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welcome 
Thank you for purchasing the MEAP edition of Algorithms and Data Structures for Massive 
Datasets. 

The unprecedented growth of data in recent years is putting the spotlight on the data 
structures and algorithms that can efficiently handle large datasets. In this book, we present 
you with a basic suite of data structures and algorithms designed to index, query, and analyze 
massive data.  

What prompted us to write this book is that many of the novel data structures and 
algorithms that run underneath Google, Facebook, Dropbox and many others, are making 
their way into the mainstream algorithms curricula very slowly. Often the main resources on 
this subject are research papers filled with sophisticated and enlightening theory, but with 
little instruction on how to configure the data structures in a practical setting, or when to use 
them.  

Our goal was to present these exciting and cutting-edge topics in one place, in a practical 
and friendly tone. Mathematical intuition is important for understanding the subject, and we 
try to cultivate it without including a single proof. Plentiful illustrations are used to illuminate 
some of the more challenging material. 

Large datasets arise in a variety of disciplines, from bioinformatics and finance, to sensor 
data and social networks, and our use cases are designed to reflect that.   

Every good story needs a conflict, and the main one in this book are the tradeoffs arising 
from the constraints imposed by large data --- a major theme is sacrificing the accuracy of a 
data structure to gain savings in space. Finding that sweet spot for a particular application will 
be our holy grail.  

As a reader of this book, we assume you already have a fairly good command of the Big-
Oh analysis, fundamental data structures, basic searching and sorting algorithms and basic 
probability concepts. At different points of the book, however, we offer quick knowledge 
refreshers, so don’t be afraid to jump in.  

Lastly, our humble expectation is that you will absolutely love the book and will talk about 
it at cocktail parties for years to come. Thank you for being our MEAP reader, we welcome and 
appreciate any feedback that you post in the liveBook Discussion forum and that might 
improve the book as we are still writing it.  

—Dzejla Medjedovic, Emin Tahirovic, and Ines Dedovic 
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Introduction 

This chapter covers: 

• What this book is about and its structure
• What makes this book different than other books on algorithms 
• How massive datasets shape the design of algorithms and data structures 
• How this book can help you design practical algorithms at a workplace
• Fundamentals of computer and system architecture that make massive data challenging 

for today’s systems 

Having picked up this book, you might be wondering what the algorithms and data structures 
for massive datasets are, and what makes them different than “normal” algorithms you 
might have encountered thus far? Does the title of this book imply that the classical 
algorithms (e.g., binary search, merge sort, quicksort, depth-first search, breadth-first 
search and many other fundamental algorithms) as well as canonical data structures (e.g., 
arrays, matrices, hash tables, binary search trees, heaps) were built exclusively for small 
datasets, and if so, why the hell no one has told you that.  

The answer to this question is not that short and simple (but if it had to be short and 
simple, it would be “Yes”.) The notion of what constitutes a massive dataset is relative and it 
depends on many factors, but the fact of the matter is that most bread-and-butter 
algorithms and data structures that we know about and work with on a daily basis (such) 
have been developed with an implicit assumption that all data fits in the main memory, or 
random-access memory (RAM) of one’s computer. So once you load all your data into RAM, it 
is relatively fast and easy to access any element of it, at which point the ultimate goal from 
the efficiency point of view becomes to crunch the most productivity into the fewest number 
of CPU cycles. This is what the Big-Oh Analysis (O(.)) teaches us about --- it commonly 
expresses the worst-case number of basic operations the algorithm has to perform in order 
to solve a problem. These unit operations can be comparisons, arithmetic, bit operations, 
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memory cell read/write/copy, or anything that directly translates into a small number of CPU 
cycles. 

However, if you are a data scientist today, a developer or a back-end engineer working 
for a company that collects data from its users, storing all data into the working memory of 
your computer is often infeasible. Many applications today, ranging from banking, e-
commerce, scientific applications and Internet of Things (IoT), routinely manipulate datasets 
of terabyte (TB) or petabyte (PB) sizes, i.e., you don’t have to work for Facebook or Google 
to encounter massive data at work.  

You might be asking yourself how large the dataset has to be for someone to benefit from 
the techniques shown in this book. We deliberately avoid putting a number on what 
constitutes a massive dataset or a “big-data company”, as it depends on the problem being 
solved, computational resources available to the engineer, system requirements, etc. Some 
companies with enormous datasets also have copious resources and can afford to delay 
thinking creatively about scalability issues by investing in the infrastructure (e.g., by buying 
tons of RAM). A developer working with moderately large datasets, but with a limited budget 
for the infrastructure, and extremely high system performance requirements from their client 
can benefit from the techniques shown in this book as much as anyone else. And, as we will 
see, even the companies with virtually infinite resources choose to fill that extra RAM with 
clever space-efficient data structures.  

The problem of massive data has been around for much longer than social networks and 
the internet. One of the first papers1 to introduce external-memory algorithms (a class of 
algorithms that neglect the computational cost of the program in favor of optimizing far more 
time-consuming data-transfer cost) appeared back in 1988. As the practical motivation for 
the research, the authors use the example of large banks having to sort 2 million checks 
daily, about 800MB worth of checks to be sorted overnight before the next business day, 
using the working memories of that time (~2-4MB). Figuring out how to sort all the checks 
while being able to sort only 4MB worth of checks at one time, and figuring out how to do so 
with the smallest number of trips to disk, was a relevant problem back then, and since it has 
only grown in relevance. Namely, in past decades, data has grown tremendously, but more 
importantly, it has grown at a much faster rate than the average size of RAM memory. 

One of the central consequences of the rapid growth of data, and the main idea 
motivating algorithms in this book, is that most applications today are data-intensive. Data-
intensive (in contrast to CPU-intensive) means that the bottleneck of the application comes 
from transferring data back and forth and accessing data, rather than doing computation on 
that data (in Section 1.4 of this chapter, there are more details as to why data access is 
much slower than the computation.) Thus managing data size using succinct representations 
that preserve its key features, and modifying data access patterns to be hardware-friendly 
are among the crucial ways to speed up an application stuck on processing data. 

In addition, the infrastructure of modern-day systems has become very complex, with 
thousands of computers exchanging data over network, databases and caches are 
distributed, and many users simultaneously add and query large amounts of content. Data 
itself has become complex, multidimensional, and dynamic. The applications, in order to be 

 
1 A. Aggarwal and S. Vitter Jeffrey, "The input/output complexity of sorting and related problems," J Commun. ACM, vol. 31, no. 9, pp. 1116-1127, 1988. 
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effective, need to respond to changes very quickly. In streaming applications2, data 
effectively flies by without ever being stored, and the application needs to capture the 
relevant features of the data with the degree of accuracy rendering it relevant and useful, 
without the ability to scan it again. This new context calls for a new generation of algorithms 
and data structures, a new application builder’s toolbox that is optimized to address many 
challenges specific to massive-data systems. The intention of this book is to teach you 
exactly that --- the fundamental algorithmic techniques and data structures for developing 
scalable applications.  

