

 [image: Cover image]
 Book cover of Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul

 Navin Sabharwal, Sarvesh Pandey and Piyush Pandey

Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul
Hands-on Deployment, Configuration, and Best Practices
1st ed.
[image: ../images/492265_1_En_BookFrontmatter_Figa_HTML.png]Logo of the publisher

Navin SabharwalNew Delhi, Delhi, India

Sarvesh PandeyNoida, UP, India

Piyush PandeyNew Delhi, India

				ISBN 978-1-4842-7128-5e-ISBN 978-1-4842-7129-2
https://doi.org/10.1007/978-1-4842-7129-2
© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
Apress Standard
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Acknowledgments
To my family, Shweta and Soumil: for being always there by my side and letting me sacrifice their time for my intellectual and spiritual pursuits, and for taking care of everything while I am immersed in authoring. This and other accomplishments of my life wouldn’t have been possible without your love and support.
To my mom and my sister: for their love and support as always; without your blessings, nothing is possible.
To my co-authors, Sarvesh and Piyush: thank you for the hard work and quick turnarounds to deliver this. It was an enriching experience, and I am looking forward to working with you again soon.
I want to send special thanks to Rohan Bajaj, Abhijeet Thakur, Manpreet Singh, Parvathy Subbiah, Tholupuluri Tsnmanindrababu, Aditya Tanwar, and Avinaw Sharma. Their research input and automation code samples helped in shaping the outline of the book.
To my team at HCL, who has been a source of inspiration with their hard work, ever engaging technical conversations, and technical depth: your everflowing ideas are a source of happiness and excitement every single day. Amit Agrawal, Vasand Kumar, Punith Krishnamurthy, Sandeep Sharma, Amit Dwivedi, Gauarv Bhardwaj, Nitin Narotra, and Vivek—thank you for being there and making technology fun.
Thank you to Celestine, Aditee, and the entire team at Apress for turning our ideas into reality. It has been an amazing experience authoring with you, and over the years, the speed of decision-making and the editorial support has been excellent.
To all that I have had the opportunity to work with my co-authors, colleagues, managers, mentors, and guides in this world of 7 billion people: it was a coincidence that brought us together. It is an enriching experience to be associated with you and learn from you. All ideas and paths are an assimilation of conversations that I have had and experiences I have shared. Thank you.
Thank you, goddess Saraswati, for guiding me to the path of knowledge and spirituality and keeping me on this path until salvation.
असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम् गमय
(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma Amritam Gamaya)
Lead us from ignorance to truth, lead us from darkness to light, lead us from death to deathlessness.

Table of Contents

Chapter 1:​ Getting Started with HashiCorp Automation Solutions
1

Introduction to Infrastructure as Code
1

Introduction to HashiCorp Automation
4

Packer
5

Terraform
6

Vault
7

Nomad
7

Consul
8

Vagrant
8

Boundary
9

Waypoint
9

Summary
10

Chapter 2:​ Getting Started with HashiCorp Terraform
11

Introduction to HashiCorp Terraform
11

Terraform CLI (Open Source)
13

Terraform Cloud
14

Terraform Enterprise
14

Comparing the Options
14

Setting up an AWS Account
16

Getting Started with Terraform Cloud
22

Terraform Workflow
33

Getting Started with Terraform CLI
34

What’s New in Terraform 0.​14
45

Terraform 0.​14 vs.​ Terraform 0.​13
45

Summary
45

Chapter 3:​ Understanding Terraform Programming Constructs
47

Configuration Language
48

Arguments, Blocks, and Expressions
48

Code Organization
49

Configuration Ordering
50

Resources
50

Provider
51

Input Variables
52

Environment Variables
54

Output Values
55

Local Values
57

Modules
58

Creating a Custom Module
60

Version
65

count and for_​each
66

depends_​on Module
67

Providers
67

Provider Version Constraints in Modules
68

Automatic Installation of Third-Party Providers
69

Provider Plug-ins in a Local Filesystem
70

Data Sources
71

Backend Configuration
73

Backend Types
74

Backend Initialization
75

Provisioners
75

Creation-Time Provisioners
76

Destroy-Time Provisioners
77

Multiple Provisioners
78

Types of Provisioners
79

Summary
83

Chapter 4:​ Automating Public Cloud Services Using Terraform
85

Automating the GCP Public Cloud Using Terraform
85

Creating a VPC and Subnet with Terraform
94

Creating a Virtual Machine with Terraform
97

Creating a GCS Bucket with Terraform
101

Automating the Azure Public Cloud Using Terraform
108

Summary
129

Chapter 5:​ Getting Started with Vault
131

Introduction to HashiCorp Vault
131

Understanding Vault’s Logical Architecture
133

Understanding Vault’s Security Model
135

Installing Vault CLI and Integration with AWS
137

Summary
150

Chapter 6:​ Getting Started with HashiCorp Packer
151

Introduction to HashiCorp Packer
151

Builders
152

Communicators
153

Provisioners
153

Post-Processors
154

Variables
155

Installing Packer
156

Hands-on Exercise to Automate AWS AMI
158

Summary
166

Chapter 7:​ Getting Started with HashiCorp Consul
167

Introduction to HashiCorp Consul
167

Service Discovery
168

Configuration Management
169

Service Mesh and Network Segmentation
169

Architecture
170

Agent
171

Catalog
172

Anti-Entropy
173

Consensus Protocol
173

Gossip Protocol
173

LAN Gossip Pool
174

WAN Gossip Pool
174

Installing Consul
174

Service Discovery Using Consul
178

Intention Deletion
185

Service Registration
193

DNS and Health Checks Using Consul
198

Summary
199

Chapter 8:​ Getting Started with Nomad
201

Container Orchestration
201

Introduction to Nomad
204

Nomad Architecture
207

Autoscaling Overview
210

Installing Nomad
211

Policy-Driven Governance in Nomad
221

Namespaces
221

Resource Quotas
222

Sentinel Policies
222

Nomad ACLs
223

Container Application Deployment Using Nomad
224

Summary
236

Index
237

About the Authors

Navin Sabharwal[image: ../images/492265_1_En_BookFrontmatter_Figb_HTML.jpg]

has more than 20 years of industry experience. He is an innovator, thought leader, patent holder, and author in cloud computing, artificial intelligence and machine learning, public cloud, DevOps, AIOPS, infrastructure services, monitoring and management platforms, big data analytics, and software product development. Navin is responsible for DevOps, artificial intelligence, cloud lifecycle management, service management, monitoring and management, IT Ops analytics, AIOPs and machine learning, automation, operational efficiency of scaled delivery through lean Ops, strategy, and delivery for HCL Technologies. He can be reached at Navinsabharwal@gmail.com and
www.linkedin.com/in/navinsabharwal
.

Sarvesh Pandey[image: ../images/492265_1_En_BookFrontmatter_Figc_HTML.jpg]

is an innovator and thought leader in hybrid cloud lifecycle automation covering technologies (IP and OEM products) like cloud management automation, infrastructure as code, and Runbook Automation, with 15 years of IT experience. He is the Associate Director and Practice Head of Cloud Management Automation for HCL’s DRYiCE, focusing on planning, designing, and managing multiple infrastructure automation projects of strategic importance to the cloud and the IAC framework. He has experience in working with highly engineered systems that require a deep understanding of cutting-edge technology and the key drivers in multiple markets. He can be reached at samsarvesh@gmail.com and
https://in.linkedin.com/in/sarvesh-pandey-11b82717
.

Piyush Pandey[image: ../images/492265_1_En_BookFrontmatter_Fige_HTML.jpg]

has 10+ years of Industry Experience. He is currently working at HCL Technologies as Automation Architect delivering solutions catering to Hybrid Cloud using Cloud Native and 3rd Party Solutions. The Automation solutions cover use cases like Enterprise Observability, Infra as Code, Server Automation. Runbook Automation, Cloud Management Platform, Cloud Native Automation and Dashboard/Visibility. He is responsible for designing end to end solutions & architecture for enterprise Automation adoption. piyushnsitcoep@gmail.com and
https://www.linkedin.com/in/piyush-pandey-704495b
.

About the Technical Reviewer

Santhosh Kumar Srinivasan[image: ../images/492265_1_En_BookFrontmatter_Figd_HTML.jpg]

is an AWS Certified Solutions Architect and TripleByte Certified DevOps Engineer in India. He works as a cloud consultant with Fortune 100 clients in the United States. He is an expert in architecting highly available, fault-tolerant workloads in AWS Cloud to solve complex problems. San is a mentor for advanced certification in software engineering for cloud, blockchain, and IOT offered by IIT Madras and GreatLearning. He has trained hundreds of developers on full stack development in Python.

He has a bachelor’s degree in computer applications from Bharathiar University, Coimbatore. San creates and maintains open source teaching materials on various software engineering topics such as Python, AWS, and RegEx on his GitHub profile (
https://github.com/sanspace
). He lived in North Carolina and Virginia for four years before moving back to his hometown in Coimbatore, India, where he is currently living with his wife.
He is an avid user of Terraform and works with other Hashicorp products in his line of work. He plays chess, table tennis, and badminton. To know more about San, please visit his website at
https://sanspace.in
 or follow him on Twitter @2sks (
https://twitter.com/2sks
).

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_1

1. Getting Started with HashiCorp Automation Solutions

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter introduces you to infrastructure as code (IaC) and HashiCorp’s automation offerings, helping users adopt the IaC philosophy to manage infrastructure and the application lifecycle. The chapter covers the following topics.	Introduction to infrastructure as code

	Introduction to HashiCorp’s automation offerings

Introduction to Infrastructure as Code
Building infrastructure is an evolving and complex art, which demands repetitive improvements involving aspects such as maintainability, scalability, fault-tolerance, and performance.
In traditional environment, building and deploying infrastructure components was a manual and tedious task which translates to delays and decreases organizational agility. With the emergence of IaC infra components are now treated as merely a software construct, a code which can be shared across different teams. IaC has given rise to mutable infrastructure as the lifecycle of every infra resource/component is treated via code. This leads to negligible configuration drift across various environments thereby maintaining sanity of the environment. Infrastructure is treated the same way an application is treated in an environment. It follows the same devops principle as application, shares same pipelines and is version controlled.
Another key benefit that IaC offers is the consistency of the build. If you need to manage several environments (e.g., development, QA, staging, and production), spinning those up from the same codebase ensures that negligible configuration drift is introduced across the environments, ensuring that they all behave the same way.
IaC encourages declarative style of code wherein the desired end state and the configuration are present before final state is provisioned. Declarative code tends to be more reusable in the environment as current configuration changes are considered while catering for any new request for new infrastructure.
Figure 1-1 is a high-level view of how IaC tools operate.[image: ../images/492265_1_En_1_Chapter/492265_1_En_1_Fig1_HTML.jpg]
Figure 1-1.How infrastructure as code works

IaC solutions complies with below mentioned principles, as shown in Figure 1-2.

	Version control

 is a popular concept wherein every release corresponds to a source code build which is maintained as a versioned artifact in the environment. In IaC, a similar principle is applied to manage the infrastructure and changes using version-control commits in the source code repository. This provides traceability of changes made to the infrastructure definition covering who made changes, what has changed, and so forth. This is also crucial when you need to roll back to a previous version of the code while troubleshooting an issue.

[image: ../images/492265_1_En_1_Chapter/492265_1_En_1_Fig2_HTML.jpg]
Figure 1-2.Principles of infrastructure as code

	Predictability

 refers to IaC capability as a solution to always provide the same environment and associated attributes (as defined in the version-controlled system) every time it is invoked.

	Consistency

 ensures that multiple instances of the same baseline code provide a similar environment. This avoids inconsistencies and configuration drift when manually building complex infrastructure entities.

	Repeatability refers to a solution that always provides the same results based on the provided input.

	Composability

 refers to service managed in a modular and abstracted format, which can be used to build complex application systems. This feature empowers users to focus on the target application build rather than worry about the under-the-hood details and complex logic used for provisioning.

Introduction to HashiCorp Automation
HashiCorp, founded in 2012 by Mitchell Hashimoto and Armon Dadgar, is a well known infrastructure automation solution company with the aim of automating hybrid cloud management processes, including application development, delivery, and operations. Over the years, HashiCorp has released a variety of open source and enterprise-supported hybrid cloud automation solutions. Below are the Hashicorp toolsets which are widely available for enterprise solutions–	Terraform

	Vault

	Packer

	Consul

	Nomad

	Vagrant

	Boundary

	Waypoint

Now let’s look at how each of these solutions enables hybrid cloud automation.
Packer
Image management has been a fundamental prerequisite for virtual or physical system provisioning. Traditional image automation solutions leverages baselines or golden images were manually build and maintained. However, human errors introduced at the image-build stage could lead to configuration drift in the provisioned service. HashiCorp Packer is an open source tool for creating golden images for multiple platforms from single source configuration thereby solving problems with manually created images.
Packer lets you automate the build of golden images. It works with tools like ansible to install software while creating images. It uses configuration files along with the concepts of builder and provisioners to spin up, configure an instance as a golden image. The configuration code can be changed in case of introduction of a new state element (addition of a new agent) or during updation scenarios (patching, hardening) of golden image and is used to create an updated image without human intervention.
The following are the key advantages of Packer solutions.	Accelerated image creation and update process: Packer helps create and update multiple images belonging to multiple clouds or multiple OS types within minutes. You don’t have to wait for the administrator to create/update manually, which can take hours or even days.

	Support for multiple providers: Packer supports multiple providers and platforms, so you can manage identical images across your hybrid cloud environment with the same standardization and consistency level.

	Reduction in human error–induced inconsistencies: Using a codified approach for managing images, you can remove any inconsistencies or configuration drifts in your environment.

Terraform
Terraform is an IaC (infrastructure as code) tool that allows users to define a desirable infrastructure definition in a declarative language. Using terraform the infra components within the environment can be deployed and treated as a code in terraform's configuration file that you can version, share and reuse.
HashiCorp Terraform has its own configuration language called HCL (HashiCorp Configuration Language). An HCL file always ends with *.tf. HashiCorp also supports the JSON format for configuration files. It’s the user’s decision on whether to use JSON or HCL to write Terraform code. HCL is widely used because of its simplicity and complex knowledge of target infrastructure technologies.
HashiCorp Terraform is available in the following three modes.	Terraform CLI (open source)

	Terraform Cloud

	Terraform Enterprise

The following are the key benefits of using HashiCorp Terraform.	Accelerated hybrid cloud service provisioning: Terraform enables accelerated provisioning of services across the hybrid cloud, covering more than 500 technologies.

	State management: Terraform allows tracking services for changes or configuration drifts. This enables governance of service configuration beyond the provisioning phase of the service lifecycle.

	Planning and testing services: Terraform enables the planning and testing of services before the provisioning or modification stages, allowing users to safely and predictably manage the service lifecycle.

	Consistency and reduction in human errors: Using a codified approach to managing the service lifecycle, you can remove any inconsistencies or configuration drifts in your environment.

Vault
HashiCorp Vault is leveraged for storing and securely accessing secrets via API keys and password. Secrets are defined as any form of sensitive credentials that need to be controlled; they are used to unlock sensitive information. Secrets can be stored in passwords, API keys, or SSH keys. Vault stores secrets for authentication and authorization.
Protecting secrets and access for automation is of primary importance. HashiCorp Vault solutions make it easy to manage secrets and access by leveraging the API and a user-friendly interface. You can monitor detailed logs and fetch audit trails on who accessed which secrets and when.
User authentication is via a password or by using dynamic values to generate temporary tokens that allow access to a particular path. Policies can also be defined using HCL to determine which user gets what level of access.
Nomad
HashiCorp Nomad is an easy-to-use workload manager that enables users to schedule tasks and deploy applications in a containerized or non-containerized infrastructure. It allows you to write code and build software using declarative infrastructure as code.
Consul
HashiCorp Consul is a multiple–data center service mesh solution that provides the capability to govern application service communication using a control plane. It also offers service discovery and health checks. It leverages a secure TLS protocol to establish mutual TLS connections.
A service mesh allows you to control communication between different application components or between multiple applications. A service mesh leverages the IaC concept to define a communication policy. It typically uses a network proxy or sidecar concept for governing communication between application services. Data communication patterns help developers optimize service interaction and performance. For example, a service mesh can monitor the amount of time it takes to reconnect to access the application service during unavailability. This can help developers redefine the waiting period before an application service tries to reconnect.
Vagrant
One of the fundamental challenges developers face is the consistency of the development environment used for writing code. Multiple solutions are available on the market, including VirtualBox, VMware Workstation, and Docker. Hypervisor platforms like VMware, KVM, and Hyper-V are typically used for setting up developer workstations; however, manual administration makes it tedious to manage configuration requirements for each application team which results in no consistency between different environments and introduces configuration drift due to manual intervention.
HashiCorp Vagrant enables you to build and manage a developer’s environment using a workflow-driven approach that leverages the power of infrastructure as a code. Using its integrations with various platform technologies, the developer environment is configured using a consistent, repeatable, and accelerated approach. From a developer’s perspective, all the required software, utilities, and environment configurations can be applied to the environment using Vagrant’s file configuration. It enables application team members to use the same standard platform for development.
Vagrant is supported on multiple platforms, enabling developers to focus on development using their favorite software and tools without worrying about the underlying platform.
Boundary
In modern times, especially in the wake of COVID-19, there is a paradigm shift toward identity-based access. With most businesses, applications, and infrastructure users working remotely, organizations cannot rely on a network perimeter to secure access to resources. HashiCorp Boundary provides identity-based access to resources by using popular identity providers for authentication and authorization to human users.
Using integration with popular identity providers like Microsoft Azure Active Directory, Okta, and PingFederate for authentication, Boundary enables role-based authorized access to target services. This removes the dependency of tracking the end user by using a physical IP address. User access can now be defined using policies stored in a version-controlled system, ensuring secure access to hybrid cloud services and applications with automated governance.
Waypoint
As modern infrastructure becomes more complex with the rise of public cloud IaaS and PaaS services and container/microservice/serverless-based applications, it’s difficult for developers to keep track of deployment approaches in every platform (VM-based configurations, YAML files, Kubectl, schedulers, etc.). HashiCorp Waypoint enables developers to define the flow of how an application is built, deployed, and released across platforms. Waypoint is not a package manager or replacement of solutions like Kubernetes. It enables the abstraction of build and deployment complexities using codified flow, which is versioned controlled.
Waypoint leverages build packs to build applications for various languages and frameworks, which can be stored as artifacts. These artifacts can be deployed on various platforms, leveraging either IaaS or PaaS services. With a Waypoint solution, you can create a workflow to deploy application components that use other solutions from HashiCorp, such as Packer (for defining baseline image), Terraform (for defining desired state configuration), Vault (for managing secrets), Nomad (for application orchestration), or Consul (for managing Service to service connectivity).
Summary
This chapter introduced infrastructure as code and various automation solutions from HashiCorp that leverage the IaC principle. Upcoming chapters cover Terraform, Packer, Vault, Nomad, and Consul and how these solutions can be used in hybrid cloud automation.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_2

2. Getting Started with HashiCorp Terraform

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter covers the core concepts of Terraform CLI and Terraform Cloud automation.	Introduction to HashiCorp Terraform

	Setting up an AWS account

	Getting started with Terraform Cloud

	Getting started with Terraform CLI

Introduction to HashiCorp Terraform
DevOps and infrastructure as code (IaC) are gaining traction globally with developers, administrators, architects, and cloud engineers. DevOps is a philosophy encompassing people, processes, and tools. Its objective is to accelerate software development and associated release and deployment processes. In the overall umbrella of DevOps, IaC is an important component that provides agility and scalability from the infrastructure side to meet a application team’s needs. Infrastructure as code also enables stable, secure, and consistent platforms for hosting applications.
There are many tools that implement infrastructure as code. Terraform and Ansible are gaining traction in the DevOps and developer communities. Similarly, public cloud hosting platforms provide native solutions packaged as part of public cloud service offerings. This includes AWS CloudFormation and Azure Resource Manager. In Google Cloud Platform, the cloud-native IaC offering is called a deployment manager

.
Terraform is an IaC tool that allows users to build, manage, and version their infrastructures efficiently.
At a high level, Terraform consists of the following components.	Hashicorp Terraform has its own configuration language called HCL (HashiCorp Configuration Language). Each configuration file may consists of multiple code blocks wherein each codeblock corresponds to an infra resource in the environment. HashiCorp also supports creation of configuration files in JSON format. HCL defines infrastructure in a declarative language. Declarative languages are nonprocedural or high level language, which specifies what is to be done rather than how to do it.

Terraform understands HCL as the default configuration language. It identifies HCL file by its .tf extension. For the ease of end users, terraform can also read JSON-based configuration files. It’s up to the user to use JSON or HCL for writing Terraform code.
HCL is widely used for its simplicity and complex knowledge of target infrastructure technologies.

	A workspace determines how terraform organizes infrastructure. It contains everything terraform needs to manage a given collection of infrastructure and separate workspaces corresponds to separate working directories. Every workspace has a configuration file and an associated backend configuration that defines how the deployment was executed and where a state was captured for deployment. Initially, there is only a default workspace available; hence, all configurations are mapped to the default workspace. Additional workspaces can be created and switched to differentiate runs and configurations.

	A workflow is the way you manage and run your code in VCS or CLI. It consists of five major steps: write, initiate, plan, apply, and destroy. Terraform governs a resource service lifecycle through these five steps.

HashiCorp Terraform is available in the following three modes.	Terraform CLI (open source)

	Terraform Cloud

	Terraform Enterprise

Let’s look at each of these options.
Terraform CLI (Open Source)
Terraform CLI is an IaC tool released under Mozilla Public License 2.0, which is an open source license available to all. You can download the latest binaries from HashiCorp’s repository according to the operating system of your choice and start using them to automate your use cases. Terraform CLI is recommended for users working on IaC projects, proof of concept, prototyping, or small noncritical applications.
Terraform Cloud
Terraform Cloud is one of HashiCorp’s managed commercial SaaS offerings. You must subscribe to use it. The graphical user interface is user-friendly and offers a good platform for collaboration. HashiCorp provides a free account with limited offerings. Paid-subscription users have access to many additional features that the open source and evaluation versions don’t have.
Terraform Cloud is best suited for users who want to leverage enterprise security controls like RBAC (role-based access control), team collaboration, REST, or RESTful API (representational state transfer API) interfaces for secure integration with other applications, without having to manage the underlying Terraform infrastructure.
Terraform Enterprise
Terraform Enterprise is HashiCorp’s commercial version that allows you to host it locally in your own hosting space and have complete control over the infrastructure and management policies. Organizations with security or compliance concerns and that want to privately manage all aspects should opt for Terraform Enterprise.
Comparing the Options
Table 2-1 is a high-level comparison of all three HashiCorp Terraform offerings.Table 2-1.Comparison

 of Terraform (open source) vs. Terraform Cloud and Enterprise (paid versions)

	Feature
	Terraform (open source)
	Terraform Enterprise or Cloud
	Feature Functionality (description)

	Workspaces
	Yes, but very limited functionality
	Yes, with advanced capabilities
	Teams map responsibility to individual workspaces and link APIs accordingly

	Team Management
	Difficult
	Easy, well managed
	Manages organizations, teams, and permissions separately

	Private Module Registry
	No
	Yes
	Private and central repository of modules

	Configuration Designer
	No
	Yes
	GUI to manage workspaces, variables, audits, and so forth

	Sentinel
	No
	Yes
	Enforces user-defined policies to better manage resources

	SAML
	No
	Yes
	SAML and SSO integration for easy authentication

	Audit
	No
	Yes
	Historical changes checked

Terraform Enterprise and Terraform Cloud offer the same level of functionality. As part of the Enterprise offering, this book provides a detailed walkthrough of usage for Terraform Cloud because it does not need any underlying infrastructure.
At a high level, Terraform consists of the following components.	Terraform code for defining resources

	A workspace to logically manage Terraform configurations

	A workflow to manage your code in VCS and execute your code in CLI

Setting up an AWS Account
Before setting up Terraform, let’s quickly set up an AWS account, which is used later in this chapter. We assume that you have basic knowledge of the three public clouds (Amazon Web Services (AWS), Azure, and Google Cloud Platform (GCP)) because the hands-on exercises in this book require it.
Navigate to https://portal.aws.amazon.com/billing/signup#/start to create your AWS account. If you already have an AWS account, you can skip this exercise and proceed to the next one. Enter the required information as highlighted in Figure 2-1, and click the Continue button.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig1_HTML.jpg]
Figure 2-1.New AWS Account registration page

Select a personal account and enter your information. Click the Continue button (see Figure 2-2).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig2_HTML.jpg]
Figure 2-2.Enter contact details

Enter your payment information (see Figure 2-3). Click the Verify and Continue button.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig3_HTML.jpg]
Figure 2-3.Enter basic personal details

Select the Basic Plan. For new users, this free plan is sufficient. Click the Free button (see Figure 2-4).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig4_HTML.jpg]
Figure 2-4.Select free basic plan

After successfully registering, log in to your AWS account (https://console.aws.amazon.com/iam/home?region=us-east-1) to access the AWS console.
Navigate to IAM ➤ Access management ➤ Users. Click the Add User button (see Figure 2-5).
Enter the relevant information (see Figure 2-6) and select programmatic access. When this is done, you get an access key and a secret key, which are used later in the exercise.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig5_HTML.jpg]
Figure 2-5.IAM new user

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig6_HTML.jpg]
Figure 2-6.Create new user with programmatic access

Getting Started with Terraform Cloud
Terraform Cloud is a SaaS (software as service) offering. It is hosted and managed by HashiCorp in a highly reliable and consistent environment. It provides users with features like collaboration space, secret data management, RBAC, an approval process (for any changes), and a privately hosted registry to share Terraform modules and for policy control.
Terraform Cloud can be accessed at https://app.terraform.io. All you have to do is create a free account that allows collaboration in a small team and other features. Let’s start with a hands-on exercise on subscribing to Terraform Cloud.

Create a new account on Terraform cloud using an email account of your choice by navigating to https://app.terraform.io/signup/account. Click Create a Free Account and provide information to create your account (see Figure 2-7).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig7_HTML.jpg]
Figure 2-7.Terraform Cloud signup page

As soon as you register on the Terraform Cloud site, you get a confirmation email from HashiCorp to verify your account. Click the link to confirm your email address (see Figure 2-8).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig8_HTML.jpg]
Figure 2-8.New user registration verification email

After email verification, you are redirected to a page that asks you to log in. Then, you are redirected to the Terraform Cloud, as shown in Figure 2-9. Select the Start from Scratch option.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig9_HTML.jpg]
Figure 2-9.Terraform Cloud

Create a new organization, as shown in Figure 2-10.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig10_HTML.jpg]
Figure 2-10.Terraform Cloud new organization

Create a new workspace, as shown in Figure 2-11.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig11_HTML.jpg]
Figure 2-11.Terraform Cloud new workspace

Terraform provides a workspace that makes it easy to manage code as things grow and become more complex. It’s a place where you put your Terraform code and configurations. A new user might put all his code in a single work directory, which might grow over time, and he makes different directory structures for each environment or project. At some point, it becomes difficult to manage and change, and the chance for error grows. This is where a workspace comes in handy; it provides a logical separation of code rather than managing it in a complex directory structure.
Select a workflow from the three options. VCS (version-control system) is the most commonly used and preferred. It enables users to leverage GitOps-based actions to manage an infrastructure by using an IaC methodology. (Read more about VCS integration at www.terraform.io/docs/cloud/vcs/).
Let’s select one of the VCS providers from the four provider options. We opted for GitLab, as shown in Figure 2-12.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig12_HTML.jpg]
Figure 2-12.Terraform Cloud VCS

Select one of the GitLab provider options (see Figure 2-13). Go to User Settings ➤ Applications to add GitLab as the VCS provider.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig13_HTML.jpg]
Figure 2-13.Add VCS provider in Terraform Cloud

The following information is needed to use a GitLab provider (see Figure 2-14).	Name

	Redirect URI

	Scopes (API only)

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig14_HTML.jpg]
Figure 2-14.Add VCS with GitLab

Log in to your GitLab account. Navigate to the User Settings page, and select Applications (see Figure 2-15). Enter the following information (see Figure 2-14).	Name (a relevant friendly name)

	Redirect URI (unique to each cloud user)

	Scopes (check API)

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig15_HTML.jpg]
Figure 2-15.GitLab application config to integrate GitLab with Terraform Cloud

Once you save, enter the following information (see Figure 2-16).	Application ID

	Secret

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig16_HTML.jpg]
Figure 2-16.GitLab application configuration for GitLab & Terraform integration

Navigate back to the Terraform Cloud page and enter the information from GitLab (see Figure 2-16). Paste it in the Name, Application ID, and Secret fields (see Figure 2-17).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig17_HTML.jpg]
Figure 2-17.Terraform Cloud Setup provider (with GitLab)

Click the Connect and Continue button (see Figure 2-17), which takes you to the GitLab page (see Figure 2-18). Click the Authorize button to complete the GitLab part of the configuration to authorize and authenticate.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig18_HTML.jpg]
Figure 2-18.GitLab Configured for Cloud User

Click the Skip and Finish button (see Figure 2-19) to complete all VCS integration steps.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig19_HTML.jpg]
Figure 2-19.Add SSH and finish

You should see the final page of the Terraform Cloud configuration (see Figure 2-20), which summarizes the authorization details.
Now you can use GitLab as the VCS for Terraform Cloud.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig20_HTML.jpg]
Figure 2-20.Terraform Cloud integrated with GitLab as VCS summary

Terraform Workflow
Once you log in with an activated Terraform Cloud account, you can start using a Terraform workflow. Workflows allow you to manage your code on a cloud platform. Terraform Cloud has the following three workflows for managing Terraform runs.	Version control workflow: This workflow stores your Terraform configuration in a version-controlled system like Git or GitLab repository, and triggers runs based on pull and merges requests. It is one of the most commonly used approaches in Enterprise.

	CLI-driven workflow: In this approach, you can trigger remote Terraform runs from your local command line (CLI). Users can run CLI commands like terraform plan and terraform apply. They execute directly in Terraform Cloud. The user can monitor progress on a CLI terminal. This empowers developers and enforces the appropriate governances and policies offered by Terraform Enterprise.

	API-driven workflow: This is a more advanced option that integrates Terraform into a larger pipeline using the Terraform API.

As soon as you log in to your Terraform Cloud account, you are asked to choose one of three workflow options (see Figure 2-21).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig21_HTML.jpg]
Figure 2-21.Terraform Cloud workflow

Getting Started with Terraform CLI
The previous section covered configuring Terraform Cloud and working with HashiCorp’s Enterprise offerings. This section starts with HashiCorp’s open source offering by configuring Terraform CLI on a Linux system. Our example uses a Red Hat virtual machine to install CLI.
Before you can download and configure Terraform, you need the wget and unzip tools on your virtual machine. Execute the following command to install packages on your virtual machine, as shown in Figure 2-22.

sudo yum install wget unzip –y[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig22_HTML.jpg]
Figure 2-22.Prerequisite tool install

Download a Terraform binary from the Terraform release website by executing the following command based on your computer’s architecture and operating system platform (Linux, Windows, etc.). We used version 0.13 for our installation (see Figure 2-23).

sudo wget https://releases.hashicorp.com/terraform/0.13.5/terraform_0.13.5_linux_amd64.zip

Note
Always refrain from downloading an application binary from third-party sites; only use the HashiCorp Terraform official release.

