
T E C H N O L O G Y I N A C T I O N ™

Computer Vision
with Maker Tech

Detecting People With a
Raspberry Pi, a Thermal Camera,
and Machine Learning
—
Fabio Manganiello

Computer Vision with
Maker Tech

Detecting People With a
Raspberry Pi, a Thermal

Camera, and Machine Learning

Fabio Manganiello

Computer Vision with Maker Tech: Detecting People With a Raspberry Pi, a

Thermal Camera, and Machine Learning

ISBN-13 (pbk): 978-1-4842-6820-9 ISBN-13 (electronic): 978-1-4842-6821-6

https://doi.org/10.1007/978-1-4842-6821-6

Copyright © 2021 by Fabio Manganiello

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,1 NY

Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@

springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and

the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for

reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print

and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available

to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6820-9.

For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Fabio Manganiello

Amsterdam, The Netherlands

https://doi.org/10.1007/978-1-4842-6821-6

iii

Table of Contents

Chapter 1: Introduction to Machine Learning1

1.1 History ...3

1.2 Supervised and unsupervised learning...9

1.3 Preparing your tools ..11

1.3.1 Software tools ..12

1.3.2 Setting up your environment ..13

1.4 Linear regression ..17

1.4.1 Loading and plotting the dataset ..18

1.4.2 The idea behind regression ..19

1.4.3 Gradient descent ..22

1.4.4 Input normalization ...28

1.4.5 Defining and training the model ...30

1.4.6 Evaluating your model ..34

1.4.7 Saving and loading your model ..38

About the Author ..vii

About the Technical Reviewer ...ix

Introduction ...xi

Chapters at a Glance ...xiii

iv

1.5 Multivariate linear regression ...41

1.5.1 Redundant features ..45

1.5.2 Principal component analysis ...47

1.5.3 Training set and test set ...52

1.5.4 Loading and visualizing the dataset ...53

1.6 Polynomial regression ...60

1.7 Normal equation ...64

1.8 Logistic regression ..67

1.8.1 Cost function ..72

1.8.2 Building the regression model from scratch ..75

1.8.3 The TensorFlow way ...82

1.8.4 Multiclass regression ...84

1.8.5 Non-linear boundaries ..85

Chapter 2: Neural Networks ...87

2.1 Back-propagation ...96

2.2 Implementation guidelines..104

2.2.1 Underfit and overfit ...106

2.3 Error metrics ...111

2.4 Implementing a network to recognize clothing items116

2.5 Convolutional neural networks ...134

2.5.1 Convolutional layer ...138

2.5.2 Pooling layer ...144

2.5.3 Fully connected layer and dropout ...145

2.5.4 A network for recognizing images of fruits ..146

TABLE OF CONTENTS

v

Chapter 3: Computer Vision on Raspberry Pi159

3.1 Preparing the hardware and the software ..161

3.1.1 Preparing the hardware ..161

3.1.2 Preparing the operating system ...166

3.2 Installing the software dependencies ...169

3.3 Capturing the images ..179

3.4 Labelling the images ...182

3.5 Training the model ..185

3.6 Deploying the model ...195

3.6.1 The OpenCV way ...197

3.6.2 The TensorFlow way ...201

3.7 Building your automation flows ..205

3.8 Building a small home surveillance system ..208

3.9 Live training and semi-supervised learning..216

3.10 Classifiers as a service ...219

 Bibliography ...227

Index ...231

TABLE OF CONTENTS

vii

About the Author

Fabio Manganiello has more than 15 years

of experience in software engineering, many

of these spent working on machine learning

and distributed systems. In his career he has

worked, among others, on natural language

processing, an early voice assistant (Voxifera)

developed back in 2008, and machine learning

applied to intrusion detection systems, using

both supervised and unsupervised learning;

and he has developed and released several libraries to make models’

design and training easier, from back-propagation neural networks

(Neuralpp) to self-organizing maps (fsom), to dataset clustering. He

has contributed to the design of machine learning models for anomaly

detection and image similarity in his career as a tech lead in Booking.

com. In the recent years, he has combined his passion for machine

learning with IoT and distributed systems. From self-driving robots to

people detection, to anomaly detection, to weather forecasting, he likes

to combine the flexibility and affordability of tools such as Raspberry Pi,

Arduino, ESP8266, and cheap sensors with the power of machine learning

models. He's an active IEEE member and open source enthusiast and

has contributed to around 100 open source projects over the years. He is

the creator and main contributor of Platypush, an all-purpose platform

for automation that aims to connect any device to any service, and also

provides TensorFlow and OpenCV integrations for machine learning.

ix

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated from BITS Pilani, where he studied

mechanical engineering, in 2018. Since then, he has worked with Big

Vision LLC on deep learning and computer vision and was involved in

creating official OpenCV AI courses. Currently, he is working at Mercedes-

Benz Research and Development India Pvt. Ltd. He has a keen interest

in programming and AI and has applied that interest in mechanical

engineering projects. He has also written multiple blogs on OpenCV and

deep learning on Learn OpenCV, a leading blog on computer vision. He

has also coauthored Machine Learning for OpenCV 4 (second edition) by

Packt. When he is not writing blogs or working on projects, he likes to go

on long walks or play his acoustic guitar.

xi

Introduction

The field of machine learning has gone through a massive growth in the

last few years, thanks to increased computing power, increased funding,

and better frameworks that make it easier to build and train classifiers.

Machine learning, however, is still considered as a tool for IT giants with

plenty of resources, data, and computing power. While it is true that

models get better when they can be trained with more data points, and

computing power surely plays a role in the ability to train complex models,

in this book we'll see that it's already possible to build models trained on

data points gathered from a smart home environment (like temperature,

humidity, presence, or camera images), and you can already use those

models to make your home “smarter.” Such models can be used for

predictions even on a Raspberry Pi or similar hardware.

After reading this book, you will

• Know the formal foundations of the main machine

learning techniques

• Know how to estimate how accurate a classifier is

in making predictions and what to tweak in order to

improve its performance

• Know how to cleanse and preprocess your data points

to maximize the performance of your models

• Be able to build machine learning models using

TensorFlow and the standard Python stack for data

analysis (numpy, matplotlib, pandas)

xii

• Be able to set up a Raspberry Pi with a simple network

of sensors, cameras, or other data sources that can be

used to generate data points fed to simple machine

learning models, make predictions on those data

points, and easily create, train, and deploy models

through web services

INTRODUCTION

xiii

Chapters at a Glance

Chapter 1 will go through the theoretical foundations of machine learning.

It will cover the most popular approaches to machine learning, the

difference between supervised and unsupervised learning, and take a

deep dive into regression algorithms (the foundation block for most of

today's supervised learning). It will also cover the most popular strategies

to visualize, evaluate, and tweak the performance of a model.

Chapter 2 will take a deep dive into neural networks, how they

operate and “learn,” and how they use computer vision. It will also cover

convolutional neural networks (CNNs), a popular architecture used in

most of today's computer vision classification models.

Chapter 3 will provide an overview of the most common tools used

by makers in IoT today with a particular focus on the Raspberry Pi. We'll

see how to use one of these devices to collect, send, and store data points

that can be used to train machine learning models, and to train a simple

model to detect the presence of people in a room using a cheap camera,

and how to use it to make predictions within a home automation flow—

for example, turn the lights on/off when presence is detected or send a

notification when presence is detected but we are not home. The chapter

will also provide an introduction to some strategies for semi-supervised

learning and show how to wrap a web service around TensorFlow to

programmatically create, train, and manage models.

1© Fabio Manganiello 2021
F. Manganiello, Computer Vision with Maker Tech,
https://doi.org/10.1007/978-1-4842-6821-6_1

CHAPTER 1

Introduction to
Machine Learning
Machine learning is defined as the set of techniques to perform through a

machine a task it wasn’t explicitly programmed for. It is sometimes seen as

a subset of dynamic programming. If you have some prior experience with

traditional programming, you’ll know that building a piece of software

involves explicitly providing a machine with an unambiguous set of

instructions to be executed sequentially or in parallel in order to perform

a certain task. This works quite well if the purpose of your software is to

calculate the commission on a purchase, or display a dashboard to the

user, or read and write data to an attached device. These types of problems

usually involve a finite number of well-defined steps in order to perform

their task. However, what if the task of your software is to recognize

whether a picture contains a cat? Even if you build a software that is able to

correctly identify the shape of a cat on a few specific sample pictures (e.g.,

by checking whether some specific pixels present in your sample pictures

are in place), that software will probably fail at performing its task if you

provide it with different pictures of cats—or even slightly edited versions of

your own sample images. And what if you have to build a software to

detect spam? Sure, you can probably still do it with traditional

programming—you can, for instance, build a huge list of words or phrases

often found in spam emails—but if your software is provided with words

similar to those on your list but that are not present on your list, then it will

probably fail its task.

https://doi.org/10.1007/978-1-4842-6821-6_1#DOI

2

The latter category includes tasks that traditionally humans have been

considered better at performing than machines: a machine is million

times faster than a human at executing a finite sequence of steps and even

solving advanced math problems, but it’ll shamefully fail (at least with

traditional programming) at telling whether a certain picture depicts a cat

or a traffic light. Human brains are usually better than machines in these

tasks because they have been exposed for several years to many examples

and sense-based experiences. We can tell within a fraction of a second

whether a picture contains a cat even without having full experience about

all the possible breeds and their characteristics and all of their possible

poses. That’s because we’ve probably seen other cats before, and we can

quickly perform a process of mental classification that labels the subject

of a picture as something that we have already seen in the past. In other

words, our brains have been trained, or wired, over the years to become

very good at recognizing patterns in a fuzzy world, rather than quickly

performing a finite sequence of complex but deterministic tasks in a

virtual world.

Machine learning is the set of techniques that tries to mimic the way

our brains perform tasks—by trial and error until we can infer patterns out

of the acquired experience, rather than by an explicit declaration of steps.

It’s worth providing a quick disambiguation between machine learning

and artificial intelligence (AI). Although the two terms are often used as

synonyms today, machine learning is a set of techniques where a machine

can be instructed to solve problems it wasn’t specifically programmed

for through exposure to (usually many) examples. Artificial intelligence

is a wider classification that includes any machine or algorithm good at

performing tasks usually humans are better at—or, according to some, tasks

that display some form of human-like intelligence. The actual definition of

AI is actually quite blurry—some may argue whether being able to detect

an object in a picture or the shortest path between two cities is really a

form of “intelligence”—and machine learning may be just one possible

tool for achieving it (expert systems, for example, were quite popular in the

Chapter 1 IntroduCtIon to MaChIne LearnIng

3

early 2000s). Therefore, through this book I’ll usually talk about the tool

(machine learning algorithms) rather than the philosophical goal (artificial

intelligence) that such algorithms may be supposed to achieve.

Before we dive further into the nuts and bolts of machine learning, it’s

probably worth providing a bit of context and history to understand how

the discipline has evolved over the years and where we are now.

1.1 History

Although machine learning has gone through a very sharp rise in

popularity over the past decade, it’s been around probably as long as

digital computers have been around. The dream of building a machine

that could mimic human behavior and features with all of their nuances

is even older than computer science itself. However, the discipline went

through a series of ups and downs over the second half of the past century

before experiencing today’s explosion.

Today’s most popular machine learning techniques leverage a concept

first theorized in 1949 by Donald Hebb [1]. In his book The Organization

of Behavior, he first theorized that neurons in a human brain work by

either strengthening or weakening their mutual connections in response

to stimuli from the outer environment. Hebb wrote, “When one cell

repeatedly assists in firing another, the axon of the first cell develops

synaptic knobs (or enlarges them if they already exist) in contact with

the soma of the second cell.” Such a model (fire together, wire together)

inspired research into how to build an artificial neuron that could

communicate with other neurons by dynamically adjusting the weight of

its links to them (synapses) in response to the experience it gathers. This

concept is the theoretical foundation behind modern-day neural networks.

One year later, in 1950, the famous British mathematician

(and father of computer science) Alan Turing came with what is probably

the first known definition of artificial intelligence. He proposed an

Chapter 1 IntroduCtIon to MaChIne LearnIng

4

experiment where a human was asked to have a conversation with

“someone/something” hidden behind a screen. If by the end of the

conversation the subject couldn’t tell whether he/she had talked to a

human or a machine, then the machine would have passed the “artificial

intelligence” test. Such a test is today famously known as Turing test.

In 1951, Christopher Strachey wrote a program that could

play checkers, and Dietrich Prinz, one that could play chess. Later

improvements during the 1950s led to the development of programs that

could effectively challenge an amateur player. Such early developments

led to games being often used as a standard benchmark for measuring the

progress of machine learning—up to the day when IBM’s Deep Blue beat

Kasparov at chess and AlphaGo beat Lee Sedol at Go.

In the meantime, the advent of digital computers in the mid-1950s

led a wave of optimism in what became known as the symbolic AI. A few

researchers recognized that a machine that could manipulate numbers could

also manipulate symbols, and if symbols were the foundation of human

thought, then it would have been possible to design thinking machines. In

1955, Allen Newell and the future Nobel laureate Herbert A. Simon created the

Logic Theorist, a program that could prove mathematical theorems through

inference given a set of logic axioms. It managed to prove 38 of the first 52

theorems of Bertrand Russell’s Principia Mathematica.

Such theoretical background led to early enthusiasm among

researchers. It caused a boost of optimism that culminated in a workshop

held in 1956 at Dartmouth College [2], where some academics predicted

that machines as intelligent as humans would have been available within

one generation and were provided with millions of dollars to make the

vision come true. This conference is today considered as the foundation of

artificial intelligence as a discipline.

In 1957, Frank Rosenblatt designed the perceptron. He applied Hebb’s

neural model to design a machine that could perform image recognition.

The software was originally designed for the IBM 704 and installed on

a custom-built machine called the Mark 1 perceptron. Its main goal

Chapter 1 IntroduCtIon to MaChIne LearnIng

5

was to recognize features from pictures—facial features in particular.

A perceptron functionally acts like a single neuron that can learn (i.e.,

adjust its synaptic weights) from provided examples and make predictions

or guesses on examples it had never seen before. The mathematical

procedure at the basis of the perceptron (logistic regression) is the building

block of neural networks, and we’ll cover it later in this chapter.

Despite the direction was definitely a good one to go, the network

itself was relatively simple, and the hardware in 1957 definitely couldn’t

allow the marvels possible with today’s machines. Whenever you wonder

whether a Raspberry Pi is the right choice for running machine learning

models, keep in mind that you’re handling a machine almost a million

times more powerful than the one used by Frank Rosenblatt to train the

first model that could recognize a face [4, 5].

The disappointment after the perceptron experiment led to a drop of

interest in the field of machine learning as we know it today (which only

rose again during the late 1990s, when improved hardware started to show

the potential of the theory), while more focus was put on other branches

of artificial intelligence. The 1960s and 1970s saw in particular a rise in

reasoning as search, an approach where the problem of finding a particular

solution was basically translated as a problem of searching for paths in

connected graphs that represented the available knowledge. Finding how

“close” the meanings of two words were became a problem of finding the

shortest path between the two associated nodes within a semantic graph.

Finding the best move in a game of chess became a problem of finding the

path with minimum cost or maximum profit in the graph of all the possible

scenarios. Proving whether a theorem was true or false became a problem

of building a decision tree out of its propositions plus the relevant axioms

and finding a path that could lead either to a true or false statement.

The progress in these areas led to impressive early achievements, such as

ELIZA, today considered as the first example of a chatbot. Developed at

the MIT between 1964 and 1966, it used to mimic a human conversation,

and it may have tricked the users (at least for the first few interactions)

Chapter 1 IntroduCtIon to MaChIne LearnIng

6

that there was a human on the other side. In reality, the algorithm

behind the early versions was relatively simple, as it simply repeated or

reformulated some of the sentence of the user posing them as questions

(to many it gave the impression of talking to a shrink), but keep in mind

that we’re still talking of a few years before the first video game was even

created. Such achievements led to a lot of hyper-inflated optimism into

AI for the time. A few examples of this early optimism:

• 1958: “Within ten years a digital computer will be the

world’s chess champion, and a digital computer will

discover and prove an important new mathematical

theorem” [6].

• 1965: “Machines will be capable, within twenty years, of

doing any work a man can do” [7].

• 1967: “Within a generation the problem of creating

‘artificial intelligence’ will substantially be solved” [8].

• 1970: “In from three to eight years we will have a

machine with the general intelligence of an average

human being” [9].

Of course, things didn’t go exactly that way. Around the half of the 1970s,

most of the researchers realized that they had definitely underestimated the

problem. The main issue was, of course, with the computing power of the

time. By the end of the 1960s, researchers realized that training a network of

perceptrons with multiple layers led to better results than training a single

perceptron, and by the half of the 1970s, back-propagation (the building

block of how networks “learn”) was theorized. In other words, the basic

shape of a modern neural network was already theorized in the mid-1970s.

However, training a neural-like model required a lot of CPU power to perform

the calculations required to converge toward an optimal solution, and such

hardware power wouldn’t have been available for the next 25–30 years.

Chapter 1 IntroduCtIon to MaChIne LearnIng

7

The reasoning as search approach in the meantime faced the

combinational explosion problem. Transforming a decision process into a

graph search problem was OK for playing chess, proving a geometric theorem,

or finding synonyms of words, but more complex real-world problems would

have easily resulted in humongous graphs, as their complexity would grow

exponentially with the number of inputs—that relegated AI mostly to toy

projects within research labs rather than real- world applications.

Finally, researchers learned what became known as Moravec’s

paradox: it’s really easy for a deterministic machine to prove a theorem

or solve a geometry problem, but much harder to perform more “fuzzy”

tasks such as recognizing a face or walking around without bumping into

objects. Research funding drained when results failed to materialize.

AI experienced a resurgence in the 1980s under the form of expert

systems. An expert system is a software that answers questions or interprets

the content of a text within a specific domain of knowledge, applying

inference rules derived from the knowledge of human experts. The formal

representation of knowledge through relational and graph-based databases

introduced in the late 1970s led to this new revolution in AI that focused on

how to best represent human knowledge and how to infer decisions from it.

Expert systems went through another huge wave of optimism followed

by another crash. While they were relatively good in providing answers to

simple domain-specific questions, they were just as good as the knowledge

provided by the human experts. That made them very expensive to

maintain and update and very prone to errors whenever an input looked

slightly different from what was provided in the knowledge base. They

were useful in specific contexts, but they couldn’t be scaled up to solve

more general-purpose problems. The whole framework of logic-based

AI came under increasing criticism during the 1990s. Many researchers

argued that a truly intelligent machine should have been designed

bottom- up rather than top-down. A machine can’t make logical inference

about rain and umbrellas if it doesn’t know what those things or concepts

actually mean or look like—in other words, if it can’t perform some

form of human-like classification based both on intuition and acquired

experience.

Chapter 1 IntroduCtIon to MaChIne LearnIng

8

Such reflections gradually led to a new interest in the machine learning

side of AI, rather than the knowledge-based or symbolic approaches. Also,

the hardware in the late 1990s was much better than what was available to

the MIT researchers in the 1960s, and simple tasks of computer vision that

proved incredibly challenging at the time, like recognizing handwritten

letters or detecting simple objects, could be solved thanks to Moore’s law,

which states that the number of transistors in a chip doubles approximately

each 18 months. And thanks to the Web and the huge amount of data it

made available over the years and the increased ease at sharing this data.

Today the neural network is a ubiquitous component in machine

learning and AI in general. It’s important to note, however, that other

approaches may still be relevant in some scenarios. Finding the quickest

path by bike between your home and your office is still largely a graph

search problem. Intent detection in unstructured text still relies on

language models. Other problems, like some games or real- world

simulations, may employ genetic algorithms. And some specific domains

may still leverage expert systems. However, even when other algorithms are

employed, neural networks nowadays often represent the “glue” to connect

all the components. Different algorithms or networks are nowadays often

modular blocks connected together through data pipelines.

Deep learning has become increasingly popular over the past decade,

as better hardware and more data made it possible to train more data to

bigger networks with more layers. Deep learning, under the hood, is the

process of solving some of the common problems with earlier networks

(like overfitting) by adding more neurons and more layers. Usually the

accuracy of a network increases when you increase its number of layers

and nodes, as the network will be better at spotting patterns in non-linear

problems. However, deep learning may be plagued by some issues as well.

One of them is the vanishing gradient problem, where gradients slowly

shrink as they pass through more and more layers. Another more concrete

issue is related to its environmental impact: while throwing more data and

more neurons at a network and running more training iterations seems to

make the network more accurate, it also represents a very power-hungry

solution that cannot be sustainable for long-term growth.

Chapter 1 IntroduCtIon to MaChIne LearnIng

9

1.2 Supervised and unsupervised learning

Now that the difference between artificial intelligence and machine

learning is clear and we have got some context of how we have got where

we are now, let’s shift our focus to machine learning and the two main

“learning” categories: supervised and unsupervised learning:

• We define as supervised learning the set of algorithms

where a model is trained on a dataset that includes both

example input data and the associated expected output.

• In unsupervised learning, on the other hand, we train

models on datasets that don’t include the expected

outputs. In these algorithms, we expect the model to

“figure out” patterns by itself.

When it comes to supervised learning, training a model usually

consists in calculating a function y f x= () that maps a given a vector of

inputs x to a vector of outputs y such that the mean error between the

predicted and the expected values is minimized. Some applications of

supervised learning algorithms include

• Given a training set containing one million pictures

of cats and one million pictures that don’t feature

cats, build a model that recognizes cats in previously

unseen pictures. In this case, the training set will

usually include a True/False label to tell whether the

picture includes a cat. This is usually considered a

classification problem—that is, given some input

values and their labels (together called training set),

you want your model to predict the correct class, or

label—for example, “does/does not contain a cat.”

Or, if you provide the model with many examples of

emails labelled as spam/not spam, you may train your

classifier to detect spam on previously unseen emails.

Chapter 1 IntroduCtIon to MaChIne LearnIng

10

• Given a training set containing the features of a large

list of apartments in a city (size, location, construction

year, etc.) together with their price, build a model

that can predict the value of a new apartment on

the market. This is usually considered a regression

problem—that is, given a training set you want to train

a model that predicts the best numeric approximation

for a newly provided input in, for example, dollars,

meters, or kilograms.

Unsupervised learning, on the other hand, is often used to solve

problems whose goal is to find the underlying structure, distribution,

or patterns in the data. Being provided with no expected labels, these

are types of problems that come with no exact/correct answers nor

comparison with expected values. Some examples of unsupervised

learning problems include

• Given a large list of customers on an ecommerce

website with the relevant input features (age, gender,

address, list of purchases in the past year, etc.), find the

optimal way to segment your customer base in order to

plan several advertisement campaigns. This is usually

considered a clustering problem—that is, given a set of

inputs, find the best way to group them together.

• Given a user on a music streaming platform with its

relevant features (age, gender, list of tracks listened

in the past month, etc.), build a model that can

recommend user profiles with similar musical taste.

This is usually considered as a recommender system,

or association problem—that is, a model that finds the

nearest neighbors to a particular node.

Chapter 1 IntroduCtIon to MaChIne LearnIng

11

Finally, there can be problems that sit halfway between supervised and

unsupervised learning. Think of a large production database where some

images are labelled (e.g., “cat,” “dog,” etc.) but some aren’t—for example,

because it’s expensive to hire enough humans to manually label all the

records or because the problem is very large and providing a full picture of

all the possible labels is hard. In such cases, you may want to rely on hybrid

implementations that use supervised learning to learn from the available

labelled data and leverage unsupervised learning to find patterns in the

unlabelled data.

In the rest of the book, we will mainly focus on supervised learning,

since this category includes most of the neural architectures in use

today, as well as all the regression problems. Some popular unsupervised

learning algorithms will, however, be worth a mention, as they may be

often used in symbiosis with supervised algorithms.

1.3 Preparing your tools

After so much talk about machine learning, let’s introduce the tools that

we’ll be using through our journey. You won’t need a Raspberry Pi (yet)

during this chapter: as we cover the algorithms and the software tools used

for machine learning, your own laptop will do the job.

Through the next sections, I’ll assume that you have some knowledge/

experience with

• Any programming language (if you have experience

with Python, even better). Python has become the

most popular choice for machine learning over the

past couple of years, but even if you don’t have much

experience with it, don’t worry—it’s relatively simple,

and I’ll try to comment the code as much as possible.

Chapter 1 IntroduCtIon to MaChIne LearnIng

12

• High school (or higher) level of math. If you are familiar

with calculus, statistics, and linear algebra, that’s even

better. If not, don’t worry. Although some calculus and

linear algebra concepts are required to grasp how machine

learning works under the hood, I’ll try not to dig too

much into the theory, and whenever I mention gradients,

tensors, or recall, I’ll make sure to focus more on what they

intuitively mean rather than their formal definition alone.

1.3.1 Software tools

We’ll be using the following software tools through our journey:

• The Python programming language (version 3.6 or

higher).

• TensorFlow, probably the most popular framework

nowadays for building, training, and querying machine

learning models.

• Keras, a very popular library for neural networks

and regression models that easily integrates on top of

TensorFlow.

• numpy and pandas, the most commonly used Python

libraries, respectively, for numeric manipulations and

data analysis.

• matplotlib, a Python library for plotting data and

images.

• seaborn, a Python library often used for statistical data

visualization.

Chapter 1 IntroduCtIon to MaChIne LearnIng

13

• jupyter, a very popular solution for Python for

prototyping through notebooks (and basically a

standard de facto when it comes to data science in

Python).

• git, we’ll use it to download the sample datasets and

notebooks from GitHub.

1.3.2 Setting up your environment

• Download and install git on your system, if it’s not

available already.

• Download and install a recent version of Python

from https://python.org/downloads, if it’s not

already available on your system. Make sure that you

use a version of Python greater than 3 (Python 2 is

deprecated). Open a terminal and check that both the

python and pip commands are present.

• (Optional) Create a new Python virtual environment.

A virtual environment allows you to keep your

machine learning setup separate from the main Python

installation, without messing with any system-wide

dependencies, and it also allows you to install Python

packages in a non-privileged user space. You can

skip this step if you prefer to install the dependencies

system-wide (although you may need root/

administrator privileges).

Chapter 1 IntroduCtIon to MaChIne LearnIng

https://python.org/downloads

14

Create a virtual environment under your home folder

python -m venv $HOME/venv

Activate the environment

cd $HOME/venv

source bin/activate

Whenever you are done, run 'deactivate'

to go back to your standard environment

deactivate

• Install the dependencies (it may take a while

depending on your connectivity and CPU power):

pip install tensorflow

pip install keras

pip install numpy

pip install pandas

pip install matplotlib

pip install jupyter

pip install seaborn

Chapter 1 IntroduCtIon to MaChIne LearnIng

15

• Download the “mlbook-code” repository containing

some of the datasets and code snippets that we’ll be

using through this book. We’ll call <REPO_DIR> the

directory where you have cloned the repository.

• Start the Jupyter server:

jupyter notebook

• Open http://localhost:8888 in your browser.

You should see a login screen like the one shown in

Figure 1-1. You can decide whether to authenticate

using the token or set a password.

• Select a folder where you’d like to store your notebooks

(we’ll identify it as <NOTEBOOK_DIR> from now on), and

create your first notebook. Jupyter notebooks are lists

of cells; each of these cells can contain Python code,

markdown elements, images, and so on. Start to get

familiar with the environment, try to run some Python

commands, and make sure that things work.

git clone https://github.com/BlackLight/mlbook-code

Now that all the tools are ready, let’s get our hands dirty with some

algorithms.

Chapter 1 IntroduCtIon to MaChIne LearnIng

16

Figure 1-1. Jupyter login screen at http://localhost:8888

Chapter 1 IntroduCtIon to MaChIne LearnIng

17

1.4 Linear regression

Linear regression is the first machine learning algorithm we’ll encounter

on our journey, as well as the most important. As we’ll see, most of the

supervised machine learning algorithms are variations of linear regression

or applications of linear regression on scale. Linear regression is good

for solving problems where you have some input data represented by n

dimensions and you want to learn from their distribution in order to make

predictions on future data points—for example, to predict the price of a

house in a neighborhood or of a stock given a list of historical data. Linear

regression is extensively used as a statistical tool also in finance, logistics,

and economics to predict the price of a commodity, the demand in a

certain period, or other macroeconomic variables. It’s the building block

of other types of regression—like logistic regression, which in turn is the

building block of neural networks.

A regression model is called a simple regression model if the input data

is represented by a single variable (n = 1) or multivariate regression if it

operates on input data defined by multiple dimensions. It’s called linear

regression if its output is a line that best approximates the input data. Other

types of regression exist as well—for instance, you’ll have a quadratic

regression if you try to fit a parabola instead of a line through your data, a

Figure 1-2. Distribution of the house prices as a function of their size

Chapter 1 IntroduCtIon to MaChIne LearnIng

18

cubic regression if you try to fit a cubic polynomial curve through your data,

and so on. We’ll start with simple linear regression and expand its basic

mechanism also to the other regression problems.

1.4.1 Loading and plotting the dataset

To get started, create a new Jupyter notebook under your <NOTEBOOK_DIR>

and load <REPO_DIR>/datasets/house-size-price-1.csv. It is a CSV file

that contains a list of house prices (in thousands of dollars) in function of

their size (in square meters) in a certain city. Let’s suppose for now that the

size is the only parameter that we’ve got, and we want to create a model

trained on this data that predicts the price of a new house given its size.

The first thing you should do before jumping into defining any

machine learning model is to visualize your data and try to understand

what’s the best model to use. This is how we load the CSV using pandas

and visualize it using matplotlib:

import pandas as pd

import matplotlib.pyplot as plt

Download the CSV file from GitHub

csv_url = 'https://raw.githubusercontent.com/' +

 'BlackLight/mlbook-code/master/' +

 'datasets/house-size-price-1.csv'

data = pd.read_csv(csv_url)

The first column contains the size in m2

size = data[columns[0]]

The second column contains the price in thousands of dollars

Chapter 1 IntroduCtIon to MaChIne LearnIng

19

price = data[columns[1]]

Create a new figure and plot the data

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel(columns[0])

plot.set_ylabel(columns[1])

points = plot.scatter(size, price)

After running the content of your cell, you should see a graph like

the one picture in Figure 1-2. You’ll notice that the data is a bit scattered,

but still it can be approximated well enough if we could fit a straight line

through it. Our goal is now to find the line that best approximates our data.

1.4.2 The idea behind regression

Let’s put our notebook aside for a moment and try to think which

characteristic such a function should have. First, it must be a line;

therefore, it must have a form like this:

h x xq q q() = +

0 1 (1.1)

In Equation 1.1, x denotes the input data, excluding the output labels.

In the case of the house size-price model, we have one input variable (the

size) and one output variable (the price); therefore, both the input and

output vectors have unitary size, but other models may have multiple

input variables and/or multiple output variables. θ0 and θ1 are instead

the numeric coefficients of the line. In particular, θ0 tells where the line

crosses the y axis and θ1 tells us the direction of the line and how “steep” it

is—it’s often called the slope of the line. hθ(x) is instead the function that

Chapter 1 IntroduCtIon to MaChIne LearnIng

20

our model will use for predictions based on the values of the vector q

—also called weights of the model. In our problem, the inputs x and the

expected outputs y are provided through the training set; therefore, the

linear regression problem is a problem of finding the q parameters in the

preceding equation such that hθ(x) is a good approximation of the linear

dependency between x and y. hθ(x) is often denoted as hypothesis function,

or simply model. The generic formula for a single-variable model of order

n (linear for n = 1, quadratic for n = 2, etc.) will be

h x x x x x

n

n

i

n

i

i

q q q q q q() = + + +¼+ =
=

å0 1 2

2

0

(1.2)

Also, note that the “bar” or “superscript” on top of a symbol in this

book will denote a vector. A vector is a fixed-size list of numeric elements,

so q is actually a more compact way to write [θ0, θ1] or [θ0…θn].

