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Introduction

The field of machine learning has gone through a massive growth in the 

last few years, thanks to increased computing power, increased funding, 

and better frameworks that make it easier to build and train classifiers. 

Machine learning, however, is still considered as a tool for IT giants with 

plenty of resources, data, and computing power. While it is true that 

models get better when they can be trained with more data points, and 

computing power surely plays a role in the ability to train complex models, 

in this book we'll see that it's already possible to build models trained on 

data points gathered from a smart home environment (like temperature, 

humidity, presence, or camera images), and you can already use those 

models to make your home “smarter.” Such models can be used for 

predictions even on a Raspberry Pi or similar hardware.

After reading this book, you will

• Know the formal foundations of the main machine 

learning techniques

• Know how to estimate how accurate a classifier is 

in making predictions and what to tweak in order to 

improve its performance

• Know how to cleanse and preprocess your data points 

to maximize the performance of your models

• Be able to build machine learning models using 

TensorFlow and the standard Python stack for data 

analysis (numpy, matplotlib, pandas)



xii

• Be able to set up a Raspberry Pi with a simple network 

of sensors, cameras, or other data sources that can be 

used to generate data points fed to simple machine 

learning models, make predictions on those data 

points, and easily create, train, and deploy models 

through web services

INTRODUCTION
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Chapters at a Glance

Chapter 1 will go through the theoretical foundations of machine learning. 

It will cover the most popular approaches to machine learning, the 

difference between supervised and unsupervised learning, and take a 

deep dive into regression algorithms (the foundation block for most of 

today's supervised learning). It will also cover the most popular strategies 

to visualize, evaluate, and tweak the performance of a model.

Chapter 2 will take a deep dive into neural networks, how they 

operate and “learn,” and how they use computer vision. It will also cover 

convolutional neural networks (CNNs), a popular architecture used in 

most of today's computer vision classification models.

Chapter 3 will provide an overview of the most common tools used 

by makers in IoT today with a particular focus on the Raspberry Pi. We'll 

see how to use one of these devices to collect, send, and store data points 

that can be used to train machine learning models, and to train a simple 

model to detect the presence of people in a room using a cheap camera, 

and how to use it to make predictions within a home automation flow—

for example, turn the lights on/off when presence is detected or send a 

notification when presence is detected but we are not home. The chapter 

will also provide an introduction to some strategies for semi-supervised 

learning and show how to wrap a web service around TensorFlow to 

programmatically create, train, and manage models.



1© Fabio Manganiello 2021 
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CHAPTER 1

Introduction to 
Machine Learning
Machine learning is defined as the set of techniques to perform through a 

machine a task it wasn’t explicitly programmed for. It is sometimes seen as 

a subset of dynamic programming. If you have some prior experience with 

traditional programming, you’ll know that building a piece of software 

involves explicitly providing a machine with an unambiguous set of 

instructions to be executed sequentially or in parallel in order to perform 

a certain task. This works quite well if the purpose of your software is to 

calculate the commission on a purchase, or display a dashboard to the 

user, or read and write data to an attached device. These types of problems 

usually involve a finite number of well-defined steps in order to perform 

their task. However, what if the task of your software is to recognize 

whether a picture contains a cat? Even if you build a software that is able to 

correctly identify the shape of a cat on a few specific sample pictures (e.g., 

by checking whether some specific pixels present in your sample pictures 

are in place), that software will probably fail at performing its task if you 

provide it with different pictures of cats—or even slightly edited versions of 

your own sample images. And what if you have to build a software to  

detect spam? Sure, you can probably still do it with traditional 

programming—you can, for instance, build a huge list of words or phrases 

often found in spam emails—but if your software is provided with words 

similar to those on your list but that are not present on your list, then it will 

probably fail its task.

https://doi.org/10.1007/978-1-4842-6821-6_1#DOI
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The latter category includes tasks that traditionally humans have been 

considered better at performing than machines: a machine is million 

times faster than a human at executing a finite sequence of steps and even 

solving advanced math problems, but it’ll shamefully fail (at least with 

traditional programming) at telling whether a certain picture depicts a cat 

or a traffic light. Human brains are usually better than machines in these 

tasks because they have been exposed for several years to many examples 

and sense-based experiences. We can tell within a fraction of a second 

whether a picture contains a cat even without having full experience about 

all the possible breeds and their characteristics and all of their possible 

poses. That’s because we’ve probably seen other cats before, and we can 

quickly perform a process of mental classification that labels the subject 

of a picture as something that we have already seen in the past. In other 

words, our brains have been trained, or wired, over the years to become 

very good at recognizing patterns in a fuzzy world, rather than quickly 

performing a finite sequence of complex but deterministic tasks in a 

virtual world.

Machine learning is the set of techniques that tries to mimic the way 

our brains perform tasks—by trial and error until we can infer patterns out 

of the acquired experience, rather than by an explicit declaration of steps.

It’s worth providing a quick disambiguation between machine learning 

and artificial intelligence (AI). Although the two terms are often used as 

synonyms today, machine learning is a set of techniques where a machine 

can be instructed to solve problems it wasn’t specifically programmed 

for through exposure to (usually many) examples. Artificial intelligence 

is a wider classification that includes any machine or algorithm good at 

performing tasks usually humans are better at—or, according to some, tasks 

that display some form of human-like intelligence. The actual definition of 

AI is actually quite blurry—some may argue whether being able to detect 

an object in a picture or the shortest path between two cities is really a 

form of “intelligence”—and machine learning may be just one possible 

tool for achieving it (expert systems, for example, were quite popular in the 

Chapter 1  IntroduCtIon to MaChIne LearnIng



3

early 2000s). Therefore, through this book I’ll usually talk about the tool 

(machine learning algorithms) rather than the philosophical goal (artificial 

intelligence) that such algorithms may be supposed to achieve.

Before we dive further into the nuts and bolts of machine learning, it’s 

probably worth providing a bit of context and history to understand how 

the discipline has evolved over the years and where we are now.

1.1  History

Although machine learning has gone through a very sharp rise in 

popularity over the past decade, it’s been around probably as long as 

digital computers have been around. The dream of building a machine 

that could mimic human behavior and features with all of their nuances 

is even older than computer science itself. However, the discipline went 

through a series of ups and downs over the second half of the past century 

before experiencing today’s explosion.

Today’s most popular machine learning techniques leverage a concept 

first theorized in 1949 by Donald Hebb [1]. In his book The Organization 

of Behavior, he first theorized that neurons in a human brain work by 

either strengthening or weakening their mutual connections in response 

to stimuli from the outer environment. Hebb wrote, “When one cell 

repeatedly assists in firing another, the axon of the first cell develops 

synaptic knobs (or enlarges them if they already exist) in contact with 

the soma of the second cell.” Such a model (fire together, wire together) 

inspired research into how to build an artificial neuron that could 

communicate with other neurons by dynamically adjusting the weight of 

its links to them (synapses) in response to the experience it gathers. This 

concept is the theoretical foundation behind modern-day neural networks.

One year later, in 1950, the famous British mathematician  

(and father of computer science) Alan Turing came with what is probably 

the first known definition of artificial intelligence. He proposed an 

Chapter 1  IntroduCtIon to MaChIne LearnIng
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experiment where a human was asked to have a conversation with 

“someone/something” hidden behind a screen. If by the end of the 

conversation the subject couldn’t tell whether he/she had talked to a 

human or a machine, then the machine would have passed the “artificial 

intelligence” test. Such a test is today famously known as Turing test.

In 1951, Christopher Strachey wrote a program that could 

play checkers, and Dietrich Prinz, one that could play chess. Later 

improvements during the 1950s led to the development of programs that 

could effectively challenge an amateur player. Such early developments 

led to games being often used as a standard benchmark for measuring the 

progress of machine learning—up to the day when IBM’s Deep Blue beat 

Kasparov at chess and AlphaGo beat Lee Sedol at Go.

In the meantime, the advent of digital computers in the mid-1950s 

led a wave of optimism in what became known as the symbolic AI. A few 

researchers recognized that a machine that could manipulate numbers could 

also manipulate symbols, and if symbols were the foundation of human 

thought, then it would have been possible to design thinking machines. In 

1955, Allen Newell and the future Nobel laureate Herbert A. Simon created the 

Logic Theorist, a program that could prove mathematical theorems through 

inference given a set of logic axioms. It managed to prove 38 of the first 52 

theorems of Bertrand Russell’s Principia Mathematica.

Such theoretical background led to early enthusiasm among 

researchers. It caused a boost of optimism that culminated in a workshop 

held in 1956 at Dartmouth College [2], where some academics predicted 

that machines as intelligent as humans would have been available within 

one generation and were provided with millions of dollars to make the 

vision come true. This conference is today considered as the foundation of 

artificial intelligence as a discipline.

In 1957, Frank Rosenblatt designed the perceptron. He applied Hebb’s 

neural model to design a machine that could perform image recognition. 

The software was originally designed for the IBM 704 and installed on 

a custom-built machine called the Mark 1 perceptron. Its main goal 

Chapter 1  IntroduCtIon to MaChIne LearnIng
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was to recognize features from pictures—facial features in particular. 

A perceptron functionally acts like a single neuron that can learn (i.e., 

adjust its synaptic weights) from provided examples and make predictions 

or guesses on examples it had never seen before. The mathematical 

procedure at the basis of the perceptron (logistic regression) is the building 

block of neural networks, and we’ll cover it later in this chapter.

Despite the direction was definitely a good one to go, the network 

itself was relatively simple, and the hardware in 1957 definitely couldn’t 

allow the marvels possible with today’s machines. Whenever you wonder 

whether a Raspberry Pi is the right choice for running machine learning 

models, keep in mind that you’re handling a machine almost a million 

times more powerful than the one used by Frank Rosenblatt to train the 

first model that could recognize a face [4, 5].

The disappointment after the perceptron experiment led to a drop of 

interest in the field of machine learning as we know it today (which only 

rose again during the late 1990s, when improved hardware started to show 

the potential of the theory), while more focus was put on other branches 

of artificial intelligence. The 1960s and 1970s saw in particular a rise in 

reasoning as search, an approach where the problem of finding a particular 

solution was basically translated as a problem of searching for paths in 

connected graphs that represented the available knowledge. Finding how 

“close” the meanings of two words were became a problem of finding the 

shortest path between the two associated nodes within a semantic graph. 

Finding the best move in a game of chess became a problem of finding the 

path with minimum cost or maximum profit in the graph of all the possible 

scenarios. Proving whether a theorem was true or false became a problem 

of building a decision tree out of its propositions plus the relevant axioms 

and finding a path that could lead either to a true or false statement.  

The progress in these areas led to impressive early achievements, such as 

ELIZA, today considered as the first example of a chatbot. Developed at 

the MIT between 1964 and 1966, it used to mimic a human conversation, 

and it may have tricked the users (at least for the first few interactions)  

Chapter 1  IntroduCtIon to MaChIne LearnIng



6

that there was a human on the other side. In reality, the algorithm 

behind the early versions was relatively simple, as it simply repeated or 

reformulated some of the sentence of the user posing them as questions 

(to many it gave the impression of talking to a shrink), but keep in mind 

that we’re still talking of a few years before the first video game was even 

created. Such achievements led to a lot of hyper-inflated optimism into  

AI for the time. A few examples of this early optimism:

• 1958: “Within ten years a digital computer will be the 

world’s chess champion, and a digital computer will 

discover and prove an important new mathematical 

theorem” [6].

• 1965: “Machines will be capable, within twenty years, of 

doing any work a man can do” [7].

• 1967: “Within a generation the problem of creating 

‘artificial intelligence’ will substantially be solved” [8].

• 1970: “In from three to eight years we will have a 

machine with the general intelligence of an average 

human being” [9].

Of course, things didn’t go exactly that way. Around the half of the 1970s, 

most of the researchers realized that they had definitely underestimated the 

problem. The main issue was, of course, with the computing power of the 

time. By the end of the 1960s, researchers realized that training a network of 

perceptrons with multiple layers led to better results than training a single 

perceptron, and by the half of the 1970s, back-propagation (the building 

block of how networks “learn”) was theorized. In other words, the basic 

shape of a modern neural network was already theorized in the mid-1970s. 

However, training a neural-like model required a lot of CPU power to perform 

the calculations required to converge toward an optimal solution, and such 

hardware power wouldn’t have been available for the next 25–30 years.

Chapter 1  IntroduCtIon to MaChIne LearnIng
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The reasoning as search approach in the meantime faced the 

combinational explosion problem. Transforming a decision process into a 

graph search problem was OK for playing chess, proving a geometric theorem, 

or finding synonyms of words, but more complex real-world problems would 

have easily resulted in humongous graphs, as their complexity would grow 

exponentially with the number of inputs—that relegated AI mostly to toy 

projects within research labs rather than real- world applications.

Finally, researchers learned what became known as Moravec’s 

paradox: it’s really easy for a deterministic machine to prove a theorem 

or solve a geometry problem, but much harder to perform more “fuzzy” 

tasks such as recognizing a face or walking around without bumping into 

objects. Research funding drained when results failed to materialize.

AI experienced a resurgence in the 1980s under the form of expert 

systems. An expert system is a software that answers questions or interprets 

the content of a text within a specific domain of knowledge, applying 

inference rules derived from the knowledge of human experts. The formal 

representation of knowledge through relational and graph-based databases 

introduced in the late 1970s led to this new revolution in AI that focused on 

how to best represent human knowledge and how to infer decisions from it.

Expert systems went through another huge wave of optimism followed 

by another crash. While they were relatively good in providing answers to 

simple domain-specific questions, they were just as good as the knowledge 

provided by the human experts. That made them very expensive to 

maintain and update and very prone to errors whenever an input looked 

slightly different from what was provided in the knowledge base. They 

were useful in specific contexts, but they couldn’t be scaled up to solve 

more general-purpose problems. The whole framework of logic-based 

AI came under increasing criticism during the 1990s. Many researchers 

argued that a truly intelligent machine should have been designed  

bottom- up rather than top-down. A machine can’t make logical inference 

about rain and umbrellas if it doesn’t know what those things or concepts 

actually mean or look like—in other words, if it can’t perform some 

form of human-like classification based both on intuition and acquired 

experience.

Chapter 1  IntroduCtIon to MaChIne LearnIng
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Such reflections gradually led to a new interest in the machine learning 

side of AI, rather than the knowledge-based or symbolic approaches. Also, 

the hardware in the late 1990s was much better than what was available to 

the MIT researchers in the 1960s, and simple tasks of computer vision that 

proved incredibly challenging at the time, like recognizing handwritten 

letters or detecting simple objects, could be solved thanks to Moore’s law, 

which states that the number of transistors in a chip doubles approximately 

each 18 months. And thanks to the Web and the huge amount of data it 

made available over the years and the increased ease at sharing this data.

Today the neural network is a ubiquitous component in machine 

learning and AI in general. It’s important to note, however, that other 

approaches may still be relevant in some scenarios. Finding the quickest 

path by bike between your home and your office is still largely a graph 

search problem. Intent detection in unstructured text still relies on 

language models. Other problems, like some games or real- world 

simulations, may employ genetic algorithms. And some specific domains 

may still leverage expert systems. However, even when other algorithms are 

employed, neural networks nowadays often represent the “glue” to connect 

all the components. Different algorithms or networks are nowadays often 

modular blocks connected together through data pipelines.

Deep learning has become increasingly popular over the past decade, 

as better hardware and more data made it possible to train more data to 

bigger networks with more layers. Deep learning, under the hood, is the 

process of solving some of the common problems with earlier networks 

(like overfitting) by adding more neurons and more layers. Usually the 

accuracy of a network increases when you increase its number of layers 

and nodes, as the network will be better at spotting patterns in non-linear 

problems. However, deep learning may be plagued by some issues as well. 

One of them is the vanishing gradient problem, where gradients slowly 

shrink as they pass through more and more layers. Another more concrete 

issue is related to its environmental impact: while throwing more data and 

more neurons at a network and running more training iterations seems to 

make the network more accurate, it also represents a very power-hungry 

solution that cannot be sustainable for long-term growth.

Chapter 1  IntroduCtIon to MaChIne LearnIng
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1.2  Supervised and unsupervised learning

Now that the difference between artificial intelligence and machine 

learning is clear and we have got some context of how we have got where 

we are now, let’s shift our focus to machine learning and the two main 

“learning” categories: supervised and unsupervised learning:

• We define as supervised learning the set of algorithms 

where a model is trained on a dataset that includes both 

example input data and the associated expected output.

• In unsupervised learning, on the other hand, we train 

models on datasets that don’t include the expected 

outputs. In these algorithms, we expect the model to 

“figure out” patterns by itself.

When it comes to supervised learning, training a model usually 

consists in calculating a function y f x= ( )  that maps a given a vector of 

inputs x  to a vector of outputs y  such that the mean error between the 

predicted and the expected values is minimized. Some applications of 

supervised learning algorithms include

• Given a training set containing one million pictures 

of cats and one million pictures that don’t feature 

cats, build a model that recognizes cats in previously 

unseen pictures. In this case, the training set will 

usually include a True/False label to tell whether the 

picture includes a cat. This is usually considered a 

classification problem—that is, given some input 

values and their labels (together called training set), 

you want your model to predict the correct class, or 

label—for example, “does/does not contain a cat.” 

Or, if you provide the model with many examples of 

emails labelled as spam/not spam, you may train your 

classifier to detect spam on previously unseen emails.

Chapter 1  IntroduCtIon to MaChIne LearnIng
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• Given a training set containing the features of a large 

list of apartments in a city (size, location, construction 

year, etc.) together with their price, build a model 

that can predict the value of a new apartment on 

the market. This is usually considered a regression 

problem—that is, given a training set you want to train 

a model that predicts the best numeric approximation 

for a newly provided input in, for example, dollars, 

meters, or kilograms.

Unsupervised learning, on the other hand, is often used to solve 

problems whose goal is to find the underlying structure, distribution, 

or patterns in the data. Being provided with no expected labels, these 

are types of problems that come with no exact/correct answers nor 

comparison with expected values. Some examples of unsupervised 

learning problems include

• Given a large list of customers on an ecommerce 

website with the relevant input features (age, gender, 

address, list of purchases in the past year, etc.), find the 

optimal way to segment your customer base in order to 

plan several advertisement campaigns. This is usually 

considered a clustering problem—that is, given a set of 

inputs, find the best way to group them together.

• Given a user on a music streaming platform with its 

relevant features (age, gender, list of tracks listened 

in the past month, etc.), build a model that can 

recommend user profiles with similar musical taste. 

This is usually considered as a recommender system, 

or association problem—that is, a model that finds the 

nearest neighbors to a particular node.

Chapter 1  IntroduCtIon to MaChIne LearnIng
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Finally, there can be problems that sit halfway between supervised and 

unsupervised learning. Think of a large production database where some 

images are labelled (e.g., “cat,” “dog,” etc.) but some aren’t—for example, 

because it’s expensive to hire enough humans to manually label all the 

records or because the problem is very large and providing a full picture of 

all the possible labels is hard. In such cases, you may want to rely on hybrid 

implementations that use supervised learning to learn from the available 

labelled data and leverage unsupervised learning to find patterns in the 

unlabelled data.

In the rest of the book, we will mainly focus on supervised learning, 

since this category includes most of the neural architectures in use 

today, as well as all the regression problems. Some popular unsupervised 

learning algorithms will, however, be worth a mention, as they may be 

often used in symbiosis with supervised algorithms.

1.3  Preparing your tools

After so much talk about machine learning, let’s introduce the tools that 

we’ll be using through our journey. You won’t need a Raspberry Pi (yet) 

during this chapter: as we cover the algorithms and the software tools used 

for machine learning, your own laptop will do the job.

Through the next sections, I’ll assume that you have some knowledge/

experience with

• Any programming language (if you have experience 

with Python, even better). Python has become the 

most popular choice for machine learning over the 

past couple of years, but even if you don’t have much 

experience with it, don’t worry—it’s relatively simple, 

and I’ll try to comment the code as much as possible.
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• High school (or higher) level of math. If you are familiar 

with calculus, statistics, and linear algebra, that’s even 

better. If not, don’t worry. Although some calculus and 

linear algebra concepts are required to grasp how machine 

learning works under the hood, I’ll try not to dig too 

much into the theory, and whenever I mention gradients, 

tensors, or recall, I’ll make sure to focus more on what they 

intuitively mean rather than their formal definition alone.

1.3.1  Software tools

We’ll be using the following software tools through our journey:

• The Python programming language (version 3.6 or 

higher).

• TensorFlow, probably the most popular framework 

nowadays for building, training, and querying machine 

learning models.

• Keras, a very popular library for neural networks 

and regression models that easily integrates on top of 

TensorFlow.

• numpy and pandas, the most commonly used Python 

libraries, respectively, for numeric manipulations and 

data analysis.

• matplotlib, a Python library for plotting data and 

images.

• seaborn, a Python library often used for statistical data 

visualization.
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• jupyter, a very popular solution for Python for 

prototyping through notebooks (and basically a 

standard de facto when it comes to data science in 

Python).

• git, we’ll use it to download the sample datasets and 

notebooks from GitHub.

1.3.2  Setting up your environment

• Download and install git on your system, if it’s not 

available already.

• Download and install a recent version of Python 

from https://python.org/downloads, if it’s not 

already available on your system. Make sure that you 

use a version of Python greater than 3 (Python 2 is 

deprecated). Open a terminal and check that both the 

python and pip commands are present.

• (Optional) Create a new Python virtual environment.  

A virtual environment allows you to keep your 

machine learning setup separate from the main Python 

installation, without messing with any system-wide 

dependencies, and it also allows you to install Python 

packages in a non-privileged user space. You can 

skip this step if you prefer to install the dependencies 

system-wide (although you may need root/

administrator privileges).
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# Create a virtual environment under your home folder

python -m venv $HOME/venv

# Activate the environment

cd $HOME/venv

source bin/activate

# Whenever you are done, run 'deactivate'

# to go back to your standard environment

deactivate

• Install the dependencies (it may take a while 

depending on your connectivity and CPU power):

pip install tensorflow

pip install keras

pip install numpy

pip install pandas

pip install matplotlib

pip install jupyter

pip install seaborn
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• Download the “mlbook-code” repository containing 

some of the datasets and code snippets that we’ll be 

using through this book. We’ll call <REPO_DIR> the 

directory where you have cloned the repository.

• Start the Jupyter server:

jupyter notebook

• Open http://localhost:8888 in your browser. 

You should see a login screen like the one shown in 

Figure 1-1. You can decide whether to authenticate 

using the token or set a password.

• Select a folder where you’d like to store your notebooks 

(we’ll identify it as <NOTEBOOK_DIR> from now on), and 

create your first notebook. Jupyter notebooks are lists 

of cells; each of these cells can contain Python code, 

markdown elements, images, and so on. Start to get 

familiar with the environment, try to run some Python 

commands, and make sure that things work.

git clone https://github.com/BlackLight/mlbook-code

Now that all the tools are ready, let’s get our hands dirty with some 

algorithms.
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Figure 1-1. Jupyter login screen at http://localhost:8888
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1.4  Linear regression

Linear regression is the first machine learning algorithm we’ll encounter 

on our journey, as well as the most important. As we’ll see, most of the 

supervised machine learning algorithms are variations of linear regression 

or applications of linear regression on scale. Linear regression is good 

for solving problems where you have some input data represented by n 

dimensions and you want to learn from their distribution in order to make 

predictions on future data points—for example, to predict the price of a 

house in a neighborhood or of a stock given a list of historical data. Linear 

regression is extensively used as a statistical tool also in finance, logistics, 

and economics to predict the price of a commodity, the demand in a 

certain period, or other macroeconomic variables. It’s the building block 

of other types of regression—like logistic regression, which in turn is the 

building block of neural networks.

A regression model is called a simple regression model if the input data 

is represented by a single variable (n = 1) or multivariate regression if it 

operates on input data defined by multiple dimensions. It’s called linear 

regression if its output is a line that best approximates the input data. Other 

types of regression exist as well—for instance, you’ll have a quadratic 

regression if you try to fit a parabola instead of a line through your data, a 

Figure 1-2. Distribution of the house prices as a function of their size
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cubic regression if you try to fit a cubic polynomial curve through your data, 

and so on. We’ll start with simple linear regression and expand its basic 

mechanism also to the other regression problems.

1.4.1  Loading and plotting the dataset

To get started, create a new Jupyter notebook under your <NOTEBOOK_DIR> 

and load <REPO_DIR>/datasets/house-size-price-1.csv. It is a CSV file 

that contains a list of house prices (in thousands of dollars) in function of 

their size (in square meters) in a certain city. Let’s suppose for now that the 

size is the only parameter that we’ve got, and we want to create a model 

trained on this data that predicts the price of a new house given its size.

The first thing you should do before jumping into defining any 

machine learning model is to visualize your data and try to understand 

what’s the best model to use. This is how we load the CSV using pandas 

and visualize it using matplotlib:

import pandas as pd

import matplotlib.pyplot as plt

# Download the CSV file from GitHub

csv_url = 'https://raw.githubusercontent.com/' +

          'BlackLight/mlbook-code/master/' +

          'datasets/house-size-price-1.csv'

data = pd.read_csv(csv_url)

# The first column contains the size in m2

size = data[columns[0]]

# The second column contains the price in thousands of dollars
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price = data[columns[1]]

# Create a new figure and plot the data

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel(columns[0])

plot.set_ylabel(columns[1])

points = plot.scatter(size, price)

After running the content of your cell, you should see a graph like 

the one picture in Figure 1-2. You’ll notice that the data is a bit scattered, 

but still it can be approximated well enough if we could fit a straight line 

through it. Our goal is now to find the line that best approximates our data.

1.4.2  The idea behind regression

Let’s put our notebook aside for a moment and try to think which 

characteristic such a function should have. First, it must be a line; 

therefore, it must have a form like this:

 
h x xq q q( ) = +

0 1  (1.1)

In Equation 1.1, x denotes the input data, excluding the output labels. 

In the case of the house size-price model, we have one input variable (the 

size) and one output variable (the price); therefore, both the input and 

output vectors have unitary size, but other models may have multiple 

input variables and/or multiple output variables. θ0 and θ1 are instead 

the numeric coefficients of the line. In particular, θ0 tells where the line 

crosses the y axis and θ1 tells us the direction of the line and how “steep” it 

is—it’s often called the slope of the line. hθ(x) is instead the function that 
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our model will use for predictions based on the values of the vector q

—also called weights of the model. In our problem, the inputs x  and the 

expected outputs y  are provided through the training set; therefore, the 

linear regression problem is a problem of finding the q  parameters in the 

preceding equation such that hθ(x) is a good approximation of the linear 

dependency between x and y. hθ(x) is often denoted as hypothesis function, 

or simply model. The generic formula for a single-variable model of order 

n (linear for n = 1, quadratic for n = 2, etc.) will be

 
h x x x x x

n

n

i

n

i

i

q q q q q q( ) = + + +¼+ =
=

å0 1 2

2

0
 

(1.2)

Also, note that the “bar” or “superscript” on top of a symbol in this 

book will denote a vector. A vector is a fixed-size list of numeric elements, 

so q  is actually a more compact way to write [θ0, θ1] or [θ0…θn].

So how can we formalize the intuitive concept of “good enough linear 

approximation” into an algorithm? The intuition is to choose the q  

parameters such that their associated hθ(x) function is “close enough” to 

the provided samples y for the given values of x. More formally, we want 

to minimize the squared mean error between the sampled values y and 

the predicted values hθ(x) for all the m data points provided in the training 

set—if the error between the predicted and the actual values is low, then 

the model is performing well:

 
min

,q q
q

0 1

1

2 1

2

m
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i

m

i i
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(1.3)

Let’s rephrase the argument of the preceding formula as a function of 

the parameters q :

 
J

m
h x y

i

m

i iq q( ) = ( )-( )
=

å
1

2 1

2

 
(1.4)
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The function J is also called cost function (or loss function), since 

it expresses the cost (or, in this case, the approximation error) of a line 

associated to a particular selection of the q  parameters. Finding the best 

linear approximation for your data is therefore a problem of finding the 

values of q  that minimize the preceding cost function (i.e., the sum of 

the mean squared errors between samples and predictions). Note the 

difference between hθ(x) and J q( ) : the former is our model hypothesis, 

that is, the prediction function of the model expressed by its vector of 

parameters q  and with x as a variable. J q( )  is instead the cost function 

and the parameters q  are the variables, and our goal is to find the values 

of q  that minimize this function in order to calculate the best hθ(x). If we 

want to start formalizing the procedure, we can say that the problem of 

finding the optimal regression model can be expressed as follows:

• Start with a set of initial parameters q q q q= ¼[ ]0 1
, , , n ,  

with n being the order of your regression (n = 1 for 

linear, n = 2 for quadratic, etc.).

• Use those values to formulate a hypothesis hθ(x) as 

shown in Equation 1.2.

• Calculate the cost function J q( )  associated to that 

hypothesis as shown in Equation 1.4.

• Keep changing the values of q  until we converge on a 

point that minimizes the cost function.

