
Practical
Ansible

Configuration Management from
Start to Finish
—
Vincent Sesto

Practical Ansible
Configuration Management

from Start to Finish

Vincent Sesto

Practical Ansible: Configuration Management from Start to Finish

ISBN-13 (pbk): 978-1-4842-6484-3		 ISBN-13 (electronic): 978-1-4842-6485-0
https://doi.org/10.1007/978-1-4842-6485-0

Copyright © 2021 by Vincent Sesto

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6484-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Vincent Sesto
Auckland, New Zealand

https://doi.org/10.1007/978-1-4842-6485-0

This book is dedicated to Kirsty and our two cats Tim Tam
and Rusty. Thanks for always keeping me company while

I’m writing and generally helping me get the most out of life.

v

Table of Contents

Chapter 1: ��Configuration Management with Ansible�����������������������������1

Getting Started with Configuration Management��2

Why Ansible?��3

Getting Started with Ansible��6

Installing Ansible��7

Ansible Support for SSH���9

Finally, Our First Ansible Command���12

Basic Ansible Playbooks��13

Ansible Configuration and Inventory Files���16

Running Ansible Modules���20

Ping��20

Setup��21

Git���22

Shell���23

Apt (or Yum)��24

Service���25

get_url��26

About the Author��ix

About the Technical Reviewer��xi

Preface���xiii

Introduction���xvii

vi

file��27

user��28

find���29

Running Ansible on Different Servers��30

Different Versions of Ansible��32

Ansible Projects���32

Basic LAMP Stack���32

Splunk Server Environment��33

Summary���34

Chapter 2: ��Ansible Playbooks��35

Ansible and YAML Syntax���36

Command-Line Modules to Ansible Playbooks��39

Ansible Playbook Verbose Output��46

Ansible Syntax in Finer Detail��47

Hosts and Remote Users��47

Tasks��49

Notify��50

Adding More Playbook Functionality with Variables and Loops���������������������������51

Plugging In Our LAMP Stack��58

Organizing Larger Playbooks with Include and Import��66

Summary���69

Chapter 3: ��Extending Playbooks with Roles and Templates����������������71

Ansible Roles���72

Creating the Web Server Role���73

Creating the Database Server Role��80

Ansible Command-Line Variables and Options��84

Table of Contents

vii

Expanding Our LAMP with Django���85

Conditional Tasks in Ansible���94

Using Tags to Run Specific Tasks���97

Summary���101

Chapter 4: ��Custom Ansible Modules, Vaults, and Galaxies����������������103

Keeping Secret with Ansible Vault���104

Ansible Galaxy��110

Searching and Working with Ansible Galaxy Roles���������������������������������������111

Downloading and Installing Multiple Roles from Galaxy������������������������������120

Moving Further with Ansible Galaxy���123

Contributing to Ansible Galaxy��127

Building Your Own Ansible Modules���135

Summary���142

Chapter 5: ��Working with Ansible in the Amazon Cloud���������������������143

So Why Amazon Web Services���144

AWS Is Not Free��145

AWS Pricing��145

Gaining Access to AWS��145

Using Environment Variables to Access AWS���153

Ansible AWS Modules to Implement Our New Project���������������������������������������153

Our New Splunk Implementation Project���154

Creating Our AWS Instance��159

Deploying Splunk with User Data���170

Failures on Amazon Web Services���176

Summary���178

Table of Contents

viii

Chapter 6: ��Ansible Templates and CloudFormation Scripts��������������179

One Final Word on AWS Costs��180

Ansible Templates in AWS Instances��181

Pulling Code with Ansible��189

Ansible Pull GitHub Repository Deployment Explained��������������������������������������195

Build AWS Images for Quicker Deployments��196

Using CloudFormation with Ansible���203

Summary���213

Chapter 7: ��Ansible Tests and Variables���215

AWS Modules Run Differently��216

Using the Debug Module with Registered Variables��218

Ansible Facts��224

Testing Ansible As You Develop��228

Ansible Start At Option���229

Ansible Step���230

Ansible Lint���231

List Ansible Tasks���239

Ansible Check Mode���240

Ansible Playbook Syntax Check��243

Ansible Testing with Molecule���244

Summary���257

Index��259

Table of Contents

ix

About the Author

Vincent Sesto is a DevOps engineer, endurance athlete, and author.

As a DevOps engineer, he specializes working with Linux and open

source applications. He is particularly interested in helping people get

more from the tools they have and is currently developing his skills in

DevOps, continuous integration, security, Splunk (UI and Reporting),

and Python development.

xi

About the Technical Reviewer

Lamodar Ray is an IT professional in the

United States. He is a database specialist

with focused expertise in Amazon Cloud

services and Oracle Cloud Infrastructure.

He has worked in delivering database and

infrastructure solutions in diverse industry

and business domains including workforce

management, finance, procurement ,

manufacturing , sales, and compensation.

He is also a Certified Oracle Cloud Architect

Professional and Amazon AWS Architect

Associate.  

xiii

Preface

In a world where we are constantly pushed to do more with less,

configuration management has become a major cornerstone in allowing

system administrators and DevOps engineers the ability to be more

productive with the time they have. A configuration management tool

which has been set up correctly and is keeping an environment patched

and up to date will ensure that the ever-growing number of servers an

administrator needs to work with will be as consistent as possible.

Combined with this, a configuration management system will also

ensure changes that need to be made can be performed in an automated

manner with ease. This is where Ansible comes in. This book hopes

to bring you a unique approach to learning Ansible and configuration

management while providing realistic examples in its day-to-day use.

This book is not aiming to provide you with 10,000 hours of courses

for you to master the subjects outlined but instead provide you with

necessary, deliberate training with a purpose in mind to give you a

majority of the knowledge needed to be proficient at the subject at hand.

�What This Book Covers
The book is divided into seven chapters which will allow you to build on

your knowledge with each chapter, developing further as we move through

the examples:

•	 Chapter 1, Configuration Management with Ansible,

starts you off with the basics of Ansible, providing

you details on how to install and configure your

environment and how to get started working with

different Ansible modules from the command line.

xiv

•	 Chapter 2, Ansible Playbooks, introduces you to

the main way Ansible organizes tasks and code in

playbooks. It is the perfect progression from the

information you learned in the first chapter.

•	 Chapter 3, Extending Playbooks with Roles and
Templates, provides you with the information you

need to get you started with breaking down your

configurations and organizing your code in roles.

•	 Chapter 4, Custom Ansible Modules, Vaults, and
Galaxies, extends your knowledge on roles and

playbooks by showing you how to start creating your

own modules. It also shows you how you can keep

secret data safe while getting you started with Ansible

Galaxy.

•	 Chapter 5, Working with Ansible in the Amazon
Cloud, will then show you how to get started working

with Amazon Web Services and allowing Ansible to do

all the heavy lifting and hard work for you.

•	 Chapter 6, Ansible Template and CloudFormation
Scripts, will extend the work we did in the previous

chapter allowing you to further enhance your roles

to make them more reusable with Ansible template

function. We will also start to incorporate AWS

CloudFormation scripts into our deployment code.

•	 Chapter 7, Ansible Tests and Variables, the final

chapter, will take you through how you can start

checking your code before you deploy it to make sure

you are limiting the number of errors during your

configuration deployment.

Preface

xv

�What You Need for This Book
To be able to work along with the example applications created in this

book, you will need to have the following items available:

•	 A modern PC or laptop able to run up-to-date

applications and virtualized servers

•	 A running version of Ansible, preferably on Linux or

Mac, but a majority of the commands will work across

in Windows as well if you are using the Windows

Subsystem for Linux

•	 A modern and stable web browser, such as Chrome or

Firefox

•	 A basic understanding of web technologies as well

as being competent using the Linux or Windows

command line

•	 Access to an Amazon Web Services account to deploy

infrastructure to

•	 An Internet connection

�Who This Book Is For
This book is designed to provide an in-depth introduction to Ansible and

configuration management. It is best suited for system administrators,

DevOps engineers, software engineers, and developers wanting to extend

their current knowledge of computer systems and incorporate Ansible

as a configuration management tool within them. This book is designed

to provide an introduction to Ansible and allow the reader to build

experience with each chapter to cover more advanced topics.

Preface

xvi

�Conventions
In this book, you will find a number of text styles that distinguish between

different kinds of information. Here are some examples of these styles and

an explanation of their meaning.

A block of code is set as follows, with the number on the left representing

the line number in the file. In most cases, the test will be highlighted in

strong text to show that it needs to be added to your own code or file:

1 <xml>

2 <label>Value</label>

Any command-line input or output is written as follows where the

command itself is in strong text and the output is listed below in the same

font but in gray font color:

echo "Hello Ansible"

Hello Ansible

New terms and important words are shown in bold as these are texts

you should be taking further note of.

�Downloading the Example Code
You can download the example code files for this book from the following

location: www.apress.com/978-1-4842-6484-3.

�Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across

all media. If you come across any illegal copies of this book in any form on

the Internet, please provide Apress with the location address or website name

immediately at www.apress.com/gp/services/rights-permission/piracy.

Preface

http://www.apress.com/978-1-4842-6484-3
http://www.apress.com/gp/services/rights-permission/piracy

xvii

Introduction

Technology is rapidly changing. In a short amount of time, we’ve seen

technology become one of the most important parts of our world – from

hardware like laptops and smartphones to social media and websites.

Many people don’t take the time to think of the underlying systems and

infrastructure that a lot of this technology integrates with and in most

cases relies on to work.

When the Internet was only starting to come to shape, a company

could rely on one web server to provide all the information to their

customers. Today, it’s not uncommon for enterprise organizations to

have hundreds or even thousands of servers to deliver reliable content to

their customers. With this comes the complexity of making sure all these

servers are consistent, secure, and up to date as well as being provisioned

in a timely manner. This sounds daunting, but fortunately technology and

the way we administer and work with these complex systems have also

changed.

This is where configuration management, and more so infrastructure

as code, has allowed the people working with these systems to grow with

their enterprises and ensure consistency and uptime. This is why Ansible

has become one of the most popular tools to help teams and individuals

manage and configure these systems. Ansible is an open source

application that has been widely adopted and is also widely supported.

This book hopes to show the reader why Ansible has been so widely

adopted as its ease of use and functionality are helping companies across

the world manage their systems. This book hopes to provide you with

interesting and real-world projects to give you practical insight and hands-

on experience that can then be transferred over to your own projects.

xviii

This book starts with a discussion on configuration management and

introduces the reader to Ansible and some of the more common modules

used in day-to-day work. The book then introduces the projects you will be

working through and provides you with hands-on experience creating and

working with Ansible playbooks, working with roles, and creating your own

templates. The reader is then introduced to more advanced Ansible topics

like creating your own Ansible modules, working with Ansible Galaxy, and

storing your secrets and credentials with Ansible Vault.

The second half of the book then provides you with all you need to

know to get started working with Ansible and provisioning infrastructure

with Amazon Web Services. The book then finishes with the final chapter

providing the reader with the tools they need to help troubleshoot their

playbooks and roles as well as implementing testing for their infrastructure

code.

Introduction

1© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_1

CHAPTER 1

Configuration
Management with
Ansible
Working with technology, we probably all started in a similar way. We

created smaller computer systems, usually on the laptop or PC we were

working on, or maybe a small virtualized environment. As we developed

our knowledge and experience, our systems grew larger and our need to

keep all of these systems consistent grew with it.

Configuration management allows you to track items in your

infrastructure and keep a track of what they do, what they’re supposed to

look like, and what’s involved in creating them from the ground up. The

type of information that this would include is the services they run, the

versions of the applications being run, how they’re configured, and their

location in the network.

Our first chapter is going to get you started with Ansible as a means of

managing the configuration of your environment. We’re going to do our

best to get you started as quickly as possible and try and limit the amount

of text for you to read. In this chapter, we are going to cover the following:

https://doi.org/10.1007/978-1-4842-6485-0_1#DOI

2

•	 We will provide an introduction to configuration
management and why it’s so important.

•	 We will introduce Ansible and provide a brief

discussion on why we have decided to use it as a

configuration management solution.

•	 We will then get you started with installation, basic

configuration, and running your first commands with

Ansible.

•	 We will then go through some of the common Ansible
modules to kick off your journey into configuration

management.

An effective configuration management system can allow a technician

or administrator the ability to view how to deploy and make changes to the

working environment and even create the environment from scratch.

�Getting Started with Configuration
Management
An effective configuration management solution can benefit your

environment in a number of ways including

•	 Saving Time – A configuration management system

can help you reduce the time required to manage

updates, changes, and repetitive tasks across multiple

environments and networks.

•	 Improving Availability – Configuration management

should help you resolve issues faster as it will allow

you identify, troubleshoot, and implement solutions to

problems which could arise.

Chapter 1 Configuration Management with Ansible

3

•	 Lowering Your Risk – It will help you reduce downtime

and lower the chance of mistakes being made within

the configuration of your services. It can also help you

ensure your systems are secure and compliant.

•	 Improve Control – It will allow you to promote best

practices across your environments and ensure

consistency.

•	 Allow You to Do More with Less – This is probably

the underlying reason for all these types of decisions.

A good configuration management system will allow

you to automate mundane processes and eventually

allow you to spend less time worrying about your

configuration management.

If you don’t have an official way of managing your configurations, you

most likely have developed a way to automate your deployment processes

through scripts or run a book which would most likely start to become too

complex to manage as your environments get bigger.

�Why Ansible?
Ansible describes itself as software that automates software provisioning,

configuration management, and application deployment. The first stable

release of Ansible occurred in February 20, 2012, by Michael DeHaan.

Ansible, Inc. was set up originally to commercially support and sponsor

the application, with Red Hat acquiring it in October 2015.

Chapter 1 Configuration Management with Ansible

4

Note I f you are interested in a more detailed history of how
Ansible came about, Michael DeHaan has gone into great details in
documenting the history of Ansible and its origins. Here is the link
for his blog post on the origins of Ansible: www.ansible.com/
blog/2013/12/08/the-origins-of-ansible.

If you haven’t been working in technology for very long, you may not

know there are a lot of ways in which you can implement configuration

management. Some of the more popular open source projects include

Puppet, Chef, SaltStack, and of course Ansible. There are benefits and

reasons as to why you might choose one over the other. This book is

focusing on Ansible due to the many benefits it provides including

•	 Ansible Is Simple – Ansible is easy to read, is

minimal, and has a low learning curve to allow

both administrators and developers manage their

environments with ease. Its configurations are human

readable while being machine parsable, which will

allow new team members to be on board quickly and

existing team members the ability to make changes

quicker. Although knowing Python and Linux shell

scripting will help with creating your own modules,

there is no need to know another scripting language to

get the most out of the Ansible syntax.

•	 Ansible Is State Driven – Ansible will know how to get

your system to that end state and will allow for reliable

and repeatable IT infrastructure. Compared to a script,

which is performing actions to get to the end state, this

helps reduce the chance of the potential failure from

occurring.

Chapter 1 Configuration Management with Ansible

http://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
http://www.ansible.com/blog/2013/12/08/the-origins-of-ansible

5

•	 Ansible Is Secure – As a default, Ansible uses SSH as
its method of communication and its transport layer
between servers and systems. It uses the open source
version, OpenSSH, which is lightweight and available
across many platforms. Being open source, it ensures
that if a security issue is discovered, it will be patched
by the community quickly. Ansible is also agentless,
meaning you don’t need to install another agent on
your target machines.

•	 Ansible Has Almost Everything Included – Ansible is
easy to deploy into new environments as it comes with
almost everything included. When installed, Ansible
comes with more than 1300 modules to get you started. If
you can’t find what you need in its pre-installed modules,
Ansible Galaxy is an online community which allows you
to reuse configuration code that were committed to the
repository. If you are still stuck and if you know a little
Python, you can even write your own module.

•	 Simple Tasks Can Be Run from the Command Line –
You will see shortly in this chapter that we will be able
to run commands on host machines without needing
to create an Ansible playbook or other configuration
file. You can simply run the command directly in the
command line.

•	 Ansible Is Idempotent – If you get into a discussion
with anyone about configuration management, sooner
or later, the word idempotent will come up. Something
is said to be idempotent if, whenever it is applied twice
to any situation, it gives the same result as if it were
applied once. Ansible is structured around the concept
of being idempotent, meaning that you only do things

that are required.

Chapter 1 Configuration Management with Ansible

6

Now that you have some more information on what Ansible is and why

we are using it, the following section will guide you through getting started

with installing and running your first Ansible commands.

�Getting Started with Ansible
Let’s not hold things up any longer. We will start by installing, configuring,

and using Ansible. For now, we are simply going to install Ansible on the

system we are working on.

We are going to focus on using Ansible with Linux, and all the

commands we are going to be performing will be within a Linux

environment. However, these commands should be able to work on a

newer Windows installation, which has the Windows Subsystem for Linux

installed as well as Ansible installed on a Mac. Originally, Ansible was

designed to only work with Linux machines, but as of version 1.7, it also

contains support for managing Windows machines.

Note I f you are running Windows and are interested in running the
following Ansible commands, you can either install a virtual machine
running a current version of Linux, you can install docker containers
and run the Ansible commands against the container, or you can
install the Windows Subsystem for Linux. You may need to refer to the
Windows documentation for your specific system, but the following
commands should help you get there:

	1.	O pen PowerShell as administrator and run the
following command: dism.exe /online /enable-feature
/featurename:Microsoft-Windows-Subsystem-Linux /
all /norestart.

	2.	O nce complete, restart your system when prompted.

Chapter 1 Configuration Management with Ansible

7

	3.	W hen your system has restarted, go to the Windows Store
and choose the Linux distribution that you are wanting to
install. Preferably, choose Ubuntu as all the commands
we are using should work without any issues.

	4.	S elect “Get”, and once the download has completed,
select “Launch”.

	5.	W hen the application starts up, it will load a console
screen, and when the installation is complete, you will
be prompted to create your UNIX user account for the
Subsystem. The username and password will not have
any relation to the current users set up on Windows.

	6.	I f you haven’t used the Subsystem before, compared to
an actual Linux installation, it does run a little slower.
Installation of applications may need some extra love
to get going, but there is growing documentation and
support as it is becoming a great way to work when
you are only able to use a Windows environment.

�Installing Ansible
Whether you are on Linux or Windows using the Linux Subsystem, you

will be able to open up your Linux command line and run the following

commands to install Ansible:

	 1.	 We should start by updating our package manager,

so run the following apt-get update command using

sudo to make sure you have privileged rights on

your system:

sudo apt-get update

Chapter 1 Configuration Management with Ansible

8

	 2.	 Now we can install all the relevant dependencies

which Ansible will rely on to install correctly using

the following apt-get install command:

�sudo apt-get install python3 python3-pip git libffi-dev

libssl-dev -y

	 3.	 Python’s pip3 install command can now be used to

install Ansible as we have here:

pip3 install ansible

Collecting ansible

 Downloading ansible-2.9.10.tar.gz (14.2 MB)

|█████████████████████████
███████| 14.2 MB 1.3 MB/s

...

Installing collected packages: PyYAML, six, pycparser, cffi,

cryptography, MarkupSafe, jinja2, ansible

Successfully installed MarkupSafe-1.1.1 PyYAML-5.3.1

ansible-2.9.10 cffi-1.14.0 cryptography-2.9.2 jinja2-2.11.2

pycparser-2.20 six-1.15.0

We have redacted a lot of the output as pip3; installing

Ansible also installs all the required dependency

packages needed for it to run successfully. As well

as Ansible, you’ll see a number of other applications

installed as we have in the preceding output.

	 4.	 Finally, to make sure that everything has worked

correctly, we can now verify if Ansible has installed

by using the ansible command with the --version

option:

ansible –-version

Chapter 1 Configuration Management with Ansible

9

ansible 2.9.9

 config file = None

...

Ansible is now installed, and we have version 2.9.9

displayed from our output. I know, we’re taking things a

little slow, but trust me, we will soon start to ramp things

up in the coming pages.

Note A s part of our installation, we have used the pip3 command
to install Ansible in the previous steps. If you have not done this
before, the pip3 command is a tool for installing and managing
Python packages. Ansible is part of the Python Package Index, so pip3
is the perfect candidate for installing Ansible onto our system. If you
are having trouble installing this way, you may need to try running
the command as the root user. Also, if you are using a Mac, you can
simply use the same command to install Ansible on your system as
long as you have pip3 installed as well.

�Ansible Support for SSH
Before we move on to perform our first Ansible command, we need to

make sure Secure Shell (SSH) is working and operational on our system.

As we’ve discussed earlier, Ansible uses SSH to communicate with other

environments. Even though we will be running our first commands on

the current system we are working on, we still need to make sure SSH is

working on running successfully:

Chapter 1 Configuration Management with Ansible

10

	 1.	 Make sure you are logged into your working
environment, where you installed Ansible. First, we
want to install openssh-server using the following
apt-get install command:

sudo apt-get install openssh-server -y

	 2.	 Once we have openssh installed, it will allow us to
generate an ssh key to allow secure communication
between servers. Using the -t option allows us to
specify the type of key in this instance and rsa key:

ssh-keygen -t rsa

	 3.	 Accept all the defaults and you will have your id_rsa
private and public keys in the .ssh directory of your
home directory.

	 4.	 If you perform a listing on the .ssh directory, you will
be able to see the new keys generated. Your public
key will have the .pub extension added to the end.
Run the ls -l command as we have here from your
home directory. The ownership of your files should
be different to the following output:

ls -l .ssh

-rw——- 1 user user 1679 Jan 18 10:57 id_rsa
-rw-r–r– 1 user user 398 Jan 18 10:57 id_rsa.pub

	 5.	 You can now copy the keys to your host. If you were
going to send them to a different machine, you
can simply substitute the domain or IP address for
localhost in the following command. But for now,
run the following command to copy your keys to
your working environment:

ssh-copy-id localhost

Chapter 1 Configuration Management with Ansible

11

	 6.	 This should now allow you to connect to your

localhost via SSH, with the default openssh

configurations allowing for the connection using the

keys you generated previously:

ssh localhost

	 7.	 The preceding command will use the private key

in your .ssh directory, which will be located in your

home directory. If you need to refer to a key that is

in a different location, use the -i option with ssh and

specify the file name as part of the command:

ssh -i your_ssh_key_file localhost

You should now be able to perform a login into your environment

without the need to input your username and password as SSH will use the

newly created keys.

Note I f you are a fan of Docker or are familiar with how to work
with Docker, there is also a Docker image available that has Ansible
installed and ready to start accepting commands on. This is not
the best way to use Docker as it does create a larger than usual
image to be used, but it does give you an easy option to perform
some of the exercises in this book. If you are interested in using this
image instead of installing Ansible on your system, please go to the
following url as this will give you details on how to run and use the
image:

https://hub.docker.com/repository/docker/
vincesestodocker/try-ansible

Chapter 1 Configuration Management with Ansible

https://hub.docker.com/repository/docker/vincesestodocker/try-ansible
https://hub.docker.com/repository/docker/vincesestodocker/try-ansible

12

�Finally, Our First Ansible Command
Now we have Ansible installed and SSH configured, it’s time to run our first

Ansible command, so let’s do this! From your console, run the following

command:

ansible all -i "localhost," -m shell -a 'echo Ansible is fun'

localhost | SUCCESS | rc=0 >>

Ansible is fun

It’s a pretty basic command, but there is still a little to explain. The

command does the following:

•	 Firstly, we specify all, so the command will be run

across all the inventory we list.

•	 We then make a list of inventory with the -i option,

but we only have our localhost listed, so this will be the

only host the ansible command is run over.

•	 The -m option is then provided to allow us to specify a

module we can use; in this case, it’s the shell module to

run a shell command.

•	 Finally, we specify the -a option allows us to provide

arguments to the shell module, and in this instance,

we are simply running an echo command to print the

output “Ansible is fun”.

If we wanted to run this command over multiple systems, we simply

place a comma-separated list of the systems we want to run this Ansible

command across as we have in the following command:

ansible all -i "localhost, 127.0.0.1" -m shell -a 'echo Ansible

is fun'

Chapter 1 Configuration Management with Ansible

13

[WARNING]: A duplicate localhost-like entry was found

(127.0.0.1). First found localhost was localhost

localhost | CHANGED | rc=0 >>

Ansible is fun

127.0.0.1 | CHANGED | rc=0 >>

Ansible is fun

The preceding command has pointed to the same system by using

“localhost, 127.0.0.1” as the list of systems we want to run our Ansible

command over. We get a warning first as Ansible realizes that localhost and

127.0.0.1 are the same system, but then runs the command over both.

This is just the start of our configuration management journey.

Imagine if you wanted to run this command across multiple servers, then

you would only need to specify more hosts in the inventory. What if you

didn’t want to run an echo shell command? Well then, we could substitute

a different command or use one of the many modules we will learn about

later in this chapter. Finally, what if we wanted to do more than one simple

command or deploy or change a whole environment? Then we would be

able to run a playbook which includes all of these other commands.

�Basic Ansible Playbooks
Playbooks are a way of using Ansible in a scripted form instead of running

commands on the command line. We will quickly touch on the subject

of playbooks now, but our next chapter will be dedicated to running you

through all of the intricacies or working with playbooks. A playbook is a set

of steps or tasks that need to be taken for a system to get to a certain end

state. Let’s not get too overloaded with details as we will go through this in

our next chapter. So, for now, we can start by setting up a basic playbook

and running it on our system to demonstrate how they work:

Chapter 1 Configuration Management with Ansible

14

	 1.	 Make sure you are back in your development

environment and we want to start by creating a new

file called test.yml:

touch test.yml

	 2.	 Use your favorite text editor, open the file, and add

the code listed as follows into the file:

1 ---

2 - hosts: localhost

3 tasks:

4 - name: Run our original Ansible command

5 debug: msg="Ansible is fun"

6 - name: We also need to test connectivity

7 ping:

The first line of the playbook let us know it’s a YAML

file with the three dashes (---), and the second line

tells us we are only deploying to our localhost. From

line 3, we then start a list of tasks which need to be

run. The name directive in lines 4 and 6 provides

a human-readable name and description for each

of the tasks. Line 5 performs something similar to

what we did in our first Ansible command providing

output to the screen, and then finally, line 7 runs the

ping module to test connectivity.

Note  A nsible uses YAML files as playbooks. This means that you
really need to make sure your spaces and indentation are 100%
consistent.

Chapter 1 Configuration Management with Ansible

15

	 3.	 To run your first playbook, we will use a new

command. This time, we will use the following

ansible-playbook command using the test.yml as

our playbook and once again use the -i option as we

did previously to specify the host we want to run our

playbook on:

ansible-playbook test.yml -i “localhost,”

PLAY [localhost] ***********************************

TASK [Gathering Facts] *****************************

ok: [localhost]

TASK [Run our original Ansible command] ************

ok: [localhost] => {

 "msg": "Ansible is fun"

}

TASK [We also need to test connectivity] ***********

ok: [localhost]

PLAY RECAP ***

localhost: ok=3 changed=0 unreachable=0 failed=0

Our output provides details of all the tasks being performed by the

playbook, with the final line showing the system we are deploying to, the

localhost, and three tasks performed in our playbook, with no changes, no

unreachable hosts, and no failed tasks.

Chapter 1 Configuration Management with Ansible

16

�Ansible Configuration and Inventory Files
When you install Ansible, it will come with a long list of configurations

which can be tweaked and tuned to your liking. As we saw in our previous

examples, we have not done anything with our configuration file as the

default configurations will be sufficient for a majority of the work you do.

If you have used Ansible before or have looked around, you will notice

there are more than one location where configurations can be found.

Ansible has a precedence on using these configurations. It will use the first

value found in the following order:

•	 ANSIBLE_ENVIRONMENT_VARIABLES – Usually

specified in capital letters. Ansible will first look for

variables specified as environment variables and use

them before any other variables.

•	 The ansible.cfg File – This file needs to be located in

the current directory where ansible is being run from.

•	 The .ansible.cfg File – Usually specified in the user’s

home directory.

•	 The /etc/ansible/ansible.cfg – These are the system

Ansible configurations created when the application is

installed.

If you open the /etc/ansible/ansible.cfg with a text editor, you will

notice a majority, if not all, of the entries will be commented out. Keep the

variable precedence in mind when working in a different environment or

system. You may need to deploy a change from a different environment

where this system’s Ansible variables may override what you need

to do. If you would like to get an explanation on any of the entries in

the configuration file, read through the Ansible documentation at the

following link:

Chapter 1 Configuration Management with Ansible

17

https://docs.ansible.com/ansible/latest/installation_guide/

intro_configuration.html#explanation-of-values-by-section

As we saw in our previous example, we specified the details of our

systems within the command-line options. Instead, we can add an

inventory file which Ansible can refer to. This means we can add a lot

more detail into the inventory file with a long list of servers we want to

manage. If you are not already logged into your environment, do so and we

will set up an inventory file to be used in our Ansible commands:

	 1.	 In the directory we are working in, we want to start

by setting up an inventory of hosts we can run our

commands on. We are going to call it “hosts,” so

create the file using the touch command as we have

here:

touch hosts

	 2.	 Open the hosts file with your favorite text editor

ready to add our inventory details.

	 3.	 Our inventory file needs to group our hosts into

different categories. For example, we may have a

group called [webserver], and underneath we will

list all of the hosts in our environment. For now, we

are simply going to set up a category for the system

we are working on as listed here:

1 [mylaptop]

2 localhost

Chapter 1 Configuration Management with Ansible

18

As you can see, we have called the category

“mylaptop” and placed it in square brackets. The

domain or IP address is then placed below. If we

have a second or third system which we wanted to

include, we would simply add them below.

	 4.	 We can now run our Ansible commands by

specifying the hosts file and no longer having to list

the domain or IP addresses in our command. As you

can see in the following command, we are still using

the -i option, but now, we specify the hosts file:

ansible all -i hosts -m shell -a 'echo Ansible is fun'

localhost | SUCCESS | rc=0 >>

Ansible is fun

This didn’t look very impressive compared to what

we’ve done previously. But remember we can now

list multiple servers in our hosts file and refer to

them by different names, or in our example, we

can specify all to run the command across all the

systems in our hosts file.

	 5.	 Open the hosts file again and add in a second value;

this time, we will call it the [webserver] and list the

IP address of our host again. The hosts file should

now look similar to the following image:

1 [mylaptop]

2 localhost

3

4 [webserver]

5 127.0.0.1

Chapter 1 Configuration Management with Ansible

19

	 6.	 For example, in the following command, instead of

specifying all, it is just specifying webserver and will

now only run the Ansible command over the host

we have defined as a webserver:

ansible -i hosts webserver -m shell -a 'echo

Ansible is fun'

localhost was localhost

127.0.0.1 | CHANGED | rc=0 >>

Ansible is fun

Hopefully, you can now start to see the benefit of

using Ansible across your environment. In the next

section, we are going to walk through some of the

more common modules you might want to use in

your configuration management.

Note T his may be a good time to remind you that as your
configurations start to grow, it may be wise to consider placing your
work under version control. As you may have read previously, all of
the work in this book is provided to you via GitHub, and if you don’t
already use something similar, it is a perfect place to start managing
your configurations and source code.

Chapter 1 Configuration Management with Ansible

20

�Running Ansible Modules
We discussed earlier in the chapter that Ansible comes with over 1300

modules as part of the installation. We’ve been using the “shell” module

for our early attempts at running Ansible commands on our host. The shell

module is simply a way for us to use Linux commands via Ansible. The

modules available can be run directly on the remote hosts as we’ve been

running our “shell” module, as well as being run through playbooks.

Ansible provides a handy index to all their modules. Due to the large

number provided, the documentation has separated them into specific

categories to help you search through for the specific ones you need. The

full index of modules can be located at the following link:

http://docs.ansible.com/ansible/latest/modules_by_category.html

For the next few pages of this book, we’re going to run through some

common modules to help you get used to running Ansible commands and

hopefully allow you to easily move on with creating playbooks in the next

chapter. Log onto the system you’ve been working with so you can follow

along.

�Ping
One of the first modules a lot of people will learn is the ping module. As it

suggests, the module performs a ping test on the specified host requesting

a reply if the host is accessible and powered on:

ansible -i hosts mylaptop -m ping

localhost | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

Chapter 1 Configuration Management with Ansible

21

 "changed": false,

 "ping": "pong"

}

This is exactly the same as our previous commands we made earlier

in the chapter where we have specified we want to run the module over

mylaptop from the hosts inventory file. We then use the -m option to

specify any module; in our case, we use the ping module. If all goes well,

you will receive a SUCCESS reply.

�Setup
The setup module provides us with over 1000 lines of information on

our system. All of which are presented in a friendly manner to view JSON

format, with all values being preceded with “ansible_” as you can see from

the cut down output provided as follows. This command is useful to gather

data on your system and then perform specific changes dependent on the

information gathered. For example, a specific application will be installed

depending on the specific type of operating system architecture being used

by the system:

ansible mylaptop -i hosts -m setup

localhost | SUCCESS => {

 "ansible_facts": {

 "ansible_apparmor": {

 "status": "disabled"

 },

 "ansible_architecture": "x86_64",

 "ansible_bios_date": "03/14/2014",

 "ansible_bios_version": "1.00",

 "ansible_cmdline": {

 ...