So how can we formalize the intuitive concept of “good enough linear

approximation” into an algorithm? The intuition is to choose the q

parameters such that their associated hθ(x) function is “close enough” to

the provided samples y for the given values of x. More formally, we want

to minimize the squared mean error between the sampled values y and

the predicted values hθ(x) for all the m data points provided in the training

set—if the error between the predicted and the actual values is low, then

the model is performing well:

min

,q q
q

0 1

1

2 1

2

m
h x y

i

m

i i

=

å ()-()

(1.3)

Let’s rephrase the argument of the preceding formula as a function of

the parameters q :

J

m
h x y

i

m

i iq q() = ()-()
=

å
1

2 1

2

(1.4)

Chapter 1 IntroduCtIon to MaChIne LearnIng

21

The function J is also called cost function (or loss function), since

it expresses the cost (or, in this case, the approximation error) of a line

associated to a particular selection of the q parameters. Finding the best

linear approximation for your data is therefore a problem of finding the

values of q that minimize the preceding cost function (i.e., the sum of

the mean squared errors between samples and predictions). Note the

difference between hθ(x) and J q() : the former is our model hypothesis,

that is, the prediction function of the model expressed by its vector of

parameters q and with x as a variable. J q() is instead the cost function

and the parameters q are the variables, and our goal is to find the values

of q that minimize this function in order to calculate the best hθ(x). If we

want to start formalizing the procedure, we can say that the problem of

finding the optimal regression model can be expressed as follows:

• Start with a set of initial parameters q q q q= ¼[]0 1
, , , n ,

with n being the order of your regression (n = 1 for

linear, n = 2 for quadratic, etc.).

• Use those values to formulate a hypothesis hθ(x) as

shown in Equation 1.2.

• Calculate the cost function J q() associated to that

hypothesis as shown in Equation 1.4.

• Keep changing the values of q until we converge on a

point that minimizes the cost function.

Now that it’s clear how a regression algorithm is modelled and how to

measure how good it approximates the data, let’s cover how to implement

the last point in the preceding list—that is, the actual “learning” phase.

Chapter 1 IntroduCtIon to MaChIne LearnIng

22

1.4.3 Gradient descent

Hopefully so many mentions of “error minimization” have rung a bell

if you have some memory of calculus! The differential (or derivative) is

the mathematical instrument leveraged in most of the minimization/

maximization problems. In particular:

• The first derivative of a function tells us whether

that function is increasing or decreasing around a

certain point or it is “still” (i.e., the point is a local

minimum/maximum or an inflection point). It can be

geometrically visualized as the slope of the tangent line

to the function in a certain point. If we name f ′(x) the

first derivative of a function f (x) (with xÎR for now),

then its value in a point x0 will be (assuming that the

function is differentiable in x0)

¢()
>

<f x0

0

0

if the curve is increasing

if the curve is decreassing

if is a flex=

ì

í
ï

î
ï 0 0x min/ max/

(1.5)

• The second derivative of a function tells us the

“concavity” of that function around a certain point, that

is, whether the curve is facing “up” or “down” around

that point. The second derivative f ″(x) around a given

point x0 will be

¢¢()
>

<

=

f x0

0

0

0

if the curve faces up

if the curve faces down

if xx0 is an inflection point

ì

í
ï

î
ï

(1.6)

Chapter 1 IntroduCtIon to MaChIne LearnIng

23

By combining these two instruments, we can find out, given a certain

point on a surface, in which direction the minimum of that function is. In

other words, minimizing the cost function J q() is a problem of finding a

vector of values q q q q*
= ¼[]0 1

, , , n such that the first derivative of J for q * is

zero (or close enough to zero) and its second derivative is positive (i.e., the

point is a local minimum). In most of the algorithms in this book,

we won’t actually need the second derivative (many of today’s popular

machine learning models are built around convex cost functions, i.e., cost

functions with one single point of minimum), but applications with higher

polynomial models may leverage the idea of concavity behind the second

derivative to tell whether a point is a minimum, a maximum, or an inflection.

This intuition works for the case with a single variable. However, J

is a function of a vector of parameters q , whose length is 2 for linear

regression, 3 for quadratic, and so on. For multivariate functions, the

concept of gradient is used instead of the derivative used for univariate

functions. The gradient of a multivariate function (usually denoted by the

symbol 𝛻) is the vector of the partial derivatives (conventionally denoted

by the ∂ symbol) of that function calculated against each of the variables.

In the case of our cost function, its gradient will be

Ñ J

J

J

n

q

q
q

q
q

() =

¶
¶

()

¶
¶

()

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

0



(1.7)

In practice, a partial derivative is the process of calculating the

derivative of a multivariate function assuming that only one of its variables

is the actual variable and the others are constants.

Chapter 1 IntroduCtIon to MaChIne LearnIng

24

The gradient vector indicates the direction in which an n-dimensional

curve is increasing around a certain point and “how fast” it is increasing.

In the case of linear regression with one input variable, we have seen in

Equation 1.4 that the cost function is a function of two variables (θ0 and θ1)

and that it is a quadratic function. In fact, by combining Equations 1.1 and 1.4,

we can derive the cost function for linear regression with univariate input:

J

m
x y

i

m

i iq q q q
0 1

1

0 1

21

2
,() = + -()

=

å
(1.8)

This surface can be represented in a 3D space like a paraboloid (a

bowl shape that you get if you rotate 360 degrees a parabola around its

axis, as shown in Figure 1-3). That puts us in a relatively lucky spot. Just

like a parabola, a paraboloid has only one minimum—that is, only one

point where its vector gradient is zero, and that point also happens to be

the global minimum. It means that if we start with some random values

Figure 1-3. Typical shape of the cost function for a linear regression
model: a paraboloid in a 3D space

Chapter 1 IntroduCtIon to MaChIne LearnIng

25

for q and then start “walking” in the opposite direction of the gradient

in that point, we should eventually end up in the optimal point—that is,

the vector of parameters q
*

 that we can plug in our hypothesis function

hθ(x) to get good predictions. Remember that, given a point on a surface,

the gradient vector tells you in which direction the function goes “up.”

If you go in its opposite direction, you will be going down. And if your

surface has the shape of a bowl, if you keep going down, from wherever

you are on the surface, you will eventually get to the bottom. If you instead

use more complex types of regression (quadratic, cubic, etc.), you may

not always be so lucky—you could get stuck in a local minimum, which

does not represent the overall minimum of the function. So, assuming

that we are happy as soon as we start converging toward a minimum, the

gradient descent algorithm can be expressed as a procedure where we start

by initially picking up random values for q , and then at each step k, we

update these values through the following formula:

q q a
q

q q
i

k

i

k

i

k k
J i

+() () () ()
= -

¶

¶
() =

1

0 1
0 1, for ,

(1.9)

Or, in vectorial form:

q q a q
k k k

J
+() () ()
= - Ñ ()1

(1.10)

α is a parameter between zero and one known as the learning rate of

the machine learning model, and it expresses how fast the model should

learn from new data—in other words, how big the “leaps” down the

direction of the gradient vector should be. A large value of α would result

in a model that could learn fast at the beginning, but that could overshoot

the minimum or “miss the stop”—at some point, it could land near the

minimum of the cost function and could miss it by taking a longer step,

Chapter 1 IntroduCtIon to MaChIne LearnIng

26

resulting in some “bounces” back and forth before converging. A small

value of α, on the other hand, may be slow at learning at the beginning

and could take more iterations, but it’s basically guaranteed to converge

without too many bounces around the minimum.

To use a metaphor, performing learning through gradient descent is

like pushing a ball blindfolded down a valley. First, you have to figure out

in which direction the bottom of the valley is, using the direction of the

gradient vector as a compass. Then, you have to find out how much force

you want to apply to the ball to get it to the bottom. If you push it with a lot

of force, it may reach the bottom faster, but it may go back and forth a few

times before settling. Instead, if you only let gravity do its work, the ball may

take longer to get to the bottom, but once it’s there, it’s unlikely to swing too

much. In most of today’s applications, the learning rate is dynamic: you may

usually want a higher value of α in the first phase (when your model doesn’t

know much yet about the data) and lower it toward the end (when your

model has already seen a significant number of data points and/or the cost

function is converging). Some popular algorithms nowadays also perform

some kind of learning rate shuffling in case they get stuck.

We may want to also set an exit condition for the algorithm: in case it

doesn’t converge on a vector of parameters that nullifies the cost function,

for example, we may want to still exit if the gradient of the cost function is

close enough to zero, or there hasn’t been a significant improvement from

the previous step, or the corresponding model is already good enough at

approximating our problem.

By combining Equations 1.8 and 1.9 and applying the differentiation

rules, we can derive the exact update steps for θ0 and θ1 in the case of linear

regression:

q q

a
q q

0

1

0

1

0 1

k k

i

m
k k

i i
m

x y
+() ()

=

() ()= - + -()å
(1.11)

Chapter 1 IntroduCtIon to MaChIne LearnIng

27

q q

a
q q

1

1

1

1

0 1

k k

i

m
k k

i i i
m

x y x
+() ()

=

() ()= - + -()å
(1.12)

So the full algorithm for linear regression can be summarized as

follows:

 1. Pick random values for θ0 and θ1.

 2. Keep updating θ0 and θ1 through, respectively,

Equations 1.11 and 1.12.

 3. Terminate either after performing a preset number

of training iterations (often called epochs) or

when convergence is achieved (i.e., no significant

improvement has been measured on a certain step

compared to the step before).

There are many tools and library that can perform efficient regression,

so it’s uncommon that you will have to implement the algorithm from

scratch. However, since the preceding steps are known, it’s relatively

simple to write a univariate linear regression algorithm in Python with

numpy alone:

import numpy as np

def gradient_descent(x, y, theta, alpha):

 m = len(x)

 new_theta = np.zeros(2)

 # Perform the gradient descent on theta

 for i in range(m):

 new_theta[0] += theta[0] + theta[1]*x[i] - y[i]

Chapter 1 IntroduCtIon to MaChIne LearnIng

28

 new_theta[1] += (theta[0] + theta[1]*x[i] - y[i]) *

x[i]

 return theta - (alpha/m) * new_theta

 def train(x, y, steps, alpha=0.001):

 # Initialize theta randomly

 theta = np.random.randint(low=0, high=10, size=2)

 # Perform the gradient descent <steps> times

 for i in range(steps):

 theta = gradient_descent(x, y, theta, alpha)

 # Return the linear function associated to theta

 return lambda x: theta[0] + theta[1] * x

1.4.4 Input normalization

Let’s pick up our notebook where we left it. We should now have a clear

idea of how to train a regression model to predict the price of a house given

its size. We will use TensorFlow+Keras for defining and training the model.

Before proceeding, however, it’s important to spend a word about

input normalization (or feature scaling). It’s very important that your

model is robust enough even if some data is provided in different units

than those used in the training set or some arbitrary constant is added

or multiplied to your inputs. That’s why it’s important to normalize your

inputs before feeding it to any machine learning model. Not only that, but

if the inputs are well distributed within a specific range centered around

the origin, the model will be much faster at converging than if you provide

raw inputs with no specific range. Worse, a non-normalized training set

could often result in a cost function that doesn’t converge at all.

Chapter 1 IntroduCtIon to MaChIne LearnIng

29

Input normalization is usually done by applying the following

transformation:

ˆ , ,x

x
i m

i

i=
-

= ¼
m

s
for 1

(1.13)

where xi is the i-th element of your m-long input vector, μ is the arithmetic

mean of the vector x of the inputs, and σ is its standard deviation:

m =

=

å
1

1m
x

i

m

i
(1.14)

s m= -()
=

å
1

1

2

m
x

i

m

i

(1.15)

By applying Equation 1.13 to our inputs, we basically transpose the

input values around the zero and group most of them around the [−σ, σ]

range. When predicting values, we instead want to denormalize the

provided output, which can easily be done by deriving xi from

Equation 1.13:

 x x
i i
= +s mˆ (1.16)

It’s quite easy to write these functions in Python and insert them in our

notebook. First, get the dataset stats using the pandas describe method:

dataset_stats = data.describe()

Chapter 1 IntroduCtIon to MaChIne LearnIng

30

Then define the functions to normalize and denormalize your data:

def normalize(x, stats):

 return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

 return stats['std'] * x + stats['mean']

norm_size = normalize(size, dataset_stats['size'])

norm_price = normalize(price, dataset_stats['price'])

1.4.5 Defining and training the model

Defining and training a linear regression model with TensorFlow+Keras is

quite easy:

from tensorflow.keras.experimental import LinearModel

model = LinearModel(units=1, activation='linear',

dtype='float32')

model.compile(optimizer='rmsprop', loss='mse',

metrics=['mse'])

history = model.fit(norm_size, norm_price, epochs=1000,

verbose=0)

Chapter 1 IntroduCtIon to MaChIne LearnIng

31

There are quite a few things happening here:

• First, we define a LinearModel with one input variable

(units=1), linear activation function (i.e., the output

value of the model is returned directly without being

transformed by a non-linear output function), and with

float32 numeric type.

• Then, we compile the model, making it ready to be

trained. The optimizer in Keras does many things. A

deep understanding of the optimizers would require

a dedicated chapter, but for sake of keeping it brief,

we will quickly cover what they do as we use them.

rmsprop initializes the learning rate and gradually

adjusts it over the training iterations as a function of the

recent gradients [10]. By default, rmsprop is initialized

with learning_rate=0.001. You can, however, try and

tweak it and see how/if it affects your model:

from tensorflow.keras.optimizers import RMSprop

rmsprop = RMSprop(learning_rate=0.005)

model.compile(optimizer=rmsprop, loss='mse', metrics=['mse'])

• Other common optimizers include

 – SGD, or stochastic gradient descent, which implements the

gradient descent algorithm described in Equation 1.9 with few

optimizations and tweaks, such as learning rate decay and

Nesterov momentum [11]

Chapter 1 IntroduCtIon to MaChIne LearnIng

32

 – adam, an algorithm for first-order gradient-based optimization

that has recently gain quite some momentum, especially in

deep learning [12]

 – nadam, which implements support for Nesterov momentum

on top of the adam algorithm [13]

• Feel free to experiment with different optimizers

and different learning rates to see how it affects the

performance of your model.

• The loss parameter defines the loss/cost function to

be optimized. mse means mean squared error, as we

have defined it in Equation 1.4. Other common loss

functions include

 – mae, or mean absolute error—similar to mse, but it uses the

absolute value of h(xi) − yi in Equation 1.4 instead of the

squared value.

 – mape, or mean absolute percentage error—similar to mae, but it

uses the percentage of the absolute error compared to the

previous iteration as a target metric.

 – mean_squared_logarithmic_error—similar to mse, but it uses

the logarithm of the mean squared error (useful if your curve

has exponential features).

 – Several cross-entropy loss functions (e.g., categorical_cros-

sentropy, sparse_categorical_crossentropy, and binary_

crossentropy), often used for classification problems.

• The metrics attribute is a list that identifies the metrics

to be used to evaluate the performance of your model.

In this example, we use the same metric used as the

loss/cost function (the mean squared error), but other

metrics can be used as well. A metric is conceptually

Chapter 1 IntroduCtIon to MaChIne LearnIng

33

similar to the loss/cost function, except that the result

of the metric function is only used to evaluate the

model, not to train it. You can also use multiple metrics

if you want your model to be evaluated according to

multiple features. Other common metrics include

 – mae, or mean absolute error.

 – accuracy and its derived metrics (binary_accuracy, categor-

ical_accuracy, sparse_categorical_accuracy, top_k_cat-

egorical_accuracy, etc.). Accuracy is often used in

classification problems, and it expresses the fraction of cor-

rectly labelled items in the training set over the total amount

of items in the training set.

 – Custom metrics can also be defined. As we’ll see later when

we tackle classification problems, precision, recall, and F1

score are quite popular evaluation metrics. These aren’t part

of the core framework (yet?), but they can easily be defined.

• Finally, we train our model on the normalized data

from the previous step using the fit function. The

first argument of the function will be the vector of

input values, the second argument will be the vector

of expected output values, and then we specify the

number of epochs, that is, training iterations that we

want to perform on this data.

The epochs value depends a lot on your dataset. The cumulative

number of input samples you will present to your model is given by ×

epochs, where m is the size of your dataset. In our case, we’ve got a relatively

small dataset, which means that you want to run more training epochs to

make sure that your model has seen enough data. If you have larger training

sets, however, you may want to run less training iterations. The risk of

running too many training iterations on the same batch of data, as we will

Chapter 1 IntroduCtIon to MaChIne LearnIng

34

see later, is to overfit your data, that is, to create a model that closely mimics

the expected outputs if presented with values close enough to those it’s been

trained on, but inaccurate over data points it hasn’t been trained on.

1.4.6 Evaluating your model

Now that we have defined and trained our model and we have a clear idea

of how to measure its performance, let’s take a look at how its primary

metric (mean squared error) has improved during the training phase:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a plot like the one shown in Figure 1-4. You’ll notice

that the loss curve goes drastically down—which is good; it means that

our model is actually learning when we input it with data points, without

getting stuck in gradient “valleys.” It also means that the learning rate

was well calibrated—if your learning rate is too high, the model may not

necessarily converge, and if it’s too low, then it may still be on its way

toward convergence after many training epochs. Also, there is a short tail

around 0.07. This is also good: it means that our model has converged over

the last iterations.

Chapter 1 IntroduCtIon to MaChIne LearnIng

35

If the tail is too long, it means that you have trained your model for too

many epochs, and you may want to reduce either the number of epochs

or the size of your training set to prevent overfit. If the tail is too short or

there’s no tail at all, your model hasn’t been trained on enough data points,

and probably you will have to either increase the size of your training set or

the number of epochs to gain accuracy.

You can (read: should) also evaluate your model on some data that isn’t

necessarily part of your training set to check how well the model performs

on new data points. We will dig deeper on how to split your training set and

test set later. For now, given the relatively small dataset, we can evaluate the

model on the dataset itself through the evaluate function:

model.evaluate(norm_size, norm_price)

You should see some output like this:

0s 2ms/step - loss: 0.0733 - mse: 0.0733

[0.0733143612742424, 0.0733143612742424]

The returned vector contains the values of the loss function and metric

functions, respectively—in our case, since we used mse for both, they are

the same.

Figure 1-4. Linear regression model loss evolution over training

Chapter 1 IntroduCtIon to MaChIne LearnIng

36

Finally, let’s see how the linear model actually looks against our dataset

and let’s start to use it to make predictions. First, define a predict function

that will

 1. Take a list of house sizes as input and normalize

them against the mean and standard deviation of

your training set

 2. Query the linear model to get the predicted prices

 3. Denormalize the output using the mean and

standard deviation of the training set to convert the

prices in thousands of dollars

def predict_prices(*x):

 x = normalize(x, dataset_stats['size'])

 return denormalize(model.predict(x), dataset_

stats['price'])

Figure 1-5. Plotting your linear model against the dataset

Chapter 1 IntroduCtIon to MaChIne LearnIng

37

And let’s use this function to get some predictions of house prices:

predict_prices(90)

array([[202.53752]], dtype=float32)

The “predict” function will return a list of output associated to your

inputs, where each item is a vector containing the predicted values (in

this case, vectors of unitary size, because our model has a single output

unit). If you look back at Figure 1-2, you’ll see that a predicted price of

202.53752 for size = 90 doesn’t actually look that far from the distribution of

the data—and that’s good. To visualize how our linear model looks against

our dataset, let’s plot the dataset again and let’s calculate two points on the

model in order to draw the line:

Draw the linear regression model as a line between the first

and

the last element of the numeric series. x will contain the

lowest

and highest size (assumption: the series is ordered) and y

will

contain the price predictions for those inputs.

x = [size[0], size.iat[-1]]

y = [p[0] for p in predict_prices(*x)]

Create a new figure and plot both the input data points

and the

linear model approximation.

fig = plt.figure()

Chapter 1 IntroduCtIon to MaChIne LearnIng

38

data_points = fig.add_subplot()

data_points.scatter(size, price)

data_points.set_xlabel(columns[0])

data_points.set_ylabel(columns[1])

model_line = fig.add_subplot()

model_line.plot(x, y, 'r')

The output of the preceding code will hopefully look like Figure 1-5.

That tells us that the line calculated by the model isn’t actually that far

from our data. If you happen to see that your line is far from the model,

it probably means that you haven’t trained your model on enough data,

or the learning rate is too high/too low, or that there’s no strong linear

correlation between the metrics in your dataset and maybe you need a

higher polynomial model, or maybe that there are many “outliers” in your

model—that is, many data points outside of the main distribution that

“drag” the line out.

1.4.7 Saving and loading your model

Your model is now loaded in memory in your notebook, but you will lose it

once the Jupyter notebook stops. You may want to save it to the filesystem,

so you can recover it later without going through the training phase again.

Or you can include it in another script to make predictions. Luckily, it’s

quite easy to save and load Keras models on the filesystem—the following

examples, however, will assume that you are using a version of

TensorFlow \geq 2.0:

Chapter 1 IntroduCtIon to MaChIne LearnIng

39

def model_save(model_dir, overwrite=True):

 import json

 import os

 os.makedirs(model_dir, exist_ok=True)

 # The TensorFlow model save won't keep track of the labels of

 # your model. It's usually a good practice to store them in a

 # separate JSON file.

 labels_file = os.path.join(model_dir, 'labels.json')

 with open(labels_file, 'w') as f:

 f.write(json.dumps(list(columns)))

 # Also, you may want to keep track of the x and y mean and

 # standard deviation to correctly normalize/denormalize your

 # data before/after feeding it to the model.

 stats = [

 dict(dataset_stats['size']),

 dict(dataset_stats['price']),

]

 stats_file = os.path.join(model_dir, 'stats.json')

 with open(stats_file, 'w') as f:

 f.write(json.dumps(stats))

 # Then, save the TensorFlow model using the save primitive

 model.save(model_dir, overwrite=overwrite)

Chapter 1 IntroduCtIon to MaChIne LearnIng

40

You can then load the model in another notebook, script, application,

and so on (bindings of TensorFlow are available for most of the

programming languages in use nowadays) and use it for your predictions:

def model_load(model_dir):

 import json

 import os

 from tensorflow.keras.models import load_model

 labels = []

 labels_file = os.path.join(model_dir, 'labels.json')

 if os.path.isfile(labels_file):

 with open(labels_file) as f:

 labels = json.load(f)

 stats = []

 stats_file = os.path.join(model_dir, 'stats.json')

 if os.path.isfile(stats_file):

 with open(stats_file) as f:

 stats = json.load(f)

 m = load_model(model_dir)

 return m, stats, labels

model, stats, labels = model_load(model_dir)

price = predict_prices(90)

Chapter 1 IntroduCtIon to MaChIne LearnIng

41

1.5 Multivariate linear regression

So far we have explored linear regression models with one single input

and output variable. Real-world regression problems are usually more

complex, and the output features are usually expressed as a function of

multiple variables. The price of a house, for instance, won’t depend only

on its size but also on its construction year, number of bedrooms, presence

of extras such as garden or terrace, distance from the city center, and so

on. In such a generic case, we express each input data point as a vector

x x x x
n

n= ¼()Î1 2
, , , R , and the regression expression seen in Equation 1.2

is reformulated as

h x x x x x

n n

i

n

i iq q q q q q q() = + + +¼+ = +
=

å0 1 1 2 2 0

1

(1.17)

By convention, the input vector in case of multivariate regression

is rewritten as x x x x x
n

n= ¼()Î +

0 1 2

1
, , , , R , with x0 = 1, so the preceding

expression can be written more compactly as

h x x

i

n

i iq q() =
=

å
0

(1.18)

Or, by using the vectorial notation, the hypothesis function can be

written as the scalar product between the vector of parameters q and the

vector of features x :

h x

x

x

x
n

n

T

q q q q() = ¼[]
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
0

0

, , 

(1.19)

Chapter 1 IntroduCtIon to MaChIne LearnIng

42

Keep in mind that, by convention, vectors are represented as columns

of values. The T notation denotes the transposed vector, so the vector

represented as a row. By multiplying a row vector for a column vector,

you get the scalar product of the two vectors, so q T
x is a compact way to

represent the scalar product of q into x .

So the mean squared error cost function in Equation 1.8 can be

rewritten in the multivariate case as

J
m

x y
i

m

j

n

j j

i iq q() = -
æ

è
ç

ö

ø
÷

= =

() ()å å
1

2 1 0

2

(1.20)

Or, using the vectorial notation:

J

m
x y

i

m
T i i

q q() = -()
=

() ()å
1

2 1

2

(1.21)

Since the inputs are no longer unitary, we are no longer talking of

lines on a plane, but of hyper-surfaces in an n-dimensional space—they

are a 1D line in a 2D space defined by one variable, a 2D plane in a

3D space defined by two variables, a 3D space in a 4D space defined

by three variables, and so on. The cost function, on its side, will have

q q q q= ¼()Î +

0 1

1
, , , n

nR parameters—while it was a paraboloid surface in

a 3D space in the univariate case, it will be an n + 1-dimensional surface

in the case of n input features. This makes the multivariate case harder

to visualize than the univariate, but we can still rely on our performance

metrics to evaluate how well the model is doing or break down the linear

n-dimensional surface by feature to analyze how each variable performs

against the output feature.

Chapter 1 IntroduCtIon to MaChIne LearnIng

43

By applying the generic vectorial equation for gradient descent shown

in Equation 1.10, we can also rewrite the parameters’ update formulas

in Equations 1.11 and 1.12 in the following way (remember that x0 = 1 by

convention):

q q

a
qj

k

j

k

i

m
T i i

j

i

m
x y x

+() ()

=

() () ()= - -()å
1

1
(1.22)

We should now have all the tools also to write a multivariate regression

algorithm with numpy alone:

import numpy as np

def gradient_descent(x, y, theta, alpha):

 m = len(x)

 n = len(theta)

 new_theta = np.zeros(n)

 # Perform the gradient descent on theta

 for i in range(m):

 # s = theta[0] + (theta[1]*x[1] + .. + theta[n]*x[n]) -

y[i]

 s = theta[0]

 for j in range(1, n):

 s += theta[j]*x[i][j-1]

 s -= y[i]

 new_theta[0] += s

 for j in range(1, n):

Chapter 1 IntroduCtIon to MaChIne LearnIng

44

 new_theta[j] += s * x[i][j-1]

 return theta - (alpha/m) * new_theta

def train(x, y, steps, alpha=0.001):

 # Initialize theta randomly

 theta = np.random.randint(low=0, high=10,

size=len(x[0])+1)

 # Perform the gradient descent <steps> times

 for i in range(steps):

 theta = gradient_descent(x, y, theta, alpha)

 # Return the linear function associated to theta

 def model(x):

 y = theta[0]

 for i in range(len(theta)-1):

 y += theta[i+1] * x[i]

 return y

 return model

These changes will make the linear regression algorithm analyzed for

the univariate case work also in the generic multivariate case.

In the preceding code, I have expanded all the vectorial operations into

for statements for sake of clarity, but keep in mind that most of the real

regression algorithms out there perform vector sums and scalar products

using native vectorial operations if available. You should have noticed

by now that the gradient descent is a quite computationally expensive

procedure. The algorithm goes over an m-sized dataset for epochs times

Chapter 1 IntroduCtIon to MaChIne LearnIng

45

and performs a few vector sums and scalar products each time, and each

dataset item consists of n features. Things get even more computationally

expensive once you perform gradient descent on multiple nodes, like in a

neural network. Expressing the preceding steps in vectorial form allows to

take advantage of some optimizations and parallelizations available either

in the hardware or the software. I’ll leave it as a take-home exercise to write

the preceding n-dimensional gradient descent algorithm using vectorial

primitives.

Before jumping into a practical example, let me spend a few words on

two quite important topics in multi-feature problems: feature selection and

training/test set split.

1.5.1 Redundant features

Adding more input features to your model will usually make your model

more accurate in real-world examples. In the first regression problem we

have solved, our model could predict the price of a house solely based on

its size. We know by intuition that adding more features from real-world

examples usually would make a price prediction more accurate. We know

by intuition that if we also input features such as the year of construction

of the house, the average price of the houses on that road, the presence of

balconies or gardens, or the distance from the city center, we may get more

accurate predictions. However, there is a limit to that. It is quite important

that the features that you feed to your model are linearly independent from

each other. Given a list of vectors x x x
m1 2

, , ,¼[] , a vector xi in this list is

defined as linearly dependent if it can be written as

x xki j

j

m

j=
=

å
1

(1.23)

Chapter 1 IntroduCtIon to MaChIne LearnIng

46

with k k k k
m

m
= ¼[]Î1 2

, , , R . In other words, if a feature can be expressed as

a linear combination of any other number of features, then that feature is

redundant. Example of redundant features include

• The same price expressed both in euros and in dollars

• The same distance expressed both in meters and in feet

or in meters and kilometers

• A dataset that contains the net weight, the tare weight,

and the gross weight of a product

• A dataset that contains the base price, the VAT rate, and

the final price of a product

The preceding scenarios are all examples of features that are linear

combinations of other features. You should remove all the redundant

features from your dataset before feeding it to a model; otherwise, the

predictions of your model will be skewed, or biased, toward the features

that make up the derived feature(s). There are two ways of doing this:

 1. Manually: Look at your data, and try to understand

if there are any attributes that are redundant—that

is, features that are linear combinations of other

features.

 2. Analytically: You will have m inputs in your dataset,

each represented by n features. You can arrange

them into an m × n matrix X m n
Î

´R . The rank of

this matrix, ρ(X), is defined as its number of linearly

independent vectors (rows or columns). We can

say that our dataset has no redundant features if its

associated matrix X is such that

r X m n() = ()min , (1.24)

Chapter 1 IntroduCtIon to MaChIne LearnIng

47

If ρ(X) = min(m,n)–1, then the dataset has one linearly dependent

vector. If ρ(X) = min(m,n)–2, then it has two linearly dependent vectors,

and so on. Both numpy and scipy have built-in methods to calculate the

rank of a matrix, so that may be a good way to go if you want to double-

check that there are no redundant features in your dataset.

It’s also equally important to try and remove duplicate rows in your

dataset, as they could “pull” your model in some specific ranges. However,

the impact of duplicate rows in a dataset won’t be as bad as duplicate

columns if m ≫ n—that is, if the number of data samples is much greater

than the number of features.

1.5.2 Principal component analysis

An analytical (and easy to automate) way to remove redundant features

from your training set is to perform what’s known as principal component

analysis, or PCA. PCA is especially useful when you have a really high

number of input features and performing a manual analysis of the functional

dependencies could be cumbersome. PCA is an algorithm for feature

extraction, that is, it reduces the number of dimensions in an n-dimensional

input space A by mapping the points in A to a new k- dimensional space A′,

with k ≤ n, such that the features in A′ are linearly independent from each

other—or, in other words, they are orthogonal to each other.

The math behind PCA may seem a bit hard at a first look, but it relies on

a quite intuitive geometric idea, so bear with me the next couple of formulas.

The first step in PCA is feature normalization, as we have seen it in

Equation 1.13:

ˆ , ,x
x

i n
i

i x

x

=
-

= ¼
m

s
for 1

(1.25)

with μx denoting the arithmetic mean of x and σx its standard deviation.

Chapter 1 IntroduCtIon to MaChIne LearnIng

48

Then, given a normalized training set with input features

x x x x
n

= ¼[]1 2
, , , , we calculate the covariance matrix of x as

cov x x x x

x x x x

x

x x

T

x x x n x

x

,() = -() -()

=

-() -() ¼ -() -()
-(

m m

m m m m

m
1 1 1

2)) -() ¼ -() -()

-() -() ¼ -() -()

é

ë

ê
x x x

x x x x

x x n x

n x x n x n x

1 2

1

m m m

m m m m

 
êê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(1.26)

You may recall from linear algebra that the product of two vectors in

the form row into column, x yT , is what’s usually called scalar product or

dot product and it returns a single real number, while the product of two

vectors in the form column into row, x yT , returns an n × n sized matrix,

and that’s what we get with the preceding covariance matrix. The intuition

behind the covariance matrix of a vector with itself is to have a geometrical

representation of the input distribution—it’s like a multi-dimensional

extension of the concept of variance in the case of one dimension.

We then proceed with calculating the eigenvectors of cov x x,() .

The eigenvector of a matrix is defined as a non-zero vector that remains

unchanged (or at most is scaled by a scalar λ, called eigenvalue) when

we apply the geometric transformation described by the matrix on it.

