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CHAPTER 1

Introduction to 
machine learning (ML) 
with the Raspberry  
Pi (RasPi)
This chapter will provide you with introductions to both RasPi and 

ML. The RasPi discussion will be first, which will help you understand the 

hardware platform that will be used to run all the book’s demonstrations. 

An introductory ML discussion follows, which will provide you with a 

framework to comprehend what ML is all about and why it is such an 

exciting and rapidly evolving field of study.

�RasPi introduction
You will need to use a RasPi in order to run this book’s demonstrations. In 

the next few sections, I will show you how to set up and configure a RasPi 3 

Model B or B+ as a workstation that will run the scripts and programs 

required for the various ML demonstrations. Figure 1-1 shows a RasPi 3 

Model B+, which is used in this book.



2

There are a few differences between the RasPi 3 Model B and B+. They 

are basically the same except that the B+ has a slightly faster processor 

clock speed increase and has some improvements in the wireless functions 

as compared to the B model. Neither of these improvements will have a 

significant impact on running this book’s projects if you use a B instead of 

a B+ model.

I will not discuss what constitutes a RasPi single-board computer 

because that is already adequately covered by many available books and 

blogs. As mentioned earlier, I used a RasPi 3 Model B+ in a workstation 

configuration. This setup is where a RasPi is connected with a USB 

keyboard, USB mouse, and HDMI monitor. In my setup, the RasPi is 

powered by a 2.2A, 5V supply with a micro USB connector.

The RasPi does not use a mechanical disk drive for implementing a file 

system which includes an operating system (OS). All recent RasPi versions 

rely on using a pluggable micro SD card to serve as the secondary storage. 

While it is possible to connect a traditional disk drive to a RasPi, it will only 

serve as an auxiliary storage device and not as the primary storage for the 

OS or as the bootable partition. I will next show you how to download and 

Figure 1-1.  Raspberry Pi 3 Model B+

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 
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install an OS on a micro SD card in order to enable the RasPi to serve as a 

functional ML microcontroller.

Undoubtedly the simplest way to get up and running is to purchase 

a preprogrammed micro SD card. Such cards are ready to go and only 

need to be configured to match your particular workstation configuration, 

including your WiFi network. The WiFi configuration process will be 

discussed in a later section, but first I would like to discuss how to create 

your own micro SD card if you so desire.

The micro SD card software to be loaded is known as a Raspbian 

Image and is available without charge from many online web sites, 

with my recommended site being the Raspberry Pi Foundation site 

at raspberrypi.org. The latest OS Image is always available from the 

Downloads section of the web site. There are two types of the OS Image 

that you can download. The first type is named NOOBS, which is an 

abbreviation for “New Out of the Box Software.” There are two versions of 

NOOBS available. One version is named NOOBS, and the other version is 

named NOOBS Lite. Both versions are identified as v3.0.0 as of the time of 

this writing. NOOBS has an easy operating system installer which contains 

the Raspbian OS as well as another popular OS named LibreELEC. 

Additionally, the NOOBS version provides a selection of alternative 

operating systems which are subsequently downloaded from the Internet 

and installed. NOOBS Lite contains the same operating system installer 

without Raspbian pre-loaded and no LibreELEC option. However, this 

version provides the same operating system selection menu allowing 

Raspbian and other OS Images to be downloaded and installed.

The NOOBS and NOOBS Lite Images are just collection of files and 

sub-directories that can be downloaded either using the BitTorrent 

application or simply as a raw Zip file. The BitTorrent and Zip downloads 

are approximately 1.2 GB in size. The extracted Image is 1.36 GB in size, 

but the final installed size is over 4 GB. This means that you will need to 

use at least an 8 GB micro SD card to hold the final Image. However, to 

replicate all the ML demonstrations in this book, I strongly recommend 

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 

http://raspberrypi.org/
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that you use at least a 16 GB, class 10 micro SD card to ensure there is 

plenty of storage available as well as to maximize the data throughput with 

the operating RasPi.

The second Image type is a direct OS download. The currently 

available Image is the Raspbian Linux distribution with a code name of 

Stretch. This Raspbian version may be downloaded using BitTorrent or as a 

Zip file with final Image sizes similar to the NOOBS Image.

A micro SD card must be configured after an Image is downloaded. 

I will only discuss the direct Raspbian download type because I believe 

the readers of this book are sufficiently experienced with basic computer 

operations and also with the RasPi so that they will overwhelmingly 

choose to use the direct downloaded approach.

�Writing the Raspbian Image to a micro SD card
The micro SD card does not need to be formatted prior to writing the 

Image. That portion of the process is automatically done by the application 

that writes the Image to the card. You just need to set up an appropriate 

application based on your host computer. For a Windows machine, I highly 

recommend that you use the Win32DiskImager available from

https://sourceforge.net/projects/win32diskimager/files/latest/

download.

The download is a Zip file, which will need to be extracted prior to 

use. Then just run the application, select where the disk Image is located, 

and also select the micro SD card logical file letter. Figure 1-2 shows my 

configuration screen for writing the Raspbian Stretch version to a micro SD 

card on a Windows machine.

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 

https://sourceforge.net/projects/win32diskimager/files/latest/download
https://sourceforge.net/projects/win32diskimager/files/latest/download


5

If you are using a Mac, I recommend using the Etcher program to write 

the disk Image. It is available from https://etcher.io/. This application 

functions in a similar fashion to the Win32DiskImager program. Figure 1-3 

is a screenshot of it being run on my MacBook Pro.

Figure 1-2.  Win32DiskImager screenshot

Figure 1-3.  Etcher screenshot

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 
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The OS Image must next be configured once you have written it onto 

the micro SD card. I have divided the configuration process into two 

sections. The first one concerns what I consider configurations that are 

mandatory in the sense that if they are not done, then the OS can function 

as you expect for your situation. The second set of configurations concern 

“fine-tuning” the already broadly tuned OS to suit your particular needs.

Note T he RasPi configuration process is dynamic and constantly 
evolving. By this statement, I mean to convey that the following 
instructions, while applicable at the time of this writing, may not be 
applicable when you attempt to replicate the instructions. This fact 
is simply due to the nature of open source software. However, I am 
convinced that whatever procedures are in place, they will be clear 
and simple to follow.

�Mandatory configurations

Figure 1-4 shows the opening screen after the RasPi boots.

Figure 1-4.  The initial configuration screenshot

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 
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You must click the Next button to begin the configuration process just 

as it is stated in the figure. Figure 1-5 will immediately appear showing the 

defaults for country, language, and timezone.

It is important for you to at least select the appropriate country 

and language, or you will have great difficulty in entering any scripts or 

programs due to conflicts between the way your physical keyboard is set 

up and the desired characters you wanted to enter. The timezone menu 

will also be automatically adjusted to reflect the timezones available in the 

selected country.

Figure 1-6 shows this box after I made my particular selections.

Figure 1-5.  Default Set Country dialog box

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 



8

Clicking the Next button will bring up a Change Password dialog box 

as shown in Figure 1-7.

Changing the default password of raspberry, which is likely 

universally known, should improve your system’s security. This choice is 

entirely up to you and frankly will have no impact on replicating any of 

this book’s demonstrations. You will just have to remember the password 

or else you will need to install a fresh Image. I do not believe there is an 

Figure 1-6.  Customized Set Country dialog box

Figure 1-7.  Change Password dialog box

Chapter 1  Introduction to machine learning (ML) with the Raspberry Pi (RasPi) 
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easy way to recover a forgotten password with the Raspbian OS. If you 

choose not to change the password, simply click the Next button and 

the Select WiFi Network dialog box should appear. Figure 1-8 shows the 

dialog box for my situation after I clicked the button.

You will need to click the appropriate WiFi network SSID in order to 

establish a WiFi communications link. Another dialog box will appear 

prompting you to either press a button on the physical router or enter the 

passphrase associated with the selected WiFi SSID. I choose not to show 

this particular dialog box for obvious security reasons. Clicking the Next 

button will bring up the Check For Updates dialog box, which is shown in 

Figure 1-9.

Figure 1-8.  Select WiFi Network dialog box
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You cannot check for updates if you did not set up a WiFi connection.  

I am actually unsure if this dialog box will even appear if there is no 

working WiFi link setup. Presuming that you did in fact set up a WiFi link, 

then clicking the Next button will cause the RasPi to go out to the Internet 

and check on the status of the currently installed software contained in the 

new Image. However, you do not need to run the check at this point in the 

configuration because I will shortly show you how to do an update using a 

terminal window command. The choice is up to you. In reality, it will do no 

harm to do both other than cost you some extra time in the configuration 

process. If you want to use the manual update process, just click the Skip 

button; otherwise, click the Next button. Figure 1-10 shows how the Check 
For Updates dialog box changed after I clicked the Next button.

Figure 1-9.  Check For Updates dialog box
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The activity bar will remain active for several minutes depending upon 

how many updates are detected. Once the updates have completed, you 

will see an information box informing you that the configuration process 

has almost finished and you will need to click a Reboot button to complete 

the process. I would suggest you do that and don’t forget to enter your new 

password if you changed it.

I now recommend that you enter the following command into a 

terminal window to check the status of your WiFi connection:

Ifconfig

Figure 1-11 shows the result of entering this command on my RasPi 

system.

Figure 1-10.  Active Check For Updates dialog box
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You should be able to see in the wlan0 section that a local IP address 

of 192.168.0.6 was assigned to the RasPi by the home WiFi router. This 

assignment confirms that the RasPi is able to be connected to the Internet. 

Check to see that your home router is set up for DHCP in case you do not 

see an IP address similar to the one shown in the figure.

�Optional configurations

The optional configuration process uses a utility named raspi-config. This 

utility is provided in the initial downloaded Image. You can run the raspi-

config utility by opening a terminal window and entering the following 

command:

sudo raspi-config

Figure 1-11.  The ifconfig command display
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Figure 1-12 shows the opening screen for the raspi-config utility.

Selecting the Interfacing Options from the menu will cause the sub-menu 

shown in Figure 1-13 to appear.

Figure 1-12.  raspi-config opening screen
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This menu has eight selections, as shown in the figure. Which options 

you enable will depend on the types of devices you employ in your 

RasPi system. I recommend enabling the following options to match the 

demonstrations and procedures discussed in this book:

Camera

SSH

SPI

I2C

Serial

1-Wire

Figure 1-13.  Interfacing Options menu
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You can easily add or subtract interfacing options at any time by 

rerunning the raspi-config utility. In any case, adding an interfacing option 

only minimally increases the size of the overall OS. Also note that enabling 

an interface only invokes the associated driver(s) for that particular device.

You will again need to reboot the RasPi to finish these optional 

configuration choices. Enter the following in the terminal window to 

reboot the computer:

sudo reboot

At this point, you have successfully set up and configured your RasPi 

system. You next need to update and upgrade your system to ensure that 

the latest Raspbian OS software is installed.

�Updating and upgrading the Raspbian  
distribution
The Raspbian Linux distribution is always being improved, as mentioned 

earlier. It is very easy to ensure that you have the latest updated and 

upgraded distribution once you have established Internet connectivity. Enter 

the following command in a terminal window to update the installed OS:

sudo apt-get update

The update action changes the internal system’s package list to match 

the current online package list. It does not actually change any of already 

installed packages if they are obsolete or outdated. Those changes are 

effected by entering the following command in a terminal window:

sudo apt-get upgrade

The update is reasonably quick if that original installed distribution is 

not too old. However, the upgrade action could take quite some time if a 

lot of outdated packages are already installed.
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Just remember to always update prior to upgrading. All the projects 

in this book were created using an updated and upgraded Stretch 

Raspbian distribution. I have found that failing to update and upgrade 

can sometimes lead to some odd errors and system failures that are 

unexpected and puzzling.

You should have a completely functional RasPi system at this point in 

the installation and configuration process. At this point I need to introduce 

the concept of a virtual Python environment before proceeding to the ML 

discussion.

�Python virtual environment

This section answers two questions:

What is a Python virtual environment?

Why are they needed?

I will initially address the second question. Python, like many similar 

object-oriented languages, depends on many supporting libraries and 

routines to function. In Python, these libraries are known as dependencies 

and are stored in one of two directories depending on their point of origin. 

The point of origin means those libraries which are considered to be 

essential or core to the Linux kernel are stored in the System-packages 

directory. All others, while they may be extremely important for proper 

Python operations, are stored in the Site-packages directory. Every time 

there is a new Python language revision issued, the System-packages 

directory is updated and modified as needed to support the latest revision. 

Consequently, there is only the version of each of the necessary system 

libraries stored in this directory. This is not the case for the Site-packages 

directory. This is because the user typically installs desired software and 

any and all libraries or dependencies required for that software. It is 

entirely possible to have one or more versions of the same dependency in 

the Site-packages directory simply due to multiple software installs.  

A problem quickly arises due to the fact that Linux installs a dependency 
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based solely on its name and neglects any version checking. It is entirely 

possible to have Project A require software library X, version 1, while 

Project B requires software library X, version 2. Linux cannot disambiguate 

the version inconsistencies, and one or both projects will fail to run 

properly. Python virtual environments are designed to eliminate this issue.

The primary purpose of Python virtual environments is to create 

an isolated environment for each Python project. This means that each 

project will have its own dependencies, regardless of the dependencies 

required for other projects.

Creating separate virtual environments for both projects A and B 

would eliminate the version inconsistency issue. Each environment would 

be able to depend on whatever version of software X that is required, 

independent of any other project.

One of the nice things about virtual environments is that there are 

no limits to the number of environments you create, except for any 

constraints imposed by physical memory. Answering the first question 

posed earlier is simple. Python virtual environments are just a hierarchical 

set of directories containing some scripts and symbolic links, nothing 

more. There is no black magic or black arts involved in creating them. I 

believe that once you start using them, there will be no turning back. Many 

developers routinely use them, saving themselves many potential hours 

of frustration and angst while attempting to troubleshoot unknown errors 

caused by inadvertent dependency issues.

�Installing a Python virtual environment

Please ensure that Python 3 is installed and operating correctly before 

following these instructions. Also ensure that you have updated and 

upgraded the Raspbian Stretch Linux distribution as previously discussed 

in this chapter.
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There are six steps in this procedure. Please follow them in order to 

successfully create a Python virtual environment that you will use to work 

with the data models:

	 1.	 Install pip, which is a Python package manager 

utility. This utility is very similar to advanced 

packing tool (apt), but uses a separate distribution 

repository. Enter the following commands:

wget https://bootstrap.pypa.io/get-pip.py

sudo python3 get-pip.py

Note T he latest pip version was 19.0.3 at the time of this writing.

	 2.	 Install the virtualenv and virtualenvwrapper 

utilities. The virtualenv utility is used to create 

the virtual environment within Python 3. The 

virtualenvwrapper utility creates the links between 

the Python language and the Python code to 

be executed within the environment. Enter the 

following command:

sudo pip install virtualenv virtualenvwrapper

sudo rm -rf ~/get-pip.py ~/.cache/pip

	 3.	 A hidden file named .profile located in the 

home directory must be edited to include some 

initialization data. I recommend that you use the 

nano editor and append the data as shown here:

cd ~

sudo nano .profile
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The data to be appended follows the last line in the 

existing file:

# virtualenv and virtualenvwrapper

export WORKON_HOME=$HOME/.virtualenvs

export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3

source /usr/local/bin/virtualenvwrapper.sh

Alternately, you may directly enter the initialization 

data at the command-line prompt using the 

following commands:

echo -e "\n# virtualenv and virtualenvwrapper" >> 

~/.profile

echo "export WORKON_HOME=$HOME/.virtualenvs" >> ~/.profile

echo "export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3" 

>> ~/.profile

echo "source /usr/local/bin/virtualenvwrapper.sh" >> 

~/.profile

	 4.	 The ~./profile file must now be sourced. The 

source command is used to load functions 

contained in the named file into the current shell for 

execution.

source ~/.profile

Note Y ou should see the text shown in Figure 1-14 displayed after 
you run the preceding command for the first time.
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	 5.	 This step actually generates a virtual environment 

using the virtualenv and virtualenvwrapper 

utilities previously installed in step 2. You will need 

to provide a unique name for the environment. The 

one used in this example is py3cv4_1. If you plan on 

generating multiple environments, then a naming 

scheme such as py3cv4_1, py3cv4_2, py3cv4_3, and 

so on might be used. The name py3cv4_1 refers to 

the fact that the virtual environment uses Python 3 

and it also contains the OpenCV 4 software package. 

Additionally, it would be very desirable to document 

the reason for creating each environment or you will 

quickly become confused. Enter the following to 

generate the py3cv4_1 Python virtual environment:

mkvirtualenv py3cv4_1 -p python3

It takes about 40 seconds to create the virtual 

environment. Figure 1-15 shows the result of running 

this command. You should notice the (py3cv4_1) 

Figure 1-14.  Initial source command results
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prepended to the regular command-line prompt. This 

indicates that a virtual environment is currently in 

effect.

You can easily shut down the py3cv4_1 virtual 

environment by simply closing the terminal window.  

I recommend doing that.

	 6.	 Open a new terminal window to verify that you can 

start the py3cv4_1 virtual environment. Enter the 

following command:

source ~/.profile

workon py3cv4_1

The workon command is included in the 

virtualenvwrapper software package. This 

command allows for the easy and quick startup of 

any Python virtual environment. Figure 1-16 shows 

the result of the preceding commands.

Figure 1-15.  mkvirtualenv command results
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This figure appearing will confirm that you have a working virtual 

environment and are ready to proceed with the next steps to create the 

data model framework.

�Installing dependencies

The next demonstration requires a number of software packages to be 

installed in support of it. Some packages are already pre-installed in the 

original downloaded Image, while others must be explicitly installed. 

The following commands will install all the packages. You will get an 

informational statement if the package is already installed; otherwise, the 

full installation will happen. These commands will take some time because 

the packages can be large and complex to install:

pip install numpy

pip install scipy

pip install matplotlib

pip install pandas

sudo apt-get install libatlas-base-dev

pip install -U scikit-learn

The following Python script is named checkLib.py and will return 

the version numbers for all of the software packages loaded. I would 

recommend you run to confirm that all the dependencies are installed. 

This script is available from the book’s companion web site:

Figure 1-16.  workon command results
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# Check library versions

# Python version

import sys

print('Python: {}'.format(sys.version))

# scipy

import scipy

print('scipy: {}'.format(scipy.__version__))

# numpy

import numpy

print('numpy: {}'.format(numpy.__version__))

# matplotlib

import matplotlib

print('matplotlib: {}'.format(matplotlib.__version__))

# pandas

import pandas

print('pandas: {}'.format(pandas.__version__))

# scikit-learn

import sklearn

print('sklearn: {}'.format(sklearn.__version__))

Figure 1-17 shows the results after I ran the script.

Figure 1-17.  Results for the checkLib.py script
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The versions you display will likely differ from the figures to some 

degree because open source software is constantly being revised. However, 

the packages should function in the same way as earlier versions unless 

some radical and unforeseen changes were made. This is not normally 

done for consistency’s sake.

You will now be ready to tackle the ML demonstration once all the 

dependencies are installed and operational.

�ML facts
ML is a significant sub-topic within the parent field of artificial intelligence 

(AI). Figure 1-18 is a Venn diagram highlighting the relationships between 

AI, ML, and deep learning (DL).

Figure 1-18.  Venn diagram for AI, ML, and DL
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It should be clear from the figure that ML is an important portion 

of AI and DL is an important portion of ML. In terms of current interest 

and development, the figure should be inverted with DL receiving the 

most attention with decreasing importance to ML and then AI in general. 

The hierarchy of DL receiving the preponderance of attention will also 

be followed in this book simply because DL is the essential ingredient to 

implement computer vision, which is currently the hottest topic in AI and 

ML. I will deep dive into DL in later chapters; however, I must first explore 

some fundamental ML topics before attempting the more complex DL 

matters.

�ML basics

If you ask a dozen AI/ML researchers what ML is, you would likely 

get a dozen different, yet mildly similar responses. I have studied 

many definitions, and I believe the following one I developed is about 

appropriate as any other one that I have found.

Machine learning is the science and art of creating algorithms 
to enable computers to learn from data without being explic-
itly programmed.

Interestingly, I found multiple definitions which used exactly the same 

phrase “without being explicitly programmed,” which confirmed my belief 

that any pure ML application must exclude all algorithms or systems that 

encapsulate expert knowledge. Just note that expert systems are a very 

important part of AI, but just not in ML. However, there are likely to exist 

hybrid systems which incorporate both ML and expert systems, taking 

advantage of the best capabilities provided by each of these technologies.

Machine learning was first defined back in 1959 by MIT Professor 

Arthur Samuel, a recognized pioneer in both computer science and 

artificial intelligence. Professor Samuel stated in part “...gives computers 

the ability to learn without being explicitly programmed.” What essentially 
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he was driving at was that computers could be programmed with 

algorithms that both can learn from input data and then make consequent 

predictions based on that same data. This means these learning algorithms 

could be completely divorced from any preprogrammed or static 

algorithms and would be free to make data-driven decisions or predictions 

by building models based on the input data.

ML models are primarily used for prediction and classification. It is 

worthwhile to introduce you to some fundamental concepts regarding 

these operations before discussing more complex ML applications. This 

introduction will be in the form of a small, but complete ML project.

�Linear prediction and classification

This project is based primarily on a June 2016 blog titled “Your First 

Machine Learning Project in Python Step by Step” and written by Dr. Jason 

Brownlee, who is presently an active ML researcher living in Australia. I 

would recommend looking at his blog at MachineLearningMastery.com, 

which contains a wealth of ML information and resources. Jason suggests 

and I heartily agree that you should start all ML projects with a structured 

approach consisting of the following steps, which I have paraphrased from 

the blog:

	 1.	 Define the problem.

	 2.	 Prepare and cleanse all the relevant data.

	 3.	 Evaluate any and all applicable algorithms.

	 4.	 Continually improve the results until the point of 

diminishing returns.

	 5.	 Present results in a clear and unambiguous fashion 

as possible.
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This beginning ML project is a famous one concerning Iris flower 

classification. The Iris flower data is a multivariate dataset presented by the 

British statistician and biologist Ronald Fisher in his 1936 paper “The Use 

of Multiple Measurements in Taxonomic Problems” as an example of linear 

discriminant analysis (LDA). The dataset is sometimes called Anderson’s 

Iris dataset because Edgar Anderson collected the data to quantify the 

morphologic variation of Iris flowers of three related species. Two of the three 

species were collected in the Gaspé Peninsula, Quebec, Canada, “all from the 

same pasture, and picked on the same day and measured at the same time 

by the same person with the same apparatus” as cited in Anderson’s paper. 

Photographs of the three species of the Iris flower are shown in Figure 1-19.

The dataset consists of 50 samples from each of three species of Iris 

(Iris setosa, Iris virginica, and Iris versicolor). Four features were measured 

from each sample: the length and the width of the sepals and petals,  

Figure 1-19.  Three species of the Iris flower
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in centimeters. Fisher developed a linear discriminant model based on the 

combination of these four features to distinguish the Iris species from each 

other. A sepal is a part of the flower of angiosperms (flowering plants) and 

is usually green. Sepals typically function as protection for the flower in 

bud and often as support for the petals when in bloom. Petals are modified 

leaves that surround the reproductive parts of flowers. They are often 

brightly colored or unusually shaped to attract pollinators, that is, bees. 

Figure 1-20 shows a flower (not an Iris) with the sepal and petal identified.

Step 1 of the problem solution approach is reasonably simple. Identify 

the Iris species given four dimensions describing sepal height and 

width as well as petal height and width. The dimensions should all be in 

centimeters to match the units in the underlying dataset.

The next step in the solution process is to address the dataset. There 

are several online sources available to download the original Iris dataset 

in a CSV format. I used Jason’s Iris CSV dataset that he made available 

on github.com. The first part of this chapter’s demonstration will be 

concerned with becoming familiar with the dataset.

Figure 1-20.  Sepal and petal
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�Iris demonstration – Part 1

The following listed Python script is named irisDemo.py and was created 

to work through a number of the following steps to familiarize you with the 

data properties and characteristics. Being familiar with the data will help 

you choose the proper algorithms that will best suit your requirements. 

These steps are

•	 Load dependencies.

•	 Load the dataset.

•	 Display the dataset dimensions.

•	 Display the first 20 records in the dataset.

•	 Display dataset statistics.

•	 Display dataset classes and associated sizes.

•	 Univariate and multivariate data plots.

The following script in its entirety is available from the book’s 

companion web site. I discuss the entire script results after the code listing.

# Usage

# python irisDemo.py

# Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

# Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',  

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)
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# Display the shape

print('Dataset dimensions')

print(dataset.shape)

# Display the first portion of the data

print('Head of the data')

print(dataset.head(20))

# Display data statistics

print('Statistics')

print(dataset.describe())

# Display class distribution

print('Class distribution')

print(dataset.groupby('class').size())

# Visualize data with box and whisker diagrams

dataset.plot(kind='box', subplot=True, layout=(2,2), 

sharex=False, sharey=False)

plt.show()

# Visualize data with histograms

dataset.hist()

plt.show()

# Visualize data with scatter plots

scatter_matrix(dataset)

plt.show()

Figure 1-21 shows the first portion of the irisDemo script results.
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The first two lines show the dataset dimensions, which are 150 rows 

with 5 columns. Following that is the first 20 rows of the dataset. The 

column headers are clearly shown with all the row data displayed in a 

tabular fashion. This listing should provide you with a good insight into the 

data that is to be processed.

Next follows a small statistical display showing classic statistical 

measures for the dataset columns including means, standard deviations, 

min/max values, as well as values for the 25, 50, and 75 percentile levels.

Figure 1-21.  Initial portion of the irisDemo results
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Finally, there is a display showing how many items were counted for 

each class of Iris in the dataset. Unsurprisingly, there are 50 reported in 

each class, which precisely matches the expected values.

Figure 1-22 shows “box and whisker” plots for each of the four class 

attributes.

These univariate plots are a useful adjunct to help you understand the 

numeric distributions associated with each attribute. It may turn out that 

some models can handle wide numerical distributions while others are 

more sensitive, which can lead to undesired results. Reviewing the plots 

indicates a somewhat wider numerical distribution for the petal-length 

Figure 1-22.  Box and whisker plots for class attributes
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and petal-width attributes as compared to the same sepal attributes. 

Additionally, there appears to be a few data outliers with the sepal-width 

attribute, which might cause problems with certain models. These plots 

are just designed to provide further insight into the data to help explain 

any strange model results.

Another approach to visualize the data is to create histograms for 

each input variable. Figure 1-23 shows these histograms for all four Iris 

attributes.

Figure 1-23.  Histograms for class attributes
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It appears that two of the sepal attributes have a Gaussian or near-

Gaussian distribution. This information can be useful in selecting an 

appropriate model or algorithm for prediction purposes. The petal 

attributes seem to have bimodal histograms, which is an interesting fact 

that may help in selecting an algorithm such as Otsu’s binarization.

Another approach to inspect the dataset is to check for structured 

relationships between attributes. This approach is known as multivariate 

analysis. Figure 1-24 shows the scatterplots of all pairs of class attributes.

Figure 1-24.  Scatterplots for all class attributes
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These plots are helpful in visualizing relationships not easily detected 

when only reviewing numerical listings. You should note the diagonal 

grouping of some pairs of attributes in the figure. This strongly suggests 

a high correlation between the attributes and that a likely quantifiable 

relationship exists.

The next portion of the demonstration is where the data will be input 

into a series of models and predictions run. I must warn you that I will be 

committing a cardinal sin for technical book writing by simply using the 

models without a prior introduction. Just know that I will catch up and 

discuss the model algorithms in detail as part of the book’s ML basics in 

either this chapter or following chapters.

�Iris demonstration – Part 2

The following listed Python script is named irisDemoTest.py and was 

created to test a number of models using the Iris dataset and determine 

how accurate they are in describing an Iris species given a set of Iris 

attributes. The tests will be conducted in a series of steps in a manner 

similar to what was done in part 1. These steps are

•	 Import all the models.

•	 Create training and validation datasets.

•	 Set up a test harness using tenfold cross-validation.

•	 Use six different models to describe Iris species from 

attribute measurements.

•	 Select an accurate model.

The following listed Python script is named irisDemoTest.py and is 

available from the book’s companion web site. I will discuss each portion 

of the script as it relates to the steps after the listing.
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# Usage

# python irisDemoTest.py

# Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

from sklearn import model_selection

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import 

LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

# Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',  

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

# Create training and validation datasets

array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7
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X_train, X_validation, Y_train, Y_validation = model_selection.

train_test_split(X, Y, test_size=validation_size, random_

state=seed)

# Set the scoring criteria

scoring = 'accuracy'

# Build all the models

models = []

models.append(('LR', LogisticRegression(solver='liblinear', 

multi_class='ovr')))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC(gamma='auto')))

# Evaluate each model

results = []

names = []

for name, model in models:

    �kfold = model_selection.KFold(n_splits=10, random_

state=seed)

    �cv_results = model_selection.cross_val_score(model,  

X_train, Y_train, cv=kfold, scoring=scoring)

    results.append(cv_results)

    names.append(name)

    �msg = "%s: %f(%f)" % (name, cv_results.mean(), cv_results.

std())

    print(msg)
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The imports list was changed considerably from the first script. It 

now includes six models from the sklearn package. The list of models in 

alphabetical order is

•	 DecisionTreeClassifier

•	 GaussianNB

•	 KNeighborsClassifier

•	 LinearDiscriminantAnalysis

•	 LogisticRegression

•	 SVC

I will not be discussing any specifics regarding the models function as I 

mentioned earlier.

The dataset is then loaded in exactly the same manner it was done in 

the first script. It is important to use this exact dataset as I found out by 

trying an Iris dataset from a different source. I suspect that minor changes 

in formatting were the issue when trying to use the new dataset.

The next portion of the script deals with the step regarding creating 

both training and validation datasets. Eighty percent of the original dataset 

will be used for model training, and 20% will be allotted for validation. 

During the validation process, a small sub-set of the original data will be 

input into models that have not been trained with it. The resulting output 

from the models will then be compared to the species label for each record 

in the validation dataset. The percentage accuracy will then be calculated 

as a simple ratio between the number of correctly identified species and 

the total number of records in the dataset.

The next step in the testing process is to set up a loop that implements 

a tenfold cross-validation procedure for every model. This means that the 

input dataset is initially divided into ten parts, with training done with  

nine of the ten parts and validation done using only the tenth part.  
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The results are recorded and the dataset is then randomly divided 

again into ten parts, and the process is repeated for a total of ten times, 

hence, the name tenfold. I do want to point out something that might be 

confusing to readers. The dataset being used in the tenfold cross-validation 

procedure is only the training dataset and not the validation dataset. The 

validation dataset will not be used until the next script is discussed where a 

model’s prediction accuracy is discussed in detail.

The loop in the script runs cross-validation scores for each of the 

models. The results are shown in Figure 1-25.

You can see that they all score in the high nineties, meaning that all 

likely good describers of Iris species given a set of class attributes. The 

numbers in the parentheses are the standard deviations for each model’s 

result. You should be able to see that the deviations are relatively small, 

which means the models are again good describers. Looking at the figure, 

it appears that the support vector machine (SVM) model has the best 

result with a score of 0.991667 and a standard deviation of only 0.025. But 

is it really the best model for our purposes? That will be discussed in part 3 

of this demonstration.

Figure 1-25.  Cross-validation scores for six models
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�Iris demonstration – Part 3

This next discussion compares the accuracy of the six models using box 

and whisker diagrams. The script used is named irisDemoSelection.py 

and is essentially the same as the previous script except for the addition 

of plotting functions as well as a few algorithms used to detail the 

performance of a selected model. The six models’ accuracy display was 

also eliminated in this script:

# Load libraries

import pandas

from pandas.plotting import scatter_matrix

import matplotlib.pyplot as plt

from sklearn import model_selection

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import 

LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

# Load dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/

master/iris.csv"

names = ['sepal-length', 'sepal-width', 'petal-length',  

'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

# Create training and validation datasets
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array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = model_selection.

train_test_split(X, Y, test_size=validation_size, random_

state=seed)

# Set the scoring critera

scoring = 'accuracy'

# Build all the models

models = []

models.append(('LR', LogisticRegression(solver='liblinear', 

multi_class='ovr')))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC(gamma='auto')))

# Evaluate each model

results = []

names = []

for name, model in models:

    �kfold = model_selection.KFold(n_splits=10, random_

state=seed)

    �cv_results = model_selection.cross_val_score(model,  

X_train, Y_train, cv=kfold, scoring=scoring)

    results.append(cv_results)

    names.append(name)
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# Plot model results

figure = plt.figure()

figure.suptitle('Algorithm Comparison')

algPlot = figure.add_subplot(1, 1, 1)

plt.boxplot(results)

algPlot.set_xticklabels(names)

plt.show()

# KNN prediction

knn = KNeighborsClassifier()

knn.fit(X_train, Y_train)

predictions = knn.predict(X_validation)

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions)

Figure 1-26 shows the results for all models in a box and whisker 

diagram.
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You can observe that the box and whisker plots are squashed at the 

top of the y-axis range, illustrating that half the models is achieved at or 

near 100% accuracy. Selecting the top performer in this situation is almost 

impossible; however, I did select the KNN model for a more detailed  

examination of its performance. The KNN is a simple and accurate model. 

The formal name for the KNN model is K-nearest neighbors algorithm 

and is one of the simplest classification algorithms existing and quite 

likely one of the most widely used ones. KNN is a non-parametric, lazy 

learning algorithm. It’s primarily used with a dataset in which the data 

points are separated into several classes to predict the classification of 

a new data point or sample. In simpler terms, KNN has been described 

Figure 1-26.  Box and whisker diagram for model results
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as an algorithm which implements this catch phrase, “tell me who your 

neighbors are and I will tell you who you are.”

I described KNN as non-parametric, which means that the model does 

not make any assumptions regarding the underlying data distribution. In 

other words, the model structure is determined from the data. Given this 

fact, KNN probably should be one of your first choices for a classification 

study when there is little or no prior knowledge about how the data is 

distributed.

KNN is also a lazy algorithm as opposed to an eager algorithm. 

What this means is that it does not use the training data points to do any 

generalization. In other words, there is no explicit training phase or it is 

very minimal. This implies that any training phase is likely to be minimal 

in duration, an important point for large datasets. Lack of generalization 

also means that KNN keeps all the training data. More precisely, no 

generalization means most, if not all, training data is used during the 

validation/testing phase.

The KNN algorithm is based on feature similarity. This means how 

closely an out-of-sample feature resembles the training set determines 

how a given data point is classified. This process should make clearer by 

examining Figure 1-27, a graphical example for KNN classification.
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The test sample (inside circle) can be classified either to the first class 

of blue squares or to the second class of red triangles. If k = 3 (outside 

circle), it is assigned to the second class because there are 2 triangles and 

only 1 square inside the inner circle. If, for example, k = 5, the new sample 

would be assigned to the first class (3 squares vs. 2 triangles outside the 

outer circle).

The final portion of the script runs the KNN model directly with 

the validation dataset. The summary results for a final accuracy score, 

confusion matrix, and classification report are shown in Figure 1-28.

Figure 1-27.  KNN classification
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The first line shows an accuracy score of 0.9 or 90%. This accuracy 

score is a summary rating showing the ratio of correct predictions to 

the overall dataset size. In this case, the dataset was 30 records and the 

number of correct predictions was 27, which produces the 0.9 result. Recall 

that this accuracy score is based on using the validation dataset, which was 

20% of the original Iris dataset. The accuracy score shown in Figure 1-28 is 

artificially higher due to the nature of the tenfold cross-validation testing. 

This lower accuracy score is reflective of real-world conditions and should 

be considered more trustworthy.

The confusion matrix (error matrix) provides an indication of where 

the three errors were made. Table 1-1 details the actual classes vs. the 

predicted classes.

Figure 1-28.  KNN model validation results

Table 1-1.  Actual vs. predicted classes

Actual class
Iris setosa Iris versicolor Iris virginica

Predicted class Iris setosa 7 0 0

Iris versicolor 0 11 1

Iris virginica 0 2 9
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Finally, the classification report provided by sklearn metrics is a 

breakdown of the class results by precision, recall, F1-score, and support. 

This report shows very good to excellent results even though the validation 

dataset was small. I explain each of the metrics in Table 1-2.

The precision is intuitively the ability of the classifier not to label as 

positive a sample that is negative.

The recall is intuitively the ability of the classifier to find all the positive 

samples.

The f1-score (F-beta) can be interpreted as a weighted harmonic mean 

of the precision and recall, where an F-beta score reaches its best value at 1 

and worst score at 0.

I will refer you to the sklearn documentation to read more about the 

micro, macro, and weighted avgs. The page is

https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.precision_recall_fscore_support.html

Table 1-2.  sklearn learn metrics analysis

Metric Iris setosa Iris versicolor Iris virginica Remarks (see notes)

precision 1.00 0.85 0.90 precision = tp / (tp + fp)

recall 1.00 0.92 0.82 recall = tp / (tp + fn)

f1-score 1.00 0.88 0.86 mean(precision + recall)

support 7 12 11 class size

Notes: tp = true positive
fp = false positive
fn = false negatives
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CHAPTER 2

Exploration of ML 
data models: Part 1
This chapter will be mostly about discussions and demonstrations of 

basic data models used in ML. However, before I can get into the heart of 

data model operations, I need to show you how to install OpenCV 4 and 

the Seaborn software packages. Both these packages will be needed to 

properly support the running and visualization of the basic data models. 

These packages will also support other demonstrations presented in later 

book chapters.

�Installing OpenCV 4
This section is about installing the open source OpenCV software 

package. I will be using OpenCV for various ML demonstrations 

including making use of the great variety of visualization utilities 

contained in the package. OpenCV version 4 is the latest one and is not 

yet available for direct download and installation from any of the popular 

repositories. It must be loaded in a source code format and built in place. 

The following instructions will do this task. It is important to precisely 

follow these instructions or else you will likely not be successful with the 

OpenCV install.
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The first step is to install the CMake utility along with three other key 

utilities. Enter the following:

sudo apt-get install build-essential cmake unzip pkg-config

Next, install three imaging and video libraries that support the three 

most popular Image formats, jpeg, png, and tiff. Enter the following:

sudo apt-get install libjpeg-dev libpng-dev libtiff-dev

For successful execution of the preceding command, make sure apt-get 

is updated according to the following command:

sudo apt-get update

Now install three imaging utilities used for common video processing 

functions. Enter the following command. Similarly, make sure apt-get is 

updated.

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev

Next install two supplemental video processing libraries. Enter the 

following:

sudo apt-get install libxvidcore-dev libx264-dev

The next command installs the GTK library. GTK will be used to 

implement the OpenCV GUI backend. Enter the following:

sudo apt-get install libgtk2.0-dev

The next command reduces or eliminates undesired GTK warnings. 

The “*” in the command ensures that the proper modules supporting the 

ARM processor are loaded. Enter the following:

sudo apt-get install libcanberra-gtk*
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The next two software packages are used for OpenCV numerical 

optimizations. Enter the following:

sudo apt-get install libatlas-base-dev gfortran

You will now be ready to download OpenCV 4 source code once all the 

preceding dependencies have been loaded.

�Download OpenCV 4 source code
Ensure that you are in the virtual environment and also in the home 

directory prior to starting the download. Enter the following command to 

go to your home directory if you are not there:

cd ~

Next, use the wget command to download both the latest OpenCV 

and opencv_contrib modules. At the time of this writing, the latest version 

was 4.0.1. It will likely be different when you try this download. Simply 

substitute the latest version wherever you see a version entered in this 

discussion. The opencv_contrib module contains open source community 

contributed supplemental functions, which will be used in this book’s 

projects and demonstrations. Enter the following command to download 

the OpenCV zipped file from the GitHub web site:

wget -O opencv.zip https://github.com/opencv/opencv/

archive/4.0.1.zip

Enter the following command to download the opencv_contrib zipped 

file from the GitHub web site:

wget -O opencv_contrib.zip https://github.com/opencv/opencv_

contrib/archive/4.0.1.zip
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The downloads will now have to be extracted and expanded using 

these commands:

unzip opencv.zip

unzip opencv_contrib.zip

Next, rename the newly generated directories to the following to ease 

the access to the OpenCV packages and functions and ensure that the 

directories are named as expected for CMake configuration file. Enter the 

following command:

mv opencv-4.0.1 opencv

mv opencv_contrib-4.0.1 opencv_contrib

You should be ready to start building the OpenCV package once the 

source code downloads have been completed.

�Building the OpenCV software
You will need to ensure that the numpy library has been installed prior to 

commencing the build. I discussed installing numpy along with several 

other dependencies in Chapter 1. If you haven’t installed numpy yet, then 

it is easily installed using the following command:

pip install numpy

The next step set ups a directory where the build will take place. Create 

and change into the build directory by entering these commands:

cd ~/opencv

mkdir build

cd build
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Upon completing the preceding commands, enter the following to 

run the CMake command with a number of build options. Note that “\” 

symbol (backward slash) is required for the command-line interpreter 

(CLI) to recognize that a single command is spread over multiple lines. 

Don’t overlook the two periods at the tail end of the following complex 

command. Those periods indicate to the CLI to execute all that was 

entered before the periods.

cmake -D CMAKE_BUILD_TYPE=RELEASE \

    -D CMAKE_INSTALL_PREFIX=/usr/local \

    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \

    -D ENABLE_NEON=ON \

    -D ENABLE_VFPV3=ON \

    -D BUILD_TESTS=OFF \

    -D OPENCV_ENABLE_NONFREE=ON \

    -D INSTALL_PYTHON_EXAMPLES=OFF \

    -D BUILD_EXAMPLES=OFF ..

Note T he option OPENCV_ENABLE_NONFREE=ON ensures that all 
third-party functions are made available during the compilation step. 
The line

"Non-free algorithms:   YES"

in Figure 2-1 results screen confirms that the condition was set. 

Chapter 2  Exploration of ML data models: Part 1



54

Having the non-free algorithms available is applicable for non-

commercial applications. If you are intending to develop an application 

for sale or licensing, then you must comply with any and all applicable 

licensing agreements. There are several patented algorithms contained 

in the OpenCV software package, which cannot be used for commercial 

development without paying royalty fees.

You should also confirm that the virtual environment points to the 

proper directories for both Python 3 and numpy. Figure 2-2 shows the 

correct directories within the cv virtual environment.

Figure 2-1.  Confirmation of non-free algorithms availability
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The default disk swap size of 100 MB must be changed to 2048 MB 

to have a successful compilation. The swap space will be restored to the 

default value after the compilation is done. It is important to realize that 

swap size has a significant impact on the longevity of the micro SD card, 

which is used as the secondary memory storage for the RasPi. These 

cards have finite number of write operations before failing. The number 

of write operations dramatically increases with the swap size. It will be of 

no consequence to card life by changing the swap size for this one-time 

process. First use the nano editor to open the swap configuration file for 

editing as follows:

sudo nano /etc/dphys-swapfile

Figure 2-2.  Confirmation for Python 3 and numpy directories within 
the py3cv4_1 virtual environment
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Next comment out the line CONF_SWAPSIZE=100 and add the line CONF_

SWAPSIZE=2048. It is important to add the additional line, instead of just 

changing the 100 to 2048. You will undo the change after completing the 

compilation. The revised portion of the file is shown here:

# set size to absolute value, leaving empty (default) then uses 

computed value

# you most likely don't want this, unless you have a special 

disk situation

# CONF_SWAPSIZE=100

CONF_SWAPSIZE=2048

Note F ailing to change the swap size will likely cause the RasPi to 
“hang” during the compilation.

After making the edit, you will need to stop and start the swap service 

using these commands:

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

This next step is the compilation from source code to binary. It will take 

approximately 1.5 hours using all four RasPi cores. You should be aware of 

an issue known as a race condition that can randomly occur when a specific 

core needs a resource currently in use by another core. The problem happens 

due to very tight timing issues where a using core cannot release a resource 

and a requesting core does not drop the request for that resource. The result 

is the processor simply hangs “forever.” A very bad situation. Fortunately, 

there is a solution of simply not requesting the forced use of four cores. I do 

not know how long a complete compilation would take, but suspect it would 

be at least 3 hours. The command to compile using four cores is

make -j4
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The command to compile not using any specific number of cores is 

simply make.

There is a bit of good news, that is, if the initial compilation hangs while 

trying the -j4 option, you can redo the compilation using only the make 

command and the system will find and use all the code already compiled. 

This will considerably shorten the compile time. I know this is true 

because I experienced it. My first compilation hung at 100%. I restarted the 

compilation using only the make command, and it successfully completed 

in about 15 minutes. Figure 2-3 shows the screen after the success 

compilation.

Finish the OpenCV 4 installation by entering these next commands:

sudo make install

sudo ldconfig

This is the last step which has some finishing and verification 

operations. First restore the swap size to the original 100 MB by 

uncommenting the line

CONF_SWAPSIZE=100

and commenting out the newly added line

# CONF_SWAPSIZE=2048

Figure 2-3.  Successful compilation
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Next create a symbolic link to OpenCV so that it can be used by 

new Python scripts created in the virtual environment. Enter these 

commands:

cd ~/.virtualenvs/py3cv4_1/lib/python3.5/site-packages/

ln -s /usr/local/lib/python3.5/site-packages/cv2/python-3.5/

cv2.cpython-35m-arm-linux-gnueabihf.so  cv2.so

cd ~

Failure to create the symbol link will mean that you will not be able to 

access any OpenCV functions.

Finally, test your completed installation by entering these commands:

source ~/.profile

workon cv

python

>>> import cv2

>>> cv2.__version__

'4.0.1'

>>> exit()

The first two commands start the py3cv4_1 virtual environment. The 

next one starts the Python interpreter associated with this environment, 

which is Python 3. The next command imports OpenCV using the 

symbolic link you just created. This line should demonstrate to the 

importance of the symbolic link. The next command requests the OpenCV 

version, which is reported back as 4.0.1 as may be seen in the following line 

with the version request. The last command exits the Python interpreter. 

Figure 2-4 shows the py3cv4_1 version verification.
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At this point, you should now have a fully operational OpenCV 

software package operating in a Python virtual environment. To exit 

OpenCV, simply close the terminal window.

�Seaborn data visualization library
Visualizing the data, you will be using an important step when dealing 

with ML models as I discussed in the previous chapter. There are a 

number of useful Python compatible utilities and software packages, 

which will help you in accomplishing this task. Hopefully, you have 

already installed the Matplotlib library as part of the dependency load 

described in the previous chapter. The OpenCV package also contains 

useful visualization routines and algorithms. In this section I will 

introduce the Seaborn library, which is another useful data visualization 

tool and is considered a supplement to the data visualization functions 

in both Matplotlib and OpenCV.

Seaborn specifically targets statistical data visualization. It also works 

with a different set of parameters than the ones used with Matplotlib.

The first step required in this section is to install the Seaborn software 

package. That is easily accomplished by entering the following command:

pip install seaborn

Figure 2-4.  py3cv4_1 version verification

Chapter 2  Exploration of ML data models: Part 1



60

Figure 2-5 shows the results of installing the Seaborn software package. 

You should notice from the figure that the Seaborn package requires a fair 

number of dependencies including numpy, Pandas, Matplotlib, scipy, 

kiwisolver, and several other Python utilities.

Figure 2-5.  Seaborn package installation results
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Once installed, I believe the easiest way to explain Seaborn is to 

use it to visualize the Iris dataset that was introduced in Chapter 1. One 

extremely convenient Seaborn feature is the immediate availability of a 

limited number of datasets contained in the package. The Iris dataset is 

one of those organic datasets (no pun intended). To use the Iris dataset, 

you just need to incorporate these statements in your script

import seaborn as sns

iris = sns.load_dataset("iris")

where sns is the reference to the Seaborn import.

There are 15 datasets available in the Seaborn package. These are listed 

as follows for your information:

anscombe

attention

brain_networks

car_crashes

diamonds

dots

exercise

flights

fmri

gammas

iris

mpg

planets

tips

titanic
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Judging from the titles, the Seaborn datasets are diverse and a bit 

unusual. They were apparently selected to demonstrate Seaborn package 

capabilities for analysis and visualization. I will use some of these datasets 

during the data model discussions, in addition to the Iris dataset.

Table 2-1 shows the first five records in the Iris dataset, which was 

generated by the following command:

iris.head()

Data visualization is an important initial step when selecting an 

appropriate data model which best handles the dataset. Seaborn provides 

many ways of visualizing data to assist you in this critical task. I will 

be introducing a series of scripts that will help you visualize data. The 

multivariate Iris dataset will be used in all the following scripts.

�Scatter plot

Starting the data visualization process with a scatter plot is probably 

the easiest way to approach the data visualization task. Scatter plots are 

simply two-dimensional or 2D plots using two dataset components that 

are plotted as coordinate pairs. The Seaborn package uses the jointplot 

method as the plotting function indicating the 2D nature of the plot.  

Table 2-1.  Head command results for the Iris dataset

Rec # sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 Setosa

1 4.9 3.0 1.4 0.2 Setosa

2 4.7 3.2 1.3 0.2 Setosa

3 4.6 3.1 1.5 0.2 Setosa

4 5.0 3.6 1.4 0.2 Setosa
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I used the following script which is named jointPlot.py to create the 

scatter plot for sepal length vs. petal height. This script is available from 

the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the scatter plot

sns.jointplot(x="sepal_length",y="sepal_width", 

data=iris,size=6)

# Display the plots

plt.show()

The script is run by entering

python jointPlot.py

Figure 2-6 shows the result of running this script.
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Looking at the figure, you can easily see that the data points are spread 

out through the plot, which indicates there is no strong relationship 

between these two dataset components. The histogram at the top for sepal 

length indicates a broad value spread as compared to the sepal width 

histogram on the right-hand side, which shows a peak mid-range value of 

approximately 3.0. Just be mindful that this plot covers all the Iris species 

Figure 2-6.  Scatter plot for sepal length vs. sepal height (all species)

Chapter 2  Exploration of ML data models: Part 1



65

and could conceivably be masking an existing data relationship for one or 

more individual species. Other visualization tools could unmask hidden 

relationships as you will shortly see.

�Facet grid plot

A facet grid plot is a variant of the scatter plot just presented in the 

previous section. However, all the dataset components are clearly 

identified in a facet grid plot as opposed to being unclassified and 

ambiguous in a scatter plot. I used the following script which is 

named facetGridPlot.py to create the facet grid plot for sepal length 

vs. petal height. This script is available from the book’s companion 

web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the Facet Grid plot

sns.FacetGrid(iris,hue="species",size=6) \

.map(plt.scatter,"sepal_length","sepal_width") \

.add_legend()

# Display the plot

plt.show()

The script is run by entering

python facetGridPlot.py

Figure 2-7 shows the result of running this script.
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I do acknowledge that the grayscale figure will be hard to decipher in the 

published book, but you should be able to discern that a group of dots in the 

upper left-hand side of the plot appear to form a meaningful relationship, 

wherein a linear, sloped line could be drawn through the dot group to 

represent the relationship. These dots are all from the Iris Setosa species.

This same dot group was plotted in Figure 2-6, but there was not 

differentiation between the dots as regards to the species they represented 

and this relationship could not have been easily identified. Visualizing a 

probable relationship is an important first step in selecting an appropriate 

data model. In this case, using a linear regression (LR) model would be 

a good choice for this particular data sub-set. I will discuss the LR data 

model later in this chapter.

Figure 2-7.  Facet grid plot for sepal length vs. sepal height
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The remaining dots in Figure 2-7 belong to the remaining Iris species 

and do not appear to have any obvious visual relationships as far as I can 

determine. However, I am still proceeding to show you some additional 

plots which may help with the analysis.

�Box plot

Box plots were first introduced in the previous chapter; however, I used 

the Matplotlib package to generate those plots. The following box plot 

was generated by a Seaborn method named boxplot. In reality, I suspect 

that the actual plot is likely created by the Matplotlib software because the 

Seaborn package has a strong linkage to Matplotlib.

I used the following script which is named boxPlot.py to create the 

box plot for all sepal length attribute for all of the Iris species. This script is 

available from the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the box plot

sns.boxplot(x="species",y="sepal_length", data=iris)

# Display the plot

plt.show()

The script is run by entering

python boxPlot.py

Figure 2-8 shows the result of running this script.
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Box plots are inherently univariate in nature because they are created 

from only a single dataset dimension or 1D. Nonetheless, they provide 

important insights into the dataset attribute ranges, variances, and means. 

Box plots are useful to identify data outliers which can easily disrupt 

certain data models, which in turn can cause unpredictable and uncertain 

results from using those models with disruptive outliers inadvertently 

included as inputs.

�Strip plot

A strip plot may be considered as augmented box plot because it includes 

an underlying box plot as well as shows the actual data points that go into 

creating that box plot. The data points would ordinarily be plotted along a 

Figure 2-8.  Box plot for sepal length for all Iris species
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single vertical line for each dataset class; however, the Seaborn stripplot 

method has a jitter option that randomly shifts the dots away from the 

vertical line. This random jitter does not affect the data display because 

the vertical axis is the only one used to identify a dot’s value. This concept 

should become clear after you study the example plot.

I used the following script which is named stripPlot.py to create the 

strip plot for all sepal length attribute for all of the Iris species. This script is 

available from the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the strip plot

ax = sns.boxplot(x="species",y="sepal_length", data=iris)

ax = sns.stripplot(x="species", y="sepal_length", data=iris, 

jitter=True, edgecolor="gray")

# Display the plot

plt.show()

The script is run by entering

python stripPlot.py

Figure 2-9 shows the result of running this script.
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My preceding comments regarding the box plot apply here. The strip 

plot just provides some additional insight regarding how the data points 

that go into creating the box plot are distributed throughout the recorded 

range of values.

�Violin plot

A violin plot is similar to a box plot, except it has a rotated kernel density 

plot on each side of the vertical line that represents class data for the 

dataset. These kernel densities represent the probability density of data at 

different values and are smoothed by a kernel density estimator function. 

The curious name for this plot should be readily apparent after you 

examine the figure.

Figure 2-9.  Strip plot for sepal length for all Iris species
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I used the following script which is named violinPlot.py to create the 

violin plot for all sepal length attribute for all of the Iris species. This script 

is available from the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the violin plot

sns.violinplot(x="species",y="sepal_length", data=iris, size=6)

# Display the plot

plt.show()

The script is run by entering

python violinPlot.py

Figure 2-10 shows the result of running this script.

Figure 2-10.  Violin plot for sepal length for all Iris species
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Violin plots overcome a big problem inherent to box plots. Box plots 

can be misleading because they are not affected by the distribution of the 

original data. When the underlying dataset changes shape or essentially 

“morphs,” box plots can easily maintain their previous statistics including 

medians and ranges. Violin plots on the other hand will reflect any new 

shape or data distribution while still containing the same box plot statistics.

The “violin” shape of a violin plot comes from a class dataset’s density 

plot. The density plot is rotated 90° and is placed on both sides of the 

box plot, mirroring each other. Reading the violin shape is exactly how a 

density plot is interpreted. A thicker part means the values in that section 

of the violin plot have a higher frequency or probability of occurrence and 

the thinner part implies lower frequency or probability of occurrence.

Violin plots are relatively easy to read. The dot in the middle is the 

median. The box presents interquartile range. The whiskers show 95% 

confidence interval. The shape of the violin displays frequencies of values. 

The legend shown in Figure 2-10 points out these features.

�KDE plot

A KDE plot shows only the dataset class density plots. KDE is short for 

kernel density estimators which are precisely the same plots used in violin 

plots. A KDE plot is most useful if you simply focus on the data distribution 

rather than data statistics as would be the case for box or violin plots.

I used the following script which is named kdePlot.py to create the 

KDE plot for all sepal length attribute for all of the Iris species. This script is 

available from the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")
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# Generate the kde plot

sns.FacetGrid(iris,hue="species",size=6) \

.map(sns.kdeplot,"sepal_length") \

.add_legend()

# Display the plot

plt.show()

The script is run by entering

python kdePlot.py

Figure 2-11 shows the result of running this script.

Figure 2-11.  KDE plot for sepal length for all Iris species
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The data distribution plot results were already discussed earlier.

�Pair plots

Pair plots are created when joint plots are generalized to large dimension 

datasets. These plots are useful tools for exploring correlations between 

multidimensional data, because all data pair values are plotted against 

each other. Visualizing the Iris dataset multidimensional relationships is as 

easy as entering the following script, which I named pairPlot.py. This script 

is available from the book’s companion web site:

# Import the required libraries

import matplotlib.pyplot as plt

import seaborn as sns

# Load the Iris dataset

iris = sns.load_dataset("iris")

# Generate the pair plots

sns.pairplot(iris, hue='species', size=2.5)

# Display the plots

plt.show()

Figure 2-12 shows the results of running the preceding script.
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At first glance, this pair plot figure seems to be the most comprehensive 

and complex plot shown to this point. Upon closer inspection, you will 

quickly realize that the individual plots shown in the figure are either facet 

grid or KDE plots, which have already been discussed. The plots on the 

major diagonal from top left to bottom right are all KDE plots for the same 

intersecting dataset classes. The non-intersecting plots, that is, those with 

different classes for the x and y axes, are all facet grid plots. Class attribute 

relationships should quickly become apparent to you as you inspect the 

individual plots. For example, the Setosa attributes are clearly set apart 

from the other species attributes in almost all pair plots. This would 

Figure 2-12.  Iris dataset pair plots
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indicate that clustering data model may work very well in this situation. 

I believe spending significant time examining the pair plots will help you 

understand the underlying dataset to a great degree.

I believe it is an imperative that anyone actively involved with ML 

should be more than trivially acquainted with the underlying basic models 

that serve as a foundation for ML core concepts. I introduced six models 

in the previous chapter without delving into the details for these models. 

These models were (in alphabetical order)

*Decision tree classifier

*Gaussian Naive Bayesian

*K-nearest neighbors classifier

Linear discriminant analysis

*Logistic regression

Support vector machines

There are four more additional models, which will also be covered in 

this book:

Learning vector quantization

*Linear regression

Bagging and random forests

Principal component analysis

(* Discussed in this chapter)

Experienced data scientist cannot tell you which of these ten models 

would be the best performer without trying different them all for a particular 

problem domain. While there are many other ML models and algorithms, 

these ten are generally considered to be the most popular ones. It would  

be wise to learn about and use these ten as a solid starting point for an  

ML education.
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�Underlying big principle
There is a common principle that underlies all supervised ML algorithms 

used in predictive modeling.

ML algorithms are best described as learning a target function f( ) that 

best maps input variable x to an output variable y or in equation form

y = f(x)

There is often a common problem where predictions are required 

for some y, given new input values for the input variable x. However, the 

function f(x) is unknown. If it was known, then the prediction would be 

said to be analytical and solved directly and there would be no need to 

“learn” it from data using ML algorithms.

Likely the most common type of ML problem is to learn the mapping 

y = f(x) to make predictions of y for a new x. This approach is formally 

known as predictive modeling or predictive analytics and the goal is to 

make accurate predictions.

I will start the data model review with probably the most common 

model ever used for predictions.

� Linear regression

Linear regression (LR) is a method for predicting an output y given a value 

for an input variable x. The assumption behind this approach is that there 

must exist some linear relationship between x and y. This relationship 

expressed in mathematical terms is

y b b x e= + +0 1

where

b1 = slope of a straight line

b0 = y-axis intercept

e = estimation error
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Figure 2-13 shows a simplified case with three data points and a straight 

line that best fits between all the points. The ŷ  points are the estimates 

created using the LR equation for a given xi. The ri values are the estimation 

errors between the true data point and the corresponding ŷ  estimate.

The normal approach in creating an LR equation is to minimize the 

sum of all the ri errors. Different techniques can be used to learn the linear 

regression model from data, such as a linear algebra solution for ordinary 

least squares and using a gradient descent optimization.

Linear regression has been around for more than 200 years and has 

been extensively studied. Two useful rules of thumb when using this 

technique are to remove independent variables that are very similar and to 

remove any noise from the dataset. It is a quick and simple technique and 

a good first-try algorithm.

LR demonstration

The following Python script is named lrTest.py and is designed to create 

a pseudo-random set of points surrounding a sloped line with the 

underlying equation

y x= -2 5

Figure 2-13.  Simple LR case example
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The learn regression method contained in the scikit-learn package 

uses the pseudo-random dataset to recreate the underlying equation. This 

script is available from the book’s companion web site:

# Import required libraries

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.linear_model import LinearRegression

# generate the random dataset

rng = np.random.RandomState(1)

x = 10*rng.rand(50)

y = 2*x -5 + rng.randn(50)

# Setup the LR model

model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

# Generate the estimates

xfit = np.linspace(0, 10, 1000)

yfit = model.predict(xfit[:, np.newaxis])

# Display a plot with the random data points and best fit line

ax = plt.scatter(x,y)

ax = plt.plot(xfit, yfit)

plt.show()

# Display the LR coefficients

print("Model slope:      ", model.coef_[0])

print("Model intercept:  ", model.intercept_)

The script is run by entering

python lrTest.py
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Figure 2-14 shows the result of running this script.

It should be readily apparent from viewing the figure that the best 

fit line is placed perfectly within the dataset as would be expected from 

the way the data was generated. This is a proper result because the sole 

purpose of this demonstration was to illustrate how a linear regression 

model worked.

