML data models: Part 1

131

�Optimizing a decision tree

There are three hyper-parameters available, which will allow for

optimizing the performance of a decision tree classifier. These are

•	 criterion: optional (default=“gini”) or Choose

attribute selection measure – This parameter allows

the selection of different ASMs. Available criteria

are “gini” for the Gini index and “entropy” for the

information gain.

•	 splitter: string, optional (default=“best”) or Split

Strategy – This parameter allows the selection of

the split strategy. Available strategies are “best” to

choose the best split and “random” to choose the best

random split.

•	 max_depth: int or None, optional (default=None) or

Maximum Depth of a Tree – This criterion sets the

maximum depth of the tree. If None, then nodes are

expanded until all the leaves contain less than min_

samples_split samples. A higher value of maximum

depth will likely cause overfitting, while a lower value

may cause underfitting .

In scikit-learn, the optimization of decision tree classifier is done

when the classifier is instantiated. The maximum depth of the tree is used

for pre-pruning. The pimaDiabetes.py script was modified to limit the

tree depth to 3 and the ASM was changed to entropy. The following code

changes were made to the script to accomplish this optimization:

Create Decision Tree classifer object

clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)

Chapter 2 Exploration of ML data models: Part 1

132

This script was rerun, and new accuracy score of 0.7705627705627706

was obtained. This 77% score is better than the 67.5% score obtained when

no performance arguments were entered.

The diabetesDT.py was also rerun with these new performance

arguments. The tree diagram was relabeled tree1.png to differentiate

from the initial version. Figure 2-31 shows the new tree diagram using the

optimized hyper-parameters.

This pruned model is much less complex and easier to understand

than the previous decision tree graph.

�Pros and cons for decision trees

Pros

•	 Decision trees are easy to interpret and visualize.

•	 They can easily capture non-linear patterns.

•	 They require less data preprocessing from the user.

Figure 2-31.  tree1.png

Chapter 2 Exploration of ML data models: Part 1

133

•	 They can be used for feature engineering such

as predicting missing values suitable for variable

selection.

•	 Decision trees have no assumptions about data

distribution because they are non-parametric.

Cons

•	 They are sensitive to noisy data. They can easily overfit

due to noisy data.

•	 Small variations (or variance) in data can result in a

different decision tree.

•	 Decision trees can be biased with an imbalanced

dataset. It is recommended that the dataset be

balanced out before creating the decision tree.

Chapter 2 Exploration of ML data models: Part 1

135© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_3

CHAPTER 3

Exploration of ML
data models: Part 2
This chapter is a continuation of the discussions and demonstrations of

basic ML data models that started in the previous chapter. I presented ten

data models at the beginning of the previous chapter, and these were

Linear regression

Logistic regression

K-nearest neighbors classifier

Gaussian Naive Bayesian

Decision tree classifier

Principal component analysis

Linear discriminant analysis

Support vector machines

Learning vector quantization

Bagging and random forests

The first five was covered in the previous chapter, while the remaining

five will be covered in this chapter. Please do not infer any relative

importance to the models because of the discussion order. In each case,

I specifically discuss when and how to use each model.

http://scholar.google.com/scholar?q=Gaussian+Naive+Bayesian&hl=en&as_sdt=0&as_vis=1&oi=scholart

136

�Principal component analysis
Principal component analysis (PCA) is a powerful algorithm, which is used

for linear transformations and dimensionality reduction. It is commonly

used in many areas including computer vision applications and financial

transactions.

The main objective in using a PCA algorithm is to reduce data

dimensionality by transforming a large set of variables into a smaller one

which still contains most of the information present in the large dataset.

Boiled down to a few words, PCA creates small datasets which are easier

to handle and facilitates data analysis and are far more compatible for use

with other ML algorithms. In summary, the central idea of PCA is to reduce

the number of variables in a dataset while preserving as much information

as possible. PCA also performs a data compression function, which I

describe in the code explanatory section.

The PCA algorithm tends to use less memory because it is

computationally efficient. Additionally, PCA has good visualization

functions, which help the user understand the final results.

There are six steps that should be followed when attempting to

perform a PCA:

	 1.	 Standardize the data.

	 2.	 Use the standardized data to create a covariance

matrix.

	 3.	 Use the resulting matrix to calculate eigenvector

(principal components) and their corresponding

Eigenvalues. Alternatively, the singular vector

decomposition (SVD) can be applied.

	 4.	 Sort the Eigenvalues in descending order by its and

choose the k Eigenvectors which explain the most

variance within the data (larger Eigenvalue means

the feature explains more variance).

Chapter 3 Exploration of ML data models: Part 2

137

	 5.	 Create a new projection matrix W.

	 6.	 Transform the original dataset X via W to obtain a

k-dimensional sub-space Y.

I realize that there are some strange and unknown terms in the

preceding process which might confuse and perhaps frighten some

readers. Don’t worry; they will be discussed and clarified in the following

discussion and demonstration.

�PCA script discussion
The first step in this demonstration is to load the dataset, which will be

used. The dataset I will be using is the classic Iris dataset, which I used in

the previous chapter. It is available from the following web site. The file is

available with extension data. You just need to change the extension to csv.

https://archive.ics.uci.edu/ml/datasets/Iris

After you download the file, be sure to delete the first row, which

contains the original column headers. The script will fail if you do not do this.

This Iris dataset contains measurements for 150 Iris flowers from three

different species.

The three classes in the Iris dataset are

	 1.	 Iris setosa (n = 50)

	 2.	 Iris versicolor (n = 50)

	 3.	 Iris virginica (n = 50)

The four features in each of the classes are

	 1.	 Sepal length in cm

	 2.	 Sepal width in cm

	 3.	 Petal length in cm

	 4.	 Petal width in cm

Chapter 3 Exploration of ML data models: Part 2

138

The following is a complete listing for a Python script named

pcaDemo.py, which will accomplish a complete PCA analysis with

visualizations. I also provide additional explanatory comments for

those code portions as needed. This script is available from the book’s

companion web site:

Import required libraries

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

from sklearn import decomposition

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

df = pd.read_csv('iris.csv', header=None, sep=',')

df.columns=['sepal_length', 'sepal_width', 'petal_length',

'petal_width', 'class']

df.dropna(how="all", inplace=True) # Drops empty line at EOF

Show the first 5 records

print(df.head())

f, ax = plt.subplots(1, 4, figsize=(10,5))

vis1 = sns.distplot(df['sepal_length'],bins=10, ax= ax[0])

vis2 = sns.distplot(df['sepal_width'],bins=10, ax=ax[1])

vis3 = sns.distplot(df['petal_length'],bins=10, ax= ax[2])

vis4 = sns.distplot(df['petal_width'],bins=10, ax=ax[3])

plt.show()

split data table into data X and class labels y

X = df.ix[:,0:4].values

y = df.ix[:,4].values

Chapter 3 Exploration of ML data models: Part 2

139

Standardize the data

X_std = StandardScaler().fit_transform(X)

Compute the covariance matrix

mean_vec = np.mean(X_std, axis=0)

cov_mat = (X_std -mean_vec).T.dot(X_std - mean_vec) /

(X_std.shape[0] - 1)

print('Covariance matrix \n%s' %cov_mat)

Compute the Eigenvectors and Eigenvalues

cov_mat = np.cov(X_std.T)

eig_vals, eig_vecs = np.linalg.eig(cov_mat)

print('Eigenvectors \n%s' %eig_vecs)

print('Eigenvalues \n%s' %eig_vals)

eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in

range(len(eig_vals))]

eig_pairs.sort()

eig_pairs.reverse()

print('Eigenvalues in descending order:')

for i in eig_pairs:

 print(i[0])

Compute the Eigenvalue ratios

tot = sum(eig_vals)

var_exp = [(i / tot)*100 for i in sorted(eig_vals,

reverse=True)]

cum_var_exp = np.cumsum(var_exp)

print('Eigenvalue ratios:%s' %cum_var_exp)

#Create the W matrix

matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),

 eig_pairs[1][1].reshape(4,1)))

print('Matrix W:\n', matrix_w)

Chapter 3 Exploration of ML data models: Part 2

140

Transform the X_std dataset to the sub-space Y

Y = X_std.dot(matrix_w)

features = ['sepal_length', 'sepal_width', 'petal_length',

'petal_width']

Create a scatter plot for PC1 vs PC2

x = df.loc[:,features].values

x = StandardScaler().fit_transform(x)

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(x)

principalDf = pd.DataFrame(data=principalComponents,

columns=['principal component 1','principal component 2'])

finalDf = pd.concat([principalDf, df[['class']]], axis=1)

fig = plt.figure(figsize=(8,8))

ax = fig.add_subplot(1,1,1)

ax.set_xlabel('Principal Component 1', fontsize=15)

ax.set_ylabel('Principal Component 2', fontsize=15)

ax.set_title('2 Component PCA', fontsize=20)

targets = ['setosa', 'versicolor', 'virginica']

colors = ['r', 'g', 'b']

for target, color in zip(targets, colors):

 indicesToKeep = finalDf['class'] == target

 �ax.scatter(finalDf.loc[indicesToKeep, 'principal component

1'], finalDf.loc[indicesToKeep, 'principal component 2'],

c=color, s=50)

ax.legend(targets)

ax.grid

plt.show()

Chapter 3 Exploration of ML data models: Part 2

141

The following discussions expand upon what is happening in various

parts of this script. I have not commented on the portions that I feel you

should already be comfortable reading and understanding such as the

library imports portion. In addition, I will only show the beginning and

ending of the code segments to save space, unless the code is three lines or

less. Do not forget to make sure the extension of the downloaded file is csv.

df = pd.read_csv('iris.csv', header=None, sep=',')

.

.

print(df.head())

A Pandas DataFrame named df is first created in this code from the

CSV file located in the current directory. The column names (attributes) are

then initialized, a bit of housekeeping is done, and then the head or first five

records are displayed just to ensure that the DataFrame was properly created.

f, ax = plt.subplots(1, 4, figsize=(10,5))

.

.

plt.show()

This code portion creates a series of univariate plots for the first four

attributes. It is always a good idea to review the original data distributions

to more understand what you are dealing with. These plots are shown in

the results section.

split data table into data X and class labels y

X = df.ix[:,0:4].values

y = df.ix[:,4].values

The data needs to be split into an attribute set named X and class label

set named y before standardization happens.

X_std = StandardScaler().fit_transform(X)

Chapter 3 Exploration of ML data models: Part 2

142

This code represents step 1 in the PCA process, which is to standardize

the input data. If you reviewed the input dataset, you would quickly

realize that the data has different scales. Standardizing the data helps

maximize data variances for principal components (Eigenvectors).

Without standardization a variable with a value range of 0 to 100 would

have an inordinate influence when covariances were computed as

compared to a variable with a 0 to 10 range. Standardization reduces any

chances of inadvertent bias being introduced into the analysis. The generic

standardization equation is

z
value mean

standard deviation
=

-

In this case, all the data is transformed onto a unit scale with a mean

of 0 and a variance and standard deviation of 1. Unit scale transformations

are often useful to obtain maximal performance for many different ML

algorithms.

mean_vec = np.mean(X_std, axis=0)

cov_mat = (X_std -mean_vec).T.dot(X_std - mean_vec) / (X_std.

shape[0] - 1)

print('Covariance matrix \n%s' %cov_mat)

Step 2 of the PCA process is to instantiate a covariance matrix. The

covariance matrix is a n × n symmetric matrix (where n is the number of

dimensions) that has entries for all the covariances associated with all

possible pairs of the initial variables. Notice that the standardized dataset

is used in this computation. Incidentally, the covariance of a standardized

dataset is equivalent to the correlation matrix of that same dataset. This

means the dataset correlation matrix could be used in the PCA process in

lieu of the covariance matrix.

Chapter 3 Exploration of ML data models: Part 2

143

Two facts about the covariance matrix should also be helpful for your

understanding:

•	 A positive value means two variables increase or

decrease together. This is also known as correlated.

•	 A negative value means as one variable increases,

the other decreases. This is also known as inversely

correlated.

cov_mat = np.cov(X_std.T)

.

.

print('Eigenvalues \n%s' %eig_vals)

Step 3 in the PCA process is to compute the Eigenvectors and

Eigenvalues related to the input dataset. These computations can be

accomplished in one of three ways:

•	 Using the covariance matrix

•	 Using the correlation matrix

•	 Using singular value decomposition (SVD)

The covariance matrix is often used when the attribute values are

similar, and the correlation matrix is used when attribute values are

on different scales. However, as I explained earlier, the standardized

covariance matrix is also equivalent to the correlation matrix, so basically

either matrix can be used. In this code, the covariance matrix is used

because the data has already been standardized and it is easier to compute

the covariance matrix than the correlation matrix.

The numpy library makes it easy to compute the Eigenvectors and

Eigenvalues. The np.linalg.eig(cov_mat) method returns these as two

lists named eig_vecs and eig_vals. Eigenvectors and Eigenvalues are

always paired, meaning a vector always has a value.

Chapter 3 Exploration of ML data models: Part 2

144

A key point to realize is that the eig_vecs are the principal

components. Principal components are new variables constructed as

linear combinations or mixtures of the original variables. These new

variables are uncorrelated, and the majority of information held by the

original variables is compressed into the first few principal components.

That is why PCA is often described as a data compression algorithm. One

important point to stress is that principal components don’t have any

real-world meaning because they are built from linear combinations of the

original dataset variables. Viewing principal components from a geometric

perspective yields the following:

Principal components represent data directions (i.e. vectors)
that explain a maximal amount of variance.

The larger the variance carried by a vector, the larger the dispersion

of the data points along it. In addition, the larger the dispersion along a

vector, the more the information it carries. To simplify this concept, just

think of principal components as new axes that provide the optimum

angle to see and evaluate the data so that the differences between the

observations are better visible.

Ranking the Eigenvectors in order of their Eigenvalues, highest to

lowest, yields the principal components in order of significance.

Finally, the SVD algorithm is another computationally efficient way to

compute Eigenvectors and Eigenvalues.

eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in

.

.

for i in eig_pairs:

 print(i[0])

Chapter 3 Exploration of ML data models: Part 2

145

This is step 4 in the PCA process that ranks the Eigenvectors in order of

their Eigenvalues, highest to lowest, which yields the principal components

in order of significance. Eigenvectors with the lowest Eigenvalues contain

the least amount of information concerning inherent data distributions.

tot = sum(eig_vals)

.

.

print('Eigenvalue ratios:%s' %cum_var_exp)

This code portion creates a list of the cumulative effect each

Eigenvector contributes to the overall variance. Users should use this list to

determine an optimum k value. You will shortly see in the results section

that a k = 2 value accounts for over 95% of the variance in the dataset. This

is a great result because the data can be easily visualized.

#Create the W matrix

matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),

 eig_pairs[1][1].reshape(4,1)))

print('Matrix W:\n', matrix_w)

This code is step 5, which creates the W matrix that is needed for the

final step.

Transform the X_std dataset to the sub-space Y

Y = X_std.dot(matrix_w)

This is the sixth and final step in the PCA process where the

standardized dataset is transformed into a k-dimensional sub-space

named matrix Y.

x = df.loc[:,features].values

.

.

plt.show()

Chapter 3 Exploration of ML data models: Part 2

146

This code portion creates a scatter plot showing the data points plotted

against principal components 1 and 2. This plot should provide the user an

excellent way to visualize the data regarding any latent data patterns that

are not observable using ordinary 2D feature scatter plots. Recall that the

original dataset has four features, which have now been reduced to 2D by

the PCA algorithm, allowing for this plot to be created. A plot like this is

one of the key reasons to use PCA for data modeling.

�PCA demonstration

First ensure that the iris.csv file is in the same directory as the script

and that the first record in the csv file has been deleted as I discussed

previously. The script is run by entering this command:

python pcaDemo.py

Figure 3-1 shows the univariate plots resulting from running this script.

Figure 3-1.  Univariate plots

Chapter 3 Exploration of ML data models: Part 2

147

The plots clearly indicate that the sepal values tend to more of a

Gaussian distribution, while the petal values tend to more of a multi-

modal distribution. These observations should be kept in mind when

considering the appropriate data models to use with this dataset. Both

these distributions are compatible with this PCA data model.

Figure 3-2 shows the numerical results from the script.

Figure 3-2.  Numerical results

While the interim results are useful, the key result to be closely

examined is the Eigenvalue ratios list. This list shows the cumulative

variance percentages associated with the four principal components

or Eigenvectors. Notice that the second value in the list is 95.8%, which

means the first two principal components are responsible for over 95% of

the measured variance. This means that only two vectors are responsible

for carrying most of the dataset information. This translates to having k = 2.

Chapter 3 Exploration of ML data models: Part 2

148

This is a great result that will allow for a very reduced matrix to be created

that will still represent the majority of the information contained in the

original dataset.

Table 3-1 shows the covariance matrix from the figure, which allows

me to comment on several concepts that you should know.

Table 3-1.  Covariance matrix

Sepal length Sepal width Petal length Petal width

Sepal length 1.00 –0.11 0.88 0.82

Sepal width –0.11 1.00 –0.42 –0.36

Petal length 0.88 –0.42 1.00 0.97

Petal width 0.82 –0.36 0.97 1.00

The first fact to know is that each table value is also the correlation

coefficient between the intersecting features. The main diagonal consists

of all 1s because that is the autocorrelation coefficient or the result of

computing a correlation on the same variable. The second fact is that

correlation is a distributive function, meaning that the order of the

variables is not a factor in the result. This results in a perfectly symmetric

matrix as you can see from examining the table.

There are a few high correlation values in the table (ignoring the

diagonal), which indicates that the dataset contains a good deal of

redundant information. This result would also mean that a PCA would

provide further insight into any hidden or latent patterns existing in the

dataset, which should be of interest to the user.

Figure 3-3 is an important one for it does show the hidden patterns

within this set.

Chapter 3 Exploration of ML data models: Part 2

149

This figure is a scatter plot for the first two principal components that

contribute to almost 96% of the information contained in the dataset. You

should easily observe that the Setosa species is set apart quite distinctly

from the other two species. The data point clusters for the two remaining

species are adjoining but still distinguishable from each other. I know that

observing this in a grayscale Image from the book is next to impossible,

but take my word for it that the clusters do adjoin. These observations are

simply not possible using the conventional 2D scatter plots as you can

observe for yourself by reviewing the Iris dataset plots from Chapter 2.

Figure 3-3.  Principal component scatter plot

Chapter 3 Exploration of ML data models: Part 2

150

�When to use PCA

I thought it would be a good idea to add a brief section on when to use

PCA. PCA would be an appropriate data model selection when there is

reason to suspect that the dataset may contain hidden or latent patterns

not readily observable when using conventional 2D visualization

techniques.

PCA is also helpful whenever there is a need for dimensionality

reduction. Such reduction goes hand in hand with the following situations:

•	 Visualization of high-dimensional data.

•	 Noise reduction. Often, higher-ordered principal

components are responsible for only small variations in

the data.

•	 Useful for preprocessing data which will be used with

other ML algorithms. Those algorithms can include

those that function better with smaller dimensioned

datasets.

•	 Useful for reducing correlations within the dataset.

Correlated data does not add much to the overall

information available, yet adds considerably to

computational inefficiency.

�Linear discriminant analysis
Linear discriminant analysis (LDA) is very similar to principal component

analysis (PCA), which I discussed in the previous section. One big

difference is that while PCA seeks to determine those axes or principal

components that maximize the variance in the data, LDA seeks those axes

which maximize the separation between classes. I strongly recommend

that you first read the PCA sections before reading the LDA sections

Chapter 3 Exploration of ML data models: Part 2

151

because I will use terms without explanation in these sections that I first

introduced and explained in the PCA sections.

LDA, like PCA, is a dimensional reduction algorithm, but it is

supervised. I will shortly go into what is meant by supervised in this

context. LDA projects a dataset onto a lower-dimensional space while

increasing class separability. The increased class separability reduces the

probability of overfitting from happening. LDA also improves computation

efficiency. The ability to limit overfitting gives LDA a distinct advantage

over the PCA algorithm.

Because PCA and LDA appear so similar, I have included Figure 3-4

which highlights some significant differences between these two algorithms.

Figure 3-4.  Differences between PCA and LDA

PCA is an “unsupervised” algorithm, since it does not use class labels

and the main purpose is to compute the axes or principal components

that will maximize the variance in a dataset. On the other hand, LDA is

“supervised” and uses the class data in order to compute the axes or linear

discriminants that maximize the separation between multiple classes.

Chapter 3 Exploration of ML data models: Part 2

152

There are five steps involved with the LDA process. These are

	 1.	 Compute d-dimensional mean vectors for different

classes from the dataset, where d is the dimension of

feature space.

	 2.	 Compute in-between-class and within-class scatter

matrices.

	 3.	 Compute Eigenvectors and paired Eigenvalues for

the scatter matrices.

	 4.	 Choose k Eigenvectors corresponding to top k

Eigenvalues to form a transformation matrix of

dimension d x k.

	 5.	 Transform the d-dimensional feature space X

to k-dimensional feature space X_lda via the

transformation matrix.

�LDA script discussion
This demonstration will use the same Iris dataset used in the PCA

demonstration. However, this script will automatically load the dataset as

compared to the PCA script.

The following is a complete listing for a Python script named ldaTest.

py, which will accomplish a complete LDA with visualizations. There is an

additional feature in this script that I wish to point out. Near the script’s

end, I demonstrate how to perform an LDA using only the sklearn LDA

module and not going through all the steps as was done in the preceding

script portion.

As usual, I also provide additional explanatory comments for

those code portions as needed. This script is available from the book’s

companion web site:

Chapter 3 Exploration of ML data models: Part 2

153

#Import required libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis

np.set_printoptions(precision=4)

#Read dataset

file_path = "https://raw.githubusercontent.com/bot13956/linear-

discriminant-analysis-iris-dataset/master/iris.data.csv"

df = pd.read_csv(file_path, header=None)

df.head()

#Encode categorical class labels

from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()

y = class_le.fit_transform(df[4].values)

#Standardize features

stdsc = StandardScaler()

X_train_std = stdsc.fit_transform(df.iloc[:,range(0,4)].values)

Construct within-class covariant scatter matrix S_W

S_W = np.zeros((4,4))

for i in range(3):

 S_W += np.cov(X_train_std[y==i].T)

#Construct between-class scatter matrix S_B

N=np.bincount(y) # number of samples for given class

vecs=[]

Chapter 3 Exploration of ML data models: Part 2

154

[vecs.append(np.mean(X_train_std[y==i],axis=0)) for i in

range(3)] # class means

mean_overall = np.mean(X_train_std, axis=0) # overall mean

S_B=np.zeros((4,4))

for i in range(3):

 �S_B += N[i]*(((vecs[i]-mean_overall).reshape(4,1)).

dot(((vecs[i]-mean_overall).reshape(1,4))))

Compute sorted eigenvalues and eigenvectors of

inverse(S_W)dot(S_B)

eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).

dot(S_B))

eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i

in range(len(eigen_vals))]

eigen_pairs = sorted(eigen_pairs,key=lambda k: k[0],

reverse=True)

print('Eigenvalues in decreasing order:\n')

for eigen_val in eigen_pairs:

 print(eigen_val[0])

Plot the main LDA components

tot = sum(eigen_vals.real)

discr = [(i / tot) for i in sorted(eigen_vals.real,

reverse=True)]

cum_discr = np.cumsum(discr)

plt.bar(range(1, 5), discr, width=0.2,alpha=0.5, align='center'

,label='individual "discriminability"')

plt.step(range(1, 5), cum_discr, where='mid',label='cumulative

"discriminability"')

plt.ylabel('Discriminant ratio')

plt.xlabel('Linear Discriminants')

plt.ylim([-0.1, 1.1])

Chapter 3 Exploration of ML data models: Part 2

155

plt.legend(loc='best')

plt.show()

#Project original features onto the new feature space

W=np.hstack((eigen_pairs[0][1][:,].reshape(4,1),eigen_pairs[1]

[1][:,].reshape(4,1))).real

X_train_lda = X_train_std.dot(W)

List and plot transformed features in LDA sub-space

data=pd.DataFrame(X_train_lda)

data['class']=y

data.columns=["LD1","LD2","class"]

data.head()

markers = ['s', 'x','o']

sns.lmplot(x="LD1", y="LD2", data=data, markers=markers,fit_

reg=False, hue='class', legend=False)

plt.legend(loc='upper center')

plt.show()

#LDA implementation using scikit-learn

lda = LinearDiscriminantAnalysis(n_components=2)

X_train_lda = lda.fit_transform(X_train_std, y)

List and plot the scikit-learn LDA results

data=pd.DataFrame(X_train_lda)

data['class']=y

data.columns=["LD1","LD2","class"]

data.head()

markers = ['s', 'x','o']

colors = ['r', 'b','g']

sns.lmplot(x="LD1", y="LD2", data=data, hue='class',

markers=markers,fit_reg=False,legend=False)

plt.legend(loc='upper center')

plt.show()

Chapter 3 Exploration of ML data models: Part 2

156

The following are explanatory discussions concerning various code

segments in the preceding script which introduce new concepts not

covered in the PCA sections. In addition, I will only show the beginning

and ending of the code segments to save space, unless the code is three

lines or less.

from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()

y = class_le.fit_transform(df[4].values)

The class string values are converted into numeric values for easier

handling in the script. The sklearn LabelEncoder module accomplishes

this task.

S_W = np.zeros((4,4))

for i in range(3):

 S_W += np.cov(X_train_std[y==i].T)

A 4 x 4 matrix S_W is created that represents within-class covariances.

N=np.bincount(y) # number of samples for given class

.

.

mean_overall).reshape(4,1)).dot(((vecs[i]-mean_overall).

reshape(1,4))))

A 4 x 4 matrix S_W is created that represents between-class

covariances.

eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).

dot(S_B))

.

.

for eigen_val in eigen_pairs:

 print(eigen_val[0])

Chapter 3 Exploration of ML data models: Part 2

157

Compute and sort Eigenvectors and Eigenvalues. The sorted

Eigenvalues are also listed to the screen.

tot = sum(eigen_vals.real)

.

.

plt.show()

plots the main LDA components.

W=np.hstack((eigen_pairs[0][1][:,].reshape(4,1),eigen_pairs[1]

[1][:,].reshape(4,1))).real

X_train_lda = X_train_std.dot(W)

projects the original features onto the new feature space.

data=pd.DataFrame(X_train_lda)

.

.

plt.show()

plots the transformed features into LDA sub-space.

lda = LinearDiscriminantAnalysis(n_components=2)

X_train_lda = lda.fit_transform(X_train_std, y)

Implement LDA using scikit-learn.

data=pd.DataFrame(X_train_lda)

.

.

plt.show()

Plot the scikit-learn LDA results.

Chapter 3 Exploration of ML data models: Part 2

158

�LDA demonstration

The script is run by entering this command:

python ldaTest.py

Figure 3-5 shows the sorted Eigenvalues resulting from running this

script. You can clearly see that the top two are the only significant values,

which also confirm the PCA results for the Iris dataset.

Figure 3-5.  Sorted Eigenvalues

Figure 3-6 is a plot of the relative magnitudes of the linear

discriminants.

Chapter 3 Exploration of ML data models: Part 2

159

The plot is quite skewed due to the huge value of the first linear

discriminant as compared to the other three. It is over 99% greater than the

second linear discriminant, which is shown as a line in the plot instead of

a bar. The remaining one is too negligible to be plotted as you may discern

by examining the Eigenvalues from Figure 3-5.

Figure 3-7 is a plot of the transformed Iris dataset against the first two

linear discriminants.

Figure 3-6.  Plot of relative magnitudes for linear discriminants

Chapter 3 Exploration of ML data models: Part 2

160

The important takeaway from this plot is that each of the Iris classes

that are now represented by numbers in this plot is distinctly separated

along the linear discriminant 1 (LD1) axis. This is always an optimum

result when applying the LDA algorithm. You should compare this figure

with Figure 3-3 from the PCA section to see how close they are to each

other. From my visual interpretation, I would say that the LDA plot shows

more separation between classes than the PCA plot, but it is a close call.

Figure 3-8 is a plot of the result of using the sklearn LDA module.

Figure 3-7.  Plot of the transformed Iris dataset

Chapter 3 Exploration of ML data models: Part 2

161

You might consider using this module as a one-step process because

all the interim results are not readily available. Nonetheless, the plotted

results are quite acceptable and reasonable close to the results obtained by

following the step-by-step process.

�Comparison of PCA and LDA

I created Figure 3-9, which is a composite plot showing Figures 3-3 and 3-7

side by side to highlight the similarities and differences between the two

subject algorithms.

Figure 3-8.  Plot of the results from the sklearn LDA module

Chapter 3 Exploration of ML data models: Part 2

162

Figure 3-9 confirms what has already been discussed. PCA accounts

for the most variance in the whole dataset, while LDA gives us the axes that

account for the most variance between the individual classes.

�Support vector machines
A support vector machine (SVN) data model is focused on classification

and to a lesser extent on prediction. The prime SVM objective is to

determine the best or optimum boundary that can split data into at least

two dimensions (2D). When dealing with more than 2D, the splitting

boundary is called a separating hyperplane. The “best” hyperplane is one

that creates the widest margins between support vectors. A hyperplane is

also commonly referred to as a decision boundary.

I believe the best way to convey the basic concepts of a SVM is

through a combination of intuitive discussion with graphics. SVMs can be

described in purely mathematical terms, but the math rapidly becomes

complex and obviously non-intuitive.

Figure 3-9.  PCA and LDA comparison plots

Chapter 3 Exploration of ML data models: Part 2

163

This initial discussion only concerns a linear SVM data model. I will

cover the non-linear SVM model after part 1 of the demonstration.

I will start with a simple plot of only six data points, which are divided

into two classes of three points each. Figure 3-10 shows these data points.

Figure 3-10.  Example data points

If a new data point was added to the plot, it would intuitively be

categorized as belonging to the class it was nearest. Of course, applying

the KNN data model could accomplish that task easily. The issue with

using the KNN model is that the Euclidean distance must be calculated for

every single data point. This is not a problem for this tiny dataset; however,

KNN does not scale up very well when dealing with large datasets, despite

being fairly reliable and accurate. The SVM changes the whole viewpoint

because it best fits a hyperplane to divide the dataset. Once the decision

boundary is computed, any new data is automatically classified depending

on its boundary side location. The decision boundary remains fixed

unless the dataset is re-trained. All this means is the SVM easily scales to

accommodate new data unlike the KNN model.

The natural question now arises on how is the best dividing

hyperplane determined? It can be “eye-balled” as shown in Figure 3-11.

Chapter 3 Exploration of ML data models: Part 2

164

The dividing line, which technically is the 2D projection of the

hyperplane, looks about right. However, the new issue is how to find the

support vectors? The key to finding the support vectors is to realize that

closest class data points to the decision boundary will also be part of the

support vectors. Figure 3-12 shows the graphical rendering for the SVM

support vectors for this example.

Figure 3-12.  Support vectors

Figure 3-11.  "Eye-balled" hyperplane

Chapter 3 Exploration of ML data models: Part 2

165

Maximally separated lines running through the support vector

data points are next created. The position of the decision boundary is

determined by the total width, W, as shown in Figure 3-13.

Figure 3-13.  Total width determination

Now, simply divide W by 2 and the location of the decision boundary is

now fixed. This is shown in Figure 3-14.

Figure 3-14.  Determine the location for the decision boundary

Chapter 3 Exploration of ML data models: Part 2

166

Figure 3-15 is a graphical intuition for the SVM model, showing the

distance to be maximized between the support vectors and the decision

boundary.

Figure 3-15.  Intuitive graph illustrating the distance to be
maximized

Looking at the figure, it can now be stated that any point to the left of

the decision boundary/separating hyperplane is in the black dot class,

while any data point to the right is in the red plus sign class.

The preceding was an easy introduction to SVM without using math or

code. The following is a demonstration showing how SVM can be used in a

beneficial way.

�SVM demonstration – Part 1
This demonstration uses sklearn’s SVM module. Consequently, there is no

need for step-by-step code development as was the case for the previous

data models in this chapter. This code uses another classic dataset titled

Breast Cancer Wisconsin (Diagnostic) Data Set. It is a multivariate dataset

with 30 attributes taken from 569 breast cancer needle biopsies. The

attributes are cellular descriptions for both healthy and malignant cells.

Chapter 3 Exploration of ML data models: Part 2

167

Essentially, there will be two classes involved in the dataset, those patients

with malignant cells and those free of them. This dataset is part of sklearn’s

organic dataset, and there is no need to do an explicit download. The

dataset is directly imported within the script.

The ultimate objective for this SVM demonstration is to determine

the probability that a test record is healthy or not given a specific set of

attributes.

This script is named svmDemo1.py and is available from the book’s

companion web site. I have not included any additional comments

because the script is short and the included comments I feel are adequate

to explain the code.

Import required libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report

Import dataset into a variable named 'cancer'

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

Load input features as a DataFrame

df_features = pd.DataFrame(cancer['data'], columns =

cancer['feature_names'])

Add output variable 'target' into a DataFrame

df_target = pd.DataFrame(cancer['target'], columns =

['Cancer'])

Chapter 3 Exploration of ML data models: Part 2

168

Display the first 5 records

print(df_features.head())

Split the dataset, 70% to train, 30% to test

X_train, X_test, y_train, y_test = train_test_split(df_

features, np.ravel(df_target), test_size=0.30, random_

state=101)

Instantiate the SVC model. SVC is the sklearn classifier

name.

model = SVC()

Train the model using the fit method

model.fit(X_train, y_train)

Test the model using the test dataset

predictions = model.predict(X_test)

Display the prediction results

print(classification_report(y_test, predictions))

The script is run by entering this command:

python svmDemo1.py

Figure 3-16 shows the results of running the script.

Chapter 3 Exploration of ML data models: Part 2

169

The first thing you should note is the head result, which shows

portions of the first five records in the dataset. There are 30 attributes,

which means this is a high-dimensional dataset that a linear hyperplane is

attempting to separate. That fact alone should raise warning bells for you.

It is about impossible to visualize any single plane that could effectively

separate these many data points, especially where many have similar

scale. This reality is borne out in the prediction results where the weighted

average is 0.38. This is a dismal result that means that only 38% of the test

data was correctly predicted. You could have done much better in the long

run by simply flipping a coin. What can be done to improve this result? The

answer is contained in the following discussion.

�SVM demonstration – Part 2
There is a technique used in SVM known as the kernel “trick,” which was

developed to handle high-dimensional datasets, such as the breast cancer

one used in this demonstration. This trick is really not a trick in the sense

Figure 3-16.  svmDemo1 results

Chapter 3 Exploration of ML data models: Part 2

170

it is “underhanded” or “devious” but is only intended to accommodate

high-dimensional datasets. When data points are not linearly separable

in a p-dimensional or finite space, it was proposed to map this space into

a much higher-dimensional space. Customized, non-linear hyperplanes

can then be constructed using the kernel trick. Every SVM kernel holds a

non-linear kernel function. This function helps build a high-dimensional

feature space. There are many kernels that have been developed and others

currently being researched. This is an extremely active area of research.

I will use an intuitive/graphical approach in explaining the non-linear

kernels as I did for the basic SVM concepts because the underlying math

for this subject is far too complex and detailed for inclusion in this book.

In Figure 3-17, there are x and o data points in the left-hand side

that clearly cannot be separated by a linear plane or line for the 2D case.

However, if the data points are transformed by some function∅, they can

be easily separated as shown in the right-hand side of the figure.

Figure 3-17.  Transformed dataset

The main idea is to improve class linear separation by mapping the

original dataset to a higher-dimensional space. In Figure 3-18, the original

data points in the upper left side of the figure cannot be separated by a

linear function. They can be separated after being mapped by a quadratic

function as can be observed by the plot on the right-hand side.

Chapter 3 Exploration of ML data models: Part 2

171

Figure 3-19 presents another problem where the decision boundary is

not readily apparent. The question is what decision function can be used

to separate these data points?

Figure 3-18.  Dataset transformed by a quadratic function

Figure 3-19.  Problematic dataset

The answer to this problem is using polar coordinates as can be seen in

Figure 3-20.

Chapter 3 Exploration of ML data models: Part 2

172

SVM has the following kernels that solve the non-linear dataset

problem:

Polynomial kernel – This kernel implements this equation

K x x x xi j i j

p
,() = * +()1

where p = tunable parameter. Also note that evaluating K only requires 1

addition and 1 exponentiation over the original dot product.

Radial basis function (rbf) – This kernel implements this equation

K x x ei j

x xi j

,() = -
-

*

2

22 s

The rbf is also known as the Gaussian function. Figure 3-21 shows an

application of the Gaussian function to an example dataset.

Figure 3-20.  Resolved problematic dataset

Chapter 3 Exploration of ML data models: Part 2

173

Sigmoid function – This is the sigmoid function, which is also used as

an activation function in other data models.

The following script is named svmDemo2.py and is available from the

book’s companion web site. The listing only shows the additional code,

which must be appended to the existing svmDemo1.py script. I have

included some explanatory comments after the code.

Gridsearch

param_grid = {'C':[0.1, 1, 10, 100, 1000], 'gamma':[1, 0.1,

0.01, 0.001, 0.0001], 'kernel':['rbf']}

from sklearn.model_selection import GridSearchCV

grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=3)

grid.fit(X_train, y_train)

print('\n')

Figure 3-21.  Gaussian function application

Chapter 3 Exploration of ML data models: Part 2

174

print('The best parameters are ', grid.best_params_)

grid_predictions = grid.predict(X_test)

from sklearn.metrics import classification_report

print(classification_report(y_test, grid_predictions))

These are explanatory comments regarding the new code contained in

this script.

param_grid = {'C':[0.1, 1, 10, 100, 1000], 'gamma':[1, 0.1,

0.01, 0.001, 0.0001], 'kernel':['rbf']}

Three important SVM parameters of kernel, C, and gamma are set in

this statement. The kernel parameter has these options:

•	 linear – Used when the dataset is amenable for linear

hyperplane separation

•	 rbf – Non-linear hyperplane

•	 poly – Non-linear hyperplane

The C parameter is used in the training phase to specify how much

data outliers are taken into account in computing support vectors. A low

value for C smooths the decision surface, while a high value permits the

SVM model to select more samples as support vectors.

The gamma parameter defines how far the influence of a single training

example reaches, with low values meaning “far” and high values meaning

“close.” The gamma parameter may be interpreted as the inverse of the

radius of influence of samples selected by the model as support vectors.

Selecting the appropriate parameters is mainly based on the dataset

properties. In this case, the rbf is a good choice for the high-dimensional

dataset. Choosing values for C and gamma is a tricky proposition.

Fortunately, sklearn provides an iterative approach to selecting these

parameters.

Chapter 3 Exploration of ML data models: Part 2

175

from sklearn.model_selection import GridSearchCV

grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=3)

grid.fit(X_train, y_train)

print('\n')

print('The best parameters are ', grid.best_params_)

grid_predictions = grid.predict(X_test)

The GridSearchCV module generates a grid search object with cross-

validation. Two tasks are being done in this code with the dataset, those

being cross-validation and (hyper)parameter tuning. Cross-validation

is the process of the model using one set of data and testing it using a

different set. Parameter tuning is the process of selecting the values for

a model’s parameters that maximize the accuracy of the model. The

object named grid now contains optimum values for both C and gamma

parameters resulting from the iterative grid search process. The optimum

parameter values are displayed, and a new set of predictions are made

using the optimized parameters.

from sklearn.metrics import classification_report

print(classification_report(y_test, grid_predictions))

The accuracy of the predictions is confirmed using the

classification_report module imported from sklearn’s metrics library.

Recall that I have used this module before in other demonstrations.

The script is run by entering this command:

python svmDemo2.py

Figure 3-22 shows the results of running the script.

Chapter 3 Exploration of ML data models: Part 2

176

The first thing you likely noticed in this figure is the scroll of interim

results appearing from the top. This scroll is just a small portion of the 75

steps that were done to compute the final optimized parameters. The last

line in the scroll shows that the final values are

kernel = rbf, gamma = 0.0001 and C = 1000.

Obviously, the kernel specification did not change during the

iterations, but the other too certainty did. I did review this scroll

and determined that the gamma value seemed to influence the final

accuracy the most. It wound, being a tiny value, which meant that the

radius of influence of samples selected by the model of support vectors

was substantial, that is, maximum data points were included in the

determination of the support vectors.

The weighted average accuracy displayed on the last line of the

results is 0.95 or 95% accuracy. This is a great result and an enormous

improvement over the awful 38% result from part 1 of the demonstration.

Figure 3-22.  svmDemo2 results

Chapter 3 Exploration of ML data models: Part 2

177

This result just proves that it is extremely important to use only an

appropriate data model that “fits” the original dataset and that any tuning

parameters must be optimally adjusted.

�Learning vector quantization
I will begin this discussion by first crediting Dr. Jason Brownlee for his fine

August 2018 blog titled “How to Implement Learning Vector Quantization

from Scratch with Python” from which much of the code and key concepts

in this section are based. I have used Jason’s blogs in previous discussions,

and I find his tutorials very clear and illuminating. I highly recommend

you check out his blogs, articles, and e-books.

The learning vector quantization (LVQ) is similar to the k-NN

algorithm where predictions are made by finding the closest match to

an existing data pattern. The significant difference between the two is

that k-NN uses the actual training patterns, while LVQ creates a library of

patterns from the training data.

The library of patterns is called a codebook of vectors, and each

pattern in the library is called a codebook. Codebook vectors are initialized

to randomly selected values from the training dataset. Then, over a

number of epochs or training cycles, they are modified to optimally

summarize the training data through the use of a learning algorithm.

This learning algorithm processes one training record at a time by finding

the optimum match among the codebook vectors. The training record is

modified so that it is “closer” to the codebook vector if they are both from

the same class or moved “further away” if they are from different classes.

I will shortly explain the distance metaphor to help clarify this concept of

moving closer or further away from data items.

Predictions only commence after all the codebook vectors have been

processed. Predictions are made using the k-NN algorithm with k = 1.

Chapter 3 Exploration of ML data models: Part 2

178

�LVQ basic concepts
The first item that needs to be discussed is the dataset that will be used in

all the following sections, including the demonstration. The dataset is a

collection of numerical records resulting from radar “soundings” of Earth’s

atmosphere. Each record describes properties of the return radar signal,

which might include significant measurements of the ionosphere. The

purpose of the data model is to predict whether or not a particular record

contains any significant ionosphere measurements.

There are 351 records in the dataset with each record containing 34

numerical data points. These points are grouped into 17 pairs for every

radar return signal with numerical value range of 0 to 1 for each value. The

target class has attribute values of “g” for good or “b” for bad.

The dataset is named inosphere.csv, and it can be downloaded from

https://archive.ics.uci.edu/ml/datasets/Ionosphere

�Euclidean distance

The concept to be discussed is that of Euclidean distance. I realized I have

used this term in previous discussions, and it sometimes means different

things depending on the context. In this case, the ionosphere dataset is

composed of rows of numbers. The Euclidean distance is defined as the

square root of the sum of the squared differences between the two vectors

where the vectors are constituted from the row data. The equation for the

distance measurement is

distance x x
i

N

i i= -()å 1 2

2

, ,

where

x1 = first row of data

x2 = second row of data

Chapter 3 Exploration of ML data models: Part 2

179

i = column index

N = number of columns (attributes)

The smaller the Euclidean distance, the more similar the two data

records are. Conversely, the larger the distance, the more dissimilar the

records are. If the distance is 0, then the records are identical.

�Best matching unit

The best matching unit (BMU) is the codebook vector that is most

similar to a new data record. Locating the BMU for a new record requires

that the Euclidean distance be computed between the new record and

every codebook vector. That is done using the distance measurement

discussed previously. Once that is done, all the distances are sorted and

the codebook vector associated with the least distance value is the most

similar to the new record.

The preceding described process is the same way predictions are done

with LVQ. The KNN algorithm with k = 1 is used to locate the most similar

codebook vector to the unknown record. The associated class value of “g”

or “b” is returned.

�Training codebook vectors

The first step in training the codebook vectors is to initialize all the

vectors with patterns constructed from random features found in the

training dataset. Once initialized, the vectors must be modified to

optimally summarize the training dataset. These modifications happen

in an iterative fashion. At the top level, the process is repeated for a fixed

number of epochs using the complete training set. Within each epoch,

each training pattern is used only once to update the cookbook vectors.

A BMU is detected for every training pattern and updated. Any difference

between the training pattern and the BMU is computed and recorded as

an error. Class values for the BMU and training pattern are then compared,

Chapter 3 Exploration of ML data models: Part 2

180

and if found, matching will cause the recorded error to be added to the

BMU, which brings it “closer” to the training pattern. Conversely, if the

class values do not match, then the error is subtracted, which causes the

BMU to be “pushed” further from the training pattern.

The learning rate (LR) parameter controls how much the BMU is

adjusted. This parameter is a weighting factor that affects the change

amount applied to all BMUs. For example, if the LR is 0.20 or 20%, this

would mean only 20% of the detected error would be applied to the

BMU. In addition, the LR itself is adjusted so that it has maximum effect

during the first epoch and a lesser effect in subsequent epochs. This

diminishing effect is called linear decay learning rate schedule and is also

widely used for artificial neural networks.

�LVQ demonstration
Before starting my customary demonstration, I thought it would be

appropriate to introduce the Zero Rule algorithm. It is usually impossible

to determine which data model will work best for your particular problem

domain before actually trying various models. Consequentially, it is

important to create a performance baseline when starting the work on

your problem. A baseline performance provides a reference, which can

be used as a comparison with any data models applied to the problem.

Without a baseline, it is impossible to realize how well a particular model

has achieved. Baselines for both classification and regression are created

by the Zero Rule algorithm, which is also known as ZeroR or 0-R.

Categorical values are predicted in a classification prediction model.

The Zero Rule algorithm predicts the class value that has the most

observations in the training dataset. I will demonstrate how to apply

the Zero Rule algorithm to the ionosphere dataset using the Waikato

Environment for Knowledge Analysis (Weka) suite of machine learning

Chapter 3 Exploration of ML data models: Part 2

181

software. The main user interface is called the Explorer. Weka is a Java-

based application that can be run as a jar file on the RasPi. Weka may be

downloaded from

https://sourceforge.net/projects/weka/

In order to use the ionosphere dataset, it must be in an arff format. The

dataset titled ionosphere.arff can be downloaded from this page:

https://github.com/renatopp/arff-datasets/find/master

Before running the application, ensure that the ionosphere.arff is in the

same directory as the Weka jar file. The application is then started by entering

this command. Note that Weka is also available to download with the exe

extension for Windows so you can use the installer for installing Weka.

java -jar weka.jar

The following seven steps should be followed to obtain the baseline

results:

	 1.	 Start the Weka GUI Chooser.

	 2.	 Click the “Explorer” button to open the Weka

Explorer interface.

	 3.	 Load the ionosphere dataset ionosphere.arff file.

	 4.	 Click the “Classify” tab to open the classification tab.

	 5.	 Select the ZeroR algorithm (it should be selected by

default).

	 6.	 Select the “Cross-validation” Test options (it should

be selected by default).

	 7.	 Click the “Start” button to evaluate the algorithm on

the dataset.

Chapter 3 Exploration of ML data models: Part 2

182

The ZeroR algorithm predicts the “g” value for all instances as it is

the majority class, and achieves an accuracy of 64.1%. For any machine

learning algorithm to demonstrate that it has a better performance on this

problem, it must achieve an accuracy better than this value.

The following script implements all the concepts presented in the

basic concepts section. It is named lvqDemo.py and is available from

the book’s companion web site. I also present additional explanatory

comments after the listing. Remember to make the dataset available in csv

extension for being compatible with the code.

Figure 3-23.  Weka Explorer results

The Weka Explorer results are shown in Figure 3-23.