For example, consider the spinning movement of our planet around its

axis. The rotation movement can be mapped into a matrix that, given any

point on the globe, can tell where that point will be located after applying

a rotation to it. The only points whose locations don’t change when the

rotation is applied are those along the rotation axis. We can then say that

the rotation axis is the eigenvector of the matrix associated to the rotation

of our planet and that, at least in this specific case, the eigenvalue for that

vector is λ = 1—the points along the axis don’t change at all during the

rotation; they are not even scaled. The case of the rotation of a sphere has a

Chapter 1 IntroduCtIon to MaChIne LearnIng

49

single eigenvector (the rotation axis), but other geometric transformations

might have multiple eigenvectors, each with a different associated

eigenvalue. To formalize this intuition, we say that, given a matrix A n n
Î

´R

that describes a certain geometric transformation in an n-dimensional

space, its eigenvector v must be a vector that is at most scaled by a factor λ

when we apply A to it:

 Av v= l (1.27)

By grouping v in the preceding equation, we get

v A I

n
-() =l 0 (1.28)

Figure 1-6. Principal component analysis of a normalized dataset.
The vectors in green indicate the components that are more influential
in the distribution of the data. You may want to map your input data
to this new system of coordinates. You can also select only the largest
vector without actually losing a lot of information

Chapter 1 IntroduCtIon to MaChIne LearnIng

50

where In is the identity matrix (a matrix with 1s on the main diagonal and

0s everywhere else) of size n × n. The preceding vectorial notation can be

expanded into a set of n equations, and by solving them, we can get the

eigenvalues λ of A. By replacing the eigenvalues in the preceding equation,

we can then get the eigenvectors associated to the matrix.

There is a geometric intuition behind computing the eigenvectors of

the auto-covariance matrix. Those eigenvectors indicate in which direction

in the n-dimensional input space you have the highest “spread” of the

data. Those directions are the principal components of your input space,

that is, the components that are more relevant to model the distribution

of your data, and therefore you can map the original space into the newer

space with lower dimensions without actually losing much information. If

an input feature can be expressed as the linear combination of some other

input features, then the covariance matrix of the input space will have two

or more eigenvectors with the same eigenvalue, and therefore, the number

of dimensions can be collapsed. You can also decide to prune some

features that only marginally impact the distribution of your data, even

if they are not strictly linearly dependent, by choosing the k eigenvectors

with the k highest associated eigenvalues—intuitively, those are the

components that matter the most in the distribution of your data—an

example is shown in Figure 1-6.

Once we have the principal components of our input space, we need to

transform our input space by reorienting its axes along the eigenvectors—

note that those eigenvectors are orthogonal to each other, just like the axes

of a Cartesian plane. Let’s call W the matrix constructed from the selected

principal components (eigenvectors of the auto-covariance matrix). Given

a normalized dataset represented by a matrix X, its points will be mapped

into the new space through

 X̂ XW= (1.29)

Chapter 1 IntroduCtIon to MaChIne LearnIng

51

We will then train our algorithms on the new matrix X̂ , whose number

of dimensions will be equal or lower than the initial number of features

without significant information loss.

Many Python libraries for machine learning and data science already

feature some functions for principal component analysis. An example that

uses “scikit-learn”:

import numpy as np

from sklearn.decomposition import PCA

Input vector

x = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1],

[3, 2]])

Define a PCA model that brings the components down to 2

pca = PCA(n_components=2)

Fit the input data through the model

pca.fit(x)

PCA has some obvious advantages—among those, it reduces

the dimensionality of an input space with a high number of features

analytically, reduces the risk of overfit, and improves the performance

of your algorithms. However, it maps the original input space into a new

space built out of the principal components, and those new synthetic

features may not be intuitive to grasp as real-world features such as “size,”

“distance,” or “time.” Also, if you pick a number of components that is

lower than the actual number of components that influence your data,

you may lose information, so it’s a good practice to usually compare the

performance of a model before and after applying PCA to check whether

you have removed some features that you actually need.

Chapter 1 IntroduCtIon to MaChIne LearnIng

52

1.5.3 Training set and test set

The first linear regression example we saw was trained on a quite small

dataset; therefore, we decided to both train and test the model on the same

dataset. In all the real-world scenarios, however, you will usually train your

model on very large datasets, and it’s important to evaluate your model

on data points that your model hasn’t been trained on. To do so, the input

dataset is conventionally split into two:

 1. The training set contains the data points your

model will be trained on.

 2. The test set contains the data points your model will

be evaluated on.

This is usually done by splitting your dataset according to a predefined

fraction—the items on the left of the pivot will make the training set, and

the ones on the right will make the test set, as shown in Figure 1-7. A few

observations on the dataset split:

Figure 1-8. A look at the Auto MPG dataset

Figure 1-7. Example of a 70/30 training set/test set split

Chapter 1 IntroduCtIon to MaChIne LearnIng

53

 1. The split fraction you want to choose depends

largely on your dataset. If you have a very large

dataset (let’s say millions of data points or more),

then you can select a large training set split (e.g.,

90% training set and 10% test set), because even if

the fraction of the test set is small, it will still include

tens or hundreds of thousands of items, and that will

still be significant enough to evaluate your model.

In scenarios with smaller dataset, you may want

to experiment with different fractions to find the

best trade-off between exploitation of the available

data for training purposes and statistic significance

of the test set selected to evaluate your model.

In other words, you may want to find the trade-

off between exploitation of the available data for

training purposes and evaluation of your model on a

statistically significant set of data.

 2. If your dataset is sorted according to some feature,

then make sure to shuffle it before performing the

split. It is quite important that the data your model

is both trained and evaluated on is as uniform as

possible.

1.5.4 Loading and visualizing the dataset

In this example, we will load the Auto MPG dataset [15], a dataset that

includes several parameters about 1970s–1980s cars (cylinders, weight,

acceleration, year, horsepower, fuel efficiency, etc.). We want to build

a model that predicts fuel efficiency of a car from those years given the

respective input features.

Chapter 1 IntroduCtIon to MaChIne LearnIng

54

First, let’s download the dataset, load it in our notebook, and take a

look at it:

import pandas as pd

import matplotlib.pyplot as plt

dataset_url = 'http://archive.ics.uci.edu/ml/' +

 'machine-learning-databases/' +

 'auto-mpg/auto-mpg.data'

These are the dataset columns we are interested in

columns = ['MPG','Cylinders','Displacement',

'Horsepower',

 'Weight', 'Acceleration', 'Model Year']

Load the CSV file

dataset = pd.read_csv(dataset_url, names=columns,

 na_values = "?", comment='\t',

 sep=" ", skipinitialspace=True)

The dataset contains some empty cells - remove them

dataset = dataset.dropna()

Take a look at the last few records of the dataset

dataset.tail()

Chapter 1 IntroduCtIon to MaChIne LearnIng

55

You will probably see a table like the one shown in Figure 1-8. Let’s

also take a look at how the features correlate to each other. We will use the

seaborn library for it and in particular the pairplot method to visualize

how each metric’s data points plot against each of the other metrics:

sns.pairplot(dataset[["MPG", "Cylinders", "Displacement",

"Weight"]], diag_kind="kde")

You should see a plot like the one shown in Figure 1-9. Each graph

plots the data points broken down by a pair of metrics: that’s a useful

way to spot correlations. You’ll notice that the number of cylinders,

displacement, and weight are quite related to MPG, while other metrics are

more loosely related against each other.

We will now split the dataset into two, as shown in Section 1.5.3. The

training set will contain 80% of the data and the test set the remaining 20%:

Random state initializes the random seed for randomizing

the

seed. If None then it will be calculated automatically

train_dataset = dataset.sample(frac=0.8, random_state=1)

The test dataset contains all the records after the split

test_dataset = dataset.drop(train_dataset.index)

Fuel efficiency (MPG) will be our output label, so drop

it from the training and test datasets

train_labels = train_dataset.pop('MPG')

test_labels = test_dataset.pop('MPG')

Chapter 1 IntroduCtIon to MaChIne LearnIng

56

And normalize the data:

def normalize(x, stats):

 return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

 return x * stats['std'] + stats['mean']

Figure 1-9. A look at how each feature relates to each other feature
through seaborn

Chapter 1 IntroduCtIon to MaChIne LearnIng

57

data_stats = train_dataset.describe().transpose()

label_stats = train_labels.describe().transpose()

norm_train_data = normalize(train_dataset, data_stats)

norm_train_labels = normalize(train_labels, label_stats)

Then, just like in the previous example, we will define a linear model

and try to fit it through our data:

from tensorflow.keras.experimental import LinearModel

model = LinearModel(len(train_dataset.keys()),

 activation='linear', dtype='float32')

model.compile(optimizer='rmsprop', loss='mse', metrics=['mae',

'mse'])

history = model.fit(norm_train_data, norm_train_labels,

epochs=200,

 verbose=0)

The differences this time are

• The model in the previous example had a single input

unit; this one has as many input units as the columns of

our training set (excluding the output features).

• We use two evaluation metrics this time, both mae and

mse. In most of the cases, it’s a good practice to keep a

primary evaluation metric other than the loss function.

Chapter 1 IntroduCtIon to MaChIne LearnIng

58

Let’s plot again the loss function over the training iterations:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a figure like the one shown in Figure 1-10.

Also, we can now evaluate the model on the test set and see how it

performs on data it has not been trained on:

Figure 1-10. Loss function progress over the multivariate regression
training

Chapter 1 IntroduCtIon to MaChIne LearnIng

59

norm_test_data = normalize(test_dataset, data_stats)

norm_test_labels = normalize(test_labels, label_stats)

model.evaluate(norm_test_data, norm_test_labels)

Keep in mind that so far we have been using a single regression unit:

things can be even better when we pack many of them into a neural

network. We can pick some values from the test set and see how far the

model’s predictions are from the expected labels:

sampled_data = norm_test_data.iloc[:10]

sampled_labels = denormalize(norm_test_labels.iloc[:10],

label_stats)

predictions = [p[0] for p in

 denormalize(model.predict(sampled_data), label_stats)]

for i in range(10):

 print(f'predicted: {predictions[i]} ' +

 f'actual: {sampled_labels.iloc[i]}')

Plotting these values on a bar chart should result in a figure like the

one shown in Figure 1-11.

You can then perform minimal changes to the model_save and model_

load we have encountered in Section 1.4.7 to save and load your model

from another notebook or application.

Chapter 1 IntroduCtIon to MaChIne LearnIng

60

1.6 Polynomial regression

We now know how to create linear regression models on one or

multiple input variables. We have seen that these models can be

geometrically represented by n-dimensional linear hyper-surfaces in the

n + 1-dimensional space that consists of the n-dimensional input features

plus the output feature y—the model will be a line that goes through

points in a 2D space in the case of univariate linear regression, it will be

a 2D surface that goes through points in a 3D space if you have two input

features and one output variable, and so on.

However, not all the problems in the real world can be approximated

by linear models. Consider the dataset under <REPO_DIR>/datasets/

house-size-price-2.csv. It’s a variant of the house size vs. price dataset

we have encountered earlier, but this time, we hit a plateau between

the 100–130 square meters range (e.g., houses of that size or with that

particular room configuration don’t sell much in the location), and then

the price keeps increasing again after 130 square meters. Its representation

is shown in Figure 1-12. You can’t really capture the grow-and-stop-and-grow

Figure 1-11. Comparison between the predicted and expected values

Chapter 1 IntroduCtIon to MaChIne LearnIng

61

sequence like this with a straight line alone. Worse, if you try to fit a straight

line through this dataset through the linear procedure we have analyzed

earlier, the line could end up being “pulled” down by the points around the

plateau in order to minimize the overall mean squared error, ending up

with a loss of accuracy also on the remaining points in the dataset.

In cases like this, you may instead want to leverage a polynomial

model. Keep in mind that linear regression can be modelled, in its simplest

form, as hθ(x) = θ0 + θ1x, but nothing prevents us from defining a hypothesis

function hθ(x) represented by higher powers of the x. For instance, this

house size-price non-linear model might not be very well represented by

a quadratic function—remember that a parabola first goes up and then

down, and you don’t really expect house prices to go significantly down

when the size increases. However, a cubic model could work just

fine—remember that a cubic function on a plane looks like two

“half-parabolas” stuck together around an inflection point, which is also

the point of symmetry of the function. So the hypothesis function for this

case could be something like this:

h x x x xq q q q q() = + + +

0 1 2

2

3

3

 (1.30)

Figure 1-12. Example of house size vs. price dataset that can’t be
accurately represented by a linear model

Chapter 1 IntroduCtIon to MaChIne LearnIng

62

A clever way to find the values of q that minimize the preceding

function is to treat the additional powers of x as additional variables,

perform a variable substitution, and then treat it as a generic multivariate

linear regression problem. In other words, we want to translate the

problem of gradient descent of a polynomial function into a problem of

multivariate linear regression. For instance, we can take the preceding

hθ(x) expression and rewrite it as a function of x , where

x x x x= éë ùû1

2 3
, , , (1.31)

So hθ(x) can be rewritten as

h x x x xxq q q q q() = + + +

0 0 1 1 2 2 3 3
(1.32)

The hypothesis written in this form is the same as the one we have

seen in Equation 1.17. We can therefore proceed and calculate the values

of θ through the linear multivariate gradient descent procedure we have

analyzed, as long as you keep a couple of things in mind:

 1. The values of q that you get out of the algorithm

must be plugged into the cubic hypothesis function

in Equation 1.30 when you make predictions, not

into the linear function we have seen in that section.

 2. Feature scaling/input normalization is always

important in regression models, but it’s even more

important when it comes to polynomial regression

problems. If the size of a house in square meters is

in the range [0, …, 103], then its squared value will

be in the range [0, …, 106] and its cubic value will be

in the range [0, …, 109]. If you don’t normalize the

inputs before feeding them to the model, you will

Chapter 1 IntroduCtIon to MaChIne LearnIng

63

end up with a model where the highest polynomial

terms weigh much more than the rest, and such a

model may simply not converge.

 3. In the preceding example, we have selected a cubic

function because it looks like a good fit for the data

at a glance—some growth, an inflection point, and

then growth again. However, this won’t be true

for all the models out there. Some models could

perform better with higher polynomial powers

(e.g., 4th or 5th powers of the x), or maybe fractional

powers of the x—for example, square or cubic roots.

Or, in the case of multiple input features, some

relations could be well expressed by the product or

ratio of some features. The important takeaway here

is to always look at your dataset before reasoning

on what’s the best analytical function that can fit it.

Sometimes you may also want to try and plot a few

sample hypothesis functions to see which one has a

shape that best fits your data.

Overall, translating a polynomial regression problem into a

multivariate regression problem is a good idea because, as we have seen

previously, the cost function of a linear model is usually expressed by a

simple n-dimensional quadratic model, which is guaranteed to have only

one point with null gradient and that point is also the global minimum.

In such configuration, a well-designed gradient descent algorithm should

be able to converge toward the optimal solution by simply following

the direction of the gradient vector, without getting “stuck” on bumps

and valleys that you may get when you differentiate higher polynomial

functions.

Chapter 1 IntroduCtIon to MaChIne LearnIng

64

1.7 Normal equation

Gradient descent is definitely among the most popular approaches for

solving regression problems. However, it’s not the only way. Gradient

descent, as we have seen, finds the parameters q that optimize the cost

function by iteratively “walking” along the direction of the gradient until

we hit the minimum. The normal equation provides instead an algebraic

way to calculate q in one shot. Such an approach, as we will see soon, has

some advantages as well as some drawbacks compared to the gradient

descent. In this section, we will briefly cover what the normal equation

is and how it is derived, without going too much in depth into the formal

proof. I will assume that you have some knowledge of linear algebra and

vector/matrix operations (inverse, transpose, and product). If that’s not

the case, however, feel free to skip this section, or just take note of the final

equation. The normal equation provides an analytical alternative to the

gradient descent for minimization problems, but it’s not strictly required to

build models.

We have seen that the generic cost function of a regression model can

be written as

J

m
x y

i

m
T

i iq q() = -()
=

å
1

2 1

2

(1.33)

And the problem of finding the optimal model is a problem of finding

the values of q such that the gradient vector of J q() is zero:

Ñ () =

¶
¶

()

¶
¶

()

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=J

J

J

n

q

q
q

q
q

0

0

(1.34)

Chapter 1 IntroduCtIon to MaChIne LearnIng

65

Or, in other words:

¶

¶
() = = ¼

q
q

j

J j n0 0for , ,

(1.35)

If you expand the scalar products and sums in Equation 1.33 for a

X
m n

Î
´R dataset, where n is the number of features, m is the number of

input samples, and y m
ÎR represents the vector of the output features,

and solve the partial derivatives, you get n + 1 linear equations, where

q Î
+Rn 1 represents the variables. Like all systems of linear equations, also

this system can be represented as the solution of a matrix × vector product,

and we can solve the associated equation to calculate q . It turns out that

q can be inferred by solving the following equation:

q = ()

-

X X X yT T1

 (1.36)

where X is the m × n matrix associated to the input features of your dataset

(with an added x0 = 1 term at the beginning of each vector, as we have

previously seen), XT denotes the transposed matrix (i.e., the matrix you

get by swapping rows and columns), the −1 operator denotes the inverse

matrix, and y is the vector of output features of your dataset.

The normal equation has a few advantages over the gradient descent

algorithm:

 1. You won’t need to perform several iterations nor

risk getting stuck or diverging: the values of q are

calculated straight away by solving the system of

n + 1 associated gradient linear equations.

 2. As a consequence, you won’t need to choose a

learning rate parameter α, as there’s no incremental

learning procedure involved.

Chapter 1 IntroduCtIon to MaChIne LearnIng

66

However, it has a few drawbacks:

 1. The gradient descent will still perform well even

if the number of input features n is very large. A

higher number of feature translates in a larger

scalar product in your θ-update steps, and the

complexity of a scalar product increases linearly

when n grows. On the other hand, a larger value of

n means a larger XTX matrix in Equation 1.36, and

calculating the inverse of a very large matrix is a very

computationally expensive procedure (it has a O(n3)

complexity). It means that the normal equation

could be a good solution for solving regression

problems with a low number of input features, while

gradient descent will perform better on datasets

with more columns.

 2. The normal equation works only if the XTX matrix is

invertible. A matrix is invertible only if it is a full rank

square matrix, that is, its rank equals its number

of rows/columns, and therefore, it has a non-zero

determinant. If XTX is not full rank, it means that

either you have some linearly dependent rows

or columns (therefore, you have to remove some

redundant features or rows) or that you have more

features than dataset items (therefore, you have to

either remove some features or add some training

examples). These normalization steps are also

important in gradient descent, but while a non-

invertible dataset matrix could result in either a

biased or non-optimal model if you apply gradient

descent, it will fail on a division by zero if you apply

the normal equation. However, most of the modern

Chapter 1 IntroduCtIon to MaChIne LearnIng

67

frameworks for machine learning also work in

the case of non-invertible matrices, as they use

mathematical tools for the calculation of the pseudo-

inverse such as the Moore-Penrose inverse. Anyway,

even if the math will still work, keep in mind that a

non-invertible characteristic matrix is usually a flag

for linearly dependent metrics that may affect the

performance of your model, so it’s usually a good

idea to prune them before calculating the normal

equation.

1.8 Logistic regression

Linear regression solves the problem of creating models for numeric

predictions. Not all the problems, however, require predictions in a

numerically continuous domain. We have previously mentioned that

classification problems make up the other large category of problems in

machine learning, that is, problems where instead of a raw numeric value

you want your model to make a prediction about the class, or type, of the

Figure 1-13. Plot of the logistic function

Chapter 1 IntroduCtIon to MaChIne LearnIng

68

provided input (e.g., Is it spam? Is it an anomaly? Does it contain a cat?).

Fortunately, we won’t need to perform many changes to the regression

procedure we have seen so far in order to adapt it to classification problems.

We have already learned to define a h xq () hypothesis function that maps

x
n

ÎR to real values. We just need to find a hypothesis function that outputs

values such that 0 1£ ()£h xq
 and define a threshold function that maps

the output value to a numeric class (e.g., 0 for false and 1 for true). In other

words, given a linear model q T
x , we need to find a function g such that

h x g xT

q q() = ()
(1.37)

0 1£ ()£h xq

(1.38)

A common choice for g is the sigmoid function, or logistic function,

which also gives this type of regression the name of logistic regression.

The logistic function of a variable z has the following formulation:

g z

e z() =
+ -

1

1
(1.39)

The shape of this type of function is shown in Figure 1-13. The values

of the function will get close to zero as the function decreases and close

to one as the function increases, and the function has an inflection point

around z = 0 where its value is 0.5. It is therefore a good candidate to map

the outputs of linear regression into the [0…1] range, with a strong non-

linearity around the origin to map the “jump.” By plugging our linear

model into Equation 1.39, we get the formulation of the logistic regression:

h g

e
x xT

xTq q
q() = () =

+ -

1

1
(1.40)

Chapter 1 IntroduCtIon to MaChIne LearnIng

69

Let’s stick for now to the case of logistic regression with a single

output class (false/true). We’ll see soon how to expand it to multiclass

problems as well. If we stick to this definition, then the logistic curve

earlier expresses the probability for an input to be “true.” You can interpret

the output value of the logistic function as a Bayesian probability—the

probability that an item does/does not belong to the output class given its

input features:

h Px xq () = ()“ ”true |

(1.41)

Given the shape of the sigmoid function, we can formalize the

classification problem as follows:

prediction
true if

false if
=

()³
()<

ì
í
ï

îï

g

g

x

x

T

T

q

q

0 5

0 5

.

.

(1.42)

Since g(z) ≥ 0.5 when z ≥ 0, we can reformulate the preceding

expression as

prediction
true if

false if
=

³

<

ì
í
î

q

q

T

T

x

x

0

0

(1.43)

The idea behind logistic regression is to draw a decision boundary. If

the underlying regression model is a linear model, then imagine drawing

a line (or a hyper-surface) across your data. The points on the left will

represent the negative values and the points on the right the positive

values. If the underlying model is a more complex polynomial model, then

the decision boundary can be more sophisticated in modelling non-linear

relations across the data points.

Chapter 1 IntroduCtIon to MaChIne LearnIng

70

Let’s make an example: consider the dataset under <REPO_DIR>/

datasets/spam-email-1.csv. It contains a dataset for spam email

detection, and each row contains the metadata associated to an email.

 1. The first row, blacklist_word_count, reports how

many words in the email match a blacklist of words

often associated to spam emails.

 2. The second row, sender_spam_score, is a score

between 0 and 1 assigned by a spam filter that

represents the probability that the email is spam on

the basis of the sender’s email address, domain, or

internal domain policy.

 3. The third row, is_spam, is 0 if the email was not

spam and 1 if the email was spam.

We can plot the dataset to see if there is any correlation between the

metrics. We will plot blacklist_word_count on the x axis and sender_

spam_score on the y axis and represent the associated dot in red if it’s

spam and in blue if it’s not spam:

Figure 1-14. Plot of the spam email dataset

Chapter 1 IntroduCtIon to MaChIne LearnIng

71

import pandas as pd

import matplotlib.pyplot as plt

csv_url = 'https://raw.githubusercontent.com/BlackLight' +

 '/mlbook-code/master/datasets/spam-email-1.csv')

data = pd.read_csv(csv_url)

Split spam and non-spam rows

spam = data[data['is_spam'] == 1]

non_spam = data[data['is_spam'] == 0]

columns = data.keys()

fig = plt.figure()

Plot the non-spam data points in blue

non_spam_plot = fig.add_subplot()

non_spam_plot.set_xlabel(columns[0])

non_spam_plot.set_ylabel(columns[1])

non_spam_plot.scatter(non_spam[columns[0]], non_

spam[columns[1]], c='b')

Plot the spam data points in red

spam_plot = fig.add_subplot()

spam_plot.scatter(spam[columns[0]], spam[columns[1]], c='r')

Chapter 1 IntroduCtIon to MaChIne LearnIng

72

You should see a graph like the one shown in Figure 1-14. We can

visually see that we can approximately draw a line on the plane to split

spam from non-spam. Depending on the slope of the line we pick, we may

let a few cases slip through, but a good separation line should be accurate

enough to make good predictions in most of the cases. The task of logistic

regression is to find the parameters of θ that we can plot in Equation 1.40

to get a good prediction model.

1.8.1 Cost function

Most of the principles we have seen in linear regression (definition of a

linear or polynomial model, cost/loss function, gradient descent, feature

normalization, etc.) also apply to logistic regression. The main difference

consists in how we write the cost function J q() . While the mean squared

error is a metric that makes sense when you want to calculate what’s the

mean error between your prediction of a price and the actual price, it

doesn’t make much sense when you want to find out if you predicted the

correct class of a data point or not, with a given discrete number of classes.

Figure 1-15. Example plots of the logistic regression cost function
J q() with one input variable

Chapter 1 IntroduCtIon to MaChIne LearnIng

73

We want to build a cost function that expresses the classification

error—that is, whether or not the predicted class was correct or wrong—

and how “large” the classification error is, that is, how “certain/uncertain”

about its classification the model was. Let’s rewrite the cost function J q()

we have defined earlier by calling C h yxq ()(), its new argument:

J

m
C h x y

i

m

i iq q() = ()()
=

å
1

1

,

(1.44)

When it comes to logistic regression, the function C is often expressed

in this form (we will stick to a binary classification problem for now, i.e.,

a problem where there are only two output classes, like true/false; we will

expand it to multiple classes later):

C h x y
h x y

h x y
q

q

q

()() =
- ()() =

- - ()() =

ì
í
ï

îï
,

if

if

log

log

1

1 0

(1.45)

The intuition is as follows:

 1. If yi = 1 (the class of the i-th data points is positive)

and the predicted value h xq () also equals 1, then

the cost will be zero (–log(1) = 0, i.e., there was no

prediction error). The cost will gradually increase

as the predicted value gets far from 1. If yi = 1 and

h xq () = 0 , then the cost function will assume an

infinite value (− log (0) = ∞). In real applications, of

course, we won’t use infinity, but we may use a very

large number instead. The case where the real value

is 1 and the predicted value is 0 is like a case where

Chapter 1 IntroduCtIon to MaChIne LearnIng

74

a model predicts with 100% confidence that it’s

raining outside while instead it’s not raining—if it

happens, you want to bring the model back on track

by applying a large cost function.

 2. Similarly, if yi = 0 and the predicted value also equals

0, then the cost function will be null (–log(1 – 0) = 0).

If instead yi = 0 and h xq () =1 , then the cost will go

to infinity.

In the case of one input and one output variable, the plot of the

cost function will look like in Figure 1-15. If we combine together the

expressions in Equation 1.45, we can rewrite the logistic regression cost

function in Equation 1.44 as

J
m

y h x y h x
i

m
i i i iq q q() = - ()+ -() - ()()é

ë
ê

ù

û
ú

=

() () () ()å
1

1 1
1

log log

(1.46)

We have compacted together the two expressions of Equation 1.45. If

yi = 1, then the first term of the sum in square brackets applies, and if yi = 0,

then the second applies.

Just like in linear regression, the problem of finding the optimal

values of q is a problem of minimizing the cost function—that is,

perform gradient descent. We can therefore still apply the gradient update

steps shown in Equation 1.9 to get the direction to the bottom of the

cost function surface. Additionally, just like in linear regression, we are

leveraging a convex cost function—that is, a cost function with a single

null-gradient point that also happens to be the global minimum.

By replacing h xq () in the preceding formula with the logistic function

defined in Equation 1.40 and solving the partial derivatives in Equation 1.9,

we can derive the update step for q at the k + 1-step for logistic regression:

q q

a
qj

k

j

k

i

m
i i

j

i

m
h y x j nx

+() ()

=

() () ()= - ()-() = ¼å
1

1

0for

(1.47)

Chapter 1 IntroduCtIon to MaChIne LearnIng

75

You’ll notice that the formulation of the θ-update step is basically the

same as we saw for the linear regression in Equation 1.22, even though

we’ve come to it through a different route. And we should have probably

expected it, since our problem is still a problem of finding a line that fits

our data in some way. The only difference is that the hypothesis function

hθ in the linear case is a linear combination of the q parameters and the

input vector (q T
x), while in the logistic regression case, it’s the sigmoid

function we have introduced in Equation 1.40.

1.8.2 Building the regression model
from scratch

We can now extend the gradient descent algorithm we have previously seen

for the linear case to work for logistic regression. Let’s actually put together

all the pieces we have analyzed so far (hypothesis function, cost function,

and gradient descent) to build a small framework for regression problems. In

most of the cases, you won’t have to build a regression algorithm from scratch,

but it’s a good way to see how the concepts we have covered so far work in

practice. First, let’s define the hypothesis function for logistic regression:

import math

import numpy as np

def h(theta):

 """

 Return the hypothesis function associated to

 the parameters theta

"""

Chapter 1 IntroduCtIon to MaChIne LearnIng

76

def _model(x):

 """

 Return the hypothesis for an input vector x

 given the parameters theta. Note that we use

 numpy.dot here as a more compact way to

 represent the scalar product theta*x

 """

 ret = 1./(1 + math.exp(-np.dot(theta, x)))

 # Return True if the hypothesis is >= 0.5,

 # otherwise return False

 return ret >= 0.5

return _model

Note that if we replace the preceding hypothesis function with the

scalar product q T
x , we convert a logistic regression problem into a linear

regression problem:

import numpy as np

def h(theta):

 def _model(x):

 return np.dot(theta, x)

 return _model

Chapter 1 IntroduCtIon to MaChIne LearnIng

77

Then let’s code the gradient descent algorithm:

def gradient_descent(x, y, theta, alpha):

 """

 Perform the gradient descent.

 :param x: Array of input vectors

 :param y: Output vector

 :param theta: Values for theta

 :param alpha: Learning rate

 """

 # Number of samples

 m = len(x)

 # Number of features+1

 n = len(theta)

 new_theta = np.zeros(n)

 # Perform the gradient descent on theta

 for j in range(n):

 for i in range(m):

 new_theta[j] += (h(theta)(x[i]) - y[i]) * x[i][j]

 new_theta[j] = theta[j] - (alpha/m) * new_theta[j]

 return new_theta

Chapter 1 IntroduCtIon to MaChIne LearnIng

78

Then a train method, which consists of epochs gradient descent iterations:

def train(x, y, epochs, alpha=0.001):

 """

 Train a model on the specified dataset

 :param x: Array of normalized input vectors

 :param y: Normalized output vector

 :param epochs: Number of training iterations

 :param alpha: Learning rate

 """

 # Set x0=1

 new_x = np.ones((x.shape[0], x.shape[1]+1))

 new_x[:, 1:] = x

 x = new_x

 # Initialize theta randomly

 theta = np.random.randint(low=0, high=10, size=len(x[0]))

 # Perform the gradient descent <epochs> times

 for i in range(epochs):

 theta = gradient_descent(x, y, theta, alpha)

 # Return the hypothesis function associated to

 # the parameters theta

 return h(theta)

Chapter 1 IntroduCtIon to MaChIne LearnIng

79

Finally, a prediction function that, given an input vector, the stats of the

dataset, and the model

 1. Normalizes the input vector

 2. Sets x0 = 1

 3. Returns the prediction according to the given hypothesis hθ

def normalize(x, stats):

 return (x - stats['mean']) / stats['std']

def denormalize(x, stats):

 return stats['std'] * x + stats['mean']

def predict(x, stats, model):

 """

 Make a prediction given a model and an input vector

 """

Normalize the values

x = normalize(x, stats).values

Set x0=1

x = np.insert(x, 0, 1.)

Get the prediction

return model(x)

Chapter 1 IntroduCtIon to MaChIne LearnIng

80

Last, an evaluate function that given a list of input values and the

expected outputs evaluates the accuracy (number of correctly classified inputs

divided by the total number of inputs) of the given hypothesis function:

def evaluate(x, y, stats, model):

 """

 Evaluate the accuracy of a model.

 :param x: Array of input vectors

 :param y: Vector of expected outputs

 :param stats: Input normalization stats

 :param model: Hypothesis function

 """

 n_samples = len(x)

 ok_samples = 0

 for i, row in x.iterrows():

 expected = y[i]

 predicted = predict(row, stats, model)

 if expected == predicted:

 ok_samples += 1

 return ok_samples/n_samples

Chapter 1 IntroduCtIon to MaChIne LearnIng

81

Now, let’s give this framework a try by training and evaluating a model

for spam detection on the dataset that we have previously loaded:

columns = dataset_stats.keys()

x contains the input features (first two columns)

inputs = data.loc[:, columns[:2]]

y contains the output features (last column)

outputs = data.loc[:, columns[2]]

Get the statistics for inputs and outputs

x_stats = inputs.describe().transpose()

y_stats = outputs.describe().transpose()

Normalize the features

norm_x = normalize(inputs, x_stats)

norm_y = normalize(outputs, y_stats)

Train a classifier on the normalized data

spam_classifier = train(norm_x, norm_y, epochs=100)

Evaluate the accuracy of the classifier

accuracy = evaluate(inputs, outputs, x_stats, spam_classifier)

print(accuracy)

Hopefully you should measure a >85% accuracy, which isn’t that bad

if we look back at how the original data is distributed, and the fact that we

defined a linear decision boundary.