1.1  An example 
To illustrate the main themes of this book, consider the following example: you are working 
for a media company on a project related to news article comments. You are given a large 
repository of comments with the following associated basic metadata information: 

{ 
    comment-id: 2833908010 
    article-id: 779284 
    user-id: 9153647 
    text: this recipe needs more butter    
    views: 14375 
    likes:  43  
} 

You are looking at approximately 3 billion user comments totaling 600GB in data size. Some 
of the questions you would like to answer about the dataset include determining the most 
popular comments and articles, classifying articles according to themes and common 
keywords occurring in the comments, and so on. But first we need to address the issue of 
duplicates that accrued over multiple instances of crawling, and ascertain the total number of 
distinct comments in the dataset. 

1.1.1 An example: how to solve it 
One common way to store unique elements is to create a key-value dictionary where each 
distinct element’s ID is mapped to its frequency. Some of the libraries implementing key-
value dictionaries include map in C++, HashMap in Java, dict in Python, etc. Key-value 
dictionaries are commonly implemented either with a balanced binary tree (e.g., a red-black 
tree in C++’s map), or a hash table (e.g., Python’s dict.)  

Efficiency note: the tree dictionary implementations, apart from lookup/insert/delete that runs in fast logarithmic 
time, offer equally fast predecessor/successor operations, that is, the ability to explore data using lexicographical 
ordering, whereas the hash table implementations don’t; however the hash table implementations offer blazing fast 
constant-time performance on lookup/insert/delete. Let’s assume in this example our priority is the speed of basic 
operations, so we will be working with the hash table implementation.  

Using comment-id as the key, and the number of occurrences of that comment-id in the 
dataset as the value will help us store distinct comments and their frequencies, which we will 
use to effectively “eliminate” duplicates (the  (comment-id -> frequency) dictionary from 

 
2 B. Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, Wiley Publishing, 2014. 
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Figure 1.1). However, in order to store <comment-id, frequency> pairs for 3 billion 
comments, using 8 bytes per pair (4 bytes for comment-id and 4 bytes for frequency), we 
might need up to 24GB. Depending on the method we use to implement the underlying hash 
table, we need 1.5x or 2x the space taken for elements for the bookkeeping (empty slots, 
pointers, etc), bringing us close to 40GB.  

If we are also to classify articles according to certain topics of interest, we can again 
employ dictionaries (other methods are possible as well) by building a separate  
(article-id -> keyword_frequency) dictionary for each topic (e.g., sports, politics, 
science, etc), as shown in Figure 1.1, that counts the number of occurrences of topic-related 
keywords in all the comments, grouped by article-id, and stores the total frequency in 
one entry --- for example, the article with the article-id 745 has 23 politics-related 
keywords in its associated comments. We pre-filter each comment-id using the large 
(comment-id -> frequency) dictionary to only account for distinct comments. A single table 
of this sort can contain dozens of millions of entries, totaling close to 1GB and maintaining 
such hash tables for say, 30 topics can cost up to 30GBs only for data, approximately 50GB 
in total.  

 
Figure 1.1: In this example, we build a (comment-id, frequency) hash table to help us store distinct comment-
id’s with their frequency count. An incoming comment-id 384793 is already contained in the table, and its 
frequency count is only incremented. We also build topic-related hash tables, where, for each article we count 
the number of times associated keywords appeared in its comments (e.g., in the sports theme, keywords 
might be: soccer, player, goal, etc). For a large dataset of 3 billion comments, these data structures may 
require dozens to a hundred of gigabytes of RAM memory. 
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When the number of items in a dataset becomes large, then every additional bit per item 
contributes to the system choking on data (Figure 1.2). Common data structures that are a 
bread-and-butter of every software developer can become too large to efficiently work with, 
and we need more succinct alternatives. 

 
Figure 1.2: Like most common data structures, hash tables use the asymptotical minimum of space required 
to store the data correctly, but with large dataset sizes, hash tables cannot fit into the main memory. 

1.1.2 How to solve it, take two/ A book walkthrough   
With the daunting dataset sizes, there is a number of choices we are faced with.  

It turns out that, if we settle for a small margin of error, we can build a data structure 
similar to a hash table in functionality, only more compact. There is a family of succinct data 
structures, data structures that use less than the lower theoretical limit to store data that 
can answer common questions relating to:  

• Membership --- Does comment/user X exist?  
• Frequency --- How many times did the user X comment? What is the most popular 

keyword?  
• Cardinality --- How many truly distinct comments/users do we have?  

These data structures use much less space to process a dataset of n items than a hash table, 
think 1 byte per item or less.   
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A Bloom filter (Chapter 3) will use 8x less space than the (comment-id -> frequency) hash 
table and can help us answer membership queries with about 2% false positive rate. In this 
introductory chapter, we avoid getting into the gritty mathematical details of how we arrive 
at these numbers, but the difference between Bloom filters and hash tables worth 
emphasizing is that Bloom filters do not store the keys (such as comment-id) themselves. 
Bloom filters compute hashes of keys, and use them to modify the data structure. Thus the 
size of the Bloom filter mainly depends on the number of keys inserted, not their size.  

Another data structure, Count-Min sketch (Chapter 4) will use about 24x less space than  
(comment-id -> frequency) hash table to estimate the frequency of each comment-id, 
exhibiting a small overestimate in the frequency in over 99% of the cases. We can use the 
same data structure to replace the (article-id -> keyword_frequency) hash tables and 
use about 3MB per topic hash table, costing about 20x less than the original scheme.  

Lastly, a data structure HyperLogLog (Chapter 5) can estimate the cardinality of the set with 
only 12KB, exhibiting the error less than 1%. If we further relax requirements on accuracy 
for each of these data structures, we can get away with even less space. Because the original 
dataset still resides on disk, there is also a way to control for an occasional error. 

COMMENT DATA AS A STREAM. 

Alternatively, we could view the same problem of news comments and articles in the 
context of a fast-moving event stream. Assume that the event constitutes any modification 
of the comment data, such as viewing a comment, clicking ‘Like’ on a comment, 
inserting/deleting a comment or an article, and the events arrive real-time as streaming data 
to our system (Chapter 6). Note that in this setup, we can also encounter duplicates of 
comment-id, but for a different reason: every time someone clicks ‘Like’ on a particular 
comment, we receive the event with the same comment-id, but with amended count on the 
likes attribute. Given that events arrive rapidly and on a 24/7 basis and we can not afford 
to store all of them, for many problems of interest, we can only provide approximate 
solutions. Mainly, we are interested in computing basic statistics on data real-time (e.g., the 
average number of likes per comment in the past week), and without the ability to store the 
like count for each comment, we can resort to random sampling.  

We could draw a random sample from the data stream as it arrives using Bernoulli 
sampling algorithm (Chapter 7). To illustrate, if you have ever plucked flower petals in the 
love-fortune game “(s)he loves me, (s)he loves me not’’ in a random manner, you could say 
that you probably ended up with “Bernoulli-sampled” petals in your hand --- this sampling 
scheme offers itself conveniently to the one-pass-over-data context.   