Chapter 1 Configuration Management with Ansible

22

 "ansible_userspace_architecture": "x86_64",

 "ansible_userspace_bits": "64",

 "ansible_virtualization_role": "guest",

 "ansible_virtualization_type": "docker",

 "discovered_interpreter_python": "/usr/bin/python3",

 "gather_subset": [

 "all"

],

 "module_setup": true

 },

 "changed": false

}

If you run the command on your system, you’ll notice an output

similar to the preceding one. In the last few lines of output, you will notice

I am using a Docker image to run the commands, and as you can see, my

ansible_virtualization_type is listed as docker.

�Git
The git module allows you to perform Git commands via Ansible. If you

need to deploy software directly from a git repository, this would be the

perfect reason to use this module. You will need to have Git installed

and available on your system before you are able to run the following

command:

ansible mylaptop -i hosts -m git -a "repo='https://github.

com/vincesesto/markdown-cheatsheet.git' dest=/tmp/markdown-

cheatsheet/"

localhost | CHANGED => {

 "after": "ecfb900a44a84dcd0d798ad3b0c98ea838ea5668",

 "ansible_facts": {

Chapter 1 Configuration Management with Ansible

23

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "before": null,

 "changed": true

}

In the preceding example, we have called the git module with the -m

option and used the -a option to provide all the arguments specific to the

module for it to successfully complete. In this case, we have specified the

repository with repo argument and then provided a destination folder with

the dest argument. If the folder is not present, Ansible will create it, so we

should see the file downloaded and available in our destination folder.

This Ansible command simply performs a git clone command. You would

then need to perform the build process separately once the code is cloned.

�Shell
We’ve used the shell module previously in this chapter, but in the

following example, we can have used it to verify our previous Git command

worked by performing a listing of the files in the /tmp/ directory:

ansible mylaptop -i hosts -m shell -a "ls -l /tmp/"

localhost | CHANGED | rc=0 >>

total 8

drwx------ 2 root root 4096 Jun 24 14:35 ansible_command_

payload_mwym06gg

drwxr-xr-x 3 root root 4096 Jun 24 14:21 markdown-cheatsheet

All of this should be looking very familiar to you by now as we are

simply specifying the arguments of a directory listing with the -a option.

Chapter 1 Configuration Management with Ansible

24

�Apt (or Yum)
A majority of modules will be able to be run across different versions of

Linux, but one that may differ is the package manager which is being used

on the specific system. The following command uses apt as the module,

but of course for Red Hat or Centos, you would use the yum module with

the name being equal to httpd:

ansible -i hosts mylaptop -m apt -a "name=apache2

state=present"

localhost | CHANGED => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "cache_update_time": 1592964803,

 "cache_updated": false,

 "changed": true,

 ...

 �"Processing triggers for systemd (245.4-4ubuntu3.1)

...",

 "Processing triggers for libc-bin (2.31-0ubuntu9) ..."

]

}

Once again, we have removed quite a few lines of the preceding output

to help with our explanation. You will then see the arguments provided

as name of the application we want to install and the state, which in the

preceding example, the name of the package being installed is apache2

and the state is present. If we wanted to remove the application, we would

use the same command but change the state to absent.

Chapter 1 Configuration Management with Ansible

25

Note I f you are not accessing your system as the root user, some
Ansible modules like the apt module may need to use the --become
option as part of your command. The option ensures Ansible becomes
a user which can install programs on this system, such as the root
user, and it then requests a password to allow the install to continue.

�Service
The service module can be used to perform a start, restart, or stop on

services that are installed and running on your system. As we have Apache

running on our current host, we can test this out by making sure Apache

is started and the web service from running by using the following Ansible

command:

ansible -i hosts mylaptop -m service -a "name=apache2

state=started"

localhost | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "changed": false,

 "name": "apache2",

 "state": "started"

}

The argument used by the service is either started, stopped, or

restarted. We have started this service and have a nice output showing the

apache2 web service is in a started state.

Chapter 1 Configuration Management with Ansible

26

�get_url
We can now test the apt and service modules we ran previously with the

get_url module which grabs content from HTTP, HTTPS, or any other

Internet protocols. As we should have a working Apache server running

from the previous Ansible commands we ran, we can now download the

default page running on http://localhost:

ansible -i hosts mylaptop -m get_url -a "url=http://localhost
dest=/tmp/"

localhost | CHANGED => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "changed": true,

 "checksum_dest": null,

 "checksum_src": "07993837ce7f0273a65b20db8ee9b24823da7e1e",

 "dest": "/tmp/index.html",

 "elapsed": 0,

 "gid": 0,

 "group": "root",

 "md5sum": "3526531ccd6c6a1d2340574a305a18f8",

 "mode": "0644",

 "msg": "OK (10918 bytes)",

 "owner": "root",

 "size": 10918,

 �"src": "/root/.ansible/tmp/ansible-

tmp-1592968304.457506-3385-208885727085828/tmpu2f59a1j",

 "state": "file",

 "status_code": 200,

 "uid": 0,

 "url": "http://localhost"

}

Chapter 1 Configuration Management with Ansible

27

Once again, we need to specify the destination as part of the

arguments, as the module needs somewhere to place the content it

downloads from the website url in our command. The output of our

command shows a 200 value as a status_code to show we have a successful

result from our command.

�file
If you are looking to create a directory or file on an environment, you don’t

need to look any further than the file module. It simply takes the path of

the directory or file you want to create and the permissions needed:

ansible mylaptop -i hosts -m file -a "path=/tmp/another_test

owner=root group=root state=directory"

localhost | CHANGED => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "changed": true,

 "gid": 0,

 "group": "root",

 "mode": "0755",

 "owner": "root",

 "path": "/tmp/another_test",

 "size": 4096,

 "state": "directory",

 "uid": 0

}

As you can see, the arguments we put in place are fairly

straightforward. We need to make sure that we include the state of the file,

in this case, a directory. We have also specified the owner and group the

directory needs to be assigned to.

Chapter 1 Configuration Management with Ansible

28

�user
Setting up users is easy with this user module. We can control the state of

the account on the system as being absent or present to determine if it is

created or removed:

ansible -i hosts mylaptop -m user -a "name=jsmith comment='Jane

Smith' state=present"

localhost | CHANGED => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "changed": true,

 "comment": "Jane Smith",

 "create_home": true,

 "group": 1000,

 "home": "/home/jsmith",

 "name": "jsmith",

 "shell": "/bin/sh",

 "state": "present",

 "system": false,

 "uid": 1000

}

Our output from the Ansible command gives us clear details of the user

account created, even though the user would not be accessible as it does

not have a password set. We could also add the password as an argument

to set this upon creation.

We can double-check the new account has been created by searching

the /etc/passwd file on our host:

cat /etc/passwd | grep jsmith

jsmith:x:1002:1002:Jane Smith:/home/jsmith:

Chapter 1 Configuration Management with Ansible

29

As you may know, creating users in a Linux system gives you a large

number of options to configure. We can see from the output there are a

large number of arguments configured besides the name, comment, and

state arguments. The user will be created with the default values unless

you specify these arguments in the Ansible command.

�find
The find module can be run to find different files and directories that are

available on the host system. The find module allows you to specify a path,

age of the file, and the type of file and even search for files of a specific size.

This module can let you search for old files that may no longer be used or

larger files that may be filling up your disk space. The following Ansible

command is looking through the /var/log/ path of our system, looking for

directories that are older than a week:

ansible mylaptop -i hosts -m find -a "path=/var/log/ age=1w

file_type=directory"

localhost | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python3"

 },

 "changed": false,

 "examined": 11,

 "files": [

 {

 "atime": 1592814330.422783,

 "ctime": 1592814330.331783,

 "dev": 112,

 "gid": 102,

 "gr_name": "systemd-journal",

 "inode": 3150926,

Chapter 1 Configuration Management with Ansible

30

 ...

 "xusr": true

 }

],

 "matched": 1,

 "msg": ""

}

We’re running these commands on a new virtual system, so we only

have one directory on the system that is older than a week. The output

provides a large amount of data on each file found, so we have again

reduced the amount of data on our output provided.

We are using a lot of modules to perform basic configuration tasks on

your systems, but these are just scraping the surface and not a limit to what

we can do with Ansible. You’ll find there is a module for almost anything

you want to do in your environment, and if there isn’t one created, you can

create it yourself. The modules in this section of the chapter have been

used to help you get used to running and using the commands on your

system.

We have done a lot of work running modules, but we are hoping

that by learning the basic module syntax, it will help you to transfer your

knowledge across to using playbooks a little easier.

�Running Ansible on Different Servers
So far, we have run our Ansible commands on the same server we have

been working on. We can continue to do this, but in the long run and to

get the most out of Ansible, we need to start setting up remote servers to

deploy our changes on.

We have already created our ssh credentials, so we can copy them over

to a server you have access to with the same command we used on our

own server:

Chapter 1 Configuration Management with Ansible

31

ssh-copy-id <remote_host_ip>

By performing the ssh-copy-id command, it will copy the public ssh

key into the authorized_keys file located in the .ssh directory. This can also

be performed manually if you prefer. You will need to access the home

directory of the user you are accessing the host from and manually add the

values to the authorized_keys file.

We can now ssh to this server without a password.

Although it is faster, it is less secure to be running commands without

a password. To allow this for your user that is accessing the remote server,

you will need to make changes to the sudoers file. You can do this by using

the visudo command and then adding in the following line to the end of

the file:

<username> ALL=(ALL) NOPASSWD: ALL

If the user you are using now has access to run as sudo on a remote

server, you should be able to perform the following command without any

errors or needing to enter any passwords:

ssh user@remote_host "sudo echo hello"

hello

Note  Making changes to the sudoers file can always cause major
problems on your environment. If you wish to make changes to the
sudoers file, make sure you use the visudo command as it will verify
changes you are making to the file before saving them, and hopefully,
make sure you don’t stop access to your server.

Chapter 1 Configuration Management with Ansible

32

�Different Versions of Ansible
Throughout this book, we will be using the free and open source version

of Ansible, trying our best to use ansible version 2.9.9. We will try our best

to ensure all scripts and code will be compatible with this version and any

subsequent versions. A large majority of companies are using the open

source version of Ansible as it gives them more than enough features to

run a configuration management system suitable for even the largest of

enterprises.

Ansible Tower is a paid version that is supported by Red Hat, but has

a free basic license available for ten nodes. This is the enterprise version

of Ansible which provides some extra bells and whistles that you don’t

get with the open source version of Ansible. It allows you to run ansible

playbook projects, run playbooks, schedule playbooks, handle inventories

of servers, and have a full access control list for managing users. It also has

support provided to the end user along with a user-friendly dashboard.

�Ansible Projects
We are just going to take a few moments to introduce the projects you will

be working on over the remainder of the book. It’s hoped these projects

will provide you with real-world examples which build on each other as

the chapters and your knowledge progress.

�Basic LAMP Stack
As you may know a LAMP stack stands for Linux, Apache, MySQL, PHP (or

Python in our case) and is used to host web applications. In the first four

chapters of this book we are going to work through our first project with

will be setting up a basic LAMP stack which will be configured to serve

basic content.

Chapter 1 Configuration Management with Ansible

33

To take this a little further and to show you how we can take our

Ansible configuration management further, we will expand this example

to also use a Django-based server. If you haven’t used Django before, it

is a Python-based web framework, and although it can be used to create

complex environments, we will only be using the basics of the application

so there will not be anything overwhelming or complicated in our

example.

�Splunk Server Environment
From Chapter 5, we are then going to move onto a different project where

we will be setting up and configuring a Splunk server environment.

Nothing is too exciting about this, but we will be moving our work into

the Amazon Cloud. This project will take you through using Ansible in

conjunction with using Amazon Web Services. We will start with the

basics of setting up our instance, configuring and setting up instance user

data, and then create an AWS image from our Splunk server.

From here, we will move further on and learn how to deploy

our images into a server environment using both Ansible and

CloudFormation. We will also use our image to pull in application code to

be deployed when the server is started up. We will cover a lot of AWS work,

but there will not be anything to intense and complicated as the main

focus of our work will be Ansible.

Chapter 1 Configuration Management with Ansible

34

�Summary
We have started slow covering a lot of work on the basic aspects of Ansible,

but you’ve still come a long way. At the start of the chapter, we began with a

discussion on configuration management and how Ansible fits in with this.

We then started to walk you through the process of installing, configuring,

and running Ansible commands and then set up a basic Ansible playbook

for you to run.

We then moved further into the configuration of Ansible for your

environment and then onto the remainder of the chapter where we

took you through some of the different versions of Ansible as well as the

different types of modules available to you.

The next chapter will take you further into configuring and working

with Ansible by introducing playbooks, and we will also get started with

working on creating our LAMP stack which we will be developing further

through the following chapters.

Chapter 1 Configuration Management with Ansible

35© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_2

CHAPTER 2

Ansible Playbooks
I’m hoping by now you can see Ansible is an easy way to remotely control

applications and system configurations. But running each command in

the command line is not the most efficient way of deploying these changes

to our environments. This is where we can introduce playbooks. Ansible

playbooks can contain a play or multiple plays and help you automate

system configurations in a reusable set of tasks which will step through the

implementation of your system into its desired state.

In this chapter, we’re going to introduce playbooks into your

configuration management arsenal helping you deploy your systems a lot

easier. In this chapter,

•	 We start by taking a look at YAML syntax and how we

use it in our playbooks.

•	 We then move on to converting some of the command-

line modules we learned in our last chapter into an

Ansible playbook which will be the start of our LAMP
stack project.

•	 Our focus then moves to the specifics of our working

playbooks and how they function.

•	 We will then take our project further by creating a

database and integrating Python in our environments

all by using playbooks.

https://doi.org/10.1007/978-1-4842-6485-0_2#DOI

36

•	 We finally take a look at how we can make our

playbooks more reusable especially when things get

more complex using the import and include functions.

From our last chapter, we mentioned that each playbook includes a set

of plays, which map a group of hosts to a specific role. As you will see in the

following example, a host will be mapped to a web server role. The roles

are represented by a list of tasks. These specific tasks act like a recipe, using

our Ansible modules to then our system to a specific state. Before we start

to work more on our playbooks, we will first gain a further understanding

on how YAML syntax works, so we can be more proficient in implementing

our playbooks later in the chapter.

�Ansible and YAML Syntax
Before we move into using playbooks in Ansible, we need to take a quick

moment to discuss YAML syntax. As we discussed in the first chapter

of this book, our basic Ansible playbook used YAML syntax to output a

simple message to the screen. The goal of YAML is to be easily readable

by humans. If you’ve used similar configuration file formats like XML or

JSON, you will notice YAML is also a lot easier to read compared to these

other formats.

With YAML being the basis of our Ansible playbooks, it’s appropriate

to run through the basics of the syntax before moving on to more playbook

examples. If you’re already familiar working with YAML, feel free to move

ahead to the next section of the chapter:

•	 YAML File Names End with .yml – All our playbooks

will use the .yml (or) .yaml file name extension, and

this lets everyone know it’s a YAML format file.

Chapter 2 Ansible Playbooks

37

•	 Syntax Starts with Three Dashes – The first thing

you’ll notice is our plays in playbooks all start with

three dashes (---). This will allow applications reading

the file to know it is a YAML format file.

•	 Whitespace Denotes Structure – Indentation and

whitespace in our YAML file denote the structure of the

file. If your indentation is out of place, this could mean

your configuration or playbooks are not being read

correctly. Make sure you never use a tab character as

indentation.

•	 A Comment Uses the Hash Symbol – You’ll most likely

want to use comments through your playbook. All

comments are preceded with the hash (#) symbol.

•	 List Members Use a Leading Hyphen – When

displaying a list of items, all items in the list will begin

at the same indentation level and start with a hyphen
(-). Here is an example list of operating systems, using

two spaces and then a hyphen before each of the

values:

Operating Systems:

 - Ubuntu

 - Debian

 - Red Hat

 - Centos

 - Windows

 - Mac

Chapter 2 Ansible Playbooks

38

•	 Dictionaries Are Represented As a “Key: Value” –

We simply add values to a dictionary by indenting our

values after the dictionary name and then adding a

key-value pair on each line. Here is an example of a

dictionary in YAML where we have two dictionaries,

one named vince and the second named neil. Both

then have three key-value pairs added in each with keys

specified as full_name, job, and comment:

vince:

 full_name: Vincent Sesto

 job: devops engineer

 comment: Ansible is Fun!

neil:

 full_name: Neil Diamond

 job: Singer and Songwriter

 comment: Good Lord!

•	 Span Multiple Lines with a Pipe – When needing to

add multiple lines of data for one entry, you can use the

pipe (|) symbol to add multiple lines and will include

the new line in the YAML file, while using the less than
(>) symbol will ignore any new lines. In the following

example, we are setting environment variables to be

used on a system and are using the pipe symbol to have

all new line characters present:

env: |-

 DB_HOST= "database.host.com"

 DB_DATABASE= "testdb"

 DB_USERNAME= "dbadmin"

 SUDO= "root"

Chapter 2 Ansible Playbooks

39

 JAVA_HOME= "/usr/lib/jvm/java-11-oracle"
 HOME= "/home/ubuntu"
 USER= "ubuntu"
 MAIL= "/var/mail/ubuntu"

The following example is using the less than symbol

to create a message of the day entry where the

following four lines will all be listed on one line:

motd: >
 Welcome to your new system
 where everything from this
 message should be on the
 same line.

YAML is an acronym for “YAML Ain’t Markup Language” or “Yet
Another Markup Language” and is being widely used across different
languages due to the ease of reading and the fact it is being widely
supported by different programming languages. We have only touched on
the basics of YAML, and this should be enough for you to continue with the
next chapter, but for a more in-depth discussion on using YAML, feel free
to look through the following Wikipedia documentation:

https://en.wikipedia.org/wiki/YAML

�Command-Line Modules to Ansible
Playbooks
The goal of this book is to get you working as quickly as possible, so we’ll

stop the talk about syntax for the time being and get you started with a

playbook which we can easily relate back to the work we did in the first

chapter. You’ll remember we installed Apache2, and then we checked if

the application was running.

Chapter 2 Ansible Playbooks

https://en.wikipedia.org/wiki/YAML

40

We used the following commands to install Apache using the apt

module:

ansible mylaptop -i hosts mylaptop -m apt -a "name=apache2

state=present"

Even though we did not make any changes to the configuration for

Apache, if we needed to configure the application, we could use the file

module:

ansible mylaptop -i hosts mylaptop -m file -a "path=/tmp/

another_test owner=root group=root state=directory"

We were then able to ensure the Apache2 service was running using

the service module:

ansible mylaptop -i hosts mylaptop -m service -a "name=apache2

state=started"

By using the preceding modules, we can now construct a playbook

which will run through these tasks. This is a great example to start

with because it will take us from the modules we were running on the

command line to a running playbook.

Start by logging back into your development system, and we will get

started with creating the playbook for our Apache service:

	 1.	 Start by creating a new directory where we can

create our playbook. Run the following command

to create the directory test_playbooks and will also

move into the directory:

mkdir test_playbooks; cd test_playbooks

Chapter 2 Ansible Playbooks

41

	 2.	 Create a new hosts file in the directory we are

now working in. Open the hosts file with your text

editor and make sure there is an entry for a group

[webserver] as we have in the following and feel

free to add an IP address for a remote server if you

are comfortable performing this installation on a

remote server:

 1 [mylaptop]

 2 localhost

 3

 4 [webserver]

 5 127.0.0.1

	 3.	 We can now start creating our playbook. Run the

following command to create a new file called

webserver-playbook.yml in the current directory

you are working in:

touch webserver-playbook.yml

	 4.	 As we discussed earlier, we need to start our file with

three dashes (---) to make sure our file is recognized

as YAML file format. We will also set up the host

it will deploy to; in this exercise, it will be the

webserver:

 1 ---

 2 - hosts: webserver

Chapter 2 Ansible Playbooks

42

Note O ur example is Ansible is configured to run as the root user
and does not need to run the sudo command before it installs and
makes changes to our system. If you are deploying your playbook to a
host where you need to become the root user to deploy, you will also
need to use the “become: sudo” command after the hosts entry in
our playbook.

	 5.	 Our playbook will next set up our first task to install

Apache2 onto our system. As you can see in the

following text, we define our plays using the word

tasks, with all the modules we then need as part of

our playbook listed below tasks. Enter the following

lines into your playbook where we use the name

entry in line 4 to provide a clear description of the

task we are performing. The -name entry is not

mandatory, and if you don’t use this as part of your

task, the module name will be output instead. Line

five is the same as our apt command-line module

where we specify the name of the package and the

state which defines the application version; in this

case, we want to install apache2 and the version as

latest:

 3 tasks:

 4 - name: ensure apache is installed and up to date

 5 apt: name=apache2 state=latest

Chapter 2 Ansible Playbooks

43

	 6.	 In a real-world example, we would want to have a
preconfigured Apache2 configuration file available
to install onto our new system. In this exercise, we
are simply going to use the default configuration
file Apache2 uses as an example. Run the following
command to obtain a copy of a default Apache2
configuration file and place it in our current working
directory:

wget https://raw.githubusercontent.com/vincesesto/
ansibleanswers/master/chapter2/000-default.conf

	 7.	 We can now use the copy module to add the
configuration file to our webserver-playbook.yml
file. You will also notice we have set up a notify
action. This will ensure if the configuration file ever
changes, Apache2 will be restarted. The value listed
in line 9 specifies the name entry of the handler we
will set up shortly:

 6 - name: write the apache config file
 7 �copy: src=000-default.conf dest=/etc/apache2/

sites-available/000-default.conf
 8 notify:
 9 - restart apache2

	 8.	 Our next task in our playbook will be to make sure
the Apache2 service is running. Add the following
two lines to your playbook which will use the service
module to make sure Apache2 is running and
enable it to start up when the system is booted:

 10 - name: apache is running (and enable it at boot)

 11 service: name=apache2 state=started enabled=yes

Chapter 2 Ansible Playbooks

44

	 9.	 In lines 8 and 9 of our playbook, we specified a

notify action to make sure Apache2 is restarted if

there are any changes to the configuration. For this

to work correctly, we need to set up the handlers

that will respond to the “restart apache” action.

Enter the following final three lines that will set up a

new section outside our tasks, called handlers. Here,

we specify the name and the modules to be run,

when “restart apache2” is called on our playbook:

 12 handlers:

 13 - name: restart apache2

 14 service: name=apache2 state=restarted

	 10.	 Save the playbook, and it’s time to now run the

playbook on our system. From the command line,

in the directory where you created the webserver-
playbook.yml file, run the following ansible-

playbook command:

ansible-playbook -i hosts webserver-playbook.yml

PLAY [webserver] *************************************

TASK [Gathering Facts] *******************************

ok: [localhost]

TASK [ensure apache is installed and up to date]

changed: [localhost]

Chapter 2 Ansible Playbooks

45

TASK [write the apache config file] ******************

changed: [localhost]

TASK [apache is running and enable it at boot]

ok: [localhost]

PLAY RECAP ***

localhost:

ok=5 changed=0 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

If it all went to plan, you should see a similar output to the preceding

one where we can see the steps of each task being performed by Ansible.

We can also verify we have a valid web page by going into our web browser

and connecting to the IP address for our web page. If you are able to load a

browser on the web system you are deploying this on, you should be able

to see it by looking at the url http://0.0.0.0. We should see the Apache2

welcome page similar to Figure 2-1.

Figure 2-1.  The Apache2 Ubuntu Default Page Should Be Visible
from Your Browser

Chapter 2 Ansible Playbooks

46

�Ansible Playbook Verbose Output
The great thing about our playbook is we made sure each task had a useful

and understandable description, so for each part of the output, we could

see the name of each task printed to the output on the screen:

TASK [write the apache config file] ***********************

When running a playbook, you will start to use the verbose output

options available in Ansible. This involves adding a -v option as an

argument to your command line. For example, in the previous section of

this chapter, we would simply add the argument to our command like this:

ansible-playbook -i hosts webserver-playbook.yml -v

One -v argument adds the default debug output, while adding more

values like -vv or -vvv or -vvvv will increase the amount of data being

output and the detail of what is being run by Ansible. By expanding the

output, we get to see the specific commands being run by the modules,

and as you’ll see later on, it will provide you with a good basis to

troubleshoot problems with your playbooks.

As an experiment, I thought it would be interesting to see the amount

of data being provided when we add 1, 2, 3, 4, and 12 v arguments to the

end of our previous command:

for i in -v -vv -vvv -vvvv -vvvvvvvvvvvv; do ansible-playbook

​-i hosts webserver-playbook.yml ${i} | wc -l ; done

14

25

94

97

359

Chapter 2 Ansible Playbooks

47

As you can see, the more v arguments we add to our command,

the more data we get. When debugging a playbook, Ansible users will

limit their output to three values (-vvv) as this generally gives enough

information while not overwhelming the user with too much data.

�Ansible Syntax in Finer Detail
Before we move on to our next exercise, we should go over some of the

finer points in using and creating Ansible playbooks and recap what we

have done in the previous section of this chapter.

�Hosts and Remote Users
The hosts entry we made in our playbook needs to align to the inventory

file we created as part of our environment. In our earlier exercise, we used

the new webserver host we created. If we had a larger number of hosts,

we could also specify the order in which we deploy to. In the following

example, we are using all to include all of the hosts in the inventory file

and the order of sorted, which deploys to the hosts in our inventory file in

alphabetical order:

 1 ---

 2 - hosts: all

 3 order: sorted

All is not the only value we can list for -hosts. We can also list the

asterisk (*) for all; we can also specify the hostname as the host. We can

list multiple hosts, separated with a colon, like localhost:127.0.0.1, or

multiple groups in the same manner, such as webserver:dbserver. We

can also exclude a group of hosts with an exclamation mark, such as

webserver:!dbserver.

Chapter 2 Ansible Playbooks

48

We could also set the order as inventory, which is the default order

in our inventory file, and reverse_inventory, which is the reverse of the

inventory order. Sorted will deploy to our hosts in alphabetical order and

reverse_sorted in reverse alphabetical order, and shuffle will deploy in a

random order to our hosts.

Our remote user is the user which performs the tasks; for example,

we could use sudo in our project. The remote user can be defined in each

of our tasks as well as at the start of the playbook. You may need to use a

different user to access the system you are deploying to while needing to

change to a different user to run a specific task. In the following example,

we are accessing the web server as user tom, but we then need to change

to the postgres user, presumably to run database server tasks:

 1 ---

 2 - hosts: database

 3 remote_user: tom

 4 become: yes

 5 become_user: postgres

In the preceding example, tom would need to have ssh access to the

database server and be able to become the postgres user. We are stating

the method being used to perform a privileged task as follows; in this case,

it is using su. For each of these options, such as remote_user and become,

they do not need to be specified at the start of the playbook; they can also

be added to each individual task if needed:

 1 ---

 2 - hosts: database

 3 remote_user: tom

 4 become: yes

 5 become_method: su

Chapter 2 Ansible Playbooks

49

We set up our hosts in Chapter 1 to make sure we can both ssh and run

commands as root. If you are wanting to run the playbook and have the

playbook ask for a password, you can also run it with the --ask-become-
pass (or) -k command-line argument as we did in Chapter 1.

�Tasks
Our Ansible playbook then took us through a list of tasks which were

completed in the order they were written, one task at a time, on the host

it is listed to be deployed to. Every task should include a descriptive name

using the -name option; as we saw, this will be included as part of the

ansible-playbook output:

 3 tasks:

 4 - name: ensure apache is installed and up to date

 5 apt: name=apache2 state=latest

This was our first task we used earlier in our playbook. All our tasks are

listed under the tasks statement, with a descriptive name, and the module

being used to perform the task. For clarity, you may want to list all of the

arguments under the module as a list. Here is an example, and it will make

it easier to view multiple arguments:

 3 tasks:

 4 - name: ensure apache is installed and up to date

 5 apt:

 6 name=apache2

 7 state=latest

Always make sure your whitespace is consistent as this may cause

problems when your playbook is run.

Chapter 2 Ansible Playbooks

50

�Notify
We used notify in our playbook earlier in this chapter to allow our

playbook to respond to changes which may be occurring in our

environment. Specifically, we wanted to tell Apache2 to restart if the

configuration file changes. We can set up a notify action at the end of a

block of tasks that will only be triggered once. We could have numerous

changes or tasks that could trigger a change, but Ansible will make sure to

only perform this once.

The following code has been taken from our earlier playbook, where

we have set up the notify in line 8 after we have performed the change to

the configuration file in Apache2. We then need to set up a handler section

after all the tasks for our playbook have been listed. Within the handler

section, we then specify what is needed to be performed; in the following

example, it is simply using the service module to then restart Apache2:

 6 - name: write the apache config file

 7 �copy: src=000-default.conf dest=/etc/apache2/

sites-available/000-default.conf

 8 notify:

 9 - restart apache

 ...

 12 handlers:

 13 - name: restart apache

 14 service: name=apache2 state=restarted

Now that we have clarified some of the finer points of our playbook,

we can move on further with our project and create a new playbook that

creates a database for our LAMP stack.

Chapter 2 Ansible Playbooks

51

�Adding More Playbook Functionality
with Variables and Loops
We have a nice web server up and running, but in the following exercise,
we are going to add some more functionality into our playbook. As we
discussed in the first chapter, the project we are currently setting up is a
web server environment. We have gone about halfway so far by setting up
our Apache2 server, so we can now continue to add further functionality by
adding a database.

It’s time for us to add this into our playbook, and we will cover off
some more functionality of Ansible playbooks as we go. In the following
exercise as part of creating the database server, we will define variables to
be used within the playbook, and we will create loops using the with_items
function to iterate over multiple values. We will introduce some new
modules specific to MySQL, specifically mysql_user to create our root user
and mysql_db to create databases on our server.

So, log back into your development environment, and we will get
started with these changes:

	 1.	 Make sure you are in the test_playbook directory we
created earlier and the web server we implemented
earlier in this chapter is also running.

	 2.	 We need to make a decision first on where the
database will live. Will it be on the same server
as the web server or on a different host? In a
production server environment, they should be
separated, but for ease, we will install it on the same
host our web server resides on. To do this, we will
make another entry in our hosts file, so open the
file with your text editor and add in an entry for
our database server. The hosts file should now look
similar to the following one, but if you are wanting
to add the database to the same server, feel free to

add another entry with the localhost IP address:

Chapter 2 Ansible Playbooks

52

 1 [mylaptop]

 2 localhost

 3

 4 [webserver]

 5 127.0.0.1

 6

 7 [mysql]

 8 <database_server_ip_address>

	 3.	 Create a new playbook file called dbserver-
playbook.yml in your working directory. Use the

following command to create the file from the

command line:

touch dbserver-playbook.yml

	 4.	 Open the new playbook with your text editor,

and we can start to fill in the details for our new

playbook. We can start with the first two lines of

the playbook, adding the name of the host we are

wanting to deploy our configuration management

to; in this instance, it will be the mysql entry of our

hosts file:

 1 ---

 2 - hosts: mysql

	 5.	 We will now do something new. We are going to add

in a variable into our playbook. Just as we created

a section called tasks to list all our tasks, we do

the same thing but call this section vars. Add the

following code to create a variable named mysql_
root_password and assign the value of password to it:

Chapter 2 Ansible Playbooks

53

 3

 4 vars:

 5 mysql_root_password: password

Note I n our playbook code earlier, we are creating a password
for our database. This is not the best way to store passwords as
it stores them in plain text. Ansible provides a way for us to store
our passwords in a safe manner, and we will have devoted a large
section in a following chapter to storing passwords in this manner.

	 6.	 We can now start listing the tasks to create our

database server. Our first task installs our database

and supporting applications. To do this, we create

our first loop in our playbook:

 6 tasks:

 7 - name: install mysql and python-myslqdb

 8 �apt: name={{ item }} update_cache=yes cache_

valid_time=3600 state=present

 9 with_items:

 10 - python3-mysqldb

 11 - mysql-server

As usual, we start the task with a descriptive name. As you will

see in line 8 though, we use the apt module and provide {{ item
}} as the name argument. This then refers to line 9 that uses the

with_items, providing a list of all the applications needed to be

installed as part of this task. The apt module will loop through

and install all of the applications in the with_items list.

Chapter 2 Ansible Playbooks

54

	 7.	 Next, add the following code to make sure MySQL is

running. We use the shell module to run the “service

mysql start” command and then ensure the service

remains running on startup:

 12 - name: start up the mysql service

 13 shell: "service mysql start"

 14 - name: ensure mysql is enabled to run on startup

 15 service: name=mysql state=started enabled=true

	 8.	 Our final task will now update the mysql root
passwords and grant privileges using the mysql_
user module. For ease of reading, we have added all
of the arguments for the module in a list below the
mysql_user module from lines 16 to 22, which sets
up all of the configuration items for the database
user:

 16 - �name: update mysql root password for all root
accounts

 17 mysql_user:
 18 name: root
 19 host: "{{ item }}"
 20 password: "{{ mysql_root_password }}"
 21 login_user: root
 22 login_password: "{{ mysql_root_password }}"
 23 check_implicit_admin: yes
 24 priv: "*.*:ALL,GRANT"
 25 with_items:
 26 - "{{ ansible_hostname }}"
 27 - 127.0.0.1
 28 - ::1
 29 - localhost

Chapter 2 Ansible Playbooks

55

We have set up a large task here which is creating
the root mysql user on our database host using
our password specified earlier in the playbook as a
variable. It loops through the possible hostnames for
our local environment to perform this change on.