Chapter 3 Exploration of ML data models: Part 2

183

LVQ for the ionosphere dataset

from random import seed

from random import randrange

from csv import reader

from math import sqrt

Load a CSV file

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

Convert string column to float

def str_column_to_float(dataset, column):

 for row in dataset:

 row[column] = float(row[column].strip())

Convert string column to integer

def str_column_to_int(dataset, column):

 class_values = [row[column] for row in dataset]

 unique = set(class_values)

 lookup = dict()

 for i, value in enumerate(unique):

 lookup[value] = i

 for row in dataset:

 row[column] = lookup[row[column]]

 return lookup

Chapter 3 Exploration of ML data models: Part 2

184

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index = randrange(len(dataset_copy))

 fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Calculate accuracy percentage

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

 folds = cross_validation_split(dataset, n_folds)

 scores = list()

 for fold in folds:

 train_set = list(folds)

 train_set.remove(fold)

 train_set = sum(train_set, [])

 test_set = list()

 for row in fold:

Chapter 3 Exploration of ML data models: Part 2

185

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 predicted = algorithm(train_set, test_set, *args)

 actual = [row[-1] for row in fold]

 accuracy = accuracy_metric(actual, predicted)

 scores.append(accuracy)

 return scores

calculate the Euclidean distance between two vectors

def euclidean_distance(row1, row2):

 distance = 0.0

 for i in range(len(row1)-1):

 distance += (row1[i] - row2[i])**2

 return sqrt(distance)

Locate the best matching unit

def get_best_matching_unit(codebooks, test_row):

 distances = list()

 for codebook in codebooks:

 dist = euclidean_distance(codebook, test_row)

 distances.append((codebook, dist))

 distances.sort(key=lambda tup: tup[1])

 return distances[0][0]

Make a prediction with codebook vectors

def predict(codebooks, test_row):

 bmu = get_best_matching_unit(codebooks, test_row)

 return bmu[-1]

Create a random codebook vector

def random_codebook(train):

 n_records = len(train)

 n_features = len(train[0])

Chapter 3 Exploration of ML data models: Part 2

186

 �codebook = [train[randrange(n_records)][i] for i in

range(n_features)]

 return codebook

Train a set of codebook vectors

def train_codebooks(train, n_codebooks, lrate, epochs):

 �codebooks = [random_codebook(train) for i in range

(n_codebooks)]

 for epoch in range(epochs):

 rate = lrate * (1.0-(epoch/float(epochs)))

 for row in train:

 bmu = get_best_matching_unit(codebooks, row)

 for i in range(len(row)-1):

 error = row[i] - bmu[i]

 if bmu[-1] == row[-1]:

 bmu[i] += rate * error

 else:

 bmu[i] -= rate * error

 return codebooks

LVQ Algorithm

def learning_vector_quantization(train, test, n_codebooks,

lrate, epochs):

 �codebooks = train_codebooks(train, n_codebooks, lrate,

epochs)

 predictions = list()

 for row in test:

 output = predict(codebooks, row)

 predictions.append(output)

 return(predictions)

Test LVQ on ionosphere dataset

seed(1)

Chapter 3 Exploration of ML data models: Part 2

187

load and prepare data

filename = 'ionosphere.csv'

dataset = load_csv(filename)

for i in range(len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

evaluate algorithm

n_folds = 5

learn_rate = 0.3

n_epochs = 50

n_codebooks = 20

scores = evaluate_algorithm(dataset, learning_vector_

quantization, n_folds, n_codebooks, learn_rate, n_epochs)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The following are additional comments regarding the preceding code

for those portions not readily understandable. In addition, I will only show

three or less lines of code (except for the main portion) prior to discussing

what is happening within the code portion.

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

.

.

 return dataset_split

This method implements a n-fold cross-validation process that I have

already discussed in Chapter 1. Please refer back to that chapter to refresh

yourself on this process.

Chapter 3 Exploration of ML data models: Part 2

188

Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

.

.

 return scores

applies the LVQ algorithm to the n-fold cross-validated dataset. This

method is designed to use other algorithms if so desired.

Locate the best matching unit

def get_best_matching_unit(codebooks, test_row):

.

.

 return distances[0][0]

finds the BMU for the test_row argument. This method implements the

process described in the BMU section.

Train a set of codebook vectors

def train_codebooks(train, n_codebooks, lrate, epochs):

.

.

 return codebooks

trains the codebook vectors. This method implements the process

described in the training codebook vectors section.

LVQ Algorithm

def learning_vector_quantization(train, test, n_codebooks,

lrate, epochs):

.

.

 return(predictions)

Chapter 3 Exploration of ML data models: Part 2

189

This is the actual LVQ algorithm. It is not much in the sense it just

calls other methods that implement the basic LVQ concepts. The dataset

is required to be preprocessed before this method is called as are the

codebook vectors.

Test LVQ on ionosphere dataset

seed(1)

load and prepare data

filename = 'ionosphere.csv'

dataset = load_csv(filename)

.

.

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

This is the main code portion where all the steps required to carry out

an entire LVQ data model are processed. All the code that preceded this

portion were function definitions that implement various steps in the LVQ

process. The main body of code calls the methods in the order required to

fully process the LVQ algorithm and display the final results.

The script is run by entering this command:

python lvqDemo.py

Figure 3-24 shows the results of running this script.

Figure 3-24.  lvqDemo results

Chapter 3 Exploration of ML data models: Part 2

190

The figure shows that the mean accuracy for this LVQ data model is

87.1%, which is a substantial improvement beyond the Zero Rule estimate

of 64.1%. This result confirms that the LVQ model is a good one to use with

the ionosphere dataset and can make reasonably accurate predictions.

�Bagging and random forests
I will begin this discussion by again crediting Dr. Jason Brownlee for a

series of great blogs regarding bagging and random forests. These blogs are

April 2016 “Bagging and Random Forest Ensemble Algorithms for Machine

Learning,” November 2016 “How to Implement Bagging from Scratch with

Python,” and November 2016 “How to Implement Random Forest from

Scratch in Python.” Much of the code and key concepts in this section are

based on the aforementioned blogs; however, I do add my own comments

and detailed explanations in those areas that warrant it, which I believe

should be helpful for inexperienced readers.

�Introduction to bagging and random forest
Random forest is a popular algorithm and is a type of ensemble ML

algorithm called bootstrap aggregation or bagging for short. I will first

discuss what is meant by the word bootstrap. It is a statistical process

designed to estimate some measurement or metric from a dataset.

A simple example should help clarify this concept.

If the dataset has 100 sample values for some variable x, then the mean

is easy to calculate as

mean x
x() = å

100

Chapter 3 Exploration of ML data models: Part 2

191

However, there is likely to be some estimation error in this calculation,

which may be improved using the bootstrap process as listed as follows:

	 1.	 Create many (e.g., 1000) random subsamples of the

dataset with replacement (meaning the same value

can be used multiple times).

	 2.	 Calculate the mean of each new subsample.

	 3.	 Calculate the average for all of the new means and

use that as the new estimated mean for the dataset.

This process may also be extended to estimate other metrics such as

standard deviation.

�Bootstrap aggregation (bagging)

Bagging is an ensemble process that combines predictions collected from

multiple ML algorithms into one more accurate prediction than would

be possible from any single ML prediction. It is basically a synergistic

prediction approach where a group of algorithms is more powerful than

any single member of the group. Using bagging reduces variance for

those algorithms subject to that such as classification and regression trees

(CART). For example, decision trees are sensitive to the selected data used

to create a tree. A particular tree trained on one data sub-set could easily

provide different predicted results if it was trained on another data sub-set

other than the original one. The following generic bagging process could

be used to improve CART prediction accuracy:

	 1.	 Create many (e.g., 100) random subsamples of the

dataset with replacement.

	 2.	 Train a CART model on each new sample.

	 3.	 Given a new dataset, calculate the average

prediction from each model.

Chapter 3 Exploration of ML data models: Part 2

192

Decision trees used with a bagging process would necessarily be

deep, meaning that only a few training samples would be attached at each

leaf node. Such a tree would have high variance but also low bias. Please

refer to my previous discussion on decision trees in Chapter 2 to refresh

yourself on these terms. The key point to be mindful of is that bagging is

only concerned with the number of samples and, in this case, the number

of trees. This process is also quite tolerant of overfitting, and a large

number of models can be run without introducing too much error, if at

all. The only issues would be time to prepare the models and perform the

computations.

�Random forest

The random forest was developed to improve the performance of bagging

with decision trees. One big issue with decision tree produced by CART

is that they are greedy in the sense they choose the variable on which to

split using a greedy algorithm that tries to minimize error. This makes total

sense for the CART algorithm, but is a problem for the bagging process.

Decision trees may often contain similar data structures, which can lead

to high correlation in the subsequent predictions. Bagging performs better

if predictions are made from sub-sets (sub-trees), which are relatively

uncorrelated. The random forest alters the way sub-sets are learned in

effort to improve the prediction accuracy. Making all the sub-sets less

correlated is necessary to achieve this goal.

The random forest modification to the CART algorithm is fairly simple.

In the unmodified CART algorithm, the learning portion is permitted

to test all variables (features) in order to select the optimum split point.

Random forest changes this procedure so that the learning portion is now

limited to a random sample of variables to test. The number of variables

that can be tested at each split point is also set as a parameter m to the

learning algorithm. For random forest classification problem, setting m to

the square root of p is recommended, where p is the number of features in

the dataset.

Chapter 3 Exploration of ML data models: Part 2

193

�Performance estimation and variable importance

When bootstrap samples are made, there will be data samples left out

of the sub-set. These samples are known as out-of-bag (OOB) samples.

An accuracy estimation for the bagged models can be made if the OOB

samples are averaged. This estimated performance is often called the OOB

estimate of performance. Such performance measures are a reliable test

error estimate and correlate well with cross-validation estimates.

It can be calculated how much the error function drops for each

additional variable at each split point as the bagged decision trees are

constructed. In regression problems, this could be the drop in sum

squared error, and for classification problems, this could be the Gini score.

These error drops may be averaged across all decision trees and

output to provide an estimate of the importance of each input variable.

The greater the error drop when the variable was selected, the greater the

importance. These outputs can help identify input variable sub-sets that

may be most relevant to the problem and likely candidates for removal

(least relevant) from the dataset.

�Bootstrap resampling demonstration
This demonstration will show how the bootstrap process functions.

A factitious dataset of random numbers is first created from which

various sized sub-sets are derived. Means from each of these sub-sets are

then calculated, and the average of the sub-set means is then compared

to the original dataset overall mean value.

The complete script for this test is named bootstrapDemo.py and

is available from this book’s companion web site. The script code is

straightforward and requires no additional comments other than what has

already been included.

Chapter 3 Exploration of ML data models: Part 2

194

Import required libraries

from random import seed

from random import random

from random import randrange

Create a random sub-set from the dataset with replacement.

def subsample(dataset, ratio=1.0):

 sample = list()

 n_sample = round(len(dataset) * ratio)

 while len(sample) < n_sample:

 index = randrange(len(dataset))

 sample.append(dataset[index])

 return sample

 # Calculate the mean of a list of numbers.

def mean(numbers):

 return sum(numbers) / float(len(numbers))

seed(1)

Calculate the true mean.

The original dataset has 20 rows with a single random

number 0 to 9 in each row.

dataset = [[randrange(10)] for i in range(20)]

print('True Mean: %.3f' % mean([row[0] for row in dataset]))

Calculate and display the estimated means from the different

sized sub-sets.

ratio = 0.10

for size in [1, 10, 100]:

 sample_means = list()

 for i in range(size):

 sample = subsample(dataset, ratio)

 sample_mean = mean([row[0] for row in sample])

Chapter 3 Exploration of ML data models: Part 2

195

 sample_means.append(sample_mean)

 print('Samples=%d, Estimated Mean: %.3f' % (size,

mean(sample_means)))

The script is run by entering the following command:

python bootstrapDemo.py

Figure 3-25 shows the result from running this script.

Figure 3-25.  bootstrapDemo results

You should be able to see that the estimated mean values are starting

to converge to the true mean value as the number of samples in each sub-

set increases.

�Bagging demonstration
This demonstration has the decision tree data model within the script.

Bootstrap data aggregation or bagging is being applied to the model in an

effort to improve the overall prediction accuracy.

The dataset being used is titled sonar-data.csv and is a collection of

numerical records resulting from processed sonar “soundings” from within

an ocean environment. Each record describes properties of the returns from

a sonar system’s chirp signals. There are 60 input variables or features, which

are measurements of the return signal strength at different transmitted

Chapter 3 Exploration of ML data models: Part 2

196

angles. This is a binary classification problem because the model is designed

to differentiate rocks (R) from mines (M). There are 208 records in this

dataset. All of the variables are continuous with a nominal range of 0 to 1.

The output variable (class) is either a “M” for mine or a “R” for rock. These

variables are converted into integers 1 or 0, respectively, by the script.

The dataset is named sonar.all-data.csv, and it can be downloaded

from https://archive.ics.uci.edu/ml/datasets/Connectionist+

Bench+(Sonar,+Mines+vs.+Rocks). Make sure to change the extension of

the downloaded file to csv.

I have named the script baggingDemo.py, and it is available from the

book’s companion web site. In addition, for a change of pace, I have elected

to not include any further explanatory comments because the script is

already over 200 lines in size and many of the code segments you should

already be familiar with from the previous discussions in this chapter as

well as from the extensive Chapter 2 discussion on decision trees.

Bagging Algorithm on the Sonar dataset

Import required libraries

from random import seed

from random import randrange

from csv import reader

Load a CSV file

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

Chapter 3 Exploration of ML data models: Part 2

197

Convert string column to float

def str_column_to_float(dataset, column):

 for row in dataset:

 row[column] = float(row[column].strip())

Convert string column to integer

def str_column_to_int(dataset, column):

 class_values = [row[column] for row in dataset]

 unique = set(class_values)

 lookup = dict()

 for i, value in enumerate(unique):

 lookup[value] = i

 for row in dataset:

 row[column] = lookup[row[column]]

 return lookup

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index = randrange(len(dataset_copy))

 fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Calculate accuracy percentage

def accuracy_metric(actual, predicted):

 correct = 0

Chapter 3 Exploration of ML data models: Part 2

198

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

 folds = cross_validation_split(dataset, n_folds)

 scores = list()

 for fold in folds:

 train_set = list(folds)

 train_set.remove(fold)

 train_set = sum(train_set, [])

 test_set = list()

 for row in fold:

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 predicted = algorithm(train_set, test_set, *args)

 actual = [row[-1] for row in fold]

 accuracy = accuracy_metric(actual, predicted)

 scores.append(accuracy)

 return scores

Split a dataset based on an attribute and an attribute value

def test_split(index, value, dataset):

 left, right = list(), list()

 for row in dataset:

 if row[index] < value:

 left.append(row)

 else:

 right.append(row)

 return left, right

Chapter 3 Exploration of ML data models: Part 2

199

Calculate the Gini index for a split dataset

def gini_index(groups, classes):

 # count all samples at split point

 n_instances = float(sum([len(group) for group in groups]))

 # sum weighted Gini index for each group

 gini = 0.0

 for group in groups:

 size = float(len(group))

 # avoid divide by zero

 if size == 0:

 continue

 score = 0.0

 # score the group based on the score for each class

 for class_val in classes:

 �p = [row[-1] for row in group].count

(class_val) / size

 score += p * p

 # weight the group score by its relative size

 gini += (1.0 - score) * (size / n_instances)

 return gini

Select the best split point for a dataset

def get_split(dataset):

 class_values = list(set(row[-1] for row in dataset))

 b_index, b_value, b_score, b_groups = 999, 999, 999, None

 for index in range(len(dataset[0])-1):

 for row in dataset:

 # for i in range(len(dataset)):

 # row = dataset[randrange(len(dataset))]

 �groups = test_split(index, row[index],

dataset)

 gini = gini_index(groups, class_values)

Chapter 3 Exploration of ML data models: Part 2

200

 if gini < b_score:

 �b_index, b_value, b_score, b_groups =

index, row[index], gini, groups

 �return {'index':b_index, 'value':b_value, 'groups':b_

groups}

Create a terminal node value

def to_terminal(group):

 outcomes = [row[-1] for row in group]

 return max(set(outcomes), key=outcomes.count)

Create child splits for a node or make terminal

def split(node, max_depth, min_size, depth):

 left, right = node['groups']

 del(node['groups'])

 # check for a no split

 if not left or not right:

 �node['left'] = node['right'] = to_terminal(left +

right)

 return

 # check for max depth

 if depth >= max_depth:

 �node['left'], node['right'] = to_terminal(left),

to_terminal(right)

 return

 # process left child

 if len(left) <= min_size:

 node['left'] = to_terminal(left)

 else:

 node['left'] = get_split(left)

 split(node['left'], max_depth, min_size, depth+1)

 # process right child

Chapter 3 Exploration of ML data models: Part 2

201

 if len(right) <= min_size:

 node['right'] = to_terminal(right)

 else:

 node['right'] = get_split(right)

 split(node['right'], max_depth, min_size, depth+1)

Build a decision tree

def build_tree(train, max_depth, min_size):

 root = get_split(train)

 split(root, max_depth, min_size, 1)

 return root

Make a prediction with a decision tree

def predict(node, row):

 if row[node['index']] < node['value']:

 if isinstance(node['left'], dict):

 return predict(node['left'], row)

 else:

 return node['left']

 else:

 if isinstance(node['right'], dict):

 return predict(node['right'], row)

 else:

 return node['right']

Create a random subsample from the dataset with replacement

def subsample(dataset, ratio):

 sample = list()

 n_sample = round(len(dataset) * ratio)

 while len(sample) < n_sample:

 index = randrange(len(dataset))

 sample.append(dataset[index])

 return sample

Chapter 3 Exploration of ML data models: Part 2

202

Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

 predictions = [predict(tree, row) for tree in trees]

 return max(set(predictions), key=predictions.count)

Bootstrap Aggregation Algorithm

def bagging(train, test, max_depth, min_size, sample_size, n_

trees):

 trees = list()

 for i in range(n_trees):

 sample = subsample(train, sample_size)

 tree = build_tree(sample, max_depth, min_size)

 trees.append(tree)

 predictions = [bagging_predict(trees, row) for row in test]

 return(predictions)

Test bagging on the sonar dataset

seed(1)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

evaluate algorithm

n_folds = 5

max_depth = 6

min_size = 2

sample_size = 0.50

for n_trees in [1, 5, 10, 50]:

Chapter 3 Exploration of ML data models: Part 2

203

 �scores = evaluate_algorithm(dataset, bagging, n_folds,

max_depth, min_size, sample_size, n_trees)

 print('Trees: %d' % n_trees)

 print('Scores: %s' % scores)

 print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The script is run by entering the following command:

python baggingDemo.py

Figure 3-26 shows the result from running this script.

Figure 3-26.  baggingDemo results

The interim accuracy score for the fivefold datasets is displayed along

with the overall aggregate accuracy value. You can see that the overall

accuracy value slowly increased from 71.7% with 1 tree to 75.6% with 50

trees. Not an outstanding performance, but nonetheless, a slight overall

improvement was achieved using the bagging approach.

One of the difficulties in using the bagging approach is that even

though deep trees are constructed, the bagged trees are similar. Thus, any

predictions made using these trees will also be similar. Any high variance

that was being seeked among the trees based on training on different

samples is also diminished. This all due to the greedy algorithm used in

the decision tree split algorithm that I have previously discussed. This

script tried to increase the variance by constraining the sample size used

Chapter 3 Exploration of ML data models: Part 2

204

in the training process, but this met with limited success. The real answer

to increasing the variance in the sub-sets is to use the random forest

algorithm, which is the subject of the next demonstration.

�Random forest demonstration
Decision trees often have high variance which makes any prediction

results quite dependent on the training data. Building multiple models

from samples of the training data in the technique called bagging can help

reduce this variance, but the trees still remain highly correlated.

Random forest is a bagging extension that in addition to building

trees based on multiple samples of your training data also constrains

the features that can be used to build the trees, thus forcing trees to be

different. This modification in building a decision tree usually yields a

performance benefit.

This demonstration uses the same dataset used in the previous

bagging demonstration. In fact, the script is nearly identical to the previous

script except for the way the decision splits are calculated. The random

forest modification causes a sample of the input attributes to be searched

instead of searching for the attribute that minimizes the total cost function.

This attribute sample can be chosen randomly and without replacement,

meaning that each input attribute needs only to be considered once when

searching for the split point that minimizes cost.

The Gini index is used to evaluate the costs in a potential split. I refer to

the Gini index discussion in the decision tree section to refresh yourself on

this function.

I have named the script randonForestDemo.py, and it is available from

the book’s companion web site. As with the preceding script, I have elected

to not include any further explanatory comments because this script is

already over 200 lines in size and many of the code segments are identical

to the baggingDemo script.

Chapter 3 Exploration of ML data models: Part 2

205

Random Forest Algorithm on Sonar Dataset

Import required libraries

from random import seed

from random import randrange

from csv import reader

from math import sqrt

Load a CSV file

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

Convert string column to float

def str_column_to_float(dataset, column):

 for row in dataset:

 row[column] = float(row[column].strip())

Convert string column to integer

def str_column_to_int(dataset, column):

 class_values = [row[column] for row in dataset]

 unique = set(class_values)

 lookup = dict()

 for i, value in enumerate(unique):

 lookup[value] = i

 for row in dataset:

 row[column] = lookup[row[column]]

 return lookup

Chapter 3 Exploration of ML data models: Part 2

206

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index = randrange(len(dataset_copy))

 fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Calculate accuracy percentage

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

 folds = cross_validation_split(dataset, n_folds)

 scores = list()

 for fold in folds:

 train_set = list(folds)

 train_set.remove(fold)

 train_set = sum(train_set, [])

 test_set = list()

 for row in fold:

Chapter 3 Exploration of ML data models: Part 2

207

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 predicted = algorithm(train_set, test_set, *args)

 actual = [row[-1] for row in fold]

 accuracy = accuracy_metric(actual, predicted)

 scores.append(accuracy)

 return scores

Split a dataset based on an attribute and an attribute value

def test_split(index, value, dataset):

 left, right = list(), list()

 for row in dataset:

 if row[index] < value:

 left.append(row)

 else:

 right.append(row)

 return left, right

Calculate the Gini index for a split dataset

def gini_index(groups, classes):

 # count all samples at split point

 n_instances = float(sum([len(group) for group in groups]))

 # sum weighted Gini index for each group

 gini = 0.0

 for group in groups:

 size = float(len(group))

 # avoid divide by zero

 if size == 0:

 continue

 score = 0.0

Chapter 3 Exploration of ML data models: Part 2

208

 # score the group based on the score for each class

 for class_val in classes:

 �p = [row[-1] for row in group].count(class_

val) / size

 score += p * p

 # weight the group score by its relative size

 gini += (1.0 - score) * (size / n_instances)

 return gini

Select the best split point for a dataset

def get_split(dataset, n_features):

 class_values = list(set(row[-1] for row in dataset))

 b_index, b_value, b_score, b_groups = 999, 999, 999, None

 features = list()

 while len(features) < n_features:

 index = randrange(len(dataset[0])-1)

 if index not in features:

 features.append(index)

 for index in features:

 for row in dataset:

 �groups = test_split(index, row[index],

dataset)

 gini = gini_index(groups, class_values)

 if gini < b_score:

 �b_index, b_value, b_score, b_groups =

index, row[index], gini, groups

 �return {'index':b_index, 'value':b_value, 'groups':

b_groups}

Create a terminal node value

def to_terminal(group):

Chapter 3 Exploration of ML data models: Part 2

209

 outcomes = [row[-1] for row in group]

 return max(set(outcomes), key=outcomes.count)

Create child splits for a node or make terminal

def split(node, max_depth, min_size, n_features, depth):

 left, right = node['groups']

 del(node['groups'])

 # check for a no split

 if not left or not right:

 �node['left'] = node['right'] = to_terminal(left +

right)

 return

 # check for max depth

 if depth >= max_depth:

 �node['left'], node['right'] = to_terminal(left),

to_terminal(right)

 return

 # process left child

 if len(left) <= min_size:

 node['left'] = to_terminal(left)

 else:

 node['left'] = get_split(left, n_features)

 �split(node['left'], max_depth, min_size,

n_features, depth+1)

 # process right child

 if len(right) <= min_size:

 node['right'] = to_terminal(right)

 else:

 node['right'] = get_split(right, n_features)

 �split(node['right'], max_depth, min_size,

n_features, depth+1)

Chapter 3 Exploration of ML data models: Part 2

210

Build a decision tree

def build_tree(train, max_depth, min_size, n_features):

 root = get_split(train, n_features)

 split(root, max_depth, min_size, n_features, 1)

 return root

Make a prediction with a decision tree

def predict(node, row):

 if row[node['index']] < node['value']:

 if isinstance(node['left'], dict):

 return predict(node['left'], row)

 else:

 return node['left']

 else:

 if isinstance(node['right'], dict):

 return predict(node['right'], row)

 else:

 return node['right']

Create a random subsample from the dataset with replacement

def subsample(dataset, ratio):

 sample = list()

 n_sample = round(len(dataset) * ratio)

 while len(sample) < n_sample:

 index = randrange(len(dataset))

 sample.append(dataset[index])

 return sample

Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

 predictions = [predict(tree, row) for tree in trees]

 return max(set(predictions), key=predictions.count)

Chapter 3 Exploration of ML data models: Part 2

211

Random Forest Algorithm

def random_forest(train, test, max_depth, min_size, sample_size,

n_trees, n_features):

 trees = list()

 for i in range(n_trees):

 sample = subsample(train, sample_size)

 �tree = build_tree(sample, max_depth, min_size,

n_features)

 trees.append(tree)

 predictions = [bagging_predict(trees, row) for row in test]

 return(predictions)

Test the random forest algorithm

seed(2)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

evaluate algorithm

n_folds = 5

max_depth = 10

min_size = 1

sample_size = 1.0

n_features = int(sqrt(len(dataset[0])-1))

for n_trees in [1, 5, 10]:

 �scores = evaluate_algorithm(dataset, random_forest,

n_folds, max_depth, min_size, sample_size, n_trees,

n_features)

Chapter 3 Exploration of ML data models: Part 2

212

 print('Trees: %d' % n_trees)

 print('Scores: %s' % scores)

 �print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The script is run by entering the following command:

python randomForestDemo.py

Figure 3-27 shows the result from running this script.

Figure 3-27.  randomForestDemo results

A k value of 5 was used for cross-validation, giving each fold 208/5

= 41.6 or just over 40 records to be evaluated upon each iteration. Deep

trees were constructed with a maximum depth of 10 and a minimum

number of training rows at each node of 1. Samples of the training

dataset were created with the same size as the original dataset, which is

a default expectation for the random forest algorithm. The number of

features considered at each split point was set to sqrt(num_features) or

sqrt(60)=7.74 rounded to 7 features.

Tree suites of sizes 1, 5, and 10 were evaluated for comparison,

showing the increasing accuracy as additional trees are added. The mean

accuracy scores increase from 62.4% to 81.0% as the tree suite increases.

The final score is over 5% improved over the bagging demonstration,

which shows the random forest modification has worked as expected.

Chapter 3 Exploration of ML data models: Part 2

213© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_4

CHAPTER 4

Preparation for deep
learning
This chapter will provide you with a sufficient background for the deep

learning (DL) discussions that commence with the following chapters.

It is important to understand some basic DL terms and concepts before

trying to comprehend any actual DL algorithms. I have tried to minimize

the math, but there are some unavoidable equations just because DL is

essentially all math.

�DL basics
The obvious start for any DL discussion must be to answer the question,

“What is DL?” Like many relatively new technology areas, if you ask a

dozen experts to define something, you will likely get a dozen different yet

oddly similar responses. It is no different with DL. I have researched many

different DL definitions and have created the following one that seems to

hold the common themes among many definitions:

Deep Learning is a subfield of machine learning concerned
with algorithms called artificial neural networks, which are
inspired by the structure and function of the human brain.
Learning from datasets can be supervised, semi-supervised or
unsupervised.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning

214

I will introduce and discuss an artificial neural network (ANN) in the

next chapter, but first I need to discuss these basics.

�Machine learning from data patterns
Machine learning (ML) of which DL is a significant sub-set is generally

described as the study of algorithms and data models that can perform

computer-implemented tasks without being explicitly programmed to

accomplish those tasks. Instead, ML relies on detecting data patterns and

generating inferences regarding the data. There are four principal tasks

often ascribed to ML. These tasks are

•	 Detection

•	 Classification

•	 Recognition

•	 Prediction

Most, if not all, of these tasks can be applied to a wide variety of

datasets including static Images, numerical data, and real-time data

streams. The last dataset mentioned includes video, audio, and even

radio frequency (RF) streams. I am also absolutely positive there are other

applications for ML that I have not mentioned.

I will start my basics discussion by focusing on the classification task,

which I have already discussed in previous chapters. Recall that in Chapter 1

k-NN data model discussion I stated the following:

I described k-NN as non-parametric, which means that the
model does not make any assumptions regarding the underly-
ing data distribution. In other words, the model structure is
determined from the data. Given this fact, k-NN probably
should be one of your first choices for a classification study
when there is little or no prior knowledge about how the data
is distributed.

Chapter 4 Preparation for deep learning

215

You may have been a bit confused by my use of the term non-

parametric in describing the k-NN data model. Hopefully, it will be helpful

to describe what a parameterized classification algorithm is to help clarify

this term. The term parameterization is defined as follows:

Parametrization is a mathematical process consisting of
expressing the state of a system, process or model as a function
of some independent quantities called parameters.

In a ML application, the key parameters used to describe the state of a

system are

•	 data

•	 scoring function

•	 loss function

•	 weights and biases

Yes, I realize the last list item has two components, but they are closely

intertwined and usually considered as constituting a single parameter. I

will discuss each parameter separately.

data – This is an obvious element in the process from which all ML must

be based. Data has two faces, the first being the value and the second being

the class label. Values can vary widely from raw pixel values in an Image to

home prices in a housing dataset. Data is usually represented as a matrix in

a ML domain. Such a matrix is often called a design matrix named X where

x i element in the design matrixi
th=

y i class labeli
th=

scoring function – A function which maps input data to a predicted class

label. This may be represented in a generic equation form

f input data predicted class label () =

Chapter 4 Preparation for deep learning

https://en.m.wikipedia.org/wiki/Mathematical
https://en.m.wikipedia.org/wiki/System
https://en.m.wikipedia.org/wiki/Process_(science)
https://en.m.wikipedia.org/wiki/Function_(mathematics)
https://en.m.wikipedia.org/wiki/Parameter

216

In reality, this equation simply produces a value. The class label

associated with the maximum value would be the prediction for this

classifier.

loss function – A function that quantifies how well predicted class

labels agree with the actual class labels recorded in the dataset. The actual

class labels are also known as ground truth labels in ML terminology. Low

loss values are desired because that means the predictions closely agree

with ground truth labels. There will be an extensive discussion later in this

chapter on how to compute the loss function for minimum loss values.

weights and biases – The weight matrix W and the bias vector b are

iteratively computed in order to minimize the loss function with respect to

the scoring function.

�Linear classifier

In this section I discuss what a linear classifier is and how it functions. The

reason I have included this discussion is to present you with a framework

through which you can better understand how a neural network functions.

The foundational concepts for the linear classifier and the neural network

are basically the same. I will also incorporate the three of the four key

parameters introduced previously in this discussion. The loss function is

discussed all by itself in the following section.

The dataset used for this linear classifier is named Mammals and

consists of 5000 Images of three classes, namely, cat, dog, and squirrel.

Each Image has a rather low resolution of 32 x 32 pixels for a total of 1024

pixels. Moreover, each pixel is a full color RGB that requires three bytes to

represent the RGB color channel values, which means that there are 3072

values to be processed by the classifier. The data points representing an

Image are “flattened” into a single dimension vector (1D), which is named

X that has N elements, where N equals 3,072. The weighting matrix W

must be shaped as 3 x 3072 because there are three classes in the dataset.

Chapter 4 Preparation for deep learning

217

Finally, the bias vector b is just sized as 3 x 1. The final scoring equation

using the symbols just described is

f X W b W X b, ,() = +·

where W · X is the dot product between the weighting matrix and the input

data vector.

Figure 4-1 is a graphical representation of the scoring function.

Figure 4-1.  Scoring function’s graphical representation

All the numerical values in the figure are made up, but I did make the

cat class the highest value in the scoring function vector, which would

make it the predicted class label.

There is common simplifying “trick” often used to reduce the number

of parameters in the scoring function from three to two. This trick is to

include the bias vector into the weighting matrix. Figure 4-2 shows how

this is done.

Chapter 4 Preparation for deep learning

218

The input data vector X has been extended by one element that

always contains the value 1. The weighting matrix W in this example is

also extended by one column which now makes its shape to be 3 x 3073.

This additional column is the bias vector b. The new scoring function is

now reduced to a single dot product multiplication as can be seen in the

following equation:

f X W W X,() = ·

Using this bias trick means you only have to have a single weighting

matrix instead of a weighting matrix and a bias vector. This trick is only one

part of preprocessing data that helps simplify the overall ML effort.

The following is an attempt to show you how to implement a linear

classifier in Python. This script is most definitely “rigged” to select the first

class in the labels list. This was necessary because there is no pre-trained

network being used in this script. My goal was to only show how a simple

linear classifier could be coded. I did not call this a demonstration, and I

consider it is more in the category of pseudo-code. Again, it is just for your

reference because it does use the four primary parameters I have discussed

and it only is missing a call to a pre-trained network. The script is named

linear_Classifier.py. I have not made it available on the book’s companion

web site because I believe this is only a pedagogical instrument for your

education. Feel free to copy it from the listing if you so desire.

Figure 4-2.  Adding the bias vector to the weighting matrix

Chapter 4 Preparation for deep learning

219

Import the required libraries

import numpy as np

import cv2

Initialize class labels and set pseudo-random seed value

labels = ['dog', 'cat', 'squirrel']

np.random.seed(1)

Randomly initialize the weighting matrix and bias vector

W = np.random.randn(3, 3072)

b = np.random.randn(3)

Set the font used to draw the label

font = cv2.FONT_HERSHEY_SIMPLEX

Load the image and resize it. The image is taken from the

dataset.

orig = cv2.imread('dog.png')

image = cv2.resize(orig, (32,32)).flatten()

Compute output scores

scores = W.dot(image) + b

Loop over the scores and labels

for (label, score) in zip(labels, scores):

 print('[INFO] {}: {:.2f}'.format(label, score))

Get the class label for the highest scoring class

classLabel = labels[np.argmax(scores)]

Draw the predicted label on the original image

cv2.putText(orig, classLabel, (10,30), font, 0.9, (255,0,0), 2)

Display image

cv2.imshow('Image', orig)

cv2.waitKey(0)

Chapter 4 Preparation for deep learning

220

Run this script by entering the following command:

python linear_Classifier.py

Figure 4-3 shows the terminal window results after the command was

entered.

Figure 4-3.  Terminal results after running the linear_Classifier script

Figure 4-4.  Processed Image for the linear_Classifier script

You should be able to see that the dog class has the maximum value

and is therefore the predicted class label.

Figure 4-4 shows the original Image with the class label superimposed

on it.

Chapter 4 Preparation for deep learning

221

The key takeaway from this example is to realize that the weighting

matrix must be optimized in order to actually perform a real classification

task. I will discuss how this is accomplished in the next chapter using a

real-world problem. I am not being too concerned with the bias vector at

time point because it is often used to “tune” the final network solution. It is

far more important to create a working weighting matrix before worrying

about the bias vector.

�Loss functions
The loss function is at the heart of ML. It allows you to take your algorithm

from a theoretical concept to practical implementation and transforms

neural networks from abstract matrix multiplications into DL.

A loss function concept is quite simple. It is an approach to evaluate how

well your algorithm models the input dataset. If predictions or classifications

are in error, then the loss function will output a high number. If they are

reasonable, then the number will be low. It also informs the developer how

well the algorithm is improving as the network and model are being trained.

The function will easily show if the training effort is converging or diverging.

Convergence is good while you want to avoid divergence.

�Different types of loss functions

A naive approach to a loss function might be as simple as doing the

following:

 = -()abs y yi i
ˆ

where

ϵ = error

ŷi = predicted class label

yi = actual class label (ground truth)

Chapter 4 Preparation for deep learning

222

In this loss function definition, it makes no difference if predictions

were too high or too low. All that matters are how incorrect they were,

that is, directionally agnostic. This approach is not necessarily applied

to all loss functions. A loss function will vary significantly based on the

ML problem domain. In a given project, it could be much worse to guess

too high rather too low, and the selected loss function must reflect that

condition.

The following is a list of popular loss functions:

Mean squared error (MSE) – This is a very popular option for basic

loss functions. It is easy to understand and implement and works well. The

MSE is computed by taking the differences between the predictions and

the ground truths, squaring them, and then averaging the sum by the size

of the whole dataset. Python code for an MSE would be the following:

def MSE(y_Hat, y):

 sq_error = (y_Hat - y) ** 2

 sum_sq_error = np.sum(sq_error)

 mse = sum_sq_sq_error / y.size

 return mse

Likelihood function – The Likelihood function is also simple and

is commonly used in classification problems. The function takes the

predicted probability for each input data class and multiplies them.

Although the output isn’t human interpretable, it is useful for comparing

how well models perform.

Consider the following example where a model outputs a series of

probabilities associated with different dataset classes. The probabilities are

shown in Table 4-1.

Chapter 4 Preparation for deep learning

223

In the case when the model outputs a False or 0 ground truth, the 1 - p

probability is used in the Likelihood calculation, which is shown here:

0.6 ∗ 0.6 ∗ 0.9 ∗ 0.9 = 0.292

Log loss (cross-entropy loss) – Log loss is a loss function also used

frequently in classification problems. It is a modification of the Likelihood

function using logarithms.

 = - * ()+ -()* -()(y p y plog log1 1

This is the same equation as for the Likelihood function, but with

logarithms. However, you should recognize that when the class value is 1,

the second half of the function disappears, and when the class is 0, the first

half disappears. In that way, only the log of the predicted probability for

the ground truth class is used in the multiplication.

The log loss function has an interesting feature in that it heavily penalizes

for being very confident and very wrong. Predicting high probabilities for

the wrong class makes the function “explode.” Figure 4-5 illustrates what

happens when the true label = 1. You can see that it skyrockets as the

predicted probability for label = 0 approaches 1.

Table 4-1.  Probabilities for the example classification model

Class Ground truth (yi) Probability (p) 1 - p

A 0 0.4 0.6

B 1 0.6 n/a

C 1 0.9 n/a

D 0 0.1 0.9

Chapter 4 Preparation for deep learning

224

One final point in this discussion of loss functions is realize that they

provide more than just a static representation of how a model is performing.

Most ML algorithms use a loss function in the optimization process or the

determination of the best parameters (weights) for the dataset.

As an example, consider the linear regression data model that

I discussed in the previous chapter. In a traditional “least squares”

regression, the best fit line is determined through MSE. For each set

of weights that the model tries, the MSE is calculated across all input

examples. The model then optimizes the MSE functions or, in other

words, makes it the lowest possible through the use of an optimizer

algorithm like gradient descent.

Just as there are different types of loss functions for different problems,

there are different optimizers to match specific problem domains, which I

discuss in the following section.

Figure 4-5.  Log loss function plot

Chapter 4 Preparation for deep learning

225

�Optimizer algorithm
ML practitioners will often say that an optimizer algorithm is the heart

of ML. Without a good one, ML could not exist. The most common

algorithm is called gradient descent, and it comes in two flavors, linear and

stochastic. I will initially discuss the linear version because it is the easiest

to understand and explain. In reality, the stochastic version is the one used

most often in the real world. I will explain that version after covering the

linear one.

To set the stage for the gradient descent discussion, I would like

you to imagine the following scenario. Suppose you were hiking in the

mountains and you lost track of time and it started to get dark. You quickly

realized that you had to get to lower ground before it got too dark and too

cold. Let’s say you also forgot to bring a flashlight or lantern so you must

rely on whatever diminishing sunlight was left to reach safety and lower

ground. Naturally you start hiking downhill, but with the poor light you

cannot see very far ahead. This condition forces you to take small steps to

avoid crashing into boulders or falling into holes or ground depressions.

Essentially you are inching your way down the mountain always trying

to go lower with each step and making small corrections each time you

accidentally start to go uphill.

This scenario is an analogy to how gradient descent works. The

peaks and valleys for gradient descent are direct consequence of how

the algorithm is defined. For purposes of this discussion, consider an

incredibly simple network with only two weights and no bias values. The

loss function for this simple situation would be totally dependent on the

two weight values. Figure 4-6 shows a hypothetical 3D plot of the loss

function vs. the two independent weighting values.

Chapter 4 Preparation for deep learning

226

The peaks in this figure are maximum loss values, which are to be

avoided, while the valleys are minimums which are desired for optimum

network performance. I would also point out that some valleys are deeper

than others in the figure. The deepest valley overall is called the global

minimum and is always the most desired one for setting all the weighting

values. The “not-as-deep” valleys are called local minima and while not

optimal may often be “good enough.” More about that a little later in the

discussion.

Computing the slope of any point on the figure is the key to

determining how to transverse or “walk” within the peaks and valleys.

Remember from the introductory scenario, you always want to walk

downhill, thus avoiding the peaks, which are the high-cost regions.

Therefore, it makes sense to continually compute the instantaneous slope

and proceed in the downward direction. Slopes, in an analytic sense, are

computed by determining the derivative of the original equation. For

this case, the original equation is the loss function, and there are two

independent variables, which represent the two weights. Partial derivatives

must be used in this situation because there are two independent variables

involved. Also involved in finding the global minimum is the size of the

step being taken. Too large a step and the minimum can easily be missed

Figure 4-6.  Loss function for two weighting variables

Chapter 4 Preparation for deep learning

227

and too small can cause excessively long training times. You will shortly

find out that step size and learning rate are synonymous terms.

One further point should be made at this time. The 3D figure shown

earlier only relates to two weights and a loss function. In reality, there are

many more weights involved in a practical neural network model than

three. In the next chapter, I will be discussing a network with 100 weights.

It is beyond my comprehension, and I suspect, many others, on how to

conceptualize how 100 independent variables would interact with a single

output function. Certainly, there is no way to visualize that interaction

as I have done with only two variables. I would suggest that you simply

accept the hypothesis that it mathematically makes sense to optimize 100

variables in the same way as 2 variables are handled.

Consider the case where a vertical plane intersects the plot shown

in Figure 4-6 and results in a 2D plot showing the loss function vs. some

range for the independent variables. What that range is immaterial for this

discussion. Figure 4-7 shows a representative 2D plot with both global and

local minima.

Figure 4-7.  2D plot showing global and local minima

Chapter 4 Preparation for deep learning

228

�Deep dive into the gradient descent algorithm

An in-depth examination of the gradient descent algorithm begins with a

recap of the linear regression (LR) data model that I discussed in Chapter 2.

I would suggest that you review that discussion to refresh yourself regarding

key points concerning that model. The generalized LR equation is

y m x b= * +

where

m = slope of a straight line

b = y-axis intercept

Note that I slightly altered the equation from the one shown in Chapter 2

by eliminating the error estimation term and changing the slope constant to m

and the intercept constant to b. This was done to help conform to the figures

used in this discussion.

I will start with a x-y scatter plot of some data with a flat line LR

equation as shown in Figure 4-8.

Figure 4-8.  Data scatter plot with flat line LR predictor

Chapter 4 Preparation for deep learning

229

The optimal LR predictor line goes through the data points in such

a position to minimize the total error that would result if you were to

solely use the predictor line to compute yi for any given xi data point.

The generalized procedure for determining the optimal m and b values

is to iterate through a dataset for all of those values and determine the

minimum error resulting from using all of the xi values. Some sample

Python code to implement this generalized procedure is listed here:

Use y = mx + b equation

m is slope, b is y-intercept

def computeErrorForLineGivenPoints(b, m, points):

 totalError = 0

 for i in range(0, len(points)):

 totalError += (points[i].y - (m * points[i].x + b)) ** 2

 return totalError / float(len(points))

There would need to be a data array setup named points containing

all of the original x-y points prior to calling this script. In addition, the

main calling script must set the range for both the m and b variables to be

tested.

The formal error function for this LR example is shown here:

e
N

y m x bm b
i

N

i i, = - * +()()
=
å1

1

2

The focus now is to develop an equation that optimizes this error

function in terms of m and b, which will generate the minimum error. Prior

to discussing this, it would be helpful to illustrate the nature of the variable

interactions for this LR example. Figure 4-9 shows two perspectives on how

different values for both m and b affect the error function.

Chapter 4 Preparation for deep learning

230

You should be able to easily Image rolling a marble down from the

upper slope to have it settle at some minimum point. This minimum

would have a m and b value associated with the minimum em,b value. Using

the gradient descent search method is the equivalent of rolling the marble

down the slope.

The initial step in implementing the gradient descent method is to

perform two partial differentiations on the error function because there are

two independent variables. This step is precisely the same step I discussed

earlier with the two weight examples. The partial differentiation equations

are actually simpler than the original error equation:

¶
¶

= - * - * +()()
=
åm N

x y m x b
i N

N

i i i

2

¶
¶

= - - * +()()
=
åb N

y m x b
i N

N

i i

2

Figure 4-9.  Error plots vs. m and b variables

Chapter 4 Preparation for deep learning

231

The search normally starts at the origin, which is m = –1 and b = 0. The

–1 value simply starts rolling the marble downhill. The gradient descent

algorithm is iterative, meaning that a small step is taken, the error function

is then reevaluated, and another step is taken if further improvement

is possible. The following Python code implements a gradient descent

algorithm for the LR example:

def stepGradient(b_current, m_current, points, learningRate):

 b_gradient = 0

 m_gradient = 0

 N = float(len(points))

 for i in range(0, len(points)):

 �b_gradient += -(2/N) * (points[i].y -

((m_current*points[i].x) + b_current))

 �m_gradient += -(2/N) * points[i].x * (points[i].y -

((m_current*points[i].x) + b_current))

 new_b = b_current - (learningRate * b_gradient)

 new_m = m_current - (learningRate * m_gradient)

 return [new_b, new_m]

The learningRate parameter in the preceding script controls the

step size. This parameter must be carefully adjusted because a too large

value can easily miss the minimum, while a too small size will needlessly

increase the number of iterations taken before locating the minimum.

The next series of figures will illustrate how the gradient descent

algorithm converges to an optimal solution for this LR example. In each

figure the plot on the left shows where the gradient descent started, and

the figure on the right shows the data and the predictor line for the current

m and b variables.

Figure 4-10 shows the start of the gradient search.

Chapter 4 Preparation for deep learning

232

It is clearly obvious from this figure that the initial estimate is way off.

The next iteration is shown in Figure 4-11.

Figure 4-10.  Start of gradient search

Figure 4-11.  Second iteration for gradient search

Chapter 4 Preparation for deep learning

233

Notice that the plot on the left-hand side of the figure now has a line,

which indicates the path taken by the search algorithm from the initial

starting point. The predictor line shown on the right-hand side of the

figure is a big improvement over the initial plot. However, it clearly needs

improvement because in no way it intercepts any of the data points.

Figure 4-12 shows the third iteration, even though the right-hand

plot shows iteration 2 in the plot area. That is because the first attempt is

labeled 0.

Figure 4-12.  Third iteration for gradient search

The path taken by the search algorithm was clearly on the same path

as it was for the second iteration. However, the predictor line is now

barely intercepting some data points, but obviously in need of further

improvement.

Jumping ahead to iteration 100 (which is actually 101 due to 0-based

counting), you can see from Figure 4-13 that the predictor line visually

“appears” to be a good fit.

Chapter 4 Preparation for deep learning

234

The left-hand plot shows the gradient search path took a small jog to

the right in search of the global minimum.

Figure 4-14 is a plot of error vs. iteration number.

Figure 4-13.  101 iterations for gradient search

Figure 4-14.  Plot of error vs. iteration number

It should be obvious from examining this figure that there is little to

no improvement to be gained from extending the number of iteration

to beyond 100. It is entirely conceivable that the global minimum was

Chapter 4 Preparation for deep learning

235

not reached; however, any marginal loss improvement is negligible. This

situation is what I meant by “good enough” in my earlier discussion.

For those interested readers, the final best fit LR equation was finally

determined to be

y x= * +1 3 0 61. .

�Artificial neural network
The artificial neural network (ANN) has a relatively long history within

the AI field. The seminal paper regarding ANNs is considered to be a 1943

paper by Warren McCulloch and Walter Pitts titled “A Logical Calculus

of Ideas Immanent in Nervous Activity” in which they hypothesized a

computational model for neural networks based on mathematics and

algorithms they called threshold logic. This model paved the way for

future neural network research to split into two approaches. One approach

focused on biological processes in the brain, while the other focused on

the application of neural networks to AI.

One core concept for ANNs is the neuron model, which is intended to

mimic the human brain neuron to some extent. I believe it is important

to first discuss a human brain neuron before proceeding to discuss the

artificial variety. In this way, you should gain an understanding of why the

artificial neuron was created in the manner it is in today.

A biologic diagram for a human brain neuron is depicted in Figure 4-15.

Chapter 4 Preparation for deep learning

236

Some of the parts of the human neuron shown in the figure are

described as follows:

•	 Dendrites – Dendrites allow the cell body to receive

signals from a large (>1000) number of neighboring

neurons. Each dendrite is able to perform an electrical

signal “multiplication” by that dendrite’s “weight value.”

This multiplication is accomplished by increasing or

decreasing the ratio of synaptic neurotransmitters

to signal chemicals introduced into the dendrite in

response to the synaptic neurotransmitter. A negative

multiplication effect can be achieved by transmitting

signal inhibitors (i.e., oppositely charged ions) along

the dendrite body in response to the reception of

synaptic neurotransmitters.

•	 Soma – The soma acts as a summation function. As

positive and negative signals (exciting and inhibiting,

respectively) arrive in the soma from the dendrites,

the positive and negative ions are effectively added in

summation by simple virtue of being mixed together in

the solution inside the cell’s body.

Figure 4-15.  Human brain neuron diagram

Chapter 4 Preparation for deep learning

237

•	 Axon – The axon gets its signal from the summation

behavior which occurs inside the soma. The opening

to the axon essentially samples the electrical potential

of the solution inside the soma. Once the soma reaches

a certain potential, the axon will transmit an all-in

signal pulse down its length. In this way, the axon

communicates directly with other neurons.