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig23_HTML.jpg]
Figure 2-23.Terraform CLI download

Use the following Linux command to unpack/unzip the binary you downloaded from the official Terraform website (see Figure 2-24).sudo unzip terraform_0.13.5_linux_amd64.zip

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig24_HTML.jpg]
Figure 2-24.Unzip

 Terraform binary

Once the Terraform binary unzips in the current directory, you can place it in the location where all other system binaries reside. No path has to be configured to invoke Terraform CLI.sudo mv terraform /usr/local/bin/

Execute the following command to validate that you have installed the correct version, as shown in Figure 2-25.terraform version

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig25_HTML.jpg]
Figure 2-25.Configure

 Terraform

Now that Terraform CLI is installed, let’s test some Terraform code to see how things work.
Execute the following commands to install the Git client, and then clone the sample code from the GitHub repository.yum install git
git clone https://github.com/dryice-devops/terraform_aws.git

Once you have cloned the repository, you should see five Terraform files (see Listing 2-1 through Listing 2-5).data "aws_ami" "centos" {
 owners = ["679593333241"]
 most_recent = true
 filter {

 name = "name"
 values = ["CentOS Linux 7 x86_64 HVM EBS *"]
 }
 filter {
 name = "architecture"
 values = ["x86_64"]
 }
 filter {
 name = "root-device-type"
 values = ["ebs"]
 }
}

Listing 2-1.Terraform data.tf File

resource "aws_instance" "instance" {
 ami = data.aws_ami.centos.id
 instance_type = var.Instancetype
 associate_public_ip_address = "true"
 monitoring = "true"
 key_name = var.key_name
 subnet_id = var.subnet_id
 vpc_security_group_ids = var.vpc_security_group_ids
tags = {
 Name = var.name
 Environment = var.environment
 Business_Justification = var.bJustification
 Reason = var.reason
 }

Listing 2-2.Terraform main.tf File

output "instance_ips" {
 value = ["${aws_instance.instance.*.private_ip}"]
}

Listing 2-3.Terraform output.tf File

provider "aws" {
access_key = var.aws_accesskey
secret_key = var.aws_secretkey
region = var.region
}

Listing 2-4.Terraform provider.tf File

variable "aws_accesskey" {
default = "ASIA3WEU6XXXXXXXXXXXXX"
description = "Enter Access Key"
}
variable "aws_secretkey" {
default = "bzNmvUZvsdidkhJzXXXXXXXXXXXXXXXXXXXXXXXXXX"
description = "Enter Secrete Key"
}
variable "environment" {
default = "development"
}
variable "vpc_security_group_ids"{
 description = "security group"
 type = list(string)
 default =[]
}
variable "subnet_id" {
 description = "Subnet ID"
}
variable "bJustification" {
default = "Demo"
}
variable "reason" {
default = "Demo FOr Customer"
}
variable "name" {
 description = "Creates a unique name beginning with the specified prefix"
}
variable "Instancetype" {
 description = "The size of instance to launch"
}

variable "key_name" {
 description = "The key name that should be used for the instance"
 default = ""
}

Listing 2-5.Terraform variable.tf

After cloning the code from the repository, you need to modify the information in your AWS account. Once the code is modified, you can start the Terraform initialization by executing the following command (see Figure 2-26). terraform init

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig26_HTML.jpg]
Figure 2-26.Terraform code clone and run

Now you can apply as shown in Figure 2-27 the Terraform changes using the following command, which starts provisioning the resources on the AWS public cloud.terraform apply

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig27_HTML.jpg]
Figure 2-27.Terraform apply

The terraform apply command initially runs a Terraform plan to validate the deployment and resources created as a part of the deployment. Once the plan is successful, it seeks an interactive user confirmation to proceed with the actual resource creation. This is done by typing YES in the interactive shell. However, if you need to suppress the prompt, you can use the –auto-approve flag along with terraform apply.
Once apply completes, you should see the output shown in Figure 2-28, which includes the number of resources added, changed, or destroyed to meet the changes defined in our Terraform code.[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig28_HTML.jpg]
Figure 2-28.Terraform apply output

“Apply complete! Resources: 1 added, 0 changed, 0 destroyed.” appears at the bottom of the screen.
Now you can navigate to AWS console (https://console.aws.amazon.com/ec2/v2/home), go to the appropriate region (as per our code), and review the resource created with the given name or as per the IP output from the server (see Figure 2-29).[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig29_HTML.jpg]
Figure 2-29.Resource created from Terraform in AWS console

Now that you have validated the outcome of the Terraform code, it’s a good practice to delete that resource; otherwise, it costs if left running. For that, run the destroy command

 as follows to delete all the resources and their dependencies (see Figures 2-30 and 2-31).terraform destroy

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig30_HTML.jpg]
Figure 2-30.Terraform destroy

[image: ../images/492265_1_En_2_Chapter/492265_1_En_2_Fig31_HTML.jpg]
Figure 2-31.Terraform resource destroyed

What’s New in Terraform 0.14

This chapter worked with Terraform 0.13. Terraform upgrades are frequent, and every new version has enhanced features.
Terraform 0.14 is the latest version. The release and upgrade notes are at https://github.com/hashicorp/terraform/blob/v0.14/CHANGELOG.md.
Terraform 0.14 vs. Terraform 0.13

	Terraform 0.14 adds support to declare a variable as sensitive to prevent it from being visible to the naked eye.

	The init command creates a lock in the configuration directory, which can be checked into version control to ensure the same version of the plug-in is consumed in the next run.

	Terraform’s latest version supports read and write of all compatible state files from a future version of Terraform.

Summary
This chapter covered Terraform’s main concepts. We learned how to subscribe to Terraform Cloud, install Terraform CLI, and execute simple code to provision a service on AWS.
The next chapter covers Terraform programming constructs and looks at how they can be leveraged to write automation code.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_3

3. Understanding Terraform Programming Constructs

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter covers Terraform’s programming components. Designing an infrastructure with Terraform code requires some basic understanding of the programming components. The following are the programming components covered in this chapter.	HCL

	Resources

	Providers

	Input variables

	Output values

	Local values

	Modules

	Data sources

	Backend configurations

	Provisioners

Configuration Language
Terraform uses its own configuration language, called HashiCorp Configuration Language, or HCL. It is a declarative language that lets you achieve your configuration goals without concern about the sequence of steps to do it. Terraform configuration consists of a root module, where evaluation begins, along with a tree of child modules created when one module calls another.
Arguments, Blocks, and Expressions
The terraform language syntax is build around below key constructs:

	Blocks are the containers where the configuration of a resource is kept. Blocks are comprised of block-types, labels, arguments and nested blocks (e.g., a dynamic block).

	Arguments

 assign a value to a specific name. They are assigned within blocks.

	Expressions

 are literal or referenced values for arguments.

	Values can be combined using built-in functions.

Now let’s look at the code snippet shown in Listing 3-1. The block in the block-type resource acts as a container for the forwarding rule configuration. Multiple arguments (like project = var.project) are present, where the name is an expression and the referenced value is var.project. Similarly, for a load_balancing_scheme expression, there is a literal value called EXTERNAL. resource "google_compute_forwarding_rule" "default" {
 project = var.project
 name = var.name
 target = google_compute_target_pool.default.self_link
 load_balancing_scheme = "EXTERNAL"
 port_range = var.service_port
 region = var.region
 ip_address = var.ip_address
 ip_protocol = var.ip_protocol
}

Listing 3-1.Block Configuration

Code Organization
Terraform configuration files have a .tf extension. It supports JSON-based variants by using a .tf.json extension.
The basic Terraform configuration contains only a single .tf file. The configuration can be enhanced by adding more resources. This is done by creating new configuration files in the same root module or organizing them in child modules. A module can also be a combination of .tf and .tf.json, which can be managed together in a directory.
Configuration Ordering
Terraform is a declarative language and does not worry about the order of the resources. It maintains a dependency order relationship within the resources, maps them identically to real-world resources.
Resources
Resources are the major building blocks in Terraform, any infrastructure component(virtual machine, networks, databases etc.) in an environment which needs to be created and managed via terraform is depicted as a resource in configuration file. Let’s review the code snippet shown in Listing 3-2. The resource block declares a resource-type (google compute disk) with a given local name (test-d01-data). The name refers to the resource from elsewhere in the same Terraform module, but has no significance outside that module’s scope. The resource type and name together serve as an identifier for a given resource and must be unique within a module.
Within the block body (between { and }) are the configuration arguments for the resource. Most arguments in this section depend on the resource type, and in this example, type, size, and zone are arguments defined specifically for “google compute disk”.resource "google_compute_disk" "test-d01-data" {
 name = "test-d01-data"
 type = "pd-ssd"
 size = "10"
 zone = "us-west1-a"
}

Listing 3-2.Resources Configuration

Provider
Provider is a Terraform plug-in that offers a collection of resource types. Each Provider plug-in offers a set of resource types and defines which arguments it accepts, which attributes it exports, and how changes to resources of that type are applied to remote APIs. Providers also offer local utilities for tasks, like generating random numbers for unique resource names.
Let’s review the code snippet shown in Listing 3-3. The "google" provider specifies that the resources belong in the Google platform, whereas project and credentials are the components specifying the project and the credentials required to authorize the API. provider "google" {
 project = "crafty-student-290205"
 credentials = file("crafty-student-290205-6d4ebc9cd946.json")
}

Listing 3-3.Provider Configuration

Before a new provider is added to a configuration, Terraform must install the provider. If a persistent working directory is used, run terraform init to install the provider. Once installed, the download resides in the current working directory. To make the provider global (i.e., out of the bounds of the working directory), you can enable a plug-in cache in the Terraform configuration file in the terraform.d directory, as shown in Listing 3-4. This directory must exist before Terraform cache plug-ins are enabled. Terraform cannot create this directory itself.plugin_cache_dir = "$HOME/.terraform.d/plugin-cache"
disable_checkpoint = true

Listing 3-4.Plug-in Configuration

Input Variables
Input variables are often called Terraform variables. They are used as parameters that allow certain resource values to be taken as either an input from a var file or during runtime. This allows the module to be customized without altering the module’s source code. Now let’s review the code snippet shown in Listing 3-5.variable "disk-type" {
 type = string
 default = ""
 description = "Input from the user"
}

variable "zone" {
 type = string
 default = "us-east1-c"
 description = "Input from the user"
}

variable "size" {
 type = number
 default = ""
 description = "Input from the user"
}

variable "ami_id" {
 type = string

 validation {
 condition = can(regex("^ami-", var.example))
 error_message = "Must be an AMI id, starting with \"ami-\"."
 }
}

Listing 3-5.Input Variables

The disk type, zone, and size of the Google compute disk are defined as variables to be taken as input from the user during runtime. A variable can also be initialized with a default value as specified for variable “zone” in the above Listing 3-5. This makes the code robust and provides flexibility. A description can be provided in the variable to make it more understandable.
The last example includes a validation block introduced in Terraform 0.13, where a condition (can(regex("^ami-", var.example))) is given to validate that the input must contain the ami prefix in the variable; otherwise, it generates an error message (“Must be an AMI id, starting with \”ami-“ ”).
The variable name (e.g., variable “size”) assigns a value to a variable and must be unique among all the variables in the same module.
The name of a variable can be any valid identifier except the following.	Source

	Version

	Providers

	Count

	for_each

	locals

	depends_on

	Lifecycle

Type constraints in variables are a mixture of type keywords and type constructors. The following are supported.	String

	Number

	Boolean

Type constructors define complex keywords. The following are examples.	list(<TYPE>)

	set(<TYPE>)

	map(<TYPE>)

	object({<ATTR NAME> = <TYPE>, ... })

	tuple([<TYPE>, ...])

If the variable type is unknown, or if you are unsure about the type, then the “any” keyword can be used, making any value acceptable.
Variables can also be passed as vars files during the terraform plan and apply phases. The following is an example.terraform apply -var-file="testing.tfvars"

Environment Variables
An external environment variable can be exported in the current working shell. In Listing 3-6, TF_VAR_image_id is an external variable. This variable can be used in Terraform code without having to implicitly mention it. This value is used for AMI throughout the code without specifying it.export TF_VAR_image_id=ami-08bcc13ad2c143073

Listing 3-6.Environment Variables

The precedence order of variables is as follows:	1.
vars is passed at the command line (–var-file).

	2.
Terraform.tfvars.json is next in precedence.

	3.
Terraform.tfvars follows.

	4.
Environment variables have the least precedence.

Output Values
Output values correspond to the values returned by Terraform modules whenever terraform apply is run to apply a configuration. End users can query the output by running the terraform output command.
These variables come in handy in the following cases.	A child module wants to send the data or its resource attributes to the parent module.

	External scripts want to query certain attributes from a Terraform module.

Resources created by Terraform have certain output values that can be later used by any other resource or by any processes.
Now let’s review the code snippet shown in Listing 3-7. The output block is defined with block-type webserver_ip storing a compute instance’s NIC IP.output "webserver_ip" {
 value = google_compute_instance.default.network_interface.0.access_config.0.nat_ip
}

Listing 3-7.Output Variables

To access the output from Listing 3-7, you can traverse to location ‘module.webserver.webserver_ip’ wherein webserver corresponds to the block label name given to the resource “google_compute_instance”.
Output blocks can optionally include arguments like description, sensitive, and depends_on.	Description can be included in the output block to provide information about the output and its purpose, as shown in Listing 3-8.

output "webserver_ip" {
 value = google_compute_instance.default.network_interface.0.access_config.0.nat_ip
 description = public ip of instance
}

Listing 3-8.Output Block

	Sensitive is used when the output is confidential and not to be shown on the command line (e.g., passwords), as shown in Listing 3-9.

output "db_password" {
 value = aws_db_instance.db.password
 description = "The password for logging in to the database."
 sensitive = true
}

Listing 3-9.Output Block (Sensitive Data)

	depends_on is used when one of the resources depends on the value of the output result, as shown in Listing 3-10. It creates a relationship within the nodes with a dependency graph.

output "instance_ip_addr" {
 value = aws_instance.server.private_ip
 description = "The private IP address of the main server instance."

 depends_on = [
 # Security group rule must be created before this IP address could
 # actually be used, otherwise the services will be unreachable.
 aws_security_group_rule.local_access
]
}

Listing 3-10.Depends_on Use Case

Here the resource instance_ip_addr needs to be created after fetching the value of aws_security_group_rule.local_access. A depends_on output must always have a description to make it easier for the future maintainer of the code.
Local Values
Local values in Terraform represent certain expressions or variables in the file whose values are constant and are invoked at multiple places in the code. For example, using locals for the bucket name in different cloud providers is a good idea because it creates randomness in the name.
Now let’s review the code snippet shown in Listing 3-11. The two locals—is_postgres and is_mysql—are defined inside a block called locals. These values are available throughout the code.locals {
 # Determine the engine type
 is_postgres = replace(var.engine, "POSTGRES", "") != var.engine
 is_mysql = replace(var.engine, "MYSQL", "") != var.engine

}

Listing 3-11.Defining Locals

A local value can be used anywhere in the code. The value is called by local.<Name>, as shown in Listing 3-12.resource "google_sql_user" "default" {
 depends_on = [google_sql_database.default]

 project = var.project
 name = var.master_user_name
 instance = google_sql_database_instance.master.name
 host = local.is_postgres ? null : var.master_user_host
 password = var.master_user_password
}

Listing 3-12.Using Local Values

Here the host expression gets its value by fetching and comparing the value of the local is_postgres. The expression determines the value from the local is_postgres and puts it in the conditional logic.
Local values help remove duplicate calls in configuration files. Local values are analogous to local variables in programming languages.
Modules
A module is a container in which all the resources are defined to be used together. Every Terraform code has one essential module, called a root module, which contains all the resources in the .tf configuration file. A module can call other modules, which allows inclusion of the child module’s resources concisely into the configuration. Modules can be called multiple times, either within the same configuration or in separate configurations, making the code reusable.
Calling a module with an expression means to include the contents of the module in the configuration file along with relevant input variables.
Now let’s review the code snippet shown in Listing 3-13.module "load_balancer" {
 source = "GoogleCloudPlatform/lb/google"
 version = "~> 2.0.0"
 region = var.region
 name = "load-balancer"
 service_port = 80
 target_tags = ["allow-lb-service"]
 network = var.network
}

Listing 3-13.Module Configuration

In listing 3-13 the source argument is calling the GoogleCloudPlatform/lb/google module.
For all modules, a source argument is a mandate that is specified while invoking a module in the code. This location can be a local directory or a remote module source containing configuration files related to the module.
After the addition, removal, or modification of a module, Terraform needs to be synchronized with the new module by running a terraform init command. By default, terraform init does not upgrade an installed module. Upgrade of an installed module can be initiated by using the -upgrade flag.
Calling a module via terraform configuration does not implies that attributes of the resources can be accessed directly as the resources are encapsulated. To get the output values, certain selective values need to be exported from it.
Now let’s review the code snippet shown in Listing 3-14. Instead of calling the complete module, the value of default.ip_address is selected and displayed as an output.output "external_ip" {
 description = "The external ip address of the forwarding rule."
 value = google_compute_forwarding_rule.default.ip_address
}

Listing 3-14.Module Output

Terraform code is confined within a working directory; if the working directory is changed, Terraform takes it as a new location with added resources. The terraform state mv command is used to transfer resource states into modules.
Creating a Custom Module
Terraform treats any local directory referenced in a module block’s source argument as a module. A typical file structure for a new module is shown in Figure 3-1.[image: ../images/492265_1_En_3_Chapter/492265_1_En_3_Fig1_HTML.jpg]
Figure 3-1.Directory structure

You can create a module with a single .tf file or use any other file structure you like. Typically, each of the files shown in Figure 3-1 serves a specific purpose.	LICENSE contains the license under which your module is distributed. When you share your module, the LICENSE file let users know the terms of usage.

	README.md contains documentation describing how to utilize the module in markdown format. Terraform does not use this file, but services like Terraform Registry and GitHub display the contents of this file to people who visit the module’s Terraform Registry or GitHub page.

	main.tf contains the main set of configurations for your module. You can also create other configuration files and organize them however it makes sense for the project.

	variables.tf contains the variable definitions for the module. When the module is invoked in the configuration file, the variables are configured as arguments in the module block. Since all Terraform values must be defined, any variables that are not given a default value become required arguments. Variables with default values can also be provided as module arguments, overriding the default value.

	outputs.tf contains the output definitions for the module, which you can use to extract internal information about the state of the resources.

Now let’s create a module for the s3 bucket in main.tf, as shown in Listing 3-15.# Terraform configuration

resource "aws_s3_bucket" "s3_bucket" {
 bucket = var.bucket_name

 acl = "public-read"
 policy = <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublicReadGetObject",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::${var.bucket_name}/*"
]
 }
]
}
EOF

 website {
 index_document = "index.html"
 error_document = "error.html"
 }

 tags = var.tags
}

Listing 3-15.Creating a Custom Module

The variables are defined in Listing 3-16.variable "bucket_name" {
 description = "Name of the s3 bucket. Must be unique."
 type = string
}

variable "tags" {
 description = "Tags to set on the bucket."
 type = map(string)
 default = {}
}

Listing 3-16.Defining Custom Module Variables

The output is defined in Listing 3-17.# Output variable definitions

output "arn" {
 description = "ARN of the bucket"
 value = aws_s3_bucket.s3_bucket.arn
}

output "name" {
 description = "Name (id) of the bucket"
 value = aws_s3_bucket.s3_bucket.id
}

output "website_endpoint" {
 description = "Domain name of the bucket"
 value = aws_s3_bucket.s3_bucket.website_endpoint
}

Listing 3-17.Module Output

Whenever you add a new module to a configuration, Terraform must install it before it can be used. Both the terraform get and terraform init commands install and update modules. The terraform init command also initializes backends and installs plug-ins.
Now let’s install the module by running terraform get, and write the configuration in the main.tf file, as shown in Listing 3-18.module "website_s3_bucket" {
 source = "./modules/aws-s3-static-website-bucket"

 bucket_name = "<UNIQUE BUCKET NAME>"

 tags = {
 Terraform = "true"
 Environment = "dev"
 }
}

Listing 3-18.Installing Module

Execute the terraform apply command

 to provision the bucket using a custom module, as shown in Listing 3-19. In the configuration files, make sre you have added the AWS account information created in Chapter 2.$ terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

...

 # module.website_s3_bucket.aws_s3_bucket.s3_bucket will be created
 + resource "aws_s3_bucket" "s3_bucket" {
 + acceleration_status = (known after apply)

...

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

Listing 3-19.Terraform Apply with Module

Meta-arguments like version, count, provider, and depends_on are used when creating code. Each has special relevance to usage in the module.
Version
A version constraint string specifies acceptable versions of the module, as shown in Listing 3-20.module "ssm" {
 source = "./aws"
 version = "0.2"
}

Listing 3-20.Meta-Argument Version

Here, version 0.2 is passed as a value to fetch the values from the ./aws source inside the ssm module.
The version attribute accepts a string value. Terraform tries to install the version of the module in the attribute value. The version attribute is only applicable for modules published in the Terraform module registry or Terraform Cloud private module registry.
Modules residing in other sources may have their own version-control mechanism, which can be specified in the source string. Modules residing in local directories do not support versions; since they are loaded from the same source repository, they always share the same version as their caller.
count and for_each
count and for_each create multiple instances of the same resource, as shown in Listing 3-21. These arguments have the same syntax and type constraints as for_each and count when used with resources.Resource “aws_iam" “example” { {
 for_each = toset(var.user_names)
 source = "./aws/iam"

 name = each.value
}

Listing 3-21.For_each Example

The for_each constraint creates an IAM user matching the set user_names defined in the /aws/iam module. The /aws/iam child module has a configuration to create IAM users. for_each creates multiple users with a special key name: each.value. Resources from child modules are prefixed with module.module_name[module index] when displayed in the UI. In our example, the ./aws/iam module contains aws_iam_user.example. The two instances of this module produce IAM user resources with module.iam["ram"].aws_iam_user.example and module.iam["rambo"].aws_iam_user.example resource addresses. The ram and rambo values are taken as variables.
depends_on Module
In previous versions of Terraform, module instances served only as separate namespaces. They were not nodes in Terraform’s dependency graphs. Terraform has always tracked dependencies via the input variables and output values of a module. But users have frequently requested a concise way to declare that all objects inside a module share a particular dependency in the calling module. Terraform v0.13 introduces this capability by allowing depends_on as a meta-argument inside module blocks, as shown in Listing 3-22.resource "aws_iam_policy_attachment" "example" {
 name = "example"
 roles = [aws_iam_role.example.name]
 policy_arn = aws_iam_policy.example.arn
}

module "uses-role" {
 # ...

 depends_on = [aws_iam_policy_attachment.example]
}

Listing 3-22.Depends_on with Module

Providers
Provider

 in Terraform acts as a plug-in to integrate with third-party systems. Each invoked provider brings a set of resource types or data sources that Terraform can manage. Provider configurations can be defined only in a root Terraform module.
Once changes are applied, Terraform retains a reference to the provider configuration that was most recently used to create the resources in its state file. This is why terraform plan contains resources that have references to the old configuration if the provider starts to fail. To solve this problem, Terraform provider needs to be reintroduced in the configuration file.
Provider Version Constraints in Modules
Although provider configurations are shared between modules, each module must declare its own provider requirements so that Terraform can ensure that there is a single version of the provider that is compatible with all modules in the configuration and to specify the source address that serves as the global (module-agnostic) identifier for a provider.
Now let’s look at the provider shown in Figure 3-2.[image: ../images/492265_1_En_3_Chapter/492265_1_En_3_Fig2_HTML.jpg]
Figure 3-2.Provider versions

Here the module version required for the vSphere provider is 1.24.2. A Terraform configuration file can have multiple provider configurations, such as one for GCP and another for AWS or different versions of the same cloud.
Automatic Installation of Third-Party Providers
Terraform v0.13 introduced a new hierarchical provider-naming scheme that allows HashiCorp providers to occupy namespaces separate from providers developed or distributed by others. Third-party providers are indexed in Terraform Registry and automatically installed by Terraform.
The new provider naming scheme includes a registry hostname and a namespace in addition to the provider name. The existing AzureRM provider is now known as hashicorp/azurerm, which is short for registry.terraform.io/hashicorp/azurerm. Providers not developed by HashiCorp can be selected from their own namespaces, using a new provider requirements syntax added in Terraform v0.13.
Let’s review the code snippet shown in Listing 3-23.terraform {
 required_providers {
 jetstream = {
 source = "nats-io/jetstream"
 version = "0.0.5"
 }
 }
}

Listing 3-23.Third-Party Providers

The nats-io/jetstream address is short for registry.terraform.io/nats-io/jetstream, indicating a third-party provider published in the public Terraform registry for widespread use.
The provider registry protocol is eventually published so that others can implement it, in which case other hostnames become usable in source addresses. At the time of writing this guide, only the public Terraform Registry at registry.terraform.io was available for general testing.
As a measure of backward compatibility for commonly used existing providers, Terraform 0.13 includes a special case that if no explicit source is selected for a provider, Terraform creates one by selecting registry.terraform.io as the origin registry and “hashicorp” as the namespace.
For example, if “aws” provider is invoked in the configuration file without the required_providers argument, terraform assumes the value hashicorp/aws which is short for registry.terraform.io/hashicorp/aws.
Provider Plug-ins in a Local Filesystem
While terraform init supports the automatic installation of HashiCorp distributed providers, third-party-packaged providers must be installed manually in a local filesystem. Some users also chose to create local copies of the HashiCorp-distributed providers to avoid repeatedly re-downloading them.
Terraform v0.13 still supports local copies of providers—officially called local mirrors. But the new multi-level addressing scheme for providers means that the expected directory structure in these local directories has changed to include each provider’s origin registry hostname and namespace, giving a directory structure like the following."registry.terraform.io/hashicorp/azurerm/2.0.0/linux_amd64/terraform-provider-azurerm_v2.0.0"

In this example, terraform-provider-azurerm_v2.0.0 is an executable residing inside the provider’s distribution zip file. The containing directory structure allows Terraform to understand that this is a plug-in intended to serve the hashicorp/azurerm (short for registry.terraform.io/hashicorp/azurerm) provider at version 2.0.0 on the platform linux_amd64.
If you use local copies of providers that terraform init would normally be able to autoinstall, you can use the new Terraform providers mirror command to automatically construct the directory structure for the providers in the current configuration.terraform providers mirror ~/.terraform.d/plugins

This creates local mirrors in one of the directories Terraform consults by default on non-Windows systems. This same directory structure is used for all the directories in which Terraform searches for plug-ins.
Note that due to the directory structure being multi-level, Terraform no longer looks for provider plug-ins in the same directory where the Terraform executable is installed. It is not conventional for there to be subdirectories under directories, like /usr/bin on a Unix system.
Data Sources
Data sources allow a Terraform configuration to use information defined outside Terraform or defined by a different Terraform configuration (e.g., getting the details of an Amazon VPC defined manually or outside the Terraform configuration file). A data source is accessed via a special kind of resource known as a data resource, declared using the data block shown in Listing 3-24.data "aws_ami" "std_ami" {
 most_recent = true
 owners = ["amazon"]

filter {
 name = "root-device-type"
 values = ["ebs"]
 }

filter {
 name = "virtualization-type"
 values = ["hvm"]
 }
}

resource "aws_instance" "myec2" {
 ami = data.aws_ami.std_ami.id
 instance_type = "t2.micro"
}

Listing 3-24.Data Sources

The data block requests that Terraform read from a given data source. In this case, the AMI details are read from the available ones on the aws_ami resource, with a reference pointer called std_ami, through which it is called inside the configuration.
The data source and name together serve as an identifier for a given resource and must be unique within a module.
Within the block body (between { and }) are query constraints defined by the data source. root-device-type and virtualization-type are the query constraints with the filtered values. They are different from managed resources (defined with resource block) so that data resources can only perform read operations for the resource, whereas managed resources perform all CRUD operations.
Each data resource is associated with a single data source, specifying the kind of object it reads.
Most of the data source arguments specified within data blocks are specific to the selected data source. These arguments can make full use of expressions and other dynamic HCL features. However, there are some meta-arguments that are defined by Terraform and apply across all data sources.
Backend Configuration
The backend in Terraform determines how the state is loaded and how an operation such as apply is executed. This abstraction enables non-local file state storage and remote execution. The most common way to configure the backend is to be on a remote site, making it possible for multiple users to work on the same code. The following are the key benefits of using the backend.	Team collaboration: Since backends are managed on a remote site, multiple users can work on it, which reduces time and effort. Locks are used for preventing corruption, and versioning is enabled to keep multiple copies of a code, maintaining a which tracks progress for everyone.

	Preventing sensitive data exposure: State is retrieved from the backends on demand and is only stored in memory. If a backend such as Amazon S3 is used, then the only location the state ever is persisted is in S3. There is no risk of sensitive data being exposed.

	Remote operations: In a large infrastructure, terraform apply can take a long time, so Terraform supports remote operations, making the code run on its own. With locking, different environments can be maintained at the backend.

Backends are configured with a nested backend block within the top-level Terraform block, as shown in Listing 3-25.terraform {
 backend "s3" {
 bucket = "backend_bucket"
 key = "./key"
 region = "us-east-1"
 }
}

Listing 3-25.Backend Configuration

Here S3 object storage is leveraged as a backend provider for the state file. Note that there can only be one backend per configuration, and the backend block cannot refer to named values like input variables, locals, or data source attributes.
Backend Types
Backend types are usually grouped into two categories.	Standard: State management and functionalities in state storage and locking. Examples of a standard backend include S3 bucket, Consul, Azure RM, etcd, Manta, Kubernetes, and GCS.

	Enhanced: Everything in Standard plus remote operations. Examples of an enhanced backend are local and remote.

By default, Terraform does not have any backend. It uses the current working directory as the local backend for storing state files in a simple format.
The local backend stores the state on the local filesystem, locks that state using system APIs, and performs operations locally. This is the default backend.
The remote backend stores the Terraform state and may run operations in Terraform Cloud. When using full remote operations, terraform plan or terraform apply can be executed in Terraform Cloud’s run environment, with log output streaming to the local terminal. Remote plan and apply use variable values from the associated Terraform Cloud workspace. Terraform Cloud can also be used with local operations, in which case the only state is stored in the Terraform Cloud backend.
The arguments used in the block’s body are specific to the chosen backend type; they configure where and how the backend stores the configuration’s state, and in some cases, configures other behavior.
Backend Initialization
Whenever a configuration’s backend changes, terraform init must run again to validate and configure the backend before you can perform any plan, apply, or state operations. A simple copy/paste of the .tfstate file can also be done, but a backup should be created to manage any adverse situations.
Provisioners
Provisioners can model specific actions on the machine to prepare servers or other infrastructure objects for service.
Post-provisioning tasks, which can include agent onboarding, joining a domain, running hardening scripts, installing third-party clients for backup, antivirus, and so forth, can be achieved via provisioners.
Provisioners interact with remote servers over SSH (for Linux systems) or WinRM (for Windows). Provisioners run the scripts defined within the configuration on the servers by taking the session for servers and passing the script to the server, which is then available at the system booting stage.
This mechanism is analogous to a user data construct in other public cloud platforms.
Now let’s review the code snippet shown in Listing 3-26. The local-exec provisioner requires no other configuration, but most other provisioners must connect to the remote system using SSH or WinRM. A connection block must be included so that Terraform knows how to communicate with the server.resource "aws_instance" "web" {
 # ...

 provisioner "local-exec" {
 command = "echo The server's IP address is ${self.private_ip}"
 }
}

Listing 3-26.Provisioners Use Case

Creation-Time Provisioners
There are certain activities in which some action must be done on the resource while it is being created, such as booting a server in a bootstrapping sequence. These activities are only needed during the creation of the server and do not require a rollback at any other lifecycle state. In these cases, creation-time provisioners are used.
Creation-time provisioners

 are only run during creation, not during updating or any other lifecycle. They are meant to perform bootstrapping on a system.
When an error is encountered during the execution of a provisioner, the resource state is marked as tainted. Terraform plans the destroy and re-creates the resource on the next terraform apply. This is necessary because a failed provisioner means that all desired/required tasks specified within the provisioners did not run, leaving the final state of the resource different from what it should be.
Destroy-Time Provisioners
Provisioners specified with a when = destroy condition in the provisioner code lock are called destory-time provisioners. These provisioners are called before the resource is destroyed in Terraform. Listing 3-27 is an example of an aws_instance resource named web, and a provisioner is called at the destroy state.resource "aws_instance" "web" {
 # ...

 provisioner "local-exec" {
 when = destroy
 command = "echo 'Destroy-time provisioner'"
 }
}

Listing 3-27.Destroy Time Provisioners

The fail behavior for the destroy provisioners is similar to create-time provisioners (i.e., terraform will error and rerun the provisioners on the next terraform apply). Due to this behavior, care should be taken with destroy provisioners to be safe enough to run multiple times.
Destroy-time provisioners can only run if they remain in the configuration at the time a resource is destroyed. If a resource block with a destroy-time provisioner is removed entirely from the configuration, its provisioner configurations are removed along with it, and thus the destroy provisioner cannot run. You can use the following workaround to overcome this issue.	1.
Update the resource configuration to include count = 0.

	2.
Apply the configuration to destroy any existing resource instances, including running the destroy provisioner.

	3.
Remove the resource block entirely from configuration, along with its provisioner blocks.

	4.
Apply again, at which point no further action should be taken since the resources were already destroyed.

A destroy-time provisioner

 within a resource that is tainted cannot run. This includes resources that are marked tainted from a failed creation-time provisioner or tainted manually using terraform taint.
Multiple Provisioners
In some scenarios, multiple actions need to be executed on the resource. In such cases, multiple provisioners can be specified in a single resource code (as shown in Listing 3-28).
Multiple provisioners

 are executed in the order they are defined in the configuration file. Only the provisioners that are valid for a given operation are run. The valid provisioners are run in the order they are defined in the configuration file.resource "aws_instance" "web" {
 # ...

 provisioner "local-exec" {
 command = "echo first"
 }

 provisioner "local-exec" {
 command = "echo second"
 }
}

Listing 3-28.Multiple Provisioners

Types of Provisioners
There are two prominent types of provisioners: generic and vendor.
Generic Provisioners
Generic provisioners

 are built-in provisioners provided by Terraform. They include file, local-exec, and remote-exec.
File Provisioners
File provisioners

 copy files from the machine executing Terraform to the newly created resource. A file provisioner supports both SSH and WinRM type connections, as shown in Listing 3-29.provisioner "file" {
 source = "/etc/demo.txt"
 destination = "/usr/demo.txt"
 }

Listing 3-29.File Provisioner

The file provisioner copies the contents of the /etc/demo.txt directory to the /use/demo.txt destination inside the Terraform configuration file.
Note
A file provisioner can upload a complete directory to a remote machine. Make sure the destination directory already exists. Use a remote-exec provisioner before the file provisioner to create the directory if you need to. If you use the winrm connection type, the destination directory is created if it does not already exist.