	 9.	 We can now use the mysql_db Ansible module
to create a new test database in our new database
server installation. Add the following code to create
the database named testdb and assign it as the root

user to this database:

 30 - name: create a new database

 31 �mysql_db: name=testdb state=present login_

user=root login_password="{{ mysql_root_

password }}"

	 10.	 If you’ve worked with databases before, you might

know you can create sql script that will allow you

to provision the tables needed and import specific

data, instead of having to perform the changes

manually. Our playbook can do this by first using

the copy module to copy the sql file into a directory

on the host in line 31 and then using the mysql_db

module again to import the sql file:

 32 - name: add sample data to database

 33 copy: src=dump.sql dest=/tmp/dump.sql

 34 - name: insert sample data into database

 35 �mysql_db: name=testdb state=import target=/tmp/

dump.sql login_user=root login_password=

"{{ mysql_root_password }}"

Chapter 2 Ansible Playbooks

56

	 11.	 Save the playbook, but before we run the playbook

to deploy the new database server, we need to create

the sql script that is run by the preceding code.

Create the file named dump.sql in your current

working directory:

touch dump.sql

	 12.	 Open the dump.sql file with your text editor and

add the following lines of code into the file. The

following code will create a table named test and

then add in some default data to the table we

created:

 1 CREATE TABLE IF NOT EXISTS test (

 2 message varchar(255) NOT NULL

 3) ENGINE=MyISAM DEFAULT CHARSET=utf8;

 4 �INSERT INTO test(message) VALUES('Ansible To Do

List');

 5 INSERT INTO test(message) VALUES('Get ready');

 6 INSERT INTO test(message) VALUES('Ansible is fun')

	 13.	 If all our tasks have been set up correctly, we can

now run our playbook. Run the following ansible-
playbook command to see if your hard work has

paid off:

ansible-playbook -i hosts dbserver-playbook.yml

We have created our database and deployed it to our server and even

set up our username and passwords for the default table. We can test the

database to make sure our passwords are working successfully by using the

mysql command on the command line:

Chapter 2 Ansible Playbooks

57

mysql -u root -h localhost -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

...

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

If we now type "use testdb;" this should move us into the newly

created database of that name:

mysql> use testdb;

...

Database changed

We can then use the "show tables;" command in mysql to see our

tables:

mysql> show tables;

+------------------+

| Tables_in_testdb |

+------------------+

| test |

+------------------+

1 row in set (0.00 sec)

Finally, we can now verify all of the data we added into our database is

there by running "select * from test;" as we have here:

mysql> select * from test;

+--------------------+

| message |

+--------------------+

| Ansible To Do List |

Chapter 2 Ansible Playbooks

58

| Get ready |

| Ansible is fun |

+--------------------+

3 rows in set (0.00 sec)

In a matter of minutes, we've been able to demonstrate how you can

use a playbook to install and run the appropriate applications to create

a database server on our system. We then configured the application to

set up users and databases and should now have a full functioning and

accessible database that has data preloaded into a preconfigured table.

�Plugging In Our LAMP Stack
So far, we have our Linux, Apache2, and MySQL all set up for our LAMP

stack. The last part to set up is of course the “P” which stands for either

PHP or Python. We’ve chosen Python in this example, and we just need

to make some small changes to our Apache2 web server to ensure it’ll play

nicely with Python scripts.

There are one or two things we need to do to allow Python to run on

our Apache2 host:

•	 YAML File Names End with .yml – All our playbooks

will use the .yml file name extension, and this lets

everyone know it’s a YAML format file.

•	 We need to update the 000-default.conf file. Using

Ansible, we will be able to use the file module to install

it onto our environment.

•	 We will need to make some further changes to the

Apache2 configurations in the webservice-playbopok.

yml to ensure it recognizes Python and can run Python

scripts. The apache2_module module will allow us to

do that.

Chapter 2 Ansible Playbooks

59

•	 We will need to use the pip3 Ansible module to install

the pymysql Python module.

•	 Finally, we need to create and install the index.py file,

which in this instance will connect to our database and

extract some data to then display on a simple web page.

Without any further delay, we should get into our working

environment and link everything together:

	 1.	 You should be back in your test_playbooks

directory, and for the following changes to the

web server to work, you will need to make sure the

database from the previous exercises is working and

accessible by the web server.

	 2.	 From our working directory, we will first need to

make some minor changes to the 000-default.conf

configuration file in our Apache2 installation.

	 3.	 Open the 000-default.conf file with your text editor.

After the first line that will specify the VirtualHost

for port 80, add in the following five lines of

configuration into your file. In the following code,

we have also included the first line specifying the

VirtualHost which will be left unchanged:

1 <VirtualHost *:80>

2

3 <Directory /var/www/test>

4 Options +ExecCGI

5 DirectoryIndex index.py

6 </Directory>

7 AddHandler cgi-script .py

Chapter 2 Ansible Playbooks

60

The configuration is setting up a new directory

called /var/www/test which will run our Python

code.

	 4.	 Move further down in the 000-default.conf file and

you will see a DocumentRoot entry; you will need

to amend it to the new directory we have specified at

the start of the configuration:

19 DocumentRoot /var/www/test

With the current version of Apache2, this

should be around line 19 but may differ for your

configuration file.

Our web server playbook already uses the

000-default.conf file as part of the installation, so

we won’t need to add it to the playbook.

	 5.	 We now need to make some further changes to

Apache2 to get it to work nicely with Python, so

open the webservice-playbook.yml file with your

text editor to add some more functionality to it.

	 6.	 The following addition we will make will turn off

multiprocessor mode and activate cgi. Make some

space for the extra configuration after the last set of

tasks at around line 12 and before the handler section of

the playbook and add the following output:

 12 - name: disable pmp_event on apache

 13 shell: "a2dismod mpm_event"

 14 notify:

Chapter 2 Ansible Playbooks

61

 15 - restart apache2

 16 - name: enable cgi on apache

 17 shell: "a2enmod mpm_prefork cgi"

 18 notify:

 19 - restart apache2

Notice both tasks also use the notify handler to let

Apache2 know it requires a restart after making

these changes.

Note A t the time of writing this book, there were some issues with
the apache2_module. This module would usually give you enough
functionality to make the preceding changes, but due to issues
with the module not working correctly, we decided to use the shell
commands instead.

	 7.	 We will add in three more tasks into our playbook
before we have our handler section. Add in the
following code which will install the pymysql
Python module using the pip3 Ansible module at
line 20. We will then create the DocumentRoot
directory of /var/www/test in line 22, and the last
task will add the new index script into this directory
in line 24. Make note of the mode we need to set for
the index.py file as it needs to be executable:

 20 - name: install pymysql module for index to use
 21 pip: name=pymysql executable=pip3
 22 - name: add in a test directory
 23 file: path=/var/www/test/ state=directory
 24 - name: add in your index file

Chapter 2 Ansible Playbooks

62

 25 �copy: src=index.py dest=/var/www/test/index.py
mode=755

 26 notify:
 27 - restart apache2

	 8.	 Your handler section should still be in place after
the tasks you have included as part of this exercise.
Your webserver-playbook.yml file should look like
the following code, with all tasks running from lines
blah to blah, with the handler section finishing up

the playbook:

 1 ---

 2 - hosts: webserver

 3 tasks:

 4 - name: ensure apache is installed and up to date

 5 apt: name=apache2 state=latest

 6 - name: write the apache config file

 7 �copy: src=000-default.conf dest=/etc/apache2/

sites-available/000-default.conf

 8 notify:

 9 - restart apache2

 10 - name: apache is running and enable it at boot

 11 service: name=apache2 state=started enabled=yes

 12 - name: disable pmp_event on apache

 13 shell: "a2dismod mpm_event"

 14 notify:

 15 - restart apache2

 16 - name: enable cgi on apache

 17 shell: "a2enmod mpm_prefork cgi"

 18 notify:

 19 - restart apache2

 20 - name: install pymysql module for index to use

Chapter 2 Ansible Playbooks

63

 21 pip: name=pymysql executable=pip3

 22 - name: add in a test directory

 23 file: path=/var/www/test/ state=directory

 24 - name: add in your index file

 25 �copy: src=index.py dest=/var/www/test/index.py

mode=755

 26 notify:

 27 - restart apache2

 28 handlers:

 29 - name: restart apache2

 30 service: name=apache2 state=restarted

 31

	 9.	 We now need to create the index.py file that we are

now referring to in our playbook, so create a file

called index.py in your current working directory

where your playbooks are located:

touch index.py

	 10.	 Open the new index.py file with your text editor

and add the following code. We are not going to go

too much in depth as to what this script does, but

to quickly explain, we import our Python modules,

connect to the database, and then print out all of the

data in the new tables we created:

 1 #!/usr/bin/python3

 2

 3 import pymysql

 4

 5 # Print necessary headers.

Chapter 2 Ansible Playbooks

64

 6 print("Content-Type: text/html")

 7 print()

 8

 9 # Connect to the database.

 10 conn = pymysql.connect(

 11 db='testdb',

 12 user='root',

 13 passwd='password',

 14 host='localhost')

 15 c = conn.cursor()

 16

 17 # Print the contents of the table.

 18 c.execute("SELECT * FROM test;")

 19 for i in c:

 20 print(i)

	 11.	 Save the changes you have made to the the index.

py file, and just before we run out playbook again,

let’s make sure we have all our files. In our current

working directory, we should have the following list

of files:

	 a.	 000-default.conf – The Apache2 configuration file to be

deployed and now allowing the ability for the application to

interact with Python and the database we have created

	 b.	 dbserver-playbook.yml – The playbook that manages

configurations of our database server

	 c.	 dump.sql – The SQL file that creates our default database and

table and adds in additional data

	 d.	 hosts – The lists hosts Ansible is using to deploy to

Chapter 2 Ansible Playbooks

65

	 e.	 index.py – Our web server index file to display content from

the database

	 f.	 webserver-playbook.yml – The Ansible playbook that

manages configuration of our web server

	 12.	 Our webserver-playbook.yml is ready to be

deployed. We have set this up to run and install our

web server from a new installation, or it will update

an established installation. Run the following

ansible-playbook command to hopefully have all

our configuration complete:

ansible-playbook -i hosts webserver-playbook.yml

Once the playbook runs, you will now be able to log into your web page

with the IP address of the webserver. As the DocumentRoot has been set

up, you will not need to specify the path; simply place your IP address into

your web browser, and you should see the following image.

It is really not very interesting, but you need to remember, in a small

amount of time, you have been able to set up code to create and provision

your database server, create the database and user, and add default data

and tables to the database. We then set up a web server with Python3

support that can interact with our database and connect and extract data

and serve to a web page. Although we have finished working on our LAMP

stack for this part of the chapter, continue on as the following section will

discuss how you can start to reuse your code and playbooks.

Figure 2-2.  The New Web Page Visible from Your Browser

Chapter 2 Ansible Playbooks

66

�Organizing Larger Playbooks with Include
and Import
At this time, you’re probably seeing benefit of using a playbook but

wondering how they work when the deployments and environments

you’re creating and supporting become more complex. The way our

current playbooks stand, as our environment continues to grow, our

playbooks would also continue to grow. But there are a few things we can

do to organize things better and ensure our playbooks remain readable

and don’t get overly complex. In the next few pages, we will introduce you

to include and import.

Both include and import would be familiar to you if you have some

background in programming. In Ansible, they work in a similar way and

allow us to start to make our playbooks more reusable and modular. Tasks

are separated out from the main playbook and are then referred to with an

import or include statement in the multiple playbooks or multiple times in

the same playbook.

Both include and import do similar things, but import statements

are preprocessed at the time the playbook is parsed by Ansible, whereas

the include statements are processed as they are encountered during the

execution of the playbook.

Note P lease make note if you are using or working with an older
version of Ansible. Prior to version 2.4, only include statements were
available. If you use an import in these earlier versions, you will be
met with an error when running your Ansible playbook.

To clarify how import and include work, we are going to make a small

change to the work we were looking at earlier in the chapter. We will create

a new playbook that uses import to use both the webserver-playbook.

Chapter 2 Ansible Playbooks

67

yml and dbserver-playbook.yml as part of its own playbook to deploy our

configurations:

	 1.	 Log back into your work environment and move into

the directory you’ve been working in to create the

database and web server.

	 2.	 Use the following touch command to create the

playbook called new-playbook.yml:

touch new-playbook.yml

	 3.	 Open the new playbook with your text editor and

add in the following code. As you can see, there is

not too much involved, but by using the import_
playbook commands, we can import both of our

previous playbooks into this one:

 1 ---

 2 - import_playbook: webserver-playbook.yml

 3 - import_playbook: dbserver-playbook.yml

	 4.	 That’s all there is to it. We've created a new playbook

and reused the playbooks we created earlier in the

chapter. Save the file and you can now run it with

the following command:

ansible-playbook -i hosts new-playbook.yml

If all goes well, you should see a very similar output to what you

saw when you ran each of your playbooks separately with the imported

playbooks being deployed in the order they were specified in the new-

playbook.yml file.

Chapter 2 Ansible Playbooks

68

Instead of importing a playbook, you could create a list of common

tasks which are used as part of your deployment. Your playbook running

the common tasks would then use include or import tasks to use them.

As an example, we are using handlers to signal a restart of Apache2 if

the configurations have changed. We could create a file called apache_
handlers.yml and add in the following tasks to simply do this one task:

- name: restart apache2

 service: name=apache2 state=restarted

In our webserver playbook file, we would then use import or include to

refer to the tasks we have created earlier:

handlers:

- include_tasks: apache_handlers.yml

or

- import_tasks: apache_handlers.yml

As long as our notify statement is using the correct task name of

“restart apache2,” the handler will work correctly.

Note A lthough import and include statements are important parts
of using Ansible within playbooks, the use of these statements is
limited with more users opting to use roles to organize their playbook
structure. Our focus will now move to roles in the next chapter,
and we will not have much more exposure to import and include
statements.

Chapter 2 Ansible Playbooks

69

�Summary
I hope you are finding this book interesting and challenging. We’ve done a

lot of work in this chapter and covered a lot of ground. We started by taking

a look at YAML and how we can set up our Ansible playbooks and then

moved onto taking our commandline modules into our first real playbook.

We then developed our skills and our LAMP stack further with a MYSQL

database and then Python support, all the while discussing what the

different syntax of the playbooks mean.

Finally, we take a look at how we organize our playbooks and think

about how we can make them more manageable and reusable. This is

the theme we take forward into our next chapter as we introduce roles to

organize our playbooks into a universal structure. At the same time, we will

take this further by putting more features into our LAMP stack.

Chapter 2 Ansible Playbooks

71© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_3

CHAPTER 3

Extending Playbooks
with Roles
and Templates
At the end of the last chapter, we had a quick look at how we can start to

organize our playbooks to allow them to grow while still being able to

keep some control over how they’re organized. We discussed how you can

use import and include as part of our playbooks to use and reuse other

playbooks we have created previously within new playbooks.

This may not seem too important now, but our environment only

consists of two servers currently. What we need is a standard way to

organize each piece of our environment so we’re able to make smaller

and simpler pieces of configuration syntax and items. What if we took

this further and wanted to not only reuse our code and configurations but

wanted to share our configurations with other people and, in return, use

configurations other people have written? Well you’ve come to the right

place. Ansible provides you an easy way to do this with the use of roles.

We felt roles were so useful; we needed to dedicate an entire chapter to

it and how we can incorporate them into our project. In this chapter,

•	 We will introduce roles and start by incorporating them

into our LAMP stack project to show you how they are

organized and used.

https://doi.org/10.1007/978-1-4842-6485-0_3#DOI

72

•	 We will give you a breakdown of the directory structure

and how to make best use of setting up your playbooks

with them.

•	 We will extend our project further and introduce

Django into our LAMP stack.

•	 We will start to use command-line arguments

and variables to allow more flexibility when we are

deploying our code.

•	 We will introduce conditionals and tags into our

playbooks to allow us to increase the functionality and

allow only specific parts of our playbook to run.

We previously saw how we can start to reuse our code, but the

following chapter will show you how we can take this further to organize

our playbooks and configuration management even further.

�Ansible Roles
Out of the two ways that Ansible is able to reuse our configuration

management tasks within playbooks, we have already discussed the first

way by using import and include. The second way of reusing our tasks is

through roles. Both work in a similar way, but roles allow you a lot more

flexibility. Instead of simply packaging tasks together, roles allow you to set

up a specific structure to include variables, handlers, modules, and other

plugins. All of which can be uploaded to Ansible Galaxy which is a central

repository or hub for sharing, finding, and reusing your Ansible code (but

more on that later in the chapter).

In the following section, you will see how we can use roles to break up

our configuration into more modular steps. The directory structure we will

set up will be similar across all roles, allowing us to be consistent and not

needing to create our own formula for organizing the configuration.

Chapter 3 Extending Playbooks with Roles and Templates

73

�Creating the Web Server Role
We are going to start working with our web server playbook we have

created in the previous chapter. We are going to take the existing playbook

and break it up and turn it into an Ansible role for us to then deploy and

redeploy when you need to.

Log into your working environment and access the test_playbook

directory where we have all of our previous work located:

	 1.	 From within the directory we have been working on,

you should be able to perform a listing of the files in

the directory and you should have the following files

in there:

	 a.	 000-default.conf – The Apache2 configuration file

	 b.	 dbserver-playbook.yml – The playbook that manages

configurations of our database server.

	 c.	 dump.sql – The SQL file that creates our default database and

table and adds in additional data

	 d.	 hosts – The lists hosts Ansible is using to deploy to

	 e.	 index.py – Our web server index file to display content from

the database

	 f.	 webserver-playbook.yml – The Ansible playbook that

manages configuration of our web server

	 2.	 To start the process of creating our web server, we

need a directory to store our roles, so create the new

directory with the following command:

mkdir roles

Chapter 3 Extending Playbooks with Roles and Templates

74

	 3.	 Within our roles directory, we are going to create

our first role; in this instance, we are going to call

it web_server. To create this new role, we simply

create a new directory for the role to live in:

mkdir roles/web_server

	 4.	 For each role we create, there are a standard set of

directories we need to include to house our data;

these are

	 a.	 Files – This includes all our supporting files. In our example,

this might include configuration files.

	 b.	 Handlers – As we saw in our playbooks, we can set up

handlers to perform specific tasks upon completion of our

playbook. This is the separate directory for the handlers.

	 c.	 Meta – This is for files to establish role dependencies or roles

that need to be applied before your current role can work

correctly.

	 d.	 Templates – Instead of needing a separate file for all different

web servers, you may be able to set up a template to cover

them all. We will be discussing templates later in the book.

	 e.	 Tasks – These are simply the tasks in our playbook to get

our role to a specific state. Just as we created the tasks in our

playbooks earlier, we will separate our tasks and place them

in their own directory.

	 f.	 Vars – These are variables which can be included as part of

our tasks.

	 g.	 Defaults – These are default variables for our roles.

Chapter 3 Extending Playbooks with Roles and Templates

75

To get our new role started, run the following commands to

create all of the directories for our web_server role. Even if we

don’t use all of the directories, it is good to have them all in place

as these are the standard directories used for roles:

mkdir -p roles/web_server/{files,handlers,meta,templat

es,tasks,vars,defaults}

	 5.	 We can now start to convert our webserver-

playbook.yml file into a role. We will start by moving

all of the tasks in our playbook into the tasks

directory. Run the following command to copy the

original playbook into the tasks directory, and we

are going to call the file mail.yml:

cp webserver-playbook.yml roles/web_server/tasks/main.yml

	 6.	 Open the roles/web_server/tasks/main.yml file

with your text editor and change the file to remove

anything which is not a task. This means we need to

remove the hosts details and notifiers section in the

playbook, and it should now look like as follows:

 1 ---

 2 - name: ensure apache is installed and up to date

 3 apt: name=apache2 state=latest

 4 - name: write the apache config file

 5 �copy: src=000-default.conf dest=/etc/apache2/

sites-available/000-default.conf

 6 notify:

 7 - restart apache2

 8 - name: apache is running and enable it at boot

 9 service: name=apache2 state=started enabled=yes

Chapter 3 Extending Playbooks with Roles and Templates

76

 10 - name: disable pmp_event on apache

 11 shell: "a2dismod mpm_event"

 12 notify:

 13 - restart apache2

 14 - name: enable cgi on apache

 15 shell: "a2enmod mpm_prefork cgi"

 16 notify:

 17 - restart apache2

 18 - name: install pymysql module for index to use

 19 pip: name=pymysql executable=pip3

 20 - name: add in a test directory

 21 file: path=/var/www/test/ state=directory

 22 - name: add in your index file

 23 �copy: src=index.py dest=/var/www/test/index.py

mode=755

 24 notify:

 25 - restart apache2

As you can see, we have removed the handlers and

the host details at the start of the file. Make sure you

include the three dashes at the start of the file and

all indent points are brought in closer to the left of

the file.

	 7.	 The file we created in the previous step refers to src

files used as part of the web server configuration.

This includes both the 000-default.conf and index.
py files used as part of our web server playbook.

Ansible will know all of these src files are located

in the files directory of our web_server role, so we

can move them over to this directory now with the

following command:

Chapter 3 Extending Playbooks with Roles and Templates

77

cp 000-default.conf roles/web_server/files/

cp index.py roles/web_server/files/

	 8.	 We can now move the handlers from our webserver_

playbook.yml file. Start by creating the new handlers

file named main.yml in the roles/web_server/

handlers/ directory as we have here:

touch roles/web_server/handlers/main.yml

	 9.	 We only have one handler set up in our playbook,

so open the new file we created with your text editor

and enter in the following three lines to set it up:

 1 ---

 2 - name: restart apache2

 3 service: name=apache2 state=restarted

	 10.	 After all the work we’ve done, we need some way to

now run the web_server role we have created. To do

this, we simply create a separate playbook to run the

role we have created. We will call the new playbook

to run our role site.yml:

touch site.yml

	 11.	 Open the new playbook with your text editor and

add in the following text to run our new web_server

role:

 1 ---

 2 - hosts: webserver

 3 roles:

 4 - web_server

Chapter 3 Extending Playbooks with Roles and Templates

78

Instead of having a list of tasks in our playbook, we

now list in lines 3 and 4 the roles we want to run as

part of our playbook.

	 12.	 We can see the directory structure clearly by

running the tree command if you have this available

on your system. We have run the given command

to provide the following output with our original

playbook tasks in the tasks directory, the handlers in

their own directory, and supporting configuration

documents like the index.py script and the Apache2

configuration in the files directory:

tree roles/web_server/

roles/web_server/

|-- defaults

|-- files

| |-- 000-default.conf

| `-- index.py

|-- handlers

| `-- main.yml

|-- meta

|-- tasks

| `-- main.yml

|-- templates

`-- vars

To run the playbook, we do the same thing we’ve

been doing earlier, but this time we use the site.yml
file as our playbook:

ansible-playbook -i hosts site.yml

Chapter 3 Extending Playbooks with Roles and Templates

79

	 13.	 Although there are no real changes to our

environment, the playbook will run happily and

find all its relevant information in the roles directory

structure. If you really wanted to test this, you could

remove the Apache2 server first before running the

playbook again:

sudo apt-get remove --purge $(dpkg -l apache* | grep ii

| awk '{print $2}')

Even though our site.yml file looks a lot more sparse than what our

previous playbooks did, all the magic happens here through the use of the

roles statement. By using our roles statement, we no longer need to refer

to imported or included YAML files as our role will already know where to

find everything it needs.

As in our project, all Ansible roles are implemented with the same

behavior. The tasks needed to create role will work through the following

directories in order:

•	 tasks

•	 handlers

•	 vars

•	 defaults

•	 meta

Ansible pieces our playbook together as if we had been using our

original web server playbook. Now that we have the web service running as

a role, let’s move onto the next section where we break down our dbserver-

playbook.yml into its own Ansible role.

Chapter 3 Extending Playbooks with Roles and Templates

80

�Creating the Database Server Role
With everything we’ve just learned, we should be able to breeze through
turning our dbserver-playbook.yml into an Ansible role which can
be used in the site.yml playbook. If you are no longer in your working
environment, log back in so we can get started with creating our next
Ansible role:

	 1.	 We already have our roles directory set up from the
previous exercise, but we will first need to create a
directory for our new database server role. Perform
the following command to create the directory db_
server:

mkdir roles/db_server

	 2.	 Now, run the following seven commands to create
the files, handlers, meta, templates, tasks, and vars
directories in our new db_server role:

mkdir -p roles/db_server/{files,handlers,meta,template
s,tasks,vars,defaults}

Note T he creation of all these directories seems a little redundant,
and don’t worry, in the next chapter, we will show you how to set up
your roles without having to manually create all the directories. For
now, we are doing this to help you get used to where everything is
located on our role.

	 3.	 As we did with our previous section of this chapter,
we can start by setting up the tasks for our db_server
role. We do this by copying our original database
playbook into the tasks directory and rename it to

main.yml:

Chapter 3 Extending Playbooks with Roles and Templates

81

cp dbserver-playbook.yml roles/db_server/tasks/main.yml

	 4.	 We can now trim down the file and remove anything

we no longer need. This will be the first six lines at

the top of the file including the variables, as we have

somewhere to place them in our roles directory

structure. Our main.yml tasks file should look

similar to the following file:

 1 ---

 2 - name: install mysql and python-myslqdb

 3 �apt: name={{ item }} update_cache=yes cache_valid_

time=3600 state=present

 4 with_items:

 5 - python3-mysqldb

 6 - mysql-server

 7 - name: start up the mysql service

 8 shell: "service mysql start"

 9 - name: ensure mysql is enabled to run on startup

 10 service: name=mysql state=started enabled=true

 11 - �name: update mysql root password for all root

accounts

 12 mysql_user:

 13 name: root

 14 host: "{{ item }}"

 15 login_unix_socket: /var/run/mysqld/mysqld.sock

 16 password: "{{ mysql_root_password }}"

 17 login_user: root

 18 login_password: "{{ mysql_root_password }}"

 19 check_implicit_admin: yes

 20 priv: "*.*:ALL,GRANT"

 21 with_items:

Chapter 3 Extending Playbooks with Roles and Templates

82

 22 - "{{ ansible_hostname }}"

 23 - 127.0.0.1

 24 - ::1

 25 - localhost

 26 - name: create a new database

 27 �mysql_db: name=testdb state=present login_

user=root login_password="{{ mysql_root_password

}}"

 28 - name: add sample data to database

 29 copy: src=dump.sql dest=/tmp/dump.sql

 30 - name: insert sample data into database

 31 �mysql_db: name=testdb state=import target=/tmp/

dump.sql login_user=root login_password="{{

mysql_root_password }}"

	 5.	 We don’t have any handlers in our original

playbook, but we do have a variable section for the

database password. We can add this to our vars

directory that is set up as part of our roles. Create the

main.yml file in the vars directory with the following

command:

touch roles/db_server/vars/main.yml

	 6.	 Open the main.yml file we have just created in the

vars directory with your text editor. We only have

one variable so far, so add the following two lines

into the file and save it:

 1 ---

 2 mysql_root_password: password

Chapter 3 Extending Playbooks with Roles and Templates

83

	 7.	 Lastly, we need to add the dump.sql file into the

files directory of our new db_server role, which

performs the job of creating our sample tables and

data in our database. Run the following command to

copy it into the files directory:

cp dump.sql roles/db_server/files/

	 8.	 With the new db_server role created, we can now

add it into our site.yml file. We will deploy both

roles to the same system, so update the site.yml file

to look like the following output:

 1 ---

 2 - hosts: webserver

 3 roles:

 4 - web_server

 5 - db_server

	 9.	 Once again, we can run the playbook with the

command we used earlier; this time, it will deploy

both the web_server and db_server roles:

ansible-playbook -i hosts site.yml

	 10.	 If the preceding ansible-playbook command runs

without any errors, our deployment should have

been successful. Finally, we can do some cleanup

and remove all of the files in our current directory

we are no longer using as they have now been

placed into their appropriate roles directories for

either the web_server or db_server run. Run the

following command to clean up the unwanted files:

Chapter 3 Extending Playbooks with Roles and Templates

84

rm 000-default.conf dbserver-playbook.yml dump.sql

hosts index.py webserver-playbook.yml

The only files remaining in our working directory should be our

hosts file, the new site.yml playbook, and the roles directory, which now

includes our new database and web server roles.

You have made a lot of changes to your environment, so make sure

you continue to commit your changes to your GitHub repository before

moving on. The next section of this chapter will discuss using extra options

and variables we can use as part of the ansible-playbook command to help

with our deployments.

�Ansible Command-Line Variables
and Options
In our example project we have been working on, we used the vars

directory as part of our role to define a variable to be used by our playbook.

We won’t dwell too long on this, but you can also provide an overriding

variable as part of your command-line arguments. In the next section of

this chapter, we will use the –-extra-vars option or the -e option to provide

variables when we run our command in the console. This is a good way

to test variables before placing them in the vars directory or if you need

to override any of the variables currently in place. When you use the

environment variables option, you then need to specify the name of the

variable and then the value it is equal to, for example:

--extra-vars variable=test

-e variable=test

You need to specify the option for each extra variable you wish to

define, or you can include them in inverted commas as listed like the one

as follows:

Chapter 3 Extending Playbooks with Roles and Templates

85

-e "variable1=test1 variable2=test2"

You will need to remember there is a precedence and order to where

Ansible will take its variables from. For now, all you need to know is if you

place variables in the command line with the –-extra-vars option, they will

override any other variables you have in your Ansible role.

For now, if you are going to store them as part of your role, make sure

they are either in the defaults directory or in the vars directory (vars will

override defaults). If you would like a full and detailed list of variable

precedence, go to the following location in the Ansible documentation:

http://docs.ansible.com/ansible/latest/playbooks_variables.

html#variable-precedence-where-should-i-put-a-variable

�Expanding Our LAMP with Django
In our first chapter, we discussed this project was going to incorporate Django

as part of our environment. I know we’re almost through our third chapter, but

we are now going to set up Django and allow it to use our MySQL database to

store data and then we can have Apache2 host the services.

As we discussed in our first chapter, we are not going to go too far in

depth with Django, so we will walk through all of the concepts as we go. Of

course, we are going to create a role as we set it up to make sure it is in line

with the work we are currently doing.

Note D jango is a Python-based web framework which allows
programmers to create fully functioning websites quickly without
needing to sort out the finer details of how it will scale or worry about
security. Django is open source, and there is a lot of information
on the Web on how to use and create applications. One of the best
places to start is from the link www.djangoproject.com/.

Chapter 3 Extending Playbooks with Roles and Templates

http://www.djangoproject.com/

86

Log back into your development environment and access the directory

you have been working in previously to get started:

	 1.	 The first thing we will need to do is create a new role

for Django. Run the following command to create

the new role called django_app:

mkdir roles/django_app

	 2.	 Just as we have done so with the database and

Apache2 roles we created, it’s time to create all the

supporting directories which will be part of our

role. Run the following commands to create all the

supporting directories:

mkdir -p roles/django_app/{defaults,files,handlers,met

a,tasks,templates,vars}

	 3.	 We can start by setting up the tasks we need to

perform to create our Django environment. We have

not created a playbook for this yet, so we will be

starting from scratch. Run the following command

to create the main.yml file in our tasks directory:

touch roles/django_app/tasks/main.yml

	 4.	 Open the main.yml file with your text editor and

start by creating the following two tasks, where we

install the latest version of python3-django and

create a directory where our application will be

created in:

 1 ---

 2 - �name: install django and make sure it is at the

latest version

Chapter 3 Extending Playbooks with Roles and Templates

87

 3 apt: name=python3-django state=present

 4 - name: create a directory for our django app

 5 �file: path={{ django_app_location }}/web_app

mode=0755 owner=user group=user state=directory

We are using the variable django_app_location

which we will specify in the command line. Line 3

uses the apt module to install the latest version of

python3-django, and line 5 uses the file module to

create the application directory for our web_app.

Note W e are using the owner and group value of user. You need
to make sure your code includes a valid user on the system you are
running your playbook code on.

	 5.	 Stay in the same file; we now need to create a

new Django application using the django-admin

command. Add the following code to the file where

line 7 uses the shell module to perform the django-

admin command to create our new app, and line

9 uses the copy module to add in our application

configuration:

 6 - �name: create your new django app in the web_app

directory

 7 �shell: django-admin startproject web_app {{ django_

app_location }}/web_app

 8 - �name: configure your database to use work with

django

 9 �copy: src=settings.py dest={{ django_app_location

}}/web_app/web_app/settings.py

Chapter 3 Extending Playbooks with Roles and Templates

88

	 6.	 Continue to add the following tasks to our role. Line

11 uses the shell module again to run the Django

manage.py script to set up our database:

 10 - name: apply a migration into the mysql database

 11 �shell: python3 {{ django_app_location }}/web_app/

manage.py migrate

	 7.	 Line 13 is pretty involved as it runs a command to

create the new superuser administrator for our

web_app as well as setting the credentials including

the password for the user. The command sets the

admin user password to ‘changeme’. This can be

changed to something you feel is more secure, or

you can change the password later once Django has

been installed and is available:

 12 - name: populate admin with password

 13 �shell: python3 {{ django_app_location }}/

web_app/manage.py shell -c "from django.

contrib.auth.models import User; User.objects.

filter(username='admin').exists() or User.

objects.create_superuser('admin','admin@example.

com', 'changeme')"

	 8.	 This should be everything we currently need to

include in our django_app tasks, so make sure all

the changes have been saved and close the main.

yml file for now.