Biological neurons fire in discrete pulses. Each time the electrical

potential inside the soma reaches a preset threshold, a pulse is transmitted

down the axon. This pulsing may be translated into continuous values. The

rate (activations per second, etc.) at which an axon fires converts directly into

the rate at which neighboring neurons get signal ions introduced into them.

The faster a biological neuron fires, the faster nearby neurons accumulate

electrical potential (or lose electrical potential, depending on the “weighting”

of the dendrite that connects to the neuron that fired). It is this conversion that

allows AI researchers to simulate biological neural networks using artificial

neurons which can output distinct values, often in the range from –1 to 1.

Early AI researchers developed a relatively simple model for the brain

neuron based partly on the biologic facts presented previously. Figure 4-16

shows an artificial neuron diagram with N inputs and one output.

Figure 4-16.  Artificial neuron diagram

Chapter 4 Preparation for deep learning

238

The input branches with the weights are equivalent to the dendrites.

The circle is a summing node equivalent to what happens in the soma.

The box labeled activation function is equivalent to the axon, which fires

when the sum of the weighted electrical signals exceeds some threshold.

I believe this model is remarkably simple, yet seems to realistically

capture what is occurring in a real brain neuron.

The mathematical representation of an artificial neuron is concisely

shown as

g x x x x g X xn
i

n

i1 2 3
1

, , ,() = () =
=
å

y f g X if g X= ()() = () ³1 q

= ()<0 if g X q

The 1 and 0 outputs simply represent the state when the summed,

weighted inputs exceed some threshold value, θ. Actual output value is

dependent on the real summed value that is transformed by the activation

function.

The activation function often used with the artificial neuron model is

the sigmoid, which I introduced to you in Chapter 2. Please refer back to

that discussion for a refresher and review Figure 2-16 to get a feel for how

this function transforms the summed signal. You should easily realize by

examining that figure that the final output signal will be in a range of 0 to

1.0 for most summed signals that are in the range of –8 to +8.

�How ANNs are trained and function
It is time to explore a network of artificial neurons or ANNs as it is

commonly called.

Figure 4-17 shows a generic, three-layer ANN.

Chapter 4 Preparation for deep learning

239

The three layers making up the ANN are

•	 Input – Raw data inputs are applied to this layer. These

data inputs are not weighted. There is only one input

layer in an ANN.

•	 Hidden – This refers to any layer that is either not an

input or an output layer. There can be one to many

hidden layers. Weights are normally associated with the

interconnections between hidden layer nodes as well

as the connections between the last hidden layer going

to the output layer.

•	 Output – Processed signals appear as outputs from this

layer. The number of output nodes often equals the

number of classes for classification ANNs.

Figure 4-17.  Three-layer ANN

Chapter 4 Preparation for deep learning

240

ANNS are often divided into two categories:

•	 FeedForward

•	 Feedback

Figure 4-18 is a diagram which shows how signals flow in each of these

ANNs.

Figure 4-18.  FeedForward and Feedback ANN models

Each ANN category has its advantages and disadvantages over the

other. The ANN model that is ultimately used depends on the nature of

the dataset and the ANN’s intended purpose. However, the feedback back

model is the one always used when training an ANN. This is because the

main purpose of training is to determine the weight values used for the

Chapter 4 Preparation for deep learning

241

hidden layer nodes. Determining these values is the key method on how

the ANN “learns.” ANN learning is done by first inputting a large dataset

to the network, one record or element at a time. This input data eventually

creates output data, which is then compared to the ground truth data. Any

resultant errors are then used in a feedback configuration to adjust the

weight values in order to reduce and minimize the errors. This individual

record training cycle is normally repeated over many thousands of times in

order to completely train the network. The term epoch is used to describe

the process of using the entire dataset for one pass with the ANN. It is not

unusual to have multiple epochs used in a training session, where the

training dataset is slightly rearranged for the next epoch in order to achieve

a better learning result as compared to doing only a single pass. The whole

training process is called back propagation.

Figure 4-19 shows a three-layer ANN with the weights annotated on

the nodal interconnections.

Figure 4-19.  Three-layer ANN with weights

The weights’ annotations are shown as wi,j where i is the source node

and j is the destination node. Not all the nodes shown in the figure have

interconnections because I didn’t want to have too “busy” of a figure.

Chapter 4 Preparation for deep learning

242

In reality, all nodes would be “connected” to other nodes when the

learning commenced. Eventually, some weights would eventually

diminish in value to where they are not used, which means the nodal

connection would virtually cease to exist.

�Practical ANN example

I believe it would be a useful learning exercise to show a completely

“worked out” ANN example. Figure 4-20 shows a highly simplified, two-

layer ANN, which I will use for this example.

Figure 4-20.  Two-layer ANN

There is no need for a hidden layer in this example because I am only

focusing demonstrating on the back propagation process. The initial data

inputs and weights used to begin this example are shown in Table 4-2.

Chapter 4 Preparation for deep learning

243

These values are random and do not reflect any real-world problem

domain. I will describe in a later section how to preset an entire set of

weights using a random number generator. One other item to note is that

I will be using the sigmoid function to transform the summed values. The

sigmoid equation is

y
e x

=
+()-

1

1

where

e = 2.71828 ... (Euler’s number)

Plugging into the preceding equation x = 1 will yield y = 0.731.

Computing out1 requires solving the following equations:

sumof weighted inputs x w in w in = = * + *1 1 2 11 2, ,

out
e x

1
1

1
=

+()-

Table 4-2.  Initial input

and weight values

Symbol Value

in1 0.8

in2 0.4

w1,1 0.8

w1,2 0.1

w2,1 0.9

w2,2 0.4

Chapter 4 Preparation for deep learning

244

Substituting values from Table 4-2 yields

x = * + * =0 8 0 8 0 9 0 4 1 0.

out
e

1
1

1
0 731

1
=

+() =-
.

In a similar fashion, computing out2 requires solving these equations:

sumof weighted inputs x w in w in = = * + *1 2 2 21 2, ,

out
e x

2
1

1
=

+()-

Substituting values from Table 4-2 yields

x = * + * =0 1 0 8 0 4 0 4 0 24.

out
e

2
1

1
0 560

0 24
=

+() =- .
.

The two ANN outputs have now been determined using a fair amount

of manual computations. It should now be apparent at this point that it

is simply not realistic to attempt to manually compute outputs for larger

and more complex ANNs. Matrices and matrix operations will be used

from now on now that I have demonstrated how tedious it is to use manual

computations.

The input data for this simple example can be expressed as a vector:

in

in

1

2

ì
í
î

ü
ý
þ

Chapter 4 Preparation for deep learning

245

Likewise, the weighting matrix can be expressed as a 2 x 2 matrix:

w w

w w
1 1 1 2

2 1 2 2

, ,

, ,

ì
í
î

ü
ý
þ

Figure 4-21 shows the same manual computations being performed

using matrix operation in an interactive Python session.

Figure 4-21.  Interactive Python session

You can easily see that the Python session results matched the manual

computations.

�Complex ANN example

Figure 4-22 shows a more complex ANN example that I processed in using

a Python script.

Chapter 4 Preparation for deep learning

246

The input data vector does not represent any meaningful problem

domain. It is just a set of random numbers because the purpose of this

demonstration is to show the computing process used for a complex ANN.

The input dataset in vector format is

input =
ì

í
ï

î
ï

ü

ý
ï

þ
ï

0 8

0 2

0 7

.

.

.

The weighting matrix between the input and the hidden layers (wtgih) is

wtg

w w w

w w w

w w w
ih =

ì

í
ï

î
ï

ü

ý
ï

þ
ï

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

 =

0 8 0 6 0 3

0 2 0 90 3

0 2 0 50 8

. . .

. . .

. . .

ì

í
ï

î
ï

ü

ý
ï

þ
ï

The weighting matrix between the hidden and output layers (wtgho) is

wtg

w w w

w w w

w w w
ho =

ì

í
ï

î
ï

ü

ý
ï

þ
ï

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

 =

0 4 0 8 0 4

0 50 7 0 2

0 90 10 6

. . .

. . .

. . .

ì

í
ï

î
ï

ü

ý
ï

þ
ï

Figure 4-22.  Complex ANN example

Chapter 4 Preparation for deep learning

247

These matrices were assigned random numbers’ elements in the range

of 0 to 1.0.

The Python script used to process this ANN was named annDemo1.

py and is available from the book’s companion web site. The script is well

commented, although I do add a little more commentary after the listing.

Import required libraries

import numpy as np

Create the input data vector

input = np.array([0.8, 0.2, 0.7])[:,None]

Create the wtgih matrix

wtgih = np.matrix([[0.8, 0.6, 0.3], \

 [0.2, 0.9, 0.3], \

 [0.2, 0.5, 0.8]])

Create the wtgho matrix

wtgho = np.matrix([[0.4, 0.8, 0.4], \

 [0.5, 0.7, 0.2], \

 [0.9, 0.1, 0.6]])

Compute the dot product of the input vector and wtgih matrix

X1 = np.dot(input.T, wtgih)

Display the matrix

print('X1 matrix\n', X1)

print()

Apply the activation function to the X1 matrix

out1 = 1 / (1 + np.exp(-X1))

Display the matrix

print('out1 matrix\n', out1)

print()

Chapter 4 Preparation for deep learning

248

Compute the dot product of the X1 and wtgho matrices

X2 = np.dot(out1, wtgho)

Display the matrix

print('X2 matrix\n', X2)

print()

Apply the activation function to the X2 matrix

out2 = 1 / (1 + np.exp(-X2))

Display the matrix

print('out2 matrix\n', out2)

This script takes advantage of the numpy dot product function to

accomplish matrix multiplications. Also notice how easy it was to apply the

activation function using the numpy exp function.

The script is run by entering the following command:

python annDemo1.py

Figure 4-23 shows the results after running the script.

Figure 4-23.  Results for running the annDemo1 script

The final output vector is shown as well as are all the intermediate

matrices and vectors. As a side note, please do not get confused when I

intermix the terms matrix and vector. I generally refer to a single row of

Chapter 4 Preparation for deep learning

249

data as a vector although you could technically label it as a 1D matrix. That

label seems to me a bit too pedantic.

The final output data from this ANN is not meaningful, because the

input data was not meaningful. However, the final output should be

somewhat reflective of the input values. Table 4-3 compares the input and

output values as well as the errors between them.

Figure 4-24.  Single error allocation setup

Table 4-3.  Comparison between

input and output values

Input Output Error

0.8 0.78187033 0.01812967

0.2 0.75745360 –0.55745360

0.7 0.69970531 0.00029469

The results are close except for the middle value in the table. This

indicates that the initial weights must be modified to reduce the error. But

how is this done? The answer is shown in the next section.

�Modifying weight values

Consider the case where three nodes are connected as shown in Figure 4-24.

Chapter 4 Preparation for deep learning

250

There is some error in the summing node, which must be corrected by

adjusting the weights between input nodes 1 and 2 and output node 1.

A naive approach might be to evenly split the error between the nodes.

However, that would not accurately represent the error contribution

from each input node because node 1 has twice the weight as node 2.

The correct solution is divide the error in direct proportion to the weights

connecting the nodes. In this case, node 1 should be responsible for two-

thirds of the error and node 2 for one-third.

Using the weighting matrix in this fashion is an additional feature that

is not immediately apparent when first encountering an ANN. Normally,

signals are propagated in a FeedForward configuration as I mentioned

earlier. This modification approach uses weights with an error value to be

propagated in a backward direction. This is why that error determination is

called back propagation.

Now consider the case when multiple errors appear at two output

nodes as shown in Figure 4-25.

Figure 4-25.  Multiple error allocation setup

The weight modification process for multiple nodes is the same as it

is for single nodes. This is because output nodes are independent of one

another. There are no direct connections between output nodes. The error

amount assigned to each interconnection is the fraction based solely on

Chapter 4 Preparation for deep learning

251

the weight value on each line connected to the output node. In the case of

Figure 4-25, the fractions applied to w1,1 and w2,1 for error e1 are

w

w w

w

w w
1 1

1 1 2 1

2 1

1 1 2 1

,

, ,

,

, ,+() +()and

Similarly, the errors for e2 are

w

w w

w

w w
1 2

1 2 2 2

2 2

1 2 2 2

,

, ,

,

, ,+() +()and

Thus far, the process to modify the weights based on the output errors

has been simple. Errors are easily determined because the training data

is readily available. There is nothing else required when training a two-

layer ANN. But how is a three-layer ANN processed when there are most

certainly errors in the hidden layer, yet no training data is available?

Figure 4-26 shows a three-layer, six-node ANN with two nodes per

layer.

Figure 4-26.  Three-layer, six-node ANN

This ANN has been simplified to help you focus on the few back

propagation computations required. The output errors were randomly

created because they are needed for the following computations. The

following individual error contributions were computed using the weights

shown in the figure:

Chapter 4 Preparation for deep learning

252

For the w1,1 line:

e
w

w wnode1 1
1 1

1 1 2 1

0 96
2

2 3
0 96 0 4 0 38*

+() = *
+()

= * =,

, ,

. . . .

For the w2,1 line:

e
w

w wnode1 2
2 1

1 1 2 1

0 96
3

2 3
0 96 0 6 0 58*

+() = *
+()

= * =,

, ,

. . . .

For the w1,2 line:

e
w

w wnode2 1
1 2

1 2 2 2

0 8
2

2 1
0 8 0 66 0 53*

+() = *
+()

= * =,

, ,

. . . .

For the w2,2 line:

e
w

w wnode2 2
2 2

1 2 2 2

0 8
1

2 1
0 8 0 33 0 27*

+() = *
+()

= * =,

, ,

. . . .

The total normalized error value for each hidden node is the sum of

the individual error contributions to the node and is calculated as follows:

e e enode node1 1 1 2 1 0 38 0 53 0 91= + = + =. . .

e e enode node2 1 2 2 2 0 58 0 27 0 85= + = + =. . .

These values are shown next to each of the hidden nodes in Figure 4-26.

This error computing process may be continued to encompass all the

errors for all remaining hidden layer nodes not only for the single hidden

layer as shown in this example but for as many hidden layers that are in the

ANN. However, there is no need to compute error values for the input layer

because the error must be 0 for all input layer nodes. They simply pass the

input data vector values without modifications.

Chapter 4 Preparation for deep learning

253

You should be able to perceive that computing hidden layer error

values is a tedious process and lends itself to be automated in manner to

what was done with the FeedForward computations. The following matrix

notation would apply if the error computations were directly translated

from the manual process I just demonstrated:

e

w

w w

w

w w

w

w w

w

w

hidden =
+() +()

+()

1 1

1 1 2 1

1 2

1 1 2 1

2 1

2 1 2 2

2 2

,

, ,

,

, ,

,

, ,

,

22 1 2 2

1

2

, ,+()

ì

í
ï
ï

î
ï
ï

ü

ý
ï
ï

þ
ï
ï

*
ì
í
î

ü
ý
þ

w

in

in

Unfortunately, there is no easy way to input the fractions as shown

in the matrix. However, just consider that the fractions only normalize

the error contribution, meaning that the contributed values will only

range from 0 to 1.0. Relative error contribution can still be maintained by

discarding the denominator. Removing the denominators yields

e
w w

w w

in

inhidden =
ì
í
î

ü
ý
þ
*
ì
í
î

ü
ý
þ

1 1 1 2

2 1 2 2

1

2
, ,

, ,

This matrix formulation is identical to what was earlier demonstrated

and can easily be handled with numpy functions.

Up to this point, I have only discussed how to determine individual

error contributions. Now it is time to discuss how to modify the weights

once the error contributions have been determined.

I will start by showing you a rather complex equation, which computes

the output from a given output node for a three-layer, nine-node ANN

O

w
w x

k

j j k

j j k i

=

- *
*()

æ

è

ç
ç

ö

ø

÷
÷=

=

å
å

1

1
1

3

1

3,

,

Chapter 4 Preparation for deep learning

254

where

O output at kth nodek =

w interconnected weightsj k, =

x input datai =

This is a formidable equation even though it only applies to a simple

three-layer, nine-node ANN. Imagine the equation that would apply for

a six-input, five-layer ANN. It is extremely common to have even larger

ANNs, so trying to analytically solve ANN equations is totally impractical

and beyond human comprehension. Having ruled out an analytical

approach, you might try a “brute-force” approach.

Consider using an extremely fast computer and trying a series of

different values for each weight. Let’s assume that the weight range is

–1 to +1, which is entirely possible for a practical ANN. Further assume

that the increment size is 0.001, which again is a reasonable assumption.

This would mean that for a three-layer, nine-node ANN, there would be

18 weights to be tested with 2000 tests per connection for a grand total

of 36,000 incremental tests. Let’s say it took 1 second to do a test, then a

total of 36,000 seconds would elapse or about 10 hours of computing time.

Ten hours is long, but you could go to bed and the computer would be

done in the morning. But now consider a realistic 900 node ANN, which I

plan on demonstrating in the next chapter. That would require nearly one

billion tests and take about 32 years to complete. I don’t know about you,

but waiting a generation or so for a computation to complete seems a bit

too much. The practical alternative to the brute-force approach is to use

the gradient descent algorithm that I have previously introduced in this

chapter.

Figure 4-27 will be used as the network that I use to explain how to

apply gradient descent to an ANN.

Chapter 4 Preparation for deep learning

255

There is one additional symbol ek required beyond those shown in the

figure to represent the output node error.

Output node error is expressed by

e t ok k k= -

where

t ground truth valuek =

o output resulting from x inputk i=

The total error is the sum of each node’s error value. The resulting

equation is

e t ok
i

N

k k= -()
=
å

1

2

where

N total number of nodes in ANN=

The error term is also squared for to ensure that negative errors do not

cancel out positive errors as I had mentioned during the gradient descent

discussion.

Figure 4-27.  Three-layer, six-node ANN

Chapter 4 Preparation for deep learning

256

This error function is equivalent to the loss function. That means it

must be differentiated with respect to wj,k to create the equation used to

optimize the weights. The derivative form is

¶
¶

=
¶

¶
-()

=
åe

w w
t o

j k j k i

N

k k
, , 1

2

This equation can be considerably simplified by taking note that the

error at any given node is due solely to its input connections. This means

the kth node only depends on the wj,k weights on its input connections.

Realizing this fact allows you to remove the summation from the error

function because no other nodes contribute to kth node’s output. This

simplification leads to a much simpler error function:

¶
¶

=
¶

¶
-()e

w w
t o

j k j k
k k

, ,

2

The final equation after doing the differentiation and applying the

activation function is

¶
¶

= - -()* *
æ

è
ç

ö

ø
÷* - *å åe

w
t o sigmoid w o sigmoid w o

j k
k k

j
j k j

j
j k j

,
, ,1

ææ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷*oj

The preceding equation while appearing quite complex is actually

quite easy to understand if there is a physical interpretation put on it. The

first part, (tk − ok), is just the error. The summations inside of the sigmoid

functions are the inputs into the kth final layer node. The last term, oj, is the

output from the jth node in the hidden layer.

The equation for the hidden layer gradient descent algorithm is similar

to the one shown earlier. It is

¶
¶

= -()* *
æ

è
ç

ö

ø
÷* - *

æ

è
çå åe

w
e sigmoid w o sigmoid w o

i j
j

j
i j i

j
i j i

,
, ,1

öö

ø
÷

æ

è
çç

ö

ø
÷÷*oi

Chapter 4 Preparation for deep learning

257

The only remaining equation to be shown is the one which shows

how to compute a new weight given the old weight and the result from the

gradient descent algorithm. This equation is

neww oldw
e

wj k j k
j k

, ,
,

= - *
¶

¶
a

where

a = learning rate

You should be able to see that the learning rate parameter has a strong

effect how well the ANN steps through the gradient descent process.

It would be computationally efficient to express all of the preceding

equations in matrix notation. The following function computes the

gradient descent value for one link connecting a hidden layer node to an

output node:

g w e sigmoid o sigmoid o oj k k k k j
T

,() = * * ()* - ()()*a 1

where

o transpose of the hidden layer matrixj
T =

The following are matrices for the three-layer, six-node ANN example:

g w g w g w

g w g w g w

e si1 1 2 1 3 1

1 2 2 2 3 2

1, , ,

, , ,

() () ()
() () ()

ì
í
ï

îï

ü
ý
ï

þï
*

* ggmoid sigmoid

e sigmoid sigmoid
o o1 1

2 2 2
1 2

1

1

* -
* * -

ì
í
î

ü
ý
þ
*{ }

(

(

where

on=outputs from the hidden layer

At this point, I have covered all the theoretical and mathematical

background necessary for you to understand a thorough example on how

an ANN can learn.

Chapter 4 Preparation for deep learning

258

�Practical ANN weight modification example
I will be using a slightly changed network from the earlier model to detail

how to compute modified weights. Figure 4-28 is a modified version of

Figure 4-26 in which I have inserted two random values to represent

outputs from the hidden layer node.

Figure 4-28.  Modified three-layer, six-node ANN

The computation starts by updating w1,1, which is the link connecting

node 1 in the hidden layer to node 1 in the output layer. The following is

the gradient descent equation for this link:

¶
¶

= - -()* *
æ

è
ç

ö

ø
÷* - *å åe

w
t o sigmoid w o sigmoid w o

j k
k k

j
j k j

j
j k j

,
, ,1

ææ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷*oj

Substituting the values from the figure into this equation yields

t o ek k-() = =1 0 96.

j
j k jw oå *

æ

è
ç

ö

ø
÷ = *()+ *() =,2 0 0 6 3 0 0 4 2 4

Chapter 4 Preparation for deep learning

259

sigmoid
e

=
+() =-

1

1
0 9168

2 4.
.

1 0 0832- =sigmoid .

o1 0 6= .

Multiplying the preceding factors yields

- * * * = -0 96 0 9168 0 0832 0 6 0 04394.

If a learning rate of 0.15 is assumed, then the new weight will be

neww oldw
e

wj k j k
j k

, ,
,

= - *
¶

¶
a

newwj k,= - * -() = + =2 0 0 15 0 04394 2 0 0 0066 2 0066

The new weight is not too different from the old weight; however, you

must be mindful that there will be hundreds, if not thousands, of iterations

before a global minimum is reached. Small changes eventually result in

large changes when accumulated over many iterations.

All the other network weights are adjusted using the same process as I

just demonstrated.

�Some issues with ANN learning

There are two items regarding the sigmoid activation function that you

should know. I have replicated Figure 2-16 as Figure 4-29 for purpose of

supporting this discussion.

Chapter 4 Preparation for deep learning

260

Examining the figure, you should be able to see that for x inputs greater

than 2.5, the y output changes very little. This is because the sigmoid

function asymptotically approaches 1.0 around that value. Small changes for

large x inputs imply very small gradient changes happening. ANN learning

becomes suppressed because the gradient descent algorithm depends upon

a “reasonable” slope being present. Thus, ANN training datasets should limit

x values to what might be termed a pseudo-linear range of approximately –3

to 3. The negative limit happens because the sigmoid function is symmetric

around the y-axis and saturation occurs when x is 2.5 or less. Values of x

outside the pseudo-linear range will cause a saturation effect for the ANN,

and no effective weight updates can take place.

Another issue with the sigmoid function is that it cannot output values

greater than 1.0 or less than 0. Initial weights must be selected to ensure

that the function can output in its allowable range. Realistically, the output

range has to be from roughly 0.01 to 0.99 because of the asymptotic nature

described earlier.

Initial weight selection is important as I just described. Selecting a

good initial set of ANN weights will avoid input saturation and output limit

problems. The first obvious choice is to constrain weights to be within the

Figure 4-29.  Sigmoid function

Chapter 4 Preparation for deep learning

261

pseudo-linear range I earlier specified. However, weights are more often

constrained to be ±1 to be a bit more conservative.

There has been a useful rule of thumb followed by AI researchers for

years to help with weight selection:

The weights should be initially allocated using a normal dis-
tribution set at a mean value equal to the inverse of the square
root of the number of nodes in the ANN.

If you are using a small ANN with 36 nodes, then the mean is
1

36

or 0.16667. Figure 4-30 shows a normal probability distribution with this

mean and ±2 standard deviations.

Figure 4-30.  Normal deviation of initial weights for a 36-node ANN

A random selection of weights in the range of approximately –0.5 to

0.833 would nicely provide an excellent starting point for learning for a 36-

node ANN.

There are two final points regarding initial weight selection. The first is

avoid setting all weights to the same value. ANN learning depends upon an

unequal weight distribution. The second point (and hopefully obvious) is

not to set all weights to 0 because that would disable the ANN.

Chapter 4 Preparation for deep learning

262

This last section completes all my preparatory discussion regarding

ANNs. It is time to take on an actual Python-based ANN.

�ANN Python demonstration – Part 1
In part 1 of this demonstration, I will show you how to create an untrained

ANN using Python. In part 2, I will show you how to train the ANN.

This discussion starts by describing the constituent modules of a

practical ANN. Each module must have software crafted to allow it to

accomplish its purpose.

The first module is the Init module, which is used to “build” the ANN

structure. For this demonstration, I will be building a three-layer, nine-

node ANN. This means I must have objects representing each layer, as well

as inputs, outputs, and weights. Table 4-4 shows the Init module objects

and references.

Table 4-4.  Init module objects and references

Name Description

inode Number of nodes in the input layer

hnode Number of nodes in the hidden layer

onode Number of nodes in the output layer

wtgih Weight matrix between the input and hidden layers

wtgho Weight matrix between the hidden and output layers

wij Individual weight matrix element

input Vector for inputs

output Vector for outputs

ohidden Array for hidden layer outputs

lr Learning rate

Chapter 4 Preparation for deep learning

263

The following Init module code sets the number and type of nodes as

well as the learning rate:

def __init__(self, inode, hnode, onode, lr):

 # Set local variables

 self.inode = inode

 self.hnode = hnode

 self.onode = onode

 self.lr = lr

This Init module code must be called with the appropriate values to

structure a three-layer, nine-node ANN. These values are

•	 inode = 3

•	 hnode = 3

•	 onode = 3

•	 lr = 0.25

The next module to be discussed is one that sets up the weight

matrices. I decided to use a normal distribution with a mean of 0.1667

and a standard deviation of 0.3333, as I previously discussed. Numpy

contains a random number generator that nicely fulfills this requirement.

The following code creates a 3 x 3 matrix named wtgih filled with random

numbers with the desired statistical features:

self.wtgih = np.random.normal(0.1667, 0.3333, self.hnodes,

self. inodes)

I tested the preceding code in a Python interactive session, which is

shown in Figure 4-31.

Chapter 4 Preparation for deep learning

264

The resulting wtgih matrix is well formed with excellent initial values.

The Init module can now be expanded to include the matrix generation

code, where I used the rule of thumb described earlier to set the statistical

parameters for the matrices.

def __init__(self, inode, hnode, onode, lr):

 # Set local variables

 self.inode = inode

 self.hnode = hnode

 self.onode = onode

 self.lr = lr

 # Mean is the reciprocal of the sqrt of node sum

 mean = 1 / (pow((inode + hnode + onode), 0.5))

 # Std dev is approx 1/6 of total weight range

 # Total range = 2

 sd = 2 / 6

 # Generate both weight matrices

 # Input to hidden layer

 self.wtgih = np.random.normal(mean, sd, [hnode, inode])

 # Hidden to output layer

 self.wtgho = np.random.normal(mean, sd, [onode, hnode])

Figure 4-31.  Python interactive session for test code

Chapter 4 Preparation for deep learning

265

At this point, I will introduce a second module designed to test the Init

module. This new module is named testNet, which reflects its purpose.

This module takes an input vector and returns an output vector. This new

module performs the following steps:

	 1.	 Converts the input data vector into a numpy array.

	 2.	 Multiplies the input array by the wtgih weight

matrix.

	 3.	 Applies the sigmoid activation function.

	 4.	 Multiplies the hidden layer output by the wtgho

matrix.

	 5.	 Applies the sigmoid activation function.

The listing for this new module is as follows:

import numpy as np

def testNet(self, input):

 # Convert input data vector into an array

 input = np.array(input, ndmin=2).T

 # Multiply input array by wtgih matrix

 hInput = np.dot(self.wtgih, input)

 # Apply activation function

 hOutput = 1 / (1 + np.exp(-hInput))

 # Multiply hidden layer output by wtgho matrix

 oInput = np.dot(self.wtgho, hOutput)

 # Apply activation function

 oOutput = 1 / (1 + np.exp(-oInput))

 return oOutput

Chapter 4 Preparation for deep learning

266

Both the Init and testNet modules were put into a Python class named

ANN, which I will show you after the part 2 demonstration. However, I first

need to demonstrate how a totally untrained ANN performs.

Note  You will not be able to replicate the following interactive
session, at this point, because the ANN class file is not present in
your home directory. You can try doing this interactive session after
the class file has been created or loaded.

Figure 4-32 shows the interactive session that instantiates an ANN

object named ann and then calls the testNet method. Note that the Init

method is automatically called when the ann object is instantiated.

Figure 4-32.  Interactive Python session for the testNet call

There are some serious errors present in the output, which I have

detailed in Table 4-5.

Chapter 4 Preparation for deep learning

267

These errors should be greatly reduced after the network is trained,

which is the topic for the next demonstration.

�ANN Python demonstration – Part 2
In part 2 of the demonstration, I will show you how to train the network

that you created in part 1. Training will be using a third module named

trainNet and is added to the ANN class file. This module functions in a

similar fashion to the testNet module by computing an output dataset

based on the input dataset. However, the trainNet module input dataset

is a predetermined training set instead of a randomly generated dataset.

What predetermined means in this context will become clearer as I go

through the module development discussion.

The trainNet module computes an error dataset, which are the

differences between with the ANN outputs and the input train dataset.

Such behavior is called supervised learning, because the network “knows”

what the correct output should be and can modify its weights to try to

achieve the ground truth values contained in the input train dataset.

This next listing for trainNet module starts with some initialization

code that is external to the initialization that happens within the Init

module code:

def trainNet(self, inputT, train):

 # This module depends on values, arrays, and matrices

 # created when the init module is run

Table 4-5.  Initial test errors

Input Output Error Percentage error

0.8 0.628566 –0.171434 21.4

0.5 0.782561 0.282561 56.5

0.6 0.672449 0.072449 12.1

Chapter 4 Preparation for deep learning

268

 # Create the arrays from the list arguments

 self.inputT = np.array(inputT, ndmin=2).T

 self.train = np.arrat(train, ndmin=2).T

The computed errors are the differences between the training set

values and the actual outputs. The error equation for the kth output node as

previously shown is

e t ok k k= -

The matrix notation for the output errors is

self eOutput self train self oOutput. . .= -

The hidden layer error array in matrix notation for this example ANN is

hError

w w w

w w w

w w w

e

e

T

=
ì

í
ï

î
ï

ü

ý
ï

þ
ï

*
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1, , ,

, , ,

, , ,

22

3e

ì

í
ï

î
ï

ü

ý
ï

þ
ï

The following is the Python code that generates this array:

self.hError = np.dot(self.wtgho.T, self.eOutput)

The following is the weight update equation for adjusting a link

between the jth and kth layers:

g w e sigmoid o sigmoid o oj k k k k j
T

,() = * * ()* - ()()*a 1

The new g(wj, k) array must be added to the original because these are

adjustments to the original. The preceding equation is easily expressed in

Python code by

self.wtgho += self.lr*np.dot((self.eOutput*self.oOutputT*(1 -

self.oOutputT)), self.hOutputT.T)

Chapter 4 Preparation for deep learning

269

The code for the weight updates between the input and hidden layers

uses precisely the same format:

self.wtgih += self.lr*np.dot((self.hError*self.hOutputT*(1 -

self.hOutputT)), self.inputT.T)

The two preceding Python statements are at the heart of the gradient

descent algorithm. They basically step down the complex error (loss)

function contours in search of the global minimum. You should note

that there is no limiting statement that will stop this search. That is the

responsibility of the calling function, which I will shortly demonstrate.

The complete ANN class listing follows, which includes the trainNet

module as well as the Init and testNet modules. This file is named ANN.

py and is available from the book’s companion web site. I have not added

any additional code comments beyond what is included in the listing. I feel

that all my foregoing discussions hopefully explain how this code works.

Import required libraries

import numpy as np

class ANN:

 def __init__(self, inode, hnode, onode, lr):

 # Set local variables

 self.inode = inode

 self.hnode = hnode

 self.onode = onode

 self.lr = lr

 # Mean is the reciprocal of the sqrt of total nodes

 mean = 1/(pow((inode + hnode + onode), 0.5))

 # Std dev is approx 1/6 of total range

 # Range = 2

 sd = 2/6

Chapter 4 Preparation for deep learning

270

 # Generate both weight matrices

 # Input to hidden layer matrix

 self.wtgih = np.random.normal(mean, sd, [hnode, inode])

 # Hidden to output layer matrix

 self.wtgho = np.random.normal(mean, sd, [onode, hnode])

 def testNet(self, input):

 # Convert input data vector into numpy array

 input = np.array(input, ndmin=2).T

 # Multiply input by wtgih

 hInput = np.dot(self.wtgih, input)

 # Apply activation function

 hOutput = 1/(1 + np.exp(-hInput))

 # Multiply hidden layer output by wtgho

 oInput = np.dot(self.wtgho, hOutput)

 # Apply activation function

 oOutput = 1/(1 + np.exp(-oInput))

 return oOutput

 def trainNet(self, inputT, train):

 # This module depends upon values, arrays and matrices

 # created when the init module is run

 # Create the arrays from the arguments

 self.inputT = np.array(inputT, ndmin=2).T

 self.train = np.array(train, ndmin=2).T

 # Multiply inputT array by wtgih

 self.hInputT = np.dot(self.wtgih, self.inputT)

Chapter 4 Preparation for deep learning

271

 # Apply activation function

 self.hOutputT = 1/(1 + np.exp(-self.hInputT))

 # Multiply hidden layer output by wtgho

 self.oInputT = np.dot(self.wtgho, self.hOutputT)

 # Apply activation function

 self.oOutputT = 1/(1 + np.exp(-self.oInputT))

 # Calculate output errors

 self.eOutput = self.train - self.oOutputT

 # Calculate hidden layer error array

 self.hError = np.dot(self.wtgho.T, self.eOutput)

 # Update weight matrix wtgho

 �self.wtgho += self.lr*np.dot((self.eOutput*self.

oOutputT*(1 - self.oOutputT)), self.hOutputT.T)

 # Update weight matrix wtgih

 �self.wtgih += self.lr*np.dot((self.hError*self.

hOutputT*(1 - self.hOutputT)), self.inputT.T)

The following script uses the ANN class to train the same sized network

I used in part 1 of the demonstration. This script is named testANN3.py

and is available from the book’s companion web site:

Import required libraries

from ANN import ANN

Create input data vector

inputT = [0.8, 0.5, 0.6]

Display it

print('Input data vector')

print(inputT)

print()

Chapter 4 Preparation for deep learning

272

Train for 1 iteration

train = inputT

ann = ANN(3,3,3,0.3)

output = ann.testNet(inputT)

Display output

print('After one iteration')

print(output)

print()

Train for 499 iterations

for i in range(499):

 ann.trainNet(inputT, train)

output = ann.testNet(inputT)

Display output

print('After 500 iterations')

print(output)

print()

The script is run by entering the following command:

python testANN3.py

Figure 4-33 shows the results after the script was run.

Figure 4-33.  Results after running the testANN3 script

Chapter 4 Preparation for deep learning

273

You can clearly see that the initial output was way off from the initial

data vector, except for the third element. However, after a total of 500

iterations, the output essentially matched the input, which showed the

network was fully trained for this particular input dataset vector. In case

you are wondering, there is no specific reason why I chose 500 iterations as

the limit other than the output results were unchanging as I tried various

numbers in that region. I used a “trial-and-error” approach because it only

took the RasPi a few seconds to do hundreds of iterations. This result just

shows that there is no “magic” number to find regarding the number of

iterations to use because each network is unique. Sometimes you just use a

number which is good enough, which I have previously stated.

I was also interested in the net change in the two weight matrices from

the initialized version to the fully trained version. Accordingly, I added an

additional method to the ANN class, which returns the two matrices when

called. This method is named getMatrices and is shown here:

def getMatrices(self):

 matrixList = list([self.wtgih, self.wtgho])

 return matrixList

The testANN3 script was then slightly modified to make two calls to the

getMatrices method. The first call was after the first iteration, and the second

call was after the 500th iteration. The modified testANN3.py script was

renamed testANN4.py. It is available from the book’s companion web site.

from ANN import ANN

inputT = [0.8, 0.5, 0.6]

print('Input data vector')

print(inputT)

print()

train = inputT

ann = ANN(3,3,3,0.3)

output = ann.testNet(inputT)

Chapter 4 Preparation for deep learning

274

print('After one iteration')

print(output)

print()

matrixList = ann.getMatrices()

print('wtgih matrix')

print(matrixList[0])

print()

print('wtgho matrix')

print(matrixList[1])

print()

for i in range(499):

 ann.trainNet(inputT, train)

output = ann.testNet(inputT)

print('After 500 iterations')

print(output)

print()

matrixList = ann.getMatrices()

print('wtgih matrix')

print(matrixList[0])

print()

print('wtgho matrix')

print(matrixList[1])

print()

The script is run by entering the following command:

python testANN4.py

Figure 4-34 shows the results after the script was run.

Chapter 4 Preparation for deep learning

275

There are significant differences between the beginning and final

versions for the two matrices, which clearly show how the weights were

changed by the gradient descent algorithm.

I was next curious to see what happened to the two matrices if the

script was simply rerun. Figure 4-35 shows the rerun results.

Figure 4-34.  Results after running the testANN4 script

Chapter 4 Preparation for deep learning

276

When comparing Figure 4-34 to Figure 4-35, it is easy to see that the

starting matrices are different in each case. That is because the Init module

uses a random number process to create each matrix. A more interesting

feature is to observe that the final version of each matrix is different from

the other for each time the script is run. I concluded that there must be no

single set of optimized matrices for a particular solution and that the final

set of matrices is dependent on the initialized set. From a mathematical

perspective, this means there must be an infinite set of matrices that

can be created to solve this particular input dataset using this particular

ANN. It is my conjecture that this is one likely reason that AI researchers

refer to ANNs as “black boxes” because of these non-analytical solutions.

Figure 4-35.  Results after rerunning the testANN4 script

Chapter 4 Preparation for deep learning

277

This concludes my deep learning preparation chapter. I humbly

apologize if I went a bit “overboard” with some of the topics, especially

with the math, but I felt it was necessary to expose you at least once to

the important underpinnings of DL. You should now be fully prepared

to understand and appreciate the interesting and practical ANN

demonstrations in the next chapters.

Chapter 4 Preparation for deep learning

279© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_5

CHAPTER 5

Practical deep
learning ANN
demonstrations
Several practical DL demonstrations are shown in this chapter. You will

be prepared to follow along with the demonstrations provided you have

read the previous chapter or have acquired previous experience with

DL techniques and concepts. I had two goals in mind when writing this

chapter. The first was to clearly show how a complete ANN project could

be accomplished to produce realistic and useful results. The second was

to point out some potential pitfalls and unrealistic assumptions that are

common in ANN development.

280

�Parts list
You will need a standard RasPi desktop configuration and the Pi Camera

for these chapter demonstrations.

Item Model Quantity Source

Raspberry Pi 3 or 4 Model B or B+

(RasPi 3)

Model B (RasPi 4)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 16 GB, class 10

or larger

1 amazon.com

Raspberry Pi Camera

with ribbon cable

Version 2 or later 1 amazon.com

Raspberry Pi Camera

holder

Any that fits a

version 2 model

1 amazon.com

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

�Recognizing handwritten number
demonstration
This ANN project is considered a classic one within the ANN community.

It is focused on recognizing handwritten numbers. However, I would first

like to comment on some general project development guidelines before I

delve into the specifics for this project. Following these guidelines will help

you be successful in completing most projects, including small ones such

Chapter 5 Practical deep learning ANN demonstrations

281

as this one. The guidelines can be separated into a series of steps, which

will be individually discussed after the list:

	 1.	 Write down the requirements.

	 2.	 Establish resources for personnel, hardware, and

software.

	 3.	 Create a realistic schedule including milestones.

	 4.	 Start construction, development, and/or

implementation.

	 5.	 Begin testing.

	 6.	 Revise development/implementation based on test

results.

	 7.	 Begin production or field release.

	 8.	 Develop a maintenance plan.

Write down the requirements – It is important to write down the

project requirements, even if you are the only one working on the project.

Writing the requirements forces you to firmly understand what the project

is supposed to accomplish when completed. This guideline becomes

especially important if there are multiple team members working on the

project. Committing the requirements to paper and having all the team

members agree to them avoid future disagreements regarding what was to

be done and how it was to be accomplished.

Establish resources for personnel, funds, hardware, and software –

Knowing that all the resources required for the project are either

immediately available or there is a plan to acquire them is key for any

successful project completion. This step is likely optional for a single-

person project with a limited requirement, but is essential for a medium to

large project with a dedicated team.

Chapter 5 Practical deep learning ANN demonstrations

282

Create a realistic schedule including milestones – Establishing a

schedule is always a good idea, no matter what size project is being

attempted. A simple note on your desk or calendar will suffice for a

single-person software project, while more formal scheduling artifacts are

appropriate for medium- to large-scale projects. Creating milestones is

also useful, even if it is just a reminder to yourself that you are on schedule

or falling behind, which is more often the case. There are often specialized

project scheduling teams established for long-term, large-scale projects,

which assist project managers with staying on schedule.

Start construction, development, and/or implementation – This is

when the actual project work begins. For software development projects,

such as described in this book, you should allocate sufficient time to work

on the project without too many distractions. I know this is difficult in a

family situation, but having uninterrupted time is important for efficient

project completion. Formal projects are a different story because that is the

raison d’être for their existence.

Begin testing – This step is appropriate for projects involving

prototypes and/or software development. Testing hardware prototypes

to determine if they meet requirements is absolutely necessary and

no project can justifiably proceed without this step. Similarly, testing

software to see that it meets its requirements is also a requirement. There

may be formal ways of recording how well the prototype/software meets

requirements depending on the nature and scale of the project.

Revise development/implementation based on test results – Altering

and/or modifying the development/implementation must follow the

review and acceptance of test results. Not using test results would defeat

the whole purpose of testing and ultimately lead to an unsuccessful

project. Sometimes, testing reveals that the initial requirements list was

unrealistic or faulty in some manner. It is not unusual in a project life cycle

to have requirements change somewhat due to latent discoveries or even

the unfortunate event of having planned for resources unexpectedly being

delayed or made unavailable. What you want to be wary of is requirements

Chapter 5 Practical deep learning ANN demonstrations

283

“creep,” where nice to have requirements are quietly added to the list. This

situation can lead to a problematic project outcome.

Begin production or field release – The project is essentially

done and ready to be released for whatever purpose it was intended.

Sometimes, project managers will delay the final release pending nice

to have, small “tweaks.” This should be avoided because if the project

was developed using firm guidelines, it should be ready at the scheduled

date. Appropriate documentation should also be provided at this time

concerning how prospective users should interact with the project. On

large projects, user training will likely have already been started or even

completed by the release date.

Develop a maintenance plan – All projects, except for small

individualized projects, should include a maintenance scheme. This could

be a formal plan, or it could only be an update web site. It all depends on

the project scope and expected project lifetime.

Only four of the preceding steps are applicable for this project. The last

step is a hybrid combination of steps 4, 5, and 6 from the preceding list:

	 1.	 Write down the requirements.

	 2.	 Establish resources for personnel, hardware, and

software.

	 3.	 Create a realistic schedule including milestones.

	 4.	 Start development and testing and revise

development as necessary.

In real-world terms, these steps consist of the following details:

Write down the requirements:

•	 Create a Raspberry Pi-controlled handwritten number

recognition system.

•	 It will use an ANN designed to accommodate the

available training/validation dataset.

Chapter 5 Practical deep learning ANN demonstrations

284

•	 It will display results on a monitor screen.

•	 The user will use a terminal window to interact with the

system.

Establish resources for personnel, hardware, and software:

•	 Personnel – Self only.

•	 Equipment – See parts list. Internet access required to

download required dataset.

Create a realistic schedule including milestones:

•	 Three work days to create and test the initial ANN

•	 One work day to test the visual recognition feature

•	 One work day to complete documentation

Start development and testing and revise development as necessary:

•	 Very much a unique experience for every developer.

My approach, I suspect, differs significantly from other

developer’s approaches.

•	 I try to comment/document as I develop and will

backtrack to revise the comments based on the final

outcome.

�Project history and preparatory details
Recognizing handwritten numbers has been an important priority for

postal services worldwide. In many countries, postal codes are written

on letters and packages to improve the way these items are processed

in the system. Automated systems using video cameras coupled with

Chapter 5 Practical deep learning ANN demonstrations

285

handwritten number recognition software are used to mechanically

sort letters and packages without human intervention. Of course,

technologies have constantly improved to the point where most of the

packages sent through a postal service are now barcoded. Nonetheless,

many letters are still mailed with handwritten postal codes that still need

to be handled.

ANN was created that readily recognizes handwritten numbers.

The training and validation/test datasets used in this project come from

two Mixed National Institute of Standards and Technology (MNIST)

databases. These databases have been widely used for many years in the AI

community and are widely recognized as an accepted standard for rating

how well a specific ANN is for performing this task.

The MNIST databases were created from thousands of Images taken

from handwritten numeric digits written by 500 people. Half of these people

were US Census Bureau employees, and the other half were high school

students. The original black-and-white Images were normalized to fit into

a 20 x 20 pixel Image. They were further processed by using anti-aliasing to

generate a 1-byte grayscale value for each pixel in the original Image.

The MNIST datasets are large, consisting of 60,000 training Images

(104 MB) and 10,000 validation Images (18 MB). They are freely available

in a comma-separated value format at

Training set:

www.pjreddie.com/media/files/mnist_train.csv

Test set:

www.pjreddie.com/media/files/mnist_test.csv

Both datasets will be used in this project. I would suggest that you

download them and store them in a named directory that you can easily

Chapter 5 Practical deep learning ANN demonstrations

286

access. As mentioned previously, both datasets are in a CSV format, which

makes for easy import into a Python script. Every record in both datasets has

a label indicating the actual numerical digit represented by the Image. The

use of the labels is critical for both training and validating the ANN. Using

label datasets is termed supervised learning, and it is a fundamental

concept for how ANNs can learn. The ANN used in this project cannot be

trained or tested without labels being present for each record.

In this instance, there are separate datasets available for training and

testing. That is not always the case. When only a single dataset is available,

it must be parsed to provide training records and testing records. There is

no hard or fast rule existing on how to parse a single dataset. Personally, I

use an 80/20 rule where 80% of the dataset will be allotted for training and

20% for testing/validation. Other AI practitioners will likely have their own

rule of thumb, but I have found that the 80/20 rule seems to work well in

most instances.

Figure 5-1 shows the beginning of the first record in the training

dataset. This figure is a screenshot from a hex editor running on my

MacBook Pro laptop.

Chapter 5 Practical deep learning ANN demonstrations

287

Figure 5-1.  A portion of the first record in the MNIST training
dataset

Chapter 5 Practical deep learning ANN demonstrations

288

There are 784 bytes composing one Image because each Image

has been rescaled from 20 x 20 to 28 x 28 pixels. Each pixel represents a

grayscale pixel intensity, with values ranging from 0 to 255, where 0 is total

black and 255 is total white. Every record in the database has 784 pixel

values, 785 commas and 1 byte for the label value. Those values add up to

1570 bytes. When you consider that there are more than 60,000 training

records, the overall dataset size is about 100 MB. Handling a dataset this

size while developing a script is a chore even for the fastest processor, and

the RasPi does not fall in that category. Fortunately, there are two small

sub-sets for both MNIST train and test datasets, which can be used for

development. These are available at

Train dataset:

https://raw.githubusercontent.com/makeyourownneuralnetwork/

makeyourownneuralnetwork/master/mnist_dataset/mnist_train_100.csv

Test dataset:

https://raw.githubusercontent.com/makeyourownneuralnetwork/

makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv

All the datasets described earlier are in a CSV format, where commas

are used to separate individual data values. The Python language contains

useful functions to input CSV data into scripts in a numerical format

that can easily be used. The following code snippet opens a CSV file

and “reads” the contents into a data list. A data list is an object, which

efficiently stores and retrieves data for rapid access by the script.

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

I entered the preceding code into an interactive Python session to

reveal how this snippet works. Figure 5-2 shows the interactive session.

Chapter 5 Practical deep learning ANN demonstrations

289

You should be able to see that the data list was correctly instantiated.

I also entered a length command, which returned 100. That reflected the

number of elements in the data list, which is what was expected from the

mnist_train_100.csv file. In addition, I displayed the contents of the

first record, dataList [0], which displayed as series of 1570 integers, all

separated by commas. Note that the first integer is 5, which corresponds to

the record label.