Local-Exec Provisioners
The local-exec provisioner invokes a local executable after a resource is created, as shown in Listing 3-30. This process is on the machine running Terraform, not on the resource, and there is no guarantee that it is in an operable state.resource "vsphere_virtual_machine" "tfe-resource2" {
 name = "XXXXXXXX"
 ## resource code
 provisioner "local-exec" {
command = "echo ${data.vsphere_datastore.datastore.d} >> datastoreid.txt"
}
}

Listing 3-30.Local Exec Provisioner

Interpreters can be specified for a command to be executed with Terraform, as shown in Listing 3-31.resource "null_resource" "example" {
 provisioner "local-exec" {
 command = "Get-Process > getprocess.txt"
 interpreter = ["PowerShell", "-Command"]
 }
}

Listing 3-31.Local-exec with Interpreter

Remote-Exec Provisioners
The remote-exec provisioner invokes a script on a remote resource after it is created, as shown in Listing 3-32. It can be used to run a configuration management tool, bootstrap into a cluster, and so forth. The remote-exec provisioner supports both SSH and WinRM type connections. provisioner "remote-exec" {
 inline = [
 hostnamectl set-hostname test
]
 }
}

Listing 3-32.Remote-exec Provisioner

Vendor Provisioners
Vendor provisioners

 allow third-party software vendors to configure and run the respective client on remote machines. Examples of vendor provisioners include chef, habitat, puppet, and salt-masterless provisioners.
Chef Provisioners
The chef provisioner, supported by SSH and WinRM connections, is responsible for installing and configuring the chef client on a remote resource. To use a specific type chef of provisioner, there are a few prerequisites that must be fulfilled. Listing 3-33 is a sample chef provisioner configuration.resource "aws_instance" "webmachine" {
 # ...

 provisioner "chef" {
 attributes_json = <<EOF
 {
 "key": "value",
 "app": {
 "cluster1": {
 "nodes": [
 "webserver1",
 "webserver2"
]
 }
 }
 }
 EOF

 environment = "_default"
 client_options = ["chef_license 'accept'"]
 run_list = ["cookbook::recipe"]
 node_name = "webserver1"
 secret_key = "${file("../encrypted_data_bag_secret")}"
 server_url = "https://chef.company.com/organizations/org1"
 recreate_client = true
 user_name = "bork"
 user_key = "${file("../bork.pem")}"
 version = "15.10.13"
 # If you have a self signed cert on your chef server change this to :verify_none
 ssl_verify_mode = ":verify_peer"
 }
}

Listing 3-33.Chef Provisioner

Summary
This chapter covered the main concepts of HCL, Terraform’s programming language. We learned how to leverage it while composing automation code.
The next chapter includes hands-on exercises using Terraform CLI to automate service provisioning on a public cloud like GCP and Azure.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_4

4. Automating Public Cloud Services Using Terraform

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

Previous chapters discussed using Terraform to automate AWS service provisioning using Terraform. This chapter uses hands-on exercises for automating Azure and GCP cloud services through Terraform. The following are the key topics covered in this chapter.	Automating the GCP public cloud using Terraform

	Automating the Azure public cloud using Terraform

Automating the GCP Public Cloud Using Terraform
Before starting with Google Cloud Platform (GCP) automation using Terraform, we need to create a GCP account. The following explains how to create a GCP account and the service account used to integrate Terraform with GCP.
The primary prerequisite for signing up with the platform is a Google account or any account configured with GSuite (now known as Google Workspace). GCP uses Google accounts for access management and authentication.
Note
If the account is already signed in, you are directly redirected to the GCP cloud console.

Enter https://cloud.google.com in the browser and create a Google Cloud account with your Google account (see Figure 4-1).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig1_HTML.jpg]
Figure 4-1Google Cloud Platform

If you are eligible for the free tier,

you are prompted for your account information (see Figure 4-2).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig2_HTML.jpg]
Figure 4-2GCP free tier registration step 1

Select your country, agree to the Terms of Service and click on the Agree and Continue button. This takes you to the next step (see Figure 4-3), where you create and select your payment profile. Provide the required billing information however auto-debit does not happen unless you manually upgrade it (see Figure 4-3).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig3_HTML.jpg]
Figure 4-3GCP free tier registration step 2

Google offers a free trial (worth $300) to everyone. It can be spent over 12 months, which is sufficient to explore all the exercises in the book and evaluate GCP further. Once you have specified all the details, click the Start My Free Trial button.
It takes a while for the registration to complete. Once the necessary validations are done, you are redirected to the Google console, and you are ready to start.
Now let’s create the project for this exercise. A project is essentially a container for regrouping all IT and non-IT resources connected to a specific cloud project. Every project is identified by a specific parameter (see Table 4-1).Table 4-1Project Parameters

	Parameter
	Description

	Name
	Identifies and describes a project. The name is only for user reference and can be changed at any stage. The free tier allows you to create 24 projects.

	Project ID
	A unique string for identifying the project globally. It is created starting with the project name. Project ID is editable and can be changed. To create a project ID, you can use any lowercase letter, number, and hyphens. The only requirement is the uniqueness of the name. After this is entered, it is no longer possible to change it.

	Project
Number
	A parameter that is autogenerated by GCP. You cannot manage or change this number.

To create a new project, click the Create a New Project as shown in Figure 4-4.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig4_HTML.jpg]
Figure 4-4New Project screen

On the Select Organization drop-down list at the top of the page, select the organization that you want to create a project in. If you are a free trial user, skip this step because this list does not appear. Click Create Project.
In the New Project window, enter a project name and select an applicable account (see Figure 4-5).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig5_HTML.jpg]
Figure 4-5New Project

Remember the project ID, a unique name across all Google Cloud projects. It is referred to later as PROJECT_ID.
When you’ve finished entering your new project information, click Create. New Project is selected and appears as shown in Figure 4-6.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig6_HTML.jpg]
Figure 4-6New Project view

To have programmatic access for Terraform to access GCP services, a service account must be created. This service account provides a credentials file which will be used in a Terraform configuration file to authorize access to the GCP environment. The following steps explain how to create a service account.
Navigate

 to the IAM service from Home (see Figure 4-7) and click the Service Accounts option.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig7_HTML.jpg]
Figure 4-7Navigating through dashboard to IAM

Click the +Create Service Account button to create a service account, as shown in Figure 4-8.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig8_HTML.jpg]
Figure 4-8Create service account

Provide a name and description and click the Create button, as shown in Figure 4-9.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig9_HTML.jpg]
Figure 4-9Service account Name details

In the Roles tab, select Project Editor, as shown in Figure 4-10.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig10_HTML.jpg]
Figure 4-10Service account role mapping

Navigate to the Keys section and click the Add Key button to create a key (see Figure 4-11).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig11_HTML.jpg]
Figure 4-11Service account key

Download and save the credentials file in a .json or .p12 format. This credentials file will be used to integrate Terraform with GCP.
In previous chapter we had installed Terraform. Now let’s begin by creating GCP services using Terraform. Figure 4-12 shows an architecture diagram of the services provisioned using Terraform. The basic infrastructure consists of a VPC, a subnet, an instance, and GCS.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig12_HTML.jpg]
Figure 4-12Lab use-case architecture

Creating a VPC and Subnet with Terraform
Clone the files from the GitHub repository used in this exercise by using the following command.git clone https://github.com/dryice-devops/Terraform-GCP-UseCase-Automation

We used a Google provider and the service account credentials created in the previous section (see Listing 4-1).variable "project" {
 type = string
 default = "your project id"
 description = "GCP Project to be used for creating resources"
}

Listing 4-1Provider.tf

Listing 4-2 creates the VPC with “test-vpc” as the name and a subnet called “test”. The variables are defined in vars.tf.variable "vpc_name" {
 type = string
 default = "test-vpc"
 description = "VPC for creating resources"
}

variable "region" {
 type = string
 default = "us-east1"
 description = "Region for vpc"
}

variable "subnet_name" {
 type = string
 default = "test"
 description = "Name of the Subnet to be Created"
}

Listing 4-2Vars.tf

Listing 4-3 shows the content of main.tf, which contains the logical code to create the network and subnetwork.provider "google" {
 project = var.project
 credentials = file("##############.json") // your credentials.json file

#--
Creating the VPC
#--

resource "google_compute_network" "vpc" {
 name = var.vpc_name
 auto_create_subnetworks = "false"
}

#--
Creating the Subnet
#--

resource "google_compute_subnetwork" "subnet" {
 name = var.subnet_name
 ip_cidr_range = "10.2.0.0/16"
 network = var.vpc_name
 depends_on = ["google_compute_network.vpc"]
 region = var.region
}

Listing 4-3Main.tf

This example creates a VPC and a subnet that keeps the subnet’s autocreation as false. test-vpc has a subnet called test-subnet, in which the dependency on the VPC is mentioned by depends_on.
The name of the VPC network and subnetwork are displayed on the output screen with the help of the output.tf file (see Listing 4-4).output "network_name" {
 value = google_compute_network.vpc.name
 description = "The name of the VPC being created"
}

output "subnets" {
 value = google_compute_subnetwork.subnet.name
 description = "The created subnet resources"
}

Listing 4-4Output.tf

Run terraform init as shown in Figure 4-13. It is a good practice to run terraform plan before running terraform apply because it provides a skeleton view of what is to be created and how they are dependent on each other.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig13_HTML.jpg]
Figure 4-13GCP Terraform code init

Creating a Virtual Machine with Terraform
The configuration in Listing 4-5 creates an instance using the Google compute engine service. To create a compute engine, you need to mention the parameters shown in vars.tf. In GCP, passing the SSH keys is not passed like the other cloud providers; instead, it is passed as metadata. Also, the firewall rules are attached to the compute engine through tags. Finally, the web server IP is fetched as the output value. Make sure that you use a different directory for each GCP service to avoid any errors while running terraform init, plan, and apply.variable "machine-type" {
 type = string
 default = "n1-standard-1"
 description = "Disk to be snapshotted"
}

variable "zone" {
 type = string
 default = "us-east1-c"
 description = "Input from the user"
}

variable "region" {
 type = string
 default = "us-east1"
 description = "Input from the user"
}

variable "image" {
 type = string
 default = "centos-7-v20200910"
 description = "Input from the user"
}

Listing 4-5Vars.tf

The main.tf file contains the operational logic to create the compute engine and firewall rule to connect the virtual machine, as shown in Listing 4-6.provider "google" {
 project = var.project
 credentials = file("###############.json") // credentials.json to be used here
}

resource "google_compute_instance" "default" {
 name = "test"
 machine_type = var.machine-type
 zone = var.zone
 allow_stopping_for_update = true

 tags = ["ssh"]

labels = {
 environment = "test"
 project = "test"
 }

 boot_disk {
 initialize_params {
 image = var.image
 }
 }

 network_interface {
 network = "default"

 access_config {
 // Ephemeral IP
 }

 }

 metadata = {
 ssh-keys = "your ssh keys to login"
 }
}

allow ssh traffic
resource "google_compute_firewall" "allow-ssh" {
 name = "allow-ssh"
 network = "default"
 allow {
 protocol = "tcp"
 ports = ["22"]
 }
 source_ranges = ["0.0.0.0/0"]
 target_tags = ["ssh"]
}

Listing 4-6Main.tf

The compute engine public IP is displayed on the output screen with the help of the output.tf file (see Listing 4-7).output "webserver_ip" {
 value = google_compute_instance.default.network_interface.0.access_config.0.nat_ip
}

Listing 4-7Output.tf

Now run terraform init, plan, and apply, as shown in Figure 4-14. The output is shown in Figure 4-15.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig14_HTML.jpg]
Figure 4-14GCP Terraform code plan

[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig15_HTML.jpg]
Figure 4-15GCP Terraform code output

After running terraform apply, let’s verify the virtual machine instance configuration on the GCP console. Navigate to the VM instance pane (see Figure 4-16) to verify the provisioned instance.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig16_HTML.jpg]
Figure 4-16GCP console-level validation of VM instance

Creating a GCS Bucket with Terraform
Listing 4-8 creates a GCS bucket. We provide all the input variable details in the vars.tf file shown in Listing 4-9. The provider.tf file contains the project details.variable "project" {
 type = string
 default = "your project id"
 description = "GCP Project to be used for creating resources"
}

Listing 4-8Provider.tf

variable "name" {
 description = "The name of the bucket."
 type = string
 default = "terrahashi"
}

variable "location" {
 description = "The location of the bucket."
 type = string
 default = "us-east1"
}

variable "storage_class" {
 description = "The Storage Class of the new bucket."
 type = string
 default = "STANDARD"
}

variable "labels" {
 description = "A set of key/value label pairs to assign to the bucket."
 type = map(string)
 default = null
}

variable "bucket_policy_only" {
 description = "Enables Bucket Policy Only access to a bucket."
 type = bool
 default = true
}

variable "versioning" {
 description = "While set to true, versioning is fully enabled for this bucket."
 type = bool
 default = true
}

variable "force_destroy" {
 description = "When deleting a bucket, this boolean option will delete all contained objects. If false, Terraform will fail to delete buckets which contain objects."
 type = bool
 default = false
}

variable "retention_policy" {
 description = "Configuration of the bucket's data retention policy for how long objects in the bucket should be retained."
 type = object({
 is_locked = bool
 retention_period = number
 })

 default = null
}

variable "encryption" {
 description = "A Cloud KMS key that will be used to encrypt objects inserted into this bucket"
 type = object({
 default_kms_key_name = string
 })
 default = null
}

Listing 4-9Vars.tf

The main.tf file keeps the logical configuration of the components used to provision GCS with its retention policy and lifecycle rule, as shown in Listing 4-10.provider "google" {
 project = var.project
 credentials = file("#########################.json") // your credentials.json to be used here
}

#--
Creating GCS Bucket
#--

resource "google_storage_bucket" "bucket" {
 name = var.name
 project = var.project
 location = var.location
 storage_class = var.storage_class
 uniform_bucket_level_access = var.bucket_policy_only
 labels = var.labels
 force_destroy = var.force_destroy

 versioning {
 enabled = var.versioning
 }

 dynamic "retention_policy" {
 for_each = var.retention_policy == null ? [] : [var.retention_policy]
 content {
 is_locked = var.retention_policy.is_locked
 retention_period = var.retention_policy.retention_period
 }
 }

 dynamic "encryption" {
 for_each = var.encryption == null ? [] : [var.encryption]
 content {
 default_kms_key_name = var.encryption.default_kms_key_name
 }
 }

 lifecycle_rule {
 action {
 type = "SetStorageClass"
 storage_class = "NEARLINE"
 }
 condition {
 age = 7
 }

 }
 lifecycle_rule {
 action {
 type = "SetStorageClass"
 storage_class = "COLDLINE"
 }
 condition {
 age = 30
 }
 }
}

Listing 4-10Main.tf

The output.tf file displays the bucket name with information about its specifications and configurations (see Listing 4-11).output "bucket" {
 description = "The created storage bucket"
 value = google_storage_bucket.bucket
}

Listing 4-11Output.tf

Run terraform init, plan, and apply to create the GCS bucket. The output is shown in Figure 4-17.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig17_HTML.jpg]
Figure 4-17GCP Terraform code output

After running the three use cases for the VPC/subnet, virtual instance, and GCS bucket, you can execute terraform destroy

 in the respective code directories to clean all the resources, as shown in Figure 4-18.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig18_HTML.jpg]
Figure 4-18GCP terraform destroy

Automating the Azure Public Cloud Using Terraform
To use services on the Microsoft Azure cloud, you must have an Azure account. This section explains how to create a Microsoft account for Terraform integration. Microsoft Azure offers a free 30-day trial for all new accounts.
Navigate to https://azure.microsoft.com and create a free account to begin using Azure cloud services.
Click the Start Free button to begin the free trial subscription. Enter your email address and password.
Enter your information in all the fields required to create the account, and then click Next (see Figure 4-19).

[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig19_HTML.jpg]
Figure 4-19Provide details for account creation

Confirm your identification via phone call or text message per the information provided in the previous step. Enter your credit card information for verification, as shown in Figure 4-20.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig20_HTML.jpg]
Figure 4-20Credit card information for account creation

Select the checkboxes to accept Microsoft Azure’s terms and conditions. Click the Sign Up button to complete the account creation process (see Figure 4-21).

[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig21_HTML.jpg]
Figure 4-21Complete sign-up process

Navigate to https://login.microsoftonline.com to log in to your Azure account using the Azure portal.
The next step is to create an Azure service principal that integrates Terraform with Azure. Navigate to Azure Active Directory → App registrations and click the +New Application Registration button, as shown in Figure 4-22.

[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig22_HTML.jpg]
Figure 4-22Creating a service principal

Provide a name and URL (test.com) for the application. Select Web app/API as the type of application (see Figure 4-23). After setting the values, click the Create button.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig23_HTML.jpg]
Figure 4-23Providing details for service principal

Once registration is completed, note the application ID and tenant ID (see Figure 4-24). These values are used for integration.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig24_HTML.jpg]
Figure 4-24Service principal

Figure 4-25 shows the Azure services that we automated using Terraform. For this exercise, we create a VNet (virtual network), subnet, NSG, and virtual machine using Terraform. Let’s begin the exercise.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig25_HTML.jpg]
Figure 4-25Azure hands-on exercise

Clone the files from the GitHub repository used in this exercise by using the following command.git clone https://github.com/dryice-devops/Terraform-Azure-UseCase-Automation/tree/master

You see the directory structure under the cloned directory, as shown in Figure 4-26.

[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig26_HTML.jpg]
Figure 4-26Clone Terraform directories

Navigate to the base directory (as shown in Figure 4-26) and update the provider.tf file’s subscription_id, client_id, client_secret, and tenant_id fields, as shown in Listing 4-12 (using the service principal information). These variables are being referred to the provider.tf file. Also, update the variable value for the VNet name and resource group name and location used for creating the VNet. Update the vars.tf file (see Listing 4-13).variable "subscription_id" {
 type = string
 default = "Enter Subscription ID"
 description = "Specifies the ID of the Subscription"
}

variable "client_id" {
 type = string
 default = "Enter Client ID"
 description = "Specifies the ID of the Azure Client"
}

variable "client_secret" {
 type = string
 default = "Enter client_secret"
 description = "Specifies the Client Secret"
}

variable "tenant_id" {
 type = string
 default = "Enter Tenant ID"
 description = "Specifies the ID of the Tenant"
}

variable "location" {
 type = string
 default = "West US"
 description = "The Location/Region where the Virtual network is created"
}

Listing 4-12Update Provider.tf File

variable "vnet_name" {
 type = string
 default = "Test"
 description = "The name of the Vnet to be used in VM Scale Set"
}

Listing 4-13Vars.tf File

Let’s review the main.tf file, which contains details of the VNet provisioned using Terraform (see Listing 4-14). Azure Virtual Network, or VNet, is the fundamental building block for your resources, which are running in a private network. VNet enables many types of Azure resources (e.g., virtual machines) to securely communicate with each other.################ Creating Resource group ####################

resource "azurerm_resource_group" "demo" {
 name = var.rg_name
 location = var.location
}

############### Creating virtual Network ###################

resource "azurerm_virtual_network" "demo" {
 name = var.vnet_name
 address_space = ["10.0.0.0/16"]
 location = var.location
 resource_group_name = var.rg_name
 depends_on = [azurerm_resource_group.demo]

Listing 4-14VNet Terraform Main.tf File

Run terraform init, plan, and apply to create Azure VNet. The output is shown in Figure 4-27.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig27_HTML.jpg]
Figure 4-27VNet Terraform execution

After successful provisioning, you can validate the VNet configuration using the Azure portal (see Figure 4-28).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig28_HTML.jpg]
Figure 4-28VNet validation from Azure portal

Now that our resource group and VNet have been created, let’s begin creating a subnet and NSG using Terraform.
Navigate to the network directory (as shown in Figure 4-26) and update the var.tf file’s subscription_id, client_id, client_secret, and tenant_id fields (see Listing 4-15), using the service principal information). These variables are referred to in the provider.tf file. Also, update the variable value for the subnet name, VNet name, resource group name (use the name of the resource group used for the VNet use case), and the name and location used to create the subnet and NSG. The NSG rule and subnet prefix sizes are already defined in the main.tf file (see Listing 4-16). A network security group contains security rules that allow or deny inbound and outbound traffic from several types of Azure resources.variable "subscription_id" {
 type = string
 default = "Enter Subscription ID"
 description = "Specifies the ID of the Subscription"
}

variable "client_id" {
 type = string
 default = "Enter Client ID"
 description = "Specifies the ID of the Azure Client"
}

variable "client_secret" {
 type = string
 default = "Enter client_secret"
 description = "Specifies the Client Secret"
}

variable "tenant_id" {
 type = string
 default = "Enter Tenant ID"
 description = "Specifies the ID of the Tenant"
}

variable "location" {
 type = string
 default = "West US"
 description = "The Location/Region where the Virtual network is created"
}

variable "rg_name" {
 type = string
 default = "Test"
 description = "The name of the Resource Group where the Resource will be Created"
}

variable "subnet_name" {
 type = string
 default = "Test"
 description = "The name of the Subnet to be used in VM Scale Set"
}

variable "vnet_name" {
 type = string
 default = "Test"
 description = "The name of the Subnet to be used in VM Scale Set"
}

variable "nsg_name" {
 type = string
 default = "Test"
 description = "The name of the Network Security Group to be used to InBound and OutBound Traffic"
}

Listing 4-15Vars and Provider File

################ Creating Subnet ###########################

resource "azurerm_subnet" "demo" {
 name = var.subnet_name
 address_prefix = ["10.0.2.0/24"]
 resource_group_name = var.rg_name
 virtual_network_name = var.vnet_name
}

################# Creating NSG and Rule #####################

resource "azurerm_network_security_group" "demo" {
 name = var.nsg_name
 resource_group_name = var.rg_name
 location = var.location
 security_rule {
 name = "HTTP"
 priority = 1020
 direction = "Inbound"
 access = "allow"
 protocol = "tcp"
 source_port_range = "*"
 destination_port_range = "80"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 }
tags = {
 ENVIRONMENT = "Terraform Demo"
 }

Listing 4-16Subnet prefix and NSG definitions in Main.tf File

Run terraform init, plan, and apply to create an Azure subnet and NSG. The output is shown in Figure 4-29.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig29_HTML.jpg]
Figure 4-29Subnet and NSG Terraform execution

Now that our resource group and VNet have been created, let’s extend the code to create a public IP, network interface, and a virtual machine. We used the VNet and subnet from other Terraform function data.
Now that the VNet, subnet, and NSG have been created, let’s create a virtual machine using Terraform. All the configurations are defined in the main.tf file shown in Listing 4-17. All the variables are defined in Listing 4-18.########## Fetch Info of existing Resources ###################

data "azurerm_subnet" subnet {
 name = var.subnet_name
 resource_group_name = var.rg_name
 virtual_network_name = var.vnet_name
}

data "azurerm_network_security_group" "nsg" {
 name = var.nsg_name
 resource_group_name = var.rg_name
}

############# Create Public Ip ################################

resource "azurerm_public_ip" "demo" {
 name = var.pip_name
 location = var.location
 resource_group_name = var.rg_name
 allocation_method = "Static"

 tags = {
 ENVIRONMENT = "Terraform Demo"
 }
}

############# Create Network Interface ########################

resource "azurerm_network_interface" "demo" {
 name = var.network_int_name
 location = var.location
 resource_group_name = var.rg_name
 ip_configuration {
 name = "demo"
 subnet_id = data.azurerm_subnet.subnet.id
 private_ip_address_allocation = "Dynamic"
 public_ip_address_id = azurerm_public_ip.demo.id
 }
 tags = {
 ENVIRONMENT = "Terraform Demo"
 }
}

Connect the Security Groups to the network interface

resource "azurerm_network_interface_security_group_association" "demo" {
 network_interface_id = azurerm_network_interface.demo.id
 network_security_group_id = data.azurerm_network_security_group.nsg.id
}

############# Create virtual Machine #########################

resource "azurerm_virtual_machine" "demo" {
 name = "demo-vm"
 location = var.location
 resource_group_name = var.rg_name
 network_interface_id = [azurerm_network_interface.demo.id]
 vm_size = var.node_size

 storage_image_reference {
 publisher = "Canonical"
 offer = "UbuntuServer"
 sku = "16.04-LTS"
 version = "latest"
 }

 storage_os_disk {
 name = "demoosdisk"
 caching = "ReadWrite"
 create_option = "FromImage"
 managed_disk_type = "Standard_LRS"
 }

 os_profile {
 computer_name = "demo-vm"
 admin_username = var.username
 admin_password = var.password
 }

 os_profile_linux_config {
 disable_password_authentication = false
 }

 tags = {
 ENVIRONMENT = "Terraform Demo"
 }
}

Listing 4-17Main.tf

variable "vnet_name" {
 type = string
 default = "Test"
 description = "The name of the Vnet to be used in VM Scale Set"
}

variable "subnet_name" {
 type = string
 default = "Test"
 description = "The name of the Subnet to be used in VM Scale Set"
}

variable "nsg_name" {
 type = string
 default = "Test"
 description = "The name of the Network Security Group to be used to InBound and OutBound Traffic"
}

variable "pip_name" {
 type = string
 default = "Test"
 description = "The name of the Public Ip for accessing VM"
}

variable "network_int_name" {
 type = string
 default = "Test"
 description = "The name of the Network interface"
}

variable "node_size" {
 type = string
 default = "Standard_DS1_v2"
 description = "The size of the Azure VM Node"
}

variable "username" {
 type = string
 default = "SU-user"
 description = "The name of the user for VM Login"
}

variable "password" {
 type = string
 default = "#YLPRgg89"
 description = "The password of the user for VM Login"
}

Listing 4-18Vars.tf

Run terraform init, plan, and apply to create the Azure VM, NIC, and Public IP. The output is shown in Figure 4-30.[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig30_HTML.jpg]
Figure 4-30Virtual machine Terraform execution

After successful provisioning, you can also validate the virtual machine configuration using the Azure portal (see Figure 4-31).[image: ../images/492265_1_En_4_Chapter/492265_1_En_4_Fig31_HTML.jpg]
Figure 4-31Virtual machine validation in Azure portal

After completing the exercise, be sure to clean up all resources by executing terraform destroy for the virtual machine, subnet, NSG, and VNet.
Summary
This chapter provided hands-on exercises for automating Azure and GCP services using open source Terraform.
The next chapter covers a HashiCorp Vault solution and how it manages secrets in IaC automation scenarios using Terraform.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_5

5. Getting Started with Vault

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter covers the core concepts of Vault.	Introduction to HashiCorp Vault

	Understanding Vault’s logical architecture

	Understanding Vault’s security model

	Installing Vault and integration with AWS

Note
In this chapter, all references to Vault are for the open source version. Thus, features like disaster recovery, enterprise governance, compliance, and replication across DCs are not explained because they are associated with the Enterprise version of Vault.

Introduction to HashiCorp Vault
HashiCorp Vault is used for storing and securely accessing secrets. You can access the secrets using API keys and passwords. Secrets are defined as any form of sensitive credentials that need to be controlled and can be used to unlock sensitive information. Secrets in Vault could be of any type, including sensitive environment variables, database credentials, API keys, RSA tokens, and more.
Protecting secrets and access in automation is of primary importance. Vault makes it easy to manage secrets and access by leveraging APIs and a user-friendly interface. You can monitor detailed logs and fetch the audit trail describing who accessed which secrets and when.
User authentication to Vault can either be via password or using dynamic values to generate temporary tokens that allows a particular user to access a secret. Policies can also be defined using HashiCorp Configuration Language (HCL) to determine which user gets what level of access.
The following are Vault’s key features.	Data encryption: Vault can easily encrypt and decrypt credentials. It provides a security configuration feature to define encryption parameters, and developers can store encrypted data in it without having to design their own encryption methods.

	Revocation: Vault provides a default feature that revokes credentials after a fixed duration (768 hours). This value is configurable and can be set per user requirements. Revocation assists in key and secret rotation and locking down systems in the event of an intrusion.

Note
The leasing method of dynamic credentials ensures that Vault knows each client’s secrets. This makes it possible to revoke specific leases in any attack/hacking attempt.

	On-demand secrets: Vault can generate on-demand secrets for few methods (e.g., AWS or SQL database). It can handle dynamic secrets, which are generated on demand basis. A secret ID is unique for a particular user. Dynamic secrets are more secure than static secrets, which are predefined and shared. Vault can revoke access when the lease expires for on-demand secrets.

	Renewal: Vault has a secret renewal feature. It can revoke credentials, and end users can renew secrets through the renew API. By attaching a lease period to secrets, Vault has information on maximum time to live, and after that duration, secrets are automatically rotated.

	Secret management: Secret management is one of Vault’s primary features. It can store any type of credentials, including sensitive environment variables, API keys, and databases. Vault allows you to take full control of any sensitive secrets used for automating hybrid cloud services.

Understanding Vault’s Logical Architecture
Now let’s look at the logical architecture of the HashiCorp Vault solution, as shown in Figure 5-1.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig1_HTML.jpg]
Figure 5-1Vault logical architecture

The following are Vault’s key components.	The storage backend stores encrypted data/secrets.

	A barrier is used for all data flows between Vault and backend storage.

	A client token verifies the identity of the end user.

	A secret controls access (e.g., passwords).

	An auth method authenticates the application and users connecting to Vault.