Chapter 3 Extending Playbooks with Roles and Templates

89

	 9.	 In lines 8 and 9 of our django_app tasks, we are

adding a preconfigured settings.py file to our

configuration. We will need to create this and place

it in the roles/django_app/files/ directory. You will

be able to download a sample version from the

authors GitHub repository. Use the following wget

command to extract the file from GitHub and then

place it in the roles/django_app/files directory of

our role:

wget https://raw.githubusercontent.com/vincesesto/prac-

ansible/master/chapter3/test_playbooks/roles/django_

app/files/settings.py; mv settings.py roles/django_app/

files/settings.py

	 10.	 If you haven’t worked with Django before, you may

not know the settings.py file will be configured to

use SQLite database to work with upon installation.

We already have a MySQL database which we set

up earlier, so a configuration change is needed to

ensure it can be used as part of this project. The

only difference to the default version we have

downloaded as part of the previous is from line

76, which has our MySQL database details added

instead of the SQLite details. Using your text editor,

open the settings.py file in the roles/django_app/

files/ directory and make sure these lines should

look similar to the following ones:

76 DATABASES = {

77 'default': {

78 'ENGINE': 'django.db.backends.mysql',

Chapter 3 Extending Playbooks with Roles and Templates

90

79 'NAME': 'web_app',

80 'USER': 'root',

81 'PASSWORD': 'password',

82 'HOST': 'localhost',

83 'PORT': '',

84 }

85 }

	 11.	 While you have the settings file open, if you are

using a web browser on the system you are working

on, you might need to add your IP address to the the

ALLOWED_HOSTS value. It will be set to an empty

list, but move through the file, most likely around

line 28, and make sure your IP address is added like

we have here:

28 ALLOWED_HOSTS = ['0.0.0.0']

	 12.	 Save the settings.py file, as our django_app role

should now be complete, but we need to make an

addition change to our db_server role first.

	 13.	 Open the roles/db_server/tasks/main.yml file

with your text editor and change the tasks that

create the database for us. This should be at line 26

where the name of the database will now reflect the

information we have set in our Django settings.py

file. Make the following change to set the name as

equal to web_app:

25 - name: create a new database

26 mysql_db: name=web_app state=present login_

user=root login_password="{{ mysql_root_password }}

Chapter 3 Extending Playbooks with Roles and Templates

91

	 14.	 Now we need to add the django_app role into our
site.yml file to make sure it’s installed as part of our
environment. Open the site.yml file and it should
now have the django_app role added and look
similar to the following output:

 1 ---
 2 - hosts: webserver
 3 roles:
 4 - web_server
 5 - db_server
 6 - django_app

	 15.	 You may be wondering when we are going to set up
the django_app_location variable we are using in
our django_app tasks. But with our new knowledge
of command-line arguments, we will add it now
when we run our Ansible playbook command.
Run the following command using the --extra-vars
option to specify the location where our app will be
located. In the following instance, we are using the
current working directory with the `pwd` command:

ansible-playbook -i hosts site.yml --extra-vars django_
app_location=`pwd`

	 16.	 We can now test our server with the built-in web
server Django provides. We will configure it to work
with Apache2 later in this chapter, but for now, we
will use this to verify all our changes have worked
correctly. Run the test web server with the following
command:

python3 web_app/manage.py runserver 0.0.0.0:8000

Chapter 3 Extending Playbooks with Roles and Templates

92

Performing system checks...

System check identified no issues (0 silenced).

March 23, 2018 - 03:08:45

Django version 1.11.4, using settings 'web_app.

settings'

Starting development server at http://0.0.0.0:8000/

Quit the server with CONTROL-C.

Note W e have used port 8000 to run the Django test server. This
needs to be different to the port Apache2 is running, which would be
running on port 80.

If you have a web browser running on your environment, you will now

be able to test the environment by entering the following domain: http://

localhost:8000/. You’ll see something like Figure 3-1.

Figure 3-1.  The Django Welcome Page from Your Web Browser

Chapter 3 Extending Playbooks with Roles and Templates

93

Or we can test our administration page with http://localhost:8000/

admin (Figure 3-2).

If everything has worked correctly, the admin domain should look

similar to the preceding image and we should be able to log in with the

admin username and the password we created as part of our django_app

playbook.

The playbook we set up does the job of implementing the admin

superuser upon installation. If you need to change the password for this

user, you can run the following command from your working directory to

perform the changepassword command:

python3 web_app/manage.py changepassword admin

Changing password for user 'admin'

Password:

Password (again):

Password changed successfully for user 'admin'

Figure 3-2.  The Django Admin Login Page

Chapter 3 Extending Playbooks with Roles and Templates

94

For now, our roles are coming along well, but the following section

will look at adding extra functionality into our roles through the use of

conditional statements.

�Conditional Tasks in Ansible
Before we finish off the work we have done in this chapter, we need to

highlight one point. We don’t want to continually reinstall our Django

application and reset our database every time we run our playbook.

The good news is Ansible has conditional commands that will allow us

to perform tests and verify if the application is already in place before

performing a task.

The main conditional statement in Ansible is the when statement and

works in a similar way to an if statement in most programming languages.

For our example, we will be able to create a task to check if our application

directory exists; we can then make sure our Django commands and

database migrations are only performed when the Django application has

not been previously created.

Let’s get back into our working environment, and we can implement

this with only a few minor changes to our django_app role:

	 1.	 We will need to make changes to the tasks we have

previously created, so use your text editor to open

the tasks file for the django_app role under roles/
django_app/tasks/main.yml.

	 2.	 The first two tasks we perform is to install Django

and then create the application directory. We can

place our installation test just after this at line 6, so

add in the following four lines into our list of tasks:

 4 - name: check if django app already exists

 5 shell: ls -l {{ django_app_location }} | grep -c web_app

Chapter 3 Extending Playbooks with Roles and Templates

95

 6 register: djangostatus

 7 failed_when: djangostatus.rc == 2

The preceding code performs a simple shell

command to test if the application directory called

web_app has been created or not. It then creates

the djangostatus value using the register statement

and will fail if the returned value is equal to 2. If the

application is present, it will be assigned as 1, and if

not, it will have the value of 0.

Note A nsible allows you to define what a failure is for each task.
In the preceding example, we are using the failed_when statement
to set our failure to be when the dbstatus value is equal to 2. This
should only happen if the task performing the directory listing
actually fails.

	 3.	 The remaining tasks can then be amended to have

the when statement for each of them as we have

listed them as follows. Add in the following code; we

have highlighted the additional statements in bold

and will only run these specific tasks if the result of

our django directory test or djangostatus is "0" or

not present:

 08 - name: create a directory for our django app

 09 �file: path={{ django_app_location }}/web_app

mode=0755 owner=user group=user state=directory

 10 when: djangostatus.stdout == "0"

 11 - �name: create your new django app in the web_app

directory

Chapter 3 Extending Playbooks with Roles and Templates

96

 12 �shell: django-admin startproject web_app {{

django_app_location }}web_app

 13 when: djangostatus.stdout == "0"

 14 - �name: configure your database to use work with

django

 15 �copy: src=settings.py dest={{ django_app_location

}}/web_app/web_app/settings.py

 16 when: djangostatus.stdout == "0"

 17 - name: apply a migration into the mysql database

 18 �shell: python3 {{ django_app_location }}/web_app/

manage.py migrate

 19 when: djangostatus.stdout == "0"

 20 - name: create the admin superuser

 21 �shell: python3 {{ django_app_location }}/

web_app/manage.py createsuperuser --noinput

​--username=admin --email=admin@example.com

 22 when: djangostatus.stdout == "0"

	 4.	 We can now run our playbook the same way we did

earlier:

ansible-playbook -i hosts site.yml -e django_app_

location=`pwd`

If you have previously installed Django and have the application

directory already created, we should see our output skipping the tasks

we put in place in the django_app role. The recap displayed when the

playbook has completed should also show the number of skipped tasks, in

our case 5:

TASK [django_app : create your new django app in the web_app

directory] *********************************

skipping: [localhost]

Chapter 3 Extending Playbooks with Roles and Templates

97

TASK [django_app : configure your database to use work with

django] *************************************

skipping: [localhost]

TASK [django_app : apply a migration into the mysql database]

**

skipping: [localhost]

TASK [django_app : populate admin with password] **************

skipping: [localhost]

RUNNING HANDLER [web_server : restart apache2] ****************

changed: [localhost]

PLAY RECAP **

127.0.0.1 : ok=19 changed=7 unreachable=0

failed=0 skipped=5 rescued=0 ignored=0

Using conditional tasks in your playbooks and roles is an easy way

to control the flow of what needs to be run and what doesn't. In the next

section, we will demonstrate how you can implement tags as part of your

playbooks to achieve a similar way to control the flow of your work.

�Using Tags to Run Specific Tasks
We have just used conditionals to run specific parts of our playbook when

needed, but we can also use tags within our playbook to limit what is run

and what isn’t run when we perform a deployment. All we need to do in

our code is to mark it with the tags attribute, and this will allow us to then

call these specific tags when we run the playbook.

Chapter 3 Extending Playbooks with Roles and Templates

98

In the previous section, we have used the when statement to make

sure only certain tasks in a playbook are run if Django has been previously

installed. In the following section, we will make a minor amendment to

our role to allow us to call one specific task if we need it.

You can add tags to any part of your deployment, but they will only

affect tasks, and it can help you as by adding the tag to the role, the tag will

then be applied to all the tasks in the role.

As we’ve seen, the best way to explain how features work is by adding

it into the code, so log back into your working environment and we will do

some minor work to the django_app role to demonstrate how we can start

to work with tags:

	 1.	 We will need to make a new change to the roles/
django_app/tasks/main.yml file, so open this file

with your text editor ready to make changes.

	 2.	 We are going to make a minor change to the first

task in our playbook, so add an extra line to the first

task as we have here, adding in the tags: django_
alive entry in line 4:

 1 ---

 2 - �name: install django and make sure it is at the

latest version

 3 apt: name=python3-django state=present

 4 tags: django_alive

	 3.	 We can now verify we have set up the tags correctly

by running the playbook, but adding the –-list-tags

option at the end of the command. This will only

list all the tags we have added to our roles without

running the playbooks and should look similar to

the following output:

Chapter 3 Extending Playbooks with Roles and Templates

99

ansible-playbook -i hosts site.yml -e django_app_

location=`pwd` --list-tags

playbook: site.yml

 play #1 (webserver): webserver TAGS: []

 TASK TAGS: [django_present]

As you can see, in all of our roles the site.yml file runs, there is

only one tag set up in play #1.

	 4.	 We will now amend tags to our site.yml file to

demonstrate how these will affect all the tasks in the

role. Open the site.yml file with your text editor to

get this started.

	 5.	 We will set up a tag in the site.yml file to only deploy

the database if needed. Amend the file to now look

like the following. As you can see, we have needed

to make a slight change to the structure of the file to

make sure the tag of deploy_database_only can be

applied:

 1 ---

 2 - hosts: webserver

 3 roles:

 4 - web_server

 5 - role: db_server

 6 tags: ['deploy_database_only']

 7 - django_app

	 6.	 To now run our playbook and only deploy the

database, we simply use the --tags option and the

tag we created earlier. Run the following command

to perform this exact change:

Chapter 3 Extending Playbooks with Roles and Templates

100

ansible-playbook -i hosts site.yml -e django_app_

location=`pwd` --tags deploy_database_only

Ansible comes with a tag you can add to make sure a

specific task is always run, and of course, it is called

always. Tasks with this tag will be run every time

you run your playbook unless you use the --skip-
tags option in your ansible command.

	 7.	 Open the site.yml file once again and we will

demonstrate how to use the always tag with our

current project.

	 8.	 Change lines 7 and 8 of the site.yml file to look the

same as the following code. We might determine the

Django app is of high priority and needs to always

be deployed whenever we run the site.yml playbook.

The following changes amend the django_app role

being called to have the tag set to always. Save the

file ready to test:

 1 ---

 2 - hosts: webserver

 3 roles:

 4 - web_server

 5 - role: db_server

 6 tags: ['deploy_database_only']

 7 - role: django_app

 8 tags: ['always']

	 9.	 Before we run our playbook, use the --list-tags

option again to view the tags we have across all

our roles that are being used. As you can see from

the following output, we now have three tags listed

across the roles being used:

Chapter 3 Extending Playbooks with Roles and Templates

101

ansible-playbook -i hosts site.yml -e django_app_

location=`pwd` --list-tags

playbook: site.yml

 play #1 (webserver): webserver TAGS: []

 �TASK TAGS: [always, deploy_database_only, django_

alive]

	 10.	 Run the playbook again as we did earlier, only using

the deploy_database_only tag. Although the db_
server role is run, the django_app role is also run

because it is tagged with the always tag:

ansible-playbook -i hosts site.yml -e django_app_

location=`pwd` --tags deploy_database_only

This brings us to the end of the exercises for this chapter. Hopefully,

you can see the benefits of using roles in your configuration management

process and can see how tags can also simplify and change the way our

playbooks run.

�Summary
In this chapter, we have done a lot of work to take our project and start

to organize things a little better by organizing our Ansible playbooks into

roles. We gave an overview of what roles are and how to use them, as well

as discussing the directory structure and how everything is organized. We

implemented a Django server as part of our deployment and used some

extra functionality along the way by introducing conditional tasks, tags,

and command-line variables.

Chapter 3 Extending Playbooks with Roles and Templates

102

In the next chapter, we will take our knowledge of roles further by

introducing you to Ansible Galaxy, which is an online environment where

you can search for roles created by the community that could be suitable

for your work. We will take you on a journey on how you can work with the

environment to search and install roles and also create your own to share

with the rest of the world. Finally, we will give you some useful information

on creating your own Ansible modules, as well as keeping our secret files

and passwords safe.

Chapter 3 Extending Playbooks with Roles and Templates

103© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_4

CHAPTER 4

Custom Ansible
Modules, Vaults,
and Galaxies
I think we’ve created a good base of Ansible knowledge in the previous

chapters to now work further. This chapter will hopefully continue to allow

your knowledge to grow. If we think about the previous chapters, they were

more about creating a foundation to our work. This chapter will hopefully

allow us to increase the speed in which we implement our projects as well

as allow us to start to customize our projects faster.

Even though Ansible comes with such a huge amount of preinstalled

modules, there may be the need to create your own module in some

situations. Conversely, we have been creating our own roles, but in some

circumstances, it may be easier to see if the Ansible community has

created something which could fit your needs.

We are going to start our work in this chapter with a look at the

standard way Ansible deals with secret information and passwords. We’ve

been promising this for a while but will use the start of this chapter to give

you the information you need to start using Ansible Vault in your project.

The bulk of this chapter though will then take you through using Ansible
Galaxy and creating your own modules to use in your projects.

https://doi.org/10.1007/978-1-4842-6485-0_4#DOI

104

This chapter will take you through some of the more advanced features

of Ansible, and we will be using our project to help you introduce the

following:

•	 We will start the chapter by looking at how we can use

Ansible Vault to manage our project passwords and

secret information.

•	 We will then introduce you to Ansible Galaxy and how

you can start to work with and use prebuilt roles in your

projects.

•	 We will take this further by showing you how you

simplify your environment implementation by using

Ansible Galaxy as a template to your future role

creation.

•	 With the tools provided by Ansible, we will then take

some time to show you how to add your own roles to

the collaboration environment to allow other users to

use your own roles.

•	 In the last part of the chapter, we will take a break from

roles and demonstrate how you can create your own

modules and how to use them in your projects.

So, without further delay, we’ll get started with the chapter and get you

comfortable with these new concepts.

�Keeping Secret with Ansible Vault
We have discussed in our previous chapters keeping our passwords in

plain text is not the best way to store them, and I promised we would

address this. Luckily, Ansible has a way of encrypting our data to make

sure it’s secure by using the ansible-vault command. This will allow you

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

105

to work with sensitive files using a password or password file to make sure

your data is secure when being deployed to your environment.

As we’ve seen in our previous chapters, we have moved our variables into

a designated var directory for each role. This is a perfect start for us as we can

now use ansible-vault to encrypt the data and keep our password a secret.

We already have a good starting point to use ansible-vault with our

current project, so log into your work environment and we will get started

with using this feature in our project, specifically as part of our db_server

role as this uses a clear text password for our MySQL database:

	 1.	 Our variable for our db_server role is currently in

the main.yml file. We will start by moving this to a

new file, specifically for our test environment. This

will mean we can create a different variables file for

any further environments we wish to then create, for

example, a production environment, and will then

use a different password:

mv roles/db_server/vars/main.yml roles/db_server/vars/

test_environment.yml

Note  We need to make sure we move the file and rename it. If we
leave a copy of the file as main.yml, Ansible will still use this file by
default, and we will also have an unencrypted password left in our
Ansible role.

	 2.	 We can now encrypt the data so it will be secure

using a password and by using the encrypt option

the ansible-vault command provides. Enter the

following command and you will be prompted to

enter your password directly into the command line:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

106

ansible-vault encrypt roles/db_server/vars/test_

environment.yml

New Vault password:

Confirm New Vault password:

Encryption successful

	 3.	 If we have a look through our variables file, we will

be able to see it is now encrypted and we are not

able to see the password we originally placed in the

file. Use the head command as we have here to view

the first five lines of the file:

head -n5 roles/db_server/vars/test_environment.yml

$ANSIBLE_VAULT;1.1;AES256

666432373165343363373633336338636165633635353964636166

6565373636646261623061363

6439323661303736323137353238613630393537383336300a3933

3163663166346262353635393

396334326233663064343530663163316332323964643963323532

6230343634323364313634656

3430363735333835650a3534303964343864366234373238356162

3463336231333532396662343

	 4.	 We can now use the ansible-vault command to

make sure our data is still intact by using the view

option with the file we just encrypted. Enter the

following ansible-vault command where you will

be prompted again for the password you used to

encrypt the file with:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

107

ansible-vault view roles/db_server/vars/test_
environment.yml

Vault password:

mysql_root_password: password

As you can see, although our data is now encrypted,
we are able to view it with this option and see the
specific variables in the file.

	 5.	 Before we run our playbook again, we need to
make sure the db_server role is able to use different
environment variables when needed. Open the
roles/db_server/tasks/main.yml file and add the
following task to the top of the file:

 1 ---
 2 - name: load the variables for this environment
 3 include_vars: "{{ env }}_environment.yml"

The role will now make sure all the variables in the
specific environment are loaded before the rest of
the tasks are run. We just need to specify the env
name as part of our command line to make sure it is
loaded correctly.

	 6.	 All we need to do now is run our playbook and use
the new encrypted variables. We can do this by
running our playbook command with the --ask-
vault-pass option, which will then allow us to enter
the password we specified earlier when we first
encrypted the file. We also use a second variable
in the command line to make sure the correct

environment is being used to load variables:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

108

ansible-playbook -i hosts site.yml -e django_app_
location=`pwd` -e env=test --ask-vault-pass

Vault password:

We can also use a password file, which includes our
password, so if we needed to run the playbook via
an automated process, we simply make sure the
password file is available when the playbook is run.
This may seem a little insecure, but remember, you
can ensure the security of the file and permissions
to ensure the data is also kept safe. We can continue
with our project and try this now.

	 7.	 When we use ansible-vault and reference a
password file, we simply need to place the file in
a directory accessible by the current user. In this
instance, we will create a text file in our current
directory. It’s a little obvious, but we will call it
password_file.txt:

touch password_file.txt

	 8.	 Now open the file with your text editor and add
in the same password you used to create the vault
file earlier. Nothing else needs to be added to the
file, simply the password in plain text. Save the file
before proceeding.

	 9.	 We can now use this file to run our playbooks with
the –-vault-password-file option. To test it, we
will use the view option of ansible-vault as we did
earlier to view our encrypted variables file. Run the
following command to view the encrypted variables

file, this time using a text file:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

109

ansible-vault view roles/db_server/vars/test_

environment.yml --vault-password-file password_file.txt

mysql_root_password: password

Here, we were able to now view the data in the

encrypted file without needing to type in our

password. If we were to run our playbook again,

we would use the same --vault-password-file

command option with ansible-playbook.

	 10.	 If we want to edit our encrypted file or make a

change to our encrypted data, we can use the edit

option with the ansible-vault command to open

the file and allow us to edit as if we were using a

text editor on the file directly. Run the following

command and you will be able to see we can now

edit the file as needed:

ansible-vault edit roles/db_server/vars/test_

environment.yml --vault-password-file password_file.txt

	 11.	 If you wish to change the password you used to

encrypt the file with, you need to use the rekey

option. You do need to remember the original

password though before you can change it. Run the

following command to change the password used to

encrypt and decrypt the test_environment.yml file.

You should see a “Rekey successful” reply on the

command line if you are successful:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

110

ansible-vault rekey roles/db_server/vars/test_

environment.yml --ask-vault-pass

Vault password:

New Vault password:

Confirm New Vault password:

Rekey successful

	 12.	 Finally, to decrypt the encrypted file, we use the

decrypt option of the ansible-vault command.

Run the following command, and if successful, you

should now be able to open the test_environment.
yml file as you normally would with your text editor:

ansible-vault decrypt roles/db_server/vars/test_

environment.yml --ask-vault-pass

We’ve come to the end of our discussion on using Ansible Vault in

your project. We have just scraped the surface of using the ansible-vault

command with our playbooks, but hopefully this will give you enough

information to get you started and make sure you are keeping your secrets

safe. We will now move onto using and working with Ansible Galaxy as part

of our Ansible projects.

�Ansible Galaxy
Ansible Galaxy is a place where the Ansible community share and reuse

Ansible content. Considering the work you’ve done in previous chapters,

why would you need this as we have become so proficient in creating

and deploying our own roles? Sometimes, the unfortunate reality of our

work is we simply don’t have the time. This is where Ansible Galaxy can

come in and fill the gap between the architecture of an environment and

completing the work.

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

111

The best thing about galaxy is the content is packaged as roles, so

this is a perfect progression from our previous chapter as we have been

working extensively with roles and you hopefully understand how they

work within our playbooks. By using galaxy, we can get started with

our projects a lot faster as it allows us to search for roles made by the

community and download and run them on your own environment.

This works both ways, as you can also share roles you’ve created with

the rest of the community. By using your GitHub credentials, you can log

into galaxy and share your content for others to use.

Even though we haven’t been using them, we have had the tools to

work with galaxy all along. The ansible-galaxy command comes standard

with the application we installed at the start of this book. You can use the

command to install roles, create roles, and perform tasks on the Ansible

galaxy website. Make note the ansible-galaxy command works directly

with the galaxy website provided by Ansible.

�Searching and Working with Ansible Galaxy
Roles
To search through the Ansible Galaxy database to try and find a role

we may need for our project, we can use the search parameter with the

ansible-galaxy command. The search option allows us to not only specify

a search term to look for but we can also search for roles made by a

particular user.

The following section will help us demonstrate how to use some basic

ansible-galaxy commands, so feel free to work with us, so log back into

your working environment to get started:

	 1.	 Even though we’ve created our own Django role in

our previous chapter, we can start by having a look

to see if there are any roles created and available

in galaxy already. Run the following command to

perform that we will use the search parameter with

the type of role we are looking for:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

112

ansible-galaxy search django

Found 30 roles matching your search:
Name Description
---- -----------
ansible.django-gulp-nginx �Ansible Container

Django demo
ansible.django-template �An Ansible

Container project
template ansible.
nginx-container

ansible-lab.pip �Pip (Python Package
Index)

...
vforgione.uwsgi-emperor �A role for

installing and
initializing

vforgione.uwsgi-vassal �A role for
installing a Python

Wtower.django-deploy �Deploy Django on
Plesk

Wtower.django-prepare �Prepare the launch
of a Django

We’ve restricted the number of entries we were
provided from the search command as we had 30
roles provided and available which will hopefully set
up a Django environment for you if you use them.

	 2.	 If you know the author of the role you were looking
for, you could use the --author option as part of
your search to only provide the roles in galaxy which
have been authored by the author specified. Run the
following command to search for a Django specific

role created by the account ScorpionResponse:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

113

ansible-galaxy search django --author ScorpionResponse

Found 1 roles matching your search:

Name Description

---- -----------

ScorpionResponse.django �Installer for a Django

project

	 3.	 If we wanted to then see if this author has created

any other roles and has them stored in galaxy, we

can exclude the role we want to search for and

only leave the –-author option. Run the following

command to search for all roles created by the

author ScorpionResponse:

ansible-galaxy search --author ScorpionResponse

Found 17 roles matching your search:

Name Description

---- -----------

ScorpionResponse.celery Installer for Celery

ScorpionResponse.django �Installer for a Django

project

ScorpionResponse.git Install Git

ScorpionResponse.gunicorn Installer for gunicorn

ScorpionResponse.nginx Installer for nginx

ScorpionResponse.nltk �Install NLTK and NLTK

data

ScorpionResponse.personal_dev �Personal Development

Configuration

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

114

ScorpionResponse.pip Install Pip

ScorpionResponse.supervisord �Installer for

supervisord

	 4.	 If we need some more information on a role we’ve

found, we can then use the info option to provide

us with the relative information on the role we

want to hopefully install and use. Run the following

command to gain further information on the

ScorpionResponse.django we discussed earlier in

this section of the chapter:

ansible-galaxy info ScorpionResponse.django

Role: ScorpionResponse.django

 description: Installer for a Django project

 active: True

 �commit:

2bc72d5b2ed7c2eb652acc89bdde9f7b09700182

 �commit_message: allow git checkout to target

specific version

 commit_url: https://github.com/ScorpionResponse

 ...

	 5.	 We can also check to see if we have any galaxy roles

already installed on our system. We can use the

list option with the ansible-galaxy command to

see what galaxy roles are already installed on our

system. Run the following command and we should

see a zero result:

ansible-galaxy list

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

115

Note T o follow along with the next part of this exercise, you will
need to have a GitHub account, which will allow you to set up an
account on Ansible Galaxy. If you don't have an account already, you
will need to set one up in this URL: https://github.com/.

	 6.	 If we want to import, delete, or set up roles on

Ansible Galaxy, you will need to have a galaxy

account and be logged in. If you have not done it

already, head to this website to create an account

in Ansible Galaxy: https://galaxy.ansible.com/

login.

Figure 4-1.  The Ansible Galaxy Login Page

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

https://github.com/
https://galaxy.ansible.com/login
https://galaxy.ansible.com/login

116

We will do some work later with the galaxy website, but for now,

we will move back to the command line to show you how to log

in once your account has been created.

	 7.	 Once our galaxy account has been created, we

should now be able to log in through the command

line by using the login option with our ansible-

galaxy command. Run the following command to

log in to your account:

ansible-galaxy login

We need your GitHub login to identify you.

This information will not be sent to Galaxy, only to

api.github.com.

The password will not be displayed.

Use --github-token if you do not want to enter your

password.

Github Username: vincesesto

Password for vincesesto:

Successfully logged into Galaxy as vincesesto

	 8.	 We are now at the point where we can use the

install option to install a role found in galaxy. Run

the following ansible-galaxy command to install

the SimpliField.users role from galaxy. We are

also using the --roles-path option to specify where

we are installing the role and adding it to our roles

directory in our current working system:

ansible-galaxy install SimpliField.users --roles-path

roles/

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

117

- downloading role 'users', owned by SimpliField

- �downloading role from https://github.com/SimpliField/

ansible-users/archive/master.tar.gz

- �extracting SimpliField.users to /test_playbook/roles/

SimpliField.users

- SimpliField.users (master) was installed successfully

We can see from the preceding output the

SimpliField.users role downloads and extracts into

our roles directory.

	 9.	 Use the tree command from the command line as

we have shown in the following to view the files in

the roles/SimpliField.users directory. We can see the

setup of the role is exactly the same as what we have

been setting up manually as part of our own roles:

tree roles/SimpliField.users/

SimpliField.users/

├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
└── tests
 ├── inventory
 └── test.yml

3 directories, 5 files

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

118

	 10.	 To then use the role we have just installed from

Ansible Galaxy, we need to create a playbook YAML

file which will work directly using the role. Start by

creating a new file called new_user.yml as we have

here:

touch new_user.yml

	 11.	 Open the new_user.yml file with your text editor.

Add in the following code which creates a new

playbook using the new role. Line 4 shows the

playbook is using the SimpliField.users role. Lines

5–11 then set up the new user specifying the values

needed to set up the new user account, including

the name, comment, createhome, home, and shell

details:

 1 ---

 2 - hosts: all

 3 roles:

 4 - role: SimpliField.users

 5 users:

 6 - simplifield:

 7 name: "simplifield"

 8 comment: "simplifield user"

 9 createhome: "yes"

 10 home: "/home/simplifield"

 11 shell: "/bin/false"

	 12.	 We can now run this new playbook the same way we

have been previously and it will create the new user

with username simplifield using the SimpliField.

users role we installed from galaxy:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

119

ansible-playbook -i hosts new_user.yml

PLAY [all] ***

TASK [Gathering Facts] *******************************

ok: [localhost]

TASK [SimpliField.users : create user {{ item.name }}]

changed: [localhost] => (item={u'comment':

u'simplifield user', u'shell': u'/bin/fal\

se', u'name': u'simplifield', u'createhome': u'yes',

u'simplifield': None, u'home': \

u'/home/simplifield'})

PLAY RECAP ***

localhost :

ok=2 changed=1 unreachable=0 failed=0

	 13.	 If the preceding playbook executed successfully, the

new user would now have been created, and we can

verify it by looking through the /etc/password file on

our system. Run the following command to look for

the simplifield user we created in the previous step:

cat /etc/passwd | grep simplifield

simplifield:x:1003...user:/home/simplifield:/bin/false

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

120

	 14.	 We will be able to remove the role from the

environment, so let’s try removing the role we

downloaded. Of course, we will be able to achieve

this through the ansible-galaxy command by using

the remove option. Run the following command

which is very similar to the install command we ran

previously:

ansible-galaxy remove SimpliField.users --roles-path

roles/

- successfully removed SimpliField.users

Just as we did when we installed the role, we

used the --roles-path option to specify where

we installed the role to make sure the directories

installed are cleaned up and removed.

We’ve covered off the basic ways to interact with Ansible Galaxy, but

continue with the following section of this chapter to see how you can

perform some of the more advanced ways to work with galaxy.

�Downloading and Installing Multiple Roles
from Galaxy
There may be a situation where you’re needing to download numerous

roles from galaxy. This can be simplified by providing a requirements file

when we run our install command, instead of needing to run multiple

install commands for each of the roles we need. The file we provided to the

install command needs to be in YAML format, and although it only needs

the src value specified, it can also include the scm, version, and name.

Each option is detailed as follows:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

121

•	 src – This is the source of the role. We’ve been using

galaxy roles so far, and they have simply been in the

format of authorname.rolename, but if it is from any

other source, you’ll need to specify the url with a git

extension to the role.

•	 scm – The only source code management ansible-

galaxy is able to use at the time of writing is either git or

hg (Mercurial).

•	 version – This is the version you want to install and can

also include the tag value or branch name you wish

to use. Ansible will always default to use the master

branch.

•	 name – You can also provide a name for the role to

download. Some users might feel the names provided

to galaxy may not be descriptive enough, so this option

allows you to provide your own name to the role. It will

default to the galaxy name if not specified.

With the previous work we did using Ansible Galaxy, the following

exercise will demonstrate how you can create a requirements file to install

your galaxy roles instead of performing manual commands. If you are not

logged into your development system, do this now so we can demonstrate

how to create a basic requirements file:

	 1.	 Our requirements file will be a YAML file, similar to

most other configuration files and playbooks used

by Ansible. Run the following command to create

the requirements.yml file ready to be set up with our

galaxy role:

touch requirements.yml

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

122

	 2.	 Open the requirements.yml file with your text editor

and add in the following code. The details should

be self-explanatory, but we can quickly note line 4

provides the galaxy role as we would use with the

install command. Line 6 provides an alternative

name to be used when the role is downloaded. If we

wanted to add further roles, we would simply add

them to the file:

 1 # File name requirements.yml

 2

 3 # Install from Ansible Galaxy

 4 - src: SimpliField.users

 5

 6 name: supersecretrole

	 3.	 Save the file, but before we run the command on our

system, we can export the path of our roles directory

in our command line which Ansible will then make

sure our requirements are installed in that directory:

 export ANSIBLE_ROLES_PATH="roles"

	 4.	 Now run the following ansible-galaxy command

which uses the install command and includes the -r

option and the requirements.yml file:

ansible-galaxy install -r requirements.yml

- downloading role 'users', owned by SimpliField

- �downloading role from https://github.com/SimpliField/

ansible-users/archive/master.tar.gz

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

123

- �extracting supersecretrole to /root/prac-ansible/

chapter4/test_playbooks/roles/supersecretrole

- supersecretrole (master) was installed successfully

	 5.	 Perform a listing of the roles directory to make sure

we have installed the role from the requirements.

yml file correctly:

ls -l roles/supersecretrole

total 16

-rw-rw-r-- 1 root root 683 Aug 11 2016 README.md

drwxr-xr-x 2 root root 4096 Sep 8 16:21 meta

drwxr-xr-x 2 root root 4096 Sep 8 16:21 tasks

drwxr-xr-x 2 root root 4096 Sep 8 16:21 tests

We’ve worked quickly to get our requirements.yml file set up and

working in our environment. Although you may not see the benefit of

using this method, imagine if you had a large number of galaxy roles you

needed to install on your system, you should simply list all of the roles in

your requirements file to be installed all at once.