You should also take note of the appearance of single quotes at the start

and end of the displayed integers. This indicates that Python considers

the data to be a long string. While it may appear as numbers, the Python

interpreter considers it to be a string of ASCII characters. The character

displayed just before the ending single quote is “\n”. This is the “escaped”

letter n. In ASCII terms, it represents the carriage return function, which

means that a new line is to be created at this point in the record, as the

ASCII characters are being interpreted. New line characters are used as

delimiters for the dataset. Delimiters indicate where one record stops and

Figure 5-2.  Interactive Python session for data file operations

Chapter 5 Practical deep learning ANN demonstrations

290

the next one starts. All 100 records are indexed by the list object, which

means that any particular can be randomly accessed without reading or

writing all the records leading up to that record. The indices are 0 based,

which means the index range is 0 to 99 for all of the records. Any record can

be randomly accessed using Python’s array element notation. For instance,

the middle or 50th element would be referenced as dataList [49].

Recall, in previous chapters, that it is important to have an awareness

regarding the nature of the data you are handling, regardless of the type of

mathematical operations being attempted. In this case, visually reviewing

individual handwritten records could provide you with insight into the

overall problem domain that simply could not be obtained by merely

reviewing numerical data lists.

The Matplotlib Python library will be used to provide an Image of any

selected data list record. Enter these next two commands in order to have

the Matplotlib library available for import into a script:

sudo apt-get update

sudo apt-get install python-matplotlib

The following script will be used to view any record in the 100 record

MNIST train dataset. The script is named viewRecord.py, and it is available

from the book’s companion web site:

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

Create data list

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

Chapter 5 Practical deep learning ANN demonstrations

291

Get the record number

print('Enter record number to be viewed: ', end = ' ')

num = input()

Get the record

record = dataList[int(num)].split(',')

Reshape the array for imaging

imageArray = np.asfarray(record[1:]).reshape(28,28)

Image it as a grayscale

plt.imshow(imageArray, cmap='Greys', interpolation='None')

plt.show()

An object named dataList contains all 785 elements from the requested

record. These are separate elements because the split method created

them as such based on the comma delimiter. The dataList object must

then be reshaped into a 28 x 28 numpy array in order to be Imaged. Each

value in the array will now correspond to a pixel intensity as shown in

the original Image. Also note that the numpy array starts with the second

element, whose index equals 1. That is because the first element is the

label, which you do not want to be included in the Image. Another item to

note is that “Greys” is intentionally misspelled in the imshow command.

I can only guess that an open source developer was not too familiar with

how to correctly spell it.

The script is run by entering this command:

python3 viewRecord.py

The resulting Image for record 0 is shown in Figure 5-3.

Chapter 5 Practical deep learning ANN demonstrations

292

The figure clearly shows a rather “lazy” number 5 digit drawn. You

can confirm that it is supposed to be the number 5 by examining the first

element in the numerical record listing shown in Figure 5-2.

At this point, you should be comfortable in dealing with the datasets

that will be used in the project. The next section shows you how to adjust

or modify the datasets so that they are compatible with what a practical

ANN requires as an input data source.

Figure 5-3.  Record 0 Image

Chapter 5 Practical deep learning ANN demonstrations

293

�Adjusting the input datasets
In the preceding discussion, it was pointed out that the pixel values will

range from 0 to 255. This range is significantly beyond an acceptable data

value input range for an ANN. Recall, in Chapter 4, where I was discussing

some issues and limitations regarding ANNs. In that section, I stated

Thus, ANN training datasets should limit x values to what
might be termed a pseudo-linear range of approximately -3
to 3.

The reason was the sigmoid function’s limiting action. Input data

values beyond +/- 3 will saturate the function output, effectively shutting

down any ANN learning function. In communication electronics

terminology, this situation is often called running out of dynamic range.

Fortunately, it is easy to adjust the input data values to an acceptable range

of 0.01 to 1.00 without any loss in ANN accuracy. The Python statement to

make this adjustment is

adjustedRecord = (np.asfarray(record[1:])/255.0 * 0.99) + 0.01

I added this statement to the interactive Python session I ran earlier.

Figure 5-4 shows the revised results along with the interactive session.

Chapter 5 Practical deep learning ANN demonstrations

294

Figure 5-4.  Revised interactive Python session for data file operations

Chapter 5 Practical deep learning ANN demonstrations

295

I added the record adjustment statement to script in order to set an

acceptable value range for the input data values. But what about the

output data values? I address that question next.

�Interpreting ANN output data values
I have mentioned in previous chapters that ANNs do one of two things.

They either predict or classify. The ANN to be used in this project is a

classification type because its purpose is to accept a digitized handwritten

number and classify it into one of ten classes, namely, the digits 0 to 9. I

have just showed how the input data values will now all be adjusted to stay

within the range of 0.01 to 1.00. This can only mean that all ANN outputs

must also stay within that range. There is no multiplicative or gain function

existing in an ordinary ANN, which will produce output values greater

than the maximum input values. Therefore, the outputs will range from

0.0 to 1.0. Notice that I lowered the output lower range limit to 0.0 from the

input lower range limit of 0.01. This is because it is entirely possible to have

absolutely no input to a given output node. In reality, there will always be

some noise present on the output of all nodes in the output layer. You will

see levels like 5 x 10-9, which for all practical purposes is 0.

The answer to the question is not on how the output levels can or

should be adjusted, but on how to interpret the levels that ultimately are

generated. In an ideal handwritten number recognition ANN, when record

Chapter 5 Practical deep learning ANN demonstrations

296

0 from the training set is presented to the ANN, the output would be as

shown in the following data vector:

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

.

.

.

.

.

.

.

.

.

.

ì

í

ï
ï
ï
ï
ï
ïï

î

ï
ï
ï
ï
ï
ï
ï

ü

ý

ï
ï
ï
ï
ï
ïï

þ

ï
ïï
ï
ï
ï
ï
ï

In reality, you might see a vector like

0 178

0 052

0 027

0 035

0 042

0 686

0 109

0 063

0 051

0 018

.

.

.

.

.

.

.

.

.

.

ì

í

ï
ï
ï
ï
ï
ïïï

î

ï
ï
ï
ï
ï
ï
ï

ü

ý

ï
ï
ï
ï
ï
ïï

þ

ï
ï
ï
ï
ï
ï
ï

There are nine out of ten numbers near 0 and one much higher than

the rest. It is not unreasonable to consider that the high value is the

probability that the ANN “believes” the input Image is that of a 5. There

is no formal mathematical logic, which can be applied to prove that this

ANN has produced a true probability, but most practitioners accept my

Chapter 5 Practical deep learning ANN demonstrations

297

interpretation of the results. Note that in other ANN structures there are

layers that can be added, which will generate true probabilities, but not

in this simplified ANN. Sometimes, there may be another class or two

with a higher number, but less than the maximum value. Such a situation

indicates that the ANN is having a difficult time in classifying the input and

“believes” the input data pattern may be somewhat associated with other

classes. In such cases, only more training can alleviate this situation. Just

remember it is practically impossible to train an ANN which will make

perfect predictions or classifications. This is also true when considering

a human expert. There is no one who can 100% correctly classify any

handwritten number presented to him or her.

The next step in this project development is to create an ANN

structure, which is paramount to have a successful outcome.

�Creating an ANN that does handwritten number
recognition
The first decision to be made is to determine the basic ANN structure

to be used. I decided that a three-layer ANN would be the simplest and

still an effective design. Three-layer ANNs are not to be underestimated

just because there is only one hidden layer. Additional hidden layers

can always be added if it is found that the three-layer design is under-

performing. The ANN structure used in this demonstration uses the

multi-layer perceptron model. This is because the basic elemental artificial

neural, which is used as a computing element, was named the perceptron

in 1958 by Frank Rosenblatt of the Cornell Aeronautical Laboratory.

The next step in creating an ANN structure is to determine the number

of nodes in each layer. In this application, setting the number of nodes

for the input and output layer nodes is easy. The input layer must have

784 nodes to represent the input from each pixel value. The output layer

must have ten nodes to represent each class that may be recognized. The

hidden layer is the remaining one which must have a node number set.

Chapter 5 Practical deep learning ANN demonstrations

298

Determining the number of nodes to be assigned to the hidden layer is

more difficult than setting the node numbers for either the input or output

nodes. I have done a good amount of research regarding how to set the

hidden layer node amount. There are a variety of “rules of thumb” to

determine this number. The following are among the most common:

•	 Use the mean of the number of input layer nodes (Ni)

and output layer nodes (No).

•	 Use the square root of Ni times No.

•	 The number of hidden layer nodes (Nh) should be

between the size of Ni and No.

•	 Nh should be two-thirds the size of Ni plus No.

•	 Nh should be less than twice the size of Ni.

It soon became clear to me that setting Nh is kind of a trial-and-

error experiment. There are two terms that I wish to discuss at this time,

which are appropriate when considering how many hidden layer nodes

to instantiate. The first is underfitting which can happen when too few

nodes are created. The symptoms for underfitting is that the ANN cannot

be trained and/or the error rate is unacceptably high. The other term

is overfitting, where there is a surplus of nodes. In this case, symptoms

include the situation when training never converges because of the extra

nodes and accuracy diminishes because the ANN is overly sensitive

to noise and artifacts. When overfitting occurs, the ANN has so much

information that the input dataset is insufficient to train all the nodes in

the hidden layer; in addition, the length of training time can dramatically

increase to the point where it never stops or converges as previously stated.

The optimal goal in setting an appropriate number of hidden layer nodes

is to avoid both under-fitting and overfitting.

Chapter 5 Practical deep learning ANN demonstrations

299

Based on the preceding discussion and my experiments, I arrived at

the following conclusion regarding setting the number of hidden layer

nodes:

The number of hidden layer nodes in a three-layer ANN should
be set at the square of the number of output nodes, but should
not exceed the mean of the input and output layer nodes.

This guideline is a mashup of several rules of thumb that I earlier

cited. I have also noted anecdotally that there seems to be a squaring

relationship that often occurs in designing ANN structures. This

relationship was present when the mean was calculated for setting weights

and when the error function slope was computed. Squaring the 10 output

node number means that 100 hidden layer nodes should be set. This value

seems proper given the large size of the input layer and the relatively small

size of the output layer. If the ANN performs poorly, the 100 number can

always be modified.

It is time to show you the initial training script now that the ANN

structure has been determined.

�Initial ANN training script demonstration
The following data implements a short script that set ups an ANN and

trains it using the abbreviated 100 record MNIST train dataset. It does not

yet test the ANN for accuracy. That will come after this script is discussed.

This script is named trainANN.py, and it uses the ANN class that was

developed in Chapter 4. Please reread that chapter regarding this class

because it is a key part of this script. This script is available from the book’s

companion web site:

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

Chapter 5 Practical deep learning ANN demonstrations

300

Setup the ANN configuration

inode =784

hnode =100

onode =10

Set the learning rate

lr = 0.2

Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

Train the ANN using all the records in the list

for record in dataList:

 recordx = record.split(',')

 inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

 train = np.zeros(onode) + 0.01

 train[int(recordx[0])] =0.99

 # Training begins here

 ann.trainNet(inputT, train)

There are several prerequisites that must be set prior to running the

preceding script. The file ANN.py must be in the same directory as the

script, and the mnist_train_100.csv dataset must also be in the same

directory. Simply enter this command to run the script:

python trainANN.py

There are no results shown if the script ran without any errors because

the intention was just to train the ANN. You should correct any errors

before proceeding with the next portion of this demonstration.

Chapter 5 Practical deep learning ANN demonstrations

301

�ANN test script demonstration
The trained ANN completed in the previous section must now be tested in

order to assess how well it performs in classifying handwritten numbers.

The test dataset to be used is the small 10 record set downloaded from

the same web site where the 100 record training dataset was downloaded.

A modified version of the trainANN script will be used for this test. I

renamed the modified trainANN script to testANN_short.py to reflect both

its new purpose and to differentiate it from a follow-on version which will

employ the full-sized train and test datasets.

This script is available from the book’s companion web site:

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

Setup the ANN configuration

inode =784

hnode =100

onode =10

Set the learning rate

lr = 0.2

Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

Create the test list data

testDataFile = open('mnist_test_10.csv')

Chapter 5 Practical deep learning ANN demonstrations

302

testDataList = testDataFile.readlines()

testDataFile.close()

Train the ANN using all the records in the list

for record in dataList:

 recordx = record.split(',')

 inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

 train = np.zeros(onode) + 0.01

 train[int(recordx[0])] =0.99

 # Training begins here

 ann.trainNet(inputT, train)

Iterate through all 10 test records and display output

data vectors

for record in testDataList:

 recordz = record.split(',')

 # Determine record's label

 labelz = int(recordz[0])

 # Adjust record values for ANN

 inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

 outputz = ann.testNet(inputz)

 print('output for label = ', labelz)

 print(outputz)

As in the preceding script, ensure that the file ANN.py, mnist_

train_100.csv, and mnist_test_10.csv datasets are in the same directory as

the script. Enter this command to run the script:

python testANN.py

Figure 5-5 shows the complete results after running the script. I made a

composite figure from two screenshots in order to capture all the results.

Chapter 5 Practical deep learning ANN demonstrations

303

Figure 5-5.  testANN script results

Chapter 5 Practical deep learning ANN demonstrations

304

The 60% match rate displayed in Table 5-1 is barely satisfactory;

however, it is not surprising considering that the ANN was only trained

with 100 records out of a potential 60,000 that are available for training.

I also like to delve into the details when confronted with an apparently

large error result. Consequently, I modified the viewResults script to

examine the four records, which were not correctly identified. I collected

and combined their Images into Figure 5-6 in order to identify any

common attributes, which might have led to the misidentifications.

Table 5-1.  The results of the ANN test run

Label 7 2 1 0 4 1 4 9 5 9

Index 7 3 1 0 4 1 4 8 1 4

Match x x x x x x

Chapter 5 Practical deep learning ANN demonstrations

305

You can immediately see that the ANN has trouble with the number 9.

Two of the four Images are that number. The number 5, which is the one

on the lower left-hand side, is so badly written, that no one (machine or

human) could recognize it, so the ANN is excused. That leaves the number

2 Image on the upper left-hand side. That is clearly written and should have

been properly identified. The only solution to these problems, with the

possible exception of the number 5 digit, is to further train the ANN. Given

the results of this early experiment, I would fully expect that a fully trained

ANN would easily score above 90% in accuracy.

Figure 5-6.  Misidentified handwritten numeric digits

Chapter 5 Practical deep learning ANN demonstrations

306

I was also interested in what the results would be if I ran the testANN

script multiple times, but not displaying the output data vectors, but only

the match results, which is an accuracy metric. Accordingly, I modified

the testANN_short script to accommodate these changes and renamed it

testANN_metrics.py. This script is available from the book’s companion

web site:

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

Setup the ANN configuration

inode =784

hnode =100

onode =10

Set the learning rate

lr = 0.2

Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

Create the test list data

testDataFile = open('mnist_test_10.csv')

testDataList = testDataFile.readlines()

testDataFile.close()

Chapter 5 Practical deep learning ANN demonstrations

307

Train the ANN using all the records in the list

for record in dataList:

 recordx = record.split(',')

 inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

 train = np.zeros(onode) + 0.01

 train[int(recordx[0])] =0.99

 # Training begins here

 ann.trainNet(inputT, train)

Iterate through all 10 test records and display output

data vectors

match = 0

no_match = 0

for record in testDataList:

 recordz = record.split(',')

 # Determine record's label

 labelz = int(recordz[0])

 # Adjust record values for ANN

 inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

 outputz = ann.testNet(inputz)

 max_value = np.argmax(outputz)

 if max_value == labelz:

 match = match + 1

 else:

 no_match = no_match + 1

 success = float(match) / float(match + no_match)

print('success rate = {0}'.format(success))

The script is run by entering this command:

python3 testANN_metrics.py

Figure 5-7 shows the results after I ran the script ten consecutive times.

Chapter 5 Practical deep learning ANN demonstrations

308

You should be able to see that the success rate ranged between 0.4

and 0.6. I averaged all ten values and determined the average success rate

was equal to 0.52. This is a rather poor result, but again as I explained

earlier, the ANN was poorly trained using only 100 out of 60,000 plus

available records. Incidentally, those readers with Python skills might

have wondered why I didn’t include a loop for ten consecutive script runs

or epochs. I didn’t because the ANN must be reinitialized for each run or

else the same trained ANN would be used for each pass, yielding the same

success rate. Rewriting the script to accommodate a reinitialized ANN was

certainly doable, but I didn’t want to commit the time to do so when it was

much simpler to just manually rerun the script ten times.

You might question why the results for each epoch were different?

The answer is that the initially weighting matrices are generated using a

Figure 5-7.  Results for ten consecutive runs of script testANN_metrics

Chapter 5 Practical deep learning ANN demonstrations

309

random normal distribution. Therefore, some of the matrices were slightly

better suited to produce more accurate results than others. These initial

distribution variations will disappear when the ANN is trained using the

full 60,000 training record set which is next in the demonstration schedule.

�ANN test script demonstration using the full
training dataset
You only have to make one slight change to the testANN_metrics script to

use the full training set. Change the following statement from

dataFile = open('mnist_train_100.csv')

to

dataFile = open('mnist_train.csv')

I have not included a new script listing because the modifications

are minor and easily done. You can then rerun the testANN_metrics

script with the ten test records; however, it will take much longer to finish

executing because there are over 60,000 training records to be processed.

Expect to wait up to 10 minutes depending on the RasPi processor speed.

I ran the newly modified script and found that it only took 6 minutes and

3 seconds to finish. This was a pleasant surprise and showed me just how

powerful the A-72 ARM, Quad Core, 1.5 GHz processor is in the RasPi 4.

The result showed a 0.9 success rate, which I actually expected, since

one of the ten Images I considered is undecipherable.

The next step in this demonstration series is to run the script with

the full 10,000 record test dataset. Again, this is easily accomplished by

modifying one statement as follows

testDataFile = open('mnist_test_10.csv')

to

testDataFile = open('mnist_test.csv')

Chapter 5 Practical deep learning ANN demonstrations

310

Again, I have not included a new script listing because the

modifications are minor and easily done to the existing script. You can

then rerun the testANN_metrics script with the 10,000 test records;

however, it will take even longer to finish executing than above because

there are 10,000 test records to process in addition to training with the

60,000 records. Fortunately, it is much quicker to test the ANN per record

than it is to train it per record.

I reran the newly modified script and found that it only took 6 minutes

and 15 seconds to finish. The result showed a 0.9458 success rate, which

I expected based on all the previous discussions regarding a fully trained

ANN. This success rate value is generally considered a good ANN result.

The learning rate can also have a significant impact on the ANN

accuracy. I again modified the testANN_metrics script to test the learning

rate impact on accuracy. The modification consisted of creating a loop

that modified the learning rate from 0.1 to 0.6 while recalculating the

success rate. I also believe learning rate values beyond 0.6 is not realistic

to set in any practical ANN. This time, the modifications were of sufficient

magnitude that I believed it was appropriate to include a full script listing.

I also renamed the script testANN_metrics_lr.py to indicate the learning

rate variations. This listing is available from the book’s companion web site:

Import required libraries

import numpy as np

from ANN import ANN

Setup the ANN configuration

inode =784

hnode =100

onode =10

Set the initial learning rate

lr = 0.1

Chapter 5 Practical deep learning ANN demonstrations

311

Create the training list data

dataFile = open('mnist_train.csv')

dataList = dataFile.readlines()

dataFile.close()

Create the test list data

testDataFile = open('mnist_test.csv')

testDataList = testDataFile.readlines()

testDataFile.close()

Loop to iterate learning rates from 0.1 to 0.6 in 0.1 steps

for i in range(6):

 # Instantiate an ANN object named ann

 ann = ANN(inode, hnode, onode, lr)

 # Train the ANN using all the records in the list

 for record in dataList:

 recordx = record.split(',')

 �inputT = �(np.asfarray(recordx[1:])/255.0*0.99) + 0.01

 train = np.zeros(onode) + 0.01

 train[int(recordx[0])] =0.99

 # Training begins here

 ann.trainNet(inputT, train)

 # Iterate through all the test records

 match = 0

 no_match = 0

 for record in testDataList:

 recordz = record.split(',')

 # Determine record's label

 labelz = int(recordz[0])

 # Adjust record values for ANN

Chapter 5 Practical deep learning ANN demonstrations

312

 inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

 outputz = ann.testNet(inputz)

 max_value = np.argmax(outputz)

 if max_value == labelz:

 match = match + 1

 else:

 no_match = no_match + 1

 success = float(match) / float(match + no_match)

 # Display the learning rate and success rate

 print('lr = {0} success rate = {1}'.format(lr,success))

 lr = lr + 0.1

Be forewarned that this script takes almost an hour to run through

completely. It is run by entering this command:

python3 testANN_metrics_lr.py

Figure 5-8 shows the results after I ran the script.

Figure 5-8.  Results after running the testANN_metrics_lr script

You should be able to see that the success rate ranged down

from 0.9456 to 0.8989 for learning rates that range up from 0.1 to 0.6,

respectively. The ANN accuracy decreases substantially as the learning

Chapter 5 Practical deep learning ANN demonstrations

313

rate increases. This is because the global minimum is not being reached

because the gradient descent algorithm steps are increasing in magnitude.

If you are confused by the proceeding, I would suggest that you reread the

appropriate sections in Chapter 4 to refresh yourself on how learning rate

and the gradient descent algorithm are related. I would suggest that the 0.2

learning rate that I selected for the initial test run was optimal because the

success rate of 0.9458 was higher than any recorded in this run. However,

the actual success rate differences are miniscule and likely related to

random variation. In any case, a learning rate of 0.1 or 0.2 would be ideal

for this ANN.

You will now have a well-performing ANN if you replicated the

demonstrations to this point. Any ANN with an accuracy of approximately

95% is generally considered high performing. I would recommend to

continue experimenting with this ANN such as changing the number of

hidden nodes to see what effect it has on the network performance.

The next series of demonstrations expands on this ANN by

incorporating a Pi Camera to enable real-time number recognition.

�Recognizing your own handwritten numbers
It is a natural extension of the previous demonstrations to experiment with

your own handwritten number recognition instead of relying on stored

examples. This feature can easily be implemented using a Pi Camera,

which is a video camera especially designed to work seamlessly with

a RasPi. The Pi Camera interface has been incorporated into all recent

versions of the Raspbian Linux distributions. All that is need is to activate

it, which I will shortly discuss. But first, you need to see how to install the

hardware.

Chapter 5 Practical deep learning ANN demonstrations

314

�Installing the Pi Camera

I will be discussing how to install version 2 of the Pi Camera on a RasPi 4.

These instructions are also applicable for RasPi 2 and 3 versions. Figure 5-9

shows a Pi Camera, version 2, that will be used in the next few

demonstrations.

Figure 5-9.  Pi Camera, version 2

Chapter 5 Practical deep learning ANN demonstrations

315

The camera’s specifications are impressive given its compact size and

low cost. I have summarized the key specifications as follows:

•	 8 megapixel native resolution, high quality Sony

IMX219 Image sensor

•	 Maximum still photograph resolution of

3280 x 2464 pixels

•	 Capture video at 1080p30, 720p60, and

640x480p90 resolutions

•	 All software supported within the latest version of the

Raspbian Operating System

•	 Optical size of 1/4”

•	 Wide angle lens with a range of 4 inches to infinity

The camera comes with a short flex ribbon cable that is plugged into

the Camera Serial Interface (CSI) socket that is located directly behind the

RJ45 socket on the RasPi. Figure 5-10 shows where the CSI socket is located

on a RasPi.

Chapter 5 Practical deep learning ANN demonstrations

316

Note, there is another similar socket located on the RasPi 2, 3, and 4

models. That one is the Display Serial Interface (DSI) socket. You might

accidentally plug in the camera cable into that socket, but it shouldn’t do

any damage. The camera would simply not work.

To plug in the camera cable into the CSI socket, you must carefully pull

directly up on two black plastic tabs on each side of a slim plastic bar. Be

very careful because the plastic bar is flimsy and could easily be broken by

the excessive use of force. The plastic bar will become loose, yet still stay

attached to the socket when it is lifted.

Next, carefully insert the flex cable into the socket with the exposed,

silver-colored finger contacts facing away from the RJ45 connector. The

blue backing on the ribbon cable should now face the RJ45 connector.

Ensure the cable is firmly seated at the bottom of the socket and the cable

is perpendicular to the board and not slanted. Next, gently push down on

the black plastic tabs to lock the cable in place. Just use a firm, but gentle

pressure to lock down the cable.

Figure 5-10.  CSI socket location

Chapter 5 Practical deep learning ANN demonstrations

317

Please note that it is possible, if not probable, that the cable can

become dislodged when the RasPi is moved or relocated. If this happens,

the OS will start reporting strange errors that it wasn’t able to load certain

drivers or that you should enable the camera. I always check to see that

the camera cable is inserted properly before chasing down those errors.

Figure 5-11 shows a properly inserted camera cable.

Figure 5-11.  Properly inserted camera cable

You will next need to install some additional software packages in

order to use the camera with the demonstrations.

Chapter 5 Practical deep learning ANN demonstrations

318

�Installing the Pi Camera software

The first action to be taken is to enable the camera within the Raspbian

OS. This is done using the raspi-config utility. This utility is started by

entering the following command:

sudo raspi-config

Figure 5-12 shows the initial menu after you have entered this

command. Select 5 Interfacing Options, which will install all the drivers

for the Pi Camera. There is a follow-on screen after you make the initial

selection where you enable the camera drivers.

Figure 5-12.  raspi-config menu screen

Once the camera has been enabled, you will need to install some

additional software. Enter the following command to install the Python

picamera library:

sudo apt-get update

sudo apt-get install python-picamera

Chapter 5 Practical deep learning ANN demonstrations

319

You need to install the Pillow package, which contains the Python

Imaging Library (PIL). Enter this next command:

sudo apt-get install python-pillow

That’s all the software that needs to be installed in order to start the

demonstrations.

�Handwritten number recognition demonstration

The first action you should try is to test the Pi Camera installation. Enter

this command:

raspistill -t 5000

You should see a full-height, color video displayed on your monitor

for 5 seconds at whatever the camera was pointing at. The width will not

quite expand to the monitor width because of the aspect ratio; however,

if you see a live Image, you can be assured that the Pi Camera is operating

correctly. If no Image was displayed, I would recheck the camera cable

connections to ensure that they are proper and correct. In my experience,

at least 95% of hardware issues are related to electrical connections.

If you passed this first check, you will be ready for the initial

demonstration for handwritten number recognition using a Pi Camera.

You will need to make a target to Image. I would suggest using 3 x 5

white card stock to write on and a fine tip black “Sharpie” marker. The

marker on white card stock will provide a good contrast for imaging the

number. Using a pen or pencil on paper is not recommended because

there will not be sufficient contrast to define an Image consistent with

the Images used to train the ANN. Remember, the ANN cannot perform

correctly if it is presented with Images it was not trained to recognize.

Figure 5-13 shows my target handwritten number.

Chapter 5 Practical deep learning ANN demonstrations

320

This figure was imaged using the following command:

raspistill -o zerobw.jpg

The Image will need to be preprocessed before it is in form suitable

for inputting into the ANN for number recognition. This preprocessing

will be part of a modified testANN script that I used to process this Image.

I renamed the modified script testANN_Image.py, and it is available from

the book’s companion web site.

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

import PIL

from PIL import Image

Setup the ANN configuration

inode = 784

Figure 5-13.  Target handwritten number

Chapter 5 Practical deep learning ANN demonstrations

321

hnode = 100

onode = 10

Set the learning rate

lr = 0.1

Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

Create the training list data

dataFile = open('mnist_train.csv')

dataList = dataFile.readlines()

dataFile.close()

Train the ANN using all the records in the list

for record in dataList:

 recordx = record.split(',')

 inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

 train = np.zeros(onode) + 0.01

 train[int(recordx[0])] = 0.99

 # Training begins here

 ann.trainNet(inputT, train)

Create the test list data from an image

img = Image.open('zerobw.jpg')

img = img.resize((28,28), PIL.Image.ANTIALIAS)

Read pixels into list

pixels = list(img.getdata())

Convert into single values from tuples

pixels = [i[0] for i in pixels]

Save to a temp file named test.csv with comma delimiters

imgTmp = np.array(pixels)

imgTmp.tofile('test.csv', sep=',')

Chapter 5 Practical deep learning ANN demonstrations

322

Open the temp file and read into list

testDataFile = open('test.csv')

testDataList = testDataFile.readlines()

testDataFile.close()

Iterate through all list elements

for record in testDataList:

 recordx = record.split(',')

 # Adjust record values for ANN

 input = (np.asfarray(recordx[0:])/255.0*0.99)+0.01

 output = ann.testNet(input)

Display output data vector

print(output)

The following comments apply to the modifications incorporated into

the script to preprocess the Image acquired using the Pi Camera.

import PIL

from PIL import Image

The Python Imaging Library (PIL) and its sub-library Image are

required to process the acquired Image with Python.

img = Image.open('zerobw.jpg')

img = img.resize((28,28), PIL.Image.ANTIALIAS)

The first command loads the file, which is hard-coded into the script.

The loaded Image is then resized into a 28 x 28 pixel sized Image. The

ANTIALIAS argument ensures that no artifacts are created during the

downsizing operation.

pixels = list(img.getdata())

Chapter 5 Practical deep learning ANN demonstrations

323

This command converts the 784 pixel values into a list named pixels.

imgTmp = np.array(pixels)

imgTmp.tofile('test.csv', sep=',')

These commands convert the list into an array named imgTmp.

This array is then converted into a comma-delimited array, which is

subsequently stored into a file named test.csv.

I ran this script by entering this command:

python3 testANN_image.py

The script took over 6 minutes to run, which was expected because all

60,000 records are being used to train the ANN. The results are shown in

Figure 5-14.

Figure 5-14.  Results for running the testANN_image script

The results clearly showed that the 0th index had the highest value,

which meant the ANN classified the input Image as a 0, which was the

correct result.

Chapter 5 Practical deep learning ANN demonstrations

324

This last demonstration took a considerable amount of effort in order

to show you that a RasPi-controlled camera coupled with a well-trained

ANN can recognize a handwritten number.

�Handwritten number recognition using
Keras
There are a number of techniques available to recognize handwritten

numbers beyond the relatively simple approach I just demonstrated. It

is entirely possible to achieve an accuracy rating beyond 95% by using a

Keras ANN. But now, I have to explain what Keras is and how it can be

used for this application.

�Introduction to Keras
Keras is an open source neural network library written in Python that runs

on top of Theano, CNTK, or TensorFlow backends. It was designed and

developed by François Chollet, a Google engineer, to be modular, fast, and

easy to use.

Keras is a high-level API that is used to make models, define layers,

and/or set up multiple input-output models. Keras also compiles the

network model with both loss and optimizer functions. There is also a

training process available with a fit function.

Keras doesn’t handle low-level API functions such as making a

computational graph, creating tensors, or other variables because those

functions are relegated to the back-end engine, that is, TensorFlow, CNTK,

or Theano.

In Keras, neural layers, cost functions, optimizers, initialization

schemes, activation functions, and regularization schemes are stand-alone

modules that may be combined to create new models. New modules are

Chapter 5 Practical deep learning ANN demonstrations

325

simple to add, as are new classes and functions. All models are defined

in regular Python code and do not require the use of separate model

configuration files.

As mentioned earlier, Keras does not do low-level operations, such as

tensor products and convolutions. Instead, it relies on a back-end engine

for that. Although Keras supports multiple back-end engines, its primary

(and default) backend is TensorFlow, and its primary corporate supporter

is Google. The Keras API comes packaged in TensorFlow as tf.keras,

which became the primary TensorFlow API as of the beginning of 2019.

�Installing Keras
Keras should be installed in a Python virtual environment, preferably the

same one that supports OpenCV. The following commands will install

the latest versions of TensorFlow and Keras. The most current version at

the time of this writing for the TensorFlow backend is 2.0, and the latest

version for Keras is 2.2.4.

Instantiate the virtual environment and enter this command to install

TensorFlow:

pip install tensorflow

Next, enter this command to install Keras:

pip install keras

Note that the TensorFlow version installed using the pip package

manager is 1.13 and not 2.0. This was because at the time of this writing

version 2.0 was still being classified as beta and apparently the folks in

charge of the pip repository did not want to make a beta version available.

In any case, this TensorFlow version worked quite well in all the book

demonstrations.

Chapter 5 Practical deep learning ANN demonstrations

326

Next, ensure that the following Python dependencies are installed in

the virtual environment:

numpy

scipy

Matplotlib

At this point, a relatively simple multi-layer perceptron (MLP) model

can be created using Keras.

�Downloading the dataset and creating a model
The first step in this section is to show you how to download the full

MNIST dataset. The Keras deep learning library provides a convenience

method for loading the MNIST dataset. The following statement loads both

the full-sized training and test datasets:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

I will be presenting the Python script in sections with commentary

following the code listings.

Import required Keras libraries

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import np_utils

import numpy as np

This code imports Keras modules that will be used to build the ANN as

well as the MNIST dataset. Numpy is also imported.

Set a random seed

seed = 42

np.random.seed(seed)

Chapter 5 Practical deep learning ANN demonstrations

327

Initialize a random number generator, which ensures ANN results are

reproducible.

Load the MNIST dataset into training and test datasets.

(X_train, y_train), (X_test, y_test) = mnist.load_data()

loads the training and test datasets.

Flatten the 28 x 28 image into a 784 element input data

vector

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).

astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).

astype('float32')

This code portion converts the 3D datasets into 1D data vectors. The

use of 4-byte data float values helps reduce memory usage.

Normalize data input values from 0 - 255 to 0 -1.0.

X_train = X_train / 255.0

X_test = X_test / 255.0

This code is just another way to adjust the pixel intensities which range

from 0 to 255 to the 0 to 1.0 needed for the ANN.

One hot encoding of the categorical outputs

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test[1]

One hot encoding is the representation of categorical variables as

binary vectors. It should always be used to encode ANN outputs that have

categories or classes as outputs, even in the case where the outputs are

numbers, which is true for this case.

Chapter 5 Practical deep learning ANN demonstrations

328

This encoding first requires that the categorical values be mapped to

integer values. Then, each integer value is represented as a binary vector,

that is, all zero values except the index of the integer, which is marked

with a 1.

The following example should help clarify this concept:

Assume that there is a sequence of labels with the values “red” and

“green.”

Assign “red” an integer value of 0 and “green” an integer value of 1. It

is called integer encoding as long as these numbers are assigned to these

labels. Consistency is important so that the encoding can later be inverted

and labels be restored from integer values.

Next, create a binary vector to represent each integer value. The vector

will have a length of 2 for the 2 possible integer values. The “red” label,

encoded as a 0, will be represented with a binary vector [1, 0] where the 0th

index is marked with a value of 1. In turn, the “green” label encoded as a 1

will be represented with a binary vector [0, 1] where the index 1 is equal to 1.

Thus, if the sequence was

“red,” “red,” “green”

it would be represented by the following integer encoding

0, 0, 1

and a one hot encoding of

[1, 0]

[1, 0]

[0, 1]

One question that beginners often asked is why bother with one

hot encoding? The answer is that machine learning algorithms cannot

work with categorical data directly. The categories must be converted

into numbers. This is true for both input and output variables that are

categorical.

Chapter 5 Practical deep learning ANN demonstrations

329

Sometimes, integer encoding can be directly applied and rescaled

as needed. This may work for problems where there is a natural ordinal

relationship between the categories and in turn the integer values, such

as labels for temperature “cold,” “warm,” and “hot.” Problems arise when

there is no ordinal relationship, and allowing the representation to exist

would likely be problematic for ANN learning to happen. Consider how

labels such as “dog” and “cat” could be handled.

Baseline model definition

def baseline_model():

 # Create model

 model = Sequential()

 �model.add(Dense(num_pixels, input_dim=num_pixels, kernel_

initializer='normal', activation='relu'))

 �model.add(Dense(num_classes, kernel_initializer='normal',

activation='softmax'))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

This is the code portion that defines an ANN and compiles it. The ANN

definition is in the form of a method, which allows to be called as needed

to further refine the model. There is one hidden layer in the definition,

which uses a “relu” activation function. ReLU is short for rectified linear

unit and is the most commonly used activation function in deep learning

models. This function returns 0 if it receives any negative inputs. For

positive inputs it returns values according to the following equation:

f x x x() = () = ()max max0 0, ,

Graphically, the function is as plotted in Figure 5-15.

Chapter 5 Practical deep learning ANN demonstrations

330

It is surprising that such a simple function (and one composed of

two linear pieces) will allow a model to account for non-linearities and

interactions so well. But the ReLU function works great in most applications,

and it is very widely used as a result.

The final layer uses a “softmax” activation function. The softmax

function, also known as softargmax or normalized exponential function,

is a function that takes as input a vector of K real numbers and normalizes

it into a probability distribution consisting of K probabilities. That is,

prior to applying softmax, some vector components could be negative or

greater than one and might not sum to 1; but after applying softmax, each

component will be in the interval 0 to 1 and all the components will add

up to 1, so that they can be interpreted as probabilities. Furthermore, the

larger input components will correspond to larger probabilities. The softmax

function is thus commonly used as an activation function in ANNs to map

the non-normalized output of a network to a probability distribution over all

the predicted output classes.

Figure 5-15.  ReLU plot

Chapter 5 Practical deep learning ANN demonstrations

https://en.wikipedia.org/wiki/Interval_(mathematics)

331

The last statement in this code portion compiles the model.

Compilation is needed before training the model. The model is configured

during compilation according to three arguments:

•	 A loss function – This is the objective that the model

will try to minimize. It can be the string identifier

of an existing loss function (such as categorical_

crossentropy or mse), or it can be an objective

function.

•	 An optimizer – This could be the string identifier of an

existing optimizer (such as adam, rmsprop, or adagrad)

or an instance of the Optimizer class.

•	 A list of metrics – For any classification problem, this

argument would be set to metrics=['accuracy'].

A metric could be the string identifier of an existing

metric or a custom metric function.

Run the demo

model = baseline_model()

model.fit(X_train, y_train, validation_data=(X_test,

y_test), epochs=10, batch_size=200, verbose=2)

Final evaluation

scores = model.evaluate(X_test, y_test, verbose=0)

print('Baseline error: %.2f%%'%(100-scores[1]*100))

The last code portion is the driver code, which tests the new ANN with

the MNIST dataset. A model named model is first instantiated and then

trained using the Keras fit function. A scores tuple is then generated by

calling the Keras evaluate method. The testing continues for 10 epochs

with the final statement showing the ultimate ANN accuracy.

Chapter 5 Practical deep learning ANN demonstrations

332

The complete script with commentary is shown in the following

data. I named the script kerasTest.py, and it is available from the book’s

companion web site.

Import required libraries

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import np_utils

Random seeding

seed = 42

np.random.seed(seed)

Load MNIST data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Flatten the 28 x 28 image

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).

astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).

astype('float32')

Normalize inputs from 0-255 to 0-1

X_train = X_train / 255.0

X_test = X_test / 255.0

One hot encoding

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

Chapter 5 Practical deep learning ANN demonstrations

333

Define baseline model

def baseline_model():

 # Create model

 model = Sequential()

 �model.add(Dense(num_pixels, input_dim=num_pixels, kernel_

initializer='normal', activation='relu'))

 �model.add(Dense(num_classes, kernel_initializer='normal',

activation='softmax'))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

Run the demo

model = baseline_model()

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=10, batch_size=200, verbose=2)

Final evaluation

scores = model.evaluate(X_test, y_test, verbose=0)

print('Baseline error: %.2f%%'%(100-scores[1]*100))

The script should be run in the virtual environment using the following

command:

python kerasTest.py

The script does take some time to complete because it not only trains

the model using the full 60,000 MNIST training dataset, it repeats the

10,000 test record tests ten times or 10 epochs. The final results are shown

in Figure 5-16.

Chapter 5 Practical deep learning ANN demonstrations

334

This remarkable simple network implemented using Keras and

running in the TensorFlow 2 backend achieved an excellent accuracy

slightly above 98%. This is three percentage points higher than my earlier

MLP model. However, believe it or not, it is even possible to achieve

slightly higher accuracy using a more advanced algorithm, which I will

discuss in the next chapter.

Figure 5-16.  Final results after running the kerasTest script

Chapter 5 Practical deep learning ANN demonstrations

335© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_6

CHAPTER 6

CNN demonstrations
Several practical DL demonstrations are shown in this chapter. You will

be prepared to follow along with the demonstrations provided you have

read the previous chapter or have acquired previous experience with

DL techniques and concepts. I had two goals in mind when writing this

chapter. The first was to clearly show how a complete ANN project could

be accomplished to produce realistic and useful results. The second was

to point out some potential pitfalls and unrealistic assumptions that are

common in ANN development.

�Parts list
You will need a standard RasPi desktop configuration for the chapter

demonstrations.

Item Model Quantity Source

Raspberry Pi 4 Model B (RasPi 4

with 2 or 4 GB RAM)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 16 GB, class 10 or larger 1 amazon.com

(continued)

336

Item Model Quantity Source

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

Note  A minimum of 2 GB RAM is required to enable the RasPi
4 to compile and train the CNN models used in the chapter
demonstrations. RasPis with only 1 GB of RAM will not be successful
in the demonstrations.

�Introduction to the CNN model
CNN is short for convolutional neural network. In the previous chapter,

I used a multi-layer perceptron (MLP) model, which is based on

longstanding, conventional model using the classic artificial neuron

known as the perceptron. The MLP model is fully connected in the sense

that every neuron is connected, at least initially, to every other neuron in a

given network layer. That is not true for a CNN model, which is considered

a sparsely connected network.

CNNs are similar to regular neural networks discussed in the previous

chapter because they are made up of neurons that have weights and

biases, which are modified based on learning. Each CNN neuron receives

some inputs, performs a dot product, and optionally follows with a non-

linearity. The whole CNN still expresses a scoring function using raw

Image pixels on one input end to class scores at the output end. CNNs still

have a loss function and employ the softmax function on the last, fully

connected layer. Basically, all the techniques and concepts discussed for

the regular neural networks apply to CNNs.

Chapter 6 CNN demonstrations

337

So what are the significant changes between regular neural networks

and CNNs? The CNN architecture makes the explicit assumption that the

inputs are Images. This basic assumption permits certain optimizations

to be applied to the network, which allows for the encoding of certain

properties into the architecture. These optimizations make the forward

propagation function more efficient to implement and vastly reduce the

amount of parameters in the network.

Recall from the previous chapter that regular neural networks receive

an input as a single input data vector and transform it through a series of

hidden layers. Each hidden layer is made up of a set of neurons, where each

neuron is fully connected to all neurons in the previous layer and where

neurons in a single layer function are completely independently and do not

share any connections. The last fully connected layer is called the output

layer, and the classification settings it generates represent the class scores.

Regular neural networks do not scale well to full-sized Images. In the

popular CIFAR-10 dataset, Images are of size 32 x 32 x 3 (32 wide, 32 high,

3 color channels), so a single fully connected neuron in a first hidden

layer of a regular neural network would have 3072 (32 X 32 X 3) weights.

Although this amount of weights is manageable, it still clearly hints that

a full-sized Image would require an enormous amount of weights. For

example, an Image of a more common size of say 400 x 300 x 3 would

require 360,000 weights. In addition, there would likely be several hidden

layers involved, so it is apparent that the computational complexity rapidly

becomes an exponential explosion. It should be clear that a regular neural

network with full connectivity is not a good approach to use with decent

sized Images. Dealing with a super abundance of parameters would likely

lead to overfitting and consequent poor performance by the network.

A CNN design takes advantage of the fact that its input consists of

only Images and therefore the architecture can be designed in an optimal

way. In particular, unlike a regular neural network, the layers of a CNN

have neurons arranged in three dimensions of width, height, and depth.

Note that the word depth here refers only to the third dimension of the

Chapter 6 CNN demonstrations

338

activation volume. In a CNN design, the neurons in a succeeding layer will

only be connected to a small region of the preceding layer.

At this point, I need to discuss the convolution operation. Figure 6-1

shows the Image volume along with a smaller Image volume that is 5 x 5 x

3 in dimension. The smaller volume is called a filter.

Figure 6-1.  Image volume with convolution filter

In a convolution operation, a small filter block is “slid” over the larger

Image volume in steps, while a dot product is done between the filter and

the Image volume that is covered at each step. Computing a dot product

for each step results in a scalar value being created. The sum total of all

the step-by-step convolution operations results in a 1D Image as depicted

by the output layer shown on the right-hand side of the figure. Applying

actual dimensions should help clarify the operation. Let’s assume the

input Image volume is 32 x 32 x 3. This means it has a height and width

of 32 pixels and a depth of 3. The 3 in this case refers to three color layers

representing the RGB or red, green, and blue values comprising the input

Image volume. Now if the filter is, say, 5 x 5 x 3, then it can only be “slid”

Chapter 6 CNN demonstrations

339

over the input volume in 28 steps both horizontally and vertically. This

means the output “Image” must be 28 x 28 x 1 because that is the only way

5 x 5 x 3 filter can be uniquely stepped through the original Image volume.

However, the convolution operation for a typical CNN is not quite over.

Please think of the filter used in the convolution operation as a feature

extractor, which was the original intent of the CNN creator, Yann LeCun.

I will shortly discuss Professor LeCun’s contributions in the next section.

It is therefore reasonable to reapplying a different filter and repeating the

convolution operation results in an effort to extract a different feature. That

is precisely what is being conveyed in Figure 6-2, where five additional

features are being applied to the original Image volume. This ultimately

results in a final processed block that is 28 x 28 x 6 in size. The processed

output block is now referred to as feature or activation maps.

Figure 6-2.  Creating the activation maps

Chapter 6 CNN demonstrations

340

Multiple convolution layers are used in a typical CNN. Figure 6-3

shows the results of stacking convolutional layers. Notice that activation

functions are also used immediately after each convolution layer.

Figure 6-3.  Typical CNN architecture

CNN learning “happens” when the randomized filters are applied to

the Image volumes through all the convolution layers.

The next figure should help you understand how the convolution layers

and features are related. Figure 6-4 shows an input Image volume being

applied to a series of three convolutional layers and one “output-like” layer.

Figure 6-4.  CNN example with convolutional features exposed

Chapter 6 CNN demonstrations

341

Closely examine the filter outputs in the first layer, which are 5 x 5 x 3

filters. Through back propagation, they have tuned themselves to become

colored blobs of Image pieces and edges. As the data flows through

additional convolution layers, the filters are performing dot product

operations to the output of previous convolution operations. Traditional

CNN architectures use linear filters to do the convolution and extract

features out of Images. The early layers try to extract primitive features

like lines, edges, and corners, while the later layers build on early layers

and extract higher-level features like eyes, ears, nose, and so on. These are

called latent features.

There can be variations in each Image feature, such as many different

variations in eyes alone. A linear filter designed to detect eyes might try

to draw straight lines to extract these features. Thus, a conventional CNN

implicitly makes the assumption that the latent concepts are linearly

separable. But a straight line may not always fit. The separation of the

various types of eye features and non-eye features may not be a straight

line but something more non-linear. In that case, using a non-linear

function would likely serve as a better feature extractor.

Closely examine the Images in the figure associated with the high-

level feature convolutional layer and try to imagine them as being

representative of the outputs from a grid of 28 x 28 neurons. In a particular

feature map, each neuron is connected to only a small portion of the input

Image volume. Additionally, all the neurons in a given feature map have

the same connection weights. This sharing of weights is called parameter

sharing.

Neurons in a CNN also have local connectivity because they are only

connected to a sub-set of the input Image, unlike a conventional ANN

where all the neurons are fully connected. Local connectivity reduces

the number of parameters in the whole system and makes for greater

computational efficiency.

Chapter 6 CNN demonstrations

342

�History and evolution of the CNN
CNNs have been in existence since 1994 when the first one was created by

Dr. Yann LeCun, who is considered by many to be one of the pioneering

researchers in the DL field. He named it network LeNet-5, which reflected

changes from previous networks he created starting in 1988.

The LeNet-5 architecture was revolutionary because it capitalized on

a fundamental insight that Image features are typically distributed across

the entire Image and convolution operations with learnable parameters

are an effective way to extract similar features at multiple locations using

few parameters. It is helpful to remember that existing computers at the

time had no graphics processing units (GPU) to assist with training and

desktop processor speeds were quite slow in comparison to modern-day

processors. Therefore, anything that could be done reduce the number of

parameters and associated computation was a significant advantage. The

CNN approach was contrasted to the existing approach where each pixel of

an input Image was separately processed as an input to a large multi-layer

neural network. LeCun explained that those pixels should not be used in

the first layer, because Images are highly spatially correlated, and using

individual pixels of the Image as separate input features would not take

advantage of these correlations.

The LeNet-5 model features may be summarized as follows:

•	 Convolutional neural network uses a sequence of three

layers, convolution, pooling, and non-linearity. This

feature remains true to this day regarding CNNs.

•	 Use the convolution operation to extract spatial

features.

•	 Subsample using spatial averages of the activation

maps.

Chapter 6 CNN demonstrations

343

•	 Non-linearity activation functions in in the form of

tanh or sigmoids.

•	 Use a full connection multi-layer perceptron network

(MLP) as final classifier with a softmax classifier.

•	 Use sparse connection matrices between layers to

maximize computational efficiency.

Figure 6-5 shows the LeNet-5 architecture.