Figure 5-2 shows a high-level flow between an admin or application and Vault for accessing secrets. It is used for managing secrets; you can secure your credentials with Vault.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig2_HTML.jpg]
Figure 5-2Application and Vault architecture

While applications can request secrets from Vault based on the policy configured for access and secret management, the admin can define the backend policies for secret lifecycle governance.
Understanding Vault’s Security Model
Vault security architecture is designed to meet the key infosec controls i.e. confidentiality, integrity, availability, accountability, and authorized access using authentication. Vault helps prevent eavesdropping or tampering attempts by leveraging data at rest and transit encryption techniques. A similar approach is used to protect data in backend storage leveraged for secrets.
Now let’s look at the threat vector or paths of intrusion and see how Vault helps protect secrets from such threats. Essentially, there are two kinds of threats: external and internal.
Vault securely manages sensitive data. Its security model is leveraged to ensure authentication, availability, and integrity to secure sensitive data. End user or application access to data is governed by a robust authentication and authorization model and policies to provide granular control for security and access management.
As shown in Figure 5-3, there are three different systems that are of concern when it comes to accessing Vault.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig3_HTML.jpg]
Figure 5-3Managing secrets and protecting sensitive data

The client, an application or automation code, accesses Vault using an API or CLI interface to access a secret. Clients use secure TLS-based connections to verify the server’s identity and establish a secure communication channel with Vault. The server requires that the client provide a client token for each Vault access request in order to identify the client. A client that does not provide its own token is not allowed any login or secret access. Vault communicates with the backend over TLS to provide an additional layer of security.
End users sometimes worry that attackers may hack Vault’s system data despite robust authentication and authorization features. Within the traditional Vault systems, a major security concern is that attackers may successfully access secret material that they are not authorized to access. This kind of threat is an internal threat.
When a client first authenticates, an auth method verifies the client’s identity and, in return, gets a list of associated ACL policies. This association is primarily configured by the administrators or operators.
Figure 5-4 shows that if an application wants to communicate with sensitive data, Vault creates a randomly generated token for authentication.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig4_HTML.jpg]
Figure 5-4App integrates with Vault data

The application sends a token upon receiving each request for communication. Vault checks the validity of the token for communication and generates an ACL based on the associated policies. Based on the ACL policy rule, the application performs many actions.
Installing Vault CLI and Integration with AWS
Let’s install HashiCorp Vault CLI

 and see how it works in a hands-on exercise where we will use AWS public cloud secrets for managing secrets.
Before installing Vault, you need an AWS S3 bucket to be created and an AWS KMS service to be set up first. This is used later in another hands-on exercise. Let’s use the same AWS account created in Chapter 2 for the S3 bucket.
Sign in to the AWS console and navigate to S3 services under Storage and Content Delivery. Click the Create Bucket button and provide the name and region information to create the bucket, as shown in Figure 5-5.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig5_HTML.jpg]
Figure 5-5Create S3 bucket

Note While performing the hands on execercise we assume user has KMS keys with IAM user permission to integrate with the Vault setup.
To install Vault, you need a virtual machine with the Linux operating system. We are using CentOS for our hands-on exercise however HashiCorp Vault also supports other Linux flavors like Ubuntu, RHEL and Debian. Execute the following command to install the yum-utils package used to manage the package repository on a Linux system (see Figure 5-6).sudo yum install -y yum-utils

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig6_HTML.jpg]
Figure 5-6Install yum-utils

Execute the following command to add the HashiCorp repository to install Vault using the yum-config manager (see Figure 5-7).sudo yum-config-manager –add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig7_HTML.jpg]
Figure 5-7Add HashiCorp repository

Execute the following command to install Vault on the Linux server, as shown in Figure 5-8.sudo yum -y install vault

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig8_HTML.jpg]
Figure 5-8Installation of Vault

Execute the following commands to verify Vault installation (see Figures 5-9, 5-10, and 5-11).vault --help

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig9_HTML.jpg]
Figure 5-9Verify Vault installation

vault --version

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig10_HTML.jpg]
Figure 5-10Verify Vault version

sudo service vault status

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig11_HTML.jpg]
Figure 5-11Verify service status

Now let’s access the Vault UI. Before that you need to update the Vault config file and disable HTTPS access for the lab exercise. This feature is typically enabled in a production or customer environment however in this lab exercise we are disabling the feature to avoid any certificate errors in HTTPS-based access.
Navigate to /etc/vault.d path and edit the vault.hcl file by uncommenting the HTTP listener block and commenting out HTTPS listener block (see Figure 5-12).[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig12_HTML.jpg]
Figure 5-12Disable HTTPS listener

Save the /etc/vault.d/vault.hcl file after making the changes, and restart Vault. After restarting the Vault service, access the UI at http:// <IP address of your Vault server>:8200/ui/vault/init (see Figure 5-13).[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig13_HTML.jpg]
Figure 5-13Check Vault UI

Execute the following commands to set the VAULT_ADDR variable and check the Vault server status (see Figure 5-14).export VAULT_ADDR='http://127.0.0.1:8200'
vault status

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig14_HTML.jpg]
Figure 5-14Check Vault status

Now let’s integrate the S3 bucket created earlier as a backend for Vault. Navigate to /etc/vault.d path and edit the vault.hcl file to provide information on the AWS S3 bucket name, the bucket region, KMS ID, and the access-secret keys (see Figures 5-15(a), 5-15(b), and 5-16). Save the file and restart Vault.#Example of vault.hcl file

ui = true

#mlock = true
#disable_mlock = true

Storage "file" {
 Path = "/opt/vault/data"
}

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig15_HTML.jpg]
Figure 5-15(a)Navigate to /etc/vault.d and edit vault.hcl file

storage "s3" {
 access_key = "Enter Access Key"
 secret_key = "Enter Secret Keys"
 bucket = "Add bucket name"
 region = "Enter Aws Region"
}

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig16_HTML.jpg]
Figure 5-15(b)Update config file for S3

storage "awskms" {
 access_key = "Enter Access Key"
 secret_key = "Enter Secret Keys"
 region = "Enter Aws Region"
 kms_key_id = "Enter KMS ID"
}

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig17_HTML.jpg]
Figure 5-16Update config file with KMS values

Execute the following command to check Vault status. It now displays an AWS KMS recovery seal, as shown in Figure 5-17.vault status

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig18_HTML.jpg]
Figure 5-17Check Vault status

Execute the following command to initialize the Vault server, as shown in Figure 5-18. Copy the root token returned as an output of the command. We use this value later in the exercise.vault operator init –recovery-shares=1 –recovery-threshold=1

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig19_HTML.jpg]
Figure 5-18Initialize

 Vault

Now execute the following command to verify that the initialization status is true and the sealed status is false (see Figure 5-19).vault status

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig20_HTML.jpg]
Figure 5-19Check Vault status

After the initialization is completed, you can navigate to the AWS console and verify that Vault objects are now stored in the S3 bucket, as shown in Figure 5-20.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig21_HTML.jpg]
Figure 5-20S3 bucket with initialized Vault objects

Log in to Vault using the root token generated in the previous step by executing the following command, as shown in Figure 5-21.vault login <Your root token>

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig22_HTML.jpg]
Figure 5-21Vault login

Execute the following command to enable the secret engine, as shown in Figure 5-22.vault secrets enable kv

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig23_HTML.jpg]
Figure 5-22Enable the secret engine

Now let’s add some basic credentials into the Vault server for testing by executing the following command, as shown in Figure 5-23.vault kv put kv/foo test=mycred

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig24_HTML.jpg]
Figure 5-23Entering credentials to Vault

You can also validate the credentials added to Vault by logging in to the UI using the token root credentials. Navigate to the Secrets tabs to view details of the foo secret under the key, as shown in Figure 5-24.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig25_HTML.jpg]
Figure 5-24Check secrets in Vault UI

Similarly, you can store multiple types of secrets in Vault, including sensitive environment variables, API keys, RSA tokens, and more.
Now let’s add some API keys, as shown in Figure 5-25.vault kv put kv/token token=xxxxxxxx

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig26_HTML.jpg]
Figure 5-25Adding a token to Vault

You can validate the token added in the Vault UI, as shown in Figure 5-26.[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig27_HTML.jpg]
Figure 5-26Check token on Vault UI

You can delete the credentials by executing the following command, as shown in Figure 5-27.vault kv delete kv/foo

[image: ../images/492265_1_En_5_Chapter/492265_1_En_5_Fig28_HTML.jpg]
Figure 5-27Delete test cred

Summary
This chapter covered the main concepts of HashiCorp Vault. We learned how to install Vault CLI and performed a hands-on exercise on managing secrets in an AWS public cloud.
The next chapter covers the HashiCorp Packer solution and how it automates image management in a hybrid cloud environment.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_6

6. Getting Started with HashiCorp Packer

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter covers the following HashiCorp Packer topics.	Introduction to open source HashiCorp Packer

	Installing Packer

	Hands-on exercise in automating AWS AMI creation

Introduction to HashiCorp Packer
Packer is an open source HashiCorp solution for creating machine images for multiple platforms using the IaC methodology. It is a lightweight tool written in the GO language. It has rich integrations for creating machine images with support for multiple platforms in parallel by leveraging a single-source code version-controlled declarative configuration.
Packer capabilities cover two key areas. The first one is building base images for application infrastructure. Packer creates an image that contains all the dependencies, patches, and configurations required to run one or multiple applications. The second one is creating golden images (where everything is baked inside the image). With Packer now Golden image configuration can be automated for initial release as well as future releases can be protected against any configuration drift.
Packer uses a template file that configures the various components used to create one or more machine images. Packer templates consist of the following components.
Builders
The builders block is the engine of the template file. It is responsible for turning templates into a machine and then back into an image for various platforms. Listing 6-1 shows the build section within the Packer template.{
 "builders": [
 // ... one or more builder definitions here
]
}

Listing 6-1Builders Block in Packer Template

A simple AWS builders block is shown in the following example. You can define details regarding the AWS AMI in fields like the AMI type, region, and source AMI, from which the image has to be baselined."builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "us-west-1",
 "source_ami": "ami-sd3543ds",
 "instance_type": "t2.medium",
 "ssh_username": "ec2-user",
 "ami_name": "packer-demo {{timestamp}}"
}]

Communicators
Communicators are considered the transport layer in Packer. They execute scripts and upload files to machines created from images and are configured within the builder section. Packer supports the following three types of communicators.	none No communicator is used. If this is set, most provisioners cannot be used.

	ssh An SSH connection is established to the machine. It is usually the default.

	winrm A WinRM connection is established.

Now let’s review the following code snippet, which shows an SSH communicator configuration. "ssh_username": "{{ user `aws_ssh_username` }}",
 "ssh_password": "{{ user `aws_ssh_password` }}",
 "ssh_pty" : "true"

If an SSH agent is configured on the host running Packer, and SSH agent authentication is enabled in the communicator config, Packer automatically forwards the SSH agent to the remote host.
Provisioners
Provisioners are optional when it comes to automating image creation using Packer. If no provisioners are defined within a template, then no software (other than the defaults) is installed within the resulting machine images.
Now let’s review the code snippet shown in Listing 6-2, which shows a provisioners configuration and a sample configuration using a shell type provisioner for executing demo-script.sh.{
 "provisioners": [
 // ... one or more provisioner definitions here
]
}
"provisioners": [{
 "type": "shell",
 "script": "demo-script.sh"
}]

Listing 6-2Provisioners Configuration

Post-Processors
Post-processors executes after the builder and provisioner components to execute any post-processing task upon the resulting image. Examples include compressing files, uploading artifacts, and so forth.{
 "post-processors": [
 // ... one or more post-processor definitions here
]
}

Listing 6-3Post-Processors

There are three ways to define a post-processor in a template (as shown in Listing 6-3): simple definitions, detailed definitions, and sequence definitions. The simple and detailed definitions are shortcuts for a sequence definition.
A simple definition is a string name of the post-processor when no additional configuration is needed. The following is an example.{
 "post-processors": ["compress"]
}

A detailed definition (JSON object) contains a type field to denote the post-processor. It is used when additional configuration is needed. The following is an example.{
 "post-processors": [
 {
 "type": "compress",
 "format": "tar.gz"
 }]
}

A sequence definition

 is a JSON array. The post-processors defined in the array are run in order, with the artifact of each feeding into the next. The following is an example.{
 "post-processors": [
 ["compress", {"type": "upload", "endpoint": http://example.com }]
]
}

Variables
The variables supported by Packer are of 2 types: user-defined and environment variables. The variables block holds all the default variables within a template. The following is an example where we are using an instance_type variable for the EC2 server size and the region variable to provide the AWS region for the image.

"variables": {
 "instance_type": "t2.medium",
 "region": "us-west-1"
 }

Using Declared Variables in Templates
The declared variables can be accessed using “{{user `variable-name`}}” syntax.
The following is an example where instead of providing hard-coded values, you can take input from the user when executing the code."instance_type": "{{user `instance_type`}}",
"region": "{{user `region`}}"

Using Environment Variables in Templates
Packer lets us use the system’s environment variables. You need to declare the environment variables in the variable section to use them in other parts of the template. You can declare that variable as follows.Example:
"variables": {
 "script_path": "{{env `SCRIPT_PATH`}},
}

Installing Packer
Let’s begin by installing Packer on a Linux virtual machine. In this exercise, we are using the Red Hat OS to install Packer.
Execute the following command to download the Packer package from the HashiCorp website.wget https://releases.hashicorp.com/packer/1.6.6/packer_1.6.6_linux_amd64.zip

Execute the following command to extract the Packer binaries (see Figure 6-1).unzip packer_1.6.6_linux_amd64.zip

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig1_HTML.jpg]
Figure 6-1Extracting Packer binaries

Execute the following command (first 2 commands) to move the extracted Packer binaries to /usr/bin path (see Figure 6-2) and navigate to /usr/bin path. After installing Packer, verify the installation by executing the second and third commands (see Figure 6-2 and 6-3).mv packer /usr/bin

cd /usr/bin

Now Run the command to ensure that packer is installed properly.
packerpacker –version[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig2_HTML.jpg]
Figure 6-2Verifying

 Packer

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig3_HTML.jpg]
Figure 6-3Verifying Packer version

Hands-on Exercise to Automate AWS AMI
Now let’s do a hands-on exercise to automate AWS AMI. In this example, we bake a t2.micro AMI using a shell provisioner. We use a shell script for hardening the image using security baselines. After creating the image, we will update it by bundling an application package using Packer. Figure 6-4 shows a high-level flow of the activities performed in this exercise.[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig4_HTML.jpg]
Figure 6-4Automating AWS AMI creation using Packer

Before starting the exercise, ensure that the AWS CLI is installed and configured on the Packer server with the credentials configured for the AWS account created in the previous chapter.
First, set up the AWS CLI tool on the Packer server. Execute the following command to install Python 3.6 on the system.sudo yum install python36

Verify the Python version by executing the following command (see Figure 6-5).python3 –version

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig5_HTML.jpg]
Figure 6-5AWS CLI tool prerequisite installation

Install the AWS CLI by executing the following command.pip3 install awscli –-upgrade –user

Verify the AWS CLI version by executing the following command (see Figure 6-6).aws –version

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig6_HTML.jpg]
Figure 6-6AWS CLI tool installation validation

Configure the AWS account credentials (access and secret key) by executing the following command. Add the secret key, access key (see Chapter 5), and region (eu-west-1). Select JSON as the output format (see Figure 6-7).

aws configure

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig7_HTML.jpg]
Figure 6-7AWS CLI tool configuration

Execute the following command to set up the Packer project for the hands-on exercise.mkdir packer_project

Create a script file named server_hardening.sh in the packer_project directory and add the image hardening contents to it. The following are code snippets from the image server baselining script. They are used for regularly checking the integrity of the filesystem.
The following example code is ensuring the integrity of the filesystem.sudo echo '0 5 * * * /usr/sbin/aide –check' > /tmp/filenew
sudo crontab -u root -l | cat - /tmp/filenew | crontab -u root –
sudo rm -rf /tmp/filenew

The following snippet ensures that the SELinux state is set to “Enforcing” and the policy is configured.Ensure the SELinux state is Enforcing
sudo sed -I '/^SELINUX=/c SELINUX=enforcing' /etc/selinux/config
Ensure Selinux policy is configured
sudo sed -I '/^SELINUXTYPE=/c SELINUXTYPE=targeted' /etc/selinux/config

The following code snippet triggers security patch installation.Ensure updates, patches and additional security software are installed
sudo yum update –security -y

The following code ensures that time synchronization is in use.sudo yum install ntp -y
sudo echo "restrict -4 default kod nomodify notrap nopeer noquery" >> /etc/ntp.conf
sudo echo "restrict -6 default kod nomodify notrap nopeer noquery" >> /etc/ntp.conf

You can download the entire script by cloning it from the following GitHub location and executing the command, as shown in Figure 6-8.git clone git@github.com:dryice-devops/packer.git

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig8_HTML.jpg]
Figure 6-8Cloning script from GitHub

The directory created after cloning contains the templates and scripts for our exercise (see Figure 6-9).[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig9_HTML.jpg]
Figure 6-9Reviewing files from GitHub

Create an aws_ami.json file in the packer_project directory created in the previous step and add content, as shown in Figure 6-11. Copy the cloned server_harderning.sh file to the packer_project directory.[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig10_HTML.jpg]
Figure 6-10Fetching AMI id from AWS Console

Note
We are using custom AMI (ami-0881f3111e1e8797b) as shown in Figure 6-10, but you can use any RHEL AMI in the marketplace.

Example:
{
 "variables": {
 "ami_id": "ami-xxxxxxx",
 },
 "builders": [{
 "type": "amazon-ebs",
 "region": "eu-west-1",
 "source_ami": "{{user `ami_id`}}",
 "instance_type": "t2.micro",
 "ssh_username": "ec2-user",
 "ami_name": "PACKER-DEMO-1.0",
 "tags": {
 "Name": "PACKER-DEMO-1.0",
 "Env": "DEMO"
 }
 }],

 "provisioners" [
 {
 "type": "shell",
 "script": "server_hardening.sh"
 }
]

}

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig11_HTML.jpg]
Figure 6-11Packer_project directory content

Now that the template is ready, the next step will be to execute it for baking the AMI with hardening instructions. Execute the following command to validate the Packer template image. You can inspect the template with the second command (Output shown in Figure 6-12).packer validate aws_ami.json
packer inspect aws_ami.json

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig12_HTML.jpg]
Figure 6-12Validate

 and inspect Packer template

Execute the following command to build the AMI.packer build aws_ami.json

You can view the AMI by navigating to the EC2 service in AWS Console and clicking AMI (see Figure 6-13).[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig13_HTML.jpg]
Figure 6-13View AWS AMI using AWS

Now that we have created the first version of our image, let’s perform an exercise to update this image using Packer. Suppose that the AMI we baked in the previous step had an AMI ID, “ami-0bf84e68a94b25c98”, from AWS. Let’s create a new Packer template called aws_http.json in the packer_project directory, as shown in the following example. Replace the ami_id variable value with the AMI ID created in the AWS account.Example:
{
 "variables": {
 "ami_id": "ami-0bf84e68a94b25c98",
 "app_name": "httpd"
 },
 "builders": [{
 "type": "amazon-ebs",
 "region": "eu-west-1",
 "source_ami": "{{user `ami_id`}}",
 "instance_type": "t2.micro",
 "ssh_username": "ec2-user",
 "ami_name": "PACKER-DEMO-1.1-{{user `app_name` }}",
 "tags": {
 "Name": "PACKER-DEMO-1.0-{{user `app_name` }}",
 "Env": "DEMO"
 }
 }],

 "provisioners" [
 {
 "type": "shell",
 "script": "app_script.sh"
 }
]

}

Now let’s create the app_script.sh script file under the packer_project directory, which includes the steps to install Apache as a package in the image.#!/bin/bash

Sudo yum install apache -y
Sudo systemctl start httpd
Sudo systemctl status httpd
Sudo systemctl enable httpd

Before creating a new image using the updated Packer template, let’s validate the template by executing the following command.packer validate aws_http.json

Note
This command validates the template code (syntax) and returns a zero exit status when successful and a non-zero exit status when a failure.

After successful validation, execute the following command to update AWS AMI with an Apache package in it (see Figure 6-14). Executing the following command validates from AWS.Packer build aws_http.json

[image: ../images/492265_1_En_6_Chapter/492265_1_En_6_Fig14_HTML.jpg]
Figure 6-14View updated AWS AMI using AWS

Summary
This chapter covered the main concepts of HashiCorp Packer. You learned how to install open source Packer. You also did a hands-on exercise to create and update AWS AMI.
The next chapter covers the HashiCorp Consul solution and how it manages network access in an application.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_7

7. Getting Started with HashiCorp Consul

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter covers the core concepts of HashiCorp Consul.	Introduction to HashiCorp Consul

	Installing Consul

	Service discovery using Consul

	DNS and health checks using Consul

Introduction to HashiCorp Consul
HashiCorp Consul provides service discovery, health checks, load balancing, service graph, identity enforcement via TLS, interservice communication, network segmentation, and distributed service configuration management.
The disadvantage with a monolithic application is that if any subcomponents of an application fail, it necessitates redeployment of the entire stack, which is not ideal. The same monolithic app can be delivered as a set of individual, discrete services where the freedom of independently developing and deploying is possible.
However when we move to a microservices architecture there are cross-service challenges, such as service discovery, data consistency, and network communication. Let’s look at how Consul helps us to overcome these challenges.
Service Discovery
In a distributed system, the services are on different machines, so the identification/discovery of services is difficult. A load balancer is in front of each service for identification (see Figure 7-1).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig1_HTML.jpg]
Figure 7-1Service discovery

The disadvantages of service discovery include	No capability for dynamic auto-discovery/must be managed manually

	Single point of failure

	Communication is through a series of networks and is not direct

Consul overcomes these disadvantages by using a central service registry that contains the entry for all upstream services. The following are some of the advantages of Consul-based service discovery.	When a service instance starts, it auto-registers on the central registry.

	The service can directly talk to the desired destination service instance without a mediator.

	If one of the service instances or services itself is unhealthy or fails its health check, the registry would then know about this scenario and would avoid returning the service’s address; hence, load balancing is also done.

Configuration Management
There is some difficulty in maintaining configurations in a distributed system.	Maintaining consistency between the configuration on different services after each update is a challenge.

	Dynamically updating a configuration can be a challenge.

Consul overcomes these disadvantages by using a key-value based centralized repository. The entire configuration of all services is stored, which helps with dynamically configuring the services on a distributed system.
Service Mesh and Network Segmentation
A service mesh is an infrastructure layer that handles a high volume of network-based interprocess communication among application services using APIs. It is implemented by a proxy instance, called a sidecar

, for each service instance.
The following are challenges in a distributed system.	Controlling the flow of traffic

	Segmenting the network into groups

	Traffic may come from different endpoints and reach different services

	Inability to verify if traffic is from a trusted entity makes security a concern

Consul’s solution to these issues is to use	Service graphs

	Mutual TLS

	Consul Connect

Consul Connect enrolls interservice communication policies and implements them as part of a service graph. For example, a policy might say that service A can talk to service B, but B cannot talk to C. Consul provides a mechanism to enforce such policies without defining firewall rules or IP restrictions using TLS protocol. TLS protocol works based on certificates and these certificates help other services securely identify each other and initiate communication with each other.
Architecture
Consul has good support for multiple datacenters. There is a mixture of clients and servers within each datacenter. Typically, there are three to five servers. However, there is no limit to the number of clients, and they can easily scale into the thousands or tens of thousands. This strikes a balance between performance and availability in the event of failure. Figure 7-2 shows a Consul master server in two datacenters interacting with a Consul client using a gossip protocol.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig2_HTML.jpg]
Figure 7-2Consul multi-datacenter architecture

The following describes the key components of Consul.
Agent
An agent is a core component in Consul. It manages and maintains membership information, registers services, and performs checks, like health checks on managed services. The agents are responsible for executing their own health checks and updating their local state. Any agent may run in one of two modes: client or server (see Figure 7-3).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig3_HTML.jpg]
Figure 7-3Consul agent (client and server)

Catalog
Consul leverages a catalog concept for managing all discovered services. It is formed by aggregating the information received from the agents. It can be queried through DNS or HTTP to get information on services (see Figure 7-4).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig4_HTML.jpg]
Figure 7-4Consul catalog

Anti-Entropy
Anti-entropy is a mechanism to ensure that running application services are kept stable if any underlying components fail or the system falls into a state of disorder. Consul isolates the global service catalog and the agent’s local state. Anti-entropy is a synchronization of the local agent state and the catalog updating the services.
Consensus Protocol
The server-type agents are pooled together under a single raft peer set that works in leader-follower mode. Any transactions received by the follower are forwarded to the leader for processing, and any transactions executed by the leader are replicated to followers. Consul leverages a consensus protocol based on the “Raft: in search of an understandable consensus” algorithm to manage leader-follower interactions.
Raft nodes are always in one of three states: follower, candidate, or leader. A node starts as a follower, promotes to a candidate, and when a quorum of votes are received, becomes a leader.
Gossip Protocol
A gossip protocol is used to broadcast messages within a cluster. The following are the advantages of a gossip protocol.	There is no need to configure clients with server addresses; discovery is made automatically.

	The work of detecting agent failure is not placed on the servers; it is distributed. It neglects naive heartbeat schemes.

	It is used as a messaging layer to notify when important events, such as leader election, take place.

Consul uses two gossip pools.
LAN Gossip Pool
Each datacenter that Consul operates in has a LAN gossip pool containing all members—clients and servers.
WAN Gossip Pool
All the clusters’ servers communicate via a WAN gossip pool. It processes cross-datacenter requests.
Installing Consul
There are three approaches to installing Consul: using a precompiled binary, installing from source, or installing on Kubernetes using a container image. This chapter explains installing Consul using a precompiled binary. To install the precompiled binary, download the appropriate package for your system. (Consul is currently packaged as a zip file.)
This exercise uses a Red Hat virtual machine to install Consul. Make sure that you have Internet access enabled on the virtual machine and the package repo configured to download packages from Red Hat.
Execute the following commands to view the Red Hat OS version. Verify the OS platform type by executing the second command (see Figure 7-5). This value downloads the appropriate package of Consul from the HashiCorp website.cat /etc/redhat-release
uname -m

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig5_HTML.jpg]
Figure 7-5VM OS version verification

Execute the following command to create a Consul directory. Navigate the directory by executing the second command (see Figure 7-6).mkdir consul
cd consul

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig6_HTML.png]
Figure 7-6Consul directory creation

Execute the following command to download Consul 1.9.2 package for Linux-based distribution from HashiCorp official website (see Figure 7-7).wget https://releases.hashicorp.com/consul/1.9.2/consul_1.9.2_linux_amd64.zip

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig7_HTML.jpg]
Figure 7-7Download Consul package

Execute the first command to extract the Consul package from the zip file. Execute the second command to list extracted files, as shown in Figure 7-8.unzip consul_1.9.2_linux_amd64.zip

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig8_HTML.jpg]
Figure 7-8Unzip and list Consul package

Execute the following command to move Consul binary to /usr/bin location to invoke Consul commands without modifying the PATH variable.mv consul /usr/bin/

Execute the following command to verify installation of Consul, as shown in Figure 7-9.consul --version

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig9_HTML.jpg]
Figure 7-9Consul installation verification

Execute the following command to start the Consul agent in development mode, as shown in Figure 7-10.consul agent –dev –ui –bind '{{ GetInterfaceIP "eth0" }}' –client 0.0.0.0

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig10_HTML.jpg]
Figure 7-10Consul agent setup

Execute the following commands to query the Consul leader and peers, as shown in Figure 7-11.curl http://127.0.0.1:8500/v1/status/leader
curl http://127.0.0.1:8500/v1/status/peers

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig11_HTML.jpg]
Figure 7-11Query Consul leader and peers

Execute the following commands to see the Consul members, as shown in Figure 7-12.consul members

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig12_HTML.jpg]
Figure 7-12View Consul members

Service Discovery Using Consul
The main goal of service discovery is to provide a catalog of available services. A service can be associated with a health check.
A service definition can have either a .json or .hcl extension or registered dynamically using the HTTP API. The following are things to keep in mind when using service definitions in Consul.	A service definition must include a name and may include an ID, tags, address, meta, port, enable_tag_override, and check.

	A service can have an associated health check to remove failing nodes.

	Proxies used with Connect are registered as services in Consul’s catalog.

	Services may contain a token field to provide an ACL token.

	The connect field can be specified to configure Connect for a service. This field is available in Consul 1.2.0 and later.

	Multiple services definitions can be provided at once using the plural services key in your configuration file.

Now let’s look at a typical service definition file, as shown in Listings 7-1 and 7-2. The following samples are the service definitions for two services: dashboard and counting. Both services have defined the health check mechanism (i.e., HTTP-based and port to be used).service {​​​​​
name = "dashboard"
port = 9002

connect {​​​​​
sidecar_service {​​​​​
proxy {​​​​​
upstreams = [
{​​​​​
destination_name = "counting"
local_bind_port = 5000
}​​​​​
]
}​​​​​
}​​​​​
}​​​​​
check {​​​​​
id = "dashboard-check"
http = "http://localhost:9002/health"
method = "GET"
interval = "1s"
timeout = "1s"
}​​​​​
}​​​​​

Listing 7-1Sample Dashboard Service Definition File

service {

name = "counting"
id = "counting-1"
port = 9003

connect {
sidecar_service {}
}

check {
id = "counting-check"
http = "http://localhost:9003/health"
method = "GET"
interval = "1s"
timeout = "1s"
}
}

Listing 7-2Sample Counting Service Definition File

There are several ways to register services in Consul.	Directly from a Consul-aware application

	From an orchestrator, like Nomad or Kubernetes

	Using configuration files that are loaded at node startup

	Using the API to register them with a JSON or HCL specification

	Using the CLI to simplify this submission process

Let’s start with a hands-on exercise that registers the dashboard and counting services on the Consul server using CLI.
Create a directory called Test and navigate within it. Execute the command in Listing 7-3 to clone the sample template files from GitHub, and then execute the next command to unzip the two files for the dashboard and counting services.git clone git@github.com:dryice-devops/consul.git
unzip counting-service_linux_amd64.zip
unzip dashboard-service_linux_amd64.zip

Listing 7-3Cloning and Unzipping the Binaries

Execute the following commands to set up the dashboard and counting services in listening mode on the Consul server, as shown in Figures 7-13 and 7-14.PORT=9002 COUNTING_SERVICE_URL="http://localhost:5000" ./dashboard-service_linux_amd64 &
PORT=9003 ./counting-service_linux_amd64 &

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig13_HTML.jpg]
Figure 7-13Starting dashboard service

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig14_HTML.jpg]
Figure 7-14Starting counting service

Execute the following commands to register the dashboard and counting services with Consul, as shown in Figure 7-15. Make sure that you have created the counting and dashboard files, as shown in Figures 7-16 and 7-17.consul services register counting.hcl
consul services register dashboard.hcl

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig15_HTML.jpg]
Figure 7-15Registering services in Consul

Execute the following command to verify that the services registered successfully in Consul, as shown in Figure 7-16.consul catalog services

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig16_HTML.jpg]
Figure 7-16Verifying service registration

Execute the following command to create an intention for the counting and dashboard services (see Figure 7-17). Intentions define access control for services in the service mesh and control which services may establish connections. The default intention behavior for dev agents is defined by the default ACL policy, which is "allow all".consul intention create dashboard counting

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig17_HTML.jpg]
Figure 7-17Intention creation using Consul

Execute the following commands to start the built-in sidecar proxy for the counting and dashboard services, as shown in Figures 7-18 and 7-19.consul connect proxy -sidecar-for counting-1 > counting-proxy.log &
consul connect proxy -sidecar-for dashboard > dashboard-proxy.log &

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig18_HTML.jpg]
Figure 7-18Starting sidecar proxy for counting service

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig19_HTML.jpg]
Figure 7-19Starting sidecar proxy for dashboard service

You can verify the service registration by opening the Consul UI. Navigate to http://<IP of your Consul Server>:8500/ui to open the Consul UI in your browser (see Figure 7-20). Click the Services tab to view the registered services list.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig20_HTML.jpg]
Figure 7-20Consul UI

Click the counting service to see the registered service information, as shown in Figure 7-21.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig21_HTML.jpg]
Figure 7-21Counting Service navigation on Consul UI

Navigate to http://<IP of your Consul Server>:9002 to access the Dashboard service, as shown in Figure 7-22.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig22_HTML.jpg]
Figure 7-22Dashboard service browser navigation

A positive number on the screen indicates that a connection between the services has been established. This number indicates the amount of time (in seconds) the user has been connected to the front-end portal. Also, the green Connected status in the top-right corner indicates a successful connection.
Intention Deletion
Now let’s try to disrupt the service connectivity between the counting and dashboard services by deleting the intention.
Execute the following command to delete the intention, as shown in Figure 7-23.consul intention delete dashboard counting

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig23_HTML.jpg]
Figure 7-23Deleting intention

To test whether traffic is flowing through the sidecar proxies, let’s create a deny intention by executing the following command.consul intention create -deny -replace dashboard counting

Navigate to http://<IP of your Consul Server>:9002 to access the dashboard service, as shown in Figure 7-24.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig24_HTML.jpg]
Figure 7-24Connection lost

The negative number and the “Counting Service is Unreachable” message in the top corner indicate that the connectivity between the services is lost.
Execute the following command to restore communication between the services by replacing the deny intention with an allow (see Figure 7-25).consul intention create -allow -replace dashboard counting

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig25_HTML.jpg]
Figure 7-25Allow intention creation

You can validate the connection restore by navigating back to the Dashboard service page, as shown in Figure 7-26.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig26_HTML.jpg]
Figure 7-26Connection restored

Now let’s look at another example of managing communication between two applications. The LAMP stack and Nginx demonstrate Consul’s capabilities in managing communication. Let’s start with the installation of the LAMP stack and Nginx. We will enable Apache and Nginx as services on Consul and then manage the communication between them.
Execute the following command to install an HTTPd package, and then enable service to start up on reboot, as shown in Figure 7-27.yum install httpd
systemctl enable httpd.service

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig27_HTML.jpg]
Figure 7-27Installing Apache

Execute the following command to start the Apache service.systemctl start httpd.service

Execute the following command to install the MySQL package, and then enable the service to start up on reboot, as shown in Figure 7-28.yum install mysql-server mysql
systemctl enable mysqld.service

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig28_HTML.jpg]
Figure 7-28Installation of MySQL

Execute the following command to start the MySQL service.systemctl start mysqld.service

Execute the following command to configure MySQL to remove anonymous users and other default tables and provide the input shown in Figures 7-29 and 7-30.mysql_secure_installation

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig29_HTML.jpg]
Figure 7-29Reconfiguring

 MySQL

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig30_HTML.jpg]
Figure 7-30Reconfiguring MySQL

Execute the following command to install the PHP package.yum -y install php php-mysqlnd php-cli

Execute the following command to restart the Apache service.systemctl restart httpd.service

Create a basic PHP configuration with the basic content shown next by creating a test.php file under the/var/www/html directory.<?php phpinfo(); ?>

Access the test.php file created in the previous step by navigating to http://<IP address of your Consul server>/test.php, as shown in Figure 7-31.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig31_HTML.jpg]
Figure 7-31Accessing Test.php file

Execute the following command to install Nginx and enable the service to start up at reboot, as shown in Figure 7-32.yum install nginx
systemctl enable nginx

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig32_HTML.jpg]
Figure 7-32Installation of Nginx

Execute the following command to start the Nginx service.systemctl start nginx

You can also verify the default Nginx installation by accessing http://< IP address of your Consul server> (see Figure 7-33).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig33_HTML.jpg]
Figure 7-33Verifying Nginx service

The Apache port may conflict with the Nginx port, so you can modify an Apache configuration to listen on port 8080. Modify the /etc/httpd/conf/httpd.conf file to include the following content, and then save the file (see Figure 7-34).Listen 127.0.0.1:8080

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig34_HTML.jpg]
Figure 7-34Updating Apache listing port

Also modify the document root in the /usr/share/nginx/html file, as shown in Figure 7-35.DocumentRoot "/usr/share/nginx/html/"

[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig35_HTML.jpg]
Figure 7-35Updating document root

Execute the following command to restart the Apache service.systemctl restart httpd.service

Make sure the Nginx configuration file can process the PHP locations, as shown in Listing 7-4.server {
listen 80;
root /usr/share/nginx/html;
index index.php index.htm index.html;
server_name _;

location / {
try_files $uri $uri/ /index.php;
}

location ~ \.php$ {
proxy_pass http://127.0.0.1:8080;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $remote_addr;
}

location ~ /\.ht {
deny all;
}

Listing 7-4Nginx Configuration File

Service Registration
Let’s register the Nginx and LAMP services. Create nginx.hcl and apache.hcl files, as shown in Listings 7-5 and 7-6.service {
name = "nginx"
id = "nginx"
port = 80
address = "10.5.12.84"

tags = ["webfrontend"]
meta = {
version = "1"
}

check {
id = "nginx url hit"
http = "http://10.5.12.84:80"
method = "GET"
interval = "1s"
timeout = "1s"
}
}

Listing 7-5Nginx Configuration File

service {
name = "apache"
id = "apache"
port = 8080
address = "127.0.0.1"

tags = ["httpd"]
meta = {
version = "1"
}

check {
id = "apache url hit"
http = "http://10.5.12.84:8080"
method = "GET"
interval = "1s"
timeout = "1s"
}
}

Listing 7-6Apache Configuration File

Execute the following commands to register Nginx and Apache services with Consul.consul services register nginx.hcl
consul services register apache.hcl

Execute the following command to create intention for the Apache and Nginx service.consul intention create apache nginx

Log in to the Consul UI (http://<IP Address of your Consul server>:8500/ui) and navigate to the Service tab to view both the Apache and Nginx services, as shown in Figure 7-36.[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig36_HTML.jpg]
Figure 7-36Review Apache and Nginx service on Consul GUI

Click each service to view the details.
Check Nginx’s health status. The status is 200 OK, if the health check has passed (i.e., web page is reachable as per our health check definition). The default health check verifies that the node is alive, reachable, and has passed (see Figure 7-37).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig37_HTML.jpg]
Figure 7-37Review Nginx service on Consul GUI

Check Apache’s health status. The status is 200 OK, if the health check has passed. The default health check determines if the node is alive, reachable, and has passed (see Figure 7-38).[image: ../images/492265_1_En_7_Chapter/492265_1_En_7_Fig38_HTML.jpg]
Figure 7-38Review Apache service on Consul GUI

DNS and Health Checks Using Consul
The DNS, without any high integration with Consul, allows applications to use service discovery. By default, Consul listens on 127.0.0.1:8600 for DNS queries. nslookup or dig tools can interact with a DNS server.Dig @127.0.0.1 –p 8600 redis.service.dc1.consul. ANY

From a Windows OS perspective, nslookup should be used. From a Linux OS perspective, dig can be used in addition to nslookup. Make sure the bind-utils package is present for dig usage in a Linux environment.
A health check is application-specific; if not integrated, it has a scope at the node level.
There are several different types of checks.	HTTP checks make an HTTP GET request to the specified URL.