Now that it’s clear how a regression algorithm is modelled and how to 

measure how good it approximates the data, let’s cover how to implement 

the last point in the preceding list—that is, the actual “learning” phase.
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1.4.3  Gradient descent

Hopefully so many mentions of “error minimization” have rung a bell 

if you have some memory of calculus! The differential (or derivative) is 

the mathematical instrument leveraged in most of the minimization/

maximization problems. In particular:

• The first derivative of a function tells us whether 

that function is increasing or decreasing around a 

certain point or it is “still” (i.e., the point is a local 

minimum/maximum or an inflection point). It can be 

geometrically visualized as the slope of the tangent line 

to the function in a certain point. If we name f ′(x) the 

first derivative of a function f (x) (with xÎR  for now), 

then its value in a point x0 will be (assuming that the 

function is differentiable in x0)

 

¢( )
>

<f x0

0

0

if the curve is increasing

if the curve is decreassing

if is a flex=

ì

í
ï

î
ï 0 0x min/ max/  

(1.5)

• The second derivative of a function tells us the 

“concavity” of that function around a certain point, that 

is, whether the curve is facing “up” or “down” around 

that point. The second derivative f ″(x) around a given 

point x0 will be

 

¢¢( )
>

<

=

f x0
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(1.6)
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By combining these two instruments, we can find out, given a certain 

point on a surface, in which direction the minimum of that function is. In 

other words, minimizing the cost function J q( )  is a problem of finding a 

vector of values q q q q*
= ¼[ ]0 1

, , , n  such that the first derivative of J for q *  is 

zero (or close enough to zero) and its second derivative is positive (i.e., the 

point is a local minimum). In most of the algorithms in this book,  

we won’t actually need the second derivative (many of today’s popular 

machine learning models are built around convex cost functions, i.e., cost 

functions with one single point of minimum), but applications with higher 

polynomial models may leverage the idea of concavity behind the second 

derivative to tell whether a point is a minimum, a maximum, or an inflection.

This intuition works for the case with a single variable. However, J 

is a function of a vector of parameters q , whose length is 2 for linear 

regression, 3 for quadratic, and so on. For multivariate functions, the 

concept of gradient is used instead of the derivative used for univariate 

functions. The gradient of a multivariate function (usually denoted by the 

symbol 𝛻) is the vector of the partial derivatives (conventionally denoted 

by the ∂ symbol) of that function calculated against each of the variables. 

In the case of our cost function, its gradient will be
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(1.7)

In practice, a partial derivative is the process of calculating the 

derivative of a multivariate function assuming that only one of its variables 

is the actual variable and the others are constants.
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The gradient vector indicates the direction in which an n-dimensional 

curve is increasing around a certain point and “how fast” it is increasing. 

In the case of linear regression with one input variable, we have seen in 

Equation 1.4 that the cost function is a function of two variables (θ0 and θ1) 

and that it is a quadratic function. In fact, by combining Equations 1.1 and 1.4, 

we can derive the cost function for linear regression with univariate input:

 
J

m
x y

i

m

i iq q q q
0 1

1

0 1

21

2
,( ) = + -( )

=

å  
(1.8)

This surface can be represented in a 3D space like a paraboloid (a 

bowl shape that you get if you rotate 360 degrees a parabola around its 

axis, as shown in Figure 1-3). That puts us in a relatively lucky spot. Just 

like a parabola, a paraboloid has only one minimum—that is, only one 

point where its vector gradient is zero, and that point also happens to be 

the global minimum. It means that if we start with some random values 

Figure 1-3. Typical shape of the cost function for a linear regression 
model: a paraboloid in a 3D space
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for q  and then start “walking” in the opposite direction of the gradient 

in that point, we should eventually end up in the optimal point—that is, 

the vector of parameters q
*

 that we can plug in our hypothesis function 

hθ(x) to get good predictions. Remember that, given a point on a surface, 

the gradient vector tells you in which direction the function goes “up.” 

If you go in its opposite direction, you will be going down. And if your 

surface has the shape of a bowl, if you keep going down, from wherever 

you are on the surface, you will eventually get to the bottom. If you instead 

use more complex types of regression (quadratic, cubic, etc.), you may 

not always be so lucky—you could get stuck in a local minimum, which 

does not represent the overall minimum of the function. So, assuming 

that we are happy as soon as we start converging toward a minimum, the 

gradient descent algorithm can be expressed as a procedure where we start 

by initially picking up random values for q , and then at each step k, we 

update these values through the following formula:

 

q q a
q

q q
i

k

i

k

i

k k
J i

+( ) ( ) ( ) ( )
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¶

¶
( ) =

1

0 1
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(1.9)

Or, in vectorial form:

 

q q a q
k k k

J
+( ) ( ) ( )
= - Ñ ( )1

 
(1.10)

α is a parameter between zero and one known as the learning rate of 

the machine learning model, and it expresses how fast the model should 

learn from new data—in other words, how big the “leaps” down the 

direction of the gradient vector should be. A large value of α would result 

in a model that could learn fast at the beginning, but that could overshoot 

the minimum or “miss the stop”—at some point, it could land near the 

minimum of the cost function and could miss it by taking a longer step, 
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resulting in some “bounces” back and forth before converging. A small 

value of α, on the other hand, may be slow at learning at the beginning 

and could take more iterations, but it’s basically guaranteed to converge 

without too many bounces around the minimum.

To use a metaphor, performing learning through gradient descent is 

like pushing a ball blindfolded down a valley. First, you have to figure out 

in which direction the bottom of the valley is, using the direction of the 

gradient vector as a compass. Then, you have to find out how much force 

you want to apply to the ball to get it to the bottom. If you push it with a lot 

of force, it may reach the bottom faster, but it may go back and forth a few 

times before settling. Instead, if you only let gravity do its work, the ball may 

take longer to get to the bottom, but once it’s there, it’s unlikely to swing too 

much. In most of today’s applications, the learning rate is dynamic: you may 

usually want a higher value of α in the first phase (when your model doesn’t 

know much yet about the data) and lower it toward the end (when your 

model has already seen a significant number of data points and/or the cost 

function is converging). Some popular algorithms nowadays also perform 

some kind of learning rate shuffling in case they get stuck.

We may want to also set an exit condition for the algorithm: in case it 

doesn’t converge on a vector of parameters that nullifies the cost function, 

for example, we may want to still exit if the gradient of the cost function is 

close enough to zero, or there hasn’t been a significant improvement from 

the previous step, or the corresponding model is already good enough at 

approximating our problem.

By combining Equations 1.8 and 1.9 and applying the differentiation 

rules, we can derive the exact update steps for θ0 and θ1 in the case of linear 

regression:
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So the full algorithm for linear regression can be summarized as 

follows:

 1. Pick random values for θ0 and θ1.

 2. Keep updating θ0 and θ1 through, respectively, 

Equations 1.11 and 1.12.

 3. Terminate either after performing a preset number 

of training iterations (often called epochs) or 

when convergence is achieved (i.e., no significant 

improvement has been measured on a certain step 

compared to the step before).

There are many tools and library that can perform efficient regression, 

so it’s uncommon that you will have to implement the algorithm from 

scratch. However, since the preceding steps are known, it’s relatively 

simple to write a univariate linear regression algorithm in Python with 

numpy alone:

import numpy as np

def gradient_descent(x, y, theta, alpha):

    m = len(x)

    new_theta = np.zeros(2)

    # Perform the gradient descent on theta

    for i in range(m):

         new_theta[0] += theta[0] + theta[1]*x[i] - y[i]
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         new_theta[1] += (theta[0] + theta[1]*x[i] - y[i]) * 

x[i]

    return theta - (alpha/m) * new_theta

    def train(x, y, steps, alpha=0.001):

        # Initialize theta randomly

         theta = np.random.randint(low=0, high=10, size=2)

        # Perform the gradient descent <steps> times

        for i in range(steps):

             theta = gradient_descent(x, y, theta, alpha)

         # Return the linear function associated to theta

        return lambda x: theta[0] + theta[1] * x

1.4.4  Input normalization

Let’s pick up our notebook where we left it. We should now have a clear 

idea of how to train a regression model to predict the price of a house given 

its size. We will use TensorFlow+Keras for defining and training the model.

Before proceeding, however, it’s important to spend a word about 

input normalization (or feature scaling). It’s very important that your 

model is robust enough even if some data is provided in different units 

than those used in the training set or some arbitrary constant is added 

or multiplied to your inputs. That’s why it’s important to normalize your 

inputs before feeding it to any machine learning model. Not only that, but 

if the inputs are well distributed within a specific range centered around 

the origin, the model will be much faster at converging than if you provide 

raw inputs with no specific range. Worse, a non-normalized training set 

could often result in a cost function that doesn’t converge at all.
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Input normalization is usually done by applying the following 

transformation:
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where xi is the i-th element of your m-long input vector, μ is the arithmetic 

mean of the vector x  of the inputs, and σ is its standard deviation:
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By applying Equation 1.13 to our inputs, we basically transpose the 

input values around the zero and group most of them around the [−σ, σ] 

range. When predicting values, we instead want to denormalize the 

provided output, which can easily be done by deriving xi from  

Equation 1.13:

 x x
i i
= +s mˆ  (1.16)

It’s quite easy to write these functions in Python and insert them in our 

notebook. First, get the dataset stats using the pandas describe method:

dataset_stats = data.describe()
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Then define the functions to normalize and denormalize your data:

def normalize(x, stats):

    return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

    return stats['std'] * x + stats['mean']

norm_size = normalize(size, dataset_stats['size'])

norm_price = normalize(price, dataset_stats['price'])

1.4.5  Defining and training the model

Defining and training a linear regression model with TensorFlow+Keras is 

quite easy:

from tensorflow.keras.experimental import LinearModel

model = LinearModel(units=1, activation='linear', 

dtype='float32')

model.compile(optimizer='rmsprop', loss='mse', 

metrics=['mse'])

history = model.fit(norm_size, norm_price, epochs=1000, 

verbose=0)
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There are quite a few things happening here:

• First, we define a LinearModel with one input variable 

(units=1), linear activation function (i.e., the output 

value of the model is returned directly without being 

transformed by a non-linear output function), and with 

float32 numeric type.

• Then, we compile the model, making it ready to be 

trained. The optimizer in Keras does many things. A 

deep understanding of the optimizers would require 

a dedicated chapter, but for sake of keeping it brief, 

we will quickly cover what they do as we use them. 

rmsprop initializes the learning rate and gradually 

adjusts it over the training iterations as a function of the 

recent gradients [10]. By default, rmsprop is initialized 

with learning_rate=0.001. You can, however, try and 

tweak it and see how/if it affects your model:

from tensorflow.keras.optimizers import RMSprop

rmsprop = RMSprop(learning_rate=0.005)

model.compile(optimizer=rmsprop, loss='mse', metrics=['mse'])

• Other common optimizers include

 – SGD, or stochastic gradient descent, which implements the 

gradient descent algorithm described in Equation 1.9 with few 

optimizations and tweaks, such as learning rate decay and 

Nesterov momentum [11]
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 – adam, an algorithm for first-order gradient-based optimization 

that has recently gain quite some momentum, especially in 

deep learning [12]

 – nadam, which implements support for Nesterov momentum 

on top of the adam algorithm [13]

• Feel free to experiment with different optimizers 

and different learning rates to see how it affects the 

performance of your model.

• The loss parameter defines the loss/cost function to 

be optimized. mse means mean squared error, as we 

have defined it in Equation 1.4. Other common loss 

functions include

 – mae, or mean absolute error—similar to mse, but it uses the 

absolute value of h(xi) − yi in Equation 1.4 instead of the 

squared value.

 – mape, or mean absolute percentage error—similar to mae, but it 

uses the percentage of the absolute error compared to the 

previous iteration as a target metric.

 – mean_squared_logarithmic_error—similar to mse, but it uses 

the logarithm of the mean squared error (useful if your curve 

has exponential features).

 – Several cross-entropy loss functions (e.g., categorical_cros-

sentropy, sparse_categorical_crossentropy, and binary_

crossentropy), often used for classification problems.

• The metrics attribute is a list that identifies the metrics 

to be used to evaluate the performance of your model. 

In this example, we use the same metric used as the 

loss/cost function (the mean squared error), but other 

metrics can be used as well. A metric is conceptually 
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similar to the loss/cost function, except that the result 

of the metric function is only used to evaluate the 

model, not to train it. You can also use multiple metrics 

if you want your model to be evaluated according to 

multiple features. Other common metrics include

 – mae, or mean absolute error.

 – accuracy and its derived metrics (binary_accuracy, categor-

ical_accuracy, sparse_categorical_accuracy, top_k_cat-

egorical_accuracy, etc.). Accuracy is often used in 

classification problems, and it expresses the fraction of cor-

rectly labelled items in the training set over the total amount 

of items in the training set.

 – Custom metrics can also be defined. As we’ll see later when 

we tackle classification problems, precision, recall, and F1 

score are quite popular evaluation metrics. These aren’t part 

of the core framework (yet?), but they can easily be defined.

• Finally, we train our model on the normalized data 

from the previous step using the fit function. The 

first argument of the function will be the vector of 

input values, the second argument will be the vector 

of expected output values, and then we specify the 

number of epochs, that is, training iterations that we 

want to perform on this data.

The epochs value depends a lot on your dataset. The cumulative 

number of input samples you will present to your model is given by × 

epochs, where m is the size of your dataset. In our case, we’ve got a relatively 

small dataset, which means that you want to run more training epochs to 

make sure that your model has seen enough data. If you have larger training 

sets, however, you may want to run less training iterations. The risk of 

running too many training iterations on the same batch of data, as we will 
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see later, is to overfit your data, that is, to create a model that closely mimics 

the expected outputs if presented with values close enough to those it’s been 

trained on, but inaccurate over data points it hasn’t been trained on.

1.4.6  Evaluating your model

Now that we have defined and trained our model and we have a clear idea 

of how to measure its performance, let’s take a look at how its primary 

metric (mean squared error) has improved during the training phase:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a plot like the one shown in Figure 1-4. You’ll notice 

that the loss curve goes drastically down—which is good; it means that 

our model is actually learning when we input it with data points, without 

getting stuck in gradient “valleys.” It also means that the learning rate 

was well calibrated—if your learning rate is too high, the model may not 

necessarily converge, and if it’s too low, then it may still be on its way 

toward convergence after many training epochs. Also, there is a short tail 

around 0.07. This is also good: it means that our model has converged over 

the last iterations.
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If the tail is too long, it means that you have trained your model for too 

many epochs, and you may want to reduce either the number of epochs 

or the size of your training set to prevent overfit. If the tail is too short or 

there’s no tail at all, your model hasn’t been trained on enough data points, 

and probably you will have to either increase the size of your training set or 

the number of epochs to gain accuracy.

You can (read: should) also evaluate your model on some data that isn’t 

necessarily part of your training set to check how well the model performs 

on new data points. We will dig deeper on how to split your training set and 

test set later. For now, given the relatively small dataset, we can evaluate the 

model on the dataset itself through the evaluate function:

model.evaluate(norm_size, norm_price)

You should see some output like this:

0s 2ms/step - loss: 0.0733 - mse: 0.0733

[0.0733143612742424, 0.0733143612742424]

The returned vector contains the values of the loss function and metric 

functions, respectively—in our case, since we used mse for both, they are 

the same.

Figure 1-4. Linear regression model loss evolution over training
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Finally, let’s see how the linear model actually looks against our dataset 

and let’s start to use it to make predictions. First, define a predict function 

that will

 1. Take a list of house sizes as input and normalize 

them against the mean and standard deviation of 

your training set

 2. Query the linear model to get the predicted prices

 3. Denormalize the output using the mean and 

standard deviation of the training set to convert the 

prices in thousands of dollars

def predict_prices(*x):

    x = normalize(x, dataset_stats['size'])

     return denormalize(model.predict(x), dataset_

stats['price'])

Figure 1-5. Plotting your linear model against the dataset
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And let’s use this function to get some predictions of house prices:

predict_prices(90)

array([[202.53752]], dtype=float32)

The “predict” function will return a list of output associated to your 

inputs, where each item is a vector containing the predicted values (in 

this case, vectors of unitary size, because our model has a single output 

unit). If you look back at Figure 1-2, you’ll see that a predicted price of 

202.53752 for size = 90 doesn’t actually look that far from the distribution of 

the data—and that’s good. To visualize how our linear model looks against 

our dataset, let’s plot the dataset again and let’s calculate two points on the 

model in order to draw the line:

# Draw the linear regression model as a line between the first 

and

# the last element of the numeric series. x will contain the 

lowest

# and highest size (assumption: the series is ordered) and y 

will

# contain the price predictions for those inputs.

x = [size[0], size.iat[-1]]

y = [p[0] for p in predict_prices(*x)]

# Create a new figure and plot both the input data points  

and the

# linear model approximation.

fig = plt.figure()
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data_points = fig.add_subplot()

data_points.scatter(size, price)

data_points.set_xlabel(columns[0])

data_points.set_ylabel(columns[1])

model_line = fig.add_subplot()

model_line.plot(x, y, 'r')

The output of the preceding code will hopefully look like Figure 1-5. 

That tells us that the line calculated by the model isn’t actually that far 

from our data. If you happen to see that your line is far from the model, 

it probably means that you haven’t trained your model on enough data, 

or the learning rate is too high/too low, or that there’s no strong linear 

correlation between the metrics in your dataset and maybe you need a 

higher polynomial model, or maybe that there are many “outliers” in your 

model—that is, many data points outside of the main distribution that 

“drag” the line out.

1.4.7  Saving and loading your model

Your model is now loaded in memory in your notebook, but you will lose it 

once the Jupyter notebook stops. You may want to save it to the filesystem, 

so you can recover it later without going through the training phase again. 

Or you can include it in another script to make predictions. Luckily, it’s 

quite easy to save and load Keras models on the filesystem—the following 

examples, however, will assume that you are using a version of  

TensorFlow \geq 2.0:
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def model_save(model_dir, overwrite=True):

    import json

    import os

    os.makedirs(model_dir, exist_ok=True)

     # The TensorFlow model save won't keep track of the labels of

     # your model. It's usually a good practice to store them in a

    # separate JSON file.

     labels_file = os.path.join(model_dir, 'labels.json')

    with open(labels_file, 'w') as f:

        f.write(json.dumps(list(columns)))

     # Also, you may want to keep track of the x and y mean and

     # standard deviation to correctly normalize/denormalize your

    # data before/after feeding it to the model.

    stats = [

        dict(dataset_stats['size']),

        dict(dataset_stats['price']),

    ]

     stats_file = os.path.join(model_dir, 'stats.json')

    with open(stats_file, 'w') as f:

        f.write(json.dumps(stats))

         # Then, save the TensorFlow model using the save primitive

        model.save(model_dir, overwrite=overwrite)
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You can then load the model in another notebook, script, application, 

and so on (bindings of TensorFlow are available for most of the 

programming languages in use nowadays) and use it for your predictions:

def model_load(model_dir):

    import json

    import os

    from tensorflow.keras.models import load_model

    labels = []

     labels_file = os.path.join(model_dir, 'labels.json')

    if os.path.isfile(labels_file):

        with open(labels_file) as f:

            labels = json.load(f)

    stats = []

     stats_file = os.path.join(model_dir, 'stats.json')

    if os.path.isfile(stats_file):

        with open(stats_file) as f:

            stats = json.load(f)

    m = load_model(model_dir)

    return m, stats, labels

model, stats, labels = model_load(model_dir)

price = predict_prices(90)
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1.5 Multivariate linear regression

So far we have explored linear regression models with one single input 

and output variable. Real-world regression problems are usually more 

complex, and the output features are usually expressed as a function of 

multiple variables. The price of a house, for instance, won’t depend only 

on its size but also on its construction year, number of bedrooms, presence 

of extras such as garden or terrace, distance from the city center, and so 

on. In such a generic case, we express each input data point as a vector 

x x x x
n

n= ¼( )Î1 2
, , , R , and the regression expression seen in Equation 1.2 

is reformulated as

 
h x x x x x

n n

i

n

i iq q q q q q q( ) = + + +¼+ = +
=

å0 1 1 2 2 0

1
 

(1.17)

By convention, the input vector in case of multivariate regression 

is rewritten as x x x x x
n

n= ¼( )Î +

0 1 2

1
, , , , R , with x0 = 1, so the preceding 

expression can be written more compactly as
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(1.18)

Or, by using the vectorial notation, the hypothesis function can be 

written as the scalar product between the vector of parameters q  and the 

vector of features x :
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(1.19)
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Keep in mind that, by convention, vectors are represented as columns 

of values. The T notation denotes the transposed vector, so the vector 

represented as a row. By multiplying a row vector for a column vector, 

you get the scalar product of the two vectors, so q T
x  is a compact way to 

represent the scalar product of q  into x .

So the mean squared error cost function in Equation 1.8 can be 

rewritten in the multivariate case as

 

J
m

x y
i

m

j

n

j j
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Or, using the vectorial notation:

 
J

m
x y

i

m
T i i

q q( ) = -( )
=

( ) ( )å
1

2 1

2

 
(1.21)

Since the inputs are no longer unitary, we are no longer talking of 

lines on a plane, but of hyper-surfaces in an n-dimensional space—they 

are a 1D line in a 2D space defined by one variable, a 2D plane in a 

3D space defined by two variables, a 3D space in a 4D space defined 

by three variables, and so on. The cost function, on its side, will have 

q q q q= ¼( )Î +

0 1

1
, , , n

nR  parameters—while it was a paraboloid surface in 

a 3D space in the univariate case, it will be an n + 1-dimensional surface 

in the case of n input features. This makes the multivariate case harder 

to visualize than the univariate, but we can still rely on our performance 

metrics to evaluate how well the model is doing or break down the linear 

n-dimensional surface by feature to analyze how each variable performs 

against the output feature.
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By applying the generic vectorial equation for gradient descent shown 

in Equation 1.10, we can also rewrite the parameters’ update formulas 

in Equations 1.11 and 1.12 in the following way (remember that x0 = 1 by 

convention):

 
q q

a
qj

k

j

k

i

m
T i i

j

i

m
x y x

+( ) ( )

=

( ) ( ) ( )= - -( )å
1

1  
(1.22)

We should now have all the tools also to write a multivariate regression 

algorithm with numpy alone:

import numpy as np

def gradient_descent(x, y, theta, alpha):

    m = len(x)

    n = len(theta)

    new_theta = np.zeros(n)

    # Perform the gradient descent on theta

    for i in range(m):

         # s = theta[0] + (theta[1]*x[1] + .. + theta[n]*x[n]) - 

y[i]

        s = theta[0]

        for j in range(1, n):

            s += theta[j]*x[i][j-1]

        s -= y[i]

        new_theta[0] += s

        for j in range(1, n):
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            new_theta[j] += s * x[i][j-1]

    return theta - (alpha/m) * new_theta

def train(x, y, steps, alpha=0.001):

    # Initialize theta randomly

     theta = np.random.randint(low=0, high=10, 

size=len(x[0])+1)

    # Perform the gradient descent <steps> times

    for i in range(steps):

        theta = gradient_descent(x, y, theta, alpha)

    # Return the linear function associated to theta

    def model(x):

        y = theta[0]

        for i in range(len(theta)-1):

            y += theta[i+1] * x[i]

        return y

    return model

These changes will make the linear regression algorithm analyzed for 

the univariate case work also in the generic multivariate case.

In the preceding code, I have expanded all the vectorial operations into 

for statements for sake of clarity, but keep in mind that most of the real 

regression algorithms out there perform vector sums and scalar products 

using native vectorial operations if available. You should have noticed 

by now that the gradient descent is a quite computationally expensive 

procedure. The algorithm goes over an m-sized dataset for epochs times 
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and performs a few vector sums and scalar products each time, and each 

dataset item consists of n features. Things get even more computationally 

expensive once you perform gradient descent on multiple nodes, like in a 

neural network. Expressing the preceding steps in vectorial form allows to 

take advantage of some optimizations and parallelizations available either 

in the hardware or the software. I’ll leave it as a take-home exercise to write 

the preceding n-dimensional gradient descent algorithm using vectorial 

primitives.

Before jumping into a practical example, let me spend a few words on 

two quite important topics in multi-feature problems: feature selection and 

training/test set split.

1.5.1  Redundant features

Adding more input features to your model will usually make your model 

more accurate in real-world examples. In the first regression problem we 

have solved, our model could predict the price of a house solely based on 

its size. We know by intuition that adding more features from real-world 

examples usually would make a price prediction more accurate. We know 

by intuition that if we also input features such as the year of construction 

of the house, the average price of the houses on that road, the presence of 

balconies or gardens, or the distance from the city center, we may get more 

accurate predictions. However, there is a limit to that. It is quite important 

that the features that you feed to your model are linearly independent from 

each other. Given a list of vectors x x x
m1 2

, , ,¼[ ] , a vector xi  in this list is 

defined as linearly dependent if it can be written as

 

x xki j

j

m

j=
=

å
1  

(1.23)
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with k k k k
m

m
= ¼[ ]Î1 2

, , , R . In other words, if a feature can be expressed as 

a linear combination of any other number of features, then that feature is 

redundant. Example of redundant features include

• The same price expressed both in euros and in dollars

• The same distance expressed both in meters and in feet 

or in meters and kilometers

• A dataset that contains the net weight, the tare weight, 

and the gross weight of a product

• A dataset that contains the base price, the VAT rate, and 

the final price of a product

The preceding scenarios are all examples of features that are linear 

combinations of other features. You should remove all the redundant 

features from your dataset before feeding it to a model; otherwise, the 

predictions of your model will be skewed, or biased, toward the features 

that make up the derived feature(s). There are two ways of doing this:

 1. Manually: Look at your data, and try to understand 

if there are any attributes that are redundant—that 

is, features that are linear combinations of other 

features.

 2. Analytically: You will have m inputs in your dataset, 

each represented by n features. You can arrange 

them into an m × n matrix X m n
Î

´R . The rank of 

this matrix, ρ(X), is defined as its number of linearly 

independent vectors (rows or columns). We can 

say that our dataset has no redundant features if its 

associated matrix X is such that

 
r X m n( ) = ( )min ,  (1.24)
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If ρ(X) = min(m,n)–1, then the dataset has one linearly dependent 

vector. If ρ(X) = min(m,n)–2, then it has two linearly dependent vectors, 

and so on. Both numpy and scipy have built-in methods to calculate the 

rank of a matrix, so that may be a good way to go if you want to double- 

check that there are no redundant features in your dataset.

It’s also equally important to try and remove duplicate rows in your 

dataset, as they could “pull” your model in some specific ranges. However, 

the impact of duplicate rows in a dataset won’t be as bad as duplicate 

columns if m ≫ n—that is, if the number of data samples is much greater 

than the number of features.

1.5.2  Principal component analysis

An analytical (and easy to automate) way to remove redundant features 

from your training set is to perform what’s known as principal component 

analysis, or PCA. PCA is especially useful when you have a really high 

number of input features and performing a manual analysis of the functional 

dependencies could be cumbersome. PCA is an algorithm for feature 

extraction, that is, it reduces the number of dimensions in an n-dimensional 

input space A by mapping the points in A to a new k- dimensional space A′, 

with k ≤ n, such that the features in A′ are linearly independent from each 

other—or, in other words, they are orthogonal to each other.

The math behind PCA may seem a bit hard at a first look, but it relies on 

a quite intuitive geometric idea, so bear with me the next couple of formulas.

The first step in PCA is feature normalization, as we have seen it in 

Equation 1.13:

 

ˆ , ,x
x

i n
i

i x

x

=
-

= ¼
m

s
for 1

 
(1.25)

with μx denoting the arithmetic mean of x  and σx its standard deviation.
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Then, given a normalized training set with input features 

x x x x
n

= ¼[ ]1 2
, , , , we calculate the covariance matrix of x  as
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You may recall from linear algebra that the product of two vectors in 

the form row into column, x yT , is what’s usually called scalar product or 

dot product and it returns a single real number, while the product of two 

vectors in the form column into row, x yT , returns an n × n sized matrix, 

and that’s what we get with the preceding covariance matrix. The intuition 

behind the covariance matrix of a vector with itself is to have a geometrical 

representation of the input distribution—it’s like a multi-dimensional 

extension of the concept of variance in the case of one dimension.

We then proceed with calculating the eigenvectors of cov x x,( ) . 

The eigenvector of a matrix is defined as a non-zero vector that remains 

unchanged (or at most is scaled by a scalar λ, called eigenvalue) when 

we apply the geometric transformation described by the matrix on it. 