Figure 2-15 shows the b0 and b1 coefficients that the LR model 

computed. They are extremely close to the true values of 2 and –5, 

respectively.

Figure 2-14.  Results for the lrTest script
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� Logistic regression

Logistic regression (LogR) is often used for classification purposes. It 

differs from LR because the dependent variable (x) can only take on 

a limited number of values, whereas in LR the number of values is 

unlimited. This arises because logistic regression uses categories for the 

dependent variable. It becomes binary logistic regression when there are 

only two categories.

In LR, the output is the weighted sum of inputs. LogR is a 

generalization of LR in the sense that the weighted sum of inputs is not 

output directly, but passes through a function that maps any real input 

value to an output ranging between 0 and 1. In LR, an output can take on 

any value, but for LogR, the values must be between 0 and 1.

Figure 2-16 shows the function which maps the sum of weighted 

inputs. This is called the sigmoid function and is also known as an 

activation function.

Figure 2-15.  Computed LR coefficients
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The figure shows that the output value (y) of the sigmoid function 

always lies between 0 and 1 and when x = 0, y= 0.5. In the case of two 

categories, if y >= 0.5, then it can be stated that Class 1 was detected; else, it 

must be Class 0.

Before I delve into the actual data model, it is important to review the 

two underlying assumptions that must be met for a logistic regression to be 

applied. These are

•	 The dependent variable must be categorical.

•	 The independent variables (features) must be 

independent.

I will be using Professor Andrew Ng’s dataset regarding admission 

to a university based on the results of two exam scores. The complete 

dataset consists of 100 records with two exam scores or marks ranging 

from 0 to 100. Each record also contains a 1 or 0, where 1 means the 

applicant was admitted and 0 the reverse. The objective for this data 

Figure 2-16.  Sigmoid function
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model is to predict based on two exam marks whether or not an applicant 

would be admitted. The raw data is taken from a CSV file named marks.

txt, which is available from

https://github.com/animesh-agarwal/Machine-Learning/blob/

master/LogisticRegression/data/marks.txt

The data is loaded into the following script as a DataFrame using 

Pandas software. The data is also split into admitted and non-admitted 

categories to help visualize the data and meet the categorical assumption. 

This script named logRTest.py was used to generate a plot of the original 

dataset. This script is available from the book’s companion web site:

# Import required libraries

import matplotlib.pyplot as plt

import pandas as pd

def load_data(path, header):

    marks_df = pd.read_csv(path, header=header)

    return marks_df

if __name__ == "__main__":

    # load the data from the file

    data = load_data("marks.txt", None)

    # X = feature values, all the columns except the last column

    X = data.iloc[:, :-1]

    # y = target values, last column of the data frame

    y = data.iloc[:, -1]

    # Filter the applicants admitted

    admitted = data.loc[y == 1]

    # Filter the applicants not admitted

    not_admitted = data.loc[y == 0]
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    # Display the dataset plot

    �plt.scatter(admitted.iloc[:, 0], admitted.iloc[:, 1], s=10, 

label='Admitted')

    �plt.scatter(not_admitted.iloc[:, 0], not_admitted.iloc[:, 1], 

s=10, label='Not Admitted')

    plt.legend()

    plt.show()

The script is run by entering

python logRTest.py

Figure 2-17 shows the result of running this script.

Figure 2-17.  Results for the logRTest script
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LogR model development

By examining this figure, you might be able to Image a straight line drawn 

from the upper left to the lower right, which would bisect the majority 

of the data points with admitted students to the right and non-admitted 

ones to the left. The problem becomes how to determine the coefficients 

for such a classifier line. LR cannot determine this line, but a LogR data 

model can.

At this point, I will attempt to explain how the LogR model was 

developed. However, I will of necessity omit much of the underlying 

mathematics because otherwise it will devolve this discussion into many 

fine-grain details that will distract from the main purpose of simply 

introducing the LogR data model. Rest assured that there are many good 

blogs and tutorials available, which explore LogR mathematical details.

The fundamental hypothesis for this LogR example is to determine the 

coefficients θi that “best fit” the following equation

h x x x( ) = + +q q q0 1 1 2 2

where

h x classification value

class if h x

class if h x( ) =
( ) =>
( )<

ì

í
ï

î

 

1 0

0 0
ïï

x Category value1 1=

x Category value2 2=

In this binary LogR example, x1 is the Exam 1 score (mark) and x2 is the 

Exam 2 score.
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A cost function must be assigned to this hypothesis such that the gradient 

method can be applied to minimize the cost and subsequently determine the 

coefficients that are needed for a minimal cost solution. Without proof or a 

derivation, I will just present the cost function as shown in Figure 2-18.

The cost for all the training examples denoted by J(θ) in the figure may 

be computed by taking the average over the cost of all 100 records in the 

training dataset.

LogR demonstration

The following script is named logRDemo.py and will compute the desired 

coefficients as described earlier. In addition, the script will plot the 

classifier line overlaid with the training dataset. Finally, the coefficients 

are displayed in order to obtain a usable classifier equation. I have 

included many comments within the script to help you understand 

what is happening with the code. This script is available from the book’s 

companion web site:

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import scipy.optimize as so

def load_data(path, header):

    # Load the CSV file into a panda dataframe

    marks_df = pd.read_csv(path, header=header)

    return marks_df

Figure 2-18.  LogR cost function for the example problem
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def sigmoid(x):

    # Activation function

    return 1/(1 + np.exp(-x))

def net_input(theta, x):

    # Computes the weighted sum of inputs by a numpy dot product

    return np.dot(x, theta)

def probability(theta, x):

    # Returns the probability after Sigmoid function is applied

    return sigmoid(net_input(theta, x))

def cost_function(theta, x, y):

    # Computes the cost function

    m = x.shape[0]

    �total_cost = -(1/m)*np.sum(y*np.log(probability(theta,x))+ 

(1-y)*np.log(1-probability(theta,x)))

    return total_cost

def gradient(theta, x, y):

    #Computes the cost function gradient

    m = x.shape[0]

    return (1/m)*np.dot(x.T,sigmoid(net_input(theta,x))-y)

def fit(x, y, theta):

    # The optimal coefficients are computed here

    �opt_weights = so.fmin_tnc(func=cost_function, x0=theta, 

fprime=gradient,args=(x,y.flatten()))

    return opt_weights[0]

if __name__ == "__main__":

    # Load the data from the file

    data = load_data("marks.txt", None)

    # X = feature values, all the columns except the last column

    X = data.iloc[:, :-1]
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    # Save a copy for the output plot

    X0 = X

    # y = target values, last column of the data frame

    y = data.iloc[:, -1]

    # Save a copy for the output plot

    y0 = y

    X = np.c_[np.ones((X.shape[0], 1)), X]

    y = y[:, np.newaxis]

    theta = np.zeros((X.shape[1], 1))

    parameters = fit(X, y, theta)

    x_values = [np.min(X[:,1]-5), np.max(X[:,2] + 5)]

    �y_values = -(parameters[0] + np.dot(parameters[1], x_

values)) / parameters[2]

    # filter the admitted applicants

    admitted = data.loc[y0 == 1]

    # filter the non-admitted applicants

    not_admitted = data.loc[y0 == 0]

    # Plot the original dataset along with the classifier line

    �ax = plt.scatter(admitted.iloc[:, 0], admitted.iloc[:, 1], 

s=10, label='Admitted')

    �ax = plt.scatter(not_admitted.iloc[:, 0], not_admitted.

iloc[:, 1], s=10, label='Not Admitted')

    �ax = plt.plot(x_values, y_values, label='Decision 

Boundary')

    ax = plt.xlabel('Marks in 1st Exam')

    ax = plt.ylabel('Marks in 2nd Exam')

    ax = plt.legend()

    plt.show()

    print(parameters)

The script is run by entering

python logRDemo.py
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Figure 2-19 shows the result of running this script.

The classifier line appears to be properly placed between the data 

points separating admitted students from non-admitted students. 

However, if you closely examine the classifier line, you find five admitted 

student data points to the left of the classifier line. These points will cause 

a false negative if the LogR classification model is used because students 

with those exam scores were refused admission, but should have been 

admitted. Similarly, there are six non-admitted students either on the line 

or to the right of the classifier line. These points will cause false positives 

if the LogR classification model is used because students with those exam 

scores were admitted, but should have been refused admission. In all, 

there are 11 either false negatives or false positives, which create an overall 

89% accuracy for the LogR model. This is not terribly bad and likely could 

be improved by increasing the size of the training dataset.

Figure 2-19.  Results for the logRDemo script

Chapter 2  Exploration of ML data models: Part 1



90

Figure 2-20 shows the θi coefficients that the LogR model computed.

The final LogR classifier equation using the computed θi coefficients is

h x x x( ) = - + +25 1613 0 2062 0 20151 2. . .

where

x Exam score1 1=

x Exam score2 2=

I tried a few random scores to test the classifier equation. The results 

are shown in Table 2-2.

Figure 2-20.  Computed LogR coefficients

Table 2-2.  Random trials for LogR classifier equation

Exam 1 Exam 2 Classifier Admitted Not admitted

40 60 –4.825 x

80 60 3.423 x

50 60 –2.763 x

55 65 –0.7245 x

60 65 0.3065 x

(continued)
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The last entry in the table is not random but instead is a false negative 

taken from the original dataset. I did this to illustrate a potential issue with 

relying solely on the classifier equation.

�Naive Bayes
Naive Bayes is a classification algorithm for both two-class (binary) and 

multi-class classification problems. The technique best understands using 

binary or categorical input values.

It is called Naive Bayes because the calculation of the probabilities for 

each hypothesis is simplified to make their calculation possible. Rather 

than attempting to calculate the values of each attribute value P(d1, d2|h), 

they are assumed to be conditionally independent given a target data value 

and calculated as P(d1|h) * P(d2|h).

Exam 1 Exam 2 Classifier Admitted Not admitted

80 90 9.468 x

70 75 4.4835 x

60 65 0.3065 x

60 75 2.3215 x

60 60 –0.701 x

62 63 0.3159 x

70 65 2.3685 x

65 70 2.1345 x

50 55 –3.7705 x

70 48 –1.057 x

56 59 –1.7273 x

Table 2-2.  (continued)
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This is a very strong assumption which is not likely to hold for real-

world data. This assumption is based on a supposition that class attributes 

do not interact. Nonetheless, this approach seems to perform well on data 

where the basic assumption does not hold.

Before jumping into a real-world demonstration, I believe it would 

be prudent to review some fundamental principles regarding Bayesian 

logic.

�Brief review of the Bayes’ theorem

In a classification problem, a hypothesis (h) may be considered as a class 

to be assigned for each new data instance (d). An easy way to select the 

most probable hypothesis given the new data is to use any prior knowledge 

about the problem. Bayes’ theorem provides a method to calculate the 

probability of a hypothesis given the prior knowledge.

Bayes’ theorem is stated as

P(h|d) = (P(d|h) * P(h)) / P(d)

where

•	 P(h|d) is the probability of hypothesis h given the data 

d. This is called the posterior probability.

•	 P(d|h) is the probability of data d given that the 

hypothesis h was true.

•	 P(h) is the probability of hypothesis h being true 

(regardless of the data). This is called the prior 

probability of h.

•	 P(d) is the probability of the data (regardless of the 

hypothesis).

It is plain to observe that the goal is to calculate the posterior 

probability of P(h|d) from the prior probability P(h) with P(d) and P(d|h).
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The hypothesis with the highest probability is selected after calculating 

the posterior probability for a number of different hypotheses. This selected 

h is the maximum probable hypothesis and is formally called the maximum 

a posteriori (MAP) hypothesis. It can be expressed in several forms as

MAP(h) = max(P(h|d))

or

MAP(h) = max((P(d|h) * P(h)) / P(d))

or

MAP(h) = max(P(d|h) * P(h))

The P(d) is a normalizing term which allows for the calculation of 

a normalized probability. It may be disregarded when only the most 

probable hypothesis is desired because this term is constant and only used 

for normalization, which leads to the last MAP equation shown earlier.

Further simplification is possible if there is an equal distribution of 

instances in each class in the training data. The probability of each class 

(P(h)) will be equal in this case. This would cause another constant term 

to be part of the MAP equation, and it too could be dropped leaving an 

ultimate equation of

MAP(h) = max(P(d|h))

�Preparing data for use by the Naive Bayes model

Class and conditional probabilities are required to be calculated before 

applying the Naive Bayes model. Class probabilities are, as the name 

implies, the probabilities associated with each class in the training set. 

Conditional probabilities are those associated with each input data value 

for a given class.

Training is fast because only the probability of each class and the 

probability of each class given different input values are required to be 

calculated. There are no coefficients needed to be fitted by optimization 

procedures as was the case with the regression models.
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The class probabilities are simply the frequency of instances that 

belong to each class divided by the total number of instances.

For example, in a binary classification problem, the probability of an 

instance belonging to class1 would be calculated as

P(class1) = count(class1) / (count(class0) + count(class1))

In the simplest case where each class had an equal number of 

instances, the probability for each class would be of 0.5 or 50%.

The conditional probabilities are the frequency of each attribute value for 

a given class value divided by the frequency of instances with that class value.

This next example should help clarify how the Naive Bayes model works.

Naive Bayes model example

The following is a training dataset of weather and a corresponding target 

variable “Play” (suggesting possibilities of playing).

Table 2-3 shows a record of weather conditions and the Play variable value.

Table 2-3.  Weather/Play dataset

Weather Play

Sunny No

Overcast Yes

Rainy Yes

Sunny Yes

Sunny Yes

Overcast Yes

Rainy No

Rainy No

Sunny Yes

(continued)
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The first step is to convert the training dataset to a frequency table as 

shown in Table 2-4.

Weather Play

Rainy Yes

Sunny No

Overcast Yes

Overcast Yes

Rainy No

Table 2-3.  (continued)

Table 2-4.  Frequency table

Frequency table

Weather No Yes

Overcast 4

Rainy 3 2

Sunny 2 3

Total 5 9

The second step is to create a Likelihood table by finding the 

probabilities. For instance, overcast probability is 0.29 and the overall 

playing probability is 0.64 for all weather conditions. Table 2-5 shows the 

Likelihood table.

Chapter 2  Exploration of ML data models: Part 1



96

The next step is to use the Naive Bayesian equation to calculate the 

posterior probability for each class. The class with the highest posterior 

probability is the outcome of prediction.

Problem statement: Players will play if weather is sunny. Is this 

statement correct?

Solve this problem by using the method of posterior probability.

P(Yes | Sunny) = P( Sunny | Yes) * P(Yes) / P (Sunny)

Substituting actual probabilities yields

P (Sunny | Yes) = 3/9 = 0.33

P(Sunny) = 5/14 = 0.36

P(Yes)= 9/14 = 0.64

Therefore:

P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60

Table 2-5.  Likelihood table

Likelihood table

Weather No Yes Weather 
probabilities

Overcast 4 4/14 0.29

Rainy 3 2 5/14 0.36

Sunny 2 3 5/14 0.36

Total 5 9

5/14 9/14

Playing

probabilities

0.36 0.64
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Next compute the posterior probability for the other Play class 

value of “No”.

P(No | Sunny) = P( Sunny | No) * P(No) / P (Sunny)

Substituting actual probabilities yields

P (Sunny | No) = 2/5 = 0.40

P(Sunny) = 5/14 = 0.36

P(No)= 5/14 = 0.36

Therefore:

P (No | Sunny) = 0.40 * 0.36 / 0.36 = 0.40

The probability P(Yes | Sunny) is higher than the P(No | Sunny) and is 

the MAP or prediction. Note, you could have simply subtracted the P(Yes | 

Sunny) from 1.0 to obtain the complementary probability, which is always 

true for binary class values. However, that operation does not hold true for 

non-binary class value situations.

Pros and cons

The following are some pros and cons for using a Naive Bayes data model.

Pros:

•	 It is easy and fast to predict class value from a test 

dataset. It also performs well in multi-class predictions.

•	 When assumption of independence holds, a Naive Bayes 

classifier performs better compare to other models like 

logistic regression and less training data is needed.

•	 It performs well in case of categorical input variables 

compared to numerical variable(s). For numerical 

variables, a normal distribution is assumed, which is a 

strong assumption.
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Cons:

•	 If a categorical variable has a category in the test 

dataset, which was not observed in training dataset, 

then the model will assign a 0 probability and will be 

unable to make a prediction. This case is often known 

as “zero frequency.” A smoothing technique called 

Laplace estimation is often used to resolve this issue.

•	 Naive Bayes is also known as a bad estimator, so 

probability outputs can be inaccurate.

•	 Another limitation of Naive Bayes is the assumption of 

independent predictors. In the real world, it is almost 

impossible that we get a set of predictors which are 

completely independent.

The scikit-learn library will be used shortly to build a Naive Bayes 

model in Python. There are three types of Naive Bayes model available 

from the scikit-learn library:

•	 Gaussian – It is used in classification and it assumes 

that features follow a normal distribution.

•	 Multinomial – It is used for discrete counts. Consider 

a text classification problem as a Bernoulli trial which 

is essentially “count how often a word occurs in the 

document.” It can be thought of as “number of times 

outcome number xi is observed over n trials.”

•	 Bernoulli – The Bernoulli model is useful if the 

feature vectors are binary (i.e., zeros and ones). One 

application would be text classification with “bag of 

words” model where the 1s and 0s are “word occurs 

in the document” and “word does not occur in the 

document,” respectively.
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Based on your dataset, you can choose any of the preceding discussed 

models.

Gaussian Naive Bayes

Naive Bayes can be extended to real-valued attributes, most commonly 

by assuming a Gaussian distribution. This extension of Naive Bayes is 

called Gaussian Naive Bayes. Other functions can be used to estimate the 

distribution of the data, but the Gaussian or normal distribution is the 

easiest to work with because it only needs the mean and the standard 

deviation to be computed from the training data.

Mean and standard deviation values of each input variable (x) for each 

class value are computed using the following equations:

mean(x) = 1/n * sum(x)

standard deviation(x) = sqrt(1/n * sum(xi-mean(x)^2))

where

n = number of instances

x = values for input variables

Probabilities of new x values are calculated using the Gaussian 

probability density function (PDF). When making predictions, these 

parameters can be entered into the Gaussian PDF with a new input for 

the x variable and in the Gaussian PDF will provide an estimate of the 

probability of that new input value for that class.

pdf(x, mean, sd) = (1 / (sqrt(2 * PI) * sd)) * exp(-((x-mean^2)/

(2*sd^2)))

Where pdf(x) is the Gaussian PDF, sqrt() is the square root, mean and 

sd are the mean and standard deviation, PI is the numerical constant, 

exp() is the numerical constant e or Euler’s number raised to power, and x 

is the value for the input variable.
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The following demonstration uses the preceding equations, but they 

are an integral part of the software package and are separately invoked.

Gaussian Naive Bayes (GNB) demonstration

The following Python script is named gnbTest.py and uses the GNB model 

contained in the scikit-learn software package. A minimal training dataset 

is contained in the script to have the model “learn” and make a prediction. 

The dataset may be purely arbitrary, or it could actually represent real-

world attributes depending if the data has been encoded. In any case, the 

predictor will function without any problem because it is based only on 

numerical data. It is always the user’s responsibility to decode the final 

results. This script is available from the book’s companion web site:

# Import Library of Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

import numpy as np

# Assigning predictor and target variables

x= np.array([[-3,7],[1,5], [1,2], [-2,0], [2,3], [-4,0], 

[-1,1], [1,1], [-2,2], [2,7], [-4,1], [-2,7]])

y = np.array([3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4])

# Create a Gaussian Classifier

model = GaussianNB()

# Train the model using the training sets

model.fit(x, y)

# Predict output

predicted= model.predict([[1,2],[3,4]])

print(predicted)

The script is run by entering

python gnbTest.py
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Figure 2-21 shows the result of running this script.

The final results show [3 4] as the prediction. As I mentioned earlier, 

what this means in the real world would depend on the way the dataset 

was originally encoded.

�k-nearest neighbor (k-NN) model
I introduced the k-NN model in the previous chapter in the Iris 

demonstration – part 3. However, I didn’t mention two major drawbacks to 

using this model at that time. If neither of them is a problem, then a k-NN 

model should definitely be considered for use because it is a simple and 

robust classifier.

The first problem is the performance issue. Since it’s a lazy model, 

all the training data must be loaded and used to compute the Euclidean 

distances to all training samples. This can be done in a naive way or using 

more complex data structures such as k-d trees. In any case, it can be big 

performance hit when a large training set is involved.

The second problem is the distance metric. The basic k-NN model 

is used with Euclidean distance, which is a problematic distance metric 

when a high number of dimensions are involved. As the number of 

dimensions rises, the algorithm performs worst due to the fact that the 

distance measure becomes meaningless when the dimension of the 

data increases significantly. Another related issue is when noisy features 

Figure 2-21.  Results for the gnbTest script
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are encountered. This problem happens because the model applies the 

same weight for all features, noise or not. In addition, the same weights 

are applied to all features, independent of their type, which could be 

categorical, numerical, or binary.

In summary, a k-NN model is usually a best choice if a system has 

to learn a sophisticated (i.e., non-linear) pattern with a small number of 

samples and dimensions.

�KNN demonstration
This demonstration will use the automobile dataset from the UC Irvine 

Repository. The two required CSV data files along with the kNN.py class 

file may be downloaded from

https://github.com/amallia/kNN

Note T here is also a Jupyter notebook file available from this web 
site. This file will not be used because I provide a Python script in the 
following, which accomplishes the same functions as the notebook file.

The problem statement will be to predict the miles per gallon (mpg) of 

a car, given its displacement and horsepower. Each record in the dataset 

corresponds to a single car.

The kNN class file is listed in the following, which contains 

initialization, computation, and prediction functions. This script is 

named kNN.py and is available either from the listed web site or the 

book’s companion web site. I have added comments in the script listing to 

indicate what functions are being performed.

#!/usr/bin/env python

import math

import operator
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class kNN(object):

    # Initialization

    def __init__(self, x, y, k, weighted=False):

        assert (k <= len(x)

                �), "k cannot be greater than training_set 

length"

        self.__x = x

        self.__y = y

        self.__k = k

        self.__weighted = weighted

    # Compute Euclidean distance

    @staticmethod

    def __euclidean_distance(x1, y1, x2, y2):

        return math.sqrt((x1 - x2)**2 + (y1 - y2)**2)

    # Compute the PDF

    @staticmethod

    def gaussian(dist, sigma=1):

        �return 1./(math.sqrt(2.*math.pi)*sigma)*math.exp(-

dist**2/(2*sigma**2))

    # Perform predictions

    def predict(self, test_set):

        predictions = []

        for i, j in test_set.values:

            distances = []

            for idx, (l, m) in enumerate(self.__x.values):

                dist = self.__euclidean_distance(i, j, l, m)

                distances.append((self.__y[idx], dist))

            distances.sort(key=operator.itemgetter(1))

            v = 0

            total_weight = 0
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            for i in range(self.__k):

                weight = self.gaussian(distances[i][1])

                if self.__weighted:

                    v += distances[i][0]*weight

                else:

                    v += distances[i][0]

                total_weight += weight

            if self.__weighted:

                predictions.append(v/total_weight)

            else:

                predictions.append(v/self.__k)

        return predictions

The following script is named knnTest.py where a k-NN model is 

instantiated from the kNN class file. A series of predictions are made for 

k = 1, 3, and 20 for both non-weighted and weighted cases. The resultant 

errors are computed for all cases. This script is available from the book’s 

companion web site:

# Import required libraries

import pandas

from kNN import kNN

from sklearn.metrics import mean_squared_error

# Read the training CSV file

training_data = pandas.read_csv("auto_train.csv")

x = training_data.iloc[:,:-1]

y = training_data.iloc[:,-1]

# Read the test CSV file

test_data = pandas.read_csv("auto_test.csv")

x_test = test_data.iloc[:,:-1]

y_test = test_data.iloc[:,-1]
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# Display the heads from each CSV file

print('Training data')

print(training_data.head())

print('Test data')

print(test_data.head())

# Compute errors for k = 1, 3, and 20 with no weighting

for k in [1, 3, 20]:

    classifier = kNN(x,y,k)

    pred_test = classifier.predict(x_test)

    test_error = mean_squared_error(y_test, pred_test)

    �print('Test error with k={}: {}'.format(k, test_error * 

len(y_test)/2))

# Compute errors for k = 1, 3, and 20 with weighting

for k in [1, 3, 20]:

    classifier = kNN(x,y,k,weighted=True)

    pred_test = classifier.predict(x_test)

    test_error = mean_squared_error(y_test, pred_test)

    �print('Test error with k={}: {}'.format(k, test_error * 

len(y_test)/2))

The script is run by entering

python knnTest.py

Figure 2-22 shows the result of running this script.
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This figure shows the first five records from each of the CSV data files. 

The next three test error results are for the non-weighted prediction results 

for k equal to 1, 3, and 20, respectively. The last three test error results are 

for the weighted predictions for the same k values. Reviewing the error 

results reveals a slight reduction in error values as k is increased and even 

slightly lower error values for the cases when weighting is applied.

�Decision tree classifier
This will be the last data model discussed in this chapter. The decision tree 

classifier data model is a clever solution for common business problems. 

For instance, if you are a bank loan manager, you might use this model 

to classify customers in safe or risky categories depending upon their 

financial and credit histories. Classification usually is done in two steps, 

the first being learning and the second being prediction. The model in the 

Figure 2-22.  Results for the knnTest script
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learning step is developed and tuned based solely on the available training 

data. The model is then used to predict future outcomes using the trained 

data and any appropriate hyper-parameters entered based on tuning and 

user experience.

�Decision tree algorithm
A decision tree is a flowchart-like tree structure where an internal node 

represents a feature or attribute, a branch represents a decision rule, and 

every leaf node represents an outcome. The root node is the topmost 

node in a decision tree. The model learns to partition on the basis of 

attribute values. The tree is partitioned in a recursive manner naturally 

called recursive partitioning. This flowchart-like structure is a reasonable 

analogy to how humans perform a decision-making process. Visualizing 

this process with a flowchart diagram will help you understand this model. 

Figure 2-23 shows a portion of a generic decision tree.

Figure 2-23.  Generic flowchart for a decision tree
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One nice characteristic of the decision tree algorithm is that the 

decision-making logic can readily be known. This model is known as a 

white box machine learning algorithm. Compare this openness to a black 

box which is typical for an artificial neural network (ANN) where any 

decision-making logic is generally unfathomable. In addition, training 

times for decision tree algorithms are generally much faster than ANN. 

The decision tree algorithm is not dependent on any particular type of 

training data probability distribution, which makes it a non-parametric 

method. Consequently, decision tree algorithms can handle high-

dimensional data with good accuracy.

A decision tree algorithm follows this simple three-step process:

	 1.	 Select the best attribute using attribute selection 

measures (ASM) to split the records.

	 2.	 Make that attribute a decision node and break the 

dataset into smaller sub-sets.

	 3.	 Start tree building by repeating this process 

recursively for each child until one of the following 

conditions remains:

•	 All the tuples belong to the same attribute value.

•	 There are no more remaining attributes.

•	 There are no more instances.

The ASM is heuristic for selecting the splitting criterion that partitions 

data in an optimal manner. ASM is also known as splitting rules because 

it helps determine breakpoints for tuples on a given node. ASM provides 

a rank to each feature or attribute by explaining the given dataset. The 

best scoring attribute will then be selected as the splitting attribute. In the 

case of a continuous-valued attribute, branch split points will also need to 

be defined.
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The following aside provides a detailed discussion concerning 

information entropy, information gain, Gini index, and gain ratio. While 

not a prerequisite to running the decision tree demonstration, I would 

recommend that you take the time to read it. It will definitely improve your 

understanding on how this algorithm functions.

�Information gain

Information gain measures how much “information” a feature gives us 

about a class. Any features that perfectly partitions should give maximal 

information. Likewise, unrelated features should provide no information. 

Information gain measures the reduction in entropy, where entropy is 

a measure of the purity or impurity present in an arbitrary collection of 

examples. A more formal entropy definition is

The average rate at which information is produced by a  
stochastic source of data.

The measure of information entropy associated with each possible 

data value is computed by the negative logarithm of the probability mass 

function for the value.

Before jumping into the fine-grain details, it would be prudent to 

review some fundamental principles underlying information gain.

Split criterion

Suppose it is desired to split on the variable (𝑥):

1 2 3 4 5 6 7 8

y 0 0 0 1 1 1 1 1

If we split at 𝑥1 < 3.5, we get an optimal split. If we split at 𝑥 < 4.5, we 

make a mistake or misclassification. The idea is to position the split at such 

point as to make the samples “pure” or homogeneous. Of course, there 

is the need to measure how the split functions and that is accomplished 
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using an ASM of information gain, gain ratio, or Gini index. All of the 

preceding discussion is predicated upon knowing how to measure 

information. Accomplishing this is all based on the concept of information 

entropy which was introduced by Claude Shannon in his seminal 1948 

paper “A Mathematical Theory of Communication.” Incidentally, Dr. 

Shannon is considered the “Father of Information Theory” due to his 

monumental contributions to this field.

Measuring information

Consider the bar shown in Figure 2-24 as an information source where 

regions are digitally encoded.

Larger regions in the figure are encoded with fewer bits, while 

smaller regions require more bits. The expected value for this 

information source is the sum of all the values of the product of the 

probability of a value and the value itself. In this example the expected 

value is computed as follows:

Expected Value = * + * + * + *
1

4
2

1

8
3

1

8
3

1

2
1

Each time a region in the figure was halved in size the number of bits 

went up by one. The probability also decreased by 0.5 when the size was 

halved. The conclusion to be drawn from this figure is that the information 

Figure 2-24.  Digitally encoded information source
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of a random event x is proportional to the logarithm (base 2) of the 

reciprocal of the event’s probability. In equation form, this is

Information x
P D x

( ) =
=( )

æ

è
çç

ö

ø
÷÷log2

1

In general, the expected information or “entropy” of a random 

variable is the same as the expected value with the value filled in with the 

information:
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Properties of entropy

Entropy is maximized when the constituent elements are heterogeneous 

(impure):

If  p
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1
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Conversely, entropy is minimized when elements are homogeneous 

(pure):

if pi = 1 or pi = 0

then,

Entropy H= = 0

With entropy defined as

H p p
i

K

k k= - * ( )
=
å

1
2log

then any change in entropy is considered as information gain and is 

defined as

DH H
m

m
H

m

m
HL

L
D

D= - * - *

where 𝑚 is the total number of instances, with 𝑚𝑘 instances belonging to 

class 𝑘, where 𝐾 = 1, … , 𝑘.

Information gain example

The following example may be considered as an extension of the example 

shown in the Naive Bayes section. Table 2-6 has several additional features, 

which will be computed in the decision whether or not to play given a 

certain set of conditions.
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Table 2-6.  Play decision

Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

The information value for the Play attribute is computed as follows:

H Y p p
i

K

k k( ) = - * ( )
=
å

1
2log
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5

14

9

14

9

142 2log log

= -( )* -( )-( )* -( )0 357 1 486 0 643 0 637. . . .
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= +0 531 0 410. .

= 0 941.

Now, consider the information gain when the Humidity attribute is 

selected.

InfoGain Humdity H Y
m

m
H

m

m
HL

L
R

R( ) = ( )- -

where

m = number of Humidity examples

mL = number of Humidity examples with value = 

Normal

mR = number of Humidity examples with value = 

High

HL = IV for Humidity examples with value = Normal

HR = IV for Humidity examples with value = High

Substituting yields

InfoGain Humdity H Y H HL R( ) = ( ) = - -0 941
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HL = 0 592.
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HR = -
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HR = 0 985.

H Y( ) = - * - *0 941
7

14
0 592

7

14
0 985. . .

H Y( ) = 0 152.

Performing the preceding computations for all of the remaining 

features yields

Outlook = 0.247

Temperature = 0.029

Humidity = 0.152

Windy = 0.048

The initial split will be done with Outlook feature because it has the 

highest information gain value in accordance with the ASM process.

The optimum split for the next level is shown in Figure 2-25 with the 

associated selected attributes and information gain for each split.
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Figure 2-26 is the final decision tree.

Note that not all leaves need to be pure; sometimes similar (even 

identical) instances have different classes. Splitting stops when data 

cannot be split any further.

Figure 2-25.  Next level splits with information gain values

Figure 2-26.  Final decision tree diagram
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Gini index

The decision tree algorithm CART (classification and regression tree) uses 

the Gini method to create split points. The equation for computing the 

Gini index is

Gini D p
k

K

i( ) = -
=
å1

1

2

where pi is the probability that a tuple in D belongs to class Ci.

The Gini index considers a binary split for each attribute. You can 

compute a weighted sum of the impurity of each partition. If a binary split 

on attribute A partitions data D into D1 and D2, the Gini index of D is

Gini D
D

D
Gini D

D

D
Gini DA ( ) = ( ) + ( )1

1
2

2

In case of a discrete-valued attribute, the sub-set that gives the 

minimum Gini index for that chosen is selected as a splitting attribute. In 

the case of continuous-valued attributes, the strategy is to select each pair 

of adjacent values as a possible split point and the point with smaller Gini 

index chosen as the splitting point.

DGini A Gini D Gini DA( ) = ( ) - ( )

The attribute with minimum Gini index is chosen as the splitting 

attribute.

This index is maximized when elements are heterogeneous (impure).

If

p
kk =
1
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then

Gini
k kk

K

= - = -
=
å1

1
1

1

1
2

Correspondingly, the index is minimized when elements are 

homogeneous (pure).

If

𝑝𝑖 = 1 or 𝑝𝑖 = 0

then

Gini = 1 − 1 − 0 = 0

Simple Gini index example

I will start with an arbitrary dataset shown in Table 2-7 with five features, of 

which feature E is the predictive one. This feature has two classes, positive 

or negative. There happens to be an equal number of instances in each 

class just to simplify the computations.

Table 2-7.  Arbitrary dataset

Index A B C D E

1 4.8 3.4 1.9 0.2 positive

2 5 3 1.6 1.2 positive

3 5 3.4 1.6 0.2 positive

4 5.2 3.5 1.5 0.2 positive

5 5.2 3.4 1.4 0.2 positive

6 4.7 3.2 1.6 0..2 positive

7 4.8 3.1 1.6 0.2 positive

8 5.4 3.4 1.5 0.4 positive

(continued)
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Index A B C D E

9 7 3.2 4.7 1.4 negative

10 6.4 3.2 4.7 1.5 negative

11 6.9 3.1 4.9 1.5 negative

12 5.5 2.3 4 1.3 negative

13 6.5 2.8 4.6 1.5 negative

14 5.7 2.8 4.5 1.3 negative

15 6.3 3.3 4.7 1.6 negative

16 4.9 2.4 3.3 1 negative

Table 2-7.  (continued)

The first in calculating the Gini index is to choose some random values 

to categorize (initial split) for each feature or attribute. The values chosen 

for this dataset are shown in Table 2-8.

Table 2-8.  Initial split attribute values

A B C D

>= 5.0 >= 3.0 >= 4.2 >= 1.4

< 5.0 < 3.0 < 4.2 < 1.4

Computing the Gini index for attribute A:

Value >= 5

Number of instances = 12

Number of instances >=5 and positive = 5
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Number of instances >= 5 and negative = 7

GiniA >=( ) = -æ
è
ç

ö
ø
÷ -æ

è
ç

ö
ø
÷ =5 1

5
12

7
12

0 486
2 2

.

Value: < 5

Number of instances = 4

Number of instances >=5 and positive = 3

Number of instances >= 5 and negative = 1

GiniA <( ) = -æ
è
ç

ö
ø
÷ -æ

è
ç

ö
ø
÷ =5 1

3
4

1
4

0 375
2 2

.

Weighting and summing yields

GiniA = * + * =
12
16

0 486
4
16

0 375 0 458. . .

Computing in a similar manner for the remaining attributes yields

GiniB =0 335.

GiniC =0 200.

GiniD =0 273.

The initial split point when using the Gini index will always be the 

minimum value. The final decision tree based on the computed indices is 

shown in Figure 2-27.
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�Gain ratio

Gain ratio is a modification of information gain that reduces its bias on 

highly branching features. This algorithm takes into account the number 

and size of branches when choosing a feature. It does this by normalizing 

information gain by the “intrinsic information” of a split, which is defined 

as the information need to determine the branch to which an instance 

belongs. Information gain is positively biased for an attribute with many 

outcomes. This means that the information gain algorithm prefers an 

attribute with a large number of distinct values.

Intrinsic information

The intrinsic information represents the potential information generated 

by splitting the dataset into K partitions:

IntrinsicInfo D
D

D

D

Dk

K
k k( ) = - *

æ

è
ç

ö

ø
÷

=
å

1
2log

Partitions with high intrinsic information should be similar in size. 

Datasets with few partitions holding the majority of tuples have inherently 

low intrinsic information.

Figure 2-27.  Final decision tree for the simple Gini index example
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Definition of gain ratio

Gain ratio is defined as

GainRatio D
Gain D

IntrinsicInfo D
( ) = ( )

( )

The feature with the maximum gain ratio is selected as the 

splitting feature.

ID3 is the acronym for Iterative Dichotomiser 3 and is an algorithm 

invented by Ross Quinian to implement the gain ratio ASM. Ross later 

invented the C4.5 algorithm, which is an improvement over ID3 and is 

currently used in most machine learning systems using the gain ratio 

algorithm. It should be noted that the term SplitInfo is used in the C4.5 

algorithm to represent IntrinsicInfo. Other than that ambiguity, the basic 

gain ratio algorithm is unchanged.

There will be no example presented for gain ratio simply because this 

aside is just too extensive and you likely have a pretty good understanding 

of the ASM process if you have read through to this ending.

�Decision tree classifier demonstration 
with scikit-learn
This decision tree demonstration will use a classic dataset from the 

machine learning community called the Pima Indian Diabetes dataset. 

The dataset may be downloaded in CSV format from

www.kaggle.com/uciml/pima-indians-diabetes-database#diabetes.csv

This dataset is originally from the National Institute of Diabetes and 

Digestive and Kidney Diseases. The objective of this demonstration is 

to diagnostically predict whether or not a patient has diabetes based 

on certain diagnostic measurements included in the dataset. Several 
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constraints were placed on the selection of these instances from a larger 

database. In particular, all patients here are females at least 21 years old of 

Pima Indian heritage.

The downloaded CSV file is archived and must be extracted before 

being used. Furthermore, you must remove the first row from the file 

because it contains string column header descriptions. Keeping this 

row in place will cause the prediction function to fail because the string 

contents cannot be converted to a float type. I recommend using any 

spreadsheet application that can load the CSV file. I happened to use 

Microsoft’s Excel program, but any of the open source Linux applications 

will likely work.

I will develop the Python script in two stages while also discussing 

the underlying methodology regarding the decision tree classifier 

model. The first stage will load all the dependencies as well as the 

CSV file. The CSV file head information is also displayed to confirm a 

successful load. The second stage will be to build, train, and test the 

decision tree model.

The first step is to load the required libraries, which include the 

DecisionTreeClassifier data model from the sklearn software package. 

This data model uses the Gini ASM process by default, but this can be 

changed if another ASM process is desired.

# Load libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier # Import 

Decision Tree Classifier

from sklearn.model_selection import train_test_split # Import 

train_test_split function

from sklearn import metrics #Import scikit-learn metrics module 

for accuracy calculation

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 

'bmi', 'pedigree', 'age', 'label']
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The next step is to load the required Pima Indian Diabetes dataset 

using Pandas’ read CSV function. Ensure the downloaded dataset is in the 

same current directory as the script.

# Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_

names)

pima.head()

Figure 2-28 shows the CSV file head portion with the first five records.

Figure 2-28.  diabetes.csv head results

The next step is to divide the given columns into two types of variables 

dependent (target) and independent (feature).

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age','glucose','

bp','pedigree']

X = pima[feature_cols] # Feature variables

y = pima.label # Target variable

Model performance requires the dataset to be divided into a training 

set and a test set. The dataset can be divided by using the function train_

test_split(). Three parameters, namely, features, target, and test_set 

size, must be passed to this method.
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# Split dataset into training set and test set

# 70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.3, random_state=1)

The next step is to instantiate a decision tree data model from the 

sklearn software package. The model is named clf and is readily trained 

using 70% of the training dataset split from the original dataset. Finally, a 

series of predictions are automatically made with the remaining 30% of the 

dataset using the model’s predict() method.

In the test data stored in X_test, the labels are regarded as sample to 

be fed to the classifier in the predict() method. The sample is as given in 

the following data. It is invalid to feed it to the predict() method as it is 

string, not float. To remove it, the drop() function is used. This is the return 

result of X_txt.drop(0) and is what is fed to the predict () method.

['Pregnancies','Insulin','BMI','Age','Glucose','BloodPressure',

'DiabetesPedigreeFunction']

# Create Decision Tree classifer object

clf = DecisionTreeClassifier()

# Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test.drop(0))

The last step is to measure the overall accuracy of the prediction set. 

Accuracy is computed by comparing actual test set values vs. the predicted 

values. The metrics module from the scikit-learn package was used for 

this accuracy measurement.

Note that the y_test variable includes the label 'Outcome' which is 

string. To remove it, the drop() function is used.

# Model accuracy

print("Accuracy:",metrics.accuracy_score(y_test.drop(0), y_pred))
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The final result is the following score:

Accuracy: 0.6753246753246753

The 67.5% is a reasonable accuracy score. However, it may be 

improved by tuning the hyper-parameters used by the decision tree 

algorithm, which I will demonstrate in later section.

The complete script listing is shown in the following and is named 

diabetesDT.py. It is available from the book’s companion web site.

# Load libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier  

# Import Decision Tree Classifier

from sklearn.model_selection import train_test_split  

# Import train_test_split function

from sklearn import metrics #Import scikit-learn metrics module 

for accuracy calculation

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 

'bmi', 'pedigree', 'age', 'label']

# Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_names)

print(pima.head())

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose', 

'bp', 'pedigree']

X = pima[feature_cols] # Features

y = pima.label # Target variable

# Split dataset into training set and test set

# 70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3, random_state=1)
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# Create Decision Tree classifer object

clf = DecisionTreeClassifier()

# Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test.drop(0))

# Model accuracy

print("Accuracy:",metrics.accuracy_score(y_test.drop(0),  

y_pred))

�Visualizing the decision tree

The scikit-learn’s export_graphviz function can be used to display the 

decision tree. The pydotplus library is also needed for this display function. 

These libraries are installed using the following commands:

pip install graphviz

pip install pydotplus

sudo apt-get install python-pydot

The export_graphviz function converts the final decision tree 

classifier file into what is known as a dot file. The pydotplus application 

then converts this dot file to a png-formatted file, which may be displayed 

using the system’s Image viewer application.

The following script is named diabetesDT.py and is available from the 

book’s companion web site:

# Load all required libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.tree import export_graphviz
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from sklearn.externals.six import StringIO

from sklearn import tree

import pydotplus

import collections

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 

'bmi', 'pedigree', 'age', 'label']

# Load dataset

pima = pd.read_csv("diabetes.csv", header=None, names=col_names)

#split dataset in features and target variable

feature_cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose', 

'bp', 'pedigree']

X = pima[feature_cols] # Features

y = pima.label # Target variable

# Split dataset into training set and test set

# 70% training and 30% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.3, random_state=1)

# Create Decision Tree classifer object

clf = DecisionTreeClassifier()

# Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

dot_data = tree.export_graphviz(clf, out_file=None, 

filled=True, rounded=True, special_characters=True, feature_

names= feature_cols, class_names=['0','1'])

graph = pydotplus.graph_from_dot_data(dot_data)

colors = ('turquoise', 'orange')

edges = collections.defaultdict(list)
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for edge in graph.get_edge_list():

    �edges[edge.get_source()].append(int(edge.get_

destination()))

for edge in edges:

    edges[edge].sort()

    for i in range(2):

        dest = graph.get_node(str(edges[edge][i]))[0]

        dest.set_fillcolor(colors[i])

graph.write_png('tree.png')

You can generate the png tree Image by entering this command:

python diabetesDT.py

Be a bit patient because this command took about 20 seconds to 

complete. You will see nothing on the monitor screen other than the 

prompt reappearing after the script completes running. However, there 

will be a new Image named tree.png located in the home directory. 

Figure 2-29 shows this Image.

Figure 2-29.  tree.png
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I fully realize that it is impossible to read the extremely small text 

shown in the Image, which is why I enlarged a small portion of the Image. 

This portion is shown in Figure 2-30.

In this decision tree chart, each internal node has a decision rule that 

splits the data. Gini referred as Gini ratio measures the impurity of the 

node, which I discussed in the aside. A node is pure when all of its records 

belong to the same class. Such nodes are called leaf nodes.

The resultant tree created by this script is unpruned. This unpruned 

tree is essentially unexplainable and not easy to understand. I will discuss 

how to optimize it by pruning in the next section.

Figure 2-30.  Enlarged portion of the tree Image
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�Optimizing a decision tree

There are three hyper-parameters available, which will allow for 

optimizing the performance of a decision tree classifier. These are

•	 criterion: optional (default=“gini”) or Choose 

attribute selection measure – This parameter allows 

the selection of different ASMs. Available criteria 

are “gini” for the Gini index and “entropy” for the 

information gain.

•	 splitter: string, optional (default=“best”) or Split 

Strategy – This parameter allows the selection of 

the split strategy. Available strategies are “best” to 

choose the best split and “random” to choose the best 

random split.

•	 max_depth: int or None, optional (default=None) or 

Maximum Depth of a Tree – This criterion sets the 

maximum depth of the tree. If None, then nodes are 

expanded until all the leaves contain less than min_

samples_split samples. A higher value of maximum 

depth will likely cause overfitting, while a lower value 

may cause underfitting .

In scikit-learn, the optimization of decision tree classifier is done 

when the classifier is instantiated. The maximum depth of the tree is used 

for pre-pruning. The pimaDiabetes.py script was modified to limit the 

tree depth to 3 and the ASM was changed to entropy. The following code 

changes were made to the script to accomplish this optimization:

# Create Decision Tree classifer object

clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)
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This script was rerun, and new accuracy score of 0.7705627705627706 

was obtained. This 77% score is better than the 67.5% score obtained when 

no performance arguments were entered.

The diabetesDT.py was also rerun with these new performance 

arguments. The tree diagram was relabeled tree1.png to differentiate 

from the initial version. Figure 2-31 shows the new tree diagram using the 

optimized hyper-parameters.

This pruned model is much less complex and easier to understand 

than the previous decision tree graph.

�Pros and cons for decision trees

Pros

•	 Decision trees are easy to interpret and visualize.

•	 They can easily capture non-linear patterns.

•	 They require less data preprocessing from the user.

Figure 2-31.  tree1.png
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•	 They can be used for feature engineering such 

as predicting missing values suitable for variable 

selection.

•	 Decision trees have no assumptions about data 

distribution because they are non-parametric.

Cons

•	 They are sensitive to noisy data. They can easily overfit 

due to noisy data.

•	 Small variations (or variance) in data can result in a 

different decision tree.

•	 Decision trees can be biased with an imbalanced 

dataset. It is recommended that the dataset be 

balanced out before creating the decision tree.
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CHAPTER 3

Exploration of ML 
data models: Part 2
This chapter is a continuation of the discussions and demonstrations of 

basic ML data models that started in the previous chapter. I presented ten 

data models at the beginning of the previous chapter, and these were

Linear regression

Logistic regression

K-nearest neighbors classifier

Gaussian Naive Bayesian

Decision tree classifier

Principal component analysis

Linear discriminant analysis

Support vector machines

Learning vector quantization

Bagging and random forests

The first five was covered in the previous chapter, while the remaining 

five will be covered in this chapter. Please do not infer any relative 

importance to the models because of the discussion order. In each case,  

I specifically discuss when and how to use each model.

http://scholar.google.com/scholar?q=Gaussian+Naive+Bayesian&hl=en&as_sdt=0&as_vis=1&oi=scholart
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�Principal component analysis
Principal component analysis (PCA) is a powerful algorithm, which is used 

for linear transformations and dimensionality reduction. It is commonly 

used in many areas including computer vision applications and financial 

transactions.

The main objective in using a PCA algorithm is to reduce data 

dimensionality by transforming a large set of variables into a smaller one 

which still contains most of the information present in the large dataset. 

Boiled down to a few words, PCA creates small datasets which are easier 

to handle and facilitates data analysis and are far more compatible for use 

with other ML algorithms. In summary, the central idea of PCA is to reduce 

the number of variables in a dataset while preserving as much information 

as possible. PCA also performs a data compression function, which I 

describe in the code explanatory section.

The PCA algorithm tends to use less memory because it is 

computationally efficient. Additionally, PCA has good visualization 

functions, which help the user understand the final results.

There are six steps that should be followed when attempting to 

perform a PCA:

	 1.	 Standardize the data.

	 2.	 Use the standardized data to create a covariance 

matrix.

	 3.	 Use the resulting matrix to calculate eigenvector 

(principal components) and their corresponding 

Eigenvalues. Alternatively, the singular vector 

decomposition (SVD) can be applied.

	 4.	 Sort the Eigenvalues in descending order by its and 

choose the k Eigenvectors which explain the most 

variance within the data (larger Eigenvalue means 

the feature explains more variance).
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	 5.	 Create a new projection matrix W.

	 6.	 Transform the original dataset X via W to obtain a 

k-dimensional sub-space Y.

I realize that there are some strange and unknown terms in the 

preceding process which might confuse and perhaps frighten some 

readers. Don’t worry; they will be discussed and clarified in the following 

discussion and demonstration.

�PCA script discussion
The first step in this demonstration is to load the dataset, which will be 

used. The dataset I will be using is the classic Iris dataset, which I used in 

the previous chapter. It is available from the following web site. The file is 

available with extension data. You just need to change the extension to csv.

https://archive.ics.uci.edu/ml/datasets/Iris

After you download the file, be sure to delete the first row, which 

contains the original column headers. The script will fail if you do not do this.

This Iris dataset contains measurements for 150 Iris flowers from three 

different species.

The three classes in the Iris dataset are

	 1.	 Iris setosa (n = 50)

	 2.	 Iris versicolor (n = 50)

	 3.	 Iris virginica (n = 50)

The four features in each of the classes are

	 1.	 Sepal length in cm

	 2.	 Sepal width in cm

	 3.	 Petal length in cm

	 4.	 Petal width in cm
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The following is a complete listing for a Python script named 

pcaDemo.py, which will accomplish a complete PCA analysis with 

visualizations. I also provide additional explanatory comments for 

those code portions as needed. This script is available from the book’s 

companion web site:

# Import required libraries

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

from sklearn import decomposition

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

df = pd.read_csv('iris.csv', header=None, sep=',')

df.columns=['sepal_length', 'sepal_width', 'petal_length', 

'petal_width', 'class']

df.dropna(how="all", inplace=True) # Drops empty line at EOF

# Show the first 5 records

print(df.head())

f, ax = plt.subplots(1, 4, figsize=(10,5))

vis1 = sns.distplot(df['sepal_length'],bins=10, ax= ax[0])

vis2 = sns.distplot(df['sepal_width'],bins=10, ax=ax[1])

vis3 = sns.distplot(df['petal_length'],bins=10, ax= ax[2])

vis4 = sns.distplot(df['petal_width'],bins=10, ax=ax[3])

plt.show()

# split data table into data X and class labels y

X = df.ix[:,0:4].values

y = df.ix[:,4].values
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# Standardize the data

X_std = StandardScaler().fit_transform(X)

# Compute the covariance matrix

mean_vec = np.mean(X_std, axis=0)

cov_mat = (X_std -mean_vec).T.dot(X_std - mean_vec) /  

(X_std.shape[0] - 1)

print('Covariance matrix \n%s' %cov_mat)

# Compute the Eigenvectors and Eigenvalues

cov_mat = np.cov(X_std.T)

eig_vals, eig_vecs = np.linalg.eig(cov_mat)

print('Eigenvectors \n%s' %eig_vecs)

print('Eigenvalues \n%s' %eig_vals)

eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in 

range(len(eig_vals))]

eig_pairs.sort()

eig_pairs.reverse()

print('Eigenvalues in descending order:')

for i in eig_pairs:

    print(i[0])

# Compute the Eigenvalue ratios

tot = sum(eig_vals)

var_exp = [(i / tot)*100 for i in sorted(eig_vals, 

reverse=True)]

cum_var_exp = np.cumsum(var_exp)

print('Eigenvalue ratios:%s' %cum_var_exp)

#Create the W matrix

matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),

                      eig_pairs[1][1].reshape(4,1)))

print('Matrix W:\n', matrix_w)
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# Transform the X_std dataset to the sub-space Y

Y = X_std.dot(matrix_w)

features = ['sepal_length', 'sepal_width', 'petal_length', 

'petal_width']

# Create a scatter plot for PC1 vs PC2

x = df.loc[:,features].values

x = StandardScaler().fit_transform(x)

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(x)

principalDf = pd.DataFrame(data=principalComponents, 

columns=['principal component 1','principal component 2'])

finalDf = pd.concat([principalDf, df[['class']]], axis=1)

fig = plt.figure(figsize=(8,8))

ax = fig.add_subplot(1,1,1)

ax.set_xlabel('Principal Component 1', fontsize=15)

ax.set_ylabel('Principal Component 2', fontsize=15)

ax.set_title('2 Component PCA', fontsize=20)

targets = ['setosa', 'versicolor', 'virginica']

colors = ['r', 'g', 'b']

for target, color in zip(targets, colors):

    indicesToKeep = finalDf['class'] == target

    �ax.scatter(finalDf.loc[indicesToKeep, 'principal component 

1'], finalDf.loc[indicesToKeep, 'principal component 2'], 

c=color, s=50)

ax.legend(targets)

ax.grid

plt.show()
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The following discussions expand upon what is happening in various 

parts of this script. I have not commented on the portions that I feel you 

should already be comfortable reading and understanding such as the 

library imports portion. In addition, I will only show the beginning and 

ending of the code segments to save space, unless the code is three lines or 

less. Do not forget to make sure the extension of the downloaded file is csv.

df = pd.read_csv('iris.csv', header=None, sep=',')

.

.

print(df.head())

A Pandas DataFrame named df is first created in this code from the 

CSV file located in the current directory. The column names (attributes) are 

then initialized, a bit of housekeeping is done, and then the head or first five 

records are displayed just to ensure that the DataFrame was properly created.

f, ax = plt.subplots(1, 4, figsize=(10,5))

.

.

plt.show()

This code portion creates a series of univariate plots for the first four 

attributes. It is always a good idea to review the original data distributions 

to more understand what you are dealing with. These plots are shown in 

the results section.

# split data table into data X and class labels y

X = df.ix[:,0:4].values

y = df.ix[:,4].values

The data needs to be split into an attribute set named X and class label 

set named y before standardization happens.

X_std = StandardScaler().fit_transform(X)
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This code represents step 1 in the PCA process, which is to standardize 

the input data. If you reviewed the input dataset, you would quickly 

realize that the data has different scales. Standardizing the data helps 

maximize data variances for principal components (Eigenvectors). 

Without standardization a variable with a value range of 0 to 100 would 

have an inordinate influence when covariances were computed as 

compared to a variable with a 0 to 10 range. Standardization reduces any 

chances of inadvertent bias being introduced into the analysis. The generic 

standardization equation is

z
value mean

standard deviation
=

-
 

In this case, all the data is transformed onto a unit scale with a mean 

of 0 and a variance and standard deviation of 1. Unit scale transformations 

are often useful to obtain maximal performance for many different ML 

algorithms.

mean_vec = np.mean(X_std, axis=0)

cov_mat = (X_std -mean_vec).T.dot(X_std - mean_vec) / (X_std.

shape[0] - 1)

print('Covariance matrix \n%s' %cov_mat)

Step 2 of the PCA process is to instantiate a covariance matrix. The 

covariance matrix is a n × n symmetric matrix (where n is the number of 

dimensions) that has entries for all the covariances associated with all 

possible pairs of the initial variables. Notice that the standardized dataset 

is used in this computation. Incidentally, the covariance of a standardized 

dataset is equivalent to the correlation matrix of that same dataset. This 

means the dataset correlation matrix could be used in the PCA process in 

lieu of the covariance matrix.
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Two facts about the covariance matrix should also be helpful for your 

understanding:

•	 A positive value means two variables increase or 

decrease together. This is also known as correlated.

•	 A negative value means as one variable increases, 

the other decreases. This is also known as inversely 

correlated.

cov_mat = np.cov(X_std.T)

.

.

print('Eigenvalues \n%s' %eig_vals)

Step 3 in the PCA process is to compute the Eigenvectors and 

Eigenvalues related to the input dataset. These computations can be 

accomplished in one of three ways:

•	 Using the covariance matrix

•	 Using the correlation matrix

•	 Using singular value decomposition (SVD)

The covariance matrix is often used when the attribute values are 

similar, and the correlation matrix is used when attribute values are 

on different scales. However, as I explained earlier, the standardized 

covariance matrix is also equivalent to the correlation matrix, so basically 

either matrix can be used. In this code, the covariance matrix is used 

because the data has already been standardized and it is easier to compute 

the covariance matrix than the correlation matrix.

The numpy library makes it easy to compute the Eigenvectors and 

Eigenvalues. The np.linalg.eig(cov_mat) method returns these as two 

lists named eig_vecs and eig_vals. Eigenvectors and Eigenvalues are 

always paired, meaning a vector always has a value.
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A key point to realize is that the eig_vecs are the principal 

components. Principal components are new variables constructed as 

linear combinations or mixtures of the original variables. These new 

variables are uncorrelated, and the majority of information held by the 

original variables is compressed into the first few principal components. 

That is why PCA is often described as a data compression algorithm. One 

important point to stress is that principal components don’t have any 

real-world meaning because they are built from linear combinations of the 

original dataset variables. Viewing principal components from a geometric 

perspective yields the following:

Principal components represent data directions (i.e. vectors) 
that explain a maximal amount of variance.

The larger the variance carried by a vector, the larger the dispersion 

of the data points along it. In addition, the larger the dispersion along a 

vector, the more the information it carries. To simplify this concept, just 

think of principal components as new axes that provide the optimum 

angle to see and evaluate the data so that the differences between the 

observations are better visible.

Ranking the Eigenvectors in order of their Eigenvalues, highest to 

lowest, yields the principal components in order of significance.

Finally, the SVD algorithm is another computationally efficient way to 

compute Eigenvectors and Eigenvalues.

eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in

.

.

for i in eig_pairs:

    print(i[0])
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This is step 4 in the PCA process that ranks the Eigenvectors in order of 

their Eigenvalues, highest to lowest, which yields the principal components 

in order of significance. Eigenvectors with the lowest Eigenvalues contain 

the least amount of information concerning inherent data distributions.

tot = sum(eig_vals)

.

.

print('Eigenvalue ratios:%s' %cum_var_exp)

This code portion creates a list of the cumulative effect each 

Eigenvector contributes to the overall variance. Users should use this list to 

determine an optimum k value. You will shortly see in the results section 

that a k = 2 value accounts for over 95% of the variance in the dataset. This 

is a great result because the data can be easily visualized.

#Create the W matrix

matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),

                      eig_pairs[1][1].reshape(4,1)))

print('Matrix W:\n', matrix_w)

This code is step 5, which creates the W matrix that is needed for the 

final step.

# Transform the X_std dataset to the sub-space Y

Y = X_std.dot(matrix_w)

This is the sixth and final step in the PCA process where the 

standardized dataset is transformed into a k-dimensional sub-space 

named matrix Y.

x = df.loc[:,features].values

.

.

plt.show()
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This code portion creates a scatter plot showing the data points plotted 

against principal components 1 and 2. This plot should provide the user an 

excellent way to visualize the data regarding any latent data patterns that 

are not observable using ordinary 2D feature scatter plots. Recall that the 

original dataset has four features, which have now been reduced to 2D by 

the PCA algorithm, allowing for this plot to be created. A plot like this is 

one of the key reasons to use PCA for data modeling.

�PCA demonstration

First ensure that the iris.csv file is in the same directory as the script 

and that the first record in the csv file has been deleted as I discussed 

previously. The script is run by entering this command:

python pcaDemo.py

Figure 3-1 shows the univariate plots resulting from running this script.

Figure 3-1.  Univariate plots

Chapter 3  Exploration of ML data models: Part 2



147

The plots clearly indicate that the sepal values tend to more of a 

Gaussian distribution, while the petal values tend to more of a multi-

modal distribution. These observations should be kept in mind when 

considering the appropriate data models to use with this dataset. Both 

these distributions are compatible with this PCA data model.

Figure 3-2 shows the numerical results from the script.

Figure 3-2.  Numerical results

While the interim results are useful, the key result to be closely 

examined is the Eigenvalue ratios list. This list shows the cumulative 

variance percentages associated with the four principal components 

or Eigenvectors. Notice that the second value in the list is 95.8%, which 

means the first two principal components are responsible for over 95% of 

the measured variance. This means that only two vectors are responsible 

for carrying most of the dataset information. This translates to having k = 2. 
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This is a great result that will allow for a very reduced matrix to be created 

that will still represent the majority of the information contained in the 

original dataset.

Table 3-1 shows the covariance matrix from the figure, which allows 

me to comment on several concepts that you should know.