Chapter 1 IntroduCtIon to MaChIne LearnIng

82

1.8.3 The TensorFlow way

Now that we have learned all the nuts and bolts of a regression model, let’s

build a logistic regression model to solve our spam classification problem

with TensorFlow. Only few tweaks are required to the example we have

previously seen for linear regression:

from tensorflow.keras.experimental import LinearModel

columns = dataset_stats.keys()

Input features are on the first two columns

inputs = data.loc[:, columns[:2]]

Output feature is on the last column

outputs = data.loc[:, columns[2:]]

Normalize the inputs

x_stats = inputs.describe().transpose()

norm_x = normalize(inputs, x_stats)

Define and compile the model

model = LinearModel(2, activation='sigmoid', dtype='float32')

model.compile(optimizer='sgd', loss='sparse_categorical_

crossentropy',

 metrics=['accuracy', 'sparse_categorical_crossentropy'])

Train the model

history = model.fit(norm_x, outputs, epochs=700, verbose=0)

Chapter 1 IntroduCtIon to MaChIne LearnIng

83

A few changes in the preceding code compared to the linear model:

• We use the sigmoid activation function, as defined in

Equation 1.39, instead of linear.

• We use the sgd optimizer—stochastic gradient descent.

• We use a categorical cross-entropy loss function,

similar to the one defined in Equation 1.46.

• We use accuracy (i.e., number of correctly classified

samples divided by the total number of samples) as a

performance metric.

Let’s see how the loss function progressed over the training iterations:

epochs = history.epoch

loss = history.history['loss']

fig = plt.figure()

plot = fig.add_subplot()

Figure 1-16. Loss function of the logistic model over training epochs

Chapter 1 IntroduCtIon to MaChIne LearnIng

84

plot.set_xlabel('epoch')

plot.set_ylabel('loss')

plot.plot(epochs, loss)

You should see a graph like the one shown in Figure 1-16.

All the other model methods we saw for the linear regression

case—evaluate, predict, save, and load—will also work for the logistic

regression case.

1.8.4 Multiclass regression

We have so far covered logistic regression on multiple input features but

one single output class—true or false. Extending logistic regression to work

with multiple output classes is a quite intuitive process called one vs. all.

Suppose that in the case we saw earlier, instead of a binary spam/

non- spam classification, we had three possible classes: normal, important,

and spam. The idea is to break down the original classification problem

into three binary logistic regression hypothesis functions hθ, one per class:

 1. A function h xq

1() () to model the decision boundary

normal/not normal

 2. A function h xq

2() () to model the decision boundary

important/not important

 3. A function h xq

3() () to model the decision boundary

spam/not spam

Chapter 1 IntroduCtIon to MaChIne LearnIng

85

Each hypothesis function represents the probability that an input

vector belongs to a specific class. Therefore, the hypothesis function with

the highest value is the one the input belongs to. In other words, given an

input x and c classes, we want to pick the class for x that has the highest

hypothesis function value associated:

max
0£ £

() ()
i c

i
h xq

(1.48)

The intuition is that the hypothesis function with the highest value

represents the class with the highest probability, and that’s the prediction

we want to pick.

1.8.5 Non-linear boundaries

So far we have explored logistic regression models where the argument

of the sigmoid is a linear function. However, just like in linear regression,

not all the classification problems out there can be modelled by drawing

linear decision boundaries. The distribution of the dataset in Figure 1- 17

is definitely not well fit for a linear decision boundary, but an elliptic

decision boundary could do the job quite well. Just like we saw in linear

regression, a non-linear model function can effectively be translated into a

Figure 1-17. Plot of a dataset with a non-linear decision boundary

Chapter 1 IntroduCtIon to MaChIne LearnIng

86

linear multivariate function through variable substitution, and we can then

minimize that function in order to get the values of q . In the case earlier, a

good hypothesis function could be something that looks like this:

h g x x x x x x xxq q q q q q q() = + + + + +()0 0 1 1 2 2 3 1 2 4 1

2

5 2

2

(1.49)

We can then apply the variable substitution procedure we have already

seen to replace the higher polynomial terms with new variables and proceed

with solving the associated multivariate regression problem with a linear

model to get the values of q . Just like in linear regression, there is no limit

to the number of additional polynomial terms you can add to your model

to better express complex decision boundaries—take into account anyway

that adding too many polynomial terms could end up modelling decision

boundaries that may overfit your data. As we will see later, another common

approach for detecting non-linear boundaries is to connect multiple logistic

regression units together—that is, building a neural network.

Chapter 1 IntroduCtIon to MaChIne LearnIng

87© Fabio Manganiello 2021
F. Manganiello, Computer Vision with Maker Tech,
https://doi.org/10.1007/978-1-4842-6821-6_2

CHAPTER 2

Neural Networks

Now that we have an idea of how to use regression to train a model, it’s

time to explore the next step—fitting multiple regression units into a

neural network.

Neural networks come as a better approach to solve complex

regression or classification problems with non-linear dependencies

between the input features. We have seen that linear regression and

logistic regression with linear functions can perform well if the features of

the underlying data are bound by linear relations. In that case, fitting a line

(or a linear hyper-surface) through your data is a good strategy to train a

model. We have also seen that more complex non-linear relations can be

expressed by adding more polynomial terms to the hypothesis function—

for instance, quadratic or cubic relations or terms with the product of some

features.

There’s a limit, however, to adding more synthetic features as extra

polynomial terms. Consider the example shown in Figure 2-1. A linear

division boundary may not be that accurate in describing the relation

between the input features. We can add more polynomial terms (e.g., x1x2,

x
1

2 , or x x
1 2

2), and that could indeed fit our data well, but we’re running

the risk of overfitting the dataset (i.e., produce a model that performs well

on the specific training input but is not generic enough for other cases).

Moreover, the approach may still be sustainable if we only have two

input features. Try, however, to picture a real-case scenario like the price

of a house, which can depend on a vast amount of features that are not

https://doi.org/10.1007/978-1-4842-6821-6_2#DOI

88

necessarily linearly related, and you’ll notice that the number of additional

polynomial features required by your model will easily explode. Training

a regression model with multiple input features and multiple non-linear

terms has two big drawbacks:

• The relations between the features are hard to visualize.

• It’s an approach prone to the combinational explosion.

You’ll be likely to end up with a lot of features to express

all the relations. Such a model will be very expensive to

train while still prone to overfit.

And things only get trickier when we move to the domain of image

detection. Keep in mind that a computer only sees the raw pixel values in

an image, and objects that are pictured in an image often have non-linear

boundaries.

When your data consists of many input features and when the

distribution of your data or the boundaries between its classes are non-

linear, it’s usually a better idea to organize your regression classifiers into a

network to better capture the increased complexity, instead of attempting

to build a single regression classifier that maybe comes with a lot of

Figure 2-1. Example of non-linear boundary between two variables
that can be tricky to express with logistic regression alone

CHAPTER 2 NEURAL NETWORKS

89

polynomial terms to best describe your training set but can easily end up

overfitting your data without actually providing good predictions. The idea

is similar to the way most of the animals (and humans) learn. The neurons

in our system are strongly wired together through a structure akin to the

one shown in Figure 2-2, and they continuously interact through small

variations of electric potential both with the periphery of the body (on

fibers called axons, each connected to a neuron, if you bundle more axons

together you get a nerve) and with other neurons (on connection fibers

called dendrites). The connections between the axon from a neuron and

the dendrites of the next neuron are called synapses. The electrochemical

signals sent over these connections are what allows animals to see, hear,

smell, or feel pain and what allows us to consciously move an arm or a

leg. These connections, however, constantly mutate over a lifetime span.

Connections between neurons are forged on the basis of the sensory

signals that are gathered from the environment around and on the basis

of the experience we collect. We don’t innately know how to grasp an

object the right way, but we gradually learn it within the first months of our

lives. We don’t innately know how to speak the language of our parents,

but we gradually learn it as we are exposed to more and more examples.

Physically, this happens by a continuous process of fine-tuning of the

connections between neurons in order to optimize how we perform a

certain task. Neurons quickly specialize to perform a certain task—those

in the back of our head process the images from our eyes, while those

in the pre-frontal cortex are usually in charge for abstract thought and

planning—by synchronizing with their connected neighbors. Neurons

quickly learn to fire electrochemical impulses or stay silent whenever the

net input signals are above or below a certain threshold, and connections

are continuously re-modelled, according to the idea that neurons that fire

together wire together more strongly. And the nervous system is in charge

not only of creating new connections to better react to the environment

but also to keep the number of connections optimized—if each neuron

was strongly connected to all other neurons, our bodies would require a

CHAPTER 2 NEURAL NETWORKS

90

lot of energy just to keep all the connections running—so neural paths that

aren’t used for a certain period of time eventually lose their strength; that’s

why, for example, we tend to forget notions that we haven’t refreshed for a

long time.

Artificial neural networks are modelled in a way that closely mimics

their biological counterparts. Not only that, but the fields of artificial

intelligence and neuroscience have a longstanding tradition of influencing

each other—artificial neural networks are modelled mimicking the

biological networks, while progress in the development of artificial neural

networks often sheds light on overlooked features of the brain. Imagine

each neuron in an artificial neural network as a computational unit with a

certain number of inputs, which approximately map the dendrites in the

physical cell. Each input “wire” has a weight that can be adjusted during

the learning phase, which approximately maps the synapses of the

physical neuron. The neuron itself can be seen as a computational unit

that performs the weighted sum of its inputs and applies a non-linear

function (like the logistic curve we have previously seen) to map an on/off

output state. If the output of the activation function is higher than a certain

threshold, then the neuron will “fire” a signal. The output of each neuron

can either be fed to another neuron or be one of the terminal outputs of

your network. The simplest case of a network is the perceptron (see

Figure 2-2. Principal components of a physical neuron

CHAPTER 2 NEURAL NETWORKS

91

Figure 2-3), similar to what Frank Rosenblatt designed in 1957 to try and

recognize people in images. It’s a network with a single neuron with a set

of n + 1 input features x x x x x
n

= ¼[]0 1 2
, , , , (just like in the case of

regression, we are using an accessory x0 = 1 input to express the linear

model in a more compact way). Each of the inputs is connected to a

neuron through a vector of n + 1 weights theta
n

= ¼[]q q q q
0 1 2
, , , , . The unit

will output an activation value a x(), defined as the weighted sum of its

inputs:

a xx

i

n

i i() =
=

å
0

q

(2.1)

Such activation value will go through an activation function hθ(x),

usually the sigmoid/logistic function we saw in Equation 1.39, that will

map the real value onto a discrete on/off value:

g z

e z() =
+ -

1

1
(2.2)

Such a learning unit can work for some simple cases, but in more

complex cases, it will face the same issues encountered by Rosenblatt’s

first perceptron. Spotting people or objects in images is a learning problem

Figure 2-3. Logic model of a network with a single neuron (perceptron)

CHAPTER 2 NEURAL NETWORKS

92

with a high number of inputs—in its most naive implementation, each

pixel of the image will be an input of the model. A single neuron isn’t

sufficient in general to model such a high level of variability. That’s why

nowadays it’s much more common to pack multiple perceptron units

into a neural network, where each output of each neuron is connected

to the input of the neuron in the next layer, as shown in Figure 2-4. By

packing more interconnected neurons, a learning unit usually becomes

better at recognizing complex patterns in problems with a high number of

dimensions. The example in the figure shows a neural network with three

layers. This is a quite common architecture for simple cases, but we’ll soon

see that problems with more nuanced patterns can better be solved with

networks with more intermediate layers. By convention, the first layer is

called input layer, and it usually has as many neurons as the dimensions

of the input datasets (plus one, with x0 = 1). The second and any other

intermediate layer is usually called hidden layer, as they do most of the

inference work, but they are not directly connected neither to the inputs

nor to the outputs of the network. The last layer of the network is called

output layer, and it contains as many outputs as the output classes/labels

(one true/false class in the case in the figure, but we’ll soon see network

with a higher number of outputs as well).

Note that the notation ai

j() denotes the activation value of the i-th

unit in the j-th layer of the network, while h xQ () denotes the hypothesis

(or prediction) of the model in function of the configured parameters Θ,

calculated as

h

e
x

xQ Q
() =

+ -

1

1

While in the regression case the parameters (or weights) of the model

were a vector, in this case, each j-th layer will have an associated Θ(j) matrix

to map the weights between the j-th and the j + 1-th layer. Remember that

each of the units in j is connected to each of the units in j + 1, so Θj will be

CHAPTER 2 NEURAL NETWORKS

93

a m × n matrix, where m is the number of units in j and n is the number

of units in j + 1. Therefore, we can visualize Θ as a 3D tensor. Intuitively, a

tensor is a multi-dimensional generalization of a matrix. In our case, each

j-th “slice” of the tensor Θ represents the 2D matrix of weights of the j-th

layer.

If we put together all the pieces of information we’ve gathered so far,

we can formalize the activation function of each neuron in the figure as

follows:

• The units in the first layer are usually mapped one-

to- one to the input features, unless you want to assign

each feature a different weight:

 a x i n
i i

1
0

()
= = ¼for

Figure 2-4. Logic model of an artificial neural network with three
layers

CHAPTER 2 NEURAL NETWORKS

94

• The activation values of the units in the second layer is

the logistic function of the weighted sum of the inputs:

a g x x x xn n1

2

10

1

0 11

1

1 12

1

2 1

1() () () () ()
= + + +¼+()Q Q Q Q

a g x x x xn n2

2

20

1

0 21

1

1 22

1

2 2

1() () () () ()
= + + +¼+()Q Q Q Q

 ¼

a g x x x xn n n n nn n

2

0

1

0 1

1

1 2

1

2

1() () () () ()
= + + +¼+()Q Q Q Q

• The activation value of the unit in the last layer is the

logistic function of the weighted sum of the outputs of

the units from the previous layer:

 a h g a a a ax n1

3

10

2

0

2

11

2

1

2

12

2

2

2

1

2() () () () () () () ()
= () = + + +¼+Q Q Q Q Q nn

2()()

We can generalize the formula for the activation function of the i-th

unit in the j-th layer as follows:

a g ai

j

k

n

ik

j

k

j()

=

-() -()=
æ

è
ç

ö

ø
÷å

0

1 1Q

(2.3)

Or, using a vectorial notation, we can describe the vector of activation

values of the units in the j-th layer as

a ag

j j j
T

() -() -()
= ()Q

1 1

(2.4)

CHAPTER 2 NEURAL NETWORKS

95

Such algorithm is commonly known as forward-propagation, and it’s

how a neural network with a certain set of weights makes predictions given

some input data—the intuition is basically to propagate the input values

through each node, from input to output layer. Forward-propagation can

be seen as a generalization of the hypothesis function used in logistic

regression in a multi-unit scenario. A couple of observations:

• Keep in mind that g is the logistic function, and we use

it on each layer to “discretize” the weighted sum of the

inputs.

• We have so far set x0 = 1, so that each of the input

vectors actually has size n + 1. We keep this practice

also for neural networks, each j-th layer will have its

own bias unit a
j

0
() . We can assume that these bias

values always equal one for now, but we will see

later on how to tune the bias vector to improve the

performance of our models.

• In the example we’ve considered so far both the input

and hidden layer have n + 1 units. While the input

layer has indeed n + 1 units in most of the cases,

where n is the dimension of the inputs, and the output

layer mostly has as many units as the number of

output classes, there is no constraint on the number

of units in the hidden layer. Actually, it’s a common

practice in many cases to have more units (at least in

the first hidden layer) than the number of the input

dimensions, but keep an eye on the performance of

your model to make sure that you don’t keep adding

hidden units beyond a point that doesn’t actually

improve your performance metrics.

CHAPTER 2 NEURAL NETWORKS

96

• As I mentioned earlier, there’s no constraint on the

number of hidden layers either. Indeed, adding more

hidden layers will usually improve the performance

of your model in many cases, as your network will be

able to detect more nuanced patterns. However, just

like the good practice for the number of units, you may

also not want to overengineer your model by adding

more layers than those actually required by the type

of classification problems you want to solve, since

adding either too many intermediate layers or units

may have no measurable impact on the network in

the best case and deteriorate the performance of the

network because of overfit in the worst case. Again, the

best practice is to try different number of layers with

different number of units and see when you hit the

“sweet spot” between good model performance metrics

and good system performance metrics.

2.1 Back-propagation

If forward-propagation is the way a neural network makes predictions,

back-propagation is the way a neural network “learns”—that is, how it

adjusts its tensor of weights Θ given a training set. Just like we did for

regression, also for neural networks, the learning phase can be inferred by

defining a cost function that we want to optimize.

In the general case, you will have a neural network with K outputs,

where those outputs are the classes that you want to detect. Each output

expresses the probability, between 0 and 1, that a certain input belongs

to that class. If the input of your network are pictures of items of clothing,

for example, and you want to detect whether a picture contains a shirt, a

skirt, or a pair of trousers, you may want to model a neural network with

CHAPTER 2 NEURAL NETWORKS

97

three output units. If a picture contains a shirt, for instance, you want

that network to output something close to [1, 0, 0]. If it’s a pair of trousers,

you want it to output something like [0, 0, 1], and so on. So instead of a

hypothesis function with a single output variable, like we have seen so far,

you will have a hypothesis functions h x
K

Q ()ÎR with a vector of K values,

one for each class. The prediction class of your model will usually be the

index of the h xQ () function with the highest value:

class argmax= ()()

i

i
h xQ

In the previous example, if you get a hypothesis vector like

[0.8,0.2,0.1] for a certain picture, and your output units are set in the order

[shirt, skirt, trousers], then it’s likely that that picture contains a shirt.

So the job of the cost function of a neural network is to minimize

the classification error between the i-th vector of labels in the training set,

y
i() , and the predicted output vector h xQ () . We have seen this type of cost

function already in the case of a true/false binary classification problem in

Equation 1.46, when we covered logistic regression:

J
m

y h y hx x
i

m
i i i iq q q() = - ()+ -() - ()()é

ë
ê

ù

û
ú

=

() () () ()å
1

1 1
1

log log

(2.5)

If instead of one single label y(i) for the i-th input sample we have a

vector of K items, and instead of a one-dimensional vector of weights θ

we have a 3D tensor of weights Θ, with each slice representing the weight

matrix to map one layer to the next, then the cost function can be rewritten

as follows:

CHAPTER 2 NEURAL NETWORKS

98

J
m

y h y hx x
i

m

k

K

k

i i

k
k

i iQ Q Q() = - ()() + -() -
= =

() () () ()åå
1

1 1
1 1

log log (()()é

ë
ê

ù

û
ú +

k

+ ()

=

-

= =

()ååå
+l

2 1

1

1 1

21

m l

L

i

s

j

s

ij

l
l l

Q

(2.6)

The second term in the sum (multiplied by
l

2m
) is the conventional

way to encode the bias inputs of each layer (the weights of the x
j

0
()

elements)—as the sum of the squares of the weights between the l-th and

l + 1-th layer. λ is the bias rate, or regularization rate of the network, and

it defines the inertia of the network against changes—a high value in this

case leads to a more conservative model, that is, a model that will be slower

to apply corrections to its weights, while a low value leads to a model that

will adapt faster to changes, at the risk of overfitting the data. Training

phases usually start with a lower bias rate in order to quickly adjust to

corrections at the beginning which slowly decreases over time.

Just like in the case of regression, finding the optimal values of Θ is a

problem of minimizing the preceding cost function; therefore, perform

some form of gradient descent to find its minimum. In neural networks,

this process is usually done layer by layer, starting from the output layer

and adjusting the weights backward layer by layer (that’s why it’s called

back-propagation). The intuition is to first compare the outputs of the

network against the expected samples, and as we adjust the weights of the

units in the output layer to match the output more closely, we calculate

new intermediate expected results for the units in the previous layer, and

we proceed with adjusting the weights until we get to the first layer.

Let’s consider a network with L = 4 layers and two outputs like the one

shown in Figure 2-5. If we present it with an input x x x x= []1 2 3
, , and a

vector of expected labels y y y= []1 2
, and apply forward-propagation to it,

we can calculate its hypothesis function h x
i

Q

()()ÎR2 :

CHAPTER 2 NEURAL NETWORKS

99

a

a a

a a

a a

x

g

g

h x g

T

T

T

1

2 1 1

3 2 2

4 3 3

()

() ()

() ()

() ()

=

= ()
= ()
= () = ()

Q

Q

QQ

Then, just like in the case of regression, we want to find the values of

Θ (which is a 3D tensor in this case) that minimize the cost function J(Θ).

In other words, for each layer l, we want to calculate its gradient vector

∇J(Θ(l)). We want the values of this vector to be as close as possible to zero:

Ñ () = " £ £ -

()
J l L

l
Q

set

0 1 1

It means that the partial derivatives of J(Θ(l)) with respect to its weights

Qij

l() should be set to zero, so we can derive the optimal weights out of the

resulting equations:

Figure 2-5. Example of a neural network with L = 4 layers, n = 3
inputs, and K = 2 outputs

CHAPTER 2 NEURAL NETWORKS

100

¶

¶
() =

£ £

£ £()

()

+Q
Q

ij

l

l l

l

J
i s

j sset

0
1

1
1

,

We then define a quantity d j

l() as the error coefficient of the j-th unit in

the l-th layer, starting from the last layer, where the coefficient is defined as

d j j ja y j

4 4
1 2

() ()
= - =for ,

Or, in vectorial form:

 d
4 4() ()
= -a y

Taking into account the error on the output layer, we calculate the

correction to the weights that connect those units to the units in the

previous layers in the following way:

There are quite a few things happening here so let’s dig term by term:

• Θ(3) is the matrix containing the weights that connect

the second to the third layer of the network. If, like

in Figure 2-5, the third layer has three units and the

second layer has four units, then Θ(3) is a 3 × 4 matrix.

• We perform a matrix-vector product between the

transposed matrix of the weights in a layer and the

vector of δ correction coefficients calculated at the

following layer. The result is a vector that contains as

many elements as the number of units in the layer.

CHAPTER 2 NEURAL NETWORKS

101

• We then perform an element-wise product (or

Hadamard product, denoted by ⊙) between that vector

and the vector of partial derivatives of the activation

function of the units in the layer (using the notation we

have seen in Equation 2.4). The element-wise product

is intuitively the element-by-element product between

two vectors with the same size, for example:

• ∇g is the gradient vector of the activation function

(usually the sigmoid function) calculated for each unit.

We can generalize the preceding expression to express the correction

coefficients for the units in the l-th layer as

The activation function g a
l l

T

Q
-() -()()1 1

, as seen in Equation 2.4,

expresses the activation values of the units in the l-th layer, a(l). By solving

the derivatives, we can infer this formulation for δ(l):

 (2.7)

It is possible to prove (although the process of derivation is quite

lengthy and we’ll skip it in this chapter) that the following relation exists

between the partial derivatives of the cost function and the coefficients d

(ignoring for now the bias coefficients and the normalization rate λ):

¶

¶
() =

()

() +()

Q
Q

ij

l j

l

i

l
J a d

1

(2.8)

CHAPTER 2 NEURAL NETWORKS

102

Since the partial derivatives of the cost function are exactly what we

want to minimize, we can use the findings of Equations 2.7 and 2.8 to

define how a network with L layers “learns” through cycles of forward and

back-propagation on a training set:

• Initialize the weights Θ in your model, either randomly or

according to some heuristic, and initialize a tensor Δ that

contains the partial derivatives of the cost function for

each weight, with Dij

l()
= 0 for each connection of the i-th

unit in the l + 1-th layer with the j-th unit in the l-th layer.

• Iterate over all the items in a normalized training set

X x y x y
m m

= ()¼ (){ }() () () ()1 1
, , , , .

• For each i-th training item, set a x
i1() ()

= —the input

units of the network will be initialized with each of the

normalized input vectors.

• Perform forward-propagation to compute the

activation values of the units in the next layers, a
l() ,

with 1 < l ≤ L:

a g a

l l l
T

() -() -()
= ()Q

1 1

• Set h x a
i L

Q

() ()() = —the prediction of your network

equals the activation values of the units in the last layer.

• Start applying back-propagation by computing the

δ vector for the last layer, as the difference between

the predicted and expected values:

 d
L L i

a y() () ()
= -

CHAPTER 2 NEURAL NETWORKS

103

• Continue back-propagation by computing the δ vectors

for the other layers, starting from the L − 1-th layer and

moving all the way back until the input layer:

• Update the tensor of the corrections to be applied to

the weights:

D Dij

l

ij

l

j

l

i

l
a() () () +()

= +
set

d
1

• After iterating on the training set, we will have

our tensor Δ fully calculated. We can now take

regularization into account by introducing for each

layer the bias unit (j = 0) and dividing each of the

partial derivatives by the number of samples in the

training set:

D
D

D Q
ij

l
ij

l

ij

l

ij

l

m
j

m
j

()

()

() ()
=

=

+ ¹

ì

í
ïï

î
ï
ï

set

1
0

1
0

if

ifl

• We know that

D
Q

Qij

l

ij

l
J()

()
=

¶

¶
()

• We can therefore plug these values into a gradient

descent logic and use a learning rate α to update each

weight according to these quantities:

q q aij

l

ij

l

ij

l() () ()
= -
set

D

CHAPTER 2 NEURAL NETWORKS

104

• Apply this algorithm for a given number of epochs on

your training set or until some convergence criteria are

satisfied, and you’ve got all the ingredients to train a

network.

2.2 Implementation guidelines

There are a few good practices that you may want to follow in order to

optimize the performance of a neural network:

• Randomly initialize the weights of the network. In most

of the cases, a random initialization of the weights

within a preset interval [−ϵ, ϵ] is the best way to

initialize your network. If you initialize the weights with

zeros (or any other constant), you’ll have predictable

output values on the first iterations. A random

initialization breaks this symmetry, and it’s more likely

to point your model in the right direction if you train

it multiple times than a solution that always initializes

the weights in the same way.

• Perform a gradient check of your model before or during

the training phase. Unlike the cost functions that we

have seen in the case of linear and logistic regression,

the cost function of a neural network isn’t guaranteed

to be convex. It means that it’s not guaranteed that the

model converges on the global minimum if you follow

the direction of the gradient vector from any point,

because you are no longer rolling a ball down a bowl-

shaped hill. It means that you may want to check both

CHAPTER 2 NEURAL NETWORKS

105

that (1) the initial direction you picked for the gradient

descent actually leads to a noticeable reduction of the

cost function (i.e., you are not stuck in a local valley)

and (2) the learning rate is well calibrated—if it’s too

low, you may be going down too slowly, and if it’s too

high, the model may overshoot the minimum and not

converge at all.

• Experiment with the architecture of your network.

There’s no deterministic rule about how many layers

and how many units are the best for solving a certain

problem. A general rule of thumb suggests that

networks with more intermediate layers and more units

in these layers usually perform better. However, you

may want to avoid overengineering as well: a simple

network to recognize handwritten digits in 8x8 pixel

images doesn’t necessarily need 10 intermediate layers

with hundreds of units each. Not only that, but after

a certain point adding more units or layers results in

overfitting. So experiment different architectures, see

how increasing the number of units or layers affects the

performance of your model on the same training set

and number of training iterations, and pick an optimal

point just before the boost in performance given by a

larger network is negligible.

• Always normalize your input data before feeding the

network. I’ve already stressed this enough when it

comes to regression, and it’s also important in neural

networks.

CHAPTER 2 NEURAL NETWORKS

106

2.2.1 Underfit and overfit

There is always a healthy balance to seek when you train any model

between high bias/low variance (or underfit) and high variance/low

bias (or overfit). We have seen these issues already when we covered

regression models, and we have discovered the importance of plotting

your normalized dataset to get an idea of how the data is distributed before

picking a function that has either fewer polynomial terms (underfit, the

line/surface of the model is too “smooth” and doesn’t really follow the

distribution of the data) or too many (overfit, the line/surface of the model

follows exactly the distribution of the data but fails in accuracy when

provided with any data point that doesn’t look like those it was trained on).

These observations also apply when it comes to neural networks. The best

way to evaluate the performance of your network against underfit/overfit

is, again, to split your dataset into two—training set and test set. Train your

network on the training set and evaluate how the cost function progress

over the training iterations:

• If the cost function doesn’t decrease (or, worse,

increases, or goes through up/down cycles), then the

model is not converging toward a minimum: make

sure that the data is normalized, revise your gradient

descent strategy, or reduce the learning rate α.

• If the cost function decreases too slowly, then it’s not

fast enough at adapting to the changes presented in

the training set: you may want to either increase the

learning rate α, decrease the normalization rate λ, or

add more features to your data.

CHAPTER 2 NEURAL NETWORKS

107

• If the cost function decreases in a satisfying way and

your model seems to make accurate predictions on the

training set, then evaluate it on the test set (this time

without training: only perform forward-propagation,

not back-propagation). If the cost function or the

accuracy of your model is much worse on the test set,

then either

 1. You have not performed a good split between

training data and test data—this is usually

achieved by shuffling the items in the dataset

before the split to guarantee a more uniform

distribution of the data.

 2. The network hasn’t been presented with enough

data points to efficiently detect patterns in your

dataset—you can fix it by adding more data points.

 3. The dataset contains too many features: you may

want to apply principal component analysis or

any type of dimensionality reduction algorithm

to remove the features that are either redundant

(linear combinations of other features) or don’t

really influence the distribution and patterns of

your data.

 4. The network overfits the points in the training set.

In this case, you may want to either experiment

with a network with a lower number of units/layers

or pick a higher value for the regularization rate

λ in order to increase the “inertia” of the network

against the “swings” in your dataset.

CHAPTER 2 NEURAL NETWORKS

108

As we have seen, once we have found a way toward convergence given

a training set, we have mainly two parameters that we can tune to adjust

the performance of the model: the learning rate α and the regularization

rate λ. We have seen that α determines how fast the network learns when

presented with new data and λ expresses the “resistance” of the network

against change. Sometimes the dataset is split into three instead of two in

order to separately adjust these two values:

• First, we train the model on the training set and make

sure that its cost function constantly decreases. The

goal of this phase is to find the values of the weights Θ

that minimize the cost function and a value of α (or a

function α(t) that returns α over the iteration t) that is

a reasonable trade-off between speed and robustness

(expressed as the tendency of the model to converge

regardless of the starting point).

• Then, we use the cross-validation set to adjust λ.

The goal of this phase is to pick a value of λ (or a

function λ(t) that returns λ over the iteration t) that is a

reasonable trade-off between underfit and overfit.

• Finally, we evaluate the model on the test set to evaluate

the overall performance of the model on data points

that it hasn’t seen yet. We evaluate both the cost

function and any accessory performance metrics of the

model on this data and use them to establish whether

the model performs well enough or it requires more

training, a different parameter tuning, or a different

architecture.

CHAPTER 2 NEURAL NETWORKS

109

Another good practice is to write small tests to check the performance

of your model. So far we have covered the mathematical tools that help us

perform quantitative analysis on the overall performance of the model, but

in a real-world problem, you may have a clearer idea of what your model

should predict in specific cases. So pick a few cases both significant enough

and diverse enough from your data and write some tests that measure how

many of those cases the model got right or wrong. This is a useful tool to

effectively keep track of the evolution of your model over time. Use such

tests to see if a specific change in your model leads to a better classification

for these “core cases” and to make sure that later changes to the model

don’t deteriorate its performance on these data points.

Another general good practice is to keep in mind that machine

learning models are still pieces of software, and like any other piece of

software, they should go through a similar process. Using tools like Jupyter

notebooks to interactively visualize the data and train your models adds

a lot of value and productivity to the process, but keep in mind that the

output of your work shouldn’t be only a model file, trained by a notebook

that will be either tossed away or saved on a personal laptop. The output of

your work when you train a model should include, besides the model file:

• A clean (and preferably versioned) codebase that can be

reused to re-train the model, debug it, or train different

models. Extract the common parts of your codebase

(like saving and loading models, normalizing the data,

or initializing a classifier) into reusable modules that

can be easily imported so you won’t have to reinvent the

wheel or go down the path of scarcely maintainable copy/

paste. Make scripts out of your notebooks, so the training,

evaluation, and prediction phases can be easily run on

other systems as stand-alone entities, without requiring

the Jupyter environment.

CHAPTER 2 NEURAL NETWORKS

110

• Tests for your model, following the guidelines

previously described.

• Keep in mind that in a real-case application your model

is usually a block in the chain of a larger business logic.