For example, consider the spinning movement of our planet around its 

axis. The rotation movement can be mapped into a matrix that, given any 

point on the globe, can tell where that point will be located after applying 

a rotation to it. The only points whose locations don’t change when the 

rotation is applied are those along the rotation axis. We can then say that 

the rotation axis is the eigenvector of the matrix associated to the rotation 

of our planet and that, at least in this specific case, the eigenvalue for that 

vector is λ = 1—the points along the axis don’t change at all during the 

rotation; they are not even scaled. The case of the rotation of a sphere has a 

Chapter 1  IntroduCtIon to MaChIne LearnIng



49

single eigenvector (the rotation axis), but other geometric transformations 

might have multiple eigenvectors, each with a different associated 

eigenvalue. To formalize this intuition, we say that, given a matrix A n n
Î

´R  

that describes a certain geometric transformation in an n-dimensional 

space, its eigenvector v  must be a vector that is at most scaled by a factor λ 

when we apply A to it:

 Av v= l  (1.27)

By grouping v  in the preceding equation, we get

 
v A I

n
-( ) =l 0  (1.28)

Figure 1-6. Principal component analysis of a normalized dataset. 
The vectors in green indicate the components that are more influential 
in the distribution of the data. You may want to map your input data 
to this new system of coordinates. You can also select only the largest 
vector without actually losing a lot of information
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where In is the identity matrix (a matrix with 1s on the main diagonal and 

0s everywhere else) of size n × n. The preceding vectorial notation can be 

expanded into a set of n equations, and by solving them, we can get the 

eigenvalues λ of A. By replacing the eigenvalues in the preceding equation, 

we can then get the eigenvectors associated to the matrix.

There is a geometric intuition behind computing the eigenvectors of 

the auto-covariance matrix. Those eigenvectors indicate in which direction 

in the n-dimensional input space you have the highest “spread” of the 

data. Those directions are the principal components of your input space, 

that is, the components that are more relevant to model the distribution 

of your data, and therefore you can map the original space into the newer 

space with lower dimensions without actually losing much information. If 

an input feature can be expressed as the linear combination of some other 

input features, then the covariance matrix of the input space will have two 

or more eigenvectors with the same eigenvalue, and therefore, the number 

of dimensions can be collapsed. You can also decide to prune some 

features that only marginally impact the distribution of your data, even 

if they are not strictly linearly dependent, by choosing the k eigenvectors 

with the k highest associated eigenvalues—intuitively, those are the 

components that matter the most in the distribution of your data—an 

example is shown in Figure 1-6.

Once we have the principal components of our input space, we need to 

transform our input space by reorienting its axes along the eigenvectors—

note that those eigenvectors are orthogonal to each other, just like the axes 

of a Cartesian plane. Let’s call W the matrix constructed from the selected 

principal components (eigenvectors of the auto-covariance matrix). Given 

a normalized dataset represented by a matrix X, its points will be mapped 

into the new space through

 X̂ XW=  (1.29)
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We will then train our algorithms on the new matrix X̂ , whose number 

of dimensions will be equal or lower than the initial number of features 

without significant information loss.

Many Python libraries for machine learning and data science already 

feature some functions for principal component analysis. An example that 

uses “scikit-learn”:

import numpy as np

from sklearn.decomposition import PCA

# Input vector

x = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], 

[3, 2]])

# Define a PCA model that brings the components down to 2

pca = PCA(n_components=2)

# Fit the input data through the model

pca.fit(x)

PCA has some obvious advantages—among those, it reduces 

the dimensionality of an input space with a high number of features 

analytically, reduces the risk of overfit, and improves the performance 

of your algorithms. However, it maps the original input space into a new 

space built out of the principal components, and those new synthetic 

features may not be intuitive to grasp as real-world features such as “size,” 

“distance,” or “time.” Also, if you pick a number of components that is 

lower than the actual number of components that influence your data, 

you may lose information, so it’s a good practice to usually compare the 

performance of a model before and after applying PCA to check whether 

you have removed some features that you actually need.
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1.5.3  Training set and test set

The first linear regression example we saw was trained on a quite small 

dataset; therefore, we decided to both train and test the model on the same 

dataset. In all the real-world scenarios, however, you will usually train your 

model on very large datasets, and it’s important to evaluate your model 

on data points that your model hasn’t been trained on. To do so, the input 

dataset is conventionally split into two:

 1. The training set contains the data points your 

model will be trained on.

 2. The test set contains the data points your model will 

be evaluated on.

This is usually done by splitting your dataset according to a predefined 

fraction—the items on the left of the pivot will make the training set, and 

the ones on the right will make the test set, as shown in Figure 1-7. A few 

observations on the dataset split:

Figure 1-8. A look at the Auto MPG dataset

Figure 1-7. Example of a 70/30 training set/test set split
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 1. The split fraction you want to choose depends 

largely on your dataset. If you have a very large 

dataset (let’s say millions of data points or more), 

then you can select a large training set split (e.g., 

90% training set and 10% test set), because even if 

the fraction of the test set is small, it will still include 

tens or hundreds of thousands of items, and that will 

still be significant enough to evaluate your model. 

In scenarios with smaller dataset, you may want 

to experiment with different fractions to find the 

best trade-off between exploitation of the available 

data for training purposes and statistic significance 

of the test set selected to evaluate your model. 

In other words, you may want to find the trade-

off between exploitation of the available data for 

training purposes and evaluation of your model on a 

statistically significant set of data.

 2. If your dataset is sorted according to some feature, 

then make sure to shuffle it before performing the 

split. It is quite important that the data your model 

is both trained and evaluated on is as uniform as 

possible.

1.5.4  Loading and visualizing the dataset

In this example, we will load the Auto MPG dataset [15], a dataset that 

includes several parameters about 1970s–1980s cars (cylinders, weight, 

acceleration, year, horsepower, fuel efficiency, etc.). We want to build 

a model that predicts fuel efficiency of a car from those years given the 

respective input features.
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First, let’s download the dataset, load it in our notebook, and take a 

look at it:

import pandas as pd

import matplotlib.pyplot as plt

dataset_url = 'http://archive.ics.uci.edu/ml/' +

              'machine-learning-databases/' +

              'auto-mpg/auto-mpg.data'

# These are the dataset columns we are interested in

columns = ['MPG','Cylinders','Displacement', 

'Horsepower',

           'Weight', 'Acceleration', 'Model Year']

# Load the CSV file

dataset = pd.read_csv(dataset_url, names=columns,

    na_values = "?", comment='\t',

    sep=" ", skipinitialspace=True)

# The dataset contains some empty cells - remove them

dataset = dataset.dropna()

# Take a look at the last few records of the dataset

dataset.tail()
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You will probably see a table like the one shown in Figure 1-8. Let’s 

also take a look at how the features correlate to each other. We will use the 

seaborn library for it and in particular the pairplot method to visualize 

how each metric’s data points plot against each of the other metrics:

sns.pairplot(dataset[["MPG", "Cylinders", "Displacement", 

"Weight"]], diag_kind="kde")

You should see a plot like the one shown in Figure 1-9. Each graph 

plots the data points broken down by a pair of metrics: that’s a useful 

way to spot correlations. You’ll notice that the number of cylinders, 

displacement, and weight are quite related to MPG, while other metrics are 

more loosely related against each other.

We will now split the dataset into two, as shown in Section 1.5.3. The 

training set will contain 80% of the data and the test set the remaining 20%:

# Random state initializes the random seed for randomizing 

the

# seed. If None then it will be calculated automatically

train_dataset = dataset.sample(frac=0.8, random_state=1)

# The test dataset contains all the records after the split

test_dataset = dataset.drop(train_dataset.index)

# Fuel efficiency (MPG) will be our output label, so drop

# it from the training and test datasets

train_labels = train_dataset.pop('MPG')

test_labels = test_dataset.pop('MPG')
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And normalize the data:

def normalize(x, stats):

    return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

    return x * stats['std'] + stats['mean']

Figure 1-9. A look at how each feature relates to each other feature 
through seaborn
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data_stats = train_dataset.describe().transpose()

label_stats = train_labels.describe().transpose()

norm_train_data = normalize(train_dataset, data_stats)

norm_train_labels = normalize(train_labels, label_stats)

Then, just like in the previous example, we will define a linear model 

and try to fit it through our data:

from tensorflow.keras.experimental import LinearModel

model = LinearModel(len(train_dataset.keys()),

    activation='linear', dtype='float32')

model.compile(optimizer='rmsprop', loss='mse', metrics=['mae', 

'mse'])

history = model.fit(norm_train_data, norm_train_labels, 

epochs=200,

    verbose=0)

The differences this time are

• The model in the previous example had a single input 

unit; this one has as many input units as the columns of 

our training set (excluding the output features).

• We use two evaluation metrics this time, both mae and 

mse. In most of the cases, it’s a good practice to keep a 

primary evaluation metric other than the loss function.
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Let’s plot again the loss function over the training iterations:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a figure like the one shown in Figure 1-10.

Also, we can now evaluate the model on the test set and see how it 

performs on data it has not been trained on:

Figure 1-10. Loss function progress over the multivariate regression 
training
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norm_test_data = normalize(test_dataset, data_stats)

norm_test_labels = normalize(test_labels, label_stats)

model.evaluate(norm_test_data, norm_test_labels)

Keep in mind that so far we have been using a single regression unit: 

things can be even better when we pack many of them into a neural 

network. We can pick some values from the test set and see how far the 

model’s predictions are from the expected labels:

sampled_data = norm_test_data.iloc[:10]

sampled_labels = denormalize(norm_test_labels.iloc[:10], 

label_stats)

predictions = [p[0] for p in

     denormalize(model.predict(sampled_data), label_stats)]

for i in range(10):

    print(f'predicted: {predictions[i]} ' +

        f'actual: {sampled_labels.iloc[i]}')

Plotting these values on a bar chart should result in a figure like the 

one shown in Figure 1-11.

You can then perform minimal changes to the model_save and model_

load we have encountered in Section 1.4.7 to save and load your model 

from another notebook or application.
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1.6  Polynomial regression

We now know how to create linear regression models on one or 

multiple input variables. We have seen that these models can be 

geometrically represented by n-dimensional linear hyper-surfaces in the 

n + 1-dimensional space that consists of the n-dimensional input features 

plus the output feature y—the model will be a line that goes through 

points in a 2D space in the case of univariate linear regression, it will be 

a 2D surface that goes through points in a 3D space if you have two input 

features and one output variable, and so on.

However, not all the problems in the real world can be approximated 

by linear models. Consider the dataset under  <REPO_DIR>/datasets/

house-size-price-2.csv. It’s a variant of the house size vs. price dataset 

we have encountered earlier, but this time, we hit a plateau between 

the 100–130 square meters range (e.g., houses of that size or with that 

particular room configuration don’t sell much in the location), and then 

the price keeps increasing again after 130 square meters. Its representation 

is shown in Figure 1-12. You can’t really capture the grow-and-stop-and-grow 

Figure 1-11. Comparison between the predicted and expected values
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sequence like this with a straight line alone. Worse, if you try to fit a straight 

line through this dataset through the linear procedure we have analyzed 

earlier, the line could end up being “pulled” down by the points around the 

plateau in order to minimize the overall mean squared error, ending up 

with a loss of accuracy also on the remaining points in the dataset.

In cases like this, you may instead want to leverage a polynomial 

model. Keep in mind that linear regression can be modelled, in its simplest 

form, as hθ(x) = θ0 + θ1x, but nothing prevents us from defining a hypothesis 

function hθ(x) represented by higher powers of the x. For instance, this 

house size-price non-linear model might not be very well represented by 

a quadratic function—remember that a parabola first goes up and then 

down, and you don’t really expect house prices to go significantly down 

when the size increases. However, a cubic model could work just  

fine—remember that a cubic function on a plane looks like two  

“half-parabolas” stuck together around an inflection point, which is also 

the point of symmetry of the function. So the hypothesis function for this 

case could be something like this:

 
h x x x xq q q q q( ) = + + +

0 1 2

2

3

3

 (1.30)

Figure 1-12. Example of house size vs. price dataset that can’t be 
accurately represented by a linear model
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A clever way to find the values of q  that minimize the preceding 

function is to treat the additional powers of x as additional variables, 

perform a variable substitution, and then treat it as a generic multivariate 

linear regression problem. In other words, we want to translate the 

problem of gradient descent of a polynomial function into a problem of 

multivariate linear regression. For instance, we can take the preceding 

hθ(x) expression and rewrite it as a function of x , where

 
x x x x= éë ùû1

2 3
, , ,  (1.31)

So hθ(x) can be rewritten as

 
h x x x xxq q q q q( ) = + + +

0 0 1 1 2 2 3 3  
(1.32)

The hypothesis written in this form is the same as the one we have 

seen in Equation 1.17. We can therefore proceed and calculate the values 

of θ through the linear multivariate gradient descent procedure we have 

analyzed, as long as you keep a couple of things in mind:

 1. The values of q  that you get out of the algorithm 

must be plugged into the cubic hypothesis function 

in Equation 1.30 when you make predictions, not 

into the linear function we have seen in that section.

 2. Feature scaling/input normalization is always 

important in regression models, but it’s even more 

important when it comes to polynomial regression 

problems. If the size of a house in square meters is 

in the range [0, …, 103], then its squared value will 

be in the range [0, …, 106] and its cubic value will be 

in the range [0, …, 109]. If you don’t normalize the 

inputs before feeding them to the model, you will 
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end up with a model where the highest polynomial 

terms weigh much more than the rest, and such a 

model may simply not converge.

 3. In the preceding example, we have selected a cubic 

function because it looks like a good fit for the data 

at a glance—some growth, an inflection point, and 

then growth again. However, this won’t be true 

for all the models out there. Some models could 

perform better with higher polynomial powers  

(e.g., 4th or 5th powers of the x), or maybe fractional 

powers of the x—for example, square or cubic roots. 

Or, in the case of multiple input features, some 

relations could be well expressed by the product or 

ratio of some features. The important takeaway here 

is to always look at your dataset before reasoning 

on what’s the best analytical function that can fit it. 

Sometimes you may also want to try and plot a few 

sample hypothesis functions to see which one has a 

shape that best fits your data.

Overall, translating a polynomial regression problem into a 

multivariate regression problem is a good idea because, as we have seen 

previously, the cost function of a linear model is usually expressed by a 

simple n-dimensional quadratic model, which is guaranteed to have only 

one point with null gradient and that point is also the global minimum. 

In such configuration, a well-designed gradient descent algorithm should 

be able to converge toward the optimal solution by simply following 

the direction of the gradient vector, without getting “stuck” on bumps 

and valleys that you may get when you differentiate higher polynomial 

functions.
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1.7  Normal equation

Gradient descent is definitely among the most popular approaches for 

solving regression problems. However, it’s not the only way. Gradient 

descent, as we have seen, finds the parameters q  that optimize the cost 

function by iteratively “walking” along the direction of the gradient until 

we hit the minimum. The normal equation provides instead an algebraic 

way to calculate q  in one shot. Such an approach, as we will see soon, has 

some advantages as well as some drawbacks compared to the gradient 

descent. In this section, we will briefly cover what the normal equation 

is and how it is derived, without going too much in depth into the formal 

proof. I will assume that you have some knowledge of linear algebra and 

vector/matrix operations (inverse, transpose, and product). If that’s not 

the case, however, feel free to skip this section, or just take note of the final 

equation. The normal equation provides an analytical alternative to the 

gradient descent for minimization problems, but it’s not strictly required to 

build models.

We have seen that the generic cost function of a regression model can 

be written as

 
J

m
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(1.33)

And the problem of finding the optimal model is a problem of finding 

the values of q  such that the gradient vector of J q( )  is zero:
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Or, in other words:

 

¶

¶
( ) = = ¼

q
q

j

J j n0 0for , ,
 

(1.35)

If you expand the scalar products and sums in Equation 1.33 for a 

X
m n

Î
´R  dataset, where n is the number of features, m is the number of 

input samples, and y m
ÎR  represents the vector of the output features, 

and solve the partial derivatives, you get n + 1 linear equations, where 

q Î
+Rn 1  represents the variables. Like all systems of linear equations, also 

this system can be represented as the solution of a matrix × vector product, 

and we can solve the associated equation to calculate q . It turns out that 

q  can be inferred by solving the following equation:

 
q = ( )

-

X X X yT T1

 (1.36)

where X is the m × n matrix associated to the input features of your dataset 

(with an added x0 = 1 term at the beginning of each vector, as we have 

previously seen), XT denotes the transposed matrix (i.e., the matrix you 

get by swapping rows and columns), the −1 operator denotes the inverse 

matrix, and y  is the vector of output features of your dataset.

The normal equation has a few advantages over the gradient descent 

algorithm:

 1. You won’t need to perform several iterations nor 

risk getting stuck or diverging: the values of q  are 

calculated straight away by solving the system of 

n + 1 associated gradient linear equations.

 2. As a consequence, you won’t need to choose a 

learning rate parameter α, as there’s no incremental 

learning procedure involved.
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However, it has a few drawbacks:

 1. The gradient descent will still perform well even 

if the number of input features n is very large. A 

higher number of feature translates in a larger 

scalar product in your θ-update steps, and the 

complexity of a scalar product increases linearly 

when n grows. On the other hand, a larger value of 

n means a larger XTX matrix in Equation 1.36, and 

calculating the inverse of a very large matrix is a very 

computationally expensive procedure (it has a O(n3) 

complexity). It means that the normal equation 

could be a good solution for solving regression 

problems with a low number of input features, while 

gradient descent will perform better on datasets 

with more columns.

 2. The normal equation works only if the XTX matrix is 

invertible. A matrix is invertible only if it is a full rank 

square matrix, that is, its rank equals its number 

of rows/columns, and therefore, it has a non-zero 

determinant. If XTX is not full rank, it means that 

either you have some linearly dependent rows 

or columns (therefore, you have to remove some 

redundant features or rows) or that you have more 

features than dataset items (therefore, you have to 

either remove some features or add some training 

examples). These normalization steps are also 

important in gradient descent, but while a non-

invertible dataset matrix could result in either a 

biased or non-optimal model if you apply gradient 

descent, it will fail on a division by zero if you apply 

the normal equation. However, most of the modern 
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frameworks for machine learning also work in 

the case of non-invertible matrices, as they use 

mathematical tools for the calculation of the pseudo-

inverse such as the Moore-Penrose inverse. Anyway, 

even if the math will still work, keep in mind that a 

non-invertible characteristic matrix is usually a flag 

for linearly dependent metrics that may affect the 

performance of your model, so it’s usually a good 

idea to prune them before calculating the normal 

equation.

1.8  Logistic regression

Linear regression solves the problem of creating models for numeric 

predictions. Not all the problems, however, require predictions in a 

numerically continuous domain. We have previously mentioned that 

classification problems make up the other large category of problems in 

machine learning, that is, problems where instead of a raw numeric value 

you want your model to make a prediction about the class, or type, of the 

Figure 1-13. Plot of the logistic function
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provided input (e.g., Is it spam? Is it an anomaly? Does it contain a cat?). 

Fortunately, we won’t need to perform many changes to the regression 

procedure we have seen so far in order to adapt it to classification problems. 

We have already learned to define a h xq ( )  hypothesis function that maps 

x
n

ÎR  to real values. We just need to find a hypothesis function that outputs 

values such that 0 1£ ( )£h xq
 and define a threshold function that maps 

the output value to a numeric class (e.g., 0 for false and 1 for true). In other 

words, given a linear model q T
x , we need to find a function g such that

 
h x g xT

q q( ) = ( )  
(1.37)

 
0 1£ ( )£h xq  

(1.38)

A common choice for g is the sigmoid function, or logistic function, 

which also gives this type of regression the name of logistic regression. 

The logistic function of a variable z has the following formulation:

 
g z

e z( ) =
+ -

1

1  
(1.39)

The shape of this type of function is shown in Figure 1-13. The values 

of the function will get close to zero as the function decreases and close 

to one as the function increases, and the function has an inflection point 

around z = 0 where its value is 0.5. It is therefore a good candidate to map 

the outputs of linear regression into the [0…1] range, with a strong non- 

linearity around the origin to map the “jump.” By plugging our linear 

model into Equation 1.39, we get the formulation of the logistic regression:

 
h g

e
x xT

xTq q
q( ) = ( ) =

+ -

1

1  
(1.40)
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Let’s stick for now to the case of logistic regression with a single 

output class (false/true). We’ll see soon how to expand it to multiclass 

problems as well. If we stick to this definition, then the logistic curve 

earlier expresses the probability for an input to be “true.” You can interpret 

the output value of the logistic function as a Bayesian probability—the 

probability that an item does/does not belong to the output class given its 

input features:

 
h Px xq ( ) = ( )“ ”true |  

(1.41)

Given the shape of the sigmoid function, we can formalize the 

classification problem as follows:
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Since g(z) ≥ 0.5 when z ≥ 0, we can reformulate the preceding 

expression as
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(1.43)

The idea behind logistic regression is to draw a decision boundary. If 

the underlying regression model is a linear model, then imagine drawing 

a line (or a hyper-surface) across your data. The points on the left will 

represent the negative values and the points on the right the positive 

values. If the underlying model is a more complex polynomial model, then 

the decision boundary can be more sophisticated in modelling non-linear 

relations across the data points.
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Let’s make an example: consider the dataset under <REPO_DIR>/

datasets/spam-email-1.csv. It contains a dataset for spam email 

detection, and each row contains the metadata associated to an email.

 1. The first row, blacklist_word_count, reports how 

many words in the email match a blacklist of words 

often associated to spam emails.

 2. The second row, sender_spam_score, is a score 

between 0 and 1 assigned by a spam filter that 

represents the probability that the email is spam on 

the basis of the sender’s email address, domain, or 

internal domain policy.

 3. The third row, is_spam, is 0 if the email was not 

spam and 1 if the email was spam.

We can plot the dataset to see if there is any correlation between the 

metrics. We will plot blacklist_word_count on the x axis and sender_

spam_score on the y axis and represent the associated dot in red if it’s 

spam and in blue if it’s not spam:

Figure 1-14. Plot of the spam email dataset
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import pandas as pd

import matplotlib.pyplot as plt

csv_url = 'https://raw.githubusercontent.com/BlackLight' +

           '/mlbook-code/master/datasets/spam-email-1.csv')

data = pd.read_csv(csv_url)

# Split spam and non-spam rows

spam = data[data['is_spam'] == 1]

non_spam = data[data['is_spam'] == 0]

columns = data.keys()

fig = plt.figure()

# Plot the non-spam data points in blue

non_spam_plot = fig.add_subplot()

non_spam_plot.set_xlabel(columns[0])

non_spam_plot.set_ylabel(columns[1])

non_spam_plot.scatter(non_spam[columns[0]], non_

spam[columns[1]], c='b')

# Plot the spam data points in red

spam_plot = fig.add_subplot()

spam_plot.scatter(spam[columns[0]], spam[columns[1]], c='r')
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You should see a graph like the one shown in Figure 1-14. We can 

visually see that we can approximately draw a line on the plane to split 

spam from non-spam. Depending on the slope of the line we pick, we may 

let a few cases slip through, but a good separation line should be accurate 

enough to make good predictions in most of the cases. The task of logistic 

regression is to find the parameters of θ that we can plot in Equation 1.40 

to get a good prediction model.

1.8.1  Cost function

Most of the principles we have seen in linear regression (definition of a 

linear or polynomial model, cost/loss function, gradient descent, feature 

normalization, etc.) also apply to logistic regression. The main difference 

consists in how we write the cost function J q( ) . While the mean squared 

error is a metric that makes sense when you want to calculate what’s the 

mean error between your prediction of a price and the actual price, it 

doesn’t make much sense when you want to find out if you predicted the 

correct class of a data point or not, with a given discrete number of classes.

Figure 1-15. Example plots of the logistic regression cost function 
J q( )  with one input variable
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We want to build a cost function that expresses the classification 

error—that is, whether or not the predicted class was correct or wrong—

and how “large” the classification error is, that is, how “certain/uncertain” 

about its classification the model was. Let’s rewrite the cost function J q( )  

we have defined earlier by calling C h yxq ( )( ),  its new argument:
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When it comes to logistic regression, the function C is often expressed 

in this form (we will stick to a binary classification problem for now, i.e., 

a problem where there are only two output classes, like true/false; we will 

expand it to multiple classes later):
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The intuition is as follows:

 1. If yi = 1 (the class of the i-th data points is positive) 

and the predicted value h xq ( )  also equals 1, then 

the cost will be zero (–log(1) = 0, i.e., there was no 

prediction error). The cost will gradually increase 

as the predicted value gets far from 1. If yi = 1 and 

h xq ( ) = 0 , then the cost function will assume an 

infinite value (− log (0) = ∞). In real applications, of 

course, we won’t use infinity, but we may use a very 

large number instead. The case where the real value 

is 1 and the predicted value is 0 is like a case where 
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a model predicts with 100% confidence that it’s 

raining outside while instead it’s not raining—if it 

happens, you want to bring the model back on track 

by applying a large cost function.

 2. Similarly, if yi = 0 and the predicted value also equals 

0, then the cost function will be null (–log(1 – 0) = 0). 

If instead yi = 0 and h xq ( ) =1 , then the cost will go 

to infinity.

In the case of one input and one output variable, the plot of the 

cost function will look like in Figure 1-15. If we combine together the 

expressions in Equation 1.45, we can rewrite the logistic regression cost 

function in Equation 1.44 as
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We have compacted together the two expressions of Equation 1.45. If 

yi = 1, then the first term of the sum in square brackets applies, and if yi = 0, 

then the second applies.

Just like in linear regression, the problem of finding the optimal 

values of q  is a problem of minimizing the cost function—that is, 

perform gradient descent. We can therefore still apply the gradient update 

steps shown in Equation 1.9 to get the direction to the bottom of the 

cost function surface. Additionally, just like in linear regression, we are 

leveraging a convex cost function—that is, a cost function with a single 

null-gradient point that also happens to be the global minimum.

By replacing h xq ( )  in the preceding formula with the logistic function 

defined in Equation 1.40 and solving the partial derivatives in Equation 1.9, 

we can derive the update step for q  at the k + 1-step for logistic regression:
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You’ll notice that the formulation of the θ-update step is basically the 

same as we saw for the linear regression in Equation 1.22, even though 

we’ve come to it through a different route. And we should have probably 

expected it, since our problem is still a problem of finding a line that fits 

our data in some way. The only difference is that the hypothesis function 

hθ in the linear case is a linear combination of the q  parameters and the 

input vector (q T
x ), while in the logistic regression case, it’s the sigmoid 

function we have introduced in Equation 1.40.

1.8.2  Building the regression model 
from scratch

We can now extend the gradient descent algorithm we have previously seen 

for the linear case to work for logistic regression. Let’s actually put together 

all the pieces we have analyzed so far (hypothesis function, cost function, 

and gradient descent) to build a small framework for regression problems. In 

most of the cases, you won’t have to build a regression algorithm from scratch, 

but it’s a good way to see how the concepts we have covered so far work in 

practice. First, let’s define the hypothesis function for logistic regression:

import math

import numpy as np

def h(theta):

    """

    Return the hypothesis function associated to

    the parameters theta

"""
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def _model(x):

    """

    Return the hypothesis for an input vector x

    given the parameters theta. Note that we use

    numpy.dot here as a more compact way to

    represent the scalar product theta*x

    """

    ret = 1./(1 + math.exp(-np.dot(theta, x)))

    # Return True if the hypothesis is >= 0.5,

    # otherwise return False

    return ret >= 0.5

return _model

Note that if we replace the preceding hypothesis function with the 

scalar product q T
x , we convert a logistic regression problem into a linear 

regression problem:

import numpy as np

def h(theta):

    def _model(x):

        return np.dot(theta, x)

    return _model
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Then let’s code the gradient descent algorithm:

def gradient_descent(x, y, theta, alpha):

    """

    Perform the gradient descent.

    :param x: Array of input vectors

    :param y: Output vector

    :param theta: Values for theta

    :param alpha: Learning rate

    """

    # Number of samples

    m = len(x)

    # Number of features+1

    n = len(theta)

    new_theta = np.zeros(n)

    # Perform the gradient descent on theta

    for j in range(n):

        for i in range(m):

             new_theta[j] += (h(theta)(x[i]) - y[i]) * x[i][j]

             new_theta[j] = theta[j] - (alpha/m) * new_theta[j]

        return new_theta
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Then a train method, which consists of epochs gradient descent iterations:

def train(x, y, epochs, alpha=0.001):

    """

    Train a model on the specified dataset

    :param x: Array of normalized input vectors

    :param y: Normalized output vector

    :param epochs: Number of training iterations

    :param alpha: Learning rate

    """

    # Set x0=1

    new_x = np.ones((x.shape[0], x.shape[1]+1))

    new_x[:, 1:] = x

    x = new_x

    # Initialize theta randomly

     theta = np.random.randint(low=0, high=10, size=len(x[0]))

    # Perform the gradient descent <epochs> times

    for i in range(epochs):

        theta = gradient_descent(x, y, theta, alpha)

    # Return the hypothesis function associated to

    # the parameters theta

    return h(theta)
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Finally, a prediction function that, given an input vector, the stats of the 

dataset, and the model

 1. Normalizes the input vector

 2. Sets x0 = 1

 3. Returns the prediction according to the given hypothesis hθ

def normalize(x, stats):

    return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

    return stats['std'] * x + stats['mean']

def predict(x, stats, model):

    """

     Make a prediction given a model and an input vector

    """

# Normalize the values

x = normalize(x, stats).values

# Set x0=1

x = np.insert(x, 0, 1.)

# Get the prediction

return model(x)
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Last, an evaluate function that given a list of input values and the 

expected outputs evaluates the accuracy (number of correctly classified inputs 

divided by the total number of inputs) of the given hypothesis function:

def evaluate(x, y, stats, model):

    """

    Evaluate the accuracy of a model.