Table 3-1.  Covariance matrix

Sepal  length Sepal width Petal length Petal width

Sepal length 1.00 –0.11 0.88 0.82

Sepal width –0.11 1.00 –0.42 –0.36

Petal length 0.88 –0.42 1.00 0.97

Petal width 0.82 –0.36 0.97 1.00

The first fact to know is that each table value is also the correlation 

coefficient between the intersecting features. The main diagonal consists 

of all 1s because that is the autocorrelation coefficient or the result of 

computing a correlation on the same variable. The second fact is that 

correlation is a distributive function, meaning that the order of the 

variables is not a factor in the result. This results in a perfectly symmetric 

matrix as you can see from examining the table.

There are a few high correlation values in the table (ignoring the 

diagonal), which indicates that the dataset contains a good deal of 

redundant information. This result would also mean that a PCA would 

provide further insight into any hidden or latent patterns existing in the 

dataset, which should be of interest to the user.

Figure 3-3 is an important one for it does show the hidden patterns 

within this set.
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This figure is a scatter plot for the first two principal components that 

contribute to almost 96% of the information contained in the dataset. You 

should easily observe that the Setosa species is set apart quite distinctly 

from the other two species. The data point clusters for the two remaining 

species are adjoining but still distinguishable from each other. I know that 

observing this in a grayscale Image from the book is next to impossible, 

but take my word for it that the clusters do adjoin. These observations are 

simply not possible using the conventional 2D scatter plots as you can 

observe for yourself by reviewing the Iris dataset plots from Chapter 2.

Figure 3-3.  Principal component scatter plot
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�When to use PCA

I thought it would be a good idea to add a brief section on when to use 

PCA. PCA would be an appropriate data model selection when there is 

reason to suspect that the dataset may contain hidden or latent patterns 

not readily observable when using conventional 2D visualization 

techniques.

PCA is also helpful whenever there is a need for dimensionality 

reduction. Such reduction goes hand in hand with the following situations:

•	 Visualization of high-dimensional data.

•	 Noise reduction. Often, higher-ordered principal 

components are responsible for only small variations in 

the data.

•	 Useful for preprocessing data which will be used with 

other ML algorithms. Those algorithms can include 

those that function better with smaller dimensioned 

datasets.

•	 Useful for reducing correlations within the dataset. 

Correlated data does not add much to the overall 

information available, yet adds considerably to 

computational inefficiency.

�Linear discriminant analysis
Linear discriminant analysis (LDA) is very similar to principal component 

analysis (PCA), which I discussed in the previous section. One big 

difference is that while PCA seeks to determine those axes or principal 

components that maximize the variance in the data, LDA seeks those axes 

which maximize the separation between classes. I strongly recommend 

that you first read the PCA sections before reading the LDA sections 
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because I will use terms without explanation in these sections that I first 

introduced and explained in the PCA sections.

LDA, like PCA, is a dimensional reduction algorithm, but it is 

supervised. I will shortly go into what is meant by supervised in this 

context. LDA projects a dataset onto a lower-dimensional space while 

increasing class separability. The increased class separability reduces the 

probability of overfitting from happening. LDA also improves computation 

efficiency. The ability to limit overfitting gives LDA a distinct advantage 

over the PCA algorithm.

Because PCA and LDA appear so similar, I have included Figure 3-4 

which highlights some significant differences between these two algorithms.

Figure 3-4.  Differences between PCA and LDA

PCA is an “unsupervised” algorithm, since it does not use class labels 

and the main purpose is to compute the axes or principal components 

that will maximize the variance in a dataset. On the other hand, LDA is 

“supervised” and uses the class data in order to compute the axes or linear 

discriminants that maximize the separation between multiple classes.
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There are five steps involved with the LDA process. These are

	 1.	 Compute d-dimensional mean vectors for different 

classes from the dataset, where d is the dimension of 

feature space.

	 2.	 Compute in-between-class and within-class scatter 

matrices.

	 3.	 Compute Eigenvectors and paired Eigenvalues for 

the scatter matrices.

	 4.	 Choose k Eigenvectors corresponding to top k 

Eigenvalues to form a transformation matrix of 

dimension d x k.

	 5.	 Transform the d-dimensional feature space X 

to k-dimensional feature space X_lda via the 

transformation matrix.

�LDA script discussion
This demonstration will use the same Iris dataset used in the PCA 

demonstration. However, this script will automatically load the dataset as 

compared to the PCA script.

The following is a complete listing for a Python script named ldaTest.

py, which will accomplish a complete LDA with visualizations. There is an 

additional feature in this script that I wish to point out. Near the script’s 

end, I demonstrate how to perform an LDA using only the sklearn LDA 

module and not going through all the steps as was done in the preceding 

script portion.

As usual, I also provide additional explanatory comments for 

those code portions as needed. This script is available from the book’s 

companion web site:
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#Import required libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from sklearn.discriminant_analysis import 

LinearDiscriminantAnalysis

np.set_printoptions(precision=4)

#Read dataset

file_path = "https://raw.githubusercontent.com/bot13956/linear-

discriminant-analysis-iris-dataset/master/iris.data.csv"

df = pd.read_csv(file_path, header=None)

df.head()

#Encode categorical class labels

from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()

y = class_le.fit_transform(df[4].values)

#Standardize features

stdsc = StandardScaler()

X_train_std = stdsc.fit_transform(df.iloc[:,range(0,4)].values)

# Construct within-class covariant scatter matrix S_W

S_W = np.zeros((4,4))

for i in range(3):

    S_W += np.cov(X_train_std[y==i].T)

#Construct between-class scatter matrix S_B

N=np.bincount(y) # number of samples for given class

vecs=[]
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[vecs.append(np.mean(X_train_std[y==i],axis=0)) for i in 

range(3)] # class means

mean_overall = np.mean(X_train_std, axis=0) # overall mean

S_B=np.zeros((4,4))

for i in range(3):

    �S_B += N[i]*(((vecs[i]-mean_overall).reshape(4,1)).

dot(((vecs[i]-mean_overall).reshape(1,4))))

# Compute sorted eigenvalues and eigenvectors of

# inverse(S_W)dot(S_B)

eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).

dot(S_B))

eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i 

in range(len(eigen_vals))]

eigen_pairs = sorted(eigen_pairs,key=lambda k: k[0], 

reverse=True)

print('Eigenvalues in decreasing order:\n')

for eigen_val in eigen_pairs:

    print(eigen_val[0])

# Plot the main LDA components

tot = sum(eigen_vals.real)

discr = [(i / tot) for i in sorted(eigen_vals.real, 

reverse=True)]

cum_discr = np.cumsum(discr)

plt.bar(range(1, 5), discr, width=0.2,alpha=0.5, align='center'

,label='individual "discriminability"')

plt.step(range(1, 5), cum_discr, where='mid',label='cumulative 

"discriminability"')

plt.ylabel('Discriminant ratio')

plt.xlabel('Linear Discriminants')

plt.ylim([-0.1, 1.1])

Chapter 3  Exploration of ML data models: Part 2



155

plt.legend(loc='best')

plt.show()

#Project original features onto the new feature space

W=np.hstack((eigen_pairs[0][1][:, ].reshape(4,1),eigen_pairs[1]

[1][:, ].reshape(4,1))).real

X_train_lda = X_train_std.dot(W)

# List and plot transformed features in LDA sub-space

data=pd.DataFrame(X_train_lda)

data['class']=y

data.columns=["LD1","LD2","class"]

data.head()

markers = ['s', 'x','o']

sns.lmplot(x="LD1", y="LD2", data=data, markers=markers,fit_

reg=False, hue='class', legend=False)

plt.legend(loc='upper center')

plt.show()

#LDA implementation using scikit-learn

lda = LinearDiscriminantAnalysis(n_components=2)

X_train_lda = lda.fit_transform(X_train_std, y)

# List and plot the scikit-learn LDA results

data=pd.DataFrame(X_train_lda)

data['class']=y

data.columns=["LD1","LD2","class"]

data.head()

markers = ['s', 'x','o']

colors = ['r', 'b','g']

sns.lmplot(x="LD1", y="LD2", data=data, hue='class', 

markers=markers,fit_reg=False,legend=False)

plt.legend(loc='upper center')

plt.show()
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The following are explanatory discussions concerning various code 

segments in the preceding script which introduce new concepts not 

covered in the PCA sections. In addition, I will only show the beginning 

and ending of the code segments to save space, unless the code is three 

lines or less.

from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()

y = class_le.fit_transform(df[4].values)

The class string values are converted into numeric values for easier 

handling in the script. The sklearn LabelEncoder module accomplishes 

this task.

S_W = np.zeros((4,4))

for i in range(3):

    S_W += np.cov(X_train_std[y==i].T)

A 4 x 4 matrix S_W is created that represents within-class covariances.

N=np.bincount(y) # number of samples for given class

.

.

mean_overall).reshape(4,1)).dot(((vecs[i]-mean_overall).

reshape(1,4))))

A 4 x 4 matrix S_W is created that represents between-class 

covariances.

eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).

dot(S_B))

.

.

for eigen_val in eigen_pairs:

    print(eigen_val[0])
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Compute and sort Eigenvectors and Eigenvalues. The sorted 

Eigenvalues are also listed to the screen.

tot = sum(eigen_vals.real)

.

.

plt.show()

plots the main LDA components.

W=np.hstack((eigen_pairs[0][1][:, ].reshape(4,1),eigen_pairs[1]

[1][:, ].reshape(4,1))).real

X_train_lda = X_train_std.dot(W)

projects the original features onto the new feature space.

data=pd.DataFrame(X_train_lda)

.

.

plt.show()

plots the transformed features into LDA sub-space.

lda = LinearDiscriminantAnalysis(n_components=2)

X_train_lda = lda.fit_transform(X_train_std, y)

Implement LDA using scikit-learn.

data=pd.DataFrame(X_train_lda)

.

.

plt.show()

Plot the scikit-learn LDA results.
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�LDA demonstration

The script is run by entering this command:

python ldaTest.py

Figure 3-5 shows the sorted Eigenvalues resulting from running this 

script. You can clearly see that the top two are the only significant values, 

which also confirm the PCA results for the Iris dataset.

Figure 3-5.  Sorted Eigenvalues

Figure 3-6 is a plot of the relative magnitudes of the linear 

discriminants.
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The plot is quite skewed due to the huge value of the first linear 

discriminant as compared to the other three. It is over 99% greater than the 

second linear discriminant, which is shown as a line in the plot instead of 

a bar. The remaining one is too negligible to be plotted as you may discern 

by examining the Eigenvalues from Figure 3-5.

Figure 3-7 is a plot of the transformed Iris dataset against the first two 

linear discriminants.

Figure 3-6.  Plot of relative magnitudes for linear discriminants
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The important takeaway from this plot is that each of the Iris classes 

that are now represented by numbers in this plot is distinctly separated 

along the linear discriminant 1 (LD1) axis. This is always an optimum 

result when applying the LDA algorithm. You should compare this figure 

with Figure 3-3 from the PCA section to see how close they are to each 

other. From my visual interpretation, I would say that the LDA plot shows 

more separation between classes than the PCA plot, but it is a close call.

Figure 3-8 is a plot of the result of using the sklearn LDA module.

Figure 3-7.  Plot of the transformed Iris dataset
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You might consider using this module as a one-step process because 

all the interim results are not readily available. Nonetheless, the plotted 

results are quite acceptable and reasonable close to the results obtained by 

following the step-by-step process.

�Comparison of PCA and LDA

I created Figure 3-9, which is a composite plot showing Figures 3-3 and 3-7 

side by side to highlight the similarities and differences between the two 

subject algorithms.

Figure 3-8.  Plot of the results from the sklearn LDA module
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Figure 3-9 confirms what has already been discussed. PCA accounts 

for the most variance in the whole dataset, while LDA gives us the axes that 

account for the most variance between the individual classes.

�Support vector machines
A support vector machine (SVN) data model is focused on classification 

and to a lesser extent on prediction. The prime SVM objective is to 

determine the best or optimum boundary that can split data into at least 

two dimensions (2D). When dealing with more than 2D, the splitting 

boundary is called a separating hyperplane. The “best” hyperplane is one 

that creates the widest margins between support vectors. A hyperplane is 

also commonly referred to as a decision boundary.

I believe the best way to convey the basic concepts of a SVM is 

through a combination of intuitive discussion with graphics. SVMs can be 

described in purely mathematical terms, but the math rapidly becomes 

complex and obviously non-intuitive.

Figure 3-9.  PCA and LDA comparison plots
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This initial discussion only concerns a linear SVM data model. I will 

cover the non-linear SVM model after part 1 of the demonstration.

I will start with a simple plot of only six data points, which are divided 

into two classes of three points each. Figure 3-10 shows these data points.

Figure 3-10.  Example data points

If a new data point was added to the plot, it would intuitively be 

categorized as belonging to the class it was nearest. Of course, applying 

the KNN data model could accomplish that task easily. The issue with 

using the KNN model is that the Euclidean distance must be calculated for 

every single data point. This is not a problem for this tiny dataset; however, 

KNN does not scale up very well when dealing with large datasets, despite 

being fairly reliable and accurate. The SVM changes the whole viewpoint 

because it best fits a hyperplane to divide the dataset. Once the decision 

boundary is computed, any new data is automatically classified depending 

on its boundary side location. The decision boundary remains fixed 

unless the dataset is re-trained. All this means is the SVM easily scales to 

accommodate new data unlike the KNN model.

The natural question now arises on how is the best dividing 

hyperplane determined? It can be “eye-balled” as shown in Figure 3-11.
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The dividing line, which technically is the 2D projection of the 

hyperplane, looks about right. However, the new issue is how to find the 

support vectors? The key to finding the support vectors is to realize that 

closest class data points to the decision boundary will also be part of the 

support vectors. Figure 3-12 shows the graphical rendering for the SVM 

support vectors for this example.

Figure 3-12.  Support vectors

Figure 3-11.  "Eye-balled" hyperplane
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Maximally separated lines running through the support vector 

data points are next created. The position of the decision boundary is 

determined by the total width, W, as shown in Figure 3-13.

Figure 3-13.  Total width determination

Now, simply divide W by 2 and the location of the decision boundary is 

now fixed. This is shown in Figure 3-14.

Figure 3-14.  Determine the location for the decision boundary
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Figure 3-15 is a graphical intuition for the SVM model, showing the 

distance to be maximized between the support vectors and the decision 

boundary.

Figure 3-15.  Intuitive graph illustrating the distance to be 
maximized

Looking at the figure, it can now be stated that any point to the left of 

the decision boundary/separating hyperplane is in the black dot class, 

while any data point to the right is in the red plus sign class.

The preceding was an easy introduction to SVM without using math or 

code. The following is a demonstration showing how SVM can be used in a 

beneficial way.

�SVM demonstration – Part 1
This demonstration uses sklearn’s SVM module. Consequently, there is no 

need for step-by-step code development as was the case for the previous 

data models in this chapter. This code uses another classic dataset titled 

Breast Cancer Wisconsin (Diagnostic) Data Set. It is a multivariate dataset 

with 30 attributes taken from 569 breast cancer needle biopsies. The 

attributes are cellular descriptions for both healthy and malignant cells. 
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Essentially, there will be two classes involved in the dataset, those patients 

with malignant cells and those free of them. This dataset is part of sklearn’s 

organic dataset, and there is no need to do an explicit download. The 

dataset is directly imported within the script.

The ultimate objective for this SVM demonstration is to determine 

the probability that a test record is healthy or not given a specific set of 

attributes.

This script is named svmDemo1.py and is available from the book’s 

companion web site. I have not included any additional comments 

because the script is short and the included comments I feel are adequate 

to explain the code.

# Import required libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report

# Import dataset into a variable named 'cancer'

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

# Load input features as a DataFrame

df_features = pd.DataFrame(cancer['data'], columns = 

cancer['feature_names'])

# Add output variable 'target' into a DataFrame

df_target = pd.DataFrame(cancer['target'], columns = 

['Cancer'])
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# Display the first 5 records

print(df_features.head())

# Split the dataset, 70% to train, 30% to test

X_train, X_test, y_train, y_test = train_test_split(df_

features, np.ravel(df_target), test_size=0.30, random_

state=101)

# Instantiate the SVC model. SVC is the sklearn classifier 

name.

model = SVC()

# Train the model using the fit method

model.fit(X_train, y_train)

# Test the model using the test dataset

predictions = model.predict(X_test)

# Display the prediction results

print(classification_report(y_test, predictions))

The script is run by entering this command:

python svmDemo1.py

Figure 3-16 shows the results of running the script.
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The first thing you should note is the head result, which shows 

portions of the first five records in the dataset. There are 30 attributes, 

which means this is a high-dimensional dataset that a linear hyperplane is 

attempting to separate. That fact alone should raise warning bells for you. 

It is about impossible to visualize any single plane that could effectively 

separate these many data points, especially where many have similar 

scale. This reality is borne out in the prediction results where the weighted 

average is 0.38. This is a dismal result that means that only 38% of the test 

data was correctly predicted. You could have done much better in the long 

run by simply flipping a coin. What can be done to improve this result? The 

answer is contained in the following discussion.

�SVM demonstration – Part 2
There is a technique used in SVM known as the kernel “trick,” which was 

developed to handle high-dimensional datasets, such as the breast cancer 

one used in this demonstration. This trick is really not a trick in the sense 

Figure 3-16.  svmDemo1 results
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it is “underhanded” or “devious” but is only intended to accommodate 

high-dimensional datasets. When data points are not linearly separable 

in a p-dimensional or finite space, it was proposed to map this space into 

a much higher-dimensional space. Customized, non-linear hyperplanes 

can then be constructed using the kernel trick. Every SVM kernel holds a 

non-linear kernel function. This function helps build a high-dimensional 

feature space. There are many kernels that have been developed and others 

currently being researched. This is an extremely active area of research.

I will use an intuitive/graphical approach in explaining the non-linear 

kernels as I did for the basic SVM concepts because the underlying math 

for this subject is far too complex and detailed for inclusion in this book.

In Figure 3-17, there are x and o data points in the left-hand side 

that clearly cannot be separated by a linear plane or line for the 2D case. 

However, if the data points are transformed by some function∅, they can 

be easily separated as shown in the right-hand side of the figure.

Figure 3-17.  Transformed dataset

The main idea is to improve class linear separation by mapping the 

original dataset to a higher-dimensional space. In Figure 3-18, the original 

data points in the upper left side of the figure cannot be separated by a 

linear function. They can be separated after being mapped by a quadratic 

function as can be observed by the plot on the right-hand side.
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Figure 3-19 presents another problem where the decision boundary is 

not readily apparent. The question is what decision function can be used 

to separate these data points?

Figure 3-18.  Dataset transformed by a quadratic function

Figure 3-19.  Problematic dataset

The answer to this problem is using polar coordinates as can be seen in 

Figure 3-20.
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SVM has the following kernels that solve the non-linear dataset 

problem:

Polynomial kernel – This kernel implements this equation

K x x x xi j i j

p
,( ) = * +( )1

where p = tunable parameter. Also note that evaluating K only requires 1 

addition and 1 exponentiation over the original dot product.

Radial basis function (rbf) – This kernel implements this equation

K x x ei j

x xi j

,( ) = -
-

*

2

22 s

The rbf is also known as the Gaussian function. Figure 3-21 shows an 

application of the Gaussian function to an example dataset.

Figure 3-20.  Resolved problematic dataset
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Sigmoid function – This is the sigmoid function, which is also used as 

an activation function in other data models.

The following script is named svmDemo2.py and is available from the 

book’s companion web site. The listing only shows the additional code, 

which must be appended to the existing svmDemo1.py script. I have 

included some explanatory comments after the code.

# Gridsearch

param_grid = {'C':[0.1, 1, 10, 100, 1000], 'gamma':[1, 0.1, 

0.01, 0.001, 0.0001], 'kernel':['rbf']}

from sklearn.model_selection import GridSearchCV

grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=3)

grid.fit(X_train, y_train)

print('\n')

Figure 3-21.  Gaussian function application
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print('The best parameters are ', grid.best_params_)

grid_predictions = grid.predict(X_test)

from sklearn.metrics import classification_report

print(classification_report(y_test, grid_predictions))

These are explanatory comments regarding the new code contained in 

this script.

param_grid = {'C':[0.1, 1, 10, 100, 1000], 'gamma':[1, 0.1, 

0.01, 0.001, 0.0001], 'kernel':['rbf']}

Three important SVM parameters of kernel, C, and gamma are set in 

this statement. The kernel parameter has these options:

•	 linear – Used when the dataset is amenable for linear 

hyperplane separation

•	 rbf – Non-linear hyperplane

•	 poly – Non-linear hyperplane

The C parameter is used in the training phase to specify how much 

data outliers are taken into account in computing support vectors. A low 

value for C smooths the decision surface, while a high value permits the 

SVM model to select more samples as support vectors.

The gamma parameter defines how far the influence of a single training 

example reaches, with low values meaning “far” and high values meaning 

“close.” The gamma parameter may be interpreted as the inverse of the 

radius of influence of samples selected by the model as support vectors.

Selecting the appropriate parameters is mainly based on the dataset 

properties. In this case, the rbf is a good choice for the high-dimensional 

dataset. Choosing values for C and gamma is a tricky proposition. 

Fortunately, sklearn provides an iterative approach to selecting these 

parameters.
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from sklearn.model_selection import GridSearchCV

grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=3)

grid.fit(X_train, y_train)

print('\n')

print('The best parameters are ', grid.best_params_)

grid_predictions = grid.predict(X_test)

The GridSearchCV module generates a grid search object with cross-

validation. Two tasks are being done in this code with the dataset, those 

being cross-validation and (hyper)parameter tuning. Cross-validation 

is the process of the model using one set of data and testing it using a 

different set. Parameter tuning is the process of selecting the values for 

a model’s parameters that maximize the accuracy of the model. The 

object named grid now contains optimum values for both C and gamma 

parameters resulting from the iterative grid search process. The optimum 

parameter values are displayed, and a new set of predictions are made 

using the optimized parameters.

from sklearn.metrics import classification_report

print(classification_report(y_test, grid_predictions))

The accuracy of the predictions is confirmed using the 

classification_report module imported from sklearn’s metrics library. 

Recall that I have used this module before in other demonstrations.

The script is run by entering this command:

python svmDemo2.py

Figure 3-22 shows the results of running the script.
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The first thing you likely noticed in this figure is the scroll of interim 

results appearing from the top. This scroll is just a small portion of the 75 

steps that were done to compute the final optimized parameters. The last 

line in the scroll shows that the final values are

kernel = rbf, gamma = 0.0001 and C = 1000.

Obviously, the kernel specification did not change during the 

iterations, but the other too certainty did. I did review this scroll 

and determined that the gamma value seemed to influence the final 

accuracy the most. It wound, being a tiny value, which meant that the 

radius of influence of samples selected by the model of support vectors 

was substantial, that is, maximum data points were included in the 

determination of the support vectors.

The weighted average accuracy displayed on the last line of the 

results is 0.95 or 95% accuracy. This is a great result and an enormous 

improvement over the awful 38% result from part 1 of the demonstration. 

Figure 3-22.  svmDemo2 results
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This result just proves that it is extremely important to use only an 

appropriate data model that “fits” the original dataset and that any tuning 

parameters must be optimally adjusted.

�Learning vector quantization
I will begin this discussion by first crediting Dr. Jason Brownlee for his fine 

August 2018 blog titled “How to Implement Learning Vector Quantization 

from Scratch with Python” from which much of the code and key concepts 

in this section are based. I have used Jason’s blogs in previous discussions, 

and I find his tutorials very clear and illuminating. I highly recommend 

you check out his blogs, articles, and e-books.

The learning vector quantization (LVQ) is similar to the k-NN 

algorithm where predictions are made by finding the closest match to 

an existing data pattern. The significant difference between the two is 

that k-NN uses the actual training patterns, while LVQ creates a library of 

patterns from the training data.

The library of patterns is called a codebook of vectors, and each 

pattern in the library is called a codebook. Codebook vectors are initialized 

to randomly selected values from the training dataset. Then, over a 

number of epochs or training cycles, they are modified to optimally 

summarize the training data through the use of a learning algorithm. 

This learning algorithm processes one training record at a time by finding 

the optimum match among the codebook vectors. The training record is 

modified so that it is “closer” to the codebook vector if they are both from 

the same class or moved “further away” if they are from different classes. 

I will shortly explain the distance metaphor to help clarify this concept of 

moving closer or further away from data items.

Predictions only commence after all the codebook vectors have been 

processed. Predictions are made using the k-NN algorithm with k = 1.
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�LVQ basic concepts
The first item that needs to be discussed is the dataset that will be used in 

all the following sections, including the demonstration. The dataset is a 

collection of numerical records resulting from radar “soundings” of Earth’s 

atmosphere. Each record describes properties of the return radar signal, 

which might include significant measurements of the ionosphere. The 

purpose of the data model is to predict whether or not a particular record 

contains any significant ionosphere measurements.

There are 351 records in the dataset with each record containing 34 

numerical data points. These points are grouped into 17 pairs for every 

radar return signal with numerical value range of 0 to 1 for each value. The 

target class has attribute values of “g” for good or “b” for bad.

The dataset is named inosphere.csv, and it can be downloaded from

https://archive.ics.uci.edu/ml/datasets/Ionosphere

�Euclidean distance

The concept to be discussed is that of Euclidean distance. I realized I have 

used this term in previous discussions, and it sometimes means different 

things depending on the context. In this case, the ionosphere dataset is 

composed of rows of numbers. The Euclidean distance is defined as the 

square root of the sum of the squared differences between the two vectors 

where the vectors are constituted from the row data. The equation for the 

distance measurement is

distance x x
i

N

i i= -( )å 1 2

2

, ,

where

x1 = first row of data

x2 = second row of data
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i = column index

N = number of columns (attributes)

The smaller the Euclidean distance, the more similar the two data 

records are. Conversely, the larger the distance, the more dissimilar the 

records are. If the distance is 0, then the records are identical.

�Best matching unit

The best matching unit (BMU) is the codebook vector that is most 

similar to a new data record. Locating the BMU for a new record requires 

that the Euclidean distance be computed between the new record and 

every codebook vector. That is done using the distance measurement 

discussed previously. Once that is done, all the distances are sorted and 

the codebook vector associated with the least distance value is the most 

similar to the new record.

The preceding described process is the same way predictions are done 

with LVQ. The KNN algorithm with k = 1 is used to locate the most similar 

codebook vector to the unknown record. The associated class value of “g” 

or “b” is returned.

�Training codebook vectors

The first step in training the codebook vectors is to initialize all the 

vectors with patterns constructed from random features found in the 

training dataset. Once initialized, the vectors must be modified to 

optimally summarize the training dataset. These modifications happen 

in an iterative fashion. At the top level, the process is repeated for a fixed 

number of epochs using the complete training set. Within each epoch, 

each training pattern is used only once to update the cookbook vectors. 

A BMU is detected for every training pattern and updated. Any difference 

between the training pattern and the BMU is computed and recorded as 

an error. Class values for the BMU and training pattern are then compared, 
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and if found, matching will cause the recorded error to be added to the 

BMU, which brings it “closer” to the training pattern. Conversely, if the 

class values do not match, then the error is subtracted, which causes the 

BMU to be “pushed” further from the training pattern.

The learning rate (LR) parameter controls how much the BMU is 

adjusted. This parameter is a weighting factor that affects the change 

amount applied to all BMUs. For example, if the LR is 0.20 or 20%, this 

would mean only 20% of the detected error would be applied to the 

BMU. In addition, the LR itself is adjusted so that it has maximum effect 

during the first epoch and a lesser effect in subsequent epochs. This 

diminishing effect is called linear decay learning rate schedule and is also 

widely used for artificial neural networks.

�LVQ demonstration
Before starting my customary demonstration, I thought it would be 

appropriate to introduce the Zero Rule algorithm. It is usually impossible 

to determine which data model will work best for your particular problem 

domain before actually trying various models. Consequentially, it is 

important to create a performance baseline when starting the work on 

your problem. A baseline performance provides a reference, which can 

be used as a comparison with any data models applied to the problem. 

Without a baseline, it is impossible to realize how well a particular model 

has achieved. Baselines for both classification and regression are created 

by the Zero Rule algorithm, which is also known as ZeroR or 0-R.

Categorical values are predicted in a classification prediction model. 

The Zero Rule algorithm predicts the class value that has the most 

observations in the training dataset. I will demonstrate how to apply 

the Zero Rule algorithm to the ionosphere dataset using the Waikato 

Environment for Knowledge Analysis (Weka) suite of machine learning 
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software. The main user interface is called the Explorer. Weka is a Java-

based application that can be run as a jar file on the RasPi. Weka may be 

downloaded from

https://sourceforge.net/projects/weka/

In order to use the ionosphere dataset, it must be in an arff format. The 

dataset titled ionosphere.arff can be downloaded from this page:

https://github.com/renatopp/arff-datasets/find/master

Before running the application, ensure that the ionosphere.arff is in the 

same directory as the Weka jar file. The application is then started by entering 

this command. Note that Weka is also available to download with the exe 

extension for Windows so you can use the installer for installing Weka.

java -jar weka.jar

The following seven steps should be followed to obtain the baseline 

results:

	 1.	 Start the Weka GUI Chooser.

	 2.	 Click the “Explorer” button to open the Weka 

Explorer interface.

	 3.	 Load the ionosphere dataset ionosphere.arff file.

	 4.	 Click the “Classify” tab to open the classification tab.

	 5.	 Select the ZeroR algorithm (it should be selected by 

default).

	 6.	 Select the “Cross-validation” Test options (it should 

be selected by default).

	 7.	 Click the “Start” button to evaluate the algorithm on 

the dataset.
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The ZeroR algorithm predicts the “g” value for all instances as it is 

the majority class, and achieves an accuracy of 64.1%. For any machine 

learning algorithm to demonstrate that it has a better performance on this 

problem, it must achieve an accuracy better than this value.

The following script implements all the concepts presented in the 

basic concepts section. It is named lvqDemo.py and is available from 

the book’s companion web site. I also present additional explanatory 

comments after the listing. Remember to make the dataset available in csv 

extension for being compatible with the code.

Figure 3-23.  Weka Explorer results

The Weka Explorer results are shown in Figure 3-23.
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# LVQ for the ionosphere dataset

from random import seed

from random import randrange

from csv import reader

from math import sqrt

# Load a CSV file

def load_csv(filename):

      dataset = list()

      with open(filename, 'r') as file:

            csv_reader = reader(file)

            for row in csv_reader:

                   if not row:

                         continue

                   dataset.append(row)

      return dataset

# Convert string column to float

def str_column_to_float(dataset, column):

      for row in dataset:

            row[column] = float(row[column].strip())

# Convert string column to integer

def str_column_to_int(dataset, column):

      class_values = [row[column] for row in dataset]

      unique = set(class_values)

      lookup = dict()

      for i, value in enumerate(unique):

            lookup[value] = i

      for row in dataset:

            row[column] = lookup[row[column]]

      return lookup
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# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

      dataset_split = list()

      dataset_copy = list(dataset)

      fold_size = int(len(dataset) / n_folds)

      for i in range(n_folds):

            fold = list()

            while len(fold) < fold_size:

                   index = randrange(len(dataset_copy))

                   fold.append(dataset_copy.pop(index))

            dataset_split.append(fold)

      return dataset_split

# Calculate accuracy percentage

def accuracy_metric(actual, predicted):

      correct = 0

      for i in range(len(actual)):

            if actual[i] == predicted[i]:

                   correct += 1

      return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

      folds = cross_validation_split(dataset, n_folds)

      scores = list()

      for fold in folds:

            train_set = list(folds)

            train_set.remove(fold)

            train_set = sum(train_set, [])

            test_set = list()

            for row in fold:
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                   row_copy = list(row)

                   test_set.append(row_copy)

                   row_copy[-1] = None

            predicted = algorithm(train_set, test_set, *args)

            actual = [row[-1] for row in fold]

            accuracy = accuracy_metric(actual, predicted)

            scores.append(accuracy)

      return scores

# calculate the Euclidean distance between two vectors

def euclidean_distance(row1, row2):

      distance = 0.0

      for i in range(len(row1)-1):

            distance += (row1[i] - row2[i])**2

      return sqrt(distance)

# Locate the best matching unit

def get_best_matching_unit(codebooks, test_row):

      distances = list()

      for codebook in codebooks:

            dist = euclidean_distance(codebook, test_row)

            distances.append((codebook, dist))

      distances.sort(key=lambda tup: tup[1])

      return distances[0][0]

# Make a prediction with codebook vectors

def predict(codebooks, test_row):

      bmu = get_best_matching_unit(codebooks, test_row)

      return bmu[-1]

# Create a random codebook vector

def random_codebook(train):

      n_records = len(train)

      n_features = len(train[0])
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      �codebook = [train[randrange(n_records)][i] for i in 

range(n_features)]

      return codebook

# Train a set of codebook vectors

def train_codebooks(train, n_codebooks, lrate, epochs):

      �codebooks = [random_codebook(train) for i in range 

(n_codebooks)]

      for epoch in range(epochs):

            rate = lrate * (1.0-(epoch/float(epochs)))

            for row in train:

                   bmu = get_best_matching_unit(codebooks, row)

                   for i in range(len(row)-1):

                         error = row[i] - bmu[i]

                         if bmu[-1] == row[-1]:

                               bmu[i] += rate * error

                         else:

                               bmu[i] -= rate * error

      return codebooks

# LVQ Algorithm

def learning_vector_quantization(train, test, n_codebooks, 

lrate, epochs):

      �codebooks = train_codebooks(train, n_codebooks, lrate, 

epochs)

      predictions = list()

      for row in test:

            output = predict(codebooks, row)

            predictions.append(output)

      return(predictions)

# Test LVQ on ionosphere dataset

seed(1)

Chapter 3  Exploration of ML data models: Part 2



187

# load and prepare data

filename = 'ionosphere.csv'

dataset = load_csv(filename)

for i in range(len(dataset[0])-1):

      str_column_to_float(dataset, i)

# convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

# evaluate algorithm

n_folds = 5

learn_rate = 0.3

n_epochs = 50

n_codebooks = 20

scores = evaluate_algorithm(dataset, learning_vector_

quantization, n_folds, n_codebooks, learn_rate, n_epochs)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The following are additional comments regarding the preceding code 

for those portions not readily understandable. In addition, I will only show 

three or less lines of code (except for the main portion) prior to discussing 

what is happening within the code portion.

# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

.

.

      return dataset_split

This method implements a n-fold cross-validation process that I have 

already discussed in Chapter 1. Please refer back to that chapter to refresh 

yourself on this process.
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# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

.

.

    return scores

applies the LVQ algorithm to the n-fold cross-validated dataset. This 

method is designed to use other algorithms if so desired.

# Locate the best matching unit

def get_best_matching_unit(codebooks, test_row):

.

.

      return distances[0][0]

finds the BMU for the test_row argument. This method implements the 

process described in the BMU section.

# Train a set of codebook vectors

def train_codebooks(train, n_codebooks, lrate, epochs):

.

.

      return codebooks

trains the codebook vectors. This method implements the process 

described in the training codebook vectors section.

# LVQ Algorithm

def learning_vector_quantization(train, test, n_codebooks, 

lrate, epochs):

.

.

      return(predictions)
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This is the actual LVQ algorithm. It is not much in the sense it just 

calls other methods that implement the basic LVQ concepts. The dataset 

is required to be preprocessed before this method is called as are the 

codebook vectors.

# Test LVQ on ionosphere dataset

seed(1)

# load and prepare data

filename = 'ionosphere.csv'

dataset = load_csv(filename)

.

.

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

This is the main code portion where all the steps required to carry out 

an entire LVQ data model are processed. All the code that preceded this 

portion were function definitions that implement various steps in the LVQ 

process. The main body of code calls the methods in the order required to 

fully process the LVQ algorithm and display the final results.

The script is run by entering this command:

python lvqDemo.py

Figure 3-24 shows the results of running this script.

Figure 3-24.  lvqDemo results
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The figure shows that the mean accuracy for this LVQ data model is 

87.1%, which is a substantial improvement beyond the Zero Rule estimate 

of 64.1%. This result confirms that the LVQ model is a good one to use with 

the ionosphere dataset and can make reasonably accurate predictions.

�Bagging and random forests
I will begin this discussion by again crediting Dr. Jason Brownlee for a 

series of great blogs regarding bagging and random forests. These blogs are 

April 2016 “Bagging and Random Forest Ensemble Algorithms for Machine 

Learning,” November 2016 “How to Implement Bagging from Scratch with 

Python,” and November 2016 “How to Implement Random Forest from 

Scratch in Python.” Much of the code and key concepts in this section are 

based on the aforementioned blogs; however, I do add my own comments 

and detailed explanations in those areas that warrant it, which I believe 

should be helpful for inexperienced readers.

�Introduction to bagging and random forest
Random forest is a popular algorithm and is a type of ensemble ML 

algorithm called bootstrap aggregation or bagging for short. I will first 

discuss what is meant by the word bootstrap. It is a statistical process 

designed to estimate some measurement or metric from a dataset.  

A simple example should help clarify this concept.

If the dataset has 100 sample values for some variable x, then the mean 

is easy to calculate as

mean x
x( ) = å

100
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However, there is likely to be some estimation error in this calculation, 

which may be improved using the bootstrap process as listed as follows:

	 1.	 Create many (e.g., 1000) random subsamples of the 

dataset with replacement (meaning the same value 

can be used multiple times).

	 2.	 Calculate the mean of each new subsample.

	 3.	 Calculate the average for all of the new means and 

use that as the new estimated mean for the dataset.

This process may also be extended to estimate other metrics such as 

standard deviation.

�Bootstrap aggregation (bagging)

Bagging is an ensemble process that combines predictions collected from 

multiple ML algorithms into one more accurate prediction than would 

be possible from any single ML prediction. It is basically a synergistic 

prediction approach where a group of algorithms is more powerful than 

any single member of the group. Using bagging reduces variance for 

those algorithms subject to that such as classification and regression trees 

(CART). For example, decision trees are sensitive to the selected data used 

to create a tree. A particular tree trained on one data sub-set could easily 

provide different predicted results if it was trained on another data sub-set 

other than the original one. The following generic bagging process could 

be used to improve CART prediction accuracy:

	 1.	 Create many (e.g., 100) random subsamples of the 

dataset with replacement.

	 2.	 Train a CART model on each new sample.

	 3.	 Given a new dataset, calculate the average 

prediction from each model.
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Decision trees used with a bagging process would necessarily be 

deep, meaning that only a few training samples would be attached at each 

leaf node. Such a tree would have high variance but also low bias. Please 

refer to my previous discussion on decision trees in Chapter 2 to refresh 

yourself on these terms. The key point to be mindful of is that bagging is 

only concerned with the number of samples and, in this case, the number 

of trees. This process is also quite tolerant of overfitting, and a large 

number of models can be run without introducing too much error, if at 

all. The only issues would be time to prepare the models and perform the 

computations.

�Random forest

The random forest was developed to improve the performance of bagging 

with decision trees. One big issue with decision tree produced by CART 

is that they are greedy in the sense they choose the variable on which to 

split using a greedy algorithm that tries to minimize error. This makes total 

sense for the CART algorithm, but is a problem for the bagging process. 

Decision trees may often contain similar data structures, which can lead 

to high correlation in the subsequent predictions. Bagging performs better 

if predictions are made from sub-sets (sub-trees), which are relatively 

uncorrelated. The random forest alters the way sub-sets are learned in 

effort to improve the prediction accuracy. Making all the sub-sets less 

correlated is necessary to achieve this goal.

The random forest modification to the CART algorithm is fairly simple. 

In the unmodified CART algorithm, the learning portion is permitted 

to test all variables (features) in order to select the optimum split point. 

Random forest changes this procedure so that the learning portion is now 

limited to a random sample of variables to test. The number of variables 

that can be tested at each split point is also set as a parameter m to the 

learning algorithm. For random forest classification problem, setting m to 

the square root of p is recommended, where p is the number of features in 

the dataset.
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�Performance estimation and variable importance

When bootstrap samples are made, there will be data samples left out 

of the sub-set. These samples are known as out-of-bag (OOB) samples. 

An accuracy estimation for the bagged models can be made if the OOB 

samples are averaged. This estimated performance is often called the OOB 

estimate of performance. Such performance measures are a reliable test 

error estimate and correlate well with cross-validation estimates.

It can be calculated how much the error function drops for each 

additional variable at each split point as the bagged decision trees are 

constructed. In regression problems, this could be the drop in sum 

squared error, and for classification problems, this could be the Gini score.

These error drops may be averaged across all decision trees and 

output to provide an estimate of the importance of each input variable. 

The greater the error drop when the variable was selected, the greater the 

importance. These outputs can help identify input variable sub-sets that 

may be most relevant to the problem and likely candidates for removal 

(least relevant) from the dataset.

�Bootstrap resampling demonstration
This demonstration will show how the bootstrap process functions.  

A factitious dataset of random numbers is first created from which 

various sized sub-sets are derived. Means from each of these sub-sets are 

then calculated, and the average of the sub-set means is then compared 

to the original dataset overall mean value.

The complete script for this test is named bootstrapDemo.py and 

is available from this book’s companion web site. The script code is 

straightforward and requires no additional comments other than what has 

already been included.
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# Import required libraries

from random import seed

from random import random

from random import randrange

# Create a random sub-set from the dataset with replacement.

def subsample(dataset, ratio=1.0):

      sample = list()

      n_sample = round(len(dataset) * ratio)

      while len(sample) < n_sample:

            index = randrange(len(dataset))

            sample.append(dataset[index])

      return sample

 # Calculate the mean of a list of numbers.

def mean(numbers):

      return sum(numbers) / float(len(numbers))

seed(1)

# Calculate the true mean.

# The original dataset has 20 rows with a single random

# number 0 to 9 in each row.

dataset = [[randrange(10)] for i in range(20)]

print('True Mean: %.3f' % mean([row[0] for row in dataset]))

# Calculate and display the estimated means from the different

# sized sub-sets.

ratio = 0.10

for size in [1, 10, 100]:

      sample_means = list()

      for i in range(size):

            sample = subsample(dataset, ratio)

            sample_mean = mean([row[0] for row in sample])
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            sample_means.append(sample_mean)

      print('Samples=%d, Estimated Mean: %.3f' % (size, 

mean(sample_means)))

The script is run by entering the following command:

python bootstrapDemo.py

Figure 3-25 shows the result from running this script.

Figure 3-25.  bootstrapDemo results

You should be able to see that the estimated mean values are starting 

to converge to the true mean value as the number of samples in each sub-

set increases.

�Bagging demonstration
This demonstration has the decision tree data model within the script. 

Bootstrap data aggregation or bagging is being applied to the model in an 

effort to improve the overall prediction accuracy.

The dataset being used is titled sonar-data.csv and is a collection of 

numerical records resulting from processed sonar “soundings” from within 

an ocean environment. Each record describes properties of the returns from 

a sonar system’s chirp signals. There are 60 input variables or features, which 

are measurements of the return signal strength at different transmitted 
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angles. This is a binary classification problem because the model is designed 

to differentiate rocks (R) from mines (M). There are 208 records in this 

dataset. All of the variables are continuous with a nominal range of 0 to 1. 

The output variable (class) is either a “M” for mine or a “R” for rock. These 

variables are converted into integers 1 or 0, respectively, by the script.

The dataset is named sonar.all-data.csv, and it can be downloaded 

from https://archive.ics.uci.edu/ml/datasets/Connectionist+ 

Bench+(Sonar,+Mines+vs.+Rocks). Make sure to change the extension of 

the downloaded file to csv.

I have named the script baggingDemo.py, and it is available from the 

book’s companion web site. In addition, for a change of pace, I have elected 

to not include any further explanatory comments because the script is 

already over 200 lines in size and many of the code segments you should 

already be familiar with from the previous discussions in this chapter as 

well as from the extensive Chapter 2 discussion on decision trees.

# Bagging Algorithm on the Sonar dataset

# Import required libraries

from random import seed

from random import randrange

from csv import reader

# Load a CSV file

def load_csv(filename):

      dataset = list()

      with open(filename, 'r') as file:

            csv_reader = reader(file)

            for row in csv_reader:

                   if not row:

                         continue

                   dataset.append(row)

      return dataset
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# Convert string column to float

def str_column_to_float(dataset, column):

      for row in dataset:

            row[column] = float(row[column].strip())

# Convert string column to integer

def str_column_to_int(dataset, column):

      class_values = [row[column] for row in dataset]

      unique = set(class_values)

      lookup = dict()

      for i, value in enumerate(unique):

            lookup[value] = i

      for row in dataset:

            row[column] = lookup[row[column]]

      return lookup

# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

      dataset_split = list()

      dataset_copy = list(dataset)

      fold_size = int(len(dataset) / n_folds)

      for i in range(n_folds):

            fold = list()

            while len(fold) < fold_size:

                   index = randrange(len(dataset_copy))

                   fold.append(dataset_copy.pop(index))

            dataset_split.append(fold)

      return dataset_split

# Calculate accuracy percentage

def accuracy_metric(actual, predicted):

      correct = 0
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      for i in range(len(actual)):

            if actual[i] == predicted[i]:

                   correct += 1

      return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

      folds = cross_validation_split(dataset, n_folds)

      scores = list()

      for fold in folds:

            train_set = list(folds)

            train_set.remove(fold)

            train_set = sum(train_set, [])

            test_set = list()

            for row in fold:

                   row_copy = list(row)

                   test_set.append(row_copy)

                   row_copy[-1] = None

            predicted = algorithm(train_set, test_set, *args)

            actual = [row[-1] for row in fold]

            accuracy = accuracy_metric(actual, predicted)

            scores.append(accuracy)

      return scores

# Split a dataset based on an attribute and an attribute value

def test_split(index, value, dataset):

      left, right = list(), list()

      for row in dataset:

            if row[index] < value:

                   left.append(row)

            else:

                   right.append(row)

      return left, right
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# Calculate the Gini index for a split dataset

def gini_index(groups, classes):

      # count all samples at split point

      n_instances = float(sum([len(group) for group in groups]))

      # sum weighted Gini index for each group

      gini = 0.0

      for group in groups:

            size = float(len(group))

            # avoid divide by zero

            if size == 0:

                   continue

            score = 0.0

            # score the group based on the score for each class

            for class_val in classes:

                   �p = [row[-1] for row in group].count 

(class_val) / size

                   score += p * p

            # weight the group score by its relative size

            gini += (1.0 - score) * (size / n_instances)

      return gini

# Select the best split point for a dataset

def get_split(dataset):

      class_values = list(set(row[-1] for row in dataset))

      b_index, b_value, b_score, b_groups = 999, 999, 999, None

      for index in range(len(dataset[0])-1):

            for row in dataset:

            # for i in range(len(dataset)):

            # row = dataset[randrange(len(dataset))]

                   �groups = test_split(index, row[index], 

dataset)

                   gini = gini_index(groups, class_values)
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                   if gini < b_score:

                         �b_index, b_value, b_score, b_groups = 

index, row[index], gini, groups

      �return {'index':b_index, 'value':b_value, 'groups':b_

groups}

# Create a terminal node value

def to_terminal(group):

      outcomes = [row[-1] for row in group]

      return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal

def split(node, max_depth, min_size, depth):

      left, right = node['groups']

      del(node['groups'])

      # check for a no split

      if not left or not right:

            �node['left'] = node['right'] = to_terminal(left + 

right)

            return

      # check for max depth

      if depth >= max_depth:

            �node['left'], node['right'] = to_terminal(left), 

to_terminal(right)

            return

      # process left child

      if len(left) <= min_size:

            node['left'] = to_terminal(left)

      else:

            node['left'] = get_split(left)

            split(node['left'], max_depth, min_size, depth+1)

      # process right child
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      if len(right) <= min_size:

            node['right'] = to_terminal(right)

      else:

            node['right'] = get_split(right)

            split(node['right'], max_depth, min_size, depth+1)

# Build a decision tree

def build_tree(train, max_depth, min_size):

      root = get_split(train)

      split(root, max_depth, min_size, 1)

      return root

# Make a prediction with a decision tree

def predict(node, row):

      if row[node['index']] < node['value']:

            if isinstance(node['left'], dict):

                   return predict(node['left'], row)

            else:

                   return node['left']

      else:

            if isinstance(node['right'], dict):

                   return predict(node['right'], row)

            else:

                   return node['right']

# Create a random subsample from the dataset with replacement

def subsample(dataset, ratio):

      sample = list()

      n_sample = round(len(dataset) * ratio)

      while len(sample) < n_sample:

            index = randrange(len(dataset))

            sample.append(dataset[index])

      return sample
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# Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

      predictions = [predict(tree, row) for tree in trees]

      return max(set(predictions), key=predictions.count)

# Bootstrap Aggregation Algorithm

def bagging(train, test, max_depth, min_size, sample_size, n_

trees):

      trees = list()

      for i in range(n_trees):

            sample = subsample(train, sample_size)

            tree = build_tree(sample, max_depth, min_size)

            trees.append(tree)

      predictions = [bagging_predict(trees, row) for row in test]

      return(predictions)

# Test bagging on the sonar dataset

seed(1)

# load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

# convert string attributes to integers

for i in range(len(dataset[0])-1):

      str_column_to_float(dataset, i)

# convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

# evaluate algorithm

n_folds = 5

max_depth = 6

min_size = 2

sample_size = 0.50

for n_trees in [1, 5, 10, 50]:
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      �scores = evaluate_algorithm(dataset, bagging, n_folds, 

max_depth, min_size, sample_size, n_trees)

      print('Trees: %d' % n_trees)

      print('Scores: %s' % scores)

      print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The script is run by entering the following command:

python baggingDemo.py

Figure 3-26 shows the result from running this script.

Figure 3-26.  baggingDemo results

The interim accuracy score for the fivefold datasets is displayed along 

with the overall aggregate accuracy value. You can see that the overall 

accuracy value slowly increased from 71.7% with 1 tree to 75.6% with 50 

trees. Not an outstanding performance, but nonetheless, a slight overall 

improvement was achieved using the bagging approach.

One of the difficulties in using the bagging approach is that even 

though deep trees are constructed, the bagged trees are similar. Thus, any 

predictions made using these trees will also be similar. Any high variance 

that was being seeked among the trees based on training on different 

samples is also diminished. This all due to the greedy algorithm used in 

the decision tree split algorithm that I have previously discussed. This 

script tried to increase the variance by constraining the sample size used 
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in the training process, but this met with limited success. The real answer 

to increasing the variance in the sub-sets is to use the random forest 

algorithm, which is the subject of the next demonstration.

�Random forest demonstration
Decision trees often have high variance which makes any prediction 

results quite dependent on the training data. Building multiple models 

from samples of the training data in the technique called bagging can help 

reduce this variance, but the trees still remain highly correlated.

Random forest is a bagging extension that in addition to building 

trees based on multiple samples of your training data also constrains 

the features that can be used to build the trees, thus forcing trees to be 

different. This modification in building a decision tree usually yields a 

performance benefit.

This demonstration uses the same dataset used in the previous 

bagging demonstration. In fact, the script is nearly identical to the previous 

script except for the way the decision splits are calculated. The random 

forest modification causes a sample of the input attributes to be searched 

instead of searching for the attribute that minimizes the total cost function. 

This attribute sample can be chosen randomly and without replacement, 

meaning that each input attribute needs only to be considered once when 

searching for the split point that minimizes cost.

The Gini index is used to evaluate the costs in a potential split. I refer to 

the Gini index discussion in the decision tree section to refresh yourself on 

this function.

I have named the script randonForestDemo.py, and it is available from 

the book’s companion web site. As with the preceding script, I have elected 

to not include any further explanatory comments because this script is 

already over 200 lines in size and many of the code segments are identical 

to the baggingDemo script.
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# Random Forest Algorithm on Sonar Dataset

# Import required libraries

from random import seed

from random import randrange

from csv import reader

from math import sqrt

# Load a CSV file

def load_csv(filename):

      dataset = list()

      with open(filename, 'r') as file:

            csv_reader = reader(file)

            for row in csv_reader:

                   if not row:

                         continue

                   dataset.append(row)

      return dataset

# Convert string column to float

def str_column_to_float(dataset, column):

      for row in dataset:

            row[column] = float(row[column].strip())

# Convert string column to integer

def str_column_to_int(dataset, column):

      class_values = [row[column] for row in dataset]

      unique = set(class_values)

      lookup = dict()

      for i, value in enumerate(unique):

            lookup[value] = i

      for row in dataset:

            row[column] = lookup[row[column]]

      return lookup
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# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

      dataset_split = list()

      dataset_copy = list(dataset)

      fold_size = int(len(dataset) / n_folds)

      for i in range(n_folds):

            fold = list()

            while len(fold) < fold_size:

                   index = randrange(len(dataset_copy))

                   fold.append(dataset_copy.pop(index))

            dataset_split.append(fold)

      return dataset_split

# Calculate accuracy percentage

def accuracy_metric(actual, predicted):

      correct = 0

      for i in range(len(actual)):

            if actual[i] == predicted[i]:

                   correct += 1

      return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

      folds = cross_validation_split(dataset, n_folds)

      scores = list()

      for fold in folds:

            train_set = list(folds)

            train_set.remove(fold)

            train_set = sum(train_set, [])

            test_set = list()

            for row in fold:
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                   row_copy = list(row)

                   test_set.append(row_copy)

                   row_copy[-1] = None

            predicted = algorithm(train_set, test_set, *args)

            actual = [row[-1] for row in fold]

            accuracy = accuracy_metric(actual, predicted)

            scores.append(accuracy)

      return scores

# Split a dataset based on an attribute and an attribute value

def test_split(index, value, dataset):

      left, right = list(), list()

      for row in dataset:

            if row[index] < value:

                   left.append(row)

            else:

                   right.append(row)

      return left, right

# Calculate the Gini index for a split dataset

def gini_index(groups, classes):

      # count all samples at split point

      n_instances = float(sum([len(group) for group in groups]))

      # sum weighted Gini index for each group

      gini = 0.0

      for group in groups:

            size = float(len(group))

            # avoid divide by zero

            if size == 0:

                   continue

            score = 0.0
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            # score the group based on the score for each class

            for class_val in classes:

                   �p = [row[-1] for row in group].count(class_

val) / size

                   score += p * p

            # weight the group score by its relative size

            gini += (1.0 - score) * (size / n_instances)

      return gini

# Select the best split point for a dataset

def get_split(dataset, n_features):

      class_values = list(set(row[-1] for row in dataset))

      b_index, b_value, b_score, b_groups = 999, 999, 999, None

      features = list()

      while len(features) < n_features:

            index = randrange(len(dataset[0])-1)

            if index not in features:

                   features.append(index)

      for index in features:

            for row in dataset:

                   �groups = test_split(index, row[index], 

dataset)

                   gini = gini_index(groups, class_values)

                   if gini < b_score:

                         �b_index, b_value, b_score, b_groups = 

index, row[index], gini, groups

      �return {'index':b_index, 'value':b_value, 'groups': 

b_groups}

# Create a terminal node value

def to_terminal(group):
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      outcomes = [row[-1] for row in group]

      return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal

def split(node, max_depth, min_size, n_features, depth):

      left, right = node['groups']

      del(node['groups'])

      # check for a no split

      if not left or not right:

            �node['left'] = node['right'] = to_terminal(left + 

right)

            return

      # check for max depth

      if depth >= max_depth:

            �node['left'], node['right'] = to_terminal(left), 

to_terminal(right)

            return

      # process left child

      if len(left) <= min_size:

            node['left'] = to_terminal(left)

      else:

            node['left'] = get_split(left, n_features)

            �split(node['left'], max_depth, min_size,  

n_features, depth+1)

      # process right child

      if len(right) <= min_size:

            node['right'] = to_terminal(right)

      else:

            node['right'] = get_split(right, n_features)

            �split(node['right'], max_depth, min_size,  

n_features, depth+1)
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# Build a decision tree

def build_tree(train, max_depth, min_size, n_features):

      root = get_split(train, n_features)

      split(root, max_depth, min_size, n_features, 1)

      return root

# Make a prediction with a decision tree

def predict(node, row):

      if row[node['index']] < node['value']:

            if isinstance(node['left'], dict):

                   return predict(node['left'], row)

            else:

                   return node['left']

      else:

            if isinstance(node['right'], dict):

                   return predict(node['right'], row)

            else:

                   return node['right']

# Create a random subsample from the dataset with replacement

def subsample(dataset, ratio):

      sample = list()

      n_sample = round(len(dataset) * ratio)

      while len(sample) < n_sample:

            index = randrange(len(dataset))

            sample.append(dataset[index])

      return sample

# Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

      predictions = [predict(tree, row) for tree in trees]

      return max(set(predictions), key=predictions.count)
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# Random Forest Algorithm

def random_forest(train, test, max_depth, min_size, sample_size, 

n_trees, n_features):

      trees = list()

      for i in range(n_trees):

            sample = subsample(train, sample_size)

            �tree = build_tree(sample, max_depth, min_size,  

n_features)

            trees.append(tree)

      predictions = [bagging_predict(trees, row) for row in test]

      return(predictions)

# Test the random forest algorithm

seed(2)

# load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

# convert string attributes to integers

for i in range(0, len(dataset[0])-1):

      str_column_to_float(dataset, i)

# convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

# evaluate algorithm

n_folds = 5

max_depth = 10

min_size = 1

sample_size = 1.0

n_features = int(sqrt(len(dataset[0])-1))

for n_trees in [1, 5, 10]:

      �scores = evaluate_algorithm(dataset, random_forest,  

n_folds, max_depth, min_size, sample_size, n_trees,  

n_features)
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      print('Trees: %d' % n_trees)

      print('Scores: %s' % scores)

      �print('Mean Accuracy: %.3f%%' % (sum(scores)/

float(len(scores))))

The script is run by entering the following command:

python randomForestDemo.py

Figure 3-27 shows the result from running this script.

Figure 3-27.  randomForestDemo results

A k value of 5 was used for cross-validation, giving each fold 208/5 

= 41.6 or just over 40 records to be evaluated upon each iteration. Deep 

trees were constructed with a maximum depth of 10 and a minimum 

number of training rows at each node of 1. Samples of the training 

dataset were created with the same size as the original dataset, which is 

a default expectation for the random forest algorithm. The number of 

features considered at each split point was set to sqrt(num_features) or 

sqrt(60)=7.74 rounded to 7 features.

Tree suites of sizes 1, 5, and 10 were evaluated for comparison, 

showing the increasing accuracy as additional trees are added. The mean 

accuracy scores increase from 62.4% to 81.0% as the tree suite increases. 

The final score is over 5% improved over the bagging demonstration, 

which shows the random forest modification has worked as expected.
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CHAPTER 4

Preparation for deep 
learning
This chapter will provide you with a sufficient background for the deep 

learning (DL) discussions that commence with the following chapters. 

It is important to understand some basic DL terms and concepts before 

trying to comprehend any actual DL algorithms. I have tried to minimize 

the math, but there are some unavoidable equations just because DL is 

essentially all math.

�DL basics
The obvious start for any DL discussion must be to answer the question, 

“What is DL?” Like many relatively new technology areas, if you ask a 

dozen experts to define something, you will likely get a dozen different yet 

oddly similar responses. It is no different with DL. I have researched many 

different DL definitions and have created the following one that seems to 

hold the common themes among many definitions:

Deep Learning is a subfield of machine learning concerned 
with algorithms called artificial neural networks, which are 
inspired by the structure and function of the human brain. 
Learning from datasets can be supervised, semi-supervised or 
unsupervised.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
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I will introduce and discuss an artificial neural network (ANN) in the 

next chapter, but first I need to discuss these basics.

�Machine learning from data patterns
Machine learning (ML) of which DL is a significant sub-set is generally 

described as the study of algorithms and data models that can perform 

computer-implemented tasks without being explicitly programmed to 

accomplish those tasks. Instead, ML relies on detecting data patterns and 

generating inferences regarding the data. There are four principal tasks 

often ascribed to ML. These tasks are

•	 Detection

•	 Classification

•	 Recognition

•	 Prediction

Most, if not all, of these tasks can be applied to a wide variety of 

datasets including static Images, numerical data, and real-time data 

streams. The last dataset mentioned includes video, audio, and even 

radio frequency (RF) streams. I am also absolutely positive there are other 

applications for ML that I have not mentioned.

I will start my basics discussion by focusing on the classification task, 

which I have already discussed in previous chapters. Recall that in Chapter 1 

k-NN data model discussion I stated the following:

I described k-NN as non-parametric, which means that the 
model does not make any assumptions regarding the underly-
ing data distribution. In other words, the model structure is 
determined from the data. Given this fact, k-NN probably 
should be one of your first choices for a classification study 
when there is little or no prior knowledge about how the data 
is distributed.
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You may have been a bit confused by my use of the term non-

parametric in describing the k-NN data model. Hopefully, it will be helpful 

to describe what a parameterized classification algorithm is to help clarify 

this term. The term parameterization is defined as follows:

Parametrization is a mathematical process consisting of 
expressing the state of a system, process or model as a function 
of some independent quantities called parameters.