�Moving Further with Ansible Galaxy
We’ve done a lot of work in our previous chapter to set up roles from

scratch, as it was a perfect way to learn specifically what each part or

directory in the role does. We can now take some time to show you how

to use ansible-galaxy to speed things up as it will create all the relevant

directories and base files needed to get you started with creating your own

Ansible roles.

We can use a basic example to show how Ansible roles are created with

the ansible-galaxy command, so log back into your working environment

and we will get started with this example:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

124

	 1.	 If we create our roles using the ansible-galaxy

command, it will create the role in the directory we

are working in. So, start by moving into the roles

directory so we can be consistent with all the other

roles we have created so far:

cd roles/

	 2.	 The ansible-galaxy command has the init option

available to create a new role in your project. Run

the following command as we have to create a new

role called test_role:

ansible-galaxy init test_role

 test_role was created successfully

	 3.	 Our new role directory called test_role should

have been created in your current directory. If we

perform the tree command on this directory, we will

be able to see all the relevant directories and default

files created for us:

tree test_role/

test_role/

├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

125

├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

8 directories, 8 files

	 4.	 As we can see, all of our default files have been

created in their relevant directories. Run the

following command to see nothing except our three

dashes (---) are in the defaults/main.yml file:

cat test_role/defaults/main.yml

	 5.	 The cool thing about the init option is that it allows

you to define your own template or skeleton of

directories to be created when you initiate your new

role. Let’s say we wanted to create a set of directories

and defaults for our role, just as we have in the test_

role but without the tests directory. Start by making

our test_role look the way we want it to by removing

the tests directory from it:

rm -rf test_role/tests/

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

126

	 6.	 We can now use the -–role-skeleton option to show

which role we want to use as our template to create

our new role. Run the following command which

specifies the test_role as our template for our new

role:

ansible-galaxy init –-role-skeleton=test_role

test_skeleton_role

 test_skeleton_role was created successfully

	 7.	 If we perform a tree command on our new role, we

will now be able to see it has used our new template

and not created the tests directory:

tree test_skeleton_role/

test_skeleton_role/

├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
└── vars
 └── main.yml

7 directories, 6 files

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

127

This is a great way to define a set of standards for your own projects.

If you have users that are new to Ansible, you could create a template for

your projects and then get them to create any of their own roles using this

template. There is still a lot more work for us to do with Ansible Galaxy,

so keep moving with the next section of this chapter to demonstrate how

we can start to contribute to Ansible Galaxy and import your roles into the

web applications.

�Contributing to Ansible Galaxy
Now we have our new roles created for our environment; what if we wanted

to then share them to across the world by adding them to Ansible Galaxy?

Well, this is also a straightforward process. There are one or two things you

need to make sure of before you import your new role into galaxy:

•	 Create accurate and usable documentation. The

init option of the ansible-galaxy command creates a

README.md file with template ready for you to fill in

and ensure that anyone who needs to use your role on

galaxy has all the details available to do so as quickly as

possible.

•	 Give accurate metadata information. A template is

also created when you run init in the meta/main.yml
file. It has a list of generic information that will allow

your role to be classified and tagged by Ansible Galaxy.

•	 Ensure you have dependencies listed. The metadata

also allows you to provide a list of dependencies your

role needs to function correctly. If you create a role

you want to add the galaxy, you may want to install

your role on a blank system to make sure it will run

successfully, as you may have a dependency installed

which you didn’t remember.

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

128

All that’s then needed for anyone to import a role they have created as

part of their project and add it to Ansible Galaxy. Once complete, all you

need to do is log into galaxy and import the role from the interface. We can

do this with one of our examples we have created in the previous section

of this chapter. Log back into your working environment and we will walk

through the process:

	 1.	 Before we can import our test_skeleton_role,

we need to make sure the README.md file and

metadata have been updated. Open the README.
md file with your text editor and add in the

following details to allow users to know exactly what

we are doing. Feel free to fill in the file with your

own information if you wish:

 1 Test Skeleton Role

 2 =========

 3 Testing how to add roles to Ansible Galaxy

 4

 5 Requirements

 6 ------------

 7 There are no requirements for the role.

 8

 9 Role Variables

 10 --------------

 11 There are no variables needed for the role.

 12

 13 Dependencies

 14 ------------

 15 There are no dependencies for the role.

 16

 17 Example Playbook

 18 ----------------

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

129

 19 The role does not have any example playbooks yet.

 20

 21 License

 22 -------

 23 BSD

 24

 25 Author Information

 26 ------------------

 27 Vincent Sesto

	 2.	 Save the README.md file and now open the

meta/main.yml file that was created as part of the

test_skeleton_role role. Open the file with your

text editor to update the following details into the

file. Add in the details for the first four lines which

include the role description and if you like your

company. The following details are what I used, but

please use your own details:

 1 galaxy_info:

 2 author: vincesesto

 3 description: This is a test role

 4 company: No Company

	 3.	 All other details in the meta.yml file have default

data available. You can leave the default values for

this exercise, but move into line 42 and add in a

sample tag as we have in the following entry:

 42 galaxy_tags: [test_role]

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

130

	 4.	 There are a number of different ways you can import

your role into Ansible Galaxy. If you are already

using GitHub to store your code, this is one of the

easier ways and the way we will proceed. Save

your meta.yml file you have been working on and

continue on.

Note I f you have not used git before, creating and committing your
work to GitHub is a straightforward process. You will first need to
create a repository on the GitHub website, where you will be provided
with a repository domain. Once you have this domain, you simply
need to return to the command line, initialize the repository, add and
commit the repository, and then push the changes to GitHub with the
following commands:

git init – To initialize your code.

git add . – To select all the code to be added.

git commit -m “First Commit” – To commit the changes ready to
push.

git remote add origin <repository_domain> – So git knows where
the repository is located.

git push -u origin master – To push the changes to your repository.

Your changes should now be available on GitHub to be added to
Ansible Galaxy.

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

131

	 5.	 Once you have your repository added to GitHub,

access the Ansible Galaxy website and make sure

you are logged into your account.

	 6.	 Once logged in, select “My Content” from the

left menu or go to the domain https://galaxy.

ansible.com/my-content/namespaces.

	 7.	 Click the Add Content button and you will be

presented with the following options, as we have

shown in Figure 4-2, to Import Role from GitHub,

which we will use, or Upload New Collection,

which can import from your systems hard drive.

	 8.	 Ansible Galaxy will connect to your GitHub account

and will allow you to select the repository that

includes your role. Select the repository you wish to

add from GitHub as we have in Figure 4-3.

Figure 4-2.  Importing Content from Your GitHub Account

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

https://galaxy.ansible.com/my-content/namespaces
https://galaxy.ansible.com/my-content/namespaces

132

	 9.	 Click Save and you should then be taken back to the

“My Content” page and you will now have your role

available on Ansible Galaxy as we have in Figure 4-4.

Figure 4-3.  Importing Content from Your GitHub Account

Figure 4-4.  The My Content Page with New Role Added

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

133

	 10.	 Click the link for our new test_skeleton_role, and

you should now be presented with an image similar

to Figure 4-5. We now have all our details available

from our README.md and meta.yml file we set up

previously for others to search and use.

	 11.	 We searched for roles from the command line

earlier in this chapter. We can see how this works

on the web interface by clicking the Search option

on the menu. Click the Search option from the left

menu and enter test_skeleton_role into the text box

at the top of the screen as we have in Figure 4-6 and

see if we find the role you have just created.

Figure 4-5.  Viewing Your Roles from Ansible Galaxy

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

134

	 12.	 Move back into the command line and see if we can

now find your role by searching as we did earlier in

this chapter. Run the following command instead

using your galaxy account name to make sure your

new role is provided as a result:

ansible-galaxy search --author vincesesto

Found 1 roles matching your search:

 Name Description

 ---- -----------

 vincesesto.test_skeleton_role This is a test role

By now, I am sure we’ve provided you with enough information for you

to work with the community to collaborate, improve, and speed up your

work by using Ansible Galaxy. Hopefully, you can see the benefit and will

be able to make use of roles other users in the community have generated

Figure 4-6.  Searching for Roles from Ansible Galaxy

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

135

to speed up your project work. This is the end of the work we will be

doing with Ansible Galaxy, with the final part of this chapter dedicated to

showing you how you can create your own Ansible modules.

�Building Your Own Ansible Modules
We’ve seen that Ansible provides us with a huge amount of modules, and

it almost seems we would never need to create our own Ansible module.

But as new technology is introduced and as we may have “In House”

applications which are not supported by a wider community, this may

come up at some point. As you have seen so far, Ansible provides a way to

do so much and creating your own module is no different. All you need

to know is a little bit of Python or can script in the Linux shell to get you

started.

Ansible modules can be written in any language you really want; most

of the modules you'll see are written in either Python or Linux shell. In the

following exercises, we will create a simple module in Python and then

create something a little more involved using the Linux shell.

As with most programming exercises, it’s customary to produce a

“Hello World” example to show how everything works. We will be creating

the new module with Python, but don’t worry, we’re specifically keeping

it basic for now in case you are not familiar with the language and we can

talk you through it. So let’s get stuck in straight away to show you how

creating your own modules will work:

	 1.	 Access your development environment, and from

within your main working directory, we need

somewhere to hold our new modules. Run the

following command to create a directory called

library where we will store our new module:

mkdir library

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

136

Note  We have created the directory for our modules in our current
working directory, meaning it will be available to any of our playbooks
we wish to create and run from this directory. If we wanted to create
a role that was specifically made for one of our roles, we would need
to create a library directory as part of our role directory structure.

	 2.	 Create a new file called hello_module.py in

the library directory by running the following

command:

touch library/hello_module.py

	 3.	 Open the library/hello_module.py file you just

created with your text editor and enter in the

following Python code:

 1 #!/usr/bin/python

 2

 3 from ansible.module_utils.basic import *

 4

 5 def main():

 6 module = AnsibleModule(argument_spec={})

 7 response = {"hello": "world!"}

 8 module.exit_json(changed=False, meta=response)

 9

 10 if __name__ == "__main__":

 11 main()

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

137

If you are not familiar with Python, we can give you a quick

rundown of the code in the file. Line 1 needs to be specified

to allow the script to run with the locally installed version of

Python. Line 3 then imports the modules which will let it run

with Ansible. Lines 5–8 provide the function that is going to

run when we run the module; specifically, line 6 provides the

AnsibleModule class which allows us to handle incoming

parameters and allows us to exit the program. Finally, lines 10

and 11 run the function when we run the module.

	 4.	 We can now create a playbook to run our new

module. Create the file named newmodule_test.

yml in your working directory with the following

command:

touch newmodule_test.yml

	 5.	 Open the newmodule_test.yml file with your text

editor and enter the following details that will run

the new module for us. The following playbook has

lines 3–5 running the new module as a task, line 6

capturing the result as a variable named result, and

then line 7 outputting the result for us to display as

part of the playbook output:

 1 ---

 2 - hosts: localhost

 3 tasks:

 4 - name: testing our new module

 5 hello_module:

 6 register: result

 7 - debug: var=result

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

138

	 6.	 All we need to do now is run the playbook to make

sure it works. Run the following ansible-playbook

command to run the newmodule_test.yml playbook

and hopefully use our new modules successfully:

ansible-playbook -i hosts newmodule_test.yml

PLAY [localhost] *************************************

TASK [Gathering Facts] *******************************

ok: [localhost]

TASK [testing our new module]

ok: [localhost]

TASK [debug] ***

ok: [localhost] => {

 "result": {

 "changed": false,

 "failed": false,

 "meta": {

 "hello": "world!"

 }

} }

PLAY RECAP ***

localhost:

ok=3 changed=0 unreachable=0 failed=0

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

139

	 7.	 If all has gone well and we have not made any

mistakes with our code, the playbook should run

and output the desired “Hello World”.

Creating our module in Python, specifically using

the ansible.module_utils.basic Python library,

simplifies things a little for us and ensures we

are returning a JSON output for our code. This is

really all we need to remember when creating our

modules, and creating them as a Linux shell script

will help us demonstrate this further.

	 8.	 We already have a library directory created for the

modules we are creating. We can also place our

Linux shell module. To create our new module, start

by creating the new module named os_type.sh as we

have with the following command:

touch library/os_type.sh

	 9.	 Open the os_type.sh file with your text editor ready

to create a basic module which will print the type of

operating system the playbook is currently running

on.

	 10.	 The code is going to be very simple. Add in the

following code which simply runs the uname

command on line 3 and adds the value into a

variable named OS. We then provide our output as

JSON format where we set the changed variable to

false as we are only displaying values to the screen

and then providing a value to the operating_system

variable:

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

140

 1 #!/bin/bash

 2

 3 OS="$(uname)"

 4

 5 echo "{\"changed\":false,\"operating_

system\":\"$OS\"}"

	 11.	 Save the new module and open our newmodule_

test.yml playbook we created earlier in this exercise,

and with your text editor, change the module being

used to now look like the following code where line

5 is now changed to use the new module called

os_type:

 1 ---

 2 - hosts: localhost

 3 tasks:

 4 - name: testing our new module

 5 os_type:

 6 register: result

 7 - debug: var=result

	 12.	 We can now run our new module. Use the command

we have run in the following to run the os_type

module as part of the playbook and you should

hopefully get a similar output as we have:

ansible-playbook -i hosts newmodule_test.yml

PLAY [localhost] **************************************

TASK [Gathering Facts] *******************************

ok: [localhost]

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

141

TASK [testing our new module] *************************

ok: [localhost]

TASK [debug] **

ok: [localhost] => {

 "result": {

 "changed": false,

 "failed": false,

 "operating_system": "Linux"

 }

}

PLAY RECAP **

localhost:

ok=3 changed=0 unreachable=0 failed=0

We've highlighted the output of our running playbook to show the

specific results of the os_type module. These results reflect directly

with the output we see at the bottom of our output when our playbook

completes. Although we have created a simple playbook, we could make

things more advanced and set our output to change depending on specific

conditions within the module.

For now, I hope we have been able to quickly demonstrate how you

can create your own modules to run across your own playbooks if needed.

This brings us to the end of this section of the chapter and also the end of

this chapter.

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

142

�Summary
This chapter has taken on a large scope of work. We started off this chapter

with a look at how we can use ansible-vault to encrypt our sensitive data

while deploying our playbooks. We then moved on to the bulk of this

chapter which centered around Ansible Galaxy and working with the

website and making use of the ansible-galaxy command. We learned how

to search for roles, get more information, and install and remove roles. We

then took some time to show you how you can contribute directly to the

community and import your own roles into Ansible Galaxy.

We then used the remainder of the chapter to show you how you can

create your own Ansible modules and use them within your deployments.

Our next chapter will take you into the Amazon Web Services Cloud,

showing you how you can use Ansible to deploy your environments

directly into AWS. When we start working in the cloud, we will also start

afresh with our next project, so don’t stop now; you're making great

progress.

Chapter 4 Custom Ansible Modules, Vaults, and Galaxies

143© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_5

CHAPTER 5

Working with Ansible
in the Amazon Cloud
I like to think we have taken you on a bell-shaped learning progression

and we have covered a majority of the more difficult work you may be

faced with when starting to learn Ansible. This foundation should allow

us to power through the remainder of the chapters, showing you some

more interesting features in Ansible to hopefully extend your knowledge

further and introduce you to some features which will make your life and

configuration management processes easier.

This chapter and the following chapters are going to take what you

know already and then move it into the Amazon Cloud. We will be using

quite a few of the skills learned from the previous chapters and combining

them with specific modules and tool specific to work with Amazon Web
Services (AWS).

In this chapter, we will work through the following:

•	 We will start with a quick discussion on AWS and why

we have chosen to use this platform, and if needed, we

will point you in the direction of some resources to help

you get started.

•	 We will then start with the basic Ansible modules

that work directly with AWS and get you started with

deploying into your own AWS account.

https://doi.org/10.1007/978-1-4842-6485-0_5#DOI

144

•	 Our work will then turn to our next project where we

will set out what we need to achieve and start to put our

first cloud deployment in place using Ansible.

•	 We will then introduce how Ansible will install our

Splunk application by the use of user data scripts.

•	 Finally, we will have a discussion on how you can

pinpoint errors and where to start troubleshooting

when your AWS cloud deployments go wrong.

Even though we’re going to be working in AWS, we will be taking things

slowly, so hopefully if your experience is limited, you won’t get lost with

the work we are doing. You don’t need to be proficient in AWS, and if you

are, it will simply speed your progress through these following chapters. As

we move through the different service and modules we use, we will make

sure we give a brief description on the AWS work we are doing as we go.

�So Why Amazon Web Services
If you haven’t used AWS before, you’ll notice they provide infrastructure

and IT services similar to the way a utility provides power and hot water.

You don’t pay any additional costs to how the infrastructure was purchased

and licensed, and once you are no longer using these services, you turn it

off and are no longer paying for it.

Even though there are a number of major players in the market

including Azure (Microsoft), Google Cloud, IBM Cloud, and Oracle, at

the time of writing, AWS was still the major player in the space. If you are

using one of the other major platforms for your cloud services, there most

likely will be Ansible modules created to work with and integrate with

them.

Chapter 5 Working with Ansible in the Amazon Cloud

145

�AWS Is Not Free
Amazon Web Services is not free, but we will do our best to keep any costs

low. Even though we will be trying our best to stick to the free tier, AWS

offers a pay-as-you-go approach to pricing of its cloud services. This is part

of its mass appeal as companies across the world have utilized AWS to help

reduce the cost of their infrastructure.

�AWS Pricing
If you’re interested in using AWS for your project and before you move

further on with this chapter, the following link will provide you with more

details on their pricing and how they calculate service rates: https://aws.

amazon.com/pricing/services/.

�Gaining Access to AWS
If you are already familiar with AWS, feel free to skip over this section as

we are going to discuss some of the basics of AWS with regard to allowing

Ansible the ability to interface with the application and make changes

when needed.

If you haven’t already set up your access to AWS, you will need to do

this first as you will then have a username and password. This will most

likely be for the root user, so it is wise to create a new user which can work

as an administrator across your AWS account without having full root

privileges.

If you are completely new to AWS and you need to set up a new

account, you can do so by going to the following link:

https://portal.aws.amazon.com/billing/signup#/start

Chapter 5 Working with Ansible in the Amazon Cloud

https://aws.amazon.com/pricing/services/
https://aws.amazon.com/pricing/services/
https://portal.aws.amazon.com/billing/signup#/start

146

AWS Is Not Free I just want to say this one more time as I don’t
want people to think there are no costs involved when services
are run in AWS. As I said earlier, we will do our best to use free tier
services, but the pricing model from Amazon could change since
the writing of this book, so make sure you understand the pricing
implemented by AWS.

If you are interested in finding out how to manage your AWS bill and
even set up alarms to make sure you do not exceed a specific cost,
please look at the following documentation on the subject:

https://docs.aws.amazon.com/awsaccountbilling/
latest/aboutv2/awsaccountbilling-aboutv2.pdf

You should now have an account with AWS and be able to access the

console from a web browser. We will take a moment to walk through the

process of setting up a new user on your account that will allow Ansible to

interact with your AWS account:

	 1.	 Once logged in to the AWS web console, click the

Services menu at the top left of the screen. When

you are able to type into the search box, enter IAM,

and when presented with an option to move to IAM,

select it. This is how AWS manages users and identity

and where we will set up a new user. Alternatively,

you can go directly to the following url as well:

https://console.aws.amazon.com/iam/home

	 2.	 On the left side of the IAM web console, click the

Users option, and then click the Add user button.

	 3.	 When adding a new user, you first see a screen

similar to Figure 5-1, which allows you to enter a

username and other details for the user. Enter a

Chapter 5 Working with Ansible in the Amazon Cloud

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/awsaccountbilling-aboutv2.pdf
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/awsaccountbilling-aboutv2.pdf
https://console.aws.amazon.com/iam/home

147

username familiar to you, and for now, select the

AWS Management Console access check box. If

you wish to set a password for the user at this point,

feel free to do that, but you can always allow AWS

to generate a password for you. If you leave the

Require password reset check box as checked, you

will need to log in as the new user before you can

start using the account. Once you are happy with

your selection, click the Next: Permissions button.

Figure 5-1.  Adding In Basic Details for Your AWS Administrator
User

Chapter 5 Working with Ansible in the Amazon Cloud

148

	 4.	 You will now be presented with a screen similar

to the one displayed in Figure 5-2, allowing you to

add permissions to your new user. For now, click

AdministratorAccess as we have in Figure 5-2 and

then click the Next: Tags button to proceed.

	 5.	 Add Tags to the new user if you wish, but feel free to

leave it blank. Then review the new user and create.

	 6.	 Once the new user has been created, note the

username and password if you need to and then

return to the Users screen in the IAM web console.

Figure 5-2.  Adding Permissions to New Users in AWS

Chapter 5 Working with Ansible in the Amazon Cloud

149

	 7.	 Select the user you just created, as this will be the

user which Ansible will interface with AWS. You

should see a screen similar to Figure 5-3 showing

details of the new user we created. As you can see,

this account has the AdministratorAccess policy

attached to it to allow it to perform the tasks that we

need to over the next chapter.

Note  You can see we have redacted some of the information in the
image; this is so we can ensure the security of the account we are
performing the work on.

Figure 5-3.  Adding Permissions to New Users in AWS

Chapter 5 Working with Ansible in the Amazon Cloud

150

	 8.	 Click the Security Credentials tab and then click

the Create access key button. This will create a new

access key for you to then use when running your

Ansible playbooks. You will be presented with a

success message like the one in Figure 5-4.

	 9.	 Either download the csv file when prompted or note

your Access and Security keys for future use. You

will not be able to view them again.

Note A WS access keys are a major security risk. These keys need
to be kept private and secure at all times, and if someone gets hold
of an available access key, it could compromise the security of your
AWS account.

Figure 5-4.  Creating Secret Access Keys for AWS Users

Chapter 5 Working with Ansible in the Amazon Cloud

151

Make sure you never show anyone your keys, as well as ensuring you
never publish your keys to a public website or repository. Malicious
hackers will be able to gain access to your account and misuse it.
Please be careful.

	 10.	 To help us test if we are able to connect to AWS

using our new user account keys, we can install the

awscli application on our system. We will use the

pip3 command to install the package the same way

we installed Ansible in our earlier chapters. Move

back into your development environment and enter

the following command into the command line:

pip3 install awscli

	 11.	 We can now set up our credentials to use the AWS

access keys we just created. We can start by adding

in an aws directory in our home environment:

mkdir -pv ~/.aws

	 12.	 Now create a credentials file where we can store our

access keys:

touch ~/.aws/credentials

	 13.	 Open the credentials file with your text editor and

add in your user credentials. As I am working in

Australia and New Zealand, I will be using the

ap-southeast-2 region, but make sure you use the

region which suits your needs:

Chapter 5 Working with Ansible in the Amazon Cloud

152

 1 [default]

 2 aws_access_key_id = YOUR-ACCESS-KEY-HERE

 3 aws_secret_access_key = YOUR-SECRET-ACCESS-KEY-HERE

 4 region: YOUR-PREFERRED-REGION

	 14.	 We can now test access on the command line before

we start to use Ansible. We can test to verify all our

credentials are correct and we have access to our

environment. So make sure you are in your working

environment and run the following command to use

the Secure Token Service (sts) to verify the identity

of the current user:

aws sts get-caller-identity

{

 "UserId": "YOUR-ACCESS-KEY-HERE",

 "Account": "ACCOUNT-NUMBER",

 "Arn": "arn:aws:iam::ACCOUNT-NUMBER:user/newuser"

}

If you have entered everything correctly, you should see something

similar to the preceding output. We are basically making a call to AWS to

find out the details of the credentials we have input. The output you would

see would reflect your account and the username that owns the access

keys you created.

Chapter 5 Working with Ansible in the Amazon Cloud

153

�Using Environment Variables to Access
AWS
This is a quick section to let you know you don’t need to always add your

credentials on the host you are working with. You may be working on a

temporary machine to perform a deployment and need to access AWS. You

can instead add your credentials to the hosts environment variables to

allow you to perform your Ansible work.

We can do exactly the same thing we did in the previous section by

running the following command from the command line:

export AWS_ACCESS_KEY_ID=YOUR-ACCESS-KEY-HERE

export AWS_SECRET_ACCESS_KEY=YOUR-SECRET-ACCESS-KEY-HERE

export AWS_DEFAULT_REGION=YOUR-PREFERRED-REGION

This allows you to work as if you were on your work environment and

run the same commands. When you log out, the environment variables

will then be removed as well.

�Ansible AWS Modules to Implement Our
New Project
From what you’ve seen so far in this book, a lot of the functionality

of Ansible relies on the modules you use when implementing your

environment or configuration changes. This is no different for working

with AWS. As there are such a large number of services available in AWS,

we thought it would be a good idea to allow a couple of chapters to work

through some of the more common services available. We also thought it

would be a good time to introduce our new project.

Chapter 5 Working with Ansible in the Amazon Cloud

154

�Our New Splunk Implementation Project
As we discussed in the first chapter of this book, our second project will be

a Splunk installation on AWS cloud infrastructure. In the following pages,

we will start to set up the host that will house our new service as well. We

will use Ansible to deploy Splunk and with temporary licenses onto the

host.

This should get us to a usable state where we will then start to work

further by adding a Splunk App onto the server. Our next chapter will then

extend the environment further, but for now, we will get started with some

of the basics and build upon our existing knowledge.

Note  With the modules you will be using in the following chapter,
they all require the dependency of boto for Python3. As we have a
running version of awscli installed on our system, you should not
need to worry about this, but if you do see errors when running
commands, this may be the first thing you can check.

One of the first places to start would be to create a basic virtual server

instance within AWS under their EC2 Service. There is one thing we would

need to do before creating our instance, and that would be to create a

keypair to then allow us to SSH onto the server.

Let’s log back into our work environment so we can get started:

	 1.	 We are starting a new project, so run the following

command to start by creating a new directory for us

to work in and move into that directory:

 mkdir splunk_server; cd splunk_server

Chapter 5 Working with Ansible in the Amazon Cloud

155

	 2.	 We can start by creating a new hosts file, just like we

did in our earlier chapters. As you can remember,

these are the details of our servers we want to deploy

changes to, so create the file with the following

command:

touch hosts

	 3.	 We won't be deploying changes to a specific server,

but instead, we will be interfacing with AWS to make

our configuration changes. This means we only

need to add in our localhost entry into our hosts

file. Using your text editor and open the new hosts

file to enter the following two lines:

 1 [local]

 2 localhost

	 4.	 There are two ways in which we can create our

keypair to connect with our new server: either

importing a file into the AWS console or creating a

new one. In this exercise, we will use a small Ansible

playbook to create a new keypair for our project.

	 5.	 Run the following command to create a new

playbook called create_key_pair.yml which will

perform the keypair creation for us:

touch create_key_pair.yml

Chapter 5 Working with Ansible in the Amazon Cloud

156

	 6.	 Open the new playbook with your text editor and we

can start to create our tasks. We only have one host

in our hosts file, so this is now specified as local at

the start of our playbook, which will work directly

with AWS. Lines 6–9 then set up our first task using

the ec2_key module to create a new key with the

name and region specified. Line 10 then collects the

output of this task and places it in a variable named

ec2_key_result:

 1 ---

 2 - hosts: local

 3 connection: local

 4 gather_facts: no

 5 tasks:

 6 - name: Create a new EC2 key

 7 ec2_key:

 8 name: ansible-answers-key

 9 region: ap-southeast-2

 10 register: ec2_key_result

 11

	 7.	 Move down the the playbook and enter in the next

task which will use the output from the previous

tasks and place the private key details into a file

ready for us to use. The task uses the copy module

to get the contents of the variable we registered

earlier, extract the private_key value, and place it in

a new file called splunkserver.pem ready for us to

use:

 12 - name: Save private key

 13 copy:

Chapter 5 Working with Ansible in the Amazon Cloud

157

 14 content: "{{ ec2_key_result.key.private_key }}"

 15 dest: "./splunkserver.pem"

 16 mode: 0600

 17 when: ec2_key_result.changed

	 8.	 Although it’s just a small playbook, it will give us

an example of how we can start to interface and

work with AWS. Save the playbook and then use the

following command to run the playbook from the

command line:

ansible-playbook -i hosts create_key_pair.yml

	 9.	 If the playbook ran successfully, we should be able

to see both a splunkserver.pem file in our current

working directory and the new key generated in the

AWS console. Start by verifying our splunkserver.

pem file has been generated with the following

command, and you should see a similar output to

the one we have, with the head command providing

the first five lines of the file:

head -n 5 splunkserver.pem

-----BEGIN RSA PRIVATE KEY-----

MIIEpQIBAAKCAQEAuV6LADnQ3+m0rTcc2gwqlx/

QjVyp96KVCwQ92aStDb/YsZC0tP7QrteqoyTx

nzTuncp7rqgM3e1n6LTxy+5PKqxWIP9Gw16hUz8LFu+/

oTmKfegUqjdPLuPcZIld3koZ4q21YIuK

Chapter 5 Working with Ansible in the Amazon Cloud

158

Fu2BgdRpgThVlS5yo9+ZNE6CWbNXJa70amvI1ZLptWLQvYvt9
pP65Wgad0kI 3QwEOQlEshj6moQj
RHovlyXtzxZhCblxN4rZzEF8tqrN86ftw71/
qpIhUR3GoU8r2DmIWx//kFBVDbM1eOOZ8iTSz66P

	 10.	 We can now see if the new key has been created on
our AWS account. Log into our AWS console, click
the Services drop-down menu at the top left of the
screen, and and select EC2. Select Key pairs from
the left side of the screen and you should now see
your ansible-answers-key created in the console, as
we can see in Figure 5-5.

As you can see, working with Amazon Web Services is very similar to
the work we have performed so far in our previous chapters. Now we have
a SSH key pair available to connect with any future servers we created;
continue on with the following section of this chapter to start setting up

our EC2 instance.

Figure 5-5.  Creating SSH Key Pairs in Ansible and AWS

Chapter 5 Working with Ansible in the Amazon Cloud

159

�Creating Our AWS Instance
We could create our instance from the command line just like we've

created our keypair, but as we learned in previous chapters, creating a role

which is then used by a playbook is probably the best option for us in this

instance as there would be a lot of different commands we would need to

perform to get the job done.

If we mapped out what we need to provision a basic server, we will

have to

•	 Create an AWS Security Group to control who can and

who cannot access the server

•	 Launch the EC2 Instance onto our environment using

a specific AWS image

•	 Want our playbook to wait until our host is responsive

and can be contacted by SSH

•	 Want to tag our instance with a valid name so we will

be able to recognize it when it is running in our console

All of this seems to fall short of the goal in setting up a Splunk server.

It does take us part the way there though and gives us a template to create

other EC2 Instances from.

If you have logged out of your work environment, log back in so we can

get back to work:

	 1.	 Start by creating a directory to store our new role

in with the following mkdir command and then

moving into the directory after it is created:

mkdir roles; cd roles

Chapter 5 Working with Ansible in the Amazon Cloud

160

	 2.	 Our last chapter demonstrated how we can set up

our role by using the ansible-galaxy init command.

Run the following command to create the necessary

files for our new role which will be called splunk_
server and will be placed in our new directory

called roles using the --role-path option:

ansible-galaxy init splunk_server

- splunk_server was created successfully

	 3.	 If we perform a tree command on the roles

directory, we will see our directories have been set

up for us as part of the init command:

tree splunk_server/

splunk_server/

|-- README.md

|-- defaults

| `-- main.yml

|-- files

|-- handlers

| `-- main.yml

|-- meta

| `-- main.yml

|-- tasks

| `-- main.yml

|-- templates

|-- tests

| |-- inventory

| `-- test.yml

Chapter 5 Working with Ansible in the Amazon Cloud

161

`-- vars

 `-- main.yml

8 directories, 8 files

	 4.	 With our role structure created, we can move

directly into setting up our tasks. Start by opening

the splunk_server/tasks/main.yml file and start by

defining the security group for our new server. Line

1 starts our YAML file, and we then move to defining

our new task to create the security group using the

ec2_group Ansible module. Lines 4, 5, and 6 provide

the new security group with a name, description,

and the region we want it set up in:

 1 ---

 2 - name: create the host security group

 3 ec2_group:

 4 name: "{{ ec2_sg_name }}"

 5 description: security group for new host

 6 region: "{{ ec2_region }}"

	 5.	 Continue to add details of the security group with

the following lines of code, where we specify our

inbound and outbound rules across lines 7 through

to 23:

Chapter 5 Working with Ansible in the Amazon Cloud

162

 7 rules:

 8 - proto: tcp

 9 from_port: 22

 10 to_port: 22

 11 cidr_ip: 0.0.0.0/0

 12 - proto: tcp

 13 from_port: 8000

 14 to_port: 8000

 15 cidr_ip: 0.0.0.0/0

 16 - proto: tcp

 17 from_port: 443

 18 to_port: 443

 19 cidr_ip: 0.0.0.0/0

 20 rules_egress:

 21 - proto: all

 22 cidr_ip: 0.0.0.0/0

 23 register: basic_firewall

 24

	 6.	 With our security group created, we can now use the

ec2 Ansible module to create our server instance.