Answering some more granular questions about the comments data, like, below which 
value of the attribute likes is 90% of all of the comments according to their like count will 
also trade accuracy for space. We can maintain a type of a dynamic histogram (Chapter 8) of 
the complete viewed data within a limited, realistic fast-memory space. This sketch or a 
summary of the data can then be used to answer queries about any quantiles of our 
complete data with some error.  
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COMMENT DATA IN A DATABASE. 

Lastly, we might want to store all comment data in a persistent format (e.g., a database 
on disk/cloud), and build a system on top that would enable the fast insertion, retrieval, and 
modification of live data over time. In this kind of setup, we favor accuracy over speed, so 
we are comfortable storing tons of data on disk and retrieving it in a slower manner, as long 
as we can guarantee 100% accuracy of queries.  

Storing data on a remote storage and organizing it so that it lends itself to efficient 
retrieval is a topic of the algorithmic paradigm called external-memory algorithms (Chapter 
9). External-memory algorithms address some of the most relevant problems of modern 
applications, such as for example, the choice, or design and implementation of database 
engines. In our particular comments data example, we need to ask whether we are building 
a system with mostly static data, yet constantly queried by users (i.e., read optimized), or a 
system where users frequently add new data and modify it, but query it only occasionally 
(i.e., write optimized)? Or perhaps the combination, where both fast inserts and fast queries 
are equally important (i.e., read-write optimized). 

Very few people actually implement their own storage engines, but to knowledgeably 
choose between different alternatives, we need to understand what data structures power 
them underneath. The insert/lookup tradeoff is inherent in databases, and it is reflected in 
the design of data structures that run underneath MySQL, TokuDB, LevelDB and many other 
storage engines. Some of the most popular data structures to build databases include B-trees, 
Bε-trees, and LSM-trees, and each sits on a different point of the insert/lookup tradeoff 
spectrum (Chapter 10). Also, we may be interested in solving other problems with data 
sitting on disk, such as ordering comments lexicographically or by a number of occurrences. 
To do that, we need an efficient sorting algorithm that will minimize the number of memory 
transfers (Chapter 11). 

1.2 The structure of this book 
As the earlier section outlines, this book revolves around three main themes, divided into 
three parts: 

Part I (Chapters 2-5) deals with hash-based sketching data structures. This part begins 
with the review of hash tables and specific hashing techniques developed for massive-data 
setting. Even though it is planned as a review chapter, we suggest you use it as a refresher  
of hash tables, and also use the opportunity to learn about modern hash techniques devised 
to deal with large datasets. Chapter 2 also serves as a good preparation for Chapters 3-5 
considering the sketches are hash-based. Data structures we present in Chapters 3-5 such as 
Bloom filters, count-min sketch and hyperloglog, and their alternatives, have found 
numerous applications in databases, networking, etc.  

Part II (Chapters 6-8) introduces data streams. From classical techniques like Bernoulli 
sampling and reservoir sampling to more sophisticated methods like stratified sampling, we 
introduce a number of sampling algorithms suitable for different streaming data models. The 
created samples are then used to calculate estimates of the total sums or averages, etc. We 
also introduce algorithms for calculating (ensemble of) ε-approximate quantiles and/or 
estimating the distribution of the data within some succinct representation format.       
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Part III (Chapters 9-11) covers algorithmic techniques for scenarios when data resides on 
SSD/disk. First we introduce the external-memory model and then present optimal 
algorithms for fundamental problems such as searching and sorting, illuminating key 
algorithmic tricks in this model. This part of the book also covers data structures that power 
modern databases such as B-trees, Bε-trees and LSM-trees. 

1.3 What makes this book different and whom it is for 
There is a number of great books on classical algorithms and data structures, some of which 
include: Algorithm Manual Design by Steve S. Skiena3, Introduction to Algorithms by 
Cormen, Leiserson, Rivest and Stein4, Algorithms by Robert Sedgewick and Kevin Wayne5, or 
for a more introductory and friendly take on the subject, Grokking Algorithms by Aditya 
Bhargava6. The algorithms and data structures for massive datasets are slowly making their 
way into the mainstream textbooks, but the world is moving fast and our hope is that our  
book can provide a compendium of the state-of-the-art algorithms and data structures that 
can help a data scientist or a developer handling large datasets at work.  

The book is intended to offer a good balance of theoretical intuition, practical use cases and 
(pseudo)code snippets. We assume that a reader has some fundamental knowledge of 
algorithms and data structures, so if you have not studied the basic algorithms and data 
structures, you should first cover that material before embarking on this subject. Having said 
that, massive-data algorithms are a very broad subject and this book is meant to serve as a 
gentle introduction. 

The majority of the books on massive data focus on a particular technology, system or 
infrastructure. This book does not focus on the specific technology neither does it assume 
familiarity with any particular technology. Instead, it covers underlying algorithms and data 
structures that play a major role in making these systems scalable. Often the books that do 
cover algorithmic aspects of massive data focus on machine learning. However, an important 
aspect of handling large data that does not specifically deal with inferring meaning from 
data, but rather has to do with handling the size of the data and processing it efficiently, 
whatever the data is, has often been neglected in the literature. This book aims to fill that 
gap. 

There are some excellent books that address specialized aspects of massive datasets 
7,8,9,10. With this book, we intend to present these different themes in one place, often citing 
the cutting-edge research and technical papers on relevant subjects. Lastly, our hope is that 
this book will teach a more advanced algorithmic material in a down-to-earth manner, 
providing mathematical intuition instead of technical proofs that characterize most resources 
on this subject. Illustrations play an important role in communicating some of the more 
advanced technical concepts and we hope you enjoy them.  

 
3 S. S. Skiena, The Algorithm Design Manual, Second Edition, Springer Publishing Company, Incorporated, 2008. 
4 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, Third Edition, The MIT Press, 2009. 
5 R. Sedgewick and K. Wayne, Algorithms, Fourth Edition, Addison-Wesley Professional, 2011. 
6 A. Bhargava, Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People, Manning Publications Co., 2016. 
7 G. Andrii, Probabilistic Data Structures and Algorithms for Big Data Applications, Books on Demand, 2019. 
8 B. Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, Wiley Publishing, 2014. 
9 C. G. Healey, Disk-Based Algorithms for Big Data, CRC Press, Inc., 2016. 
10 A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University Press, 2011. 
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Now that we got the introductory remarks out of the way, let’s discuss the central issue 
that motivates topics from this book. 

1.4 Why is massive data so challenging for today’s systems?  
There are many parameters in computers and distributed systems architecture that can 
shape the performance of a given application. Some of the main challenges that computers 
face in processing large amounts of data stem from hardware and general computer 
architecture. Now, this book is not about hardware, but in order to design efficient 
algorithms for massive data, it is important to understand some physical constraints that are 
making data transfer such a big challenge. Some of the main issues we discuss in this 
chapter include: 1) the large asymmetry between the CPU and the memory speed, 2) 
different levels of memory and the tradeoffs between the speed and size for each level, and 
3) the issue of latency vs. bandwidth.  