In a ML application, the key parameters used to describe the state of a 

system are

•	 data

•	 scoring function

•	 loss function

•	 weights and biases

Yes, I realize the last list item has two components, but they are closely 

intertwined and usually considered as constituting a single parameter. I 

will discuss each parameter separately.

data – This is an obvious element in the process from which all ML must 

be based. Data has two faces, the first being the value and the second being 

the class label. Values can vary widely from raw pixel values in an Image to 

home prices in a housing dataset. Data is usually represented as a matrix in 

a ML domain. Such a matrix is often called a design matrix named X where

x i element in the design matrixi
th=     

y i class labeli
th=  

scoring function – A function which maps input data to a predicted class 

label. This may be represented in a generic equation form

f input data predicted class label   ( ) =
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In reality, this equation simply produces a value. The class label 

associated with the maximum value would be the prediction for this 

classifier.

loss function – A function that quantifies how well predicted class 

labels agree with the actual class labels recorded in the dataset. The actual 

class labels are also known as ground truth labels in ML terminology. Low 

loss values are desired because that means the predictions closely agree 

with ground truth labels. There will be an extensive discussion later in this 

chapter on how to compute the loss function for minimum loss values.

weights and biases – The weight matrix W and the bias vector b are 

iteratively computed in order to minimize the loss function with respect to 

the scoring function.

�Linear classifier

In this section I discuss what a linear classifier is and how it functions. The 

reason I have included this discussion is to present you with a framework 

through which you can better understand how a neural network functions. 

The foundational concepts for the linear classifier and the neural network 

are basically the same. I will also incorporate the three of the four key 

parameters introduced previously in this discussion. The loss function is 

discussed all by itself in the following section.

The dataset used for this linear classifier is named Mammals and 

consists of 5000 Images of three classes, namely, cat, dog, and squirrel. 

Each Image has a rather low resolution of 32 x 32 pixels for a total of 1024 

pixels. Moreover, each pixel is a full color RGB that requires three bytes to 

represent the RGB color channel values, which means that there are 3072 

values to be processed by the classifier. The data points representing an 

Image are “flattened” into a single dimension vector (1D), which is named 

X that has N elements, where N equals 3,072. The weighting matrix W 

must be shaped as 3 x 3072 because there are three classes in the dataset. 
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Finally, the bias vector b is just sized as 3 x 1. The final scoring equation 

using the symbols just described is

f X W b W X b, ,( ) = +·

where W · X is the dot product between the weighting matrix and the input 

data vector.

Figure 4-1 is a graphical representation of the scoring function.

Figure 4-1.  Scoring function’s graphical representation

All the numerical values in the figure are made up, but I did make the 

cat class the highest value in the scoring function vector, which would 

make it the predicted class label.

There is common simplifying “trick” often used to reduce the number 

of parameters in the scoring function from three to two. This trick is to 

include the bias vector into the weighting matrix. Figure 4-2 shows how 

this is done.

Chapter 4  Preparation for deep learning



218

The input data vector X has been extended by one element that 

always contains the value 1. The weighting matrix W in this example is 

also extended by one column which now makes its shape to be 3 x 3073. 

This additional column is the bias vector b. The new scoring function is 

now reduced to a single dot product multiplication as can be seen in the 

following equation:

f X W W X,( ) = ·

Using this bias trick means you only have to have a single weighting 

matrix instead of a weighting matrix and a bias vector. This trick is only one 

part of preprocessing data that helps simplify the overall ML effort.

The following is an attempt to show you how to implement a linear 

classifier in Python. This script is most definitely “rigged” to select the first 

class in the labels list. This was necessary because there is no pre-trained 

network being used in this script. My goal was to only show how a simple 

linear classifier could be coded. I did not call this a demonstration, and I 

consider it is more in the category of pseudo-code. Again, it is just for your 

reference because it does use the four primary parameters I have discussed 

and it only is missing a call to a pre-trained network. The script is named 

linear_Classifier.py. I have not made it available on the book’s companion 

web site because I believe this is only a pedagogical instrument for your 

education. Feel free to copy it from the listing if you so desire.

Figure 4-2.  Adding the bias vector to the weighting matrix
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# Import the required libraries

import numpy as np

import cv2

# Initialize class labels and set pseudo-random seed value

labels = ['dog', 'cat', 'squirrel']

np.random.seed(1)

# Randomly initialize the weighting matrix and bias vector

W = np.random.randn(3, 3072)

b = np.random.randn(3)

# Set the font used to draw the label

font = cv2.FONT_HERSHEY_SIMPLEX

# Load the image and resize it. The image is taken from the 

dataset.

orig = cv2.imread('dog.png')

image = cv2.resize(orig, (32,32)).flatten()

# Compute output scores

scores = W.dot(image) + b

# Loop over the scores and labels

for (label, score) in zip(labels, scores):

   print('[INFO] {}: {:.2f}'.format(label, score))

# Get the class label for the highest scoring class

classLabel = labels[np.argmax(scores)]

# Draw the predicted label on the original image

cv2.putText(orig, classLabel, (10,30),  font, 0.9, (255,0,0), 2)

# Display image

cv2.imshow('Image', orig)

cv2.waitKey(0)
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Run this script by entering the following command:

python linear_Classifier.py

Figure 4-3 shows the terminal window results after the command was 

entered.

Figure 4-3.  Terminal results after running the linear_Classifier script

Figure 4-4.  Processed Image for the linear_Classifier script

You should be able to see that the dog class has the maximum value 

and is therefore the predicted class label.

Figure 4-4 shows the original Image with the class label superimposed 

on it.
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The key takeaway from this example is to realize that the weighting 

matrix must be optimized in order to actually perform a real classification 

task. I will discuss how this is accomplished in the next chapter using a 

real-world problem. I am not being too concerned with the bias vector at 

time point because it is often used to “tune” the final network solution. It is 

far more important to create a working weighting matrix before worrying 

about the bias vector.

�Loss functions
The loss function is at the heart of ML. It allows you to take your algorithm 

from a theoretical concept to practical implementation and transforms 

neural networks from abstract matrix multiplications into DL.

A loss function concept is quite simple. It is an approach to evaluate how 

well your algorithm models the input dataset. If predictions or classifications 

are in error, then the loss function will output a high number. If they are 

reasonable, then the number will be low. It also informs the developer how 

well the algorithm is improving as the network and model are being trained. 

The function will easily show if the training effort is converging or diverging. 

Convergence is good while you want to avoid divergence.

�Different types of loss functions

A naive approach to a loss function might be as simple as doing the 

following:

 = -( )abs y yi i
ˆ

where

ϵ = error

ŷi  = predicted class label

yi = actual class label (ground truth)
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In this loss function definition, it makes no difference if predictions 

were too high or too low. All that matters are how incorrect they were, 

that is, directionally agnostic. This approach is not necessarily applied 

to all loss functions. A loss function will vary significantly based on the 

ML problem domain. In a given project, it could be much worse to guess 

too high rather too low, and the selected loss function must reflect that 

condition.

The following is a list of popular loss functions:

Mean squared error (MSE) – This is a very popular option for basic 

loss functions. It is easy to understand and implement and works well. The 

MSE is computed by taking the differences between the predictions and 

the ground truths, squaring them, and then averaging the sum by the size 

of the whole dataset. Python code for an MSE would be the following:

def MSE(y_Hat, y):

    sq_error = (y_Hat - y) ** 2

    sum_sq_error = np.sum(sq_error)

    mse = sum_sq_sq_error / y.size

    return mse

Likelihood function – The Likelihood function is also simple and 

is commonly used in classification problems. The function takes the 

predicted probability for each input data class and multiplies them. 

Although the output isn’t human interpretable, it is useful for comparing 

how well models perform.

Consider the following example where a model outputs a series of 

probabilities associated with different dataset classes. The probabilities are 

shown in Table 4-1.
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In the case when the model outputs a False or 0 ground truth, the 1 - p 

probability is used in the Likelihood calculation, which is shown here:

0.6 ∗ 0.6 ∗ 0.9 ∗ 0.9 = 0.292

Log loss (cross-entropy loss) – Log loss is a loss function also used 

frequently in classification problems. It is a modification of the Likelihood 

function using logarithms.

 = - * ( )+ -( )* -( )(y p y plog log1 1

This is the same equation as for the Likelihood function, but with 

logarithms. However, you should recognize that when the class value is 1, 

the second half of the function disappears, and when the class is 0, the first 

half disappears. In that way, only the log of the predicted probability for 

the ground truth class is used in the multiplication.

The log loss function has an interesting feature in that it heavily penalizes 

for being very confident and very wrong. Predicting high probabilities for 

the wrong class makes the function “explode.” Figure 4-5 illustrates what 

happens when the true label = 1. You can see that it skyrockets as the 

predicted probability for label = 0 approaches 1.

Table 4-1.  Probabilities for the example classification model

Class Ground truth (yi) Probability (p) 1 - p

A 0 0.4 0.6

B 1 0.6 n/a

C 1 0.9 n/a

D 0 0.1 0.9
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One final point in this discussion of loss functions is realize that they 

provide more than just a static representation of how a model is performing. 

Most ML algorithms use a loss function in the optimization process or the 

determination of the best parameters (weights) for the dataset.

As an example, consider the linear regression data model that 

I discussed in the previous chapter. In a traditional “least squares” 

regression, the best fit line is determined through MSE. For each set 

of weights that the model tries, the MSE is calculated across all input 

examples. The model then optimizes the MSE functions or, in other 

words, makes it the lowest possible through the use of an optimizer 

algorithm like gradient descent.

Just as there are different types of loss functions for different problems, 

there are different optimizers to match specific problem domains, which I 

discuss in the following section.

Figure 4-5.  Log loss function plot

Chapter 4  Preparation for deep learning



225

�Optimizer algorithm
ML practitioners will often say that an optimizer algorithm is the heart 

of ML. Without a good one, ML could not exist. The most common 

algorithm is called gradient descent, and it comes in two flavors, linear and 

stochastic. I will initially discuss the linear version because it is the easiest 

to understand and explain. In reality, the stochastic version is the one used 

most often in the real world. I will explain that version after covering the 

linear one.

To set the stage for the gradient descent discussion, I would like 

you to imagine the following scenario. Suppose you were hiking in the 

mountains and you lost track of time and it started to get dark. You quickly 

realized that you had to get to lower ground before it got too dark and too 

cold. Let’s say you also forgot to bring a flashlight or lantern so you must 

rely on whatever diminishing sunlight was left to reach safety and lower 

ground. Naturally you start hiking downhill, but with the poor light you 

cannot see very far ahead. This condition forces you to take small steps to 

avoid crashing into boulders or falling into holes or ground depressions. 

Essentially you are inching your way down the mountain always trying 

to go lower with each step and making small corrections each time you 

accidentally start to go uphill.

This scenario is an analogy to how gradient descent works. The 

peaks and valleys for gradient descent are direct consequence of how 

the algorithm is defined. For purposes of this discussion, consider an 

incredibly simple network with only two weights and no bias values. The 

loss function for this simple situation would be totally dependent on the 

two weight values. Figure 4-6 shows a hypothetical 3D plot of the loss 

function vs. the two independent weighting values.
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The peaks in this figure are maximum loss values, which are to be 

avoided, while the valleys are minimums which are desired for optimum 

network performance. I would also point out that some valleys are deeper 

than others in the figure. The deepest valley overall is called the global 

minimum and is always the most desired one for setting all the weighting 

values. The “not-as-deep” valleys are called local minima and while not 

optimal may often be “good enough.” More about that a little later in the 

discussion.

Computing the slope of any point on the figure is the key to 

determining how to transverse or “walk” within the peaks and valleys. 

Remember from the introductory scenario, you always want to walk 

downhill, thus avoiding the peaks, which are the high-cost regions. 

Therefore, it makes sense to continually compute the instantaneous slope 

and proceed in the downward direction. Slopes, in an analytic sense, are 

computed by determining the derivative of the original equation. For 

this case, the original equation is the loss function, and there are two 

independent variables, which represent the two weights. Partial derivatives 

must be used in this situation because there are two independent variables 

involved. Also involved in finding the global minimum is the size of the 

step being taken. Too large a step and the minimum can easily be missed 

Figure 4-6.  Loss function for two weighting variables
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and too small can cause excessively long training times. You will shortly 

find out that step size and learning rate are synonymous terms.

One further point should be made at this time. The 3D figure shown 

earlier only relates to two weights and a loss function. In reality, there are 

many more weights involved in a practical neural network model than 

three. In the next chapter, I will be discussing a network with 100 weights. 

It is beyond my comprehension, and I suspect, many others, on how to 

conceptualize how 100 independent variables would interact with a single 

output function. Certainly, there is no way to visualize that interaction 

as I have done with only two variables. I would suggest that you simply 

accept the hypothesis that it mathematically makes sense to optimize 100 

variables in the same way as 2 variables are handled.

Consider the case where a vertical plane intersects the plot shown 

in Figure 4-6 and results in a 2D plot showing the loss function vs. some 

range for the independent variables. What that range is immaterial for this 

discussion. Figure 4-7 shows a representative 2D plot with both global and 

local minima.

Figure 4-7.  2D plot showing global and local minima
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�Deep dive into the gradient descent algorithm

An in-depth examination of the gradient descent algorithm begins with a 

recap of the linear regression (LR) data model that I discussed in Chapter 2. 

I would suggest that you review that discussion to refresh yourself regarding 

key points concerning that model. The generalized LR equation is

y m x b= * +

where

m = slope of a straight line

b = y-axis intercept

Note that I slightly altered the equation from the one shown in Chapter 2 

by eliminating the error estimation term and changing the slope constant to m 

and the intercept constant to b. This was done to help conform to the figures 

used in this discussion.

I will start with a x-y scatter plot of some data with a flat line LR 

equation as shown in Figure 4-8.

Figure 4-8.  Data scatter plot with flat line LR predictor
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The optimal LR predictor line goes through the data points in such 

a position to minimize the total error that would result if you were to 

solely use the predictor line to compute yi for any given xi data point. 

The generalized procedure for determining the optimal m and b values 

is to iterate through a dataset for all of those values and determine the 

minimum error resulting from using all of the xi values. Some sample 

Python code to implement this generalized procedure is listed here:

# Use y = mx + b equation

# m is slope, b is y-intercept

def computeErrorForLineGivenPoints(b, m, points):

    totalError = 0

    for i in range(0, len(points)):

        totalError += (points[i].y - (m * points[i].x + b)) ** 2

    return totalError / float(len(points))

There would need to be a data array setup named points containing 

all of the original x-y points prior to calling this script. In addition, the 

main calling script must set the range for both the m and b variables to be 

tested.

The formal error function for this LR example is shown here:

e
N

y m x bm b
i

N

i i, = - * +( )( )
=
å1

1

2

The focus now is to develop an equation that optimizes this error 

function in terms of m and b, which will generate the minimum error. Prior 

to discussing this, it would be helpful to illustrate the nature of the variable 

interactions for this LR example. Figure 4-9 shows two perspectives on how 

different values for both m and b affect the error function.
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You should be able to easily Image rolling a marble down from the 

upper slope to have it settle at some minimum point. This minimum 

would have a m and b value associated with the minimum em,b value. Using 

the gradient descent search method is the equivalent of rolling the marble 

down the slope.

The initial step in implementing the gradient descent method is to 

perform two partial differentiations on the error function because there are 

two independent variables. This step is precisely the same step I discussed 

earlier with the two weight examples. The partial differentiation equations 

are actually simpler than the original error equation:

¶
¶

= - * - * +( )( )
=
åm N
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Figure 4-9.  Error plots vs. m and b variables
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The search normally starts at the origin, which is m = –1 and b = 0. The 

–1 value simply starts rolling the marble downhill. The gradient descent 

algorithm is iterative, meaning that a small step is taken, the error function 

is then reevaluated, and another step is taken if further improvement 

is possible. The following Python code implements a gradient descent 

algorithm for the LR example:

def stepGradient(b_current, m_current, points, learningRate):

    b_gradient = 0

    m_gradient = 0

    N = float(len(points))

    for i in range(0, len(points)):

        �b_gradient += -(2/N) * (points[i].y -  

((m_current*points[i].x) + b_current))

        �m_gradient += -(2/N) * points[i].x * (points[i].y - 

((m_current*points[i].x) + b_current))

        new_b = b_current - (learningRate * b_gradient)

        new_m = m_current - (learningRate * m_gradient)

    return [new_b, new_m]

The learningRate parameter in the preceding script controls the 

step size. This parameter must be carefully adjusted because a too large 

value can easily miss the minimum, while a too small size will needlessly 

increase the number of iterations taken before locating the minimum.

The next series of figures will illustrate how the gradient descent 

algorithm converges to an optimal solution for this LR example. In each 

figure the plot on the left shows where the gradient descent started, and 

the figure on the right shows the data and the predictor line for the current 

m and b variables.

Figure 4-10 shows the start of the gradient search.
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It is clearly obvious from this figure that the initial estimate is way off.

The next iteration is shown in Figure 4-11.

Figure 4-10.  Start of gradient search

Figure 4-11.  Second iteration for gradient search
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Notice that the plot on the left-hand side of the figure now has a line, 

which indicates the path taken by the search algorithm from the initial 

starting point. The predictor line shown on the right-hand side of the 

figure is a big improvement over the initial plot. However, it clearly needs 

improvement because in no way it intercepts any of the data points.

Figure 4-12 shows the third iteration, even though the right-hand 

plot shows iteration 2 in the plot area. That is because the first attempt is 

labeled 0.

Figure 4-12.  Third iteration for gradient search

The path taken by the search algorithm was clearly on the same path 

as it was for the second iteration. However, the predictor line is now 

barely intercepting some data points, but obviously in need of further 

improvement.

Jumping ahead to iteration 100 (which is actually 101 due to 0-based 

counting), you can see from Figure 4-13 that the predictor line visually 

“appears” to be a good fit.
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The left-hand plot shows the gradient search path took a small jog to 

the right in search of the global minimum.

Figure 4-14 is a plot of error vs. iteration number.

Figure 4-13.  101 iterations for gradient search

Figure 4-14.  Plot of error vs. iteration number

It should be obvious from examining this figure that there is little to 

no improvement to be gained from extending the number of iteration 

to beyond 100. It is entirely conceivable that the global minimum was 
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not reached; however, any marginal loss improvement is negligible. This 

situation is what I meant by “good enough” in my earlier discussion.

For those interested readers, the final best fit LR equation was finally 

determined to be

y x= * +1 3 0 61. .

�Artificial neural network
The artificial neural network (ANN) has a relatively long history within 

the AI field. The seminal paper regarding ANNs is considered to be a 1943 

paper by Warren McCulloch and Walter Pitts titled “A Logical Calculus 

of Ideas Immanent in Nervous Activity” in which they hypothesized a 

computational model for neural networks based on mathematics and 

algorithms they called threshold logic. This model paved the way for 

future neural network research to split into two approaches. One approach 

focused on biological processes in the brain, while the other focused on 

the application of neural networks to AI.

One core concept for ANNs is the neuron model, which is intended to 

mimic the human brain neuron to some extent. I believe it is important 

to first discuss a human brain neuron before proceeding to discuss the 

artificial variety. In this way, you should gain an understanding of why the 

artificial neuron was created in the manner it is in today.

A biologic diagram for a human brain neuron is depicted in Figure 4-15.
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Some of the parts of the human neuron shown in the figure are 

described as follows:

•	 Dendrites – Dendrites allow the cell body to receive 

signals from a large (>1000) number of neighboring 

neurons. Each dendrite is able to perform an electrical 

signal “multiplication” by that dendrite’s “weight value.” 

This multiplication is accomplished by increasing or 

decreasing the ratio of synaptic neurotransmitters 

to signal chemicals introduced into the dendrite in 

response to the synaptic neurotransmitter. A negative 

multiplication effect can be achieved by transmitting 

signal inhibitors (i.e., oppositely charged ions) along 

the dendrite body in response to the reception of 

synaptic neurotransmitters.

•	 Soma – The soma acts as a summation function. As 

positive and negative signals (exciting and inhibiting, 

respectively) arrive in the soma from the dendrites, 

the positive and negative ions are effectively added in 

summation by simple virtue of being mixed together in 

the solution inside the cell’s body.

Figure 4-15.  Human brain neuron diagram
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•	 Axon – The axon gets its signal from the summation 

behavior which occurs inside the soma. The opening 

to the axon essentially samples the electrical potential 

of the solution inside the soma. Once the soma reaches 

a certain potential, the axon will transmit an all-in 

signal pulse down its length. In this way, the axon 

communicates directly with other neurons.

Biological neurons fire in discrete pulses. Each time the electrical 

potential inside the soma reaches a preset threshold, a pulse is transmitted 

down the axon. This pulsing may be translated into continuous values. The 

rate (activations per second, etc.) at which an axon fires converts directly into 

the rate at which neighboring neurons get signal ions introduced into them. 

The faster a biological neuron fires, the faster nearby neurons accumulate 

electrical potential (or lose electrical potential, depending on the “weighting” 

of the dendrite that connects to the neuron that fired). It is this conversion that 

allows AI researchers to simulate biological neural networks using artificial 

neurons which can output distinct values, often in the range from –1 to 1.

Early AI researchers developed a relatively simple model for the brain 

neuron based partly on the biologic facts presented previously. Figure 4-16 

shows an artificial neuron diagram with N inputs and one output.

Figure 4-16.  Artificial neuron diagram
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The input branches with the weights are equivalent to the dendrites. 

The circle is a summing node equivalent to what happens in the soma. 

The box labeled activation function is equivalent to the axon, which fires 

when the sum of the weighted electrical signals exceeds some threshold. 

I believe this model is remarkably simple, yet seems to realistically 

capture what is occurring in a real brain neuron.

The mathematical representation of an artificial neuron is concisely 

shown as

g x x x x g X xn
i

n

i1 2 3
1

, , ,( ) = ( ) =
=
å

y f g X if g X= ( )( ) = ( ) ³1 q

= ( )<0 if g X q

The 1 and 0 outputs simply represent the state when the summed, 

weighted inputs exceed some threshold value, θ. Actual output value is 

dependent on the real summed value that is transformed by the activation 

function.

The activation function often used with the artificial neuron model is 

the sigmoid, which I introduced to you in Chapter 2. Please refer back to 

that discussion for a refresher and review Figure 2-16 to get a feel for how 

this function transforms the summed signal. You should easily realize by 

examining that figure that the final output signal will be in a range of 0 to 

1.0 for most summed signals that are in the range of –8 to +8.

�How ANNs are trained and function
It is time to explore a network of artificial neurons or ANNs as it is 

commonly called.

Figure 4-17 shows a generic, three-layer ANN.
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The three layers making up the ANN are

•	 Input – Raw data inputs are applied to this layer. These 

data inputs are not weighted. There is only one input 

layer in an ANN.

•	 Hidden – This refers to any layer that is either not an 

input or an output layer. There can be one to many 

hidden layers. Weights are normally associated with the 

interconnections between hidden layer nodes as well 

as the connections between the last hidden layer going 

to the output layer.

•	 Output – Processed signals appear as outputs from this 

layer. The number of output nodes often equals the 

number of classes for classification ANNs.

Figure 4-17.  Three-layer ANN
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ANNS are often divided into two categories:

•	 FeedForward

•	 Feedback

Figure 4-18 is a diagram which shows how signals flow in each of these 

ANNs.

Figure 4-18.  FeedForward and Feedback ANN models

Each ANN category has its advantages and disadvantages over the 

other. The ANN model that is ultimately used depends on the nature of 

the dataset and the ANN’s intended purpose. However, the feedback back 

model is the one always used when training an ANN. This is because the 

main purpose of training is to determine the weight values used for the 
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hidden layer nodes. Determining these values is the key method on how 

the ANN “learns.” ANN learning is done by first inputting a large dataset 

to the network, one record or element at a time. This input data eventually 

creates output data, which is then compared to the ground truth data. Any 

resultant errors are then used in a feedback configuration to adjust the 

weight values in order to reduce and minimize the errors. This individual 

record training cycle is normally repeated over many thousands of times in 

order to completely train the network. The term epoch is used to describe 

the process of using the entire dataset for one pass with the ANN. It is not 

unusual to have multiple epochs used in a training session, where the 

training dataset is slightly rearranged for the next epoch in order to achieve 

a better learning result as compared to doing only a single pass. The whole 

training process is called back propagation.

Figure 4-19 shows a three-layer ANN with the weights annotated on 

the nodal interconnections.

Figure 4-19.  Three-layer ANN with weights

The weights’ annotations are shown as wi,j where i is the source node 

and j is the destination node. Not all the nodes shown in the figure have 

interconnections because I didn’t want to have too “busy” of a figure.  
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In reality, all nodes would be “connected” to other nodes when the 

learning commenced. Eventually, some weights would eventually 

diminish in value to where they are not used, which means the nodal 

connection would virtually cease to exist.

�Practical ANN example

I believe it would be a useful learning exercise to show a completely 

“worked out” ANN example. Figure 4-20 shows a highly simplified, two-

layer ANN, which I will use for this example.

Figure 4-20.  Two-layer ANN

There is no need for a hidden layer in this example because I am only 

focusing demonstrating on the back propagation process. The initial data 

inputs and weights used to begin this example are shown in Table 4-2.
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These values are random and do not reflect any real-world problem 

domain. I will describe in a later section how to preset an entire set of 

weights using a random number generator. One other item to note is that 

I will be using the sigmoid function to transform the summed values. The 

sigmoid equation is

y
e x

=
+( )-

1

1

where

e = 2.71828 ... (Euler’s number)

Plugging into the preceding equation x = 1 will yield y = 0.731.

Computing out1 requires solving the following equations:

sumof weighted inputs x w in w in  = = * + *1 1 2 11 2, ,

out
e x

1
1

1
=

+( )-

Table 4-2.  Initial input 

and weight values

Symbol Value

in1 0.8

in2 0.4

w1,1 0.8

w1,2 0.1

w2,1 0.9

w2,2 0.4
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Substituting values from Table 4-2 yields

x = * + * =0 8 0 8 0 9 0 4 1 0. . . . .

out
e

1
1

1
0 731

1
=

+( ) =-
.

In a similar fashion, computing out2 requires solving these equations:

sumof weighted inputs x w in w in  = = * + *1 2 2 21 2, ,

out
e x

2
1

1
=

+( )-

Substituting values from Table 4-2 yields

x = * + * =0 1 0 8 0 4 0 4 0 24. . . . .

out
e

2
1

1
0 560

0 24
=

+( ) =- .
.

The two ANN outputs have now been determined using a fair amount 

of manual computations. It should now be apparent at this point that it 

is simply not realistic to attempt to manually compute outputs for larger 

and more complex ANNs. Matrices and matrix operations will be used 

from now on now that I have demonstrated how tedious it is to use manual 

computations.

The input data for this simple example can be expressed as a vector:

in

in

1

2

ì
í
î

ü
ý
þ
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Likewise, the weighting matrix can be expressed as a 2 x 2 matrix:

w w

w w
1 1 1 2

2 1 2 2

, ,

, ,

ì
í
î

ü
ý
þ

Figure 4-21 shows the same manual computations being performed 

using matrix operation in an interactive Python session.

Figure 4-21.  Interactive Python session

You can easily see that the Python session results matched the manual 

computations.

�Complex ANN example

Figure 4-22 shows a more complex ANN example that I processed in using 

a Python script.
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The input data vector does not represent any meaningful problem 

domain. It is just a set of random numbers because the purpose of this 

demonstration is to show the computing process used for a complex ANN.

The input dataset in vector format is

input =
ì

í
ï

î
ï

ü

ý
ï

þ
ï

0 8

0 2

0 7

.

.

.

The weighting matrix between the input and the hidden layers (wtgih) is

wtg

w w w

w w w

w w w
ih =

ì

í
ï

î
ï

ü

ý
ï

þ
ï

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

 = 

0 8 0 6 0 3

0 2 0 90 3

0 2 0 50 8

. . .

. . .

. . .

ì

í
ï

î
ï

ü

ý
ï

þ
ï

The weighting matrix between the hidden and output layers (wtgho) is

wtg

w w w

w w w

w w w
ho =

ì

í
ï

î
ï

ü

ý
ï

þ
ï

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

 = 

0 4 0 8 0 4

0 50 7 0 2

0 90 10 6

. . .

. . .

. . .

ì

í
ï

î
ï

ü

ý
ï

þ
ï

Figure 4-22.  Complex ANN example
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These matrices were assigned random numbers’ elements in the range 

of 0 to 1.0.

The Python script used to process this ANN was named annDemo1.

py and is available from the book’s companion web site. The script is well 

commented, although I do add a little more commentary after the listing.

# Import required libraries

import numpy as np

# Create the input data vector

input = np.array([0.8, 0.2, 0.7])[:,None]

# Create the wtgih matrix

wtgih = np.matrix([[0.8, 0.6, 0.3], \

                   [0.2, 0.9, 0.3], \

                   [0.2, 0.5, 0.8]])

# Create the wtgho matrix

wtgho = np.matrix([[0.4, 0.8, 0.4], \

                   [0.5, 0.7, 0.2], \

                   [0.9, 0.1, 0.6]])

# Compute the dot product of the input vector and wtgih matrix

X1 = np.dot(input.T, wtgih)

# Display the matrix

print('X1 matrix\n', X1)

print()

# Apply the activation function to the X1 matrix

out1 = 1 / (1 + np.exp(-X1))

# Display the matrix

print('out1 matrix\n', out1)

print()
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# Compute the dot product of the X1 and wtgho matrices

X2 = np.dot(out1, wtgho)

# Display the matrix

print('X2 matrix\n', X2)

print()

# Apply the activation function to the X2 matrix

out2 = 1 / (1 + np.exp(-X2))

# Display the matrix

print('out2 matrix\n', out2)

This script takes advantage of the numpy dot product function to 

accomplish matrix multiplications. Also notice how easy it was to apply the 

activation function using the numpy exp function.

The script is run by entering the following command:

python annDemo1.py

Figure 4-23 shows the results after running the script.

Figure 4-23.  Results for running the annDemo1 script

The final output vector is shown as well as are all the intermediate 

matrices and vectors. As a side note, please do not get confused when I 

intermix the terms matrix and vector. I generally refer to a single row of 
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data as a vector although you could technically label it as a 1D matrix. That 

label seems to me a bit too pedantic.

The final output data from this ANN is not meaningful, because the 

input data was not meaningful. However, the final output should be 

somewhat reflective of the input values. Table 4-3 compares the input and 

output values as well as the errors between them.

Figure 4-24.  Single error allocation setup

Table 4-3.  Comparison between 

input and output values

Input Output Error

0.8 0.78187033 0.01812967

0.2 0.75745360 –0.55745360

0.7 0.69970531 0.00029469

The results are close except for the middle value in the table. This 

indicates that the initial weights must be modified to reduce the error. But 

how is this done? The answer is shown in the next section.

�Modifying weight values

Consider the case where three nodes are connected as shown in Figure 4-24.
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There is some error in the summing node, which must be corrected by 

adjusting the weights between input nodes 1 and 2 and output node 1.  

A naive approach might be to evenly split the error between the nodes. 

However, that would not accurately represent the error contribution 

from each input node because node 1 has twice the weight as node 2. 

The correct solution is divide the error in direct proportion to the weights 

connecting the nodes. In this case, node 1 should be responsible for two-

thirds of the error and node 2 for one-third.

Using the weighting matrix in this fashion is an additional feature that 

is not immediately apparent when first encountering an ANN. Normally, 

signals are propagated in a FeedForward configuration as I mentioned 

earlier. This modification approach uses weights with an error value to be 

propagated in a backward direction. This is why that error determination is 

called back propagation.

Now consider the case when multiple errors appear at two output 

nodes as shown in Figure 4-25.

Figure 4-25.  Multiple error allocation setup

The weight modification process for multiple nodes is the same as it 

is for single nodes. This is because output nodes are independent of one 

another. There are no direct connections between output nodes. The error 

amount assigned to each interconnection is the fraction based solely on 
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the weight value on each line connected to the output node. In the case of 

Figure 4-25, the fractions applied to w1,1 and w2,1 for error e1 are

w

w w

w

w w
1 1

1 1 2 1

2 1

1 1 2 1

,

, ,

,

, ,+( ) +( )and

Similarly, the errors for e2 are

w

w w

w

w w
1 2

1 2 2 2

2 2

1 2 2 2

,

, ,

,

, ,+( ) +( )and

Thus far, the process to modify the weights based on the output errors 

has been simple. Errors are easily determined because the training data 

is readily available. There is nothing else required when training a two-

layer ANN. But how is a three-layer ANN processed when there are most 

certainly errors in the hidden layer, yet no training data is available?

Figure 4-26 shows a three-layer, six-node ANN with two nodes per 

layer.

Figure 4-26.  Three-layer, six-node ANN

This ANN has been simplified to help you focus on the few back 

propagation computations required. The output errors were randomly 

created because they are needed for the following computations. The 

following individual error contributions were computed using the weights 

shown in the figure:
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For the w1,1 line:

e
w

w wnode1 1
1 1

1 1 2 1

0 96
2

2 3
0 96 0 4 0 38*

+( ) = *
+( )

= * =,

, ,

. . . .

For the w2,1 line:

e
w

w wnode1 2
2 1

1 1 2 1

0 96
3

2 3
0 96 0 6 0 58*

+( ) = *
+( )

= * =,

, ,

. . . .

For the w1,2 line:

e
w

w wnode2 1
1 2

1 2 2 2

0 8
2

2 1
0 8 0 66 0 53*

+( ) = *
+( )

= * =,

, ,

. . . .

For the w2,2 line:

e
w

w wnode2 2
2 2

1 2 2 2

0 8
1

2 1
0 8 0 33 0 27*

+( ) = *
+( )

= * =,

, ,

. . . .

The total normalized error value for each hidden node is the sum of 

the individual error contributions to the node and is calculated as follows:

e e enode node1 1 1 2 1 0 38 0 53 0 91= + = + =. . .

e e enode node2 1 2 2 2 0 58 0 27 0 85= + = + =. . .

These values are shown next to each of the hidden nodes in Figure 4-26.

This error computing process may be continued to encompass all the 

errors for all remaining hidden layer nodes not only for the single hidden 

layer as shown in this example but for as many hidden layers that are in the 

ANN. However, there is no need to compute error values for the input layer 

because the error must be 0 for all input layer nodes. They simply pass the 

input data vector values without modifications.
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You should be able to perceive that computing hidden layer error 

values is a tedious process and lends itself to be automated in manner to 

what was done with the FeedForward computations. The following matrix 

notation would apply if the error computations were directly translated 

from the manual process I just demonstrated:

e

w

w w

w

w w

w

w w

w

w

hidden =
+( ) +( )

+( )

1 1

1 1 2 1

1 2

1 1 2 1

2 1

2 1 2 2

2 2

,

, ,

,

, ,

,

, ,

,

22 1 2 2

1

2

, ,+( )

ì

í
ï
ï

î
ï
ï

ü

ý
ï
ï

þ
ï
ï

*
ì
í
î

ü
ý
þ

w

in

in

Unfortunately, there is no easy way to input the fractions as shown 

in the matrix. However, just consider that the fractions only normalize 

the error contribution, meaning that the contributed values will only 

range from 0 to 1.0. Relative error contribution can still be maintained by 

discarding the denominator. Removing the denominators yields

e
w w

w w

in

inhidden =
ì
í
î

ü
ý
þ
*
ì
í
î

ü
ý
þ

1 1 1 2

2 1 2 2

1

2
, ,

, ,

This matrix formulation is identical to what was earlier demonstrated 

and can easily be handled with numpy functions.

Up to this point, I have only discussed how to determine individual 

error contributions. Now it is time to discuss how to modify the weights 

once the error contributions have been determined.

I will start by showing you a rather complex equation, which computes 

the output from a given output node for a three-layer, nine-node ANN

O

w
w x

k

j j k

j j k i

=

- *
*( )

æ

è

ç
ç

ö

ø

÷
÷=

=

å
å

1

1
1

3

1

3,

,
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where

O output at kth nodek =

w interconnected weightsj k, =  

x input datai =  

This is a formidable equation even though it only applies to a simple 

three-layer, nine-node ANN. Imagine the equation that would apply for 

a six-input, five-layer ANN. It is extremely common to have even larger 

ANNs, so trying to analytically solve ANN equations is totally impractical 

and beyond human comprehension. Having ruled out an analytical 

approach, you might try a “brute-force” approach.

Consider using an extremely fast computer and trying a series of 

different values for each weight. Let’s assume that the weight range is 

–1 to +1, which is entirely possible for a practical ANN. Further assume 

that the increment size is 0.001, which again is a reasonable assumption. 

This would mean that for a three-layer, nine-node ANN, there would be 

18 weights to be tested with 2000 tests per connection for a grand total 

of 36,000 incremental tests. Let’s say it took 1 second to do a test, then a 

total of 36,000 seconds would elapse or about 10 hours of computing time. 

Ten hours is long, but you could go to bed and the computer would be 

done in the morning. But now consider a realistic 900 node ANN, which I 

plan on demonstrating in the next chapter. That would require nearly one 

billion tests and take about 32 years to complete. I don’t know about you, 

but waiting a generation or so for a computation to complete seems a bit 

too much. The practical alternative to the brute-force approach is to use 

the gradient descent algorithm that I have previously introduced in this 

chapter.

Figure 4-27 will be used as the network that I use to explain how to 

apply gradient descent to an ANN.
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There is one additional symbol ek required beyond those shown in the 

figure to represent the output node error.

Output node error is expressed by

e t ok k k= -

where

t ground truth valuek =   

o output resulting from x inputk i=   

The total error is the sum of each node’s error value. The resulting 

equation is

e t ok
i

N

k k= -( )
=
å

1

2

where

N total number of nodes in ANN=     

The error term is also squared for to ensure that negative errors do not 

cancel out positive errors as I had mentioned during the gradient descent 

discussion.

Figure 4-27.  Three-layer, six-node ANN
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This error function is equivalent to the loss function. That means it 

must be differentiated with respect to wj,k to create the equation used to 

optimize the weights. The derivative form is

¶
¶

=
¶

¶
-( )

=
åe

w w
t o

j k j k i

N

k k
, , 1

2

This equation can be considerably simplified by taking note that the 

error at any given node is due solely to its input connections. This means 

the kth node only depends on the wj,k weights on its input connections. 

Realizing this fact allows you to remove the summation from the error 

function because no other nodes contribute to kth node’s output. This 

simplification leads to a much simpler error function:

¶
¶

=
¶

¶
-( )e

w w
t o

j k j k
k k

, ,

2

The final equation after doing the differentiation and applying the 

activation function is

¶
¶

= - -( )* *
æ

è
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ø
÷* - *å åe
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t o sigmoid w o sigmoid w o
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The preceding equation while appearing quite complex is actually 

quite easy to understand if there is a physical interpretation put on it. The 

first part, (tk − ok), is just the error. The summations inside of the sigmoid 

functions are the inputs into the kth final layer node. The last term, oj, is the 

output from the jth node in the hidden layer.

The equation for the hidden layer gradient descent algorithm is similar 

to the one shown earlier. It is

¶
¶

= -( )* *
æ

è
ç

ö

ø
÷* - *

æ

è
çå åe
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The only remaining equation to be shown is the one which shows 

how to compute a new weight given the old weight and the result from the 

gradient descent algorithm. This equation is

neww oldw
e

wj k j k
j k

, ,
,

= - *
¶

¶
a

where

a = learning rate 

You should be able to see that the learning rate parameter has a strong 

effect how well the ANN steps through the gradient descent process.

It would be computationally efficient to express all of the preceding 

equations in matrix notation. The following function computes the 

gradient descent value for one link connecting a hidden layer node to an 

output node:

g w e sigmoid o sigmoid o oj k k k k j
T

,( ) = * * ( )* - ( )( )*a 1

where

o transpose of the hidden layer matrixj
T =      

The following are matrices for the three-layer, six-node ANN example:

g w g w g w

g w g w g w

e si1 1 2 1 3 1

1 2 2 2 3 2

1, , ,

, , ,

( ) ( ) ( )
( ) ( ) ( )

ì
í
ï

îï

ü
ý
ï

þï
*

* ggmoid sigmoid

e sigmoid sigmoid
o o1 1

2 2 2
1 2

1

1

* -
* * -

ì
í
î

ü
ý
þ
*{ }

(

(

where

on=outputs from the hidden layer

At this point, I have covered all the theoretical and mathematical 

background necessary for you to understand a thorough example on how 

an ANN can learn.
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�Practical ANN weight modification example
I will be using a slightly changed network from the earlier model to detail 

how to compute modified weights. Figure 4-28 is a modified version of 

Figure 4-26 in which I have inserted two random values to represent 

outputs from the hidden layer node.

Figure 4-28.  Modified three-layer, six-node ANN

The computation starts by updating w1,1, which is the link connecting 

node 1 in the hidden layer to node 1 in the output layer. The following is 

the gradient descent equation for this link:

¶
¶

= - -( )* *
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è
ç

ö

ø
÷* - *å åe

w
t o sigmoid w o sigmoid w o
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Substituting the values from the figure into this equation yields

t o ek k-( ) = =1 0 96.

j
j k jw oå *

æ

è
ç

ö

ø
÷ = *( )+ *( ) =, . . . . .2 0 0 6 3 0 0 4 2 4
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sigmoid
e

=
+( ) =-

1

1
0 9168

2 4.
.

1 0 0832- =sigmoid .

o1 0 6= .

Multiplying the preceding factors yields

- * * * = -0 96 0 9168 0 0832 0 6 0 04394. . . . .

If a learning rate of 0.15 is assumed, then the new weight will be

neww oldw
e

wj k j k
j k

, ,
,

= - *
¶

¶
a

newwj k, . . . . . .= - * -( ) = + =2 0 0 15 0 04394 2 0 0 0066 2 0066

The new weight is not too different from the old weight; however, you 

must be mindful that there will be hundreds, if not thousands, of iterations 

before a global minimum is reached. Small changes eventually result in 

large changes when accumulated over many iterations.

All the other network weights are adjusted using the same process as I 

just demonstrated.

�Some issues with ANN learning

There are two items regarding the sigmoid activation function that you 

should know. I have replicated Figure 2-16 as Figure 4-29 for purpose of 

supporting this discussion.
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Examining the figure, you should be able to see that for x inputs greater 

than 2.5, the y output changes very little. This is because the sigmoid 

function asymptotically approaches 1.0 around that value. Small changes for 

large x inputs imply very small gradient changes happening. ANN learning 

becomes suppressed because the gradient descent algorithm depends upon 

a “reasonable” slope being present. Thus, ANN training datasets should limit 

x values to what might be termed a pseudo-linear range of approximately –3 

to 3. The negative limit happens because the sigmoid function is symmetric 

around the y-axis and saturation occurs when x is 2.5 or less. Values of x 

outside the pseudo-linear range will cause a saturation effect for the ANN, 

and no effective weight updates can take place.

Another issue with the sigmoid function is that it cannot output values 

greater than 1.0 or less than 0. Initial weights must be selected to ensure 

that the function can output in its allowable range. Realistically, the output 

range has to be from roughly 0.01 to 0.99 because of the asymptotic nature 

described earlier.

Initial weight selection is important as I just described. Selecting a 

good initial set of ANN weights will avoid input saturation and output limit 

problems. The first obvious choice is to constrain weights to be within the 

Figure 4-29.  Sigmoid function
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pseudo-linear range I earlier specified. However, weights are more often 

constrained to be ±1 to be a bit more conservative.

There has been a useful rule of thumb followed by AI researchers for 

years to help with weight selection:

The weights should be initially allocated using a normal dis-
tribution set at a mean value equal to the inverse of the square 
root of the number of nodes in the ANN.

If you are using a small ANN with 36 nodes, then the mean is 
1

36
 

or 0.16667. Figure 4-30 shows a normal probability distribution with this 

mean and ±2 standard deviations.

Figure 4-30.  Normal deviation of initial weights for a 36-node ANN

A random selection of weights in the range of approximately –0.5 to 

0.833 would nicely provide an excellent starting point for learning for a 36-

node ANN.

There are two final points regarding initial weight selection. The first is 

avoid setting all weights to the same value. ANN learning depends upon an 

unequal weight distribution. The second point (and hopefully obvious) is 

not to set all weights to 0 because that would disable the ANN.
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This last section completes all my preparatory discussion regarding 

ANNs. It is time to take on an actual Python-based ANN.

�ANN Python demonstration – Part 1
In part 1 of this demonstration, I will show you how to create an untrained 

ANN using Python. In part 2, I will show you how to train the ANN.

This discussion starts by describing the constituent modules of a 

practical ANN. Each module must have software crafted to allow it to 

accomplish its purpose.

The first module is the Init module, which is used to “build” the ANN 

structure. For this demonstration, I will be building a three-layer, nine-

node ANN. This means I must have objects representing each layer, as well 

as inputs, outputs, and weights. Table 4-4 shows the Init module objects 

and references.

Table 4-4.  Init module objects and references

Name Description

inode Number of nodes in the input layer

hnode Number of nodes in the hidden layer

onode Number of nodes in the output layer

wtgih Weight matrix between the input and hidden layers

wtgho Weight matrix between the hidden and output layers

wij Individual weight matrix element

input Vector for inputs

output Vector for outputs

ohidden Array for hidden layer outputs

lr Learning rate
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The following Init module code sets the number and type of nodes as 

well as the learning rate:

def __init__(self, inode, hnode, onode, lr):

    # Set local variables

    self.inode = inode

    self.hnode = hnode

    self.onode = onode

    self.lr = lr

This Init module code must be called with the appropriate values to 

structure a three-layer, nine-node ANN. These values are

•	 inode = 3

•	 hnode = 3

•	 onode = 3

•	 lr = 0.25

The next module to be discussed is one that sets up the weight 

matrices. I decided to use a normal distribution with a mean of 0.1667 

and a standard deviation of 0.3333, as I previously discussed. Numpy 

contains a random number generator that nicely fulfills this requirement. 

The following code creates a 3 x 3 matrix named wtgih filled with random 

numbers with the desired statistical features:

self.wtgih = np.random.normal(0.1667, 0.3333, self.hnodes, 

self. inodes)

I tested the preceding code in a Python interactive session, which is 

shown in Figure 4-31.
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The resulting wtgih matrix is well formed with excellent initial values. 

The Init module can now be expanded to include the matrix generation 

code, where I used the rule of thumb described earlier to set the statistical 

parameters for the matrices.

def __init__(self, inode, hnode, onode, lr):

    # Set local variables

    self.inode = inode

    self.hnode = hnode

    self.onode = onode

    self.lr = lr

    # Mean is the reciprocal of the sqrt of node sum

    mean = 1 / (pow((inode + hnode + onode), 0.5))

    # Std dev is approx 1/6 of total weight range

    # Total range = 2

    sd = 2 / 6

    # Generate both weight matrices

    # Input to hidden layer

    self.wtgih = np.random.normal(mean, sd, [hnode, inode])

    # Hidden to output layer

    self.wtgho = np.random.normal(mean, sd, [onode, hnode])

Figure 4-31.  Python interactive session for test code
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At this point, I will introduce a second module designed to test the Init 

module. This new module is named testNet, which reflects its purpose. 

This module takes an input vector and returns an output vector. This new 

module performs the following steps:

	 1.	 Converts the input data vector into a numpy array.

	 2.	 Multiplies the input array by the wtgih weight 

matrix.

	 3.	 Applies the sigmoid activation function.

	 4.	 Multiplies the hidden layer output by the wtgho 

matrix.

	 5.	 Applies the sigmoid activation function.

The listing for this new module is as follows:

import numpy as np

def testNet(self, input):

    # Convert input data vector into an array

    input = np.array(input, ndmin=2).T

    # Multiply input array by wtgih matrix

    hInput = np.dot(self.wtgih, input)

    # Apply activation function

    hOutput = 1 / (1 + np.exp(-hInput))

    # Multiply hidden layer output by wtgho matrix

    oInput = np.dot(self.wtgho, hOutput)

    # Apply activation function

    oOutput = 1 / (1 + np.exp(-oInput))

    return oOutput
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Both the Init and testNet modules were put into a Python class named 

ANN, which I will show you after the part 2 demonstration. However, I first 

need to demonstrate how a totally untrained ANN performs.

Note  You will not be able to replicate the following interactive 
session, at this point, because the ANN class file is not present in 
your home directory. You can try doing this interactive session after 
the class file has been created or loaded.

Figure 4-32 shows the interactive session that instantiates an ANN 

object named ann and then calls the testNet method. Note that the Init 

method is automatically called when the ann object is instantiated.

Figure 4-32.  Interactive Python session for the testNet call

There are some serious errors present in the output, which I have 

detailed in Table 4-5.
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These errors should be greatly reduced after the network is trained, 

which is the topic for the next demonstration.

�ANN Python demonstration – Part 2
In part 2 of the demonstration, I will show you how to train the network 

that you created in part 1. Training will be using a third module named 

trainNet and is added to the ANN class file. This module functions in a 

similar fashion to the testNet module by computing an output dataset 

based on the input dataset. However, the trainNet module input dataset 

is a predetermined training set instead of a randomly generated dataset. 

What predetermined means in this context will become clearer as I go 

through the module development discussion.

The trainNet module computes an error dataset, which are the 

differences between with the ANN outputs and the input train dataset. 

Such behavior is called supervised learning, because the network “knows” 

what the correct output should be and can modify its weights to try to 

achieve the ground truth values contained in the input train dataset.

This next listing for trainNet module starts with some initialization 

code that is external to the initialization that happens within the Init 

module code:

def trainNet(self, inputT, train):

    # This module depends on values, arrays, and matrices

    # created when the init module is run

Table 4-5.  Initial test errors

Input Output Error Percentage error

0.8 0.628566 –0.171434 21.4

0.5 0.782561 0.282561 56.5

0.6 0.672449 0.072449 12.1
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    # Create the arrays from the list arguments

    self.inputT = np.array(inputT, ndmin=2).T

    self.train = np.arrat(train, ndmin=2).T

The computed errors are the differences between the training set 

values and the actual outputs. The error equation for the kth output node as 

previously shown is

e t ok k k= -

The matrix notation for the output errors is

self eOutput self train self oOutput. . .= -

The hidden layer error array in matrix notation for this example ANN is
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The following is the Python code that generates this array:

self.hError = np.dot(self.wtgho.T, self.eOutput)

The following is the weight update equation for adjusting a link 

between the jth and kth layers:

g w e sigmoid o sigmoid o oj k k k k j
T

,( ) = * * ( )* - ( )( )*a 1

The new g(wj, k) array must be added to the original because these are 

adjustments to the original. The preceding equation is easily expressed in 

Python code by

self.wtgho += self.lr*np.dot((self.eOutput*self.oOutputT*(1 - 

self.oOutputT)), self.hOutputT.T)
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The code for the weight updates between the input and hidden layers 

uses precisely the same format:

self.wtgih += self.lr*np.dot((self.hError*self.hOutputT*(1 - 

self.hOutputT)), self.inputT.T)

The two preceding Python statements are at the heart of the gradient 

descent algorithm. They basically step down the complex error (loss) 

function contours in search of the global minimum. You should note 

that there is no limiting statement that will stop this search. That is the 

responsibility of the calling function, which I will shortly demonstrate.

The complete ANN class listing follows, which includes the trainNet 

module as well as the Init and testNet modules. This file is named ANN.

py and is available from the book’s companion web site. I have not added 

any additional code comments beyond what is included in the listing. I feel 

that all my foregoing discussions hopefully explain how this code works.

# Import required libraries

import numpy as np

class ANN:

    def __init__(self, inode, hnode, onode, lr):

        # Set local variables

        self.inode = inode

        self.hnode = hnode

        self.onode = onode

        self.lr = lr

        # Mean is the reciprocal of the sqrt of total nodes

        mean = 1/(pow((inode + hnode + onode), 0.5))

        # Std dev is approx 1/6 of total range

        # Range = 2

        sd = 2/6
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        # Generate both weight matrices

        # Input to hidden layer matrix

        self.wtgih = np.random.normal(mean, sd, [hnode, inode])

        # Hidden to output layer matrix

        self.wtgho = np.random.normal(mean, sd, [onode, hnode])

    def testNet(self, input):

        # Convert input data vector into numpy array

        input = np.array(input, ndmin=2).T

        # Multiply input by wtgih

        hInput = np.dot(self.wtgih, input)

        # Apply activation function

        hOutput = 1/(1 + np.exp(-hInput))

        # Multiply hidden layer output by wtgho

        oInput = np.dot(self.wtgho, hOutput)

        # Apply activation function

        oOutput = 1/(1 + np.exp(-oInput))

        return oOutput

    def trainNet(self, inputT, train):

        # This module depends upon values, arrays and matrices

        # created when the init module is run

        # Create the arrays from the arguments

        self.inputT = np.array(inputT, ndmin=2).T

        self.train = np.array(train, ndmin=2).T

        # Multiply inputT array by wtgih

        self.hInputT = np.dot(self.wtgih, self.inputT)
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        # Apply activation function

        self.hOutputT = 1/(1 + np.exp(-self.hInputT))

        # Multiply hidden layer output by wtgho

        self.oInputT = np.dot(self.wtgho, self.hOutputT)

        # Apply activation function

        self.oOutputT = 1/(1 + np.exp(-self.oInputT))

        # Calculate output errors

        self.eOutput = self.train - self.oOutputT

        # Calculate hidden layer error array

        self.hError = np.dot(self.wtgho.T, self.eOutput)

        # Update weight matrix wtgho

        �self.wtgho += self.lr*np.dot((self.eOutput*self.

oOutputT*(1 - self.oOutputT)), self.hOutputT.T)

        # Update weight matrix wtgih

        �self.wtgih += self.lr*np.dot((self.hError*self.

hOutputT*(1 - self.hOutputT)), self.inputT.T)

The following script uses the ANN class to train the same sized network 

I used in part 1 of the demonstration. This script is named testANN3.py 

and is available from the book’s companion web site:

# Import required libraries

from ANN import ANN

# Create input data vector

inputT = [0.8, 0.5, 0.6]

# Display it

print('Input data vector')

print(inputT)

print()
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# Train for 1 iteration

train = inputT

ann = ANN(3,3,3,0.3)

output = ann.testNet(inputT)

# Display output

print('After one iteration')

print(output)

print()

# Train for 499 iterations

for i in range(499):

    ann.trainNet(inputT, train)

output = ann.testNet(inputT)

# Display output

print('After 500 iterations')

print(output)

print()

The script is run by entering the following command:

python testANN3.py

Figure 4-33 shows the results after the script was run.

Figure 4-33.  Results after running the testANN3 script
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You can clearly see that the initial output was way off from the initial 

data vector, except for the third element. However, after a total of 500 

iterations, the output essentially matched the input, which showed the 

network was fully trained for this particular input dataset vector. In case 

you are wondering, there is no specific reason why I chose 500 iterations as 

the limit other than the output results were unchanging as I tried various 

numbers in that region. I used a “trial-and-error” approach because it only 

took the RasPi a few seconds to do hundreds of iterations. This result just 

shows that there is no “magic” number to find regarding the number of 

iterations to use because each network is unique. Sometimes you just use a 

number which is good enough, which I have previously stated.

I was also interested in the net change in the two weight matrices from 

the initialized version to the fully trained version. Accordingly, I added an 

additional method to the ANN class, which returns the two matrices when 

called. This method is named getMatrices and is shown here:

def getMatrices(self):

    matrixList = list([self.wtgih, self.wtgho])

    return matrixList

The testANN3 script was then slightly modified to make two calls to the 

getMatrices method. The first call was after the first iteration, and the second 

call was after the 500th iteration. The modified testANN3.py script was 

renamed testANN4.py. It is available from the book’s companion web site.

from ANN import ANN

inputT = [0.8, 0.5, 0.6]

print('Input data vector')

print(inputT)

print()

train = inputT

ann = ANN(3,3,3,0.3)

output = ann.testNet(inputT)
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print('After one iteration')

print(output)

print()

matrixList = ann.getMatrices()

print('wtgih matrix')

print(matrixList[0])

print()

print('wtgho matrix')

print(matrixList[1])

print()

for i in range(499):

    ann.trainNet(inputT, train)

output = ann.testNet(inputT)

print('After 500 iterations')

print(output)

print()

matrixList = ann.getMatrices()

print('wtgih matrix')

print(matrixList[0])

print()

print('wtgho matrix')

print(matrixList[1])

print()

The script is run by entering the following command:

python testANN4.py

Figure 4-34 shows the results after the script was run.
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There are significant differences between the beginning and final 

versions for the two matrices, which clearly show how the weights were 

changed by the gradient descent algorithm.

I was next curious to see what happened to the two matrices if the 

script was simply rerun. Figure 4-35 shows the rerun results.

Figure 4-34.  Results after running the testANN4 script
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When comparing Figure 4-34 to Figure 4-35, it is easy to see that the 

starting matrices are different in each case. That is because the Init module 

uses a random number process to create each matrix. A more interesting 

feature is to observe that the final version of each matrix is different from 

the other for each time the script is run. I concluded that there must be no 

single set of optimized matrices for a particular solution and that the final 

set of matrices is dependent on the initialized set. From a mathematical 

perspective, this means there must be an infinite set of matrices that 

can be created to solve this particular input dataset using this particular 

ANN. It is my conjecture that this is one likely reason that AI researchers 

refer to ANNs as “black boxes” because of these non-analytical solutions.

Figure 4-35.  Results after rerunning the testANN4 script
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This concludes my deep learning preparation chapter. I humbly 

apologize if I went a bit “overboard” with some of the topics, especially 

with the math, but I felt it was necessary to expose you at least once to 

the important underpinnings of DL. You should now be fully prepared 

to understand and appreciate the interesting and practical ANN 

demonstrations in the next chapters.
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CHAPTER 5

Practical deep 
learning ANN 
demonstrations
Several practical DL demonstrations are shown in this chapter. You will 

be prepared to follow along with the demonstrations provided you have 

read the previous chapter or have acquired previous experience with 

DL techniques and concepts. I had two goals in mind when writing this 

chapter. The first was to clearly show how a complete ANN project could 

be accomplished to produce realistic and useful results. The second was 

to point out some potential pitfalls and unrealistic assumptions that are 

common in ANN development.
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�Parts list
You will need a standard RasPi desktop configuration and the Pi Camera 

for these chapter demonstrations.

Item Model Quantity Source

Raspberry Pi 3 or 4 Model B or B+  

(RasPi 3)

Model B (RasPi 4)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 16 GB, class 10  

or larger

1 amazon.com

Raspberry Pi Camera 

with ribbon cable

Version 2 or later 1 amazon.com

Raspberry Pi Camera 

holder

Any that fits a  

version 2 model

1 amazon.com

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

�Recognizing handwritten number 
demonstration
This ANN project is considered a classic one within the ANN community. 

It is focused on recognizing handwritten numbers. However, I would first 

like to comment on some general project development guidelines before I 

delve into the specifics for this project. Following these guidelines will help 

you be successful in completing most projects, including small ones such 
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as this one. The guidelines can be separated into a series of steps, which 

will be individually discussed after the list:

	 1.	 Write down the requirements.

	 2.	 Establish resources for personnel, hardware, and 

software.

	 3.	 Create a realistic schedule including milestones.

	 4.	 Start construction, development, and/or 

implementation.

	 5.	 Begin testing.

	 6.	 Revise development/implementation based on test 

results.

	 7.	 Begin production or field release.

	 8.	 Develop a maintenance plan.

Write down the requirements – It is important to write down the 

project requirements, even if you are the only one working on the project. 

Writing the requirements forces you to firmly understand what the project 

is supposed to accomplish when completed. This guideline becomes 

especially important if there are multiple team members working on the 

project. Committing the requirements to paper and having all the team 

members agree to them avoid future disagreements regarding what was to 

be done and how it was to be accomplished.

Establish resources for personnel, funds, hardware, and software – 

Knowing that all the resources required for the project are either 

immediately available or there is a plan to acquire them is key for any 

successful project completion. This step is likely optional for a single-

person project with a limited requirement, but is essential for a medium to 

large project with a dedicated team.
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Create a realistic schedule including milestones – Establishing a 

schedule is always a good idea, no matter what size project is being 

attempted. A simple note on your desk or calendar will suffice for a 

single-person software project, while more formal scheduling artifacts are 

appropriate for medium- to large-scale projects. Creating milestones is 

also useful, even if it is just a reminder to yourself that you are on schedule 

or falling behind, which is more often the case. There are often specialized 

project scheduling teams established for long-term, large-scale projects, 

which assist project managers with staying on schedule.

Start construction, development, and/or implementation – This is 

when the actual project work begins. For software development projects, 

such as described in this book, you should allocate sufficient time to work 

on the project without too many distractions. I know this is difficult in a 

family situation, but having uninterrupted time is important for efficient 

project completion. Formal projects are a different story because that is the 

raison d’être for their existence.

Begin testing – This step is appropriate for projects involving 

prototypes and/or software development. Testing hardware prototypes 

to determine if they meet requirements is absolutely necessary and 

no project can justifiably proceed without this step. Similarly, testing 

software to see that it meets its requirements is also a requirement. There 

may be formal ways of recording how well the prototype/software meets 

requirements depending on the nature and scale of the project.

Revise development/implementation based on test results – Altering 

and/or modifying the development/implementation must follow the 

review and acceptance of test results. Not using test results would defeat 

the whole purpose of testing and ultimately lead to an unsuccessful 

project. Sometimes, testing reveals that the initial requirements list was 

unrealistic or faulty in some manner. It is not unusual in a project life cycle 

to have requirements change somewhat due to latent discoveries or even 

the unfortunate event of having planned for resources unexpectedly being 

delayed or made unavailable. What you want to be wary of is requirements 

Chapter 5  Practical deep learning ANN demonstrations



283

“creep,” where nice to have requirements are quietly added to the list. This 

situation can lead to a problematic project outcome.