In a real application, you usually generate or ingest

data from somewhere, run some custom logic on this

data, use your machine learning model to make some

prediction on the data, and use those predictions to

run some additional business logic. So it’s good to

keep in mind that, just like any other module in a more

complex system, it’s good to design your machine

learning logic with scalability and inter-communication

in mind. Reading from a CSV file and printing the

results on the standard output is a good way to debug

and test your model, but in a real application, you may

want to wrap your model into, for instance, a WSGI

or Flask web application so it’s easy to use it over, for

example, a REST API. Or design it in a way that it can

consume queries or training/evaluation commands

from a message queue or a WebSocket. You may even

consider deploying it as a Docker microservice if it

needs to be deployed on multiple environments so you

don’t have to directly install all the dependencies on

the target system—and usually it also helps preventing

the “but it works on my laptop” issue.

• Whenever possible, keep track of the data used to train

your model. The increased number of applications

of machine learning in the past few years has been

accompanied by an increasing number of issues

related to bad predictions resulting from bad/biased

data. Companies that train their models on huge

CHAPTER 2 NEURAL NETWORKS

111

amounts of data struggle to keep track of which biased

training inputs led to which biased classifications, and

machine learning models are often treated as black-box

oracles—we know what they predict, but we can’t tell

why exactly they made those predictions. That’s why

it’s increasingly important to keep track of the data that

you use to train your models and preferably version it/

tag it: it makes it easier to pinpoint at the root cause in

case of degradation of the model’s performance, and it

also helps increasing the accountability of the model.

2.3 Error metrics

We have so far analyzed a few metrics to evaluate the performance of a

model. Among those are the following:

• Mean squared error, often used as the driving cost

function of the model in regression problems

• Mean absolute error, sometimes used as an additional

performance metric

• Classification error, used as a driving cost function both

in logistic regression and neural networks

• Accuracy, defined as number of correct classifications

divided by the total number of samples, and probably

one of the most popular performance metrics

Accuracy, however, doesn’t always give an accurate picture of how

well the model performs for a specific problem. Suppose that you want to

train a model that detects whether a user who registers to your website is

a potential bot/scammer/fraudster. In a normal scenario, such users may

represent just a minority of the traffic on your website, and therefore, your

CHAPTER 2 NEURAL NETWORKS

112

dataset may picture a situation where 99% of the users are regular users

and 1% of them are fake. In such a scenario, you may gain accuracy = 99%

with this simple function:

def is_fake(user):

 return False

The problem with accuracy is that it fails to provide a good picture

of the actual performance of a model when the classification problem

involves skewed classes—that is, classes with very different distributions,

often associated to anomaly detection problems or generally to problems

that involve the prediction of rare events.

For such cases, it usually helps a more granular approach than looking

at the overall accuracy. For simplicity, let’s consider a binary classification

problem: y = 0 identifies a negative data point and y = 1 a positive one. Our

model makes a prediction for each data point—either h xQ () = 0 (negative

prediction) or h xQ () =1 (positive prediction). We can define the following

metrics on the basis of the predicted values:

 1. True positives (TP): Data points labelled as positive

and predicted as positive (y = 1 and h xQ () =1)

 2. True negatives (TN): Data points labelled as negative

and predicted as negative (y = 1 and h xQ () =1)

 3. False positives (FP): Data points labelled as negative

but predicted as positive (y = 0 and h xQ () =1)

 4. False negatives (FN): Data points labelled as positive

but predicted as negative (y = 1 and h xQ () = 0)

CHAPTER 2 NEURAL NETWORKS

113

Usually these metrics are visualized in a confusion matrix with a

structure like the one shown in Figure 2-6.

With this new formalism, we can define the accuracy of the model as

follows:

accuracy

TP TN

TP TN FP FN
=

+

+ + +

Accuracy is the metric that answers the question “Which fraction of the

available items has been correctly classified?”

We define precision as the metric that answers the question “Which

fraction of the items predicted as positive is actually positive?”

precision

TP

TP FP
=

+

Figure 2-6. Structure of a confusion matrix. Each cell reports the
number of items that fit that selected category after a run of validation
of the model

CHAPTER 2 NEURAL NETWORKS

114

While the recall is the metric that answers the question “Which

fraction of the items labelled as positive has been predicted as positive?”

recall

TP

TP FN
=

+

Let’s apply these two new metrics to the is_fake(user) function

shown before. Suppose that we are running this naive model that always

returns False on a test set containing 100 users, where 1 of them is fake and

99 are regular. We have therefore

• TP = 0

• TN = 99

• FP = 0

• FN = 1

And

• accuracy =
+

+ + +

=
0 99

0 99 0 1
99%

• precision N A=

+

=
0

0 0
/

• recall =
+

=
0

0 1
0%

A recall value of 0 clearly says that something is wrong with the

classifier, even though the overall accuracy is 99%. Note that precision

and recall aren’t always measurable: in some limit cases, like our naive

is_fake(user) function, the denominator may be zero—but at least one of

the two metrics is usually computable.

You can use these two additional metrics to better evaluate the

performance of your model and optimize performance in classification

problems with skewed classes—even at the cost of a trade-off on overall

CHAPTER 2 NEURAL NETWORKS

115

accuracy if required. You can also find trade-offs between these two

metrics based on your business logic. Suppose that your model predicts

whether a patient has a cancer on the basis of X-ray images: you can

optimize either its precision or its recall based on the answer you give to

the question is it worse to tell healthy patients that they have cancer, or tell

patients with cancer that they are healthy?

If your model detects potential intrusions from the camera images in

a bank, you may want to optimize recall—if the cost of a real intrusion is

very high, then it might be safe to ensure that any potential intrusion is

detected, even at the cost of a higher number of false positives. If instead

your model sends notifications to all the employees in a department about

potential spikes of traffic on a certain system, you may want to prefer

precision over recall—send a notification when we’re pretty confident that

there is a spike to prevent spamming the employees with false positives.

Sometimes a metric that combines both precision and recall is

used to evaluate the performance of a model: the F1 score is defined as

the harmonic mean of precision and recall and is often used as a more

granular accuracy metric:

F

PR

P R
1

2=
+

To summarize, so far we have covered

• The intuition behind neural networks, how to use them

to make predictions (forward-propagation), and how to

train them (back-propagation)

• How to evaluate the quality of the training

process—measures to prevent underfit and overfit,

normalization, regularization, and feature selection

CHAPTER 2 NEURAL NETWORKS

116

• Which are the best practices to debug, test, design,

package, and distribute our machine learning models

• Which accessory performance metrics can be used to

evaluate the model if we have skewed classes or we

want to detect anomalies

We now have all the ingredients to start getting our hands dirty with

some code.

2.4 Implementing a network to recognize
clothing items

Nowadays it’s relatively easy to implement neural networks using

libraries like TensorFlow and Keras. I won’t cover a full implementation

from scratch in Python of forward-propagation and back-propagation

like I did for regression, but even if you’re unlikely to find yourself in a

situation where you have to implement the full-blown algorithm yourself,

I strongly encourage you to try and implement it from scratch, to make

sure that you grasp all the intuitions behind. After all, it wasn’t that long

ago that developers had to implement these algorithms themselves—I

believe that my 12-year-old library for neural networks in C++ is still lost

somewhere on the old Google Code portal. Even if initializing, compiling,

and training a model can be done in three lines of Python code nowadays,

the framework doesn’t take care of normalizing the data, and the

methods provided by TensorFlow and Keras still require some tuning and

knowledge about how the algorithms work, if you want to get your model

to work in a real-world application.

In this section, we’ll cover an example often considered as the new

hello world of neural networks: the Fashion MNIST dataset originally

uploaded by Zalando. The traditional MNIST dataset has been used for

many years to introduce students to machine learning, and it includes

CHAPTER 2 NEURAL NETWORKS

117

a large list of images with handwritten and labelled digits. The Fashion

MNIST dataset adds a bit more complexity on top of the original

problem—you’ll have to train a model that detects clothing items from

pictures. The Fashion MNIST dataset is provided by default on a typical

TensorFlow+Keras installation, and you can load it like this into your

notebook:

import tensorflow as tf

from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = \

 fashion_mnist.load_data()

There are ten types of clothing included in the dataset, but their classes

aren’t directly provided as strings. You can initialize an array with the

associated class names:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress',

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag',

 'Ankle boot']

By taking a look at the data, we notice that the training set contains

60,000 images, while the test set contains 10,000 images—in both cases, we

are dealing with 28x28 pixel black and white images:

train_images.shape

Output: (60000, 28, 28)

test_images.shape

Output: (10000, 28, 28)

CHAPTER 2 NEURAL NETWORKS

118

And when it comes to the labels, their values are in range 0–9 and can

be mapped to our class_names vector:

train_labels

Output: array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)

test_labels

Output: array([9, 2, 1, ..., 8, 1, 5], dtype=uint8)

When we deal with images, the first thing we want to do is take a look

at some of the images in the dataset to get hints about the color space,

range, and look: the images in this dataset are already trimmed to include

only the clothing item, but in a real-world scenario, you’re likely to be

provided with large datasets that require some form of preprocessing (like

trimming, downscaling, or color transformation) before being fed to a

neural network:

Figure 2-7. Histogram of an image from the Fashion MNIST dataset

CHAPTER 2 NEURAL NETWORKS

119

import matplotlib.pyplot as plt

plt.figure()

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()

You’ll see a picture like the one shown in Figure 2-7. We are dealing

with black and white images, the information about each pixel is encoded

in one byte, and therefore each pixel has a value between 0 (black) and

255 (white). The first step when it comes to models that operate on images

is to normalize them—and in the case of black and white images, this is

usually done by applying a transformation that translates the [0,255] range

into a [0.0,1.0] range:

def normalize(images):

 return images / 255.0

train_images = normalize(train_images)

test_images = normalize(test_images)

A quick note about the color space. When it comes to models dealing

with images, it’s quite important to pick the right color space if you really

want to boost performance. While RGB is the most common option to

export images, it’s not necessarily the best format to train a model. Before

settling on a specific color space for your model, ask yourself this question:

what kind of information or pattern do I want to detect in these images?

If your neural network is supposed to be used in a self-driving car to

recognize the colors of traffic lights, then RGB is a good pick. If you want

to detect shapes against a background, black and white is usually a better

pick—it not only makes the model simpler and faster but also more robust,

CHAPTER 2 NEURAL NETWORKS

120

as different pictures of the same object or shape may show different colors

depending on lighting or environment conditions. Other application may

perform better with more exotic color spaces. If your model is supposed

to recognize lighting conditions in a room, for instance, then color spaces

that take luminosity into account (like YUV or YCbCr) can perform better

than RGB or grayscale. In other applications where the patterns depend on

how much color or saturation the images have, color spaces that take those

metrics into account (like HSL and HSV) can be the best pick. Always keep

in mind that the color space that you choose influences the pattern that

the network is able to infer. Not only that, but also choose the right source

of data for your model depending on what your model is supposed to

recognize. Images from an optical camera work well if you want to classify

objects. If instead you want to detect the presence of people, then an

infrared or thermal camera could provide better performance, because the

images from an optical camera would have a lot of variability—a person

can be standing, sitting, or lying in different positions in different parts of a

room, and you could also have multiple people in the same room, while an

infrared camera would only provide you with the information your model

actually needs: “Are there any human-shaped sources of heat around

36–37°C in the image?” In other applications, you may want to rely on

more inputs: a model that detects the presence of people can be way more

accurate if you also integrate data from microphones or other environment

sensors.

Machine learning is often described as a process where you feed

data to a model and the model “learns” by itself, but the reality is more

complex than that. Choosing the right source of information, collecting

data, removing the redundant information, trimming and transforming

the data, detecting any potential source of bias, and normalizing the data

actually make 90% of the performance of your model. The mathematics

we have explored so far is often implemented in libraries and frameworks

CHAPTER 2 NEURAL NETWORKS

121

nowadays; it is relatively complex, but you won’t have to implement it

from scratch (even if that doesn’t mean that you don’t need to understand

how these models work under the hood). What really matters nowadays is

the quality of the data you use and how good you have been at collecting

it even before you write the first line of code. Machine learning isn’t like

feeding data to a model and let the model learn by itself. It’s more similar

to the way penguins feed their offspring—the adult penguin is in charge

of fishing, chewing, and pre-digesting the food before feeding it to their

young ones.

That being said, let’s proceed with our classifier of clothes. A good idea

is to take a look at how a bunch of images look in the dataset and what’s

their classification:

plt.figure(figsize=(10,10))

Plot the first 25 images and their

associated classes in a 5x5 grid

for i in range(25):

 plt.subplot(5,5,i+1)

 plt.xticks([])

 plt.yticks([])

 plt.grid(False)

 plt.imshow(train_images[i], cmap=plt.cm.binary)

 plt.xlabel(class_names[train_labels[i]])

plt.show()

CHAPTER 2 NEURAL NETWORKS

122

You should see a figure like the one shown in Figure 2-8.

If the classification looks right and the data is normalized, let’s proceed

with building a neural network classifier. This is usually done in Keras

using the Sequential model that links together multiple custom layers.

Usually a model that works on image classification problems has the

following structure:

Figure 2-8. Sampling the first 25 images of the Fashion MNIST
dataset

CHAPTER 2 NEURAL NETWORKS

123

 1. An input layer that contains as many units as the

number of pixels of each image. We have seen,

however, that the input layer of a network is a

one-dimensional vector of units, while here we are

dealing with two- dimensional images. The first layer

therefore is usually of type Flatten, and it “unfolds”

the two-dimensional images into one-dimensional

arrays that can be propagated into the next layers.

We have seen that the images in the Fashion MNIST

dataset are 28x28 pixel images: it means that our

first layer will have 28 × 28 = 784 units.

 2. An output layer that has as many units as the

number of classes that we want to detect. In our

cases, 10 classes means 10 units in the output layer,

and the unit with the highest activation value is the

one we want to associate to a specific data point.

 3. A variable number of hidden layers between the

input and output layer with a variable number of

units. We have previously seen that increasing the

number of intermediate units and layers is a good

way of improving the accuracy of your model, but

increasing it too much may lead to overfit—and you

can usually overcome it either by tuning the number

of units and layers until you reach a satisfying trade-

off between the accuracy on the training set and test

set or by increasing the regularization rate so the

network is more tightly “anchored.” We will use both

for the output layer and for the intermediate layers

the Dense Keras layer type, which initializes a layer

such that each of its units is connected to each of the

units both in the previous and next layer.

CHAPTER 2 NEURAL NETWORKS

124

Putting all together, let’s proceed with writing the code that initializes

our model:

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(500, activation='sigmoid'),

 keras.layers.Dense(200, activation='sigmoid'),

 keras.layers.Dense(10, activation='softmax')

])

This code defines a network with one input layer, two hidden layers,

and one output layer (keras.Sequential). The first layer takes our

normalized 28 × 28 image vectors as inputs and transforms them into one-

dimensional vectors (keras.Flatten). The two hidden layers, respectively,

contain 500 and 200 units (feel free to experiment with the number of units

and hidden layers and see how it affects the model). They use a sigmoid

activation function—the same one we have explored so far. The output

layer has 10 units—as many as the number of classes. The value of each

unit will express the probability for a given input image to belong to that

class. We may want to use the softmax activation function for the output

layer whenever we have multiple classes, and we want to express the value

of each unit as a probability/confidence level.

Next, just like in the regression models, we want to compile this model

so it’s ready to be trained:

model.compile(optimizer='adam',

 loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=True),

 # or loss='categorical_crossentropy',

 metrics=['accuracy'])

CHAPTER 2 NEURAL NETWORKS

125

Digging on what’s happening here:

• We use adam as an optimizer for the network, a first-

order gradient-based optimization algorithm first

proposed in 2014 that has gained quite some popularity

over the past years for training deep neural networks.

We have covered already other optimizers in the

chapter on regression. Many of them—stochastic

gradient descent (SGD), nadam, RMSprop, and so on—

are also commonly used for neural networks. Again, the

best way to get a grasp of the optimizers is to read about

those most commonly used and experiment which one

performs better on your data.

• We then define a cost function that we want to

minimize using the optimizer (like we have seen

already in the case of regression, the Keras framework

names them as loss functions instead of cost functions,

but they basically mean the same thing). While mean

squared error (or mean logarithmic squared error)

is a common choice for linear regression problems,

cross-entropy functions are a common choice for

classification problems—including logistic regression

and classification through neural networks. The

concept of cross-entropy is very close to the types

of cost functions J q() we have analyzed in our

classification problems. In general, in information

theory, the cross-entropy between two distributions p

and q over the same set of events represents the average

number of bits (or pieces of information) required

to “convert” p into q. If p and q are, respectively, our

expected and predicted values for a certain set of data

CHAPTER 2 NEURAL NETWORKS

126

points, then the cross-entropy intuitively measures

how “distant” our set of predictions is from the set

of expected values—or how many bits in average we

need to change so that our predictions match the

expectations. Another way to look at cross-entropy is

in probabilistic terms: you can see it as a measure of

how likely your predictions are to be right. You would

usually use a binary cross-entropy loss function if you

are building a model for true/false predictions. In our

case, we want to make prediction over multiple classes,

so a categorical or sparse categorical cross-entropy

function would usually be a popular choice.

• Like in the case of regression, we want to define one

or more additional metrics as “health” metrics to

make sure that the model is actually learning and not

overfitting the data points according to the provided

cost function. In this case, like we did in the case of

regression, we use accuracy, but keep in mind that

depending on the distribution of your data (especially

in the case of skewed datasets) and the trade-off

you want to achieve between false positive and false

negatives, you can also use precision and recall or any

other metric.

Then, like we have seen in the case of regression, we use the fit

method to train our compiled model over the training set:

history = model.fit(train_images, train_labels, epochs=10)

In this case, we specified 10 iterations over the data points. Again,

remember that the number of epochs can determine whether your model

CHAPTER 2 NEURAL NETWORKS

127

will underfit, overfit, or “just” fit the data, so you may want to look at the

output of your notebook to see how the performance of the model changes

over the epochs:

Epoch 1/10

1875/1875 [======] - 6s 3ms/step - loss: 0.5423 - accuracy: 0.8091

Epoch 2/10

1875/1875 [======] - 6s 3ms/step - loss: 0.3781 - accuracy: 0.8621

Epoch 3/10

1875/1875 [======] - 7s 4ms/step - loss: 0.3396 - accuracy: 0.8755

Epoch 4/10

1875/1875 [======] - 7s 4ms/step - loss: 0.3144 - accuracy: 0.8842

Epoch 5/10

1875/1875 [======] - 9s 5ms/step - loss: 0.2956 - accuracy: 0.8912

Epoch 6/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2805 - accuracy: 0.8961

Epoch 7/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2649 - accuracy: 0.9014

Epoch 8/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2508 - accuracy: 0.9062

Epoch 9/10

1875/1875 [======] - 7s 4ms/step - loss: 0.2387 - accuracy: 0.9105

Epoch 10/10

1875/1875 [======] - 8s 4ms/step - loss: 0.2303 - accuracy: 0.9128

A few common rules of thumb to interpret your metrics:

• It’s important that your loss/cost function consistently

goes down over the epochs. If it doesn’t visibly race

toward zero, then you may want to normalize/improve

your training data. If it goes up and down, then the cost

function may have some “bumps”—either review your

CHAPTER 2 NEURAL NETWORKS

128

data or tune the learning rate, the regularization rate, or

the optimizer. If you don’t notice great improvements

after some point, it means that the cost function already

converged earlier and you can reduce the number of

epochs, or you could run into overfit issues.

• While the cost function is expected to consistently

decrease, your secondary metrics (accuracy, precision,

or recall) are expected to consistently increase. If they

don’t, then you may want to investigate possible overfit

issues or tune learning/regularization rate.

You can also plot how the accuracy of your model changes over the

training epochs:

epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

Once we are happy with the performance metrics of the training phase,

it’s time to evaluate the newly trained model over the test set:

CHAPTER 2 NEURAL NETWORKS

129

test_loss, test_acc = model.evaluate(test_images, test_

labels, verbose=2)

You will probably see an output like this:

313/313 - 1s - loss: 0.3185 - accuracy: 0.8871

And plotting the accuracy over the epochs should result in a graph like

the one shown in Figure 2-9.

What this means is that our model has an 88.71% probability of

guessing the class correctly on a test set of 313 items. That is about 2.5%

less than the accuracy achieved on the last training iteration if we compare

it with the previous output. In a real-case scenario, it’s up to you (or those

in charge of the project) to make the call whether such results are good

enough. If the accuracy over the test set diverges too much from the

accuracy over the training set, then, again, you may want to investigate

overfit. It’s also a good practice to increase the number of samples in the

test set in order to make more statistically significant observations.

Figure 2-9. Progress of the model accuracy over 10 training epochs

CHAPTER 2 NEURAL NETWORKS

130

It’s now a good idea to take a peek at a few images in the test set and

see how the neural network performed on them. Let’s first define a few

utility functions to show some predictions from the test set onto a grid,

with each element containing the tested image, the expected label, the

predicted label, and the model’s confidence in predicting that label:

import numpy as np

import matplotlib.pyplot as plt

Plot the image, the predicted/expected label

and the confidence level

def plot_image_and_predictions(prediction, classes, true_

label, img):

 plt.grid(False)

 plt.xticks([])

 plt.yticks([])

 plt.imshow(img, cmap=plt.cm.binary)

 predicted_label = int(np.argmax(prediction))

 confidence = 100 * np.max(prediction)

 color = 'blue' if predicted_label == true_label else 'red'

plt.xlabel('{predicted} {confidence:2.0f}% ({expected})'.format(

 predicted=classes[predicted_label],

 confidence=confidence,

 expected=classes[int(true_label)]), color=color)

Plot a bar chart with the confidence level of each label

def plot_value_array(prediction, true_label):

 plt.grid(False)

 plt.xticks([])

 plt.yticks([])

 thisplot = plt.bar(range(len(prediction)), prediction,

color="#777777")

CHAPTER 2 NEURAL NETWORKS

131

 plt.ylim([0, 1])

 predicted_label = np.argmax(prediction)

 thisplot[predicted_label].set_color('red')

 thisplot[true_label].set_color('blue')

Plot the first N test images, their predicted and expected

label.

It colors correct predictions in blue, incorrect predictions

in red.

def plot_results(images, labels, predictions, classes, rows,

cols):

 n_images = rows * cols

 plt.figure(figsize=(2 * 2 * cols, 2 * rows))

 for i in range(n_images):

 plt.subplot(rows, 2 * cols, 2 * i + 1)

 plot_image_and_predictions(predictions[i], classes,

 labels[i], images[i])

 plt.subplot(rows, 2 * cols, 2 * i + 2)

 plot_value_array(predictions[i], labels[i])

 plt.show()

predictions will contain the predicted values for the test set

predictions = model.predict(test_images)

Plot the predictions for the first 25 values of the test set

plot_results(images=test_images, labels=test_labels,

classes=class_names,

 predictions=predictions, rows=5, cols=5)

You will probably see a figure like the one shown in Figure 2-10. This

kind of visualization applied to the test set helps you understand how the

network performs on images that are not in the training set, and you can

CHAPTER 2 NEURAL NETWORKS

132

use it to spot common patterns that can help you improve your model—

like categories of items that are commonly mislabelled or with a “close

call” error margin. You may want to use this kind of visualization to refine

your input data, improve your images preprocessing pipeline, or tweak the

model with the strategies seen so far (tuning learning rate, normalization

rate, number of neurons, number of epochs, cost function, etc.) to improve

the performance until you are satisfied.

Once you are satisfied with your model, don’t forget to save it. The

procedure is the same we have seen previously for saving TensorFlow

regression models:

def model_save(model_dir, labels, overwrite=True):

 import json

 import os

 # Create the model directory if it doesn't exist

 os.makedirs(model_dir, exist_ok=True)

Figure 2-10. Plotting the predicted classes for the first 25 images in
the test set, together with the expected labels and the classification
confidence levels

CHAPTER 2 NEURAL NETWORKS

133

 # The TensorFlow model save won't keep track of the

 # labels of your model. It's usually a good practice to

 # store them in a separate JSON file.

 labels_file = os.path.join(model_dir, 'labels.json')

 with open(labels_file, 'w') as f:

 f.write(json.dumps(list(labels)))

 # Then, save the TensorFlow model using the save primitive

 model.save(model_dir, overwrite=overwrite)

model_dir = '/home/user/models/fashion-mnist'

model_save(model_dir, labels=class_names)

Similarly, you can load the saved model from your application without

going through the training phase again:

def model_load(model_dir):

 import json

 import os

 from tensorflow.keras.models import load_model

 labels = []

 labels_file = os.path.join(model_dir, 'labels.json')

 if os.path.isfile(labels_file):

 with open(labels_file) as f:

 labels = json.load(f)

 m = load_model(model_dir)

 return m, labels

model, labels = model_load(model_dir)

Congratulations on training and saving your first neural network for

image classification!

CHAPTER 2 NEURAL NETWORKS

134

2.5 Convolutional neural networks

The Fashion MNIST dataset is perfect for introducing neural networks,

but it’s simpler than many real-world datasets of images. The network was

trained on a set of preprocessed 28x28 monochrome images all containing

exactly the item supposed to be identified—in many real-world scenarios,

you won’t usually deal with such neatly trimmed datasets. Ideally, we want

to build models robust enough to classify items also when we input some

image with feature slightly different than the one the model was trained

on—in particular, we want our model to be robust against trimming,

rotations, and small amounts of blurring or color/luminosity changes.

Convolutional neural networks (or CNNs) come a step closer to the

way the human brain processes images. When they perform a visual

classification or interpretation of the environment around, our brains don’t

simply feed the raw luminosity and color signals delivered over the optical

nerve uniformly to all the areas in the visual cortex. Such an organization

would require lots of biological energy, since all the input neurons of the

cortex would be active all the time, and a huge number of downstream

connections would be required as well. Instead, the input signals are

initially preprocessed by an area of the visual cortex known as receptive

field [16] [17]. A receptive field acts like a filter that preprocesses some

input signals. It discards the information that isn’t required; it adjusts/

normalizes the data against, for example, environment luminosity and

orientation; and finally it identifies some features or patterns (determined

by, e.g., edges, luminosity areas, or spatial features) that should fire some

particular neurons downstream. The sensory networks of most mammals

are designed to detect patterns and detect them fast, focusing on the most

relevant elements in the surrounding environments while discarding

information that isn’t required, and they are modelled to be robust

enough in their job also in varying situations of luminosity, distance,

and orientation. Studies on primates have proved that certain receptive

fields are in charge of filtering and normalizing sensory signals in varying

CHAPTER 2 NEURAL NETWORKS

135

situations of luminosity and orientation, and that when presented to the

same object under varying conditions of luminosity, the signals delivered

by those receptive fields to the downstream neurons were similar—in

other words, the receptive field in the visual cortex of the animal was in

charge of normalizing the data and making sure that the process of visual

classification was independent on the luminosity of the environment [18].

CNNs can be seen as an artificial application of this principle. In a

CNN, a set of filters is applied to the original image in order to extract

features such as shapes and color areas and reduce the initial complexity.

Those features are then fed to a traditional neural network. Since the

neural network operates on sets of extracted features instead of raw sets

of pixels, these networks usually perform better at classifying images than

an equivalent neural network of the same size but without convolutional

layers, as they are better at capturing spatial and temporal dependencies

Figure 2-11. Typical architecture of a convolutional neural network.
The image shows its convolutional layers (used for feature extraction),
pooling layers (used for dimensionality reduction), flattening layer,
and the downstream fully connected neural network (used for
classification) (Credits: Towards Data Science [19])

CHAPTER 2 NEURAL NETWORKS

136

between the areas in an image. Also, CNNs scale much better when the

size of the input samples increases. The network we designed in the

previous example had exactly as many input units as the number of pixels

in the image. Making the network work with larger images involves either

scaling down the images or increasing the number of units in the input

layer—that, in turn, usually involves re-training the model. In a CNN

instead, it’s possible to simply adapt the convolutional layers/filters to

operate with images of different size, often with no changes required to

the architecture of the downstream network. The role of the convolutional

layers is to reduce the dimensionality of the images so that they are easier

to process and it’s easier to scale the model, without losing any features

that are crucial for getting good predictions. A CNN usually consists of

three types of components:

Figure 2-12. Movement of a kernel/filter tensor in a convolutional
layer over the original image (Credits: Towards Data Science [19])

CHAPTER 2 NEURAL NETWORKS

137

 1. One or more convolutional layers, whose job is

to iteratively apply a transformation to the input

image through a matrix/tensor known as filter or

kernel. The purpose of a convolutional layer is to

capture higher-level features in the input image by

looking not only at the information stored in each

pixel but also at the relationships between each

pixel and its “neighborhood” (e.g., Is it on an edge?

Do surrounding pixels have different levels of color/

luminosity?). The sophistication of the extracted

features increases as we add more and more

convolutional layers. The first layer would usually

capture low- level features such as edges, color

gradients, and orientation, while the downstream

layers will spot more complex features such as

objects, sizes, distances, and so on.

 2. One or more pooling layers, whose input

units are usually linked to the output units of a

convolutional layers. Their job is to further reduce

the dimensionality of the input data and select

the dominant features extracted by the upstream

convolutional layers, especially those that are

invariant to transformations such as rotations or

translations—the purpose of a pooling layer is

functionally similar to the principal component

analysis algorithm we have analyzed earlier.

 3. Finally, the matrix/tensor of features extracted from

the original data is flattened and fed into a fully

connected neural network that will perform the

classification process.

CHAPTER 2 NEURAL NETWORKS

138

Figure 2-13. An example of 2D convolution operation between a
monochrome input image A and a kernel K

The final high-level architecture of such a network is shown in

Figure 2-11. Let’s analyze its layers one by one.

2.5.1 Convolutional layer

An input image is usually provided as a w × h × c matrix/tensor, where w

and h are, respectively, its width and height and c is the depth of its color

space (1 in the case of monochrome images, 3 in the case of RGB/HSV/

YUV, etc.). A filter or kernel matrix/tensor K sized m × n × c, with m < h and

n < h, is either statically encoded in the layer or dynamically calculated. K

is shifted over the whole image, as shown in Figure 2-12. On each iteration,

the kernel moves from left to right if there are more pixels to be processed

in a row and from top to bottom otherwise (changing the direction to

right to left on the next row), until the whole image is processed. On each

iteration, the top-left element of K, k00, will be aligned with the (i, j) pixel

of the input matrix A, aij, with 0 ≤ i < h and 0 ≤ j < w. Let us define Aij as the

subset of A covered by K:

CHAPTER 2 NEURAL NETWORKS

139

A

a a a

a a a
ij

ij i j i m j

i j i j i m j
=

¼

¼

+() + -()

+() +() +() + -() +()

1 1

1 1 1 1 1

⋮ ⋮ ⋱⋱ ⋮

a a a
i j n i j n i m j n+ -() +() + -() + -() + -()¼

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 1 1 1 1

Both Aij and K are tensors sized m × n × c—even if the preceding

formula shows for simplicity each pixel as a single number and therefore

Aij is shown as a 2D matrix. We can then define the convolution operation

between the subset of the image covered by the kernel and the kernel itself,

Aij ∗ K, as the sum of the element-wise products between the elements of

Aij and K:

A K a kij

x

m

y

n

z

c

xyz xyz* = *
=

-

=

-

=

-

ååå
0

1

0

1

0

1

This operation resembles quite closely the element-wise vector

product (or Hadamard product) we have seen in the back-propagation

algorithm, and a 2D example is shown in Figure 2-13. In Python, you could

write it as follows:

def conv_product(A, K):

 conv = 0.0

 for x in range(len(K)):

 for y in range(len(K[0])):

 for z in range(len(K[0][0])):

 conv += A[x][y][z] * K[x][y][z]

 return conv

CHAPTER 2 NEURAL NETWORKS

140

The convolutional tensor Conv between the whole image A and the

kernel K can be calculated by applying the “snake-like” motion shown in

Figure 2-12:

conv A K i w m j h nij ij= * £ < - £ < -for 0 0,

In Python:

def submatrix(A, i, j, m, n):

 # Calculate the submatrix of a matrix A starting from the

 # element (i, j) up to (i+m, j+n)

 return [

 [

 A[i][j]

 for j in range(j, j+n)

]

 for i in range(i, i+m)

]

def conv(A, K):

 # The result will be a (w-m)*(h-n) matrix

 return [

 [

 conv_product(submatrix(A, i, j, len(K), len(K[0])), K)

 for j in range(len(A[0])-len(K[0])+1)

]

 for i in range(len(A)-len(K)+1)

]

Such kernels and filters have been used for a long time in computer

vision. One of the most popular ones is arguably the Sobel map, or

Sobel-Feldman operator [20]. This filter is actually composed of two

CHAPTER 2 NEURAL NETWORKS

141

3 × 3 matrices, Sx and Sy, used to calculate an approximation for the

luminosity/color gradient, respectively, for the x and y dimension:

S
x
=

-

-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 1

2 0 2

1 0 1

S Sy x

T= =

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 1

0 0 0

1 2 1

The results of the convolution operations between these matrices and

the original image, respectively, approximate the x and y color gradient of

the image around a particular point:

G A S

G A S

x x

y y

= *

= *

Figure 2-14. Example of the Sobel kernel applied to an image. Each
pixel in the right image represents the magnitude of the convolution
operation between the Sobel maps and the associated pixel in the
original image. Pixels on the edge of objects are brighter than the
others

CHAPTER 2 NEURAL NETWORKS

142

The modulus of this vector represents the magnitude of the gradient

vector in a particular point in the image—the higher the value, the more

likely the point is to belong to the edge of an object in an image:

G G Gx y= +

2 2

The phase of the vector instead identifies the direction of the gradient

in a particular point—and that can be used to tell on which side of an edge

pixel an object lies:

Q=
æ

è
ç

ö

ø
÷atan

G

G

y

x

The kernels used in the convolutional layer are akin to the Sobel maps

(some may even use the Sobel maps for edge detection), and just like a

Sobel map, they can be used to detect features such as edges and gradients

in images (see example in Figure 2-14).