	TCP checks make a TCP connection attempt to the specified IP/hostname and port.

	TTL checks retain their last known state for a given TTL. The state of the check must be updated periodically over the HTTP interface.

	Docker checks invoke an external application that is packaged within a Docker container.

	gRPC checks the whole application. Checks are intended for applications that support the standard gRPC health-checking protocol.

	Alias checks are for a local service. They check the health state of another registered node or service.

Summary
This chapter covered in detail the main concepts of HashiCorp Consul. We learned how to install open source Consul and also performed a hands-on exercise involving application service discovery using Consul.
The next chapter covers the HashiCorp Nomad solution and how it can be used to manage the orchestration of containerized and non-containerized applications.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al.Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul https://doi.org/10.1007/978-1-4842-7129-2_8

8. Getting Started with Nomad

Navin Sabharwal1 , Sarvesh Pandey2 and Piyush Pandey3
(1)New Delhi, Delhi, India

(2)Noida, UP, India

(3)New Delhi, India

This chapter discusses the core concepts of HashiCorp Nomad. You should have a basic understanding of container orchestration, scheduling, and autoscaling functionalities. The chapter covers the following topics.	Container orchestration

	Introduction to Nomad

	Installing Nomad

	Policy-driven governance using Nomad

	Container application deployment using Nomad

Container Orchestration
Containers

are a way to wrap up an application into its own isolated package. Everything the application requires to run successfully as a process is captured and executed within the container. A container enables bundling all application dependencies, such as library dependencies and runtimes. This enables standardization and consistency across environments because the container comes preloaded with all the prerequisite/dependencies required to run the application service. You can develop the application code on your personal workstation and then safely deploy it to run in production-level infrastructure.
A container is an instance of a container image. A container image is a way to package an app or service (like a snapshot) and then deploy it in a reliable and reproducible way (see Figure 8-1).[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig1_HTML.jpg]
Figure 8-1Container vs. VM comparison

Building applications using containers brings agility to developing, testing, and deploying any application across any cloud. With containers, you can take any app from development to production with little or no code change. You can use a manual approach or use a CI/CD tool with IaC solutions to deploy your application code. You might need to perform tasks like modifying configuration items, copying application content between servers, and running interactive setup programs based on application setups, followed by testing. In a manual setup, this can consume significant time.
What if you have many applications to manage? Managing each one of them manually is very time-consuming. You need to create and destroy hundreds of containers and monitor each one of them. If a container encounters an error, which could cause the downtime of critical applications, you’d need to destroy and provision a new one. Even worse, what if your thousands of containers were scattered across hundreds of servers? You need to keep track of which server contains which containers and which application each container belongs to.
Container orchestration has been introduced to overcome the manual effort of managing containers. It helps minimize the hassle of provisioning, destroying, controlling, and scaling containers.
Container orchestration tools provide a framework for managing containers and microservices architecture at scale. Nomad is a container orchestration tool for container lifecycle management. Nomad orchestration allows you to build application services that can span across multiple containers, schedule containers across a cluster, and manage their health over time.
Nomad eliminates most of the manual intervention involved in deploying and scaling containerized applications. Nomad can cluster groups of hosts on physical or virtual machines and run Linux containers. Nomad offers a platform to easily and efficiently manage clusters.
In the Nomad container orchestration tool, HCL describes the configuration of an application. The configuration file tells the configuration management tool to find the container images, establish a network, and store logs.
When deploying a new container, Nomad automatically schedules a deployment to a cluster and finds the right host, considering any defined requirements or restrictions. It then manages the container’s lifecycle based on the specifications.
Container orchestration can be used in any environment that runs containers, including on-premise servers and public or private cloud environments.
Introduction to Nomad
Nomad has a built-in feature to deploy/upgrade applications using blue/green and canary deployments.
Nomad can integrate with HashiCorp Terraform, Consul, and Vault. It is suited for easy integration into an organization’s existing workflows. It comes in two versions Open Source and Enterprise, the following Table 8-1 lists the differences between the two.Table 8-1Nomad: Open Source vs. Enterprise

	Nomad Features
	Open Source
	Enterprise

	Service and Batch Scheduling
	✔
	✔

	Task Drivers
	✔
	✔

	Device Plug-ins
	✔
	✔

	Multi-Upgrade Strategies
	✔
	✔

	Federation
	✔
	✔

	Autoscaling
	✔
	✔

	Container Storage Interface plug-in
	✔
	✔

	Container Network Interface plug-in
	✔
	✔

	Access Control System
	✔
	✔

	Web UI
	✔
	✔

	Consul Integration
	✔
	✔

	Vault Integration
	✔
	✔

	Namespaces
	✔
	✔

	ENTERPRISE PLATFORM
	X
	✔

	Automated Upgrades
	X
	✔

	Automated Backup
	X
	✔

	Enhanced Read Scalability
	X
	✔

	Redundancy Zones
	X
	✔

	Multi-Vault Namespaces
	X
	✔

The following describes Nomad’s key features.	Service and batch scheduling: Nomad provides service and batch scheduling. It can restart or reschedule jobs.

	Task driver support for multiple platforms: Task drivers in Nomad are runtime components that execute workloads. The task drivers support Docker, Java, and binaries running on the host operating system.

	Multi-device plug-ins: Detects and makes devices available to tasks in Nomad. Devices are physical hardware that exist on a node, such as a GPU or an FPGA. By having extensible device plug-ins, Nomad has the flexibility to support a broad set of devices and allows the community to build additional device plug-ins as needed.

	

Multiple upgrade strategies: Most applications are long-lived and require updates over time. Nomad has built-in support for rolling, blue/green, and canary updates to deploy a new application or upgrade to a new version of the application. When a job specifies a rolling update, Nomad uses task state and health check information to detect allocation health and minimize or eliminate downtime.

	Multi-region federation: This built-in capability allows multiple clusters to be linked together.

	Autoscaling: The Nomad autoscaler periodically checks for jobs with queued allocations, ensuring enough capacity to schedule these allocations. Whenever there isn’t enough capacity, a scale-up event is triggered.

	Container storage interface plug-in: Manages external storage volumes for stateful workloads running inside your cluster. CSI providers are third-party plug-ins that run as jobs and can mount volumes created by your cloud provider. Nomad is aware of CSI-managed volumes during the scheduling process, enabling it to schedule your workloads based on the availability of volumes from a specific client.

	Container network interface plug-in: Supports CNI plug-ins while deploying on containerized applications.

	Access control system: Enables access of policies and tokens to only authorized users and applications.

	Consul integration: Enables automatic clustering, built-in service registration, and dynamic rendering of configuration files and environment variables.

	Vault integration: Nomad integrates with HashiCorp Vault to enable secure, auditable, and easy access to your secrets.

	Namespaces: Supports namespaces, allowing jobs and their associated objects to be segmented from each other and other cluster users.

	Sentinel: Sentinel is a language and framework for building policies. This feature is available in the Enterprise version. A Sentinel policy describes the allowed actions under specific scenarios or conditions. Sentinel integration builds on the ACL system. It provides the ability to create fine-grained policy enforcement.

Nomad Architecture
The Nomad architecture shown in Figure 8-2 consists of client and server components within the same region. Servers in a region act as the brain of the cluster and are used for managing jobs, clients, and deployments, including aspects like resource placement decisions. Each region may have clients from multiple datacenters, allowing a small number of servers to handle very large clusters.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig2_HTML.jpg]
Figure 8-2Single region Nomad architecture

Nomad servers always have leader-follower relationships. They use a consensus protocol based on the Raft algorithm for state replication. Nomad servers in every region are all part of a single consensus group. This means that they work together to elect a single leader, which has extra duties. The leader is responsible for processing all queries and transactions.
Nomad execution is concurrent, meaning all servers participate in making scheduling decisions in parallel. The leader provides the additional coordination necessary to do this safely and to ensure clients are not oversubscribed.
The servers create tasks from the jobs provided by the end user. The servers send them across to the clients where those jobs are executed.
The agent running on the client is responsible for registering with the servers, watching for any work to be assigned, and executing tasks. The Nomad agent is a long-lived process that interfaces with the servers.
When providing availability or scalability, Nomad may be in a multi-region setup (see Figure 8-3). This topology helps the user to interact with Nomad servers in any region.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig3_HTML.jpg]
Figure 8-3Multi-region Nomad architecture

Nomad server clusters in different datacenters can be federated using WAN links. The server clusters can be joined to communicate over the WAN on port 4648. This same port is used for single datacenter deployments over LAN.
Servers within two regions are loosely coupled and communicate using a gossip protocol, which allows users to submit jobs to any region or query the state of any region transparently. Requests are forwarded to the appropriate server to be processed, and the results are returned.
Let’s look at key concepts or terminologies that are used while working with Nomad.	Nomad agent/client: A Nomad agent is a long-running process that runs on every machine that is part of the Nomad cluster. It works in either server mode or client mode (depending on the server where an agent is running). Clients are responsible for running tasks, whereas servers are responsible for managing the cluster.

	Nomad follower: All nodes start as followers and can accept log entries from a leader, cast votes, and receive health checks, heartbeat, and liveness for all the nodes.

	Nomad leader: The peer set elects a single node to be the leader whenever it wants. The leader ingests new log entries, replicates to followers, and manages committed entries.

	Job: A task submitted by the user is called a job in Nomad. It contains instructions that determine what should be done but not where it should be run. Nomad makes sure the final state (after a job is completed) matches the user’s desired state. A job is composed of one or more task groups.

	Task group: Multiple sets of tasks that must be run together in a job. It is the scheduling unit, meaning the entire group must run on the same client node and not be split.

	Driver: Represents the basic means of executing your Tasks. Binary files, Docker, and Java, are examples of drivers.

	Task: A task is the smallest unit of work in Nomad. Tasks are dependent on browsers, which allow Nomad to be flexible in the types of tasks it supports.

	Client: Refers to the workloads where tasks are executed.

	Allocation: A mapping between a task group in a job and a client node. Nomad servers create them as part of scheduling during an evaluation.

	Bin packing: The process that maximizes the utilization of bins. In Nomad, the clients are bins, and the items are task groups.

Autoscaling Overview
When a job is launched in Nomad, the master scheduler tries to find available capacity to run it. In cases where there are not enough resources to meet the job’s demands, queued allocations and metrics show that the job cannot run due to exhausted nodes. In such scenarios, Nomad supports the following autoscaling mechanisms to overcome resource issues.
Dynamic Application Sizing
Dynamic Application Sizing enables organizations to optimize the resource consumption of applications using sizing recommendations. It evaluates, processes, and stores historical task resource usage data, making recommendations on CPU and memory resource parameters. The recommendations can be calculated using several different algorithms to ensure the best fit for the application.
Dynamic Application Sizing can be enabled on an individual task by configuring autoscaling policies within the task stanza using the job specification scaling block.
Horizontal Cluster Autoscaling
Horizontal cluster autoscaling adds or removes Nomad clients from a cluster to ensure there is an appropriate cluster resource for the scheduled applications. Cluster scaling is enabled by configuring the autoscaler agent with policies targeting the Nomad cluster.
Horizontal Application Autoscaling
Horizontal application autoscaling automatically controls the number of instances to have sufficient work throughput to meet service-level agreements (SLAs). In Nomad, horizontal application autoscaling modifies the number of allocations in a task group based on the value of a relevant metric, such as CPU and memory utilization or the number of open connections.
Installing Nomad
Let’s begin with a hands-on exercise to install a Nomad server and client. A cluster in any type of topology in Nomad (single region or multi-region) typically consists of three to five servers and a few client agents. Nomad divides the whole infrastructure into regions that can be under one server cluster. It can manage multiple datacenters or availability zones. This exercise is a three-node Nomad setup with one node client on an AWS EC2 machine. We use four servers with two CPUs and 8 GB RAM on an Amazon Linux operating system.
First, create four EC2 instances on AWS with an Amazon Linux OS and ensure the servers can communicate with each other without any restrictions from the security group. Also, ensure you have Internet access available on the virtual machine to download the package.
Execute the following command to clone the code used in this chapter, as shown in Figure 8-4.git clone https://github.com/dryice-devops/nomad.git

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig4_HTML.jpg]
Figure 8-4Cloning lab files from GitHub

Execute the following command to export the Nomad_Version variable value, as shown in Figure 8-5.export NOMAD_VERSION="1.0.1"

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig5_HTML.jpg]
Figure 8-5Exporting environment variable

Execute the following command to download the precompiled binary, as shown in Figure 8-6.curl –silent --remote-name https://releases.hashicorp.com/nomad/${NOMAD_VERSION}/nomad_${NOMAD_VERSION}_linux_amd64.zip

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig6_HTML.jpg]
Figure 8-6Downloading precompiled Nomad binary

Execute the following commands to unzip the binary and update file permission. Then move it to the system executable location (/usr/bin), as shown in Figures 8-7 and 8-8.unzip nomad_${NOMAD_VERSION}_linux_amd64.zip

sudo chown root:root nomad

sudo mv nomad /usr/local/bin/

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig7_HTML.jpg]
Figure 8-7Extracting Nomad binary from zip file

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig8_HTML.jpg]
Figure 8-8Moving Nomad binaries

Execute the following command to verify the Nomad installation, as shown in Figure 8-9.nomad version

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig9_HTML.jpg]
Figure 8-9Verifying Nomad installation

Execute the following commands to enable the autocompletion of Nomad commands, as shown in Figure 8-10.nomad -autocomplete-install

complete -C /usr/local/bin/nomad nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig10_HTML.jpg]
Figure 8-10Enabling autocompletion of Nomad commands

Execute the following command to create an /opt/nomad data directory that stores Nomad service–related files. Check that the directory was created (see Figure 8-11).mkdir -p /opt/nomad

file /opt/nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig11_HTML.jpg]
Figure 8-11Creating Nomad service file directory

Create a Nomad service file called nomad.service in the /etc/systemd/system directory, and add content using the files cloned in the first step (see Figure 8-12).Sudo touch /etc/systemd/system/nomad.service

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig12_HTML.jpg]
Figure 8-12Creating Nomad service file

Create a nomad.d directory in the /etc directory. Create nomad.hcl and server.hcl server configuration files in the /etc/nomad.d directory using the content of the cloned files (see Figure 8-13). The nomad.hcl file provides information on the datacenter name (i.e., DC1) and the location of the Nomad service directory (/opt/Nomad). The server.hcl file provides the number of master nodes (i.e., 3).sudo mkdir –parents /etc/nomad.d

sudo chmod 700 /etc/nomad.d

sudo touch /etc/nomad.d/server.hcl

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig13_HTML.jpg]
Figure 8-13Creating Nomad server configuration file

Execute the following commands to enable and start the Nomad server service, as shown in Figure 8-14.sudo systemctl enable nomad

sudo systemctl start nomad

sudo systemctl status nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig14_HTML.jpg]
Figure 8-14Enabling Nomad server service

Execute all the prior steps in this exercise on the other two Amazon Linux servers to set up a Nomad server component.
On the remaining two servers, join the two nodes with the leader. Execute the following command to register two Amazon Linux servers with the leader server (the first server set up), as shown in Figure 8-15.nomad server join <IP Address of Nomad Leader Server(First server we used in exercise)>:4648

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig15_HTML.jpg]
Figure 8-15Registering

 Nomad server with leader

Execute the following command to verify the total members in the Nomad server, as shown in Figure 8-16.nomad server members

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig16_HTML.jpg]
Figure 8-16Listing Nomad server members

You can review the Nomad server configuration in the UI. Navigate to http://<IP Address of Leader Nomad (the first server used in exercise)>:4646 to see your Nomad server configuration, as shown in Figure 8-17. Click Servers to review the three Nomad servers configured in the previous step.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig17_HTML.jpg]
Figure 8-17Nomad UI server configuration

Click Clients. You see that no clients are currently registered, as shown in Figure 8-18.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig18_HTML.jpg]
Figure 8-18Nomad UI client configuration

Let’s look at how to set up the client server and register the client with Nomad servers.
Repeat the first seven steps from the previous section to set up the Nomad server on the fourth Amazon Linux server.
Create the nomad.d directory in the /etc directory. Create the nomad.hcl and client.hcl client configuration files in the /etc/nomad.d directory using the content of the files cloned from GitHub (see Figure 8-19).Sudo touch /etc/nomad.d/client.hcl

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig19_HTML.jpg]
Figure 8-19Nomad client configuration

Execute the following commands to enable and start the Nomad client service, as shown in Figure 8-20.sudo systemctl enable nomad

sudo systemctl start nomad

sudo systemctl status nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig20_HTML.jpg]
Figure 8-20Enabling Nomad client service

Now let’s register the Nomad client with the Nomad server. Edit the client.hcl file in the /etc/nomad.d directory and add the information shown in Figure 8-21. The IP address field in the Servers section refers to the Nomad server IP address. TCP port 4647 is used for registration.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig21_HTML.jpg]
Figure 8-21Registering client with Nomad server

Execute the following commands to restart and check the status of the Nomad client service, as shown in Figure 8-22.

sudo systemctl restart nomad

sudo systemctl status nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig22_HTML.jpg]
Figure 8-22Restart and check the

status of Nomad client service

Execute the following command to verify the Nomad client node status, as shown in Figure 8-23. A status-ready message indicates active clients. A status-down message indicates that the client is no longer available or is not reachable by the Nomad server.nomad node status

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig23_HTML.jpg]
Figure 8-23Verifying

 Nomad client

You can review client details by navigating to the Nomad UI, as shown in Figure 8-24.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig24_HTML.jpg]
Figure 8-24Verifying

 Nomad client using UI

Policy-Driven Governance in Nomad
Nomad’s governance and policies capabilities let users address the complexity of a multi-team managed multi-cluster environment. Features like namespaces, resource quotas, Sentinel, and ACL help manage an environment in adherence to organizational standards. The governance and policy module is provided in the Enterprise version of Nomad. Let’s look at how each of these capabilities help with application governance.
Namespaces
The Nomad namespaces feature allows a single cluster to be shared by many teams and projects without conflict. Nomad requires unique job IDs within namespaces, which allows each team to operate independently. When combined with ACLs, the isolation of namespaces can be enforced, allowing only designated users access to read or modify the jobs and associated objects in a namespace.
Resource Quotas
Within a namespace, resource quotas provide a mechanism for cluster administrators to restrict resources. A quota specification has a unique name, an optional human-readable description, and a set of limits. The quota limits define the allowed resource usage within a region.
When resource quotas are applied to a namespace, they limit resource consumption by the jobs in a namespace. This can prevent the consumption of excessive cluster resources and negatively impacting other teams or applications sharing the cluster.
Sentinel Policies
Sentinel policies use logic to enforce a certain resource requirement. Policies ensure that the resource request complies with user- or organization-defined policies. Sentinel policies declare a scope that determines when the policies apply. The only supported scope is “submit-job”. This applies to any new jobs being submitted or existing jobs being updated (see Figure 8-25).[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig25_HTML.jpg]
Figure 8-25Sentinel policies

Sentinel policies support multiple enforcement levels, such as advisory, soft-mandatory, and hard mandatory. The advisory level emits a warning when the policy fails. Soft-mandatory and hard-mandatory prevent the operation. A soft-mandatory policy can be overridden if the user has the necessary permissions.
Nomad ACLs
Nomad provides an ACL feature that controls access to data or APIs. ACL policies are written using HashiCorp Configuration Language (HCL). ACL comprises four key objects to govern resource access policies.
Tokens
Requests to Nomad are authenticated using a bearer token. Each ACL token has a public accessor ID that names a token and a secret ID to make requests to Nomad. The secret ID is provided using a request header (X-Nomad-Token) and authenticates the caller. Tokens are management or client types. The management tokens effectively “root” in the system and can perform any operation. The client tokens are associated with one or more ACL policies that grant specific capabilities.
Policies
Policies consist of a set of rules defining the capabilities or actions to be granted. For example, a read-only policy might only grant the ability to list and inspect running jobs but not submit new ones. No permissions are granted by default, making Nomad a default-deny system.
Rules
Policies are comprised of one or more rules. The rules define the capabilities of a Nomad ACL token for accessing objects in a cluster—like namespaces, node, agent, operator, quota. The full set of rules are discussed later.
Capabilities
Capabilities are a set of actions that can be performed. This includes listing jobs, submitting jobs, and querying nodes. A management token is granted all capabilities. Client tokens are granted specific capabilities via ACL policies. The full set of capabilities is discussed in the rule specifications.
Container Application Deployment Using Nomad
Now let’s perform a hands-on exercise to deploy a containerized application

 using Nomad. We begin by setting up Docker on the Nomad client server.
Execute the following commands to install and start Docker on the Nomad client server, as shown in Figures 8-26, 8-27, 8-28, and 8-29. Nomad automatically detects the installed Docker components using its drivers.sudo yum update -y
sudo amazon-linux-extras install docker
systemctl start docker
systemctl status docker

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig26_HTML.jpg]
Figure 8-26Update all the installed packages.

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig27_HTML.jpg]
Figure 8-27Installing Docker on Nomad client server

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig28_HTML.jpg]
Figure 8-28Start Docker service on Nomad client server

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig29_HTML.jpg]
Figure 8-29Check the status of Docker service on Nomad client server

You can verify the installation from the Nomad UI, as shown in Figure 8-30. Navigate to the Client section and click the client name to view the details of the Docker installation.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig30_HTML.jpg]
Figure 8-30Verifying

 Docker installation using Nomad UI

The Easy Travel application is used for this hands-on exercise. It is a multi-tier application built using microservices principles. The application simulates issues such as high CPU load, database slowdowns, or slow authentication problems. Figure 8-31 is an architectural diagram of the application. We installed only the customer frontend portion, including Nginx, a frontend and backend database, and a load generator.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig31_HTML.jpg]
Figure 8-31Easy Travel application architecture

Table 8-2 describes the components in the Easy Travel application.Table 8-2Application Components

	Component
	Description

	Mongodb
	A pre-populated travel database (MongoDB)

	Backend
	The Easy Travel business backend (Java)

	Frontend
	The Easy Travel customer frontend (Java)

	Nginx
	A reverse-proxy for the Easy Travel customer frontend

	Loadgen
	A synthetic UEM load generator (Java)

Earlier in this chapter, we cloned a few files from GitHub. We used a file named easytravel.nomad, which contains the configuration for the Easy Travel application. Let’s look at the various sections in the file.
The Easy Travel application consists of five microservices that are defined as different groups in easytravel.nomad. Each group contains a configuration related to its microservice. Figure 8-32 shows the block used for the frontend.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig32_HTML.jpg]
Figure 8-32Frontend section of Easy Travel application Nomad file

In the file, we added a value for the datacenter (i.e., DC1), which we used during Nomad server setup (see Figure 8-33).[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig33_HTML.jpg]
Figure 8-33Easy Travel application mapping to Nomad datacenter

The file also contains a constraint section. Defining constraints is optional because it restricts the deployment to specific clients based on OS type, kernel version, IP address, and so forth. Our example uses Linux as the kernel value since we use an Amazon Linux EC2 instance to run the Easy Travel application (see Figure 8-34).[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig34_HTML.jpg]
Figure 8-34Constraint section in Nomad deployment file

The Group section within the easytravel.nomad file has the following subsections, as shown in Figure 8-35.	count: The number of containers to be deployed.

	network: Defines the ports for microservices communication.

	restart: Nomad periodically checks the health status of deployed containers and reinitiates the task in the event of a failure.

	task: Defines the resources to be consumed like CPU, RAM, and the image to build a container.

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig35_HTML.jpg]
Figure 8-35Group section in Nomad deployment file

Execute the following command to validate the easytravel.nomad file for any syntax errors and a dry-run of the Easy Travel application deployment, as shown in Figure 8-36.nomad job plan easytravel.nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig36_HTML.jpg]
Figure 8-36Easy Travel deployment dry run

Execute the following command to deploy the Easy Travel application, as shown in Figure 8-37.nomad job run easytravel.nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig37_HTML.jpg]
Figure 8-37Easy Travel deployment dry run

Once the deployment job is completed, you can review the application configuration in the Nomad UI. Navigate to the Jobs section and click the Easy Travel job to view details, as shown in Figure 8-38.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig38_HTML.jpg]
Figure 8-38Easy Travel configuration review from Nomad UI

In the Nomad UI, you can see the number of containers deployed in each group and their health status, as shown in Figure 8-39.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig39_HTML.jpg]
Figure 8-39Easy Travel container health status

You can drill down the Nomad UI to see the details of all the containers, as shown in Figure 8-40.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig40_HTML.jpg]
Figure 8-40Easy Travel container health status

The Definition tab provides information on the application deployed using the easytravel.nomad file (see Figure 8-41).[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig41_HTML.jpg]
Figure 8-41Easy Travel application definition

Nomad captures the job versions if you update code multiple times for the same job, as shown in Figure 8-42. It also allows you to revert to a specific version.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig42_HTML.jpg]
Figure 8-42Easy Travel application versioning

Let’s try to modify the Easy Travel application and see how Nomad reports the changes. Edit the easytravel.nomad file by changing the frontend count to 2, as shown in Figure 8-43.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig43_HTML.jpg]
Figure 8-43Modify Easy Travel application frontend count

Save the file and execute the following command to redeploy the Easy Travel application, as shown in Figure 8-44.nomad job run easytravel.nomad

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig44_HTML.jpg]
Figure 8-44Redeploy Easy Travel application

You can review the configuration in the Jobs section of the Nomad UI. Click the Versions tab, as shown in Figure 8-45. You can see the changes made to the Easy Travel application.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig45_HTML.jpg]
Figure 8-45Review Easy Travel application change history

You can review the resources allocated to the deployed containers by navigating to the Allocations tab. It shows the allocated CPU and memory for each container (see Figure 8-46). The CPU and Memory bars in the far-right columns are continuously updated as they gather information from a Nomad client.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig46_HTML.jpg]
Figure 8-46Allocation detail for Easy Travel application

Nomad initiates self-healing tasks in the event of a failure. To test this scenario, let’s stop one of the containers by using the docker command, as shown in Figure 8-47. Once the container is stopped, Nomad automatically brings it back to the desired running state. The first command lists the container ID running on the Nomad client server. The second command stops the container per the container ID. While executing the second command, use the container ID displayed in your lab setup to view the results.docker container ls -aq

docker container stop <Container ID>

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig47_HTML.jpg]
Figure 8-47Stopping Easy Travel application container

You can review changes using the Overview tab in the Nomad UI. After stopping the running container, the count reduces. Nomad triggers the task to bring the count back to the original configuration, as shown in Figures 8-48 and 8-49.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig48_HTML.jpg]
Figure 8-48Easy Travel application container count after stopping container

[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig49_HTML.jpg]
Figure 8-49Easy Travel application container count after self-healing

You can review the changes to the stopped container by clicking the container ID, as shown in Figure 8-50.[image: ../images/492265_1_En_8_Chapter/492265_1_En_8_Fig50_HTML.jpg]
Figure 8-50Easy Travel application container change history

Summary
This chapter covered the main concepts of HashiCorp Nomad. We learned how to install open source Nomad. We also performed a hands-on exercise in application deployment using Nomad.
With this we have reached the end of our journey on Infrastructure as code using various tools from Hashicorp. We hope that you have enjoyed the journey and learnt the basics of these tools and will progress to deploy and use them in your environments.