Begin production or field release – The project is essentially 

done and ready to be released for whatever purpose it was intended. 

Sometimes, project managers will delay the final release pending nice 

to have, small “tweaks.” This should be avoided because if the project 

was developed using firm guidelines, it should be ready at the scheduled 

date. Appropriate documentation should also be provided at this time 

concerning how prospective users should interact with the project. On 

large projects, user training will likely have already been started or even 

completed by the release date.

Develop a maintenance plan – All projects, except for small 

individualized projects, should include a maintenance scheme. This could 

be a formal plan, or it could only be an update web site. It all depends on 

the project scope and expected project lifetime.

Only four of the preceding steps are applicable for this project. The last 

step is a hybrid combination of steps 4, 5, and 6 from the preceding list:

	 1.	 Write down the requirements.

	 2.	 Establish resources for personnel, hardware, and 

software.

	 3.	 Create a realistic schedule including milestones.

	 4.	 Start development and testing and revise 

development as necessary.

In real-world terms, these steps consist of the following details:

Write down the requirements:

•	 Create a Raspberry Pi-controlled handwritten number 

recognition system.

•	 It will use an ANN designed to accommodate the 

available training/validation dataset.
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•	 It will display results on a monitor screen.

•	 The user will use a terminal window to interact with the 

system.

Establish resources for personnel, hardware, and software:

•	 Personnel – Self only.

•	 Equipment – See parts list. Internet access required to 

download required dataset.

Create a realistic schedule including milestones:

•	 Three work days to create and test the initial ANN

•	 One work day to test the visual recognition feature

•	 One work day to complete documentation

Start development and testing and revise development as necessary:

•	 Very much a unique experience for every developer. 

My approach, I suspect, differs significantly from other 

developer’s approaches.

•	 I try to comment/document as I develop and will 

backtrack to revise the comments based on the final 

outcome.

�Project history and preparatory details
Recognizing handwritten numbers has been an important priority for 

postal services worldwide. In many countries, postal codes are written 

on letters and packages to improve the way these items are processed 

in the system. Automated systems using video cameras coupled with 
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handwritten number recognition software are used to mechanically 

sort letters and packages without human intervention. Of course, 

technologies have constantly improved to the point where most of the 

packages sent through a postal service are now barcoded. Nonetheless, 

many letters are still mailed with handwritten postal codes that still need 

to be handled.

ANN was created that readily recognizes handwritten numbers. 

The training and validation/test datasets used in this project come from 

two Mixed National Institute of Standards and Technology (MNIST) 

databases. These databases have been widely used for many years in the AI 

community and are widely recognized as an accepted standard for rating 

how well a specific ANN is for performing this task.

The MNIST databases were created from thousands of Images taken 

from handwritten numeric digits written by 500 people. Half of these people 

were US Census Bureau employees, and the other half were high school 

students. The original black-and-white Images were normalized to fit into 

a 20 x 20 pixel Image. They were further processed by using anti-aliasing to 

generate a 1-byte grayscale value for each pixel in the original Image.

The MNIST datasets are large, consisting of 60,000 training Images 

(104 MB) and 10,000 validation Images (18 MB). They are freely available 

in a comma-separated value format at

Training set:

www.pjreddie.com/media/files/mnist_train.csv

Test set:

www.pjreddie.com/media/files/mnist_test.csv

Both datasets will be used in this project. I would suggest that you 

download them and store them in a named directory that you can easily 
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access. As mentioned previously, both datasets are in a CSV format, which 

makes for easy import into a Python script. Every record in both datasets has 

a label indicating the actual numerical digit represented by the Image. The 

use of the labels is critical for both training and validating the ANN. Using 

label datasets is termed supervised learning, and it is a fundamental 

concept for how ANNs can learn. The ANN used in this project cannot be 

trained or tested without labels being present for each record.

In this instance, there are separate datasets available for training and 

testing. That is not always the case. When only a single dataset is available, 

it must be parsed to provide training records and testing records. There is 

no hard or fast rule existing on how to parse a single dataset. Personally, I 

use an 80/20 rule where 80% of the dataset will be allotted for training and 

20% for testing/validation. Other AI practitioners will likely have their own 

rule of thumb, but I have found that the 80/20 rule seems to work well in 

most instances.

Figure 5-1 shows the beginning of the first record in the training 

dataset. This figure is a screenshot from a hex editor running on my 

MacBook Pro laptop.
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Figure 5-1.  A portion of the first record in the MNIST training 
dataset
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There are 784 bytes composing one Image because each Image 

has been rescaled from 20 x 20 to 28 x 28 pixels. Each pixel represents a 

grayscale pixel intensity, with values ranging from 0 to 255, where 0 is total 

black and 255 is total white. Every record in the database has 784 pixel 

values, 785 commas and 1 byte for the label value. Those values add up to 

1570 bytes. When you consider that there are more than 60,000 training 

records, the overall dataset size is about 100 MB. Handling a dataset this 

size while developing a script is a chore even for the fastest processor, and 

the RasPi does not fall in that category. Fortunately, there are two small 

sub-sets for both MNIST train and test datasets, which can be used for 

development. These are available at

Train dataset:

https://raw.githubusercontent.com/makeyourownneuralnetwork/

makeyourownneuralnetwork/master/mnist_dataset/mnist_train_100.csv

Test dataset:

https://raw.githubusercontent.com/makeyourownneuralnetwork/

makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv

All the datasets described earlier are in a CSV format, where commas 

are used to separate individual data values. The Python language contains 

useful functions to input CSV data into scripts in a numerical format 

that can easily be used. The following code snippet opens a CSV file 

and “reads” the contents into a data list. A data list is an object, which 

efficiently stores and retrieves data for rapid access by the script.

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

I entered the preceding code into an interactive Python session to 

reveal how this snippet works. Figure 5-2 shows the interactive session.
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You should be able to see that the data list was correctly instantiated. 

I also entered a length command, which returned 100. That reflected the 

number of elements in the data list, which is what was expected from the 

mnist_train_100.csv file. In addition, I displayed the contents of the 

first record, dataList [0], which displayed as series of 1570 integers, all 

separated by commas. Note that the first integer is 5, which corresponds to 

the record label.

You should also take note of the appearance of single quotes at the start 

and end of the displayed integers. This indicates that Python considers 

the data to be a long string. While it may appear as numbers, the Python 

interpreter considers it to be a string of ASCII characters. The character 

displayed just before the ending single quote is “\n”. This is the “escaped” 

letter n. In ASCII terms, it represents the carriage return function, which 

means that a new line is to be created at this point in the record, as the 

ASCII characters are being interpreted. New line characters are used as 

delimiters for the dataset. Delimiters indicate where one record stops and 

Figure 5-2.  Interactive Python session for data file operations
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the next one starts. All 100 records are indexed by the list object, which 

means that any particular can be randomly accessed without reading or 

writing all the records leading up to that record. The indices are 0 based, 

which means the index range is 0 to 99 for all of the records. Any record can 

be randomly accessed using Python’s array element notation. For instance, 

the middle or 50th element would be referenced as dataList [49].

Recall, in previous chapters, that it is important to have an awareness 

regarding the nature of the data you are handling, regardless of the type of 

mathematical operations being attempted. In this case, visually reviewing 

individual handwritten records could provide you with insight into the 

overall problem domain that simply could not be obtained by merely 

reviewing numerical data lists.

The Matplotlib Python library will be used to provide an Image of any 

selected data list record. Enter these next two commands in order to have 

the Matplotlib library available for import into a script:

sudo apt-get update

sudo apt-get install python-matplotlib

The following script will be used to view any record in the 100 record 

MNIST train dataset. The script is named viewRecord.py, and it is available 

from the book’s companion web site:

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

# Create data list

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()
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# Get the record number

print('Enter record number to be viewed: ', end = ' ')

num = input()

# Get the record

record = dataList[int(num)].split(',')

# Reshape the array for imaging

imageArray = np.asfarray(record[1:]).reshape(28,28)

# Image it as a grayscale

plt.imshow(imageArray, cmap='Greys', interpolation='None')

plt.show()

An object named dataList contains all 785 elements from the requested 

record. These are separate elements because the split method created 

them as such based on the comma delimiter. The dataList object must 

then be reshaped into a 28 x 28 numpy array in order to be Imaged. Each 

value in the array will now correspond to a pixel intensity as shown in 

the original Image. Also note that the numpy array starts with the second 

element, whose index equals 1. That is because the first element is the 

label, which you do not want to be included in the Image. Another item to 

note is that “Greys” is intentionally misspelled in the imshow command. 

I can only guess that an open source developer was not too familiar with 

how to correctly spell it.

The script is run by entering this command:

python3 viewRecord.py

The resulting Image for record 0 is shown in Figure 5-3.
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The figure clearly shows a rather “lazy” number 5 digit drawn. You 

can confirm that it is supposed to be the number 5 by examining the first 

element in the numerical record listing shown in Figure 5-2.

At this point, you should be comfortable in dealing with the datasets 

that will be used in the project. The next section shows you how to adjust 

or modify the datasets so that they are compatible with what a practical 

ANN requires as an input data source.

Figure 5-3.  Record 0 Image
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�Adjusting the input datasets
In the preceding discussion, it was pointed out that the pixel values will 

range from 0 to 255. This range is significantly beyond an acceptable data 

value input range for an ANN. Recall, in Chapter 4, where I was discussing 

some issues and limitations regarding ANNs. In that section, I stated

Thus, ANN training datasets should limit x values to what 
might be termed a pseudo-linear range of approximately -3  
to 3.

The reason was the sigmoid function’s limiting action. Input data 

values beyond +/- 3 will saturate the function output, effectively shutting 

down any ANN learning function. In communication electronics 

terminology, this situation is often called running out of dynamic range. 

Fortunately, it is easy to adjust the input data values to an acceptable range 

of 0.01 to 1.00 without any loss in ANN accuracy. The Python statement to 

make this adjustment is

adjustedRecord = (np.asfarray(record[1:])/255.0 * 0.99) + 0.01

I added this statement to the interactive Python session I ran earlier. 

Figure 5-4 shows the revised results along with the interactive session.

Chapter 5  Practical deep learning ANN demonstrations



294

Figure 5-4.  Revised interactive Python session for data file operations
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I added the record adjustment statement to script in order to set an 

acceptable value range for the input data values. But what about the 

output data values? I address that question next.

�Interpreting ANN output data values
I have mentioned in previous chapters that ANNs do one of two things. 

They either predict or classify. The ANN to be used in this project is a 

classification type because its purpose is to accept a digitized handwritten 

number and classify it into one of ten classes, namely, the digits 0 to 9. I 

have just showed how the input data values will now all be adjusted to stay 

within the range of 0.01 to 1.00. This can only mean that all ANN outputs 

must also stay within that range. There is no multiplicative or gain function 

existing in an ordinary ANN, which will produce output values greater 

than the maximum input values. Therefore, the outputs will range from 

0.0 to 1.0. Notice that I lowered the output lower range limit to 0.0 from the 

input lower range limit of 0.01. This is because it is entirely possible to have 

absolutely no input to a given output node. In reality, there will always be 

some noise present on the output of all nodes in the output layer. You will 

see levels like 5 x 10-9, which for all practical purposes is 0.

The answer to the question is not on how the output levels can or 

should be adjusted, but on how to interpret the levels that ultimately are 

generated. In an ideal handwritten number recognition ANN, when record 
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0 from the training set is presented to the ANN, the output would be as 

shown in the following data vector:
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In reality, you might see a vector like
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There are nine out of ten numbers near 0 and one much higher than 

the rest. It is not unreasonable to consider that the high value is the 

probability that the ANN “believes” the input Image is that of a 5. There 

is no formal mathematical logic, which can be applied to prove that this 

ANN has produced a true probability, but most practitioners accept my 
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interpretation of the results. Note that in other ANN structures there are 

layers that can be added, which will generate true probabilities, but not 

in this simplified ANN. Sometimes, there may be another class or two 

with a higher number, but less than the maximum value. Such a situation 

indicates that the ANN is having a difficult time in classifying the input and 

“believes” the input data pattern may be somewhat associated with other 

classes. In such cases, only more training can alleviate this situation. Just 

remember it is practically impossible to train an ANN which will make 

perfect predictions or classifications. This is also true when considering 

a human expert. There is no one who can 100% correctly classify any 

handwritten number presented to him or her.

The next step in this project development is to create an ANN 

structure, which is paramount to have a successful outcome.

�Creating an ANN that does handwritten number 
recognition
The first decision to be made is to determine the basic ANN structure 

to be used. I decided that a three-layer ANN would be the simplest and 

still an effective design. Three-layer ANNs are not to be underestimated 

just because there is only one hidden layer. Additional hidden layers 

can always be added if it is found that the three-layer design is under-

performing. The ANN structure used in this demonstration uses the 

multi-layer perceptron model. This is because the basic elemental artificial 

neural, which is used as a computing element, was named the perceptron 

in 1958 by Frank Rosenblatt of the Cornell Aeronautical Laboratory.

The next step in creating an ANN structure is to determine the number 

of nodes in each layer. In this application, setting the number of nodes 

for the input and output layer nodes is easy. The input layer must have 

784 nodes to represent the input from each pixel value. The output layer 

must have ten nodes to represent each class that may be recognized. The 

hidden layer is the remaining one which must have a node number set. 
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Determining the number of nodes to be assigned to the hidden layer is 

more difficult than setting the node numbers for either the input or output 

nodes. I have done a good amount of research regarding how to set the 

hidden layer node amount. There are a variety of “rules of thumb” to 

determine this number. The following are among the most common:

•	 Use the mean of the number of input layer nodes (Ni) 

and output layer nodes (No).

•	 Use the square root of Ni times No.

•	 The number of hidden layer nodes (Nh) should be 

between the size of Ni and No.

•	 Nh should be two-thirds the size of Ni plus No.

•	 Nh should be less than twice the size of Ni.

It soon became clear to me that setting Nh is kind of a trial-and-

error experiment. There are two terms that I wish to discuss at this time, 

which are appropriate when considering how many hidden layer nodes 

to instantiate. The first is underfitting which can happen when too few 

nodes are created. The symptoms for underfitting is that the ANN cannot 

be trained and/or the error rate is unacceptably high. The other term 

is overfitting, where there is a surplus of nodes. In this case, symptoms 

include the situation when training never converges because of the extra 

nodes and accuracy diminishes because the ANN is overly sensitive 

to noise and artifacts. When overfitting occurs, the ANN has so much 

information that the input dataset is insufficient to train all the nodes in 

the hidden layer; in addition, the length of training time can dramatically 

increase to the point where it never stops or converges as previously stated. 

The optimal goal in setting an appropriate number of hidden layer nodes 

is to avoid both under-fitting and overfitting.
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Based on the preceding discussion and my experiments, I arrived at 

the following conclusion regarding setting the number of hidden layer 

nodes:

The number of hidden layer nodes in a three-layer ANN should 
be set at the square of the number of output nodes, but should 
not exceed the mean of the input and output layer nodes.

This guideline is a mashup of several rules of thumb that I earlier 

cited. I have also noted anecdotally that there seems to be a squaring 

relationship that often occurs in designing ANN structures. This 

relationship was present when the mean was calculated for setting weights 

and when the error function slope was computed. Squaring the 10 output 

node number means that 100 hidden layer nodes should be set. This value 

seems proper given the large size of the input layer and the relatively small 

size of the output layer. If the ANN performs poorly, the 100 number can 

always be modified.

It is time to show you the initial training script now that the ANN 

structure has been determined.

�Initial ANN training script demonstration
The following data implements a short script that set ups an ANN and 

trains it using the abbreviated 100 record MNIST train dataset. It does not 

yet test the ANN for accuracy. That will come after this script is discussed. 

This script is named trainANN.py, and it uses the ANN class that was 

developed in Chapter 4. Please reread that chapter regarding this class 

because it is a key part of this script. This script is available from the book’s 

companion web site:

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN
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# Setup the ANN configuration

inode =784

hnode =100

onode =10

# Set the learning rate

lr = 0.2

# Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

# Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

# Train the ANN using all the records in the list

for record in dataList:

      recordx = record.split(',')

      inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

      train = np.zeros(onode) + 0.01

      train[int(recordx[0])] =0.99

      # Training begins here

      ann.trainNet(inputT, train)

There are several prerequisites that must be set prior to running the 

preceding script. The file ANN.py must be in the same directory as the 

script, and the mnist_train_100.csv dataset must also be in the same 

directory. Simply enter this command to run the script:

python trainANN.py

There are no results shown if the script ran without any errors because 

the intention was just to train the ANN. You should correct any errors 

before proceeding with the next portion of this demonstration.
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�ANN test script demonstration
The trained ANN completed in the previous section must now be tested in 

order to assess how well it performs in classifying handwritten numbers. 

The test dataset to be used is the small 10 record set downloaded from 

the same web site where the 100 record training dataset was downloaded. 

A modified version of the trainANN script will be used for this test. I 

renamed the modified trainANN script to testANN_short.py to reflect both 

its new purpose and to differentiate it from a follow-on version which will 

employ the full-sized train and test datasets.

This script is available from the book’s companion web site:

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

# Setup the ANN configuration

inode =784

hnode =100

onode =10

# Set the learning rate

lr = 0.2

# Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

# Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

# Create the test list data

testDataFile = open('mnist_test_10.csv')
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testDataList = testDataFile.readlines()

testDataFile.close()

# Train the ANN using all the records in the list

for record in dataList:

      recordx = record.split(',')

      inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

      train = np.zeros(onode) + 0.01

      train[int(recordx[0])] =0.99

      # Training begins here

      ann.trainNet(inputT, train)

# Iterate through all 10 test records and display output

# data vectors

for record in testDataList:

      recordz = record.split(',')

      # Determine record's label

      labelz = int(recordz[0])

      # Adjust record values for ANN

      inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

      outputz = ann.testNet(inputz)

      print('output for label = ', labelz)

      print(outputz)

As in the preceding script, ensure that the file ANN.py, mnist_

train_100.csv, and mnist_test_10.csv datasets are in the same directory as 

the script. Enter this command to run the script:

python testANN.py

Figure 5-5 shows the complete results after running the script. I made a 

composite figure from two screenshots in order to capture all the results.
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Figure 5-5.  testANN script results
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The 60% match rate displayed in Table 5-1 is barely satisfactory; 

however, it is not surprising considering that the ANN was only trained 

with 100 records out of a potential 60,000 that are available for training.  

I also like to delve into the details when confronted with an apparently 

large error result. Consequently, I modified the viewResults script to 

examine the four records, which were not correctly identified. I collected 

and combined their Images into Figure 5-6 in order to identify any 

common attributes, which might have led to the misidentifications.

Table 5-1.  The results of the ANN test run

Label 7 2 1 0 4 1 4 9 5 9

Index 7 3 1 0 4 1 4 8 1 4

Match x x x x x x
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You can immediately see that the ANN has trouble with the number 9. 

Two of the four Images are that number. The number 5, which is the one 

on the lower left-hand side, is so badly written, that no one (machine or 

human) could recognize it, so the ANN is excused. That leaves the number 

2 Image on the upper left-hand side. That is clearly written and should have 

been properly identified. The only solution to these problems, with the 

possible exception of the number 5 digit, is to further train the ANN. Given 

the results of this early experiment, I would fully expect that a fully trained 

ANN would easily score above 90% in accuracy.

Figure 5-6.  Misidentified handwritten numeric digits
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I was also interested in what the results would be if I ran the testANN 

script multiple times, but not displaying the output data vectors, but only 

the match results, which is an accuracy metric. Accordingly, I modified 

the testANN_short script to accommodate these changes and renamed it 

testANN_metrics.py. This script is available from the book’s companion 

web site:

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

# Setup the ANN configuration

inode =784

hnode =100

onode =10

# Set the learning rate

lr = 0.2

# Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

# Create the training list data

dataFile = open('mnist_train_100.csv')

dataList = dataFile.readlines()

dataFile.close()

# Create the test list data

testDataFile = open('mnist_test_10.csv')

testDataList = testDataFile.readlines()

testDataFile.close()
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# Train the ANN using all the records in the list

for record in dataList:

      recordx = record.split(',')

      inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

      train = np.zeros(onode) + 0.01

      train[int(recordx[0])] =0.99

      # Training begins here

      ann.trainNet(inputT, train)

# Iterate through all 10 test records and display output

# data vectors

match = 0

no_match = 0

for record in testDataList:

      recordz = record.split(',')

      # Determine record's label

      labelz = int(recordz[0])

      # Adjust record values for ANN

      inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

      outputz = ann.testNet(inputz)

      max_value = np.argmax(outputz)

      if max_value == labelz:

            match = match + 1

      else:

            no_match = no_match + 1

      success = float(match) / float(match + no_match)

print('success rate = {0}'.format(success))

The script is run by entering this command:

python3 testANN_metrics.py

Figure 5-7 shows the results after I ran the script ten consecutive times.
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You should be able to see that the success rate ranged between 0.4 

and 0.6. I averaged all ten values and determined the average success rate 

was equal to 0.52. This is a rather poor result, but again as I explained 

earlier, the ANN was poorly trained using only 100 out of 60,000 plus 

available records. Incidentally, those readers with Python skills might 

have wondered why I didn’t include a loop for ten consecutive script runs 

or epochs. I didn’t because the ANN must be reinitialized for each run or 

else the same trained ANN would be used for each pass, yielding the same 

success rate. Rewriting the script to accommodate a reinitialized ANN was 

certainly doable, but I didn’t want to commit the time to do so when it was 

much simpler to just manually rerun the script ten times.

You might question why the results for each epoch were different? 

The answer is that the initially weighting matrices are generated using a 

Figure 5-7.  Results for ten consecutive runs of script testANN_metrics
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random normal distribution. Therefore, some of the matrices were slightly 

better suited to produce more accurate results than others. These initial 

distribution variations will disappear when the ANN is trained using the 

full 60,000 training record set which is next in the demonstration schedule.

�ANN test script demonstration using the full 
training dataset
You only have to make one slight change to the testANN_metrics script to 

use the full training set. Change the following statement from

dataFile = open('mnist_train_100.csv')

to

dataFile = open('mnist_train.csv')

I have not included a new script listing because the modifications 

are minor and easily done. You can then rerun the testANN_metrics 

script with the ten test records; however, it will take much longer to finish 

executing because there are over 60,000 training records to be processed. 

Expect to wait up to 10 minutes depending on the RasPi processor speed. 

I ran the newly modified script and found that it only took 6 minutes and 

3 seconds to finish. This was a pleasant surprise and showed me just how 

powerful the A-72 ARM, Quad Core, 1.5 GHz processor is in the RasPi 4.

The result showed a 0.9 success rate, which I actually expected, since 

one of the ten Images I considered is undecipherable.

The next step in this demonstration series is to run the script with 

the full 10,000 record test dataset. Again, this is easily accomplished by 

modifying one statement as follows

testDataFile = open('mnist_test_10.csv')

to

testDataFile = open('mnist_test.csv')
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Again, I have not included a new script listing because the 

modifications are minor and easily done to the existing script. You can 

then rerun the testANN_metrics script with the 10,000 test records; 

however, it will take even longer to finish executing than above because 

there are 10,000 test records to process in addition to training with the 

60,000 records. Fortunately, it is much quicker to test the ANN per record 

than it is to train it per record.

I reran the newly modified script and found that it only took 6 minutes 

and 15 seconds to finish. The result showed a 0.9458 success rate, which 

I expected based on all the previous discussions regarding a fully trained 

ANN. This success rate value is generally considered a good ANN result.

The learning rate can also have a significant impact on the ANN 

accuracy. I again modified the testANN_metrics script to test the learning 

rate impact on accuracy. The modification consisted of creating a loop 

that modified the learning rate from 0.1 to 0.6 while recalculating the 

success rate. I also believe learning rate values beyond 0.6 is not realistic 

to set in any practical ANN. This time, the modifications were of sufficient 

magnitude that I believed it was appropriate to include a full script listing.  

I also renamed the script testANN_metrics_lr.py to indicate the learning 

rate variations. This listing is available from the book’s companion web site:

# Import required libraries

import numpy as np

from ANN import ANN

# Setup the ANN configuration

inode =784

hnode =100

onode =10

# Set the initial learning rate

lr = 0.1
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# Create the training list data

dataFile = open('mnist_train.csv')

dataList = dataFile.readlines()

dataFile.close()

#  Create the test list data

testDataFile = open('mnist_test.csv')

testDataList = testDataFile.readlines()

testDataFile.close()

# Loop to iterate learning rates from 0.1 to 0.6 in 0.1 steps

for i in range(6):

      # Instantiate an ANN object named ann

      ann = ANN(inode, hnode, onode, lr)

      # Train the ANN using all the records in the list

      for record in dataList:

            recordx = record.split(',')

            �inputT = �(np.asfarray(recordx[1:])/255.0*0.99) + 0.01

            train = np.zeros(onode) + 0.01

            train[int(recordx[0])] =0.99

            # Training begins here

            ann.trainNet(inputT, train)

      # Iterate through all the test records

      match = 0

      no_match = 0

      for record in testDataList:

            recordz = record.split(',')

            # Determine record's label

            labelz = int(recordz[0])

            # Adjust record values for ANN
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            inputz = (np.asfarray(recordz[1:])/255.0*0.99)+0.01

            outputz = ann.testNet(inputz)

            max_value = np.argmax(outputz)

            if max_value == labelz:

                   match = match + 1

            else:

                   no_match = no_match + 1

            success = float(match) / float(match + no_match)

      # Display the learning rate and success rate

      print('lr = {0} success rate = {1}'.format(lr,success))

      lr = lr + 0.1

Be forewarned that this script takes almost an hour to run through 

completely. It is run by entering this command:

python3 testANN_metrics_lr.py

Figure 5-8 shows the results after I ran the script.

Figure 5-8.  Results after running the testANN_metrics_lr script

You should be able to see that the success rate ranged down 

from 0.9456 to 0.8989 for learning rates that range up from 0.1 to 0.6, 

respectively. The ANN accuracy decreases substantially as the learning 
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rate increases. This is because the global minimum is not being reached 

because the gradient descent algorithm steps are increasing in magnitude. 

If you are confused by the proceeding, I would suggest that you reread the 

appropriate sections in Chapter 4 to refresh yourself on how learning rate 

and the gradient descent algorithm are related. I would suggest that the 0.2 

learning rate that I selected for the initial test run was optimal because the 

success rate of 0.9458 was higher than any recorded in this run. However, 

the actual success rate differences are miniscule and likely related to 

random variation. In any case, a learning rate of 0.1 or 0.2 would be ideal 

for this ANN.

You will now have a well-performing ANN if you replicated the 

demonstrations to this point. Any ANN with an accuracy of approximately 

95% is generally considered high performing. I would recommend to 

continue experimenting with this ANN such as changing the number of 

hidden nodes to see what effect it has on the network performance.

The next series of demonstrations expands on this ANN by 

incorporating a Pi Camera to enable real-time number recognition.

�Recognizing your own handwritten numbers
It is a natural extension of the previous demonstrations to experiment with 

your own handwritten number recognition instead of relying on stored 

examples. This feature can easily be implemented using a Pi Camera, 

which is a video camera especially designed to work seamlessly with 

a RasPi. The Pi Camera interface has been incorporated into all recent 

versions of the Raspbian Linux distributions. All that is need is to activate 

it, which I will shortly discuss. But first, you need to see how to install the 

hardware.

Chapter 5  Practical deep learning ANN demonstrations



314

�Installing the Pi Camera

I will be discussing how to install version 2 of the Pi Camera on a RasPi 4.  

These instructions are also applicable for RasPi 2 and 3 versions. Figure 5-9  

shows a Pi Camera, version 2, that will be used in the next few 

demonstrations.

Figure 5-9.  Pi Camera, version 2
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The camera’s specifications are impressive given its compact size and 

low cost. I have summarized the key specifications as follows:

•	 8 megapixel native resolution, high quality Sony 

IMX219 Image sensor

•	 Maximum still photograph resolution of  

3280 x 2464 pixels

•	 Capture video at 1080p30, 720p60, and  

640x480p90 resolutions

•	 All software supported within the latest version of the 

Raspbian Operating System

•	 Optical size of 1/4”

•	 Wide angle lens with a range of 4 inches to infinity

The camera comes with a short flex ribbon cable that is plugged into 

the Camera Serial Interface (CSI) socket that is located directly behind the 

RJ45 socket on the RasPi. Figure 5-10 shows where the CSI socket is located 

on a RasPi.
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Note, there is another similar socket located on the RasPi 2, 3, and 4 

models. That one is the Display Serial Interface (DSI) socket. You might 

accidentally plug in the camera cable into that socket, but it shouldn’t do 

any damage. The camera would simply not work.

To plug in the camera cable into the CSI socket, you must carefully pull 

directly up on two black plastic tabs on each side of a slim plastic bar. Be 

very careful because the plastic bar is flimsy and could easily be broken by 

the excessive use of force. The plastic bar will become loose, yet still stay 

attached to the socket when it is lifted.

Next, carefully insert the flex cable into the socket with the exposed, 

silver-colored finger contacts facing away from the RJ45 connector. The 

blue backing on the ribbon cable should now face the RJ45 connector. 

Ensure the cable is firmly seated at the bottom of the socket and the cable 

is perpendicular to the board and not slanted. Next, gently push down on 

the black plastic tabs to lock the cable in place. Just use a firm, but gentle 

pressure to lock down the cable.

Figure 5-10.  CSI socket location
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Please note that it is possible, if not probable, that the cable can 

become dislodged when the RasPi is moved or relocated. If this happens, 

the OS will start reporting strange errors that it wasn’t able to load certain 

drivers or that you should enable the camera. I always check to see that 

the camera cable is inserted properly before chasing down those errors. 

Figure 5-11 shows a properly inserted camera cable.

Figure 5-11.  Properly inserted camera cable

You will next need to install some additional software packages in 

order to use the camera with the demonstrations.
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�Installing the Pi Camera software

The first action to be taken is to enable the camera within the Raspbian 

OS. This is done using the raspi-config utility. This utility is started by 

entering the following command:

sudo raspi-config

Figure 5-12 shows the initial menu after you have entered this 

command. Select 5 Interfacing Options, which will install all the drivers 

for the Pi Camera. There is a follow-on screen after you make the initial 

selection where you enable the camera drivers.

Figure 5-12.  raspi-config menu screen

Once the camera has been enabled, you will need to install some 

additional software. Enter the following command to install the Python 

picamera library:

sudo apt-get update

sudo apt-get install python-picamera
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You need to install the Pillow package, which contains the Python 

Imaging Library (PIL). Enter this next command:

sudo apt-get install python-pillow

That’s all the software that needs to be installed in order to start the 

demonstrations.

�Handwritten number recognition demonstration

The first action you should try is to test the Pi Camera installation. Enter 

this command:

raspistill -t 5000

You should see a full-height, color video displayed on your monitor 

for 5 seconds at whatever the camera was pointing at. The width will not 

quite expand to the monitor width because of the aspect ratio; however, 

if you see a live Image, you can be assured that the Pi Camera is operating 

correctly. If no Image was displayed, I would recheck the camera cable 

connections to ensure that they are proper and correct. In my experience, 

at least 95% of hardware issues are related to electrical connections.

If you passed this first check, you will be ready for the initial 

demonstration for handwritten number recognition using a Pi Camera.

You will need to make a target to Image. I would suggest using 3 x 5 

white card stock to write on and a fine tip black “Sharpie” marker. The 

marker on white card stock will provide a good contrast for imaging the 

number. Using a pen or pencil on paper is not recommended because 

there will not be sufficient contrast to define an Image consistent with 

the Images used to train the ANN. Remember, the ANN cannot perform 

correctly if it is presented with Images it was not trained to recognize. 

Figure 5-13 shows my target handwritten number.

Chapter 5  Practical deep learning ANN demonstrations



320

This figure was imaged using the following command:

raspistill -o zerobw.jpg

The Image will need to be preprocessed before it is in form suitable 

for inputting into the ANN for number recognition. This preprocessing 

will be part of a modified testANN script that I used to process this Image. 

I renamed the modified script testANN_Image.py, and it is available from 

the book’s companion web site.

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

from ANN import ANN

import PIL

from PIL import Image

# Setup the ANN configuration

inode = 784

Figure 5-13.  Target handwritten number
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hnode = 100

onode = 10

# Set the learning rate

lr = 0.1

# Instantiate an ANN object named ann

ann = ANN(inode, hnode, onode, lr)

# Create the training list data

dataFile = open('mnist_train.csv')

dataList = dataFile.readlines()

dataFile.close()

# Train the ANN using all the records in the list

for record in dataList:

      recordx = record.split(',')

      inputT = (np.asfarray(recordx[1:])/255.0*0.99) + 0.01

      train = np.zeros(onode) + 0.01

      train[int(recordx[0])] = 0.99

      # Training begins here

      ann.trainNet(inputT, train)

# Create the test list data from an image

img = Image.open('zerobw.jpg')

img = img.resize((28,28), PIL.Image.ANTIALIAS)

# Read pixels into list

pixels = list(img.getdata())

# Convert into single values from tuples

pixels = [i[0] for i in pixels]

# Save to a temp file named test.csv with comma delimiters

imgTmp = np.array(pixels)

imgTmp.tofile('test.csv', sep=',')
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# Open the temp file and read into list

testDataFile = open('test.csv')

testDataList = testDataFile.readlines()

testDataFile.close()

# Iterate through all list elements

for record in testDataList:

      recordx = record.split(',')

      # Adjust record values for ANN

      input = (np.asfarray(recordx[0:])/255.0*0.99)+0.01

      output = ann.testNet(input)

# Display output data vector

print(output)

The following comments apply to the modifications incorporated into 

the script to preprocess the Image acquired using the Pi Camera.

import PIL

from PIL import Image

The Python Imaging Library (PIL) and its sub-library Image are 

required to process the acquired Image with Python.

img = Image.open('zerobw.jpg')

img = img.resize((28,28), PIL.Image.ANTIALIAS)

The first command loads the file, which is hard-coded into the script. 

The loaded Image is then resized into a 28 x 28 pixel sized Image. The 

ANTIALIAS argument ensures that no artifacts are created during the 

downsizing operation.

pixels = list(img.getdata())
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This command converts the 784 pixel values into a list named pixels.

imgTmp = np.array(pixels)

imgTmp.tofile('test.csv', sep=',')

These commands convert the list into an array named imgTmp. 

This array is then converted into a comma-delimited array, which is 

subsequently stored into a file named test.csv.

I ran this script by entering this command:

python3 testANN_image.py

The script took over 6 minutes to run, which was expected because all 

60,000 records are being used to train the ANN. The results are shown in 

Figure 5-14.

Figure 5-14.  Results for running the testANN_image script

The results clearly showed that the 0th index had the highest value, 

which meant the ANN classified the input Image as a 0, which was the 

correct result.
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This last demonstration took a considerable amount of effort in order 

to show you that a RasPi-controlled camera coupled with a well-trained 

ANN can recognize a handwritten number.

�Handwritten number recognition using 
Keras
There are a number of techniques available to recognize handwritten 

numbers beyond the relatively simple approach I just demonstrated. It 

is entirely possible to achieve an accuracy rating beyond 95% by using a 

Keras ANN. But now, I have to explain what Keras is and how it can be 

used for this application.

�Introduction to Keras
Keras is an open source neural network library written in Python that runs 

on top of Theano, CNTK, or TensorFlow backends. It was designed and 

developed by François Chollet, a Google engineer, to be modular, fast, and 

easy to use.

Keras is a high-level API that is used to make models, define layers, 

and/or set up multiple input-output models. Keras also compiles the 

network model with both loss and optimizer functions. There is also a 

training process available with a fit function.

Keras doesn’t handle low-level API functions such as making a 

computational graph, creating tensors, or other variables because those 

functions are relegated to the back-end engine, that is, TensorFlow, CNTK, 

or Theano.

In Keras, neural layers, cost functions, optimizers, initialization 

schemes, activation functions, and regularization schemes are stand-alone 

modules that may be combined to create new models. New modules are 
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simple to add, as are new classes and functions. All models are defined 

in regular Python code and do not require the use of separate model 

configuration files.

As mentioned earlier, Keras does not do low-level operations, such as 

tensor products and convolutions. Instead, it relies on a back-end engine 

for that. Although Keras supports multiple back-end engines, its primary 

(and default) backend is TensorFlow, and its primary corporate supporter 

is Google. The Keras API comes packaged in TensorFlow as tf.keras, 

which became the primary TensorFlow API as of the beginning of 2019.

�Installing Keras
Keras should be installed in a Python virtual environment, preferably the 

same one that supports OpenCV. The following commands will install 

the latest versions of TensorFlow and Keras. The most current version at 

the time of this writing for the TensorFlow backend is 2.0, and the latest 

version for Keras is 2.2.4.

Instantiate the virtual environment and enter this command to install 

TensorFlow:

pip install tensorflow

Next, enter this command to install Keras:

pip install keras

Note that the TensorFlow version installed using the pip package 

manager is 1.13 and not 2.0. This was because at the time of this writing 

version 2.0 was still being classified as beta and apparently the folks in 

charge of the pip repository did not want to make a beta version available. 

In any case, this TensorFlow version worked quite well in all the book 

demonstrations.
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Next, ensure that the following Python dependencies are installed in 

the virtual environment:

numpy

scipy

Matplotlib

At this point, a relatively simple multi-layer perceptron (MLP) model 

can be created using Keras.

�Downloading the dataset and creating a model
The first step in this section is to show you how to download the full 

MNIST dataset. The Keras deep learning library provides a convenience 

method for loading the MNIST dataset. The following statement loads both 

the full-sized training and test datasets:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

I will be presenting the Python script in sections with commentary 

following the code listings.

# Import required Keras libraries

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import np_utils

import numpy as np

This code imports Keras modules that will be used to build the ANN as 

well as the MNIST dataset. Numpy is also imported.

# Set a random seed

seed = 42

np.random.seed(seed)
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Initialize a random number generator, which ensures ANN results are 

reproducible.

# Load the MNIST dataset into training and test datasets.

(X_train, y_train), (X_test, y_test) = mnist.load_data()

loads the training and test datasets.

# Flatten the 28 x 28 image into a 784 element input data 

vector

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).

astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).

astype('float32')

This code portion converts the 3D datasets into 1D data vectors. The 

use of 4-byte data float values helps reduce memory usage.

# Normalize data input values from 0 - 255 to 0 -1.0.

X_train = X_train / 255.0

X_test = X_test / 255.0

This code is just another way to adjust the pixel intensities which range 

from 0 to 255 to the 0 to 1.0 needed for the ANN.

# One hot encoding of the categorical outputs

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test[1]

One hot encoding is the representation of categorical variables as 

binary vectors. It should always be used to encode ANN outputs that have 

categories or classes as outputs, even in the case where the outputs are 

numbers, which is true for this case.
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This encoding first requires that the categorical values be mapped to 

integer values. Then, each integer value is represented as a binary vector, 

that is, all zero values except the index of the integer, which is marked 

with a 1.

The following example should help clarify this concept:

Assume that there is a sequence of labels with the values “red” and 

“green.”

Assign “red” an integer value of 0 and “green” an integer value of 1. It 

is called integer encoding as long as these numbers are assigned to these 

labels. Consistency is important so that the encoding can later be inverted 

and labels be restored from integer values.

Next, create a binary vector to represent each integer value. The vector 

will have a length of 2 for the 2 possible integer values. The “red” label, 

encoded as a 0, will be represented with a binary vector [1, 0] where the 0th 

index is marked with a value of 1. In turn, the “green” label encoded as a 1 

will be represented with a binary vector [0, 1] where the index 1 is equal to 1.

Thus, if the sequence was

“red,” “red,” “green”

it would be represented by the following integer encoding

0, 0, 1

and a one hot encoding of

[1, 0]

[1, 0]

[0, 1]

One question that beginners often asked is why bother with one 

hot encoding? The answer is that machine learning algorithms cannot 

work with categorical data directly. The categories must be converted 

into numbers. This is true for both input and output variables that are 

categorical.
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Sometimes, integer encoding can be directly applied and rescaled 

as needed. This may work for problems where there is a natural ordinal 

relationship between the categories and in turn the integer values, such 

as labels for temperature “cold,” “warm,” and “hot.” Problems arise when 

there is no ordinal relationship, and allowing the representation to exist 

would likely be problematic for ANN learning to happen. Consider how 

labels such as “dog” and “cat” could be handled.

# Baseline model definition

def baseline_model():

      # Create model

      model = Sequential()

      �model.add(Dense(num_pixels, input_dim=num_pixels, kernel_

initializer='normal', activation='relu'))

      �model.add(Dense(num_classes, kernel_initializer='normal', 

activation='softmax'))

      # Compile model

      �model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy'])

      return model

This is the code portion that defines an ANN and compiles it. The ANN 

definition is in the form of a method, which allows to be called as needed 

to further refine the model. There is one hidden layer in the definition, 

which uses a “relu” activation function. ReLU is short for rectified linear 

unit and is the most commonly used activation function in deep learning 

models. This function returns 0 if it receives any negative inputs. For 

positive inputs it returns values according to the following equation:

f x x x( ) = ( ) = ( )max max0 0, ,

Graphically, the function is as plotted in Figure 5-15.
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It is surprising that such a simple function (and one composed of 

two linear pieces) will allow a model to account for non-linearities and 

interactions so well. But the ReLU function works great in most applications, 

and it is very widely used as a result.

The final layer uses a “softmax” activation function. The softmax 

function, also known as softargmax or normalized exponential function, 

is a function that takes as input a vector of K real numbers and normalizes 

it into a probability distribution consisting of K probabilities. That is, 

prior to applying softmax, some vector components could be negative or 

greater than one and might not sum to 1; but after applying softmax, each 

component will be in the interval 0 to 1 and all the components will add 

up to 1, so that they can be interpreted as probabilities. Furthermore, the 

larger input components will correspond to larger probabilities. The softmax 

function is thus commonly used as an activation function in ANNs to map 

the non-normalized output of a network to a probability distribution over all 

the predicted output classes.

Figure 5-15.  ReLU plot

Chapter 5  Practical deep learning ANN demonstrations

https://en.wikipedia.org/wiki/Interval_(mathematics)


331

The last statement in this code portion compiles the model. 

Compilation is needed before training the model. The model is configured 

during compilation according to three arguments:

•	 A loss function – This is the objective that the model 

will try to minimize. It can be the string identifier 

of an existing loss function (such as categorical_

crossentropy or mse), or it can be an objective 

function.

•	 An optimizer – This could be the string identifier of an 

existing optimizer (such as adam, rmsprop, or adagrad) 

or an instance of the Optimizer class.

•	 A list of metrics – For any classification problem, this 

argument would be set to metrics=['accuracy']. 

A metric could be the string identifier of an existing 

metric or a custom metric function.

# Run the demo

model = baseline_model()

model.fit(X_train, y_train, validation_data=(X_test, 

y_test), epochs=10, batch_size=200, verbose=2)

# Final evaluation

scores = model.evaluate(X_test, y_test, verbose=0)

print('Baseline error: %.2f%%'%(100-scores[1]*100))

The last code portion is the driver code, which tests the new ANN with 

the MNIST dataset. A model named model is first instantiated and then 

trained using the Keras fit function. A scores tuple is then generated by 

calling the Keras evaluate method. The testing continues for 10 epochs 

with the final statement showing the ultimate ANN accuracy.
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The complete script with commentary is shown in the following 

data. I named the script kerasTest.py, and it is available from the book’s 

companion web site.

# Import required libraries

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import np_utils

# Random seeding

seed = 42

np.random.seed(seed)

# Load MNIST data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

# Flatten the 28 x 28 image

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).

astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).

astype('float32')

# Normalize inputs from 0-255 to 0-1

X_train = X_train / 255.0

X_test = X_test / 255.0

# One hot encoding

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]
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# Define baseline model

def baseline_model():

      # Create model

      model = Sequential()

      �model.add(Dense(num_pixels, input_dim=num_pixels, kernel_

initializer='normal', activation='relu'))

      �model.add(Dense(num_classes, kernel_initializer='normal', 

activation='softmax'))

      # Compile model

      �model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy'])

      return model

# Run the demo

model = baseline_model()

model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=10, batch_size=200, verbose=2)

# Final evaluation

scores = model.evaluate(X_test, y_test, verbose=0)

print('Baseline error: %.2f%%'%(100-scores[1]*100))

The script should be run in the virtual environment using the following 

command:

python kerasTest.py

The script does take some time to complete because it not only trains 

the model using the full 60,000 MNIST training dataset, it repeats the 

10,000 test record tests ten times or 10 epochs. The final results are shown 

in Figure 5-16.
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This remarkable simple network implemented using Keras and 

running in the TensorFlow 2 backend achieved an excellent accuracy 

slightly above 98%. This is three percentage points higher than my earlier 

MLP model. However, believe it or not, it is even possible to achieve 

slightly higher accuracy using a more advanced algorithm, which I will 

discuss in the next chapter.

Figure 5-16.  Final results after running the kerasTest script
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CHAPTER 6

CNN demonstrations
Several practical DL demonstrations are shown in this chapter. You will 

be prepared to follow along with the demonstrations provided you have 

read the previous chapter or have acquired previous experience with 

DL techniques and concepts. I had two goals in mind when writing this 

chapter. The first was to clearly show how a complete ANN project could 

be accomplished to produce realistic and useful results. The second was 

to point out some potential pitfalls and unrealistic assumptions that are 

common in ANN development.

�Parts list
You will need a standard RasPi desktop configuration for the chapter 

demonstrations.

Item Model Quantity Source

Raspberry Pi 4 Model B (RasPi 4  

with 2 or 4 GB RAM)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 16 GB, class 10 or larger 1 amazon.com

(continued)
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Item Model Quantity Source

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

Note  A minimum of 2 GB RAM is required to enable the RasPi 
4 to compile and train the CNN models used in the chapter 
demonstrations. RasPis with only 1 GB of RAM will not be successful 
in the demonstrations.

�Introduction to the CNN model
CNN is short for convolutional neural network. In the previous chapter, 

I used a multi-layer perceptron (MLP) model, which is based on 

longstanding, conventional model using the classic artificial neuron 

known as the perceptron. The MLP model is fully connected in the sense 

that every neuron is connected, at least initially, to every other neuron in a 

given network layer. That is not true for a CNN model, which is considered 

a sparsely connected network.

CNNs are similar to regular neural networks discussed in the previous 

chapter because they are made up of neurons that have weights and 

biases, which are modified based on learning. Each CNN neuron receives 

some inputs, performs a dot product, and optionally follows with a non-

linearity. The whole CNN still expresses a scoring function using raw 

Image pixels on one input end to class scores at the output end. CNNs still 

have a loss function and employ the softmax function on the last, fully 

connected layer. Basically, all the techniques and concepts discussed for 

the regular neural networks apply to CNNs.
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So what are the significant changes between regular neural networks 

and CNNs? The CNN architecture makes the explicit assumption that the 

inputs are Images. This basic assumption permits certain optimizations 

to be applied to the network, which allows for the encoding of certain 

properties into the architecture. These optimizations make the forward 

propagation function more efficient to implement and vastly reduce the 

amount of parameters in the network.

Recall from the previous chapter that regular neural networks receive 

an input as a single input data vector and transform it through a series of 

hidden layers. Each hidden layer is made up of a set of neurons, where each 

neuron is fully connected to all neurons in the previous layer and where 

neurons in a single layer function are completely independently and do not 

share any connections. The last fully connected layer is called the output 

layer, and the classification settings it generates represent the class scores.

Regular neural networks do not scale well to full-sized Images. In the 

popular CIFAR-10 dataset, Images are of size 32 x 32 x 3 (32 wide, 32 high, 

3 color channels), so a single fully connected neuron in a first hidden 

layer of a regular neural network would have 3072 (32 X 32 X 3) weights. 

Although this amount of weights is manageable, it still clearly hints that 

a full-sized Image would require an enormous amount of weights. For 

example, an Image of a more common size of say 400 x 300 x 3 would 

require 360,000 weights. In addition, there would likely be several hidden 

layers involved, so it is apparent that the computational complexity rapidly 

becomes an exponential explosion. It should be clear that a regular neural 

network with full connectivity is not a good approach to use with decent 

sized Images. Dealing with a super abundance of parameters would likely 

lead to overfitting and consequent poor performance by the network.

A CNN design takes advantage of the fact that its input consists of 

only Images and therefore the architecture can be designed in an optimal 

way. In particular, unlike a regular neural network, the layers of a CNN 

have neurons arranged in three dimensions of width, height, and depth. 

Note that the word depth here refers only to the third dimension of the 
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activation volume. In a CNN design, the neurons in a succeeding layer will 

only be connected to a small region of the preceding layer.

At this point, I need to discuss the convolution operation. Figure 6-1 

shows the Image volume along with a smaller Image volume that is 5 x 5 x 

3 in dimension. The smaller volume is called a filter.

Figure 6-1.  Image volume with convolution filter

In a convolution operation, a small filter block is “slid” over the larger 

Image volume in steps, while a dot product is done between the filter and 

the Image volume that is covered at each step. Computing a dot product 

for each step results in a scalar value being created. The sum total of all 

the step-by-step convolution operations results in a 1D Image as depicted 

by the output layer shown on the right-hand side of the figure. Applying 

actual dimensions should help clarify the operation. Let’s assume the 

input Image volume is 32 x 32 x 3. This means it has a height and width 

of 32 pixels and a depth of 3. The 3 in this case refers to three color layers 

representing the RGB or red, green, and blue values comprising the input 

Image volume. Now if the filter is, say, 5 x 5 x 3, then it can only be “slid” 

Chapter 6  CNN demonstrations



339

over the input volume in 28 steps both horizontally and vertically. This 

means the output “Image” must be 28 x 28 x 1 because that is the only way 

5 x 5 x 3 filter can be uniquely stepped through the original Image volume.

However, the convolution operation for a typical CNN is not quite over. 

Please think of the filter used in the convolution operation as a feature 

extractor, which was the original intent of the CNN creator, Yann LeCun. 

I will shortly discuss Professor LeCun’s contributions in the next section. 

It is therefore reasonable to reapplying a different filter and repeating the 

convolution operation results in an effort to extract a different feature. That 

is precisely what is being conveyed in Figure 6-2, where five additional 

features are being applied to the original Image volume. This ultimately 

results in a final processed block that is 28 x 28 x 6 in size. The processed 

output block is now referred to as feature or activation maps.

Figure 6-2.  Creating the activation maps
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Multiple convolution layers are used in a typical CNN. Figure 6-3 

shows the results of stacking convolutional layers. Notice that activation 

functions are also used immediately after each convolution layer.

Figure 6-3.  Typical CNN architecture

CNN learning “happens” when the randomized filters are applied to 

the Image volumes through all the convolution layers.

The next figure should help you understand how the convolution layers 

and features are related. Figure 6-4 shows an input Image volume being 

applied to a series of three convolutional layers and one “output-like” layer.

Figure 6-4.  CNN example with convolutional features exposed
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Closely examine the filter outputs in the first layer, which are 5 x 5 x 3 

filters. Through back propagation, they have tuned themselves to become 

colored blobs of Image pieces and edges. As the data flows through 

additional convolution layers, the filters are performing dot product 

operations to the output of previous convolution operations. Traditional 

CNN architectures use linear filters to do the convolution and extract 

features out of Images. The early layers try to extract primitive features 

like lines, edges, and corners, while the later layers build on early layers 

and extract higher-level features like eyes, ears, nose, and so on. These are 

called latent features.

There can be variations in each Image feature, such as many different 

variations in eyes alone. A linear filter designed to detect eyes might try 

to draw straight lines to extract these features. Thus, a conventional CNN 

implicitly makes the assumption that the latent concepts are linearly 

separable. But a straight line may not always fit. The separation of the 

various types of eye features and non-eye features may not be a straight 

line but something more non-linear. In that case, using a non-linear 

function would likely serve as a better feature extractor.

Closely examine the Images in the figure associated with the high-

level feature convolutional layer and try to imagine them as being 

representative of the outputs from a grid of 28 x 28 neurons. In a particular 

feature map, each neuron is connected to only a small portion of the input 

Image volume. Additionally, all the neurons in a given feature map have 

the same connection weights. This sharing of weights is called parameter 

sharing.

Neurons in a CNN also have local connectivity because they are only 

connected to a sub-set of the input Image, unlike a conventional ANN 

where all the neurons are fully connected. Local connectivity reduces 

the number of parameters in the whole system and makes for greater 

computational efficiency.
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�History and evolution of the CNN
CNNs have been in existence since 1994 when the first one was created by 

Dr. Yann LeCun, who is considered by many to be one of the pioneering 

researchers in the DL field. He named it network LeNet-5, which reflected 

changes from previous networks he created starting in 1988.

The LeNet-5 architecture was revolutionary because it capitalized on 

a fundamental insight that Image features are typically distributed across 

the entire Image and convolution operations with learnable parameters 

are an effective way to extract similar features at multiple locations using 

few parameters. It is helpful to remember that existing computers at the 

time had no graphics processing units (GPU) to assist with training and 

desktop processor speeds were quite slow in comparison to modern-day 

processors. Therefore, anything that could be done reduce the number of 

parameters and associated computation was a significant advantage. The 

CNN approach was contrasted to the existing approach where each pixel of 

an input Image was separately processed as an input to a large multi-layer 

neural network. LeCun explained that those pixels should not be used in 

the first layer, because Images are highly spatially correlated, and using 

individual pixels of the Image as separate input features would not take 

advantage of these correlations.

The LeNet-5 model features may be summarized as follows:

•	 Convolutional neural network uses a sequence of three 

layers, convolution, pooling, and non-linearity. This 

feature remains true to this day regarding CNNs.

•	 Use the convolution operation to extract spatial 

features.

•	 Subsample using spatial averages of the activation 

maps.
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•	 Non-linearity activation functions in in the form of 

tanh or sigmoids.

•	 Use a full connection multi-layer perceptron network 

(MLP) as final classifier with a softmax classifier.

•	 Use sparse connection matrices between layers to 

maximize computational efficiency.

Figure 6-5 shows the LeNet-5 architecture.

Figure 6-5.  LeNet-5 architecture

LeNet-5 is a simple network by today’s standards. It only has seven 

layers, of which there are three convolutional layers (C1, C3, and C5), 

two subsampling (pooling) layers (S2 and S4), and one fully connected 

layer (F6), that are followed by the output layer. The convolutional layers 

use 5 x 5 convolutions with stride 1. Subsampling layers consist of 2 x 2 

average pooling layers. The tanh activation function is used throughout the 

network. The LeNet-5 uses two architectural choices for the network that 

are not in common use in modern DL networks.

The first choice is that the individual convolutional kernels in layer C3 

do not use all of the features produced by layer S2. A key reason for that 

choice is to make the network more computationally efficient. Another 

reason was to make convolutional kernels learn different patterns. This 

makes perfect sense if different kernels receive different inputs, they will 

learn different patterns.
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The second choice was to have ten Euclidean Radial Basis Function 

neurons in the output layer, which compute the L2 distance between an 

input vector of dimension 84 and manually predefined weights vectors of 

the same dimension. The number 84 comes from the fact that the weights 

represent a 7 x 12 binary mask, one for each handwritten digit. This 

design forces the network to transform the input Image into an internal 

representation that makes the outputs of layer F6 as close as possible to 

hand-coded weights of the ten neurons of the output layer.

LeNet-5 was able to achieve error rate below 1% on the MNIST 

handwritten number dataset, which was very close to the state of the art 

at the time, which in turn was obtained by a boosted ensemble of three 

LeNet-4 networks.

In the years from 1998 to 2010, neural networks were slowly improving. 

Most people in the field did not notice their increasing power, while other 

researchers slowly progressed. More data was becoming available because 

of the rise of smartphones and relatively inexpensive digital cameras. 

Computing power was on the rise; CPUs were becoming faster, and GPUs 

became less expensive and readily available. Both of these trends made 

neural network research progress at a slow rate. The increase in computing 

power along with available data made the tasks that neural networks could 

handle more interesting.

In 2010 Ciresan et al. published one of the first implementations of 

a GPU neural network designed to work with the handwritten number 

recognition problem. This implementation used both forward and 

backward propagation and ran on an early NVIDIA GTX 280 GPU using up 

to nine layers in a neural network.

In 2012, Alex Krizhevsky created AlexNet, which was a scaled up 

version of the LeNet CNN. AlexNet is used to learn about more complex 

objects than is possible with LeNet. The AlexNet paper included the 

following contributions:
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•	 Use of rectified linear units (ReLU) as non-linearities.

•	 Use of the dropout technique to selectively ignore 

single neurons during training. This technique avoids 

overfitting of the model.

•	 Overlapping max pooling, avoiding the averaging 

effects of average pooling.

•	 Use of GPUs (NVIDIA GTX580) to reduce training time.

At the time of the AlexNet paper, GPUs offered a much larger number 

of cores than CPUs and permitted faster training time. All this led to 

use larger datasets and Images. The AlexNet network success clearly 

showed the vision community that CNNs were the “stars” of DL. Useful 

and practical problems could now be tackled using the much improved 

computing hardware.

In 2013, Yann LeCun, who was working at the NYU DL lab, introduced 

the OverFeat framework, which was a way to achieve object recognition, 

localization, and detection using CNNs. Overfeat was a derivative of 

AlexNet. LeCun also proposed to use learning bounding boxes in object 

recognition, which are now the accepted way to identify objects in an 

Image.

In 2014, a team from Oxford University introduced VGG networks. 

This CNN implementation used small 3 × 3 filters in each convolutional 

layers and also combined them as a sequence of convolutions. At first, this 

seemed to be contrary to the principles that LeCun espoused for LeNet, 

where large convolution filter sizes were used to capture similar features 

in an Image. Thus, the larger filter sizes of LeNet and AlexNet started 

to shrink, perhaps coming too close to the infamous 1 × 1 convolutions 

that LeNet wanted to avoid. However, the great insight that the VGG 

network provided was that multiple 3 × 3 convolution in sequence can 

emulate the effect of larger receptive fields, for example, 5 × 5 or even 7 × 7 

convolution filters. These concepts have been used in more recent network 
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architectures as Inception and ResNet. VGG networks use multiple 3 × 3 

convolutional layers to represent complex features. Notice blocks 3, 4, and 

5 of VGG-E where 256 × 256 and 512 × 512, 3 × 3 filters are used multiple 

times in sequence to extract more complex features and the combination 

of such features. One disadvantage of VGG networks is that training is 

computationally expensive. This can be mitigated somewhat by splitting 

larger networks into smaller ones and adding layers one by one.

Network in Network (NiN) had the simple insight of using 1 × 1 

convolutions to provide more combinational power to the features of 

convolutional layers. The NiN architecture, as shown in Figure 6-6, used 

spatial MLP layers after each convolution in order to better combine 

features before another layer.

Figure 6-6.  NiN architecture

Again, one can believe the 1 × 1 convolutions are against the original 

principles of LeNet, but they instead help combine convolutional features 

in a more optimal manner, which is not possible by simply stacking 

additional convolutional layers. This is different from using raw pixels 

as input to the next layer. Here 1 × 1 convolutions are used to spatially 

combine features across feature maps after convolution, so they effectively 

use very few parameters, with shared pixels across all of the features.

The power of MLP can greatly increase the effectiveness of individual 

convolutional features by combining them into more complex groups. 

This idea will be later used in most recent architectures as ResNet and 

Inception and their derivatives.
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NiN also used an average pooling layer as part of the last classifier, 

another practice that has become commonplace. This was done to 

average the response of the network to multiple the input Image before 

classification.

In the Fall of 2014, Christian Szegedy from Google began a project 

aimed at reducing the computational burden of deep neural networks. 

He and his team created GoogLeNet, the first model using the Inception 

architecture. During that timeframe, DL models were becoming highly 

useful in categorizing the content of Images and video frames. Google 

became very interested in efficient and large deployments of DL 

architectures to their server farms. Christian considered a lot of ways to 

reduce the computational burden of deep neural networks while still 

obtaining state-of-art performance. The main objective was to maintain 

or reduce computational costs while achieving improved performance. 

He and his team came up with the Inception module, which is shown in 

Figure 6-7 block diagram.

Figure 6-7.  GoogLeNet block diagram
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The diagram appears at first glance to be basically the parallel 

combination of 1 × 1, 3 × 3, and 5 × 5 convolutional filters. But the great 

insight of the Inception module was the use of 1 × 1 convolutional blocks 

(NiN) to reduce the number of features before the expensive parallel 

blocks. This is commonly referred to as “bottleneck,” which is explained in 

the following data.

Reducing the bottleneck in the Inception model is done by reducing 

the number of features to be processed. Inference times would be 

minimized by reducing the number of features; however, the issue was not 

to lose too much data quality.

For example, say that there are 256 features being applied to a 

convolution layer and 256 features being passed out. If the Inception layer 

is only performing 3 x 3 convolutions, there will still need to be about 

589,000 multiply and accumulate operations required. That is the result 

from this calculation:

256 ∗ 256 ∗ 3 ∗ 3 = 589,824

Instead of doing this, it is decided to reduce the number of features 

that will have to be convolved, say to 64. In this case, first perform 256 -> 

64 1 × 1 convolutions and then 64 convolutions on all Inception branches, 

and then use again a 1 × 1 convolution from 64 -> 256 features back again. 