    :param x: Array of input vectors

    :param y: Vector of expected outputs

    :param stats: Input normalization stats

    :param model: Hypothesis function

    """

    n_samples = len(x)

    ok_samples = 0

    for i, row in x.iterrows():

        expected = y[i]

        predicted = predict(row, stats, model)

        if expected == predicted:

            ok_samples += 1

    return ok_samples/n_samples
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Now, let’s give this framework a try by training and evaluating a model 

for spam detection on the dataset that we have previously loaded:

columns = dataset_stats.keys()

# x contains the input features (first two columns)

inputs = data.loc[:, columns[:2]]

# y contains the output features (last column)

outputs = data.loc[:, columns[2]]

# Get the statistics for inputs and outputs

x_stats = inputs.describe().transpose()

y_stats = outputs.describe().transpose()

# Normalize the features

norm_x = normalize(inputs, x_stats)

norm_y = normalize(outputs, y_stats)

# Train a classifier on the normalized data

spam_classifier = train(norm_x, norm_y, epochs=100)

# Evaluate the accuracy of the classifier

accuracy = evaluate(inputs, outputs, x_stats, spam_classifier)

print(accuracy)

Hopefully you should measure a >85% accuracy, which isn’t that bad 

if we look back at how the original data is distributed, and the fact that we 

defined a linear decision boundary.
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1.8.3  The TensorFlow way

Now that we have learned all the nuts and bolts of a regression model, let’s 

build a logistic regression model to solve our spam classification problem 

with TensorFlow. Only few tweaks are required to the example we have 

previously seen for linear regression:

from tensorflow.keras.experimental import LinearModel

columns = dataset_stats.keys()

# Input features are on the first two columns

inputs = data.loc[:, columns[:2]]

# Output feature is on the last column

outputs = data.loc[:, columns[2:]]

# Normalize the inputs

x_stats = inputs.describe().transpose()

norm_x = normalize(inputs, x_stats)

# Define and compile the model

model = LinearModel(2, activation='sigmoid', dtype='float32')

model.compile(optimizer='sgd', loss='sparse_categorical_

crossentropy',

    metrics=['accuracy', 'sparse_categorical_crossentropy'])

# Train the model

history = model.fit(norm_x, outputs, epochs=700, verbose=0)
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A few changes in the preceding code compared to the linear model:

• We use the sigmoid activation function, as defined in 

Equation 1.39, instead of linear.

• We use the sgd optimizer—stochastic gradient descent.

• We use a categorical cross-entropy loss function, 

similar to the one defined in Equation 1.46.

• We use accuracy (i.e., number of correctly classified 

samples divided by the total number of samples) as a 

performance metric.

Let’s see how the loss function progressed over the training iterations:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

Figure 1-16. Loss function of the logistic model over training epochs
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plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a graph like the one shown in Figure 1-16.

All the other model methods we saw for the linear regression 

case—evaluate, predict, save, and load—will also work for the logistic 

regression case.

1.8.4  Multiclass regression

We have so far covered logistic regression on multiple input features but 

one single output class—true or false. Extending logistic regression to work 

with multiple output classes is a quite intuitive process called one vs. all.

Suppose that in the case we saw earlier, instead of a binary spam/ 

non- spam classification, we had three possible classes: normal, important, 

and spam. The idea is to break down the original classification problem 

into three binary logistic regression hypothesis functions hθ, one per class:

 1. A function h xq

1( ) ( )  to model the decision boundary 

normal/not normal

 2. A function h xq

2( ) ( )  to model the decision boundary 

important/not important

 3. A function h xq

3( ) ( )  to model the decision boundary 

spam/not spam
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Each hypothesis function represents the probability that an input 

vector belongs to a specific class. Therefore, the hypothesis function with 

the highest value is the one the input belongs to. In other words, given an 

input x  and c classes, we want to pick the class for x  that has the highest 

hypothesis function value associated:

 
max
0£ £

( ) ( )
i c

i
h xq  

(1.48)

The intuition is that the hypothesis function with the highest value 

represents the class with the highest probability, and that’s the prediction 

we want to pick.

1.8.5  Non-linear boundaries

So far we have explored logistic regression models where the argument  

of the sigmoid is a linear function. However, just like in linear regression,  

not all the classification problems out there can be modelled by drawing  

linear decision boundaries. The distribution of the dataset in Figure 1- 17  

is definitely not well fit for a linear decision boundary, but an elliptic 

decision boundary could do the job quite well. Just like we saw in linear 

regression, a non-linear model function can effectively be translated into a 

Figure 1-17. Plot of a dataset with a non-linear decision boundary
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linear multivariate function through variable substitution, and we can then 

minimize that function in order to get the values of q . In the case earlier, a 

good hypothesis function could be something that looks like this:

 
h g x x x x x x xxq q q q q q q( ) = + + + + +( )0 0 1 1 2 2 3 1 2 4 1

2

5 2

2

 
(1.49)

We can then apply the variable substitution procedure we have already 

seen to replace the higher polynomial terms with new variables and proceed 

with solving the associated multivariate regression problem with a linear 

model to get the values of q . Just like in linear regression, there is no limit 

to the number of additional polynomial terms you can add to your model 

to better express complex decision boundaries—take into account anyway 

that adding too many polynomial terms could end up modelling decision 

boundaries that may overfit your data. As we will see later, another common 

approach for detecting non-linear boundaries is to connect multiple logistic 

regression units together—that is, building a neural network.
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CHAPTER 2

Neural Networks

Now that we have an idea of how to use regression to train a model, it’s 

time to explore the next step—fitting multiple regression units into a 

neural network.

Neural networks come as a better approach to solve complex 

regression or classification problems with non-linear dependencies 

between the input features. We have seen that linear regression and 

logistic regression with linear functions can perform well if the features of 

the underlying data are bound by linear relations. In that case, fitting a line 

(or a linear hyper-surface) through your data is a good strategy to train a 

model. We have also seen that more complex non-linear relations can be 

expressed by adding more polynomial terms to the hypothesis function—

for instance, quadratic or cubic relations or terms with the product of some 

features.

There’s a limit, however, to adding more synthetic features as extra 

polynomial terms. Consider the example shown in Figure 2-1. A linear 

division boundary may not be that accurate in describing the relation 

between the input features. We can add more polynomial terms (e.g., x1x2, 

x
1

2 , or x x
1 2

2 ), and that could indeed fit our data well, but we’re running 

the risk of overfitting the dataset (i.e., produce a model that performs well 

on the specific training input but is not generic enough for other cases). 

Moreover, the approach may still be sustainable if we only have two 

input features. Try, however, to picture a real-case scenario like the price 

of a house, which can depend on a vast amount of features that are not 

https://doi.org/10.1007/978-1-4842-6821-6_2#DOI


88

necessarily linearly related, and you’ll notice that the number of additional 

polynomial features required by your model will easily explode. Training 

a regression model with multiple input features and multiple non-linear 

terms has two big drawbacks:

• The relations between the features are hard to visualize.

• It’s an approach prone to the combinational explosion. 

You’ll be likely to end up with a lot of features to express 

all the relations. Such a model will be very expensive to 

train while still prone to overfit.

And things only get trickier when we move to the domain of image 

detection. Keep in mind that a computer only sees the raw pixel values in 

an image, and objects that are pictured in an image often have non-linear 

boundaries.

When your data consists of many input features and when the 

distribution of your data or the boundaries between its classes are non- 

linear, it’s usually a better idea to organize your regression classifiers into a 

network to better capture the increased complexity, instead of attempting 

to build a single regression classifier that maybe comes with a lot of 

Figure 2-1. Example of non-linear boundary between two variables 
that can be tricky to express with logistic regression alone
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polynomial terms to best describe your training set but can easily end up 

overfitting your data without actually providing good predictions. The idea 

is similar to the way most of the animals (and humans) learn. The neurons 

in our system are strongly wired together through a structure akin to the 

one shown in Figure 2-2, and they continuously interact through small 

variations of electric potential both with the periphery of the body (on 

fibers called axons, each connected to a neuron, if you bundle more axons 

together you get a nerve) and with other neurons (on connection fibers 

called dendrites). The connections between the axon from a neuron and 

the dendrites of the next neuron are called synapses. The electrochemical 

signals sent over these connections are what allows animals to see, hear, 

smell, or feel pain and what allows us to consciously move an arm or a 

leg. These connections, however, constantly mutate over a lifetime span. 

Connections between neurons are forged on the basis of the sensory 

signals that are gathered from the environment around and on the basis 

of the experience we collect. We don’t innately know how to grasp an 

object the right way, but we gradually learn it within the first months of our 

lives. We don’t innately know how to speak the language of our parents, 

but we gradually learn it as we are exposed to more and more examples. 

Physically, this happens by a continuous process of fine-tuning of the 

connections between neurons in order to optimize how we perform a 

certain task. Neurons quickly specialize to perform a certain task—those 

in the back of our head process the images from our eyes, while those 

in the pre-frontal cortex are usually in charge for abstract thought and 

planning—by synchronizing with their connected neighbors. Neurons 

quickly learn to fire electrochemical impulses or stay silent whenever the 

net input signals are above or below a certain threshold, and connections 

are continuously re-modelled, according to the idea that neurons that fire 

together wire together more strongly. And the nervous system is in charge 

not only of creating new connections to better react to the environment 

but also to keep the number of connections optimized—if each neuron 

was strongly connected to all other neurons, our bodies would require a 
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lot of energy just to keep all the connections running—so neural paths that 

aren’t used for a certain period of time eventually lose their strength; that’s 

why, for example, we tend to forget notions that we haven’t refreshed for a 

long time.

Artificial neural networks are modelled in a way that closely mimics 

their biological counterparts. Not only that, but the fields of artificial 

intelligence and neuroscience have a longstanding tradition of influencing 

each other—artificial neural networks are modelled mimicking the 

biological networks, while progress in the development of artificial neural 

networks often sheds light on overlooked features of the brain. Imagine 

each neuron in an artificial neural network as a computational unit with a 

certain number of inputs, which approximately map the dendrites in the 

physical cell. Each input “wire” has a weight that can be adjusted during 

the learning phase, which approximately maps the synapses of the 

physical neuron. The neuron itself can be seen as a computational unit 

that performs the weighted sum of its inputs and applies a non-linear 

function (like the logistic curve we have previously seen) to map an on/off 

output state. If the output of the activation function is higher than a certain 

threshold, then the neuron will “fire” a signal. The output of each neuron 

can either be fed to another neuron or be one of the terminal outputs of 

your network. The simplest case of a network is the perceptron (see 

Figure 2-2. Principal components of a physical neuron
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Figure 2-3), similar to what Frank Rosenblatt designed in 1957 to try and 

recognize people in images. It’s a network with a single neuron with a set 

of n + 1 input features x x x x x
n

= ¼[ ]0 1 2
, , , ,  (just like in the case of 

regression, we are using an accessory x0 = 1 input to express the linear 

model in a more compact way). Each of the inputs is connected to a 

neuron through a vector of n + 1 weights theta
n

= ¼[ ]q q q q
0 1 2
, , , , . The unit 

will output an activation value a x( ), defined as the weighted sum of its 

inputs:

 
a xx

i

n

i i( ) =
=

å
0

q
 

(2.1)

Such activation value will go through an activation function hθ(x), 

usually the sigmoid/logistic function we saw in Equation 1.39, that will 

map the real value onto a discrete on/off value:

 
g z

e z( ) =
+ -

1

1  
(2.2)

Such a learning unit can work for some simple cases, but in more 

complex cases, it will face the same issues encountered by Rosenblatt’s 

first perceptron. Spotting people or objects in images is a learning problem 

Figure 2-3. Logic model of a network with a single neuron (perceptron)
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with a high number of inputs—in its most naive implementation, each 

pixel of the image will be an input of the model. A single neuron isn’t 

sufficient in general to model such a high level of variability. That’s why 

nowadays it’s much more common to pack multiple perceptron units 

into a neural network, where each output of each neuron is connected 

to the input of the neuron in the next layer, as shown in Figure 2-4. By 

packing more interconnected neurons, a learning unit usually becomes 

better at recognizing complex patterns in problems with a high number of 

dimensions. The example in the figure shows a neural network with three 

layers. This is a quite common architecture for simple cases, but we’ll soon 

see that problems with more nuanced patterns can better be solved with 

networks with more intermediate layers. By convention, the first layer is 

called input layer, and it usually has as many neurons as the dimensions 

of the input datasets (plus one, with x0 = 1). The second and any other 

intermediate layer is usually called hidden layer, as they do most of the 

inference work, but they are not directly connected neither to the inputs 

nor to the outputs of the network. The last layer of the network is called 

output layer, and it contains as many outputs as the output classes/labels 

(one true/false class in the case in the figure, but we’ll soon see network 

with a higher number of outputs as well).

Note that the notation ai

j( )  denotes the activation value of the i-th 

unit in the j-th layer of the network, while h xQ ( )  denotes the hypothesis 

(or prediction) of the model in function of the configured parameters Θ, 

calculated as

 
h

e
x

xQ Q
( ) =

+ -

1

1  

While in the regression case the parameters (or weights) of the model 

were a vector, in this case, each j-th layer will have an associated Θ(j) matrix 

to map the weights between the j-th and the j + 1-th layer. Remember that 

each of the units in j is connected to each of the units in j + 1, so Θj will be 
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a m × n matrix, where m is the number of units in j and n is the number 

of units in j + 1. Therefore, we can visualize Θ as a 3D tensor. Intuitively, a 

tensor is a multi-dimensional generalization of a matrix. In our case, each 

j-th “slice” of the tensor Θ represents the 2D matrix of weights of the j-th 

layer.

If we put together all the pieces of information we’ve gathered so far, 

we can formalize the activation function of each neuron in the figure as 

follows:

• The units in the first layer are usually mapped one-

to- one to the input features, unless you want to assign 

each feature a different weight:

 a x i n
i i

1
0

( )
= = ¼for  

Figure 2-4. Logic model of an artificial neural network with three 
layers
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• The activation values of the units in the second layer is 

the logistic function of the weighted sum of the inputs:

 
a g x x x xn n1
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• The activation value of the unit in the last layer is the 

logistic function of the weighted sum of the outputs of 

the units from the previous layer:
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We can generalize the formula for the activation function of the i-th 

unit in the j-th layer as follows:
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(2.3)

Or, using a vectorial notation, we can describe the vector of activation 

values of the units in the j-th layer as

 
a ag

j j j
T

( ) -( ) -( )
= ( )Q

1 1

 
(2.4)
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Such algorithm is commonly known as forward-propagation, and it’s 

how a neural network with a certain set of weights makes predictions given 

some input data—the intuition is basically to propagate the input values 

through each node, from input to output layer. Forward-propagation can 

be seen as a generalization of the hypothesis function used in logistic 

regression in a multi-unit scenario. A couple of observations:

• Keep in mind that g is the logistic function, and we use 

it on each layer to “discretize” the weighted sum of the 

inputs.

• We have so far set x0 = 1, so that each of the input 

vectors actually has size n + 1. We keep this practice 

also for neural networks, each j-th layer will have its 

own bias unit a
j

0
( ) . We can assume that these bias 

values always equal one for now, but we will see 

later on how to tune the bias vector to improve the 

performance of our models.

• In the example we’ve considered so far both the input 

and hidden layer have n + 1 units. While the input 

layer has indeed n + 1 units in most of the cases, 

where n is the dimension of the inputs, and the output 

layer mostly has as many units as the number of 

output classes, there is no constraint on the number 

of units in the hidden layer. Actually, it’s a common 

practice in many cases to have more units (at least in 

the first hidden layer) than the number of the input 

dimensions, but keep an eye on the performance of 

your model to make sure that you don’t keep adding 

hidden units beyond a point that doesn’t actually 

improve your performance metrics.
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• As I mentioned earlier, there’s no constraint on the 

number of hidden layers either. Indeed, adding more 

hidden layers will usually improve the performance 

of your model in many cases, as your network will be 

able to detect more nuanced patterns. However, just 

like the good practice for the number of units, you may 

also not want to overengineer your model by adding 

more layers than those actually required by the type 

of classification problems you want to solve, since 

adding either too many intermediate layers or units 

may have no measurable impact on the network in 

the best case and deteriorate the performance of the 

network because of overfit in the worst case. Again, the 

best practice is to try different number of layers with 

different number of units and see when you hit the 

“sweet spot” between good model performance metrics 

and good system performance metrics.

2.1  Back-propagation

If forward-propagation is the way a neural network makes predictions, 

back-propagation is the way a neural network “learns”—that is, how it 

adjusts its tensor of weights Θ given a training set. Just like we did for 

regression, also for neural networks, the learning phase can be inferred by 

defining a cost function that we want to optimize.

In the general case, you will have a neural network with K outputs, 

where those outputs are the classes that you want to detect. Each output 

expresses the probability, between 0 and 1, that a certain input belongs 

to that class. If the input of your network are pictures of items of clothing, 

for example, and you want to detect whether a picture contains a shirt, a 

skirt, or a pair of trousers, you may want to model a neural network with 
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three output units. If a picture contains a shirt, for instance, you want 

that network to output something close to [1, 0, 0]. If it’s a pair of trousers, 

you want it to output something like [0, 0, 1], and so on. So instead of a 

hypothesis function with a single output variable, like we have seen so far, 

you will have a hypothesis functions h x
K

Q ( )ÎR  with a vector of K values, 

one for each class. The prediction class of your model will usually be the 

index of the h xQ ( )  function with the highest value:

 
class argmax= ( )( )

i

i
h xQ  

In the previous example, if you get a hypothesis vector like 

[0.8,0.2,0.1] for a certain picture, and your output units are set in the order 

[shirt, skirt, trousers], then it’s likely that that picture contains a shirt.

So the job of the cost function of a neural network is to minimize  

the classification error between the i-th vector of labels in the training set, 

y
i( ) , and the predicted output vector h xQ ( ) . We have seen this type of cost 

function already in the case of a true/false binary classification problem in 

Equation 1.46, when we covered logistic regression:
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(2.5)

If instead of one single label y(i) for the i-th input sample we have a 

vector of K items, and instead of a one-dimensional vector of weights θ 

we have a 3D tensor of weights Θ, with each slice representing the weight 

matrix to map one layer to the next, then the cost function can be rewritten 

as follows:
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(2.6)

The second term in the sum (multiplied by 
l

2m
) is the conventional 

way to encode the bias inputs of each layer (the weights of the x
j

0
( )  

elements)—as the sum of the squares of the weights between the l-th and 

l + 1-th layer. λ is the bias rate, or regularization rate of the network, and 

it defines the inertia of the network against changes—a high value in this 

case leads to a more conservative model, that is, a model that will be slower 

to apply corrections to its weights, while a low value leads to a model that 

will adapt faster to changes, at the risk of overfitting the data. Training 

phases usually start with a lower bias rate in order to quickly adjust to 

corrections at the beginning which slowly decreases over time.

Just like in the case of regression, finding the optimal values of Θ is a 

problem of minimizing the preceding cost function; therefore, perform 

some form of gradient descent to find its minimum. In neural networks, 

this process is usually done layer by layer, starting from the output layer 

and adjusting the weights backward layer by layer (that’s why it’s called 

back-propagation). The intuition is to first compare the outputs of the 

network against the expected samples, and as we adjust the weights of the 

units in the output layer to match the output more closely, we calculate 

new intermediate expected results for the units in the previous layer, and 

we proceed with adjusting the weights until we get to the first layer.

Let’s consider a network with L = 4 layers and two outputs like the one 

shown in Figure 2-5. If we present it with an input x x x x= [ ]1 2 3
, ,  and a 

vector of expected labels y y y= [ ]1 2
,  and apply forward-propagation to it, 

we can calculate its hypothesis function h x
i

Q

( )( )ÎR2 :
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Then, just like in the case of regression, we want to find the values of 

Θ (which is a 3D tensor in this case) that minimize the cost function J(Θ). 

In other words, for each layer l, we want to calculate its gradient vector 

∇J(Θ(l)). We want the values of this vector to be as close as possible to zero:

 
Ñ ( ) = " £ £ -

( )
J l L

l
Q

set

0 1 1  

It means that the partial derivatives of J(Θ(l)) with respect to its weights 

Qij

l( )  should be set to zero, so we can derive the optimal weights out of the 

resulting equations:

Figure 2-5. Example of a neural network with L = 4 layers, n = 3 
inputs, and K = 2 outputs
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We then define a quantity d j

l( )  as the error coefficient of the j-th unit in 

the l-th layer, starting from the last layer, where the coefficient is defined as

 
d j j ja y j

4 4
1 2

( ) ( )
= - =for ,  

Or, in vectorial form:

 d
4 4( ) ( )
= -a y  

Taking into account the error on the output layer, we calculate the 

correction to the weights that connect those units to the units in the 

previous layers in the following way:

  

There are quite a few things happening here so let’s dig term by term:

• Θ(3) is the matrix containing the weights that connect 

the second to the third layer of the network. If, like 

in Figure 2-5, the third layer has three units and the 

second layer has four units, then Θ(3) is a 3 × 4 matrix.

• We perform a matrix-vector product between the 

transposed matrix of the weights in a layer and the 

vector of δ correction coefficients calculated at the 

following layer. The result is a vector that contains as 

many elements as the number of units in the layer.

CHAPTER 2  NEURAL NETWORKS



101

• We then perform an element-wise product (or 

Hadamard product, denoted by ⊙) between that vector 

and the vector of partial derivatives of the activation 

function of the units in the layer (using the notation we 

have seen in Equation 2.4). The element-wise product 

is intuitively the element-by-element product between 

two vectors with the same size, for example:

  

• ∇g is the gradient vector of the activation function 

(usually the sigmoid function) calculated for each unit.

We can generalize the preceding expression to express the correction 

coefficients for the units in the l-th layer as

  

The activation function g a
l l

T

Q
-( ) -( )( )1 1

, as seen in Equation 2.4, 

expresses the activation values of the units in the l-th layer, a(l). By solving 

the derivatives, we can infer this formulation for δ(l):

  (2.7)

It is possible to prove (although the process of derivation is quite 

lengthy and we’ll skip it in this chapter) that the following relation exists 

between the partial derivatives of the cost function and the coefficients d  

(ignoring for now the bias coefficients and the normalization rate λ):

 

¶

¶
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( )

( ) +( )

Q
Q

ij

l j

l

i

l
J a d

1

 
(2.8)
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Since the partial derivatives of the cost function are exactly what we 

want to minimize, we can use the findings of Equations 2.7 and 2.8 to 

define how a network with L layers “learns” through cycles of forward and 

back-propagation on a training set:

• Initialize the weights Θ in your model, either randomly or 

according to some heuristic, and initialize a tensor Δ that 

contains the partial derivatives of the cost function for 

each weight, with Dij

l( )
= 0  for each connection of the i-th 

unit in the l + 1-th layer with the j-th unit in the l-th layer.

• Iterate over all the items in a normalized training set 

X x y x y
m m

= ( )¼ ( ){ }( ) ( ) ( ) ( )1 1
, , , , .

• For each i-th training item, set a x
i1( ) ( )

= —the input 

units of the network will be initialized with each of the 

normalized input vectors.

• Perform forward-propagation to compute the 

activation values of the units in the next layers, a
l( ) , 

with 1 < l ≤ L:

 
a g a

l l l
T

( ) -( ) -( )
= ( )Q

1 1

 

• Set h x a
i L

Q

( ) ( )( ) = —the prediction of your network 

equals the activation values of the units in the last layer.

• Start applying back-propagation by computing the  

δ vector for the last layer, as the difference between  

the predicted and expected values:

 d
L L i

a y( ) ( ) ( )
= -  
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• Continue back-propagation by computing the δ vectors 

for the other layers, starting from the L − 1-th layer and 

moving all the way back until the input layer:

  

• Update the tensor of the corrections to be applied to 

the weights:

 
D Dij
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ij

l
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i

l
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= +
set

d
1

 

• After iterating on the training set, we will have 

our tensor Δ fully calculated. We can now take 

regularization into account by introducing for each 

layer the bias unit (j = 0) and dividing each of the 

partial derivatives by the number of samples in the 

training set:
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• We know that
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• We can therefore plug these values into a gradient 

descent logic and use a learning rate α to update each 

weight according to these quantities:

 
q q aij
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• Apply this algorithm for a given number of epochs on 

your training set or until some convergence criteria are 

satisfied, and you’ve got all the ingredients to train a 

network.

2.2  Implementation guidelines

There are a few good practices that you may want to follow in order to 

optimize the performance of a neural network:

• Randomly initialize the weights of the network. In most 

of the cases, a random initialization of the weights 

within a preset interval [−ϵ, ϵ] is the best way to 

initialize your network. If you initialize the weights with 

zeros (or any other constant), you’ll have predictable 

output values on the first iterations. A random 

initialization breaks this symmetry, and it’s more likely 

to point your model in the right direction if you train 

it multiple times than a solution that always initializes 

the weights in the same way.

• Perform a gradient check of your model before or during 

the training phase. Unlike the cost functions that we 

have seen in the case of linear and logistic regression, 

the cost function of a neural network isn’t guaranteed 

to be convex. It means that it’s not guaranteed that the 

model converges on the global minimum if you follow 

the direction of the gradient vector from any point, 

because you are no longer rolling a ball down a bowl- 

shaped hill. It means that you may want to check both 
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that (1) the initial direction you picked for the gradient 

descent actually leads to a noticeable reduction of the 

cost function (i.e., you are not stuck in a local valley) 

and (2) the learning rate is well calibrated—if it’s too 

low, you may be going down too slowly, and if it’s too 

high, the model may overshoot the minimum and not 

converge at all.

• Experiment with the architecture of your network. 

There’s no deterministic rule about how many layers 

and how many units are the best for solving a certain 

problem. A general rule of thumb suggests that 

networks with more intermediate layers and more units 

in these layers usually perform better. However, you 

may want to avoid overengineering as well: a simple 

network to recognize handwritten digits in 8x8 pixel 

images doesn’t necessarily need 10 intermediate layers 

with hundreds of units each. Not only that, but after 

a certain point adding more units or layers results in 

overfitting. So experiment different architectures, see 

how increasing the number of units or layers affects the 

performance of your model on the same training set 

and number of training iterations, and pick an optimal 

point just before the boost in performance given by a 

larger network is negligible.

• Always normalize your input data before feeding the 

network. I’ve already stressed this enough when it 

comes to regression, and it’s also important in neural 

networks.
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2.2.1  Underfit and overfit

There is always a healthy balance to seek when you train any model 

between high bias/low variance (or underfit) and high variance/low 

bias (or overfit). We have seen these issues already when we covered 

regression models, and we have discovered the importance of plotting 

your normalized dataset to get an idea of how the data is distributed before 

picking a function that has either fewer polynomial terms (underfit, the 

line/surface of the model is too “smooth” and doesn’t really follow the 

distribution of the data) or too many (overfit, the line/surface of the model 

follows exactly the distribution of the data but fails in accuracy when 

provided with any data point that doesn’t look like those it was trained on). 

These observations also apply when it comes to neural networks. The best 

way to evaluate the performance of your network against underfit/overfit 

is, again, to split your dataset into two—training set and test set. Train your 

network on the training set and evaluate how the cost function progress 

over the training iterations:

• If the cost function doesn’t decrease (or, worse, 

increases, or goes through up/down cycles), then the 

model is not converging toward a minimum: make 

sure that the data is normalized, revise your gradient 

descent strategy, or reduce the learning rate α.

• If the cost function decreases too slowly, then it’s not 

fast enough at adapting to the changes presented in 

the training set: you may want to either increase the 

learning rate α, decrease the normalization rate λ, or 

add more features to your data.
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• If the cost function decreases in a satisfying way and 

your model seems to make accurate predictions on the 

training set, then evaluate it on the test set (this time 

without training: only perform forward-propagation, 

not back-propagation). If the cost function or the 

accuracy of your model is much worse on the test set, 

then either

 1. You have not performed a good split between 

training data and test data—this is usually 

achieved by shuffling the items in the dataset 

before the split to guarantee a more uniform 

distribution of the data.

 2. The network hasn’t been presented with enough 

data points to efficiently detect patterns in your 

dataset—you can fix it by adding more data points.

 3. The dataset contains too many features: you may 

want to apply principal component analysis or 

any type of dimensionality reduction algorithm 

to remove the features that are either redundant 

(linear combinations of other features) or don’t 

really influence the distribution and patterns of 

your data.

 4. The network overfits the points in the training set. 

In this case, you may want to either experiment 

with a network with a lower number of units/layers 

or pick a higher value for the regularization rate 

λ in order to increase the “inertia” of the network 

against the “swings” in your dataset.
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As we have seen, once we have found a way toward convergence given 

a training set, we have mainly two parameters that we can tune to adjust 

the performance of the model: the learning rate α and the regularization 

rate λ. We have seen that α determines how fast the network learns when 

presented with new data and λ expresses the “resistance” of the network 

against change. Sometimes the dataset is split into three instead of two in 

order to separately adjust these two values:

• First, we train the model on the training set and make 

sure that its cost function constantly decreases. The 

goal of this phase is to find the values of the weights Θ 

that minimize the cost function and a value of α (or a 

function α(t) that returns α over the iteration t) that is 

a reasonable trade-off between speed and robustness 

(expressed as the tendency of the model to converge 

regardless of the starting point).