1.4.1 The CPU-memory performance gap 
The first important asymmetry that we will discuss is between the speeds of CPU operations 
and memory access operations in a computer, also known as the CPU-memory performance 
gap11. Figure 1.3 shows, starting from 1980, the average gap between the speeds of 
processor memory access and main memory access (DRAM memory), expressed in the 
number of memory requests per second (the inverse of latency):  

 
Figure 1.3: CPU-Memory Performance Gap graph, adopted from Hennessy & Patterson’s Computer 
Architecture textbook. The graph shows the widening gap between the speeds of memory accesses to CPU 

 
11 J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quantitative Approach, Morgan Kaufmann Publishers Inc., 2011. 
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and RAM main memory (the average number of memory accesses per second over time.) The vertical axis is 
on the log scale. Processors show the improvement of about 1.5x per year up to year 2005, while the 
improvement of access to main memory has been only about 1.1x per year. Processor speed-up has 
somewhat flattened since 2005, but this is being alleviated by using multiple cores and parallelism. 

What this gap points to intuitively is that doing computation is much faster than accessing 
data. So if we are stuck with the mindset that memory accesses take the same amount of 
time as the CPU computation, then our analyses will not jive well with reality. 

1.4.2 Memory hierarchy 
Aside from the CPU-memory gap, there exists a hierarchy of different types of memory built 
into a computer that have different characteristics. The overarching tradeoff has been that 
the memory that is fast is also small (and expensive), and the memory that is large is also 
slow (but cheap). As shown in Figure 1.4, starting from the smallest and the fastest, the 
computer hierarchy usually contains the following levels: registers, L1 cache, L2 cache, L3 
cache, main memory, solid state drive (SSD) and/or the hard disk (HDD). The last two are 
persistent (non-volatile) memories, meaning the data is saved if we turn off the computer, 
and as such are suitable for storage.  

In Figure 1.4, we can see the access times and capacities for each level of the memory in 
a sample architecture12. The numbers vary across architectures, and are more useful when 
observed in terms of ratios between different access times rather than the specific values. So 
for example, pulling a piece of data from cache is roughly 1 million times faster than doing so 
from the disk.  

 
12 C. Terman, "MIT OpenCourseWare, Massachusetts Institute of Technology," Spring 2017. [Online]. Available: 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/index.htm. [Accessed 
20th January 2019]. 
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Figure 1.4: Different types of memories in the computer. Starting from registers in the bottom left corner, that 
are blindingly fast but also very small, we move up (getting slower) and right (getting larger) with Level 1 
cache, Level 2 cache, Level 3 cache, main memory, all the way to SSD and/or HDD. Mixing up different 
memories in the same computer allows for the illusion of having both the speed and the storage capacity, by 
having each level serve as a cache for the next larger one. 

The hard disk and the needle, being one of the few remaining mechanical parts of a 
computer work a lot like a record player. Placing the mechanical needle on the right track is 
the time-consuming part of accessing disk data. Once the needle is on the right track, the 
data transfer can be very fast, depending on how fast the disk spins.  

1.4.3 Latency vs. bandwidth 
Similar phenomenon, where “latency lags bandwidth”13 holds for different types of 

memory. The bandwidth in various systems, ranging from microprocessors, main memory, 
hard disk, network, has tremendously improved over the past few decades, but latency 
hasn’t as much, even though the latency is the important measurement in many scenarios 

 
13 D. A. Patterson, "Latency Lags Bandwith," Commun. ACM, vol. 47, no. 10, p. 71–75, 2004. 
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where the common user behavior involves many small random accesses as oppose to one 
large sequential one. 

To offset the cost of the expensive initial call, data transfer between different levels of 
memory is done in chunks of multiple items. Those chunks are called cachelines, pages or 
blocks, depending on memory level we are working with, and their size is proportionate to 
the size of the corresponding level of memory, so for cache they are in the range 8-64 bytes, 
and for disk blocks they can be up to 1MB14. Due to the concept known as spatial locality, 
where we expect the program to access memory locations that are in the vicinity of each 
other close in time, transferring data in sequential blocks effectively pre-fetches the items we 
will likely need in close future.  

1.4.4  What about distributed systems? 
Most applications today run on multiple computers, and having data sent from one computer 
to another adds yet another level of delay. Data transfer between computers can be about 
hundreds of milliseconds, or even seconds long, depending on the system load (e.g., number 
of users accessing the same application), number of hops to destination and other details of 
the architecture, see Figure 1.5:  

 
Figure 1.5: Cloud access times can be high due to the network load and complex infrastructure. Accessing the 
cloud can take hundreds of milliseconds or even seconds. We can observe this as another level of memory 
that is even larger and slower than the hard disk. Improving the performance in cloud applications can be 
additionally hard because times to access or write data on a cloud are unpredictable. 

 
14 J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quantitative Approach, Morgan Kaufmann Publishers Inc., 2011. 
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1.5 Designing algorithms with hardware in mind 
After looking at some crucial aspects of modern computer architecture, the first important 
take-away is that, although technology improves constantly (for instance, SSDs are a 
relatively new development and they do not share many of the issues of hard disks), some of 
the issues, such as the tradeoff between the speed and the size of memories are not going 
away any time soon. Part of the reason for this is purely physical: to store a lot of data, we 
need a lot of space, and the speed of light sets the physical limit to how fast data can travel 
from one part of the computer to the other, or one part of the network to the other. To 
extend this to a network of computers, we will cite15 an example that for two computers that 
are 300 meters away, the physical limit of data exchange is 1 microsecond.  

Hence, we need to design algorithms that can work around hardware limitations. 
Designing succinct data structures (or taking data samples) that can fit into small and fast 
levels of memory helps because this way we avoid expensive disk seeks. In other words, 
reducing space saves time.  

Yet, in many applications we still need to work with data on disk. Here, designing 
algorithms with optimized patterns of disk access and caching mechanisms that enable the 
smallest number of memory transfers is important, and this is further linked to how we lay 
out and organize data on a disk (say in a relational database). Disk-based algorithms prefer 
smooth scanning over the disk over random hopping --- this way we get to make use of a 
good bandwidth and avoid poor latency, so one meaningful direction is transforming an 
algorithm that does many random reads/writes into one that does sequential reads/writes. 
Throughout this book, we will see how classical algorithms can be transformed, and new 
ones can be designed having space-related concerns in mind.   

However, ultimately it is also important to keep in mind modern systems have many 
performance metrics other than scalability, such as: security, availability, maintainability, 
etc. So, real production systems need an efficient data structure and an algorithm running 
under the hood, but with a lot of bells and whistles on top to make all the other stuff work 
for their customers (see Figure 1.6). However, with ever-increasing amounts of data, 
designing efficient data structures and algorithms has become more important than ever 
before, and we hope that in the coming pages you will learn how to do exactly that. 