Figure 6-5.  LeNet-5 architecture

LeNet-5 is a simple network by today’s standards. It only has seven

layers, of which there are three convolutional layers (C1, C3, and C5),

two subsampling (pooling) layers (S2 and S4), and one fully connected

layer (F6), that are followed by the output layer. The convolutional layers

use 5 x 5 convolutions with stride 1. Subsampling layers consist of 2 x 2

average pooling layers. The tanh activation function is used throughout the

network. The LeNet-5 uses two architectural choices for the network that

are not in common use in modern DL networks.

The first choice is that the individual convolutional kernels in layer C3

do not use all of the features produced by layer S2. A key reason for that

choice is to make the network more computationally efficient. Another

reason was to make convolutional kernels learn different patterns. This

makes perfect sense if different kernels receive different inputs, they will

learn different patterns.

Chapter 6 CNN demonstrations

344

The second choice was to have ten Euclidean Radial Basis Function

neurons in the output layer, which compute the L2 distance between an

input vector of dimension 84 and manually predefined weights vectors of

the same dimension. The number 84 comes from the fact that the weights

represent a 7 x 12 binary mask, one for each handwritten digit. This

design forces the network to transform the input Image into an internal

representation that makes the outputs of layer F6 as close as possible to

hand-coded weights of the ten neurons of the output layer.

LeNet-5 was able to achieve error rate below 1% on the MNIST

handwritten number dataset, which was very close to the state of the art

at the time, which in turn was obtained by a boosted ensemble of three

LeNet-4 networks.

In the years from 1998 to 2010, neural networks were slowly improving.

Most people in the field did not notice their increasing power, while other

researchers slowly progressed. More data was becoming available because

of the rise of smartphones and relatively inexpensive digital cameras.

Computing power was on the rise; CPUs were becoming faster, and GPUs

became less expensive and readily available. Both of these trends made

neural network research progress at a slow rate. The increase in computing

power along with available data made the tasks that neural networks could

handle more interesting.

In 2010 Ciresan et al. published one of the first implementations of

a GPU neural network designed to work with the handwritten number

recognition problem. This implementation used both forward and

backward propagation and ran on an early NVIDIA GTX 280 GPU using up

to nine layers in a neural network.

In 2012, Alex Krizhevsky created AlexNet, which was a scaled up

version of the LeNet CNN. AlexNet is used to learn about more complex

objects than is possible with LeNet. The AlexNet paper included the

following contributions:

Chapter 6 CNN demonstrations

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-280

345

•	 Use of rectified linear units (ReLU) as non-linearities.

•	 Use of the dropout technique to selectively ignore

single neurons during training. This technique avoids

overfitting of the model.

•	 Overlapping max pooling, avoiding the averaging

effects of average pooling.

•	 Use of GPUs (NVIDIA GTX580) to reduce training time.

At the time of the AlexNet paper, GPUs offered a much larger number

of cores than CPUs and permitted faster training time. All this led to

use larger datasets and Images. The AlexNet network success clearly

showed the vision community that CNNs were the “stars” of DL. Useful

and practical problems could now be tackled using the much improved

computing hardware.

In 2013, Yann LeCun, who was working at the NYU DL lab, introduced

the OverFeat framework, which was a way to achieve object recognition,

localization, and detection using CNNs. Overfeat was a derivative of

AlexNet. LeCun also proposed to use learning bounding boxes in object

recognition, which are now the accepted way to identify objects in an

Image.

In 2014, a team from Oxford University introduced VGG networks.

This CNN implementation used small 3 × 3 filters in each convolutional

layers and also combined them as a sequence of convolutions. At first, this

seemed to be contrary to the principles that LeCun espoused for LeNet,

where large convolution filter sizes were used to capture similar features

in an Image. Thus, the larger filter sizes of LeNet and AlexNet started

to shrink, perhaps coming too close to the infamous 1 × 1 convolutions

that LeNet wanted to avoid. However, the great insight that the VGG

network provided was that multiple 3 × 3 convolution in sequence can

emulate the effect of larger receptive fields, for example, 5 × 5 or even 7 × 7

convolution filters. These concepts have been used in more recent network

Chapter 6 CNN demonstrations

http://arxiv.org/abs/1409.1556

346

architectures as Inception and ResNet. VGG networks use multiple 3 × 3

convolutional layers to represent complex features. Notice blocks 3, 4, and

5 of VGG-E where 256 × 256 and 512 × 512, 3 × 3 filters are used multiple

times in sequence to extract more complex features and the combination

of such features. One disadvantage of VGG networks is that training is

computationally expensive. This can be mitigated somewhat by splitting

larger networks into smaller ones and adding layers one by one.

Network in Network (NiN) had the simple insight of using 1 × 1

convolutions to provide more combinational power to the features of

convolutional layers. The NiN architecture, as shown in Figure 6-6, used

spatial MLP layers after each convolution in order to better combine

features before another layer.

Figure 6-6.  NiN architecture

Again, one can believe the 1 × 1 convolutions are against the original

principles of LeNet, but they instead help combine convolutional features

in a more optimal manner, which is not possible by simply stacking

additional convolutional layers. This is different from using raw pixels

as input to the next layer. Here 1 × 1 convolutions are used to spatially

combine features across feature maps after convolution, so they effectively

use very few parameters, with shared pixels across all of the features.

The power of MLP can greatly increase the effectiveness of individual

convolutional features by combining them into more complex groups.

This idea will be later used in most recent architectures as ResNet and

Inception and their derivatives.

Chapter 6 CNN demonstrations

https://arxiv.org/abs/1312.4400

347

NiN also used an average pooling layer as part of the last classifier,

another practice that has become commonplace. This was done to

average the response of the network to multiple the input Image before

classification.

In the Fall of 2014, Christian Szegedy from Google began a project

aimed at reducing the computational burden of deep neural networks.

He and his team created GoogLeNet, the first model using the Inception

architecture. During that timeframe, DL models were becoming highly

useful in categorizing the content of Images and video frames. Google

became very interested in efficient and large deployments of DL

architectures to their server farms. Christian considered a lot of ways to

reduce the computational burden of deep neural networks while still

obtaining state-of-art performance. The main objective was to maintain

or reduce computational costs while achieving improved performance.

He and his team came up with the Inception module, which is shown in

Figure 6-7 block diagram.

Figure 6-7.  GoogLeNet block diagram

Chapter 6 CNN demonstrations

348

The diagram appears at first glance to be basically the parallel

combination of 1 × 1, 3 × 3, and 5 × 5 convolutional filters. But the great

insight of the Inception module was the use of 1 × 1 convolutional blocks

(NiN) to reduce the number of features before the expensive parallel

blocks. This is commonly referred to as “bottleneck,” which is explained in

the following data.

Reducing the bottleneck in the Inception model is done by reducing

the number of features to be processed. Inference times would be

minimized by reducing the number of features; however, the issue was not

to lose too much data quality.

For example, say that there are 256 features being applied to a

convolution layer and 256 features being passed out. If the Inception layer

is only performing 3 x 3 convolutions, there will still need to be about

589,000 multiply and accumulate operations required. That is the result

from this calculation:

256 ∗ 256 ∗ 3 ∗ 3 = 589,824

Instead of doing this, it is decided to reduce the number of features

that will have to be convolved, say to 64. In this case, first perform 256 ->

64 1 × 1 convolutions and then 64 convolutions on all Inception branches,

and then use again a 1 × 1 convolution from 64 -> 256 features back again.

The operations are now

•	 256×64 × 1×1 = 16,384

•	 64×64 × 3×3 = 36,864

•	 64×256 × 1×1 = 16,384

Total = 69,632

This is a total of about 70,000 operations vs. the almost 600,000 that

were required using the full feature set. Although there are significantly

less operations involved, there is no loss in processing accuracy because

the input features are correlated, and thus redundancy can be removed by

Chapter 6 CNN demonstrations

349

combining them appropriately with the 1 × 1 convolutions. The reason for

the success is that after convolution with a smaller number of features, they

can be expanded again into a meaningful combination for the next layer.

In February 2015, the Google team introduced batch-normalized

Inception V2. With batch normalization, the mean and standard deviation

of all feature maps are computed and then the output of a layer is

normalized with these values. This action “whitens” the data and makes

all the neural maps have responses in the same range with zero mean. This

action promotes training as the next layer does not have to learn offsets in

the input data and can focus on how to best combine features.

In December 2015, the team released version 3 of the Inception modules.

The following list details the ideas and concepts contained in that version:

•	 Maximize information flow into the network by

carefully constructing networks that balance depth and

width. Before each pooling, increase the feature maps.

•	 When depth is increased, the number of features or

width of the layer is also increased systematically.

•	 Use width increase at each layer to increase the

combination of features before the next layer.

•	 Use only 3 × 3 convolution when possible, given

that filter of 5 × 5 and 7 × 7 can be decomposed with

multiple 3 × 3.

•	 Filters can also be decomposed by flattened

convolutions into more complex modules.

•	 Inception modules can also decrease the size of

the data by providing pooling while performing the

Inception computation. This is basically identical to

performing a convolution with strides in parallel with a

simple pooling layer.

Chapter 6 CNN demonstrations

http://arxiv.org/abs/1412.5474
http://arxiv.org/abs/1412.5474

350

At approximately the same time as Inception V3 was being introduced,

K. He et al. introduced a rather revolutionary CNN they named

ResNet. Their simple idea was to connect the outputs of two successive

convolutional layers and also to bypass the input to the next layer. Figure 6-8

shows the flow diagram that illusrates the ResNet idea.

Figure 6-8.  ResNet core concept flow diagram

One question that would naturally come to mind is why would

bypassing convolutional layers improve performance? The answer lies in

the nature of deep networks, which are simply networks containing many

layers. Since the introduction of AlexNet, which had five convolutional

layers, CNNs have generally become deeper. For instance, Inception V1

started with 19 layers and eventually had 22 layers. However, network

performance does not always improve simply by stacking more and more

layers. This is due to the vanishing gradient problem. As the gradient is

back propagated to earlier layers, repeated multiplications start to make

the gradient infinitely smaller. As a result, as the network becomes deeper,

its performance gets saturated or even starts degrading rapidly.

The core concept of ResNet is to introduce a so-called identity shortcut

connection that skips one or more layers, as was shown in Figure 6-8.

The ResNet authors argued that stacking layers shouldn’t degrade the

Chapter 6 CNN demonstrations

351

network performance, because simply stacking identity mappings (a layer

that doesn’t do anything) upon the current network and the resulting

architecture would perform the same. This indicates that the deeper model

should not produce a training error higher than shallower counterparts.

This is similar to older ideas like this one. But here they bypass

two layers and are applied to large scales. Bypassing two layers is the

key intuition, because bypassing a single layer did not provide much

improvement. But a two-layer bypass can be considered as a small

classifier or a Network in Network.

ResNet is also the first time that a network of several hundred to one

thousand layers was trained. ResNet also is starting to use the bottleneck

reduction scheme created with the Inception V2 network. Figure 6-9

shows the flow diagram with a bottleneck scheme embedded as well as the

identity bypass.

Figure 6-9.  ResNet core concept flow diagram with bottleneck
elimination

Chapter 6 CNN demonstrations

http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf

352

The number of features at each layer is reduced by first using a 1 ×

1 convolution with a smaller output (usually one-quarter of the input),

then a 3 × 3 layer, and then again a 1 × 1 convolution to a larger number

of features. As in the case of Inception modules, this scheme allows the

computation to be kept low while still providing a rich combination of

features.

ResNet uses a fairly simple initial layer at the input (stem), a 7 × 7

conv layer, followed with a pool of 2. ResNet also uses a pooling layer plus

softmax as final classifier.

Here are some additional insights about the ResNet architecture:

•	 ResNet can be seen as both parallel and serial modules

by just thinking of the input as going to many modules

in parallel, while the output of each modules connects

in series.

•	 ResNet can also be thought as multiple ensembles of

parallel or serial modules.

•	 It has been found that ResNet usually operates on

blocks of relatively low depth ~20–30 layers, which act

in parallel, rather than serially flow the entire length of

the network.

•	 ResNet, when the output is fed back to the input, as in

RNN, the network can be seen as a better bio-plausible

model of the cortex.

Chapter 6 CNN demonstrations

http://arxiv.org/abs/1605.06431
http://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1604.03640
https://arxiv.org/abs/1604.03640

353

However, they also combined the Inception V4 module with the

ResNet module. This is shown in Figure 6-11.

Figure 6-10.  Initial Inception V4 architecture

In February 2016, Christian and his team at Google introduced

Inception V4 to the community. This Inception module after the stem is

similar to Inception V3. Figure 6-10 shows the initial V4 architecture.

Chapter 6 CNN demonstrations

354

The team renamed this module Inception-ResNet V1 to indicate that

it was a substantial transformation from the original Inception design

protocol. It was determined that this new module had roughly the same

computational cost of Inception V3 but trained much faster. Unfortunately,

it reached a slightly worse final accuracy than the Inception V3 module.

Figure 6-11.  Inception V4 architecture with ResNet

Chapter 6 CNN demonstrations

355

In 2016, SqueezeNet was released by researchers at the University

of California, Berkeley and Stanford University. The authors’ goal in

designing SqueezeNet was to create a smaller neural network with fewer

parameters that can more easily fit into limited computer memory and

could be easily transmitted over a computer network.

This original version of SqueezeNet was implemented on top of the

Caffe DL software framework. Shortly thereafter, the open source research

community ported SqueezeNet to a number of other deep learning

frameworks including Chainer, Apache MXNet, and Keras. In 2017, several

commercial companies demonstrated SqueezeNet running on low-power

processing platforms such as smartphones and FPGAs.

As of 2018, SqueezeNet ships “natively” as part of the source code of

a number of deep learning frameworks such as PyTorch, Apache MXNet,

and Apple_CoreML. In addition, third-party developers have created

implementations of SqueezeNet that are compatible with the TensorFlow

framework.

Xception improves on the Inception module with a simple and elegant

architecture that is as effective as ResNet and Inception V4. Figure 6-12

shows the Xception module architecture.

Chapter 6 CNN demonstrations

http://www.Xception

356

The Xception architecture has 36 convolutional stages, which is close

in similarity to a ResNet-34. Figure 6-13 shows the Xception data flow

diagram.

Figure 6-12.  Xception architecture

Chapter 6 CNN demonstrations

357

The Xception code is as simple as ResNet and is more comprehensible

than Inception V4.

Xception has been implemented in Torch7 and Keras with TensorFlow.

The last CNN model I will mention in this evolution discussion is

FractalNet, which uses a recursive architecture. The authors Larsson et al.

state in their introductory paper:

We introduce a design strategy for neural network macro-
architecture based on self-similarity. Repeated application of
a simple expansion rule generates deep networks whose struc-
tural layouts are precisely truncated fractals. These networks
contain interacting subpaths of different lengths, but do not
include any pass-through or residual connections; every inter-
nal signal is transformed by a filter and nonlinearity before
being seen by subsequent layers.

Figure 6-13.  Xception data flow diagram

Chapter 6 CNN demonstrations

http://www.FractalNet

358

The excerpt from their abstract seems to indicate a rather radical

departure from the ResNet design philosophy. I believe the verdict is still

pending regarding the performance of this deep layered CNN design.

�Fashion MNIST demonstration

Note  You will use the exact same configuration on the RasPi
that was in effect when the last demonstration in Chapter 5 was
run. Keras with the TensorFlow backend is required to run this
demonstration’s script.

This demonstration, like the one at the end of Chapter 5, will use a

MNIST dataset, but it will not be the handwritten number set. Instead it

is a dataset consisting of clothing Images. And just like the handwritten

number dataset, there will be ten classes, but in this new dataset, each

class will be different clothing article. The dataset Images will all be 28

x 28 in size to make them “drop in” compatible with the handwritten

number dataset. Additionally, there are approximately 60,000 training

Images and 10,000 testing Images. This new dataset is named fashion_

mnist, and it is instantly available using the Keras import dataset library.

The following snippet of code shows how this new dataset will be

loaded:

from keras.datasets import fashion_mnist

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

You may notice that I used different names for the training and test

datasets in this demonstration than were used in the handwritten number

demonstration. I mention this because you would get into trouble if you

simply tried to cut and paste between the two scripts.

Chapter 6 CNN demonstrations

359

As mentioned previously, all the Images are 28 x 28 arrays, with pixel

integer intensity values ranging between 0 and 255. The Image labels are

also an array of integers, ranging from 0 to 9. These integers correspond to

the class of clothing the Image represents. Table 6-1 shows the integer to

clothing descriptions.

Table 6-1.  Integer to clothing

description relationships

Label Class

0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

Using integers to represent string descriptions is required when

configuring a CNN. String variables and network computations are

inherently incompatible.

Each Image in a given class is mapped to a single label. Since the class

names are not included with the dataset, these labels must be stored to be

used later when Images are plotted. The following statement stores the labels:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress',

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Chapter 6 CNN demonstrations

360

It is always prudent to inspect and/or sample the data to be used in

order to be knowledgeable about it and become aware of any potential

issues or problems. To achieve this goal, I would suggest running the

following short script named reviewData.py. This script is available from

the book’s companion web site:

from keras.datasets import fashion_mnist

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

print('Number of training records and size of each training

record: ', train_images.shape)

print()

print('Number of training labels: ', len(train_labels))

print()

print('Training label: ', train_labels)

print()

print('Number of test records and size of each test record:',

test_images.shape)

print()

print('Number of test labels: ', len(test_labels))

print()

The script is run by entering this next command:

python reviewData.py

Figure 6-14 shows the results after running the script.

Chapter 6 CNN demonstrations

361

In examining the figure, you should see that the datasets are the

same and shape as the datasets used in the earlier handwritten number

recognition demonstration. In addition, the first three and the last three

of the 60,000 training label values are displayed. This confirms that the

training_labels dataset was properly loaded.

Additionally, it is always useful and informative to Image a sample of

the input dataset as was the case with the handwritten number recognition

project. For this task, I started a Python interactive session to Image a

sample. The following code, when entered into an interactive Python

session, will Image the first training dataset Image. You should initiate this

session immediately after you have run the reviewData script to ensure

that the fashion_mnist datasets have been downloaded and are available

for access.

import matplotlib.pyplot as plt

plt.figure()

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()

Figure 6-14.  reviewData script results

Chapter 6 CNN demonstrations

362

Figure 6-15 shows the object Imaged in the first training record with a

color bar inserted to reflect the associated pixel intensities present in the

Image.

Figure 6-15.  First training record Image

Note that this Image is of an ankle length boot, which corresponds

to the integer “9” class reference shown in the reviewData script results

for the class label print-out. This check is just another way to confirm the

consistency of the input datasets.

Model definition

def cnn_model():

 # create model

 model = Sequential()

 �model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.2))

 model.add(Flatten())

Chapter 6 CNN demonstrations

363

 model.add(Dense(128, activation='relu'))

 model.add(Dense(numClass, activation='softmax'))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

This is the code portion that defines the CNN and then compiles it.

This model is considerably different than the MLP model used in the

last demonstration in Chapter 5. For starters, it has six layers ordered as

follows:

	 1.	 Convolutional layer

	 2.	 Pooling layer

	 3.	 Dropout layer

	 4.	 Flatten layer

	 5.	 Full connection layer

	 6.	 Output layer

Each layer contributes a sequential operation to the CNN resulting in

the transformation from an input Image to classification output.

In the Keras demonstration in Chapter 5, I briefly mentioned the Adam

optimizer in the discussion regarding the compile function. I will expand

upon the use of an optimizer because it is important to understand its

function and assumptions it uses. An optimizer for a CNN is a function

that controls how the network learns. In a non-Keras network such as

the MLP in Chapter 5, the learning rate (lr) controlled the gradient step

size. A small lr means small steps are taken in trying to locate the global

minimum of the cost function. This meant that a very small step size could

take the gradient descent algorithm literally hours to eventually settle in on

the global minimum. An optimizer takes a different approach and uses a

Chapter 6 CNN demonstrations

364

dynamic technique to set the step size in order to minimize the total time

to locate the global minimum.

The Adam optimizer computes individual adaptive learning rates for

different parameters from estimates of first and second moments of the

gradients. The Adam authors describe it as combining the advantages of

two other extensions of stochastic gradient descent. Specifically:

•	 Adaptive Gradient Algorithm (AdaGrad) that

maintains a per-parameter learning rate that improves

performance on problems with sparse gradients.

•	 Root Mean Square Propagation (RMSProp) that

also maintains per-parameter learning rates that are

adapted based on the average of recent magnitudes

of the gradients for the weight (e.g., how quickly it is

changing). This means the algorithm does well on

online and non-stationary problems (e.g., noisy).

The Adam algorithm realizes the benefits of both AdaGrad and

RMSProp algorithms. Instead of adapting the parameter learning rates

based on the average first moment (the mean) as in RMSProp, Adam also

makes use of the average of the second moment of the gradients (the

uncentered variance). Specifically, the algorithm calculates an exponential

moving average of the gradient and the squared gradient. The parameters,

beta1 and beta2, control the decay rates of these moving averages.

Adam is a popular algorithm in the field of deep learning because

it achieves good results, fast. Empirical results have demonstrated that

Adam works well in practice and compares favorably to other stochastic

optimization methods. In the original paper, Adam demonstrated that its

convergence meets the expectations of the paper’s theoretical analysis.

Adam has been applied to the logistic regression algorithm on the MNIST

handwritten number recognition and IMDB sentiment analysis datasets.

The authors have concluded that Adam can efficiently solve practical DL

problems.

Chapter 6 CNN demonstrations

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/

365

Run the demo and evaluate it

from keras.layers import Conv2D

model = cnn_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

The last code portion is the driver code, which tests the new CNN with

the fashion_mnist dataset. A model object named model is first instantiated

and then trained using the Keras fit function. A scores tuple is then

generated by calling the Keras evaluate method. The testing continues for

10 epochs with the final statement showing the ultimate CNN error rate.

The complete script is named kerasFashionTest.py and is listed in the

following with comments. It is available from the book’s companion web site.

import numpy as np

from keras.datasets import fashion_mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

Set a random seed

seed = 42

np.random.seed(seed)

Chapter 6 CNN demonstrations

366

Load the datasets

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

Flatten all of the 28 x 28 images into 784 element numpy

input

data vectors.

pixelNum = train_images.shape[1] * train_images.shape[2]

train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0

One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

Model definition

def cnn_model():

 # create model

 model = Sequential()

 �model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(128, activation='relu'))

 model.add(Dense(numClass, activation='softmax'))

Chapter 6 CNN demonstrations

367

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

Run the demo and evaluate it

model = cnn_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

The script should be run in the virtual environment using the following

command:

python kerasFashionTest.py

The script takes about 30 minutes to run to completion because it

trains the model using the full 60,000 fashion_mnist training dataset and

then tests the model with the 10,000 fashion_mnist test dataset for ten

times or 10 epochs. The final results are shown in Figure 6-16.

Chapter 6 CNN demonstrations

368

The final accuracy was 90.96%, which is considered to be a good score

for a CNN – not quite excellent, which would need scores around 98%

to 99%, but still quite accurate. To obtain the ultimate in CNN accuracy,

one must match the CNN design to the dataset being processed. How to

do this is much more of an art than it is a science. There are many CNN

design strategies existing, which you hopefully have gleaned from reading

the CNN evolution discussion earlier in this chapter. Which one to use

with any given dataset must necessarily lie with a practitioner’s judgment

and experience. I cannot provide any guidance in this area because I

have simply not acquired sufficient experience with using the many CNN

designs that currently are available as well as the multitude of current

datasets. The number of combinations is enormous. My only suggestion is

to try new strategies on a dataset and see what develops.

With the thought of trying a new design, I will now present a variation

of the previous demonstration using a somewhat more complex CNN

model and see what happens.

Figure 6-16.  Final results after running the kerasFashionTest script

Chapter 6 CNN demonstrations

369

�More complex Fashion MNIST
demonstration
I will show you a more complex CNN model in this demonstration as

compared to the previous one. Everything else in the script remains the

same. The purpose of this demonstration is to determine what effect a new

CNN model will have on the overall accuracy of dataset classifications.

The following code defines the model used in this demonstration:

def complex_model():

 # Create model

 model = Sequential()

 �model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(15, (3, 3), activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(128, activation='relu'))

 model.add(Dense(50, activation='relu'))

 model.add(Dense(numClass, activation='softmax'))

This model uses nine layers as compared to the six layers used in the

previous demonstration. The kerasFashionTest script was used with these

layers added to its model definition:

•	 One convolution layer

•	 One pooling layer

•	 One full connection layer

Chapter 6 CNN demonstrations

370

The newly modified script was renamed kerasComplexFashionTest.py

and is available from the book’s companion web site.

import numpy as np

from keras.datasets import fashion_mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

Set a random seed

seed = 42

np.random.seed(seed)

Load the datasets

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

Flatten all of the 28 x 28 images into 784 element numpy

input

data vectors.

pixelNum = train_images.shape[1] ∗ train_images.shape[2]
train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0

Chapter 6 CNN demonstrations

371

One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

Complex model definition

def complex_model():

 # Create model

 model = Sequential()

 �model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28),

activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(15, (3, 3), activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(128, activation='relu'))

 model.add(Dense(50, activation='relu'))

 model.add(Dense(numClass, activation='softmax'))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 return model

Run the demo and evaluate it

model = complex_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

Chapter 6 CNN demonstrations

372

The script should be run in the virtual environment using the following

command:

python kerasComplexFashionTest.py

This script took about 27 minutes to run to completion, which is

slightly less than the previous demonstration. The final results are shown

in Figure 6-17.

Figure 6-17.  Final results after running the
kerasComplexFashionTest script

The final accuracy was 89.65%, which is slightly less than the previous

demonstration’s score of 90.96%. This result at first might seem a bit

strange considering that a more complex CNN model was used in this

demonstration. However, such results are common with CNN projects. It

is likely impossible to predict how a particular CNN model will perform

on any given dataset. The only reasonable conclusion to draw from

Chapter 6 CNN demonstrations

373

this result is that a model must first be used on a dataset to determine

its performance. In this case, the simpler CNN model was the better

performer. That’s not always the case, but you will never know unless the

model is tested.

�VGG Fashion MNIST demonstration
A VGG CNN model will be used in this demonstration in order to show

you another way to test the fashion_mnist datasets. I will first give credit

to Adrian Rosebrock for his February 2019 blog titled “Fashion MNIST

with Keras and Deep Learning” from which I drew much inspiration and

the model I used in this demonstration. I will admit to slightly changing

the model code to fit my preprocessing statements as well as the way the

model was compiled.

In this demonstration, the model definition was put into a class and

separately stored in a file named VGG.py. The class listing is shown in the

following, and it is available from this book’s companion web site.

Import the required libraries

from keras.models import Sequential

from keras.layers.normalization import BatchNormalization

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dropout

from keras.layers.core import Dense

from keras import backend as K

class VGG:

 @staticmethod

 def build(width, height, depth, classes):

Chapter 6 CNN demonstrations

374

 # Initialize the model along with the input shape to

 # be "channels last" and the channels dimension itself

 model = Sequential()

 inputShape = (height, width, depth)

 chanDim = -1

 # If we are using "channels first", update the input

 # shape and channels dimension

 if K.image_data_format() == "channels_first":

 inputShape = (depth, height, width)

 chanDim = 1

 # First CONV => RELU => CONV => RELU => POOL layer

 model.add(Conv2D(32, (3, 3), padding="same",

 input_shape=inputShape))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(Conv2D(32, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 # Second CONV => RELU => CONV => RELU => POOL layer

 model.add(Conv2D(64, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(Conv2D(64, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

Chapter 6 CNN demonstrations

375

 # First (and only) set of FC => RELU layers

 model.add(Flatten())

 model.add(Dense(512))

 model.add(Activation("relu"))

 model.add(BatchNormalization())

 model.add(Dropout(0.5))

 # Softmax classifier

 model.add(Dense(classes))

 model.add(Activation("softmax"))

 # Compile model

 �model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

 # Return the constructed network architecture

 return model

The main script is listed in the following and is named kerasVGGTest.

py, and it too is available from the book’s companion web site.

import numpy as np

from VGG import VGG

from keras.datasets import fashion_mnist

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

Set a random seed

seed = 42

np.random.seed(seed)

Load the datasets

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

Chapter 6 CNN demonstrations

376

Flatten all of the 28 x 28 images into 784 element numpy

input

data vectors.

pixelNum = train_images.shape[1] ∗ train_images.shape[2]
train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0

One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

Run the demo and evaluate it

vgg = VGG()

model = vgg.build(28, 28, 1, numClass)

train_images = train_images.reshape(60000, 28, 28, 1)

test_images = test_images.reshape(10000, 28, 28, 1)

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=100, verbose=2)

Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

You should be aware that running this script with 10 epochs will take a

long time, roughly 3 hours. This is mainly due to the nature of the model. A

long duration training time for the VGG CNN was mentioned in the CNN

evolution discussion.

Chapter 6 CNN demonstrations

377

Please ensure that the class file VGG.py is in the same directory as

this script prior to running it. This script should be run in the virtual

environment using the following command:

python kerasVGGTest.py

This script took about 3 hours to run to completion. The final results

are shown in Figure 6-18.

Figure 6-18.  Final results after running the kerasVGGTest script

The final accuracy score was 93.13%, which is a very good score. This

score is more than two points higher than the simple CNN score of 90.96%.

A gain of 2 points in CNN performance is significant when you consider

there is only about a 10-point spread in ratings for high-performance

CNNs.

Chapter 6 CNN demonstrations

378

�Jason’s Fashion MNIST demonstration
This last CNN demonstration using the Fashion MNIST dataset comes

from a May 2019 blog written by Dr. Jason Brownlee titled “How to Develop

a Deep CNN for Fashion MNIST Clothing Classification.” I choose to

use Jason’s script because it is highly modular and well performing and

provides some informative plots concerning on how well it functions.

The CNN model used in the script is similar to the ones used in previous

chapter demonstrations, and its performance is also on par with them.

You will need to install some additional Python libraries in order to run

this script. Enter the following commands to install these libraries:

pip install matplotlib

pip install pandas

pip install sklearn

The complete script listing, which I named jasonTest.py, is shown in

the following and is available from the book’s companion web site. I have

also added some explanatory comments after the listing.

Model with double the filters for the fashion mnist dataset

from numpy import mean

from numpy import std

from matplotlib import pyplot

from sklearn.model_selection import KFold

from keras.datasets import fashion_mnist

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

Chapter 6 CNN demonstrations

379

Load train and test dataset

def load_dataset():

 # load dataset

 (trainX, trainY), (testX, testY) = fashion_mnist.load_data()

 # reshape dataset to have a single channel

 trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

 testX = testX.reshape((testX.shape[0], 28, 28, 1))

 # one hot encode target values

 trainY = to_categorical(trainY)

 testY = to_categorical(testY)

 return trainX, trainY, testX, testY

Scale pixels

def prep_pixels(train, test):

 # convert from integers to floats

 train_norm = train.astype('float32')

 test_norm = test.astype('float32')

 # normalize to range 0-1

 train_norm = train_norm / 255.0

 test_norm = test_norm / 255.0

 # return normalized images

 return train_norm, test_norm

Define cnn model

def define_model():

 model = Sequential()

 �model.add(Conv2D(64, (3, 3), padding='same',

activation='relu', kernel_initializer='he_uniform',

input_shape=(28, 28, 1)))

 model.add(MaxPooling2D((2, 2)))

 model.add(Flatten())

 �model.add(Dense(100, activation='relu', kernel_

initializer='he_uniform'))

Chapter 6 CNN demonstrations

380

 model.add(Dense(10, activation='softmax'))

 # compile model

 opt = SGD(lr=0.01, momentum=0.9)

 �model.compile(optimizer=opt, loss='categorical_

crossentropy', metrics=['accuracy'])

 return model

Evaluate a model using k-fold cross-validation

def evaluate_model(dataX, dataY, n_folds=5):

 scores, histories = list(), list()

 # prepare cross validation

 kfold = KFold(n_folds, shuffle=True, random_state=1)

 # enumerate splits

 for train_ix, test_ix in kfold.split(dataX):

 # define model

 model = define_model()

 # select rows for train and test

 �trainX, trainY, testX, testY = dataX[train_ix],

dataY[train_ix], dataX[test_ix], dataY[test_ix]

 # fit model

 �history = model.fit(trainX, trainY, epochs=10,

batch_size=32, validation_data=(testX, testY),

verbose=0)

 # evaluate model

 _, acc = model.evaluate(testX, testY, verbose=0)

 print('> %.3f' % (acc ∗ 100.0))
 # append scores

 scores.append(acc)

 histories.append(history)

 return scores, histories

Plot diagnostic learning curves

def summarize_diagnostics(histories):

Chapter 6 CNN demonstrations

381

 for i in range(len(histories)):

 # plot loss

 pyplot.subplot(211)

 pyplot.title('Cross Entropy Loss')

 �pyplot.plot(histories[i].history['loss'], color='blue',

label='train')

 �pyplot.plot(histories[i].history['val_loss'],

color='orange', label='test')

 # plot accuracy

 pyplot.subplot(212)

 pyplot.title('Classification Accuracy')

 �pyplot.plot(histories[i].history['acc'], color='blue',

label='train')

 �pyplot.plot(histories[i].history['val_acc'],

color='orange', label='test')

 pyplot.show()

summarize model performance

def summarize_performance(scores):

 # print summary

 �print('Accuracy: mean=%.3f std=%.3f, n=%d' %

(mean(scores)∗100, std(scores)∗100, len(scores)))
 # box and whisker plots of results

 pyplot.boxplot(scores)

 pyplot.show()

Run the test harness for evaluating a model

def run_test_harness():

 # load dataset

 trainX, trainY, testX, testY = load_dataset()

 # prepare pixel data

 trainX, testX = prep_pixels(trainX, testX)

Chapter 6 CNN demonstrations

382

 # evaluate model

 scores, histories = evaluate_model(trainX, trainY)

 # learning curves

 summarize_diagnostics(histories)

 # summarize estimated performance

 summarize_performance(scores)

Entry point, run the test harness

run_test_harness()

This script uses k-fold cross-validation as part of the model

evaluations. In this case, k equals 5. I would refer you back to Chapter 1

where I discussed k-fold cross-validation if you need a refresher on this

concept. Jason’s use of k-fold cross-validation essentially causes 5 epochs

to be performed, which you will see in the results screen. In addition, the

individual result of each epoch is stored in a list named histories. This

list is then used when the performance plots are generated.

Jason also uses a test harness structure to schedule how all the

modules are invoked. I personally like this style and would recommend it

to anyone desiring to create modular software that is understandable and

maintainable. One of the nice features of writing software in a modular

manner is that it is relatively easy to decouple the modules such that they

are independent of one and another. Therefore, any changes that you make

to a particular module will not affect other modules. This programming

style is an excellent example of the software design principle, high

cohesion, loose coupling. This principle means that software should be

written so that modules do one or two things well (high cohesion) and not

depend “too much” on other modules (loose coupling). Software written

using this principle in mind tends to be more understandable, less fragile

to change, and easily maintained.

Chapter 6 CNN demonstrations

383

This script should be run in the virtual environment using the

following command:

python jasonTest.py

This script took about 3.5 hours to run to completion. The final results

are shown in Figure 6-19.

Figure 6-19.  Final results after running the jasonTest script

The final accuracy score was 91.09%, which was the mean of the

5 epoch scores. Notice that the standard deviation was 0.41%, which

provides some insight into the accuracy variance. I should point out

that the results screen was after I had removed many superfluous Keras

warnings.

Figure 6-20 is a box and whisker plot that summarizes the distribution

of the accuracy scores.

Chapter 6 CNN demonstrations

384

Figure 6-20.  Box and whisker plot of accuracy scores’
distribution

You should be able to see from the vertical scale that the scores are

tightly grouped with a “whisker” range of approximately 0.905 to 0.916 and

a mean of 0.919. The bulk of the accuracy values lie above the mean, which

you can see from the box position.

Figure 6-21 contains plots for the cross-entropy loss and classification

accuracy.

Chapter 6 CNN demonstrations

385

Figure 6-21.  Cross-entropy loss and classification accuracy plots

These plots are known as learning curves because they show how the

model converges as the training process progresses. The darker colored

plot lines are for the training dataset, and the lighter colored plot lines

are for the test dataset. Overall, these plots indicate the model generally

achieves a good fit with the train and test learning curves converging.

There may be some small degree of overfitting because of the separation

between the two sets of plot lines.

Chapter 6 CNN demonstrations

387© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_7

CHAPTER 7

Predictions using
ANNs and CNNs
In the previous chapters, I have repeatedly demonstrated how ANNs and

CNNs can classify a variety of objects including handwritten numbers and

clothing articles. In this chapter I will explore how ANNs and CNNs can

predict an outcome. I have noticed repeatedly that DL practitioners often

conflate classification and prediction. This is understandable because these

tasks are closely intertwined. For instance, when presented with an unknown

Image, a CNN will attempt to identify it as belonging to one of the classes

it has been trained to recognize. This is clearly a classification process.

However, if just view this process from a wider perspective, you could say the

CNN has been tasked to predict what the Image represents. I choose to take

the narrower view and restrict my interpretation of prediction, at least as far

as it concerns ANNs and CNNs to the following definition:

Prediction refers to the output of a DL algorithm after it has been

trained on a dataset and when new data is applied to forecast the

Likelihood of a particular outcome.

The word prediction can also be misleading. In some cases, it does

mean that a future outcome is being predicted, such as when you’re using

DL to determine the next best action to take in a marketing campaign. In

other cases, the prediction has to do with whether or not a transaction that

has already occurred was a fraud. In that case, the transaction has already

388

happened and the algorithm is making an educated guess about whether

or not it was legitimate. My initial demonstration is very straightforward

and the ANN will make a binary choice when presented with a set of

facts. The choice is whether or not the applied record is part of a class or

is not. This last statement will become quite clear when I next present the

demonstration.

�Pima Indian Diabetes demonstration
The Pima Indian Diabetes project is another one of the classic problems

that DL students always study. It is an excellent case study on how an ANN

can make predictions based on an applied record when that ANN has been

thoroughly trained on an historical dataset.

�Background for the Pima Indian Diabetes study
Diabetes mellitus is a group of metabolic disorders where the blood sugar

levels are higher than normal for prolonged periods of time. Diabetes is

caused either due to the insufficient production of insulin in the body

or due to improper response of the body’s cells to insulin. The former

cause of diabetes is also called type 1 DM or insulin-dependent diabetes

mellitus, and the latter is known as type 2 DM or non-insulin-dependent

DM. Gestational diabetes is a third type of diabetes where women not

suffering from DM develop high sugar levels during pregnancy. Diabetes is

especially hard on women as it can affect both the mother and their unborn

children during pregnancy. Women with diabetes have a higher Likelihood

at having a heart attack, miscarriages, or babies born with birth defects

The diabetes data containing information about Pima Indian females,

near Phoenix, Arizona, has been under continuous study since 1965 due

to the high incidence rate of diabetes in Pima females. The dataset was

originally published by the National Institute of Diabetes and Digestive

Chapter 7 Predictions using ANNs and CNNs

389

and Kidney Diseases, consisting of diagnostic measurements pertaining

to females of age greater than 20. It contains information of 768 females,

of which 268 females were diagnosed with diabetes. Information available

includes eight variables which are detailed in Table 7-1. The response

variable in the dataset is a binary classifier, Outcome, that indicates if the

person was diagnosed with diabetes or not.

�Preparing the data
The first thing you will need to do is download the dataset. This dataset is

available from several web sites. I used the following one:

www.kaggle.com/kumargh/pimaindiansdiabetescsv

This download was in an archive format. After extracting it, I renamed

the file diabetes.csv just to keep it short and memorable.

Table 7-1.  Eight factors in the Pima Indian Diabetes Study

Variable name Data type Variable description

Pregnancies integer Number of times pregnant

Glucose integer Plasma glucose concentration at 2 hours

in an oral glucose tolerance test

BloodPressure integer Diastolic blood pressure

SkinThickness integer Triceps skin-fold thickness

Insulin integer 2-hour serum insulin (μU/ml)

BMI numeric Body mass index

DiabetesPedigreeFunction numeric Synthesis of the history of diabetes

mellitus in relatives, generic relationship

of those relatives to the subject

Outcome integer Occurrence of diabetes

Chapter 7 Predictions using ANNs and CNNs

390

The next thing you should do is inspect the data and see if it appears

proper and nothing strange or unusual is visible. I used the Microsoft Excel

application to do my initial inspection because this dataset was in the CSV

format, which is nicely handled by Excel. Figure 7-1 shows the first 40 of

768 rows from the dataset.

Figure 7-1.  First 40 rows from the diabetes.csv dataset

Chapter 7 Predictions using ANNs and CNNs

391

What immediately stood out to me was the inordinate amount of zeros

present both in the SkinThickness and Insulin columns. There should not

be any zeros in these columns because a living patient can neither have

zero skin thickness nor zero insulin levels. This prompted me to do a bit

of research, and I determined that the original researchers who built this

dataset simply inserted zeros for empty or null readings. This practice is

totally unacceptable and may corrupt a dataset to the point where it could

easily generate false or misleading results when processed by an ANN. So,

what could I do about it?

Further research on my part leads to the following process, which

“corrected” for the missing values in a reasonable manner and also

illustrated a nice way to visualize the data. I like to give credit to Paul

Mooney and his blog “Predict Diabetes from Medical Records” for

providing useful insights into solving this issue. Paul used a Python

notebook format for his computations. I changed and modified his

interactive commands into conventional Python scripts for this discussion.

Please ensure you are in a Python virtual environment prior to

beginning this session. You will then need to ensure that the Seaborn,

Matplotlib, and Pandas libraries are installed prior to running the script.

Enter the following commands to install these libraries if you are unsure

they are present:

pip install seaborn

pip install matplotlib

pip install pandas

The following script loads the diabetes.csv dataset and then does a

series of data checks, summaries, and histogram plots. I named this script

diabetesTest.py, and it is available from the book’ companion web site.

I also included some explanatory comments after the script to help clarify

what is happening within it.

Chapter 7 Predictions using ANNs and CNNs

392

Import required libraries

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Load the CSV dataset

dataset = pd.read_csv('diabetes.csv')

dataset.head(10)

Define a histogram plot method

def plotHistogram(values, label, feature, title):

 sns.set_style("whitegrid")

 plotOne = sns.FacetGrid(values, hue=label, aspect=2)

 plotOne.map(sns.distplot, feature, kde=False)

 plotOne.set(xlim=(0, values[feature].max()))

 plotOne.add_legend()

 plotOne.set_axis_labels(feature, 'Proportion')

 plotOne.fig.suptitle(title)

 plt.show()

Plot the Insulin histogram

plotHistogram(dataset, 'Outcome', 'Insulin', 'Insulin vs

Diagnosis (Blue = Healthy; Orange = Diabetes)')

Plot the SkinThickness histogram

plotHistogram(dataset, 'Outcome', 'SkinThickness',

'SkinThickness vs Diagnosis (Blue = Healthy; Orange =

Diabetes)')

Summary of the number of 0's present in the dataset by

feature

dataset2 = dataset.iloc[:, :-1]

print("Num of Rows, Num of Columns: ", dataset2.shape)

print("\nColumn Name Num of Null Values\n")

print((dataset[:] == 0).sum())

Chapter 7 Predictions using ANNs and CNNs

393

Percentage summary of the number of 0's in the dataset

print("Num of Rows, Num of Columns: ", dataset2.shape)

print("\nColumn Name %Null Values\n")

print(((dataset2[:] == 0).sum()) / 768 * 100)

Create a heat map

g = sns.heatmap(dataset.corr(), cmap="BrBG", annot=False)

plt.show()

Display the feature correlation values

corr1 = dataset.corr()

print(corr1[:])

Explanatory comments:

dataset = pd.read_csv('diabetes.csv') – Reads

the CSV dataset into the script using the Pandas

read_csv method.

dataset.head(10) – Displays the first ten records in

the dataset.

def plotHistogram(values, label, feature,

title) – Defines a method which will plot the

histogram of the dataset feature provided in the

arguments list. This method uses the Seaborn library,

which I discussed in Chapter 2. Two histograms are

then plotted after this definition, one for Insulin and

the other for SkinThickness. Each of those features

had a significant amount of 0s present.

dataset2 = dataset.iloc[:, :-1] – Is the start

of the code segment which displayed the actual

amount of 0s present for each dataset feature. The

only features that should have any 0s are Outcome

and Pregnancies.

Chapter 7 Predictions using ANNs and CNNs

394

print("Num of Rows, Num of Columns: ",

dataset2.shape) – Is the start of the code segment

which displayed the percentages of 0s present for

each dataset feature.

g = sns.heatmap(dataset.corr(), cmap="BrBG",

annot=False) – Generates a heatmap for the

dataset’s correlation map. A heatmap is a way of

representing the data in a 2D form. Data values are

represented as colors in the graph. The goal of the

heatmap is to provide a colored visual summary of

information.

corr1 = dataset.corr() – Creates a table of

correlation values between the dataset feature

variables. This statistic will be of considerable

interest after the values in the dataset have been

adjusted.

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following

command to run the script:

python diabetesTest.py

This script runs immediately and produces a series of results. The final

screen results are shown in Figure 7-2.

Chapter 7 Predictions using ANNs and CNNs

395

The first table in the figure lists the nulls (0s) for each feature. There

is clearly an unacceptable amount of 0s in both the SkinThickness and

Insulin feature columns. Almost 50% of the Insulin data points are

missing, which you can easily see from looking at the next table in the

figure. There will be an inadvertent bias introduced into any ANN, which

uses this dataset because of these missing values. How it will affect the

overall ANN prediction performance is uncertain, but it will be an issue

nonetheless.

The last table in the figure shows the correlation values between the

feature variables. Usually, I would like to see low values between the

variables except for those features which are naturally related such as age

and pregnancies. You should also note that this table is a symmetric matrix

around the identity diagonal. The identity diagonal (all 1s) results because

the correlation value for a variable with itself must always equal to 1.

Figure 7-2.  Final results after running the diabetesTest script

Chapter 7 Predictions using ANNs and CNNs

396

The symmetric matrix results because the correlation function is

commutative (order of variables does not matter). The key value I will

be looking for is how the current correlation value of 0.436783 between

SkinThickness and Insulin changes after the data is modified to get rid of

the 0s.

Figure 7-3 is the histogram showing the relationship between insulin

levels and the proportion of healthy to sick patients.

There seems to be a strong clustering of unhealthy patients below the

40 level which doesn’t make sense because it is unlikely that any living

patient would have such low levels. Additionally, having a strong spike of

heathy patients with insulin levels at 20 or below is simply not realistic.

They too could not live will such low levels. Clearly the excess 0 problem is

skewing the data and causing the ANN to make erroneous predictions.

Figure 7-4 is the histogram showing the relationship between skin

thickness measurements and the proportion of healthy to sick patients.

Figure 7-3.  Histogram for insulin levels and proportion of healthy to
sick patients

Chapter 7 Predictions using ANNs and CNNs

397

In this figure, just like the previous figure, there are abnormal spikes in

the skin thickness measurements for both healthy and sick patients near

the 0 skin thickness measurement. It is simply not possible to have 0 skin

thickness. The excess 0 problem is solely causing this anomaly.

Figure 7-5 shows the heatmap for the correlation matrix between all

the dataset feature variables.

Figure 7-4.  Histogram for skin thickness measurements and
proportion of healthy to sick patients

Chapter 7 Predictions using ANNs and CNNs

398

What you should look for in this figure are the white blocks, which

indicate correlation values at or above 0.4. Most correlation values for this

dataset are relatively low except for

•	 Glucose and Outcome

•	 Age and Pregnancies

•	 Insulin and SkinThickness

The first two in the list make perfect sense. Glucose (sugar levels in

the blood) are definitely correlated with diabetes and hence the Outcome.

Age and Pregnancies are naturally correlated because women have fewer

Figure 7-5.  Correlation heatmap for dataset feature variables

Chapter 7 Predictions using ANNs and CNNs

399

pregnancies as they age, or if they are young, they haven’t had the time to

sustain many pregnancies. The last one in the list is the suspect one, which

is an artificially high correlation value due to the excess-zero problem.

It is now time to fix the excess 0’s problem. The question naturally

becomes how to do this without causing too much disruption to the

dataset? The answer most statisticians would cite is to impute the missing

data. Imputing data is a tricky process because it can insert additional bias

into the dataset. The process of imputing data can take on several forms

depending on the nature of the data. If the data is from a time series, then

missing data can easily be replaced by interpolating between the data

surrounding the missing values. Unfortunately, the diabetes dataset is not

time sensitive, so this option is out.

Another way to impute is to simply eliminate those records with

missing data. This is called listwise imputation. Unfortunately, using

listwise imputation would cause nearly 50% of existing dataset records to

disappear. This would wreak havoc on the ANN learning process so that

option is out. One of the remaining impute options is to use all the existing

feature data to determine a value to replace the missing data. There are

imputation processes called hot card, cold card, mean, and median value,

which use this approach. Without going into the details, I decided to use

median value as the option to replace the missing data values.

The following script is a revision of the previous script where I have

imputed the dataset to remove all 0s from the feature variables. The dataset

has also been split into two dataset, one for training and the other for

testing. The script is named revisedDiabetesTest.py and is available from

the book’s companion web site. I have also provided some explanatory

comments after the listing.