Index

A, B

Amazon Web Services (AWS)
contact details
new user
personal details
plan selection
programmatic access
registration page

Azure public cloud
account creation
credit card information
directory structure
hands-on exercise
Main.tf file
program execution
provide details
Provider.tf file
service principal creation
sign-up process
terraform execution
vars/provider file
Vars.tf file
VNet program
main.tf
network security
output
validation

C

Chef provisioner

Command-line interface (CLI)
apply command
binary unzips
configuration
data.tf file
destroy command
download
main.tf file
output.tf file
prerequisite tool
program output
provider.tf file
resource creation
terraform code clone/run
unzip files
variable.tf

Consul
agent (client and server)
anti-entropy
catalog concept
concepts
configuration management
consensus protocol
cross-service challenges
disadvantage
DNS/health checks
gossip protocol
installation
agent setup
directory creation
leader and peers
OS version verification
package download
precompiled binary
unzip and list package
verification
view members
intention deletion
Apache installation
command
connection lost
intention creation
listing port
MySQL installation
Nginx configuration file
Nginx installation
PHP package
reconfiguring MySQL
restore connection
sidecar proxies
Test.php file
updating document root
LAN gossip pool
multi-datacenter architecture
service discovery
browser navigation
cloning/unzipping file
counting navigation
counting service
dashboard file
dashboard service
definition
intention creation
registering services
sidecar proxy
UI navigation
verification
service identification/discovery
service mesh/network segmentation
service registration
Apache configuration file
Nginx configuration file
review Nginx/Apache service
service tab
sidecar
WAN gossip pool

Container application deployment
allocation detail
application components
application definition
client/server installation
components
configuration review
container change history
container health status
datacenter setup
deployment file
Docker service
easytravel.nomad file
frontend count
frontend section
group section
history
packages installation
self-healing
stopping container
subsections
travel application architecture
verification
versioning application

Container orchestration

Creation-time provisioners

D, E

Destroy-time provisioner

F

File provisioners

G

Generic provisioners

Google Cloud Platform (GCP)
bucket
destroy
destroy
Main.tf
Output.tf
Provider.tf
terraform code output
Vars.tf
platform
prerequisite
project creation
lab use-case architecture
name and description
navigation
new project screen
parameters
role mapping
service account
view
service account
subnet
tier registration
virtual machine

H

HashiCorp’s automation solution
boundary
Consul solution
nomad
packer
terraform
vagrant
vault
waypoint leverages

I, J, K

Infrastructure as code (IaC)
benefits
composability
consistency/repeatability
improvements
predictability
terraform
tools operate
version control

L

Local-exec provisioner

M

Multiple provisioners

N, O

Nomad
architecture
autoscaling mechanisms
cluster
dynamic application sizing
horizontal application
availability/scalability
concepts
concepts/terminologies
container application
SeeContainer application deployment
container/chestration
installation
autocompletion
binaries
client configuration
cloning lab files
command
enabling server service
exporting environment variable
listing members
registering server
restart/check status
server/client
server configuration file
server.hcl file
service file directory
source code
system executable location
UI client/server configuration
verification
key features
multi-region architecture
open source vs. enterprise
policy-driven governance
SeePolicy-driven governance
servers

P, Q

Packer
builders block
communicators
hands-on exercise
AMI navigation
Apache package
CLI execution
cloning script
configuration
directory
filesystem
high-level flow
installation validation
packer_project directory
prerequisite installation
security patch
synchronization
validation
view updation
installation
machine images
post-processors
provisioners configuration
sequence definition
simple and detailed definitions
variables block
declaration
source code
system’s environment
verification

Policy-driven governance
ACL feature
capabilities
namespaces
policies
resource quotas
rules
sentinel policies
token

R, S

Remote-exec provisioner

Role-based access control (RBAC)

T, U

Terraform
CLI
SeeCommand-line interface (CLI)
Cloud
collaboration
GitLab provider
organization
Scratch option
signup page
user registration
VCS option
workspace/workflow
GitLab
account creation
Cloud user
integration steps
process completion
setup provider
summary
GitLab provider
VCS option
0.14 vs. 0.13 version
workflows

Terraform automation
AWS account
CLI (open source)
Cloud
components
deployment manager
DevOps
high-level comparison

Terraform automationenterprise

Terraform automationworkspace/workflow

Terraform’s programming
arguments
backend configuration
initialization
key benefits
types
block Configuration
code configuration files
components
configuration language
data sources
expressions
module creation
count/for_each
depends_on
directory structure
file structure
installation
main.tf file
output
terraform apply command
variables
versions
ordering configuration
constructors
environment variables
input variables
local values
module
output values
provider
resources
providers
configuration
plug-ins/filesystem
third-party installation
versions
provisioners
creation-time
destroy-time provisioner
file type
generic type
meaning
multiple provisioners
vendor type

V, W, X, Y, Z

Vault software
admin/application
app integrates
CLI/integration
access-secret keys
bucket creation
configuration file
credentials
delete test
HashiCorp repository
HTTPS listener
initialization
KMS values
Linux server
login screen
navigation
objects
secret engine
secrets tabs
service status
status
status check
token validation
UI checking
verification
version
yum-utils installation
components
encryption methods
key features
logical architecture
on-demand secrets
overview
protecting secrets and access
renewal feature
revocation
secret management
secrets and protecting sensitive data
security architecture

Vendor provisioners

version-control system (VCS)

Virtual private cloud (VPC)

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig7_HTML.jpg
[[Saurabht@dryicelabs.com@devopsuoss ~ |3
[saurabht@dryicelabs.com@devops0088 ~]$ aws configure
AWS Access Key ID [***¥xxxxxxxxxxxxyWKP]:

JAWS Secret Access Key [****xxxxxxxxxxx*H64g]:

Default region name [None]: us-east-1

Default output format [None]: json

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig11_HTML.jpg
Google Cloud Platform My First Project v Q@ Search products

e IAM & Admin & test /' EDIT W DELETE
~ ~
2 M Unique ID
118398109158154029817
© Identity & Organization
9, Policy Troubleshooter Service account status
Disabling your account allows you to preserve your policies without having to delete it
@ Organization Policies
@ Account currently active -
23 Service Accounts
I DISABLE SERVICE ACCOUNT
@ Labels ———
vV SHOW DOMAIN-WIDE DELEGATION
@ Settings
Keys
Privacy & Secur
@ o W Add a new key pair or upload a public key g key pair. Please
ST— note that public certificates need to be in RSA_X509_PEM format. Learn more about
= ’ ¥ upload key formats
= Roles
ADDKEY ~
= AuditLogs
v Type Status Key Key creation date Key expiration date

N i b ellaabing o=

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig19_HTML.jpg
[centos@demo ~]$ vault operator init -recovery-shares=1 -recovery-threshold=1
Recovery Key 1: thckdbEaouMj3f0zZZlohfwMFwJeP£f5b6és9mKgKpRcw=
Initial Root Token: s.scjzhjIrPHHgTwWKO4t7MLBGZ

Success! Vault is initialized

Recovery key initialized with 1 key shares and a key threshold of 1. Please
securely distribute the key shares printed above.

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig25_HTML.jpg
Lo

Device Client

%)

Resource Group

Public IP

Virtual Network

Subnet

Address

Virtual Machine Disk Storage

/N

Azure

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig19_HTML.jpg
[root@ip-172-31-38-249 ~]# sudo touch /etc/nomad.d/client.hcl
[root@ip-172-31-38-249 ~]# I

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig7_HTML.jpg
[centos@demo ~]S sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
Loaded plugins: fastestmirror

pdding repo from: https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo

prabbing file https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo to /etc/yum.repos.d/hashicorp.repo
repo saved to /etc/yum.repos.d/hashicorp.repo

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig22_HTML.jpg
[root@ip-10-5-14-144 ~]# sudo systemctl restart nomad
[root@ip-10-5-14-144 ~]# sudo systemctl status nomad
o nomad.service - Nomad

Loaded:
Active:
Docs:
Main PID:
Tasks:
Memory:
CGroup:

Apr 02 05:
Apr 02 05:
Apr 02 05:
JApr 02 05:
Apr 02 05:
Apr 02 05:
Apr 02 05:
Apr 02 05:
Apr 02 05:
Apr 02 05:

loaded (/etc/systemd/system/nomad.service; enabled; vendor preset:

active (running) since Fri 2021-04-02 05:27:13 UTC; 56s ago
https://www.nomadproject.io/docs

5879 (nomad)

8

16.2M
/system.slice/nomad.service
L5879 /usr/local/bin/nomad agent -config /etc/nomad.d

27:13 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:13.
27:13 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:13.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
27:15 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:15.
Newer Nomad version available: 1.0.4 (currently runnin..

27:18 ip-10-5-14-144.ec2.internal nomad[5879]:

disabled)

671Z
692Z
395Z
3962
401z
401Z
402z
4522

[INFO]
[INFO]
[WARN]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

27:24 ip-10-5-14-144.ec2.internal nomad[5879]: 2021-04-02T05:27:24.111Z [INFO]
Hint: Some lines were ellipsized, use -1 to show in full.
[root@ip-10-5-14-144 ~1# i

client.plugin: starting p...
client: started client: n...
nomad. raft: heartbeat tim..
nomad. raft: entering cand..
nomad. raft: election won:..
nomad. raft: entering lead..
nomad: cluster leadership..
client: node registration...

client: node registration..

vice
b593

.der=
. rm=3
ly=1
.erl®
.ired

lete

.0.1)
.lete

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig11_HTML.jpg
[ansible@ip-10-5-12-84 ~]$ curl http://127.0.0.1:8500/v1l/status/leader
"10.5.12.84:8300™

[ansible@ip-10-5-12-84 ~]$ curl http://127.0.0.1:8500/v1l/status/peers
[

]
[ansible@ip-10-5-12-84 ~15 i

"10.5.12.84:8300"

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig36_HTML.jpg
[root@ip-10-5-12-43 ~]# nomad job plan easytravel.nomad
[i Job: "easytraveltestl"

[+ Task Group: "backend" (1 create)

+ Task: "easytravel-backend" (forces create)

+ Task Group: "frontend" (1 create)
+ Task: "easytravel-frontend" (forces create)

+ Task Group: "loadgen" (1 create)
+ Task: "easytravel-loadgen" (forces create)

+ Task Group: "mongodb" (1 create)
+ Task: "easytravel-mongodb" (forces create)

+ Task Group: "nginx" (1 create)
+ Task: "easytravel-nginx" (forces create)

IScheduler dry-run:
- A1l tasks successfully allocated.

Job Modify Index: 0
To submit the job with version verification run:

Inomad job run -check-index 0 easytravel.nomad

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig7_HTML.jpg
cC @ 9 google.com

Google Cloud Platform [Q_ Search products and resources
Identity & Organization
A Home N /' CUSTOMIZE
Policy Troubleshooter
€ sa Organization Policies
! DISMISS
Service Accounts |
PRODUCTS A
Labels
Y Marketplace Settings AP APIs H & Google Cloud Platform status H
. Privacy & Security sec) i
& Biling Requests (requests/sec) Al services normal
Identity-Aware Proxy 06ls
API APIs & Services > Roles o8 > Goto Cloud status dashboard
+ Support , Auditlogs a4
Manage Resources 03 = Billing :
© 1AM &Admin > 02
Essential Contacts Estimated charges INRZ0.00
o Rflete ~
* Getting started Groups s For the billing period Oct 1 - 14, 2020

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig22_HTML.jpg
[centos@demo ~]$ vault login s.scjzhjIrPHHgTwKO4t7MLBGZ
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"

again. Future Vault r

Key

token
token_accessor
token_duration
token_renewable
token_policies
identity_policies
policies

s will ically use this token.

s.5c3zhj IrPHEGTWKO4t TMLBGZ
AJOPXuJEMD1QcJIz34FHVAUYk
&

false
["root"]

["root”

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig19_HTML.jpg
/ Settings / VCS Providers / Add VCS Provider

Add VCS Provider

To connect workspaces, modules, and policy sets to git repositories containing Terraform configurations, Terraform Cloud
needs access to your version control system (VCS) provider. Use this page to configure OAuth authentication with your VCS
provider. For more information, please see the Terraform Cloud documentation on Configuring Version Control Access .

° Connect to VCS ‘ Set up provider e Set up SSH keypair

Set up SSH keypair (optional)

6 Optional SSH keypair setup

Most organizations will not need to add an SSH private key. However, if the organization repositories include Git
submodules that can only be accessed via SSH, an SSH key can be added along with the OAuth credentials.

SSH will only be used to clone Git submodules. All other Git operations will still use HTTPS.

You can add or update the SSH private key at a later time.

On a secure workstation, create an SSH keypair that Terraform Cloud can use to connect to GitLab.com. The exact command
depends on your OS, but is usually something like:

ssh-keygen -t rsa -m PEM -f "/Users/<NAME>/.ssh/service_terraform” -C
"service_terraform_enterprise”

This creates a “service_terraform’ file with the private key, and a “service_terraform.pub’ file with the public key. This SSH key
must have an empty passphrase. Terraform Cloud cannot use SSH keys that require a passphrase.

Logged into the GitLab.com account you want Terraform Cloud to act as, navigate to the SSH Keys settings page, add a new
SSH key and paste the value of the SSH public key you just created.

Private SSH key

Add SSH key

Skip and finish

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig7_HTML.jpg
[root@ip-10-5-13-156 consul]# wget https://releases.hashicorp.com/consul/1.9.2/consul_1.9.2_linux_amdé4.zip
--2021-04-01 10:53:07-- https://releases.hashicorp.com/consul/1.9.2/consul_1.9.2_linux_amdé4.zip
Resolving releases.hashicorp.com (releases.hashicorp.com)... 151.101.201.183, 2a04:4e42:50::439

Connecting to releases.hashicorp.com (releases.hashicorp.com)|151.101.201.183]|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 41313084 (39M) [application/zip]

Saving to: ‘consul_1.9.2 linux amd64.zip’

100%[

2021-04-01 10:53:08 (91.1 MB/s) - ‘consul_1.9.2 linux_amdé4.zip’ saved [41313084/41313084]

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig7_HTML.jpg
Archive: nomad_1.0.1_linux_amd64.zip
inflating: nomad
[root@ip-172-31-38-249 ~]# 1ls -1lrt --color=never
‘total 143704
-rwxr-xr-x 1 root root 107707520 Dec 16 21:09 nomad
-rw-r--r-- 1 root root 39444296 Mar 8 00:58 nomad_1.0.1_linux_amd64.zip
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig9_HTML.jpg
Erootéib-172-31-38-249 ~]# nomad version
Nomad v1.0.1 (c9c68aa55a7275f22d2338f2df53e67ebfch9238)
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig27_HTML.jpg
[root@ip-10-5-13-156 consul]#

[root@ip-10-5-13-156 consul]# yum install httpd

Loaded plugins: amazon-id, search-disabled-repos

Resolving Dependencies

--> Running transaction check

---> Package httpd.x86_64 0:2.4.6-97.el7_9 will be installed

--> Processing Dependency: httpd-tools = 2.4.6-97.el7_9 for package: httpd-2.4.6-97.el7_9.x86_64
--> Processing Dependency: /etc/mime.types for package. httpd-2.4.6-97.e17_9.x86_64

--> Processing Dependency: libaprutil-1l.so0.0() (64bit) for package: httpd- 2.4.6-97.e17 9. x86_64
--> Processing Dependency: libapr-1.s0.0() (64bit) for package: httpd-2.4.6-97.el7_9. x86_64

--> Running transaction check

---> Package apr.x86_64 0:1.4.8-7.el7 will be installed

---> Package apr-util.x86_64 0:1.5.2-6.el7 will be installed

---> Package httpd-tools.x86_64 0:2.4.6-97.el7_9 will be installed

---> Package mailcap.noarch 0:2.1.41-2.el7 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig20_HTML.jpg
“ Terraform-CloudDemo-Gitlab-VCS

Callback URL
https://app.terraform.io/auth/2eee91d0-600c-41f3-afAf- S IMERNNF a99¢/callback €2

HTTP URL
https://gitlab.com

API URL
https://gitlab.com/api/v4

Created
Oct 28, 2020 17:37:12 pm

OAuth Token ID
ot-TovGk3b5SXLNE &
Connection Revoke connection

A connection was made on Oct 28, 2020 17:39:20 pm by authenticating via OAuth as
GitLab.com user qjulssggh which assigned an OAuth token for use by all Terraform
Cloud users in the Terraform-CloudDemo organization.

You can add a private SSH key to this connection to be used for cloning git submodules.

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig13_HTML.jpg
[root@consul consul]# PORT=9002 COUNTING_SERVICE URL="http://localhost:5000" ./dashboard-service linux amd64 &
[1] 8614

[root@consul consul]# Starting server on http://0.0.0.0:9002

(Pass as PORT environment variable)

Using counting service at http://localhost:5000

(Pass as COUNTING_SERVICE URL environment variable)

Starting websocket server...

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig9_HTML.jpg
[root@consul consul]# consul --version

Consul v1.9.2

Revision 6530c£370
Protocol 2 spoken by default, understands 2 to 3 (agent will automatically use protocol >2 when speaking to com

patible agents)

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig7_HTML.jpg
Create an account .canaccomnisionin

Username
Email
Password

[J Iagree to the Terms of Use.

[J I acknowledge the Privacy Policy.

Please review the Terms of Use and Privacy Policy.

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig9_HTML.jpg
[root@inpransb0l packer]# cd packer/

[root@inpransb0l packer]# 1ls

lapp_script.sh aws_linux.json README.md rhel hardening.sh
[root@inpransb0l packer]# []

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig20_HTML.jpg
ar 08
Mar 08
ar 08
Mar 08
Mar 08
ar 08
ar 08
Mar 08
Mar 08
Mar 08

01:
01:
01:
0l1:
01:
01:
01:
01:
01:
01:
Hint: Some lines were ellipsized, use -1 to show in full.
[root@ip-172-31-38-249 nomad.d]# [l

loaded (/etc/systemd/system/nomad.service; enabled; vendor preset: disabled)
active (running) since Mon 2021-03-08 01:18:25 UTC; 4s ago
https://www.nomadproject.io/docs
762 (nomad)
/system.slice/nomad.service
L_762 /usr/local/bin/nomad agent -config /etc/nomad.d
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom..
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom..
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.738Z [ERROR] nom. .
18:26 ip-172-31-38-249.ec2.internal nomad[762]: ==> Newer Nomad version available: 1..
18:27 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:27.585Z [WARN] nom..

[root@ip-172-31-38-249
[root@ip-172-31-38-249
[root@ip-172-31-38-249
® nomad.service - Nomad
Loaded:
Active:
Docs:
Main PID:
CGroup:

nomaa:df# ;udo systemctl enable nomad
nomad.d]# sudo systemctl start nomad
nomad.d]# sudo systemctl status nomad

r=

.49
.el

)

dn
1)
.on

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig13_HTML.jpg
av1naw.sEarma@ﬁrylceIaEs.com@mycIouaUEIE Compute o terraform init
Initializing the backend...
Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.google: version = "~> 3.40"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig14_HTML.jpg
PACKER-DEMO-1.0-httpd packer_linux_a... ami-0075a3e2911981f8e

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig27_HTML.jpg
Initializing the backend...

Initializing provider plugins...
- Checking for available provider plugins...
- Downloading plugin for provider "azurerm" (hashicorp/azurerm) 2.32.0...

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm resource_group.demo: Creating...
azurerm resource_group.demo: Creation complete after 4s [id=/subscriptions/3
azurerm virtual network.demo: Creating...

azurerm virtual network.demo: Still creating... [10s elapsed]
azurerm virtual network.demo: Creation complete after 14s [id=/subscriptions
work/virtualNetworks/demo-network]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

OEBPS/images/492265_1_En_BookFrontmatter_Figd_HTML.jpg

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig20_HTML.jpg
[centos@demo ~]$ vault status

Key

Recovery Seal Type
Initialized

Sealed

Total Recovery Shares
Threshold

Version

Cluster Name

Cluster ID

HA Enabled

Value

1.5.5

vault-cluster-77feSaec
32a06084-8a78-57£f1-d356-61aa905d324d
false

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig24_HTML.jpg
[root@ ~]$ sudo unzip terraform 0.13.5_linux amdé64.zip
Archive: terraform 0.13.5_linux_amdé4.zip

inflating: terraform
[root@ ~]$ 11

total 438536
=rwxr-xr-x 1 root root 85545059 Oct 21 18:50 terraform

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig37_HTML.jpg
& > C A Notsecure | 18.209.98.187:8500/ui/dc1/services/nginx/instances/ip-10-5-12-84/nginx/health-checks

dcl Services Nodes Key/Value ACL Intentions

nginx
Service Name Node Name
nginx ip-10-5-12-84

Health Checks Tags & Meta

Q search Search across Health Status v Kind v

@ Serf Health Status

NodeName CheckiD
ip-10-5-12-84

Output

Type Notes
serfHealth serf

Agent alive and reachable

@ Service ‘nginx’ check

ServiceName CheckiD

Type Notes
ngink -

nginx url hit http

Output

HTTP GET http://10.5.12.84:80: 200 OK Output: <!doctype html>
<htnl>
<head>
<meta charset="utf-8">
<title>Hello, Nginx!</title>
</head>

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig24_HTML.jpg
[centos@demo ~]$ vault kv put kv/foo
Success! Data written to: kv/foo
[centos@demo ~]$ vault kv get kv/foo

==== Data
Key Value
test mycred

[centos@demo ~]$

test=mycred

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig9_HTML.jpg
[centos@demo ~]$ vault --help
Usage: vault <command> [args]

Common commands:

read Read data and retrieves secrets

write Write data, configuration, and secrets
delete Delete secrets and configuration

list List data or secrets

login Authenticate locally

agent Start a Vault agent

server Start a Vault server

status Print seal and HA status

unwrap Unwrap a wrapped secret

Other commands:

audit Interact with audit devices

auth Interact with auth methods

debug Runs the debug command

kv Interact with Vault's Key-Value storage
lease Interact with leases

monitor Stream log messages from a Vault server
namespace Interact with namespaces

operator Perform operator-specific tasks
path-help Retrieve API help for paths

plugin Interact with vault plugins and catalog
policy Interact with policies

print Prints runtime configurations

secrets Interact with secrets engines

ssh Initiate an SSH session

token Interact with tokens

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig17_HTML.jpg
¢« > e

Apps O Oradle Fusion Midd... b Suggested Sites [l Imported from IE » Blog - physicsworld...

o Nomad 3 Jump to

Servers

Jobs Bame Sade Addres ont soie

ip-172-31-33-110.ec2iinternal global alive True 17231.33.110 4688 det
Storage 557

ip-172-31-38-249.ec2.internal global False 17231.38.249 4688 det
Clients

ip-172-31-41-94.ec2.internal.global alive False 172314194 4648 det
Servers

Topology !

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig15_HTML.jpg
[root@ip-10-5-12-84 test]# consul services register counting.hcl

Registered service: counting
[root@ip-10-5-12-84 test]# consul services register dashboard.hcl

Registered service: dashboard
[root@ip-10-5-12-84 test]# [

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig3_HTML.jpg
Client

i

& D

Vault API

|| Jo

@ o o

Encryption
Authentication Secrets

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig34_HTML.jpg
constraint {
attribute = "${attr.kernel.name}"

value =

}

"linux"

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig17_HTML.jpg
$# Example AWS KMS auto unseal
seal "awskms" {

access _key = "Enter Access Key"
secret_key = "Enter Secret Keys"
region = "Enter Aws Region"

Bus key id = "Encer xMs ID®
}

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig5_HTML.jpg
= Google Cloud Platform

New Project

Project name *
\ My Project 99157 o

Project ID: basic-formula-267506. It cannot be changed later. EDIT

_ Location *
\ @ No organisation BROWSE \

Parent organisation or folder

CREATE CANCEL

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig17_HTML.jpg
Set up SSH keyp:

Teams €D connect to vCs ©P Set up provid
API Tokens.

Authentication Set up provider
SSH Keys
For additional information about connecting to GitLab.com to Terraform Cloud, please read our documentation 3.
VCS Providers | 1. On GitLab, register a new OAuth Application. ¢z Enter the following information:
Name: Terraform Cloud (Terraform-CloudDemo) €2 Copied!
Redirect URI: | terraform.i 2 113-af4f-3630e447a99¢/callback €2

Scopes: Only the following should be checke:
api

2. After clicking the "Save application” button, you'll be taken to the new application’s page. Enter the Application 1D and
Secret below:
Name
Terraform-CloudDemo-Gitlab-VCS.

An optional display name for your VCS Provider. This is helpful if you will be configuring multiple instances of the same
provider

Application 1D

ef11 >

Secret

< Back Cancel Connect and continue

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig18_HTML.jpg
google_storage_bucket.bucket: Refreshing state.

[id=terrazion]

An execution plan has been generate

and is shown below.
Resource actions are indicated with the following symbols:
destroy

Terraform will perform the followin:

action

google_storage_bucket.bucket will be
resource "google_storage_bucket" “buc
licy_only
default_event Im'\l'«l hold
force_dastroy

id

destroyed
ket™ |

buck

labels
log

nai

“”“-(x

pays

https://www.googleapis.com/atorage/vl/b/terrazion®

storage TANDARD"

uni form_buc
url

ket_level_acc

//terrazion®
lifecycle_rule (
action (
storage_class

type

condition (
age 7
matches_storage_class = []

num_newer_vi

with_state

ons 0
)

)

lifecycle_rule (
action (

storage_class = "COLDLINE"
type -

tStorageClass”

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig15_HTML.jpg
'O~yoUu Wdllt LU PETTOIM LNIESE aCctIoIn
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes
oogle_compute_instance.default: Creating...

oogle_compute_instance.default: Still creating... [10s elapsed]
oogle_compute_instance.default: Creation complete after 18s [id=projects/crafty-student-290205/zones/us-eastl-c/instances/test]

pply complete! Resources: 1 added, 0 changed, 0 destroyed.
utputs:

ebserver ip = 35.227.31.206

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig46_HTML.jpg
QJump to Documentation | ACL Tokens

Jobs easytraveltest1

WORKLOAD Overview Definition Versions Deployments Allocations Evaluations
Jobs
RATIONS Task
[} Group Created Modified 1 Status Version Client]
Storage 854
eldofeae nginx Mar 1108:41:36 16 minutes B running 0 d27aca .
austeR
+0530 ago
Clients
Servers 7772bfe8 loadgen Mar 1108:41:36 16 minutes B running 0 d27a6cfa . —_—
Tonclooy, +0530 ago
2f2d4def mongodb Mar 11 08:41:36 16 minutes B running 0 d2Tabeta . .
+0530 ago
27074210 frontend Mar 1108:41:36 2 minutes B running 0 7a6cfa .
+0530 ago
2296fdb4 backend Mar 1108:41:36 16 minutes @ running 0 d27a6eta . -
+0530 ago

v1.0.1

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig30_HTML.jpg
[vcs@ terral$ terraform destroy
aws_instance.ec2_server: Refreshing state... [id=i-06ee72b4a7eaB256e]
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

-~ destroy

Terraform will perform the following actions:

aws_instance.ec2_server will be destroyed

- resource "aws_instance" "ec2_server
- ami ami-0947d2bal2eelf£f75" 11
- arn "arn:aws:ec2:us-east-1:8 :instance/i-06ee72b4a7ea8256e"

~ associate_public_ip_address
- availability zone
~ cpu_core_count
~ cpu_threads_per_core
~ disable_api_termination
- ebs_optimized
-~ get_password_data
- hibernation
- id
- instance_state
- instance_type
- ipv6_address_count
~ ipv6_addresses
-~ monitoring
-~ primary network_interface_id
- private_dns
-~ private_ip
- public_dns
public_ip
- secondary private_ips
-~ security groups
= "default":
1 31
~ source_« dest check
subnet_xd
tags
- "Environment"
-~ "Name"

} > x

= "MyDemo"

true
us—east lc => null

=1

4 =
false
false
false -
false
g 06ee72b4a7eaBZSGe null
running” T
"t2.micro" -
[
false wll

eni-07caf4ebbd20a5198" nul
"ip-172-31-82-110.ec2. 1nternal" -

*172.31.82.110"

"ec2-34-204-12-227. compute 1.amazonaws.com" null
"34.204 12 227"

£l n

[

true
"subnet- bf646c 2 L
{

o

"My EC2_host™

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig43_HTML.jpg
- frontend
group "frontend" {
count = 2
network {
port "http" {
to = 8080

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig25_HTML.jpg
[root@ip-10-5-12-84 test]# consul intention create -allow -replace dashboard counting
[root@ip-10-5-12-84 test]# Fetched count 62

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig5_HTML.jpg
= O & https://console.aws.amazon.com/iam/home?region=us-east-1#/users

aws Services ¥

Identity and Access
Management (IAM)

Q Find users by username or access key

Dashboard
v Access management User name v Groups

Groups

Roles

Policies

Identity providers

Account settings
v Access reports

Access analyzer

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig5_HTML.jpg
[root@ip-172-31-38-249 ~]# export NOMAD_VERSION="1.0.1"
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig5_HTML.jpg
[saurabht@dryicelabs.com@devops@e88 ~]$ python3 --version
Python 3.6.8

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig24_HTML.jpg
« > c

Apps O Orace Fusion Midd...

o Nomad

Jobs

Storage

Clients
Servers

Topology

b SuggestedSites [l Imported From (€ * Blog - physicsworkd..

Q Jump to

Clients

Q
d27a6cfa ip-10-5-14-1d.ec2iinter.
0645306 5-159.ec2iinte.

Perpage | 25

ready

10.5.14.14:4646

10.5.15.159:4641

det

Class v| State v| Datacenter v| Volume

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig30_HTML.jpg
(]
Apps © OracleFusionMidd.. b SuggestedSites [l Imported FromIE = Blog - physicsworld...

o Nomad

Clients = c31f0383

Overview Monitor
Jobs
Driver Status
Storage
docker [Healthy
Clients
exec B Healthy
Servers
Topology
Attributes

Q Jump to Documentation

Detected Yes Last Updated in a few seconds
Detected Yes Last Updated 22 minutes ago

Detected Updated

tected Last Updat

Detected

9 »

ACL Token:

details

details

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig44_HTML.jpg
[root@ip-10-5-12-43 ~]# nomad job run easytravel.nomad
[==> Monitoring evaluation "13627b78"

Evaluation triggered by job "easytraveltestl"
Monitoring evaluation "13627b78"
Evaluation within deployment: "2377e980"
Allocation "1c2b0c97" created: node "d27aécfa", group "frontend"
Allocation "2296fdb4" modified: node "d27a6cfa", group "backend"
Allocation "2707d210" modified: node "d27aécfa", group "frontend"
Allocation "2f2d4d6f" modified: node "d27a6cfa", group "mongodb"
Allocation "7772bfe8" modified: node "d27a6cfa", group "loadgen"
Allocation "eld0feae" modified: node "d27a6cfa", group "nginx"
Evaluation status changed: "pending" -> "complete"
[==> Evaluation "13627b78" finished with status "complete"

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig13_HTML.jpg
< O O Not secure | 54.145.224.244:8200/ui/vault/init

Let's set up the initial set of
master keys that you’ll need in
case of an emergency

Key shares

Key threshold

v Encrypt output with PGP

v Encrypt root token with PGP

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig27_HTML.jpg
Secrets Access Policies

kv < token
token
Key Value

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig1_HTML.jpg
& httpsy/console.cloud.google.com/computeinstancesZproject=dryicepoc-242713&instancessize=508uef=https://accounts google.com/Logout?service®

) Google Cloud Platform

Welcome!

Create and manage your Google Cloud Platform instances, disks, networks, and other
resources in one place.

Country

‘Terms of Service
[1 agree to the Google Cloud Platform Terms of Service, and the terms of

service of any applicable services and APIs.

AGREE AND CONTINUE

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig1_HTML.jpg
HTTP/S API

o
(]
=
=
3]
[11]

Token Store

Policy Store

Core Audit Broker
Rollback Mgr. Expiration Mgr.
Path Routing Audit Device
System peeret Auth Method Audit Device
Backend Engine

Storage Backend

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig1_HTML.jpg
VM

VMs vs. Containers

App A App A

Bins/Libs Bins/Libs

6 Guest OS e Guest OS e Guest 0S

Bins/Libs

Bins/Libs

g] HostOs

Server

Container

Bins/Libs

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig18_HTML.jpg
[root@consul consul]# consul connect proxy -sidecar-for counting-1 > counting-proxy.log &
[2] 9954

OEBPS/images/978-1-4842-7129-2_CoverFigure.jpg
Infrastructure-as-Code
Automation Using
Terraform, Packer, Vault,
Nomad and Consul

Hands-on Deployment,
Configuration, and Best Practices

Navin Sabharwal
Sarvesh Pandey
Piyush Pandey

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig14_HTML.jpg
[centos@demo ~]$ export VAULT ADDR='http://127.0.0.1:8200'
[centos@demo ~]$ vault status

Key Value
Seal Type shamir
pInitialized false
Sealed true
Total Shares 0
Threshold 0
Unseal Progress 0/0
Unseal Nonce n/a
Version n/a

HA Enabled false

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig20_HTML.jpg
& - C A Notsecure | 18.209.98.187:8500/ui/dc1/services

dcl Services Nodes Key/Value ACL Intentions

Services s ol

[Q bearch Search across v Health Sta

&I nginx
1Instance @ in service mesh with proxy

1 Instance

9 httpd

1Instance & in service mesh with proxy

1Instance @ in service mesh with proxy

1lnstance @ in service mesh with proxy

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig28_HTML.jpg
[centos@demo ~]$ vault kv delete kv/foo
Success! Data deleted (if it existed) at:
[centos@demo ~]$ vault kv get kv/foo

No value found at kv/foo

[centos@demo ~]$

kv/foo

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig45_HTML.jpg
Qump to

Jobs = easytraveltestl

efinition Versions T aluat
Jobs
Storage

Version #1 true ! 1 Change
Clients Version #0 i No Changes
Servers

Topology

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig21_HTML.jpg
& > C A Notsecure | 18.209.98.187:8500/ui/dc1/services/counting/topology

dcl Services Nodes Key/Value ACL Intentions

< All Services

counting
Topology Instances Intentions Routing Tags
dc1 @

dashboard 4" counting

@ 100%

[Configure metrics dashboard

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig26_HTML.jpg
[root@ip-10-5-14-144 ~]# sudo yum update -y

lLoaded plugins: extras_suggestions, langpacks, priorities, update-motd
o packages marked for update

[root@ip-10-5-14-144 ~1# |

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig35_HTML.jpg
| grep DocumentRoot

[root@ip-10-5-12-84 ~]# cat /etc/httpd/conf/httpd.conf
DocumentRoot: The directory out of which you will serve your

DocumentRoot "/usr/share/nginx/html"
access content that does not live under the DocumentRoot

[root@ip-10-5-12-84 ~]#

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig15_HTML.jpg
[root@ip-172-31-38-249 nomad.d]# nomad server join 172.31.38.249:4648
Doined 1 servers successfully
[root@ip-172-31-38-249 nomad.d]# I

OEBPS/images/492265_1_En_1_Chapter/492265_1_En_1_Fig1_HTML.jpg
b

2. Check the
current status
Infrastructure
) Infrastructure-as- Actual state on
desired state
1. Read file when code tool cloud
file triggered 3. Apply the

change (if any)

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig16_HTML.jpg
[root@ip-10-5-12-84 consul dir]# consul catalog services

consul
counting

counting-sidecar-proxy

dashboard

dashboard-sidecar-proxy
[root@ip-10-5-12-84 consul dirl# [}

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig3_HTML.jpg
[root@inpransb0il packer_directory]# packer --version
1.6.6

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig15_HTML.jpg
GitLab Projec Groups v More

User Settings > Applications

Applications

Manage applications that can use GitLab as an
OAuth provider, and applications that you've
authorized to use your account.