The operations are now

•	 256×64 × 1×1 = 16,384

•	 64×64 × 3×3 = 36,864

•	 64×256 × 1×1 = 16,384

Total = 69,632

This is a total of about 70,000 operations vs. the almost 600,000 that 

were required using the full feature set. Although there are significantly 

less operations involved, there is no loss in processing accuracy because 

the input features are correlated, and thus redundancy can be removed by 
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combining them appropriately with the 1 × 1 convolutions. The reason for 

the success is that after convolution with a smaller number of features, they 

can be expanded again into a meaningful combination for the next layer.

In February 2015, the Google team introduced batch-normalized 

Inception V2. With batch normalization, the mean and standard deviation 

of all feature maps are computed and then the output of a layer is 

normalized with these values. This action “whitens” the data and makes 

all the neural maps have responses in the same range with zero mean. This 

action promotes training as the next layer does not have to learn offsets in 

the input data and can focus on how to best combine features.

In December 2015, the team released version 3 of the Inception modules. 

The following list details the ideas and concepts contained in that version:

•	 Maximize information flow into the network by 

carefully constructing networks that balance depth and 

width. Before each pooling, increase the feature maps.

•	 When depth is increased, the number of features or 

width of the layer is also increased systematically.

•	 Use width increase at each layer to increase the 

combination of features before the next layer.

•	 Use only 3 × 3 convolution when possible, given 

that filter of 5 × 5 and 7 × 7 can be decomposed with 

multiple 3 × 3.

•	 Filters can also be decomposed by flattened 

convolutions into more complex modules.

•	 Inception modules can also decrease the size of 

the data by providing pooling while performing the 

Inception computation. This is basically identical to 

performing a convolution with strides in parallel with a 

simple pooling layer.
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At approximately the same time as Inception V3 was being introduced, 

K. He et al. introduced a rather revolutionary CNN they named 

ResNet. Their simple idea was to connect the outputs of two successive 

convolutional layers and also to bypass the input to the next layer. Figure 6-8 

shows the flow diagram that illusrates the ResNet idea.

Figure 6-8.  ResNet core concept flow diagram

One question that would naturally come to mind is why would 

bypassing convolutional layers improve performance? The answer lies in 

the nature of deep networks, which are simply networks containing many 

layers. Since the introduction of AlexNet, which had five convolutional 

layers, CNNs have generally become deeper. For instance, Inception V1 

started with 19 layers and eventually had 22 layers. However, network 

performance does not always improve simply by stacking more and more 

layers. This is due to the vanishing gradient problem. As the gradient is 

back propagated to earlier layers, repeated multiplications start to make 

the gradient infinitely smaller. As a result, as the network becomes deeper, 

its performance gets saturated or even starts degrading rapidly.

The core concept of ResNet is to introduce a so-called identity shortcut 

connection that skips one or more layers, as was shown in Figure 6-8. 

The ResNet authors argued that stacking layers shouldn’t degrade the 
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network performance, because simply stacking identity mappings (a layer 

that doesn’t do anything) upon the current network and the resulting 

architecture would perform the same. This indicates that the deeper model 

should not produce a training error higher than shallower counterparts.

This is similar to older ideas like this one. But here they bypass 

two layers and are applied to large scales. Bypassing two layers is the 

key intuition, because bypassing a single layer did not provide much 

improvement. But a two-layer bypass can be considered as a small 

classifier or a Network in Network.

ResNet is also the first time that a network of several hundred to one 

thousand layers was trained. ResNet also is starting to use the bottleneck 

reduction scheme created with the Inception V2 network. Figure 6-9 

shows the flow diagram with a bottleneck scheme embedded as well as the 

identity bypass.

Figure 6-9.  ResNet core concept flow diagram with bottleneck 
elimination
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The number of features at each layer is reduced by first using a 1 × 

1 convolution with a smaller output (usually one-quarter of the input), 

then a 3 × 3 layer, and then again a 1 × 1 convolution to a larger number 

of features. As in the case of Inception modules, this scheme allows the 

computation to be kept low while still providing a rich combination of 

features.

ResNet uses a fairly simple initial layer at the input (stem), a 7 × 7 

conv layer, followed with a pool of 2. ResNet also uses a pooling layer plus 

softmax as final classifier.

Here are some additional insights about the ResNet architecture:

•	 ResNet can be seen as both parallel and serial modules 

by just thinking of the input as going to many modules 

in parallel, while the output of each modules connects 

in series.

•	 ResNet can also be thought as multiple ensembles of 

parallel or serial modules.

•	 It has been found that ResNet usually operates on 

blocks of relatively low depth ~20–30 layers, which act 

in parallel, rather than serially flow the entire length of 

the network.

•	 ResNet, when the output is fed back to the input, as in 

RNN, the network can be seen as a better bio-plausible 

model of the cortex.
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However, they also combined the Inception V4 module with the 

ResNet module. This is shown in Figure 6-11.

Figure 6-10.  Initial Inception V4 architecture

In February 2016, Christian and his team at Google introduced 

Inception V4 to the community. This Inception module after the stem is 

similar to Inception V3. Figure 6-10 shows the initial V4 architecture.
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The team renamed this module Inception-ResNet V1 to indicate that 

it was a substantial transformation from the original Inception design 

protocol. It was determined that this new module had roughly the same 

computational cost of Inception V3 but trained much faster. Unfortunately, 

it reached a slightly worse final accuracy than the Inception V3 module.

Figure 6-11.  Inception V4 architecture with ResNet
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In 2016, SqueezeNet was released by researchers at the University 

of California, Berkeley and Stanford University. The authors’ goal in 

designing SqueezeNet was to create a smaller neural network with fewer 

parameters that can more easily fit into limited computer memory and 

could be easily transmitted over a computer network.

This original version of SqueezeNet was implemented on top of the 

Caffe DL software framework. Shortly thereafter, the open source research 

community ported SqueezeNet to a number of other deep learning 

frameworks including Chainer, Apache MXNet, and Keras. In 2017, several 

commercial companies demonstrated SqueezeNet running on low-power 

processing platforms such as smartphones and FPGAs.

As of 2018, SqueezeNet ships “natively” as part of the source code of 

a number of deep learning frameworks such as PyTorch, Apache MXNet, 

and Apple_CoreML. In addition, third-party developers have created 

implementations of SqueezeNet that are compatible with the TensorFlow 

framework.

Xception improves on the Inception module with a simple and elegant 

architecture that is as effective as ResNet and Inception V4. Figure 6-12 

shows the Xception module architecture.
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The Xception architecture has 36 convolutional stages, which is close 

in similarity to a ResNet-34. Figure 6-13 shows the Xception data flow 

diagram.

Figure 6-12.  Xception architecture
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The Xception code is as simple as ResNet and is more comprehensible 

than Inception V4.

Xception has been implemented in Torch7 and Keras with TensorFlow.

The last CNN model I will mention in this evolution discussion is 

FractalNet, which uses a recursive architecture. The authors Larsson et al. 

state in their introductory paper:

We introduce a design strategy for neural network macro-
architecture based on self-similarity. Repeated application of 
a simple expansion rule generates deep networks whose struc-
tural layouts are precisely truncated fractals. These networks 
contain interacting subpaths of different lengths, but do not 
include any pass-through or residual connections; every inter-
nal signal is transformed by a filter and nonlinearity before 
being seen by subsequent layers.

Figure 6-13.  Xception data flow diagram
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The excerpt from their abstract seems to indicate a rather radical 

departure from the ResNet design philosophy. I believe the verdict is still 

pending regarding the performance of this deep layered CNN design.

�Fashion MNIST demonstration

Note  You will use the exact same configuration on the RasPi 
that was in effect when the last demonstration in Chapter 5 was 
run. Keras with the TensorFlow backend is required to run this 
demonstration’s script.

This demonstration, like the one at the end of Chapter 5, will use a 

MNIST dataset, but it will not be the handwritten number set. Instead it 

is a dataset consisting of clothing Images. And just like the handwritten 

number dataset, there will be ten classes, but in this new dataset, each 

class will be different clothing article. The dataset Images will all be 28 

x 28 in size to make them “drop in” compatible with the handwritten 

number dataset. Additionally, there are approximately 60,000 training 

Images and 10,000 testing Images. This new dataset is named fashion_

mnist, and it is instantly available using the Keras import dataset library.

The following snippet of code shows how this new dataset will be 

loaded:

from keras.datasets import fashion_mnist

(train_images, train_labels),(test_images, test_labels) = 

fashion_mnist.load_data()

You may notice that I used different names for the training and test 

datasets in this demonstration than were used in the handwritten number 

demonstration. I mention this because you would get into trouble if you 

simply tried to cut and paste between the two scripts.

Chapter 6  CNN demonstrations



359

As mentioned previously, all the Images are 28 x 28 arrays, with pixel 

integer intensity values ranging between 0 and 255. The Image labels are 

also an array of integers, ranging from 0 to 9. These integers correspond to 

the class of clothing the Image represents. Table 6-1 shows the integer to 

clothing descriptions.

Table 6-1.  Integer to clothing 

description relationships

Label Class

0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

Using integers to represent string descriptions is required when 

configuring a CNN. String variables and network computations are 

inherently incompatible.

Each Image in a given class is mapped to a single label. Since the class 

names are not included with the dataset, these labels must be stored to be 

used later when Images are plotted. The following statement stores the labels:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
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It is always prudent to inspect and/or sample the data to be used in 

order to be knowledgeable about it and become aware of any potential 

issues or problems. To achieve this goal, I would suggest running the 

following short script named reviewData.py. This script is available from 

the book’s companion web site:

from keras.datasets import fashion_mnist

(train_images, train_labels),(test_images, test_labels) = 

fashion_mnist.load_data()

print('Number of training records and size of each training 

record: ', train_images.shape)

print()

print('Number of training labels: ', len(train_labels))

print()

print('Training label: ', train_labels)

print()

print('Number of test records and size of each test record:', 

test_images.shape)

print()

print('Number of test labels: ', len(test_labels))

print()

The script is run by entering this next command:

python reviewData.py

Figure 6-14 shows the results after running the script.
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In examining the figure, you should see that the datasets are the 

same and shape as the datasets used in the earlier handwritten number 

recognition demonstration. In addition, the first three and the last three 

of the 60,000 training label values are displayed. This confirms that the 

training_labels dataset was properly loaded.

Additionally, it is always useful and informative to Image a sample of 

the input dataset as was the case with the handwritten number recognition 

project. For this task, I started a Python interactive session to Image a 

sample. The following code, when entered into an interactive Python 

session, will Image the first training dataset Image. You should initiate this 

session immediately after you have run the reviewData script to ensure 

that the fashion_mnist datasets have been downloaded and are available 

for access.

import matplotlib.pyplot as plt

plt.figure()

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()

Figure 6-14.  reviewData script results
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Figure 6-15 shows the object Imaged in the first training record with a 

color bar inserted to reflect the associated pixel intensities present in the 

Image.

Figure 6-15.  First training record Image

Note that this Image is of an ankle length boot, which corresponds 

to the integer “9” class reference shown in the reviewData script results 

for the class label print-out. This check is just another way to confirm the 

consistency of the input datasets.

# Model definition

def cnn_model():

    # create model

    model = Sequential()

    �model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), 

activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Dropout(0.2))

    model.add(Flatten())
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    model.add(Dense(128, activation='relu'))

    model.add(Dense(numClass, activation='softmax'))

    # Compile model

    �model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy'])

    return model

This is the code portion that defines the CNN and then compiles it. 

This model is considerably different than the MLP model used in the 

last demonstration in Chapter 5. For starters, it has six layers ordered as 

follows:

	 1.	 Convolutional layer

	 2.	 Pooling layer

	 3.	 Dropout layer

	 4.	 Flatten layer

	 5.	 Full connection layer

	 6.	 Output layer

Each layer contributes a sequential operation to the CNN resulting in 

the transformation from an input Image to classification output.

In the Keras demonstration in Chapter 5, I briefly mentioned the Adam 

optimizer in the discussion regarding the compile function. I will expand 

upon the use of an optimizer because it is important to understand its 

function and assumptions it uses. An optimizer for a CNN is a function 

that controls how the network learns. In a non-Keras network such as 

the MLP in Chapter 5, the learning rate (lr) controlled the gradient step 

size. A small lr means small steps are taken in trying to locate the global 

minimum of the cost function. This meant that a very small step size could 

take the gradient descent algorithm literally hours to eventually settle in on 

the global minimum. An optimizer takes a different approach and uses a 
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dynamic technique to set the step size in order to minimize the total time 

to locate the global minimum.

The Adam optimizer computes individual adaptive learning rates for 

different parameters from estimates of first and second moments of the 

gradients. The Adam authors describe it as combining the advantages of 

two other extensions of stochastic gradient descent. Specifically:

•	 Adaptive Gradient Algorithm (AdaGrad) that 

maintains a per-parameter learning rate that improves 

performance on problems with sparse gradients.

•	 Root Mean Square Propagation (RMSProp) that 

also maintains per-parameter learning rates that are 

adapted based on the average of recent magnitudes 

of the gradients for the weight (e.g., how quickly it is 

changing). This means the algorithm does well on 

online and non-stationary problems (e.g., noisy).

The Adam algorithm realizes the benefits of both AdaGrad and 

RMSProp algorithms. Instead of adapting the parameter learning rates 

based on the average first moment (the mean) as in RMSProp, Adam also 

makes use of the average of the second moment of the gradients (the 

uncentered variance). Specifically, the algorithm calculates an exponential 

moving average of the gradient and the squared gradient. The parameters, 

beta1 and beta2, control the decay rates of these moving averages.

Adam is a popular algorithm in the field of deep learning because 

it achieves good results, fast. Empirical results have demonstrated that 

Adam works well in practice and compares favorably to other stochastic 

optimization methods. In the original paper, Adam demonstrated that its 

convergence meets the expectations of the paper’s theoretical analysis. 

Adam has been applied to the logistic regression algorithm on the MNIST 

handwritten number recognition and IMDB sentiment analysis datasets. 

The authors have concluded that Adam can efficiently solve practical DL 

problems.
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# Run the demo and evaluate it

from keras.layers import Conv2D

model = cnn_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

# Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

The last code portion is the driver code, which tests the new CNN with 

the fashion_mnist dataset. A model object named model is first instantiated 

and then trained using the Keras fit function. A scores tuple is then 

generated by calling the Keras evaluate method. The testing continues for 

10 epochs with the final statement showing the ultimate CNN error rate.

The complete script is named kerasFashionTest.py and is listed in the 

following with comments. It is available from the book’s companion web site.

import numpy as np

from keras.datasets import fashion_mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

# Set a random seed

seed = 42

np.random.seed(seed)
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# Load the datasets

(train_images, train_labels),(test_images, test_labels) = 

fashion_mnist.load_data()

# Flatten all of the 28 x 28 images into 784 element numpy 

input

# data vectors.

pixelNum = train_images.shape[1] * train_images.shape[2]

train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

# Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0

# One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

# Model definition

def cnn_model():

    # create model

    model = Sequential()

    �model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), 

activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Dropout(0.2))

    model.add(Flatten())

    model.add(Dense(128, activation='relu'))

    model.add(Dense(numClass, activation='softmax'))
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    # Compile model

    �model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy'])

    return model

# Run the demo and evaluate it

model = cnn_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

# Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

The script should be run in the virtual environment using the following 

command:

python kerasFashionTest.py

The script takes about 30 minutes to run to completion because it 

trains the model using the full 60,000 fashion_mnist training dataset and 

then tests the model with the 10,000 fashion_mnist test dataset for ten 

times or 10 epochs. The final results are shown in Figure 6-16.
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The final accuracy was 90.96%, which is considered to be a good score 

for a CNN – not quite excellent, which would need scores around 98% 

to 99%, but still quite accurate. To obtain the ultimate in CNN accuracy, 

one must match the CNN design to the dataset being processed. How to 

do this is much more of an art than it is a science. There are many CNN 

design strategies existing, which you hopefully have gleaned from reading 

the CNN evolution discussion earlier in this chapter. Which one to use 

with any given dataset must necessarily lie with a practitioner’s judgment 

and experience. I cannot provide any guidance in this area because I 

have simply not acquired sufficient experience with using the many CNN 

designs that currently are available as well as the multitude of current 

datasets. The number of combinations is enormous. My only suggestion is 

to try new strategies on a dataset and see what develops.

With the thought of trying a new design, I will now present a variation 

of the previous demonstration using a somewhat more complex CNN 

model and see what happens.

Figure 6-16.  Final results after running the kerasFashionTest script
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�More complex Fashion MNIST 
demonstration
I will show you a more complex CNN model in this demonstration as 

compared to the previous one. Everything else in the script remains the 

same. The purpose of this demonstration is to determine what effect a new 

CNN model will have on the overall accuracy of dataset classifications.

The following code defines the model used in this demonstration:

def complex_model():

    # Create model

    model = Sequential()

    �model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28), 

activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(15, (3, 3), activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Dropout(0.2))

    model.add(Flatten())

    model.add(Dense(128, activation='relu'))

    model.add(Dense(50, activation='relu'))

    model.add(Dense(numClass, activation='softmax'))

This model uses nine layers as compared to the six layers used in the 

previous demonstration. The kerasFashionTest script was used with these 

layers added to its model definition:

•	 One convolution layer

•	 One pooling layer

•	 One full connection layer
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The newly modified script was renamed kerasComplexFashionTest.py 

and is available from the book’s companion web site.

import numpy as np

from keras.datasets import fashion_mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

# Set a random seed

seed = 42

np.random.seed(seed)

# Load the datasets

(train_images, train_labels),(test_images, test_labels) = 

fashion_mnist.load_data()

# Flatten all of the 28 x 28 images into 784 element numpy 

input

# data vectors.

pixelNum = train_images.shape[1] ∗ train_images.shape[2]
train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

# Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0
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# One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

# Complex model definition

def complex_model():

    # Create model

    model = Sequential()

    �model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28), 

activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(15, (3, 3), activation='relu'))

    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Dropout(0.2))

    model.add(Flatten())

    model.add(Dense(128, activation='relu'))

    model.add(Dense(50, activation='relu'))

    model.add(Dense(numClass, activation='softmax'))

    # Compile model

    �model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy'])

    return model

# Run the demo and evaluate it

model = complex_model()

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=200, verbose=2)

# Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])
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The script should be run in the virtual environment using the following 

command:

python kerasComplexFashionTest.py

This script took about 27 minutes to run to completion, which is 

slightly less than the previous demonstration. The final results are shown 

in Figure 6-17.

Figure 6-17.  Final results after running the 
kerasComplexFashionTest script

The final accuracy was 89.65%, which is slightly less than the previous 

demonstration’s score of 90.96%. This result at first might seem a bit 

strange considering that a more complex CNN model was used in this 

demonstration. However, such results are common with CNN projects. It 

is likely impossible to predict how a particular CNN model will perform 

on any given dataset. The only reasonable conclusion to draw from 
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this result is that a model must first be used on a dataset to determine 

its performance. In this case, the simpler CNN model was the better 

performer. That’s not always the case, but you will never know unless the 

model is tested.

�VGG Fashion MNIST demonstration
A VGG CNN model will be used in this demonstration in order to show 

you another way to test the fashion_mnist datasets. I will first give credit 

to Adrian Rosebrock for his February 2019 blog titled “Fashion MNIST 

with Keras and Deep Learning” from which I drew much inspiration and 

the model I used in this demonstration. I will admit to slightly changing 

the model code to fit my preprocessing statements as well as the way the 

model was compiled.

In this demonstration, the model definition was put into a class and 

separately stored in a file named VGG.py. The class listing is shown in the 

following, and it is available from this book’s companion web site.

# Import the required libraries

from keras.models import Sequential

from keras.layers.normalization import BatchNormalization

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dropout

from keras.layers.core import Dense

from keras import backend as K

class VGG:

    @staticmethod

    def build(width, height, depth, classes):
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        # Initialize the model along with the input shape to

        # be "channels last" and the channels dimension itself

        model = Sequential()

        inputShape = (height, width, depth)

        chanDim = -1

        # If we are using "channels first", update the input

        # shape and channels dimension

        if K.image_data_format() == "channels_first":

            inputShape = (depth, height, width)

            chanDim = 1

        # First CONV => RELU => CONV => RELU => POOL layer

        model.add(Conv2D(32, (3, 3), padding="same",

            input_shape=inputShape))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(Conv2D(32, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Dropout(0.25))

        # Second CONV => RELU => CONV => RELU => POOL layer

        model.add(Conv2D(64, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(Conv2D(64, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Dropout(0.25))
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        # First (and only) set of FC => RELU layers

        model.add(Flatten())

        model.add(Dense(512))

        model.add(Activation("relu"))

        model.add(BatchNormalization())

        model.add(Dropout(0.5))

        # Softmax classifier

        model.add(Dense(classes))

        model.add(Activation("softmax"))

            # Compile model

        �model.compile(loss='categorical_crossentropy',  

optimizer='adam', metrics=['accuracy'])

        # Return the constructed network architecture

        return model

The main script is listed in the following and is named kerasVGGTest.

py, and it too is available from the book’s companion web site.

import numpy as np

from VGG import VGG

from keras.datasets import fashion_mnist

from keras.utils import np_utils

from keras import backend as K

K.set_image_dim_ordering('th')

# Set a random seed

seed = 42

np.random.seed(seed)

# Load the datasets

(train_images, train_labels),(test_images, test_labels) = 

fashion_mnist.load_data()
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# Flatten all of the 28 x 28 images into 784 element numpy 

input

# data vectors.

pixelNum = train_images.shape[1] ∗ train_images.shape[2]
train_images = train_images.reshape(train_images.

shape[0],1,28,28).astype('float32')

test_images = test_images.reshape(test_images.

shape[0],1,28,28).astype('float32')

# Normalize inputs from 0-255 to 0-1

train_images = train_images / 255.0

test_images = test_images / 255.0

# One hot encoding

train_labels = np_utils.to_categorical(train_labels)

test_labels = np_utils.to_categorical(test_labels)

numClass = test_labels.shape[1]

# Run the demo and evaluate it

vgg = VGG()

model = vgg.build(28, 28, 1, numClass)

train_images = train_images.reshape(60000, 28, 28, 1)

test_images = test_images.reshape(10000, 28, 28, 1)

model.fit(train_images, train_labels, validation_data=(test_

images, test_labels), epochs=10, batch_size=100, verbose=2)

# Final evaluation

scores = model.evaluate(test_images, test_labels, verbose=0)

print(scores[1])

You should be aware that running this script with 10 epochs will take a 

long time, roughly 3 hours. This is mainly due to the nature of the model. A 

long duration training time for the VGG CNN was mentioned in the CNN 

evolution discussion.
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Please ensure that the class file VGG.py is in the same directory as 

this script prior to running it. This script should be run in the virtual 

environment using the following command:

python kerasVGGTest.py

This script took about 3 hours to run to completion. The final results 

are shown in Figure 6-18.

Figure 6-18.  Final results after running the kerasVGGTest script

The final accuracy score was 93.13%, which is a very good score. This 

score is more than two points higher than the simple CNN score of 90.96%. 

A gain of 2 points in CNN performance is significant when you consider 

there is only about a 10-point spread in ratings for high-performance 

CNNs.
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�Jason’s Fashion MNIST demonstration
This last CNN demonstration using the Fashion MNIST dataset comes 

from a May 2019 blog written by Dr. Jason Brownlee titled “How to Develop 

a Deep CNN for Fashion MNIST Clothing Classification.” I choose to 

use Jason’s script because it is highly modular and well performing and 

provides some informative plots concerning on how well it functions. 

The CNN model used in the script is similar to the ones used in previous 

chapter demonstrations, and its performance is also on par with them.

You will need to install some additional Python libraries in order to run 

this script. Enter the following commands to install these libraries:

pip install matplotlib

pip install pandas

pip install sklearn

The complete script listing, which I named jasonTest.py, is shown in 

the following and is available from the book’s companion web site. I have 

also added some explanatory comments after the listing.

# Model with double the filters for the fashion mnist dataset

from numpy import mean

from numpy import std

from matplotlib import pyplot

from sklearn.model_selection import KFold

from keras.datasets import fashion_mnist

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD
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# Load train and test dataset

def load_dataset():

    # load dataset

    (trainX, trainY), (testX, testY) = fashion_mnist.load_data()

    # reshape dataset to have a single channel

    trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

    testX = testX.reshape((testX.shape[0], 28, 28, 1))

    # one hot encode target values

    trainY = to_categorical(trainY)

    testY = to_categorical(testY)

    return trainX, trainY, testX, testY

# Scale pixels

def prep_pixels(train, test):

    # convert from integers to floats

    train_norm = train.astype('float32')

    test_norm = test.astype('float32')

    # normalize to range 0-1

    train_norm = train_norm / 255.0

    test_norm = test_norm / 255.0

    # return normalized images

    return train_norm, test_norm

# Define cnn model

def define_model():

    model = Sequential()

    �model.add(Conv2D(64, (3, 3), padding='same', 

activation='relu', kernel_initializer='he_uniform',  

input_shape=(28, 28, 1)))

    model.add(MaxPooling2D((2, 2)))

    model.add(Flatten())

    �model.add(Dense(100, activation='relu', kernel_

initializer='he_uniform'))
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    model.add(Dense(10, activation='softmax'))

    # compile model

    opt = SGD(lr=0.01, momentum=0.9)

    �model.compile(optimizer=opt, loss='categorical_

crossentropy', metrics=['accuracy'])

    return model

# Evaluate a model using k-fold cross-validation

def evaluate_model(dataX, dataY, n_folds=5):

    scores, histories = list(), list()

    # prepare cross validation

    kfold = KFold(n_folds, shuffle=True, random_state=1)

    # enumerate splits

    for train_ix, test_ix in kfold.split(dataX):

        # define model

        model = define_model()

        # select rows for train and test

        �trainX, trainY, testX, testY = dataX[train_ix], 

dataY[train_ix], dataX[test_ix], dataY[test_ix]

        # fit model

        �history = model.fit(trainX, trainY, epochs=10,  

batch_size=32, validation_data=(testX, testY), 

verbose=0)

        # evaluate model

        _, acc = model.evaluate(testX, testY, verbose=0)

        print('> %.3f' % (acc ∗ 100.0))
        # append scores

        scores.append(acc)

        histories.append(history)

    return scores, histories

# Plot diagnostic learning curves

def summarize_diagnostics(histories):
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    for i in range(len(histories)):

        # plot loss

        pyplot.subplot(211)

        pyplot.title('Cross Entropy Loss')

        �pyplot.plot(histories[i].history['loss'], color='blue', 

label='train')

        �pyplot.plot(histories[i].history['val_loss'], 

color='orange', label='test')

        # plot accuracy

        pyplot.subplot(212)

        pyplot.title('Classification Accuracy')

        �pyplot.plot(histories[i].history['acc'], color='blue', 

label='train')

        �pyplot.plot(histories[i].history['val_acc'], 

color='orange', label='test')

    pyplot.show()

# summarize model performance

def summarize_performance(scores):

    # print summary

    �print('Accuracy: mean=%.3f std=%.3f, n=%d' % 

(mean(scores)∗100, std(scores)∗100, len(scores)))
    # box and whisker plots of results

    pyplot.boxplot(scores)

    pyplot.show()

# Run the test harness for evaluating a model

def run_test_harness():

    # load dataset

    trainX, trainY, testX, testY = load_dataset()

    # prepare pixel data

    trainX, testX = prep_pixels(trainX, testX)
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    # evaluate model

    scores, histories = evaluate_model(trainX, trainY)

    # learning curves

    summarize_diagnostics(histories)

    # summarize estimated performance

    summarize_performance(scores)

# Entry point, run the test harness

run_test_harness()

This script uses k-fold cross-validation as part of the model 

evaluations. In this case, k equals 5. I would refer you back to Chapter 1 

where I discussed k-fold cross-validation if you need a refresher on this 

concept. Jason’s use of k-fold cross-validation essentially causes 5 epochs 

to be performed, which you will see in the results screen. In addition, the 

individual result of each epoch is stored in a list named histories. This 

list is then used when the performance plots are generated.

Jason also uses a test harness structure to schedule how all the 

modules are invoked. I personally like this style and would recommend it 

to anyone desiring to create modular software that is understandable and 

maintainable. One of the nice features of writing software in a modular 

manner is that it is relatively easy to decouple the modules such that they 

are independent of one and another. Therefore, any changes that you make 

to a particular module will not affect other modules. This programming 

style is an excellent example of the software design principle, high 

cohesion, loose coupling. This principle means that software should be 

written so that modules do one or two things well (high cohesion) and not 

depend “too much” on other modules (loose coupling). Software written 

using this principle in mind tends to be more understandable, less fragile 

to change, and easily maintained.
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This script should be run in the virtual environment using the 

following command:

python jasonTest.py

This script took about 3.5 hours to run to completion. The final results 

are shown in Figure 6-19.

Figure 6-19.  Final results after running the jasonTest script

The final accuracy score was 91.09%, which was the mean of the 

5 epoch scores. Notice that the standard deviation was 0.41%, which 

provides some insight into the accuracy variance. I should point out 

that the results screen was after I had removed many superfluous Keras 

warnings.

Figure 6-20 is a box and whisker plot that summarizes the distribution 

of the accuracy scores.

Chapter 6  CNN demonstrations



384

Figure 6-20.  Box and whisker plot of accuracy scores’ 
distribution

You should be able to see from the vertical scale that the scores are 

tightly grouped with a “whisker” range of approximately 0.905 to 0.916 and 

a mean of 0.919. The bulk of the accuracy values lie above the mean, which 

you can see from the box position.

Figure 6-21 contains plots for the cross-entropy loss and classification 

accuracy.
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Figure 6-21.  Cross-entropy loss and classification accuracy plots

These plots are known as learning curves because they show how the 

model converges as the training process progresses. The darker colored 

plot lines are for the training dataset, and the lighter colored plot lines 

are for the test dataset. Overall, these plots indicate the model generally 

achieves a good fit with the train and test learning curves converging. 

There may be some small degree of overfitting because of the separation 

between the two sets of plot lines.
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CHAPTER 7

Predictions using 
ANNs and CNNs
In the previous chapters, I have repeatedly demonstrated how ANNs and 

CNNs can classify a variety of objects including handwritten numbers and 

clothing articles. In this chapter I will explore how ANNs and CNNs can 

predict an outcome. I have noticed repeatedly that DL practitioners often 

conflate classification and prediction. This is understandable because these 

tasks are closely intertwined. For instance, when presented with an unknown 

Image, a CNN will attempt to identify it as belonging to one of the classes 

it has been trained to recognize. This is clearly a classification process. 

However, if just view this process from a wider perspective, you could say the 

CNN has been tasked to predict what the Image represents. I choose to take 

the narrower view and restrict my interpretation of prediction, at least as far 

as it concerns ANNs and CNNs to the following definition:

Prediction refers to the output of a DL algorithm after it has been 

trained on a dataset and when new data is applied to forecast the 

Likelihood of a particular outcome.

The word prediction can also be misleading. In some cases, it does 

mean that a future outcome is being predicted, such as when you’re using 

DL to determine the next best action to take in a marketing campaign. In 

other cases, the prediction has to do with whether or not a transaction that 

has already occurred was a fraud. In that case, the transaction has already 
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happened and the algorithm is making an educated guess about whether 

or not it was legitimate. My initial demonstration is very straightforward 

and the ANN will make a binary choice when presented with a set of 

facts. The choice is whether or not the applied record is part of a class or 

is not. This last statement will become quite clear when I next present the 

demonstration.

�Pima Indian Diabetes demonstration
The Pima Indian Diabetes project is another one of the classic problems 

that DL students always study. It is an excellent case study on how an ANN 

can make predictions based on an applied record when that ANN has been 

thoroughly trained on an historical dataset.

�Background for the Pima Indian Diabetes study
Diabetes mellitus is a group of metabolic disorders where the blood sugar 

levels are higher than normal for prolonged periods of time. Diabetes is 

caused either due to the insufficient production of insulin in the body 

or due to improper response of the body’s cells to insulin. The former 

cause of diabetes is also called type 1 DM or insulin-dependent diabetes 

mellitus, and the latter is known as type 2 DM or non-insulin-dependent 

DM. Gestational diabetes is a third type of diabetes where women not 

suffering from DM develop high sugar levels during pregnancy. Diabetes is 

especially hard on women as it can affect both the mother and their unborn 

children during pregnancy. Women with diabetes have a higher Likelihood 

at having a heart attack, miscarriages, or babies born with birth defects

The diabetes data containing information about Pima Indian females, 

near Phoenix, Arizona, has been under continuous study since 1965 due 

to the high incidence rate of diabetes in Pima females. The dataset was 

originally published by the National Institute of Diabetes and Digestive 
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and Kidney Diseases, consisting of diagnostic measurements pertaining 

to females of age greater than 20. It contains information of 768 females, 

of which 268 females were diagnosed with diabetes. Information available 

includes eight variables which are detailed in Table 7-1. The response 

variable in the dataset is a binary classifier, Outcome, that indicates if the 

person was diagnosed with diabetes or not.

�Preparing the data
The first thing you will need to do is download the dataset. This dataset is 

available from several web sites. I used the following one:

www.kaggle.com/kumargh/pimaindiansdiabetescsv

This download was in an archive format. After extracting it, I renamed 

the file diabetes.csv just to keep it short and memorable.

Table 7-1.  Eight factors in the Pima Indian Diabetes Study

Variable name Data type Variable description

Pregnancies integer Number of times pregnant

Glucose integer Plasma glucose concentration at 2 hours 

in an oral glucose tolerance test

BloodPressure integer Diastolic blood pressure

SkinThickness integer Triceps skin-fold thickness

Insulin integer 2-hour serum insulin (μU/ml)

BMI numeric Body mass index

DiabetesPedigreeFunction numeric Synthesis of the history of diabetes 

mellitus in relatives, generic relationship 

of those relatives to the subject

Outcome integer Occurrence of diabetes
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The next thing you should do is inspect the data and see if it appears 

proper and nothing strange or unusual is visible. I used the Microsoft Excel 

application to do my initial inspection because this dataset was in the CSV 

format, which is nicely handled by Excel. Figure 7-1 shows the first 40 of 

768 rows from the dataset.

Figure 7-1.  First 40 rows from the diabetes.csv dataset
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What immediately stood out to me was the inordinate amount of zeros 

present both in the SkinThickness and Insulin columns. There should not 

be any zeros in these columns because a living patient can neither have 

zero skin thickness nor zero insulin levels. This prompted me to do a bit 

of research, and I determined that the original researchers who built this 

dataset simply inserted zeros for empty or null readings. This practice is 

totally unacceptable and may corrupt a dataset to the point where it could 

easily generate false or misleading results when processed by an ANN. So, 

what could I do about it?

Further research on my part leads to the following process, which 

“corrected” for the missing values in a reasonable manner and also 

illustrated a nice way to visualize the data. I like to give credit to Paul 

Mooney and his blog “Predict Diabetes from Medical Records” for 

providing useful insights into solving this issue. Paul used a Python 

notebook format for his computations. I changed and modified his 

interactive commands into conventional Python scripts for this discussion.

Please ensure you are in a Python virtual environment prior to 

beginning this session. You will then need to ensure that the Seaborn, 

Matplotlib, and Pandas libraries are installed prior to running the script. 

Enter the following commands to install these libraries if you are unsure 

they are present:

pip install seaborn

pip install matplotlib

pip install pandas

The following script loads the diabetes.csv dataset and then does a 

series of data checks, summaries, and histogram plots. I named this script 

diabetesTest.py, and it is available from the book’ companion web site.  

I also included some explanatory comments after the script to help clarify 

what is happening within it.
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# Import required libraries

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

# Load the CSV dataset

dataset = pd.read_csv('diabetes.csv')

dataset.head(10)

# Define a histogram plot method

def plotHistogram(values, label, feature, title):

    sns.set_style("whitegrid")

    plotOne = sns.FacetGrid(values, hue=label, aspect=2)

    plotOne.map(sns.distplot, feature, kde=False)

    plotOne.set(xlim=(0, values[feature].max()))

    plotOne.add_legend()

    plotOne.set_axis_labels(feature, 'Proportion')

    plotOne.fig.suptitle(title)

    plt.show()

# Plot the Insulin histogram

plotHistogram(dataset, 'Outcome', 'Insulin', 'Insulin vs 

Diagnosis (Blue = Healthy; Orange = Diabetes)')

# Plot the SkinThickness histogram

plotHistogram(dataset, 'Outcome', 'SkinThickness', 

'SkinThickness vs Diagnosis (Blue = Healthy; Orange = 

Diabetes)')

# Summary of the number of 0's present in the dataset by 

feature

dataset2 = dataset.iloc[:, :-1]

print("Num of Rows, Num of Columns: ", dataset2.shape)

print("\nColumn Name          Num of Null Values\n")

print((dataset[:] == 0).sum())
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# Percentage summary of the number of 0's in the dataset

print("Num of Rows, Num of Columns: ", dataset2.shape)

print("\nColumn Name          %Null Values\n")

print(((dataset2[:] == 0).sum()) / 768 * 100)

# Create a heat map

g = sns.heatmap(dataset.corr(), cmap="BrBG", annot=False)

plt.show()

# Display the feature correlation values

corr1 = dataset.corr()

print(corr1[:])

Explanatory comments:

dataset = pd.read_csv('diabetes.csv') – Reads 

the CSV dataset into the script using the Pandas 

read_csv method.

dataset.head(10) – Displays the first ten records in 

the dataset.

def plotHistogram(values, label, feature, 

title) – Defines a method which will plot the 

histogram of the dataset feature provided in the 

arguments list. This method uses the Seaborn library, 

which I discussed in Chapter 2. Two histograms are 

then plotted after this definition, one for Insulin and 

the other for SkinThickness. Each of those features 

had a significant amount of 0s present.

dataset2 = dataset.iloc[:, :-1] – Is the start 

of the code segment which displayed the actual 

amount of 0s present for each dataset feature. The 

only features that should have any 0s are Outcome 

and Pregnancies.
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print("Num of Rows, Num of Columns: ", 

dataset2.shape) – Is the start of the code segment 

which displayed the percentages of 0s present for 

each dataset feature.

g = sns.heatmap(dataset.corr(), cmap="BrBG", 

annot=False) – Generates a heatmap for the 

dataset’s correlation map. A heatmap is a way of 

representing the data in a 2D form. Data values are 

represented as colors in the graph. The goal of the 

heatmap is to provide a colored visual summary of 

information.

corr1 = dataset.corr() – Creates a table of 

correlation values between the dataset feature 

variables. This statistic will be of considerable 

interest after the values in the dataset have been 

adjusted.

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following 

command to run the script:

python diabetesTest.py

This script runs immediately and produces a series of results. The final 

screen results are shown in Figure 7-2.
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The first table in the figure lists the nulls (0s) for each feature. There 

is clearly an unacceptable amount of 0s in both the SkinThickness and 

Insulin feature columns. Almost 50% of the Insulin data points are 

missing, which you can easily see from looking at the next table in the 

figure. There will be an inadvertent bias introduced into any ANN, which 

uses this dataset because of these missing values. How it will affect the 

overall ANN prediction performance is uncertain, but it will be an issue 

nonetheless.

The last table in the figure shows the correlation values between the 

feature variables. Usually, I would like to see low values between the 

variables except for those features which are naturally related such as age 

and pregnancies. You should also note that this table is a symmetric matrix 

around the identity diagonal. The identity diagonal (all 1s) results because 

the correlation value for a variable with itself must always equal to 1.  

Figure 7-2.  Final results after running the diabetesTest script
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The symmetric matrix results because the correlation function is 

commutative (order of variables does not matter). The key value I will 

be looking for is how the current correlation value of 0.436783 between 

SkinThickness and Insulin changes after the data is modified to get rid of 

the 0s.

Figure 7-3 is the histogram showing the relationship between insulin 

levels and the proportion of healthy to sick patients.

There seems to be a strong clustering of unhealthy patients below the 

40 level which doesn’t make sense because it is unlikely that any living 

patient would have such low levels. Additionally, having a strong spike of 

heathy patients with insulin levels at 20 or below is simply not realistic. 

They too could not live will such low levels. Clearly the excess 0 problem is 

skewing the data and causing the ANN to make erroneous predictions.

Figure 7-4 is the histogram showing the relationship between skin 

thickness measurements and the proportion of healthy to sick patients.

Figure 7-3.  Histogram for insulin levels and proportion of healthy to 
sick patients
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In this figure, just like the previous figure, there are abnormal spikes in 

the skin thickness measurements for both healthy and sick patients near 

the 0 skin thickness measurement. It is simply not possible to have 0 skin 

thickness. The excess 0 problem is solely causing this anomaly.

Figure 7-5 shows the heatmap for the correlation matrix between all 

the dataset feature variables.

Figure 7-4.  Histogram for skin thickness measurements and 
proportion of healthy to sick patients
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What you should look for in this figure are the white blocks, which 

indicate correlation values at or above 0.4. Most correlation values for this 

dataset are relatively low except for

•	 Glucose and Outcome

•	 Age and Pregnancies

•	 Insulin and SkinThickness

The first two in the list make perfect sense. Glucose (sugar levels in 

the blood) are definitely correlated with diabetes and hence the Outcome. 

Age and Pregnancies are naturally correlated because women have fewer 

Figure 7-5.  Correlation heatmap for dataset feature variables
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pregnancies as they age, or if they are young, they haven’t had the time to 

sustain many pregnancies. The last one in the list is the suspect one, which 

is an artificially high correlation value due to the excess-zero problem.

It is now time to fix the excess 0’s problem. The question naturally 

becomes how to do this without causing too much disruption to the 

dataset? The answer most statisticians would cite is to impute the missing 

data. Imputing data is a tricky process because it can insert additional bias 

into the dataset. The process of imputing data can take on several forms 

depending on the nature of the data. If the data is from a time series, then 

missing data can easily be replaced by interpolating between the data 

surrounding the missing values. Unfortunately, the diabetes dataset is not 

time sensitive, so this option is out.

Another way to impute is to simply eliminate those records with 

missing data. This is called listwise imputation. Unfortunately, using 

listwise imputation would cause nearly 50% of existing dataset records to 

disappear. This would wreak havoc on the ANN learning process so that 

option is out. One of the remaining impute options is to use all the existing 

feature data to determine a value to replace the missing data. There are 

imputation processes called hot card, cold card, mean, and median value, 

which use this approach. Without going into the details, I decided to use 

median value as the option to replace the missing data values.

The following script is a revision of the previous script where I have 

imputed the dataset to remove all 0s from the feature variables. The dataset 

has also been split into two dataset, one for training and the other for 

testing. The script is named revisedDiabetesTest.py and is available from 

the book’s companion web site. I have also provided some explanatory 

comments after the listing.

# Import required libraries

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
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import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

# Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

# Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.2, random_state=1)

# Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0, strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

# Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

# Display the first 10 records

print(X_train3.head(10))

def plotHistogram(values, label, feature, title):

    sns.set_style("whitegrid")

    plotOne = sns.FacetGrid(values, hue=label, aspect=2)

    plotOne.map(sns.distplot, feature, kde=False)

    plotOne.set(xlim=(0, values[feature].max()))

    plotOne.add_legend()

    plotOne.set_axis_labels(feature, 'Proportion')

    plotOne.fig.suptitle(title)

    plt.show()
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# Plot the heathy patient histograms for insulin and skin

# thickness

plotHistogram(X_train3,None,4,'Insulin vs Diagnosis')

plotHistogram(X_train3,None,3,'SkinThickness vs Diagnosis')

# Check to see if any 0's remain

data2 = X_train2

print("Num of Rows, Num of Columns: ", data2.shape)

print("\nColumn Name          Num of Null Values\n")

print((data2[:] == 0).sum())

print("Num of Rows, Num of Columns: ", data2.shape)

print("\nColumn Name          %Null Values\n")

print(((data2[:] == 0).sum()) / 614 * 100)

# Display the correlation matrix

corr1 = X_train3.corr()

print(corr1)

Explanatory comments:

X_train, X_test, y_train, y_test = train_

test_split(X, y, test_size=0.2, random_

state=1) – Splits the input dataset into two, one 80% 

of the input for training purposes and the other 20% 

for testing purposes

X_train3 = pd.DataFrame(X_train2) – Converts 

the training dataset from a numpy array into a 

Pandas DataFrame so it is compatible with the 

Pandas cross-correlation function

Again, this script should be run in the virtual environment with the 

diabetes.csv dataset in the same directory as this script. Enter the following 

command to run the script:

python revisedDiabetesTest.py

Chapter 7  Predictions using ANNs and CNNs



402

This script runs immediately and produces a series of results. The final 

screen results are shown in Figure 7-6.

You can immediately see that all 0 values in the first ten training set 

records have been replaced with other values. This is true for all of the 

feature variables, but not the Outcome column, which is required for 

supervised learning.

The 0 summary code displays now that there are no 0s remaining in 

the dataset.

Figure 7-7 is the revised histogram showing the insulin distribution 

for healthy patients. There is no longer any insulin values at or near 0. The 

distribution peak is centered around 130, which seems reasonable to me, 

but again, I am not an MD.

Figure 7-6.  Final results after running the revisedDiabetesTest script
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Figure 7-8 is the revised histogram showing the skin thickness 

distribution for healthy patients. As was the case for the insulin plot, this 

plot shows no values whatsoever below 8. The peak appears to center on a 

value of 29, which I presume is a reasonable number.

Figure 7-7.  Insulin histogram for healthy patients

Figure 7-8.  Skin thickness histogram for healthy patients
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The correlation matrix shown at the bottom of Figure 7-6 now shows 

a significantly decreased correlation value between insulin and skin 

thickness. Before the 0s were removed, the correlation value between 

these two features was 0.436783. It is now 0.168746, which is about a 61% 

reduction. The 0 removal definitely improved the data quality, at least with 

these two features.

It is time to discuss the Keras ANN model now that the dataset has 

been “cleaned up” into a better state. The model to be built will be a 

relatively simple three-layer, sequential one. The input layer will have 

eight inputs corresponding to the eight dataset feature variables. Fully 

connected layers will be used in the model using the Keras dense class. 

The ReLU activation function will be used for the first two layers because 

it has been found to be a best performance function. The third layer, 

which is the output, will use the sigmoid function for activation because 

the output must be between 0 and 1. Recall this is a prediction model and 

the output is binary with only either a 0 or 1 value. In summary the model 

assumptions are

•	 Expects rows of data with eight variables (the input_

dim=8 argument).

•	 The first hidden layer has 12 nodes and uses the ReLU 

activation function.

•	 The second hidden layer has eight nodes and uses the 

ReLU activation function.

•	 The output layer has one node and uses the sigmoid 

activation function.

Note that the first hidden layer is actually performing two functions. It 

is acting as an input layer in accepting eight variables, and it is also acting 

as a hidden layer with 12 nodes with associated ReLU activation functions.
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The following script is named kerasDiabetesTest.py, and it is available 

from the book’s companion web site. Explanatory comments follow the 

listing.

# Import required libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from keras.models import Sequential

from keras.layers import Dense

# Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

# Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.2, random_state=1)

# Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

# Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

# Define the Keras model

model = Sequential()

model.add(Dense(12, input_dim=8, activation='relu'))

model.add(Dense(8, activation='relu'))

model.add(Dense(1, activation='sigmoid'))
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# Compile the keras model

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy'])

# fit the keras model on the dataset

model.fit(X_train2, y_train, epochs=150, batch_size=10)

# Evaluate the keras model

_, accuracy = model.evaluate(X_test2, y_test)

print('Accuracy: %.2f' % (accuracy*100))

The first part of the script is the same as the first part of the 

revisedDiabetesTest.py script with the exception of some added and 

deleted imports. The model definition is in line in lieu of a separate 

definition as was the case for the CNN scripts. This was done because it is 

a very simple and concise model. The compile process is almost the same 

as it was for the CNN models, except for the loss function, which is binary_

crossentropy instead of categorical_crossentropy, which is required 

for multiple classes. This model will train and test very quickly, which 

allows for many epochs to be run in an effort to improve the accuracy. In 

this case, there are 150 epochs set. The overall accuracy is done using the 

Keras evaluate method as it was done for the CNN models.

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following 

command to run the script:

python kerasDiabetesTest.py

This script runs immediately and produces a series of results. The final 

screen results are shown in Figure 7-9.
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This figure is a composite showing the beginning and ending epoch 

results. The final, overall accuracy score was 70.78%. This would normally 

be considered an OK, but not great score. However, I did some research 

on others who have run this project with similar models and found that 

this result was in line with the majority of other results. It appears that 

the Pima Indian Diabetes Study predictions are approximately successful 

(or accurate) around 70% of the time. I believe that this level of accuracy 

would not be an acceptable level if used in actual clinical trials, but is 

perfectly acceptable in this learning and experimentation environment.

Figure 7-9.  Final results after running the kerasDiabetesTest script
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�Using the scikit-learn library with Keras
The Python scikit-learn library uses the scipy stack for efficient numerical 

computations. It is a fully featured library for general ML library that 

provides many utilities which are useful in the developing models. These 

utilities include

•	 Model evaluation using resampling methods such as 

k-fold cross-validation

•	 Efficient evaluation of model hyper-parameters

The Keras library is a convenient wrapper for DL models used for 

classification or regression estimations with the scikit-learn library.

The following demonstration uses the KerasClassifier wrapper for a 

classification neural network created in Keras and is used with the scikit-

learn library. I will also be using the same modified Pima Indian Diabetes 

dataset that is used in the last demonstration.

This demonstration script is very similar to the previous one in that 

it uses the same Keras ANN model. The significant difference is that in 

this script the model is used by the KerasClassifier instead of having the 

modified dataset directly applied to the model via the Keras fit function.  

I will explain how the KerasClassifier works after the script listing because 

it is important for you to see how it is invoked.

The following script is named kerasScikitDiabetesTest.py to indicate 

that it now uses the scikit-learn classifier in lieu of the normal Keras fit 

function. It is available from the book’s companion web site.

# Load required libraries

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import StratifiedKFold
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from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

import pandas as pd

# Function to create model, required for the KerasClassifier

def create_model():

    # create model

    model = Sequential()

    model.add(Dense(12, input_dim=8, activation='relu'))

    model.add(Dense(8, activation='relu'))

    model.add(Dense(1, activation='sigmoid'))

    �model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy'])

    return model

# fix random seed for reproducibility

seed = 42

# Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

# Split the dataset into 80% training and 20% testing sets   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=0.2, random_state=1)

# Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)
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# Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

# create model

model = KerasClassifier(build_fn=create_model, epochs=150, 

batch_size=10, verbose=0)

# evaluate using 10-fold cross validation

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_

state=seed)

# Evaluate using cross_val_score function

results = cross_val_score(model, X_train2, y_train, cv=kfold)

print(results.mean())

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following 

command to run the script:

python kerasScikitDiabetesTest.py

This script runs immediately and produces a single result. The final 

screen result is shown in Figure 7-10.

The accuracy value displayed in the figure is 73.45%. This value was 

based on only using the training dataset, which is 80% of the original 

dataset. Consequently, I reran the script with the split changed to 99% for 

the training set, which meant it was almost the size of the unsplit dataset. 

Figure 7-10.  Final result after running the kerasScikitDiabetesTest 
script
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The result was an accuracy was 73.40%, which is a statistically insignificant 

difference from the first run.

The KerasClassifier and KerasRegressor classes in Keras take an 

argument named build_fn which is the model’s function name. In the 

preceding script, a method named create_model() that creates a MLP 

for this case. This function is passed to the KerasClassifier class by the 

build_fn argument. There are additional arguments of nb_epoch=150 and 

batch_size=10 that are automatically used by the fit() function, which is 

called internally by the KerasClassifier class.

In this example, the scikit-learn StratifiedKFold function is then 

used to perform a tenfold stratified cross-validation. This is a resampling 

technique that provides a robust estimate of the accuracy for the defined 

model with the applied dataset.

The scikit-learn function cross_val_score is used to evaluate the 

model using a cross-validation scheme and display the results.

�Grid search with Keras and scikit-learn
In this follow-on demonstration, a grid search is used to evaluate different 

configurations for the ANN model. The configuration that produces the 

best estimated performance is reported.

The create_model() function is defined with two arguments, 

optimizer and Init, both of which have default values. Varying these 

argument values allows for the evaluation of the effect of using different 

optimization algorithms and weight initialization schemes on the network 

model.

After model creation, there is a definition of parameter arrays used in 

the grid search. The search is intended to test

•	 Optimizers for searching different weight values

•	 Initializers for preparing the network weights using 

different schemes
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•	 Epochs for training the model for a different number of 

exposures to the training dataset

•	 Batches for varying the number of samples before a 

weight update

The preceding options are stored in a dictionary and then passed 

to the configuration of the GridSearchCV scikit-learn class. This class 

evaluates a version of the ANN model for each combination of parameters 

(2 x 3 x 3 x 3 for the combinations of optimizers, initializations, epochs, and 

batches). Each combination is then evaluated using the default threefold 

stratified cross-validation.

There are a lot of models, and it all takes a considerable amount of 

computation time as you will find out if you replicate this demonstration 

using a RasPi. The estimation duration for this RasPi setup is about 2 

hours, which is reasonable considering the relatively small network and 

the small dataset (less than 800 records instances and 9 features and 

attributes).

After the script has finished, the performance and combination 

of configurations for the best model are displayed, followed by the 

performance for all of the combinations of parameters.

The following script is named kerasScikitGridSearchDiabetesTest.

py to indicate that it uses the scikit-learn grid search algorithm to help 

determine the optimal configuration for the ANN model. This script is 

available from the book’s companion web site:

# Import required libraries

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer
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from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score

# Function to create model, required for KerasClassifier

def create_model(optimizer='rmsprop', init='glorot_uniform'):

    # create model

    model = Sequential()

    �model.add(Dense(12, input_dim=8, kernel_initializer=init, 

activation='relu'))

    �model.add(Dense(8, kernel_initializer=init, 

activation='relu'))

    �model.add(Dense(1, kernel_initializer=init, 

activation='sigmoid'))

    # Compile model

    �model.compile(loss='binary_crossentropy', 

optimizer=optimizer, metrics=['accuracy'])

    return model

# Random seed for reproducibility

seed = 42

np.random.seed(seed)

# Load the dataset

data = pd.read_csv('diabetes.csv')

X = data.iloc[:, :-1]

y = data.iloc[:, -1]

# Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.2, random_state=1)
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# Impute the missing values using feature median values

imputer = SimpleImputer(missing_values=0,strategy='median')

X_train2 = imputer.fit_transform(X_train)

X_test2 = imputer.transform(X_test)

# Convert the numpy array into a Dataframe

X_train3 = pd.DataFrame(X_train2)

# Create model

model = KerasClassifier(build_fn=create_model, verbose=0)

# Grid search epochs, batch size and optimizer

optimizers = ['rmsprop', 'adam']

init = ['glorot_uniform', 'normal', 'uniform']

epochs = [50, 100, 150]

batches = [5, 10, 20]

param_grid = dict(optimizer=optimizers, epochs=epochs,  

batch_size=batches, init=init)

grid = GridSearchCV(estimator=model, param_grid=param_grid)

grid_result = grid.fit(X_train2, y_train)

# Summarize results

print("Best: %f using %s" % (grid_result.best_score_,  

grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

    print("%f (%f) with: %r" % (mean, stdev, param))

This script should be run in the virtual environment with the diabetes.

csv dataset in the same directory as this script. Enter the following 

command to run the script:

python kerasScikitGridSearchDiabetesTest.py
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This script takes about 2 hours to complete because of the many sets of 

epochs being run. The final screen results are shown in Figure 7-11, which 

is a composite that I made showing the beginning and ending set of epoch 

interim results.

The highest accuracy achieved for all the sets of epochs run was 

76.22%. Note that I drew line pointing to the optimal set in the figure. This 

set was configured for 150 epochs, a batch size of 5, a normal distribution, 

and the Adam optimizer.

Figure 7-11.  Final results after running the kerasScikitGridSearch 
DiabetesTest script
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�Housing price regression predictor 
demonstration
Modern online property companies offer valuations of houses using 

ML techniques. This demonstration will predict the prices of houses in 

the metropolitan area of Boston, MA (USA), using an ANN and a scikit-

learn multiple linear regression (MLR) function. The dataset used in 

this demonstration is rather dated (1978), but it is still adequate for the 

purposes of this project.

The dataset consisted of 13 variables and 507 records. The dataset 

feature variables are detailed in Table 7-2.

Table 7-2.  Boston housing dataset feature variables

Columns Description

CRIM Per capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.

INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX Nitric oxide concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property tax rate per $10,000

PTRATIO Pupil-teacher ratio by town

LSTAT Percentage of lower status of the population

MEDV Median value of owner-occupied homes in $1000s
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The price of the house indicated by the variable MEDV is the target 

variable, and the remaining features are the feature variables on which the 

value of a house will be predicted.

�Preprocessing the data
It is always good practice to become familiar with the dataset to be used 

in a project. The obvious first step is to download the dataset. Fortunately, 

this dataset is readily available using the scikit-learn repository. The 

following statements will download the dataset into a script:

from sklearn.datasets import load_boston

boston_dataset = load_boston()

I next created a small script to investigate the dataset characteristics 

including the keys and first few records. I named this script inspectBoston.

py, and it is available from the book’s companion web site.

# Load the required libraries

import pandas as pd

from sklearn.datasets import load_boston

# Load the Boston housing dataset

boston_dataset = load_boston()

# Display the dataset keys

print(boston_dataset.keys())

# Display the first five records

boston = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

print(boston.head())

# Display the extensive dataset description key

print(boston_dataset.DESCR)
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Run this script by using this command:

python inspectBoston.py

Figure 7-12 shows the result of running this script session.

Figure 7-12.  Results after running the inspectBoston script
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The DESCR portion of the dataset keys is extensive and provides an 

unusual and comprehensive historical review for this useful dataset. I wish 

other ML datasets would include such informative data.

Reviewing the initial five records reveals that the target variable MEDV 

is missing from the DataFrame. This is easily remedied by adding this line 

of code:

boston['MEDV'] = boston_dataset.target

One quick dataset check that is easy to implement and quite useful is 

to check for any missing or 0 values in the dataset. This can be done using 

the isnull() method along with a summing operation. The statement to 

do this is

boston.isnull().sum()

I incorporated this null check along with the MEDV correction into 

a revised inspectBoston script. This revised script, which is now named 

inspectBostonRev.py, does not display the extensive description as shown 

in the original script. This script is available from the book’s companion 

web site:

# Load the required libraries

import pandas as pd

from sklearn.datasets import load_boston

# Load the Boston housing dataset

boston_dataset = load_boston()

# Display the dataset keys

print(boston_dataset.keys())

# Create the boston Dataframe

boston = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)
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# Add the target variable to the Dataframe

boston['MEDV'] = boston_dataset.target

# Display the first five records

print(boston.head())

# Check for null values in the dataset

print(boston.isnull().sum())

Run this script by using this command:

python inspectBostonRev.py

Figure 7-13 shows the result of running this script session.

The results display shows that the MEDV target variable has been 

successfully added to the DataFrame and that there are no null or 0 values 

present in the dataset. Based on all of the preceding checks, I would say 

that this dataset was ready to be applied to a model.

Figure 7-13.  Results after running the inspectBoston script
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�The baseline model
A MLP Keras model will first be created and then used with a scikit-learn 

wrapper regression function to evaluate the Boston housing dataset. 

This action is almost identical to what happened in the first chapter 

demonstration where the scikit-learn wrapper function was a classifier 

instead of a regression package. This method of using Keras models with 

scikit-learn wrapper functions is quite powerful because it allows for 

the use of easy-to-build Keras models with the impressive evaluation 

capabilities built in with the scikit-learn library.

The baseline model is a simple structure with a single fully connected 

hidden layer with the same number of nodes as the input feature  

variables (13). The network also uses the efficient ReLU activation 

functions. However, no activation function is used on the output layer 

because this network is designed to predict numerical values and does not 

need any transformations applied.

The Adam optimizer is used and a mean squared error (MSE) loss 

function is the target function to be optimized. The MSE will also be the 

same metric used to evaluate the network performance. This is a desirable 

metric because it can be directly understood in the context of the problem, 

which is a house price in thousands of dollars squared.

The Keras wrapper object used with the scikit-learn library is named 

KerasRegressor. This is instantiated using the same argument types as 

used with the KerasClassifier object. A reference to the model is required 

along with several parameters (number of epochs and batch size) that are 

eventually passed to the fit() function, which does the training.

A random number is also used in the script to help generate consist 

and reproducible results when the script is repeatedly run.

The model is eventually evaluated using a tenfold cross-validation 

process as I have previously discussed in this and previous chapters. The 

final metrics are the MSE including the average and standard deviation 

across all tenfolds for the cross-validation evaluation.
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The dataset must be normalized prior to applying it to the model and 

evaluation framework. This is because it contains values of widely varying 

magnitude, which you should realize by now is not a good thing for an 

ANN to attempt to handle. A normalized dataset is also commonly referred 

to as a standardized dataset. In this case the scikit-learn StandardScaler 

function is used to normalize (standardize) the data during the model 

evaluation within each fold of the cross-validation process.

The following script incorporates all the items discussed earlier. It is 

named kerasRegressionTest.py and is available from the book’s companion 

web site.

# Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

# Load the Boston housing dataset

boston_dataset = load_boston()

# Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

#  Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

# Setup the boston dataframe

boston = dataframe.values
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# Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

# Define the base model

def baseline_model():

    # Create model

    model = Sequential()

    �model.add(Dense(13, input_dim=13,  kernel_

initializer='normal', activation='relu'))

    model.add(Dense(1, kernel_initializer='normal'))

    # Compile model

    model.compile(loss='mean_squared_error', optimizer='adam')

    return model

# Random seed for reproducibility

seed = 42

# Create a regression object

estimator = KerasRegressor(build_fn=baseline_model, epochs=100, 

batch_size=5, verbose=0)

# Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=baseline_

model, epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Standardized: %.2f (%.2f) MSE" % (results.mean(), 

results.std()))
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Run this script by using this command:

python kerasRegressionTest.py

Figure 7-14 shows the result of running this script session.

The resulting MSE was 28.65, which is not a bad result. For those 

readers that have some difficulty in working with a statistical measure 

such as MSE, I will offer a somewhat naive interpretation but perhaps a bit 

intuitive. I did the following brief set of calculations:

Mean of all the MEDV values = 22.49 (That’s 1978 

house prices in the Boston area)

Square root of MSE = 5.35

Ratio of square root of MSE to mean = 0.238

1 - above value = 0.762 or “accuracy” = 76.2%

Now, before statisticians start yelling at me, I only present the 

preceding calculations to provide a somewhat meaningful interpretation of 

the MSE metric. Clearly an MSE approaching 0 is ideal, but as you can see 

from this approach, the model is reasonably accurate. In fact, I did some 

additional research regarding the results of other folks who have used this 

same dataset and similar networks. I found that the reported accuracies 

were in the range of 75 to 80%, so this demonstration was right where it 

should have been.

Figure 7-14.  Results after running the kerasRegressionTest script
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�Improved baseline model
One of the great features of the preceding script is that changes can be 

made in the baseline model not affecting any other parts of the script. That 

inherent feature is another subtle example of high cohesion, loose coupling 

that I mentioned earlier. Another layer will be added to the model in an 

effort to improve its performance. This “deeper” model “may” allow the 

model to extract and combine higher ordered features embedded in the 

data, which in turn will allow for better predictive results. The code for this 

model is

# define the model

def larger_model():

    # create model

    model = Sequential()

    �model.add(Dense(13, input_dim=13, kernel_

initializer='normal', activation='relu'))

    �model.add(Dense(6, kernel_initializer='normal', 

activation='relu'))

    model.add(Dense(1, kernel_initializer='normal'))

    # Compile model

    model.compile(loss='mean_squared_error', optimizer='adam')

    return model

The modified script was renamed to kerasDeeperRegressionTest.py 

and is listed in the following. It is available from the book’s companion 

web site.

# Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor
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from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

# Load the Boston housing dataset

boston_dataset = load_boston()

# Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

#  Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

# Setup the boston dataframe

boston = dataframe.values

# Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

# Define the model

def larger_model():

    # create model

    model = Sequential()

    �model.add(Dense(13, input_dim=13, kernel_

initializer='normal', activation='relu'))

    �model.add(Dense(6, kernel_initializer='normal', 

activation='relu'))

    model.add(Dense(1, kernel_initializer='normal'))

    # Compile model

    model.compile(loss='mean_squared_error', optimizer='adam')

    return model
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# Random seed for reproducibility

seed = 42

# Create a regression object

estimator = KerasRegressor(build_fn=larger_model, epochs=100, 

batch_size=5, verbose=0)

# Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=larger_model, 

epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Standardized: %.2f (%.2f) MSE" % (results.mean(), 

results.std()))

Run this script by using this command:

python kerasDeeperRegressionTest.py

Figure 7-15 shows the result of running this script.

Figure 7-15.  Results after running the kerasDeeperRegressionTest 
script
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The result from using a deeper model is an MSE equals to 24.19, which 

is moderately less than the previous result of 28.65. This shows that the 

new model is better with predictions than the shallower model. I also 

repeated my naive calculations and came up with an accuracy of 78.13%. 

This is almost two points higher than the previous script results. The 

deeper model is definitely a better performer.

�Another improved baseline model
Going deeper is not the only way to improve a model. Going wider can also 

improve a model by increasing the number of nodes in the hidden layer 

and hopefully increasing the network’s ability to extract latent features. 

The code for this model is

# Define the wider model

def wider_model():

    # create model

    model = Sequential()

    �model.add(Dense(20, input_dim=13, kernel_

initializer='normal', activation='relu'))

    model.add(Dense(1, kernel_initializer='normal'))

    # Compile model

    model.compile(loss='mean_squared_error', optimizer='adam')

    return model

The modified script was renamed to kerasWiderRegressionTest.py and 

is listed in the following. It is available from the book’s companion web site.

# Import required libraries

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor
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from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.datasets import load_boston

# Load the Boston housing dataset

boston_dataset = load_boston()

# Create the boston Dataframe

dataframe = pd.DataFrame(boston_dataset.data, columns=boston_

dataset.feature_names)

#  Add the target variable to the dataframe

dataframe['MEDV'] = boston_dataset.target

# Setup the boston dataframe

boston = dataframe.values

# Split into input (X) and output (y) variables

X = boston[:,0:13]

y = boston[:,13]

# Define the wider model

def wider_model():

    # create model

    model = Sequential()

    �model.add(Dense(20, input_dim=13, kernel_

initializer='normal', activation='relu'))

    model.add(Dense(1, kernel_initializer='normal'))

    # Compile model

    model.compile(loss='mean_squared_error', optimizer='adam')

    return model
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# Random seed for reproducibility

seed = 42

# Create a regression object

estimator = KerasRegressor(build_fn=wider_model, epochs=100, 

batch_size=5, verbose=0)

# Evaluate model with standardized dataset

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=wider_model, 

epochs=50, batch_size=5, verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, y, cv=kfold)

print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.

std()))

Run this script by using this command:

python kerasWiderRegressionTest.py

Figure 7-16 shows the result of running this script.

The result from using a wider model is an MSE equals to 26.35, which 

is a disappointing result because it is moderately higher than the deeper 

model result of 24.19. This wider result is still less than the original, 

Figure 7-16.  Results after running the kerasWiderRegressionTest script
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unmodified version 28.65. The naive accuracy calculation is 77.17%, which 

is about halfway between the original and deeper model accuracies.

I believe that experimenting with different node numbers will 

likely change the outcome to the better. The 20 node value used in this 

demonstration was just a reasoned guess. You can easily double that and 

see what happens; however, be careful of either over- or underfitting the 

model.

One more suggestion I have for curious readers is to try a model that 

incorporates both a deeper and wider architecture. That very well may be 

the sweet spot for this project.

�Predictions using CNNs
Making a prediction using a CNN at first glance (pardon the pun) might 

seem like a strange task. CNNs are predicated on using Images as input 

data sources, and the question that naturally arises is what is a “predicted” 

Image? The answer lies in the intended use of the Images. CNNs are neural 

networks just like their ANN counterparts. They are only designed to 

process numerical arrays and matrices, nothing more. How users interpret 

CNN outputs are entirely up to the users.

In recent years, CNNs have been used in cellular microscopy 

applications for cancer and other diseases. The prediction in such case 

is whether or not a patient has a certain diagnosis based on the analysis 

of microscopic cell Images. This type of analysis is also widely used for 

radioscopic (x-ray) examinations, where CNNs have been applied to 

large-scale Images in an effort to assist with patient diagnosis. Medical 

predictions have enormous consequences, and CNN analysis is only 

one tool of many that doctors use to assist in their diagnostic efforts. The 

subject of CNN medical analysis is quite complicated, and I decided to 

devote the entire next chapter to it.
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Another area where CNN predictions are commonly used is with time 

series analysis, and this one is fortunately not nearly as complicated as 

the medical diagnosis one. I have included a series of relatively simple 

demonstrations to illustrate how to use a CNN with a time series. However, 

I will first answer the obvious question, what is a time series? A time series 

is just a series of data point indexed in time order. Most commonly, a time 

series is a numerical sequence sampled at successive equally spaced data 

points in time. It is only a sequence of discrete, time-related data points. 

Examples of time series are ocean tide heights, sunspot activity, and the 

daily closing value of the Dow Jones Industrial Average. The common 

attribute shared by all-time series is that they are all historical. That is 

where the CNN comes in. A CNN uses the historical record to predict the 

next data point. In reality, this is not a big problem if the time series is 

logical and well ordered. If I presented you with the following time series

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, ?

and asked you to predict the next number in the series, I don’t think 

anyone of my bright readers would have a problem doing that. But, if I 

presented you with the following sequence

86.6, 50, 0, –50, –86.6, –100, –86.6, –50, 0, 50, 86.6, ?

some of you may have a bit of difficulty in arriving at an answer (hint: 

cosine times 100). Although some readers could have instantly noticed 

the repetitive pattern in the sequence, a CNN would have had no issue in 

detecting the pattern. In the preceding case, plotting the data points would 

have allowed you to instantly recognize the sinusoidal pattern.

But if the time series were truly random, how would the next data 

point be determined? That is where a CNN would help us – one area where 

there has been a vast amount of resources applied in the prediction of 

stock market indices. The time series involved with such indices is vastly 

complicated depending on many conflicting factors such as financial 

stability, global status, societal emotions, future uncertainties, and so on. 
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Nonetheless, many brilliant data scientists have been tackling this problem 

and applying some of the most innovative and complex DL techniques 

including vastly complex CNNs. Obviously, the stakes in developing a 

strong predictor would be hugely rewarding. I suspect if someone has 

already developed a strong algorithm, it has been kept secret and likely 

would remain so.

The following demonstrations are vastly underwhelming and are 

meant to be as such. They are only designed to show how to apply a CNN 

to a variety of time series. These are basic concepts that you can use to 

build more complex and realistic predictors.

�Univariate time series CNN model
A univariate time series is a series of data points sampled in a timed 

sequence, where the intervals between samples are equal. The CNN model 

goal is to use this 1D array of values to predict the next data point in the 

sequence. The time series or dataset as I will now refer to it must first be 

preprocessed a bit to make compatible with a CNN model. I will discuss 

how to build the CNN model after the dataset preprocessing section.

�Preprocessing the dataset

Keep in mind that the CNN must learn a function that maps an historical 

numerical sequence as an input to a single numerical output. This means 

the time series must be transformed into multiple examples that the CNN 

can learn from.

Suppose the following time series is provided as the input:

50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 

600, 650

Break up the preceding sequence into a series of input/output sample 

patterns as shown in Table 7-3.
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The following script parses a time series into a dataset suitable for use 

with a CNN. This script is named splitTimeSeries.py and is available from 

the book’s companion web site:

# Import required library

from numpy import array

# Split a univariate time series into samples

def split_sequence(sequence, n_steps):

    X, y = list(), list()

    for i in range(len(sequence)):

        # find the end of this pattern

        end_ix = i + n_steps

        # check if we are beyond the sequence

        if end_ix > len(sequence)-1:

            break

Table 7-3.  Time series to sample distribution

X y

50, 100, 150 200

100, 150, 200 250

150, 200, 250 300

200, 250, 300 350

250, 300, 350 400

300, 350, 400 450

350, 400, 450 500

400, 450, 500 550

450, 500, 550 600

500, 550, 600 650
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        # gather input and output parts of the pattern

        seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

        X.append(seq_x)

        y.append(seq_y)

    return array(X), array(y)

# Define input time series

raw_seq = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 

550, 600, 650]

# Choose a number of time steps

n_steps = 3

# Split into samples

X, y = split_sequence(raw_seq, n_steps)

# Display the data

for i in range(len(X)):

    print(X[i], y[i])

Run this script by using this command:

python splitTimeSeries.py

Figure 7-17 shows the result of running this script.

Figure 7-17.  Results after running the splitTimeSeries script
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You can see from the figure that the script has created ten learning 

examples for the CNN. This should be enough to train a CNN model to 

effectively predict a data point. The next step in this demonstration is to 

create a CNN model.

�Create a CNN model

The CNN model must have a 1D input/convolutional layer to match 

the 1D applied dataset. A pooling layer follows the first layer, which will 

subsample the convolutional layer output in an effort to extract the salient 

features. The pooling layer then feeds a fully connected layer, which 

interprets the features extracted by the convolutional layer. Another fully 

connected layer follows to help with further feature definition, and finally 

the output layer reduces the feature maps to a 1D vector.

The code for this model is

# Define 1-D CNN model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', 

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

The convolution layer has two arguments, which specify the number 

of time steps (intervals) and the number of features to expect. The number 

of features for a univariate problem is one. The time steps will be the same 

number used to split up the 1D time series, which is three for this case.

The input dataset has multiple records, each with a shape dimension 

of [samples, timesteps, features].
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The split_sequence function provides the X vector with the shape of 

[samples, timesteps], which means the dataset must be reshaped to add 

an additional element to cover the number of features. The following code 

snippet does precisely that reshaping:

n_features = 1

X = X.reshape(X.shape[0], X.shape[1], n_features))

The model needs to be trained, and that is done using the conventional 

Keras fit function. Because this is a simple model and the dataset is tiny 

as compared to others I have demonstrated, the training will be extremely 

brief for a single epoch. This means a large number of epochs can be used 

to try to obtain a maximum performance model. In this case, that number 

is 1000. The following code invokes the fit function for the model:

model.fit(X, y, epochs=1000, verbose=0)

Finally, the Keras predict function will be used to predict the next value 

in the input sequence. For instance, if the input sequence is {150, 200, 250], 

then the predicted value should be [300]. The code for the prediction is

# Demonstrate prediction

x_input = array([150, 200, 250])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

The complete script incorporating all of the code snippets discussed 

earlier is named univariateTimeSeriesTest.py and is listed in the following. 

It is available from the book’s companion web site.

# Import required libraries

from numpy import array

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten
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from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# Split a univariate sequence into samples

def split_sequence(sequence, n_steps):

    X, y = list(), list()

    for i in range(len(sequence)):

        # find the end of this pattern

        end_ix = i + n_steps

        # check if we are beyond the sequence

        if end_ix > len(sequence)-1:

            break

        # gather input and output parts of the pattern

        seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

        X.append(seq_x)

        y.append(seq_y)

    return array(X), array(y)

# Define input sequence

raw_seq = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 

550, 600, 650]

# Choose a number of time steps

n_steps = 3

# Split into samples

X, y = split_sequence(raw_seq, n_steps)

# Reshape from [samples, timesteps] into [samples, timesteps, 

features]

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))
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# Define 1-D CNN model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', 

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# Fit the model

model.fit(X, y, epochs=1000, verbose=0)

# Demonstrate prediction

x_input = array([150, 200, 250])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

print(yhat)

Run this script by using this command:

python univariateTimeSeriesTest.py

Figure 7-18 shows the result of running this script.

Figure 7-18.  Results after running the univariateTimeSeriesTest script
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The predicted value displayed is 296.78, not quite 300 as was expected, 

but still fairly close. There is a degree of randomness in the algorithm, and 

I tried running it a few more times. The following list shows the results of 

ten retries:

286.68

276.35

279.15

299.96

279.66

299.86

300.07

281.75

294.20

300.09

You can see from the list that the expected value (rounded) was 

displayed four out of ten times. The mean of the ten values was 289.78, the 

standard deviation was 10.03, and range was from 276.35 to 300.09. I would 

rate this CNN predictor as good with those performance statistics.

�Multivariate time series CNN model

A multivariate time series is the same as a univariate time series except 

that there is more than one sampled value for each time step. There are 

two model types that handle multivariate time series data:

•	 Multiple input series

•	 Multiple parallel series

Each model type will be discussed separately.
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Multiple input series

I will start by explaining that multiple input series has parallel input time 

series, which is not to be confused with the other model type. This will be clear 

in a moment. This parallel time series has had its values sampled at the sample 

time step. For example, consider the following sets of raw time series values:

[50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 

650]

[50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 

350]

The output sequence will be the sum of each sampled value pair for 

the entire length of each series. In code the aforementioned would be 

expressed as

from numpy import array

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450, 

500, 550, 600, 650])

in_seq2 = array([50,   75, 100, 125, 150, 175, 200, 225, 250, 

275, 300, 325, 350])

out_seq = array([in_seq1[i] + in_seq2[i] for i in range(in_

seq1))])

These arrays must be reshaped as was done in the previous 

demonstration. The columns must also be stacked horizontally for 

processing. The code segment to do all that is

# Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))
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Preprocessing the dataset

The complete script to preprocess the datasets described earlier is 

named shapeMultivariateTimeSeries.py and is listed in the following. It is 

available from the book’s companion web site.

# Multivariate data preparation

from numpy import array

from numpy import hstack

# Define input sequences

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450, 

500, 550, 600, 650])

in_seq2 = array([50,  75, 100, 125, 150, 175, 200, 225, 250, 

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

# Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# Display the datasets

print(dataset)

Run this script by using this command:

python shapeMultivariateTimeSeries.py

Figure 7-19 shows the result of running this script.
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The results screen shows the dataset with one row per time step and 

columns for the two inputs and summed output for each of the elements in 

the parallel time series.

This reshaped raw data vectors now must be split into input/output 

samples as was done with the univariate time series. A 1D CNN model 

needs sufficient inputs to learn a mapping from an input sequence to an 

output value. The data needs to be split into samples maintaining the 

order of observations across the two input sequences.

If three input time steps are chosen, then the first sample would look 

as follows:

Input:

50, 50

100, 75

150, 100

Output:

250

Figure 7-19.  Results after running the shapeMultivariateTimeSeries 
script

Chapter 7  Predictions using ANNs and CNNs



444

The first three time steps of each parallel series are provided as input 

to the model, and the model associates this with the value in the output 

series at the third time step, in this case, 250.

It is apparent that some data will be discarded when transforming the 

time series into input/output samples to train the model. Choosing the 

number of input time steps will have a large effect on how much of the 

training data is eventually used. A function named split_sequences will 

take the dataset that was previously shaped and return the needed input/

output samples. The following code implements the split_sequences 

function:

# split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

    X, y = list(), list()

    for i in range(len(sequences)):

        # find the end of this pattern

        end_ix = i + n_steps

        # check if we are beyond the dataset

        if end_ix > len(sequences):

            break

        # gather input and output parts of the pattern

        �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

        X.append(seq_x)

        y.append(seq_y)

    return array(X), array(y)

The following code tests all the previous code snippets and functions. 

I named this script splitMultivariateTimeSeries.py. It is available from the 

book’s companion web site.
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# Import required libraries

from numpy import array

from numpy import hstack

# Split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

    X, y = list(), list()

    for i in range(len(sequences)):

        # find the end of this pattern

        end_ix = i + n_steps

        # check if we are beyond the dataset

        if end_ix > len(sequences):

            break

        # gather input and output parts of the pattern

        �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

        X.append(seq_x)

        y.append(seq_y)

    return array(X), array(y)

# Define input sequences

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450, 

500, 550, 600, 650])

in_seq2 = array([50,  75, 100, 125, 150, 175, 200, 225, 250, 

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

# Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))
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# Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# Choose a number of time steps

n_steps = 3

# Convert into input/output samples

X, y = split_sequences(dataset, n_steps)

print(X.shape, y.shape)

# Display the data

for i in range(len(X)):

    print(X[i], y[i])

Run this script by using this command:

python splitMultivariateTimeSeries.py

Figure 7-20 shows the result of running this script.
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Running the script first displays the shape of the X and y components. 

You can see that the X component has a 3D structure. The first dimension 

is the number of samples, in this case 11. The second dimension is the 

number of time steps per sample, in this case 3, and the last dimension 

specifies the number of parallel time series or the number of variables, in 

this case 2, for the two parallel series. The dataset as shown in the rest of 

the figure is the exact 3D structure expected by a 1D CNN for input.

Figure 7-20.  Results after running the splitMultivariateTimeSeries 
script
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The model used for this demonstration is exactly the same one used 

for the univariate demonstration. The discussion I used for that model 

applies to this situation.

The Keras predict function will be used to predict the next value in the 

output series, provided the input values are

200, 125

300, 175

400, 225

The predicted value should be 625. The code for the prediction is

# Demonstrate prediction

x_input = array([[200, 125], [300, 175], [400, 225]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

The complete script incorporating all of the code snippets discussed 

earlier is named multivariateTimeSeriesTest.py and is listed in the 

following. It is available from the book’s companion web site.

# Import required libraries

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# Split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

    X, y = list(), list()

    for i in range(len(sequences)):
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        # Find the end of this pattern

        end_ix = i + n_steps

        # Check if we are beyond the dataset

        if end_ix > len(sequences):

            break

        # Gather input and output parts of the pattern

        �seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_

ix-1, -1]

        X.append(seq_x)

        y.append(seq_y)

    return array(X), array(y)

# Define input sequence

in_seq1 = array([50, 100, 150, 200, 250, 300, 350, 400, 450, 

500, 550, 600, 650])

in_seq2 = array([50,  75, 100, 125, 150, 175, 200, 225, 250, 

275, 300, 325, 350])

out_seq = array([in_seq1[i]+in_seq2[i] for i in range(len(in_

seq1))])

# Convert to [rows, columns] structure

in_seq1 = in_seq1.reshape((len(in_seq1), 1))

in_seq2 = in_seq2.reshape((len(in_seq2), 1))

out_seq = out_seq.reshape((len(out_seq), 1))

# Horizontally stack columns

dataset = hstack((in_seq1, in_seq2, out_seq))

# Choose a number of time steps

n_steps = 3

# Convert into input/output samples

X, y = split_sequences(dataset, n_steps)
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# The dataset knows the number of features, e.g. 2

n_features = X.shape[2]

# Define model

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', 

input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

# Fit model

model.fit(X, y, epochs=1000, verbose=0)

# Demonstrate prediction

x_input = array([[200, 125], [300, 175], [400, 225]])

x_input = x_input.reshape((1, n_steps, n_features))

yhat = model.predict(x_input, verbose=0)

# Display the prediction

print(yhat)

Run this script by using this command:

python multivariateTimeSeriesTest.py

Figure 7-21 shows the result of running this script.
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The predicted value displayed is 616.74.78, not quite 625 as was 

expected, but still reasonably close. There is a degree of randomness in the 

algorithm, and I tried running it a few more times. The following list shows 

the results of ten retries:

586.93

610.88

606.86

593.37

612.66

604.88

597.40

577.46

605.50

605.94

The mean of the ten values was 600.19, the standard deviation 

was 11.28, and range was from 577.46 to 612.66. I would rate this CNN 

predictor as fair to good with those performance statistics.

Figure 7-21.  Results after running the multivariateTimeSeriesTest 
script
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CHAPTER 8

Predictions using 
CNNs and MLPs 
for medical research
In the previous chapter, I introduced you to how both ANNs and CNNs are 

used to make predictions. The predictions discussed were strictly related 

to numerical datasets and did not directly involve any input Images. In 

this chapter, I will discuss how to use Images with CNNs to make medical 

diagnosis predictions. Currently, this area of research is extremely 

important, and many AI researchers are pursuing viable lines of research 

to advance the subject matter. In truth, I added one more data-oriented 

MLP demonstration at the chapter’s end to hopefully show you that data-

only projects are still relevant in this area.

Much of this chapter’s content has been inspired from Adrian 

Rosebrock’s February 2019 blog titled “Breast Cancer Classification with 

Keras and Deep Learning.” As Adrian points out in his blog, most of his 

readers “know someone who has had cancer at some point.” I am sure 

that statement is true for most of the readers of this book. Hopefully, this 

chapter’s content will provide some measure of hope to potential cancer 

patients that real progress is being made in the early detection of some 

types of cancer using AI, ML, and DL.
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�Parts list
You will need a standard RasPi desktop configuration for the chapter 

demonstrations.

Item Model Quantity Source

Raspberry Pi 4 Model B (RasPi 4 with 2 or 

4 GB RAM)

1 mcmelectronics.com

adafruit.com

digikey.com

mouser.com

farnell.com

Micro SD card 32 GB, class 10 or larger 1 amazon.com

USB keyboard Amazon Basic 1 amazon.com

USB mouse Amazon Basic 1 amazon.com

HDMI monitor Commodity 1 amazon.com

Note  A minimum of 2 GB RAM is required to enable the RasPi 
4 to compile and train the CNN models used in the chapter 
demonstrations. RasPis with only 1 GB of RAM will not be successful 
in the demonstrations.

The use of a 32 GB micro SD card is required because the combined 
memory requirements for OpenCV, Keras, TensorFlow, dataset used 
in the demonstrations, and the latest Raspbian OS in a virtual Python 
environment exceed 16 GB.
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�Downloading the breast cancer histology 
Image dataset
Histology, also known as microscopic anatomy or microanatomy is the 

branch of biology which studies the microscopic anatomy of biological 

tissues. Specifically, the histology referenced in this problem domain are 

the microscopic Images taken from patients with and without malignant 

breast cancer cells.

The dataset used in this demonstration is for invasive ductal 

carcinoma (IDC). This dataset is available for download at

www.kaggle.com/paultimothymooney/breast-histopathology-images

It is a very large download (1.6 GB) and will need to be unarchived 

twice to gain access to the raw Images. The final extracted dataset size 

exceeds 2.4 GB.

The following are the context and content descriptions from the 

dataset download web site:

Context:

Invasive ductal carcinoma (IDC) is the most common subtype of all 

breast cancers. To assign an aggressiveness grade to a whole mount sample, 

pathologists typically focus on the regions which contain the IDC. As a 

result, one of the common preprocessing steps for automatic aggressiveness 

grading is to delineate the exact regions of IDC inside of a whole mount slide.

Content:

The original dataset consisted of 162 whole mount slide Images 

of Breast Cancer (BCa) specimens scanned at 40x. From that, 277,524 

patches of size 50 x 50 were extracted (198,738 IDC negative and 78,786 

IDC positive). Each patch’s filename is of the format u_xX_yY_classC.png. 

For example, 10253_idx5_x1351_y1101_class0.png, where u is the patient 

ID (10253_idx5), X is the x-coordinate of where this patch was cropped 

from, Y is the y-coordinate of where this patch was cropped from, and C 

indicates the class where 0 is non-IDC and 1 is IDC.
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In summary, from the preceding descriptions there are

•	 277,524 Image patches of 50×50 pixels each

•	 78,786 positive examples (i.e., indicating breast cancer 

detected in the patch)

•	 198,738 negative examples (i.e., no breast cancer 

detected)

From my examination of a sample of the patch coordinates, I have 

inferred that the original whole mount slide Image size in pixels must 

be 1600 x 1600. This means that a maximum of 1024 patches could be 

extracted from any given slide, provided there were no overlapping patches 

taken. This means the whole dataset has a potential for a maximum of 

the number of patient’s time 1024, assuming each patient has cancer and 

cancer-free patches. I will shortly show you that there are 837 patients in 

this study, which means there is a potential maximum of 857,088 patch 

Images. In actuality, there are 277,524 Images in the dataset, which means 

that only 32% of the potential patches were sampled. While this statistic 

might be meaningful to statisticians regarding the overall “quality” of any 

prediction, I will choose to ignore it for purposes of this demonstration.

There is, however, an obvious imbalance in the Image types in 

the dataset. There are twice as many negative class Images as positive 

class Images. This is something that will be handled when the data is 

preprocessed.

Figure 8-1 shows a tiny fraction of both positive and negative Images 

from the dataset.
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There are 837 sub-directories present under the main directory named 

IDC_regular_ps50_idc5. You will next need to rename this directory to 

dataset to make it compatible with the configuration script I will shortly 

discuss. You can either use the cp command or use the File Manager utility 

to make this change. I almost always use the File Manager because of its 

convenience.

Figure 8-2 is the result of running the tree command, where you can 

see a small portion of the 837 sub-directories.

Figure 8-1.  Representative sample of dataset Images
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Each sub-directory contains both positive and negative Images for a 

given patient, whose numerical id is the name of the sub-directory. In each 

sub-directory, there are two more sub-directories named 0 and 1. The 0 

directory contains Images, which do have any cancer cells detected. The 1 

directory has Images containing detected cancer cells.

The ultimate goal of this demonstration is to train a CNN model to 

distinguish between positive and negative Image classes, thus predicting if 

a given patient has or does not have IDC.

Figure 8-2.  tree command for the dataset main directory
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�Preparing the project environment
The first step before trying any project script is to set up a Python 

virtual environment. I have used this environment type in previous 

demonstrations and will continue to use for this chapter’s demonstrations. 

Refer back to Chapter 1 regarding how to create a virtual environment if 

you need a refresher.

There are five dependencies that must be installed to support the 

scripts used in this chapter. You have likely installed most, if not all, if you 

have been replicating the previous chapter demonstrations. In any case, 

all you need to do is enter the following commands to ensure that the 

required dependencies are installed:

pip install numpy opencv-contrib-python

pip install pillow

pip install tensorflow keras

pip install imutils

pip install scikit-learn matplotlib

You will have problems when using the imutils package if you 

have not installed OpenCV. While OpenCV functions are not directly 

called by any of the chapter scripts, imutils does have some embedded 

dependencies with this package. Refer back to Chapter 2 if you need 

guidance on installing OpenCV.

You will be ready to tackle the first script once the virtual environment 

is set up.
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�Configuration script

The following script set ups the appropriate directory paths and defines the 

amount of data to be used for training and validation. This script is named 

config_IDC.py and is available from the book’s companion web site:

# Import the required library

import os

# Initialize the path to the input image directory.

ORIG_INPUT_DATASET = "dataset"

# Initialize the base path to the directory that contain the

# images remaining after the training and testing splits.

BASE_PATH = "datasets/idc"

# Define the training, validation, and testing directory paths.

TRAIN_PATH = os.path.sep.join([BASE_PATH, "training"])

VAL_PATH = os.path.sep.join([BASE_PATH, "validation"])

TEST_PATH = os.path.sep.join([BASE_PATH, "testing"])

# Define the data split that will be used for training.

TRAIN_SPLIT = 0.8

# Define the data split that will be used for validation.

VAL_SPLIT = 0.1

# Display to user that configuration is complete.

print('[INFO]: Configuration complete')

This configuration script will be run when the next script to be 

discussed is run.

The next step in the demonstration is to build the dataset.
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�Building the dataset

Building the dataset consists, in part, of splitting up the original dataset 

into three smaller datasets as shown in Figure 8-3 diagram.

One of the first items you should realize is that the original dataset is 

a little over 5.8 GB in size. This is clearly too large for even a 4 GB RasPi 4, 

which I am using to run this demonstration. In order to avoid this issue, 

the Keras ImageDataGenerator class will be used to create smaller batches 

from the split datasets, which will eliminate the requirement to load the 

whole original dataset in RAM. However, the original dataset must first be 

split and reorganized.

This script is named build_IDC_dataset.py and will be used to organize 

the original dataset. The script uses configuration constants which are 

set up when the config_IDC script is run at the start of this script. This 

script is available from the book’s companion web site. Some explanatory 

comments follow the listing.

# Import the required libraries

from config_IDC import config_IDC

from imutils import paths

import random

Figure 8-3.  Dataset splits
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import shutil

import os

# Grab the paths to all input images in the original input

# directory and shuffle them.

imagePaths = list(paths.list_images(config_IDC.ORIG_INPUT_

DATASET))

random.seed(42)

random.shuffle(imagePaths)

# Compute the training and testing split.

i = int(len(imagePaths) * config_IDC.TRAIN_SPLIT)

trainPaths = imagePaths[:i]

testPaths = imagePaths[i:]

# Use part of the training data for validation.

i = int(len(trainPaths) * config.VAL_SPLIT)

valPaths = trainPaths[:i]

trainPaths = trainPaths[i:]

# Define the datasets that are built.

datasets = [

    ("training", trainPaths, config.TRAIN_PATH),

    ("validation", valPaths, config.VAL_PATH),

    ("testing", testPaths, config.TEST_PATH)

]

# Loop over the datasets.

for (dType, imagePaths, baseOutput) in datasets:

    # Show which data split created

    print("[INFO] building '{}' split".format(dType))

    # If the base output directory does not exist,

    # create it.
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    if not os.path.exists(baseOutput):

        print("[INFO] 'creating {}' directory".format(baseOutput))

        os.makedirs(baseOutput)

    # Loop over the input image paths.

    for inputPath in imagePaths:

        # Extract the filename of the input image and extract

        # the class label ("0" for "negative" and "1" for

        # "positive").

        filename = inputPath.split(os.path.sep)[-1]

        label = filename[-5:-4]

        # Build the path to the label directory.

        labelPath = os.path.sep.join([baseOutput, label])

        # If the label output directory does not exist, create

        # it.

        if not os.path.exists(labelPath):

            �print("[INFO] 'creating {}' directory".

format(labelPath))

            os.makedirs(labelPath)

        # Construct the path to the destination image and then

        # copy the image itself.

        p = os.path.sep.join([labelPath, filename])

        shutil.copy2(inputPath, p)

Explanatory comments:

Configuration settings and paths are collected after the config_IDC 

script is run at the start of this script. The Python random library is used to 

randomly shuffle the paths. The shutil library is used to copy Images and 

the os library is used for joining paths and making directories.
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Next, all the dataset imagePaths are shuffled to improve the randomness 

for better final results. The index of the training/testing split is then computed 

and trainPaths and testPaths are constructed by slicing the imagePaths. The 

trainPaths are further split to reserve a portion for use for validation.

A list named datasets is then defined. Inside this list are three tuples, 

each with the information required to organize all of the imagePaths into 

training, validation, and testing data.

Iteration over all the datasets is then started. The following steps occur 

in the loop:

•	 A base output directory is created (one time only).

•	 A nested loop over all input Images in the current split 

happens where

•	 The filename is extracted from the input path and 

the class label is extracted from the filename.

•	 A labelPath is constructed as well as creating a label 

output directory (one time only).

•	 Each file is copied into its destination directory.

�Running the build dataset script

The build_IDC_datascript is run by entering the following command:

python build_IDC_dataset.py

Figure 8-4 shows the results of running the script.
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I next ran the tree command on the newly built datasets directory to 

confirm that the required datasets were constructed as desired. Figure 8-5 

shows the results of running the tree command.

Figure 8-4.  Results after running the build_IDC_dataset script
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It is now time to discuss the CNN model once the datasets have  

been set.

�The CNN model

The model used in this demonstration is based mainly on a VGGNet style 

model, which I discussed in the previous chapter. There are multiple 

stacked convolutional layers, which use 3 x 3 filters, typical for the VGG 

model. However, this VGG model uses depthwise separable convolutional 

layers rather than the standard convolutional layers. Without going 

Figure 8-5.  tree command applied to the datasets directory
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into any details, I will simply say that depthwise separable convolution 

is a process that is more computationally efficient as compared to 

conventional convolution.

This CNN model is named CancerNet, which seems appropriate given 

its role in predicting whether or not a patient has that disease based on the 

patient’s histologic study. Figure 8-6 diagrams the CancerNet structure.

It should be obvious from this figure that this CNN network is complex 

with many layers. This CNN is truly a classic representation of a deep 

network. There are 31 layers shown in the figure, which you can confirm by 

counting the layers added to the model in the following class definition.

The following class definition file is named cancernet.py and is 

available from the book’s companion web site:

# Import the required libraries

from keras.models import Sequential

from keras.layers.normalization import BatchNormalization

from keras.layers.convolutional import SeparableConv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

Figure 8-6.  CancerNet structure
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from keras.layers.core import Dropout

from keras.layers.core import Dense

from keras import backend as K

class CancerNet:

    @staticmethod

    def build(width, height, depth, classes):

        # Initialize the model along with the input shape to

        # be "channels last" and the channels dimension itself

        model = Sequential()

        inputShape = (height, width, depth)

        chanDim = -1

        # If using "channels first", update the input shape

        # and channels dimension.

        if K.image_data_format() == "channels_first":

            inputShape = (depth, height, width)

            chanDim = 1

        # CONV => RELU => POOL

        model.add(SeparableConv2D(32, (3, 3), padding="same",

            input_shape=inputShape))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Dropout(0.25))

        # (CONV => RELU => POOL) * 2

        model.add(SeparableConv2D(64, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(SeparableConv2D(64, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))
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        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Dropout(0.25))

        # (CONV => RELU => POOL) * 3

        model.add(SeparableConv2D(128, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(SeparableConv2D(128, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(SeparableConv2D(128, (3, 3), padding="same"))

        model.add(Activation("relu"))

        model.add(BatchNormalization(axis=chanDim))

        model.add(MaxPooling2D(pool_size=(2, 2)))

        model.add(Dropout(0.25))

        # First (and only) set of FC => RELU layers

        model.add(Flatten())

        model.add(Dense(256))

        model.add(Activation("relu"))

        model.add(BatchNormalization())

        model.add(Dropout(0.5))

        # Softmax classifier

        model.add(Dense(classes))

        model.add(Activation("softmax"))

        # Return the constructed network architecture

        return model

This model is structured as sequential, which means layers are added 

in a serial fashion. Most of the layer types used in this model were used 

in Chapter 7 CNN model except for the SeparableConv2D layer, which 

implements the depthwise separable convolution mentioned earlier.
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Three DEPTHWISE_CONV => RELU => POOL blocks are defined in the 

model with increased stacking and filters applied. BatchNormalization and 

Dropout layers have also been added.

FC => RELU layers and softmax classifier finish the network. The 

output of the softmax classifier will create prediction percentages for each 

predicted class.

The model is structured as a callable method, which means the 

instantiated model will be returned to the training script.

�Training and testing script

The training script is the key piece, which finally ties all the whole project 

together. This script is named train_IDC_model.py, and it not only trains 

the model but it also tests it for prediction accuracy. This script is available 

from the book’s companion web site. Explanatory comments follow the 

listing.

# Set the matplotlib backend so figures can be saved in the

# background

import matplotlib

matplotlib.use("Agg")

# Import the required libraries

from keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import LearningRateScheduler

from keras.optimizers import Adagrad

from keras.utils import np_utils

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from cancernet import CancerNet

import config_IDC as config

from imutils import paths

import matplotlib.pyplot as plt
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import numpy as np

import argparse

import os

# Construct the argument parser and parse the arguments.

ap = argparse.ArgumentParser()

ap.add_argument("-p", "--plot", type=str, default="plot.png",

    help="path to output loss/accuracy plot")

args = vars(ap.parse_args())

# Initialize the number of epochs, initial learning rate, and

# batch size.

NUM_EPOCHS = 40

INIT_LR = 1e-2

BS = 32

# Determine the total number of image paths in training,

# validation, and testing directories.

trainPaths = list(paths.list_images(config.TRAIN_PATH))

totalTrain = len(trainPaths)

totalVal = len(list(paths.list_images(config.VAL_PATH)))

totalTest = len(list(paths.list_images(config.TEST_PATH)))

# Account for skew in the labeled data

trainLabels = [int(p.split(os.path.sep)[-2]) for p in 

trainPaths]

trainLabels = np_utils.to_categorical(trainLabels)

classTotals = trainLabels.sum(axis=0)

classWeight = classTotals.max() / classTotals

# Initialize the training data augmentation object

trainAug = ImageDataGenerator(

    rescale=1 / 255.0,

    rotation_range=20,
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    zoom_range=0.05,

    width_shift_range=0.1,

    height_shift_range=0.1,

    shear_range=0.05,

    horizontal_flip=True,

    vertical_flip=True,

    fill_mode="nearest")

# Initialize the validation (and testing) data augmentation

# object.

valAug = ImageDataGenerator(rescale=1 / 255.0)

# Initialize the training generator.

trainGen = trainAug.flow_from_directory(

    config.TRAIN_PATH,

    class_mode="categorical",

    target_size=(48, 48),

    color_mode="rgb",

    shuffle=True,

    batch_size=BS)

# Initialize the validation generator.

valGen = valAug.flow_from_directory(

    config.VAL_PATH,

    class_mode="categorical",

    target_size=(48, 48),

    color_mode="rgb",

    shuffle=False,

    batch_size=BS)

# Initialize the testing generator.

testGen = valAug.flow_from_directory(

    config.TEST_PATH,

    class_mode="categorical",
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    target_size=(48, 48),

    color_mode="rgb",

    shuffle=False,

    batch_size=BS)

# Initialize the CancerNet model and compile it.

model = CancerNet.build(width=48, height=48, depth=3,

    classes=2)

opt = Adagrad(lr=INIT_LR, decay=INIT_LR / NUM_EPOCHS)

model.compile(loss="binary_crossentropy", optimizer=opt,

    metrics=["accuracy"])

# Fit the model.

H = model.fit_generator(

    trainGen,

    steps_per_epoch=totalTrain // BS,

    validation_data=valGen,

    validation_steps=totalVal // BS,

    class_weight=classWeight,

    epochs=NUM_EPOCHS)

# Reset the testing generator and then use the trained model to

# make predictions on the data.

print("[INFO] evaluating network...")

testGen.reset()

predIdxs = model.predict_generator(testGen,

    steps=(totalTest // BS) + 1)

# For each image in the testing set find the index of the

# label with corresponding largest predicted probability.

predIdxs = np.argmax(predIdxs, axis=1)
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# Show a nicely formatted classification report.

print(classification_report(testGen.classes, predIdxs,

    target_names=testGen.class_indices.keys()))

# Compute the confusion matrix and use it to derive the raw

# accuracy, sensitivity, and specificity.

cm = confusion_matrix(testGen.classes, predIdxs)

total = sum(sum(cm))

acc = (cm[0, 0] + cm[1, 1]) / total

sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])

specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])

# Show the confusion matrix, accuracy, sensitivity, and

# specificity.

print(cm)

print("acc: {:.4f}".format(acc))

print("sensitivity: {:.4f}".format(sensitivity))

print("specificity: {:.4f}".format(specificity))

# Plot the training loss and accuracy.

N = NUM_EPOCHS

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, N), H.history["loss"], label="train_

loss")

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_

loss")

plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")

plt.plot(np.arange(0, N), H.history["val_acc"], label="val_

acc")

plt.title("Training Loss and Accuracy on Dataset")

plt.xlabel("Epoch #")
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plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig(args["plot"])

Explanatory comments follow:

The following libraries are used by this script with brief explanations 

for each:

	 1.	 Matplotlib – This is the scientific plotting package 

that is the de facto standard for Python. This library 

is set to use the “Agg” backend to enable saving 

training plots to disk.

	 2.	 Keras – Use the Keras ImageDataGenerator, 

LearningRateScheduler, Adagrad optimizer, and 

np_utils.

	 3.	 sklearn – Use the scikit-learn implementations of a 

classification_report and a confusion_matrix.

	 4.	 config_IDC – Use this script config to grab the paths 

to the three data splits.

	 5.	 cancernet – Class definition for CancerNet required 

for training and evaluation.

	 6.	 imutils – Using the paths module to grab paths to 

each of the Images.

	 7.	 numpy – Required for numerical processing with 

Python.

	 8.	 argparse – Used to parse the command-line 

arguments.

	 9.	 os – Used for access to OS level commands.
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There is one optional command-line argument that can be used with 

this script and that is --plot. When this argument is provided in a terminal 

at runtime, the script will use that name to save the plot to disk. If you 

don’t specify a command-line argument with the plot filename, a default 

name of plot.png will be used.

The number of training epochs, initial learning rate, and batch size are 

defined after the parser code.

After these definitions, the total number of Image paths in the training, 

validation, and testing directories is determined.

A classWeight parameter is then computed for the training data to 

account for class imbalance/skew. Class imbalance happens when there 

is a disproportionate share of data elements among training datasets. 

This was the case in this project as I noted at the beginning of the chapter. 

There are over twice as many benign sample Images as there are malignant 

sample Images. Class imbalance can cause two problems with a model:

•	 Never get optimized results for the class which is 

unbalanced because the model is never sufficiently 

trained.

•	 Validation becomes difficult because of 

misrepresentation across the classes where one or 

more classes are severely under-represented.

The classWeight parameter is used by the Keras fit function to help 

correct for the datasets unbalance. I am unsure how that is implemented 

within the function.

The next code portion deals with data augmentation, which is a form 

of regularization. Regularization is important for nearly all DL experiments 

to assist with model generalization. This function perturbs the training 

dataset, slightly modifying its content, before passing it into the network 

for training. This approach partially reduces the need to gather additional 

training data.
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The data augmentation object, trainAug, is first initialized. Random 

rotations, shifts, shears, and flips are then applied to the training dataset as 

it is being applied. Image pixel intensities are also rescaled to the range 0 

to 1 by the trainAug object.

Next, the training, validation, and testing generators are initialized. 

Each generator provides batches of Images on demand, as is specified by 

the batch_size parameter.

The model is then initialized with the Adagrad optimizer. Recall that I 

mentioned some of the various optimizers that are available with Keras in 

the previous chapter. The Adagrad optimizer is an algorithm for gradient-

based optimization that adapts the learning rate (lr) to the parameters, 

performing smaller updates (i.e., low lr) for parameters associated 

with frequently occurring features and larger updates (i.e., high lr) for 

parameters associated with infrequent features. For this reason, it is well 

suited for dealing with sparse data, which is the situation with this training 

dataset, at least for one class. The Adagrad optimizer uses both an initial lr 

and a decay lr in its operations.

The model is then compiled using the binary_crossentropy loss 

function because there are only two data classes.

The Keras fit_generator method starts the training process. By using 

this method, the training Image data can reside on disk and be applied in 

batches rather than having the whole dataset in RAM throughout training. 

This approach is the only way a RasPi system could possibly handle such a 

large training dataset.

Predictions are made on all of the testing data once the training has 

completed. A generator object is again used in the prediction process.

The highest prediction indices for each sample are collected and a 

classification_report is then displayed.

A confusion matrix is then generated. This matrix displays model 

accuracy, sensitivity, and specificity.
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Finally, training history plots consisting of training/validation loss and 

training/validation accuracy are generated. These are temporal plots to 

allow for the detection of over-/underfitting.

�Running the training and testing script

Note  This script is extremely computationally intensive. I 
determined that it takes 2.7 hours to complete only 1 epoch using 
a RasPi 4 system. If you elect to do the 40 epochs, as was done 
with the original blog, then expect to wait approximately 108 hours 
until it completes. That’s 4.5 days! The alternative is to reduce the 
number of epochs to something more manageable such as 8, which 
still means you will have to wait about 21 hours to complete. I have 
estimated that the loss in accuracy is only in the order of 0.5% to 
1.0% maximum, which I believe is an acceptable trade-off to save a 
wait of almost 4 days. Running this demonstration has convinced me 
of the usefulness of GPU-enabled processing.

I ran the train_IDC_model script on a RasPi 4 system (with 4 GB) using the 

default configuration values except for setting the number of epochs to 8.  

I am not confident that this script with the training set could even run on a 

standard RasPi 3 system.

The script is run by entering the following command:

python train_IDC_model.py

Figure 8-7 shows the result when the script started running.
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21.5 hours later, the script finished with the final results shown in 

Figure 8-8.

Figure 8-7.  Start of running the script

Figure 8-8.  Results after running the train_IDC_model script
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The confusion matrix (error matrix) displayed in the figure is replicated 

in Table 8-1. Please refer back to Chapter 1 discussion on the confusion 

matrix if you need a refresher.

where

0 = no cancer cells detected (negatives)

1 = cancer cells detected (positives)

See the following data for TN, FN, TP, and FP definitions.

Figure 8-9 contains temporal plots for training loss and accuracy. 

These plots are simply the interim results after each epoch has completed.

Table 8-1.  CNN confusion matrix

Predicted

Actual 0 1

0 35055 (TN) 4788 (FP)

1 3455 (FN) 12207 (TP)
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There are several items to be aware of in these plots. First and 

foremost, the accuracy plots for both training and validation converge after 

the first epoch is completed and stay together for all the remaining epochs. 

This indicates that there is little to none over-/underfitting with the CNN 

model. The model appears to be an excellent fit with this dataset. The next 

item to notice is that the accuracy plots appear horizontal after the second 

epoch has completed, which confirms my assumption that 8 epochs were 

more than enough to produce reliable results. Also looking at the loss plots 

shows they have stabilized around values that only slightly vary with more 

epochs confirming the stability of the final results.

Figure 8-9.  Temporal plots for training loss and accuracy

Chapter 8  Predictions using CNNs and MLPs for medical research



482

�Evaluating the results with a discussion of sensitivity, 
specificity, and AUROC curves

Looking at the figure, you can see that the model achieved 85.15% 

accuracy; however, that accuracy value is heavily influenced by the fact 

that classified the “no cancer” class correctly identified at a 91% rate.

It is also useful to compute the result’s sensitivity and the specificity 

to better understand the model’s performance. Before I began this metric 

discussion, I need to define some terms and provide a few equations as 

a background. Assume for purpose of the next discussion that the model 

mentioned is used to predict whether or not a patient has a disease. 

Positive outcome means the disease is present and negative outcome 

means no disease.

True positive (TP) – A true positive is an outcome where the model 

correctly predicts the positive class.

True negative (TN) – A true negative is an outcome where the model 

correctly predicts the negative class.

False positive (FP) – A false positive is an outcome where the model 

incorrectly predicts the positive class.

False negative (FN)) – A false negative is an outcome where the model 

incorrectly predicts the negative class.

True positive rate (TPR)/sensitivity/recall equation:

TPR
TP

TP FN
=

+

Specificity equation:

Specificity
TN

TN FP
=

+
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False positive rate (FPR) equation:

FPR Specificity= -1

=
+
FP

TN FP

False negative rate (FNR) equation:

FNR
FN

TP FN
=

+

In the demonstration model, the sensitivity measured the proportion 

of the TP that was also predicted as positive at an 87.98% rate. Conversely, 

specificity measures the TN rate at 77.94%. It is important to be careful 

regarding false negatives. You definitely don’t want to classify someone as 

“cancer-free” when they are in fact “cancer positive.”

A FPR is also important because you don’t want to mistakenly classify 

patients as “cancer positive” and then subject them to extensive and likely 

painful treatment when they don’t really need it.

There is a balance between sensitivity and specificity that any AI 

practitioner must be mindful of especially when it comes to DL and 

healthcare/health treatment.

What is sensitivity?

Sensitivity is a measure of the proportion of actual positive cases that are 

predicted as positive (TP). Another name for sensitivity is recall, which 

implies that there will be another proportion of actual positive cases, 

which would be predicted incorrectly as negative and could be termed as 

FN. This is also represented in the form of a FNR. The sum of sensitivity 

and false negative rate (FNR) will always be 1. This concept may be 

easier to understand when a model is used to predict whether a person 

is suffering from a disease. Sensitivity is a measure of the proportion of 
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people suffering from a disease who are predicted correctly as the ones 

suffering from a disease. In other words, the person who is unhealthy 

actually is predicted as unhealthy.

Ideally, the model should seek to have low FNs as it might prove to be 

life-threatening.

A higher value of sensitivity would mean higher value of TPs and lower 

value of FNs. The lower value of sensitivity would mean lower value of TPs 

and higher value of FNs. For healthcare and financial reasons, models with 

high sensitivity are desired.

What is specificity?

Specificity is defined as the proportion of actual negatives, which were 

predicted as negative (TN). This implies that there will be another proportion 

of actual negative, which are predicted as positive and could be termed as 

FP. This proportion is also called a FPR. The sum of specificity and FPR is 

always 1. This concept may be easier to understand when a model is used to 

predict whether a person is suffering from a disease. Specificity is a measure 

of the proportion of people not suffering from a disease who are predicted 

correctly as the ones who are not suffering from a disease. In other words, 

specificity is when a person who is healthy actually is predicted as healthy.

A higher value of specificity would mean higher value of TN and lower 

FPR. The lower value of specificity would mean lower value of TN and 

higher value of FP.

What are the differences between sensitivity and specificity 
and how are they used?

Sensitivity measure is used to determine the proportion of actual positive 

cases, which were predicted correctly. Specificity measure is used to 

determine the proportion of actual negative cases, which were predicted 

correctly.
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Sensitivity and specificity measures can be used to plot area under 

curve-receiver operating characteristic (AUC-ROC) curves. A AUC-ROC 

(also called AUROC) curve is a graphical plot that illustrates the diagnostic 

ability of a binary classifier system as its discrimination threshold is varied. 

ROC is a probability curve and AUC represents degree or measure of class 

separability. It tells how much model is capable of distinguishing between 

classes. The higher the AUC value, the better the model is at predicting 0s as 

0s and 1s as 1s. By analogy, the higher the AUC value, the better the model is 

at distinguishing between patients with disease and those with no disease.

An AUROC curve is created by plotting the true positive rate (TPR) on the 

y-axis against the false positive rate (FPR) on the x-axis at various threshold 

settings. The FPR is also known as the fall-out or probability of false alarm 

and can be calculated as 1 − TPR. The AUROC curve is thus the sensitivity as 

a function of fall-out. Figure 8-10 shows a generic AUROC curve.

Figure 8-10.  Generic AUROC curve
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An excellent model has AUC near to 1.0 which means it has good 

measure of separating class predictions. A poor model has AUC close to 0 

which means it has worst measure of separability. In fact, it is predicting 0s 

as 1s and 1s as 0s. This condition is called reciprocating the classes. When 

AUC is 0.5, it means that model does not separate the classes at all.

The next series of figure should help to clarify how an AUROC curve 

can be useful in interpreting a model’s performance.

As stated previously, the ROC is a probability curve, so I will be 

using probability distribution plots for this discussion. Assume the right-

hand curve in a figure is for the positive class or patients with a disease. 

Correspondingly, the left-hand curve is for healthy patients. Figure 8-11 

shows a situation where the two classes are perfectly separated and the 

AUC is 1.0. The model is able to completely distinguish between positive 

and negative class samples.

The AUROC curve for this situation is shown in Figure 8-12.

Figure 8-11.  Perfect class separation
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Now, let the situation change a little and assume that the probability 

distributions have a little overlap. This introduces the opportunity to have 

what statisticians call type 1 and type 2 errors to occur. A type 1 error is a 

FP or, for this situation, predicting a patient has a disease when it is not 

present. Similarly, a type 2 error is a FN or predicting a patient has no 

disease when it is present. Figure 8-13 shows the distributions with an AUC 

equal to 0.7.

Figure 8-12.  AUROC curve for AUC = 1.0
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With an AUC of 0.7 means that there is a 70% chance that the model will 

be able to successfully distinguish between the positive and negative classes.

The AUROC curve for this situation is shown in Figure 8-14.

Figure 8-14.  AUROC curve for AUC = 0.7

Figure 8-13.  70% class separation
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Now, make the situation substantially worse by letting the AUC equal 

to 0.5. With this AUC, the model cannot discriminate between the classes. 

Figure 8-15 shows the overlapping probability distribution curves, which 

proves why the model is ineffectual.

The AUROC curve for this situation is shown in Figure 8-16.

Figure 8-15.  50% class separation
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The final scenario happens when the distributions are flipped as 

shown in Figure 8-11 except that the positive class is now on the left-hand 

side and the negative class on the right-hand side. This is the inversion 

case I previously mentioned, and the AUROC curve for this case is shown 

in Figure 8-17.

Figure 8-16.  AUROC curve for AUC = 0.5

Chapter 8  Predictions using CNNs and MLPs for medical research



491

Inversion is an extreme case that never should happen in any practical 

model. It was only shown to complete the background discussion.

I will be showing you an actual AUROC curve in the next 

demonstration.

�Using a MLP model for breast cancer prediction
This demonstration uses the results from the histologic studies done 

on breast cancer samples from 699 patients to predict the presence or 

absence of cancer based on the recorded features. This demonstration 

differs significantly from the first demonstration in the chapter that used 

a CNN model. In this case, the results from the pathologist’s biopsy exams 

are used instead of directly processing the raw Images as was done in the 

first demonstration. This model is a MLP application rather than a CNN 

application.

Figure 8-17.  AUROC curve for AUC = 0.0
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The dataset is the Breast Cancer Wisconsin (Diagnostic) Data Set 

Features which have been computed from a digitized Image of a fine-

needle aspirate (FNA) of a breast mass. The data describe characteristics 

of the cell nuclei present in the Image. This dataset is described in detail 

by K. P. Bennett and O. L. Mangasarian: “Robust Linear Programming 

Discrimination of Two Linearly Inseparable Sets,” Optimization Methods 

and Software 1, 1992.

You can download the input dataset from the UCI Machine Learning 

Repository.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
%28Diagnostic%29

Rename the downloaded file to data.csv and place in a new sub-

directory named input.

You will now need to replace 16 ‘?’ entries in the seventh column 

with a 1. I know that this may bias the dataset a bit, but the script cannot 

run without the character being replaced with a number. The number I 

selected is by far the most common one present in the column. I used the 

MS Excel program for the changes, but you can use the LibreOffice Calc 

application that should already be installed on the RasPi system.

The following script is named bcMLP.py, and it is available from 

the book’s companion web site. No further explanatory comments are 

necessary because I have previously presented identical or nearly identical 

code to you in previous scripts.

# Import required libraries libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler
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from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_curve, auc

from sklearn.ensemble import RandomForestClassifier

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout

# Load data

data = pd.read_csv('input/data.csv')

#del data['Unnamed: 32']

X = data.iloc[:, 1:9].values

y = data.iloc[:, 10].values

# Encoding categorical data

labelencoder_X_1 = LabelEncoder()

y = labelencoder_X_1.fit_transform(y)

# Split the dataset into Training and Test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size = 0.1, random_state = 0)

#Feature Scaling

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

# Initialise the ANN

classifier = Sequential()

# Add the input layer and the first hidden layer

classifier.add(Dense(output_dim=16, init='uniform', 

activation='relu', input_dim=8))

# Add dropout to prevent overfitting

classifier.add(Dropout(p=0.1))

Chapter 8  Predictions using CNNs and MLPs for medical research



494

# Add the second hidden layer

classifier.add(Dense(output_dim=16, init='uniform', 

activation='relu'))

# Add dropout to prevent overfitting

classifier.add(Dropout(p=0.1))

# Add the output layer

classifier.add(Dense(output_dim=1, init='uniform', 

activation='sigmoid'))

# Compile the ANN

classifier.compile(optimizer='adam', loss='binary_

crossentropy', metrics=['accuracy'])

# Fit the ANN to the Training set

# The batch size and number of epochs have been set using trial

# and error.

classifier.fit(X_train, y_train, batch_size=100, nb_epoch=150)

# Predict the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5) # Converts continuous to binary

#  Create confusion matrix object

cm = confusion_matrix(y_test, y_pred)

# Display accuracy

print('Accuracy is {}%'.format(((cm[0][0] + cm[1][1])/70)*100))

# Display the confusion matrix

print('\nConfusion Matrix\n',cm)

# Generate and display a Seaborn heatmap

sns.heatmap(cm, annot=True)

plt.savefig('bcHeatmap.png')

plt.show()
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# Instantiate a random forest classifier

rf_clf = RandomForestClassifier(n_estimators=100)

rf_clf.fit(X_train, y_train)

# Compute the probability distributions

probas = rf_clf.predict_proba(X_test)# plot

plt.figure(dpi=150)

plt.hist(probas, bins=20)

plt.title('Classification Probabilities')

plt.xlabel('Probability')

plt.ylabel('# of Instances')

plt.xlim([0.5, 1.0])

plt.legend('01')

plt.show()

# Compute the false and true positive rates

fpr, tpr, thresholds = roc_curve(y_test, probas[:,0],  

pos_label=0)

# Compute the area under the curve

roc_auc = auc(fpr, tpr)

# Plot the AUROC curve

plt.figure(dpi=150)

plt.plot(fpr, tpr, lw=1, color='green', label=f'AUC =  

{roc_auc:.3f}')

plt.title('ROC Curve for RF classifier')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate (Recall)')

plt.xlim([-0.05, 1.05])

plt.ylim([-0.05, 1.05])

plt.legend()

plt.show()
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�Running the MLP script

The script is run by entering the following command:

python bcMLP.py

Figure 8-18 shows the results after running the script.

Figure 8-18.  Results after running the bcMLP script

The confusion matrix displayed in the figure is replicated in Table 8-2.
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where

0 = no cancer detected (negatives)

1 = cancer detected (positives)

You can clearly see from the table that the model was 100% accurate in 

predicting when cancer was not present (0 false positives) and was 98.57% 

accurate in predicting when it was (1 false negative). This last metric is 

precisely the same accuracy value displayed after the script was run. Of 

course, the real-life consequences of reporting a patient cancer-free while 

cancer is still present can be devastating to a patient. So even a 1.43% 

error rate, while exceedingly low, must be viewed with caution due to the 

enormous consequences involved with patient safety.

Incidentally, while most readers will have figured it out, I will explicitly 

state the sum total of 70 shown in the confusion matrix results from having 

a 10% split for the test dataset size. Since there are 699 patients in the 

original dataset, the test dataset size was rounded to 70.

Figure 8-19 is a heatmap which provides another way to visualize the 

confusion matrix results.

Table 8-2.  MLP confusion matrix

Predicted

Actual 0 1

0 40 1

1 0 29
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For print book readers, I highly recommend looking at the color Image 

version of Figure 8-19 contained in the PDF with all of the book’s color 

figures.

Probability distributions must first be created in order to generate an 

AUROC plot. Because probability distributions are not readily available 

from the MLP model is the reason why I instantiated a random forest 

classifier object named rf_clf. While the underlying models are different, 

the final AUROC plot should be almost identical because of the nature of 

the dataset. Figure 8-20 is a bar chart of the probability distributions for 

both the positive (1) and negative (0) classes.