Import required libraries

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Chapter 7 Predictions using ANNs and CNNs

400

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.2, random_state=1)

Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0, strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

Display the first 10 records

print(X_train3.head(10))

def plotHistogram(values, label, feature, title):

 sns.set_style("whitegrid")

 plotOne = sns.FacetGrid(values, hue=label, aspect=2)

 plotOne.map(sns.distplot, feature, kde=False)

 plotOne.set(xlim=(0, values[feature].max()))

 plotOne.add_legend()

 plotOne.set_axis_labels(feature, 'Proportion')

 plotOne.fig.suptitle(title)

 plt.show()

Chapter 7 Predictions using ANNs and CNNs

401

Plot the heathy patient histograms for insulin and skin

thickness

plotHistogram(X_train3,None,4,'Insulin vs Diagnosis')

plotHistogram(X_train3,None,3,'SkinThickness vs Diagnosis')

Check to see if any 0's remain

data2 = X_train2

print("Num of Rows, Num of Columns: ", data2.shape)

print("\nColumn Name Num of Null Values\n")

print((data2[:] == 0).sum())

print("Num of Rows, Num of Columns: ", data2.shape)

print("\nColumn Name %Null Values\n")

print(((data2[:] == 0).sum()) / 614 * 100)

Display the correlation matrix

corr1 = X_train3.corr()

print(corr1)

Explanatory comments:

X_train, X_test, y_train, y_test = train_

test_split(X, y, test_size=0.2, random_

state=1) – Splits the input dataset into two, one 80%

of the input for training purposes and the other 20%

for testing purposes

X_train3 = pd.DataFrame(X_train2) – Converts

the training dataset from a numpy array into a

Pandas DataFrame so it is compatible with the

Pandas cross-correlation function

Again, this script should be run in the virtual environment with the

diabetes.csv dataset in the same directory as this script. Enter the following

command to run the script:

python revisedDiabetesTest.py

Chapter 7 Predictions using ANNs and CNNs

402

This script runs immediately and produces a series of results. The final

screen results are shown in Figure 7-6.

You can immediately see that all 0 values in the first ten training set

records have been replaced with other values. This is true for all of the

feature variables, but not the Outcome column, which is required for

supervised learning.

The 0 summary code displays now that there are no 0s remaining in

the dataset.

Figure 7-7 is the revised histogram showing the insulin distribution

for healthy patients. There is no longer any insulin values at or near 0. The

distribution peak is centered around 130, which seems reasonable to me,

but again, I am not an MD.

Figure 7-6.  Final results after running the revisedDiabetesTest script

Chapter 7 Predictions using ANNs and CNNs

403

Figure 7-8 is the revised histogram showing the skin thickness

distribution for healthy patients. As was the case for the insulin plot, this

plot shows no values whatsoever below 8. The peak appears to center on a

value of 29, which I presume is a reasonable number.

Figure 7-7.  Insulin histogram for healthy patients

Figure 7-8.  Skin thickness histogram for healthy patients

Chapter 7 Predictions using ANNs and CNNs

404

The correlation matrix shown at the bottom of Figure 7-6 now shows

a significantly decreased correlation value between insulin and skin

thickness. Before the 0s were removed, the correlation value between

these two features was 0.436783. It is now 0.168746, which is about a 61%

reduction. The 0 removal definitely improved the data quality, at least with

these two features.

It is time to discuss the Keras ANN model now that the dataset has

been “cleaned up” into a better state. The model to be built will be a

relatively simple three-layer, sequential one. The input layer will have

eight inputs corresponding to the eight dataset feature variables. Fully

connected layers will be used in the model using the Keras dense class.

The ReLU activation function will be used for the first two layers because

it has been found to be a best performance function. The third layer,

which is the output, will use the sigmoid function for activation because

the output must be between 0 and 1. Recall this is a prediction model and

the output is binary with only either a 0 or 1 value. In summary the model

assumptions are

•	 Expects rows of data with eight variables (the input_

dim=8 argument).

•	 The first hidden layer has 12 nodes and uses the ReLU

activation function.

•	 The second hidden layer has eight nodes and uses the

ReLU activation function.

•	 The output layer has one node and uses the sigmoid

activation function.

Note that the first hidden layer is actually performing two functions. It

is acting as an input layer in accepting eight variables, and it is also acting

as a hidden layer with 12 nodes with associated ReLU activation functions.

Chapter 7 Predictions using ANNs and CNNs

405

The following script is named kerasDiabetesTest.py, and it is available

from the book’s companion web site. Explanatory comments follow the

listing.

Import required libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from keras.models import Sequential

from keras.layers import Dense

Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=1)

Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

Define the Keras model

model = Sequential()

model.add(Dense(12, input_dim=8, activation='relu'))

model.add(Dense(8, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

Chapter 7 Predictions using ANNs and CNNs

406

Compile the keras model

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

fit the keras model on the dataset

model.fit(X_train2, y_train, epochs=150, batch_size=10)

Evaluate the keras model

_, accuracy = model.evaluate(X_test2, y_test)

print('Accuracy: %.2f' % (accuracy*100))

The first part of the script is the same as the first part of the

revisedDiabetesTest.py script with the exception of some added and

deleted imports. The model definition is in line in lieu of a separate

definition as was the case for the CNN scripts. This was done because it is

a very simple and concise model. The compile process is almost the same

as it was for the CNN models, except for the loss function, which is binary_

crossentropy instead of categorical_crossentropy, which is required

for multiple classes. This model will train and test very quickly, which

allows for many epochs to be run in an effort to improve the accuracy. In

this case, there are 150 epochs set. The overall accuracy is done using the

Keras evaluate method as it was done for the CNN models.

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following

command to run the script:

python kerasDiabetesTest.py

This script runs immediately and produces a series of results. The final

screen results are shown in Figure 7-9.

Chapter 7 Predictions using ANNs and CNNs

407

This figure is a composite showing the beginning and ending epoch

results. The final, overall accuracy score was 70.78%. This would normally

be considered an OK, but not great score. However, I did some research

on others who have run this project with similar models and found that

this result was in line with the majority of other results. It appears that

the Pima Indian Diabetes Study predictions are approximately successful

(or accurate) around 70% of the time. I believe that this level of accuracy

would not be an acceptable level if used in actual clinical trials, but is

perfectly acceptable in this learning and experimentation environment.

Figure 7-9.  Final results after running the kerasDiabetesTest script

Chapter 7 Predictions using ANNs and CNNs

408

�Using the scikit-learn library with Keras
The Python scikit-learn library uses the scipy stack for efficient numerical

computations. It is a fully featured library for general ML library that

provides many utilities which are useful in the developing models. These

utilities include

•	 Model evaluation using resampling methods such as

k-fold cross-validation

•	 Efficient evaluation of model hyper-parameters

The Keras library is a convenient wrapper for DL models used for

classification or regression estimations with the scikit-learn library.

The following demonstration uses the KerasClassifier wrapper for a

classification neural network created in Keras and is used with the scikit-

learn library. I will also be using the same modified Pima Indian Diabetes

dataset that is used in the last demonstration.

This demonstration script is very similar to the previous one in that

it uses the same Keras ANN model. The significant difference is that in

this script the model is used by the KerasClassifier instead of having the

modified dataset directly applied to the model via the Keras fit function.

I will explain how the KerasClassifier works after the script listing because

it is important for you to see how it is invoked.

The following script is named kerasScikitDiabetesTest.py to indicate

that it now uses the scikit-learn classifier in lieu of the normal Keras fit

function. It is available from the book’s companion web site.

Load required libraries

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import StratifiedKFold

Chapter 7 Predictions using ANNs and CNNs

409

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

import pandas as pd

Function to create model, required for the KerasClassifier

def create_model():

 # create model

 model = Sequential()

 model.add(Dense(12, input_dim=8, activation='relu'))

 model.add(Dense(8, activation='relu'))

 model.add(Dense(1, activation='sigmoid'))

 �model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

 return model

fix random seed for reproducibility

seed = 42

Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.2, random_state=1)

Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

Chapter 7 Predictions using ANNs and CNNs

410

Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

create model

model = KerasClassifier(build_fn=create_model, epochs=150,

batch_size=10, verbose=0)

evaluate using 10-fold cross validation

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_

state=seed)

Evaluate using cross_val_score function

results = cross_val_score(model, X_train2, y_train, cv=kfold)

print(results.mean())

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following

command to run the script:

python kerasScikitDiabetesTest.py

This script runs immediately and produces a single result. The final

screen result is shown in Figure 7-10.

The accuracy value displayed in the figure is 73.45%. This value was

based on only using the training dataset, which is 80% of the original

dataset. Consequently, I reran the script with the split changed to 99% for

the training set, which meant it was almost the size of the unsplit dataset.

Figure 7-10.  Final result after running the kerasScikitDiabetesTest
script

Chapter 7 Predictions using ANNs and CNNs

411

The result was an accuracy was 73.40%, which is a statistically insignificant

difference from the first run.

The KerasClassifier and KerasRegressor classes in Keras take an

argument named build_fn which is the model’s function name. In the

preceding script, a method named create_model() that creates a MLP

for this case. This function is passed to the KerasClassifier class by the

build_fn argument. There are additional arguments of nb_epoch=150 and

batch_size=10 that are automatically used by the fit() function, which is

called internally by the KerasClassifier class.

In this example, the scikit-learn StratifiedKFold function is then

used to perform a tenfold stratified cross-validation. This is a resampling

technique that provides a robust estimate of the accuracy for the defined

model with the applied dataset.

The scikit-learn function cross_val_score is used to evaluate the

model using a cross-validation scheme and display the results.

�Grid search with Keras and scikit-learn
In this follow-on demonstration, a grid search is used to evaluate different

configurations for the ANN model. The configuration that produces the

best estimated performance is reported.

The create_model() function is defined with two arguments,

optimizer and Init, both of which have default values. Varying these

argument values allows for the evaluation of the effect of using different

optimization algorithms and weight initialization schemes on the network

model.

After model creation, there is a definition of parameter arrays used in

the grid search. The search is intended to test

•	 Optimizers for searching different weight values

•	 Initializers for preparing the network weights using

different schemes

Chapter 7 Predictions using ANNs and CNNs

412

•	 Epochs for training the model for a different number of

exposures to the training dataset

•	 Batches for varying the number of samples before a

weight update

The preceding options are stored in a dictionary and then passed

to the configuration of the GridSearchCV scikit-learn class. This class

evaluates a version of the ANN model for each combination of parameters

(2 x 3 x 3 x 3 for the combinations of optimizers, initializations, epochs, and

batches). Each combination is then evaluated using the default threefold

stratified cross-validation.

There are a lot of models, and it all takes a considerable amount of

computation time as you will find out if you replicate this demonstration

using a RasPi. The estimation duration for this RasPi setup is about 2

hours, which is reasonable considering the relatively small network and

the small dataset (less than 800 records instances and 9 features and

attributes).

After the script has finished, the performance and combination

of configurations for the best model are displayed, followed by the

performance for all of the combinations of parameters.

The following script is named kerasScikitGridSearchDiabetesTest.

py to indicate that it uses the scikit-learn grid search algorithm to help

determine the optimal configuration for the ANN model. This script is

available from the book’s companion web site:

Import required libraries

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

Chapter 7 Predictions using ANNs and CNNs

413

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score

Function to create model, required for KerasClassifier

def create_model(optimizer='rmsprop', init='glorot_uniform'):

 # create model

 model = Sequential()

 �model.add(Dense(12, input_dim=8, kernel_initializer=init,

activation='relu'))

 �model.add(Dense(8, kernel_initializer=init,

activation='relu'))

 �model.add(Dense(1, kernel_initializer=init,

activation='sigmoid'))

 # Compile model

 �model.compile(loss='binary_crossentropy',

optimizer=optimizer, metrics=['accuracy'])

 return model

Random seed for reproducibility

seed = 42

np.random.seed(seed)

Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=1)

Chapter 7 Predictions using ANNs and CNNs

414

Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

Create model

model = KerasClassifier(build_fn=create_model, verbose=0)

Grid search epochs, batch size and optimizer

optimizers = ['rmsprop', 'adam']

init = ['glorot_uniform', 'normal', 'uniform']

epochs = [50, 100, 150]

batches = [5, 10, 20]

param_grid = dict(optimizer=optimizers, epochs=epochs,

batch_size=batches, init=init)

grid = GridSearchCV(estimator=model, param_grid=param_grid)

grid_result = grid.fit(X_train2, y_train)

Summarize results

print("Best: %f using %s" % (grid_result.best_score_,

grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

 print("%f (%f) with: %r" % (mean, stdev, param))

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following

command to run the script:

python kerasScikitGridSearchDiabetesTest.py

Chapter 7 Predictions using ANNs and CNNs

415

This script takes about 2 hours to complete because of the many sets of

epochs being run. The final screen results are shown in Figure 7-11, which

is a composite that I made showing the beginning and ending set of epoch

interim results.

The highest accuracy achieved for all the sets of epochs run was

76.22%. Note that I drew line pointing to the optimal set in the figure. This

set was configured for 150 epochs, a batch size of 5, a normal distribution,

and the Adam optimizer.

Figure 7-11.  Final results after running the kerasScikitGridSearch
DiabetesTest script

Chapter 7 Predictions using ANNs and CNNs

416

�Housing price regression predictor
demonstration
Modern online property companies offer valuations of houses using

ML techniques. This demonstration will predict the prices of houses in

the metropolitan area of Boston, MA (USA), using an ANN and a scikit-

learn multiple linear regression (MLR) function. The dataset used in

this demonstration is rather dated (1978), but it is still adequate for the

purposes of this project.

The dataset consisted of 13 variables and 507 records. The dataset

feature variables are detailed in Table 7-2.

Table 7-2.  Boston housing dataset feature variables

Columns Description

CRIM Per capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.

INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX Nitric oxide concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property tax rate per $10,000

PTRATIO Pupil-teacher ratio by town

LSTAT Percentage of lower status of the population

MEDV Median value of owner-occupied homes in $1000s

Chapter 7 Predictions using ANNs and CNNs

417

The price of the house indicated by the variable MEDV is the target

variable, and the remaining features are the feature variables on which the

value of a house will be predicted.

�Preprocessing the data
It is always good practice to become familiar with the dataset to be used

in a project. The obvious first step is to download the dataset. Fortunately,

this dataset is readily available using the scikit-learn repository. The

following statements will download the dataset into a script:

from sklearn.datasets import load_boston

boston_dataset = load_boston()

I next created a small script to investigate the dataset characteristics

including the keys and first few records. I named this script inspectBoston.

py, and it is available from the book’s companion web site.

Load the required libraries

import pandas as pd

from sklearn.datasets import load_boston

Load the Boston housing dataset

boston_dataset = load_boston()

Display the dataset keys

print(boston_dataset.keys())

Display the first five records

boston = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

print(boston.head())

Display the extensive dataset description key

print(boston_dataset.DESCR)

Chapter 7 Predictions using ANNs and CNNs

418

Run this script by using this command:

python inspectBoston.py

Figure 7-12 shows the result of running this script session.

Figure 7-12.  Results after running the inspectBoston script

Chapter 7 Predictions using ANNs and CNNs

419

The DESCR portion of the dataset keys is extensive and provides an

unusual and comprehensive historical review for this useful dataset. I wish

other ML datasets would include such informative data.

Reviewing the initial five records reveals that the target variable MEDV

is missing from the DataFrame. This is easily remedied by adding this line

of code:

boston['MEDV'] = boston_dataset.target

One quick dataset check that is easy to implement and quite useful is

to check for any missing or 0 values in the dataset. This can be done using

the isnull() method along with a summing operation. The statement to

do this is

boston.isnull().sum()

I incorporated this null check along with the MEDV correction into

a revised inspectBoston script. This revised script, which is now named

inspectBostonRev.py, does not display the extensive description as shown

in the original script. This script is available from the book’s companion

web site:

Load the required libraries

import pandas as pd

from sklearn.datasets import load_boston

Load the Boston housing dataset

boston_dataset = load_boston()

Display the dataset keys

print(boston_dataset.keys())

Create the boston Dataframe

boston = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

Chapter 7 Predictions using ANNs and CNNs

420

Add the target variable to the Dataframe

boston['MEDV'] = boston_dataset.target

Display the first five records

print(boston.head())

Check for null values in the dataset

print(boston.isnull().sum())

Run this script by using this command:

python inspectBostonRev.py

Figure 7-13 shows the result of running this script session.

The results display shows that the MEDV target variable has been

successfully added to the DataFrame and that there are no null or 0 values

present in the dataset. Based on all of the preceding checks, I would say

that this dataset was ready to be applied to a model.

Figure 7-13.  Results after running the inspectBoston script

Chapter 7 Predictions using ANNs and CNNs

421

�The baseline model
A MLP Keras model will first be created and then used with a scikit-learn

wrapper regression function to evaluate the Boston housing dataset.

This action is almost identical to what happened in the first chapter

demonstration where the scikit-learn wrapper function was a classifier

instead of a regression package. This method of using Keras models with

scikit-learn wrapper functions is quite powerful because it allows for

the use of easy-to-build Keras models with the impressive evaluation

capabilities built in with the scikit-learn library.

The baseline model is a simple structure with a single fully connected

hidden layer with the same number of nodes as the input feature

variables (13). The network also uses the efficient ReLU activation

functions. However, no activation function is used on the output layer

because this network is designed to predict numerical values and does not

need any transformations applied.

The Adam optimizer is used and a mean squared error (MSE) loss

function is the target function to be optimized. The MSE will also be the

same metric used to evaluate the network performance. This is a desirable

metric because it can be directly understood in the context of the problem,

which is a house price in thousands of dollars squared.

The Keras wrapper object used with the scikit-learn library is named

KerasRegressor. This is instantiated using the same argument types as

used with the KerasClassifier object. A reference to the model is required

along with several parameters (number of epochs and batch size) that are

eventually passed to the fit() function, which does the training.

A random number is also used in the script to help generate consist

and reproducible results when the script is repeatedly run.

The model is eventually evaluated using a tenfold cross-validation

process as I have previously discussed in this and previous chapters. The

final metrics are the MSE including the average and standard deviation

across all tenfolds for the cross-validation evaluation.

Chapter 7 Predictions using ANNs and CNNs

422

The dataset must be normalized prior to applying it to the model and

evaluation framework. This is because it contains values of widely varying

magnitude, which you should realize by now is not a good thing for an

ANN to attempt to handle. A normalized dataset is also commonly referred

to as a standardized dataset. In this case the scikit-learn StandardScaler

function is used to normalize (standardize) the data during the model

evaluation within each fold of the cross-validation process.

The following script incorporates all the items discussed earlier. It is

named kerasRegressionTest.py and is available from the book’s companion

web site.

Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

Load the Boston housing dataset

boston_dataset = load_boston()

Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

Setup the boston dataframe

boston = dataframe.values

Chapter 7 Predictions using ANNs and CNNs

423

Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

Define the base model

def baseline_model():

 # Create model

 model = Sequential()

 �model.add(Dense(13, input_dim=13, kernel_

initializer='normal', activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

Random seed for reproducibility

seed = 42

Create a regression object

estimator = KerasRegressor(build_fn=baseline_model, epochs=100,

batch_size=5, verbose=0)

Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=baseline_

model, epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Standardized: %.2f (%.2f) MSE" % (results.mean(),

results.std()))

Chapter 7 Predictions using ANNs and CNNs

424

Run this script by using this command:

python kerasRegressionTest.py

Figure 7-14 shows the result of running this script session.

The resulting MSE was 28.65, which is not a bad result. For those

readers that have some difficulty in working with a statistical measure

such as MSE, I will offer a somewhat naive interpretation but perhaps a bit

intuitive. I did the following brief set of calculations:

Mean of all the MEDV values = 22.49 (That’s 1978

house prices in the Boston area)

Square root of MSE = 5.35

Ratio of square root of MSE to mean = 0.238

1 - above value = 0.762 or “accuracy” = 76.2%

Now, before statisticians start yelling at me, I only present the

preceding calculations to provide a somewhat meaningful interpretation of

the MSE metric. Clearly an MSE approaching 0 is ideal, but as you can see

from this approach, the model is reasonably accurate. In fact, I did some

additional research regarding the results of other folks who have used this

same dataset and similar networks. I found that the reported accuracies

were in the range of 75 to 80%, so this demonstration was right where it

should have been.

Figure 7-14.  Results after running the kerasRegressionTest script

Chapter 7 Predictions using ANNs and CNNs

425

�Improved baseline model
One of the great features of the preceding script is that changes can be

made in the baseline model not affecting any other parts of the script. That

inherent feature is another subtle example of high cohesion, loose coupling

that I mentioned earlier. Another layer will be added to the model in an

effort to improve its performance. This “deeper” model “may” allow the

model to extract and combine higher ordered features embedded in the

data, which in turn will allow for better predictive results. The code for this

model is

define the model

def larger_model():

 # create model

 model = Sequential()

 �model.add(Dense(13, input_dim=13, kernel_

initializer='normal', activation='relu'))

 �model.add(Dense(6, kernel_initializer='normal',

activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

The modified script was renamed to kerasDeeperRegressionTest.py

and is listed in the following. It is available from the book’s companion

web site.

Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

Chapter 7 Predictions using ANNs and CNNs

426

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

Load the Boston housing dataset

boston_dataset = load_boston()

Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

Setup the boston dataframe

boston = dataframe.values

Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

Define the model

def larger_model():

 # create model

 model = Sequential()

 �model.add(Dense(13, input_dim=13, kernel_

initializer='normal', activation='relu'))

 �model.add(Dense(6, kernel_initializer='normal',

activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

Chapter 7 Predictions using ANNs and CNNs

427

Random seed for reproducibility

seed = 42

Create a regression object

estimator = KerasRegressor(build_fn=larger_model, epochs=100,

batch_size=5, verbose=0)

Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=larger_model,

epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Standardized: %.2f (%.2f) MSE" % (results.mean(),

results.std()))

Run this script by using this command:

python kerasDeeperRegressionTest.py

Figure 7-15 shows the result of running this script.

Figure 7-15.  Results after running the kerasDeeperRegressionTest
script

Chapter 7 Predictions using ANNs and CNNs

428

The result from using a deeper model is an MSE equals to 24.19, which

is moderately less than the previous result of 28.65. This shows that the

new model is better with predictions than the shallower model. I also

repeated my naive calculations and came up with an accuracy of 78.13%.

This is almost two points higher than the previous script results. The

deeper model is definitely a better performer.

�Another improved baseline model
Going deeper is not the only way to improve a model. Going wider can also

improve a model by increasing the number of nodes in the hidden layer

and hopefully increasing the network’s ability to extract latent features.

The code for this model is

Define the wider model

def wider_model():

 # create model

 model = Sequential()

 �model.add(Dense(20, input_dim=13, kernel_

initializer='normal', activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

The modified script was renamed to kerasWiderRegressionTest.py and

is listed in the following. It is available from the book’s companion web site.

Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

Chapter 7 Predictions using ANNs and CNNs

429

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

Load the Boston housing dataset

boston_dataset = load_boston()

Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

Setup the boston dataframe

boston = dataframe.values

Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

Define the wider model

def wider_model():

 # create model

 model = Sequential()

 �model.add(Dense(20, input_dim=13, kernel_

initializer='normal', activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

Chapter 7 Predictions using ANNs and CNNs

430

Random seed for reproducibility

seed = 42

Create a regression object

estimator = KerasRegressor(build_fn=wider_model, epochs=100,

batch_size=5, verbose=0)

Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=wider_model,

epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.

std()))

Run this script by using this command:

python kerasWiderRegressionTest.py

Figure 7-16 shows the result of running this script.

The result from using a wider model is an MSE equals to 26.35, which

is a disappointing result because it is moderately higher than the deeper

model result of 24.19. This wider result is still less than the original,

Figure 7-16.  Results after running the kerasWiderRegressionTest script

Chapter 7 Predictions using ANNs and CNNs

431

unmodified version 28.65. The naive accuracy calculation is 77.17%, which

is about halfway between the original and deeper model accuracies.

I believe that experimenting with different node numbers will

likely change the outcome to the better. The 20 node value used in this

demonstration was just a reasoned guess. You can easily double that and

see what happens; however, be careful of either over- or underfitting the

model.

One more suggestion I have for curious readers is to try a model that

incorporates both a deeper and wider architecture. That very well may be

the sweet spot for this project.

�Predictions using CNNs
Making a prediction using a CNN at first glance (pardon the pun) might

seem like a strange task. CNNs are predicated on using Images as input

data sources, and the question that naturally arises is what is a “predicted”

Image? The answer lies in the intended use of the Images. CNNs are neural

networks just like their ANN counterparts. They are only designed to

process numerical arrays and matrices, nothing more. How users interpret

CNN outputs are entirely up to the users.

In recent years, CNNs have been used in cellular microscopy

applications for cancer and other diseases. The prediction in such case

is whether or not a patient has a certain diagnosis based on the analysis

of microscopic cell Images. This type of analysis is also widely used for

radioscopic (x-ray) examinations, where CNNs have been applied to

large-scale Images in an effort to assist with patient diagnosis. Medical

predictions have enormous consequences, and CNN analysis is only

one tool of many that doctors use to assist in their diagnostic efforts. The

subject of CNN medical analysis is quite complicated, and I decided to

devote the entire next chapter to it.

Chapter 7 Predictions using ANNs and CNNs

432

Another area where CNN predictions are commonly used is with time

series analysis, and this one is fortunately not nearly as complicated as

the medical diagnosis one. I have included a series of relatively simple

demonstrations to illustrate how to use a CNN with a time series. However,

I will first answer the obvious question, what is a time series? A time series

is just a series of data point indexed in time order. Most commonly, a time

series is a numerical sequence sampled at successive equally spaced data

points in time. It is only a sequence of discrete, time-related data points.

Examples of time series are ocean tide heights, sunspot activity, and the

daily closing value of the Dow Jones Industrial Average. The common

attribute shared by all-time series is that they are all historical. That is

where the CNN comes in. A CNN uses the historical record to predict the

next data point. In reality, this is not a big problem if the time series is

logical and well ordered. If I presented you with the following time series

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, ?

and asked you to predict the next number in the series, I don’t think

anyone of my bright readers would have a problem doing that. But, if I

presented you with the following sequence

86.6, 50, 0, –50, –86.6, –100, –86.6, –50, 0, 50, 86.6, ?

some of you may have a bit of difficulty in arriving at an answer (hint:

cosine times 100). Although some readers could have instantly noticed

the repetitive pattern in the sequence, a CNN would have had no issue in

detecting the pattern. In the preceding case, plotting the data points would

have allowed you to instantly recognize the sinusoidal pattern.

But if the time series were truly random, how would the next data

point be determined? That is where a CNN would help us – one area where

there has been a vast amount of resources applied in the prediction of

stock market indices. The time series involved with such indices is vastly

complicated depending on many conflicting factors such as financial

stability, global status, societal emotions, future uncertainties, and so on.

Chapter 7 Predictions using ANNs and CNNs

433

Nonetheless, many brilliant data scientists have been tackling this problem

and applying some of the most innovative and complex DL techniques

including vastly complex CNNs. Obviously, the stakes in developing a

strong predictor would be hugely rewarding. I suspect if someone has

already developed a strong algorithm, it has been kept secret and likely

would remain so.

The following demonstrations are vastly underwhelming and are

meant to be as such. They are only designed to show how to apply a CNN

to a variety of time series. These are basic concepts that you can use to

build more complex and realistic predictors.

�Univariate time series CNN model
A univariate time series is a series of data points sampled in a timed

sequence, where the intervals between samples are equal. The CNN model

goal is to use this 1D array of values to predict the next data point in the

sequence. The time series or dataset as I will now refer to it must first be

preprocessed a bit to make compatible with a CNN model. I will discuss

how to build the CNN model after the dataset preprocessing section.

�Preprocessing the dataset

Keep in mind that the CNN must learn a function that maps an historical

numerical sequence as an input to a single numerical output. This means

the time series must be transformed into multiple examples that the CNN

can learn from.

Suppose the following time series is provided as the input:

50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,

600, 650

Break up the preceding sequence into a series of input/output sample

patterns as shown in Table 7-3.

Chapter 7 Predictions using ANNs and CNNs

434

The following script parses a time series into a dataset suitable for use

with a CNN. This script is named splitTimeSeries.py and is available from

the book’s companion web site:

Import required library

from numpy import array

Split a univariate time series into samples

def split_sequence(sequence, n_steps):

 X, y = list(), list()

 for i in range(len(sequence)):

 # find the end of this pattern

 end_ix = i + n_steps

 # check if we are beyond the sequence

 if end_ix > len(sequence)-1:

 break

Table 7-3.  Time series to sample distribution

X y

50, 100, 150 200

100, 150, 200 250

150, 200, 250 300

200, 250, 300 350

250, 300, 350 400

300, 350, 400 450

350, 400, 450 500

400, 450, 500 550

450, 500, 550 600

500, 550, 600 650

Chapter 7 Predictions using ANNs and CNNs

435

 # gather input and output parts of the pattern

 seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

Define input time series

raw_seq = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650]

Choose a number of time steps

n_steps = 3

Split into samples

X, y = split_sequence(raw_seq, n_steps)

Display the data

for i in range(len(X)):

 print(X[i], y[i])

Run this script by using this command:

python splitTimeSeries.py

Figure 7-17 shows the result of running this script.

Figure 7-17.  Results after running the splitTimeSeries script

Chapter 7 Predictions using ANNs and CNNs

436

You can see from the figure that the script has created ten learning

examples for the CNN. This should be enough to train a CNN model to

effectively predict a data point. The next step in this demonstration is to

create a CNN model.

�Create a CNN model

The CNN model must have a 1D input/convolutional layer to match

the 1D applied dataset. A pooling layer follows the first layer, which will

subsample the convolutional layer output in an effort to extract the salient

features. The pooling layer then feeds a fully connected layer, which

interprets the features extracted by the convolutional layer. Another fully

connected layer follows to help with further feature definition, and finally

the output layer reduces the feature maps to a 1D vector.

The code for this model is

Define 1-D CNN model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu',

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

The convolution layer has two arguments, which specify the number

of time steps (intervals) and the number of features to expect. The number

of features for a univariate problem is one. The time steps will be the same

number used to split up the 1D time series, which is three for this case.

The input dataset has multiple records, each with a shape dimension

of [samples, timesteps, features].

Chapter 7 Predictions using ANNs and CNNs

437

The split_sequence function provides the X vector with the shape of

[samples, timesteps], which means the dataset must be reshaped to add

an additional element to cover the number of features. The following code

snippet does precisely that reshaping:

n_features = 1

X = X.reshape(X.shape[0], X.shape[1], n_features))

The model needs to be trained, and that is done using the conventional

Keras fit function. Because this is a simple model and the dataset is tiny

as compared to others I have demonstrated, the training will be extremely

brief for a single epoch. This means a large number of epochs can be used

to try to obtain a maximum performance model. In this case, that number

is 1000. The following code invokes the fit function for the model:

model.fit(X, y, epochs=1000, verbose=0)

Finally, the Keras predict function will be used to predict the next value

in the input sequence. For instance, if the input sequence is {150, 200, 250],

then the predicted value should be [300]. The code for the prediction is

Demonstrate prediction

x_input = array([150, 200, 250])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

The complete script incorporating all of the code snippets discussed

earlier is named univariateTimeSeriesTest.py and is listed in the following.

It is available from the book’s companion web site.

Import required libraries

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

Chapter 7 Predictions using ANNs and CNNs

438

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

Split a univariate sequence into samples

def split_sequence(sequence, n_steps):

 X, y = list(), list()

 for i in range(len(sequence)):

 # find the end of this pattern

 end_ix = i + n_steps

 # check if we are beyond the sequence

 if end_ix > len(sequence)-1:

 break

 # gather input and output parts of the pattern

 seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

Define input sequence

raw_seq = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650]

Choose a number of time steps

n_steps = 3

Split into samples

X, y = split_sequence(raw_seq, n_steps)

Reshape from [samples, timesteps] into [samples, timesteps,

features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

Chapter 7 Predictions using ANNs and CNNs

439

Define 1-D CNN model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu',

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Fit the model

model.fit(X, y, epochs=1000, verbose=0)

Demonstrate prediction

x_input = array([150, 200, 250])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Run this script by using this command:

python univariateTimeSeriesTest.py

Figure 7-18 shows the result of running this script.

Figure 7-18.  Results after running the univariateTimeSeriesTest script

Chapter 7 Predictions using ANNs and CNNs

440

The predicted value displayed is 296.78, not quite 300 as was expected,

but still fairly close. There is a degree of randomness in the algorithm, and

I tried running it a few more times. The following list shows the results of

ten retries:

286.68

276.35

279.15

299.96

279.66

299.86

300.07

281.75

294.20

300.09

You can see from the list that the expected value (rounded) was

displayed four out of ten times. The mean of the ten values was 289.78, the

standard deviation was 10.03, and range was from 276.35 to 300.09. I would

rate this CNN predictor as good with those performance statistics.

�Multivariate time series CNN model

A multivariate time series is the same as a univariate time series except

that there is more than one sampled value for each time step. There are

two model types that handle multivariate time series data:

•	 Multiple input series

•	 Multiple parallel series

Each model type will be discussed separately.

Chapter 7 Predictions using ANNs and CNNs

441

Multiple input series

I will start by explaining that multiple input series has parallel input time

series, which is not to be confused with the other model type. This will be clear

in a moment. This parallel time series has had its values sampled at the sample

time step. For example, consider the following sets of raw time series values:

[50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,

650]

[50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325,

350]

The output sequence will be the sum of each sampled value pair for

the entire length of each series. In code the aforementioned would be

expressed as

from numpy import array

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650])

in_seq2 = array([50, 75, 100, 125, 150, 175, 200, 225, 250,

275, 300, 325, 350])

out_seq = array([in_seq1[i] + in_seq2[i] for i in range(in_

seq1))])

These arrays must be reshaped as was done in the previous

demonstration. The columns must also be stacked horizontally for

processing. The code segment to do all that is

Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Chapter 7 Predictions using ANNs and CNNs

442

Preprocessing the dataset

The complete script to preprocess the datasets described earlier is

named shapeMultivariateTimeSeries.py and is listed in the following. It is

available from the book’s companion web site.

Multivariate data preparation

from numpy import array

from numpy import hstack

Define input sequences

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650])

in_seq2 = array([50, 75, 100, 125, 150, 175, 200, 225, 250,

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Display the datasets

print(dataset)

Run this script by using this command:

python shapeMultivariateTimeSeries.py

Figure 7-19 shows the result of running this script.

Chapter 7 Predictions using ANNs and CNNs

443

The results screen shows the dataset with one row per time step and

columns for the two inputs and summed output for each of the elements in

the parallel time series.

This reshaped raw data vectors now must be split into input/output

samples as was done with the univariate time series. A 1D CNN model

needs sufficient inputs to learn a mapping from an input sequence to an

output value. The data needs to be split into samples maintaining the

order of observations across the two input sequences.

If three input time steps are chosen, then the first sample would look

as follows:

Input:

50, 50

100, 75

150, 100

Output:

250

Figure 7-19.  Results after running the shapeMultivariateTimeSeries
script

Chapter 7 Predictions using ANNs and CNNs

444

The first three time steps of each parallel series are provided as input

to the model, and the model associates this with the value in the output

series at the third time step, in this case, 250.

It is apparent that some data will be discarded when transforming the

time series into input/output samples to train the model. Choosing the

number of input time steps will have a large effect on how much of the

training data is eventually used. A function named split_sequences will

take the dataset that was previously shaped and return the needed input/

output samples. The following code implements the split_sequences

function:

split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

 X, y = list(), list()

 for i in range(len(sequences)):

 # find the end of this pattern

 end_ix = i + n_steps

 # check if we are beyond the dataset

 if end_ix > len(sequences):

 break

 # gather input and output parts of the pattern

 �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

The following code tests all the previous code snippets and functions.

I named this script splitMultivariateTimeSeries.py. It is available from the

book’s companion web site.

Chapter 7 Predictions using ANNs and CNNs

445

Import required libraries

from numpy import array

from numpy import hstack

Split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

 X, y = list(), list()

 for i in range(len(sequences)):

 # find the end of this pattern

 end_ix = i + n_steps

 # check if we are beyond the dataset

 if end_ix > len(sequences):

 break

 # gather input and output parts of the pattern

 �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

Define input sequences

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650])

in_seq2 = array([50, 75, 100, 125, 150, 175, 200, 225, 250,

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

Chapter 7 Predictions using ANNs and CNNs

446

Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Choose a number of time steps

n_steps = 3

Convert into input/output samples

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

Display the data

for i in range(len(X)):

 print(X[i], y[i])

Run this script by using this command:

python splitMultivariateTimeSeries.py

Figure 7-20 shows the result of running this script.

Chapter 7 Predictions using ANNs and CNNs

447

Running the script first displays the shape of the X and y components.

You can see that the X component has a 3D structure. The first dimension

is the number of samples, in this case 11. The second dimension is the

number of time steps per sample, in this case 3, and the last dimension

specifies the number of parallel time series or the number of variables, in

this case 2, for the two parallel series. The dataset as shown in the rest of

the figure is the exact 3D structure expected by a 1D CNN for input.

Figure 7-20.  Results after running the splitMultivariateTimeSeries
script

Chapter 7 Predictions using ANNs and CNNs

448

The model used for this demonstration is exactly the same one used

for the univariate demonstration. The discussion I used for that model

applies to this situation.

The Keras predict function will be used to predict the next value in the

output series, provided the input values are

200, 125

300, 175

400, 225

The predicted value should be 625. The code for the prediction is

Demonstrate prediction

x_input = array([[200, 125], [300, 175], [400, 225]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

The complete script incorporating all of the code snippets discussed

earlier is named multivariateTimeSeriesTest.py and is listed in the

following. It is available from the book’s companion web site.

Import required libraries

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

Split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

 X, y = list(), list()

 for i in range(len(sequences)):

Chapter 7 Predictions using ANNs and CNNs

449

 # Find the end of this pattern

 end_ix = i + n_steps

 # Check if we are beyond the dataset

 if end_ix > len(sequences):

 break

 # Gather input and output parts of the pattern

 �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

Define input sequence

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650])

in_seq2 = array([50, 75, 100, 125, 150, 175, 200, 225, 250,

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

Choose a number of time steps

n_steps = 3

Convert into input/output samples

X, y = split_sequences(dataset, n_steps)

Chapter 7 Predictions using ANNs and CNNs

450

The dataset knows the number of features, e.g. 2

n_features = X.shape[2]

Define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu',

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

Fit model

model.fit(X, y, epochs=1000, verbose=0)

Demonstrate prediction

x_input = array([[200, 125], [300, 175], [400, 225]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

Display the prediction

print(yhat)

Run this script by using this command:

python multivariateTimeSeriesTest.py

Figure 7-21 shows the result of running this script.

Chapter 7 Predictions using ANNs and CNNs

451

The predicted value displayed is 616.74.78, not quite 625 as was

expected, but still reasonably close. There is a degree of randomness in the

algorithm, and I tried running it a few more times. The following list shows

the results of ten retries:

586.93

610.88

606.86

593.37

612.66

604.88

597.40

577.46

605.50

605.94

The mean of the ten values was 600.19, the standard deviation

was 11.28, and range was from 577.46 to 612.66. I would rate this CNN

predictor as fair to good with those performance statistics.

Figure 7-21.  Results after running the multivariateTimeSeriesTest
script

Chapter 7 Predictions using ANNs and CNNs

453© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_8

CHAPTER 8

Predictions using
CNNs and MLPs
for medical research
In the previous chapter, I introduced you to how both ANNs and CNNs are

used to make predictions. The predictions discussed were strictly related

to numerical datasets and did not directly involve any input Images. In

this chapter, I will discuss how to use Images with CNNs to make medical

diagnosis predictions. Currently, this area of research is extremely

important, and many AI researchers are pursuing viable lines of research

to advance the subject matter. In truth, I added one more data-oriented

MLP demonstration at the chapter’s end to hopefully show you that data-

only projects are still relevant in this area.

Much of this chapter’s content has been inspired from Adrian

Rosebrock’s February 2019 blog titled “Breast Cancer Classification with

Keras and Deep Learning.” As Adrian points out in his blog, most of his

readers “know someone who has had cancer at some point.” I am sure

that statement is true for most of the readers of this book. Hopefully, this

chapter’s content will provide some measure of hope to potential cancer

patients that real progress is being made in the early detection of some

types of cancer using AI, ML, and DL.

454

�Parts list
You will need a standard RasPi desktop configuration for the chapter

demonstrations.

Item Model Quantity Source

Raspberry Pi 4 Model B (RasPi 4 with 2 or

4 GB RAM)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 32 GB, class 10 or larger 1 amazon.com

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

Note  A minimum of 2 GB RAM is required to enable the RasPi
4 to compile and train the CNN models used in the chapter
demonstrations. RasPis with only 1 GB of RAM will not be successful
in the demonstrations.

The use of a 32 GB micro SD card is required because the combined
memory requirements for OpenCV, Keras, TensorFlow, dataset used
in the demonstrations, and the latest Raspbian OS in a virtual Python
environment exceed 16 GB.

Chapter 8 Predictions using CNNs and MLPs for medical research

455

�Downloading the breast cancer histology
Image dataset
Histology, also known as microscopic anatomy or microanatomy is the

branch of biology which studies the microscopic anatomy of biological

tissues. Specifically, the histology referenced in this problem domain are

the microscopic Images taken from patients with and without malignant

breast cancer cells.

The dataset used in this demonstration is for invasive ductal

carcinoma (IDC). This dataset is available for download at

www.kaggle.com/paultimothymooney/breast-histopathology-images

It is a very large download (1.6 GB) and will need to be unarchived

twice to gain access to the raw Images. The final extracted dataset size

exceeds 2.4 GB.

The following are the context and content descriptions from the

dataset download web site:

Context:

Invasive ductal carcinoma (IDC) is the most common subtype of all

breast cancers. To assign an aggressiveness grade to a whole mount sample,

pathologists typically focus on the regions which contain the IDC. As a

result, one of the common preprocessing steps for automatic aggressiveness

grading is to delineate the exact regions of IDC inside of a whole mount slide.

Content:

The original dataset consisted of 162 whole mount slide Images

of Breast Cancer (BCa) specimens scanned at 40x. From that, 277,524

patches of size 50 x 50 were extracted (198,738 IDC negative and 78,786

IDC positive). Each patch’s filename is of the format u_xX_yY_classC.png.

For example, 10253_idx5_x1351_y1101_class0.png, where u is the patient

ID (10253_idx5), X is the x-coordinate of where this patch was cropped

from, Y is the y-coordinate of where this patch was cropped from, and C

indicates the class where 0 is non-IDC and 1 is IDC.

Chapter 8 Predictions using CNNs and MLPs for medical research

https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Anatomy
https://en.wikipedia.org/wiki/Tissue_(biology)

456

In summary, from the preceding descriptions there are

•	 277,524 Image patches of 50×50 pixels each

•	 78,786 positive examples (i.e., indicating breast cancer

detected in the patch)

•	 198,738 negative examples (i.e., no breast cancer

detected)

From my examination of a sample of the patch coordinates, I have

inferred that the original whole mount slide Image size in pixels must

be 1600 x 1600. This means that a maximum of 1024 patches could be

extracted from any given slide, provided there were no overlapping patches

taken. This means the whole dataset has a potential for a maximum of

the number of patient’s time 1024, assuming each patient has cancer and

cancer-free patches. I will shortly show you that there are 837 patients in

this study, which means there is a potential maximum of 857,088 patch

Images. In actuality, there are 277,524 Images in the dataset, which means

that only 32% of the potential patches were sampled. While this statistic

might be meaningful to statisticians regarding the overall “quality” of any

prediction, I will choose to ignore it for purposes of this demonstration.

There is, however, an obvious imbalance in the Image types in

the dataset. There are twice as many negative class Images as positive

class Images. This is something that will be handled when the data is

preprocessed.

Figure 8-1 shows a tiny fraction of both positive and negative Images

from the dataset.

Chapter 8 Predictions using CNNs and MLPs for medical research

457

There are 837 sub-directories present under the main directory named

IDC_regular_ps50_idc5. You will next need to rename this directory to

dataset to make it compatible with the configuration script I will shortly

discuss. You can either use the cp command or use the File Manager utility

to make this change. I almost always use the File Manager because of its

convenience.

Figure 8-2 is the result of running the tree command, where you can

see a small portion of the 837 sub-directories.

Figure 8-1.  Representative sample of dataset Images

Chapter 8 Predictions using CNNs and MLPs for medical research

458

Each sub-directory contains both positive and negative Images for a

given patient, whose numerical id is the name of the sub-directory. In each

sub-directory, there are two more sub-directories named 0 and 1. The 0

directory contains Images, which do have any cancer cells detected. The 1

directory has Images containing detected cancer cells.

The ultimate goal of this demonstration is to train a CNN model to

distinguish between positive and negative Image classes, thus predicting if

a given patient has or does not have IDC.

Figure 8-2.  tree command for the dataset main directory

Chapter 8 Predictions using CNNs and MLPs for medical research

459

�Preparing the project environment
The first step before trying any project script is to set up a Python

virtual environment. I have used this environment type in previous

demonstrations and will continue to use for this chapter’s demonstrations.

Refer back to Chapter 1 regarding how to create a virtual environment if

you need a refresher.

There are five dependencies that must be installed to support the

scripts used in this chapter. You have likely installed most, if not all, if you

have been replicating the previous chapter demonstrations. In any case,

all you need to do is enter the following commands to ensure that the

required dependencies are installed:

pip install numpy opencv-contrib-python

pip install pillow

pip install tensorflow keras

pip install imutils

pip install scikit-learn matplotlib

You will have problems when using the imutils package if you

have not installed OpenCV. While OpenCV functions are not directly

called by any of the chapter scripts, imutils does have some embedded

dependencies with this package. Refer back to Chapter 2 if you need

guidance on installing OpenCV.

You will be ready to tackle the first script once the virtual environment

is set up.

Chapter 8 Predictions using CNNs and MLPs for medical research

460

�Configuration script

The following script set ups the appropriate directory paths and defines the

amount of data to be used for training and validation. This script is named

config_IDC.py and is available from the book’s companion web site:

Import the required library

import os

Initialize the path to the input image directory.

ORIG_INPUT_DATASET = "dataset"

Initialize the base path to the directory that contain the

images remaining after the training and testing splits.

BASE_PATH = "datasets/idc"

Define the training, validation, and testing directory paths.

TRAIN_PATH = os.path.sep.join([BASE_PATH, "training"])

VAL_PATH = os.path.sep.join([BASE_PATH, "validation"])

TEST_PATH = os.path.sep.join([BASE_PATH, "testing"])

Define the data split that will be used for training.

TRAIN_SPLIT = 0.8

Define the data split that will be used for validation.

VAL_SPLIT = 0.1

Display to user that configuration is complete.

print('[INFO]: Configuration complete')

This configuration script will be run when the next script to be

discussed is run.

The next step in the demonstration is to build the dataset.

Chapter 8 Predictions using CNNs and MLPs for medical research

461

�Building the dataset

Building the dataset consists, in part, of splitting up the original dataset

into three smaller datasets as shown in Figure 8-3 diagram.

One of the first items you should realize is that the original dataset is

a little over 5.8 GB in size. This is clearly too large for even a 4 GB RasPi 4,

which I am using to run this demonstration. In order to avoid this issue,

the Keras ImageDataGenerator class will be used to create smaller batches

from the split datasets, which will eliminate the requirement to load the

whole original dataset in RAM. However, the original dataset must first be

split and reorganized.

This script is named build_IDC_dataset.py and will be used to organize

the original dataset. The script uses configuration constants which are

set up when the config_IDC script is run at the start of this script. This

script is available from the book’s companion web site. Some explanatory

comments follow the listing.

Import the required libraries

from config_IDC import config_IDC

from imutils import paths

import random

Figure 8-3.  Dataset splits

Chapter 8 Predictions using CNNs and MLPs for medical research

462

import shutil

import os

Grab the paths to all input images in the original input

directory and shuffle them.

imagePaths = list(paths.list_images(config_IDC.ORIG_INPUT_

DATASET))

random.seed(42)

random.shuffle(imagePaths)

Compute the training and testing split.

i = int(len(imagePaths) * config_IDC.TRAIN_SPLIT)

trainPaths = imagePaths[:i]

testPaths = imagePaths[i:]

Use part of the training data for validation.

i = int(len(trainPaths) * config.VAL_SPLIT)

valPaths = trainPaths[:i]

trainPaths = trainPaths[i:]

Define the datasets that are built.

datasets = [

 ("training", trainPaths, config.TRAIN_PATH),

 ("validation", valPaths, config.VAL_PATH),

 ("testing", testPaths, config.TEST_PATH)

]

Loop over the datasets.

for (dType, imagePaths, baseOutput) in datasets:

 # Show which data split created

 print("[INFO] building '{}' split".format(dType))

 # If the base output directory does not exist,

 # create it.

Chapter 8 Predictions using CNNs and MLPs for medical research

463

 if not os.path.exists(baseOutput):

 print("[INFO] 'creating {}' directory".format(baseOutput))

 os.makedirs(baseOutput)

 # Loop over the input image paths.

 for inputPath in imagePaths:

 # Extract the filename of the input image and extract

 # the class label ("0" for "negative" and "1" for

 # "positive").

 filename = inputPath.split(os.path.sep)[-1]

 label = filename[-5:-4]

 # Build the path to the label directory.

 labelPath = os.path.sep.join([baseOutput, label])

 # If the label output directory does not exist, create

 # it.

 if not os.path.exists(labelPath):

 �print("[INFO] 'creating {}' directory".

format(labelPath))

 os.makedirs(labelPath)

 # Construct the path to the destination image and then

 # copy the image itself.

 p = os.path.sep.join([labelPath, filename])

 shutil.copy2(inputPath, p)

Explanatory comments:

Configuration settings and paths are collected after the config_IDC

script is run at the start of this script. The Python random library is used to

randomly shuffle the paths. The shutil library is used to copy Images and

the os library is used for joining paths and making directories.