 
15 D. A. Patterson, "Latency Lags Bandwith," Commun. ACM, vol. 47, no. 10, p. 71–75, 2004. 
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Figure 1.6: An efficient data structure with bells and whistles 

1.6 Summary 
• Applications today generate and process large amounts of data at a rapid rate. 

Traditional data structures, such as basic hash tables, and key-value dictionaries, can 
grow too big to fit in RAM memory, which can lead to an application choking due to 
the I/O bottleneck. 

• To process large datasets efficiently, we can design space-efficient hash-based 
sketches, do real-time analytics with the help of random sampling and approximate 
statistics, or deal with data on disk and other remote storage more efficiently. 

• This book serves as a natural continuation to the basic algorithms and data structures 
book/course, because it teaches how to transform the fundamental algorithms and 
data structures into algorithms and data structures that scale well to large datasets.  

• The key reason why large data is a major issue for today’s computers and systems is 
that CPU (and multiprocessor) speeds improve at a much faster rate than memory 
speeds, the tradeoff between the speed and size for different types of memory in the 
computer, as well as latency vs. bandwidth phenomenon. These trend are not likely to 
change significantly soon, so the algorithms and data structure that address the I/O 
cost and issues of space are only going to increase in importance over time. 

• In data-intensive applications, optimizing for space means optimizing for time.  
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Review of Hash Tables and  

Modern Hashing 

This chapter covers: 

• Reviewing dictionaries and why hashing is ubiquitous in modern systems 
• Refreshing some basic collision-resolution techniques: theory and real-life 

implementations 
• Exploring cache-efficiency in hash tables 
• Using hash tables for distributed systems and consistent hashing 
• Learning how consistent hashing works in P2P networks: use case of Chord 

We begin with the topic of hashing for a number of reasons. First, classical hash tables have 
proved irreplaceable in modern systems, deeming it harder to find a system that does not 
use them than the one that does. Second, recently there has been a lot of innovative work 
addressing algorithmic issues that arise as hash tables grow to fit massive data, such as 
efficient resizing, compact representation and space-saving tricks, etc. In a similar vein, 
hashing has over time been adapted to serve in massive peer-to-peer systems where the 
hash table is split among servers; here, the key challenge is assignment of resources to 
servers and load-balancing of resources as servers dynamically join and leave the network. 
Lastly, we begin with hashing because it forms the backbone of all succinct data structures 
we present in Part I of the book. 

Aside from the basics of how hash tables works, in this chapter we show examples of 
hashing in modern applications such as deduplication and plagiarism detection. We touch 
upon how Python implements dictionaries as a part of our discussion on hash table design 
tradeoffs. Section 2.8 discusses consistent hashing, the method used to implement 
distributed hash tables. This section features code samples in Python that you can try out 
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and play with to gain a better understanding of how hash tables are implemented in a 
distributed and dynamic multi-server environment. The last part of the section on consistent 
hashing contains coding exercises for a reader who likes to be challenged. If you feel 
comfortable with all things classical hashing, skip right to the Section 2.8, or, if you are 
familiar with consistent hashing, skip right ahead to Chapter 3. 

2.1 Ubiquitous hashing 
Hashing is one of those subjects that, no matter how much attention they got in your 
programming, data structures and algorithms courses, it was not enough. Hash tables are 
virtually everywhere --- to illustrate this, just consider the process of writing an email (see 
Figures 2.1-2.4). First, to log into your email account, the password is hashed and the hash 
is checked against the database to verify a match:  

 
Figure 2.1: Logging into email and hashing. 

While writing an email, the spellchecker uses hashing to check whether a given word 
exists in the dictionary: 
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Figure 2.2: Spellchecking and hashing. 

When the email is sent, it is separated into network packets, each of which contains a 
hashed destination IP address on it. If the hash does not match any of the hashes of IP 
addresses, the packet bounces. 

 

Figure 2.3: Network packets and hashing. 

Lastly, when the email arrives at the destination, the spam filters sometimes hash email 
contents to find spam-like words and filter out likely spam: 
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Figure 2.4: Spam filters and hashing. 

Why is a hash table the data structure of choice for so many tasks? To find out why, we 
need to look at how well different data structures implement what we call a dictionary --- an 
abstract data type that can do lookup, insert and delete operations. 

2.2 A crash course on data structures 
Many data structure can perform the role of a dictionary, but different data structures 

exhibit different performance tradeoffs and thus lend themselves to different usage 
scenarios. For example, consider a plain unsorted array: this rather simple data structure 
offers ideal constant-time performance on inserts (O(1)) as new elements are appended to a 
log, however, the lookup in the worst-case requires a full linear scan of data (O(n)). An 
unsorted array can serve well as a dictionary implementation for applications where we want 
extremely fast inserts and where lookups are extremely rare1. 

Sorted arrays allow fast logarithmic-time lookups using binary search(O(logn)), which, 
for many array sizes is effectively as good as constant time (logarithms of astronomically 
large numbers do not exceed 100). However, we pay the price in the maintenance of the 
sorted order when we insert or delete, having to move over a linear number of items in the 
worst-case (O(n)). Linear-time operations mean that we roughly need to visit every element 
during a single operation, a forbidding cost in most scenarios.  

Linked lists can, unlike sorted arrays, insert/delete an element from anywhere in the list 
in constant time (O(1)) by rerouting a few pointers, provided we located the position where 
to insert/delete. The only way to find that position is to traverse the linked list by following 
pointers, even if the linked list were sorted, which brings us back to linear-time. Whichever 
way you look at it, with simple linear structures such as arrays and linked lists, there is at 
least one operation that costs (O(n)), and to avoid it, we need to break out from this linear 
structure. 

 
1 If we are guaranteed never to need a lookup, there is even a better way to “implement” inserts --- just do nothing. 
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Balanced binary search trees have all dictionary operations dependent on the depth of 
the tree, which is using different balancing mechanisms (AVL, red-black, etc) kept at 
O(logn).So all insert, lookup and delete take logarithmic time in the worst case. In addition, 
balanced binary search trees maintain the sorted order of elements, which makes them an 
excellent choice for performing fast range, predecessor and successor queries. Logarithmic 
bound on all basic operations is pretty good, and in fact, if we allow the algorithm only to 
perform comparisons in order to locate an element, this is the best we can do. However, 
computers are capable of many other operations, including bit shifts, arithmetic operations, 
and other operations used by hash functions.  

Using hashing, we can bring the dictionary operation costs down to O(1)on all operations. 
And, if you are thinking this is too good to be true, you are quite right: unlike the bounds 
mentioned so far, where the runtime is guaranteed (i.e., worst-case), the constant-time 
runtime in hash tables is expected. The worst case can still be as bad as linear-time O(n), 
but with a clever hash table design, we can almost always avoid such instances.  
So even though the worst-case on a lookup for a hash table is the same as that on an 
unsorted array, in the former case, the O(n) will almost never happen, while in the latter 
case, it will quite consistently happen. Even when a pathological case occurs in hash tables, 
it is amortized against a huge number of blindingly fast common cases. There are also 
hashing schemes that perform O(1)in the worst case, but it is hard to find their 
implementations in real systems, as they also tend to complicate the common case. 