• Then, we use the cross-validation set to adjust λ. 

The goal of this phase is to pick a value of λ (or a 

function λ(t) that returns λ over the iteration t) that is a 

reasonable trade-off between underfit and overfit.

• Finally, we evaluate the model on the test set to evaluate 

the overall performance of the model on data points 

that it hasn’t seen yet. We evaluate both the cost 

function and any accessory performance metrics of the 

model on this data and use them to establish whether 

the model performs well enough or it requires more 

training, a different parameter tuning, or a different 

architecture.
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Another good practice is to write small tests to check the performance 

of your model. So far we have covered the mathematical tools that help us 

perform quantitative analysis on the overall performance of the model, but 

in a real-world problem, you may have a clearer idea of what your model 

should predict in specific cases. So pick a few cases both significant enough 

and diverse enough from your data and write some tests that measure how 

many of those cases the model got right or wrong. This is a useful tool to 

effectively keep track of the evolution of your model over time. Use such 

tests to see if a specific change in your model leads to a better classification 

for these “core cases” and to make sure that later changes to the model 

don’t deteriorate its performance on these data points.

Another general good practice is to keep in mind that machine 

learning models are still pieces of software, and like any other piece of 

software, they should go through a similar process. Using tools like Jupyter 

notebooks to interactively visualize the data and train your models adds 

a lot of value and productivity to the process, but keep in mind that the 

output of your work shouldn’t be only a model file, trained by a notebook 

that will be either tossed away or saved on a personal laptop. The output of 

your work when you train a model should include, besides the model file:

• A clean (and preferably versioned) codebase that can be 

reused to re-train the model, debug it, or train different 

models. Extract the common parts of your codebase 

(like saving and loading models, normalizing the data, 

or initializing a classifier) into reusable modules that 

can be easily imported so you won’t have to reinvent the 

wheel or go down the path of scarcely maintainable copy/

paste. Make scripts out of your notebooks, so the training, 

evaluation, and prediction phases can be easily run on 

other systems as stand-alone entities, without requiring 

the Jupyter environment.
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• Tests for your model, following the guidelines 

previously described.

• Keep in mind that in a real-case application your model 

is usually a block in the chain of a larger business logic. 

In a real application, you usually generate or ingest 

data from somewhere, run some custom logic on this 

data, use your machine learning model to make some 

prediction on the data, and use those predictions to 

run some additional business logic. So it’s good to 

keep in mind that, just like any other module in a more 

complex system, it’s good to design your machine 

learning logic with scalability and inter-communication 

in mind. Reading from a CSV file and printing the 

results on the standard output is a good way to debug 

and test your model, but in a real application, you may 

want to wrap your model into, for instance, a WSGI 

or Flask web application so it’s easy to use it over, for 

example, a REST API. Or design it in a way that it can 

consume queries or training/evaluation commands 

from a message queue or a WebSocket. You may even 

consider deploying it as a Docker microservice if it 

needs to be deployed on multiple environments so you 

don’t have to directly install all the dependencies on 

the target system—and usually it also helps preventing 

the “but it works on my laptop” issue.

• Whenever possible, keep track of the data used to train 

your model. The increased number of applications 

of machine learning in the past few years has been 

accompanied by an increasing number of issues 

related to bad predictions resulting from bad/biased 

data. Companies that train their models on huge 

CHAPTER 2  NEURAL NETWORKS



111

amounts of data struggle to keep track of which biased 

training inputs led to which biased classifications, and 

machine learning models are often treated as black-box 

oracles—we know what they predict, but we can’t tell 

why exactly they made those predictions. That’s why 

it’s increasingly important to keep track of the data that 

you use to train your models and preferably version it/

tag it: it makes it easier to pinpoint at the root cause in 

case of degradation of the model’s performance, and it 

also helps increasing the accountability of the model.

2.3  Error metrics

We have so far analyzed a few metrics to evaluate the performance of a 

model. Among those are the following:

• Mean squared error, often used as the driving cost 

function of the model in regression problems

• Mean absolute error, sometimes used as an additional 

performance metric

• Classification error, used as a driving cost function both 

in logistic regression and neural networks

• Accuracy, defined as number of correct classifications 

divided by the total number of samples, and probably 

one of the most popular performance metrics

Accuracy, however, doesn’t always give an accurate picture of how 

well the model performs for a specific problem. Suppose that you want to 

train a model that detects whether a user who registers to your website is 

a potential bot/scammer/fraudster. In a normal scenario, such users may 

represent just a minority of the traffic on your website, and therefore, your 

CHAPTER 2  NEURAL NETWORKS



112

dataset may picture a situation where 99% of the users are regular users 

and 1% of them are fake. In such a scenario, you may gain accuracy = 99% 

with this simple function:

def is_fake(user):

    return False

The problem with accuracy is that it fails to provide a good picture 

of the actual performance of a model when the classification problem 

involves skewed classes—that is, classes with very different distributions, 

often associated to anomaly detection problems or generally to problems 

that involve the prediction of rare events.

For such cases, it usually helps a more granular approach than looking 

at the overall accuracy. For simplicity, let’s consider a binary classification 

problem: y = 0 identifies a negative data point and y = 1 a positive one. Our 

model makes a prediction for each data point—either h xQ ( ) = 0  (negative 

prediction) or h xQ ( ) =1  (positive prediction). We can define the following 

metrics on the basis of the predicted values:

 1. True positives (TP): Data points labelled as positive 

and predicted as positive (y = 1 and h xQ ( ) =1 )

 2. True negatives (TN): Data points labelled as negative 

and predicted as negative (y = 1 and h xQ ( ) =1 )

 3. False positives (FP): Data points labelled as negative 

but predicted as positive (y = 0 and h xQ ( ) =1 )

 4. False negatives (FN): Data points labelled as positive 

but predicted as negative (y = 1 and h xQ ( ) = 0 )
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Usually these metrics are visualized in a confusion matrix with a 

structure like the one shown in Figure 2-6.

With this new formalism, we can define the accuracy of the model as 

follows:

 
accuracy

TP TN

TP TN FP FN
=

+

+ + +  

Accuracy is the metric that answers the question “Which fraction of the 

available items has been correctly classified?”

We define precision as the metric that answers the question “Which 

fraction of the items predicted as positive is actually positive?”

 
precision

TP

TP FP
=

+  

Figure 2-6. Structure of a confusion matrix. Each cell reports the 
number of items that fit that selected category after a run of validation 
of the model
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While the recall is the metric that answers the question “Which 

fraction of the items labelled as positive has been predicted as positive?”

 
recall

TP

TP FN
=

+  

Let’s apply these two new metrics to the is_fake(user) function 

shown before. Suppose that we are running this naive model that always 

returns False on a test set containing 100 users, where 1 of them is fake and 

99 are regular. We have therefore

• TP = 0

• TN = 99

• FP = 0

• FN = 1

And

• accuracy =
+

+ + +

=
0 99

0 99 0 1
99%

• precision N A=

+

=
0

0 0
/

• recall =
+

=
0

0 1
0%

A recall value of 0 clearly says that something is wrong with the 

classifier, even though the overall accuracy is 99%. Note that precision 

and recall aren’t always measurable: in some limit cases, like our naive 

is_fake(user) function, the denominator may be zero—but at least one of 

the two metrics is usually computable.

You can use these two additional metrics to better evaluate the 

performance of your model and optimize performance in classification 

problems with skewed classes—even at the cost of a trade-off on overall 
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accuracy if required. You can also find trade-offs between these two 

metrics based on your business logic. Suppose that your model predicts 

whether a patient has a cancer on the basis of X-ray images: you can 

optimize either its precision or its recall based on the answer you give to 

the question is it worse to tell healthy patients that they have cancer, or tell 

patients with cancer that they are healthy?

If your model detects potential intrusions from the camera images in 

a bank, you may want to optimize recall—if the cost of a real intrusion is 

very high, then it might be safe to ensure that any potential intrusion is 

detected, even at the cost of a higher number of false positives. If instead 

your model sends notifications to all the employees in a department about 

potential spikes of traffic on a certain system, you may want to prefer 

precision over recall—send a notification when we’re pretty confident that 

there is a spike to prevent spamming the employees with false positives.

Sometimes a metric that combines both precision and recall is 

used to evaluate the performance of a model: the F1 score is defined as 

the harmonic mean of precision and recall and is often used as a more 

granular accuracy metric:

 
F

PR

P R
1

2=
+  

To summarize, so far we have covered

• The intuition behind neural networks, how to use them 

to make predictions (forward-propagation), and how to 

train them (back-propagation)

• How to evaluate the quality of the training 

process—measures to prevent underfit and overfit, 

normalization, regularization, and feature selection
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• Which are the best practices to debug, test, design, 

package, and distribute our machine learning models

• Which accessory performance metrics can be used to 

evaluate the model if we have skewed classes or we 

want to detect anomalies

We now have all the ingredients to start getting our hands dirty with 

some code.

2.4  Implementing a network to recognize 
clothing items

Nowadays it’s relatively easy to implement neural networks using 

libraries like TensorFlow and Keras. I won’t cover a full implementation 

from scratch in Python of forward-propagation and back-propagation 

like I did for regression, but even if you’re unlikely to find yourself in a 

situation where you have to implement the full-blown algorithm yourself, 

I strongly encourage you to try and implement it from scratch, to make 

sure that you grasp all the intuitions behind. After all, it wasn’t that long 

ago that developers had to implement these algorithms themselves—I 

believe that my 12-year-old library for neural networks in C++ is still lost 

somewhere on the old Google Code portal. Even if initializing, compiling, 

and training a model can be done in three lines of Python code nowadays, 

the framework doesn’t take care of normalizing the data, and the 

methods provided by TensorFlow and Keras still require some tuning and 

knowledge about how the algorithms work, if you want to get your model 

to work in a real-world application.

In this section, we’ll cover an example often considered as the new 

hello world of neural networks: the Fashion MNIST dataset originally 

uploaded by Zalando. The traditional MNIST dataset has been used for 

many years to introduce students to machine learning, and it includes 
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a large list of images with handwritten and labelled digits. The Fashion 

MNIST dataset adds a bit more complexity on top of the original 

problem—you’ll have to train a model that detects clothing items from 

pictures. The Fashion MNIST dataset is provided by default on a typical 

TensorFlow+Keras installation, and you can load it like this into your 

notebook:

import tensorflow as tf

from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = \

    fashion_mnist.load_data()

There are ten types of clothing included in the dataset, but their classes 

aren’t directly provided as strings. You can initialize an array with the 

associated class names:

class_names = [ 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 

                'Ankle boot']

By taking a look at the data, we notice that the training set contains 

60,000 images, while the test set contains 10,000 images—in both cases, we 

are dealing with 28x28 pixel black and white images:

train_images.shape

# Output: (60000, 28, 28)

test_images.shape

# Output: (10000, 28, 28)
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And when it comes to the labels, their values are in range 0–9 and can 

be mapped to our class_names vector:

train_labels

# Output: array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)

test_labels

# Output: array([9, 2, 1, ..., 8, 1, 5], dtype=uint8)

When we deal with images, the first thing we want to do is take a look 

at some of the images in the dataset to get hints about the color space, 

range, and look: the images in this dataset are already trimmed to include 

only the clothing item, but in a real-world scenario, you’re likely to be 

provided with large datasets that require some form of preprocessing (like 

trimming, downscaling, or color transformation) before being fed to a 

neural network:

Figure 2-7. Histogram of an image from the Fashion MNIST dataset
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import matplotlib.pyplot as plt

plt.figure()

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()

You’ll see a picture like the one shown in Figure 2-7. We are dealing 

with black and white images, the information about each pixel is encoded 

in one byte, and therefore each pixel has a value between 0 (black) and 

255 (white). The first step when it comes to models that operate on images 

is to normalize them—and in the case of black and white images, this is 

usually done by applying a transformation that translates the [0,255] range 

into a [0.0,1.0] range:

def normalize(images):

    return images / 255.0

train_images = normalize(train_images)

test_images = normalize(test_images)

A quick note about the color space. When it comes to models dealing 

with images, it’s quite important to pick the right color space if you really 

want to boost performance. While RGB is the most common option to 

export images, it’s not necessarily the best format to train a model. Before 

settling on a specific color space for your model, ask yourself this question: 

what kind of information or pattern do I want to detect in these images? 

If your neural network is supposed to be used in a self-driving car to 

recognize the colors of traffic lights, then RGB is a good pick. If you want 

to detect shapes against a background, black and white is usually a better 

pick—it not only makes the model simpler and faster but also more robust, 
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as different pictures of the same object or shape may show different colors 

depending on lighting or environment conditions. Other application may 

perform better with more exotic color spaces. If your model is supposed 

to recognize lighting conditions in a room, for instance, then color spaces 

that take luminosity into account (like YUV or YCbCr) can perform better 

than RGB or grayscale. In other applications where the patterns depend on 

how much color or saturation the images have, color spaces that take those 

metrics into account (like HSL and HSV) can be the best pick. Always keep 

in mind that the color space that you choose influences the pattern that 

the network is able to infer. Not only that, but also choose the right source 

of data for your model depending on what your model is supposed to 

recognize. Images from an optical camera work well if you want to classify 

objects. If instead you want to detect the presence of people, then an 

infrared or thermal camera could provide better performance, because the 

images from an optical camera would have a lot of variability—a person 

can be standing, sitting, or lying in different positions in different parts of a 

room, and you could also have multiple people in the same room, while an 

infrared camera would only provide you with the information your model 

actually needs: “Are there any human-shaped sources of heat around 

36–37°C in the image?” In other applications, you may want to rely on 

more inputs: a model that detects the presence of people can be way more 

accurate if you also integrate data from microphones or other environment 

sensors.

Machine learning is often described as a process where you feed 

data to a model and the model “learns” by itself, but the reality is more 

complex than that. Choosing the right source of information, collecting 

data, removing the redundant information, trimming and transforming 

the data, detecting any potential source of bias, and normalizing the data 

actually make 90% of the performance of your model. The mathematics 

we have explored so far is often implemented in libraries and frameworks 
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nowadays; it is relatively complex, but you won’t have to implement it 

from scratch (even if that doesn’t mean that you don’t need to understand 

how these models work under the hood). What really matters nowadays is 

the quality of the data you use and how good you have been at collecting 

it even before you write the first line of code. Machine learning isn’t like 

feeding data to a model and let the model learn by itself. It’s more similar 

to the way penguins feed their offspring—the adult penguin is in charge 

of fishing, chewing, and pre-digesting the food before feeding it to their 

young ones.

That being said, let’s proceed with our classifier of clothes. A good idea 

is to take a look at how a bunch of images look in the dataset and what’s 

their classification:

plt.figure(figsize=(10,10))

# Plot the first 25 images and their

# associated classes in a 5x5 grid

for i in range(25):

    plt.subplot(5,5,i+1)

    plt.xticks([])

    plt.yticks([])

    plt.grid(False)

    plt.imshow(train_images[i], cmap=plt.cm.binary)

    plt.xlabel(class_names[train_labels[i]])

plt.show()
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You should see a figure like the one shown in Figure 2-8.

If the classification looks right and the data is normalized, let’s proceed 

with building a neural network classifier. This is usually done in Keras 

using the Sequential model that links together multiple custom layers. 

Usually a model that works on image classification problems has the 

following structure:

Figure 2-8. Sampling the first 25 images of the Fashion MNIST 
dataset

CHAPTER 2  NEURAL NETWORKS



123

 1. An input layer that contains as many units as the 

number of pixels of each image. We have seen, 

however, that the input layer of a network is a 

one-dimensional vector of units, while here we are 

dealing with two- dimensional images. The first layer 

therefore is usually of type Flatten, and it “unfolds” 

the two-dimensional images into one-dimensional 

arrays that can be propagated into the next layers. 

We have seen that the images in the Fashion MNIST 

dataset are 28x28 pixel images: it means that our 

first layer will have 28 × 28 = 784 units.

 2. An output layer that has as many units as the 

number of classes that we want to detect. In our 

cases, 10 classes means 10 units in the output layer, 

and the unit with the highest activation value is the 

one we want to associate to a specific data point.

 3. A variable number of hidden layers between the 

input and output layer with a variable number of 

units. We have previously seen that increasing the 

number of intermediate units and layers is a good 

way of improving the accuracy of your model, but 

increasing it too much may lead to overfit—and you 

can usually overcome it either by tuning the number 

of units and layers until you reach a satisfying trade-

off between the accuracy on the training set and test 

set or by increasing the regularization rate so the 

network is more tightly “anchored.” We will use both 

for the output layer and for the intermediate layers 

the Dense Keras layer type, which initializes a layer 

such that each of its units is connected to each of the 

units both in the previous and next layer.
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Putting all together, let’s proceed with writing the code that initializes 

our model:

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(500, activation='sigmoid'),

    keras.layers.Dense(200, activation='sigmoid'),

    keras.layers.Dense(10, activation='softmax')

    ])

This code defines a network with one input layer, two hidden layers, 

and one output layer (keras.Sequential). The first layer takes our 

normalized 28 × 28 image vectors as inputs and transforms them into one-

dimensional vectors (keras.Flatten). The two hidden layers, respectively, 

contain 500 and 200 units (feel free to experiment with the number of units 

and hidden layers and see how it affects the model). They use a sigmoid 

activation function—the same one we have explored so far. The output 

layer has 10 units—as many as the number of classes. The value of each 

unit will express the probability for a given input image to belong to that 

class. We may want to use the softmax activation function for the output 

layer whenever we have multiple classes, and we want to express the value 

of each unit as a probability/confidence level.

Next, just like in the regression models, we want to compile this model 

so it’s ready to be trained:

model.compile(optimizer='adam',

     loss=tf.keras.losses.SparseCategoricalCrossentropy( 

from_logits=True),

    # or loss='categorical_crossentropy',

    metrics=['accuracy'])
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Digging on what’s happening here:

• We use adam as an optimizer for the network, a first- 

order gradient-based optimization algorithm first 

proposed in 2014 that has gained quite some popularity 

over the past years for training deep neural networks. 

We have covered already other optimizers in the 

chapter on regression. Many of them—stochastic 

gradient descent (SGD), nadam, RMSprop, and so on—

are also commonly used for neural networks. Again, the 

best way to get a grasp of the optimizers is to read about 

those most commonly used and experiment which one 

performs better on your data.

• We then define a cost function that we want to 

minimize using the optimizer (like we have seen 

already in the case of regression, the Keras framework 

names them as loss functions instead of cost functions, 

but they basically mean the same thing). While mean 

squared error (or mean logarithmic squared error) 

is a common choice for linear regression problems, 

cross-entropy functions are a common choice for 

classification problems—including logistic regression 

and classification through neural networks. The 

concept of cross-entropy is very close to the types 

of cost functions J q( )  we have analyzed in our 

classification problems. In general, in information 

theory, the cross-entropy between two distributions p 

and q over the same set of events represents the average 

number of bits (or pieces of information) required 

to “convert” p into q. If p and q are, respectively, our 

expected and predicted values for a certain set of data 
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points, then the cross-entropy intuitively measures 

how “distant” our set of predictions is from the set 

of expected values—or how many bits in average we 

need to change so that our predictions match the 

expectations. Another way to look at cross-entropy is 

in probabilistic terms: you can see it as a measure of 

how likely your predictions are to be right. You would 

usually use a binary cross-entropy loss function if you 

are building a model for true/false predictions. In our 

case, we want to make prediction over multiple classes, 

so a categorical or sparse categorical cross-entropy 

function would usually be a popular choice.

• Like in the case of regression, we want to define one 

or more additional metrics as “health” metrics to 

make sure that the model is actually learning and not 

overfitting the data points according to the provided 

cost function. In this case, like we did in the case of 

regression, we use accuracy, but keep in mind that 

depending on the distribution of your data (especially 

in the case of skewed datasets) and the trade-off 

you want to achieve between false positive and false 

negatives, you can also use precision and recall or any 

other metric.

Then, like we have seen in the case of regression, we use the fit 

method to train our compiled model over the training set:

history = model.fit(train_images, train_labels, epochs=10)

In this case, we specified 10 iterations over the data points. Again, 

remember that the number of epochs can determine whether your model 
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will underfit, overfit, or “just” fit the data, so you may want to look at the 

output of your notebook to see how the performance of the model changes 

over the epochs:

Epoch 1/10

1875/1875 [======] - 6s 3ms/step - loss: 0.5423 - accuracy: 0.8091

Epoch 2/10

1875/1875 [======] - 6s 3ms/step - loss: 0.3781 - accuracy: 0.8621

Epoch 3/10

1875/1875 [======] - 7s 4ms/step - loss: 0.3396 - accuracy: 0.8755

Epoch 4/10

1875/1875 [======] - 7s 4ms/step - loss: 0.3144 - accuracy: 0.8842

Epoch 5/10

1875/1875 [======] - 9s 5ms/step - loss: 0.2956 - accuracy: 0.8912

Epoch 6/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2805 - accuracy: 0.8961

Epoch 7/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2649 - accuracy: 0.9014

Epoch 8/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2508 - accuracy: 0.9062

Epoch 9/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2387 - accuracy: 0.9105

Epoch 10/10

1875/1875 [======] - 8s 4ms/step - loss: 0.2303 - accuracy: 0.9128

A few common rules of thumb to interpret your metrics:

• It’s important that your loss/cost function consistently 

goes down over the epochs. If it doesn’t visibly race 

toward zero, then you may want to normalize/improve 

your training data. If it goes up and down, then the cost 

function may have some “bumps”—either review your 
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data or tune the learning rate, the regularization rate, or 

the optimizer. If you don’t notice great improvements 

after some point, it means that the cost function already 

converged earlier and you can reduce the number of 

epochs, or you could run into overfit issues.

• While the cost function is expected to consistently 

decrease, your secondary metrics (accuracy, precision, 

or recall) are expected to consistently increase. If they 

don’t, then you may want to investigate possible overfit 

issues or tune learning/regularization rate.

You can also plot how the accuracy of your model changes over the 

training epochs:

epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

Once we are happy with the performance metrics of the training phase, 

it’s time to evaluate the newly trained model over the test set:
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test_loss, test_acc = model.evaluate(test_images,  test_

labels, verbose=2)

You will probably see an output like this:

313/313 - 1s - loss: 0.3185 - accuracy: 0.8871

And plotting the accuracy over the epochs should result in a graph like 

the one shown in Figure 2-9.

What this means is that our model has an 88.71% probability of 

guessing the class correctly on a test set of 313 items. That is about 2.5% 

less than the accuracy achieved on the last training iteration if we compare 

it with the previous output. In a real-case scenario, it’s up to you (or those 

in charge of the project) to make the call whether such results are good 

enough. If the accuracy over the test set diverges too much from the 

accuracy over the training set, then, again, you may want to investigate 

overfit. It’s also a good practice to increase the number of samples in the 

test set in order to make more statistically significant observations.

Figure 2-9. Progress of the model accuracy over 10 training epochs
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It’s now a good idea to take a peek at a few images in the test set and 

see how the neural network performed on them. Let’s first define a few 

utility functions to show some predictions from the test set onto a grid, 

with each element containing the tested image, the expected label, the 

predicted label, and the model’s confidence in predicting that label:

import numpy as np

import matplotlib.pyplot as plt

# Plot the image, the predicted/expected label

# and the confidence level

def plot_image_and_predictions(prediction, classes, true_

label, img):

    plt.grid(False)

    plt.xticks([])

    plt.yticks([])

    plt.imshow(img, cmap=plt.cm.binary)

    predicted_label = int(np.argmax(prediction))

    confidence = 100 * np.max(prediction)

    color = 'blue' if predicted_label == true_label else 'red'

plt.xlabel('{predicted} {confidence:2.0f}% ({expected})'.format(

    predicted=classes[predicted_label],

    confidence=confidence,

    expected=classes[int(true_label)]), color=color)

# Plot a bar chart with the confidence level of each label

def plot_value_array(prediction, true_label):

    plt.grid(False)

    plt.xticks([])

    plt.yticks([])

     thisplot = plt.bar(range(len(prediction)), prediction, 

color="#777777")
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    plt.ylim([0, 1])

    predicted_label = np.argmax(prediction)

    thisplot[predicted_label].set_color('red')

    thisplot[true_label].set_color('blue')

# Plot the first N test images, their predicted and expected 

label.

# It colors correct predictions in blue, incorrect predictions 

in red.

def plot_results(images, labels, predictions, classes, rows, 

cols):

    n_images = rows * cols

    plt.figure(figsize=(2 * 2 * cols, 2 * rows))

    for i in range(n_images):

        plt.subplot(rows, 2 * cols, 2 * i + 1)

        plot_image_and_predictions(predictions[i], classes,

                                   labels[i], images[i])

        plt.subplot(rows, 2 * cols, 2 * i + 2)

        plot_value_array(predictions[i], labels[i])

    plt.show()

# predictions will contain the predicted values for the test set

predictions = model.predict(test_images)

# Plot the predictions for the first 25 values of the test set

plot_results(images=test_images, labels=test_labels, 

classes=class_names,

             predictions=predictions, rows=5, cols=5)

You will probably see a figure like the one shown in Figure 2-10. This 

kind of visualization applied to the test set helps you understand how the 

network performs on images that are not in the training set, and you can 
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use it to spot common patterns that can help you improve your model—

like categories of items that are commonly mislabelled or with a “close 

call” error margin. You may want to use this kind of visualization to refine 

your input data, improve your images preprocessing pipeline, or tweak the 

model with the strategies seen so far (tuning learning rate, normalization 

rate, number of neurons, number of epochs, cost function, etc.) to improve 

the performance until you are satisfied.

Once you are satisfied with your model, don’t forget to save it. The 

procedure is the same we have seen previously for saving TensorFlow 

regression models:

def model_save(model_dir, labels, overwrite=True):

    import json

    import os

    # Create the model directory if it doesn't exist

    os.makedirs(model_dir, exist_ok=True)

Figure 2-10. Plotting the predicted classes for the first 25 images in 
the test set, together with the expected labels and the classification 
confidence levels
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    # The TensorFlow model save won't keep track of the

    # labels of your model.  It's usually a good practice to

    # store them in a separate JSON file.

    labels_file = os.path.join(model_dir, 'labels.json')

    with open(labels_file, 'w') as f:

        f.write(json.dumps(list(labels)))

    # Then, save the TensorFlow model using the save primitive

    model.save(model_dir, overwrite=overwrite)

model_dir = '/home/user/models/fashion-mnist'

model_save(model_dir, labels=class_names)

Similarly, you can load the saved model from your application without 

going through the training phase again:

def model_load(model_dir):

    import json

    import os

    from tensorflow.keras.models import load_model

    labels = []

    labels_file = os.path.join(model_dir, 'labels.json')

    if os.path.isfile(labels_file):

        with open(labels_file) as f:

            labels = json.load(f)

    m = load_model(model_dir)

    return m, labels

model, labels = model_load(model_dir)

Congratulations on training and saving your first neural network for 

image classification!
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2.5  Convolutional neural networks

The Fashion MNIST dataset is perfect for introducing neural networks, 

but it’s simpler than many real-world datasets of images. The network was 

trained on a set of preprocessed 28x28 monochrome images all containing 

exactly the item supposed to be identified—in many real-world scenarios, 

you won’t usually deal with such neatly trimmed datasets. Ideally, we want 

to build models robust enough to classify items also when we input some 

image with feature slightly different than the one the model was trained 

on—in particular, we want our model to be robust against trimming, 

rotations, and small amounts of blurring or color/luminosity changes.

Convolutional neural networks (or CNNs) come a step closer to the 

way the human brain processes images. When they perform a visual 

classification or interpretation of the environment around, our brains don’t 

simply feed the raw luminosity and color signals delivered over the optical 

nerve uniformly to all the areas in the visual cortex. Such an organization 

would require lots of biological energy, since all the input neurons of the 

cortex would be active all the time, and a huge number of downstream 

connections would be required as well. Instead, the input signals are 

initially preprocessed by an area of the visual cortex known as receptive 

field [16] [17]. A receptive field acts like a filter that preprocesses some 

input signals. It discards the information that isn’t required; it adjusts/

normalizes the data against, for example, environment luminosity and 

orientation; and finally it identifies some features or patterns (determined 

by, e.g., edges, luminosity areas, or spatial features) that should fire some 

particular neurons downstream. The sensory networks of most mammals 

are designed to detect patterns and detect them fast, focusing on the most 

relevant elements in the surrounding environments while discarding 

information that isn’t required, and they are modelled to be robust 

enough in their job also in varying situations of luminosity, distance, 

and orientation. Studies on primates have proved that certain receptive 

fields are in charge of filtering and normalizing sensory signals in varying 
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situations of luminosity and orientation, and that when presented to the 

same object under varying conditions of luminosity, the signals delivered 

by those receptive fields to the downstream neurons were similar—in 

other words, the receptive field in the visual cortex of the animal was in 

charge of normalizing the data and making sure that the process of visual 

classification was independent on the luminosity of the environment [18].