Figure 8-19.  Heatmap
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You can clearly see that both class distributions are highly skewed to 

the right, which will force the AUROC plot to be similar to Figure 8-12. This 

is precisely what happened when the plot was generated as you can see in 

Figure 8-21.

Figure 8-20.  Dataset class probability distributions
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Your immediate takeaway when viewing a plot like this is that the 

classifier model is an excellent performer for that particular dataset. That 

conclusion is backed up by other performance measures used to quantify 

the model.

Figure 8-21.  AUROC plot for random forest model breast cancer 
dataset
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CHAPTER 9

Reinforcement 
learning
Most readers have probably heard of AI learning to play computer games 

on their own, a very popular example being DeepMind. The DeepMind 

team was in the international news in 2016 when their AlphaGo program 

defeated the South Korean Go world champion. Likewise, there have been 

many successful attempts in the past to develop software agents with the 

intent of playing Atari games like Breakout, Pong, and Space Invaders.

Each of these programs follows a ML paradigm known as 

reinforcement learning (RL). The following is a straightforward analogy for 

how RL works.

Consider the classic 1978 Atari game, Breakout. The object of this game 

is to clear all the bricks at the top of the screen by bouncing a ball back 

from the screen’s bottom. You control a paddle at the bottom of the screen, 

which bounces a ball. Each time a brick is hit, it will disappear and the 

score increases, that is, there is a reward given. Figure 9-1 shows a series of 

Breakout screenshots illustrating how the game functions.
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Now let’s consider how an ANN could be taught to play this game. One 

way would be to input a series of screenshots and provide an output such 

as move paddle right, move paddle left, or fire, meaning launch the ball. In 

this sense, the learning process turns into a classification problem where a 

given screen Image predicates taking on one of three actions. This appears 

straightforward, but just consider the huge number of training examples 

this would require. This approach is rather naive because there should be 

no need for a game expert to state to do this or do that tens of thousands 

of times. What is needed is some type of feedback that an action taken was 

correct or nearly so and allow for some self-correction.

RL tries to solve this type of problem. RL is either supervised or 

unsupervised learning. Supervised learning has a target label for each 

training example, and unsupervised learning has no labels. RL has sparse 

“labels” which are time-delayed and called rewards. The software agent 

has to learn behavior based only on rewards.

In reality, there are numerous challenges in the way of implementing a 

RL algorithm for the Breakout game. It turns out that the award given may 

have little to do with the actions immediately taken prior to the reward 

being given. The reward happens when a brick is hit by a ball, but the 

paddle must have been positioned correctly and the fire button hit at the 

proper time. The disconnect between the immediate reward and any and all 

necessary preceding actions is called the credit assignment problem, that is, 

which preceding action was responsible for the reward and to what extent?

Figure 9-1.  Atari Breakout game screenshots
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Playing the Breakout and for that matter, most other games often 

require a strategy. Often, players will start out in a random manner playing 

a game but eventually evolve their playing strategy as they observe the 

game unfolding. For instance, in Breakout the balls tend to fly to the left 

more often than they do to the right. A simple strategy of moving the 

paddle more to the left-hand side often results in more points scored. 

But that may not be the only way to improve the score. An approach to 

determining an optimal strategy is called the explore-exploit dilemma and 

is a useful framework to consider when trying to obtain the most rewards.

The RL model is a useful way to encapsulate our human learning 

experiences, whether it be at school, in business, or even the government 

or military environments. Credit assignments and exploration-exploitation 

dilemmas come up every day in all our activities. RL is an important 

topic to explore and experiment with, and games are the perfect non-

threatening sandbox.

I will further discuss how Q-learning and DL intersect after going 

through all the following demonstrations. At that point you should 

have acquired a good background with Q-learning to appreciate and 

understand the concluding discussion.

�Markov decision process
The Markov decision process (MDP) is how RL is formalized. Let’s suppose 

you are an agent, situated in an environment such as the Breakout game. 

The environment is in a certain state (e.g., paddle location, ball location 

and direction, brick count, etc.). The agent performs certain actions in this 

environment such as moving the paddle to the left or to the right. Actions 

sometimes result in a reward. Any action will transform the environment 

to a certain extent and will lead to a new state. The agent can then perform 

another action which leads to another state and so forth. The set of 

rules for how these actions are chosen is called policy. The environment 
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is typically stochastic, which means the next state will be somewhat 

randomized. For the Breakout game, this means that every new ball is 

launched in a random direction.

Figure 9-2 is a figure that diagrams the MDP data flow.

MDP is made up states, actions, and rules for transitioning from one 

state to another state. An episode (game) for this process can be expressed 

as a finite sequence of states, actions, and rewards

s a r s a r s a r so n n n n, , , , , , 0 1 1 1 2 1 1( )- > ( ) - > ( )- >- -

where

si = state

ai = action

ri + 1 = reward after action ai

The episode ends with terminal state sn. The MDP relies on the 

Markov assumption, which is the probability of the next state si + 1 

depending only on the current state si and action ai, but not on preceding 

states or actions.

Figure 9-2.  MDP data flow
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�Discounted future reward
For the MDP to perform well, long-term rewards must be accounted for 

as well as for immediate rewards. The total reward for one episode can be 

expressed as

R r r r rn= + + + +1 2 3 

The total future reward from time point t onward may be expressed as

R r r r rt t t t n= + + + ++ +1 2 

Because the environment is stochastic, there can never be a 

deterministic decision regarding the same reward the next time the same 

action is performed. The further into the future rewards are considered, 

the more they may diverge. To account for that uncertainty, it is common 

to use a discounted future reward, which is expressed as

R r r r rt t t t
n t

n= + + + ++ +
-g g g1

2
2 

where

γ = discount factor (value range of 0 to 1.0)

Because the discount factor is less than 1.0 and it is raised to a power, 

all future rewards are heavily reduced or discounted. A discounted future 

reward at time step t can be expressed in terms of the same thing at time 

step t+1:

R r r r r Rt t t t t t= + + +( )( ) = ++ + +g g g1 2 1

If the discount factor γ is set to 0, then the strategy will have no long-

term involvement and will only depend on immediate rewards. The 

balance between immediate and future rewards should have a discount 

factor such as γ = 0.9. In case the environment is unlikely deterministic and 
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the same actions always result in same rewards, then the discount factor 

can be set to 1.0.

A good strategy for an agent would be to always choose an action that 

maximizes the (discounted) future reward.

�Q-learning
In Q-learning a function Q(st, at) is defined as that function that represents 

the maximum discounted future reward when action at is performed in 

state st and continues optimally from that point on.

Q s a max Rt t t,( ) = +1

One way to think about Q(st, at) is that it is “the best possible score at 

the end of the game after performing action at in state st.” It is called the 

Q-function, because it represents the “quality” of a certain action in a given 

state.

At first glance, the Q-function appears to be a puzzling definition. How 

can the final score at game’s end be estimated? Future states and actions 

are simply not known. But assuming such a function exists is essential to 

support a hypothesis for maximizing possible future rewards.

Next consider the implications of having such a function would be. 

Suppose there is a state with two possible actions. The action that results 

in the highest score at the end of game should be selected. But, which 

action should be selected? The answer becomes simple once you have a 

Q-function. Just pick the action with the highest Q-value. The following 

equation represents this strategy:

p s argmax Q s aa( ) = ( )( ),

where

π = policy (rule on how an action is chosen in a given state)
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The question now is how is the Q-function defined given the previous 

discussion? I will first focus on just one transition (s, a, r, s’), where s' 

represents the next state after s. The Q-value of state s and action a may be 

expressed in terms of the Q-value of the next state s’ by

Q s a r max Q s aa, ,( ) = + ( )¢ ¢¢g

This equation is called the Bellman equation. It is quite straightforward 

concept where the maximum future reward for the current state and action 

is the immediate reward plus the maximum future reward for the next 

state.

The principal concept in Q-learning is that it is possible to iteratively 

approximate the Q-function using the Bellman equation. In the simplest 

case, the Q-function can be implemented as a table, with states as rows 

and actions as columns.

A flowchart of the Q-learning algorithm is shown in Figure 9-3.
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Figure 9-3.  Q-learning flowchart

Chapter 9  Reinforcement learning



509

The Q-learning algorithm starts with identifying the current state 

s from an input. After the identification of the state, an action will be 

chosen from the action list, either by searching for the maximum reward 

or, if stochastic, by accepting a greedy probability ε. With all the values 

initialized in the previous steps, the Q-value for the action taken in state s 

is calculated using the Bellman equation. The Q-value will then be stored 

in the Q-table. In other words, the experience of the agent is captured 

within the Q-table. The rewards and penalties of the proposed Q-learning 

are evaluated by a set of simple rules set for the reward functions 

(policy). The next state s′ for the Q-learning algorithm will be determined 

after the selected action a is executed. The stopping criteria for the 

Q-learning algorithm will then be checked when the next state s′ has been 

determined. If the next state s′ is the final goal of the Q-learning, then the 

process will end or else the next state s′ will become the current state s for 

another iteration. This process continues until either the goal is reached or 

a stopping criterion is met.

The following is a worked out example, which should help clarify the 

Q-learning process.

�Q-learning example

I will first credit several bloggers for great posts which inspired this 

example. They were also inspired by others who have tackled the complex 

issues of explaining Q-learning in order for the AI community to better 

understand this topic. The blogs are:

“Reinforcement Learning: A Simple Python Example and a Step Closer 

to AI with Assisted QLearning” by Manuel Amunategui

https://l-ing.ru/watch/Reinforcement-Learning--A-Simple-Python-

Example-and-A-Step-Closer-to-AI-with-Assisted-QLearning/
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“Getting AI smarter with Qlearning: a simple first step in Python” from 

The Beginner Programmer

http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-

smarter-with-q-learning.html

http://mnemstudio.org/path-finding-q-learningtutorial.htm

This example starts by displaying plan view of a building with five 

rooms as depicted in Figure 9-4.

Each room in the building has a door through which a bot or agent can 

travel in either direction. Notice in the figure that doors in rooms 1 and 

4 lead to the outside, which is depicted as “room” 5 for purposes of this 

example. However, the goal to be achieved is to have the agent enter room 5, 

the outside. The agent can be placed in any room to start. Reward values will 

be assigned to every door, and the ultimate goal will have a very large reward 

in comparison to door rewards which do not directly lead to the goal.

Figure 9-4.  Plan view of example building
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Figure 9-5 is a nodal graph depicting all the possible paths between 

rooms and which ones are the likely successful paths.

As previously stated, the agent can be placed in any room to start and, 

from that room, go outside the building (this is target room 5). To set this 

room as a goal, a reward value is associated to each door. The doors that 

lead immediately to the goal have an instant reward of 100. Other doors 

that are not directly connected to the target room have 0 rewards. Two 

arrows are assigned to each room because doors are two-way (0 leads to 

4, and 4 leads back to 0). Each arrow contains an instant reward value, as 

shown in Figure 9-6.

Figure 9-5.  Nodal graph
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Notice in the figure that a path in room 5 loops back to itself with a 

reward of 100, while all the other links to the target room have a reward of 

100. In Q-learning, the goal is to reach the state with the highest reward, so 

that if the agent arrives at the goal, it should remain there forever. This goal 

type is named an “absorbing goal.”

Imagine our agent as a virtual bot that can learn through experience. 

The agent can pass from one room to another but has no knowledge of the 

environment, and it doesn’t know which sequence of doors leads to the 

outside.

The objective is to determine the path for the agent from any room 

in the building to the outside. For the next part of the discussion, assume 

that the agent starts in room 2 and tries to reach the outside of the 

building, designated as room 5. Figure 9-7 nicely encapsulates this initial 

environment.

Figure 9-6.  Nodal graph with rewards annotated
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In Q-learning terms, each room, including the outside, is a “state,” and 

the agent’s movement from one room to another is an “action.” Thus, in the 

preceding nodal figures, a “state” is depicted as a node, while “action” is 

represented by the arrows.

Refer to Figure 9-8 for the following discussion.

Figure 9-7.  Initial environment
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As stated previously, the agent begins in state 2. From state 2, it can 

only go to state 3 because state 2 is only connected to state 3. From state 3,  

it can go either to state 1 or 4 or back to 2. If the agent is in state 4, there are 

three possible actions, which are to go to state 0, 5, or 3. If the agent is in 

state 1, it can go either to state 5 or 3. From state 0, it can only go back to 

state 4.

A matrix “R” (for rewards) can be constructed to capture the state 

diagram and the instant reward values. Figure 9-9 shows this matrix.

Figure 9-8.  Initial actions

Figure 9-9.  R matrix
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The –1s in the table represent null values (i.e., where there isn’t a link 

between nodes). For example, state 0 cannot go to state 1.

Now a similar matrix, “Q,” is added to the brain of the agent. This 

matrix represents the memory of what the agent has learned through 

experience. The rows of the Q matrix represent the current state of the 

agent, and the columns represent the possible actions leading to the next 

state, that is, the links between the nodes.

Because the agent starts out knowing nothing, the Q matrix is 

initialized to zero. In this example, the number of states is six, representing 

each of the nodes. If the number of states was unknown, the Q matrix 

could start with only one element. It is a simple task to add more columns 

and rows into the Q matrix as new states are discovered.

The transition rule of Q learning is the Bellman equation

Q s a r max Q s aa, ,( ) = + ( )¢ ¢¢g

The agent will learn through experience, without a teacher, as part of 

its unsupervised learning experience. The agent explores from state to 

state until it reaches the goal. Each exploration is called an episode. Each 

episode consists of the agent moving from the initial state to the goal state. 

Each time the agent arrives at the goal state, the script goes to the next 

episode.

The Q-learning algorithm may be summarized as follows:

	 1.	 Set the γ parameter and the environment rewards in 

the R matrix.

	 2.	 Initialize Q matrix to zero.

	 3.	 For each episode (loop):

	 4.	 Select a random initial state.
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	 5.	 Iterate if the goal state hasn’t been reached (loop):

•	 Select one of all possible actions for the current 

state.

•	 Using this possible action, consider going to the 

next state.

•	 Get maximum Q-value for this next state based on 

all possible actions.

•	 Compute - Q s a r Q s aa, ,( ) = + ( )¢ ¢¢gmax

•	 Set the next state as the current state.

The preceding algorithm is used by the agent to learn from experience. 

Each episode is equivalent to one training session. In each training 

session, the agent explores the environment, represented by the R matrix, 

and receives the reward (if any) until it reaches the goal state. The purpose 

of the training is to enhance the “brain” of our agent, represented by the Q 

matrix. More training results in a more optimized matrix Q as is the case 

for an ANN.

You should realize that the function max ¢ ¢ ¢( )a Q s a,  which is used to 

update Q(s, a) is only an approximation, and in early stages of training, 

it may be completely wrong. However, the approximation improves with 

every episode, and if the update is done enough times, then the Q-function 

will converge and represent the true Q-value.

Once Q matrix has been enhanced, the agent will find the fastest route 

to the goal state. To use the enhanced Q matrix, the agent simply traces the 

sequence of states, from the initial state to goal state.

The following are several step-by-step manually worked out Q-learning 

experiments, which hopefully will fully explain this process.
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Manual Q-learning experiments

To understand how the Q-learning algorithm works, I will go through a few 

episodes step by step.

The first episode starts by setting the value of the learning parameter γ 

to 0.8, and the initial state as room 1.

The Q matrix is also initialized to all 0s as shown in Figure 9-10.

Next examine the second row (state 1) of the R matrix shown in 

Figure 9-9. There are two possible actions for the current state 1:

•	 Go to state 3.

•	 Go to state 5.

Now, say by random selection that 5 is selected as the action.

Next, imagine what would happen if the agent were in state 5. Look at 

the sixth row of the R matrix. It has three possible actions:

•	 Go to state 1.

•	 Go to state 4.

•	 Go to state 5.

Figure 9-10.  Initialized Q matrix
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Applying Bellman’s equation yields

Q s a r max Q s aa, ,( ) = + ( )¢ ¢¢g

Q R max Q Q Q Qa1 5 1 5 0 8 5 1 5 4 5 5, , , , , , ,( ) = ( ) + * ( ) ( ) ( )( )¢.

Q 1 5 100 0 8 0 100,( ) = + * =.

Because the Q matrix is still initialized to zero, Q(5, 1), Q(5, 4), Q(5, 5) 

are all 0. The result of this computation for Q(1, 5) is 100 because of the 

instant reward from R(1, 5).

Due to algorithm, the next state 5 now becomes the current state. 

Because 5 is the goal state, this episode is finished. The agent’s brain now 

contains an enhanced Q matrix as shown in Figure 9-11.

A randomly chosen initial state begins the next episode. Let’s say 

state 3 is the initial state.

Looking at the fourth row of R matrix you can see that there are three 

possible actions:

•	 Go to state 1.

•	 Go to state 2.

•	 Go to state 4.

Figure 9-11.  Enhanced Q matrix
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Assume go to state 1 is selected by random process. Next imagine that 

the agent is in state 1. Examine at the second row of the R matrix for state 1. 

You can see that it has two possible actions:

•	 Go to state 3.

•	 Go to state 5.

The Q-value now must be computed using Bellman’s equation:

Q s a r max Q s aa, ,( ) = + ( )¢ ¢¢g

Q R max Q Q Qa1 5 1 5 0 8 1 2 1 5, , , , ,( ) = ( ) + * ( ) ( )( )¢.

Q max1 5 0 0 8 0 100 80,( ) = + * ( ) =. ,

The enhanced Q matrix from the last episode contained the results of 

Q(1, 3) = 0 and Q(1, 5) = 100. The result of the computation is Q(3, 1) = 80 

because the reward is zero. The Q matrix now becomes what is shown in 

Figure 9-12.

The next state 1 now becomes the current state. The inner loop of the 

Q-learning algorithm is now repeated because state 1 is not the goal state.

Figure 9-12.  Revised Q matrix
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So, after starting the new loop with the current state 1, there are two 

possible actions:

•	 Go to state 3.

•	 Go to state 5.

By random selection, let’s say the action selected is 5. This is shown in 

Figure 9-13.

Now, imagine the agent is in state 5. There are three possible actions:

•	 Go to state 1.

•	 Go to state 4.

•	 Go to state 5.

Figure 9-13.  Random selection to state 5
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The Q-value is computed using the maximum value for each of these 

possible actions:

Q s a r max Q s aa, ,( ) = + ( )¢ ¢¢g

Q R max Q Q Q Qa1 5 1 5 0 8 5 1 5 4 5 5, , , , , , ,( ) = ( ) + * ( ) ( ) ( )( )¢.

Q 1 5 100 0 8 0 100,( ) = + * =.

The updated entries of the Q matrix for Q(5,1), Q(5,4), Q(5,5) are all 0. 

The result of this computation for Q(1, 5) is 100 because this is the instant 

reward from R(5, 1). This result does not change the enhanced Q matrix.

Because 5 is the goal state, the episode is finished. Our agent’s brain 

now contains an enhanced Q matrix as shown in Figure 9-14.

The agent eventually learns more by completing more episodes. It will 

finally reach convergence values in the Q matrix as shown in Figure 9-15.

Figure 9-14.  Revised enhanced Q matrix

Figure 9-15.  Final enhanced Q matrix
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The Q matrix can then be normalized by dividing all the entries by a 

number which will make the highest matrix value equal to 100. In this case 

that number is 5. This normalized matrix is shown in Figure 9-16.

Once the Q matrix has converged, the agent has learned the most 

optimal paths to the goal state. Tracing the best sequences of states is as 

simple as following the links with the highest values at each state. This is 

shown in Figure 9-17.

Figure 9-16.  Normalized Q matrix

Figure 9-17.  Nodal diagram with final, normalized link values
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For example, from an initial state 2, the agent can use the Q matrix as a 

guide:

•	 From state 2 the maximum Q-values suggest the action 

is to go to state 3.

•	 From state 3 the maximum Q-values suggest two 

alternatives:

•	 Go to state 1.

•	 Go to state 4.

•	 Suppose the go to state 4 action is randomly chosen to 

be go to state 1.

•	 From state 1 the maximum Q-values suggest the action 

is to go to state 5.

•	 Thus, the optimal path based on Q-learning is 2 → 3 → 

1 → 5.

Q-learning demonstration with a Python script

Note I  strongly recommend that you read (or reread) the previous 
section before reading this one. I do not repeat the step-by-step 
explanations in this section. Understanding the explanations will 
make this section much more understandable and enjoyable.

In this demonstration, I will use Q-learning in a Python script to find the 

shortest path between two points. The script has no prior knowledge 

regarding the environment and will learn only by using RL.

Figure 9-18 is a randomized point graph that was created by the script.
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Point 0 will be the start position, and point 7 is the target and finish 

position. The objective of the script is to determine the optimal path 

between the start and target positions using the RL algorithm. There are 

obvious false paths and faux targets in the map, which will all have to be 

evaluated and discarded.

You will need to load one additional library to prepare to run this 

script. Enter the following command to load the required library:

pip install networkx

Figure 9-18.  Randomized point graph
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The script is named simpleRL.py, and it is available from the book’s 

companion web site. There are no additional explanatory comments for 

this script because I have previously worked through several step-by-step 

examples for the RL process and I feel you should be adequately prepared 

to understand how this relatively simple script works.

# Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

# Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]

# Set target node

goal = 7

# Create and display graph

G=nx.Graph()

G.add_edges_from(points_list)

pos = nx.spring_layout(G)

nx.draw_networkx_nodes(G,pos)

nx.draw_networkx_edges(G,pos)

nx.draw_networkx_labels(G,pos)

plt.show()

# Define points in graph

MATRIX_SIZE = 8

# Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1
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# Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

    print(point)

    if point[1] == goal:

        R[point] = 100

    else:

        R[point] = 0

    if point[0] == goal:

        R[point[::-1]] = 100

    else:

        # Reverse of point

        R[point[::-1]]= 0

# Add goal point round trip

R[goal,goal]= 100

# Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

# Set learning parameter gamma

gamma = 0.8

# Set initial start point

initial_state = 1

# Define available_actions method

def available_actions(state):

    current_state_row = R[state,]

    av_act = np.where(current_state_row >= 0)[1]

    return av_act

# Create variable to hold possible actions

available_act = available_actions(initial_state)
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# Define method to randomly select next action

def sample_next_action(available_actions_range):

    next_action = int(np.random.choice(available_act,1))

    return next_action

# Create variable to hold the randomly selected action

action = sample_next_action(available_act)

# Define method to update state if needed

def update(current_state, action, gamma):

  max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

  if max_index.shape[0] > 1:

      max_index = int(np.random.choice(max_index, size = 1))

  else:

      max_index = int(max_index)

  max_value = Q[action, max_index]

  # Bellman's equation

  �Q[current_state, action] = R[current_state, action] + gamma * 

max_value

  �print('max_value', R[current_state, action] + gamma *  

max_value)

  if (np.max(Q) > 0):

    return(np.sum(Q/np.max(Q)*100))

  else:

    return (0)

# Update the state based on selected action

update(initial_state, action, gamma)

# Training starts now

scores = []
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for i in range(700):

    current_state = np.random.randint(0, int(Q.shape[0]))

    available_act = available_actions(current_state)

    action = sample_next_action(available_act)

    score = update(current_state,action,gamma)

    scores.append(score)

    print ('Score:', str(score))

# Display the rewards matrix

print('\nRewards matrix R\n')

print(R)

# Display the enhanced Q matrix

print('\nEnhanced Q matrix\n')

print(Q/np.max(Q)*100)

# Testing starts now

current_state = 0

steps = [current_state]

# Loop to determine optimal path

while current_state != 7:

    �next_step_index = np.where(Q[current_state,] == 

np.max(Q[current_state,]))[1]

    if next_step_index.shape[0] > 1:

        �next_step_index = int(np.random.choice(next_step_index, 

size = 1))

    else:

        next_step_index = int(next_step_index)

    steps.append(next_step_index)

    current_state = next_step_index
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print("Most efficient path:")

print(steps)

plt.plot(scores)

plt.show()

Running the script

The script is run by entering the following command:

python simpleRL.py

Figure 9-19 is a plot of the converging score vs. number of episodes 

completed.

Figure 9-19.  Scoring convergence plot
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You can clearly see that the maximum scoring is reached after 

approximately 400 episodes have been completed. The script was hard-

coded to run 700 episodes. The additional time required to run 300 episodes 

beyond the 400 mark was miniscule.

Figure 9-20 shows the terminal window after the script completed its run.

Figure 9-20.  Final script results
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There are bunch of interesting things to discuss in this figure. First is 

the remaining portion of the interim episode results shown at the top of 

the figure. Here you can see the Q-function maximum value as well as the 

score. The score shown is the unnormalized optimal path value.

The rewards matrix R is shown below the interim episodic results. 

There are two items to note regarding this matrix. There are two 100 

reward values located at the R(2, 6) and R(6,6) locations. The first reward 

(R(2,6)) is for the direct path between node 2 and node 7. The second one 

(R(6,6)) is the self-absorbing link or the target node loop-back. The next 

item to note is that there are 0 values for existing links and –1 values for 

non-existing links.

The enhanced and normalized Q matrix is displayed below the R 

matrix. Unfortunately, the Python 3 print statement wraps the rows a bit, 

and it is a bit hard to read. I tried unsuccessfully to have it print out the 

rows, one row at a time. The matrix values are also displayed in a floating 

point, which is another unnecessary distraction.

The last item in the figure is a display of the optimal path which turned 

out to be 0 to 1 to 2 to 7.

In the next demonstration, I will be showing you how to handle hostile 

environment factors in a path determination.

Q-learning in a hostile environment demonstration

Sometimes, the environment in a RL project is not always amicable 

to an agent trying to navigate the paths. To make it obvious in this 

demonstration, I will assume that the agent is a group of bees trying to get 

to their beehive located at node 7. Now, bees don’t like smoke and will 

avoid it all costs. In fact, beekeepers (formal name is apiarists) use a smoke 

gun to calm bees as they harvest honey from the beehive. I have added 

smoke to several nodes in the randomly generated environment as you 

can see in Figure 9-21. The agent will always try to avoid taking those links, 

which lead to smoke.

Chapter 9  Reinforcement learning



532

The following script is named beeRL.py and is available from the 

book’s companion web site:

# Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

# Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]

Figure 9-21.  Randomly generated environment with bees
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# Set target node

goal = 7

bees = [2]

smoke = [4,5,6]

gamma = 0.8

G=nx.Graph()

G.add_edges_from(points_list)

mapping={0:'Start', 1:'1', 2:'2 - Bees', 3:'3', 4:'4 - Smoke', 

5:'5 - Smoke', 6:'6 - Smoke', 7:'7 - Beehive'}

H=nx.relabel_nodes(G,mapping)

pos = nx.spring_layout(H)

nx.draw_networkx_nodes(H,pos, node_size=[200,200,200,200,200, 

200,200,200])

nx.draw_networkx_edges(H,pos)

nx.draw_networkx_labels(H,pos)

plt.show()

# Define points in graph

MATRIX_SIZE = 8

# Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1

# Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

    print(point)

    if point[1] == goal:

        R[point] = 100
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    else:

        R[point] = 0

    if point[0] == goal:

        R[point[::-1]] = 100

    else:

        # Reverse of point

        R[point[::-1]]= 0

# Add goal point round trip

R[goal,goal]= 100

def available_actions(state):

    current_state_row = R[state,]

    av_act = np.where(current_state_row >= 0)[1]

    return av_act

def sample_next_action(available_actions_range):

    next_action = int(np.random.choice(available_act, 1))

    return next_action

def collect_environmental_data(action):

    found = []

    if action in bees:

        found.append('b')

    if action in smoke:

        found.append('s')

    return found

# Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

enviro_bees = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

enviro_smoke = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))
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initial_state = 1

# Get available actions in the current state

available_act = available_actions(initial_state)

# Sample next action to be performed

action = sample_next_action(available_act)

# This function updates the Q matrix according to the path 

selected and the Q

# learning algorithm

def update(current_state, action, gamma):

    max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

    if max_index.shape[0] > 1:

        max_index = int(np.random.choice(max_index, size = 1))

    else:

        max_index = int(max_index)

    max_value = Q[action, max_index]

    �Q[current_state, action] = R[current_state, action] +  

gamma * max_value

    �print('max_value', R[current_state, action] + gamma *  

max_value)

    environment = collect_environmental_data(action)

    if 'b' in environment:

        enviro_bees[current_state, action] += 1

    if 's' in environment:

        enviro_smoke[current_state, action] += 1

    if (np.max(Q) > 0):

        return(np.sum(Q/np.max(Q)*100))
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    else:

        return(0)

update(initial_state,action,gamma)

# Training starts

scores = []

for i in range(700):

    current_state = np.random.randint(0, int(Q.shape[0]))

    available_act = available_actions(current_state)

    action = sample_next_action(available_act)

    score = update(current_state,action,gamma)

    scores.append(score)

    print ('Score:', str(score))

plt.plot(scores)

plt.show()

print('Bees found')

print(enviro_bees)

print('Smoke found')

print(enviro_smoke)

Running the script and evaluating the results

The script is run by entering the following command:

python beeRL.py

Figure 9-22 is a plot of the converging score vs. number of episodes 

completed.
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You can clearly see that the maximum scoring is reached after 

approximately 400 episodes have been completed. The script was hard-

coded to run 700 episodes. The additional time required to run 300 

episodes beyond the 400 mark was miniscule.

Figure 9-23 shows the terminal window after the script completed its 

run.

Figure 9-22.  Scoring convergence plot
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The environmental matrices in the figure show how many bees and 

smoke the agent found during its journey while searching for the most 

efficient path to the hive. There were two assumptions made in order to 

simply this demonstration. These are

•	 Bees have a positive coefficient on finding hives.

•	 Bees have a negative coefficient on encountering smoke.

Figure 9-23.  Final script results
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These are not unreasonable assumptions, but it does require a 

priori knowledge regarding the agent’s behavior. A natural question now 

arises: can this a priori knowledge be used to improve the Q-learning 

performance? The answer to that question can be found in the following 

demonstration.

Q-learning in a hostile environment with a priori knowledge 
demonstration

This demonstration will show you how to use available a priori knowledge 

to improve how an agent performs in a path-finding task. A group of bees 

will still be the agent, and the goal is still to get to the beehive. However, 

a realistic approach is now taken where the agent dynamically looks 

at the new environment and assigns environmental biases as they are 

encountered. Links that lead to smoke filled nodes will be discounted and 

links that are bee-friendly are encouraged.

The significant change between this new script and the previous 

script is that the update method has been modified to include a scoring 

matrix for all attempted paths. If the attempted path leads to a smoke-

designated node, then a matrix value will be decremented. Conversely, if 

an attempted path leads to a bee-designated node, then a matrix value will 

be incremented. The matrix holding all these bias values is continuously 

used in the training loop to guide the agent in path selection.

The following script is named beeRLenv.py and is available from the 

book’s companion web site:

# Import required libraries

import numpy as np

import pylab as plt

import networkx as nx

# Map cell to cell, add circular cell to goal point

points_list = [(0,1), (1,5), (5,6), (5,4), (1,2), (2,3), (2,7)]
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# Set target node

goal = 7

bees = [2]

smoke = [4,5,6]

gamma = 0.8

G=nx.Graph()

G.add_edges_from(points_list)

mapping={0:'Start', 1:'1', 2:'2 - Bees', 3:'3', 4:'4 - Smoke', 

5:'5 - Smoke', 6:'6 - Smoke', 7:'7 - Beehive'}

H=nx.relabel_nodes(G,mapping)

pos = nx.spring_layout(H)

nx.draw_networkx_nodes(H,pos, node_size=[200,200,200,200,200, 

200,200,200])

nx.draw_networkx_edges(H,pos)

nx.draw_networkx_labels(H,pos)

plt.show()

# Define points in graph

MATRIX_SIZE = 8

# Create matrix (MATRIX_SIZE * MATRIX_SIZE)

R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))

R *= -1

# Assign zeros to paths and 100 to goal-reaching point

for point in points_list:

    print(point)

    if point[1] == goal:

        R[point] = 100

    else:

        R[point] = 0
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    if point[0] == goal:

        R[point[::-1]] = 100

    else:

        # Reverse of point

        R[point[::-1]]= 0

# Add goal point round trip

R[goal,goal]= 100

def available_actions(state):

    current_state_row = R[state,]

    av_act = np.where(current_state_row >= 0)[1]

    return av_act

def sample_next_action(available_actions_range):

    next_action = int(np.random.choice(available_act, 1))

    return next_action

def collect_environmental_data(action):

    found = []

    if action in bees:

        found.append('b')

    if action in smoke:

        found.append('s')

    return found

# Create Q matrix

Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

# Create matrices to hold the bees and smoke totals

enviro_bees = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

enviro_smoke = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE]))

# Subtract bees from smoke. This gives smoke a negative bias

enviro_matrix = enviro_bees - enviro_smoke
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initial_state = 1

# Get available actions in the current state

available_act = available_actions(initial_state)

# Sample next action to be performed

action = sample_next_action(available_act)

# This function updates the Q matrix according to the path

# selected and the Q learning algorithm.

def update(current_state, action, gamma):

    max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

    if max_index.shape[0] > 1:

        max_index = int(np.random.choice(max_index, size = 1))

    else:

        max_index = int(max_index)

    max_value = Q[action, max_index]

    �Q[current_state, action] = R[current_state, action] +  

gamma * max_value

    �print('max_value', R[current_state, action] + gamma *  

max_value)

    environment = collect_environmental_data(action)

    if 'b' in environment:

        enviro_matrix[current_state, action] += 1

    if 's' in environment:

        enviro_matrix[current_state, action] -= 1

    if (np.max(Q) > 0):

        return(np.sum(Q/np.max(Q)*100))

    else:

        return(0)
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# Do an update

update(initial_state,action,gamma)

# Make a transactional matrix copy for use with the enviro_help

# method.

enviro_matrix_snap = enviro_matrix.copy()

def available_actions_with_enviro_help(state):

    current_state_row = R[state,]

    av_act = np.where(current_state_row >= 0)[1]

    # if there are multiple routes, dis-favor anything negative

    env_pos_row = enviro_matrix_snap[state,av_act]

    if (np.sum(env_pos_row < 0)):

        # Can negative directions be removed from av_act?

        temp_av_act = av_act[np.array(env_pos_row)[0]>=0]

        if len(temp_av_act) > 0:

            print('going from:',av_act)

            print('to:',temp_av_act)

            av_act = temp_av_act

    return av_act

# Training starts

scores = []

for i in range(700):

    current_state = np.random.randint(0, int(Q.shape[0]))

    �available_act = available_actions_with_enviro_help(current_

state)

    action = sample_next_action(available_act)

    score = update(current_state,action,gamma)

    scores.append(score)

    print ('Score:', str(score))

plt.plot(scores)

plt.show()
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Running the script and evaluating the results

The script is run by entering the following command:

python beeRLenv.py

Figure 9-24 is a diagram of the randomly generated environment used 

in this demonstration.

Figure 9-25 is a terminal window showing the paths evaluated. The 

last one listed is the optimal selected path. This should not come as a 

surprise if you examine Figure 9-24. However, you must remember that 

Figure 9-24.  Randomly generated environment
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the agent does not have this bird’s-eye view of the environment and must 

systematically test every available link emanating from the start node.

The final figure in this results section is Figure 9-26, which shows 

the scoring convergence. This is the sole performance measure for this 

demonstration and is the key piece of evidence, which will prove if this 

dynamic approach worked.

Figure 9-25.  Terminal window showing evaluated paths
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You can see from the plot that the final scoring value is effectively 

reached by episode 180. Compare this plot with the one shown in  

Figure 9-22 where the final scoring value converged at approximately 

episode 400. The dynamic approach converged much earlier proving that 

it is a much better performer than the approach which does not factor in 

environmental conditions. This result would be somewhat akin to tuning 

an ANN or CNN using bias values for performance improvements.

Figure 9-26.  Scoring convergence plot
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�Q-learning and neural networks
The environment states in the Breakout game are only defined by the 

location of the paddle, location, and direction of the ball and the presence 

or absence of an individual brick. This intuitive representation however is 

only specific to each specific game. Is there anything more universal that 

would be suitable for all the games? The obvious choice is to use screen 

pixels because they implicitly contain all of the relevant information about 

the game situation, except for the speed and direction of the ball in the 

case of the Breakout game. However, two or more consecutive screens 

would have the ball state adequately described.

If DeepMind preprocessing is applied to game screens, which is 

to take the four last screen Images, resize them to 84 × 84, and convert 

them to grayscale with 256 gray levels. This would result with 25684x84x4 ≈ 

1067970 possible game states. That would mean there would be 1067970 rows 

in the Q-table, which is more than the number of atoms in the known 

universe – clearly an impossible situation. This vast number of states could 

be drastically reduced by only including the states visited. Even so, most 

states are rarely visited and it would take the lifetime of the universe for the 

Q-table to converge – again, not an ideal situation. The solution lies with 

developing an estimate for Q-values for states never seen.

At this point DL will definitely help. Neural networks are exceptionally 

good performers at extracting useful features from highly structured 

data. A neural network could represent a Q-function that takes the state 

(four game screens) and action as input and outputs the corresponding 

Q-value. As an alternative, the game screens could be used as an input and 

a Q-value output for each possible action. The latter is the approach taken 

by the DeepMind team. Using either approach has the advantage that only 

one forward pass through the network is required to perform a Q-value 

update or pick an action with the highest Q-value.

Figure 9-27 shows the “naive” approach of inputting four states to a 

neural network and obtaining a single Q-value output.
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In contrast, Figure 9-28 shows the approach taken by the DeepMind 

team where a single state is input and multiple Q-values are output.

Figure 9-27.  Naive approach to using DL and Q-learning
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For a purely informational step, Table 9-1 shows the architecture used 

in the DeepMind model.

Figure 9-28.  DeepMind approach to DL and Q-learning
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This is a convolutional neural network with three convolutional 

layers, followed by two fully connected layers. Notice that there are no 

pooling layers. This is because pooling layers cause the features to become 

translation invariant. This means the model becomes insensitive to the 

location of an object in the Image. That would destroy the model’s ability 

to track the ball location in the Breakout game.

Inputs to the network are four 84 × 84 grayscale game screens. Outputs 

of the network are Q-values for each possible action, of which there are 18 

for the Breakout game. Q-values are real values, which consequently make 

it a regression task, which can be optimized using simple squared error 

loss (L).

L r max Q s a Q s aa= + ( )- ( )( )¢ ¢¢
1

2

2
, ,

where

r max Q s aa+ ( )¢ ¢¢ ,  = target

Q(s, a) = prediction

Given a transition (s, a, r, s′), the classic Bellman’s equation Q-table 

update rule must be replaced with the following process:

	 1.	 Do a feedforward pass for the current state s to get 

predicted Q-values for all actions.

Table 9-1.  DeepMind model architecture

Layer Input Filter size Stride Num filters Activation Output

conv1 84x84x4 8x8 4 32 ReLU 20x20x32

conv2 20x20x32 4x4 2 64 ReLU 9x9x64

conv3 9x9x64 3x3 1 64 ReLU 7x7x64

fc4 7x7x64 512 ReLU 512

fc5 512 18 Linear 18
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	 2.	 Do a feedforward pass for the next state s′ and 

calculate the maximum overall network outputs 
max Q s aa¢ ¢ ¢( ), .

	 3.	 Set Q-value target for action to r max Q s aa+ ( )¢ ¢¢g ,  

(use the max calculated in step 2). For all other 

actions, set the Q-value target to the same as 

originally returned from step 1, making the error 0 

for those outputs.

	 4.	 Update the weights using back propagation.

The preceding process shows you how to estimate the future reward 

in each state using Q-learning and approximate the Q-function using a 

CNN. However, it turns out that approximating Q-values using non-linear 

functions is unstable. There are many tuning techniques that must be 

used to make it converge. It also takes a long time, almost a week using a 

computer with a single GPU board.

The most important tuning technique is to use experience replay. 

During gameplay, all the experiences (s, a, r, s’) are stored in a replay 

memory. When training the network, random mini-batches from the 

replay memory are used instead of the most recent transition. This breaks 

up any similarity existing in training samples, which might inadvertently 

drive the network into a local minimum. Also, using experience replay 

makes the training task similar to usual supervised learning. This 

simplifies debugging and further algorithm testing.

Using DL with Q-learning attempts to solve the credit assignment 

problem, which I mentioned at the beginning of the chapter. This solution 

happens because a reward is propagated back in time, until it reaches 

the crucial decision point. That point is the actual cause for the obtained 

reward.
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The other major issue is the exploration-exploitation dilemma, also 

mentioned at the chapter’s beginning. You should realize that when a 

Q-table or Q-network is initialized randomly, its predictions are initially 

random as well. If an action is chosen with the highest Q-value, then the 

action will be random and the agent performs a naive exploration. As the 

Q-function converges, it returns more consistent Q-values and the amount 

of exploration decreases. It may be stated that Q-learning incorporates 

the exploration as part of the algorithm. But this exploration is “greedy” 

because it selects the first effective strategy it finds.

A simple and effective fix for the preceding problem is ε-greedy 

exploration with probability ε choosing a random action; otherwise, go 

with the “greedy” action with the highest Q-value. The DeepMind system 

decreases ε over time from 1 to 0.1. When the DeepMind system starts, it 

makes completely random moves to completely explore the state space 

and then it settles down to a fixed exploration rate.

All of the preceding discussion can be encapsulated by some pseudo-

code based on the DeepMind model, which provides a relatively easy-to-

understand algorithm.

initialize replay memory D

initialize action-value function Q with random weights

observe initial state s

repeat:

    select an action a

        with probability ε select a random action
        otherwise select a = argmaxa'Q(s,a').

    carry out action a

    observe reward r and new state s'

    store experience (s, a, r, s') in replay memory D
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    �sample random transitions ( ss, aa, rr, ss' ) from replay 

memory D

    calculate target for each mini-batch transition:

        if ss' is the terminal state, then tt = rr

        otherwise tt = rr + γmaxa'Q(ss',aa')
    train the Q-network using (tt – Q(ss,aa))2 as loss

    s = s'

until terminated

There are more tuning techniques that the DeepMind team used to 

actually make it work such as using a target network, error clipping, reward 

clipping, and so on. I will leave it to the interested reader to pursue those 

topics.

It is amazing that this algorithm actually learns anything at all. 

Consider that the Q-function is initialized randomly; it will naturally 

output garbage data when it first starts. Now the algorithm uses this 

initial garbage (the maximum Q-value of the next state) as targets for the 

network, only occasionally recording a tiny reward. From a large-scale 

perspective, that approach appears nonsensical. How could the algorithm 

learn anything meaningful? The strange fact is that it does eventually learn.

It has been stated by some very smart people that AI is something we 

haven’t figured out yet. Once AI has been figured out, it may not seem 

so intelligent any more. However, Q-learning with DL is still an amazing 

topic. Observing it figuring out a new game is truly an awe-inspiring event.
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Artificial neural network  
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complex, 245, 246
error computing process, 252
error contribution, 253
FeedForward computations, 253
FeedForward/Feedback, 240
gradient descent equation, 258
hidden layer node, 257
housing price  

regression predictor, 
demonstration, 416

initial input/weight  
values, 243

input vs. output, 249
manual process, 253
matrices, 247
multiple error allocation  

setup, 250
neuron model, 235, 236
neuron parts, 236, 237
output node error, 255
Pima Indian Diabetes  

project, 389
Python demonstration

init module, 262
matrix notation, 268
script, 272
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testANN4 script, 275, 276
test code, 264
test errors, 267
testNet module, 265, 266
trainNet module, 267

Python session, 245
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two-layer, 242
weight modification process, 250

Atari Breakout game  
screenshots, 502

Attribute selection measures 
(ASM), 108

AUROC curve
binary classifier system, 485
fall-out/probability, 485
inversion case, 490, 491
overlapping probability, 489
perfect class separation, 486, 488
positive vs. negative class, 487
probability curve, 486

B
Bagging and Random Forest 

Ensemble algorithms
bagging demonstration

results, 203
script, 196–198, 200–202

boostrap resampling 
demonstration, 193–195

bootstrap process, 191
CART, 191, 192
performance estimation, 193
random forest demonstration

Gini index, 204–207, 209, 210
results, 212
script, 212

Baseline model, 421

Batch-normalized Inception V2, 349
Bellman equation, 507
Best matching unit (BMU), 179
Breakout game, 547, 550
Breast cancer prediction

Adagrad optimizer, 477
batch_size parameter, 477
building dataset, 461–464
cell detection, 458
classWeight parameter, 476
CNN model, 466–470
command-line argument, 476
configuration script, 460
content, 455, 456
cp command, 457
data augmentation, 476, 477
dataset splits, 461
desktop configuration, 454
explanatory comments, 463
fit_generator method, 477
gradient-based  

optimization, 477
IDC, 455
imbalance/skew class, 476
libraries

CancerNet, 475
imutils, 475
keras, 475
Matplotlib, 475
OS, 475
scikit-learn, 475

MLP model, 491–495
OpenCV installation, 459
over-/underfitting, 478

Artificial neural network  
(ANN) (cont.)

INDEX



557

positive/negative  
Images, 456, 457

potential patches, 456
Python virtual environment, 459
result evaluation, 482, 483
run dataset script, 464–466
train_IDC_model script, 

478–481
training/testing script, 470–475
tree command, 458

C
Camera Serial Interface (CSI) 

socket, 315
CancerNet structure, 467
Classification accuracy plots, 385
Classification and regression trees 

(CART), 117, 191
Command-line interpreter (CLI), 53
Convolutional kernels, 343
Convolutional neural network 

(CNN) model, 466–470, 550
activation maps, 339
architecture, 340
convolution layers and  

features, 340
convolution operation, 339
design strategies, 368
eye features and non-eye 

features, 341
history and evolution

AlexNet network, 345
batch normalization, 349

bottleneck, 348
GoogLeNet, 347
Inception modules, 349
inception V4  

architecture, 354
inception V4 module, 353
LeNet-5  

architecture, 342, 343
NiN architecture, 346
Overfeat framework, 345
ResNet core, 350, 351
Xception, 355, 357

Image volume, convolution 
filter, 338

neurons, 341
raw Image pixels, 336
univariate time series

create CNN  
model, 436–440

preprocessing  
dataset, 433, 434, 436

using prediction, cellular 
microscopy  
applications, 431–433

width, height, and depth, 337
create_model() function, 411
Cross-entropy loss, 384
CSI socket location, 316

D
Data augmentation object, 471
Data compression  

function, 136
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Decision tree algorithm
ASM, 108
decision-making logic, 108
diagram, 116
flowchart, 107
gain ratio

definition, 122
intrinsic information, 121

Gini index
arbitrary  

dataset, 118, 119
binary split, 117
continuous-valued 

attributes, 117
discrete-valued  

attribute, 117
equation, 117
final tree, 120, 121
initial split, 119

information gain
definition, 109
entropy, 111
initial split, 115
measuring  

information, 110, 111
optimum split, 115, 116
play decision, 112, 113
split criterion, 109

process, 108
Decision tree classifier

algorithm (see Decision tree 
algorithm)

scikit-learn (see Scikit-learn, 
decision tree)

Deep learning (DL)
basics, 213

linear classifier, 216
ML, data patterns, 214–216

linear classifier
adding bias vector, 218
scoring function, 217
script, 220
terminal results, 220

loss functions, 221
optimizer algorithm, 225

2D plot, 227
error plots, 230
gradient descent 
algorithm, 231
gradient search, 232–234
iteration number, 234
LR predictor, 228
Python code, 229
variables, 226
weighting variables, 226

Deepmind model, 550, 552
Deepmind preprocessing, 547
Deep neural networks, 347
Discounted future  

reward, 505, 506
Display Serial Interface (DSI) 

socket, 316

E
error function, 229
ε-greedy exploration, 552
export_graphviz function, 127
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F
False negative rate (FNR), 483
False positive rate (FPR), 485
Fashion MNIST demonstration

Adam algorithm, 364
Adam optimizer, 364
CNN, 363
complex CNN model, 369
dataset classifications, 369
Keras fit function, 365
handwritten number 

recognition, 361
input datasets, 362
integer to clothing description 

relationships, 359
kerasComplexFashionTest.py, 

370, 371
kerasFashionTest.py, 365–367
logistic regression algorithm, 364
python kerasFashionTest.py, 367
results, kerasComplexFashion 

Test script, 372
results, kerasFashionTest  

script, 368
reviewData script results, 361, 362
stochastic gradient descent, 364
string variables and network 

computations, 359
training record Image, 362

Feedback back model, 240
Fine-needle aspirate (FNA), 492
Keras fit function, 365
FractalNet, 357

G
Gain ratio, 121
Gaussian Naive Bayes, 99, 100
Gini index

arbitrary dataset, 118, 119
binary split, 117
continuous-valued attributes, 117
discrete-valued attribute, 117
equation, 117
final tree, 120, 121
initial split, 119

Global minimum, 226
GoogLeNet, 347
GPU neural network, 344
Gradient-based optimization, 477
Graphics processing  

units (GPU), 342
GridSearchCV module, 175

H
Handwritten number recognition

ANN, creation, 297–299
ANN test script demonstration

full training dataset, 309–313
misidentified handwritten 

numeric digits, 305
results, script testANN_

metrics, 308
testANN_metrics.py,  

306, 307
testANN script results, 303
testANN_short.py, 301, 302
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testANN_short script, 306
viewResults script, 304

development and testing, 284
firm guidelines, 283
guidelines, 281
initial ANN training script 

demonstration, 299, 300
input datasets,  

adjustment, 293, 295
interpreting ANN output data 

values, 295–297
Keras (see Keras)
personnel, hardware, and 

software, 284
Pi Camera (see Pi Camera)
postal services worldwide, 284
production or field release, 283
project history and preparatory 

details
dataList, 291
interactive Python  

session, 289
matplotlib Python  

library, 290
MNIST databases, 285
MNIST training dataset, 287
postal codes, 285
python3 viewRecord.py, 291
viewRecord.py, 290

project requirements, 281
realistic schedule, 282, 284
testing, 282

Housing price regression predictor, 
demonstration

baseline model, 421, 422, 424, 
425, 427, 428, 430

dataset feature variables, 416, 417
preprocessing data, 417, 419, 420

I
Identity shortcut connection, 350
Inception

architecture, 347
batch-normalized, 349
layer, 348
model, 348
modules, 347–349
V2 network, 351
V3 modules, 349
V4 architecture, 351, 353, 354
V4 module, 353

Inception-ResNet V1, 354
init module, 263
Integer encoding, 328
Invasive ductal carcinoma  

(IDC), 455
Iris

demonstration, part 1
class attributes, 32
histograms for  

attributes, 33, 34
scatterplots for  

attributes, 34, 35
script, 29–31
steps, 29

Handwritten number  
recognition (cont.)
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demonstration, part 2
implements cross-validation 

procedure, 38, 39
models, 38
Python script, 35, 36
steps, 35

demonstration, part 3
box and whisker plots, 42
classes vs. predicted  

classes, 46
KNN model, 43, 44, 46
six models’ accuracy  

display, 40, 41
sklearn learn metrics 

analysis, 47
isnull() method, 419

J
Jason’s Fashion MNIST 

demonstration, 378–385

K
Keras

ANN model, 404
back-end engines, 325
compilation, model, 331
deep learning library, 326
installation, 325, 326
integer encoding, 329
MNIST dataset, 326, 331
network model, 324
random number generator, 327

ReLU, 329
scikit-learn library

create_model(), 411
grid search, 411, 412, 414, 415
KerasClassifier and 

KerasRegressor classes, 411
script, 408–410
utilities, 408

script kerasTest.py, 332, 333
softmax function, 330
training and test datasets, 327

kerasFashionTest script, 369
Keras fit_generator method, 477
Keras import dataset library, 358
kerasTest script, 334
k-nearest neighbor (k-NN) model

distance metric, 101
kNN.py, 102–104
knnTest.py, 104–106
noisy features, 101
performance issue, 101

k-NN algorithm, 177

L
learningRate parameter, 231
Learning vector quantization (LVQ)

BMU, 179
codebook vectors, 179
demonstration

codebook vectors, 189
n-fold cross-validation 

process, 187
results, 189
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script, 182, 184–187
Weka, 181, 182

Euclidean distance, 178, 179
k-NN algorithm, 177

LeNet-5 model, 342, 343
Likelihood function, 222
Linear discriminant analysis 

(LDA), 27
vs. PCA, 151, 161
process, 152
script

demonstration, 158–161
explanatory comments,  

152, 154–157
Linear regression (LR)

coefficients, 80
linear algebra solution, 78
lrTest script, 80
mathematical term, 77
pseudo-random  

dataset, 79
simplified case, 78

Listwise imputation, 399
Local minima, 226
Logistic regression (LogR)

Andrew Ng’s dataset, 82
assumptions, 82
demonstration

classifier line, 89
coefficients, 90
false negatives, 89
false positives, 89

logRDemo.py, 86–89
random scores, 90, 91

development
coefficients determination, 85
cost function, 86

logRTest.py, 83, 84
vs. LR, 81
sigmoid function, 81, 82

Log loss function, 223, 224
Loss function, 216, 221

M
Machine learning (ML), 328

data, 215
definition, 25
design matrix, 215
linear prediction and 

classification
flower within sepal and 

petal, 28
Iris flower, 27
LDA, 27
structured approach steps, 26

parameters, 215
relationships between AI, deep 

learning (DL), 24, 25
tasks, 214

Markov decision process (MDP)
data flow, 504
discounted future  

reward, 505, 506
Q-learning (see Q-learning)
states, actions, and rules, 504

Learning vector quantization  
(LVQ) (cont.)
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Maximum a posteriori (MAP), 93
Mean squared error (MSE), 222
Mean squared error (MSE) loss 

function, 421
Misidentified handwritten numeric 

digits, 305
Mixed National Institute of 

Standards and Technology 
(MNIST) databases, 285

mkvirtualenv command, 21
MNIST handwritten number 

dataset, 344
Multi-layer perceptron (MLP) 

model, 326, 336
AUROC plot, 498, 500
confusion matrix, 496, 497
Heatmap, 498
probability distributions, 499
results, 496

Multiple error allocation setup, 250
Multivariate time series CNN model

multiple input series, 441
preprocessing dataset, 442–444, 

446–451

N
Naive Bayes

assumption, 92
class probabilities, 93
conditional probabilities, 93
definition, 91
frequency table, 95
gnbTest.py, 100, 101

Likelihood table, 95, 96
posterior probability, 96, 97
pros and cons, 97, 98
theorem, 92, 93
types, 98
weather/play dataset, 94

Network in Network  
(NiN), 346, 347

Neural networks
Deepmind approach, 549
naive approach, 548
Q-values, 550

Nodal graph, 511, 512
Non-Keras network, 363
Non-linear function, 341
Normalized Q matrix, 522

O
OpenCV

apt-get, 50
building

CMake command, 53
compilation, 56, 57
directory set up, 52
non-free algorithms, 53, 54
numpy library, 52
py3cv4_1 version 

verification, 58, 59
Python 3 and numpy, 54, 55
swap configuration file, 55
swap size, 55, 56
symbolic link, 58

CMake utility, 50
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downloading, 51, 52
visualization (see Seaborn data 

library)
OpenCV functions, 459
Overfeat framework, 345

P
Parameterization, 215
Pi Camera, 280, 316

handwritten number recognition 
demonstration, 319–324

installation
CSI socket, 315, 316
properly inserted camera 

cable, 317
software, 318, 319

interface, 313
short flex ribbon cable, 315
version 2, 314

Pima Indian Diabetes dataset, 122
Pima Indian Diabetes project

eight factors, 389
preparing data

correlation heat map, 397
csv dataset, 390
diabetesTest script results, 

394, 395
download, 389
explanatory comments, 393, 

394, 399, 401
histogram, 396
histogram plots, 391–393

install libraries, 391
insulin histogram, 402
Keras ANN model, 404–407
listwise imputation, 399
revisedDiabetesTest script 

results, 402
Plot of error vs. iteration number, 234
predict() method, 125
Predictive modeling, 77
Principal component analysis 

(PCA)
data compression function, 136
objective, 136
process, 136
script

covariance matrix, 143
csv file, 141
demonstration, 146–149
dimensionality reduction, 150
explanatory comments, 

138–140
iris dataset, 137
standardization, 142
SVD algorithm, 144
W matrix, creation, 145

Probability density function  
(PDF), 99

Q
Q-learning

Bellman equation, 507, 515
Bellman’s equation Q-table 

update rule, 550

OpenCV (cont.)
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Breakout game, 550
building (example)

initial actions, 514
initial environment, 513
nodal graph, 510, 512
plan view, 510
reward values, 510
R matrix, 514

CNN, 551
Deepmind approach, 549
Deepmind model  

architecture, 550
DL, 551
flowchart, 508
function, 506
hostile environment 

demonstration
beeRL.py, 532–536
environmental matrices, 538
priori knowledge, 539–546
python beeRL.py, 536
randomly generated 

environment, bees, 532
scoring convergence  

plot, 537
manual Q-learning experiments

Bellman’s equation, 518, 519
enhanced Q  

matrix, 518, 519
learning parameter, 517
nodal diagram, 522
normalized matrix, 522
Q matrix, 517
random selection, 520

revised enhanced Q  
matrix, 521

revised Q matrix, 519
naive approach, 548
and neural network, 547, 548
Python script, demonstration, 

523–529
python simpleRL.py, running, 

529–531
Q-value, 509
reward functions, 509
tuning technique, 551

Q matrix, 516
Q-network, 552
Q-table, 552
Q-values, 519, 547

R
Randomized point  

graph, 523, 524
Raspberry Pi (RasPi)

LibreELEC, 3
mandatory configuration

boots, 6
changing password, 8
check updates, 9–11
ifconfig command display, 12
select WiFi network, 9
timezone menu, 7

micro SD card
configuration process, 5, 6
optional configuration 

process, 12, 14, 15
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Model B+, 1
NOOBS Lite Images, 3

Raspbian Linux distribution
installing dependencies, 22, 24
Python virtual environment, 

installation, 16, 17
initial source command 

results, 19, 20
mkvirtualenv  

command, 20, 21
procedure, 18
virtualenv utility, 18, 19
workon command results, 22

update action, 15, 16
RasPi desktop configuration, 280
RasPi processor speed, 309
Regular neural networks, 337
Reinforcement learning (RL)

Breakout game, 502
human learning experiences, 503
ML paradigm, 501
supervised learning, 502
unsupervised learning, 502

ReLU plot, 330
ResNet

architecture, 352
bottleneck elimination, 351
bottleneck reduction  

scheme, 351
flow diagram, 350
identity shortcut  

connection, 350
inception V4 architecture, 354

pooling layer plus softmax, 352
Xception code, 357

R matrix, 514
Root Mean Square Propagation 

(RMSProp), 364

S
Scikit-learn, decision tree

accuracy, 125
clf model, 125
cons, 133
CSV file, 123, 124
diabetesDT.py., 126, 127
load dataset, 124
load libraries, 123
optimization

accuracy, 132
diabetesDT.py, 132
hyper-parameters, 131
pimaDiabetes.py, 131
tree1.png, 132

Pima Indian Diabetes  
dataset, 122

pros, 132
Python script, 123
split dataset, 124
training set and a test set, 124
visualization

diabetesDT.py, 127, 128
enlarged portion, 130
export_graphviz function, 127
Gini ratio, 130
tree.png, 129
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Scikit-learn wrapper  
functions, 421

Scoring convergence  
plot, 537

scoring function, 215
Seaborn data library

box plot, 67, 68
datasets, 61
data visualization, 62
dependencies, 60
facet grid plot, 65, 66
installation, 59, 60
Iris dataset, 61, 62
KDE plot, 72, 73
pair plot, 74–76
scatter plot, 62–64
strip plot, 68, 69
violin plot, 70–72

Sensitivity, 483, 484
Sigmoid function, 173
Single error allocation  

setup, 249
Singular value decomposition 

(SVD), 143
softargmax, 330
Softmax function, 330, 336
Specificity, 484
split_sequences  

function, 444
SqueezeNet, 355
scikit-learn StratifiedKFold 

function, 411
Supervised  

learning, 502

Support vector machine (SVM) 
data model, 39

data points, 163
demonstration

dimensional datasets, 170
Gaussian function 

application, 172, 173
GridSearchCV module, 175
parameters, 174
problematic datasets, 171
quadratic function, 171
results, 169, 176
sript, 167, 168
transformed dataset, 170

eye-balled, 163
graphical intuition, 166
support vectors, 164, 165
total width  

determination, 165

T
Target handwritten number, 320
testANN3 script, 273
testANN_image script, 323
testANN_metrics_lr script, 312
testANN_metrics  

script, 309, 310
Testing generator, 472
testNet module, 265
Traditional CNN  

architectures, 341
trainANN script, 301
trainNet module, 267
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train_test_split() function, 124
True positive rate  

(TPR), 482, 485
Tuning techniques, 551, 553

U
Univariate time series, 433
Unsupervised learning, 502

V
Validation generator, 472
VGG Fashion MNIST 

demonstration, 373–377
VGG network, 345

W
Waikato Environment for Knowledge 

Analysis (Weka), 180
Weights/biases, 216
White box machine learning 

algorithm, 108
workon command, 21

X, Y
Xception module  

architecture, 355, 356

Z
Zero Rule algorithm, 180
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