Finally, besides the choice of the kernel and its size, two more

coefficients that can be tuned in a convolutional layer are as follows:

 1. Stride: It determines how much the kernel should

shift over the image on each iteration of the

convolutional product. In the examples we have

seen in this paragraph, the kernel had a stride of

1—we moved it over the image one position at the

time—and this is also the most commonly used

value. Larger strides will result in smaller output

tensors. A larger stride can be used to perform

greater dimensional reduction, as long as you keep

in mind that very large values have higher chances

of discarding useful information.

CHAPTER 2 NEURAL NETWORKS

143

 2. Padding: The original image can either be processed

directly through the convolutional operation or

padded with zeros before the operation. In this

paragraph, we have shown examples of valid

padding (or no padding)—the original matrices/

tensors were not padded before applying the

convolution. If instead you add two rows of zeros to

the top and bottom and two columns of zeros to the

left and right of the images, you will be performing

what is called same padding. Valid padding

performs dimensional reduction as well as feature

extraction (the output tensor will be smaller than

the input), while same padding performs feature

extraction but keeps the same dimensions.

Figure 2-15. Example results of a 2 × 2 max and average pooling
operation applied to an input 2D matrix

CHAPTER 2 NEURAL NETWORKS

144

You can therefore tune stride and padding to tune how much the

layer should reduce the dimensions of the input image before passing

the output tensor to the next layers. A configuration with stride = 1 and

same padding results in no actual reduction of the dimensions, and in that

case, you may want to perform the reduction entirely on the pooling layer

downstream.

2.5.2 Pooling layer

The output of a convolutional layer is usually connected to a pooling

layer. The purpose of the pooling layer is to reduce the dimensionality of

the tensor while possibly not losing any relevant information needed for

a correct classification. Moreover, it is useful to extract the features of an

image that are invariant with regard to rotation and position, making the

model more robust against image transformations. Finally, it acts as a noise

reducer, removing or reducing the impact on the model of noisy pixels that

are too dissimilar from their surroundings.

Similarly to the convolutional layer, the pooling layer works by shifting

a m × n filter over the image (m and n don’t necessarily have to match the

dimensions of the kernel used by the previous layer). The difference is that

this time the filter applies a reduce/group function to each of the m × n

sections of the image. Two pooling functions are most commonly used:

• Max pooling: Select the maximum/highest value in the

underlying subset of the input tensor.

• Average pooling: Select the average value in the

underlying subset of the input tensor.

CHAPTER 2 NEURAL NETWORKS

145

An example of how the two operations behave is shown in Figure 2-15.

Max pooling is usually preferred over average pooling as it is more effective

when it comes to noise reduction—it would only take the value of the

highest data point under the filter and discard the others.

The composition of a convolutional layer and a pooling layer is what

actually makes a full convolutional layer. You can stack many of these

layers in your model, and each layer will detect higher and higher-level

features—however, keep in mind that adding more layers also increases

the computational demands for training the model. Therefore, the output

of a pooling layer can either be attached to another convolutional layer or

to a flatten layer (“unwrap” the matrix/tensor into a 1D vector) that will in

turn feed it to the fully connected neural network.

2.5.3 Fully connected layer and dropout

The last part of a CNN is the fully connected neural network, exhibiting

the same architecture that we have seen previously. It will get the flattened

tensor from the convolutional layers as input, and it will have as many

units in the output layer as the number of classes that we want the model

to identify, with the activation value of each unit expressing the probability

for a certain image to belong to a certain class.

Figure 2-16. Example of a dropout iteration on a fully connected
neural network (Credits: [21])

CHAPTER 2 NEURAL NETWORKS

146

The dropout technique is often applied to the fully connected layer

of a CNN to prevent overfit. We have already analyzed several ways of

preventing overfit (adding bias units, removing redundant items from

the training set, reducing the number of parameters or units, tuning

regularization rate and learning rate, applying principal component

analysis, etc.). Dropout works on a slightly different level. It takes into

account that in a neural network with many neurons and a relatively

small training set overfit mostly comes from individual neurons either

contributing too much or too little to the final classification, eventually

having a detrimental impact on the model’s performance. A dropout

iteration with parameter p applying during the training phase will remove

a certain neuron from the network with probability p and trigger a training

iteration without those neurons, as shown in Figure 2-16. By doing so,

we force the network to cope with failure without relying on individual

neurons (or a set of neurons) for its predictions. Instead, in the absence of

some units, the network will rely more on consensus among the neurons in

a layer.

2.5.4 A network for recognizing images of fruits

Let’s move to a practical example of a convolutional neural network

for image recognition by picking a dataset a bit more complex than the

previous Fashion MNIST. Let’s pick, for example, the Fruits 360 dataset

from Kaggle [22]—keep in mind, however, that the information reported in

this chapter can be used to train a model on any dataset of images.

The Fruits 360 dataset contains about 90,000 images of fruits grouped

in 131 classes, each sized 100 × 100 pixels. Download the zip file of the

dataset from Kaggle and extract it—in the next examples, I’ll assume that

the dataset is stored under “/datasets/fruit-360”. You’ll notice that the

dataset has this kind of structure (and you can usually spot a good-quality

dataset if it has this kind of structure):

CHAPTER 2 NEURAL NETWORKS

147

fruit-360

 \-> Training

 \-> Apple Braeburn

 \-> image01.jpg

 \-> image02.jpg

 ...

 \-> Apple Crimson Snow

 ...

 \-> Test

 \-> Apple Braeburn

 \-> image01.jpg

 \-> image02.jpg

 ...

 \-> Apple Crimson Snow

 ...

We have a directory for the training images and one for the test

images, each containing a directory for each class and each class directory

containing the images associated to that class. This is usually considered

a good practice to structure a dataset of images, and it makes it easy to be

used by other developers and applications.

Let’s now proceed with importing the modules that we’ll need to

explore the dataset and train the model:

import os

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras import Sequential, layers

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

CHAPTER 2 NEURAL NETWORKS

148

Let’s also define a utility function to extract the class names from the

dataset:

def parse_classes(directory):

 """

 Get the classes of a dataset directory as a vector of

strings.

 """

 return sorted([

 d for d in os.listdir(directory)

 if os.path.isdir(os.path.join(directory, d))

])

 classes = parse_classes(train_dir)

And a few variables used to define the model:

train_dir = os.path.expanduser('~/datasets/fruits-360/

Training')

test_dir = os.path.expanduser('~/datasets/fruits-360/Test')

img_size = (100, 100)

channels = 3 # RGB

epochs = 5 # Number of training epochs

batch_size = 64 # Batch size

The batch size is the number of images processed before the model is

updated, and it can be tuned to tweak the performance of your model.

A good practice when it comes to image recognition is to use

TensorFlow’s ImageDataGenerator class on the set of images. The

generator will apply several random transformations (rotations, cropping,

zoom, etc.) to the input images and generate a new (shuffled) set of images

CHAPTER 2 NEURAL NETWORKS

149

that can be used to make your model more robust when classifying images

that, for example, are rotated, cut, blurred, flipped, or zoomed compared

to the original images provided in the dataset:

train_generator = ImageDataGenerator(rescale=1/255,

 # Rotate the images

 rotation_range=40,

 # Cut the images

 shear_range=0.2,

 # Zoom the images

 zoom_range=0.2,

 # Flip the images

 horizontal_flip=True,

 fill_mode='nearest')

test_generator = ImageDataGenerator(rescale = 1/255)

Output:

Found 67692 images belonging to 131 classes.

Found 22688 images belonging to 131 classes.

A few things to note:

• The rescale operation normalizes the images—each

pixel has data in the range [0,255], and we want to map

it to the range [0, 1].

• It’s a good idea to apply all the fancy transformations to

the training set, but the test set is usually only rescaled.

CHAPTER 2 NEURAL NETWORKS

150

Let’s take a look at how some of these images look like:

Take the first batch of the training set

batch = train_data.next()

Initialize the plot

plt.figure(figsize=(10,10))

Figure 2-17. A sample of the training set images of the Fruits 360
dataset

CHAPTER 2 NEURAL NETWORKS

151

for i in range(min(25, len(batch[0]))):

 # The first item of batch contains the raw image data

 # The second element contains the labels

 img = batch[0][i]

 label = classes[np.argmax(batch[1][i])]

 plt.subplot(5,5,i+1)

 plt.xticks([])

 plt.yticks([])

 plt.grid(False)

 plt.imshow(img, cmap=plt.cm.binary)

 plt.xlabel(label)

plt.show()

The output will probably look something like Figure 2-17.

Now it’s time to finally define and compile the model:

model = Sequential([

 # First convolutional layer

 layers.Conv2D(filters=32,

 kernel_size=(3,3),

 strides=(1,1),

 padding='valid',

 activation='relu',

 input_shape=(*img_size, channels)

),

 # First pooling layer

 layers.MaxPooling2D(pool_size=(2,2)),

CHAPTER 2 NEURAL NETWORKS

152

 # Second convolutional layer

 layers.Conv2D(filters=64,

 kernel_size=(3,3),

 strides=(1,1),

 padding='valid',

 activation='relu',

 input_shape=(*img_size, channels)

),

 # Second pooling layer

 layers.MaxPooling2D(pool_size=(2,2)),

 # Flatten output before feeding it to the network

 layers.Flatten(),

 # Neural network input layer

 layers.Dense(units=100, activation='sigmoid'),

 # Link dropout with 15% probability

 layers.Dropout(0.15),

 # Neural network hidden layer

 layers.Dense(units=200, activation='sigmoid'),

 # Link dropout with 15% probability

 layers.Dropout(0.15),

 # Neural network output layer

 layers.Dense(len(classes), activation='softmax')

])

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

CHAPTER 2 NEURAL NETWORKS

153

In these lines, we have defined a CNN with two pairs of convolutional/

pooling layers connected to a fully connected neural network with one

input, one hidden, and one output layer. Let’s take a closer look at the

layers.

First, a convolutional layer is defined as a Conv2D object—2D because

in this case we are operating on 2D images, but keep in mind that Conv1D

and Conv3D exist as well. filters specifies the number of filters to apply

to the input—the model will learn which filters extract the most relevant

features from the images. If you build a model with multiple convolutional

layers, you usually want to increase the number of filters as you go deeper

in the network—the filters on the first layer will highlight low-level features

(such as edges and luminosity areas), while the layers downstream will

use filters that will highlight higher-level features (such as shapes and

boundaries).

The kernel_size parameter defines the size of the filters to be

used—in this case, we’ll go for simple 3 × 3 kernels—and strides defines

how much the filter will be moved over the image on each iteration;

we stick to one pixel in the x and y direction. padding defines whether

the input should be padded—again, valid actually means no padding

(i.e., perform dimensional reduction), while same would pad the input

to keep the same dimensions on the output. The convolutional layer

has an activation function just like the units of the neural layers. relu

(rectified linear unit) is usually the most popular option: given an input

x, it simply returns max(x,0), but sometimes other activation functions

may also be used. Finally, we specify the size of each input element as

(width, height, channels).

The convolutional layer is then connected to the pooling layer—in this

case, we use a max pool layer. The pool_size parameter specifies how

large the pool on the input should be—in this case, we use a 2 × 2 pool,

which means that each 2 × 2 pixel square on the input will be mapped to

one element on the output, therefore reducing the dimensionality by a

factor ×4. We then connected another pair of convolutional+pool layers to

CHAPTER 2 NEURAL NETWORKS

154

try and extract even more features from the input, and we then connect the

last pooling layer to a Flatten layer which “unwraps” an n-dimensional

input into a one-dimensional array that can be fed to the input of the fully

connected neural network.

We then define the fully connected network using the constructs we

explored in the previous example—the output layer has as many units

as the number of classes that we want to detect, while you can feel free

to experiment with the number of intermediate layers and units to see

how it affects the performance. We also introduced two Dropout layers,

respectively, between the input and hidden layer and between the

hidden and output layer, with rate = 0.15—that is, a 15% probability for a

connection to a neuron to be cut off during training. Keep in mind that

the dropout logic can be very effective in preventing overfit and it helps

making the model more robust and less dependent on the contributions

of single neurons, but a too high dropout rate will have detrimental effects

on its accuracy, since too many of its neurons will be out of use during the

training phase. Finally, we compile the model using the categorical_

crossentropy loss function (we want to classify items belonging to

multiple classes), the adam optimizer, and optimizing for accuracy.

Now that we have defined the CNN, it’s time to train it and validate it.

When we use an image data generator class, it’s possible to group together

training and validation through the fit_generator method instead of the

usual fit:

history = model.fit(

 train_data,

 steps_per_epoch=train_data.samples/batch_size,

 validation_data=test_data,

 validation_steps=test_data.samples/batch_size,

 epochs=epochs

)

CHAPTER 2 NEURAL NETWORKS

155

Time to go and make yourself a coffee or a tea—since we are training

a model with more layers and way more images than our previous vanilla

neural network trained on the Fashion MNIST, this phase may take

between 30 and 90 minutes to complete depending on the power of the

machine:

Epoch 1/5

loss: 2.6444 - accuracy: 0.3622 - val_loss: 1.5080 - val_

accuracy: 0.7355

Epoch 2/5

loss: 0.7892 - accuracy: 0.8084 - val_loss: 0.9297 - val_

accuracy: 0.8696

Epoch 3/5

loss: 0.3591 - accuracy: 0.9142 - val_loss: 0.2119 - val_

accuracy: 0.9212

Epoch 4/5

loss: 0.2093 - accuracy: 0.9474 - val_loss: 0.0216 - val_

accuracy: 0.9448

Epoch 5/5

loss: 0.1590 - accuracy: 0.9570 - val_loss: 0.0087 - val_

accuracy: 0.9573

The resulting accuracy history is shown in Figure 2-18.

We can then proceed with analyzing the progress of the accuracy over

the training epochs.

CHAPTER 2 NEURAL NETWORKS

156

epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

You’ll notice a very high accuracy (>95%) both on the training and

test set, much higher than our previous examples that involved either

simple regression or vanilla neural networks. This is a quite impressive

achievement considering that this time we have 131 possible output

classes, and it shows how adding one or more convolutional layers to a

neural network and leveraging mechanisms such as dropout to prevent

overfit can effectively increase the performance of a model. You can also

use the evaluate function to estimate the performance of the model

on the test set, as done in the previous examples, since it also supports

generators:

model.evaluate(test_data)

Figure 2-18. Progress in the accuracy of the model over 5 epochs

CHAPTER 2 NEURAL NETWORKS

157

Finally, we can use the model to make simple predictions—we can, for

example, take some image from the test set:

test_batch = test_data.next()

test_images = test_batch[0]

test_labels = test_batch[1]

test_img = test_images[0]

expected_class = classes[np.argmax(test_labels[0])]

predicted_class = classes[np.argmax(model.predict(

np.asarray([test_img])))]

print(f'Expected class: {expected_class}.\n' +

 f'Predicted class: {predicted_class}')

And we can also run the model on a few images from the test set and

plot them with their expected and predicted classes and the confidence

levels of the predictions using the plot_results function defined in the

previous examples:

plot_results(

 images=test_images,

 labels=[np.argmax(label_values) for label_values in test_

labels],

 classes=classes,

 predictions=predictions,

 rows=6, cols=3

)

You will probably see a figure like the one shown in Figure 2-19. As a

last step, don’t forget to save your model (using the model_save function

we have defined in the previous examples); otherwise, you’ll have to go

through the whole training phase again!

CHAPTER 2 NEURAL NETWORKS

158

You should now have all the basic tools to train a neural network for

image recognition, and we can shift the focus from how to build a neural

network on some sample datasets to how to collect images to be used in

our own applications.

Figure 2-19. Evaluating the model against a few images in the
test set

CHAPTER 2 NEURAL NETWORKS

159© Fabio Manganiello 2021
F. Manganiello, Computer Vision with Maker Tech,
https://doi.org/10.1007/978-1-4842-6821-6_3

CHAPTER 3

Computer Vision
on Raspberry Pi
Now that we have a good understanding of how to build a machine

learning model with TensorFlow, it’s time to put our knowledge into

practice and train a model that can recognize the presence of people in a

room and can run on a Raspberry Pi with some cheap hardware.

The Raspberry Pi is arguably the most successful credit card–sized

system-on-chip (SoC) developed in the past decade. Its compact form

factor, flexibility, and affordable price (the price goes from about $10 for

the tiny single-core Raspberry Pi Zero up to about $80 for a quad-core

Raspberry Pi 4 with 8GB of RAM) have made it a very attractive option

for many IoT projects. It’s definitely not a power horse when it comes

to machine learning applications (if you are looking for a more beefed

embedded machine to train more complex models, you may want to opt

for solutions such as the NVIDIA Jetson boards), and my suggestion is

usually to train your model on your laptop or a more powerful machine,

but once you have trained a not-too-complex model, the Raspberry Pi can

definitely be a good candidate to run predictions. Note, however, that the

least powerful options (such as the Raspberry Pi Zero and the Raspberry Pi

A+) may experience a bit of latency when it comes to run TensorFlow code,

but I have run many models on Raspberry Pi 3 and 4 devices, and, as long

as the models aren’t too complex, I haven’t encountered any issues.

https://doi.org/10.1007/978-1-4842-6821-6_3#DOI

160

In this chapter, we’ll see how to use a Raspberry Pi and a cheap

infrared camera to build a real-time model to recognize the presence of

people in a room. While many of the examples explored in the previous

chapters involved models trained on “normal” images from optical

cameras, detecting the presence of people in a small environment is, in

my experience, a task better performed by infrared cameras. If you think of

that, there can be many ways people may be standing or sitting in a room,

and you may have a different number of people in the room as well, at an

arbitrary distance from your camera, in arbitrary conditions of luminosity.

That makes the task of building a robust model for presence detection

on optical images quite challenging—the model will have to be trained

on a vast dataset representing as much as possible all the variability of

the real environment, and it will likely have many layers to discern all the

possible patterns, making it prone to overfit. Infrared cameras are much

better suited for this task. Since an infrared camera detects changes in

the gradient of temperature of any objects in front of it, it’s not sensitive

to changes in luminosity conditions, neither it is sensitive to changes in

the position of the person. The only issue I have experienced with this

approach is when the environment is too warm—an infrared camera is a

very good tool to detect people if the temperature of the bodies is around

36–37°C and the environment is cooler, but if the environment is around

the same temperature as a human body, then the gradient temperature

isn’t sufficient to detect the presence of people—but if the temperature

of your room is usually below 36 degrees, then you can go on with this

approach! However, as a follow-up, you can also easily adapt the process

illustrated in this chapter to an application with optical images—it may

require a larger dataset, a longer training phase, and a CNN with more

layers, but the process is exactly the same. The process illustrated in

this chapter can easily be extended to any application that requires data

gathering, labelling, training a model, and deploying that model for real-

time predictions.

Chapter 3 Computer Vision on raspberry pi

161

This project consists of four phases:

 1. Prepare the hardware and software.

 2. Build the logic that captures snapshots from the

infrared camera at regular intervals, normalizes

them, and stores them somewhere.

 3. Label the pictures (presence detected/no presence

detected) and train a model on them.

 4. Deploy the model on the Raspberry Pi and run it

periodically against newly captured images to detect

the presence of people in the room. Optionally,

we may add some additional logic that runs some

pieces of automation when the model runs (e.g.,

turn the lights on/off when someone enters/exits

the room, or get a mobile notification if presence is

detected but we are not at home).

3.1 Preparing the hardware
and the software

The examples in this chapter have been extensively tested on Raspberry Pi,

but they should work fine with little or no modifications on any Linux-

based SoC.

3.1.1 Preparing the hardware

You can use any Raspberry Pi [23] device to capture images, deploy your

model, and use it to make predictions. However, as mentioned previously,

low-power devices such as the Raspberry Pi Zero may experience more

latency—even though I have successfully deployed the people detection

Chapter 3 Computer Vision on raspberry pi

162

model to a Raspberry Pi Zero, I couldn’t get anything below 2–3 seconds

of base latency when it comes to capturing images or making predictions.

Any Raspberry Pi 3 or higher, however, should provide fluid performance

for basic machine learning projects.

So, in order to get started, you’ll need

 1. A Raspberry Pi or any similar Linux-based SoC.

 2. An empty micro SD card (preferably 16GB or more).

It’s also a good idea to check the quality and speed

of your SD card—ultra-fast SanDisk cards are, in my

experience, a good pick to flash the Raspberry Pi

operating system, but anything fast enough and

robust enough should do the job.

 3. An infrared camera. The examples in this chapter

will be based on the Pimoroni MLX90640-based

thermal camera breakout [24] (see Figure 3-1), a

relatively cheap 24x32 thermal camera that does

a good job in capturing thermal gradients with a

depth of a few meters, but any thermal or infrared

camera should work.

Figure 3-1. Pimoroni MLX90640 thermal camera breakout

Chapter 3 Computer Vision on raspberry pi

163

A few words on the hardware protocol if you use an MLX90640

breakout camera or any camera other than a USB camera or the native

PiCamera. This breakout works over I2C protocol. When it comes to

electronics for Raspberry Pi, Arduino, and other IoT devices, you may

usually find three popular hardware protocols:

 1. I2C

 2. SPI (Serial Peripheral Interface)

 3. Direct GPIO

Direct GPIO basically means a direct mapping between the pinout

of your device and the master (Raspberry Pi, Arduino, ESP, etc.). It is

usually a popular option for simple devices with a low number of pins and

transmission rate, while devices with higher throughput usually opt for a

bus-based interface—I2C and SPI are usually the most popular protocols

in this space. A high-level comparison between these two bus interfaces

is shown in Figure 3-2. I2C was originally developed in 1982 by Philips

Semiconductors, and it’s been around for long enough to be widely used

by many hardware devices. It is a synchronous, bidirectional, packet-based

serial communication protocol that relies on two connectors present on

each device:

 1. SDA (Serial Data Line), used to transfer data in both

directions over a serial bus interface

 2. SCL (Serial Clock Line), used to synchronize the

connected devices and regulate access to the bus

Chapter 3 Computer Vision on raspberry pi

164

The MLX90640 uses this interface, and therefore, it includes both

an SDA and SCL connector, which can be connected to the I2C interface

of the Raspberry Pi (or any SoC with compatible pinout). The VCC and

GND connectors will have to be connected to the same power source and

ground line as the Raspberry Pi or any of the Raspberry Pi 3.3V/GND pins,

while we can omit the INT (interrupt) connection in this project, which is

usually used to raise asynchronous events. There are mainly three options

to connect an I2C or SPI device to a Raspberry Pi:

 1. Hardware I2C connection. Even though the GPIO

pins of a Raspberry Pi are supposed to be general-

purpose (as the name itself suggests), some pins

are optimized on hardware level to better operate

some purposes over others. That’s the case for the

GPIO pins 2 and 3, which, as shown in Figure 3-3,

are configured to act, respectively, as SDA and

SCL interfaces. The quickest option is therefore to

connect the SDA and SCL pins of your I2C camera

Figure 3-2. Comparison between the physical bus connections of I2C
(left) and SPI (right) (Credits: Lifewire)

Chapter 3 Computer Vision on raspberry pi

165

directly to these pins. The advantage of this type of

connection is that it is fast (since it uses the native

hardware implementation of the I2C protocol) and

it requires nearly no software configuration to work.

The disadvantage is that a Raspberry Pi only sports a

pair of specialized SDA/SCL pins, and you can only

connect one device to this interface (it’s not a big

problem if you only use the Raspberry Pi GPIO for

the thermal camera, but it could be an issue if you

want to connect more I2C devices).

 2. Software I2C connection. In this configuration,

you can use any GPIO pair of pins as a SDA/SCL

interface. The advantage of this approach is that

you have much more flexibility to connect more I2C

devices, or, more generally, you can connect more

devices without necessarily occupying the GPIO

pins 2 and 3. The disadvantages of this approach

are represented by its speed (the protocol is

managed by the software, specifically by the kernel,

which is usually slower than a hardware- based

implementation) and the fact that it may require a

bit more tuning of the software configuration.

 3. Use a breakout board like the Breakout Garden [25]

(see Figure 3-4). This is probably my favorite approach.

Breakout boards can be plugged directly on top of your

Raspberry Pi GPIO pins, and they act as a hardware

multiplexer for I2C and SPI devices. They provide a

hardware interface to connect up to four I2C devices

and two SPI devices, and they make the connection as

easy as physically plugging the device into the slot—no

wiring nor soldering required.

Chapter 3 Computer Vision on raspberry pi

166

3.1.2 Preparing the operating system

Once you’ve got all the hardware in place, it’s time to flash the operating

system of your Raspberry Pi on the SD card. The most popular options are

usually NOOBS [26], a Debian-based distribution easy to use also for those

who aren’t particularly fluent with a terminal, and Raspberry Pi OS [27]

(formerly Raspbian), a more general-purpose Debian-based distribution

for Raspberry Pi. As a strong supporter of Arch Linux, most of the examples

have been intensively tested on devices running Arch Linux ARM, but since

the learning curve to get Arch to run on an embedded device is usually

higher than getting NOOBS or Raspberry Pi OS, the examples in this

chapter will mainly target these two distributions. They should, however,

work with minor or no modifications on any other Raspberry Pi operating

system—the only differences may be in the way you install some system

packages, for example, through “pacman” or “yum” instead of “apt-get”.

Figure 3-3. Raspberry Pi GPIO (Credits: Raspberry Pi Foundation)

Chapter 3 Computer Vision on raspberry pi

167

Download the image of Raspberry Pi OS or NOOBS for your device

and flash it to the SD card. You can use any software to write the image—

the Raspberry Pi Foundation provides an Imager program for Windows

and macOS to write the image, but you can find many of them with a web

search. If you are on Linux, you can easily write the image using the built-

in dd command:

FIRST check where your SD card is mounted!!

Make sure that you don't write the image to any other hard

drive!

cat /proc/partitions # Find something like e.g. /dev/sdb

[sudo] dd if=/path/to/raspberrypi-os-version.img of=/dev/sdb \

 conv=fsync bs=4M status=progress

Once the image is flashed, (safely) remove the SD card from your

computer and plug it into the Raspberry Pi. At least for the first boot it’s

advised to also plug a monitor (over HDMI) and a USB keyboard/mouse.

Once everything is connected, plug in the USB power source and boot

the Raspberry Pi. After a few seconds, you should see a welcome screen

on the connected display. If any login is required, the default credentials

are user=pi and password=raspberry. Other systems may have different

default credentials—please consult their web page if that’s the case. It is a

very good practice, however, to change the default credentials as soon as

you can, especially if you are planning to enable remote SSH access—just

open a terminal and type passwd.

Chapter 3 Computer Vision on raspberry pi

168

If your Raspberry Pi is connected over a network cable, then it will

probably connect to the network by itself without any configuration.

Otherwise, if you are planning to connect it over Wi-Fi, it’s a good idea

to enable the interface now—you can do it either from the Wi-Fi icon in

the application panel or through the terminal (raspi-config command).

Other options include manually creating and enabling a netctl profile or

using another network manager.

Once the Raspberry Pi is connected, it’s a good idea to enable SSH

(and, optionally, VNC) so you can easily access it from your laptop without

an attached screen and mouse/keyboard. Use raspi-config to enable the

SSH service or manually start and enable the sshd service:

[sudo] systemctl start sshd.service

[sudo] systemctl enable sshd.service

Figure 3-4. A Breakout Garden I2C/SPI hardware multiplexer
(Credits: Pimoroni)

Chapter 3 Computer Vision on raspberry pi

169

Take note of the IP address of the device (ifconfig or ip addr), head

back to your computer, and use PuTTY or the command-line ssh client to

connect to your Raspberry Pi:

ssh pi@[ip-of-the-rpi]

Once you are logged in, it’s time to install the software dependencies to

get our project to run.

3.2 Installing the software dependencies

The examples in this chapter will use Platypush [28] as a platform to

automatically capture images, run the model, and perform automation

routines. I have built Platypush myself over the past years, and it is now

mature enough to perform many tasks on a SoC device. However, it should

be relatively easy to port the examples in this chapter to other common

automation platform as well—such as Home Assistant or OpenHAB.

First, check the version of Python on the Raspberry Pi through

python3 –version—you’ll need at least the version 3.6 or higher to run

Platypush. That shouldn’t be a problem on most of the modern distributions,

but older distributions may have older versions—if that’s the case, either

upgrade the distribution or compile a higher version of Python manually.

Time to update the apt mirrors to see if there are any package updates:

[sudo] apt-get update

[sudo] apt-get upgrade

Then install pip if it’s not installed already:

[sudo] apt-get install python3-pip

Chapter 3 Computer Vision on raspberry pi

170

And then install Platypush—for now with the http module. There are

two ways to do it:

 1. Install the latest stable version via pip:

[sudo] pip3 install 'platypush[http]'

 2. Install the latest snapshot from GitHub. This

approach is particularly advised if you are planning

to use the MLX90640 breakout or any other

devices that require specific drivers that need to be

compiled from the Platypush codebase. First make

sure that git is installed:

[sudo] apt-get install git

Then clone the repository and its submodules:

mkdir -p ~/projects && cd ~/projects

git clone https://github.com/BlackLight/platypush

cd platypush

git submodule init

git submodule update

[sudo] pip3 install '.[http]'

Also, Platypush relies on Redis as a messaging system to dispatch

commands between different components. Install, start, and enable Redis

on the Raspberry Pi:

Chapter 3 Computer Vision on raspberry pi

171

On other systems the Redis server is called simply redis

[sudo] apt-get install redis-server

[sudo] systemctl start redis-server.service

[sudo] systemctl enable redis-server.service

It’s now time to take a look at the Platypush modules we need for

our purposes. Platypush comes with an extensive set of integrations

documented on the official documentation page [29], each of them may

require different dependencies or its own configuration. By default, the

configuration is read from ~/.config/platypush/config.yaml; each

module can be configured in this file (in YAML format) by using the same

attributes shown in the constructor parameters (also, it is strongly advised

to run Platypush as a non-root user). Modules can be divided into plugins

and backends. Plugins are (usually) stateless and can be used to perform

actions—such as turn on the lights, play the music, capture a camera

frame, make predictions from a model, and so on. Backends are instead

services that run in the background and trigger events when something

happens (e.g., some media file is played, an email is received, a calendar

event is created, some data is read from a sensor, etc.)—although some

plugins may also raise events. These events can be caught by custom event

hooks that can run any piece of logic you like. Some modules require extra

dependencies—they are usually reported in the documentation of the

module and can usually be installed via pip. The dependencies are also

reported in the project’s requirements.txt—you can uncomment the

ones you need and then install them through

[sudo] pip3 install -r requirements.txt

Chapter 3 Computer Vision on raspberry pi

172

The dependencies are also reported in the project’s setup.py file, and

they can be installed via

[sudo] pip3 install 'platypush[module1,module2,module3]'

For the purposes of this project, we’d like to first capture images at

regular intervals from our camera and store them locally so we can use

them later to train our model. If you are using the MLX90640 thermal

camera breakout, then you’ll first have to compile the driver provided by

Pimoroni. First, install the required dependencies:

[sudo] apt-get install libi2c-dev build-essentials

Then move to the Platypush repository directory you have previously

cloned and compile the driver:

cd ~/projects/platypush/plugins/camera/ir/mlx90640/lib

make clean

make bcm2835

make examples/rawrgb I2C_MODE=LINUX

If the compilation process goes fine, you should find an executable

file named rawrgb under the folder examples. Take note of the path of this

executable or copy it to another bin directory. If you try to run it and the

MLX90640 breakout is properly connected, you should see a continuous flow

of bytes—that’s the RGB representation of the frames captured by the camera.