Enter the following lines of code into your tasks file:

 25 - name: launch the new ec2 instance

 26 ec2:

 27 group: "{{ ec2_sg_name }}"

 28 instance_type: "{{ ec2_instance_type }}"

 29 image: "{{ ec2_image }}"

 30 wait: true

 31 region: "{{ ec2_region }}"

 32 keypair: "{{ ec2_keypair }}"

 33 count: 1

Chapter 5 Working with Ansible in the Amazon Cloud

163

 34 register: ec2

The module needs a lot of arguments to complete

the process. The group value is the security group

we created earlier, the instance_type is the size of

the AWS instance, image is the AWS image we will

be using, and the keypair is the SSH key we have

defined earlier in our chapter. All of these values will

be listed in our variables file. We will go into a little

more detail on what each of these variables is when

we define them.

	 7.	 We have enough in our tasks file to simply launch

our instance, but we should make sure the server is

up and running before we make any other changes

to the host. There are many times where we simply

can’t make any changes until it is accessible, so add

in the following code to create a task that will wait

for port 22 to be accessible on the host and SSH to

be available:

 36 - name: wait for SSH to come up

 37 wait_for:

 38 host: '{{ item.public_ip }}'

 39 port: 22

 40 state: started

 41 with_items: '{{ ec2.instances }}'

 42

Chapter 5 Working with Ansible in the Amazon Cloud

164

You’ll notice we have more variables specified here.

In this case, they are not needed to be specified as

part of our code. Instead, these are defined by AWS

when the items are created in the previous tasks.

We are also using the with_items function which is

similar to a loop, but in this case, we only have one

item in place, the ec2 instance created by the code.

	 8.	 Lastly, we will need to set up tags for our instance so

we will be able to recognize it when it comes up in

our AWS console. If we don’t, it will not have a name

and only be recognized by the randomly generated

AWS instance Id. Here we use the ec2_tag module

and set the Name tag to splunkserver:

 43 - name: add tag to instance

 44 ec2_tag:

 45 resource: '{{ item.id }}'

 46 region: '{{ ec2_region }}'

 47 state: present

 48 with_items: '{{ ec2.instances }}'

 49 args:

 50 tags:

 51 Name: splunkserver

	 9.	 We now have all the tasks needed to set up the

basics of our server instance. Save the file and we

can then move on to completing the rest of the role.

	 10.	 There are a number of variables our tasks rely on, so

this is a good time to set up our variables file. Open

the roles/splunk_server/vars/main.yml file with

your text editor and add in the following variable

details:

Chapter 5 Working with Ansible in the Amazon Cloud

165

 1 ---

 2 ec2_sg_name: "AnsibleSecurityGroup"

 3 ec2_region: "ap-southeast-2"

 4 ec2_instance_type: "t2.micro"

 5 ec2_image: "ami-0099823645f06b6a1"

 6 ec2_keypair: "ansible-answers-key"

Even though there are only six lines here, there is

a lot to explain if you haven’t worked with AWS

before:

	 a.	 Line 2 is the security group name we set up in our tasks. You

define security groups in AWS to provide access to services

where needed.

	 b.	 We define the region of ap-southeast-2 in line 3 as it will

simply be placed in the default region if not specified. Make

sure you are specifying a region you are comfortable with.

	 c.	 In line 4, we state the instance type, which is the size and

specifications of the server we are deploying. The t2.micro is

a small machine and should still be in the free pricing tier, but

be able to do the work we need in this chapter.

	 d.	 We will discuss more about ec2 images, but for now, just

note we have decided to use an up-to-date host running of

Amazon Linux and once again in the free tier.

	 e.	 Lastly, line 6 is the keypair which we created earlier in this

chapter.

Chapter 5 Working with Ansible in the Amazon Cloud

166

	 11.	 We have made most of the changes to our role to

start testing it out. Move back into the roles directory

to finish up our playbook:

cd ../

	 12.	 We are almost at a point where we can deploy our

server; first, we need to create a playbook to run the

new role we have just created. Run the following

command to create the file called server_deploy.
yml in your working directory:

touch server_deploy.yml

	 13.	 Open the server_deploy.yml file with your text

editor and add the finishing code to our playbook.

As you know by now, the role we created does a

bulk of the work, so our playbook will not be too

involved:

 1 ---

 2 - hosts: localhost

 3 connection: local

 4 gather_facts: false

 5 user: root

 6 roles:

 7 - splunk_server

As we are now using AWS and we have set up our

connection, lines 2 and 3 are specifying we are

running our deployment from our local machine.

Line 4 tells Ansible it doesn’t need to go around

and gather information on our environment before

deploying, and then lines 6 and 7 run our Splunk
server role.

Chapter 5 Working with Ansible in the Amazon Cloud

167

	 14.	 We can now deploy our server using our new

splunk_server role. Run the following ansible-
playbook command to deploy our new server:

ansible-playbook -i hosts server_deploy.yml

PLAY [local] ***********************************

TASK [Create the host security group]

ok: [localhost]

TASK [Launch the new EC2 Instance]

changed: [localhost]

TASK [Wait for SSH to come up]

ok: [localhost] => (item={u'kernel': None,

u'root_device_type': u'ebs',

...

TASK [Add tag to Instance(s)]

changed: [localhost] => (item={u'kernel': None,

u'root_device_type': u'ebs',

...

PLAY RECAP *************************************

localhost:

ok=4 changed=2 unreachable=0 failed=0

Chapter 5 Working with Ansible in the Amazon Cloud

168

If all has gone well, you should see output similar

to the preceding one. Make note it will take a

number of minutes to complete as a server is being

provisioned by AWS.

	 15.	 Once the playbook has completed running, you

should be able to log on to AWS, and from within the

EC2 console, if you click the Instance menu on the

left of the screen, you will see your deployed server

and hopefully one labeled as “splunkserver” and

ready to be accessed. You should see something

similar to Figure 5-6, showing the details of our new

server.

	 16.	 We made a copy of the keypair we created earlier in

this chapter, and this will allow us to now connect

to the newly created server. By using SSH and the

Figure 5-6.  Your New Splunk Server Instance Viewed from the AWS
Web Console

Chapter 5 Working with Ansible in the Amazon Cloud

169

Public IP address AWS has assigned to our new

server, we can now connect to our server with the

following command:

ssh -i splunkserver.pem ec2-user@<public_ip_address>

Last login: Tue Jul 21 23:36:42 2020 from 103.224.107.5

 __| __|_)

 _| (/ Amazon Linux AMI

 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2018.03-

release-notes/

29 package(s) needed for security, out of 64 available

Run "sudo yum update" to apply all updates.

[ec2-user@ip-172-31-38-228 ~]$

Note  You may get some warnings, but hopefully you have been
able to log into the new server using SSH. Make sure you use the
public IP address assigned to your instance that is provided in the
AWS console.

	 17.	 Finally, we don’t want to keep our service going

when we are not using it, especially while we are

simply getting started. You can terminate the

instance from the AWS console, but we can also use

the command line. All we need is the AWS instance

ID, which is a 17-character value assigned to your

new server. Run the following command that uses

the ec2 Ansible module and uses the arguments of

Chapter 5 Working with Ansible in the Amazon Cloud

170

instance_ids and AWS region, and the state changed

to absent:

ansible localhost -m ec2 -a "instance_ids=i-

05160b77e9b81a731 region=ap-southeast-2 state=absent"

localhost | SUCCESS => {

 "changed": true,

 "instance_ids": [

 " i-05160b77e9b81a731"

],

 ...

],

 "tagged_instances": []

}

We have once again reduced the amount of output on our page, but

you should be able to head to your AWS console and see your server is

now either terminated or in the process of shutting down. Once again, the

preceding example uses the instance ID provided to us and you will need to

use the ID provided to you via the console, and once terminated, the server

will not be able to be accessed again.

If you’re wondering why we are already terminating our server even

though we have not installed Splunk on it yet, well this is the benefit of

using immutable hardware. In the following section, you will see we will

be able to fully provision the server, with Splunk installed, all using Ansible

and without having to make any changes to the server itself.

�Deploying Splunk with User Data
We almost have our running server up and working, but without the

Splunk application running on the server, it is not really complete. Since

we have been automating all our installations, we will do the same with our

Chapter 5 Working with Ansible in the Amazon Cloud

171

Splunk installation. In this case though, we can use Amazon’s user data to

complete the installation once our instance has been created.

If you don’t have any experience with user data before, don’t worry;

we are going to make it pretty simple, and of course we will be using our

Ansible role to automate the process. Basically speaking, user data is a

simple automation script which is run the first time the instance is created.

We don’t have to add too much more to our splunk_server role to get it

working, so access your working environment and we can get started:

	 1.	 Start by creating our user_data.sh file which we will

then call by our splunk_server role tasks. This will be

located in the roles/splunk_server/file directory,

so run the following command to create the new file:

touch roles/splunk_server/files/user_data.sh

	 2.	 There are only six lines to our user data script, but

there are some long urls in it, so open the user_data.

sh with your text editor and add the following details

into the script:

 1 #!/bin/bash

 2 set -e -x

 3 �wget -O splunk-8.0.5-a1a6394cc5ae-linux-2.6-x86_64.

rpm 'https://www.splunk.com/bin/splunk/DownloadAct

ivityServlet?architecture=x86_64&platform=linux&ve

rsion=8.0.5&product=splunk&filename=splunk-8.0.5-

a1a6394cc5ae-linux-2.6-x86_64.rpm&wget=true'

 4 �rpm -i splunk-8.0.5-a1a6394cc5ae-linux-2.6-x86_64.

rpm

 5 sleep 30

 6 �sudo -u splunk /opt/splunk/bin/splunk start

 --answer-yes --no-prompt --accept-license

 --seed-passwd newpassword

Chapter 5 Working with Ansible in the Amazon Cloud

172

Lines 1 and 2 allow your script to be executable

by our new instance, and line 3 uses the wget

command to grab the Splunk installation file from

the Splunk website. Lines 4 and 5 then install the

application using the rpm package manager and

wait for 30 seconds to make sure the installation is

complete. Lastly, the Splunk application is started by

accepting all installation questions as yes, accepting

the license agreement, and seeing the admin user

password as “newpassword”.

Note A s of writing this, the latest version of Splunk was version
8.0.5. If this version is no longer available by the url attached, you
may need to obtain the url from the Splunk website www.splunk.com.

Please note you will need to register with the site to obtain the latest
version and url to download it from. Please also note the preceding
installation is using the RPM package manager as we are using an
Amazon Linux image. If you are using a different image type, you may
need to use a different package manager such as APT.

	 3.	 To allow our splunk_server role to use the user_data.

sh script during installation, all we need to do is

reference it from our tasks file we created earlier.

Using your favorite text editor, open the roles/
splunk_server/tasks/main.yml file.

	 4.	 You will need to move down to the middle of the file

where we have named our task "launch the new ec2
instance"; at the end of this section, you will need to

add in line 34 which we have highlighted:

Chapter 5 Working with Ansible in the Amazon Cloud

http://www.splunk.com

173

 33 count: 1

 34 user_data: "{{ lookup('file', 'user_data.sh') }}"

 35 register: ec2

Line 34 adds the user_data.sh file to run once the

instance starts up and references the new file that

we created in our files directory of our splunk_server

role.

	 5.	 Just as we did earlier, we can run our playbook from

the command line with the following command, this

time being run with the -v option to let us see some

extra output:

ansible-playbook -i hosts server_deploy.yml -v

PLAY [localhost]

...

om", "public_ip": "13.236.119.194", "ramdisk": null,

"region": "ap-southeast-2", "ro\

ot_device_name": "/dev/xvda", "root_device_type":

"ebs", "state": "running", "state_\

code": 16, "tags": {}, "tenancy": "default",

"virtualization_type": "hvm"}, "msg": "\

Tags {'Name': 'splunkserver'} created for resource

i-07d5243abda19d984."}

PLAY RECAP *********************************

localhost:

ok=4 changed=2 unreachable=0 failed=0

Chapter 5 Working with Ansible in the Amazon Cloud

174

We’ve cut out a lot of output, but you will notice the

public IP address we have highlighted in the output.

This can be used to now access the web interface of

our newly created Splunk server.

Note O ur server may be displaying as up and running on our AWS
console; the actual Splunk web interface may still be taking a little
while to start up. So you may need to be a little patient and leave 2 to
3 minutes to allow Splunk to start, especially because we are using a
smaller AWS EC2 instance type.

	 6.	 To access the new installation, open a web browser,

and enter the following url, substituting your public

IP address for the following one:

http://<public_ip_address:8000>

	 7.	 If your playbook has run successfully, you should

be prompted with a Splunk login screen where you

can enter “admin” as the username and the seed

password of “newpassword” we set up as part of

our user_data.sh and should look like the image in

Figure 5-7.

Chapter 5 Working with Ansible in the Amazon Cloud

175

	 8.	 If everything has worked out like it was supposed

to, you should now be logged into your new Splunk

installation and see a screen similar to the one in

Figure 5-8.

Figure 5-7.  The Login Screen for Your Splunk Web Interface

Chapter 5 Working with Ansible in the Amazon Cloud

176

Our Splunk installation is looking pretty good, but we still have some

work to do over the next chapters to get it working the way we want it to.

For now, we have a brief discussion on how you can start to troubleshoot

issues with your AWS and Ansible deployments before finishing off the

chapter.

�Failures on Amazon Web Services
Before we finish up the chapter, we just wanted to quickly address one

situation which you might come across. Although your Ansible output

may be showing a success, your installation may not complete or might

have errors. This can happen at times as Ansible will only report if its

commands are complete or not. If something happens (or doesn’t) on the

new instance, you may need to find some extra information on what has

happened. Some ways you can troubleshoot include

Figure 5-8.  The Welcome Screen for Your Splunk Web Interface

Chapter 5 Working with Ansible in the Amazon Cloud

177

•	 Access the AWS console and verify the instance is up

and available. In some situations, you may be trying to

access a server that is still being created.

•	 If this AWS console is showing the server as up and

running, you can also see further details on from the

console. You can select the instance from the console

and click the Actions menu. From here, select Instance
Settings and then click Get System Log which will

hopefully show you the system log of your system

without actually needing to log onto or SSH to the

server.

•	 If you can log onto the new server, do so and view the /
var/log/cloud-init-output.log or /var/log/cloud-init.
log for errors. These logs will show the system logs for

the server starting up including the progress of the

user_data.sh file that may be running.

•	 Access the application logs you want to start up, in

our case Splunk; you would check the logs in the /
opt/splunk/var/log/splunk/ directory. There are

numerous logs in this directory, all of which could

point to an issue with the application.

It may be the last thing you would want to happen, but by

systematically approaching your installation, you can start to verify each

step of the process is complete before moving onto the next. This is the

basic of troubleshooting your installation but hopefully something you will

not need to rely on too much.

Chapter 5 Working with Ansible in the Amazon Cloud

178

�Summary
We’ve done a lot of work in this chapter and covered off a lot of new

concepts, not just with Ansible, but other technologies like AWS, AWS

CLI, and Splunk. We started our chapter with a discussion on Amazon

Web Services and why we decided to use AWS compared to other cloud

services. We then went through some of the basics of AWS and how to gain

access to an account. We then discussed how we can start to use AWS with

Ansible and also introduced our new project we are taking on in this and

the following chapters.

With this in mind, we then started on our project, setting up our access

and our AWS account, and started to work on creating our Amazon EC2

instance. We then used AWS user data files to perform and automate our

new Splunk installation. Finally, we then had a quick discussion on what

you need to look for when things can go wrong with our AWS deployments.

Our next chapter will continue our work with AWS expanding our

server role further and allowing us to create an instance image we can then

distribute across different environments. We will also work with ansible-

pull command which will give you the power to also download code and

deploy from a repository. There’s a lot more exciting stuff coming, so keep

reading.

Chapter 5 Working with Ansible in the Amazon Cloud

179© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_6

CHAPTER 6

Ansible Templates
and CloudFormation
Scripts
It’s been pretty cool how so far we’ve been able to automate our instance

deployments all while using code. But we haven’t finished yet; there is

still more we can do with Ansible, especially when using Amazon Web

Services. We could almost dedicate an entire book to using Ansible with

AWS, so this is why we haven’t stopped with just the previous chapter.

In this chapter, we are going to continue with our new project and take

it further with built-in apps, preconfigured users, and configurations when

the instance is deployed. In this chapter, we are going to cover these:

•	 We will start by introducing templates within our

Ansible roles and get you started with some of the

basic features of using them with your infrastructure

management.

•	 Then, we will expand these concepts by introducing a

little known feature of Ansible called ansible-pull.

•	 We will then create our own server image using Ansible

which we can then deploy and further reduce our time

to deployment.

https://doi.org/10.1007/978-1-4842-6485-0_6#DOI

180

•	 Finally, we will create a new Ansible role where we will

work with CloudFormation templates to incorporate

our newly created image.

So I hope you are ready for more. I don’t think the work we will be

doing is more complicated than anything we have done previously, but will

hopefully show you how far Ansible can be expanded.

�One Final Word on AWS Costs
I know I’ve said this three times already and I promise this is the last time

you will hear me mention it again. The last thing we would want is for

someone to get an unexpected bill from Amazon after working through the

examples in these chapters. You always need to make sure you are cleaning

up your instances and the AWS services you have deployed once they are

no longer in use. If you are unfamiliar with the AWS web console billing

service, it provides an easy way to monitor how much you are using and

your expected cost you’ll be billed by the end of the month.

If you haven’t logged into your AWS console, do so and you then go to

the url https://console.aws.amazon.com/billing/home.

You may need to have specific privileges with your Amazon account,

but if you can access it successfully, you should see your account Billing
and Cost Management Dashboard. From here, you will get a number of

graphs and be able to see numerous statements and tables concerning

your account. One of the main images you will see is similar to the one in

Figure 6-1, which is my account balance for the month of July 2020.

Chapter 6 Ansible Templates and CloudFormation Scripts

https://console.aws.amazon.com/billing/home

181

So please be mindful of the costs you are incurring when using

AWS. Now that we have covered costs one last time, we can move back to

our Splunk server deployment project, with the following section allowing

us to demonstrate the use of templates within our project.

�Ansible Templates in AWS Instances
I’m not sure if you’ve been thinking about the way we’ve been working. In

some instances, we could be reducing the amount of work we are doing

by using code to create our configuration instead of constantly writing

them. Especially when our environments change, if we move from a

development environment to a production environment, we want to limit

the configurations we are setting up. One way to do this is with the use of

Ansible templates.

Figure 6-1.  The AWS Billing and Cost Management Dashboard

Chapter 6 Ansible Templates and CloudFormation Scripts

182

When we introduced roles as part of our previous chapter, we showed

the template file as being part of the role directory structure, but we didn’t

really go into any further detail until now. By using templates as part of our

roles, we can create a file with specific configuration parameters, which

are then filled in dynamically by the variables we specify. So depending

on specific conditions, for example, a specific operating system we are

deploying to, when the playbook is run on the operating system, the

parameters are then updated with the specific variables for that OS.

We’ve already used variables, and they’re not too exciting, but with

templates, we can manipulate them to do what we need them to do.

Ansible uses the Jinja2 template engine to do the work, and if you have

worked with Jinja2, you’ll know the template is not limited to simply filling

variable parameters. The template will have a .j2 extension, and with it,

you can then write conditional statements, loops, functions, and more.

Instead of talking about it though, we should get straight to work to

see how we can implement a template into our current work. We have

been working hard to get our Splunk server running, so log back into

your working environment and we will enhance our deployment with a

template:

	 1.	 Before we start making changes to our code, make

sure you have removed any instances you’ve created

from the previous chapters as we are going to create

a new AWS instance from our code.

	 2.	 We want to make a change to the way our splunk_
server role works; instead of using the files directory

for our user_data script, we want to start using a

template. Start by using your text editor to open the

roles/splunk_server/tasks/main.yml file.

Chapter 6 Ansible Templates and CloudFormation Scripts

183

	 3.	 Move down to line 34 of our file and make the
following change to the file. Line 34 is now a little
different as it is now using the lookup function
to find the user_data.j2 template in the template
directory instead of the file we originally created:

 33 count: 1
 34 �user_data: "{{ lookup('template',

'user_data.j2') }}"
 35 register: ec2

	 4.	 Create a templates directory in our splunk_server
role. Run the following mkdir command to create a
templates directory ready for us to start creating our
Jinja2 template:

mkdir roles/splunk_server/templates

	 5.	 We can now create our template file and will use
our current user_data.sh file as the base of our
template. We can add extra template functionality
as we go, but to get it started, copy the original user_
data.sh file into our templates directory, but this
time, we will use the .j2 file extension:

cp roles/splunk_server/files/user_data.sh
roles/splunk_server/templates/user_data.j2

	 6.	 In our last chapter, we created our admin account
when we started our Splunk server, but we used
a plain text password in our user_data.sh file. We
can start to set up our template by changing this
line to a variable. Open your template file roles/
splunk_server/templates/user_data.j2 with your
text editor and change line 6 to as follows to now use

the variable admin_password:

Chapter 6 Ansible Templates and CloudFormation Scripts

184

6 sudo -u splunk /opt/splunk/bin/splunk start --answer-

yes --no-prompt --accept-license --seed-passwd {{

admin_password }}

	 7.	 We can also use loops within our template, so this

will be a perfect way we can add some more users

to our installation. We should have our user_data.
j2 file open in our text editor, so we can then add the

following loop to our template:

 8 {% for item in userlist %}

 9 �sudo -u splunk /opt/splunk/bin/splunk add user {{

item }} -role admin -auth admin:{{ admin_password }}

10 {% endfor %}

Splunk allows you to create new users via the

command line with the add user command, but we

also need to provide the admin user password. In

this instance, line 8 will loop through the values in

the userlist variable and will add a new user account

for each in line 9. Line 10 then closes off our loop.

	 8.	 Save the user_data.j2 template file as we have

completed the work we are going to do on that

file for now. We can now enter the variables this

template will use, so open the roles/splunk_server/
vars/main.yml file with your text editor.

	 9.	 We should be creating a separate list for users and

then a separate list for password; instead, we have

cut some corners a little by adding the username

and password in the same entry, so when the loop

runs in our template, the userlist will complete

the add user command that runs in the user_data

Chapter 6 Ansible Templates and CloudFormation Scripts

185

template loop. Add in the following details which

adds the admin_password into the variables file,

and line 8 adds three users which we have named as

user1, user2, and user3:

7 admin_password: newpassword

8 userlist: ['user1 -password changeme1', 'user2

​-password changeme2', 'user3 -password changeme3']

	 10.	 The variables in the splunk_server role now contain

sensitive information, so we will encrypt the data

before we perform a deployment of our code. Just

like we learned earlier in this book, we will use the

ansible-vault command to encrypt our variables file:

ansible-vault encrypt roles/splunk_server/vars/main.yml

New Vault password:

Confirm New Vault password:

Encryption successful

	 11.	 Hopefully, everything has been set up correctly

and we can now deploy our changes into a new

environment. Let’s run our playbook; this time,

make sure you are providing the ansible vault

password you created in the previous step. As you

can see, we add the --ask-vault-pass as part of our

command:

ansible-playbook -i hosts server_deploy.yml --ask-

vault-pass

Chapter 6 Ansible Templates and CloudFormation Scripts

186

Vault password:

PLAY [localhost] ********************************

TASK [splunk_server : Create the host security

group]******

ok: [localhost]

TASK [splunk_server : launch the new ec2

instance] ********

changed: [localhost]

TASK [splunk_server : wait for SSH to come up]

ok: [localhost] => (item={u'kernel': None,

u'root_device_type': u'ebs',

...

u'instance_type': u't2.micro', u'architecture':

u'x86_64', u'hypervisor': u'xen'})

TASK [splunk_server : add tag to instance]

changed: [localhost] => (item={u'kernel': None,

u'root_device_type': u'ebs',

...

u'instance_type': u't2.micro', u'architecture':

u'x86_64', u'hypervisor': u'xen'})

PLAY RECAP **************************************

localhost:

ok=4 changed=2 unreachable=0 failed=0

Chapter 6 Ansible Templates and CloudFormation Scripts

187

	 12.	 Once again, our Splunk server should now be

provisioned and running, and after a couple of

minutes, the web interface should also be available.

We should have four users available to access our

server, and we could simply test the usernames by

logging in directly to the web interface. Instead, log

into the web interface using the admin user and we

will view our list of users in the User Administration

screen of Splunk. We should be able to log into

the web interface by using the external IP address

provided by the AWS console and port 8000. Use the

admin username and password to log into the web

interface:

http://<Public IP>:8000

username: admin

password: newpassword

	 13.	 At the top right of the Splunk web interface, click the

Settings menu and click the Users option. When

you click the Settings menu, you should see a drop-

down menu similar to the one in Figure 6-2, where

you can select the User and Roles option.

Chapter 6 Ansible Templates and CloudFormation Scripts

188

	 14.	 Now when you view the users on your Splunk

server, you should now be presented with a list of

users similar to the one in Figure 6-3; we have four

users automatically provisioned for us as part of our

installation.

Figure 6-2.  The Splunk Web Interface Settings Menu

Chapter 6 Ansible Templates and CloudFormation Scripts

189

As you can see, templates allow us some extra flexibility to configure

numerous users without needing to manually enter their details. This

could be extended further to other configurations needed as well as setting

up different variables for different environments. For now though, we will

change our focus to see other methods of provisioning our servers, in this

instance, using Ansible Pull.

�Pulling Code with Ansible
The first time I heard of this concept, it blew my mind, and the interesting

thing is it is not documented very widely. It’s probably because it is

pretty basic, but can still do a lot of work for you and will address some

interesting problems you have. So far, we’ve been using Ansible to create

our AWS instance, but what if we then wanted to run Ansible on this

new instance? Well of course, we can do this; we have our user_data.
j2 template which could simply install Ansible and then run specific

commands, but in the following example, we are going to do something a

little different to show you another feature of Ansible.

Figure 6-3.  A Listing of Preconfigured Users in Your Splunk
Instance

Chapter 6 Ansible Templates and CloudFormation Scripts

190

By using ansible-pull, we can use this command to pull code from
GitHub, and then once it is on our instance, a playbook can be run as part
of this code to then deploy and make any specific changes needed on your
host. In this part of our example project, we are going to use ansible-pull
to preinstall a Splunk App onto our new server upon installation. This
may not always be the case for using ansible-pull; in some instances, you
may have a development environment where a cron task is set up every
morning to run ansible-pull and update code which has been committed
during the previous day.

Either way, it’s always good to use an example to see exactly what is
going on, so log back into your working environment and we will enhance
our Splunk server role further to use the ansible-pull command:

	 1.	 Before we start making changes to our code, make
sure you have removed any instances you’ve created
from the previous chapters as we are going to create
a new AWS instance from our code. As a reminder,
we use the ec2 module with the AWS EC2 instance
id with the following command:

ansible localhost -m ec2 -a "instance_ids=<aws_
instance_id> region=<aws_region> state=absent"

	 2.	 We already have our user_data.j2 template running,
so we’ll be adding a few more lines to utilize
ansible-pull within this template. Start by opening
the roles/splunk_server/templates/user_data.j2
file with your text editor, and move to the end of the
file.

	 3.	 We first need to update our package manager to
install all, Git, Pip3, and Ansible. As we are using
Amazon Linux for our image, we will simply use the
yum commands, so add the following lines to our

template we opened in the previous step:

Chapter 6 Ansible Templates and CloudFormation Scripts

191

12 sudo yum update -y

13 sudo yum install git python3-pip -y

14 sudo pip3 install ansible

	 4.	 Next, we can add in our ansible-pull command

to our template which will import our repository

of code we wish to install on our system. The -U

option allows our code to be updated if it is already

installed; the ansible-pull command will then run

a local.yml playbook which is in the root of the

repository code:

16 sudo /usr/local/bin/ansible-pull -U https://github.

com/vincesesto/testsplunkapp -i hosts

Note T he repository we have used is already created, and we will
run through it shortly to show you how everything works and how
you can implement something similar into your projects.

	 5.	 Enter the following lines of code to finish off the

user_data.j2 template which will first enable Splunk

to boot every time the server is restarted and then

restart Splunk to allow our changes to take effect:

17

18 sudo /opt/splunk/bin/splunk enable boot-start

19

20 sudo -u splunk /opt/splunk/bin/splunk restart

21

Chapter 6 Ansible Templates and CloudFormation Scripts

192

	 6.	 Save the changes you have made to the user_data.j2

template. The template file should now look similar

to the following image where we have four distinct

sections to our code and the setup of our server. We

install Splunk and set up the basic configurations,

we create and populate our users, we then install

Ansible to allow us to run ansible-pull, and then

finally we set up the configurations around ansible-

pull to deploy our basic Splunk App:

 1 #!/bin/bash

 2 set -e -x

 3 �wget -O splunk-8.0.5-a1a6394cc5ae-linux-2.6-x86_64.

rpm 'https://www.splunk.com/bin/splunk/DownloadActi

vityServlet?architecture=x86_64&platform=linux&vers

ion=8.0.5&produc t=splunk&filename=splunk-8.0.5-

a1a6394cc5ae-linux-2.6-x86_64.rpm&wget=true'

 4 rpm -i splunk-8.0.5-a1a6394cc5ae-linux-2.6-x86_64.rpm

 5 sleep 30

 6 �sudo -u splunk /opt/splunk/bin/splunk start --answer-

yes --no-prompt --accept-license --seed-passwd {{

admin_password }}

 7

 8 {% for item in userlist %}

 9 �sudo -u splunk /opt/splunk/bin/splunk add user {{

item }} -role admin -auth admin:{{ admin_password

}}

 10 {% endfor %}

 11

 12 sudo yum update -y

 13 sudo yum install git python3-pip -y

 14 sudo pip3 install ansible

Chapter 6 Ansible Templates and CloudFormation Scripts

193

 15

 16 �sudo /usr/local/bin/ansible-pull -U https://github.

com/vincesesto/testsplunkapp -i hosts

 17

 18 sudo /opt/splunk/bin/splunk enable boot-start

 19

 20 sudo -u splunk /opt/splunk/bin/splunk restart

	 7.	 We can now implement our changes. Run the

following command line to run the playbook and

create our Splunk server installation, this time

with the prepopulated Splunk App installed from a

GitHub repository:

ansible-playbook -i hosts server_deploy.yml --ask-

vault-pass

Note B efore you test your new instance, a lot of extra processes
have been added into our server creation, including a Splunk restart,
which will need to be run before you will be able to access the web
interface. You can always SSH to the instance to verify it is working if
you need to. Don’t worry about the excessive time it takes to start up
the server; we will work on fixing this later in this chapter.

	 8.	 With a little extra time, you should be able to log

into your new instance, just as you did previously by

entering the following URL into your web browser:

http://<your_external_ip_address>:8000

Chapter 6 Ansible Templates and CloudFormation Scripts

194

	 9.	 When you log onto your new Splunk server,

although it will look similar to the previous times

you have logged in, in this instance, you should

now see a second app called Ansible Answers
App, which has been installed and is visible on the

left-hand menu of the Splunk web interface. Your

installation should look similar to Figure 6-4 with

the Ansible Answers App button visible below the

Search & Reporting default app.

This is a very simple example on how we can use ansible-pull to install

an application and have it live on a running server when it starts up. The

application being installed is running a simple Ansible playbook, which we

will discuss and provide further details for in the following section.

Figure 6-4.  The Splunk Web Interface with Preinstalled Apps

Chapter 6 Ansible Templates and CloudFormation Scripts

195

�Ansible Pull GitHub Repository Deployment
Explained
We have saved a little time by creating the code to be deployed earlier with

our ansible-pull request. If you download the repository from GitHub at

https://github.com/vincesesto/testsplunkapp, you’ll see there are

only three files in the root of the repository:

•	 ansible_answers_app

•	 hosts

•	 local.yml

Unless you’re really interested in Splunk Apps, you won’t need to

worry about the ansible_answers_app directory. This is the code which is

the actual application that gets installed in on Splunk as part of our code.

The hosts file though is being referenced by our ansible-pull command

with the -i hosts, just as we would with a normal Ansible command. If we

open the file, it is a simple hosts file referencing the local host, as you can

see here:

 1 [local]

 2 127.0.0.1

The local.yml file is where things get interesting and by now should

be fairly straightforward for you to work out what it is doing. It’s a basic

playbook which installs the Splunk App onto our environment:

 1 ---

 2 - hosts: all

 3

 4 tasks:

 5 - name: install ansible splunk app

 6 copy:

Chapter 6 Ansible Templates and CloudFormation Scripts

https://github.com/vincesesto/testsplunkapp

196

 7 src: ansible_answers_app
 8 dest: /opt/splunk/etc/apps/
 9 owner: splunk
 10 group: splunk

In the playbook, line 2 refers to all the servers in the hosts file and then
runs one task to simply copy our ansible_answers_app directory, using
the copy module into the Splunk applications folder, which is listed as our
dest. It also changes the destination directory to be owned by the Splunk
user and group, ready for the server to be restarted.

Although ansible-pull is limited with the options available to it, the
playbook it can then download and run allows you to basically do anything
you can with a regular Ansible playbook. The ansible-pull command does
allow you to check out a different branch instead of the master branch and
also set up different host files.