CNNs can be seen as an artificial application of this principle. In a 

CNN, a set of filters is applied to the original image in order to extract 

features such as shapes and color areas and reduce the initial complexity. 

Those features are then fed to a traditional neural network. Since the 

neural network operates on sets of extracted features instead of raw sets 

of pixels, these networks usually perform better at classifying images than 

an equivalent neural network of the same size but without convolutional 

layers, as they are better at capturing spatial and temporal dependencies 

Figure 2-11. Typical architecture of a convolutional neural network. 
The image shows its convolutional layers (used for feature extraction), 
pooling layers (used for dimensionality reduction), flattening layer, 
and the downstream fully connected neural network (used for 
classification) (Credits: Towards Data Science [19])
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between the areas in an image. Also, CNNs scale much better when the 

size of the input samples increases. The network we designed in the 

previous example had exactly as many input units as the number of pixels 

in the image. Making the network work with larger images involves either 

scaling down the images or increasing the number of units in the input 

layer—that, in turn, usually involves re-training the model. In a CNN 

instead, it’s possible to simply adapt the convolutional layers/filters to 

operate with images of different size, often with no changes required to 

the architecture of the downstream network. The role of the convolutional 

layers is to reduce the dimensionality of the images so that they are easier 

to process and it’s easier to scale the model, without losing any features 

that are crucial for getting good predictions. A CNN usually consists of 

three types of components:

Figure 2-12. Movement of a kernel/filter tensor in a convolutional 
layer over the original image (Credits: Towards Data Science [19])
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 1. One or more convolutional layers, whose job is 

to iteratively apply a transformation to the input 

image through a matrix/tensor known as filter or 

kernel. The purpose of a convolutional layer is to 

capture higher-level features in the input image by 

looking not only at the information stored in each 

pixel but also at the relationships between each 

pixel and its “neighborhood” (e.g., Is it on an edge? 

Do surrounding pixels have different levels of color/

luminosity?). The sophistication of the extracted 

features increases as we add more and more 

convolutional layers. The first layer would usually 

capture low- level features such as edges, color 

gradients, and orientation, while the downstream 

layers will spot more complex features such as 

objects, sizes, distances, and so on.

 2. One or more pooling layers, whose input 

units are usually linked to the output units of a 

convolutional layers. Their job is to further reduce 

the dimensionality of the input data and select 

the dominant features extracted by the upstream 

convolutional layers, especially those that are 

invariant to transformations such as rotations or 

translations—the purpose of a pooling layer is 

functionally similar to the principal component 

analysis algorithm we have analyzed earlier.

 3. Finally, the matrix/tensor of features extracted from 

the original data is flattened and fed into a fully 

connected neural network that will perform the 

classification process.

CHAPTER 2  NEURAL NETWORKS



138

Figure 2-13. An example of 2D convolution operation between a 
monochrome input image A and a kernel K

The final high-level architecture of such a network is shown in 

Figure 2-11. Let’s analyze its layers one by one.

2.5.1  Convolutional layer

An input image is usually provided as a w × h × c matrix/tensor, where w 

and h are, respectively, its width and height and c is the depth of its color 

space (1 in the case of monochrome images, 3 in the case of RGB/HSV/

YUV, etc.). A filter or kernel matrix/tensor K sized m × n × c, with m < h and 

n < h, is either statically encoded in the layer or dynamically calculated. K 

is shifted over the whole image, as shown in Figure 2-12. On each iteration, 

the kernel moves from left to right if there are more pixels to be processed 

in a row and from top to bottom otherwise (changing the direction to 

right to left on the next row), until the whole image is processed. On each 

iteration, the top-left element of K, k00, will be aligned with the (i, j) pixel 

of the input matrix A, aij, with 0 ≤ i < h and 0 ≤ j < w. Let us define Aij as the 

subset of A covered by K:
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Both Aij and K are tensors sized m × n × c—even if the preceding 

formula shows for simplicity each pixel as a single number and therefore 

Aij is shown as a 2D matrix. We can then define the convolution operation 

between the subset of the image covered by the kernel and the kernel itself, 

Aij ∗ K, as the sum of the element-wise products between the elements of 

Aij and K:
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This operation resembles quite closely the element-wise vector 

product (or Hadamard product) we have seen in the back-propagation 

algorithm, and a 2D example is shown in Figure 2-13. In Python, you could 

write it as follows:

def conv_product(A, K):

    conv = 0.0

    for x in range(len(K)):

        for y in range(len(K[0])):

            for z in range(len(K[0][0])):

                conv += A[x][y][z] * K[x][y][z]

    return conv
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The convolutional tensor Conv between the whole image A and the 

kernel K can be calculated by applying the “snake-like” motion shown in 

Figure 2-12:

 
conv A K i w m j h nij ij= * £ < - £ < -for 0 0,  

In Python:

def submatrix(A, i, j, m, n):

    # Calculate the submatrix of a matrix A starting from the

    # element (i, j) up to (i+m, j+n)

    return [

        [

            A[i][j]

            for j in range(j, j+n)

        ]

        for i in range(i, i+m)

    ]

def conv(A, K):

    # The result will be a (w-m)*(h-n) matrix

    return [

        [

            conv_product(submatrix(A, i, j, len(K), len(K[0])), K)

            for j in range(len(A[0])-len(K[0])+1)

        ]

        for i in range(len(A)-len(K)+1)

    ]

Such kernels and filters have been used for a long time in computer 

vision. One of the most popular ones is arguably the Sobel map, or 

Sobel-Feldman operator [20]. This filter is actually composed of two 
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3 × 3 matrices, Sx and Sy, used to calculate an approximation for the 

luminosity/color gradient, respectively, for the x and y dimension:
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The results of the convolution operations between these matrices and 

the original image, respectively, approximate the x and y color gradient of 

the image around a particular point:
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y y
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= *  

Figure 2-14. Example of the Sobel kernel applied to an image. Each 
pixel in the right image represents the magnitude of the convolution 
operation between the Sobel maps and the associated pixel in the 
original image. Pixels on the edge of objects are brighter than the 
others
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The modulus of this vector represents the magnitude of the gradient 

vector in a particular point in the image—the higher the value, the more 

likely the point is to belong to the edge of an object in an image:
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The phase of the vector instead identifies the direction of the gradient 

in a particular point—and that can be used to tell on which side of an edge 

pixel an object lies:
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The kernels used in the convolutional layer are akin to the Sobel maps 

(some may even use the Sobel maps for edge detection), and just like a 

Sobel map, they can be used to detect features such as edges and gradients 

in images (see example in Figure 2-14).

Finally, besides the choice of the kernel and its size, two more 

coefficients that can be tuned in a convolutional layer are as follows:

 1. Stride: It determines how much the kernel should 

shift over the image on each iteration of the 

convolutional product. In the examples we have 

seen in this paragraph, the kernel had a stride of 

1—we moved it over the image one position at the 

time—and this is also the most commonly used 

value. Larger strides will result in smaller output 

tensors. A larger stride can be used to perform 

greater dimensional reduction, as long as you keep 

in mind that very large values have higher chances 

of discarding useful information.
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 2. Padding: The original image can either be processed 

directly through the convolutional operation or 

padded with zeros before the operation. In this 

paragraph, we have shown examples of valid 

padding (or no padding)—the original matrices/

tensors were not padded before applying the 

convolution. If instead you add two rows of zeros to 

the top and bottom and two columns of zeros to the 

left and right of the images, you will be performing 

what is called same padding. Valid padding 

performs dimensional reduction as well as feature 

extraction (the output tensor will be smaller than 

the input), while same padding performs feature 

extraction but keeps the same dimensions.

Figure 2-15. Example results of a 2 × 2 max and average pooling 
operation applied to an input 2D matrix
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You can therefore tune stride and padding to tune how much the 

layer should reduce the dimensions of the input image before passing 

the output tensor to the next layers. A configuration with stride = 1 and 

same padding results in no actual reduction of the dimensions, and in that 

case, you may want to perform the reduction entirely on the pooling layer 

downstream.

2.5.2  Pooling layer

The output of a convolutional layer is usually connected to a pooling 

layer. The purpose of the pooling layer is to reduce the dimensionality of 

the tensor while possibly not losing any relevant information needed for 

a correct classification. Moreover, it is useful to extract the features of an 

image that are invariant with regard to rotation and position, making the 

model more robust against image transformations. Finally, it acts as a noise 

reducer, removing or reducing the impact on the model of noisy pixels that 

are too dissimilar from their surroundings.

Similarly to the convolutional layer, the pooling layer works by shifting 

a m × n filter over the image (m and n don’t necessarily have to match the 

dimensions of the kernel used by the previous layer). The difference is that 

this time the filter applies a reduce/group function to each of the m × n 

sections of the image. Two pooling functions are most commonly used:

• Max pooling: Select the maximum/highest value in the 

underlying subset of the input tensor.

• Average pooling: Select the average value in the 

underlying subset of the input tensor.
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An example of how the two operations behave is shown in Figure 2-15. 

Max pooling is usually preferred over average pooling as it is more effective 

when it comes to noise reduction—it would only take the value of the 

highest data point under the filter and discard the others.

The composition of a convolutional layer and a pooling layer is what 

actually makes a full convolutional layer. You can stack many of these 

layers in your model, and each layer will detect higher and higher-level 

features—however, keep in mind that adding more layers also increases 

the computational demands for training the model. Therefore, the output 

of a pooling layer can either be attached to another convolutional layer or 

to a flatten layer (“unwrap” the matrix/tensor into a 1D vector) that will in 

turn feed it to the fully connected neural network.

2.5.3  Fully connected layer and dropout

The last part of a CNN is the fully connected neural network, exhibiting 

the same architecture that we have seen previously. It will get the flattened 

tensor from the convolutional layers as input, and it will have as many 

units in the output layer as the number of classes that we want the model 

to identify, with the activation value of each unit expressing the probability 

for a certain image to belong to a certain class.

Figure 2-16. Example of a dropout iteration on a fully connected 
neural network (Credits: [21])
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The dropout technique is often applied to the fully connected layer 

of a CNN to prevent overfit. We have already analyzed several ways of 

preventing overfit (adding bias units, removing redundant items from 

the training set, reducing the number of parameters or units, tuning 

regularization rate and learning rate, applying principal component 

analysis, etc.). Dropout works on a slightly different level. It takes into 

account that in a neural network with many neurons and a relatively 

small training set overfit mostly comes from individual neurons either 

contributing too much or too little to the final classification, eventually 

having a detrimental impact on the model’s performance. A dropout 

iteration with parameter p applying during the training phase will remove 

a certain neuron from the network with probability p and trigger a training 

iteration without those neurons, as shown in Figure 2-16. By doing so, 

we force the network to cope with failure without relying on individual 

neurons (or a set of neurons) for its predictions. Instead, in the absence of 

some units, the network will rely more on consensus among the neurons in 

a layer.

2.5.4  A network for recognizing images of fruits

Let’s move to a practical example of a convolutional neural network 

for image recognition by picking a dataset a bit more complex than the 

previous Fashion MNIST. Let’s pick, for example, the Fruits 360 dataset 

from Kaggle [22]—keep in mind, however, that the information reported in 

this chapter can be used to train a model on any dataset of images.

The Fruits 360 dataset contains about 90,000 images of fruits grouped 

in 131 classes, each sized 100 × 100 pixels. Download the zip file of the 

dataset from Kaggle and extract it—in the next examples, I’ll assume that 

the dataset is stored under “/datasets/fruit-360”. You’ll notice that the 

dataset has this kind of structure (and you can usually spot a good-quality 

dataset if it has this kind of structure):
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fruit-360

    \-> Training

      \-> Apple Braeburn

        \-> image01.jpg

        \-> image02.jpg

        ...

      \-> Apple Crimson Snow

        ...

    \-> Test

      \-> Apple Braeburn

        \-> image01.jpg

        \-> image02.jpg

        ...

      \-> Apple Crimson Snow

        ...

We have a directory for the training images and one for the test 

images, each containing a directory for each class and each class directory 

containing the images associated to that class. This is usually considered 

a good practice to structure a dataset of images, and it makes it easy to be 

used by other developers and applications.

Let’s now proceed with importing the modules that we’ll need to 

explore the dataset and train the model:

import os

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras import Sequential, layers

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator
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Let’s also define a utility function to extract the class names from the 

dataset:

def parse_classes(directory):

    """

     Get the classes of a dataset directory as a vector of 

strings.

    """

        return sorted([

            d for d in os.listdir(directory)

             if os.path.isdir(os.path.join(directory, d))

        ])

    classes = parse_classes(train_dir)

And a few variables used to define the model:

train_dir = os.path.expanduser('~/datasets/fruits-360/

Training')

test_dir = os.path.expanduser('~/datasets/fruits-360/Test')

img_size = (100, 100)

channels = 3     # RGB

epochs = 5       # Number of training epochs

batch_size = 64  # Batch size

The batch size is the number of images processed before the model is 

updated, and it can be tuned to tweak the performance of your model.

A good practice when it comes to image recognition is to use 

TensorFlow’s ImageDataGenerator class on the set of images. The 

generator will apply several random transformations (rotations, cropping, 

zoom, etc.) to the input images and generate a new (shuffled) set of images 
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that can be used to make your model more robust when classifying images 

that, for example, are rotated, cut, blurred, flipped, or zoomed compared 

to the original images provided in the dataset:

train_generator = ImageDataGenerator(rescale=1/255,

    # Rotate the images

    rotation_range=40,

    # Cut the images

    shear_range=0.2,

    # Zoom the images

    zoom_range=0.2,

    # Flip the images

    horizontal_flip=True,

    fill_mode='nearest')

test_generator = ImageDataGenerator(rescale = 1/255)

# Output:

# Found 67692 images belonging to 131 classes.

# Found 22688 images belonging to 131 classes.

A few things to note:

• The rescale operation normalizes the images—each 

pixel has data in the range [0,255], and we want to map 

it to the range [0, 1].

• It’s a good idea to apply all the fancy transformations to 

the training set, but the test set is usually only rescaled.
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Let’s take a look at how some of these images look like:

# Take the first batch of the training set

batch = train_data.next()

# Initialize the plot

plt.figure(figsize=(10,10))

Figure 2-17. A sample of the training set images of the Fruits 360 
dataset
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for i in range(min(25, len(batch[0]))):

    # The first item of batch contains the raw image data

    # The second element contains the labels

    img = batch[0][i]

    label = classes[np.argmax(batch[1][i])]

    plt.subplot(5,5,i+1)

    plt.xticks([])

    plt.yticks([])

    plt.grid(False)

    plt.imshow(img, cmap=plt.cm.binary)

    plt.xlabel(label)

plt.show()

The output will probably look something like Figure 2-17.

Now it’s time to finally define and compile the model:

model = Sequential([

    # First convolutional layer

    layers.Conv2D(filters=32,

        kernel_size=(3,3),

        strides=(1,1),

        padding='valid',

        activation='relu',

        input_shape=(*img_size, channels)

    ),

    # First pooling layer

    layers.MaxPooling2D(pool_size=(2,2)),
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    # Second convolutional layer

    layers.Conv2D(filters=64,

        kernel_size=(3,3),

        strides=(1,1),

        padding='valid',

        activation='relu',

        input_shape=(*img_size, channels)

    ),

    # Second pooling layer

    layers.MaxPooling2D(pool_size=(2,2)),

    # Flatten output before feeding it to the network

    layers.Flatten(),

    # Neural network input layer

    layers.Dense(units=100, activation='sigmoid'),

    # Link dropout with 15% probability

    layers.Dropout(0.15),

    # Neural network hidden layer

    layers.Dense(units=200, activation='sigmoid'),

    # Link dropout with 15% probability

    layers.Dropout(0.15),

    # Neural network output layer

    layers.Dense(len(classes), activation='softmax')

])

model.compile(loss='categorical_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])
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In these lines, we have defined a CNN with two pairs of convolutional/

pooling layers connected to a fully connected neural network with one 

input, one hidden, and one output layer. Let’s take a closer look at the 

layers.

First, a convolutional layer is defined as a Conv2D object—2D because 

in this case we are operating on 2D images, but keep in mind that Conv1D 

and Conv3D exist as well. filters specifies the number of filters to apply 

to the input—the model will learn which filters extract the most relevant 

features from the images. If you build a model with multiple convolutional 

layers, you usually want to increase the number of filters as you go deeper 

in the network—the filters on the first layer will highlight low-level features 

(such as edges and luminosity areas), while the layers downstream will 

use filters that will highlight higher-level features (such as shapes and 

boundaries).

The kernel_size parameter defines the size of the filters to be 

used—in this case, we’ll go for simple 3 × 3 kernels—and strides defines 

how much the filter will be moved over the image on each iteration; 

we stick to one pixel in the x and y direction. padding defines whether 

the input should be padded—again, valid actually means no padding 

(i.e., perform dimensional reduction), while same would pad the input 

to keep the same dimensions on the output. The convolutional layer 

has an activation function just like the units of the neural layers. relu 

(rectified linear unit) is usually the most popular option: given an input 

x, it simply returns max(x,0), but sometimes other activation functions 

may also be used. Finally, we specify the size of each input element as 

(width, height, channels).

The convolutional layer is then connected to the pooling layer—in this 

case, we use a max pool layer. The pool_size parameter specifies how 

large the pool on the input should be—in this case, we use a 2 × 2 pool, 

which means that each 2 × 2 pixel square on the input will be mapped to 

one element on the output, therefore reducing the dimensionality by a 

factor ×4. We then connected another pair of convolutional+pool layers to 
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try and extract even more features from the input, and we then connect the 

last pooling layer to a Flatten layer which “unwraps” an n-dimensional 

input into a one-dimensional array that can be fed to the input of the fully 

connected neural network.

We then define the fully connected network using the constructs we 

explored in the previous example—the output layer has as many units 

as the number of classes that we want to detect, while you can feel free 

to experiment with the number of intermediate layers and units to see 

how it affects the performance. We also introduced two Dropout layers, 

respectively, between the input and hidden layer and between the 

hidden and output layer, with rate = 0.15—that is, a 15% probability for a 

connection to a neuron to be cut off during training. Keep in mind that 

the dropout logic can be very effective in preventing overfit and it helps 

making the model more robust and less dependent on the contributions 

of single neurons, but a too high dropout rate will have detrimental effects 

on its accuracy, since too many of its neurons will be out of use during the 

training phase. Finally, we compile the model using the  categorical_

crossentropy loss function (we want to classify items belonging to 

multiple classes), the adam optimizer, and optimizing for accuracy.

Now that we have defined the CNN, it’s time to train it and validate it. 

When we use an image data generator class, it’s possible to group together 

training and validation through the fit_generator method instead of the 

usual fit:

history = model.fit(

    train_data,

    steps_per_epoch=train_data.samples/batch_size,

    validation_data=test_data,

    validation_steps=test_data.samples/batch_size,

    epochs=epochs

)
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Time to go and make yourself a coffee or a tea—since we are training 

a model with more layers and way more images than our previous vanilla 

neural network trained on the Fashion MNIST, this phase may take 

between 30 and 90 minutes to complete depending on the power of the 

machine:

Epoch 1/5

loss: 2.6444 - accuracy: 0.3622 - val_loss: 1.5080 - val_

accuracy: 0.7355

Epoch 2/5

loss: 0.7892 - accuracy: 0.8084 - val_loss: 0.9297 - val_

accuracy: 0.8696

Epoch 3/5

loss: 0.3591 - accuracy: 0.9142 - val_loss: 0.2119 - val_

accuracy: 0.9212

Epoch 4/5

loss: 0.2093 - accuracy: 0.9474 - val_loss: 0.0216 - val_

accuracy: 0.9448

Epoch 5/5

loss: 0.1590 - accuracy: 0.9570 - val_loss: 0.0087 - val_

accuracy: 0.9573

The resulting accuracy history is shown in Figure 2-18.

We can then proceed with analyzing the progress of the accuracy over 

the training epochs.
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epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

You’ll notice a very high accuracy (>95%) both on the training and 

test set, much higher than our previous examples that involved either 

simple regression or vanilla neural networks. This is a quite impressive 

achievement considering that this time we have 131 possible output 

classes, and it shows how adding one or more convolutional layers to a 

neural network and leveraging mechanisms such as dropout to prevent 

overfit can effectively increase the performance of a model. You can also 

use the evaluate function to estimate the performance of the model 

on the test set, as done in the previous examples, since it also supports 

generators:

model.evaluate(test_data)

Figure 2-18. Progress in the accuracy of the model over 5 epochs
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Finally, we can use the model to make simple predictions—we can, for 

example, take some image from the test set:

test_batch = test_data.next()

test_images = test_batch[0]

test_labels = test_batch[1]

test_img = test_images[0]

expected_class = classes[np.argmax(test_labels[0])]

predicted_class = classes[np.argmax(model.predict( 

np.asarray([test_img])))]

print(f'Expected class: {expected_class}.\n' +

    f'Predicted class: {predicted_class}')

And we can also run the model on a few images from the test set and 

plot them with their expected and predicted classes and the confidence 

levels of the predictions using the plot_results function defined in the 

previous examples:

plot_results(

    images=test_images,

     labels=[np.argmax(label_values) for label_values in test_

labels],

    classes=classes,

    predictions=predictions,

    rows=6, cols=3

)

You will probably see a figure like the one shown in Figure 2-19. As a 

last step, don’t forget to save your model (using the model_save function 

we have defined in the previous examples); otherwise, you’ll have to go 

through the whole training phase again!
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You should now have all the basic tools to train a neural network for 

image recognition, and we can shift the focus from how to build a neural 

network on some sample datasets to how to collect images to be used in 

our own applications.

Figure 2-19. Evaluating the model against a few images in the 
test set
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CHAPTER 3

Computer Vision 
on Raspberry Pi
Now that we have a good understanding of how to build a machine 

learning model with TensorFlow, it’s time to put our knowledge into 

practice and train a model that can recognize the presence of people in a 

room and can run on a Raspberry Pi with some cheap hardware.

The Raspberry Pi is arguably the most successful credit card–sized 

system-on-chip (SoC) developed in the past decade. Its compact form 

factor, flexibility, and affordable price (the price goes from about $10 for 

the tiny single-core Raspberry Pi Zero up to about $80 for a quad-core 

Raspberry Pi 4 with 8GB of RAM) have made it a very attractive option 

for many IoT projects. It’s definitely not a power horse when it comes 

to machine learning applications (if you are looking for a more beefed 

embedded machine to train more complex models, you may want to opt 

for solutions such as the NVIDIA Jetson boards), and my suggestion is 

usually to train your model on your laptop or a more powerful machine, 

but once you have trained a not-too-complex model, the Raspberry Pi can 

definitely be a good candidate to run predictions. Note, however, that the 

least powerful options (such as the Raspberry Pi Zero and the Raspberry Pi 

A+) may experience a bit of latency when it comes to run TensorFlow code, 

but I have run many models on Raspberry Pi 3 and 4 devices, and, as long 

as the models aren’t too complex, I haven’t encountered any issues.

https://doi.org/10.1007/978-1-4842-6821-6_3#DOI
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In this chapter, we’ll see how to use a Raspberry Pi and a cheap 

infrared camera to build a real-time model to recognize the presence of 

people in a room. While many of the examples explored in the previous 

chapters involved models trained on “normal” images from optical 

cameras, detecting the presence of people in a small environment is, in 

my experience, a task better performed by infrared cameras. If you think of 

that, there can be many ways people may be standing or sitting in a room, 

and you may have a different number of people in the room as well, at an 

arbitrary distance from your camera, in arbitrary conditions of luminosity. 

That makes the task of building a robust model for presence detection 

on optical images quite challenging—the model will have to be trained 

on a vast dataset representing as much as possible all the variability of 

the real environment, and it will likely have many layers to discern all the 

possible patterns, making it prone to overfit. Infrared cameras are much 

better suited for this task. Since an infrared camera detects changes in 

the gradient of temperature of any objects in front of it, it’s not sensitive 

to changes in luminosity conditions, neither it is sensitive to changes in 

the position of the person. The only issue I have experienced with this 

approach is when the environment is too warm—an infrared camera is a 

very good tool to detect people if the temperature of the bodies is around 

36–37°C and the environment is cooler, but if the environment is around 

the same temperature as a human body, then the gradient temperature 

isn’t sufficient to detect the presence of people—but if the temperature 

of your room is usually below 36 degrees, then you can go on with this 

approach! However, as a follow-up, you can also easily adapt the process 

illustrated in this chapter to an application with optical images—it may 

require a larger dataset, a longer training phase, and a CNN with more 

layers, but the process is exactly the same. The process illustrated in 

this chapter can easily be extended to any application that requires data 

gathering, labelling, training a model, and deploying that model for real- 

time predictions.
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This project consists of four phases:

 1. Prepare the hardware and software.

 2. Build the logic that captures snapshots from the 

infrared camera at regular intervals, normalizes 

them, and stores them somewhere.

 3. Label the pictures (presence detected/no presence 

detected) and train a model on them.

 4. Deploy the model on the Raspberry Pi and run it 

periodically against newly captured images to detect 

the presence of people in the room. Optionally, 

we may add some additional logic that runs some 

pieces of automation when the model runs (e.g., 

turn the lights on/off when someone enters/exits 

the room, or get a mobile notification if presence is 

detected but we are not at home).

3.1  Preparing the hardware 
and the software

The examples in this chapter have been extensively tested on Raspberry Pi,  

but they should work fine with little or no modifications on any Linux- 

based SoC.

3.1.1  Preparing the hardware

You can use any Raspberry Pi [23] device to capture images, deploy your 

model, and use it to make predictions. However, as mentioned previously, 

low-power devices such as the Raspberry Pi Zero may experience more 

latency—even though I have successfully deployed the people detection 
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model to a Raspberry Pi Zero, I couldn’t get anything below 2–3 seconds 

of base latency when it comes to capturing images or making predictions. 

Any Raspberry Pi 3 or higher, however, should provide fluid performance 

for basic machine learning projects.

So, in order to get started, you’ll need

 1. A Raspberry Pi or any similar Linux-based SoC.

 2. An empty micro SD card (preferably 16GB or more). 

It’s also a good idea to check the quality and speed 

of your SD card—ultra-fast SanDisk cards are, in my 

experience, a good pick to flash the Raspberry Pi  

operating system, but anything fast enough and 

robust enough should do the job.

 3. An infrared camera. The examples in this chapter 

will be based on the Pimoroni MLX90640-based 

thermal camera breakout [24] (see Figure 3-1), a 

relatively cheap 24x32 thermal camera that does 

a good job in capturing thermal gradients with a 

depth of a few meters, but any thermal or infrared 

camera should work.

Figure 3-1. Pimoroni MLX90640 thermal camera breakout
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A few words on the hardware protocol if you use an MLX90640 

breakout camera or any camera other than a USB camera or the native 

PiCamera. This breakout works over I2C protocol. When it comes to 

electronics for Raspberry Pi, Arduino, and other IoT devices, you may 

usually find three popular hardware protocols:

 1. I2C

 2. SPI (Serial Peripheral Interface)

 3. Direct GPIO

Direct GPIO basically means a direct mapping between the pinout 

of your device and the master (Raspberry Pi, Arduino, ESP, etc.). It is 

usually a popular option for simple devices with a low number of pins and 

transmission rate, while devices with higher throughput usually opt for a 

bus-based interface—I2C and SPI are usually the most popular protocols 

in this space. A high-level comparison between these two bus interfaces 

is shown in Figure 3-2. I2C was originally developed in 1982 by Philips 

Semiconductors, and it’s been around for long enough to be widely used 

by many hardware devices. It is a synchronous, bidirectional, packet-based 

serial communication protocol that relies on two connectors present on 

each device:

 1. SDA (Serial Data Line), used to transfer data in both 

directions over a serial bus interface

 2. SCL (Serial Clock Line), used to synchronize the 

connected devices and regulate access to the bus

Chapter 3  Computer Vision on raspberry pi



164

The MLX90640 uses this interface, and therefore, it includes both 

an SDA and SCL connector, which can be connected to the I2C interface 

of the Raspberry Pi (or any SoC with compatible pinout). The VCC and 

GND connectors will have to be connected to the same power source and 

ground line as the Raspberry Pi or any of the Raspberry Pi 3.3V/GND pins, 

while we can omit the INT (interrupt) connection in this project, which is 

usually used to raise asynchronous events. There are mainly three options 

to connect an I2C or SPI device to a Raspberry Pi:

 1. Hardware I2C connection. Even though the GPIO 

pins of a Raspberry Pi are supposed to be general-

purpose (as the name itself suggests), some pins 

are optimized on hardware level to better operate 

some purposes over others. That’s the case for the 

GPIO pins 2 and 3, which, as shown in Figure 3-3, 

are configured to act, respectively, as SDA and 

SCL interfaces. The quickest option is therefore to 

connect the SDA and SCL pins of your I2C camera 

Figure 3-2. Comparison between the physical bus connections of I2C 
(left) and SPI (right) (Credits: Lifewire)
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directly to these pins. The advantage of this type of 

connection is that it is fast (since it uses the native 

hardware implementation of the I2C protocol) and 

it requires nearly no software configuration to work. 