Chapter 8 Predictions using CNNs and MLPs for medical research

464

Next, all the dataset imagePaths are shuffled to improve the randomness

for better final results. The index of the training/testing split is then computed

and trainPaths and testPaths are constructed by slicing the imagePaths. The

trainPaths are further split to reserve a portion for use for validation.

A list named datasets is then defined. Inside this list are three tuples,

each with the information required to organize all of the imagePaths into

training, validation, and testing data.

Iteration over all the datasets is then started. The following steps occur

in the loop:

•	 A base output directory is created (one time only).

•	 A nested loop over all input Images in the current split

happens where

•	 The filename is extracted from the input path and

the class label is extracted from the filename.

•	 A labelPath is constructed as well as creating a label

output directory (one time only).

•	 Each file is copied into its destination directory.

�Running the build dataset script

The build_IDC_datascript is run by entering the following command:

python build_IDC_dataset.py

Figure 8-4 shows the results of running the script.

Chapter 8 Predictions using CNNs and MLPs for medical research

465

I next ran the tree command on the newly built datasets directory to

confirm that the required datasets were constructed as desired. Figure 8-5

shows the results of running the tree command.

Figure 8-4.  Results after running the build_IDC_dataset script

Chapter 8 Predictions using CNNs and MLPs for medical research

466

It is now time to discuss the CNN model once the datasets have

been set.

�The CNN model

The model used in this demonstration is based mainly on a VGGNet style

model, which I discussed in the previous chapter. There are multiple

stacked convolutional layers, which use 3 x 3 filters, typical for the VGG

model. However, this VGG model uses depthwise separable convolutional

layers rather than the standard convolutional layers. Without going

Figure 8-5.  tree command applied to the datasets directory

Chapter 8 Predictions using CNNs and MLPs for medical research

467

into any details, I will simply say that depthwise separable convolution

is a process that is more computationally efficient as compared to

conventional convolution.

This CNN model is named CancerNet, which seems appropriate given

its role in predicting whether or not a patient has that disease based on the

patient’s histologic study. Figure 8-6 diagrams the CancerNet structure.

It should be obvious from this figure that this CNN network is complex

with many layers. This CNN is truly a classic representation of a deep

network. There are 31 layers shown in the figure, which you can confirm by

counting the layers added to the model in the following class definition.

The following class definition file is named cancernet.py and is

available from the book’s companion web site:

Import the required libraries

from keras.models import Sequential

from keras.layers.normalization import BatchNormalization

from keras.layers.convolutional import SeparableConv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

Figure 8-6.  CancerNet structure

Chapter 8 Predictions using CNNs and MLPs for medical research

468

from keras.layers.core import Dropout

from keras.layers.core import Dense

from keras import backend as K

class CancerNet:

 @staticmethod

 def build(width, height, depth, classes):

 # Initialize the model along with the input shape to

 # be "channels last" and the channels dimension itself

 model = Sequential()

 inputShape = (height, width, depth)

 chanDim = -1

 # If using "channels first", update the input shape

 # and channels dimension.

 if K.image_data_format() == "channels_first":

 inputShape = (depth, height, width)

 chanDim = 1

 # CONV => RELU => POOL

 model.add(SeparableConv2D(32, (3, 3), padding="same",

 input_shape=inputShape))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 # (CONV => RELU => POOL) * 2

 model.add(SeparableConv2D(64, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(SeparableConv2D(64, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

Chapter 8 Predictions using CNNs and MLPs for medical research

469

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 # (CONV => RELU => POOL) * 3

 model.add(SeparableConv2D(128, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(SeparableConv2D(128, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(SeparableConv2D(128, (3, 3), padding="same"))

 model.add(Activation("relu"))

 model.add(BatchNormalization(axis=chanDim))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 # First (and only) set of FC => RELU layers

 model.add(Flatten())

 model.add(Dense(256))

 model.add(Activation("relu"))

 model.add(BatchNormalization())

 model.add(Dropout(0.5))

 # Softmax classifier

 model.add(Dense(classes))

 model.add(Activation("softmax"))

 # Return the constructed network architecture

 return model

This model is structured as sequential, which means layers are added

in a serial fashion. Most of the layer types used in this model were used

in Chapter 7 CNN model except for the SeparableConv2D layer, which

implements the depthwise separable convolution mentioned earlier.

Chapter 8 Predictions using CNNs and MLPs for medical research

470

Three DEPTHWISE_CONV => RELU => POOL blocks are defined in the

model with increased stacking and filters applied. BatchNormalization and

Dropout layers have also been added.

FC => RELU layers and softmax classifier finish the network. The

output of the softmax classifier will create prediction percentages for each

predicted class.

The model is structured as a callable method, which means the

instantiated model will be returned to the training script.

�Training and testing script

The training script is the key piece, which finally ties all the whole project

together. This script is named train_IDC_model.py, and it not only trains

the model but it also tests it for prediction accuracy. This script is available

from the book’s companion web site. Explanatory comments follow the

listing.

Set the matplotlib backend so figures can be saved in the

background

import matplotlib

matplotlib.use("Agg")

Import the required libraries

from keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import LearningRateScheduler

from keras.optimizers import Adagrad

from keras.utils import np_utils

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from cancernet import CancerNet

import config_IDC as config

from imutils import paths

import matplotlib.pyplot as plt

Chapter 8 Predictions using CNNs and MLPs for medical research

471

import numpy as np

import argparse

import os

Construct the argument parser and parse the arguments.

ap = argparse.ArgumentParser()

ap.add_argument("-p", "--plot", type=str, default="plot.png",

 help="path to output loss/accuracy plot")

args = vars(ap.parse_args())

Initialize the number of epochs, initial learning rate, and

batch size.

NUM_EPOCHS = 40

INIT_LR = 1e-2

BS = 32

Determine the total number of image paths in training,

validation, and testing directories.

trainPaths = list(paths.list_images(config.TRAIN_PATH))

totalTrain = len(trainPaths)

totalVal = len(list(paths.list_images(config.VAL_PATH)))

totalTest = len(list(paths.list_images(config.TEST_PATH)))

Account for skew in the labeled data

trainLabels = [int(p.split(os.path.sep)[-2]) for p in

trainPaths]

trainLabels = np_utils.to_categorical(trainLabels)

classTotals = trainLabels.sum(axis=0)

classWeight = classTotals.max() / classTotals

Initialize the training data augmentation object

trainAug = ImageDataGenerator(

 rescale=1 / 255.0,

 rotation_range=20,

Chapter 8 Predictions using CNNs and MLPs for medical research

472

 zoom_range=0.05,

 width_shift_range=0.1,

 height_shift_range=0.1,

 shear_range=0.05,

 horizontal_flip=True,

 vertical_flip=True,

 fill_mode="nearest")

Initialize the validation (and testing) data augmentation

object.

valAug = ImageDataGenerator(rescale=1 / 255.0)

Initialize the training generator.

trainGen = trainAug.flow_from_directory(

 config.TRAIN_PATH,

 class_mode="categorical",

 target_size=(48, 48),

 color_mode="rgb",

 shuffle=True,

 batch_size=BS)

Initialize the validation generator.

valGen = valAug.flow_from_directory(

 config.VAL_PATH,

 class_mode="categorical",

 target_size=(48, 48),

 color_mode="rgb",

 shuffle=False,

 batch_size=BS)

Initialize the testing generator.

testGen = valAug.flow_from_directory(

 config.TEST_PATH,

 class_mode="categorical",

Chapter 8 Predictions using CNNs and MLPs for medical research

473

 target_size=(48, 48),

 color_mode="rgb",

 shuffle=False,

 batch_size=BS)

Initialize the CancerNet model and compile it.

model = CancerNet.build(width=48, height=48, depth=3,

 classes=2)

opt = Adagrad(lr=INIT_LR, decay=INIT_LR / NUM_EPOCHS)

model.compile(loss="binary_crossentropy", optimizer=opt,

 metrics=["accuracy"])

Fit the model.

H = model.fit_generator(

 trainGen,

 steps_per_epoch=totalTrain // BS,

 validation_data=valGen,

 validation_steps=totalVal // BS,

 class_weight=classWeight,

 epochs=NUM_EPOCHS)

Reset the testing generator and then use the trained model to

make predictions on the data.

print("[INFO] evaluating network...")

testGen.reset()

predIdxs = model.predict_generator(testGen,

 steps=(totalTest // BS) + 1)

For each image in the testing set find the index of the

label with corresponding largest predicted probability.

predIdxs = np.argmax(predIdxs, axis=1)

Chapter 8 Predictions using CNNs and MLPs for medical research

474

Show a nicely formatted classification report.

print(classification_report(testGen.classes, predIdxs,

 target_names=testGen.class_indices.keys()))

Compute the confusion matrix and use it to derive the raw

accuracy, sensitivity, and specificity.

cm = confusion_matrix(testGen.classes, predIdxs)

total = sum(sum(cm))

acc = (cm[0, 0] + cm[1, 1]) / total

sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])

specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])

Show the confusion matrix, accuracy, sensitivity, and

specificity.

print(cm)

print("acc: {:.4f}".format(acc))

print("sensitivity: {:.4f}".format(sensitivity))

print("specificity: {:.4f}".format(specificity))

Plot the training loss and accuracy.

N = NUM_EPOCHS

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, N), H.history["loss"], label="train_

loss")

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_

loss")

plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")

plt.plot(np.arange(0, N), H.history["val_acc"], label="val_

acc")

plt.title("Training Loss and Accuracy on Dataset")

plt.xlabel("Epoch #")

Chapter 8 Predictions using CNNs and MLPs for medical research

475

plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig(args["plot"])

Explanatory comments follow:

The following libraries are used by this script with brief explanations

for each:

	 1.	 Matplotlib – This is the scientific plotting package

that is the de facto standard for Python. This library

is set to use the “Agg” backend to enable saving

training plots to disk.

	 2.	 Keras – Use the Keras ImageDataGenerator,

LearningRateScheduler, Adagrad optimizer, and

np_utils.

	 3.	 sklearn – Use the scikit-learn implementations of a

classification_report and a confusion_matrix.

	 4.	 config_IDC – Use this script config to grab the paths

to the three data splits.

	 5.	 cancernet – Class definition for CancerNet required

for training and evaluation.

	 6.	 imutils – Using the paths module to grab paths to

each of the Images.

	 7.	 numpy – Required for numerical processing with

Python.

	 8.	 argparse – Used to parse the command-line

arguments.

	 9.	 os – Used for access to OS level commands.

Chapter 8 Predictions using CNNs and MLPs for medical research

476

There is one optional command-line argument that can be used with

this script and that is --plot. When this argument is provided in a terminal

at runtime, the script will use that name to save the plot to disk. If you

don’t specify a command-line argument with the plot filename, a default

name of plot.png will be used.

The number of training epochs, initial learning rate, and batch size are

defined after the parser code.

After these definitions, the total number of Image paths in the training,

validation, and testing directories is determined.

A classWeight parameter is then computed for the training data to

account for class imbalance/skew. Class imbalance happens when there

is a disproportionate share of data elements among training datasets.

This was the case in this project as I noted at the beginning of the chapter.

There are over twice as many benign sample Images as there are malignant

sample Images. Class imbalance can cause two problems with a model:

•	 Never get optimized results for the class which is

unbalanced because the model is never sufficiently

trained.

•	 Validation becomes difficult because of

misrepresentation across the classes where one or

more classes are severely under-represented.

The classWeight parameter is used by the Keras fit function to help

correct for the datasets unbalance. I am unsure how that is implemented

within the function.

The next code portion deals with data augmentation, which is a form

of regularization. Regularization is important for nearly all DL experiments

to assist with model generalization. This function perturbs the training

dataset, slightly modifying its content, before passing it into the network

for training. This approach partially reduces the need to gather additional

training data.

Chapter 8 Predictions using CNNs and MLPs for medical research

477

The data augmentation object, trainAug, is first initialized. Random

rotations, shifts, shears, and flips are then applied to the training dataset as

it is being applied. Image pixel intensities are also rescaled to the range 0

to 1 by the trainAug object.

Next, the training, validation, and testing generators are initialized.

Each generator provides batches of Images on demand, as is specified by

the batch_size parameter.

The model is then initialized with the Adagrad optimizer. Recall that I

mentioned some of the various optimizers that are available with Keras in

the previous chapter. The Adagrad optimizer is an algorithm for gradient-

based optimization that adapts the learning rate (lr) to the parameters,

performing smaller updates (i.e., low lr) for parameters associated

with frequently occurring features and larger updates (i.e., high lr) for

parameters associated with infrequent features. For this reason, it is well

suited for dealing with sparse data, which is the situation with this training

dataset, at least for one class. The Adagrad optimizer uses both an initial lr

and a decay lr in its operations.

The model is then compiled using the binary_crossentropy loss

function because there are only two data classes.

The Keras fit_generator method starts the training process. By using

this method, the training Image data can reside on disk and be applied in

batches rather than having the whole dataset in RAM throughout training.

This approach is the only way a RasPi system could possibly handle such a

large training dataset.

Predictions are made on all of the testing data once the training has

completed. A generator object is again used in the prediction process.

The highest prediction indices for each sample are collected and a

classification_report is then displayed.

A confusion matrix is then generated. This matrix displays model

accuracy, sensitivity, and specificity.

Chapter 8 Predictions using CNNs and MLPs for medical research

478

Finally, training history plots consisting of training/validation loss and

training/validation accuracy are generated. These are temporal plots to

allow for the detection of over-/underfitting.

�Running the training and testing script

Note  This script is extremely computationally intensive. I
determined that it takes 2.7 hours to complete only 1 epoch using
a RasPi 4 system. If you elect to do the 40 epochs, as was done
with the original blog, then expect to wait approximately 108 hours
until it completes. That’s 4.5 days! The alternative is to reduce the
number of epochs to something more manageable such as 8, which
still means you will have to wait about 21 hours to complete. I have
estimated that the loss in accuracy is only in the order of 0.5% to
1.0% maximum, which I believe is an acceptable trade-off to save a
wait of almost 4 days. Running this demonstration has convinced me
of the usefulness of GPU-enabled processing.

I ran the train_IDC_model script on a RasPi 4 system (with 4 GB) using the

default configuration values except for setting the number of epochs to 8.

I am not confident that this script with the training set could even run on a

standard RasPi 3 system.

The script is run by entering the following command:

python train_IDC_model.py

Figure 8-7 shows the result when the script started running.

Chapter 8 Predictions using CNNs and MLPs for medical research

479

21.5 hours later, the script finished with the final results shown in

Figure 8-8.

Figure 8-7.  Start of running the script

Figure 8-8.  Results after running the train_IDC_model script

Chapter 8 Predictions using CNNs and MLPs for medical research

480

The confusion matrix (error matrix) displayed in the figure is replicated

in Table 8-1. Please refer back to Chapter 1 discussion on the confusion

matrix if you need a refresher.

where

0 = no cancer cells detected (negatives)

1 = cancer cells detected (positives)

See the following data for TN, FN, TP, and FP definitions.

Figure 8-9 contains temporal plots for training loss and accuracy.

These plots are simply the interim results after each epoch has completed.

Table 8-1.  CNN confusion matrix

Predicted

Actual 0 1

0 35055 (TN) 4788 (FP)

1 3455 (FN) 12207 (TP)

Chapter 8 Predictions using CNNs and MLPs for medical research

481

There are several items to be aware of in these plots. First and

foremost, the accuracy plots for both training and validation converge after

the first epoch is completed and stay together for all the remaining epochs.

This indicates that there is little to none over-/underfitting with the CNN

model. The model appears to be an excellent fit with this dataset. The next

item to notice is that the accuracy plots appear horizontal after the second

epoch has completed, which confirms my assumption that 8 epochs were

more than enough to produce reliable results. Also looking at the loss plots

shows they have stabilized around values that only slightly vary with more

epochs confirming the stability of the final results.

Figure 8-9.  Temporal plots for training loss and accuracy

Chapter 8 Predictions using CNNs and MLPs for medical research

482

�Evaluating the results with a discussion of sensitivity,
specificity, and AUROC curves

Looking at the figure, you can see that the model achieved 85.15%

accuracy; however, that accuracy value is heavily influenced by the fact

that classified the “no cancer” class correctly identified at a 91% rate.

It is also useful to compute the result’s sensitivity and the specificity

to better understand the model’s performance. Before I began this metric

discussion, I need to define some terms and provide a few equations as

a background. Assume for purpose of the next discussion that the model

mentioned is used to predict whether or not a patient has a disease.

Positive outcome means the disease is present and negative outcome

means no disease.

True positive (TP) – A true positive is an outcome where the model

correctly predicts the positive class.

True negative (TN) – A true negative is an outcome where the model

correctly predicts the negative class.

False positive (FP) – A false positive is an outcome where the model

incorrectly predicts the positive class.

False negative (FN)) – A false negative is an outcome where the model

incorrectly predicts the negative class.

True positive rate (TPR)/sensitivity/recall equation:

TPR
TP

TP FN
=

+

Specificity equation:

Specificity
TN

TN FP
=

+

Chapter 8 Predictions using CNNs and MLPs for medical research

483

False positive rate (FPR) equation:

FPR Specificity= -1

=
+
FP

TN FP

False negative rate (FNR) equation:

FNR
FN

TP FN
=

+

In the demonstration model, the sensitivity measured the proportion

of the TP that was also predicted as positive at an 87.98% rate. Conversely,

specificity measures the TN rate at 77.94%. It is important to be careful

regarding false negatives. You definitely don’t want to classify someone as

“cancer-free” when they are in fact “cancer positive.”

A FPR is also important because you don’t want to mistakenly classify

patients as “cancer positive” and then subject them to extensive and likely

painful treatment when they don’t really need it.

There is a balance between sensitivity and specificity that any AI

practitioner must be mindful of especially when it comes to DL and

healthcare/health treatment.

What is sensitivity?

Sensitivity is a measure of the proportion of actual positive cases that are

predicted as positive (TP). Another name for sensitivity is recall, which

implies that there will be another proportion of actual positive cases,

which would be predicted incorrectly as negative and could be termed as

FN. This is also represented in the form of a FNR. The sum of sensitivity

and false negative rate (FNR) will always be 1. This concept may be

easier to understand when a model is used to predict whether a person

is suffering from a disease. Sensitivity is a measure of the proportion of

Chapter 8 Predictions using CNNs and MLPs for medical research

484

people suffering from a disease who are predicted correctly as the ones

suffering from a disease. In other words, the person who is unhealthy

actually is predicted as unhealthy.

Ideally, the model should seek to have low FNs as it might prove to be

life-threatening.

A higher value of sensitivity would mean higher value of TPs and lower

value of FNs. The lower value of sensitivity would mean lower value of TPs

and higher value of FNs. For healthcare and financial reasons, models with

high sensitivity are desired.

What is specificity?

Specificity is defined as the proportion of actual negatives, which were

predicted as negative (TN). This implies that there will be another proportion

of actual negative, which are predicted as positive and could be termed as

FP. This proportion is also called a FPR. The sum of specificity and FPR is

always 1. This concept may be easier to understand when a model is used to

predict whether a person is suffering from a disease. Specificity is a measure

of the proportion of people not suffering from a disease who are predicted

correctly as the ones who are not suffering from a disease. In other words,

specificity is when a person who is healthy actually is predicted as healthy.

A higher value of specificity would mean higher value of TN and lower

FPR. The lower value of specificity would mean lower value of TN and

higher value of FP.

What are the differences between sensitivity and specificity
and how are they used?

Sensitivity measure is used to determine the proportion of actual positive

cases, which were predicted correctly. Specificity measure is used to

determine the proportion of actual negative cases, which were predicted

correctly.

Chapter 8 Predictions using CNNs and MLPs for medical research

485

Sensitivity and specificity measures can be used to plot area under

curve-receiver operating characteristic (AUC-ROC) curves. A AUC-ROC

(also called AUROC) curve is a graphical plot that illustrates the diagnostic

ability of a binary classifier system as its discrimination threshold is varied.

ROC is a probability curve and AUC represents degree or measure of class

separability. It tells how much model is capable of distinguishing between

classes. The higher the AUC value, the better the model is at predicting 0s as

0s and 1s as 1s. By analogy, the higher the AUC value, the better the model is

at distinguishing between patients with disease and those with no disease.

An AUROC curve is created by plotting the true positive rate (TPR) on the

y-axis against the false positive rate (FPR) on the x-axis at various threshold

settings. The FPR is also known as the fall-out or probability of false alarm

and can be calculated as 1 − TPR. The AUROC curve is thus the sensitivity as

a function of fall-out. Figure 8-10 shows a generic AUROC curve.

Figure 8-10.  Generic AUROC curve

Chapter 8 Predictions using CNNs and MLPs for medical research

486

An excellent model has AUC near to 1.0 which means it has good

measure of separating class predictions. A poor model has AUC close to 0

which means it has worst measure of separability. In fact, it is predicting 0s

as 1s and 1s as 0s. This condition is called reciprocating the classes. When

AUC is 0.5, it means that model does not separate the classes at all.

The next series of figure should help to clarify how an AUROC curve

can be useful in interpreting a model’s performance.

As stated previously, the ROC is a probability curve, so I will be

using probability distribution plots for this discussion. Assume the right-

hand curve in a figure is for the positive class or patients with a disease.

Correspondingly, the left-hand curve is for healthy patients. Figure 8-11

shows a situation where the two classes are perfectly separated and the

AUC is 1.0. The model is able to completely distinguish between positive

and negative class samples.

The AUROC curve for this situation is shown in Figure 8-12.

Figure 8-11.  Perfect class separation

Chapter 8 Predictions using CNNs and MLPs for medical research

487

Now, let the situation change a little and assume that the probability

distributions have a little overlap. This introduces the opportunity to have

what statisticians call type 1 and type 2 errors to occur. A type 1 error is a

FP or, for this situation, predicting a patient has a disease when it is not

present. Similarly, a type 2 error is a FN or predicting a patient has no

disease when it is present. Figure 8-13 shows the distributions with an AUC

equal to 0.7.

Figure 8-12.  AUROC curve for AUC = 1.0

Chapter 8 Predictions using CNNs and MLPs for medical research

488

With an AUC of 0.7 means that there is a 70% chance that the model will

be able to successfully distinguish between the positive and negative classes.

The AUROC curve for this situation is shown in Figure 8-14.

Figure 8-14.  AUROC curve for AUC = 0.7

Figure 8-13.  70% class separation

Chapter 8 Predictions using CNNs and MLPs for medical research

489

Now, make the situation substantially worse by letting the AUC equal

to 0.5. With this AUC, the model cannot discriminate between the classes.

Figure 8-15 shows the overlapping probability distribution curves, which

proves why the model is ineffectual.

The AUROC curve for this situation is shown in Figure 8-16.

Figure 8-15.  50% class separation

Chapter 8 Predictions using CNNs and MLPs for medical research

490

The final scenario happens when the distributions are flipped as

shown in Figure 8-11 except that the positive class is now on the left-hand

side and the negative class on the right-hand side. This is the inversion

case I previously mentioned, and the AUROC curve for this case is shown

in Figure 8-17.

Figure 8-16.  AUROC curve for AUC = 0.5

Chapter 8 Predictions using CNNs and MLPs for medical research

491

Inversion is an extreme case that never should happen in any practical

model. It was only shown to complete the background discussion.

I will be showing you an actual AUROC curve in the next

demonstration.

�Using a MLP model for breast cancer prediction
This demonstration uses the results from the histologic studies done

on breast cancer samples from 699 patients to predict the presence or

absence of cancer based on the recorded features. This demonstration

differs significantly from the first demonstration in the chapter that used

a CNN model. In this case, the results from the pathologist’s biopsy exams

are used instead of directly processing the raw Images as was done in the

first demonstration. This model is a MLP application rather than a CNN

application.

Figure 8-17.  AUROC curve for AUC = 0.0

Chapter 8 Predictions using CNNs and MLPs for medical research

492

The dataset is the Breast Cancer Wisconsin (Diagnostic) Data Set

Features which have been computed from a digitized Image of a fine-

needle aspirate (FNA) of a breast mass. The data describe characteristics

of the cell nuclei present in the Image. This dataset is described in detail

by K. P. Bennett and O. L. Mangasarian: “Robust Linear Programming

Discrimination of Two Linearly Inseparable Sets,” Optimization Methods

and Software 1, 1992.

You can download the input dataset from the UCI Machine Learning

Repository.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
%28Diagnostic%29

Rename the downloaded file to data.csv and place in a new sub-

directory named input.

You will now need to replace 16 ‘?’ entries in the seventh column

with a 1. I know that this may bias the dataset a bit, but the script cannot

run without the character being replaced with a number. The number I

selected is by far the most common one present in the column. I used the

MS Excel program for the changes, but you can use the LibreOffice Calc

application that should already be installed on the RasPi system.

The following script is named bcMLP.py, and it is available from

the book’s companion web site. No further explanatory comments are

necessary because I have previously presented identical or nearly identical

code to you in previous scripts.

Import required libraries libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

Chapter 8 Predictions using CNNs and MLPs for medical research

493

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_curve, auc

from sklearn.ensemble import RandomForestClassifier

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout

Load data

data = pd.read_csv('input/data.csv')

#del data['Unnamed: 32']

X = data.iloc[:, 1:9].values

y = data.iloc[:, 10].values

Encoding categorical data

labelencoder_X_1 = LabelEncoder()

y = labelencoder_X_1.fit_transform(y)

Split the dataset into Training and Test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.1, random_state = 0)

#Feature Scaling

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Initialise the ANN

classifier = Sequential()

Add the input layer and the first hidden layer

classifier.add(Dense(output_dim=16, init='uniform',

activation='relu', input_dim=8))

Add dropout to prevent overfitting

classifier.add(Dropout(p=0.1))

Chapter 8 Predictions using CNNs and MLPs for medical research

494

Add the second hidden layer

classifier.add(Dense(output_dim=16, init='uniform',

activation='relu'))

Add dropout to prevent overfitting

classifier.add(Dropout(p=0.1))

Add the output layer

classifier.add(Dense(output_dim=1, init='uniform',

activation='sigmoid'))

Compile the ANN

classifier.compile(optimizer='adam', loss='binary_

crossentropy', metrics=['accuracy'])

Fit the ANN to the Training set

The batch size and number of epochs have been set using trial

and error.

classifier.fit(X_train, y_train, batch_size=100, nb_epoch=150)

Predict the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5) # Converts continuous to binary

Create confusion matrix object

cm = confusion_matrix(y_test, y_pred)

Display accuracy

print('Accuracy is {}%'.format(((cm[0][0] + cm[1][1])/70)*100))

Display the confusion matrix

print('\nConfusion Matrix\n',cm)

Generate and display a Seaborn heatmap

sns.heatmap(cm, annot=True)

plt.savefig('bcHeatmap.png')

plt.show()

Chapter 8 Predictions using CNNs and MLPs for medical research

495

Instantiate a random forest classifier

rf_clf = RandomForestClassifier(n_estimators=100)

rf_clf.fit(X_train, y_train)

Compute the probability distributions

probas = rf_clf.predict_proba(X_test)# plot

plt.figure(dpi=150)

plt.hist(probas, bins=20)

plt.title('Classification Probabilities')

plt.xlabel('Probability')

plt.ylabel('# of Instances')

plt.xlim([0.5, 1.0])

plt.legend('01')

plt.show()

Compute the false and true positive rates

fpr, tpr, thresholds = roc_curve(y_test, probas[:,0],

pos_label=0)

Compute the area under the curve

roc_auc = auc(fpr, tpr)

Plot the AUROC curve

plt.figure(dpi=150)

plt.plot(fpr, tpr, lw=1, color='green', label=f'AUC =

{roc_auc:.3f}')

plt.title('ROC Curve for RF classifier')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate (Recall)')

plt.xlim([-0.05, 1.05])

plt.ylim([-0.05, 1.05])

plt.legend()

plt.show()

Chapter 8 Predictions using CNNs and MLPs for medical research

496

�Running the MLP script

The script is run by entering the following command:

python bcMLP.py

Figure 8-18 shows the results after running the script.

Figure 8-18.  Results after running the bcMLP script

The confusion matrix displayed in the figure is replicated in Table 8-2.

Chapter 8 Predictions using CNNs and MLPs for medical research

497

where

0 = no cancer detected (negatives)

1 = cancer detected (positives)

You can clearly see from the table that the model was 100% accurate in

predicting when cancer was not present (0 false positives) and was 98.57%

accurate in predicting when it was (1 false negative). This last metric is

precisely the same accuracy value displayed after the script was run. Of

course, the real-life consequences of reporting a patient cancer-free while

cancer is still present can be devastating to a patient. So even a 1.43%

error rate, while exceedingly low, must be viewed with caution due to the

enormous consequences involved with patient safety.

Incidentally, while most readers will have figured it out, I will explicitly

state the sum total of 70 shown in the confusion matrix results from having

a 10% split for the test dataset size. Since there are 699 patients in the

original dataset, the test dataset size was rounded to 70.

Figure 8-19 is a heatmap which provides another way to visualize the

confusion matrix results.

Table 8-2.  MLP confusion matrix

Predicted

Actual 0 1

0 40 1

1 0 29

Chapter 8 Predictions using CNNs and MLPs for medical research

498

For print book readers, I highly recommend looking at the color Image

version of Figure 8-19 contained in the PDF with all of the book’s color

figures.

Probability distributions must first be created in order to generate an

AUROC plot. Because probability distributions are not readily available

from the MLP model is the reason why I instantiated a random forest

classifier object named rf_clf. While the underlying models are different,

the final AUROC plot should be almost identical because of the nature of

the dataset. Figure 8-20 is a bar chart of the probability distributions for

both the positive (1) and negative (0) classes.

Figure 8-19.  Heatmap

Chapter 8 Predictions using CNNs and MLPs for medical research

499

You can clearly see that both class distributions are highly skewed to

the right, which will force the AUROC plot to be similar to Figure 8-12. This

is precisely what happened when the plot was generated as you can see in

Figure 8-21.

Figure 8-20.  Dataset class probability distributions

Chapter 8 Predictions using CNNs and MLPs for medical research

500

Your immediate takeaway when viewing a plot like this is that the

classifier model is an excellent performer for that particular dataset. That

conclusion is backed up by other performance measures used to quantify

the model.

Figure 8-21.  AUROC plot for random forest model breast cancer
dataset

Chapter 8 Predictions using CNNs and MLPs for medical research

501© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4_9

CHAPTER 9

Reinforcement
learning
Most readers have probably heard of AI learning to play computer games

on their own, a very popular example being DeepMind. The DeepMind

team was in the international news in 2016 when their AlphaGo program

defeated the South Korean Go world champion. Likewise, there have been

many successful attempts in the past to develop software agents with the

intent of playing Atari games like Breakout, Pong, and Space Invaders.

Each of these programs follows a ML paradigm known as

reinforcement learning (RL). The following is a straightforward analogy for

how RL works.

Consider the classic 1978 Atari game, Breakout. The object of this game

is to clear all the bricks at the top of the screen by bouncing a ball back

from the screen’s bottom. You control a paddle at the bottom of the screen,

which bounces a ball. Each time a brick is hit, it will disappear and the

score increases, that is, there is a reward given. Figure 9-1 shows a series of

Breakout screenshots illustrating how the game functions.

502

Now let’s consider how an ANN could be taught to play this game. One

way would be to input a series of screenshots and provide an output such

as move paddle right, move paddle left, or fire, meaning launch the ball. In

this sense, the learning process turns into a classification problem where a

given screen Image predicates taking on one of three actions. This appears

straightforward, but just consider the huge number of training examples

this would require. This approach is rather naive because there should be

no need for a game expert to state to do this or do that tens of thousands

of times. What is needed is some type of feedback that an action taken was

correct or nearly so and allow for some self-correction.

RL tries to solve this type of problem. RL is either supervised or

unsupervised learning. Supervised learning has a target label for each

training example, and unsupervised learning has no labels. RL has sparse

“labels” which are time-delayed and called rewards. The software agent

has to learn behavior based only on rewards.

In reality, there are numerous challenges in the way of implementing a

RL algorithm for the Breakout game. It turns out that the award given may

have little to do with the actions immediately taken prior to the reward

being given. The reward happens when a brick is hit by a ball, but the

paddle must have been positioned correctly and the fire button hit at the

proper time. The disconnect between the immediate reward and any and all

necessary preceding actions is called the credit assignment problem, that is,

which preceding action was responsible for the reward and to what extent?

Figure 9-1.  Atari Breakout game screenshots

Chapter 9 Reinforcement learning

503

Playing the Breakout and for that matter, most other games often

require a strategy. Often, players will start out in a random manner playing

a game but eventually evolve their playing strategy as they observe the

game unfolding. For instance, in Breakout the balls tend to fly to the left

more often than they do to the right. A simple strategy of moving the

paddle more to the left-hand side often results in more points scored.

But that may not be the only way to improve the score. An approach to

determining an optimal strategy is called the explore-exploit dilemma and

is a useful framework to consider when trying to obtain the most rewards.

The RL model is a useful way to encapsulate our human learning

experiences, whether it be at school, in business, or even the government

or military environments. Credit assignments and exploration-exploitation

dilemmas come up every day in all our activities. RL is an important

topic to explore and experiment with, and games are the perfect non-

threatening sandbox.

I will further discuss how Q-learning and DL intersect after going

through all the following demonstrations. At that point you should

have acquired a good background with Q-learning to appreciate and

understand the concluding discussion.

�Markov decision process
The Markov decision process (MDP) is how RL is formalized. Let’s suppose

you are an agent, situated in an environment such as the Breakout game.

The environment is in a certain state (e.g., paddle location, ball location

and direction, brick count, etc.). The agent performs certain actions in this

environment such as moving the paddle to the left or to the right. Actions

sometimes result in a reward. Any action will transform the environment

to a certain extent and will lead to a new state. The agent can then perform

another action which leads to another state and so forth. The set of

rules for how these actions are chosen is called policy. The environment

Chapter 9 Reinforcement learning

504

is typically stochastic, which means the next state will be somewhat

randomized. For the Breakout game, this means that every new ball is

launched in a random direction.

Figure 9-2 is a figure that diagrams the MDP data flow.

MDP is made up states, actions, and rules for transitioning from one

state to another state. An episode (game) for this process can be expressed

as a finite sequence of states, actions, and rewards

s a r s a r s a r so n n n n, , , , , , 0 1 1 1 2 1 1()- > () - > ()- >- -

where

si = state

ai = action

ri + 1 = reward after action ai

The episode ends with terminal state sn. The MDP relies on the

Markov assumption, which is the probability of the next state si + 1

depending only on the current state si and action ai, but not on preceding

states or actions.

Figure 9-2.  MDP data flow

Chapter 9 Reinforcement learning

505

�Discounted future reward
For the MDP to perform well, long-term rewards must be accounted for

as well as for immediate rewards. The total reward for one episode can be

expressed as

R r r r rn= + + + +1 2 3 

The total future reward from time point t onward may be expressed as

R r r r rt t t t n= + + + ++ +1 2 

Because the environment is stochastic, there can never be a

deterministic decision regarding the same reward the next time the same

action is performed. The further into the future rewards are considered,

the more they may diverge. To account for that uncertainty, it is common

to use a discounted future reward, which is expressed as

R r r r rt t t t
n t

n= + + + ++ +
-g g g1

2
2 

where

γ = discount factor (value range of 0 to 1.0)

Because the discount factor is less than 1.0 and it is raised to a power,

all future rewards are heavily reduced or discounted. A discounted future

reward at time step t can be expressed in terms of the same thing at time

step t+1:

R r r r r Rt t t t t t= + + +()() = ++ + +g g g1 2 1

If the discount factor γ is set to 0, then the strategy will have no long-

term involvement and will only depend on immediate rewards. The

balance between immediate and future rewards should have a discount

factor such as γ = 0.9. In case the environment is unlikely deterministic and

Chapter 9 Reinforcement learning

506

the same actions always result in same rewards, then the discount factor

can be set to 1.0.

A good strategy for an agent would be to always choose an action that

maximizes the (discounted) future reward.

�Q-learning
In Q-learning a function Q(st, at) is defined as that function that represents

the maximum discounted future reward when action at is performed in

state st and continues optimally from that point on.

Q s a max Rt t t,() = +1

One way to think about Q(st, at) is that it is “the best possible score at

the end of the game after performing action at in state st.” It is called the

Q-function, because it represents the “quality” of a certain action in a given

state.

At first glance, the Q-function appears to be a puzzling definition. How

can the final score at game’s end be estimated? Future states and actions

are simply not known. But assuming such a function exists is essential to

support a hypothesis for maximizing possible future rewards.

Next consider the implications of having such a function would be.

Suppose there is a state with two possible actions. The action that results

in the highest score at the end of game should be selected. But, which

action should be selected? The answer becomes simple once you have a

Q-function. Just pick the action with the highest Q-value. The following

equation represents this strategy:

p s argmax Q s aa() = ()(),

where

π = policy (rule on how an action is chosen in a given state)

Chapter 9 Reinforcement learning

507

The question now is how is the Q-function defined given the previous

discussion? I will first focus on just one transition (s, a, r, s’), where s'

represents the next state after s. The Q-value of state s and action a may be

expressed in terms of the Q-value of the next state s’ by

Q s a r max Q s aa, ,() = + ()¢ ¢¢g

This equation is called the Bellman equation. It is quite straightforward

concept where the maximum future reward for the current state and action

is the immediate reward plus the maximum future reward for the next

state.

The principal concept in Q-learning is that it is possible to iteratively

approximate the Q-function using the Bellman equation. In the simplest

case, the Q-function can be implemented as a table, with states as rows

and actions as columns.

A flowchart of the Q-learning algorithm is shown in Figure 9-3.

Chapter 9 Reinforcement learning

508

Figure 9-3.  Q-learning flowchart

Chapter 9 Reinforcement learning

509

The Q-learning algorithm starts with identifying the current state

s from an input. After the identification of the state, an action will be

chosen from the action list, either by searching for the maximum reward

or, if stochastic, by accepting a greedy probability ε. With all the values

initialized in the previous steps, the Q-value for the action taken in state s

is calculated using the Bellman equation. The Q-value will then be stored

in the Q-table. In other words, the experience of the agent is captured

within the Q-table. The rewards and penalties of the proposed Q-learning

are evaluated by a set of simple rules set for the reward functions

(policy). The next state s′ for the Q-learning algorithm will be determined

after the selected action a is executed. The stopping criteria for the

Q-learning algorithm will then be checked when the next state s′ has been

determined. If the next state s′ is the final goal of the Q-learning, then the

process will end or else the next state s′ will become the current state s for

another iteration. This process continues until either the goal is reached or

a stopping criterion is met.

The following is a worked out example, which should help clarify the

Q-learning process.

�Q-learning example

I will first credit several bloggers for great posts which inspired this

example. They were also inspired by others who have tackled the complex

issues of explaining Q-learning in order for the AI community to better

understand this topic. The blogs are:

“Reinforcement Learning: A Simple Python Example and a Step Closer

to AI with Assisted QLearning” by Manuel Amunategui

https://l-ing.ru/watch/Reinforcement-Learning--A-Simple-Python-

Example-and-A-Step-Closer-to-AI-with-Assisted-QLearning/

Chapter 9 Reinforcement learning

https://l-ing.ru/watch/Reinforcement-Learning--A-Simple-Python-Example-and-A-Step-Closer-to-AI-with-Assisted-QLearning/
https://l-ing.ru/watch/Reinforcement-Learning--A-Simple-Python-Example-and-A-Step-Closer-to-AI-with-Assisted-QLearning/

510

“Getting AI smarter with Qlearning: a simple first step in Python” from

The Beginner Programmer

http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-

smarter-with-q-learning.html

http://mnemstudio.org/path-finding-q-learningtutorial.htm

This example starts by displaying plan view of a building with five

rooms as depicted in Figure 9-4.

Each room in the building has a door through which a bot or agent can

travel in either direction. Notice in the figure that doors in rooms 1 and

4 lead to the outside, which is depicted as “room” 5 for purposes of this

example. However, the goal to be achieved is to have the agent enter room 5,

the outside. The agent can be placed in any room to start. Reward values will

be assigned to every door, and the ultimate goal will have a very large reward

in comparison to door rewards which do not directly lead to the goal.

Figure 9-4.  Plan view of example building

Chapter 9 Reinforcement learning

http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-with-q-learning.html
http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-with-q-learning.html
http://mnemstudio.org/path-finding-q-learningtutorial.htm

511

Figure 9-5 is a nodal graph depicting all the possible paths between

rooms and which ones are the likely successful paths.

As previously stated, the agent can be placed in any room to start and,

from that room, go outside the building (this is target room 5). To set this

room as a goal, a reward value is associated to each door. The doors that

lead immediately to the goal have an instant reward of 100. Other doors

that are not directly connected to the target room have 0 rewards. Two

arrows are assigned to each room because doors are two-way (0 leads to

4, and 4 leads back to 0). Each arrow contains an instant reward value, as

shown in Figure 9-6.

Figure 9-5.  Nodal graph

Chapter 9 Reinforcement learning

512

Notice in the figure that a path in room 5 loops back to itself with a

reward of 100, while all the other links to the target room have a reward of

100. In Q-learning, the goal is to reach the state with the highest reward, so

that if the agent arrives at the goal, it should remain there forever. This goal

type is named an “absorbing goal.”

Imagine our agent as a virtual bot that can learn through experience.

The agent can pass from one room to another but has no knowledge of the

environment, and it doesn’t know which sequence of doors leads to the

outside.

The objective is to determine the path for the agent from any room

in the building to the outside. For the next part of the discussion, assume

that the agent starts in room 2 and tries to reach the outside of the

building, designated as room 5. Figure 9-7 nicely encapsulates this initial

environment.

Figure 9-6.  Nodal graph with rewards annotated

Chapter 9 Reinforcement learning

513

In Q-learning terms, each room, including the outside, is a “state,” and

the agent’s movement from one room to another is an “action.” Thus, in the

preceding nodal figures, a “state” is depicted as a node, while “action” is

represented by the arrows.

Refer to Figure 9-8 for the following discussion.

Figure 9-7.  Initial environment

Chapter 9 Reinforcement learning

514

As stated previously, the agent begins in state 2. From state 2, it can

only go to state 3 because state 2 is only connected to state 3. From state 3,

it can go either to state 1 or 4 or back to 2. If the agent is in state 4, there are

three possible actions, which are to go to state 0, 5, or 3. If the agent is in

state 1, it can go either to state 5 or 3. From state 0, it can only go back to

state 4.

A matrix “R” (for rewards) can be constructed to capture the state

diagram and the instant reward values. Figure 9-9 shows this matrix.

Figure 9-8.  Initial actions

Figure 9-9.  R matrix

Chapter 9 Reinforcement learning

515

The –1s in the table represent null values (i.e., where there isn’t a link

between nodes). For example, state 0 cannot go to state 1.

Now a similar matrix, “Q,” is added to the brain of the agent. This

matrix represents the memory of what the agent has learned through

experience. The rows of the Q matrix represent the current state of the

agent, and the columns represent the possible actions leading to the next

state, that is, the links between the nodes.

Because the agent starts out knowing nothing, the Q matrix is

initialized to zero. In this example, the number of states is six, representing

each of the nodes. If the number of states was unknown, the Q matrix

could start with only one element. It is a simple task to add more columns

and rows into the Q matrix as new states are discovered.

The transition rule of Q learning is the Bellman equation

Q s a r max Q s aa, ,() = + ()¢ ¢¢g

The agent will learn through experience, without a teacher, as part of

its unsupervised learning experience. The agent explores from state to

state until it reaches the goal. Each exploration is called an episode. Each

episode consists of the agent moving from the initial state to the goal state.

Each time the agent arrives at the goal state, the script goes to the next

episode.

The Q-learning algorithm may be summarized as follows:

	 1.	 Set the γ parameter and the environment rewards in

the R matrix.

	 2.	 Initialize Q matrix to zero.

	 3.	 For each episode (loop):

	 4.	 Select a random initial state.

Chapter 9 Reinforcement learning

516

	 5.	 Iterate if the goal state hasn’t been reached (loop):

•	 Select one of all possible actions for the current

state.

•	 Using this possible action, consider going to the

next state.

•	 Get maximum Q-value for this next state based on

all possible actions.

•	 Compute - Q s a r Q s aa, ,() = + ()¢ ¢¢gmax

•	 Set the next state as the current state.

The preceding algorithm is used by the agent to learn from experience.

Each episode is equivalent to one training session. In each training

session, the agent explores the environment, represented by the R matrix,

and receives the reward (if any) until it reaches the goal state. The purpose

of the training is to enhance the “brain” of our agent, represented by the Q

matrix. More training results in a more optimized matrix Q as is the case

for an ANN.

You should realize that the function max ¢ ¢ ¢()a Q s a, which is used to

update Q(s, a) is only an approximation, and in early stages of training,

it may be completely wrong. However, the approximation improves with

every episode, and if the update is done enough times, then the Q-function

will converge and represent the true Q-value.

Once Q matrix has been enhanced, the agent will find the fastest route

to the goal state. To use the enhanced Q matrix, the agent simply traces the

sequence of states, from the initial state to goal state.

The following are several step-by-step manually worked out Q-learning

experiments, which hopefully will fully explain this process.

Chapter 9 Reinforcement learning

517

Manual Q-learning experiments

To understand how the Q-learning algorithm works, I will go through a few

episodes step by step.

The first episode starts by setting the value of the learning parameter γ

to 0.8, and the initial state as room 1.

The Q matrix is also initialized to all 0s as shown in Figure 9-10.

Next examine the second row (state 1) of the R matrix shown in

Figure 9-9. There are two possible actions for the current state 1:

•	 Go to state 3.

•	 Go to state 5.

Now, say by random selection that 5 is selected as the action.

Next, imagine what would happen if the agent were in state 5. Look at

the sixth row of the R matrix. It has three possible actions:

•	 Go to state 1.

•	 Go to state 4.

•	 Go to state 5.

Figure 9-10.  Initialized Q matrix

Chapter 9 Reinforcement learning

518

Applying Bellman’s equation yields

Q s a r max Q s aa, ,() = + ()¢ ¢¢g

Q R max Q Q Q Qa1 5 1 5 0 8 5 1 5 4 5 5, , , , , , ,() = () + * () () ()()¢.

Q 1 5 100 0 8 0 100,() = + * =.

Because the Q matrix is still initialized to zero, Q(5, 1), Q(5, 4), Q(5, 5)

are all 0. The result of this computation for Q(1, 5) is 100 because of the

instant reward from R(1, 5).

Due to algorithm, the next state 5 now becomes the current state.

Because 5 is the goal state, this episode is finished. The agent’s brain now

contains an enhanced Q matrix as shown in Figure 9-11.

A randomly chosen initial state begins the next episode. Let’s say

state 3 is the initial state.

Looking at the fourth row of R matrix you can see that there are three

possible actions:

•	 Go to state 1.

•	 Go to state 2.

•	 Go to state 4.

Figure 9-11.  Enhanced Q matrix

Chapter 9 Reinforcement learning

519

Assume go to state 1 is selected by random process. Next imagine that

the agent is in state 1. Examine at the second row of the R matrix for state 1.

You can see that it has two possible actions:

•	 Go to state 3.

•	 Go to state 5.

The Q-value now must be computed using Bellman’s equation:

Q s a r max Q s aa, ,() = + ()¢ ¢¢g

Q R max Q Q Qa1 5 1 5 0 8 1 2 1 5, , , , ,() = () + * () ()()¢.

Q max1 5 0 0 8 0 100 80,() = + * () =. ,

The enhanced Q matrix from the last episode contained the results of

Q(1, 3) = 0 and Q(1, 5) = 100. The result of the computation is Q(3, 1) = 80

because the reward is zero. The Q matrix now becomes what is shown in

Figure 9-12.

The next state 1 now becomes the current state. The inner loop of the

Q-learning algorithm is now repeated because state 1 is not the goal state.

Figure 9-12.  Revised Q matrix

Chapter 9 Reinforcement learning

520

So, after starting the new loop with the current state 1, there are two

possible actions:

•	 Go to state 3.

•	 Go to state 5.

By random selection, let’s say the action selected is 5. This is shown in

Figure 9-13.

Now, imagine the agent is in state 5. There are three possible actions:

•	 Go to state 1.

•	 Go to state 4.

•	 Go to state 5.