Hash tables are, on the other hand, poorly suited for all applications where having your 
data ordered is important. A good hash function scrambles the input and scatters items to 
different areas of the hash table --- the word hash comes from the French ‘hache’, often 
used to describe a type of dish where meat is chopped and minced into many little pieces 
(also related to ‘hatchet’). The natural consequence of this ‘mincing’ of data is that the order 
of items is not preserved. The issue comes in focus in databases where answering a range 
query requires navigating the sorted order of elements: for instance, listing all employees 
ages between 35 and 56, or finding all points on a coordinate x between 3 and 45 in a spatial 
database. Hash tables are most useful when looking for an exact match in the database. 
However, it is possible to use hashing to answer queries about similarity (e.g., in plagiarism-
detection), as we will see in the scenarios below. 

2.3 Usage scenarios in modern systems 
There are many applications of hashing wherever you look. Here are two that we particularly 
like: 

2.3.1  Deduplication in backup/storage solutions 
Many companies such as Dropbox and Dell EMC Data Domain storage systems2 deal with 
storing large amounts of user data by taking frequent snapshots and backups. Clients for 
these companies are often large corporations that hold enormous amounts of data, and if the 

 
2 DELL EMC, https://www.dell.com, [Online]. Available: https://www.dell.com/downloads/global/products/pvaul/en/dell-emc-dd-series-brochure.pdf 

[Accessed 29 March 2020]. 
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snapshots are taken frequently enough (say, every 24 hours), the majority of data between 
the consecutive snapshots will remain unchanged. In this scenario, it’s important to quickly 
find the parts that have changed and store only them, thereby saving time and space of 
storing a whole new copy of data. To do that, we need to be able to efficiently identify 
duplicate content.  

Deduplication is the process of eliminating duplicates, and the majority of its modern 
implementations use hashing. For example, consider ChunkStash3, a deduplication system 
specifically designed to provide fast throughput using flash. In ChunkStash, files are split into 
small chunks that are fixed in size (say 8KB), and every chunk content is hashed to a 20-
byte SHA-1 fingerprint; if the fingerprint is already present, we only point to the existing 
fingerprint. If the fingerprint is new, we can assume the chunk is also new, and we both 
store the chunk to the data store and store the fingerprint into the hash table, with the 
pointer to the location of the corresponding chunk in the data store (see Figure 2.5).  

Chunking the files helps to identify near-duplicates, where small edits have been made to 
a large file. 

 
3 B. Debnath, S. Sengupta and J. Li, "ChunkStash: Speeding up Inline Storage Deduplication Using Flash Memory," in Proceedings of the 2010 USENIX 

Conference on USENIX Annual Technical Conference, Boston, MA, 2010. 
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Figure 2.5: Deduplication process in backup/storage solutions. When a new file arrives, it is split into small 
chunks. In our example, the file is split into three chunks, and each chunk is hashed (e.g., chunk 1 has chunk-
id 0x123, and chunk 2 has chunk-id 0x736.) Chunk-id 0x123 is not found in the hash table. A new entry is 
created for this particular chunk-id, and the chunk itself is stored. The chunk-id 0x736, having been found in 
the hash table, is deemed a duplicate and isn’t stored.  

There are more intricacies to this process than what we show. For example, when writing the 
new chunk to the flash store, the chunks are first accumulated into an in-memory write 
buffer, and once full, the buffer is flushed to flash in one fell swoop. This is done to avoid 
repeated small edits to the same page, a particularly expensive operation in flash. But let’s 
stay in the in-memory lane for now; buffering and writing efficiently to disk will be given 
more attention in the Part III of the book. 

2.3.2 Plagiarism detection with MOSS and Rabin-Karp fingerprinting 
MOSS (Measure of Software Similarity) is a plagiarism-detection service, mainly used to 
detect plagiarism in programming assignments. One of the main algorithmic ideas in MOSS4 

 
4 S. Schleimer, D. S. Wilkerson and A. Aiken, "Winnowing: Local Algorithms for Document Fingerprinting," in Proceedings of the 2003 ACM SIGMOD 

International Conference on Management of Data, San Diego, California, 2003. 
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is a variant of Karp-Rabin string-matching algorithm5 that relies on k-gram fingerprinting (k -
gram is a contiguous substring of length k). Let’s first review the algorithm. 

Given a string t that represents a large text, and a string p that represents a smaller pattern, 
a string-matching problem asks whether there exists an occurrence of p in t. There is a rich 
literature on string-matching algorithms, most of which perform substring comparisons 
between p and t. Karp-Rabin algorithm instead performs comparisons of the hashes of 
substrings, and does so in a clever way. It works extremely well in practice, and the fast 
performance (which should not surprise you at this point) is partly due to hashing.  

Namely, only when the hashes of substrings match, does the algorithm check whether the 
substrings actually match. In the worst case, we will get many false matches due to hash 
collisions, when two different substrings have the same hash yet substrings differ. In this 
case, the total runtime is O(|t||p|), like that of a brute-force string matching algorithm. But in 
most situations when there are not many true matches, and with a good hash function, the 
algorithm zips through t. This is the randomized linear time, but clearly good enough to offer 
some real practical benefits. See Figure 2.6 for an example of how the algorithm works. 

 
Figure 2.6: Example of a Karp-Rabin fingerprinting algorithm. We are looking for a pattern p=BBBBC in the 
larger string t=BBBBBBBBBABBBDBBBBC. The hash of BBBBC is equal to 162 and it is a mismatch for the 
hash 161 of BBBBB that occurs at the beginning of the long string. As we shift right, we repeatedly encounter 
hash mismatches until the substring ABBBD, with the hash of 162. Then we check the substrings and 
establish a false match. At the very end of the string, we again encounter the hash match at BBBBC and upon 
checking the substrings, we report a true match.  

 
5 C. T. H., C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009. 
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The time to compute the hash depends on the size of the substring (a good hash function 
should take all characters into account) so just by itself, hashing does not make the 
algorithm faster. However, Karp-Rabin uses rolling hashes where, given the hash of a k -
gram t[j,...,j+k-1], computing the hash for the k-gram shifted one position to the right, 
t[j+1,..,j+k], only takes constant time (see Figure 2.7). This can be done if the rolling hash 
function is such that it allows us to, in some way “subtract” the first character of the first k-
gram, and “add” the last character of the second k-gram (a very simple example of such a 
rolling hash is a function that is a sum of ASCII values of characters in the string.) 

 

 

Figure 2.7: Rolling hash. Computing the hash for all but the first substring of t is a constant-time operation. For 
example, BBBDB, we needed to “subtract” A and “add” B to ABBBD. 

Karp-Rabin algorithm could be used in a straightforward manner to compare two 
assignments for plagiarism by splitting files into smaller chunks and fingerprinting them. 
However, in MOSS, we are interested in a large group of submitted assignments, and all 
potential instances of plagiarism. This rings all-to-all comparisons and an impractical 
quadratic-time algorithm. To battle the quadratic time, MOSS selects a small number of 
fingerprints as representative of each file to be compared. The application builds an inverted 
index mapping the fingerprint to its position in the documents where it occurs. From the 
index, we can further compute a list of similar documents. Note that the list will only have 
documents that actually have matches, so we are avoiding the blind all-to-all comparison. 