If something goes wrong, it’s usually because the I2C bus is not enabled on the

Raspberry Pi. If that’s the case, you can enable the I2C interface either through

raspi-config or by manually adding this line to /boot/config.txt:

Chapter 3 Computer Vision on raspberry pi

173

dtparam=i2c_arm=on

Optionally, increase the throughput on the bus

dtparam=i2c1_baudrate=400000

Note that on some systems the dtparam may be named i2c instead of

i2c_arm, and changing the I2C configuration may require a system restart.

Once the rawrgb executable can successfully capture frames, install the

Platypush generic camera module dependencies:

cd ~/projects/platypush

[sudo] pip3 install '.[camera]'

Or, if you installed Platypush directly from pip:

[sudo] pip3 install 'platypush[camera]'

If you opted for a camera that can be connected over the hardware

Raspberry Pi camera interface, you should install the picamera module

instead (and also make sure that the PiCamera interface is enabled in

raspi-config):

cd ~/projects/platypush

[sudo] pip3 install '.[picamera]'

Or, if you installed Platypush directly from pip:

[sudo] pip3 install 'platypush[picamera]'

If instead you have a USB-connected camera, you may connect

Platypush to it through the camera.cv, camera.ffmpeg, or camera.

gstreamer plugins, which, respectively, interact with a camera device over

OpenCV, FFmpeg, and GStreamer (check their documentation pages or

setup.py for their required dependencies). The camera interface provided

Chapter 3 Computer Vision on raspberry pi

174

by Platypush offers an API to transparently interact with any of these

plugins. Once all the dependencies are installed, you can proceed with

configuring the Platypush automation.

First, enable the web server in Platypush—we’ll be using it both for

accessing the camera from the web interface and test capturing over the

web API. Add these lines to ~/.config/platypush/config.yaml:

backend.http:

 port: 8008 # Default listen port

Secondly, we’ll configure the camera.ir.mlx90640 plugin and specify

where the rawrgb path is:

camera.ir.mlx90640:

 rawrgb_path: ~/bin/rawrgb

 # You may want to specify the rotation of the camera

 rotate: 270

 # Optionally, specify the number of frames per second

 fps: 16

 # And flip the image vertically/horizontally

 vertical_flip: True

 horizontal_flip: True

If instead you opted for collecting images through a PiCamera-

compatible optical or infrared camera, the configuration will look

something like this:

camera.pi:

 # Same options as camera.ir.mlx90640

 # except it doesn't need the rawrgb_path

Chapter 3 Computer Vision on raspberry pi

175

Or, in the case of a camera compatible with OpenCV/FFmpeg/

GStreamer:

camera.cv:

 device: /dev/video0

 # Same options available for camera.pi

camera.ffmpeg:

 device: /dev/video0

 # Same options available for camera.pi

camera.gstreamer:

 device: /dev/video0

 # Same options available for camera.pi

Now you can start the service through the platypush command.

It’s also a good idea to register it as a user service, so you won’t have to

manually restart it on each reboot or if it terminates:

mkdir -p ~/.config/systemd/user

cd ~/projects/platypush

cp examples/systemd/platypush.service ~/.config/systemd/user

You may also want to modify the ExecStart parameter if

Platypush was installed on a path other than /usr/bin

systemctl --user daemon-reload

systemctl --user start platypush.service

systemctl --user enable platypush.service

Chapter 3 Computer Vision on raspberry pi

176

If Platypush started successfully, you can check that the web panel is

accessible from a browser at http://raspberry-pi-ip:8008/. On the first

access, you will be required to set a username and password. Upon login,

you can select the panel associated to the infrared camera (it’s usually

identified by a sun-shaped icon) and start streaming.

If all went smooth, you should see a stream of images as shown in

Figures 3-5 and 3-6, showing green-blue areas where a colder temperature

is detected and yellow-red where the temperature is higher. If instead you

used another camera plugin (camera.pi, camera.cv, camera.ffmpeg, or

camera.gstreamer), you should also see its interface in the tab, and the

following instructions will work regardless of the camera interface you

used—you’ll just have to replace camera.ir.mlx90640 with the name of

the camera plugin you used.

Figure 3-5. A snapshot from the MLX90640 infrared camera

Chapter 3 Computer Vision on raspberry pi

177

Figure 3-6. Preview of the web panel MLX90640 interface

You can also capture single images by directly opening the capture URL:

http://raspberry-pi-ip:8008/camera/ir.mlx90640/photo?scale_

x=10&scale_y=10

The scale_x and scale_y parameters may be needed to boost the

resolution of the images, as the MLX90640 captures images at a small

24x32 resolution. If you want to access the continuous stream instead,

just replace photo in the preceding URL with video, and replace camera/

ir.mlx90640 with, for example, camera.pi or camera.cv if you use a

different plugin.

Chapter 3 Computer Vision on raspberry pi

178

Platypush exposes its API over HTTP as well, and you can use it to

programmatically take pictures or record video streams from the camera,

for example:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"camera.ir.mlx90640.capture_image",

 "args": {

 "image_file": "~/image.jpg"

 }

}' http://raspberrypi-pi-ip:8008/execute

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"camera.ir.mlx90640.capture_video",

 "args": {

 "video_file": "~/video.mp4"

 }

}' http://raspberrypi-pi-ip:8008/execute

This API can also be exposed over other backends. For example, if you

enable backend.mqtt, you can send JSON-formatted messages like the

preceding ones to Platypush over MQTT (the service by default will listen

for commands on the topic platypush_bus_mq/hostname), and a similar

principle applies to backend.websocket, backend.kafka, and backend.

redis. So keep in mind that you have multiple interfaces to run your

commands, in case you prefer not to expose a web service.

Chapter 3 Computer Vision on raspberry pi

179

The API is also available for other camera plugins—just replace camera.

ir.mlx90640 with the name of your camera plugin. In general, any method

shown in the plugin documentation can be called over the HTTP API.

3.3 Capturing the images

Now that we’ve got all the hardware and software in place, let’s configure

Platypush to periodically capture camera images at regular intervals and

store them locally—we’ll later use these images to train our model.

Platypush provides the concept of cronjobs, which are basically

procedures that can be executed at regular intervals and run some custom

actions. Let’s add a cron to our config.yaml that takes pictures from

the sensor and stores them in a local directory. First, create the images

directory on the Raspberry Pi:

mkdir -p ~/datasets/people_detect

Then add the logic for the cron in the config.yaml:

cron.ThermalCameraSnapshotCron:

 cron_expression: '* * * * *'

 actions:

 - action: camera.ir.mlx90640.capture_image

 args:

 image_file: ~/datasets/people_detect/\

 ${int(__import__('time').time())}.jpg

 grayscale: true

Chapter 3 Computer Vision on raspberry pi

180

A few observations:

• Platypush cronjobs are identified by the cron.<CRON_

NAME> syntax.

• The cron_expression defines how often the cron

should be executed. It’s the same syntax as a UNIX

cronjob, so in this case, * * * * * means take a picture

once a minute. Seconds are also supported for higher

granularity, but for back compatibility with the

UNIX cron expressions, they are usually reported at

the end of the expression—so if you wanted to run the

procedure every 30 seconds, the expression would

be * * * * * */30.

• The actions to be executed are defined in the actions

section as a list.

• Each action has a <plugin_name>.<method_name>

syntax and optionally an args attribute to specify its

arguments. The list of actions available for a certain

plugin is reported in the documentation of the plugin

itself, together with the list of supported arguments.

• You can embed snippets of Python in the definition of

a Platypush cron, procedure, or event hook using the

${} syntax. In this case, we are using the ~/datasets/

people_detect/${int(__import__('time').

time())}.jpg argument to save each image under our

dataset directory as a timestamp-named file.

• When it comes to infrared/thermal pictures, I have

experienced the best performance by converting the

RGB output to grayscale—the Platypush plugin for the

MLX90640 has already a built-in logic that converts

Chapter 3 Computer Vision on raspberry pi

181

RGB thermal pictures to grayscale by assigning more

weight to the red components and subtracting the

contribution of the blue components. A grayscale

conversion with properly assigned weights for the color

components makes it very easy to generate images that

clearly show warm areas in white and cold areas in

black—and that can make a machine learning model

converge very quickly. If you use different infrared or

thermal cameras that also output RGB artifacts, check

their temperature range and sensitivity to understand

how to leverage the output color space to boost the

temperature range that you want to detect when

converting to grayscale.

• Again, the cron would work with little modifications

with any other camera plugin—simply replace camera.

ir.mlx90640 with the plugin you want to use, and as

long as it implements the abstract camera interface, it

will work fine with the same API.

After defining the camera capture logic, (re)start Platypush and

wait until the tick of the next minute. If everything went fine, the first

grayscale thermal picture should have been stored under ~/datasets/

people_detect. Leave the logic running for at least 1–2 days to capture

enough pictures—in my experience, the model could already perform well

when trained with ~900–1000 images. Try to enrich the dataset as much

as possible—it is sufficient to walk around the room, stand at different

points of the room, capture images when more people are in the room,

take pictures while you are far from the sensor, and so on. The higher the

variability of the conditions captured in the training set, the more accurate

the model will behave in real-world scenarios. Also, make sure that you

have a balanced number of pictures with and without people in front of the

sensor—ideally, aim at a 50/50 split.

Chapter 3 Computer Vision on raspberry pi

182

3.4 Labelling the images

Once you have captured enough images, it’s time to copy them over to

your computer to label them and train the model. If you have followed

the instructions reported earlier in the chapter and have enabled SSH

on the Raspberry Pi (and you have an SSH server running either on the

Raspberry Pi or on your main computer), this will be as simple as running

this command on your Raspberry Pi:

scp -r ~/datasets user@your-pc:/home/user/

The boring part awaits us now—manually labelling the images as

positive or negative. I have made this task a bit less tedious with a script

that allows you to interactively label the images while you view them, and

it moves them to the right target directory. Install the dependency and

clone the repository on your local computer:

The script uses OpenCV as a cross-platform

tool to display images.

[sudo] pip3 install opencv

Create a folder for the image utils and

clone the repository

mkdir -p ~/projects

cd ~/projects

git clone https://github.com/BlackLight/imgdetect-utils

The labelling script will look for image files in a directory and will

consider any sub-directory as a label. Let’s proceed with creating our

labels and start the labelling process:

Chapter 3 Computer Vision on raspberry pi

183

UTILS_DIR=~/projects/imgdetect-utils

IMG_DIR=~/datasets/people_detect

Create the directories for the labels

cd $IMG_DIR

mkdir -p positive negative

Do the labelling

cd $UTILS_DIR

python3 utils/label.py -d "$IMG_DIR" --scale-factor 10

You should see a window like the one shown in Figure 3-7. You can use

the number keys (1 for negative, 2 for positive in this case) to label a certain

image as positive or negative, s to skip an image, d to delete it, and ESC/q to

terminate the labelling. The –scale-factor 10 passed to the script tells to

scale up the images by a factor of 10 when previewing—that’s quite useful

when we label tiny 24x32 images. Let the timestamps guide you (e.g.,

to understand when people were in the room and when not), and keep

Figure 3-7. Screenshot of the image labelling phase through the
utils/label.py script

Chapter 3 Computer Vision on raspberry pi

184

in mind that lighter areas represent warmer bodies, while darker areas

represent colder bodies or the background, so you are likely to see human

bodies in the pictures as “white halos,” whose size and brightness depends

on how distant they are from the sensor and in which position they are.

Keep also in mind that other sources of heat can pop up in the images

if they are within the range of the camera sensor—something to keep in

mind if you have kettles, boilers, or simply pets walking around the room—

but they shouldn’t be a big issue if they are part of the “background” and

they are there in most of the pictures. For example, my MLX90640 sits in

a Breakout Garden just on top of a Raspberry Pi 4 with active cooling, and

I can clearly see the heat dissipated from the Raspberry Pi fan as a light

glow on the bottom of most of the captured pictures. However, since the

glow is basically always there (also in the pictures labelled as negative), the

model will learn to treat it as part of the background and it’s not expected

to trigger many false positives. However, keep in mind that this may not be

the case if you have a cat walking in front of the sensor every now and then.

After the labelling phase, the dataset directory will look something like

this:

-> ~/datasets/people_detect

 -> negative

 -> IMG0001.jpg

 -> IMG0002.jpg

 ...

 -> positive

 -> IMG0003.jpg

 -> IMG0004.jpg

 ...

Chapter 3 Computer Vision on raspberry pi

185

Once you are done with the labelling process, you should have the two

directories in your dataset (positive and negative) properly populated

with your training images, and you are ready to proceed with the next

phase—training the model to detect the presence of people.

3.5 Training the model

This part should be quite straightforward if you apply the same techniques

explored in the previous chapters. We have a neatly labelled dataset of

24x32 grayscale thermal camera pictures stored under ~/datasets/

people_detect, and we want to train a neural network that learns when an

image contains a human figure and when it doesn’t—so it’s time to open a

new Jupyter notebook.

Let’s start with defining a few variables:

import os

Define the dataset directories

datasets_dir = os.path.join(os.path.expanduser('~'),

'datasets')

dataset_dir = os.path.join(datasets_dir, 'people_detect')

Define the size of the input images. In the case of an

MLX90640 it will be (24, 32) for horizontal images and

(32, 24) for vertical images

image_size = (32, 24)

Image generator batch size

batch_size = 64

Number of training epochs

epochs = 5

Chapter 3 Computer Vision on raspberry pi

186

In this case, the data is not already neatly split into training set and

test set like in some of the previous examples, but we can leverage the

validation_split parameter of the Keras ImageDataGenerator class to

let it automatically split the dataset into training and test set—the split

value in particular will tell the constructor which percentage of the data

points should go into the test/validation set. We can then use the subset

argument of flow_from_directory to extract the two sets.

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

30% of the images goes into the test set

generator = ImageDataGenerator(rescale=1./255, validation_

split=0.3)

train_data = generator.flow_from_directory(dataset_dir,

 target_size=image_

size,

 batch_size=batch_

size,

 subset='training',

 class_mode=

'categorical',

 color_

mode='grayscale')

test_data = generator.flow_from_directory(dataset_dir,

 target_size=image_

size,

 batch_size=batch_

size,

 subset='validation',

Chapter 3 Computer Vision on raspberry pi

187

 class_mode=

'categorical',

 color_mode=

'grayscale')

Unlike the example in the previous chapter, here we are assuming that

your Raspberry Pi and the camera won’t move much, if you are going to

monitor for presence of people within the same room, so the snapshots

are expected to always capture the same view and therefore we won’t need

much image transformation—the only transformation performed by the

image generator is the 1/255 rescale to normalize the image pixel values

within the [0, 1] range. If instead you expect to move the camera around

or to install it on top of some moving components, it’s still a good idea to

add transformations such as horizontal_flip, vertical_flip, rotate,

and so on to the image generator to create a more robust dataset. Also,

since we are dealing with grayscale images, we need to specify the right

color space to flow_from_directory through the color_mode argument.

Like in the previous examples, let’s take a peek at the dataset to see if

everything looks alright:

import numpy as np

import matplotlib.pyplot as plt

index_to_label = {

 index: label

 for label, index in train_data.class_indices.items()

}

plt.figure(figsize=(10, 10))

batch = train_data.next()

Chapter 3 Computer Vision on raspberry pi

188

for i in range(min(25, len(batch[0]))):

 img = batch[0][i]

 label = index_to_label[np.argmax(batch[1][i])]

 plt.subplot(5, 5, i+1)

 plt.xticks([])

 plt.yticks([])

 plt.grid(False)

 # Note the np.squeeze call - matplotlib can't

 # process grayscale images unless the extra

 # 1-sized dimension is removed.

 plt.imshow(np.squeeze(img))

 plt.xlabel(label)

plt.show()

You should see a figure like the one shown in Figure 3-8.

Time to define and train the model. The model for this example can

be quite simple and yet achieve impressive accuracy, if you train it with

enough images. For example, let’s define a model that flattens the 32 × 24

grayscale images, which includes two hidden layers with a number of units

that is, respectively, 80% and 30% the number of input pixels, and outputs

the predictions on an output layer of two units—negative and positive:

import tensorflow as tf

from tensorflow import keras

model = keras.Sequential([

 keras.layers.Flatten(input_shape=image_size),

 keras.layers.Dense(round(0.8 * image_size[0] *

image_size[1]),

 activation=tf.nn.relu),

Chapter 3 Computer Vision on raspberry pi

189

 keras.layers.Dense(round(0.3 * image_size[0] * image_

size[1]),

 activation=tf.nn.relu),

 keras.layers.Dense(len(train_data.class_indices),

 activation=tf.nn.softmax)

])

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

Let’s train it over the previously declared data generator:

history = model.fit(

 train_data,

 steps_per_epoch=train_data.samples/batch_size,

 validation_data=test_data,

 validation_steps=test_data.samples/batch_size,

 epochs=epochs

)

The output on my system looks like this:

Epoch 1/5

loss: 0.2529 - accuracy: 0.9196 - val_loss: 0.0543 - val_

accuracy: 0.9834

Epoch 2/5

loss: 0.0572 - accuracy: 0.9801 - val_loss: 0.0213 - val_

accuracy: 0.9967

Epoch 3/5

loss: 0.0254 - accuracy: 0.9915 - val_loss: 0.0080 - val_

accuracy: 1.0000

Chapter 3 Computer Vision on raspberry pi

190

Epoch 4/5

loss: 0.0117 - accuracy: 0.9979 - val_loss: 0.0053 - val_

accuracy: 0.9967

Epoch 5/5

loss: 0.0058 - accuracy: 1.0000 - val_loss: 0.0046 - val_

accuracy: 0.9983

Figure 3-8. A preview of some of the items in the training set

Chapter 3 Computer Vision on raspberry pi

191

It means a 100% accuracy on the training set and 99.83% accuracy over

the test set after 5 epochs—not bad at all considering that we have used a

relatively simple network with no convolutional layers. Like in the previous

examples, we can visualize how the accuracy of the model improved over

the training epochs:

epochs = history.epoch

accuracy = history.history['accuracy']

fig = plt.figure()

plot = fig.add_subplot()

plot.set_xlabel('epoch')

plot.set_ylabel('accuracy')

plot.plot(epochs, accuracy)

You should see a plot like the one shown in Figure 3-9.

The reason for such high performance despite the relatively small

dataset (I have used a dataset of about 1400 images for these examples)

and simple network architecture is that we have used the right tools

to solve the problem before even building the model. The problem of

Figure 3-9. Accuracy of the thermal camera people detection model
over 5 training epochs

Chapter 3 Computer Vision on raspberry pi

192

people detection can easily lead to the creation of complex models if

the problem isn’t properly constrained—for example, if you use generic

large datasets from generic optical cameras that picture people in tons

of different contexts. The strategy of building complex models from large

generic datasets can surely work if you are building a general-purpose

application that needs to be installed on, for example, camera hardware

for autonomous vehicles that need to recognize a human body in all

the possible positions, distances, orientations, and situations. But if you

constrain the problem enough—for example, recognize if somebody is

present in your room, from a static camera that doesn’t move, that detects

temperature gradients instead of relying on the light that bounces on

a body, in a color space that is optimized for the purpose, and with an

input source that generally produces very similar images in the case of

negatives—then the model doesn’t necessarily have to be complex, and

the dataset doesn’t necessarily have to be huge. That’s because we have

translated the problem of detect the presence of people in a picture into a

problem of detect the presence of more light halos than usual in a grayscale

picture. In most of the cases, defining a good input source, input space, and

input dataset is the most important ingredient in building good models.

Like in the previous examples, let’s define some utility functions to take a

look at how the model performs against some of the images in the test set:

def plot_image_and_predictions(prediction, classes, true_

label, img):

 import numpy as np

 import matplotlib.pyplot as plt

 plt.grid(False)

 plt.xticks([])

 plt.yticks([])

 plt.imshow(np.squeeze(img))

Chapter 3 Computer Vision on raspberry pi

193

 predicted_label = int(np.argmax(prediction))

 confidence = 100 * np.max(prediction)

 color = 'blue' if predicted_label == true_label else 'red'

 plt.xlabel('{predicted} {confidence:2.0f}% ({expected})'.

format(

 predicted=classes[predicted_label],

 confidence=confidence,

 expected=classes[int(true_label)]), color=color)

def plot_value_array(prediction, true_label):

 import numpy as np

 import matplotlib.pyplot as plt

 plt.grid(False)

 plt.xticks([])

 plt.yticks([])

 thisplot = plt.bar(range(len(prediction)), prediction,

color="#777777")

 plt.ylim([0, 1])

 predicted_label = np.argmax(prediction)

 thisplot[predicted_label].set_color('red')

 thisplot[true_label].set_color('blue')

Plot the first X test images, their predicted label, and

the true label

Color correct predictions in blue, incorrect predictions

in red

def plot_results(images, labels, predictions, classes, rows,

cols):

 n_images = rows * cols

 plt.figure(figsize=(2 * 2 * cols, 2 * rows))

Chapter 3 Computer Vision on raspberry pi

194

 for i in range(n_images):

 plt.subplot(rows, 2 * cols, 2 * i + 1)

 plot_image_and_predictions(

 predictions[i], classes, labels[i], images[i])

 plt.subplot(rows, 2 * cols, 2 * i + 2)

 plot_value_array(predictions[i], labels[i])

 plt.show()

Figure 3-10. An example of the predictions made by the model over a
batch of items of the test set

Chapter 3 Computer Vision on raspberry pi

195

And call it with a sample of images from the first test set batch:

test_batch = test_data.next()

test_images = test_batch[0]

test_labels = test_batch[1]

predictions = model.predict(test_images)

index_to_label = {

 index: label

 for label, index in train_data.class_indices.items()

}

plot_results(

 images=test_images,

 labels=[np.argmax(label_values) for label_values in

test_labels],

 classes=index_to_label,

 predictions=predictions,

 rows=6, cols=3)

You should see an image like the one shown in Figure 3-10.

3.6 Deploying the model

Once you are happy with the performance of the model, it’s time to save it,

using a logic similar to the one previously explored to save the label names

as well:

def model_save(model, target, labels=None, overwrite=True):

 import json

 import pathlib

Chapter 3 Computer Vision on raspberry pi

196

 # Check if we should save it like a .h5/.pb

 # file or as a directory

 model_dir = pathlib.Path(target)

 if str(target).endswith('.h5') or \

 str(target).endswith('.pb'):

 model_dir = model_dir.parent

 # Create the model directory if it doesn't exist

 pathlib.Path(model_dir).mkdir(parents=True, exist_

ok=True)

 # Save the TensorFlow model using the save method

 model.save(target, overwrite=overwrite)

 # Save the label names of your model in a separate JSON

file

 if labels:

 labels_file = os.path.join(model_dir, 'labels.json')

 with open(labels_file, 'w') as f:

 f.write(json.dumps(list(labels)))

model_dir = os.path.expanduser('~/models/people_detect')

model_save(model, model_dir,

 labels=train_data.class_indices.keys(), overwrite=True)

In the preceding snippet, we have saved the model as a TensorFlow

model directory (~/models/people_detect), but you can also choose to

save it as a single Protobuf (.pb extension) or Hierarchical Data Format

(HDF4/HDF5, .h4/.h5 extension) file. Recent versions of TensorFlow

can load and save any of these formats, as well as the TensorFlow plugin

provided by Platypush does, but if you are planning to import the model

into other applications, it’s usually a good idea to double-check which

Chapter 3 Computer Vision on raspberry pi

197

formats they support. In any of these cases, the model_save method will

also generate a labels.json file if a list of labels is provided—that can help

map back the output nodes to the actual human-readable class labels, and

I haven’t yet found a standard way to natively add them to a TensorFlow

model.

Once the model is saved, you are ready to export it to the Raspberry Pi.

Go back to the Raspberry Pi and copy it over SSH:

mkdir -p ~/models

scp -r user@your-pc:/home/user/models/people_detect ~/models

The model files should have now been copied on your Raspberry Pi

under /home/pi/models/people_detect. Once the model has been

uploaded to the device, we need a way to use it for predictions on live

data. There are mainly two ways to use TensorFlow/Keras models on the

Raspberry Pi:

 1. Use the native TensorFlow library.

 2. Use OpenCV.

Getting both the libraries installed and properly working on

Raspberry Pi used to be a little of a technical challenge until some time

ago, but if you are using a Raspberry Pi 4 with the most recent version of

Raspbian/Raspberry Pi OS (or any other recent supported distribution),

it should be relatively easy.

3.6.1 The OpenCV way

Using OpenCV to make predictions from trained models on a Raspberry Pi

used to be my favorite solution until some time ago (indeed, I wrote

an article back in 2019 that showed how to use a previously trained

TensorFlow model to make live predictions on a Raspberry Pi using this

Chapter 3 Computer Vision on raspberry pi

198

approach). However, that was mainly because getting TensorFlow to build

and run on a Raspberry Pi used to be a long and tedious process, but

things have quite changed on the Raspberry Pi 4. There are mainly two

limitations with the OpenCV approach:

 1. At the time of writing, the cv2.dnn OpenCV package

can only read models—it can’t be used for live

training nor it can save models.

 2. The compatibility with TensorFlow formats is quite

limited. It can’t read models saved in HDF5 format

(which need to be converted to Protobuf before

being loaded; there are few scripts on the Web to do

it), and I have also experienced issues with loading

some models saved by recent TensorFlow/Keras

versions as well.

However, if your Raspberry Pi architecture/distribution doesn’t

natively support TensorFlow, OpenCV may be a good alternative to make

predictions.

First, you’ll have to make sure that OpenCV is installed on the device

with the contrib package—which is the one that actually contains the

cv2.dnn module. If you use Raspbian Buster on a Raspberry Pi 4 or more

recent versions, this should hopefully be as simple as

[sudo] pip3 install opencv-contrib-python

If everything went well, check if you can successfully import the

module:

>>> import cv2.dnn

>>>

Chapter 3 Computer Vision on raspberry pi

199

If anything goes wrong in the process or if you use another OS/

Raspberry Pi/SoC device, look up online for ways to get OpenCV Python3

(and the contrib package) installed on your platform—some users have

posted step-by-step solutions for the most tricky cases.

Once the dependency is in place, you may have to export the HDF5

model to a single Protobuf file—I have had issues importing the directory-

based saved_model.pb models generated by recent TensorFlow versions,

but exporting an .h5 file to .pb still works. There are several tools for this

purpose, for example:

git clone https://github.com/amir-abdi/keras_to_tensorflow

cd keras_to_tensorflow

python3 keras_to_tensorflow.py \

 --input_model=/home/pi/models/people_detect/model.h5 \

 --output_model=/home/pi/models/people_detect/exported_

model.pb

Then, using your model for predictions should be as simple as running

these lines:

import os

import json

import sys

import numpy as np

import cv2

assert len(sys.argv) >= 2, f'Usage: {sys.argv[0]} <image_

file>'

Chapter 3 Computer Vision on raspberry pi

200

image_file = os.path.expanduser(sys.argv[1])

model_dir = os.path.expanduser('~/models/people_detect')

model_file = os.path.join(model_dir, 'exported_model.pb')

labels_file = os.path.join(model_dir, 'labels.json')

model = cv2.dnn.readNet(model_file)

with open(labels_file, 'r') as f:

 labels = json.load(f)

img = cv2.imread(image_file)

model.setInput(img)

output = model.forward()

class_ = int(np.argmax(output))

label = labels[class_]

print('Predicted label for {img}: {label}. Confidence:

{conf}%'.format(

 img=image_file, label=label, conf=100 * output[class_]))

If the preceding script works well, you can use your saved model

through the Platypush ml.cv plugin, which exports for free the model over

an HTTP API (or any other backend enabled on Platypush, e.g., MQTT,

WebSockets, Kafka, etc.). The full interface of the ml.cv is reported on the

official documentation. For instance, you can use it to make predictions

over cURL (note that the image file must exist on the Raspberry Pi storage):

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"ml.cv.predict",

 "args": {

Chapter 3 Computer Vision on raspberry pi

201

 "img": "~/dataset/people_detect/positive/

some_image.jpg",

 "model_file": "~/models/people_detect/

exported_model.pb",

 "classes": ["negative", "positive"]

 }

}' http://raspberrypi-pi-ip:8008/execute

Response:

{

 "id": "<response-id>",

 "type": "response",

 "target": "http",

 "origin": "raspberrypi",

 "response": {

 "output": "positive",

 "errors": []

 }

}

However, note that the OpenCV Platypush plugin is limited to single

images as input and, because of the limitations of the cv2.dnn module,

it can only be used for predictions on existing trained models—no live

training.

3.6.2 The TensorFlow way

If your device and distribution supports an easy way to install and run

TensorFlow, then this may be your favorite way. On a Raspberry Pi 4 with

Raspbian Buster or later, this should be possible with these commands:

Chapter 3 Computer Vision on raspberry pi

202

[sudo] apt-get install python3-numpy

[sudo] apt-get install libatlas-base-dev

[sudo] apt-get install libblas-dev

[sudo] apt-get install liblapack-dev

[sudo] apt-get install python3-dev

[sudo] apt-get install gfortran

[sudo] apt-get install python3-setuptools

[sudo] apt-get install python3-scipy

[sudo] apt-get install python3-h5py

[sudo] pip3 install tensorflow keras

If it all went fine, you can test if you can run predictions on the

previously trained model using the model_load TensorFlow function we

saw earlier:

import os

import json

import sys

import numpy as np

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

assert len(sys.argv) >= 2, f'Usage: {sys.argv[0]} <image_

file>'

image_file = os.path.expanduser(sys.argv[1])

model_dir = os.path.expanduser('~/models/people_detect')

model_file = os.path.join(model_dir, 'saved_model.h5')

labels_file = os.path.join(model_dir, 'labels.json')

Chapter 3 Computer Vision on raspberry pi

203

with open(labels_file, 'r') as f:

 labels = json.load(f)

model = load_model(model_file)

img = image.load_img(image_file, color_mode='grayscale')

data = image.img_to_array(img)

Remove the extra color dimension if it's a grayscale image

data = np.squeeze(data)

output = model.predict(np.array([data]))[0]

class_ = np.argmax(output)

label = labels[class_]

print('Predicted label for {img}: {label}. Confidence:

{conf}%'.format(

 img=image_file, label=label, conf=100 * output[class_]))

If predictions work, you can proceed with testing the model in

Platypush to make like predictions through the tensorflow plugin:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.predict",

 "args": {

 "inputs": "~/datasets/people_detect/positive/some_

image.jpg",

 "model": "~/models/people_detect/saved_model.h5"

 }

}' http://raspberrypi-pi-ip:8008/execute

Chapter 3 Computer Vision on raspberry pi

204

Expected output:

{

 "id": "<response-id>",

 "type": "response",

 "target": "http",

 "origin": "raspberrypi",

 "response": {

 "output": {

 "model": "~/models/people_detect/saved_model.h5",

 "outputs": [

 {

 "negative": 0,

 "positive": 1

 }

],

 "predictions": [

 "positive"

]

 },

 "errors": []

 }

}

In this case, outputs contains the values of the output units (with

their associated labels if available) for each of the input samples (in this

case, we only used one image), and predictions contains either the list of

predicted labels for each of the input samples or their class index if labels

are not available.

Chapter 3 Computer Vision on raspberry pi

205

3.7 Building your automation flows

Now that you are able to use pre-trained models on a Raspberry Pi to make

predictions, it’s time to leverage Platypush to integrate these predictions

into automation flows and run actions on other devices depending on the

output of a prediction.

For example, let’s build an automation that does the following:

 1. It captures pictures at regular intervals (e.g., once

a minute) from the thermal camera and stores the

captured frame to a temporary JPEG file.

 2. If presence is detected, turn on the lights. If

presence is not detected, turn off the lights.