Add new application

Name

Terraform Cloud (Terraform-CloudDemo)

Redirect URI

https://app.terraform.io/auth/2eee91d0-600c-41f3-af4f-4ul447a99e/callback

Use one line per URI

Confidential
The application will be used where the client secret can be kept confidential. Native mobile apps
and Single Page Apps are considered non-confidential.

Scopes

api
Grants complete read/write access to the API, including all groups and projects, the container
registry, and the package registry.

() read_user
Grants read-only access to the authenticated user's profile through the /user APl endpoint, which
includes username, public email, and full name. Also grants access to read-only APl endpoints
under /users.

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig19_HTML.jpg
Sign out

Try Azure for free

Follow these steps to get started. We ask for these details to protect your
account and information. There are no upfront charges or fees.

1 About you ~ What's included
12 months of free products
Country/Region @ Get free access to popular products
like virtual machines, storage, and
United Kingdom + databases in your first 30 days, and

for 12 months after you upgrade
your account to pay-as-you-go
pricing

Choose the location that matches your billing address. You
cannot change this selection later. If your country is not
listed, the offer is not available in your region. Learn More

First name ° £150 credit
. Use your £150 credit to experiment

with any Azure service in your first
30 days—beyond the free product
amounts,

Last name

° 25+ always-free products
Take advantage of more than 25
products, including serveriess,
containers, and artificial intelligence,
that are always free. Get these in
your first 30 days, and always—
once you choose to upgrade.

Email address @

Phone

° No automatic charges
You won't be charged unless you
choose to upgrade. Before the end
Company VatiD & of your first 30 days, you'll be
notified and have the chance to
upgrade and start paying only for

the resources you use beyond the
free amounts, Chat with Sales
Next

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig26_HTML.jpg
[vcs@ terral$ 11

total 8

-rw-rw-r—— 1 root root 402 Nov 5 08:41 main.tf
-rw-rw-r—— 1 root root 220 Nov 5 08:39 variable.tf
[vcs@ terral$

[vcs@ terral]$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/aws...

- Installing hashicorp/aws v3.13.0...

- Installed hashicorp/aws v3.13.0 (signed by HashiCorp)

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, we recommend adding version constraints in a required_providers block
in your configuration, with the constraint strings suggested below.

* hashicorp/aws: version = "~> 3.13.0"
Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

[vcs@ terral$

OEBPS/css/envelope.png

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig11_HTML.jpg
[root@inpransb0Ol packer_] project]# 1s
aws_ami.json server_hardening.sh
[root@:.npranstl packer_] projectl]# I

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig12_HTML.jpg
HTTP listener

Listener "tcp" {
address = "0.0.0.0:8200"
tls_disable = 1

}

HTTPS listerner
listener "tcp"” {
address = "0.0.0.0:8200"
tls_cert_file = "/opt/vault/tls/tls.crt"
tls_key file = "/opt/vault/tls/tls.key"
}

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig3_HTML.jpg
dWsS
~—

Sign up for AWS

Secure verification Billing Information

Credit or Debit card number

@® We will not charge for usage below
AWS Free Tier limits. We temporarily
hold $1 USD/EUR as a pending
transaction for 3-5 days to verify
your identity. AWS accepts all major credit and debit cards. To learn

more about payment options, review our FAQ

Expiration date

Month v Year v ‘

Cardholder's name

Billing address
© Use my contact address

137 zalgario
vilnius vilnius 08217
LT

Use a new address

Verify and Continue (step 3 of 5)

You might be redirected to your bank's website to
authorize the verification charge

Privacy Policy [4 | Termsof Use[4 | Cookie Preferences | n Out

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig4_HTML.jpg
Packer building a golden ami using a
default linux ami from the aws market place

I\ Packer »

Il

Template.json

PACKER-DEMO-1.0

uu

Later Packer is utilizing the golden ami " PACKER-
DEMO-1.0" to create a ami with application pre

baked in

_

»
L

o

PACKER-DEMO-1.1-httpd

J

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig9_HTML.jpg
Welcome to Terraform Cloud!

Choose your setup workflow

Try an example configuration ~Recommended for OSS users

@3

Perform your first Terraform Cloud run using a sample configuration with the CLI.

Learn More [

Start from scratch
Start with a blank slate. Best for users who are already familiar with Terraform Cloud.

Learn More &

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig10_HTML.jpg
Create a new organization

Organizations are privately shared spaces for teams to collaborate on infrastructure. Learn more (4 about organizations in Terraform Cloud.

Organization name
e.g. company-name

Organization names must be unique and will be part of your resource names used in various tools, for example hashicorp/www-prod .

Email address

0

The organization email is used for any future notifications, such as billing alerts, and the organization avatar, via gravatar.com (2.

eate organization

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig14_HTML.jpg
[avi yi b: 15 compute]$ plan

y prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

[An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

google_compute_firewall.allow-sshxl will be created

+ resource "google_compute_firewall” “allow-sshx1"
+ creation_timestamp = (known after apply)
+ destination_ranges = (known after apply)
+ direction ~ (known after apply)
+ enable_logging = (known after apply)
+ id (known after apply)
+ name “allow-sshxl®
+ network = "default”

+ priority = 1000
+ project = (known after apply)
+ self_link = (known after apply)
+ source_ranges =1

+"000.0.0/0",
+ target_tags -t

+ "s3h”,
+ allow {

+ ports =

sz,

1
+ protocol = "tcp®
)

google_compute_instance.default will be created
+ resource "google_compute_instance” "default®
+ allow_stopping_for_update = true

+ can_ip_forward false
+
+

cpu_platform (known after apply)
current_status = (known after apply)

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig25_HTML.jpg
ACL Tokens ACL Policy Sentinel Policy Capabilities

(©

| I | Assocﬁated I Allow I Job
Policy - Submit Job —_ Meets Policy
— N - I _—

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig12_HTML.jpg
[root@inpransb0l packer project]# packer validate aws_ami.json
[root@inpransboil packer_project]# packer inspect aws_ami.json
Packer Inspect: JSON mode
Optional variables and their defaults:

ami_id = ami-6f£68cfoOf
Builders:

amazon-ebs
Provisioners:

shell
Note: If your build names contain user variables or template
functions such as 'timestamp', these are processed at build time,

and therefore only show in their raw form here.
[root@inpransbOl packer_project]#

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig23_HTML.jpg
Home > ™ = "y Rop registrations > Create

Create O X

Application type @
[E=r7 v
* Sign-on URL @

[o estcom v

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig16_HTML.jpg
b

Projects v Groups v More v

AN
%;:5 User Settings

@ Profile

8% Account

B8 Billing

88 Applications

[Chat

@ Access Tokens
8 Emails

& Password

Q Notifications

AP SSH Keys

User Settings > Applications > Terraform Cloud (Terraform-CloudDemo)

@ The application was created successfully.

Application: Terraform Cloud (Terraform-CloudDemo)

Application ID

Secret

Callback URL
Confidential

Scopes

oen

ef113fc6955a63e2ffosac | [

845a5a484897079c4ccc3s Pn

https://app.terraform.io/auth/2eee91de-600c-41f3-afaf - agip7a99e/callback
Yes

* api (Access the authenticated user's API)

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig29_HTML.jpg
azurerm subnet.demo will be created
+ resource "azurerm subnet" "demo" {

+ address_prefix = 910.0.2.0/24"

+ address_prefixes = (known after apply)
+ enforce_private_link endpoint_network policies = false

+ enforce_private_link service network policies = false

+ id = (known after apply)
+ name = "demo"

+ resource_group_name = %demo™

+ virtual network name = "demo"”

Plan: 2 to add, 0 to change, 0 to destroy.

arning: "address prefix": [DEPRECATED] Use the “address_prefixes® property instead.

on main.tf line 2, in resource "azurerm subnet” "demo":
2: resource "azurerm subnet" "demo" {

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

@azurerm subnet.demo: Creating...

@zurerm network security group.demo: Creating...

@azurerm subnet.demo: Creation complete after 6s [id=/subscriptions/3£853c29-£9c0-42b.
@alNetworks/demo/subnets/demo]

@azurerm network security group.demo: Still creating... [10s elapsed]

@zurerm network security group.demo: Creation complete after 13s [id=/subscriptions/
oft .Network/networkSecurityGroups/demo]

Apply complete! Resources: 2 added, 0 changed, O destroyed.

OEBPS/images/492265_1_En_BookFrontmatter_Fige_HTML.jpg

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig25_HTML.jpg
[root@R ~]$ sudo mv terraform /usr/local/bin/
[root@ ~]$ terraform version
Terraform v0.13.5

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig35_HTML.jpg
L
count = 1
network {
port "http" {
to = 8080

restart {
attempts =
interval = "5m"
delay "B
mode = "delay"

¥

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig30_HTML.jpg
Remove test database and access to it? [Y/n] Y
- Dropping test database...
ERROR 1008 (HY000) at line 1: Can't drop database 'test'; database doesn't exist
... Failed! Not critical, keep moving...
- Removing privileges on test database...
wee Success!

Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.

Reload privilege tables now? [Y/n] Y
swie SUCEESS!

All done! 1If you've completed all of the above steps, your MySQL
installation should now be secure.

Thanks for using MySQL!

Cleaning up...

ST YT |

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig5_HTML.jpg
[root@ip-10-5-13-156 ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.8 (Maipo)
[root@ip-10-5-13-156 ~]# uname -m

%86 64

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig36_HTML.jpg
& > C A Notsecure | 18.2C

G dcl Services Nodes Key/Value

Services s ol

Q Search Search acr

@ consul

1 Instance

@ apache
1lInstance & httpd

o nginx

1Instance © webfrontend

OEBPS/images/492265_1_En_1_Chapter/492265_1_En_1_Fig2_HTML.jpg
Composability

Repeatability

Predictability

o Consistency

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig10_HTML.jpg
[root@ip-172-31-38-249 ~]# nom-a:i- _-au_{ocomplete-instai'l
[root@ip-172-31-38-249 ~]# complete -C /usr/local/bin/nomad nomad
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig2_HTML.jpg
(0

>
>

6. Connect using the
credentials
1. Enable the database secret engine
2. Configure the secret engine
3. Create roles

4. Request a set of credentials

(| > l
admin 5. Returns a new set of credentials App

TTL =1 hour
Renewable = true

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig8_HTML.jpg
[centos@demo ~]$ sudo yum -y install vault
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: d36uatko69830t.cloudfront.net
* epel: download-cc-rdudil.fedoraproject.org
* extras: d36uatko69830t.cloudfront.net
* ypdates: d36uatko69830t.cloudfront.net
hashicorp
hashicorp/7/x86_64/primary
hashicorp
Resolving Dependencies
--> Running transaction check
---> Package vault.x86 64 0:1.5.4-1 will be installed

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig17_HTML.jpg
[root@ip-10-5-12-84 ~]# consul intention create dashboard counting

Created: dashboard => counting (allow)

[root@ip-10-5-12-84 ~]# consul intention create -deny -replace dashboard counting
[root@ip-10-5-12-84 ~1# I

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig16_HTML.jpg
[root@ip-172-31-33-110 ~]# nomad server join 172.31.38.249:4648
Poined 1 servers successfully
[root@ip-172-31-33-110 ~]# nomad server members

ame Address Port Status Leader Protocol Build Datacenter Region
ip-172-31-33-110.ec2. internal.global 172.31.33.110 4648 alive true 2 1.0.1 dcl global
ip-172-31-38-249.ec2. internal.global 172.31.38.249 4648 alive false 2 1.0.1 dcl global
ip-172-31-41-94.ec2.internal.global 172.31.41.94 4648 alive false 2 1.0.1 dcl global

[root@ip-172-31-33-110 ~1# I

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig6_HTML.jpg
aws Services ¥ AN

Add user ’ 2) (3) (&) (s

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

User name™ Terraform-user

© Add another user

Select AWS access type

Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type"l v Programmatic accessl
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig21_HTML.jpg
Choose your workflow

(8]

[»

Version control workflow Most common

Store your Terraform configuration in a git repository, and trigger runs based on pull
requests and merges.

Learn More &'

CLI-driven workflow
Trigger remote Terraform runs from your local command line.

Learn More &

API-driven workflow

A more advanced option. Integrate Terraform into a larger pipeline using the Terraform
APIL.

Learn More [&'

OEBPS/images/492265_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig21_HTML.jpg
e !-_

| Q Type a prefix and press Enter to search. Press ESC to clea.

i

US East (N. Virginia)

Viewing 1t0 3
] Namew Last modified v Size v Storage class v
[J & core - - -
[#& logical - = =

O
v
k]

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig12_HTML.jpg
[ansible@Rip-10-5-12-84 ~]$ consul members
Node Address Status Type
ip-10-5-12-84 10.5.12.84:8301 alive server 1.9.2 2

[ansible@ip-10-5-12-84 ~]5 i

Build Protocol DC Segment
dcl <all>

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig6_HTML.jpg
[centos@demo ~]$ sudo yum install -y yum-utils
Loaded plugins: fastestmirror

Determining fastest mirrors
epel/x86_64/metalink

* base: d36uatko69830t.cloudfront.net

* epel: download-cc-rdu@l.fedoraproject.org
* extras: d36uatko69830t.cloudfront.net

* updates: d36uatko69830t.cloudfront.net
base

epel

extras

updates

(1/7): base/7/x86_64/group_gz

P LAY A tene cal

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig26_HTML.jpg
Connected

Dashboard

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig6_HTML.jpg
ogle Cloud Platform

My Fir:

DASHBOARD ACTIVITY

RECOMMENDATIONS

Project info

Project name

My First Project
Project ID
crafty-student-290205
Project number

267064846461

ADD PEOPLE TO THIS PROJECT

—> Goto project settings

. Learn more

& Resources

Storage
1 bucket

API APIs
Requests (requests/sec)
345 apu

@ Requests: 0.150/s

- Goto APIs overview

o

03

02

/' CUSTOMIZE
DISMISS
& Google Cloud Platform status i
All services normal
-> Goto Cloud status dashboard
& Billing H
Estimated charges INR0.00

For the billing period Oct 1 - 14,2020

View detailed charges

Monitoring

Set up alerting policies

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig26_HTML.jpg
base

— main.tf

— provider.tf
— vars.tf

— main

— main.tf

— output.tf
— provider.tf
— vars.tf

— network

— main.tf

— provider.tf
— vars.tf

3 directories, 10 files

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig18_HTML.jpg
€ >
Apps © Orade FusionMidd.. b SuggestedSites [l Imported from IE = Blog - physicsworld.

0 Nomad Jump b

Clients

Class State Datacenter ¥ Volume
Jobs

Storage

No Clients

Clients
Servers

Topology

OEBPS/css/sidebar.gif

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig37_HTML.jpg
[root@ip-10-5-12-43 ~]# I

=
[root(up 10- 5 12-43 ~]# nomad job run easytravel.nomad

=> Monitoring evaluation "ebeflld2"
Evaluation triggered by job "easytraveltestl"
Monitoring evaluation "ebeflld2"
Evaluation within deployment:
Allocation "2296fdb4" created:
Allocation "2707d210" created:
Allocation "2f2d4d6f" created:
Allocation "7772bfe8" created:
Allocation "eld0feae" created:
Evaluation status changed:
=> Evaluation "ebeflld2" finished with status "complete"

"cbd40c8e"

node "d27a6cfa", group "backend"
node "d27aécfa", group "frontend"
node "d27aécfa", group

node "d27aécfa", group

node "d27aécfa", group

“pending" -> “"complete"

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig24_HTML.jpg
Dashboard

[Unreachable]

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig23_HTML.jpg
[root@ip-10-5-14-14 ~]# nomad node status

DC Name Class Drain Eligibility Status
d27a6cfa dcl ip-10-5-14-14.ec2.internal <none> false eligible ready
06453e06 dcl ip-19—5—12-159.ec2. internal <none> false eligible down

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Getting Started with HashiCorp Automation Solutions

 		2. Getting Started with HashiCorp Terraform

 		3. Understanding Terraform Programming Constructs

 		4. Automating Public Cloud Services Using Terraform

 		5. Getting Started with Vault

 		6. Getting Started with HashiCorp Packer

 		7. Getting Started with HashiCorp Consul

 		8. Getting Started with Nomad

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig38_HTML.jpg
&« > C A Notsecure | 18.209.98.187:8500/ui/dc1/services/apache/instances/ip-10-5-12-84/apache/health-checks

dc1 Services Nodes Key/Value A Intentions
< All Services / Service (apache)
apache
Service Name Node Name
apache ip-10-5-12-84
Health Checks Tags & Meta
Q Search Search across v Health Status Kind v Type v
@ Serf Health Status
NodeName CheckiD Type Notes
ip-10-5-12-84 serfHealth serf =
Output
Agent alive and reachable
& Service 'apache’ check
ServiceName CheckiD Type Notes
apache apache url hit http -
Output
HTTP GET http://127.0.0.1:8080: 200 OK Output: <!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Hello, Nginx!</title>
</head>

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig10_HTML.jpg
[ansible@ip-10-5-12-84 ~]$ consul agent -dev -ui -bind '{{ GetInterfaceIP "ethO" }}' -client 0.0.0.0
F=> Starting Consul agent...
Version: '1.9.2°'
Node ID: 'dddféa8l-f79b-a3ee-9155-15537c5e2470"
Node name: 'ip-10-5-12-84"
Datacenter: 'dcl' (Segment: '<all>')
Server: true (Bootstrap: false)
Client Addr: [0.0.0.0] (HTTP: 8500, HTTPS: -1, gRPC: 8502, DNS: 8600)
Cluster Addr: 10.5.12.84 (LAN: 8301, WAN: 8302)
Encrypt: Gossip: false, TLS-Outgoing: false, TLS-Incoming: false, Auto-Encrypt-TLS: false

F=> Log data will now stream in as it occurs:

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig6_HTML.jpg
[saurabht@dryicelabs.com@devops@@88 ~]$ aws --version
laws-c1i/1.16.304 Python/3.6.8 Linux/3.10.0-862.el17.x86_64 botocore/1.13.40
[saurabht@dryicelabs.com@devopsee88 ~]%

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig23_HTML.jpg
[root@ ~]$ sudo wget https://releases.hashicorp.com/terraform/0.13.5/terraform 0.13.5_linux_amdé4.zip
[--2020-10-27 10:22:04-- https://releases.hashicorp.com/terraform/0.13.5/terraform_0.13.5_linux_amd64.zip

[Resolving releases.hashicorp.com (releases.hashicorp.com)... 151.101.249.183, 2a04:4e42:2f::439

onnecting to releases.hashicorp.com (releases.hashicorp.com)|151.101.249.183]|:443... connected.
TTP request sent, awaiting response... 200 OK
Length: 34880173 (33M) [application/zip]
[Saving to: aterraform 0.13.5_linux_amdé4.zipa
>] 34,880,173 --.-K/s in 0.1s

100%[

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig6_HTML.png
mkdir consul
cd consul

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig4_HTML.jpg
aws

Select a Support Plan

English ~

AWS offers a selection of support plans to meet your needs. Choose the support plan
that best aligns with your AWS usage. Lean more

Basic Plan Developer Plan

= F,
Business Plan

From $100/month

For production
&

« Included with all « For early adoption, .
accounts testing and
 24/7 self-service access « Email access to AWS
to forums and resources Support during business .
hours
= Best practice checks to
help improve security = 1 primary contact can
and performance open an unlimited .

number of support cases

* Access to health status

and notifications = 12-hour response time

for nonproduction
systems

Need Enterprise level support?

critical dependencies

24/7 chat, phone, and
email access to AWS
Support

Unlimited contacts can
open an unlimited
number of support cases

1-hour response time for
production systems

Contact your account manager fo

runnin;

i and mission

on
tioar-workloada on AWS (starting at $15,000/month). Learn more

© 2017 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Privacy Policy

Terms of Use

Sign Out

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig6_HTML.jpg
hé.E?tps://releaéesthashicorp.com/nomad/${NOMAD

VERSION}/nomad_${NOMAD_VERSION}_linux_amd64.zip

[root@ip-172-31-38-249 ~]# 1s -1rt --color=never

‘total 38520

-rw-r--r-- 1 root root 39444296 Mar 8 00:58 nomad_1.0.1_linux_amd64.zip
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig18_HTML.jpg
GitLab Projects v Groups v More v h or jump to...

User Settings > User Settings

Authorize Terraform Cloud (Terraform-CloudDemo) to use
your account?

An application called Terraform Cloud (Terraform-CloudDemo) is
requesting access to your GitLab account. This application was created by
Rajesh. Please note that this application is not provided by GitLab and you
should verify its authenticity before allowing access.

This application will be able to:

¢ Access the authenticated user's API
Grants complete read/write access to the AP|, including all groups
and projects, the container registry, and the package registry.

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig10_HTML.jpg
c @ o google.com

Google Cloud Platform

= [rype to filter
1AM & Admin (] -
Project Browser
1AM @ Access Approvel Editor " v project (opticnial)
§ . Access Context Ma... Owner
Identity & Organization
Actions Viewer
Policy Troubleshooter
Al Notebooks.
Organization Policies S Android Management
<] sission to
Service Accounts o APiGateway
Labels
[MANAGE ROLES L
Settings
Privacy & Security <+ ADD ANOTHER ROLE

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig18_HTML.jpg
[centos@demo ~]$ vault status

Key Value
Recovery Seal Type awskms
Initialized false
Sealed true
Total Recovery Shares 0
Threshold 0
Unseal Progress 0/0
Unseal Nonce n/a
Version n/a

HA Enabled false

OEBPS/images/492265_1_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig23_HTML.jpg
[centos@demo ~]$ vault secrets enable kv
Success! Enabled the kv secrets engine at:

kv/

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig24_HTML.jpg
Home > I Bfiee

customauthserviceprincipal

Registered app

Q Settings ,l' Manifest @ Delete
Display name

customauthserviceprincipal

Application type

Web app / API

Home page

http://test.com

»

App registrations > customauthserviceprincipal

0
Application ID
Object ID
Ccl il Jiiges ool [l e ps "l 15

Managed application in local directory
customauthserviceprincipal

X

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig31_HTML.jpg
]

A Not secure | 18.209.98.187/test.php

Php

System Linux Ip-10-5-12-84 3.10.0-1127.19.1.617.x86_64 #1 SMP Tue Aug 11 19:12:04 EDT 2020 x86_64

Build Date Feb 22021 10:32:50

Build System Red Hat Enterprise Linux Server release 7.9 (Maipo)

Build Provider Remi's RPM repository <https:/rpms.remirepo.net/>

Server APl Apache 2.0 Handler

Virtual Directory Support disabled

Configuration File (php.ini) Path Jetc

Loaded Configuration File letc/php.ini

Scan this dir for additional .ini files letciphp.d

Additional .ini files parsed /php./20-bz2.ini ctype.ini, fetc/php.d/20-curl.ini, /etc/php.d/20-dom.ini,
/emmpwzumm lewpnparzwemfom Jetciphp.d/20-1tp.ni, /etc/php.dr20-gd.ni, elc/php.d/20-gettext.ini,
letclphp.d/20-iconv.ini, fetc/php.
oo ety 120 prar /aapnpmwmuw ockets.Inl
Jetclphp.d20-sqlite3.ni, /etc/php.d/20-tokenizer.inl, /mpmurzo.mnnw;:mmmw letc/php.di20-
xslini, wm;mo.m.mw Tetciphp.d/30-mysglini, mc/pnpmo.pao mysqlini, fetc/php.d/30-pdo_sqlite.ini,

PHP API 20180731

PHP Extension 20180731

Zend Extension 320180731

Zend Extension Build API320180731,NTS

PHP Extension Build API20180731,NTS

Debug Build A

no Acti

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig39_HTML.jpg
Apps O OradeFusionMidd.. b SuggestedSites [l Imported From IE » Blog - physicsworld...

Documentation | ACL Tokens

© Nomad

Jobs | easytraveltestl

Overview Definition Version Depl
Jobs |
Storage easytraveltest! @ e

Type: service | Priority: 50
Clients
S
ervers Allocation Status 5 e
Topology

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig22_HTML.jpg
Microsoft Azure

Home > &laiiadl- App registrations

|- Create a resource ghw== - App registrations

#+ Home ar
== New application registration | ‘= Endpoints K Troubleshoot

%) Dashboard A
4 The preview experience for App registrations is available. Click this banner to launch|

All services O Overview
FAVORITES i Getting started by name PF My apps

All resources Manage DISPLAY NAME

Key vaults Users.
W/ Resource groups Groups
& App services Organizational relationships
%> Function Apps Roles and administrators
 sql databases Enterprise applications
& Azure Cosmos DB Devices
@ Azure Active Directory App registrations

B8 virtual machines App registrations (Preview)

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig4_HTML.jpg
Service
Client

Load Balance Request

Service A

Service B

Service C

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig31_HTML.jpg
Home > demo >

[«] demo-vm =

Virtual machine

P Search (Ctrl+/) «

B Overview

@ Activitylog

A Access control (IAM)

@ Tags

& Diagnose and solve problems
Settings

R Networking

& Connect

8 Disks

B size

9 Ssecurity

@ Advisor recommendations

@) Extensions

& Connect [> stat C Restat [Stop [Captwre [i] Delete () Refresh [] Share to mobile

Vv Essentials

Properties Monitoring

I Virtual machine
Computer name
Operating system
Publisher
Offer
Plan
VM generation
Agent status
Agent version
Host

Proximity placement
group

Capabilities ~ Recommendations

demo-vm
Linux (ubuntu 16.04)
Canonical
UbuntuServer
160475

Vi

Ready

2252

N/A

R Networking
Public IP address 104.40.7.81
Public IP address (IPv6) -
Private IP address 10024

Private IP address (IPv6) -
Virtual network/subnet demo/demo

B2 size

DNS name Configure

Size Standard DS1v2
vCPUS 1

RAM 35Gi8

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig33_HTML.jpg
[rgot@ip-10-5-12-43 ~]# cat easytravel.nomad i
job "easytraveltestl" {
datacenters = ["dcl1"]

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig4_HTML.jpg
Authenticate to Vault

A 4

Return Client token

-
-

Request a secret

Hashorp

Vault

Return a secret

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig28_HTML.jpg
Home > All resources >

25 demo 2

Virtual network

«
4> Overview =
@ Activitylog

A Access control (AM)

@ Tags

2 Diagnose and solve problems
Settings.

> Address space

& Connected devices

< Subnets

© DDos protection

@ Firevall

O Refresh = Move v [i]

A Essentials
Resource group (change)
demo
Location
West US

Subscription (change)
Microsoft Azure

Subscription ID
—
Tags (change)

Click here to add tags

Connected devices

Address space
10000/16
DNS servers
Multiple

O Search connected devices

Device N Type T IP Address T Subnet

No results.

N

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig11_HTML.jpg
[root@ip-10-5-14-144 ~]# mkdir -p /opt/nomad
[root@ip-10-5-14-144 ~]# file /opt/nomad/
/opt/nomad/: directory

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig13_HTML.jpg
Name v AMI Name -~ AMIID

PACKER-DEMO-1.0 packer_linux_a... ami-0bf84e68a94b25c98

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig50_HTML.jpg
mported From IE

Q Jump to

ACL Tokens

Jobs = easytraveltest] = backend = 2296fdb4 = easytravel-backend

Overview Logs Files
T Type Description
Storage 574 Mar 11, 21 09:15:43 +0530 Started Task started by client
s Mar 11,21 09:15:42 +0530 Driver Downloading image
Clients
Servers Mar 11,21 09:15:13 +0530 Restarting Task restarting in 28.757704084s
Topology
Mar 11, 21 09:15:13 +0530 Terminated Exit Code: 137, Exit Message: “Docker container exited with non-zero exit code: 137"
Mar 11,21 08:41:37 +0530 Started Task started by client
Mar 11, 21 08:41:36 +0530 Driver Downloading image
Mar 11,21 08:41:36 +0530 TaskSetup Building Task Directory

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig8_HTML.jpg
& @ F~ °

#H e & €

1AM & Admin Service accounts + CREATE SERVICEACCOUNT @ DELETE SHOW INFO PANEL
1AM . " .
Service accounts for project "My First Project’
Identity & A servi 00g| i uch gine VMs, , o i i . Learn more about
service accounts.
Policy features, such , key or service
accounts entirely. Learn more about service account organization policies.
Organization Policies
Service Accounts = Filter table) mw
[O email Status Name 4 Description Key D Actions.
O 2 267064846461-] Compute 6ddebedcd94ebdob3i6alebad2esdedaced §
Settings compute@developer gserviceaccount.com Engine
default
Privacy & Security service
account
Identity-Aware Proxy
iy O <3 test66@crafty-student-] test 80f086e0978a40dfde51b775d9ecablcBafb §

290205.iam.gserviceaccount.com

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig14_HTML.jpg
Terraform-CloudDemo / Settings / VCS Providers / Add VCS Provider

Add VCS Provider

To connect workspaces, modules, and policy sets to git repositories containing Terraform configurations, Terraform Cloud
needs access to your version control system (VCS) provider. Use this page to configure OAuth authentication with your
VCS provider. For more information, please see the Terraform Cloud documentation on Configuring Version Control
Access (2.

° Connect to VCS o Set up provider Set up SSH keypair

Set up provider

For additional information about connecting to GitLab.com to Terraform Cloud, please read our documentation (2.

1. On GitLab, register a new OAuth Application. (3 Enter the following information:

Name: Terraform Cloud (Terraform-CloudDemo) 2] Copied!

Redirect URI: https://app.terraform.io/auth/2eee91d0-600c-41f3-af4{-SEMMM47a99¢/callback (7]
Copied!
Scopes: Only the following should be checked:
api

2. After clicking the "Save application” button, you'll be taken to the new application’s page. Enter the Application ID and
Secret below:

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig2_HTML.jpg
« > O @ a loud.googl »_ga=2.28815417.447649489. 126372. D .googl [1] Y%
Try Google Cloud Platform for free
Step 1 0of 2 Access to all Cloud Platform Products
Get everything you need to build and run your apps,
Country websites and services, including Firebase and the
Google Maps API.
India -
$300 credit for free
Terms of Service Sign up and get $300 to spend on Google Cloud

O I'have read and agree to the Google Cloud Platform Free Trial Terms
of Service.

Required to continue

CONTINUE

Privacy policy | FAQs

Platform over the next 12 months.

No auto-payment after free trial ends

We ask you for your credit card to make sure you're
not a robot. You won't be charged unless you turn on
automatic billing now or anytime during your free
trial. Either way, you still get $300 in credit.

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig2_HTML.jpg
Free Tier offers

AlLAWS accounts can explore 3 different types
of free offers, depending on the product used.

\ Always free
Never expires

12 months free
Start from initial sign-up date

Trials
@ Start from service activation date

Sign up for AWS

Contact Information

How do you plan to use AWS?

Business - for your work, school, or
organization

Personal - for your own projects
Who should we contact about this account?

Full Name
| |

Phone Number
Enter your country code and your phone number.

‘ +1 222-333-

Country or Region

‘ United States v ‘

Address
\ |

Apartment, suite, unit, building, floor, etc. ‘

City
\ |

State, Province, or Region

Postal Code

I have read and agree to the terms of the
AWS Customer Agreement [4.