There are many different techniques on how to choose the set of representative 
fingerprints for a document. The one that MOSS employs is having each window of 
consecutive characters in a file (for instance, a window can be of length 50 characters) select 
a minimum hash of the k-grams belonging to that window. Having one fingerprint per 
window is helpful, among other things, because it helps avoid missing large consecutive 
matches.   

2.4 O(1) --- what’s the big deal? 
After seeing some applications of hashing, let’s now turn to how to efficiently design hash 
tables. Namely, why is it so hard to design a simple data structure that does lookups, inserts 
and deletes all in O(1) in the worst case?  
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If we knew all the items to be inserted into the hash table beforehand, then we could 
conjure up a hash function customized to our data that distributes the items perfectly, one to 
each bucket, but what’s the fun in that?! Part of the problem with not knowing data 
beforehand is that the hash functions needs to provide a mapping of any potential item to a 
corresponding hash table bucket. The set representing all potential items, whatever type of 
data we are dealing with, is likely extremely large in comparison to the number of hash table 
buckets. We will refer to this set of all potential items as the universe U, the size of our 
dataset as n, and the hash table size as m.  

The values of n and m are roughly proportional, and both are considerably smaller than U. 
This is why the hash function mapping the elements of U to m buckets will inevitably end up 
with a fairly large subset of U mapping to the same bucket of the hash table. Even if the hash 
function perfectly evenly distributes the items from the universe, there is at least one bucket 
to which at least |U|/m items get mapped. Because we do not know what items will be 
contained in our dataset, and if |U|/m ≥ n, it is feasible that all items in our dataset hash to 
the same bucket. It is not very likely that we will get such a dataset, but it is possible. 

For example, consider the universe of all potential phone numbers of the format ddd-dd-
ddd-dddd, where d is a digit 0-9.This means that |U|=1012 and if n=106 (the number of items), 
and m=106 (size of the table), even if the hash function perfectly distributes items from the 
universe, we can still end up with all the items in one bucket (it would be pretty bad even if 
any constant fraction of the dataset ended up in one bucket). The fact that this is possible 
should not discourage us. In most practical applications, even simple hash functions are good 
enough for this to very rarely happen, but collisions will happen in common case and we 
need to know how to deal with them. 

2.5 Collision Resolution: theory vs. practice  
We will devote this section to two common hashing mechanisms: linear probing and 
chaining. There are many others, but we will cover these two as they are the most popular 
choices in the production-grade hash tables. As you probably know, chaining associates 
with each bucket of the hash table an additional data structure (e.g., linked list, or a binary 
search tree), where the items hashed to the corresponding bucket get stored. New items get 
inserted right up front (O(1)but search and delete require advancing through the pointers of 
the appropriate list, the operation whose runtime is highly dependent on how evenly items 
are distributed across the buckets. To refresh your memory on how chaining works, see 
Figure 2.8:   

24

https://livebook.manning.com/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 2.8: An example of insert and search with chaining.  

Linear probing is a particular instance of open addressing, a hashing scheme where we 
store items inside the hash table slots. In linear probing, to insert an item, we hash it to a 
corresponding bucket, and if the slot determined by the bucket is empty, we store the item 
into it. If it is occupied, we look for the first available position scanning downward in the 
table, wrapping around the end of the table if needed. An alternative variant of open 
addressing, quadratic probing, advances in quadratic-sized steps when looking for the next 
position to insert.  

The search in linear probing, just like the insert, begins from the position of the slot 
determined by the bucket we hashed to, scanning downward until we either find the element 
searched for, or encounter an empty slot. Deletion is a bit more involved, as it can not 
simply remove an item from its slot --- it might break a chain that would lead to an incorrect 
result of a future search. There are many ways to address this, for instance, one simple one 
being placing a tombstone flag at the position of the deleted element. See Figure 2.9 for an 
example of linear probing: 
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Figure 2.9: An example of insert and search with linear probing. 

First let’s see what theory tells us about pros and cons of these two collision-resolution 
techniques. Theoretically speaking, in studying hash functions and collision-resolution 
techniques, computer scientists will often use the assumption of hash functions being ideally 
random. This then allows us to analyze the process of hashing using the analogy of throwing 
n balls into n bins uniformly randomly. With high probability, the fullest bin will have  
O(log n/log log n) balls6, hence the longest chain in the chaining method is no longer than 
O(log n/log log n), giving an upper bound on the lookup and delete performance.  

The high-probability bounds are stronger than the expectation bounds we have discussed 
earlier. The expression “with high probability” means that, if our input is of size n, then the 
high-probability event happens with the probability of at least 1-1/n^c , where c≥1 is some 
constant. The higher the constant and the input size, the tinier becomes the chance of the 
high-probability event not occurring. What this means practically, is that many other failures 
will happen before the high-probability event fails us.  

The logarithmic lookup time is not bad, but if all lookups were like this, then the hash table 
would not offer significant advantages over, say, a binary search tree. In most cases, 
though, we expect a lookup to only be a constant (assuming the number of items is 
proportional to the number of buckets in the chaining table).  

 
6 J. Erickson, "Algorithms lecture notes," [Online]. Available: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/05-hashing.pdf. [Accessed 20 

March 2020]. 
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 Using pairwise independent hashing, one can show that the worst-case lookups in linear 
probing are close to O(log n).7 Families of k-wise independent hash functions are the best we 
have gotten so far to mimicking the random behavior pretty well. At runtime, one of the 
hash functions from the family is selected uniformly randomly to be used throughout the 
program. This protects us from the adversary who can see our code: by choosing one among 
many hash functions randomly at runtime, we make it harder to produce a pathological 
dataset, and even if it happens, it will not be our fault (an important factor in the setting of 
our daily jobs).  

It makes intuitive sense that the worst-case lookup cost in linear probing is slightly 
higher than that of chaining, as the elements hashing to different buckets can contribute to 
the length of the same linear probing run. But does the fancy theory translate into the real 
world performance differences? 

Well, we are, in fact, missing an important detail. The linear probing runs are laid out 
sequentially in memory, and most runs are shorter than a single cacheline, which has to be 
fetched anyway, no matter the length of the run. The same can not be said about the 
elements of the chaining list, for which the memory is allocated in a non-sequential fashion. 
Hence, chaining might need more accesses to memory, which significantly reflects on the 
actual runtime. Similar case is with another clever collision-resolution technique called 
cuckoo hashing, that promises that an item contained in the table will be found in one of the 
two locations determined by two hash functions, deeming the lookup cost constant in the 
worst case. However the probes are often in very different areas of the table so we might 
need two memory accesses.  

Considering the gap in the amount of time required to access memory vs CPU we discussed 
in Chapter 1, it makes sense why linear probing is often the collision-resolution method of 
the choice in many practical implementations. Next we explore an example of a modern 
programming language implementing its key-value dictionary with hash tables. 