For more detail on the different options you can use with the ansible-
pull command, please see the official documentation at the link https://
docs.ansible.com/ansible/2.4/ansible-pull.html.

�Build AWS Images for Quicker Deployments
For the past two chapters, we’ve been deploying our infrastructure on
to AWS with no real complication, but one thing you may have noticed
especially in the previous example is that the time it takes for our instance
to be up and running has also increased with the amount of functionality
we have added to the host.

We can put things into perspective for a moment as our latest server
only took approximately five minutes to be up and running, configured
with both users and applications running. But what if the applications
were more complex and as a result extended the time it took to deploy our
server? The good thing is Amazon gives you the option to prebuild your

image and place it in their repository of images.

You’ll remember when we first started working with Amazon Web

Services, we used an Amazon Linux image to create our Splunk server.

Chapter 6 Ansible Templates and CloudFormation Scripts

https://docs.ansible.com/ansible/2.4/ansible-pull.html
https://docs.ansible.com/ansible/2.4/ansible-pull.html

197

Now that we have all of our configuration management and code

deployment working, we should be able to create an image from those

servers. Having our own image should help improve the speed of our

deployment, improve the stability of our server as we know it is stable

before creating our image, and improve the portability as we have one

simple image containing our server and all of its code.

We could simply use the AWS console to easily create our new image,

but since we’ve been using Ansible all this time, why not use it again to

create our new image? The cool thing is we can also make some changes to

our Splunk installation, where we can add functionality to the installation

by the way of allowing the API to be accessible. Then we can use the API to

make sure our installation is complete before we create an image from our

installation.

You’ll see this is pretty easy, considering the knowledge you have

gained so far, so log back into your working environment and we will make

some further changes to our code:

	 1.	 Once again, before we start working on our changes,

we make sure we have cleaned up the current

Splunk server we created as part of the previous

exercise.

	 2.	 We first need to enable the Splunk API. This is

enabled by default as part of the current release of

Splunk, but we have to allow AWS to communicate

over port 8089. So, start by opening the roles/
splunk_server/tasks/main.yml file with your text

editor ready to add some extra functionality.

	 3.	 Move to line 15 where you have specified the port

values to be open for port 8000. Add in the following

four lines in bold to allow the API port of 8089 to

also be allowed and accessible:

Chapter 6 Ansible Templates and CloudFormation Scripts

198

 12 - proto: tcp

 13 from_port: 8000

 14 to_port: 8000

 15 cidr_ip: 0.0.0.0/0

 16 - proto: tcp

 17 from_port: 8089

 18 to_port: 8089

 19 cidr_ip: 0.0.0.0/0

	 4.	 If we then move to the end of the file, we can now

add in a task to wait for the changes to take effect in

our user_data.j2 file. In this instance, we will use

the uri Ansible module to make an API call for our

new Splunk App and to verify it has been installed:

 58 - name: wait for service to be up and complete

 59 uri:

 60 �url: "https://{{ ec2.instances[0].public_

ip}}:8089/services/apps/local/ansible_answers_

app"

 61 validate_certs: no

 62 user: admin

 63 password: '{{ admin_password }}'

 64 status_code: 200

 65 register: result

 66 until: result['status'] == 200

 67 retries: 12

 68 delay: 60

 69

Chapter 6 Ansible Templates and CloudFormation Scripts

199

We have set up the URL in line 60 to use the

instance IP address assigned to our new host,

assigning it our username and password to

allow access. We are using the uri module in this

instance, which will continue to run until a status

code of 200 is received. Line 65 will register the

results, and line 66 will allow the URL to continue

to be tested until we see a 200 value returned. Line

67 allows this to be attempted 12 times, with a

60-second delay specified in line 68.

	 5.	 When our role sees the API is working as we want it

to, we can now use the ec2_ami module to create

a new Splunk image from our installation. We

simply need to provide the instance ID we are using

as basis of our new image and provide name and

description details:

 70 - name: create ami for new Splunk servers

 71 ec2_ami:

 72 region: "{{ ec2_region }}"

 73 instance_id: "{{ item.id }}"

 74 name: "splunk-production"

 75 description: "Production Splunk Deployment"

 76 wait: yes

 77 register: splunk_ami

 78 with_items: '{{ ec2.instances }}'

As you can see, we have used the with_items option

to allow Ansible to loop through any number of

images we may have created during our script.

Chapter 6 Ansible Templates and CloudFormation Scripts

200

	 6.	 We are going to finish off our playbook tasks by

deleting the live EC2 server instance we created, but

you may want to leave this out. This will mean we

will no longer be charged for the cost of a server we

are not going to use any further. We simply use the

ec2 module again, but this time, we set the state as

absent:

 80 - �name: delete ec2 instance configured to create

the Splunk server AMI

 81 ec2:

 82 region: "{{ ec2_region }}"

 83 instance_ids: "{{ ec2.instance_ids }}"

 84 state: absent

As a whole, the playbook now creates our Splunk

server fully installed and configured with users and

Splunk Apps and is allowing access to the build in

Splunk API. It will also create an AMI of the server

and then remove the server we built to clean up

everything ready to distribute our image across the

world, ready for world like a server production line.

	 7.	 It’s time to now run the playbook with all the new

changes we’ve made, so let’s kick it off and watch

from afar and wait for the magic to happen:

ansible-playbook -i hosts server_deploy.yml --ask-

vault-pass

Chapter 6 Ansible Templates and CloudFormation Scripts

201

	 8.	 When the playbook runs, as we mentioned in step 4

of this exercise, we made sure the playbook would

wait for the server to be running and ready before

it created the image. As we changed our code to

perform 12 attempts with a 60-second delay in

between each try, you’ll notice the output of the

playbook command we have just run should be

showing something similar to the following output

while it continues to test and verify the image is

completed or not:

...

TASK [splunk_server : wait for service to be up

and complete] **********

FAILED - RETRYING: wait for service to be up and

complete (12 retries left).

FAILED - RETRYING: wait for service to be up and

complete (11 retries left).

FAILED - RETRYING: wait for service to be up and

complete (10 retries left).

FAILED - RETRYING: wait for service to be up and

complete (9 retries left).

FAILED - RETRYING: wait for service to be up and

complete (8 retries left).

FAILED - RETRYING: wait for service to be up and

complete (7 retries left).

...

Chapter 6 Ansible Templates and CloudFormation Scripts

202

	 9.	 Everything hopefully should have worked, and

we should now have our environment cleaned up

and no longer showing a live Splunk server, but

we should see a new AMI available to launch from

AWS. Log back into the AWS console and navigate to

the EC2 console.

	 10.	 In the left-hand menu, if you select AMIs and as

long as you are in the correct region, you should

now see our new image available and ready for use.

Figure 6-5 shows our AWS console with the new AMI

available and named splunk-production.

Figure 6-5.  Viewing Your Splunk Server Image Created in Your AWS
Console

Chapter 6 Ansible Templates and CloudFormation Scripts

203

Note T he AWS console displays an AMI ID for the image you have
created. You will need to make note of the ID assigned to your image
as this will be used to deploy new server using CloudFormation later
in this chapter.

If you’re not too familiar with AWS, you’re probably wondering why

the work we’ve done is important. The next section will run you through

the process of using this newly created image. For now, just realize we are

laying the foundations for a fast and stable server deployment.

�Using CloudFormation with Ansible
This is an interesting topic to look at. So far, we have created fairly

complex environments using Ansible, so why would we need to be using

CloudFormation? Personally, I find it a lot easier to use Ansible from

the start to the finish, but there will be situations where you will need to

implement your environment with a combination of both Ansible and

CloudFormation.

There could be any number of reason why you may need to use

CloudFormation. This might include the fact you are supporting a

legacy environment already created with CloudFormation, or you are

creating a new AWS service which is only available to be deployed with

CloudFormation as the Ansible modules have not been created yet. Either

way, you’ll see it is pretty straightforward to use this functionality within

Ansible.

If you haven’t used CloudFormation before, it is Amazon’s way of

managing infrastructure and configurations in AWS by providing JSON or

YAML template files to describe the infrastructure. If you haven’t seen a

CloudFormation template before, you’ll notice it’s a lot more complex than

Ansible code, but due to the fact it is supported by AWS, it is widely used.

Chapter 6 Ansible Templates and CloudFormation Scripts

204

It’s a perfect time for us to introduce CloudFormation as we can

now use the new AMI we have just created and deploy it across a

new CloudFormation stack. We won’t be going very far in depth with

CloudFormation and presume you will download the template being used.

Even though it is very basic, this book is not a tutorial on CloudFormation

and the CloudFormation script itself is still rather large.

To view the CloudFormation template we are going to use, go to the

following link:

https://raw.githubusercontent.com/vincesesto/ansibleanswers/

master/chapter6/roles/splunk_cloud/files/splunk-stack.yml

We could simply use the CloudFormation template directly with the

AWS console to deploy our new AMI, but that would go against everything

we’ve done already. Instead, we are going to create a new Ansible role that

will deploy the AMI into AWS using the aforementioned CloudFormation

script. Log back into your working environment, and we will now create a

new Ansible role to deploy our Splunk AMI into a CloudFormation stack:

	 1.	 We created our roles directory in the last chapter,

and as we need to create a new role, start by

changing into this directory with the following

command:

cd roles

	 2.	 Create the new role in our environment using

the ansible-galaxy command. Run the following

command with the init option, and call the new role

splunk_cloud:

ansible-galaxy init splunk_cloud

- splunk_cloud was created successfully

Chapter 6 Ansible Templates and CloudFormation Scripts

https://raw.githubusercontent.com/vincesesto/ansibleanswers/master/chapter6/roles/splunk_cloud/files/splunk-stack.yml
https://raw.githubusercontent.com/vincesesto/ansibleanswers/master/chapter6/roles/splunk_cloud/files/splunk-stack.yml

205

	 3.	 We know the ansible-galaxy command will do

the work for us in setting up our directories and

structure for the new role. To verify this, run the

tree command to show the newly created directory

structure of the new splunk_cloud role:

tree splunk-cloud/

roles/splunk-cloud/

├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
└── main.yml
8 directories, 8 files

	 4.	 We will start by setting up some variables for our

new environment, find your favorite text editor, and

open the main variables file for the role located at

splunk-cloud/vars/main.yml.

Chapter 6 Ansible Templates and CloudFormation Scripts

206

	 5.	 Enter the following variables which should be clear

to you if you’ve been following along. The region

and instance type are the same as our previous

Splunk server deployment. Line 4 specifies the

AMI we just created in the previous section; in our

example, it was ami-423bec20, but you will need

to change this to include the AMI identification

number for your installation. Line 5 is simply using

the keypair we have been using to access our server:

 1 ---

 2 aws_region: "ap-southeast-2"

 3 aws_instance_type: "t2.micro"

 4 aws_image: "ami-3d10b05f"

 5 aws_keypair: "ansible-answers-key"

 6 aws_ssh_location: "0.0.0.0/0"

	 6.	 Save the details you’ve added to the variables file

and we can now set up our tasks to use the new

variables. Open the splunk_cloud/tasks/main.yml
file with your text editor.

	 7.	 Our tasks file should be a lot smaller than our

previous tasks file, as we are using an image that

will have all of the configurations created before it

is deployed. So start with the following code. Line

3 uses the cloudformation module to construct

the deployment through the AWS CloudFormation

service. We start by naming the stack in line 4 as

ProdSplunkStack and specifying the region from

our variables in line 6:

Chapter 6 Ansible Templates and CloudFormation Scripts

207

 1 ---

 2 - name: start splunk cloudformation stack

 3 cloudformation:

 4 stack_name: "ProdSplunkStack"

 5 state: "present"

 6 region: "{{ aws_region }}"

	 8.	 The rest of the tasks file then uses the template

option of the cloudformation module to define

our stack template, using the parameters we have

created in our variables file. Line 7 specifies the

location of the template, and then lines 8–12 provide

the parameters we would have needed to address

when using the AWS CloudFormation console.

Finally, lines 13–16 provide tags to the stack and

register the environment:

 7 �template: "roles/splunk_cloud/files/

splunk-stack.yml"

 8 template_parameters:

 9 KeyName: "{{ aws_keypair }}"

 10 InstanceType: "{{ aws_instance_type }}"

 11 SSHLocation: "{{ aws_ssh_location }}"

 12 AWSAMI: "{{ aws_image }}"

 13 tags:

 14 env: "Production"

 15 service: "Splunk"

 16 register: production_splunk_stack

Chapter 6 Ansible Templates and CloudFormation Scripts

208

	 9.	 If you haven’t downloaded the CloudFormation

template from GitHub, you can copy the template

into the files directory of our role by running the

following wget command, using the -O option to

specify where the file will be placed; in the following

command, we have specified the files directory of

the splunk_cloud role:

wget https://raw.githubusercontent.com/vincesesto/

ansibleanswers/master/chapter6/roles/splunk_cloud/

files/splunk-stack.yml -O splunk_cloud/files/splunk-

stack.yml

Note  You will need to have the wget command available on your
working environment. The preceding command will download the raw
file from GitHub and place it in the splunk_cloud/files/ directory.

	 10.	 The role to deploy our Splunk server image to

CloudFormation is now complete. Move back into

the roles directory so we can finish off the final

stages of this exercise:

cd ../

	 11.	 Create a new playbook called cloudformation_
deploy.yml which will use the role we have just

created. Run the following command to create the

playbook:

touch cloudformation_deploy.yml

Chapter 6 Ansible Templates and CloudFormation Scripts

209

	 12.	 Open the file with your text editor and add the

following code, which will run the new splunk_
cloud role:

 1 ---

 2 - hosts: localhost

 3 connection: local

 4 gather_facts: false

 6 user: root

 7 roles:

 8 - splunk_cloud

	 13.	 We can now run our new playbook and see our

CloudFormation stack created, so run the following

ansible-playbook command to run the playbook we

created in the previous step:

ansible-playbook -i hosts cloudformation_deploy.yml

	 14.	 The stack should be up and running in one or two

minutes. We can verify it is running by going to the

AWS console, specifically for CloudFormation at the

following url:

https://ap-southeast-2.console.aws.amazon.

com/cloudformation

	 15.	 Hopefully, you should see a new stack called

ProdSplunkStack. If you select the stack on the

console and click the Events tab, you should see a

similar image to Figure 6-6, where you will notice

from start to CREATE COMPLETE CloudFormation

has created our server in less than a minute to

completion.

Chapter 6 Ansible Templates and CloudFormation Scripts

https://ap-southeast-2.console.aws.amazon.com/cloudformation
https://ap-southeast-2.console.aws.amazon.com/cloudformation

210

	 16.	 If you then click the Outputs tab on the

CloudFormation console, you will also have the

PublicIP where you can now access your new

Splunk server. Once again, everything should be set

up and working with configured user access and

our sample Splunk App. Figure 6-7 is an example

of what the Outputs tab will look like for us in the

CloudFormation console.

Figure 6-6.  Stack Create Events in AWS CloudFormation

Chapter 6 Ansible Templates and CloudFormation Scripts

211

	 17.	 In our example, we simply need to type the PublicIP

address along with the Splunk web port of 8000

(http://3.104.79.38:8000) into our web browser to

access the new stack we have just implemented.

Figure 6-8 shows the Splunk web interface again as

it should now look similar with the preconfigured

AMI image deployed via CloudFormation.

Figure 6-7.  Viewing Stack Outputs in AWS CloudFormation

Chapter 6 Ansible Templates and CloudFormation Scripts

212

	 18.	 Finally, we should delete this stack so you are no

longer incurring any costs from AWS. Run the

following command which uses the cloudformation

Ansible module and parses the stack_name and

region to the module and sets the state of the

CloudFormation stack as absent:

ansible localhost -m cloudformation -a "stack_

name=ProdSplunkStack region=ap-southeast-2

state=absent"

localhost | CHANGED => {

 "changed": true,

 "events": [],

 "log": [

Figure 6-8.  Viewing Stack Outputs in AWS CloudFormation

Chapter 6 Ansible Templates and CloudFormation Scripts

213

 "Stack does not exist."

],

 "output": "Stack Deleted"

}

Note  You can also delete the stack from the CloudFormation AWS
console page. When you are in the console and have your Stack
selected, select Delete Stack from Actions menu.

We have only scratched the surface of using CloudFormation with

Ansible. We could even create the CloudFormation templates with Jinja2,

adding in all the relevant details for our specific environment. The great

thing about the work we’ve completed though is that with a little bit of

thought and creating an AWS server image, we’ve been able to significantly

reduce the code we are using in Ansible and reduced the amount of time

needed to deploy our code.

As this brings us to the end of this chapter, I think this should still get

you moving in the right direction to make an implementation like this in

your own project.

�Summary
Our project is starting to look pretty epic, and we are setting up and

automating a lot of processing in a small amount of code. I hope this is

giving you an interesting and in-depth view on the power of Ansible and

working with AWS. In this chapter, we have expanded on our previous AWS

Splunk Instance and started to use Jinja2 templates as part of our work. In

this section, we have also used the ansible-pull command to then bring in

further GitHub repository code to allow our server to build with the latest

version of our Splunk App.

Chapter 6 Ansible Templates and CloudFormation Scripts

214

We then moved on to simplifying things further by creating an

AWS image from our server installation, which was then added to our

CloudFormation template to create our production environment to help

reduce the time to deployment. Our next chapter will allow us to start

testing our Ansible code to make sure it is as correct as possible before

performing any implementations.

Chapter 6 Ansible Templates and CloudFormation Scripts

215© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0_7

CHAPTER 7

Ansible Tests
and Variables
We’re almost at the end of our project and almost at the end of our book.

We hope you keep working through this chapter because there are a lot of

extra details we are going to provide you to hopefully make your life and

work a little easier.

In this chapter, we’ll provide you with some tools and tips to make your

Ansible code and configuration management a little easier. We are going

to run through some of the ways you can provide extra details in your

deployment code and roles and how to use these extra details to debug

your playbooks. We are going to fill in some of the missing information you

may have been asking yourself along the way.

There are a lot of details to fill in here, but we are hopefully going to

make it a lot easier for you to manage your Ansible work. In this chapter,

•	 We are going to start with a discussion on why AWS-

specific playbooks need to use their own specific

modules and not our usual Ansible modules and then

give you some ideas on how to work around this.

•	 We will then learn some of the ways we can use

variables and facts within your playbooks to help

debug and provide information to the user as they run.

https://doi.org/10.1007/978-1-4842-6485-0_7#DOI

216

•	 We will also take a look at the ansible-lint project and

how you can develop your own tests to work with the

application.

•	 Finally, we will spend some time working with some of

the more unknown options we are able to use with our

playbooks, including options to help debug and verify

everything is good before we release our code into the

wild.

So let’s not wait much longer as we’ve come a long way and your

Ansible knowledge should have drastically increased from when you

started in this journey.

�AWS Modules Run Differently
I’m not sure if you’ve noticed but we do things a little differently when

working in the Amazon Cloud. If you think back to the early chapters of

this book, we created our hosts file with an IP address, so our playbooks

would then be able to map directly to the systems it needed to then

configure. The reason we can’t do this in the Amazon Cloud is because

every time we launch a new instance, we create a new IP address for the

instance. To reduce costs, we make sure we also shut down or terminate

these hosts when they are no longer needed.

Once we have a server running though, if we plan to keep it up for as

long as possible, we can also use Ansible as we have previously to manage

configurations and installations. All we need to do is add it to our hosts file.

If we have created a new server with the IP address of 13.210.127.1, we

could set up our host file like the following entry:

 3

 4 [splunk_server]

 5 13.210.127.1

Chapter 7 Ansible Tests and Variables

217

This all looks correct, but we can test this as we did back in our first

chapter with the ping Ansible module:

ansible -i hosts "splunk_server," -m ping

13.210.127.148 | UNREACHABLE! => {

 "changed": false,

 "msg": "Failed to connect to the host via ssh:

ansible@13.210.127.1: Permission \

denied (publickey).\r\n",

 "unreachable": true

}

As you can see, we get an error showing the server as being

UNREACHABLE. So what went wrong here?

We need to remember we first access the host via SSH with the ec2-
user username because it is an AWS host, and secondly, we have set up an

access key to access this which may not be in the default ssh key directory.

What I didn’t show you in our earlier chapters is we can set up our

hosts file with the location of the ssh key and the user who needs to access

the host to make changes. If you open up the hosts file again and add the

ansible_ssh_private_key_file location and the ansible_ssh_user value,

this should help, as you will see in the following:

 3

 4 [splunk_server]

 5 �13.210.127.1 ansible_ssh_private_key_file=ansible-answers-

key ansible_ssh_user=ec2-user

If we now run our test command, we should see a better result this

time:

ansible -i hosts "splunk_server," -m ping

Chapter 7 Ansible Tests and Variables

218

13.210.127.1 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

This isn’t the best way to use Ansible especially in AWS, but if you need

to get something running quickly and have your playbooks set up with no

specific entries relating to AWS, it may be a way to get you working a little

faster. As well, if you are working on different systems and need to run your

Ansible commands, it may be wise to make these entries in your hosts file.

Note A mazon does have the option to use a permanent IP address
and refer to it as an Elastic IP. It is beyond the scope of this book
and doesn’t really conform with the feel of the book so we haven’t
covered it. If you are interested though, you can use the ec2_epi
module to first create an Elastic IP and you would then need to create
an instance and assign this IP address to the instance. You could then
continue to use the host file with the traditional Ansible playbook
modules.

�Using the Debug Module with Registered
Variables
We have used the debug module in the previous chapters of this book,

but will take some extra time to discuss it further in this section of the

chapter. The debug module is basically a way Ansible allows you to

print statements to your screen. In some situations, we would use a

verbose output to allow us to see extra detail, as well as verifying if our

playbooks have completed. Instead, the debug module can allow you to

provide customized statements printed to the screen when our tasks are

performed.

Chapter 7 Ansible Tests and Variables

219

Debug can also work with registered variables, like the ones we have

already used in our previous examples, to provide further testing and

verification if our tasks have worked correctly.

For example, in the following task we added to roles/splunk_server/
tasks/main.yml, registered the output of our uri module to the variable

named result. We then queried the value to know when the result value

was 200 which allows us to know that our API was available:

 62 - name: wait for service to be up and complete

 63 uri:

 64 �url: "https://{{ ec2.instances[0].public_ip}}:8089/

services/apps/local/ansible_answers_app"

 65 validate_certs: no

 66 user: admin

 67 password: '{{ admin_password }}'

 68 status_code: 200

 69 register: result

 70 until: result['status'] == 200

 71 retries: 12

 72 delay: 60

We could then use this variable with a debug message like the

following one to verify our deployment has worked as we wanted it to:

- debug:

 msg: "API is now available and providing a {{

result['status'] }} response"

So we use register to capture the output of a task to a variable,

and then these values can be used when logging output to the screen

or creating conditional statements within our playbooks. Some of the

modules also have specific return values you can use to then test against,

but we will look at this more later in the chapter.

Chapter 7 Ansible Tests and Variables

220

To explain this further, we are going to start adding some more debug

information onto our playbooks to allow it to display some more useful

information to us. Log back into your working environment and we will

make some minor changes to our splunk_cloud playbook we created in

our last chapter:

	 1.	 Start by opening the roles/splunk_cloud/tasks/
main.yml file with your text editor ready to make a

change to our file.

	 2.	 Move to the end of the file and add lines 18 and 19

into our playbook. In the following code, line 18 uses

the debug module which is essentially a new task,

where in the entry below will use the var option to

output the variable we registered in line 16:

 16 register: production_splunk_stack

 17

 18 - debug:

 19 var: production_splunk_stack

	 3.	 If we now run this playbook, we will get a large

amount of output as the data registered in the

variable production_splunk_stack will include all

the AWS information output by the module in our

playbook. The output we have listed as follows has

been reduced significantly due to the large amount

of data provided by AWS:

ansible-playbook -i hosts cloudformation_deploy.yml

PLAY [localhost] **************************************

Chapter 7 Ansible Tests and Variables

221

TASK [splunk_cloud : start splunk cloudformation stack]

changed: [localhost]

TASK [splunk_cloud : debug]

ok: [localhost] => {
 "production_splunk_stack": {
...
 "resource_type": "AWS::EC2::SecurityGroup",
 "status": "CREATE_COMPLETE",
 "status_reason": null
 }
]
 }
}

	 4.	 We can do a little better with our playbook and limit
the data that is being displayed in our output. First,
delete the stack from our AWS console before we
move further with the following command line:

ansible localhost -m cloudformation -a "stack_
name=ProdSplunkStack region=ap-southeast-2
state=absent"

localhost | CHANGED => {
 "changed": true,
 "events": [],
 "log": [
 "Stack does not exist."
],
 "output": "Stack Deleted"

}

Chapter 7 Ansible Tests and Variables

222

	 5.	 Open the roles/splunk_cloud/tasks/main.yml file

again and add the following changes. In the code,

we have added line 20 which will only display the

big block of data we displayed previously if we use

the -vv option when we run our playbook. Lines 22

and 23 set up a new debug module and this time

use the msg option to print a message to the screen

similar to the way you would use a print or echo

statement in code. In this instance, you can see we

are still using the registered variable of production_
splunk_stack, but in this instance, it is using the

value of the PublicIP listed in the stack_outputs:

 17

 18 - debug:

 19 var: production_splunk_stack

 20 verbosity: 2

 21

 22 - debug:

 23 �msg: "IP Address Value {{ production_

splunk_stack.stack_outputs.PublicIP }}"

	 6.	 Save the changes you’ve made to the tasks and

now run your playbook again with the following

command. This time we get a different output to our

screen:

ansible-playbook -i hosts cloudformation_deploy.yml

PLAY [localhost] *************************************

TASK [splunk_cloud : start splunk cloudformation stack] ***

changed: [localhost]

Chapter 7 Ansible Tests and Variables

223

TASK [splunk_cloud : debug] **************************

skipping: [localhost]

TASK [splunk_cloud : debug] **************************

ok: [localhost] => {

 "msg": "IP Address Value 52.65.207.29"

}

PLAY RECAP ***

localhost :

ok=2 changed=1 unreachable=0 failed=0

Firstly, you’ll notice there is a lot less output, but it still provides some

helpful information. We can see our first debug statement we added to our

code is showing in our output as “skipping” as we have not used the -vv

option in our command line, but then our second debug module runs and

gives us the nice message of “IP Address Value 52.65.207.29”.

So you can see here how we can set variable values after the task has

run and then print the output we want to the screen. If you remember the

output we had earlier when we registered all the values of our output, you

may have noticed the variable output was in a dictionary form. When we

register the value in our playbook the variable will always be in the form of

a dictionary, but we won’t necessary know what keys will be available in

the dictionary.

Although the Ansible module documentation will give you some

information on what keys to expect from the output of specific modules,

this information is far from complete, and in most situations, it is easier to

use debug as we did earlier to see what information is provided.

In our example earlier, we extracted the data we needed from the

dictionary using the dot notation. You can also use square brackets as

well ([]), so for our example we could also use the following to output the

PublicIP address:

Chapter 7 Ansible Tests and Variables

224

production_splunk_stack['stack_outputs']['PublicIP']

If we really wanted to, we could even mix the dot and square bracket

notation, but it’s probably best to stick to one consistent method across

your playbooks. Also, if you are trying to access a dictionary key which

does not exist, your playbook will also fail.

�Ansible Facts
When we’ve been running our playbooks, one of the first options we have

in place is to gather_facts, and in all our playbooks so far, we have been

setting this as false. We have done this to limit the kind of information we

have in our output as well as speeding up our playbooks. When Ansible

gathers facts, it is connecting to the instance it is running the playbook

on and gathers information on the system including CPU architecture,

operating system, IP addresses, memory info, disk info, and much more.

As we have been performing a lot of our work using AWS, we are

running our playbooks on our local machine, and as a result, when we are

gathering facts, we would simply be gathering facts on the system we are

working from. This doesn’t mean Ansible facts do not have a use.

There are a few things we can still do, so log back into your working

environment and we can demonstrate how you can use facts further in

your own projects:

	 1.	 If we wanted to gather all the facts Ansible stores,

we can use the setup module from the command

line. If you still have your Splunk server running,

you can use the IP address along with the access

key to output the entire 450 lines of data Ansible

will output. By running the following command,

you should get a massive amount of data, which we

Chapter 7 Ansible Tests and Variables

225

have only provided a small subset to illustrate the

process:

ansible all -i "ec2-user@52.65.207.29," -m setup

 --key-file "splunkserver.pem"

ec2-user@52.65.207.29 | SUCCESS => {

 "ansible_facts": {

 "ansible_all_ipv4_addresses": [

 "172.31.22.179"

 ...

 },

 "changed": false

}

	 2.	 The setup module also comes with a filter argument

to allow you to extract data you specifically need; in

this case, let’s only provide processor information.

Run the following command to use the same setup

module request, but instead use -a to specify the

filter argument and to only provide the ansible_
processor_vcpus data to the screen:

ansible all -i "ec2-user@52.65.207.29," -m setup

 --key-file "splunkserver.pem" -a "filter=ansible_

processor_vcpus"

ec2-user@52.65.207.29 | SUCCESS => {

 "ansible_facts": {

 "ansible_processor_vcpus": 1

 },

 "changed": false

}

Chapter 7 Ansible Tests and Variables

226

	 3.	 The previous examples have been used to show how

we can gather facts for any hosts, but of course we

are working with ec2 instances. Ansible provides

us with the ec2_facts module, so we can use this

to extract specific information relative to AWS ec2

instances. Run the following command which uses

the ec2_facts module to extract the facts for the

specific instance. Once again our limited output

provides us with information which is a lot more

relevant to AWS instances:

ansible all -i "ec2-user@52.65.207.29," -m ec2_

facts --key-file "splunkserver.pem"

ec2-user@52.65.207.29 | SUCCESS => {

 "ansible_facts": {

 "ansible_ec2_ami_id": "ami-0492f4f561f7b5b7a",

 "ansible_ec2_ami_launch_index": "0",

 ...

 },

 "changed": false

}

	 4.	 We can also set our own facts within our playbooks.

In the previous section, we displayed the new IP

address of our new server; if we want to use these

variables across other playbooks, we need to turn

them into facts. Open the roles/splunk_cloud/
tasks/main.yml file with your text editor and we

will set up our first fact.

Chapter 7 Ansible Tests and Variables

227

	 5.	 Move to the bottom of the splunk_cloud tasks file,

and add in the code we have listed as follows. We

will use the set_fact module to, as you may have

guessed, set a fact:

 25 - �name: set public IP address to be used by other

playbooks

 26 set_fact:

 27 �splunk_public_ip: "{{ production_splunk_stack.

stack_outputs.PublicIP }}"

Note T he reason we would want to do this is because any variables
we use or define will be valid on the host running the playbook until
all the tasks are complete. This means any variables will not be
passed to our playbooks. Just as we have created a debug msg in the
previous section of this chapter, we have now set the same PublicIP
address value to the fact splunk_public_ip. We can now use this in
other playbooks.

	 6.	 We only use one other playbook in this exercise,

and this is the cloudformation_deploy.yml. Open

it with your text editor and we will add the following

data to the end of the file to hopefully use the new

fact we have created in the previous step:

 8 tasks:

 9 - debug:

 10 �msg: "Production Server Public IP Address

{{ splunk_public_ip }}"

Chapter 7 Ansible Tests and Variables

228

	 7.	 If we now run this playbook again, we will see an

extra task at the end of the output which will print

the new fact we created to the screen:

ansible-playbook -i hosts cloudformation_

deploy.yml

...

TASK [debug] ************************************

ok: [localhost] => {

 "msg": "Production Server Public IP Address

52.65.207.29"

}

Using variables and facts is a good start in providing extra information

to users as configurations are being deployed. In the next section of this

chapter, we will start to look further at ways in which we can test our

Ansible playbooks and roles before we need to actually deploy our code.

�Testing Ansible As You Develop
By now, you can probably see Ansible not only creates a way to manage

your infrastructure and configurations, but in itself you can make your

playbooks and code as complex and automated as you need them to be.

When things get more complicated, this is where we need to start to look

at our playbooks more like any other piece of code and make sure we have

removed any chance of making a mistake or error before we deploy any

changes to our environment.

Chapter 7 Ansible Tests and Variables

229

In the following section, we will go through some of the tools you

can use to test your code and make sure you are reducing any chance of

issues before you run it in production. The cool thing is that unlike other

configuration management tools, Ansible works in order, so it will be easier

for us to incorporate testing into our code and playbooks.

�Ansible Start At Option
This isn’t really a way to test our playbook, but it can come in handy.

The --start-at-task option allows you to start the playbook at a

particular task instead of running through all the other tasks first. It is

useful if you have added a new task into a playbook and only want to run

the specific task you have just created. All you need to do is list the task

name, as illustrated in the following example.