Continue (step 2 of 5)

P

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig49_HTML.jpg
Qump to

Jobs = easytraveltestl

Documentation | ACL Tokens

WORKLOAD Overview Definition Versions Deployments Allocations Evaluations
Jobs | —
Type: service | Priority: 50
INTEGRATIONS
Storage 854
Allocation Status 5
avse
Clients
(@ 0 Queued
Servers
W 0 Failed

Latest Deployment cbdd0cge

SUCCESSFUL

collapse

% 0 Starting

1 0 Complete

0 Lost

33 minutes ago

Deployment completed successfully

Canaries Placed Desired Healthy Unhealthy
e nNn/’0 [=g " 2

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig11_HTML.jpg
[centos@demo ~]$ sudo service vault status
Redirecting to /bin/systemctl status vault.service
B vault.service - "HashiCorp Vault - A tool for managing secrets"”
Loaded: loaded (/usr/lib/systemd/system/vault.service; disabled; vendor preset: disabled)
Active: inactive (dead)
Docs: https://www.vaultproject.io/docs/

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig12_HTML.jpg
o Google Cloud Platform

Q 10.0.0.0/28

Virtual
Private Cloud

Compute
Engine
Cloud
Firewall Rules
Ingress
1P-0.0.0.0
Port-22

Cloud
Storage

Cloud
External IP
Addresses

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig2_HTML.jpg
[root@inpransb0l packer_directory]# packer
Usage: packer [--version] [--help] <command> [<args>]

Available commands are:

build build image(s) from template

console creates a console for testing variable interpolation
fix fixes templates from old versions of packer

fmt Rewrites HCL2 config files to canonical format
hcl2_upgrade transform a JSON template into an HCL2 configuration
inspect see components of a template

validate check that a template is valid

version Prints the Packer version

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig22_HTML.jpg
Dashboard

ip-16-5-12-84

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig27_HTML.jpg
[root@ip-10-5-14-144 ~]# sudo amazon-linux-extras install docker
Installing docker

loaded plugins: extras_suggestions, langpacks, priorities, update-motd
ICleaning repos: amzn2-core amzn2extra-docker

12 metadata files removed

4 sqlite files removed

0 metadata files removed

loaded plugins: extras_suggestions, langpacks, priorities, update-motd

(4/5): amzn2extra-docker/2/x86_64/primary_db

(5/5): amzn2-core/2/x86_64/primary_db

Resolving Dependencies

--> Running transaction check

---> Package docker.x86_64 0:19.03.13ce-1.amzn2 will be installed

> Processing Dependency: runc >= 1.0.0 for package: docker-19.03.13ce-1.amzn2.x86_64
--> Processing Dependency: containerd >= 1.3.2 for package: docker-19.03.13ce-1.amzn2.x86_64
--> Processing Dependency: pigz for package: docker-19.03.13ce-1.amzn2.x86_64

--> Processing Dependency: libcgroup for package: docker-19.03.13ce-1.amzn2.x86_64

> Running transaction check

-> Package containerd.x86_64 0:1.4.4-1.amzn2 will be installed

---> Package libcgroup.x86_64 0:0.41-21.amzn2 will be installed

Running transaction

76 kB 00:00:00
51 MB 00:00:01

lamzn2-core | 3.7 kB 00:00:00
lamzn2extra-docker | 3.0 kB 00:00:00
(1/5): amzn2-core/2/x86_64/updateinfo | 362 kB 00:00:00
(2/5): amzn2-core/2/x86_64/group_gz | 2.5 kB 00:00:00
(3/5): amzn2extra-docker/2/x86_64/updateinfo | 76 B 00:00:00
|
|

Installing : runc-1.0.0-0.1.20210225.9it12644e6.amzn2. x86_64 1/5
Installing : containerd-1.4.4-1.amzn2.x86_64 2/5
Installing : libcgroup-0.41-21.amzn2.x86_64 3/5
Installing : pigz-2.3.4-1.amzn2.0.1.x86_64 4/5
Installing : docker-19.03.13ce-1.amzn2.x86_64 5/5
Verifying : containerd-1.4.4-1.amzn2.x86_64 1/5
Verifying : docker-19.03.13ce-1.amzn2.x86_64 2/5
Verifying : runc-1.0.0-0.1.20210225.git12644e6.amzn2.x86_64 3/5
Verifying : pigz-2.3.4-1.amzn2.0.1.x86_64 4/5
Verifying : libcgroup-0.41-21.amzn2.x86_64 5/5
Installed:

docker.x86_64 0:19.03.13ce-1.amzn2

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig8_HTML.jpg
[root@ip-172-31-38-249 ~]# sudo chown root:root nomad
[root@ip-172-31-38-249 ~]# 1s -1rt --color=never
[total 143704

-rwxr-xr-x 1 root root 107707520 Dec 16 21:09 nomad
-rw-r--r-- 1 root root 39444296 Mar 8 00:58 nomad_1.0.1_linux_amd64.zip
[root@ip-172-31-38-249 ~]# sudo mv nomad /usr/local/bin/
[root@ip-172-31-38-249 ~1#

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig40_HTML.jpg
Jobs l e STatus
NTEGRATIONS
eldofeae ngin Mar 1108:41:36 2 minutes W uming 0 d2Tabcta . .
Storage 574 ey %o
awsTeR
- T772bfe8 loadgen Mar 1108:41:36 2 minutes W uming 0 d2Tabcta . L
+0530 ago
Servers
Topology 2f2d4d6f mongodb Mar 11 08:41:36 2 minutes W running 0 d2736cfa . .
+0530 ago
2707d210 frontend Mar 11 08:41:36 2 minutes W uming 0 d2Ta6cta .
+0530 ago
2296fdb4 backend Mar 11 08:41:36 2 minutes W uming 0 7a6cf: .

+0530 ago

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig28_HTML.jpg
&8 root@ip-10-5-12-84:~

[root@ip-10-5-12-84 ~]# yum install mysqgl-server mysql
Loaded plugins: amazon-id, product-id, search-disabled-repos, subscription-manager

This system is not registered with an entitlement server. You can use subscription-manager to register.

Package mysgl-community-server-5.6.51-2.e17.x86_64 already installed and latest version
Package mysgl-community-client-5.6.51-2.e17.x86_64 already installed and latest version
Nothing to do

[root@ip-10-5-12-84 ~1# [

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig11_HTML.jpg
Create a new Workspace

Workspaces determine how Terraform Cloud organizes infrastructure. A workspace contains your Terraform configuration (infrastructure as
code), shared variable values, your current and historical Terraform state, and run logs. Learn more 4 about workspaces in Terraform Cloud.

o Choose Type Connect to VCS Choose a repository Configure settings

Choose your workflow
Q Version control workflow Most common

Store your Terraform configuration in a git repository, and trigger runs based on pull requests and merges. >

Learn More [&

CLI-driven workflow

Trigger remote Terraform runs from your local command line. >

Learn More &

A API-driven workflow
A more advanced option. Integrate Terraform into a larger pipeline using the Terraform API. >

Learn More &

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig8_HTML.jpg
[root@inpransb0l packer]# git clone git@github.com:dryice-devops/packer.git
Cloning into 'packer'...

remote: Enumerating objects: 12, done.

remote: Counting objects: 100% (12/12), done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 12 (delta 2), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (12/12), done.

Resolving deltas: 100% (2/2), done.

[root@inpransb0l packer]#

[root@inpransb0l packer]# I

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig8_HTML.jpg
Terraform Cloud <no-reply@hashicorp.com>

[Terraform Cloud] Confirm your email address

RERE S

Hello,

Please confirm this email address for your Terraform Cloud account by clicking on the link below:

3DRLBthzFWTuGcC2 z&am) data—02%7C01%7Cra esh.shisodi a%40hcl com%763726f93873dd4e2d657908d86b89{2d"%

7C€189de737c93a4f5a8b686f4ca9941912%7C0%7C0%7C6373775876632540248&sdata=1)DPW1%2BGj1rinS8IyV7IvIF6CS77tPG%2FIzHhxF9%
2BIPg%3D&reserved=0

Best,
HashiCorp

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig21_HTML.jpg
[root@ip-10-5-14-14 ~]# cat /etc/nomad.d/client.hcl
lclient {

enabled = true

servers = ["10.5.12.43:4647"]

lacl {
enabled = true

[root@ip-10-5-14-14 ~1# I

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig2_HTML.jpg
Nomad
TCPIUDP 4648 Server TCPILOP 4648
Leader
o /
A
TCP 4847 TCP 4847 TCP 4647
2
Nomad Nomad Nomad

Client Client Client

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig27_HTML.jpg
[ves@ terral]$ terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

aws_instance.ec2_server will be created
+ resource "aws_instance" "ec2_server" {

+ ami = "ami-0947d2bal2eelff75"
arn (known after apply)
associate_public_ip address (known after apply)
availability_ zone (known after apply)
cpu_core_count (known after apply)
cpu_threads_per_ core (known after apply)
get_password_data false
host_id (known after apply)
id (known after apply)
instance_state (known after apply)
instance_type "t2.micro"”
ipv6_address_count (known after apply)
ipv6é_addresses (known after apply)
key_name (known after apply)
outpost_arn (known after apply)
password_data (known after apply)
placement_group (known after apply)
primary network_interface_id (known after apply)
private_dns (known after apply)
private_ip (known after apply)
public_dns (known after apply)
public_ip (known after apply)
secondary private_ips (known after apply)
security groups (known after apply)
source_dest_check true

SRR T I T T T T T S ST S S St S R ST ST S e

subnet_id = (known after apply)
tags = §

+ "Environment" = "MyDemo"

+ "Name" = "My EC2_host"

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig17_HTML.jpg
google_storage bucket.bucket: Creating...
google_storage bucket.bucket: Creation complete after 4s [id=terrazion]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Outputs:

bucket = {
"bucket _policy only" = true
"cors" = []
"default_event based hold" = false
"encryption" = []
"force destroy” = false
"id" = "terrazion”
"lifecycle rule” = [
{
"action" = [
{
"storage_class" = "NEARLINE"
"type" = "SetStorageClass"
b
]
"condition" = [
{
"age" =1
"created before" = ""
"matches_storage class" = []
"num newer_versions” = (
"with_state" = "ANY"

]
b
{
"action" = [
{
"storage_class" = "COLDLINE"
"type" = "SetStorageClass"”
b
]
"condition" = [
{

"age" = 30
"created before" = ""
"matches storage class" = []

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig13_HTML.jpg
HashiCorp Cloud Platfor:

Terraform-CloudDemo / Settings / VCS Providers / Add VCS Provider

ORGANIZATION SETTINGS
Terraform-CloudDemo

General
Plan & Billing
Users

Teams

API Tokens
Authentication
SSH Keys

VCS Providers

Add VCS Provider

To connect workspaces, modules, and policy sets to git es c <
el aoomas 10 ST verRr SNl F e VEB) proviler: Use s mageso Sonfigure Gaath suthermcationwityyour
VCS provider. For more information, please see the Cloud ation on Confi 3 Version Control
Access @3:

& connect to vcs Set up provider Set up SSH keypair

Choose a version control provider to connect

Choose the version control provider you would like to connect.

@ s~ |[b cimimn || X8 sitbucker ~ || A Asure Dvore -

GitLab Community Edition

GitLab Enterprise Edition

M) © 2020 HashiCorp, Inc. Support Terms Privacy Security

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig1_HTML.jpg
Load Balancer

[\

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig34_HTML.jpg
[root@ip-10-5-12-84 ~]# cat /etc/httpd/conf/httpd.conf | grep Listen
Listen: Allows you to bind Apache to specific IP addresses and/or

Change this to Listen on specific IP addresses as shown below to
#Listen 12.34.56.78:80

Listen 127.0.0.1:8080

[root@ip-10-5-12-84 ~]1# []

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig28_HTML.jpg
[root@ib-10-5-14-144 ~]# systemctl start docker

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig1_HTML.jpg
[root@inpransb0l packer_ directoryl# ls

packer_1.6.6_linux_amd64.zip
[root@inpransb0l packer_directoryl# unzip packer_1.6.6_linux amdé4.zip

Archive: packer_1.6.6_linux amdé4.zip

inflating: packer

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig12_HTML.jpg
° Choose Type e Connect to VCS Choose a repository Configure settings

Connect to a version control provider

Choose the version control provider that hosts the Terraform configuration for this workspace.

) GitHub v & Gitlab v BF sBitbucket v /A Azure DevOps v

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig14_HTML.jpg
ar 08
Mar 08
ar 08
Mar 08
Mar 08
ar 08
ar 08
Mar 08
Mar 08
Mar 08

01:
01:
01:
0l1:
01:
01:
01:
01:
01:
01:
Hint: Some lines were ellipsized, use -1 to show in full.
[root@ip-172-31-38-249 nomad.d]# [l

loaded (/etc/systemd/system/nomad.service; enabled; vendor preset: disabled)
active (running) since Mon 2021-03-08 01:18:25 UTC; 4s ago
https://www.nomadproject.io/docs
762 (nomad)
/system.slice/nomad.service
L_762 /usr/local/bin/nomad agent -config /etc/nomad.d
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom..
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom..
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...
18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.738Z [ERROR] nom. .
18:26 ip-172-31-38-249.ec2.internal nomad[762]: ==> Newer Nomad version available: 1..
18:27 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:27.585Z [WARN] nom..

[root@ip-172-31-38-249
[root@ip-172-31-38-249
[root@ip-172-31-38-249
® nomad.service - Nomad
Loaded:
Active:
Docs:
Main PID:
CGroup:

nomaa:df# ;udo systemctl enable nomad
nomad.d]# sudo systemctl start nomad
nomad.d]# sudo systemctl status nomad

r=

.49
.el

)

dn
1)
.on

OEBPS/images/492265_1_En_6_Chapter/492265_1_En_6_Fig10_HTML.jpg
® rhel7.8_latest - Eln[Re i ey R A I A T4
latest ami pof rhel 7.8 with ansible user created

Root device type: ebs Virtualization type: hvm Owner: 711964153936 ENA Enabled: No

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig3_HTML.jpg
Region A

Nomad Server Nomad Server

3
Nomad Server

Region B

4= Serf

USSR

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig3_HTML.jpg
Consul Server

Consul Server

Consul Server

LAN Gossip

LAN Gossip

‘— Consul Client

Consul Client —

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig26_HTML.jpg
[centos@demo vault.d]$ vault kv put kv/token token=xxXXXXX
Success! Data written to: kv/token

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig31_HTML.jpg
(Travel Agency's)

'\ Apache Tomcat

'\ Apache Tomeat

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig19_HTML.jpg
[root@consul consul]# consul connect proxy -sidecar-for dashboard > dashboard-proxy.log &
[3] 10306

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig31_HTML.jpg
Plan: 0 to add, 0 to change, 1 to destroy.

Changes to Outputs:
-~ ec2-server-ip-address = [
- "34.204.12.227",
]

Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

aws_instance.ec2_server: Destroying... [id=i-06ee72b4a7ea8256e]
aws_instance.ec2_server: Still destroying... [id=i-06ee72b4a7ea8256e, 10s elapsed]
aws_instance.ec2_server: Still destroying... [id=i-06ee72b4a7eaB256e, 20s elapsed]
aws_instance.ec2_server: Destruction complete after 30s

Destroy complete! Resources: 1 destroyed.
[vcs@ terral$

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig12_HTML.jpg
[root@ip-172-31-38-249 ~]# sudo touch /etc/systemd/system/nomad.service
[root@ip-172-31-38-249 ~1# I

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig32_HTML.jpg
[root@consul consul]# yum install nginx
search-disabled-repos

Loaded plugins: amazon-id,
Package 1l:nginx-1.17.5-9334.el7.art.x86_64 already installed and latest version

Nothing to do

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig29_HTML.jpg
Launch Instance Connect Actions v A -

, Q| search:My EC2 host Add filter @ K < 1to1
@ Name ~ Instance ID 4+ Instance Type ~ Availability Zone ~ Instance State - Status Checks - Alarm Sta
@ My _EC2_host i-06ee72b4areal25... t2.micro us-east-1c @ running Z Initializing None

Instance: | i-06ee72bda7ea8256e (My_EC2_host) Public DNS: ec2-34-204-12-227.compute-1.amazonaws.com

Description Status Checks Monitoring Tags

Instance ID i-06ee72b4a7eald256e Public DNS (IPv4) ec2-34-204-12-227.compute-
1.amazonaws.com
Instance state running IPv4 Public IP
Instance type t2.micro IPv6IPs -
Finding Opt-in to AWS Compute Optimizer for Elastic IPs
recommendations. Learn more
Private DNS ip-172-31-82-110.ec2.internal Availability zone us-east-1c
Private IPs ~ 172.31.82.110 Security groups default. view inbound rules. view outbound
rules
Secondary private IPs Scheduled events No scheduled events
VPCID vpc-5595cb2f AMIID amzn2-ami-hvm-2.0.20200917.0-x86_64-
gp2 (ami-0947d2ba12ee1ff75)
Platform Amazon Linux SubnetID subnet-bf646c91
Platform details Linux/UNIX Network interfaces ~ eth0
Usage operation Runinstances IAMrole -
Source/dest. check True Key pair name -

T2/T3 Unlimited ~ Disabled

OEBPS/images/492265_1_En_3_Chapter/492265_1_En_3_Fig1_HTML.jpg
custom-module/
LICENSE
main.tf
outputs.tf
README . md
variables.tf

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig1_HTML.jpg
dWsS

)

Sign up for AWS

Explore Free Tier products with a Epilisitess o
You will use this email address to sign in to your new

new AWS account. AWS account.

To learn more, visit aws.amazon.com/free.

P
f{v @ \/;\ Confirm password

Password

AWS account name
Choose a name for your account. You can change this
name in your account settings after you sign up.

Con

ue (step 1 of 5)

Sign in to an existing AWS account

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig15_HTML.jpg
[centosfdemo vault.d]$ vi vault.hcl
#Example of vault.hcl file]]

ui = true

#mlock = true
f#disable mlock = true

storage "file" {
path = "/opt/vault/data”

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig21_HTML.jpg
Try Azure for free

Follow these steps to get started. We ask for these details to protect your
account and information. There are no upfront charges or fees.

1 About you v What's included

12 months of free products

Get free access to popular products
2 Identity verification by phone v like virtual machines, storage, and
databases in your first 30 days, and
for 12 months after you upgrade
your account to pay-as-you-go

3 Identity verification by card B pricing.
° £150 credit
Use your £150 credit to experiment
4 Agreement o, with any Azure service in your first
30 days—beyond the free product
1 agree to the subscription agreement, offer details, and privacy statement | amounts.
1 would lie information, tips, and offers from Microsoft orselected partners about Azure, ° 25+ always-free products
including Azure Newsletter, Pricing updates, and other Microsoft products and services. Tk schalitage of more Han 25

products, including serverless,
containers, and artificial intelligence,
that are always free. Get these in
your first 30 days, and always—
once you choose to upgrade.

° No automatic charges

You won't be charged unless you
choose to upgrade. Before the end
of your first 30 days, you'll be
notified and have the chance to
upgrade and start paying only for
the resources you use beyond the
free amounts.

Chat with Sales

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig16_HTML.jpg
Google Cloud Platform

DrylcePOC v

{e} Compute Engine

Virtual machines ~
B VMinstances
[Instance templates
B Soletenant nodes
€] Machine images
R TPUs
& Migrate for Compute Engi...
22 Committed use discounts

Starane PN

¥ Marketplace

VM

"l

instances

T VM inst
Name ~

9
dryicewqa1058

O kafka

machine-02

O test-
windows-
instance01

Zone

west2-a

centrall-a

us:
centrall-a

us-
eastl-b

Recommendation

@ Increase pert.

Inuse by

Internal IP

dryicewqal058--nicO
(10.168.0.43) (nic0)
10.12815.193 (nic0)

10.128.15.195 (nic0)

10.8.16.6 (nic0)

External IP

34.94.227.0

None

None

Columns ~
Connect
ROP ~ i
SSH v %
SSH ~ H

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig14_HTML.jpg
[root@consul consul]# PORT=9003 ./counting-service linux_amdé4 &
[4] 13983

[root@consul consull# Serving at http://localhost:9003

(Pass as PORT environment variable)

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig10_HTML.jpg
[centos@demo ~]$ vault --version
Vault v1.5.4 (1a730771ec70149293efe91e1d283b10d255c6d1)

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig47_HTML.jpg
[root@ip-10-5-14-14 ~]# docker container 1s -aq
[6296d04e7711

[p9dead21a304

19647757e3f13

[f4938ecc322b

[8d1457635510

[root@ip-10-5-14-14 ~]# docker container stop 8d1457635510
[8d1457635510

[root@ip-10-5-14-14 ~1# I

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig4_HTML.jpg
Select a project

Q Search projects and folders

NEW PROJECT

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig9_HTML.jpg
My First Project v

e IAM & Admin Create service account
~

2 M @ Service accountdetails @) Grant this service account access to project (optional)
© Identity & Organization © Grant users access to this service account (optional)
9, Policy Troubleshooter
B Organization Policies Service account details

Service account name
o3 Service Accounts test
—— Display name for this service account

Service account ID
£ Settings test-391 fty-student- .iam.gservi com X C
@ Privacy & Security Service account description

[Altest service account

B identty-Aware Proxy Describe what this service account will do
2 Roles
= AuditLogs

CREATE CANCEL

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig29_HTML.jpg
[root@ip-10-5-12-84 ~]# mysql_secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL
SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MySQL to secure it, we'll need the current
password for the root user. If you've just installed MySQL, and
you haven't set the root password yet, the password will be blank,
so you should just press enter here.

Enter current password for root (enter for none):
OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MySQL
root user without the proper authorisation.

You already have a root password set, so you can safely answer 'n'.

Change the root password? [Y/n] n
... skipping.

By default, a MySQL installation has an anonymous user, allowing anyone
to log into MySQL without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n] Y
«s s Success!

Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n] Y
= Success!

By default, MySQL comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y/n] Yl

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig41_HTML.jpg
easytraveltest1

Documentation

ACL Tokens

Storage sA

Clients
Servers

Topology

Overview Definition Versions Deployments

Job Definition

Allocations

Evaluations

s "service”,
"Priority”:

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig16_HTML.jpg
storage "s3" {
access_key

"Enter Access Key"
secret_key "Enter Secret Keys"
bucket "Add bucket name"

region = "Enter Aws Region"

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig25_HTML.jpg
v ‘ Secrets Access Policies Tools

Delete secret v Copysecret v Editsecret >

test

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig42_HTML.jpg
Qump to Documentation | ACL Tokens

Jobs easytravel

i Versions "

Jobs

Storage

Version #0 bmit No Changes

Clients
Servers

Topology

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig3_HTML.jpg
Try Google Cloud Platform for free

Step 2 of 2

Payments profile O

Choose the profile that will be i with
this account or transaction. A payments profile is shared
and used across all Google products.

e Individual profile for Play and YouTube Vv
Payments profile ID: 1 13

Customer info
© Accounttype ®

Individual

B8 Taxinformation

Tax status

B Nameandaddress ® /'

Dhaulagiri Apartments, Kaushambi
Ghaziabad, Uttar Pradesh 201010
India

How you pay
m Monthly automatic payments

You pay for this service on a regular
monthly basis, via an automatic charge

when your payment is due.
Payment method
@& Mastercard 5 v

The personal information that you provide here will be
added to your payments profile. It will be stored securely
and treated in accordance with the Google Privacy
Policy.

START MY FREE TRIAL

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig23_HTML.jpg
[root@ip-10-5-12-84 ~]# consul intention delete dashboard counting
Intention deleted.
[root@ip-10-5-12-84 ~1# i

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig4_HTML.jpg
[root@ip-10-5-12-43 repol# git clone https://github.com/dryice-devops/nomad.git
ICloning into 'nomad'...

remote: Enumerating objects: 21, done.

remote: Counting objects: 100% (21/21), done.

remote: Compressing objects: 100% (17/17), done.

remote: Total 21 (delta 4), reused 0 (delta 0), pack-reused 0

[Unpacking objects: 100% (21/21), done.

[root@ip-10-5-12-43 repol# [l

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig30_HTML.jpg
Plan: 4 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm public ip.demo: Creating...

azurerm public _ip.demo: Still creating... [10s elapsed]
azurerm public ip.demo: Creation complete after 1lls [id=/subscriptions/3]
ublicIPAddresses/demo]

azurerm network interface.demo: Creating...

azurerm network interface.demo: Still creating... [10s elapsed]
azurerm network interface.demo: Creation complete after 1lls [id=/subscrij
etwork/networkInterfaces/demo]

azurerm network interface_ security group association.demo: Creating...
azurerm virtual machine.demo: Creating...

azurerm network interface_ security group association.demo: Creation comp]
demo/providers/Microsoft.Network/networkInterfaces/demo|/subscriptions/3]
etworkSecurityGroups/demo]
azurerm virtual machine.demo: Still creating... [10s elapsed]
azurerm virtual machine.demo: Still creating... [20s elapsed]
azurerm virtual machine.demo: Still creating... [30s elapsed]
azurerm virtual machine.demo: Still creating... [40s elapsed]
azurerm virtual machine.demo: Still creating... [50s elapsed]
azurerm virtual machine.demo: Still creating... [1lmOs elapsed]
azurerm virtual machine.demo: Creation complete after 1lm3s [id=/subscripf
mpute/virtualMachines/demo-vm]

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

Outputs:

public ip address_demo = 13.64.128.215

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig48_HTML.jpg
Documentation | ACL Tokens

Jobs easytraveltestl

WORK.OAD Overview Definition Versions Deployments Allocations Evaluations
Jobs
Type: service | Priority: 50
INTEGRATIONS
Storage A
Allocation Status 5 collapse
avsTe
Clients
@ 0 Queued % 1Starting
Servers
7 B 4Running W 0 Complete
Topoloay VA]
W 0failed 0 Lost

Latest Deployment cbd40cse

33 minutes ago

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig29_HTML.jpg
root@ip-172-31-47-200 ~]# systemctl status docker

p docker.service - Docker Application Container Engine
loaded (/usr/lib/systemd/system/docker.service; disabled; vendor preset: disabled)
active (running) since Mon 2021-03-08 02:24:38 UTC; 4min 11ls ago
https://docs.docker.com
5818 ExecStartPre=/usr/libexec/docker/docker-setup-runtimes.sh (code=exited, status=0/SUCC
5807 ExecStartPre=/bin/mkdir -p /run/docker (code=exited, status=0/SUCCESS)

5825 (dockerd)

Loaded:
Active:
Docs:
Process:
Process:
Main PID:
Tasks:
Memory:
CGroup:

08
08
08
08
08
08
08
08
08

02:
02:
02:
02:
02:
02:
02:
02:
02:

10
38.3M

/system.slice/docker.service

L5825 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.

24:
24:
24:
24:
24:
24:
24:
24:
24:

34
34
34
38
38
38
38
38
38

ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.
ip-172-31-47-200.

ec2.
ec2.
ec2.
ec2.
ec2.
ec2,
ec2,
ec2.
ec2.

internal
internal
internal
internal
internal
internal
internal
internal
internal

dockerd[5825]:
dockerd[5825] :
dockerd[5825] :
dockerd[5825]:
dockerd[5825] :
dockerd[5825] :
dockerd[5825] :
dockerd[5825] :

time="2021-03-08T02:
ime="2021-03-08T02:
2021-03-08T02:
time="2021-03-08T02:
time="2021-03-08T02:
time="2021-03-08T02:
time="2021-03-08T02:
time="2021-03-08T02:

24:
24:
24:
24:
24:
24:
24:
24:

sock --default-ul

34,
34,
34,
38.
38.
38.
38.
38.

7669904427Z"
767262226Z"
767560423Z"
387135900Z"
664944090Z"
850045050Z"
880421734Z"
880524590Z"

le
le
le
le
le
le
le
le

systemd[1]: Started Docker Application Container Engine

OEBPS/images/492265_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/492265_1_En_3_Chapter/492265_1_En_3_Fig2_HTML.jpg
provider "vsphere" @

user = "00000000¢"
password 007000000 e
vsphere_server = "x0000000¢"
version =S4 5=

If you have a self-signed cert
allow_unverified_ssl = true

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig28_HTML.jpg
+ root_block_device {
+ delete_on_termination
device_name

(known after apply)
(known after apply)

encrypted = (known after apply)
iops = (known after apply)
kms_key_id (known after apply)

volume_id
volume_size
volume_type

(known after apply)
(known after apply)
(known after apply)

+ 4+ o+

}
Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_instance.ec2_server: Creating...

aws_instance.ec2_server: Still creating... [10s elapsed]
aws_instance.ec2_server: Still creating... [20s elapsed]
aws_instance.ec2_server: Still creating... [30s elapsed]
aws_instance.ec2_server: Still creating... [40s elapsed]
aws_instance.ec2_server: Creation complete after 42s [id=i-06ee72b4a7ea8256e]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Outputs:
ec2-server-ip-address = [

=34.204.92 227";
]

[vcs@ terral$

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig8_HTML.jpg
[ansible@ip-10-5-12-84 ~]$ unzip consul_1.9.2_linux_amdé4.zip

Archive: consul_1.9.2 linux_amdé4.zip

inflating: consul
[ansible@ip-10-5-12-84 ~]$ 1s

consul consul 1.9.2 linux amdé4.zip

OEBPS/images/492265_1_En_4_Chapter/492265_1_En_4_Fig20_HTML.jpg
3 Identity verification by card

We ask for your credit card number to verify your identity and to keep out
spam and bots.
You won't be charged unless you upgrade.

We accept the following cards:

"VISA

Cardholder Name

[]

Card number

Expires

cw

Address line 1

Address line 2 (Optional)

City

| l

County (Optional)

Postal Code

| |

Country/Region

United Kingdom v

for 12 months after you upgrade
your account to pay-as-you-go
pricing.

£150 credit

Use your £150 credit to experiment
with any Azure service in your first
30 days—beyond the free product
amounts.

25+ always-free products

Take advantage of more than 25
products, including serverless;
containers, and artificial intelligence,
that are always free. Get these in
your first 30 days, and always—
once you choose to upgrade.

No automatic charges

You won't be charged unless you
choose to upgrade. Before the end
of your first 30 days, you'll be
notified and have the chance to
upgrade and start paying only for
the resources you use beyond the
free amounts.

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig33_HTML.jpg
Hello, Nginx! X +

C A Notsecure | 18.209.98.187

Hello, Nginx!

We have just configured our Nginx web server on RHEL 7.8 Server!

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig32_HTML.jpg
- frontend
group "frontend" {

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig38_HTML.jpg
Documentation | ACL Tokens

Storage

easytraveltest] RUNNING service 50 5 —_

OEBPS/images/492265_1_En_2_Chapter/492265_1_En_2_Fig22_HTML.jpg
root@ ~]$ sudo yum install wget unzip -y

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

bas: d36uatko69830t.cloudfront.net

* epel: dl.fedoraproject.org

* extras: d36uatko69830t.cloudfront.net

* updates: d36uatko69830t.cloudfront.net
Resolving Dependencies

--> Running transaction check
---> Package unzip.x86_64 0:6.0-21.el7 will be installed
---> Package wget.x86_64 0:1.14-18.el7_6.1 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

Transaction Summary

Ppackage Arch Version Repository size
Installing:

unzip x86_64 6.0-21.el7 base 171 k
wget x86_64 1.14-18.el7_6.1 base 547 k

Install 2 Packages

OEBPS/images/492265_1_En_8_Chapter/492265_1_En_8_Fig13_HTML.jpg
[root@ip-172-31-38-249 ~]# sudo mkdir --parents /etc/nomad.d
[root@ip-172-31-38-249 ~]# sudo chmod 700 /etc/nomad.d
[root@ip-172-31-38-249 ~]# sudo touch /etc/nomad.d/nomad.hcl
[root@ip-172-31-38-249 ~1# I

[root@ip-172-31-38-249 ~]# sudo touch /etc/nomad.d/server.hcl
[root@ip-172-31-38-249 ~]# I

OEBPS/images/492265_1_En_7_Chapter/492265_1_En_7_Fig2_HTML.jpg
LAN GOSSIP uu cossw
CLIENT Qrascus > (MRS A <------ CLIENT
TCP/UDP/8301 rtwuows;m
V,.(
RPC 2ot RPC
l TCP/8300 ”/aof?f:/. l TCP/8300
LEADER 2N
FORWARDING 0 &
e
REPLICATION REPLICATION
SERVER ——— el SERVER
TCP/8300 TCP/8300
)‘
Co/ao Co: =
oo % <5
905 <
»,
e,,o'
2 &,
3“ &,
\" 2
E2N 40,
%\
a
LEADER
FORWARDING
—_—
REPLICATION REPLICATION
SERVER > ki — SERVER
TCP/8300 TCP/8300

OEBPS/images/492265_1_En_5_Chapter/492265_1_En_5_Fig5_HTML.jpg
Create a Bucket - Select a Bucket Name and Region Cancel

A bucket is a container for objects stored in Amazon S3. When creating a bucket, you can
ch a Region to optimize for latency, minimize costs, or address regulatory requirements.
For more information regarding bucket naming conventions, please visit the Amazon S3

documentation.

Bucket Name:

Region: Oregon v

Set Up Logging > Create Cancel