We can again leverage Platypush’s crons to do this job. I’ll cover in

this example an implementation with Philips Hue or any smart bulbs

compatible with the light.hue plugin, but any other device compatible

Figure 3-11. A screenshot of the light.hue tab in the Platypush web
panel

Chapter 3 Computer Vision on raspberry pi

206

with a Platypush plugin that implements the abstract light plugin should

work. First, if you use Philips Hue, then install the Platypush plugin

dependencies (it should only include phue):

[sudo] pip3 install 'platypush[hue]'

And add the following configuration to your config.yaml:

light.hue:

 bridge: 192.168.1.123

 groups:

 # Default light groups to be managed

 - Living Room

Then restart Platypush and open http://raspberry-pi-ip:8008 in

your browser. You may have to authorize the first connection to the Hue

bridge by pressing the physical sync button. After the Raspberry Pi has

been authorized, refresh the page and you should see a panel like the

one shown in Figure 3-11—under the light bulb icon. You can test the

connection by trying to switch some lights on or off or change colors. Like

all plugins, the actions of light.hue are also available over API, and you

can easily embed them in your flows.

For this purpose, we’ll create a Platypush procedure as a Python script—

it’s also possible to do it directly in the config.yaml through the documented

YAML syntax, but the YAML syntax is a bit rigid and verbose for complex flows.

First, prepare the Platypush user scripts directory if it’s not already there:

mkdir -p ~/.config/platypush/scripts

touch ~/.config/platypush/scripts/__init__.py

touch ~/.config/platypush/scripts/camera.py

Chapter 3 Computer Vision on raspberry pi

207

You can also add the code of your procedure directly in the __init__.

py, but for better modularity, I prefer to group procedures together in

modules. Add the following content to camera.py:

import os

from platypush.context import get_plugin

from platypush.procedure import procedure

@procedure

def check_presence(**context):

 # Get plugins by name

 camera = get_plugin('camera.ir.mlx90640')

 tensorflow = get_plugin('tensorflow')

 lights = get_plugin('light.hue')

 image_file = '/tmp/frame.jpg'

 model_file = os.path.expanduser('~/models/people_detect/

saved_model.h5')

 camera.capture_image(

 image_file=image_file, grayscale=True)

 prediction = tensorflow.predict(

 inputs=image_file, model=model_file)['predictions'][0]

 if prediction == 'positive':

 lights.on()

 else:

 lights.off()

Chapter 3 Computer Vision on raspberry pi

208

Then import the procedure into /.config/platypush/scripts/__

init__.py in order to use it in config.yaml:

from scripts.camera import check_presence

Finally, replace the previous cron in config.yaml that would simply

capture photos with a new one that calls the newly created procedure

every minute to check for presence:

cron.CheckPresenceCron:

 cron_expression: '* * * * *'

 actions:

 - action: procedure.check_presence

Restart Platypush, and this should be it—the state of the lights will

change when someone enters or exits the view of the thermal camera.

Time to show off your friends! And remember that Platypush comes with

many other integrations as well—from music, media, and cameras to

cloud services, to many other IoT devices, to MQTT, to voice assistants,

and so on—so you can easily apply the same basic ingredients to build

other smart flows based on live machine learning predictions.

3.8 Building a small home surveillance
system

A second example application for a model that can detect the presence

of people is the setup of a small home surveillance system that notifies if

anybody is at home while we are not at home. We can use the following

building blocks to set up such a project:

Chapter 3 Computer Vision on raspberry pi

209

 1. Use an app on your phone that supports geo-

fencing—that is, detects when you enter or exit an

area—and can trigger actions when such events

occur. For this example, we’ll be using Tasker and

AutoLocation for Android.

 2. Send a message from your phone to the Raspberry Pi,

for example, over MQTT when you enter or exit your

home area and configure Platypush to listen for such

messages and update the HOME state.

 3. Keep taking pictures from the thermal camera every

minute or so and use the previously trained model

to make predictions on the presence of people.

 4. If presence is detected and the HOME state is false,

then take a picture from an optical camera (e.g.,

a PiCamera) and send a message back to the

phone (e.g., over Pushbullet or Telegram) with the

attachment to notify a possible intrusion.

Going step by step, first set up an MQTT server that is accessible both

inside and outside of your network. There are several options to achieve

this:

 1. If you have a Linux box somewhere in the cloud

(like an Amazon instance or a VPS), install an MQTT

broker like Mosquitto on it—if the box has a public

IP address, then it can be accessed by your phone

also when it is outside of your home network.

Chapter 3 Computer Vision on raspberry pi

210

 2. If your home network router/provider supports it,

use a service like Dyn (formerly DynDNS) to get

a hostname for your home router (e.g., my-home-

router.gotdns.org) and run a client like ddclient

or inadyn to keep the hostname-IP association up

to date. Install Mosquitto on your Raspberry Pi

or another device in the network and use port

forwarding on the router to expose the MQTT port.

Note: If you follow this route, you’ll basically be

exposing a service inside of your network to the

outside world. In this scenario, it’s advised to set up

authentication and encryption on the MQTT server.

 3. You can set up a home VPN with, for example, an

OpenVPN or WireGuard setup and connect your

phone to the same VPN through an Android client.

If you run an MQTT broker inside of your home

network, it will also be accessible from your phone

over the VPN address.

 4. Use a public MQTT broker service (like HiveMQ,

Adafruit.IO, or MaQiaTTo)—it removes the need

for a local installation of Mosquitto, VPNs, and

port forwarding, but you may have to pay a bit for a

service without limitations.

Whichever option you prefer, at the end of the process, you should

have the address and port of an MQTT broker that can be accessed both

within and outside of your network. Back to your Raspberry Pi, install the

dependencies for the MQTT integration:

[sudo] pip3 install 'platypush[mqtt]'

Chapter 3 Computer Vision on raspberry pi

211

Then add the configuration for backend.mqtt in your config.yaml:

backend.mqtt:

 host: your-mqtt-address

 port: 1883

 listeners:

 - topics:

 - sensors/platypush/at_home

The listeners section instructs Platypush on which topics it should

listen for new messages—in this case, we’ll be using a topic named

sensors/platypush/at_home.

Next, install Tasker and AutoLocation on your (Android) phone. You

also need an MQTT client app that supports Tasker integration if you

want to send messages from your phone to your MQTT broker—Join, also

developed by the same developer that built Tasker and AutoLocation,

should be fine if you are using a simple MQTT broker with no authentication

or no encryption, but if that’s not the case, you should opt for MQTT client.

Configure the MQTT app and make sure that it can connect to your broker

and receive messages. You can then tune AutoLocation to your preference—

for example, whether it should use GPS data, cell ID information, or both;

how often it will check the location and configure the background monitor;

and so on. Then create a new profile in the Tasker interface that runs on

location update. Create a new location centered on your home address and

select a sensitivity radius (e.g., 50, 100, or 200 meters). Then create a new

task that runs when you enter this area, create a new action, select your

MQTT integration, and specify the address and port of your broker, the topic

(e.g., sensors/platypush/at_home), and the message (e.g., 1). Similarly,

create a task that runs when you exit the area (long press on the task in the

profile and select Add Exit Task) and sends 0 to the topic. If it all went well,

your phone will start sending 0 or 1 to your MQTT instance on the selected

topic whenever you enter or exit your home area.

Chapter 3 Computer Vision on raspberry pi

212

Platypush triggers a MQTTMessageEvent whenever a new message is

received upon a watched topic. You can easily define hooks on events,

that is, pieces of logic that run whenever an event matching some criteria

is received, and they can be created both using the YAML and Python

syntax. For example, let’s create a hook on the Raspberry Pi that reacts to a

new message received on the home presence MQTT topic and sets a state

variable that we can use in other scripts or applications to signal whether

we are at home or not. Add the following lines to, for example, ~/.config/

platypush/scripts/home.py:

from platypush.context import get_plugin

from platypush.event.hook import hook

from platypush.message.event.mqtt import MQTTMessageEvent

@hook(MQTTMessageEvent, topic='sensors/platypush/at_home')

def on_home_state_changed(event, **context):

 # Use the variable plugin to persist state variables

 # on the local storage

 variable = get_plugin('variable')

 variable.set('HOME', int(event.args['msg']))

And import the event hook into /.config/platypush/scripts/__

init__.py to make it visible to the configuration:

from scripts.home import on_home_state_changed

Now the Raspberry Pi will keep the value of the HOME variable in sync

whenever you enter or exit the home area.

Next, we’ll need some messaging integration to send messages from

the Raspberry Pi to your phone when something goes on. There are

multiple options to achieve this—send a message over the Pushbullet,

Chapter 3 Computer Vision on raspberry pi

213

Telegram, or Twilio integrations, send an email, trigger an IFTTT rule,

and so on. For the purposes of this example, we’ll see how to deliver the

message with Pushbullet because it requires the least amount of steps.

Install the Pushbullet integration:

[sudo] pip3 install 'platypush[pushbullet]'

Install the app on your phone as well and head to https://docs.

pushbullet.com to get an API access token for your account. Once you

have your access token, configure Platypush to use it:

pushbullet:

 token: your-token

Optionally, if you also want to send a picture of your room at

the moment the presence is detected, you’ll need an optical camera

plugin—camera.pi, camera.ffmpeg, camera.gstreamer, and camera.cv

will do the job. For example, if you have a PiCamera, you can install the

dependencies:

[sudo] pip3 install 'platypush[picamera]'

And enable the plugin:

camera.pi:

 enabled: True

Chapter 3 Computer Vision on raspberry pi

https://docs.pushbullet.com
https://docs.pushbullet.com

214

Finally, let’s put all the pieces together by modifying the previous

check_presence cron so that

 1. It captures a picture from the thermal camera.

 2. It uses the previously trained model to predict

whether someone is in the picture.

 3. If we are at home, run the previous logic—turn the

lights on if someone is in the picture; turn them off

otherwise.

 4. If we are not at home and presence is detected,

take a picture from the PiCamera and send it to our

phone over Pushbullet to notify us that someone

may be in our house.

Putting all the pieces together:

import os

from platypush.context import get_plugin

from platypush.procedure import procedure

@procedure

def check_presence(**context):

 # Get plugins by name

 thermal_camera = get_plugin('camera.ir.mlx90640')

 pi_camera = get_plugin('camera.pi')

 variable = get_plugin('variable')

 tensorflow = get_plugin('tensorflow')

 lights = get_plugin('light.hue')

 pushbullet = get_plugin('pushbullet')

 ir_image_file = '/tmp/ir-frame.jpg'

 pi_image_file = '/tmp/pi-frame.jpg'

Chapter 3 Computer Vision on raspberry pi

215

 model_file = os.path.expanduser('~/models/people_detect/

saved_model.h5')

 # Check if we are at home

 response = variable.get('HOME')

 at_home = int(response.get('HOME'))

 # Capture an image from the thermal camera

 thermal_camera.capture_image(

 image_file=ir_image_file, grayscale=True)

 # Use the model to predict if there is someone in the picture

 prediction = tensorflow.predict(

 inputs=image_file, model=model_file)['predictions'][0]

 # If we are at home, run the light on/off logic

 if at_home:

 if prediction == 'positive':

 lights.on()

 else:

 lights.off()

 elif prediction == 'positive':

 # Otherwise, if presence is detected and we are not

at home,

 # take a picture from the PiCamera and send it over

Pushbullet

 # to notify of a possible intrusion

 pi_camera.capture_image(image_file=pi_image_file)

 pushbullet.send_note(body='Possible intrusion

detected!')

 pushbullet.send_file(filename=pi_image_file)

Restart Platypush, and your new home surveillance logic should be in

place!

Chapter 3 Computer Vision on raspberry pi

216

3.9 Live training and semi-supervised
learning

A nice feature of having a trained model loaded in memory and with a

remote API is that you can train the model in real time with new data and

save it, without having to scavenge your laptop for that specific notebook

that you used to train it, and with a transparent flow that can be logged on

a remote service.

Moreover, this approach can be used to train models incrementally as

more data is processed. In the case of Platypush, the tensorflow plugin

exposes the tensorflow.train method for live training of loaded models.

Example train session over cURL:

Load the model from disk

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.load",

 "args": {

 "model": "~/models/people_detect/saved_model.h5"

 }

}' http://raspberrypi-pi-ip:8008/execute

Train the model with some new data.

For instance, a new camera picture that we already

know to be positive.

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

Chapter 3 Computer Vision on raspberry pi

217

 "action":"tensorflow.train",

 "args": {

 "model": "~/models/people_detect/saved_model.h5",

 "inputs": ["/home/pi/datasets/people_detect/positive/

some-image.jpg"],

 "outputs": ["positive"]

 }

}' http://raspberrypi-pi-ip:8008/execute

Save the model once done

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.save",

 "args": {

 "model": "~/models/people_detect/saved_model.h5"

 }

}' http://raspberrypi-pi-ip:8008/execute

Unload the model once saved to save memory

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.unload",

 "args": {

 "model": "~/models/people_detect/saved_model.h5"

 }

}' http://raspberrypi-pi-ip:8008/execute

Chapter 3 Computer Vision on raspberry pi

218

The inputs field on the train API is quite flexible, and it currently

supports lists of images, CSV/TSV files, numpy uncompressed/

compressed files, and raw arrays, and the API exposes other useful

attributes as well—such as batch size, number of epochs, validation data

and validation split, weights, and so on.

The live training approach is particularly interesting for an approach

I like to call tutor learning. You can equip your Raspberry Pi with other

devices to get hunches for the presence of people—such as motion

detectors, light detectors, or cameras mounted in different points of the

room. You can configure a cron that runs data captures on all of these

devices at the same time. Once one of the sensors detects presence (e.g.,

through motion), then the corresponding picture taken from the thermal

camera at the same time will be labelled as positive and used to train the

model in real time. Similarly, the model can be paired with the output of a

luminosity sensor, building inferences such as “if it’s dark in the room, and

no motion is detected, and the time is between midnight and 8 AM, then

it’s likely that the pictures taken in this time frame include no people.”

As a result, you can build a training logic that is kind of semi-

supervised, based on data points from other sensors that can more

deterministically track the metric that you want to predict. If you move

your newly trained model to another machine or you simply remove the

accessory sensors, the model should still be as good as tracking presence

as if the other sensors or cameras were still there.

As another example, you can train a model for people detection from

optical camera images that uses data from the thermal camera model

as a tutor. We have explored earlier the reason why a thermal source is

more reliable in a small environment than an optical camera to detect

the presence of people. However, you can first train a detection model on

the basis of the output of a thermal camera and then create a cron that

captures frames at the same time both from the thermal sensor and the

optical camera. If the accuracy of the thermal model is very high, then its

predictions can be used as labels for the optical camera frames and used

Chapter 3 Computer Vision on raspberry pi

219

to feed a real-time dynamic dataset to, for example, a more sophisticated

CNN architecture. After performing sufficient live training of the model

using this (semi)automated strategy, and once the performance metrics of

the model are satisfactory enough, the thermal camera can be unplugged,

and the stand-alone optical camera model should still be able to make

predictions.

3.10 Classifiers as a service

To conclude the exploration of the possibilities offered by the synergy

between TensorFlow models and IoT tools, let’s see an example where

the whole management of the previous model for people detection over

MLX90640 happens over a service (e.g., Platypush) instead of a notebook.

Platypush offers an API to create and compile models, besides training

them and using them for predictions—although other popular IoT

solutions like Home Assistant may also offer similar features if they provide

a TensorFlow integration. The advantage of this approach is that the model

will be internally and consistently managed by the service. Moreover,

the training logic occurs over API calls or crons/event hooks instead of a

(sometimes messy and hard to track) Jupyter notebook.

For example, the MLX90640 presence detection model can be

dynamically created via API call:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type": "request",

 "action": "tensorflow.create_network",

 "args": {

 "name": "people_detect",

Chapter 3 Computer Vision on raspberry pi

220

 "output_names": ["negative", "positive"],

 "optimizer": "adam",

 "loss": "categorical_crossentropy",

 "metrics": ["accuracy"],

 "layers": [

 {

 "type": "Flatten",

 "input_shape": [24, 32]

 },

 {

 "type": "Dense",

 # ~= 0.8 * 32 * 24

 "units": 614,

 "activation": "relu"

 },

 {

 "type": "Dense",

 # ~= 0.3 * 32 * 24

 "units": 230,

 "activation": "relu"

 },

 {

 "type": "Dense",

 "units": 2,

 "activation": "softmax"

 }

]

 }

}' http://raspberrypi-pi-ip:8008/execute

Chapter 3 Computer Vision on raspberry pi

221

The tensorflow.create_network action does the same as the keras.

Sequential call we have used earlier to define the model. It can be used

to define the model name, the output labels, the optimizer, loss function,

performance metrics, and the structure of the network. We can then train

the model with our collected data:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type": "request",

 "action": "tensorflow.train",

 "args": {

 "model": "people_detect",

 "epochs": 5,

 "inputs": "~/datasets/ir_presence_detector/images",

 "validation_split": 0.3

 }

}' http://raspberrypi-pi-ip:8008/execute

We are using our previously defined dataset of camera images

organized into the negative and positive sub-folders and specify the

number of epochs and the validation split—in this case, 30% of the images

will be used for model validation.

The tensorflow.train action will generate several events during the

training phase that you can attach to if you want to create your custom

hooks—for example, copy the model to another machine once the training

has completed if the performance metrics haven’t degraded, or remove

images that belong to batches already processed if you are working on

continuous streams, or log the performance of the model over the epochs

to a CSV file. Some of these events are

Chapter 3 Computer Vision on raspberry pi

222

 1. TensorflowTrainStartedEvent—when the training

starts

 2. TensorflowTrainEndedEvent—when the training

phase ends

 3. TensorflowBatchStartedEvent—when a batch

starts being processed

 4. TensorflowBatchEndedEvent—when a batch is

processed

 5. TensorflowEpochStartedEvent—when a training

epoch begins

 6. TensorflowEpochEndedEvent—when a training

epoch ends

At the end of the process, the HTTP client should receive an output

that looks like this:

{

 "response": {

 "output": {

 "model": "people_detect",

 "epochs": [

 0,

 1,

 2,

 3,

 4

],

 "history": {

 "loss": [

 0.9747824668884277,

Chapter 3 Computer Vision on raspberry pi

223

 0.6165147423744202,

 0.07518807053565979,

 0.06354894489049911,

 0.06809689849615097

],

 "accuracy": [

 0.9494661688804626,

 0.9843416213989258,

 0.9957295656204224,

 0.9950177669525146,

 0.9928825497627258

],

 "val_loss": [

 0.5309795141220093,

 0.4760192930698395,

 0.10130093991756439,

 0.32663050293922424,

 0.7078392505645752

],

 "val_accuracy": [

 0.9834162592887878,

 0.9850746393203735,

 0.9917080998420715,

 0.9867330193519592,

 0.9834162592887878

]

 }

 },

 "errors": []

 }

}

Chapter 3 Computer Vision on raspberry pi

224

Each field of the history reports the loss and performance metric over

the training and validation sets for each of the epochs. Once you are happy

with the model, you can save it:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.save",

 "args": {

 "model": "people_detect"

 }

}' http://raspberrypi-pi-ip:8008/execute

The model will be saved under ~/.local/share/platypush/

tensorflow/models/people_detect. It can be imported into other

applications compatible with TensorFlow models or into your own scripts

for predictions, and it can easily be reloaded in Platypush on restart:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '

{

 "type":"request",

 "action":"tensorflow.load",

 "args": {

 "model": "people_detect"

 }

}' http://raspberrypi-pi-ip:8008/execute

Chapter 3 Computer Vision on raspberry pi

225

And used for real-time predictions:

curl -XPOST -u 'user:pass' -H 'Content-Type: application/

json' -d '{

 "type": "request",

 "action": "tensorflow.predict",

 "args": {

 "model": "people_detect",

 "inputs": "/path/to/an/image.jpg"

 }

}' http://raspberrypi-pi-ip:8008/execute

This should cover all the steps on how to create, train, evaluate, and

manage your models using a remote API—and, ideally, without writing a

line of code.

Chapter 3 Computer Vision on raspberry pi

227© Fabio Manganiello 2021
F. Manganiello, Computer Vision with Maker Tech,
https://doi.org/10.1007/978-1-4842-6821-6

 Bibliography

 [1] Donald Hebb. The Organization of Behavior.

 [2] Andreas Kaplan, Michael Haenlein. Siri,

Siri, in my hand: Who’s the fairest in the land?

On the interpretations, illustrations, and

implications of artificial intelligence (https://doi.

org/10.1016%2Fj.bushor.2018.08.004).

 [3] A Brief History of Computing (www.alanturing.net/

turing_archive/pages/Reference%20Articles/

BriefHistofComp.html).

 [4] Raspberry Pi benchmarks (www.researchgate.net/

publication/333973011_Raspberry_Pi_4B_32_

Bit_Benchmarks).

 [5] IBM704 (https://en.wikipedia.org/wiki/IBM_704).

 [6] H. A. Simon, Allen Newell. Heuristic Problem

Solving: The Next Advance in Operations Research

(https://doi.org/10.1287%2Fopre.6.1.1).

 [7] H. A. Simon. The Shape of Automation for Men and

Management.

 [8] M. Minsky. Computation: Finite and Infinite

Machines.

 [9] M. Minsky. Meet Shaky, the First Electronic Person,

Life Magazine, pp. 58–68.

https://doi.org/10.1007/978-1-4842-6821-6#DOI
https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.1016/j.bushor.2018.08.004
http://www.alanturing.net/turing_archive/pages/Reference Articles/BriefHistofComp.html
http://www.alanturing.net/turing_archive/pages/Reference Articles/BriefHistofComp.html
http://www.alanturing.net/turing_archive/pages/Reference Articles/BriefHistofComp.html
http://www.researchgate.net/publication/333973011_Raspberry_Pi_4B_32_Bit_Benchmarks
http://www.researchgate.net/publication/333973011_Raspberry_Pi_4B_32_Bit_Benchmarks
http://www.researchgate.net/publication/333973011_Raspberry_Pi_4B_32_Bit_Benchmarks
https://en.wikipedia.org/wiki/IBM_704
https://doi.org/10.1287/opre.6.1.1

228

 [10] rmsprop optimizer description (www.cs.toronto.

edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf).

 [11] S. Zhang, A.E. Choromanska, Y. LeCun. Deep

learning with elastic averaging SGD (https://

papers.nips.cc/paper/5761- deep- learning-

with- elastic- averaging- sgd.pdf).

 [12] D. Kingma, J. Ba. Adam: A Method for

Stochastic Optimization (https://arxiv.org/

abs/1412.6980v8).

 [13] I. Sutskever, J. Martens, G. Dahl, G. Hinton. On

the importance of initialization and momentum in

deep learning (www.cs.toronto.edu/~fritz/absps/

momentum.pdf).

 [14] Auto MPG dataset (https://archive.ics.uci.edu/

ml/datasets/auto+mpg).

 [15] Moore-Penrose inverse (https://en.wikipedia.

org/wiki/Moore%E2%80%93Penrose_inverse).

 [16] Judith A Hirsch, Luis M Martinez. Visual Cortical

and Subcortical Receptive Fields (https://link.

springer.com/referenceworkentry/10.1007%

2F978- 3- 540- 29678- 2_6348).

 [17] Judith A Hirsch, Luis M Martinez. Circuits that

build visual cortical receptive fields (https://

pubmed.ncbi.nlm.nih.gov/16309753/).

 [18] Kevin R. Duffy, David H. Hubel. Receptive field

properties of neurons in the primary visual cortex

under photopic and scotopic lighting conditions (www.

ncbi.nlm.nih.gov/pmc/articles/PMC2951600/).

BIBLIOGRAPHY

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://papers.nips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf
https://papers.nips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf
https://papers.nips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf
https://arxiv.org/abs/1412.6980v8
https://arxiv.org/abs/1412.6980v8
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://en.wikipedia.org/wiki/Moore–Penrose_inverse
https://en.wikipedia.org/wiki/Moore–Penrose_inverse
https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_6348
https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_6348
https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_6348
https://pubmed.ncbi.nlm.nih.gov/16309753/
https://pubmed.ncbi.nlm.nih.gov/16309753/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951600/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951600/

229

 [19] Sumit Saha. A Comprehensive Guide to

Convolutional Neural Networks—the ELI5

way (https://towardsdatascience.com/a-

comprehensive- guide- to- convolutional- neural-

networks- the- eli5- way- 3bd2b1164a53).

 [20] Irwin Sobel. An Isotropic 3x3 Image

Gradient Operator (www.researchgate.net/

publication/239398674_An_Isotropic_3_3_

Image_Gradient_Operator).

 [21] F. Moutarde, G. Devineau. Deep-Learning:

Introduction to Convolutional Neural Networks

(http://people.mines- paristech.fr/fabien.

moutarde/ES_MachineLearning/Practical_

deepLearning- convNets/convnet- notebook.html).

 [22] Fruits 360 Kaggle dataset (www.kaggle.com/

moltean/fruits).

 [23] Raspberry Pi home page (www.raspberrypi.org).

 [24] Pimoroni MLX90640 breakout (https://shop.

pimoroni.com/products/mlx90640- thermal-

camera- breakout).

 [25] Breakout Garden (https://shop.pimoroni.com/

products/breakout- garden- hat- i2c- spi).

 [26] NOOBS (www.raspberrypi.org/downloads/noobs/).

 [27] Raspberry Pi OS (www.raspberrypi.org/downloads/).

 [28] Platypush Gitlab page (https://git.platypush.

tech/platypush/platypush).

 [29] Platypush modules documentation (https://

platypush.readthedocs.io/en/latest/).

BIBLIOGRAPHY

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
http://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
http://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
http://people.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/Practical_deepLearning-convNets/convnet-notebook.html
http://people.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/Practical_deepLearning-convNets/convnet-notebook.html
http://people.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/Practical_deepLearning-convNets/convnet-notebook.html
http://www.kaggle.com/moltean/fruits
http://www.kaggle.com/moltean/fruits
http://www.raspberrypi.org
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout
https://shop.pimoroni.com/products/breakout-garden-hat-i2c-spi
https://shop.pimoroni.com/products/breakout-garden-hat-i2c-spi
http://www.raspberrypi.org/downloads/noobs/
http://www.raspberrypi.org/downloads/
https://git.platypush.tech/platypush/platypush
https://git.platypush.tech/platypush/platypush
https://platypush.readthedocs.io/en/latest/
https://platypush.readthedocs.io/en/latest/

231© Fabio Manganiello 2021
F. Manganiello, Computer Vision with Maker Tech,
https://doi.org/10.1007/978-1-4842-6821-6

Index

A

Accuracy, 8, 33, 111, 113, 126

Activation function, 90, 91, 93, 94,

101, 153

Artificial intelligence, 2–6, 90

Artificial neural network, 90, 93

AutoLocation, 209, 211

Average pooling, 144, 145

B

Backends, 171, 178

Back-propagation, 6, 96–98, 102

C

categorical_crossentropy loss

function, 32, 154

Classification error, 73, 97, 111

Convolutional layer, 135, 136, 137,

142–145

Convolutional neural networks

(CNN), 134

architecture, 135

convolutional layers, 138, 140,

142, 143

features, 135

fully connected/dropout, 145

kernel/filter, 136

pooling layer, 144

recognition, 146–148

training epochs, 155

training set, 150

Cost function, 21, 23, 24, 26,

32, 42, 63, 64, 73, 75,

96–98, 101

Cross-entropy functions, 125, 126

D

Deep learning, 8, 32

Dropout technique, 146

E

Eigenvalue, 48–50

Expert system, 2, 7, 8

F

False negatives (FN), 112, 126

False positives (FP), 112, 115, 184

fit_generator method, 154

G

Grayscale thermal picture, 181

https://doi.org/10.1007/978-1-4842-6821-6#DOI

232

H

Hadamard product, 101, 139

Hardware I2C connection, 164

Harmonic mean, 115

I, J

Infrared cameras, 120,

160–162, 176

K

kernel_size parameter, 153

L

Linear regression, 17

defining/training, 30–33

evaluation, 34–36, 38

gradient descent, 22–24, 26, 27

idea behind regression, 19–21

input normalization, 28, 29

loading/plotting

dataset, 18, 19

saving/loading, 38

Logistic regression, 67, 69, 70, 72

building from scratch,

75, 76, 78–81

cost function, 72, 74

multiclass regression, 84, 85

non-linear boundaries, 85, 86

TensorFlow, 82–84

loss function, 21, 32, 35, 57,

58, 125, 221

M

Machine learning, 120

definition, 1

environment, 13–15, 17

history, 3–5

tools, 12, 13

Max pooling, 144, 145

Mean absolute error, 32, 33, 111

Mean squared error, 32, 34, 42, 61,

72, 111, 125

Moravec’s paradox, 7

Multivariate linear regression,

41, 42, 44, 45

loading/visualizing dataset,

53, 55–59

PCA, 47, 49–51

redundant features, 45–47

training/test set, 52, 53

N, O

Neural network

accuracy, 129

color space, 119

confusion matrix, 113

cost function, 106, 107

error metrics, 111

Fashion MNIST

dataset, 118, 122

guidelines, 104, 105

implement, 116

input features, 88

intrusions, 115

label, 130–132

INDEX

233

optical camera, 120

output, 109, 110

predicted values, 112

underfit/overfit, 106

values, 108

Normal equation, 64, 65, 67

P, Q

PiCamera-compatible infrared

camera, 174

PiCamera-compatible optical

camera, 174

Pimoroni MLX90640 thermal

camera, 162

plot_results function, 157

Polynomial regression, 60–63

Pooling layer, 135, 137, 144, 145,

153, 154

pool_size parameter, 153

predict function, 36, 37

Principal component analysis

(PCA), 47, 49, 51, 107,

137, 146

R

Raspberry Pi

automation flows, 205, 206

backends, 171

capture images, 179–181

classifiers, 219, 221, 224

communication protocol, 163

deploy model, 195, 197

OpenCV, 197, 198, 201

TensorFlow way, 201

GPIO, 163, 166

home surveillance system,

208–211, 213–215

label images, 182, 184, 185

live training, 216, 218, 219

MLX90640, 172

network, 168

Pimoroni, 172

Platpush automation

capture URL, 177

manual restart, 175

plugin, 174

web interface, 174

preparing hardware, 161, 163

preparing operating system,

166, 167

Redis, 170

semi-supervised learning,

216, 218, 219

software, 169

test set, 194

training model, 185, 186

training set, 190

utility functions, 192

VCC/GND, 164

Recommender system, 10

S

Same padding, 143, 144

Scalar/dot product, 48

Sigmoid function, 68, 69, 75, 101

INDEX

234

Simple regression model, 17

softmax activation function, 124

Software I2C connection, 165

Stochastic gradient descent (SGD),

31, 83, 125

Supervised learning, 9

System-on-chip (SoC), 159

T

TensorFlow/Keras models, 197

TensorFlow regression models, 132

tensorflow.trainmethod, 216, 221

True negatives (TN), 112

True positives (TP), 112

Twilio integrations, 213

U

Unsupervised learning, 9–11

V, W, X, Y, Z

Valid padding, 143

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapters at a Glance
	Chapter 1: Introduction to Machine Learning
	1.1 History
	1.2 Supervised and unsupervised learning
	1.3 Preparing your tools
	1.3.1 Software tools
	1.3.2 Setting up your environment

	1.4 Linear regression
	1.4.1 Loading and plotting the dataset
	1.4.2 The idea behind regression
	1.4.3 Gradient descent
	1.4.4 Input normalization
	1.4.5 Defining and training the model
	1.4.6 Evaluating your model
	1.4.7 Saving and loading your model

	1.5 Multivariate linear regression
	1.5.1 Redundant features
	1.5.2 Principal component analysis
	1.5.3 Training set and test set
	1.5.4 Loading and visualizing the dataset

	1.6 Polynomial regression
	1.7 Normal equation
	1.8 Logistic regression
	1.8.1 Cost function
	1.8.2 Building the regression model from scratch
	1.8.3 The TensorFlow way
	1.8.4 Multiclass regression
	1.8.5 Non-linear boundaries

	Chapter 2: Neural Networks
	2.1	 Back-propagation
	2.2	 Implementation guidelines
	2.2.1 Underfit and overfit

	2.3	 Error metrics
	2.4	 Implementing a network to recognize clothing items
	2.5	 Convolutional neural networks
	2.5.1 Convolutional layer
	2.5.2 Pooling layer
	2.5.3 Fully connected layer and dropout
	2.5.4 A network for recognizing images of fruits

	Chapter 3: Computer Vision on Raspberry Pi
	3.1 Preparing the hardware and the software
	3.1.1 Preparing the hardware
	3.1.2 Preparing the operating system

	3.2 Installing the software dependencies
	3.3 Capturing the images
	3.4 Labelling the images
	3.5 Training the model
	3.6 Deploying the model
	3.6.1 The OpenCV way
	3.6.2 The TensorFlow way

	3.7 Building your automation flows
	3.8 Building a small home surveillance system
	3.9 Live training and semi-supervised learning
	3.10 Classifiers as a service

	Bibliography
	Index