We can use our existing project to demonstrate how to use this code, so

log back into your working environment to get started:

	 8.	 Open the cloudformation_deploy.yml file with

your text editor and add the following three lines at

the bottom of the playbook. All we are now doing in

the playbook is adding a new task that will simply

run the debug module to print some text to the

screen:

 11 - name: Final Task

 12 debug:

 13. msg: "This is the end of the playbook"

Chapter 7 Ansible Tests and Variables

230

	 9.	 Now run the playbook with the following command

which uses the --start-at-task option to specify that

it is not going to run any of the other code in the

playbook. As you can see, the output only runs one

task, and this is the new debug message we have

set up:

ansible-playbook -i hosts cloudformation_deploy.yml

 --start-at-task="Final Task"

PLAY [localhost] **********************************

TASK [Final Task] *********************************

ok: [localhost] => {

 "msg": "This is the end of the playbook"

}

PLAY RECAP **

localhost:

ok=1 changed=0 unreachable=0 failed=0

�Ansible Step
The –-step option with ansible-playbook allows you to run your playbook

interactively. Before each task is started, you will be asked if you would like

to proceed with the task. You either answer yes or no or continue if you

want the playbook to continue to the end without any further checks:

	 1.	 Run the following command to see how you can use

the --step option with our current environment. As

you can see, all that is needed is the --step option

to be provided with our Ansible command. We are

then prompted with options to proceed:

Chapter 7 Ansible Tests and Variables

231

ansible-playbook -i hosts cloudformation_deploy.yml --step

PLAY [localhost] **********************************

Perform task: TASK: splunk_cloud : start splunk cloudformation

stack (N)o/(y)es/(c)ontinue:

�Ansible Lint
It is created by Will Thames (https://github.com/willthames) and is

available on GitHub with only a small amount of documentation available.

We will run through this rather quickly, but the defaults provide a lot of

functionality to the application and will get you started.

The ansible-lint command takes your playbook and will check if your

playbook conforms to the style guides and other rules to make sure you are

minimizing the chances of your code breaking something or not working

correctly when you go to deploy your environment:

The GitHub repository for ansible-lint can be found at the

following link: https://github.com/willthames/ansible-lint

In the following part of this exercise, we will install ansible-lint onto

our system and then demonstrate the basic operations of the application:

	 1.	 Ansible-lint does not come installed as part of

Ansible and will need to be installed into your

system. Use the following command to install

ansible-lint using the apt command for Linux/

Debian-based environments:

sudo apt install ansible-lint

Chapter 7 Ansible Tests and Variables

https://github.com/willthames

232

Note  ansible-lint is written in Python, so if you are not running
these commands on a system that includes apt, you can also use
pip3 install ansible-lint to install the application on your system.

	 2.	 Run the following command to verify you have

installed the ansible-lint application successfully.

The following command is simply running ansible-

lint with the --version option to verify the version

installed:

ansible-lint --version

ansible-lint 4.2.0

	 3.	 Using ansible-lint is simple. All we need to do is run

the command with a playbook that calls a role we

would like to test. Run the following command to use

ansible-lint with the server_deploy.yml playbook

we created in the previous chapter. The -v option

provides some extra details on the tasks occurring:

ansible-lint server_deploy.yml -v

Examining server_deploy.yml of type playbook

Examining chapter7/roles/splunk_server/tasks/main.yml

of type tasks

Examining chapter7/roles/splunk_server/handlers/main.

yml of type handlers

Examining chapter7/roles/splunk_server/meta/main.yml

of type meta

Chapter 7 Ansible Tests and Variables

233

[ANSIBLE0002] Trailing whitespace

chapter7/roles/splunk_server/tasks/main.yml:38

wait: true

[ANSIBLE0002] Trailing whitespace

chapter7/roles/splunk_server/tasks/main.yml:48

port: 22

[ANSIBLE0002] Trailing whitespace

chapter7/roles/splunk_server/tasks/main.yml:74

- debug:

The output provides guidance on anything incorrect

in our playbook. As you can see from the preceding

output, as our server_deploy.yml playbook is using

the splunk_server role, it works through all of the

files in this role as well to discover we have made

some slight errors with trailing whitespace in our

playbooks.

	 4.	 If you know a little of Python, you can expand the

rules being used by ansible-lint or create your own.

In the following steps, we will set up a basic test

using Python to make sure the lines of our code

do not exceed 80 characters. Start by creating a

directory for our rules called test_rules:

mkdir test_rules

	 5.	 Now create a new rule to look at the length of our

Ansible code lines. Run the following command to

create the file named LineLength.py to match the

ansible-lint class we are going to create:

Chapter 7 Ansible Tests and Variables

234

touch test_rules/LineLength.py

	 6.	 Open the test_rules/LineLength.py file with your

text editor. Don’t worry if you’re not proficient with

Python as we will provide details of what the code is

doing and it will only run for 13 lines.

	 7.	 Add the following first two lines. In line 1, we import

the AnsibleLintRule function from the ansiblelint

module to then be used as part of our rule:

 1 from ansiblelint import AnsibleLintRule

 2

	 8.	 Add in lines 3–7 to set up our class name with an

ansible-lint rule as ANSWERS01, descriptions, and

tags for the new rule:

 1 from ansiblelint import AnsibleLintRule

 2

 3 class LineLength(AnsibleLintRule):

 4 id = 'ANSWERS01'

 5 shortdesc = 'Line too long'

 6 �description = 'Python Code Style Guidelines

Recommend Line Length Under 80 Characters'

 7 tags = ['formatting']

 8

	 9.	 Now add the final five lines to the new rule which

creates a function to look through each line in our

role and test if the line is longer than 80 characters,

displaying to the screen if it does:

 9 def match(self, file, line):

Chapter 7 Ansible Tests and Variables

235

 10 if len(line) > 80:

 11 �self.shortdesc += " ({} characters)".

format(len(line))

 12 return True

 13 return False

	 10.	 Save the file so we can run the test we created.

Our ansible playbooks contain quite a few lines of

code that are over 80 characters, so if we have set

everything up correctly, we should see some errors

triggered. Run the following command over the

server_deploy.yml, this time using the -r option and

using the test_rules value, to ask ansible-lint to run

all the rules in this directory:

ansible-lint server_deploy.yml -r test_rules

[ANSWERS01] Line too long (96 characters) (84

characters)

/home/vince/Projects/ansible-work/chapter7/roles/

splunk_server/meta/main.yml:21

 # If this a Container Enabled role, provide the

minimum Ansible Container version.

...

[ANSWERS01] Line too long (96 characters)

/home/vince/Projects/ansible-work/chapter7/roles/

splunk_server/tasks/main.yml:64

 url: "https://{{ ec2.instances[0].public_ip

}}:8089/services/apps/local/ansible_answers_app"

Chapter 7 Ansible Tests and Variables

236

	 11.	 If we had specific requirements that needed to be

run for role, we can also create a configuration file

that can be run. ansible-lint allows us to specify

what should and shouldn’t be run. Create the file

named test_config.yml as we have here, so we can

set up a sample configuration file:

touch test_config.yml

	 12.	 Add the following details which will exclude the

specific paths in lines 2 and 3. It will use the test_

rules directory which is specified in lines 6 and 7,

and line 9 will use all the default rules as well when

running our tests:

 1 ---

 2 exclude_paths:

 3 - roles/

 4 parseable: true

 5 quiet: true

 6 rulesdir:

 7 - test_rules/

 8 use_default_rules: true

 9 verbosity: 1

	 13.	 Run ansible-lint again over the server_deploy.
yml file; this time, use the -c option to specify

the configuration file we created in the previous

step. We should get a lot less errors as we are now

excluding the roles directory from being viewed:

ansible-lint server_deploy.yml -c test_config.yml

Chapter 7 Ansible Tests and Variables

237

Examining server_deploy.yml of type playbook

	 14.	 While we are using ansible-lint, we will take this

opportunity to create another test; in this instance,

we will see if we can test for AWS access keys that

may be hard-coded in our Ansible roles. Create the

new test by running the following command:

touch test_rules/AWSCredentials.py

	 15.	 Open the new file with your text editor and we can

start creating our new rule. Add the following code

with lines 1–8 that are very similar to the first rule

we created where we import the AnsibleLintRule

function and then set up the class with id and

descriptions:

 1 from ansiblelint import AnsibleLintRule

 2

 3 class AWSCredentials(AnsibleLintRule):

 4 id = 'ANSWERS02'

 5 �shortdesc = 'Playbook May Contain AWS

Credentials'

 6 �description = 'AWS credentials should not be

included in variables, especially if they are

stored publically'

 7 tags = ['formatting']

 8

Chapter 7 Ansible Tests and Variables

238

	 16.	 Add in the new function which runs in lines 9–17.

The function simply runs two if statements which

look for two specific words, aws_access_key_id and

aws_secret_access_key. This is a very basic way to

do this check, but it should give you an example of

how to add in your own checks into ansible-lint:

 9 def match(self, file, line):

 10 if "aws_access_key_id" in line:

 11 self.shortdesc

 12 return True

 13

 14 if "aws_secret_access_key" in line:

 15 self.shortdesc

 16 return True

 17 return False

	 17.	 Before we test the new rule we have created, we

can make a minor change to the server_deploy.

yml file to make sure it triggers an error for our new

rule. Open the server_deploy.yml file with your text

editor and add in the following two lines into the

file. We are simply creating a new variable, and the

aws_secret_access_key provided is a fake key:

 8

 9 var:

 10 aws_secret_access_key: AKIAJL123456789qazw

	 18.	 We can now run our new test as we did earlier with

the following command. As you can see from the

output, it should pick up we have hard-coded an

AWS secret key as part of our playbook:

Chapter 7 Ansible Tests and Variables

239

ansible-lint server_deploy.yml -r test_rules/

...

[ANSWERS02] Playbook May Contain AWS Credentials

Server_deploy.yml:10

 aws_secret_access_key: AKIAJL123456789qazw

�List Ansible Tasks
Another useful command you can use before you deploy your changes

out into your working environments and systems is to use the –-list-tasks

option. Just as its name suggests, it will list all of the tasks the playbook is

going to run as part of the configuration deployment:

	 1.	 Use the --list-tasks option over our server_deploy.
yml playbook to see what tasks are going to be

performed as part of running the playbook. Run

the following ansible-playbook command and you

should be provided with a list of tasks that will be

run:

ansible-playbook -i hosts server_deploy.yml --list-

tasks --ask-vault-pass

Vault password:

playbook: server_deploy.yml

 play #1 (localhost): localhost TAGS: []

 tasks:

 splunk_server : Create the host security group

 splunk_server : launch the new ec2 instance

 splunk_server : wait for SSH to come up

Chapter 7 Ansible Tests and Variables

240

 splunk_server : add tag to instance TAGS:

[]

 splunk_server : wait for service to be up and

complete TAGS: []

 debug TAGS: []

 splunk_server : create ami for new Splunk

servers TAGS: []

Ansible Check Mode
This can be less useful as some tasks do rely on the output of other tasks

to be able to complete, but the –-check option running as part of your

Ansible playbook can give you an insight as to what will be run as part of

your plays.

The --check option will not make any changes to your remote systems,

but if the modules you are using in your playbooks support “check mode”,

you will get a report on what changes would have been made:

	 1.	 Run the following playbook command from your

working environment including the --check option,

which looks like the playbook is being performed

but is not. As you can see, the third task failed as

there is no attribute what would be provided after

the instance is created in the previous step:

ansible-playbook -i hosts server_deploy.yml --check

 --ask-vault-pass

Vault password:

PLAY [localhost] *************************************

Chapter 7 Ansible Tests and Variables

241

TASK [splunk_server : Create the host security group]

ok: [localhost]

TASK [splunk_server : launch the new ec2 instance]

skipping: [localhost]

TASK [splunk_server : wait for SSH to come up]

fatal: [localhost]: FAILED! => {"msg": "'dict object'

has no attribute 'instances'"}

to retry, use: --limit @/home/vince/Projects/ansible-

work/chapter7/server_deploy.retry

PLAY RECAP ***

localhost:

ok=1 changed=0 unreachable=0 failed=1

	 2.	 To stop this error from being performed when we

run the --check option, we can add the check_
mode:no into the task being run. We can perform

this change now, so open the roles/server_cloud/
tasks/main.yml with your text editor to add this to

our role tasks.

	 3.	 Add in the check_mode option as part of the

cloudformation module task being run as we have

highlighted in the following tasks:

 1 ---

 2 - name: start splunk cloudformation stack

 3 cloudformation:

Chapter 7 Ansible Tests and Variables

242

 4 stack_name: "ProdSplunkStack"

 5 state: "present"

 6 region: "{{ aws_region }}"

 7 �template: "roles/splunk_cloud/files/splunk-

stack.yml"

 8 template_parameters:

 9 KeyName: "{{ aws_keypair }}"

 10 InstanceType: "{{ aws_instance_type }}"

 11 SSHLocation: "{{ aws_ssh_location }}"

 12 AWSAMI: "{{ aws_image }}"

 13 check_mode: no

 14 tags:

 15 env: "Production"

 16 service: "Splunk"

 17 register: production_splunk_stack

	 4.	 Run the playbook command again including

the --check option, and hopefully this time, the

output should no longer provide any failed results:

ansible-playbook -i hosts server_deploy.yml

 --check --ask-vault-pass

Vault password:

PLAY [localhost] ********************************

TASK [splunk_server : Create the host security

group] ****

ok: [localhost]

Chapter 7 Ansible Tests and Variables

243

TASK [splunk_server : launch the new ec2

instance] *******

skipping: [localhost]

TASK [splunk_server : wait for SSH to come up]

fatal: [localhost]: FAILED! => {"msg": "'dict

object' has no attribute 'instances'"}

to retry, use: --limit @/home/vince/Projects/

ansible-work/chapter7/server_deploy.retry

PLAY RECAP **************************************

localhost:

ok=1 changed=0 unreachable=0 failed=1

�Ansible Playbook Syntax Check
Although the syntax check is not as in depth as using ansible-lint, the

syntax check allows you to run a quick check over your playbooks and is

part of the base Ansible installation. You won’t have to install anything else

like ansible-lint, which may come in handy on systems where this may not

be an option.

All you need to do is run your playbook with the --syntax-check

option, and even though you won’t get a lot of information, it will perform

a sanity check on your playbooks to make sure there are no issues with

syntax:

	 1.	 Perform the following command which uses the

 --system-check option. We also use the -v option

but still get limited output from the command:

Chapter 7 Ansible Tests and Variables

244

ansible-playbook -i hosts cloudformation_deploy.
yml --syntax-check -v
Using /etc/ansible/ansible.cfg as config file

playbook: cloudformation_deploy.yml

�Ansible Testing with Molecule
So far, we’ve been using some more low-level applications and features
of Ansible to help us troubleshoot and verify our playbooks and roles
are ready for deployment. In the following section, we take a very quick
look at Molecule which is a testing framework built specifically to test
Ansible roles and playbooks and will include some of the features already
discussed earlier in this chapter

The aim of Molecule is to test your Ansible roles and playbooks in
isolation as it launches a Docker image to run your playbook and then
performs tests over it. You can then run your playbook over different
instance types and versions to verify it still runs, with Molecule also having
the additional feature of being able to run Testinfra tests.

Once it verifies that the role ran successfully, it then cleans everything
up again.

Molecule is Python based and requires docker-py as part of the install
as this is how it will interface with Docker.

Molecule is currently supported by Red Hat and comes with a suite of
tools to help you create a testing workflow for your Ansible code. The main
flow of commands you will use within your work will revolve around the
following Molecule commands:

•	 molecule init – This command initializes our existing
role, and if needed, we can create a new role from
scratch the same as we used the ansible-galaxy
command in our earlier chapters. As well as creating
the default directories, the init command will also

create the default Molecule configuration files.

Chapter 7 Ansible Tests and Variables

245

•	 molecule create – The create command sets up and

prepares a provisioner for the Ansible role to be tested

against. This will download and create a Docker image

that has been provided in the Molecule configuration

and will install any required applications if needed. We

can provision numerous instances, including different

operating systems and version of operating systems if

needed.

•	 molecule list – We can get a list of the provisioned

instances set up and if they have been successfully

tested.

•	 molecule converge – One of the default files created

as part of the initialization is the converge.yml file. This

file is a playbook created to run your role from start

to finish. This can be modified if needed but is a good

place to start.

•	 molecule test – The test command runs through

the entire set of default Molecule commands. It will

perform syntax checks and linting over your code,

make sure there are no instances running, prepare a

clean test instance, run your converge playbook, verify

all is working as planned, and then clean everything up

afterward.

The first four commands presented earlier provide the user with a way

of creating and testing their playbooks and roles with the molecule test

command being provided to perform a complete end-to-end test of the

user roles and can be easily included in a continuous integration platform

like Jenkins or CircleCI.

Chapter 7 Ansible Tests and Variables

246

Note D ue to the limited amount of time we have left in this chapter,
we are not going to go too far into how we use and configure
Molecule. If you do not have Docker installed in your system though,
you will need to have this installed before you move on with the
exercises in this section of the book. Go to the following domain if
you need more information on how to install and run Docker on your
system:

https://docs.docker.com/engine/install/ubuntu/

In the following part of this chapter, we will create a new role to

demonstrate how to use Molecule. If you’re not back in your working

environment, log back in to perform the following work:

	 1.	 To install Molecule on your system, we need to

use the pip3 command to install the application;

remember we also need to have docker-py running

as part of our system to allow Molecule to work with

Docker images. Run the following command to

install both Molecule and docker:

pip3 install molecule docker

	 2.	 Once the installation is complete, we can verify

Molecule is installed on your system by running the

molecule command with the --version option to

verify it is installed on our system:

molecule --version

molecule 3.0.6

 ansible==2.9.9 python==3.7

Chapter 7 Ansible Tests and Variables

https://docs.docker.com/engine/install/ubuntu/

247

	 3.	 Molecule can work in a similar way to the ansible-

galaxy command in setting up our Ansible roles,

so we will test this functionality out. Move into the

roles directory so we can then create a new test role:

cd roles/

	 4.	 To create a new role, we use the molecule command

with the init option. Run the following command to

create a new role called test_role:

molecule init role test_role

--> Initializing new role test_role...

Initialized role in roles/test_role successfully.

Note I f you have an existing role you would like to start testing with
Molecule, you can still use the init option, but you need to be inside
the role directory and then run the command molecule init scenario
to add all the relevant directories and structure to the existing role.

	 5.	 The init command will set up your role directory

structure for the new role. If you perform the tree

command on the test_role directory, you will see

an output similar to the one we have provided. You

will notice all the directories have been set up for us,

but compared to our normal ansible-galaxy roles,

we also have a molecule directory that has been

created, specifically for the Molecule configurations:

tree test_role/

Chapter 7 Ansible Tests and Variables

248

test_role/

├── README.md
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── molecule
│ └── default
│ ├── INSTALL.rst
│ ├── converge.yml
│ ├── molecule.yml
│ └── verify.yml
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

10 directories, 12 files

	 6.	 Molecule has three files created in the default

directory. The molecule.yml includes all of the

configurations; the coverage.yml and verify.yml are

basically Ansible playbooks to run the role we have

created. For now, open the test_role/molecule/
defaults/molecule.yml file with your text editor.

Chapter 7 Ansible Tests and Variables

249

	 7.	 As you can see, the configuration files are fairly

clear. Dependencies are handled by Ansible Galaxy,

the driver to provision instances is Docker, and we

have one platform currently set up. If you move to

the middle of the file, the platforms section specifies

the image we use for testing. Change the name of

the platform to something we will recognize when

we run the tests; in our example, we have used the

name test_role:

 1 ---

 2 dependency:

 3 name: galaxy

 4 driver:

 5 name: docker

 6 platforms:

 7 - name: test_role

 8 image: docker.io/pycontribs/centos:8

 9 pre_build_image: true

 10 provisioner:

 11 name: ansible

 12 verifier:

 13 name: ansible

	 8.	 The first thing we can do with Molecule is to run

the molecule create command. This will set up

the provisioners for our tests to be run across, but

we first need to be in the role directory to allow the

applications to find the configurations it needs. Start

by moving into the new test_role directory:

cd test_role

Chapter 7 Ansible Tests and Variables

250

	 9.	 Run the molecule create command which will

prepare the Docker instance ready for testing to

commence. You will see a large output similar

to a playbook running, and we have removed

most of the following output, with the final line

showing “Skipping, prepare playbook not
configured”. A prepare.yml file can be placed in our

molecule/default directory if we need to add extra

requirements before running the tests:

molecule create

--> Test matrix

└── default
 ├── dependency
 ├── create
 └── prepare
...

--> Scenario: 'default'

--> Action: 'prepare'

Skipping, prepare playbook not configured.

Note T he Molecule documentation recommends you only use
Docker as your driver to test your Ansible code on. By doing this, you
are reducing the complexity of the platforms you are deploying to and
are ensuring your testing is running as quickly as possible.

	 10.	 We should have our provisioner running, which

in our instance is a Docker image. Molecule

provides us with a way to check our instances are

Chapter 7 Ansible Tests and Variables

251

available with the molecule list command. Run

this command now to verify you have a provisioner

ready with the instance name matching the one you

specified in the molecule.yml file:

molecule list

Instance Name Driver Name Provisioner Name Scenario Name Created

------------- ----------- ---------------- ------------- -------

test_role docker ansible default true

	 11.	 Our new role doesn’t have any tasks to really test yet,

so before we move any further, we should create a

simple task first. Open the tasks/main.yml file and

add the following code which uses the yum module

to install Git into our image:

 1 ---

 2 - name: Install git

 3 yum:

 4 name: git

 5 state: present

	 12.	 Molecule sets up the converge.yml file when we

created the role. This file is a playbook set up to run

the role over the provisioned image. We can now

use the molecule converge command that will run

this specific playbook for us, with the role hopefully

completing successfully:

Chapter 7 Ansible Tests and Variables

252

molecule converge

--> Test matrix

└── default
 ├── dependency
 ├── create
 ├── prepare
 └── converge

--> Scenario: 'default'

--> Action: 'dependency'

...

 �TASK [Include test_role] ********************

 �TASK [test_role : Install git] **************

 ok: [test_role]

 �PLAY RECAP *****************************

*********************** test_role: ok=2

changed=0 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

Note  Molecule also gives us an easy way to troubleshoot issues
with our testing. We can use the molecule login command in the
command line to log directly into the image that has been provisioned
to perform the testing on.

Chapter 7 Ansible Tests and Variables

253

	 13.	 This is great, but we can do more to expand our
testing of our new role. Currently, our configuration
for Molecule is set up to use Ansible as the verifier.
This means it will simply run our role to verify it has
been successful; instead, we can create software
tests using Testinfra to gain extra functionality in
our testing. Open the molecule/default/molecule.
yml file again with your text editor to make a further
change.

	 14.	 This time, move to the bottom of the file and change
the last line from being ansible to now being
testinfra as the verifier:

 1 ---
 2 dependency:
 3 name: galaxy
 4 driver:
 5 name: docker
 6 platforms:
 7 - name: test_ubuntu
 8 image: docker.io/pycontribs/ubuntu:latest
 9 pre_build_image: true
 10 provisioner:
 11 name: ansible
 12 verifier:
 13 name: testinfra

	 15.	 There is a good chance you don’t have Testinfra
installed on your system, so before you move
forward with this section of the chapter, you will
need to install the application. Testinfra is a Python-
based test suite used to test infrastructure code.
Run the following pip3 command to install the

application on your system:

Chapter 7 Ansible Tests and Variables

254

pip3 install testinfra

	 16.	 Create a directory for our tests to reside in. Create

the directory named tests in the molecule/default

directory with the following command:

mkdir molecule/default/tests

	 17.	 Create a file in the new directory you created, which

will hold our Testinfra code. Create and name the

file test_default.py using the following command:

touch molecule/default/tests/test_default.py

	 18.	 Open the molecule/default/tests/test_default.py

file with your text editor. Add in the first four

lines of the following code. Lines 1–3 import all

the necessary Python modules needed by the

script, including the testinfra module we recently

installed:

 1 import os

 2

 3 import testinfra.utils.ansible_runner

 4

	 19.	 The following lines of code will then be added to the

file to provide Testinfra with a list of hosts to run the

tests over:

 5 �testinfra_hosts = testinfra.utils.ansible_runner.

AnsibleRunner(

Chapter 7 Ansible Tests and Variables

255

 6 �os.environ['MOLECULE_INVENTORY_FILE']).get_

hosts('all')

 7

	 20.	 Finally, we can add in two test functions that will be

run as part of our Molecule tests. The first named

test_user will look for the username named root

and verify it exists. The second function will verify

the package named git is installed. Make sure you

have this code added to your file ready for the tests

to be run:

 8 def test_user(host):

 9 user = host.user("root")

 10 assert user.exists

 11

 12 def test_git_is_installed(host):

 13 git = host.package("git")

 14 assert git.is_installed

	 21.	 It’s now time to run the molecule test command.

As mentioned earlier, this is the entire suite of

commands across our role:

molecule test

--> Test matrix

└── default
 ├── dependency
 ├── lint
 ├── cleanup
 ├── destroy
 ├── syntax

Chapter 7 Ansible Tests and Variables

256

 ├── create
 ├── prepare
 ├── converge
 ├── idempotence
 ├── side_effect
 ├── verify
 ├── cleanup
 └── destroy
...

The output will be large, and if we follow it from

start to finish, we should get to a point where it runs

the Action: ‘verify’. This is where all the tests in the
molecule/default/tests directory are run over the

provisioned Docker images once the Ansible roles have

been completed. As you can see in the following, the

output provides details of the tests run and which have

successfully completed:

--> Scenario: 'default'

--> Action: 'verify'

--> Executing Testinfra tests found in test_role/

molecule/default/tests/...

 ====================== test session starts

======================

 �platform linux -- Python 3.7.7, pytest-6.0.1,

py-1.9.0, pluggy-0.13.1

 rootdir: test_role/molecule/default

 plugins: testinfra-5.2.2

collected 2 items

 tests/test_default.py

.. [100%]

Chapter 7 Ansible Tests and Variables

257

 ====================== 2 passed in 1.79s

=============

Verifier completed successfully.

I hope in this short period of time we have been able to demonstrate

how you can troubleshoot your roles and playbooks using Molecule and

add extra testing capabilities with Testinfra.

�Summary
This is our last chapter and we have covered a lot of interesting topics

as well as tied up some loose ends in our project. We started off with a

discussion on why we need to use specific modules for AWS and looked

at ways to work around this. We then looked at working with the debug

module and using variables, registered variables, and working with Ansible

facts. We then set up our environment to use ansible-lint to test our

playbooks while also starting to create our own tests to incorporate into

our configuration management to ensure we are working to best practices.

We then went through some of the more unknown options and

modules we can use to help ensure our code is up to standard. This

included start-at, step, list tasks, check mode, syntax check, and diff, all of

which are in place to make our life a little easier at the end of the day.

This is also the end of this book. Hopefully, you’ve gained a solid

insight into Ansible and how you can use it in your day-to-day work. We

started off with the basics of configuration management and how Ansible

can be used to simplify and automate our work. We then commenced

working on our first project creating our LAMP stack that incorporated

Apache, Django, PostgreSQL, and Python through the use of Ansible

playbooks and roles.

Chapter 7 Ansible Tests and Variables

258

We expanded our knowledge further by using conditional features

of our roles, created our own modules, and started to encrypt our secret

values using ansible-vault. We then moved onto our second project

working with Amazon Web Services to create a Splunk server installation,

deploying from both Ansible code and CloudFormation code. We also

demonstrated some of the hidden features of Ansible to finally bring us to

this chapter where we started to work with troubleshooting and testing.

Chapter 7 Ansible Tests and Variables

259© Vincent Sesto 2021
V. Sesto, Practical Ansible, https://doi.org/10.1007/978-1-4842-6485-0

Index
A
Amazon Linux image, 196
Amazon Web

Services (AWS), 33, 143
access keys, 150, 152
administrator user, 147
create instances, 159–161,

163–166, 168
environment variables, 153
failures, 176, 177
gaining access, 145–147
login screen, 175
modules, 153
not free, 145
pricing, 145
Splunk installation,

154, 156, 158
SSH keys, 158
user data, 170–172, 174
web console, 168, 170
welcome screen, 176

Ansible
benefits, 4, 5
command, 6, 7, 12, 13
install, 7–9
inventory files, 16–19
modules

apt/yum, 24
file, 27
find, 29, 30
get_url, 26, 27
git, 22, 23
ping, 20
service, 25
setup, 21, 22
shell, 23
user, 28

ping, 21
playbooks, 13–15
projects, 32, 33
servers, 30, 31
SSH, 9, 10
versions, 32

Ansible Galaxy, 103, 110, 111
building modules,

135, 137–139, 141
contribution, 127, 128, 130, 131
download/install, 120, 122, 123
GitHub account, 131, 132
login page, 115, 116
roles, 111–114, 118, 119
roles creation, 123, 125–127
searching roles, 134
viewing roles, 133

https://doi.org/10.1007/978-1-4842-6485-0#DOI

260

Ansible gathers facts, 224, 226–228
Ansible playbooks, 35

command-line
modules, 39, 40, 43, 45

include/import, 66–68
LAMP stack, 58–61, 63–65
variables/loops, 51–58
verbose output, 46, 47
YAML syntax, 36

Ansible-pull, 190–192, 194–196
Ansible roles

command-line variables/
options, 84, 85

conditional tasks, 94–96
create database

server, 80, 82, 84
create web server, 73–79
Django, 85–93
tags, 97, 98, 100, 101

Ansible syntax
host/remote users, 47–49
notify, 50
task, 49

Ansible templates, 181–185, 187
Ansible testing

lint option, 231–238
list tasks, 239–241, 243
molecule, 244, 246, 247, 249,

253, 255, 256
start at option, 229
step option, 230
syntax check, 243

Ansible Tower, 32
Ansible-vault, 103–110

AWS images, 196, 197, 199–201
AWS modules, 216–218

B
Billing and Cost Management

Dashboard, 180, 181

C
CloudFormation, 203–209

stack create events, 210
viewing stack outputs, 211, 212

Configuration management, 1
availability, 2
improve control, 3
lowering risk, 3
saving time, 2

D, E
Debug module, 218–224
Django-based server, 33
Dot notation, 223

F
file module, 27
find module, 29, 30

G, H, I, J, K, L
gather_facts, 224
get_url module, 26, 27
git module, 22, 23

INDEX

261

M, N, O
molecule converge

command, 245, 251
molecule create

command, 245, 250
molecule init, 244
molecule list command, 251
molecule test, 245

P, Q
ping module, 14, 20, 21

R
Registered variables, 219

S, T
Secure Shell (SSH), 9
setup module, 21, 22, 25, 224

shell module, 23
Splunk Instance, 189
Splunk server

environment, 33, 34
Splunk Server

Image, 202, 208
Splunk Web Interface, 174–176,

187, 188

U
user module, 28

V, W, X
Verbose output, 46, 218

Y, Z
yum module, 24, 251

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Configuration Management with Ansible
	Getting Started with Configuration Management
	Why Ansible?

	Getting Started with Ansible
	Installing Ansible
	Ansible Support for SSH

	Finally, Our First Ansible Command
	Basic Ansible Playbooks
	Ansible Configuration and Inventory Files
	Running Ansible Modules
	Ping
	Setup
	Git
	Shell
	Apt (or Yum)
	Service
	get_url
	file
	user
	find

	Running Ansible on Different Servers
	Different Versions of Ansible
	Ansible Projects
	Basic LAMP Stack
	Splunk Server Environment

	Summary

	Chapter 2: Ansible Playbooks
	Ansible and YAML Syntax
	Command-Line Modules to Ansible Playbooks
	Ansible Playbook Verbose Output
	Ansible Syntax in Finer Detail
	Hosts and Remote Users
	Tasks
	Notify

	Adding More Playbook Functionality with Variables and Loops
	Plugging In Our LAMP Stack
	Organizing Larger Playbooks with Include and Import
	Summary

	Chapter 3: Extending Playbooks with Roles and Templates
	Ansible Roles
	Creating the Web Server Role
	Creating the Database Server Role

	Ansible Command-Line Variables and Options
	Expanding Our LAMP with Django
	Conditional Tasks in Ansible
	Using Tags to Run Specific Tasks
	Summary

	Chapter 4: Custom Ansible Modules, Vaults, and Galaxies
	Keeping Secret with Ansible Vault
	Ansible Galaxy
	Searching and Working with Ansible Galaxy Roles
	Downloading and Installing Multiple Roles from Galaxy
	Moving Further with Ansible Galaxy
	Contributing to Ansible Galaxy

	Building Your Own Ansible Modules
	Summary

	Chapter 5: Working with Ansible in the Amazon Cloud
	So Why Amazon Web Services
	AWS Is Not Free
	AWS Pricing

	Gaining Access to AWS
	Using Environment Variables to Access AWS
	Ansible AWS Modules to Implement Our New Project
	Our New Splunk Implementation Project

	Creating Our AWS Instance
	Deploying Splunk with User Data
	Failures on Amazon Web Services
	Summary

	Chapter 6: Ansible Templates and CloudFormation Scripts
	One Final Word on AWS Costs
	Ansible Templates in AWS Instances
	Pulling Code with Ansible
	Ansible Pull GitHub Repository Deployment Explained
	Build AWS Images for Quicker Deployments
	Using CloudFormation with Ansible
	Summary

	Chapter 7: Ansible Tests and Variables
	AWS Modules Run Differently
	Using the Debug Module with Registered Variables
	Ansible Facts
	Testing Ansible As You Develop
	Ansible Start At Option
	Ansible Step
	Ansible Lint
	List Ansible Tasks
	Ansible Check Mode
	Ansible Playbook Syntax Check

	Ansible Testing with Molecule
	Summary

	Index