Figure 9-13.  Random selection to state 5

Chapter 9 Reinforcement learning

521

The Q-value is computed using the maximum value for each of these

possible actions:

Q s a r max Q s aa, ,() = + ()¢ ¢¢g

Q R max Q Q Q Qa1 5 1 5 0 8 5 1 5 4 5 5, , , , , , ,() = () + * () () ()()¢.

Q 1 5 100 0 8 0 100,() = + * =.

The updated entries of the Q matrix for Q(5,1), Q(5,4), Q(5,5) are all 0.

The result of this computation for Q(1, 5) is 100 because this is the instant

reward from R(5, 1). This result does not change the enhanced Q matrix.

Because 5 is the goal state, the episode is finished. Our agent’s brain

now contains an enhanced Q matrix as shown in Figure 9-14.

The agent eventually learns more by completing more episodes. It will

finally reach convergence values in the Q matrix as shown in Figure 9-15.

Figure 9-14.  Revised enhanced Q matrix

Figure 9-15.  Final enhanced Q matrix

Chapter 9 Reinforcement learning

522

The Q matrix can then be normalized by dividing all the entries by a

number which will make the highest matrix value equal to 100. In this case

that number is 5. This normalized matrix is shown in Figure 9-16.

Once the Q matrix has converged, the agent has learned the most

optimal paths to the goal state. Tracing the best sequences of states is as

simple as following the links with the highest values at each state. This is

shown in Figure 9-17.

Figure 9-16.  Normalized Q matrix

Figure 9-17.  Nodal diagram with final, normalized link values

Chapter 9 Reinforcement learning

523

For example, from an initial state 2, the agent can use the Q matrix as a

guide:

•	 From state 2 the maximum Q-values suggest the action

is to go to state 3.

•	 From state 3 the maximum Q-values suggest two

alternatives:

•	 Go to state 1.

•	 Go to state 4.

•	 Suppose the go to state 4 action is randomly chosen to

be go to state 1.

•	 From state 1 the maximum Q-values suggest the action

is to go to state 5.

•	 Thus, the optimal path based on Q-learning is 2 → 3 →

1 → 5.

Q-learning demonstration with a Python script

Note I strongly recommend that you read (or reread) the previous
section before reading this one. I do not repeat the step-by-step
explanations in this section. Understanding the explanations will
make this section much more understandable and enjoyable.

In this demonstration, I will use Q-learning in a Python script to find the

shortest path between two points. The script has no prior knowledge

regarding the environment and will learn only by using RL.

Figure 9-18 is a randomized point graph that was created by the script.

Chapter 9 Reinforcement learning

524

Point 0 will be the start position, and point 7 is the target and finish

position. The objective of the script is to determine the optimal path

between the start and target positions using the RL algorithm. There are

obvious false paths and faux targets in the map, which will all have to be

evaluated and discarded.

You will need to load one additional library to prepare to run this

script. Enter the following command to load the required library:

pip install networkx

Figure 9-18.  Randomized point graph

Chapter 9 Reinforcement learning

525

The script is named simpleRL.py, and it is available from the book’s

companion web site. There are no additional explanatory comments for

this script because I have previously worked through several step-by-step

examples for the RL process and I feel you should be adequately prepared

to understand how this relatively simple script works.

Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]

Set target node

goal = 7

Create and display graph

G=nx.Graph()

G.add_edges_from(points_list)

pos = nx.spring_layout(G)

nx.draw_networkx_nodes(G,pos)

nx.draw_networkx_edges(G,pos)

nx.draw_networkx_labels(G,pos)

plt.show()

Define points in graph

MATRIX_SIZE = 8

Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1

Chapter 9 Reinforcement learning

526

Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

 print(point)

 if point[1] == goal:

 R[point] = 100

 else:

 R[point] = 0

 if point[0] == goal:

 R[point[::-1]] = 100

 else:

 # Reverse of point

 R[point[::-1]]= 0

Add goal point round trip

R[goal,goal]= 100

Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

Set learning parameter gamma

gamma = 0.8

Set initial start point

initial_state = 1

Define available_actions method

def available_actions(state):

 current_state_row = R[state,]

 av_act = np.where(current_state_row >= 0)[1]

 return av_act

Create variable to hold possible actions

available_act = available_actions(initial_state)

Chapter 9 Reinforcement learning

527

Define method to randomly select next action

def sample_next_action(available_actions_range):

 next_action = int(np.random.choice(available_act,1))

 return next_action

Create variable to hold the randomly selected action

action = sample_next_action(available_act)

Define method to update state if needed

def update(current_state, action, gamma):

 max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

 if max_index.shape[0] > 1:

 max_index = int(np.random.choice(max_index, size = 1))

 else:

 max_index = int(max_index)

 max_value = Q[action, max_index]

 # Bellman's equation

 �Q[current_state, action] = R[current_state, action] + gamma *

max_value

 �print('max_value', R[current_state, action] + gamma *

max_value)

 if (np.max(Q) > 0):

 return(np.sum(Q/np.max(Q)*100))

 else:

 return (0)

Update the state based on selected action

update(initial_state, action, gamma)

Training starts now

scores = []

Chapter 9 Reinforcement learning

528

for i in range(700):

 current_state = np.random.randint(0, int(Q.shape[0]))

 available_act = available_actions(current_state)

 action = sample_next_action(available_act)

 score = update(current_state,action,gamma)

 scores.append(score)

 print ('Score:', str(score))

Display the rewards matrix

print('\nRewards matrix R\n')

print(R)

Display the enhanced Q matrix

print('\nEnhanced Q matrix\n')

print(Q/np.max(Q)*100)

Testing starts now

current_state = 0

steps = [current_state]

Loop to determine optimal path

while current_state != 7:

 �next_step_index = np.where(Q[current_state,] ==

np.max(Q[current_state,]))[1]

 if next_step_index.shape[0] > 1:

 �next_step_index = int(np.random.choice(next_step_index,

size = 1))

 else:

 next_step_index = int(next_step_index)

 steps.append(next_step_index)

 current_state = next_step_index

Chapter 9 Reinforcement learning

529

print("Most efficient path:")

print(steps)

plt.plot(scores)

plt.show()

Running the script

The script is run by entering the following command:

python simpleRL.py

Figure 9-19 is a plot of the converging score vs. number of episodes

completed.

Figure 9-19.  Scoring convergence plot

Chapter 9 Reinforcement learning

530

You can clearly see that the maximum scoring is reached after

approximately 400 episodes have been completed. The script was hard-

coded to run 700 episodes. The additional time required to run 300 episodes

beyond the 400 mark was miniscule.

Figure 9-20 shows the terminal window after the script completed its run.

Figure 9-20.  Final script results

Chapter 9 Reinforcement learning

531

There are bunch of interesting things to discuss in this figure. First is

the remaining portion of the interim episode results shown at the top of

the figure. Here you can see the Q-function maximum value as well as the

score. The score shown is the unnormalized optimal path value.

The rewards matrix R is shown below the interim episodic results.

There are two items to note regarding this matrix. There are two 100

reward values located at the R(2, 6) and R(6,6) locations. The first reward

(R(2,6)) is for the direct path between node 2 and node 7. The second one

(R(6,6)) is the self-absorbing link or the target node loop-back. The next

item to note is that there are 0 values for existing links and –1 values for

non-existing links.

The enhanced and normalized Q matrix is displayed below the R

matrix. Unfortunately, the Python 3 print statement wraps the rows a bit,

and it is a bit hard to read. I tried unsuccessfully to have it print out the

rows, one row at a time. The matrix values are also displayed in a floating

point, which is another unnecessary distraction.

The last item in the figure is a display of the optimal path which turned

out to be 0 to 1 to 2 to 7.

In the next demonstration, I will be showing you how to handle hostile

environment factors in a path determination.

Q-learning in a hostile environment demonstration

Sometimes, the environment in a RL project is not always amicable

to an agent trying to navigate the paths. To make it obvious in this

demonstration, I will assume that the agent is a group of bees trying to get

to their beehive located at node 7. Now, bees don’t like smoke and will

avoid it all costs. In fact, beekeepers (formal name is apiarists) use a smoke

gun to calm bees as they harvest honey from the beehive. I have added

smoke to several nodes in the randomly generated environment as you

can see in Figure 9-21. The agent will always try to avoid taking those links,

which lead to smoke.

Chapter 9 Reinforcement learning

532

The following script is named beeRL.py and is available from the

book’s companion web site:

Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]

Figure 9-21.  Randomly generated environment with bees

Chapter 9 Reinforcement learning

533

Set target node

goal = 7

bees = [2]

smoke = [4,5,6]

gamma = 0.8

G=nx.Graph()

G.add_edges_from(points_list)

mapping={0:'Start', 1:'1', 2:'2 - Bees', 3:'3', 4:'4 - Smoke',

5:'5 - Smoke', 6:'6 - Smoke', 7:'7 - Beehive'}

H=nx.relabel_nodes(G,mapping)

pos = nx.spring_layout(H)

nx.draw_networkx_nodes(H,pos, node_size=[200,200,200,200,200,

200,200,200])

nx.draw_networkx_edges(H,pos)

nx.draw_networkx_labels(H,pos)

plt.show()

Define points in graph

MATRIX_SIZE = 8

Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1

Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

 print(point)

 if point[1] == goal:

 R[point] = 100

Chapter 9 Reinforcement learning

534

 else:

 R[point] = 0

 if point[0] == goal:

 R[point[::-1]] = 100

 else:

 # Reverse of point

 R[point[::-1]]= 0

Add goal point round trip

R[goal,goal]= 100

def available_actions(state):

 current_state_row = R[state,]

 av_act = np.where(current_state_row >= 0)[1]

 return av_act

def sample_next_action(available_actions_range):

 next_action = int(np.random.choice(available_act, 1))

 return next_action

def collect_environmental_data(action):

 found = []

 if action in bees:

 found.append('b')

 if action in smoke:

 found.append('s')

 return found

Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

enviro_bees = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

enviro_smoke = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

Chapter 9 Reinforcement learning

535

initial_state = 1

Get available actions in the current state

available_act = available_actions(initial_state)

Sample next action to be performed

action = sample_next_action(available_act)

This function updates the Q matrix according to the path

selected and the Q

learning algorithm

def update(current_state, action, gamma):

 max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

 if max_index.shape[0] > 1:

 max_index = int(np.random.choice(max_index, size = 1))

 else:

 max_index = int(max_index)

 max_value = Q[action, max_index]

 �Q[current_state, action] = R[current_state, action] +

gamma * max_value

 �print('max_value', R[current_state, action] + gamma *

max_value)

 environment = collect_environmental_data(action)

 if 'b' in environment:

 enviro_bees[current_state, action] += 1

 if 's' in environment:

 enviro_smoke[current_state, action] += 1

 if (np.max(Q) > 0):

 return(np.sum(Q/np.max(Q)*100))

Chapter 9 Reinforcement learning

536

 else:

 return(0)

update(initial_state,action,gamma)

Training starts

scores = []

for i in range(700):

 current_state = np.random.randint(0, int(Q.shape[0]))

 available_act = available_actions(current_state)

 action = sample_next_action(available_act)

 score = update(current_state,action,gamma)

 scores.append(score)

 print ('Score:', str(score))

plt.plot(scores)

plt.show()

print('Bees found')

print(enviro_bees)

print('Smoke found')

print(enviro_smoke)

Running the script and evaluating the results

The script is run by entering the following command:

python beeRL.py

Figure 9-22 is a plot of the converging score vs. number of episodes

completed.

Chapter 9 Reinforcement learning

537

You can clearly see that the maximum scoring is reached after

approximately 400 episodes have been completed. The script was hard-

coded to run 700 episodes. The additional time required to run 300

episodes beyond the 400 mark was miniscule.

Figure 9-23 shows the terminal window after the script completed its

run.

Figure 9-22.  Scoring convergence plot

Chapter 9 Reinforcement learning

538

The environmental matrices in the figure show how many bees and

smoke the agent found during its journey while searching for the most

efficient path to the hive. There were two assumptions made in order to

simply this demonstration. These are

•	 Bees have a positive coefficient on finding hives.

•	 Bees have a negative coefficient on encountering smoke.

Figure 9-23.  Final script results

Chapter 9 Reinforcement learning

539

These are not unreasonable assumptions, but it does require a

priori knowledge regarding the agent’s behavior. A natural question now

arises: can this a priori knowledge be used to improve the Q-learning

performance? The answer to that question can be found in the following

demonstration.

Q-learning in a hostile environment with a priori knowledge
demonstration

This demonstration will show you how to use available a priori knowledge

to improve how an agent performs in a path-finding task. A group of bees

will still be the agent, and the goal is still to get to the beehive. However,

a realistic approach is now taken where the agent dynamically looks

at the new environment and assigns environmental biases as they are

encountered. Links that lead to smoke filled nodes will be discounted and

links that are bee-friendly are encouraged.

The significant change between this new script and the previous

script is that the update method has been modified to include a scoring

matrix for all attempted paths. If the attempted path leads to a smoke-

designated node, then a matrix value will be decremented. Conversely, if

an attempted path leads to a bee-designated node, then a matrix value will

be incremented. The matrix holding all these bias values is continuously

used in the training loop to guide the agent in path selection.

The following script is named beeRLenv.py and is available from the

book’s companion web site:

Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]

Chapter 9 Reinforcement learning

540

Set target node

goal = 7

bees = [2]

smoke = [4,5,6]

gamma = 0.8

G=nx.Graph()

G.add_edges_from(points_list)

mapping={0:'Start', 1:'1', 2:'2 - Bees', 3:'3', 4:'4 - Smoke',

5:'5 - Smoke', 6:'6 - Smoke', 7:'7 - Beehive'}

H=nx.relabel_nodes(G,mapping)

pos = nx.spring_layout(H)

nx.draw_networkx_nodes(H,pos, node_size=[200,200,200,200,200,

200,200,200])

nx.draw_networkx_edges(H,pos)

nx.draw_networkx_labels(H,pos)

plt.show()

Define points in graph

MATRIX_SIZE = 8

Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1

Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

 print(point)

 if point[1] == goal:

 R[point] = 100

 else:

 R[point] = 0

Chapter 9 Reinforcement learning

541

 if point[0] == goal:

 R[point[::-1]] = 100

 else:

 # Reverse of point

 R[point[::-1]]= 0

Add goal point round trip

R[goal,goal]= 100

def available_actions(state):

 current_state_row = R[state,]

 av_act = np.where(current_state_row >= 0)[1]

 return av_act

def sample_next_action(available_actions_range):

 next_action = int(np.random.choice(available_act, 1))

 return next_action

def collect_environmental_data(action):

 found = []

 if action in bees:

 found.append('b')

 if action in smoke:

 found.append('s')

 return found

Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

Create matrices to hold the bees and smoke totals

enviro_bees = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

enviro_smoke = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

Subtract bees from smoke. This gives smoke a negative bias

enviro_matrix = enviro_bees - enviro_smoke

Chapter 9 Reinforcement learning

542

initial_state = 1

Get available actions in the current state

available_act = available_actions(initial_state)

Sample next action to be performed

action = sample_next_action(available_act)

This function updates the Q matrix according to the path

selected and the Q learning algorithm.

def update(current_state, action, gamma):

 max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

 if max_index.shape[0] > 1:

 max_index = int(np.random.choice(max_index, size = 1))

 else:

 max_index = int(max_index)

 max_value = Q[action, max_index]

 �Q[current_state, action] = R[current_state, action] +

gamma * max_value

 �print('max_value', R[current_state, action] + gamma *

max_value)

 environment = collect_environmental_data(action)

 if 'b' in environment:

 enviro_matrix[current_state, action] += 1

 if 's' in environment:

 enviro_matrix[current_state, action] -= 1

 if (np.max(Q) > 0):

 return(np.sum(Q/np.max(Q)*100))

 else:

 return(0)

Chapter 9 Reinforcement learning

543

Do an update

update(initial_state,action,gamma)

Make a transactional matrix copy for use with the enviro_help

method.

enviro_matrix_snap = enviro_matrix.copy()

def available_actions_with_enviro_help(state):

 current_state_row = R[state,]

 av_act = np.where(current_state_row >= 0)[1]

 # if there are multiple routes, dis-favor anything negative

 env_pos_row = enviro_matrix_snap[state,av_act]

 if (np.sum(env_pos_row < 0)):

 # Can negative directions be removed from av_act?

 temp_av_act = av_act[np.array(env_pos_row)[0]>=0]

 if len(temp_av_act) > 0:

 print('going from:',av_act)

 print('to:',temp_av_act)

 av_act = temp_av_act

 return av_act

Training starts

scores = []

for i in range(700):

 current_state = np.random.randint(0, int(Q.shape[0]))

 �available_act = available_actions_with_enviro_help(current_

state)

 action = sample_next_action(available_act)

 score = update(current_state,action,gamma)

 scores.append(score)

 print ('Score:', str(score))

plt.plot(scores)

plt.show()

Chapter 9 Reinforcement learning

544

Running the script and evaluating the results

The script is run by entering the following command:

python beeRLenv.py

Figure 9-24 is a diagram of the randomly generated environment used

in this demonstration.

Figure 9-25 is a terminal window showing the paths evaluated. The

last one listed is the optimal selected path. This should not come as a

surprise if you examine Figure 9-24. However, you must remember that

Figure 9-24.  Randomly generated environment

Chapter 9 Reinforcement learning

545

the agent does not have this bird’s-eye view of the environment and must

systematically test every available link emanating from the start node.

The final figure in this results section is Figure 9-26, which shows

the scoring convergence. This is the sole performance measure for this

demonstration and is the key piece of evidence, which will prove if this

dynamic approach worked.

Figure 9-25.  Terminal window showing evaluated paths

Chapter 9 Reinforcement learning

546

You can see from the plot that the final scoring value is effectively

reached by episode 180. Compare this plot with the one shown in

Figure 9-22 where the final scoring value converged at approximately

episode 400. The dynamic approach converged much earlier proving that

it is a much better performer than the approach which does not factor in

environmental conditions. This result would be somewhat akin to tuning

an ANN or CNN using bias values for performance improvements.

Figure 9-26.  Scoring convergence plot

Chapter 9 Reinforcement learning

547

�Q-learning and neural networks
The environment states in the Breakout game are only defined by the

location of the paddle, location, and direction of the ball and the presence

or absence of an individual brick. This intuitive representation however is

only specific to each specific game. Is there anything more universal that

would be suitable for all the games? The obvious choice is to use screen

pixels because they implicitly contain all of the relevant information about

the game situation, except for the speed and direction of the ball in the

case of the Breakout game. However, two or more consecutive screens

would have the ball state adequately described.

If DeepMind preprocessing is applied to game screens, which is

to take the four last screen Images, resize them to 84 × 84, and convert

them to grayscale with 256 gray levels. This would result with 25684x84x4 ≈

1067970 possible game states. That would mean there would be 1067970 rows

in the Q-table, which is more than the number of atoms in the known

universe – clearly an impossible situation. This vast number of states could

be drastically reduced by only including the states visited. Even so, most

states are rarely visited and it would take the lifetime of the universe for the

Q-table to converge – again, not an ideal situation. The solution lies with

developing an estimate for Q-values for states never seen.

At this point DL will definitely help. Neural networks are exceptionally

good performers at extracting useful features from highly structured

data. A neural network could represent a Q-function that takes the state

(four game screens) and action as input and outputs the corresponding

Q-value. As an alternative, the game screens could be used as an input and

a Q-value output for each possible action. The latter is the approach taken

by the DeepMind team. Using either approach has the advantage that only

one forward pass through the network is required to perform a Q-value

update or pick an action with the highest Q-value.

Figure 9-27 shows the “naive” approach of inputting four states to a

neural network and obtaining a single Q-value output.

Chapter 9 Reinforcement learning

548

In contrast, Figure 9-28 shows the approach taken by the DeepMind

team where a single state is input and multiple Q-values are output.

Figure 9-27.  Naive approach to using DL and Q-learning

Chapter 9 Reinforcement learning

549

For a purely informational step, Table 9-1 shows the architecture used

in the DeepMind model.

Figure 9-28.  DeepMind approach to DL and Q-learning

Chapter 9 Reinforcement learning

550

This is a convolutional neural network with three convolutional

layers, followed by two fully connected layers. Notice that there are no

pooling layers. This is because pooling layers cause the features to become

translation invariant. This means the model becomes insensitive to the

location of an object in the Image. That would destroy the model’s ability

to track the ball location in the Breakout game.

Inputs to the network are four 84 × 84 grayscale game screens. Outputs

of the network are Q-values for each possible action, of which there are 18

for the Breakout game. Q-values are real values, which consequently make

it a regression task, which can be optimized using simple squared error

loss (L).

L r max Q s a Q s aa= + ()- ()()¢ ¢¢
1

2

2
, ,

where

r max Q s aa+ ()¢ ¢¢ , = target

Q(s, a) = prediction

Given a transition (s, a, r, s′), the classic Bellman’s equation Q-table

update rule must be replaced with the following process:

	 1.	 Do a feedforward pass for the current state s to get

predicted Q-values for all actions.

Table 9-1.  DeepMind model architecture

Layer Input Filter size Stride Num filters Activation Output

conv1 84x84x4 8x8 4 32 ReLU 20x20x32

conv2 20x20x32 4x4 2 64 ReLU 9x9x64

conv3 9x9x64 3x3 1 64 ReLU 7x7x64

fc4 7x7x64 512 ReLU 512

fc5 512 18 Linear 18

Chapter 9 Reinforcement learning

551

	 2.	 Do a feedforward pass for the next state s′ and

calculate the maximum overall network outputs
max Q s aa¢ ¢ ¢(), .

	 3.	 Set Q-value target for action to r max Q s aa+ ()¢ ¢¢g ,

(use the max calculated in step 2). For all other

actions, set the Q-value target to the same as

originally returned from step 1, making the error 0

for those outputs.

	 4.	 Update the weights using back propagation.

The preceding process shows you how to estimate the future reward

in each state using Q-learning and approximate the Q-function using a

CNN. However, it turns out that approximating Q-values using non-linear

functions is unstable. There are many tuning techniques that must be

used to make it converge. It also takes a long time, almost a week using a

computer with a single GPU board.

The most important tuning technique is to use experience replay.

During gameplay, all the experiences (s, a, r, s’) are stored in a replay

memory. When training the network, random mini-batches from the

replay memory are used instead of the most recent transition. This breaks

up any similarity existing in training samples, which might inadvertently

drive the network into a local minimum. Also, using experience replay

makes the training task similar to usual supervised learning. This

simplifies debugging and further algorithm testing.

Using DL with Q-learning attempts to solve the credit assignment

problem, which I mentioned at the beginning of the chapter. This solution

happens because a reward is propagated back in time, until it reaches

the crucial decision point. That point is the actual cause for the obtained

reward.

Chapter 9 Reinforcement learning

552

The other major issue is the exploration-exploitation dilemma, also

mentioned at the chapter’s beginning. You should realize that when a

Q-table or Q-network is initialized randomly, its predictions are initially

random as well. If an action is chosen with the highest Q-value, then the

action will be random and the agent performs a naive exploration. As the

Q-function converges, it returns more consistent Q-values and the amount

of exploration decreases. It may be stated that Q-learning incorporates

the exploration as part of the algorithm. But this exploration is “greedy”

because it selects the first effective strategy it finds.

A simple and effective fix for the preceding problem is ε-greedy

exploration with probability ε choosing a random action; otherwise, go

with the “greedy” action with the highest Q-value. The DeepMind system

decreases ε over time from 1 to 0.1. When the DeepMind system starts, it

makes completely random moves to completely explore the state space

and then it settles down to a fixed exploration rate.

All of the preceding discussion can be encapsulated by some pseudo-

code based on the DeepMind model, which provides a relatively easy-to-

understand algorithm.

initialize replay memory D

initialize action-value function Q with random weights

observe initial state s

repeat:

 select an action a

 with probability ε select a random action
 otherwise select a = argmaxa'Q(s,a').

 carry out action a

 observe reward r and new state s'

 store experience (s, a, r, s') in replay memory D

Chapter 9 Reinforcement learning

553

 �sample random transitions (ss, aa, rr, ss') from replay

memory D

 calculate target for each mini-batch transition:

 if ss' is the terminal state, then tt = rr

 otherwise tt = rr + γmaxa'Q(ss',aa')
 train the Q-network using (tt – Q(ss,aa))2 as loss

 s = s'

until terminated

There are more tuning techniques that the DeepMind team used to

actually make it work such as using a target network, error clipping, reward

clipping, and so on. I will leave it to the interested reader to pursue those

topics.

It is amazing that this algorithm actually learns anything at all.

Consider that the Q-function is initialized randomly; it will naturally

output garbage data when it first starts. Now the algorithm uses this

initial garbage (the maximum Q-value of the next state) as targets for the

network, only occasionally recording a tiny reward. From a large-scale

perspective, that approach appears nonsensical. How could the algorithm

learn anything meaningful? The strange fact is that it does eventually learn.

It has been stated by some very smart people that AI is something we

haven’t figured out yet. Once AI has been figured out, it may not seem

so intelligent any more. However, Q-learning with DL is still an amazing

topic. Observing it figuring out a new game is truly an awe-inspiring event.

Chapter 9 Reinforcement learning

555© Donald J. Norris 2020
D. J. Norris, Machine Learning with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-5174-4

Index

A
AdaGrad and RMSProp

algorithms, 364
Adam algorithm, 364
Adaptive Gradient Algorithm

(AdaGrad), 364
AlexNet network, 345
Area under curve-receiver

operating characteristic
(AUC-ROC) curves, 485

Artificial neural network
(ANN), 108, 235

activation function, 238, 256
annDemo1 script, 248
artificial neuron diagram, 237
categories, 240
complex, 245, 246
error computing process, 252
error contribution, 253
FeedForward computations, 253
FeedForward/Feedback, 240
gradient descent equation, 258
hidden layer node, 257
housing price

regression predictor,
demonstration, 416

initial input/weight
values, 243

input vs. output, 249
manual process, 253
matrices, 247
multiple error allocation

setup, 250
neuron model, 235, 236
neuron parts, 236, 237
output node error, 255
Pima Indian Diabetes

project, 389
Python demonstration

init module, 262
matrix notation, 268
script, 272
testANN3 script, 272
testANN4 script, 275, 276
test code, 264
test errors, 267
testNet module, 265, 266
trainNet module, 267

Python session, 245
scikit-learn library, 408
sigmoid functions, 256, 260
single error allocation setup, 249
six-node, 251, 255, 258
36-node, 261
three-layer, 238, 239, 241, 251,

255, 258

https://doi.org/10.1007/978-1-4842-5174-4

556

two-layer, 242
weight modification process, 250

Atari Breakout game
screenshots, 502

Attribute selection measures
(ASM), 108

AUROC curve
binary classifier system, 485
fall-out/probability, 485
inversion case, 490, 491
overlapping probability, 489
perfect class separation, 486, 488
positive vs. negative class, 487
probability curve, 486

B
Bagging and Random Forest

Ensemble algorithms
bagging demonstration

results, 203
script, 196–198, 200–202

boostrap resampling
demonstration, 193–195

bootstrap process, 191
CART, 191, 192
performance estimation, 193
random forest demonstration

Gini index, 204–207, 209, 210
results, 212
script, 212

Baseline model, 421

Batch-normalized Inception V2, 349
Bellman equation, 507
Best matching unit (BMU), 179
Breakout game, 547, 550
Breast cancer prediction

Adagrad optimizer, 477
batch_size parameter, 477
building dataset, 461–464
cell detection, 458
classWeight parameter, 476
CNN model, 466–470
command-line argument, 476
configuration script, 460
content, 455, 456
cp command, 457
data augmentation, 476, 477
dataset splits, 461
desktop configuration, 454
explanatory comments, 463
fit_generator method, 477
gradient-based

optimization, 477
IDC, 455
imbalance/skew class, 476
libraries

CancerNet, 475
imutils, 475
keras, 475
Matplotlib, 475
OS, 475
scikit-learn, 475

MLP model, 491–495
OpenCV installation, 459
over-/underfitting, 478

Artificial neural network
(ANN) (cont.)

INDEX

557

positive/negative
Images, 456, 457

potential patches, 456
Python virtual environment, 459
result evaluation, 482, 483
run dataset script, 464–466
train_IDC_model script,

478–481
training/testing script, 470–475
tree command, 458

C
Camera Serial Interface (CSI)

socket, 315
CancerNet structure, 467
Classification accuracy plots, 385
Classification and regression trees

(CART), 117, 191
Command-line interpreter (CLI), 53
Convolutional kernels, 343
Convolutional neural network

(CNN) model, 466–470, 550
activation maps, 339
architecture, 340
convolution layers and

features, 340
convolution operation, 339
design strategies, 368
eye features and non-eye

features, 341
history and evolution

AlexNet network, 345
batch normalization, 349

bottleneck, 348
GoogLeNet, 347
Inception modules, 349
inception V4

architecture, 354
inception V4 module, 353
LeNet-5

architecture, 342, 343
NiN architecture, 346
Overfeat framework, 345
ResNet core, 350, 351
Xception, 355, 357

Image volume, convolution
filter, 338

neurons, 341
raw Image pixels, 336
univariate time series

create CNN
model, 436–440

preprocessing
dataset, 433, 434, 436

using prediction, cellular
microscopy
applications, 431–433

width, height, and depth, 337
create_model() function, 411
Cross-entropy loss, 384
CSI socket location, 316

D
Data augmentation object, 471
Data compression

function, 136

Index

558

Decision tree algorithm
ASM, 108
decision-making logic, 108
diagram, 116
flowchart, 107
gain ratio

definition, 122
intrinsic information, 121

Gini index
arbitrary

dataset, 118, 119
binary split, 117
continuous-valued

attributes, 117
discrete-valued

attribute, 117
equation, 117
final tree, 120, 121
initial split, 119

information gain
definition, 109
entropy, 111
initial split, 115
measuring

information, 110, 111
optimum split, 115, 116
play decision, 112, 113
split criterion, 109

process, 108
Decision tree classifier

algorithm (see Decision tree
algorithm)

scikit-learn (see Scikit-learn,
decision tree)

Deep learning (DL)
basics, 213

linear classifier, 216
ML, data patterns, 214–216

linear classifier
adding bias vector, 218
scoring function, 217
script, 220
terminal results, 220

loss functions, 221
optimizer algorithm, 225

2D plot, 227
error plots, 230
gradient descent
algorithm, 231
gradient search, 232–234
iteration number, 234
LR predictor, 228
Python code, 229
variables, 226
weighting variables, 226

Deepmind model, 550, 552
Deepmind preprocessing, 547
Deep neural networks, 347
Discounted future

reward, 505, 506
Display Serial Interface (DSI)

socket, 316

E
error function, 229
ε-greedy exploration, 552
export_graphviz function, 127

INDEX

559

F
False negative rate (FNR), 483
False positive rate (FPR), 485
Fashion MNIST demonstration

Adam algorithm, 364
Adam optimizer, 364
CNN, 363
complex CNN model, 369
dataset classifications, 369
Keras fit function, 365
handwritten number

recognition, 361
input datasets, 362
integer to clothing description

relationships, 359
kerasComplexFashionTest.py,

370, 371
kerasFashionTest.py, 365–367
logistic regression algorithm, 364
python kerasFashionTest.py, 367
results, kerasComplexFashion

Test script, 372
results, kerasFashionTest

script, 368
reviewData script results, 361, 362
stochastic gradient descent, 364
string variables and network

computations, 359
training record Image, 362

Feedback back model, 240
Fine-needle aspirate (FNA), 492
Keras fit function, 365
FractalNet, 357

G
Gain ratio, 121
Gaussian Naive Bayes, 99, 100
Gini index

arbitrary dataset, 118, 119
binary split, 117
continuous-valued attributes, 117
discrete-valued attribute, 117
equation, 117
final tree, 120, 121
initial split, 119

Global minimum, 226
GoogLeNet, 347
GPU neural network, 344
Gradient-based optimization, 477
Graphics processing

units (GPU), 342
GridSearchCV module, 175

H
Handwritten number recognition

ANN, creation, 297–299
ANN test script demonstration

full training dataset, 309–313
misidentified handwritten

numeric digits, 305
results, script testANN_

metrics, 308
testANN_metrics.py,

306, 307
testANN script results, 303
testANN_short.py, 301, 302

Index

560

testANN_short script, 306
viewResults script, 304

development and testing, 284
firm guidelines, 283
guidelines, 281
initial ANN training script

demonstration, 299, 300
input datasets,

adjustment, 293, 295
interpreting ANN output data

values, 295–297
Keras (see Keras)
personnel, hardware, and

software, 284
Pi Camera (see Pi Camera)
postal services worldwide, 284
production or field release, 283
project history and preparatory

details
dataList, 291
interactive Python

session, 289
matplotlib Python

library, 290
MNIST databases, 285
MNIST training dataset, 287
postal codes, 285
python3 viewRecord.py, 291
viewRecord.py, 290

project requirements, 281
realistic schedule, 282, 284
testing, 282

Housing price regression predictor,
demonstration

baseline model, 421, 422, 424,
425, 427, 428, 430

dataset feature variables, 416, 417
preprocessing data, 417, 419, 420

I
Identity shortcut connection, 350
Inception

architecture, 347
batch-normalized, 349
layer, 348
model, 348
modules, 347–349
V2 network, 351
V3 modules, 349
V4 architecture, 351, 353, 354
V4 module, 353

Inception-ResNet V1, 354
init module, 263
Integer encoding, 328
Invasive ductal carcinoma

(IDC), 455
Iris

demonstration, part 1
class attributes, 32
histograms for

attributes, 33, 34
scatterplots for

attributes, 34, 35
script, 29–31
steps, 29

Handwritten number
recognition (cont.)

INDEX

561

demonstration, part 2
implements cross-validation

procedure, 38, 39
models, 38
Python script, 35, 36
steps, 35

demonstration, part 3
box and whisker plots, 42
classes vs. predicted

classes, 46
KNN model, 43, 44, 46
six models’ accuracy

display, 40, 41
sklearn learn metrics

analysis, 47
isnull() method, 419

J
Jason’s Fashion MNIST

demonstration, 378–385

K
Keras

ANN model, 404
back-end engines, 325
compilation, model, 331
deep learning library, 326
installation, 325, 326
integer encoding, 329
MNIST dataset, 326, 331
network model, 324
random number generator, 327

ReLU, 329
scikit-learn library

create_model(), 411
grid search, 411, 412, 414, 415
KerasClassifier and

KerasRegressor classes, 411
script, 408–410
utilities, 408

script kerasTest.py, 332, 333
softmax function, 330
training and test datasets, 327

kerasFashionTest script, 369
Keras fit_generator method, 477
Keras import dataset library, 358
kerasTest script, 334
k-nearest neighbor (k-NN) model

distance metric, 101
kNN.py, 102–104
knnTest.py, 104–106
noisy features, 101
performance issue, 101

k-NN algorithm, 177

L
learningRate parameter, 231
Learning vector quantization (LVQ)

BMU, 179
codebook vectors, 179
demonstration

codebook vectors, 189
n-fold cross-validation

process, 187
results, 189

Index

562

script, 182, 184–187
Weka, 181, 182

Euclidean distance, 178, 179
k-NN algorithm, 177

LeNet-5 model, 342, 343
Likelihood function, 222
Linear discriminant analysis

(LDA), 27
vs. PCA, 151, 161
process, 152
script

demonstration, 158–161
explanatory comments,

152, 154–157
Linear regression (LR)

coefficients, 80
linear algebra solution, 78
lrTest script, 80
mathematical term, 77
pseudo-random

dataset, 79
simplified case, 78

Listwise imputation, 399
Local minima, 226
Logistic regression (LogR)

Andrew Ng’s dataset, 82
assumptions, 82
demonstration

classifier line, 89
coefficients, 90
false negatives, 89
false positives, 89

logRDemo.py, 86–89
random scores, 90, 91

development
coefficients determination, 85
cost function, 86

logRTest.py, 83, 84
vs. LR, 81
sigmoid function, 81, 82

Log loss function, 223, 224
Loss function, 216, 221

M
Machine learning (ML), 328

data, 215
definition, 25
design matrix, 215
linear prediction and

classification
flower within sepal and

petal, 28
Iris flower, 27
LDA, 27
structured approach steps, 26

parameters, 215
relationships between AI, deep

learning (DL), 24, 25
tasks, 214

Markov decision process (MDP)
data flow, 504
discounted future

reward, 505, 506
Q-learning (see Q-learning)
states, actions, and rules, 504

Learning vector quantization
(LVQ) (cont.)

INDEX

563

Maximum a posteriori (MAP), 93
Mean squared error (MSE), 222
Mean squared error (MSE) loss

function, 421
Misidentified handwritten numeric

digits, 305
Mixed National Institute of

Standards and Technology
(MNIST) databases, 285

mkvirtualenv command, 21
MNIST handwritten number

dataset, 344
Multi-layer perceptron (MLP)

model, 326, 336
AUROC plot, 498, 500
confusion matrix, 496, 497
Heatmap, 498
probability distributions, 499
results, 496

Multiple error allocation setup, 250
Multivariate time series CNN model

multiple input series, 441
preprocessing dataset, 442–444,

446–451

N
Naive Bayes

assumption, 92
class probabilities, 93
conditional probabilities, 93
definition, 91
frequency table, 95
gnbTest.py, 100, 101

Likelihood table, 95, 96
posterior probability, 96, 97
pros and cons, 97, 98
theorem, 92, 93
types, 98
weather/play dataset, 94

Network in Network
(NiN), 346, 347

Neural networks
Deepmind approach, 549
naive approach, 548
Q-values, 550

Nodal graph, 511, 512
Non-Keras network, 363
Non-linear function, 341
Normalized Q matrix, 522

O
OpenCV

apt-get, 50
building

CMake command, 53
compilation, 56, 57
directory set up, 52
non-free algorithms, 53, 54
numpy library, 52
py3cv4_1 version

verification, 58, 59
Python 3 and numpy, 54, 55
swap configuration file, 55
swap size, 55, 56
symbolic link, 58

CMake utility, 50

Index

564

downloading, 51, 52
visualization (see Seaborn data

library)
OpenCV functions, 459
Overfeat framework, 345

P
Parameterization, 215
Pi Camera, 280, 316

handwritten number recognition
demonstration, 319–324

installation
CSI socket, 315, 316
properly inserted camera

cable, 317
software, 318, 319

interface, 313
short flex ribbon cable, 315
version 2, 314

Pima Indian Diabetes dataset, 122
Pima Indian Diabetes project

eight factors, 389
preparing data

correlation heat map, 397
csv dataset, 390
diabetesTest script results,

394, 395
download, 389
explanatory comments, 393,

394, 399, 401
histogram, 396
histogram plots, 391–393

install libraries, 391
insulin histogram, 402
Keras ANN model, 404–407
listwise imputation, 399
revisedDiabetesTest script

results, 402
Plot of error vs. iteration number, 234
predict() method, 125
Predictive modeling, 77
Principal component analysis

(PCA)
data compression function, 136
objective, 136
process, 136
script

covariance matrix, 143
csv file, 141
demonstration, 146–149
dimensionality reduction, 150
explanatory comments,

138–140
iris dataset, 137
standardization, 142
SVD algorithm, 144
W matrix, creation, 145

Probability density function
(PDF), 99

Q
Q-learning

Bellman equation, 507, 515
Bellman’s equation Q-table

update rule, 550

OpenCV (cont.)

INDEX

565

Breakout game, 550
building (example)

initial actions, 514
initial environment, 513
nodal graph, 510, 512
plan view, 510
reward values, 510
R matrix, 514

CNN, 551
Deepmind approach, 549
Deepmind model

architecture, 550
DL, 551
flowchart, 508
function, 506
hostile environment

demonstration
beeRL.py, 532–536
environmental matrices, 538
priori knowledge, 539–546
python beeRL.py, 536
randomly generated

environment, bees, 532
scoring convergence

plot, 537
manual Q-learning experiments

Bellman’s equation, 518, 519
enhanced Q

matrix, 518, 519
learning parameter, 517
nodal diagram, 522
normalized matrix, 522
Q matrix, 517
random selection, 520

revised enhanced Q
matrix, 521

revised Q matrix, 519
naive approach, 548
and neural network, 547, 548
Python script, demonstration,

523–529
python simpleRL.py, running,

529–531
Q-value, 509
reward functions, 509
tuning technique, 551

Q matrix, 516
Q-network, 552
Q-table, 552
Q-values, 519, 547

R
Randomized point

graph, 523, 524
Raspberry Pi (RasPi)

LibreELEC, 3
mandatory configuration

boots, 6
changing password, 8
check updates, 9–11
ifconfig command display, 12
select WiFi network, 9
timezone menu, 7

micro SD card
configuration process, 5, 6
optional configuration

process, 12, 14, 15

Index

566

Model B+, 1
NOOBS Lite Images, 3

Raspbian Linux distribution
installing dependencies, 22, 24
Python virtual environment,

installation, 16, 17
initial source command

results, 19, 20
mkvirtualenv

command, 20, 21
procedure, 18
virtualenv utility, 18, 19
workon command results, 22

update action, 15, 16
RasPi desktop configuration, 280
RasPi processor speed, 309
Regular neural networks, 337
Reinforcement learning (RL)

Breakout game, 502
human learning experiences, 503
ML paradigm, 501
supervised learning, 502
unsupervised learning, 502

ReLU plot, 330
ResNet

architecture, 352
bottleneck elimination, 351
bottleneck reduction

scheme, 351
flow diagram, 350
identity shortcut

connection, 350
inception V4 architecture, 354

pooling layer plus softmax, 352
Xception code, 357

R matrix, 514
Root Mean Square Propagation

(RMSProp), 364

S
Scikit-learn, decision tree

accuracy, 125
clf model, 125
cons, 133
CSV file, 123, 124
diabetesDT.py., 126, 127
load dataset, 124
load libraries, 123
optimization

accuracy, 132
diabetesDT.py, 132
hyper-parameters, 131
pimaDiabetes.py, 131
tree1.png, 132

Pima Indian Diabetes
dataset, 122

pros, 132
Python script, 123
split dataset, 124
training set and a test set, 124
visualization

diabetesDT.py, 127, 128
enlarged portion, 130
export_graphviz function, 127
Gini ratio, 130
tree.png, 129

Raspberry Pi (RasPi) (cont.)

INDEX

567

Scikit-learn wrapper
functions, 421

Scoring convergence
plot, 537

scoring function, 215
Seaborn data library

box plot, 67, 68
datasets, 61
data visualization, 62
dependencies, 60
facet grid plot, 65, 66
installation, 59, 60
Iris dataset, 61, 62
KDE plot, 72, 73
pair plot, 74–76
scatter plot, 62–64
strip plot, 68, 69
violin plot, 70–72

Sensitivity, 483, 484
Sigmoid function, 173
Single error allocation

setup, 249
Singular value decomposition

(SVD), 143
softargmax, 330
Softmax function, 330, 336
Specificity, 484
split_sequences

function, 444
SqueezeNet, 355
scikit-learn StratifiedKFold

function, 411
Supervised

learning, 502

Support vector machine (SVM)
data model, 39

data points, 163
demonstration

dimensional datasets, 170
Gaussian function

application, 172, 173
GridSearchCV module, 175
parameters, 174
problematic datasets, 171
quadratic function, 171
results, 169, 176
sript, 167, 168
transformed dataset, 170

eye-balled, 163
graphical intuition, 166
support vectors, 164, 165
total width

determination, 165

T
Target handwritten number, 320
testANN3 script, 273
testANN_image script, 323
testANN_metrics_lr script, 312
testANN_metrics

script, 309, 310
Testing generator, 472
testNet module, 265
Traditional CNN

architectures, 341
trainANN script, 301
trainNet module, 267

Index

568

train_test_split() function, 124
True positive rate

(TPR), 482, 485
Tuning techniques, 551, 553

U
Univariate time series, 433
Unsupervised learning, 502

V
Validation generator, 472
VGG Fashion MNIST

demonstration, 373–377
VGG network, 345

W
Waikato Environment for Knowledge

Analysis (Weka), 180
Weights/biases, 216
White box machine learning

algorithm, 108
workon command, 21

X, Y
Xception module

architecture, 355, 356

Z
Zero Rule algorithm, 180

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to machine learning (ML) with the Raspberry Pi (RasPi)
	RasPi introduction
	Writing the Raspbian Image to a micro SD card
	Mandatory configurations
	Optional configurations

	Updating and upgrading the Raspbian distribution
	Python virtual environment
	Installing a Python virtual environment
	Installing dependencies

	ML facts
	ML basics
	Linear prediction and classification
	Iris demonstration – Part 1
	Iris demonstration – Part 2
	Iris demonstration – Part 3

	Chapter 2: Exploration of ML data models: Part 1
	Installing OpenCV 4
	Download OpenCV 4 source code
	Building the OpenCV software
	Seaborn data visualization library
	Scatter plot
	Facet grid plot
	Box plot
	Strip plot
	Violin plot
	KDE plot
	Pair plots

	Underlying big principle
	Linear regression
	LR demonstration

	Logistic regression
	LogR model development
	LogR demonstration

	Naive Bayes
	Brief review of the Bayes’ theorem
	Preparing data for use by the Naive Bayes model
	Naive Bayes model example
	Pros and cons
	Gaussian Naive Bayes
	Gaussian Naive Bayes (GNB) demonstration

	k-nearest neighbor (k-NN) model
	KNN demonstration

	Decision tree classifier
	Decision tree algorithm
	Information gain
	Split criterion
	Measuring information
	Properties of entropy
	Information gain example
	Gini index
	Simple Gini index example

	Gain ratio
	Intrinsic information
	Definition of gain ratio

	Decision tree classifier demonstration with scikit-learn
	Visualizing the decision tree
	Optimizing a decision tree
	Pros and cons for decision trees
	Pros
	Cons

	Chapter 3: Exploration of ML data models: Part 2
	Principal component analysis
	PCA script discussion
	PCA demonstration
	When to use PCA

	Linear discriminant analysis
	LDA script discussion
	LDA demonstration
	Comparison of PCA and LDA

	Support vector machines
	SVM demonstration – Part 1
	SVM demonstration – Part 2

	Learning vector quantization
	LVQ basic concepts
	Euclidean distance
	Best matching unit
	Training codebook vectors

	LVQ demonstration

	Bagging and random forests
	Introduction to bagging and random forest
	Bootstrap aggregation (bagging)
	Random forest
	Performance estimation and variable importance

	Bootstrap resampling demonstration
	Bagging demonstration
	Random forest demonstration

	Chapter 4: Preparation for deep learning
	DL basics
	Machine learning from data patterns
	Linear classifier

	Loss functions
	Different types of loss functions

	Optimizer algorithm
	Deep dive into the gradient descent algorithm

	Artificial neural network
	How ANNs are trained and function
	Practical ANN example
	Complex ANN example
	Modifying weight values

	Practical ANN weight modification example
	Some issues with ANN learning

	ANN Python demonstration – Part 1
	ANN Python demonstration – Part 2

	Chapter 5: Practical deep learning ANN demonstrations
	Parts list
	Recognizing handwritten number demonstration
	Project history and preparatory details
	Adjusting the input datasets
	Interpreting ANN output data values
	Creating an ANN that does handwritten number recognition
	Initial ANN training script demonstration
	ANN test script demonstration
	ANN test script demonstration using the full training dataset
	Recognizing your own handwritten numbers
	Installing the Pi Camera
	Installing the Pi Camera software
	Handwritten number recognition demonstration

	Handwritten number recognition using Keras
	Introduction to Keras
	Installing Keras
	Downloading the dataset and creating a model

	Chapter 6: CNN demonstrations
	Parts list
	Introduction to the CNN model
	History and evolution of the CNN
	Fashion MNIST demonstration
	More complex Fashion MNIST demonstration
	VGG Fashion MNIST demonstration
	Jason’s Fashion MNIST demonstration

	Chapter 7: Predictions using ANNs and CNNs
	Pima Indian Diabetes demonstration
	Background for the Pima Indian Diabetes study
	Preparing the data

	Using the scikit-learn library with Keras
	Grid search with Keras and scikit-learn

	Housing price regression predictor demonstration
	Preprocessing the data
	The baseline model
	Improved baseline model
	Another improved baseline model

	Predictions using CNNs
	Univariate time series CNN model
	Preprocessing the dataset
	Create a CNN model
	Multivariate time series CNN model
	Multiple input series
	Preprocessing the dataset

	Chapter 8: Predictions using CNNs and MLPs for medical research
	Parts list
	Downloading the breast cancer histology Image dataset
	Preparing the project environment
	Configuration script
	Building the dataset
	Running the build dataset script
	The CNN model
	Training and testing script
	Running the training and testing script
	Evaluating the results with a discussion of sensitivity, specificity, and AUROC curves
	What is sensitivity?
	What is specificity?
	What are the differences between sensitivity and specificity and how are they used?

	Using a MLP model for breast cancer prediction
	Running the MLP script

	Chapter 9: Reinforcement learning
	Markov decision process
	Discounted future reward
	Q-learning
	Q-learning example
	Manual Q-learning experiments
	Q-learning demonstration with a Python script
	Running the script
	Q-learning in a hostile environment demonstration
	Running the script and evaluating the results

	Q-learning in a hostile environment with a priori knowledge demonstration
	Running the script and evaluating the results

	Q-learning and neural networks

	Index