The disadvantage is that a Raspberry Pi only sports a 

pair of specialized SDA/SCL pins, and you can only 

connect one device to this interface (it’s not a big 

problem if you only use the Raspberry Pi GPIO for 

the thermal camera, but it could be an issue if you 

want to connect more I2C devices).

 2. Software I2C connection. In this configuration, 

you can use any GPIO pair of pins as a SDA/SCL 

interface. The advantage of this approach is that 

you have much more flexibility to connect more I2C 

devices, or, more generally, you can connect more 

devices without necessarily occupying the GPIO 

pins 2 and 3. The disadvantages of this approach 

are represented by its speed (the protocol is 

managed by the software, specifically by the kernel, 

which is usually slower than a hardware- based 

implementation) and the fact that it may require a 

bit more tuning of the software configuration.

 3. Use a breakout board like the Breakout Garden [25] 

(see Figure 3-4). This is probably my favorite approach. 

Breakout boards can be plugged directly on top of your 

Raspberry Pi GPIO pins, and they act as a hardware 

multiplexer for I2C and SPI devices. They provide a 

hardware interface to connect up to four I2C devices 

and two SPI devices, and they make the connection as 

easy as physically plugging the device into the slot—no 

wiring nor soldering required.
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3.1.2  Preparing the operating system

Once you’ve got all the hardware in place, it’s time to flash the operating 

system of your Raspberry Pi on the SD card. The most popular options are 

usually NOOBS [26], a Debian-based distribution easy to use also for those 

who aren’t particularly fluent with a terminal, and Raspberry Pi OS [27] 

(formerly Raspbian), a more general-purpose Debian-based distribution 

for Raspberry Pi. As a strong supporter of Arch Linux, most of the examples 

have been intensively tested on devices running Arch Linux ARM, but since 

the learning curve to get Arch to run on an embedded device is usually 

higher than getting NOOBS or Raspberry Pi OS, the examples in this 

chapter will mainly target these two distributions. They should, however, 

work with minor or no modifications on any other Raspberry Pi operating 

system—the only differences may be in the way you install some system 

packages, for example, through “pacman” or “yum” instead of “apt-get”.

Figure 3-3. Raspberry Pi GPIO (Credits: Raspberry Pi Foundation)
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Download the image of Raspberry Pi OS or NOOBS for your device 

and flash it to the SD card. You can use any software to write the image—

the Raspberry Pi Foundation provides an Imager program for Windows 

and macOS to write the image, but you can find many of them with a web 

search. If you are on Linux, you can easily write the image using the built- 

in dd command:

# FIRST check where your SD card is mounted!!

# Make sure that you don't write the image to any other hard 

drive!

cat /proc/partitions  # Find something like e.g. /dev/sdb

[sudo] dd if=/path/to/raspberrypi-os-version.img of=/dev/sdb \

    conv=fsync bs=4M status=progress

Once the image is flashed, (safely) remove the SD card from your 

computer and plug it into the Raspberry Pi. At least for the first boot it’s 

advised to also plug a monitor (over HDMI) and a USB keyboard/mouse. 

Once everything is connected, plug in the USB power source and boot 

the Raspberry Pi. After a few seconds, you should see a welcome screen 

on the connected display. If any login is required, the default credentials 

are user=pi and password=raspberry. Other systems may have different 

default credentials—please consult their web page if that’s the case. It is a 

very good practice, however, to change the default credentials as soon as 

you can, especially if you are planning to enable remote SSH access—just 

open a terminal and type passwd.
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If your Raspberry Pi is connected over a network cable, then it will 

probably connect to the network by itself without any configuration. 

Otherwise, if you are planning to connect it over Wi-Fi, it’s a good idea 

to enable the interface now—you can do it either from the Wi-Fi icon in 

the application panel or through the terminal (raspi-config command). 

Other options include manually creating and enabling a netctl profile or 

using another network manager.

Once the Raspberry Pi is connected, it’s a good idea to enable SSH 

(and, optionally, VNC) so you can easily access it from your laptop without 

an attached screen and mouse/keyboard. Use raspi-config to enable the 

SSH service or manually start and enable the sshd service:

[sudo] systemctl start sshd.service

[sudo] systemctl enable sshd.service

Figure 3-4. A Breakout Garden I2C/SPI hardware multiplexer 
(Credits: Pimoroni)
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Take note of the IP address of the device (ifconfig or ip addr), head 

back to your computer, and use PuTTY or the command-line ssh client to 

connect to your Raspberry Pi:

ssh pi@[ip-of-the-rpi]

Once you are logged in, it’s time to install the software dependencies to 

get our project to run.

3.2  Installing the software dependencies

The examples in this chapter will use Platypush [28] as a platform to 

automatically capture images, run the model, and perform automation 

routines. I have built Platypush myself over the past years, and it is now 

mature enough to perform many tasks on a SoC device. However, it should 

be relatively easy to port the examples in this chapter to other common 

automation platform as well—such as Home Assistant or OpenHAB.

First, check the version of Python on the Raspberry Pi through  

python3 –version—you’ll need at least the version 3.6 or higher to run 

Platypush. That shouldn’t be a problem on most of the modern distributions, 

but older distributions may have older versions—if that’s the case, either 

upgrade the distribution or compile a higher version of Python manually.

Time to update the apt mirrors to see if there are any package updates:

[sudo] apt-get update

[sudo] apt-get upgrade

Then install pip if it’s not installed already:

[sudo] apt-get install python3-pip

Chapter 3  Computer Vision on raspberry pi



170

And then install Platypush—for now with the http module. There are 

two ways to do it:

 1. Install the latest stable version via pip:

[sudo] pip3 install 'platypush[http]'

 2. Install the latest snapshot from GitHub. This 

approach is particularly advised if you are planning 

to use the MLX90640 breakout or any other 

devices that require specific drivers that need to be 

compiled from the Platypush codebase. First make 

sure that git is installed:

[sudo] apt-get install git

Then clone the repository and its submodules:

mkdir -p ~/projects && cd ~/projects

git clone https://github.com/BlackLight/platypush

cd platypush

git submodule init

git submodule update

[sudo] pip3 install '.[http]'

Also, Platypush relies on Redis as a messaging system to dispatch 

commands between different components. Install, start, and enable Redis 

on the Raspberry Pi:
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# On other systems the Redis server is called simply redis

[sudo] apt-get install redis-server

[sudo] systemctl start redis-server.service

[sudo] systemctl enable redis-server.service

It’s now time to take a look at the Platypush modules we need for 

our purposes. Platypush comes with an extensive set of integrations 

documented on the official documentation page [29], each of them may 

require different dependencies or its own configuration. By default, the 

configuration is read from ~/.config/platypush/config.yaml; each 

module can be configured in this file (in YAML format) by using the same 

attributes shown in the constructor parameters (also, it is strongly advised 

to run Platypush as a non-root user). Modules can be divided into plugins 

and backends. Plugins are (usually) stateless and can be used to perform 

actions—such as turn on the lights, play the music, capture a camera 

frame, make predictions from a model, and so on. Backends are instead 

services that run in the background and trigger events when something 

happens (e.g., some media file is played, an email is received, a calendar 

event is created, some data is read from a sensor, etc.)—although some 

plugins may also raise events. These events can be caught by custom event 

hooks that can run any piece of logic you like. Some modules require extra 

dependencies—they are usually reported in the documentation of the 

module and can usually be installed via pip. The dependencies are also 

reported in the project’s requirements.txt—you can uncomment the 

ones you need and then install them through

[sudo] pip3 install -r requirements.txt
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The dependencies are also reported in the project’s setup.py file, and 

they can be installed via

[sudo] pip3 install 'platypush[module1,module2,module3]'

For the purposes of this project, we’d like to first capture images at 

regular intervals from our camera and store them locally so we can use 

them later to train our model. If you are using the MLX90640 thermal 

camera breakout, then you’ll first have to compile the driver provided by 

Pimoroni. First, install the required dependencies:

[sudo] apt-get install libi2c-dev build-essentials

Then move to the Platypush repository directory you have previously 

cloned and compile the driver:

cd ~/projects/platypush/plugins/camera/ir/mlx90640/lib

make clean

make bcm2835

make examples/rawrgb I2C_MODE=LINUX

If the compilation process goes fine, you should find an executable 

file named rawrgb under the folder examples. Take note of the path of this 

executable or copy it to another bin directory. If you try to run it and the 

MLX90640 breakout is properly connected, you should see a continuous flow 

of bytes—that’s the RGB representation of the frames captured by the camera. 

If something goes wrong, it’s usually because the I2C bus is not enabled on the 

Raspberry Pi. If that’s the case, you can enable the I2C interface either through 

raspi-config or by manually adding this line to /boot/config.txt:
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dtparam=i2c_arm=on

# Optionally, increase the throughput on the bus

dtparam=i2c1_baudrate=400000

Note that on some systems the dtparam may be named i2c instead of 

i2c_arm, and changing the I2C configuration may require a system restart. 

Once the rawrgb executable can successfully capture frames, install the 

Platypush generic camera module dependencies:

cd ~/projects/platypush

[sudo] pip3 install '.[camera]'

# Or, if you installed Platypush directly from pip:

[sudo] pip3 install 'platypush[camera]'

If you opted for a camera that can be connected over the hardware 

Raspberry Pi camera interface, you should install the picamera module 

instead (and also make sure that the PiCamera interface is enabled in 

raspi-config):

cd ~/projects/platypush

[sudo] pip3 install '.[picamera]'

# Or, if you installed Platypush directly from pip:

[sudo] pip3 install 'platypush[picamera]'

If instead you have a USB-connected camera, you may connect 

Platypush to it through the camera.cv, camera.ffmpeg, or camera.

gstreamer plugins, which, respectively, interact with a camera device over 

OpenCV, FFmpeg, and GStreamer (check their documentation pages or 

setup.py for their required dependencies). The camera interface provided 
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by Platypush offers an API to transparently interact with any of these 

plugins. Once all the dependencies are installed, you can proceed with 

configuring the Platypush automation.

First, enable the web server in Platypush—we’ll be using it both for 

accessing the camera from the web interface and test capturing over the 

web API. Add these lines to ~/.config/platypush/config.yaml:

backend.http:

    port: 8008  # Default listen port

Secondly, we’ll configure the camera.ir.mlx90640 plugin and specify 

where the rawrgb path is:

camera.ir.mlx90640:

    rawrgb_path: ~/bin/rawrgb

    # You may want to specify the rotation of the camera

    rotate: 270

    # Optionally, specify the number of frames per second

    fps: 16

    # And flip the image vertically/horizontally

    vertical_flip: True

    horizontal_flip: True

If instead you opted for collecting images through a PiCamera- 

compatible optical or infrared camera, the configuration will look 

something like this:

camera.pi:

    # Same options as camera.ir.mlx90640

    # except it doesn't need the rawrgb_path
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Or, in the case of a camera compatible with OpenCV/FFmpeg/

GStreamer:

camera.cv:

    device: /dev/video0

    # Same options available for camera.pi

camera.ffmpeg:

    device: /dev/video0

    # Same options available for camera.pi

camera.gstreamer:

    device: /dev/video0

    # Same options available for camera.pi

Now you can start the service through the platypush command. 

It’s also a good idea to register it as a user service, so you won’t have to 

manually restart it on each reboot or if it terminates:

mkdir -p ~/.config/systemd/user

cd ~/projects/platypush

cp examples/systemd/platypush.service ~/.config/systemd/user

# You may also want to modify the ExecStart parameter if

# Platypush was installed on a path other than /usr/bin

systemctl --user daemon-reload

systemctl --user start platypush.service

systemctl --user enable platypush.service
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If Platypush started successfully, you can check that the web panel is 

accessible from a browser at http://raspberry-pi-ip:8008/. On the first 

access, you will be required to set a username and password. Upon login, 

you can select the panel associated to the infrared camera (it’s usually 

identified by a sun-shaped icon) and start streaming.

If all went smooth, you should see a stream of images as shown in 

Figures 3-5 and 3-6, showing green-blue areas where a colder temperature 

is detected and yellow-red where the temperature is higher. If instead you 

used another camera plugin (camera.pi, camera.cv, camera.ffmpeg, or 

camera.gstreamer), you should also see its interface in the tab, and the 

following instructions will work regardless of the camera interface you 

used—you’ll just have to replace camera.ir.mlx90640 with the name of 

the camera plugin you used.

Figure 3-5. A snapshot from the MLX90640 infrared camera
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Figure 3-6. Preview of the web panel MLX90640 interface

You can also capture single images by directly opening the capture URL:

http://raspberry-pi-ip:8008/camera/ir.mlx90640/photo?scale_

x=10&scale_y=10

The scale_x and scale_y parameters may be needed to boost the 

resolution of the images, as the MLX90640 captures images at a small 

24x32 resolution. If you want to access the continuous stream instead, 

just replace photo in the preceding URL with video, and replace camera/

ir.mlx90640 with, for example, camera.pi or camera.cv if you use a 

different plugin.
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Platypush exposes its API over HTTP as well, and you can use it to 

programmatically take pictures or record video streams from the camera, 

for example:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"camera.ir.mlx90640.capture_image",

    "args": {

        "image_file": "~/image.jpg"

    }

}' http://raspberrypi-pi-ip:8008/execute

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"camera.ir.mlx90640.capture_video",

    "args": {

        "video_file": "~/video.mp4"

    }

}' http://raspberrypi-pi-ip:8008/execute

This API can also be exposed over other backends. For example, if you 

enable backend.mqtt, you can send JSON-formatted messages like the 

preceding ones to Platypush over MQTT (the service by default will listen 

for commands on the topic platypush_bus_mq/hostname), and a similar 

principle applies to backend.websocket, backend.kafka, and backend.

redis. So keep in mind that you have multiple interfaces to run your 

commands, in case you prefer not to expose a web service.
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The API is also available for other camera plugins—just replace camera.

ir.mlx90640 with the name of your camera plugin. In general, any method 

shown in the plugin documentation can be called over the HTTP API.

3.3  Capturing the images

Now that we’ve got all the hardware and software in place, let’s configure 

Platypush to periodically capture camera images at regular intervals and 

store them locally—we’ll later use these images to train our model.

Platypush provides the concept of cronjobs, which are basically 

procedures that can be executed at regular intervals and run some custom 

actions. Let’s add a cron to our config.yaml that takes pictures from 

the sensor and stores them in a local directory. First, create the images 

directory on the Raspberry Pi:

mkdir -p ~/datasets/people_detect

Then add the logic for the cron in the config.yaml:

cron.ThermalCameraSnapshotCron:

  cron_expression: '* * * * *'

  actions:

    - action: camera.ir.mlx90640.capture_image

      args:

        image_file: ~/datasets/people_detect/\

            ${int(__import__('time').time())}.jpg

        grayscale: true
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A few observations:

• Platypush cronjobs are identified by the cron.<CRON_

NAME> syntax.

• The cron_expression defines how often the cron 

should be executed. It’s the same syntax as a UNIX 

cronjob, so in this case, * * * * * means take a picture 

once a minute. Seconds are also supported for higher 

granularity, but for back compatibility with the  

UNIX cron expressions, they are usually reported at 

the end of the expression—so if you wanted to run the 

procedure every 30 seconds, the expression would  

be * * * * * */30.

• The actions to be executed are defined in the actions 

section as a list.

• Each action has a <plugin_name>.<method_name> 

syntax and optionally an args attribute to specify its 

arguments. The list of actions available for a certain 

plugin is reported in the documentation of the plugin 

itself, together with the list of supported arguments.

• You can embed snippets of Python in the definition of 

a Platypush cron, procedure, or event hook using the 

${} syntax. In this case, we are using the ~/datasets/

people_detect/${int(__import__('time').

time())}.jpg argument to save each image under our 

dataset directory as a timestamp-named file.

• When it comes to infrared/thermal pictures, I have 

experienced the best performance by converting the 

RGB output to grayscale—the Platypush plugin for the 

MLX90640 has already a built-in logic that converts 
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RGB thermal pictures to grayscale by assigning more 

weight to the red components and subtracting the 

contribution of the blue components. A grayscale 

conversion with properly assigned weights for the color 

components makes it very easy to generate images that 

clearly show warm areas in white and cold areas in 

black—and that can make a machine learning model 

converge very quickly. If you use different infrared or 

thermal cameras that also output RGB artifacts, check 

their temperature range and sensitivity to understand 

how to leverage the output color space to boost the 

temperature range that you want to detect when 

converting to grayscale.

• Again, the cron would work with little modifications 

with any other camera plugin—simply replace camera.

ir.mlx90640 with the plugin you want to use, and as 

long as it implements the abstract camera interface, it 

will work fine with the same API.

After defining the camera capture logic, (re)start Platypush and 

wait until the tick of the next minute. If everything went fine, the first 

grayscale thermal picture should have been stored under ~/datasets/

people_detect. Leave the logic running for at least 1–2 days to capture 

enough pictures—in my experience, the model could already perform well 

when trained with ~900–1000 images. Try to enrich the dataset as much 

as possible—it is sufficient to walk around the room, stand at different 

points of the room, capture images when more people are in the room, 

take pictures while you are far from the sensor, and so on. The higher the 

variability of the conditions captured in the training set, the more accurate 

the model will behave in real-world scenarios. Also, make sure that you 

have a balanced number of pictures with and without people in front of the 

sensor—ideally, aim at a 50/50 split.
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3.4  Labelling the images

Once you have captured enough images, it’s time to copy them over to 

your computer to label them and train the model. If you have followed 

the instructions reported earlier in the chapter and have enabled SSH 

on the Raspberry Pi (and you have an SSH server running either on the 

Raspberry Pi or on your main computer), this will be as simple as running 

this command on your Raspberry Pi:

scp -r ~/datasets user@your-pc:/home/user/

The boring part awaits us now—manually labelling the images as 

positive or negative. I have made this task a bit less tedious with a script 

that allows you to interactively label the images while you view them, and 

it moves them to the right target directory. Install the dependency and 

clone the repository on your local computer:

# The script uses OpenCV as a cross-platform

# tool to display images.

[sudo] pip3 install opencv

# Create a folder for the image utils and

# clone the repository

mkdir -p ~/projects

cd ~/projects

git clone https://github.com/BlackLight/imgdetect-utils

The labelling script will look for image files in a directory and will 

consider any sub-directory as a label. Let’s proceed with creating our 

labels and start the labelling process:
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UTILS_DIR=~/projects/imgdetect-utils

IMG_DIR=~/datasets/people_detect

# Create the directories for the labels

cd $IMG_DIR

mkdir -p positive negative

# Do the labelling

cd $UTILS_DIR

python3 utils/label.py -d "$IMG_DIR" --scale-factor 10

You should see a window like the one shown in Figure 3-7. You can use 

the number keys (1 for negative, 2 for positive in this case) to label a certain 

image as positive or negative, s to skip an image, d to delete it, and ESC/q to 

terminate the labelling. The –scale-factor 10 passed to the script tells to 

scale up the images by a factor of 10 when previewing—that’s quite useful 

when we label tiny 24x32 images. Let the timestamps guide you (e.g., 

to understand when people were in the room and when not), and keep 

Figure 3-7. Screenshot of the image labelling phase through the 
utils/label.py script
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in mind that lighter areas represent warmer bodies, while darker areas 

represent colder bodies or the background, so you are likely to see human 

bodies in the pictures as “white halos,” whose size and brightness depends 

on how distant they are from the sensor and in which position they are. 

Keep also in mind that other sources of heat can pop up in the images 

if they are within the range of the camera sensor—something to keep in 

mind if you have kettles, boilers, or simply pets walking around the room—

but they shouldn’t be a big issue if they are part of the “background” and 

they are there in most of the pictures. For example, my MLX90640 sits in 

a Breakout Garden just on top of a Raspberry Pi 4 with active cooling, and 

I can clearly see the heat dissipated from the Raspberry Pi fan as a light 

glow on the bottom of most of the captured pictures. However, since the 

glow is basically always there (also in the pictures labelled as negative), the 

model will learn to treat it as part of the background and it’s not expected 

to trigger many false positives. However, keep in mind that this may not be 

the case if you have a cat walking in front of the sensor every now and then.

After the labelling phase, the dataset directory will look something like 

this:

-> ~/datasets/people_detect

  -> negative

    -> IMG0001.jpg

    -> IMG0002.jpg

    ...

  -> positive

    -> IMG0003.jpg

    -> IMG0004.jpg

    ...
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Once you are done with the labelling process, you should have the two 

directories in your dataset (positive and negative) properly populated 

with your training images, and you are ready to proceed with the next 

phase—training the model to detect the presence of people.

3.5  Training the model

This part should be quite straightforward if you apply the same techniques 

explored in the previous chapters. We have a neatly labelled dataset of 

24x32 grayscale thermal camera pictures stored under ~/datasets/

people_detect, and we want to train a neural network that learns when an 

image contains a human figure and when it doesn’t—so it’s time to open a 

new Jupyter notebook.

Let’s start with defining a few variables:

import os

# Define the dataset directories

datasets_dir = os.path.join(os.path.expanduser('~'), 

'datasets')

dataset_dir = os.path.join(datasets_dir, 'people_detect')

# Define the size of the input images. In the case of an

# MLX90640 it will be (24, 32) for horizontal images and

# (32, 24) for vertical images

image_size = (32, 24)

# Image generator batch size

batch_size = 64

# Number of training epochs

epochs = 5
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In this case, the data is not already neatly split into training set and 

test set like in some of the previous examples, but we can leverage the 

validation_split parameter of the Keras ImageDataGenerator class to 

let it automatically split the dataset into training and test set—the split 

value in particular will tell the constructor which percentage of the data 

points should go into the test/validation set. We can then use the subset 

argument of flow_from_directory to extract the two sets.

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator

# 30% of the images goes into the test set

generator = ImageDataGenerator(rescale=1./255, validation_

split=0.3)

train_data = generator.flow_from_directory(dataset_dir,

                                             target_size=image_

size,

                                            batch_size=batch_

size,

                                           subset='training',

                                             class_mode= 

'categorical',

                                            color_

mode='grayscale')

test_data = generator.flow_from_directory(dataset_dir,

                                           target_size=image_

size,

                                           batch_size=batch_

size,

                                          subset='validation',
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                                           class_mode= 

'categorical',

                                           color_mode= 

'grayscale')

Unlike the example in the previous chapter, here we are assuming that 

your Raspberry Pi and the camera won’t move much, if you are going to 

monitor for presence of people within the same room, so the snapshots 

are expected to always capture the same view and therefore we won’t need 

much image transformation—the only transformation performed by the 

image generator is the 1/255 rescale to normalize the image pixel values 

within the [0, 1] range. If instead you expect to move the camera around 

or to install it on top of some moving components, it’s still a good idea to 

add transformations such as horizontal_flip, vertical_flip, rotate, 

and so on to the image generator to create a more robust dataset. Also, 

since we are dealing with grayscale images, we need to specify the right 

color space to flow_from_directory through the color_mode argument. 

Like in the previous examples, let’s take a peek at the dataset to see if 

everything looks alright:

import numpy as np

import matplotlib.pyplot as plt

index_to_label = {

    index: label

    for label, index in train_data.class_indices.items()

}

plt.figure(figsize=(10, 10))

batch = train_data.next()
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for i in range(min(25, len(batch[0]))):

    img = batch[0][i]

    label = index_to_label[np.argmax(batch[1][i])]

    plt.subplot(5, 5, i+1)

    plt.xticks([])

    plt.yticks([])

    plt.grid(False)

    # Note the np.squeeze call - matplotlib can't

    # process grayscale images unless the extra

    # 1-sized dimension is removed.

    plt.imshow(np.squeeze(img))

    plt.xlabel(label)

plt.show()

You should see a figure like the one shown in Figure 3-8.

Time to define and train the model. The model for this example can 

be quite simple and yet achieve impressive accuracy, if you train it with 

enough images. For example, let’s define a model that flattens the 32 × 24 

grayscale images, which includes two hidden layers with a number of units 

that is, respectively, 80% and 30% the number of input pixels, and outputs 

the predictions on an output layer of two units—negative and positive:

import tensorflow as tf

from tensorflow import keras

model = keras.Sequential([

    keras.layers.Flatten(input_shape=image_size),

     keras.layers.Dense(round(0.8 * image_size[0] *  

image_size[1]),

        activation=tf.nn.relu),
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     keras.layers.Dense(round(0.3 * image_size[0] * image_

size[1]),

        activation=tf.nn.relu),

    keras.layers.Dense(len(train_data.class_indices),

        activation=tf.nn.softmax)

])

model.compile(loss='categorical_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])

Let’s train it over the previously declared data generator:

history = model.fit(

    train_data,

    steps_per_epoch=train_data.samples/batch_size,

    validation_data=test_data,

    validation_steps=test_data.samples/batch_size,

    epochs=epochs

)

The output on my system looks like this:

Epoch 1/5

loss: 0.2529 - accuracy: 0.9196 - val_loss: 0.0543 - val_

accuracy: 0.9834

Epoch 2/5

loss: 0.0572 - accuracy: 0.9801 - val_loss: 0.0213 - val_

accuracy: 0.9967

Epoch 3/5

loss: 0.0254 - accuracy: 0.9915 - val_loss: 0.0080 - val_

accuracy: 1.0000
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Epoch 4/5

loss: 0.0117 - accuracy: 0.9979 - val_loss: 0.0053 - val_

accuracy: 0.9967

Epoch 5/5

loss: 0.0058 - accuracy: 1.0000 - val_loss: 0.0046 - val_

accuracy: 0.9983

Figure 3-8. A preview of some of the items in the training set
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It means a 100% accuracy on the training set and 99.83% accuracy over 

the test set after 5 epochs—not bad at all considering that we have used a 

relatively simple network with no convolutional layers. Like in the previous 

examples, we can visualize how the accuracy of the model improved over 

the training epochs:

epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

You should see a plot like the one shown in Figure 3-9.

The reason for such high performance despite the relatively small 

dataset (I have used a dataset of about 1400 images for these examples) 

and simple network architecture is that we have used the right tools 

to solve the problem before even building the model. The problem of 

Figure 3-9. Accuracy of the thermal camera people detection model 
over 5 training epochs

Chapter 3  Computer Vision on raspberry pi



192

people detection can easily lead to the creation of complex models if 

the problem isn’t properly constrained—for example, if you use generic 

large datasets from generic optical cameras that picture people in tons 

of different contexts. The strategy of building complex models from large 

generic datasets can surely work if you are building a general-purpose 

application that needs to be installed on, for example, camera hardware 

for autonomous vehicles that need to recognize a human body in all 

the possible positions, distances, orientations, and situations. But if you 

constrain the problem enough—for example, recognize if somebody is 

present in your room, from a static camera that doesn’t move, that detects 

temperature gradients instead of relying on the light that bounces on 

a body, in a color space that is optimized for the purpose, and with an 

input source that generally produces very similar images in the case of 

negatives—then the model doesn’t necessarily have to be complex, and 

the dataset doesn’t necessarily have to be huge. That’s because we have 

translated the problem of detect the presence of people in a picture into a 

problem of detect the presence of more light halos than usual in a grayscale 

picture. In most of the cases, defining a good input source, input space, and 

input dataset is the most important ingredient in building good models.

Like in the previous examples, let’s define some utility functions to take a 

look at how the model performs against some of the images in the test set:

def plot_image_and_predictions(prediction, classes, true_

label, img):

    import numpy as np

    import matplotlib.pyplot as plt

    plt.grid(False)

    plt.xticks([])

    plt.yticks([])

    plt.imshow(np.squeeze(img))
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    predicted_label = int(np.argmax(prediction))

    confidence = 100 * np.max(prediction)

    color = 'blue' if predicted_label == true_label else 'red'

     plt.xlabel('{predicted} {confidence:2.0f}% ({expected})'.

format(

        predicted=classes[predicted_label],

        confidence=confidence,

        expected=classes[int(true_label)]), color=color)

def plot_value_array(prediction, true_label):

    import numpy as np

    import matplotlib.pyplot as plt

    plt.grid(False)

    plt.xticks([])

    plt.yticks([])

     thisplot = plt.bar(range(len(prediction)), prediction, 

color="#777777")

    plt.ylim([0, 1])

    predicted_label = np.argmax(prediction)

    thisplot[predicted_label].set_color('red')

    thisplot[true_label].set_color('blue')

# Plot the first X test images, their predicted label, and 

the true label

# Color correct predictions in blue, incorrect predictions 

in red

def plot_results(images, labels, predictions, classes, rows, 

cols):

    n_images = rows * cols

    plt.figure(figsize=(2 * 2 * cols, 2 * rows))
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    for i in range(n_images):

        plt.subplot(rows, 2 * cols, 2 * i + 1)

        plot_image_and_predictions(

            predictions[i], classes, labels[i], images[i])

        plt.subplot(rows, 2 * cols, 2 * i + 2)

        plot_value_array(predictions[i], labels[i])

    plt.show()

Figure 3-10. An example of the predictions made by the model over a 
batch of items of the test set
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And call it with a sample of images from the first test set batch:

test_batch = test_data.next()

test_images = test_batch[0]

test_labels = test_batch[1]

predictions = model.predict(test_images)

index_to_label = {

    index: label

    for label, index in train_data.class_indices.items()

}

plot_results(

    images=test_images,

     labels=[np.argmax(label_values) for label_values in 

test_labels],

    classes=index_to_label,

    predictions=predictions,

    rows=6, cols=3)

You should see an image like the one shown in Figure 3-10.

3.6  Deploying the model

Once you are happy with the performance of the model, it’s time to save it, 

using a logic similar to the one previously explored to save the label names 

as well:

def model_save(model, target, labels=None, overwrite=True):

    import json

    import pathlib
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    # Check if we should save it like a .h5/.pb

    # file or as a directory

    model_dir = pathlib.Path(target)

    if str(target).endswith('.h5') or \

       str(target).endswith('.pb'):

        model_dir = model_dir.parent

    # Create the model directory if it doesn't exist

     pathlib.Path(model_dir).mkdir(parents=True, exist_

ok=True)

    # Save the TensorFlow model using the save method

    model.save(target, overwrite=overwrite)

     # Save the label names of your model in a separate JSON 

file

    if labels:

        labels_file = os.path.join(model_dir, 'labels.json')

        with open(labels_file, 'w') as f:

            f.write(json.dumps(list(labels)))

model_dir = os.path.expanduser('~/models/people_detect')

model_save(model, model_dir,

    labels=train_data.class_indices.keys(), overwrite=True)

In the preceding snippet, we have saved the model as a TensorFlow 

model directory (~/models/people_detect), but you can also choose to 

save it as a single Protobuf (.pb extension) or Hierarchical Data Format 

(HDF4/HDF5, .h4/.h5 extension) file. Recent versions of TensorFlow 

can load and save any of these formats, as well as the TensorFlow plugin 

provided by Platypush does, but if you are planning to import the model 

into other applications, it’s usually a good idea to double-check which 
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formats they support. In any of these cases, the model_save method will 

also generate a labels.json file if a list of labels is provided—that can help 

map back the output nodes to the actual human-readable class labels, and 

I haven’t yet found a standard way to natively add them to a TensorFlow 

model.

Once the model is saved, you are ready to export it to the Raspberry Pi. 

Go back to the Raspberry Pi and copy it over SSH:

mkdir -p ~/models

scp -r user@your-pc:/home/user/models/people_detect ~/models

The model files should have now been copied on your Raspberry Pi  

under /home/pi/models/people_detect. Once the model has been 

uploaded to the device, we need a way to use it for predictions on live 

data. There are mainly two ways to use TensorFlow/Keras models on the 

Raspberry Pi:

 1. Use the native TensorFlow library.

 2. Use OpenCV.

Getting both the libraries installed and properly working on 

Raspberry Pi used to be a little of a technical challenge until some time 

ago, but if you are using a Raspberry Pi 4 with the most recent version of 

Raspbian/Raspberry Pi OS (or any other recent supported distribution),  

it should be relatively easy.

3.6.1  The OpenCV way

Using OpenCV to make predictions from trained models on a Raspberry Pi  

used to be my favorite solution until some time ago (indeed, I wrote 

an article back in 2019 that showed how to use a previously trained 

TensorFlow model to make live predictions on a Raspberry Pi using this 
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approach). However, that was mainly because getting TensorFlow to build 

and run on a Raspberry Pi used to be a long and tedious process, but 

things have quite changed on the Raspberry Pi 4. There are mainly two 

limitations with the OpenCV approach:

 1. At the time of writing, the cv2.dnn OpenCV package 

can only read models—it can’t be used for live 

training nor it can save models.

 2. The compatibility with TensorFlow formats is quite 

limited. It can’t read models saved in HDF5 format 

(which need to be converted to Protobuf before 

being loaded; there are few scripts on the Web to do 

it), and I have also experienced issues with loading 

some models saved by recent TensorFlow/Keras 

versions as well.

However, if your Raspberry Pi architecture/distribution doesn’t 

natively support TensorFlow, OpenCV may be a good alternative to make 

predictions.

First, you’ll have to make sure that OpenCV is installed on the device 

with the contrib package—which is the one that actually contains the 

cv2.dnn module. If you use Raspbian Buster on a Raspberry Pi 4 or more 

recent versions, this should hopefully be as simple as

[sudo] pip3 install opencv-contrib-python

If everything went well, check if you can successfully import the 

module:

>>> import cv2.dnn

>>>
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If anything goes wrong in the process or if you use another OS/

Raspberry Pi/SoC device, look up online for ways to get OpenCV Python3 

(and the contrib package) installed on your platform—some users have 

posted step-by-step solutions for the most tricky cases.

Once the dependency is in place, you may have to export the HDF5 

model to a single Protobuf file—I have had issues importing the directory- 

based saved_model.pb models generated by recent TensorFlow versions, 

but exporting an .h5 file to .pb still works. There are several tools for this 

purpose, for example:

git clone https://github.com/amir-abdi/keras_to_tensorflow

cd keras_to_tensorflow

python3 keras_to_tensorflow.py \

    --input_model=/home/pi/models/people_detect/model.h5 \

     --output_model=/home/pi/models/people_detect/exported_

model.pb

Then, using your model for predictions should be as simple as running 

these lines:

import os

import json

import sys

import numpy as np

import cv2

assert len(sys.argv) >= 2, f'Usage: {sys.argv[0]} <image_

file>'
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image_file = os.path.expanduser(sys.argv[1])

model_dir = os.path.expanduser('~/models/people_detect')

model_file = os.path.join(model_dir, 'exported_model.pb')

labels_file = os.path.join(model_dir, 'labels.json')

model = cv2.dnn.readNet(model_file)

with open(labels_file, 'r') as f:

    labels = json.load(f)

img = cv2.imread(image_file)

model.setInput(img)

output = model.forward()

class_ = int(np.argmax(output))

label = labels[class_]

print('Predicted label for {img}: {label}. Confidence: 

{conf}%'.format(

      img=image_file, label=label, conf=100 * output[class_]))

If the preceding script works well, you can use your saved model 

through the Platypush ml.cv plugin, which exports for free the model over 

an HTTP API (or any other backend enabled on Platypush, e.g., MQTT, 

WebSockets, Kafka, etc.). The full interface of the ml.cv is reported on the 

official documentation. For instance, you can use it to make predictions 

over cURL (note that the image file must exist on the Raspberry Pi storage):

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"ml.cv.predict",

    "args": {
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         "img": "~/dataset/people_detect/positive/ 

some_image.jpg",

         "model_file": "~/models/people_detect/ 

exported_model.pb",

        "classes": ["negative", "positive"]

    }

}' http://raspberrypi-pi-ip:8008/execute

Response:

{

  "id": "<response-id>",

  "type": "response",

  "target": "http",

  "origin": "raspberrypi",

  "response": {

    "output": "positive",

    "errors": []

  }

}

However, note that the OpenCV Platypush plugin is limited to single 

images as input and, because of the limitations of the cv2.dnn module, 

it can only be used for predictions on existing trained models—no live 

training.

3.6.2  The TensorFlow way

If your device and distribution supports an easy way to install and run 

TensorFlow, then this may be your favorite way. On a Raspberry Pi 4 with 

Raspbian Buster or later, this should be possible with these commands:
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[sudo] apt-get install python3-numpy

[sudo] apt-get install libatlas-base-dev

[sudo] apt-get install libblas-dev

[sudo] apt-get install liblapack-dev

[sudo] apt-get install python3-dev

[sudo] apt-get install gfortran

[sudo] apt-get install python3-setuptools

[sudo] apt-get install python3-scipy

[sudo] apt-get install python3-h5py

[sudo] pip3 install tensorflow keras

If it all went fine, you can test if you can run predictions on the 

previously trained model using the model_load TensorFlow function we 

saw earlier:

import os

import json

import sys

import numpy as np

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

assert len(sys.argv) >= 2, f'Usage: {sys.argv[0]} <image_

file>'

image_file = os.path.expanduser(sys.argv[1])

model_dir = os.path.expanduser('~/models/people_detect')

model_file = os.path.join(model_dir, 'saved_model.h5')

labels_file = os.path.join(model_dir, 'labels.json')
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with open(labels_file, 'r') as f:

    labels = json.load(f)

model = load_model(model_file)

img = image.load_img(image_file, color_mode='grayscale')

data = image.img_to_array(img)

# Remove the extra color dimension if it's a grayscale image

data = np.squeeze(data)

output = model.predict(np.array([data]))[0]

class_ = np.argmax(output)

label = labels[class_]

print('Predicted label for {img}: {label}. Confidence: 

{conf}%'.format(

       img=image_file, label=label, conf=100 * output[class_]))

If predictions work, you can proceed with testing the model in 

Platypush to make like predictions through the tensorflow plugin:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.predict",

    "args": {

         "inputs": "~/datasets/people_detect/positive/some_

image.jpg",

        "model": "~/models/people_detect/saved_model.h5"

    }

}' http://raspberrypi-pi-ip:8008/execute
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Expected output:

{

  "id": "<response-id>",

  "type": "response",

  "target": "http",

  "origin": "raspberrypi",

  "response": {

    "output": {

      "model": "~/models/people_detect/saved_model.h5",

      "outputs": [

        {

          "negative": 0,

          "positive": 1

        }

      ],

      "predictions": [

        "positive"

      ]

    },

    "errors": []

  }

}

In this case, outputs contains the values of the output units (with 

their associated labels if available) for each of the input samples (in this 

case, we only used one image), and predictions contains either the list of 

predicted labels for each of the input samples or their class index if labels 

are not available.
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3.7  Building your automation flows

Now that you are able to use pre-trained models on a Raspberry Pi to make 

predictions, it’s time to leverage Platypush to integrate these predictions 

into automation flows and run actions on other devices depending on the 

output of a prediction.

For example, let’s build an automation that does the following:

 1. It captures pictures at regular intervals (e.g., once 

a minute) from the thermal camera and stores the 

captured frame to a temporary JPEG file.

 2. If presence is detected, turn on the lights. If 

presence is not detected, turn off the lights.

We can again leverage Platypush’s crons to do this job. I’ll cover in 

this example an implementation with Philips Hue or any smart bulbs 

compatible with the light.hue plugin, but any other device compatible 

Figure 3-11. A screenshot of the light.hue tab in the Platypush web 
panel
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with a Platypush plugin that implements the abstract light plugin should 

work. First, if you use Philips Hue, then install the Platypush plugin 

dependencies (it should only include phue):

[sudo] pip3 install 'platypush[hue]'

And add the following configuration to your config.yaml:

light.hue:

    bridge: 192.168.1.123

    groups:

        # Default light groups to be managed

        - Living Room

Then restart Platypush and open http://raspberry-pi-ip:8008 in 

your browser. You may have to authorize the first connection to the Hue 

bridge by pressing the physical sync button. After the Raspberry Pi has 

been authorized, refresh the page and you should see a panel like the 

one shown in Figure 3-11—under the light bulb icon. You can test the 

connection by trying to switch some lights on or off or change colors. Like 

all plugins, the actions of light.hue are also available over API, and you 

can easily embed them in your flows.

For this purpose, we’ll create a Platypush procedure as a Python script—

it’s also possible to do it directly in the config.yaml through the documented 

YAML syntax, but the YAML syntax is a bit rigid and verbose for complex flows. 

First, prepare the Platypush user scripts directory if it’s not already there:

mkdir -p ~/.config/platypush/scripts

touch ~/.config/platypush/scripts/__init__.py

touch ~/.config/platypush/scripts/camera.py
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You can also add the code of your procedure directly in the __init__.

py, but for better modularity, I prefer to group procedures together in 

modules. Add the following content to camera.py:

import os

from platypush.context import get_plugin

from platypush.procedure import procedure

@procedure

def check_presence(**context):

    # Get plugins by name

    camera = get_plugin('camera.ir.mlx90640')

    tensorflow = get_plugin('tensorflow')

    lights = get_plugin('light.hue')

    image_file = '/tmp/frame.jpg'

     model_file = os.path.expanduser('~/models/people_detect/

saved_model.h5')

    camera.capture_image(

        image_file=image_file, grayscale=True)

    prediction = tensorflow.predict(

        inputs=image_file, model=model_file)['predictions'][0]

    if prediction == 'positive':

        lights.on()

    else:

        lights.off()
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Then import the procedure into /.config/platypush/scripts/__

init__.py in order to use it in config.yaml:

from scripts.camera import check_presence

Finally, replace the previous cron in config.yaml that would simply 

capture photos with a new one that calls the newly created procedure 

every minute to check for presence:

cron.CheckPresenceCron:

    cron_expression: '* * * * *'

    actions:

        - action: procedure.check_presence

Restart Platypush, and this should be it—the state of the lights will 

change when someone enters or exits the view of the thermal camera. 

Time to show off your friends! And remember that Platypush comes with 

many other integrations as well—from music, media, and cameras to 

cloud services, to many other IoT devices, to MQTT, to voice assistants, 

and so on—so you can easily apply the same basic ingredients to build 

other smart flows based on live machine learning predictions.

3.8  Building a small home surveillance 
system

A second example application for a model that can detect the presence 

of people is the setup of a small home surveillance system that notifies if 

anybody is at home while we are not at home. We can use the following 

building blocks to set up such a project:
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 1. Use an app on your phone that supports geo-

fencing—that is, detects when you enter or exit an 

area—and can trigger actions when such events 

occur. For this example, we’ll be using Tasker and 

AutoLocation for Android.

 2. Send a message from your phone to the Raspberry Pi, 

for example, over MQTT when you enter or exit your 

home area and configure Platypush to listen for such 

messages and update the HOME state.

 3. Keep taking pictures from the thermal camera every 

minute or so and use the previously trained model 

to make predictions on the presence of people.

 4. If presence is detected and the HOME state is false, 

then take a picture from an optical camera (e.g., 

a PiCamera) and send a message back to the 

phone (e.g., over Pushbullet or Telegram) with the 

attachment to notify a possible intrusion.

Going step by step, first set up an MQTT server that is accessible both 

inside and outside of your network. There are several options to achieve 

this:

 1. If you have a Linux box somewhere in the cloud 

(like an Amazon instance or a VPS), install an MQTT 

broker like Mosquitto on it—if the box has a public 

IP address, then it can be accessed by your phone 

also when it is outside of your home network.
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 2. If your home network router/provider supports it, 

use a service like Dyn (formerly DynDNS) to get 

a hostname for your home router (e.g.,  my-home-

router.gotdns.org) and run a client like ddclient 

or inadyn to keep the hostname-IP association up  

to date. Install Mosquitto on your Raspberry Pi  

or another device in the network and use port 

forwarding on the router to expose the MQTT port. 

Note: If you follow this route, you’ll basically be 

exposing a service inside of your network to the 

outside world. In this scenario, it’s advised to set up 

authentication and encryption on the MQTT server.

 3. You can set up a home VPN with, for example, an 

OpenVPN or WireGuard setup and connect your 

phone to the same VPN through an Android client. 

If you run an MQTT broker inside of your home 

network, it will also be accessible from your phone 

over the VPN address.

 4. Use a public MQTT broker service (like HiveMQ, 

Adafruit.IO, or MaQiaTTo)—it removes the need 

for a local installation of Mosquitto, VPNs, and 

port forwarding, but you may have to pay a bit for a 

service without limitations.

Whichever option you prefer, at the end of the process, you should 

have the address and port of an MQTT broker that can be accessed both 

within and outside of your network. Back to your Raspberry Pi, install the 

dependencies for the MQTT integration:

[sudo] pip3 install 'platypush[mqtt]'
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Then add the configuration for backend.mqtt in your config.yaml:

backend.mqtt:

    host: your-mqtt-address

    port: 1883

    listeners:

        - topics:

            - sensors/platypush/at_home

The listeners section instructs Platypush on which topics it should 

listen for new messages—in this case, we’ll be using a topic named 

sensors/platypush/at_home.

Next, install Tasker and AutoLocation on your (Android) phone. You 

also need an MQTT client app that supports Tasker integration if you 

want to send messages from your phone to your MQTT broker—Join, also 

developed by the same developer that built Tasker and AutoLocation, 

should be fine if you are using a simple MQTT broker with no authentication 

or no encryption, but if that’s not the case, you should opt for MQTT client. 

Configure the MQTT app and make sure that it can connect to your broker 

and receive messages. You can then tune AutoLocation to your preference—

for example, whether it should use GPS data, cell ID information, or both; 

how often it will check the location and configure the background monitor; 

and so on. Then create a new profile in the Tasker interface that runs on 

location update. Create a new location centered on your home address and 

select a sensitivity radius (e.g., 50, 100, or 200 meters). Then create a new 

task that runs when you enter this area, create a new action, select your 

MQTT integration, and specify the address and port of your broker, the topic 

(e.g., sensors/platypush/at_home), and the message (e.g., 1). Similarly, 

create a task that runs when you exit the area (long press on the task in the 

profile and select Add Exit Task) and sends 0 to the topic. If it all went well, 

your phone will start sending 0 or 1 to your MQTT instance on the selected 

topic whenever you enter or exit your home area.
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Platypush triggers a MQTTMessageEvent whenever a new message is 

received upon a watched topic. You can easily define hooks on events, 

that is, pieces of logic that run whenever an event matching some criteria 

is received, and they can be created both using the YAML and Python 

syntax. For example, let’s create a hook on the Raspberry Pi that reacts to a 

new message received on the home presence MQTT topic and sets a state 

variable that we can use in other scripts or applications to signal whether 

we are at home or not. Add the following lines to, for example, ~/.config/

platypush/scripts/home.py:

from platypush.context import get_plugin

from platypush.event.hook import hook

from platypush.message.event.mqtt import MQTTMessageEvent

@hook(MQTTMessageEvent, topic='sensors/platypush/at_home')

def on_home_state_changed(event, **context):

    # Use the variable plugin to persist state variables

    # on the local storage

    variable = get_plugin('variable')

    variable.set('HOME', int(event.args['msg']))

And import the event hook into /.config/platypush/scripts/__

init__.py to make it visible to the configuration:

from scripts.home import on_home_state_changed

Now the Raspberry Pi will keep the value of the HOME variable in sync 

whenever you enter or exit the home area.

Next, we’ll need some messaging integration to send messages from 

the Raspberry Pi to your phone when something goes on. There are 

multiple options to achieve this—send a message over the Pushbullet, 

Chapter 3  Computer Vision on raspberry pi



213

Telegram, or Twilio integrations, send an email, trigger an IFTTT rule, 

and so on. For the purposes of this example, we’ll see how to deliver the 

message with Pushbullet because it requires the least amount of steps. 

Install the Pushbullet integration:

[sudo] pip3 install 'platypush[pushbullet]'

Install the app on your phone as well and head to https://docs.

pushbullet.com to get an API access token for your account. Once you 

have your access token, configure Platypush to use it:

pushbullet:

    token: your-token

Optionally, if you also want to send a picture of your room at 

the moment the presence is detected, you’ll need an optical camera 

plugin—camera.pi, camera.ffmpeg, camera.gstreamer, and camera.cv 

will do the job. For example, if you have a PiCamera, you can install the 

dependencies:

[sudo] pip3 install 'platypush[picamera]'

And enable the plugin:

camera.pi:

    enabled: True
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Finally, let’s put all the pieces together by modifying the previous 

check_presence cron so that

 1. It captures a picture from the thermal camera.

 2. It uses the previously trained model to predict 

whether someone is in the picture.

 3. If we are at home, run the previous logic—turn the 

lights on if someone is in the picture; turn them off 

otherwise.

 4. If we are not at home and presence is detected, 

take a picture from the PiCamera and send it to our 

phone over Pushbullet to notify us that someone 

may be in our house.

Putting all the pieces together:

import os

from platypush.context import get_plugin

from platypush.procedure import procedure

@procedure

def check_presence(**context):

    # Get plugins by name

    thermal_camera = get_plugin('camera.ir.mlx90640')

    pi_camera = get_plugin('camera.pi')

    variable = get_plugin('variable')

    tensorflow = get_plugin('tensorflow')

    lights = get_plugin('light.hue')

    pushbullet = get_plugin('pushbullet')

    ir_image_file = '/tmp/ir-frame.jpg'

    pi_image_file = '/tmp/pi-frame.jpg'
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     model_file = os.path.expanduser('~/models/people_detect/

saved_model.h5')

    # Check if we are at home

    response = variable.get('HOME')

    at_home = int(response.get('HOME'))

    # Capture an image from the thermal camera

    thermal_camera.capture_image(

        image_file=ir_image_file, grayscale=True)

     # Use the model to predict if there is someone in the picture

    prediction = tensorflow.predict(

        inputs=image_file, model=model_file)['predictions'][0]

    # If we are at home, run the light on/off logic

    if at_home:

        if prediction == 'positive':

            lights.on()

        else:

            lights.off()

    elif prediction == 'positive':

         # Otherwise, if presence is detected and we are not 

at home,

         # take a picture from the PiCamera and send it over 

Pushbullet

        # to notify of a possible intrusion

        pi_camera.capture_image(image_file=pi_image_file)

         pushbullet.send_note(body='Possible intrusion 

detected!')

        pushbullet.send_file(filename=pi_image_file)

Restart Platypush, and your new home surveillance logic should be in 

place!
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3.9  Live training and semi-supervised 
learning

A nice feature of having a trained model loaded in memory and with a 

remote API is that you can train the model in real time with new data and 

save it, without having to scavenge your laptop for that specific notebook 

that you used to train it, and with a transparent flow that can be logged on 

a remote service.

Moreover, this approach can be used to train models incrementally as 

more data is processed. In the case of Platypush, the tensorflow plugin 

exposes the tensorflow.train method for live training of loaded models. 

Example train session over cURL:

# Load the model from disk

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.load",

    "args": {

        "model": "~/models/people_detect/saved_model.h5"

    }

}' http://raspberrypi-pi-ip:8008/execute

# Train the model with some new data.

# For instance, a new camera picture that we already

# know to be positive.

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",
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    "action":"tensorflow.train",

    "args": {

        "model": "~/models/people_detect/saved_model.h5",

         "inputs": ["/home/pi/datasets/people_detect/positive/

some-image.jpg"],

        "outputs": ["positive"]

    }

}' http://raspberrypi-pi-ip:8008/execute

# Save the model once done

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.save",

    "args": {

        "model": "~/models/people_detect/saved_model.h5"

    }

}' http://raspberrypi-pi-ip:8008/execute

# Unload the model once saved to save memory

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.unload",

    "args": {

        "model": "~/models/people_detect/saved_model.h5"

    }

}' http://raspberrypi-pi-ip:8008/execute
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The inputs field on the train API is quite flexible, and it currently 

supports lists of images, CSV/TSV files, numpy uncompressed/

compressed files, and raw arrays, and the API exposes other useful 

attributes as well—such as batch size, number of epochs, validation data 

and validation split, weights, and so on.

The live training approach is particularly interesting for an approach 

I like to call tutor learning. You can equip your Raspberry Pi with other 

devices to get hunches for the presence of people—such as motion 

detectors, light detectors, or cameras mounted in different points of the 

room. You can configure a cron that runs data captures on all of these 

devices at the same time. Once one of the sensors detects presence (e.g., 

through motion), then the corresponding picture taken from the thermal 

camera at the same time will be labelled as positive and used to train the 

model in real time. Similarly, the model can be paired with the output of a 

luminosity sensor, building inferences such as “if it’s dark in the room, and 

no motion is detected, and the time is between midnight and 8 AM, then 

it’s likely that the pictures taken in this time frame include no people.”

As a result, you can build a training logic that is kind of semi- 

supervised, based on data points from other sensors that can more 

deterministically track the metric that you want to predict. If you move 

your newly trained model to another machine or you simply remove the 

accessory sensors, the model should still be as good as tracking presence 

as if the other sensors or cameras were still there.

As another example, you can train a model for people detection from 

optical camera images that uses data from the thermal camera model 

as a tutor. We have explored earlier the reason why a thermal source is 

more reliable in a small environment than an optical camera to detect 

the presence of people. However, you can first train a detection model on 

the basis of the output of a thermal camera and then create a cron that 

captures frames at the same time both from the thermal sensor and the 

optical camera. If the accuracy of the thermal model is very high, then its 

predictions can be used as labels for the optical camera frames and used 
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to feed a real-time dynamic dataset to, for example, a more sophisticated 

CNN architecture. After performing sufficient live training of the model 

using this (semi)automated strategy, and once the performance metrics of 

the model are satisfactory enough, the thermal camera can be unplugged, 

and the stand-alone optical camera model should still be able to make 

predictions.

3.10  Classifiers as a service

To conclude the exploration of the possibilities offered by the synergy 

between TensorFlow models and IoT tools, let’s see an example where 

the whole management of the previous model for people detection over 

MLX90640 happens over a service (e.g., Platypush) instead of a notebook.

Platypush offers an API to create and compile models, besides training 

them and using them for predictions—although other popular IoT 

solutions like Home Assistant may also offer similar features if they provide 

a TensorFlow integration. The advantage of this approach is that the model 

will be internally and consistently managed by the service. Moreover, 

the training logic occurs over API calls or crons/event hooks instead of a 

(sometimes messy and hard to track) Jupyter notebook.

For example, the MLX90640 presence detection model can be 

dynamically created via API call:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

  "type": "request",

  "action": "tensorflow.create_network",

  "args": {

    "name": "people_detect",
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    "output_names": ["negative", "positive"],

    "optimizer": "adam",

    "loss": "categorical_crossentropy",

    "metrics": ["accuracy"],

    "layers": [

      {

        "type": "Flatten",

        "input_shape": [24, 32]

      },

      {

        "type": "Dense",

        # ~= 0.8 * 32 * 24

        "units": 614,

        "activation": "relu"

      },

      {

        "type": "Dense",

        # ~= 0.3 * 32 * 24

        "units": 230,

        "activation": "relu"

      },

      {

        "type": "Dense",

        "units": 2,

        "activation": "softmax"

      }

    ]

  }

}' http://raspberrypi-pi-ip:8008/execute
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The tensorflow.create_network action does the same as the keras.

Sequential call we have used earlier to define the model. It can be used 

to define the model name, the output labels, the optimizer, loss function, 

performance metrics, and the structure of the network. We can then train 

the model with our collected data:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

  "type": "request",

  "action": "tensorflow.train",

  "args": {

    "model": "people_detect",

    "epochs": 5,

    "inputs": "~/datasets/ir_presence_detector/images",

    "validation_split": 0.3

  }

}' http://raspberrypi-pi-ip:8008/execute

We are using our previously defined dataset of camera images 

organized into the negative and positive sub-folders and specify the 

number of epochs and the validation split—in this case, 30% of the images 

will be used for model validation.

The tensorflow.train action will generate several events during the 

training phase that you can attach to if you want to create your custom 

hooks—for example, copy the model to another machine once the training 

has completed if the performance metrics haven’t degraded, or remove 

images that belong to batches already processed if you are working on 

continuous streams, or log the performance of the model over the epochs 

to a CSV file. Some of these events are
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 1. TensorflowTrainStartedEvent—when the training 

starts

 2. TensorflowTrainEndedEvent—when the training 

phase ends

 3. TensorflowBatchStartedEvent—when a batch 

starts being processed

 4. TensorflowBatchEndedEvent—when a batch is 

processed

 5. TensorflowEpochStartedEvent—when a training 

epoch begins

 6. TensorflowEpochEndedEvent—when a training 

epoch ends

At the end of the process, the HTTP client should receive an output 

that looks like this:

{

  "response": {

    "output": {

      "model": "people_detect",

      "epochs": [

        0,

        1,

        2,

        3,

        4

      ],

      "history": {

        "loss": [

          0.9747824668884277,
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          0.6165147423744202,

          0.07518807053565979,

          0.06354894489049911,

          0.06809689849615097

        ],

        "accuracy": [

          0.9494661688804626,

          0.9843416213989258,

          0.9957295656204224,

          0.9950177669525146,

          0.9928825497627258

        ],

        "val_loss": [

          0.5309795141220093,

          0.4760192930698395,

          0.10130093991756439,

          0.32663050293922424,

          0.7078392505645752

        ],

        "val_accuracy": [

          0.9834162592887878,

          0.9850746393203735,

          0.9917080998420715,

          0.9867330193519592,

          0.9834162592887878

        ]

      }

    },

    "errors": []

  }

}
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Each field of the history reports the loss and performance metric over 

the training and validation sets for each of the epochs. Once you are happy 

with the model, you can save it:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.save",

    "args": {

        "model": "people_detect"

    }

}' http://raspberrypi-pi-ip:8008/execute

The model will be saved under ~/.local/share/platypush/

tensorflow/models/people_detect. It can be imported into other 

applications compatible with TensorFlow models or into your own scripts 

for predictions, and it can easily be reloaded in Platypush on restart:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

    "type":"request",

    "action":"tensorflow.load",

    "args": {

        "model": "people_detect"

    }

}' http://raspberrypi-pi-ip:8008/execute
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And used for real-time predictions:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '{

  "type": "request",

  "action": "tensorflow.predict",

  "args": {

    "model": "people_detect",

    "inputs": "/path/to/an/image.jpg"

  }

}' http://raspberrypi-pi-ip:8008/execute

This should cover all the steps on how to create, train, evaluate, and 

manage your models using a remote API—and, ideally, without writing a 

line of code.
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