2.6 Usage scenario: How Python’s dict does it 
Key-value dictionaries are ubiquitous across different languages. For standard libraries of 
C++ and Java, for example, they are implemented as map, unordered_map (C++) and 
HashMap (Java); map is a red-black tree that keeps items ordered, and unordered_map and 
HashMap are unordered and are running hash tables underneath. Both use chaining for 
collision resolution. In Python, the key-value dictionary is dict. Here is a simple example of 
how to create, modify and access keys and values in dict:  

 
d = {'turmeric': 7, 'cardamom': 5, 'oregano': 12} 
print(d.keys()) 
print(d.values()) 
print(d.items()) 
d.update({'saffron': 11}) 
print(d.items()) 

 
7 A. Pagh, R. Pagh and M. Ruzic, "Linear Probing with Constant Independence," in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of 

Computing, San Diego, California, 2007. 
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The output is as follows: 

 
dict_keys(['turmeric', 'cardamom', 'oregano']) 
dict_values([7, 5, 12]) 
dict_items([('turmeric', 7), ('cardamom', 5), ('oregano', 12)]) 
dict_items([('turmeric', 7), ('cardamom', 5), ('oregano', 12), ('saffron', 11)]) 
 

The authors of Python’s default implementation, CPython, explain in its documentation8 how 
dict is implemented (here we only focus on the case when keys are integers): for the table 

size m=2i, the hash function is h(x) = x mod 2i (i.e., the bucket number is determined by the 
last i bits of the binary representation of x.) This works well in a number of common cases, 
such as the sequence of consecutive numbers, where it does not create collisions; it is also 
easy to find cases where it works extremely poorly, such as a set of all numbers with 
identical last i bits. Moreover, if used in combination with linear probing, this hash function 
would lead to clustering and long runs of consecutive items. To avoid long runs, Python 
employs the following probing mechanism: 

 
j = ((5*j) + 1) mod 2**i 
 

where j is the index of a bucket where we will attempt to insert next. If the slot is taken, we 
will repeat the process using the new j. This sequence makes sure that all m buckets in the 
hash table are visited over time and it makes sufficient skips to avoid clustering in common 
case. To make sure higher bits of the key are used in hashing, the variable perturb is used 
that is originally initialized to the h(x) and a constant PERTURB_SHIFT set to 5: 

 
perturb >>= PERTURB_SHIFT 
j = (5*j) + 1 + perturb  
#j%(2**i) is the next bucket we will attempt 
 

If the insertions match our (5 ∗ j) + 1  pattern, then we are in trouble, but Python, and most 
practical implementations of hash tables focus on what seems to be a very important 
practical algorithm design principle: making the common case simple and fast, and not worry 
about an occasional glitch when a rare bad case occurs.  

2.7 MurmurHash 
In this book, we will be interested in fast, good and simple hash functions. To that end, we 
make a brief mention of MurmurHash invented by Austin Appleby, a fast non-cryptographic 
hash function employed by many implementations of the data structures we introduce in our 
future chapters. The name Murmur comes from basic operations multiply and rotate used to 

 
8 Python (CPython), "Python hash table implementation of a dictionary," 20 February 2020. [Online]. Available: 

https://github.com/python/cpython/blob/master/Objects/dictobject.c. [Accessed 30 March 2020]. 
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mince the keys. One Python wrapper for MurmurHash is mmh39 which one can install in the 
console using  

 
pip install mmh3 
 

The package mmh3 gives a number of different ways to do hashing. Basic hash function 
gives a way to produce signed and unsigned 32-bit integers with different seeds:  

 
import mmh3 as mmh3 
print(mmh3.hash("Hello")) 
print(mmh3.hash(key = "Hello", seed = 5, signed = True)) 
print(mmh3.hash(key = "Hello", seed = 20, signed = True)) 
print(mmh3.hash(key = "Hello", seed = 20, signed = False)) 
 

producing a different hash for different choices of seed and signed parameters: 

316307400 
-196410714 
-1705059936 
2589907360 

To produce 64-bit and 128-bit hashes, we use hash64 and hash128 functions, where 
hash64 uses the 128-bit hash function and produces a pair of 64-bit signed or unsigned 
hashes. Both 64-bit and 128-bit hash functions allow us to specify the architecture (x64 or 
x86) in order to optimize the function on the given architecture: 

 
print(mmh3.hash64("Hello")) 
print(mmh3.hash64(key = "Hello", seed = 0, x64arch= True, signed = True)) 
print(mmh3.hash64(key = "Hello", seed = 0, x64arch= False, signed = True)) 
print(mmh3.hash128("Hello")) 
 

producing the following (pairs of) hashes: 

 
(3871253994707141660, -6917270852172884668) 
(3871253994707141660, -6917270852172884668) 
(6801340086884544070, -5961160668294564876) 
212681241822374483335035321234914329628 
 

 

2.8 Hash Tables for Distributed Systems: Consistent Hashing 
The first time the consistent hashing came to a spotlight was in the context of web 
caching.10,11 Caches are a fundamental idea in computer science that has improved systems 

 
9 “mmh3 3.00 Project Description”, 26 February 2021. [Online]. Available: https://pypi.org/project/mmh3/ 
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across many domains. On the web, for example, caches relieve the hotspots that occur when 
many clients request the same webpage from a server. Servers host webpages, clients 
request them via browsers, and caches sit in between and host copies of frequently accessed 
webpages. In most situations, caches are able to satisfy the request faster than the home 
servers, and distribute the load between themselves so that no cache is overwhelmed. Once 
a cache miss occurs, i.e., the webpage is not found in the cache, the cache fetches the 
website from the originating server. An important problem to solve in this setup is assigning 
web pages (in future text, resources) to caches (in future text, nodes), considering the 
following constraints: 

1. A fast and easy mapping from a resource to a node --- client and the server should be 
able to quickly compute the node responsible for a given resource. 

2. A fairly equal resource load among different nodes to relieve hotspots.  
3. The mapping should be flexible in the face of frequent node arrivals and departures. 

As soon as the node leaves (i.e., a spontaneous failure occurs), its resources should 
be efficiently re-assigned to other node(s), and when a new node is added, it should 
receive an equal portion of the total network load. All this should happen seamlessly, 
without too many other nodes/resources being affected. 

2.8.1 A typical hashing problem? 
From the requirements (1) and (2), it looks like we have a hashing problem at our hands: 
nodes are the buckets to which resources get hashed, and a good hash function can ensure a 
fair load-balance. Holding a hash table can help us figure out which node holds which 
resource. So when a query occurs, we hash the resource and see what bucket (node) should 
contain it (Figure 2.10, left). This would be fine, if we were not in a highly dynamic 
distributed environment, where nodes join and leave (fail) all the time (Figure 2.10, right.) 
The challenge lies in satisfying requirement (3): how to re-assign node’s resources when it 
leaves the network, or how to assign some resources to a newly arriving node, keeping in 
mind that load balance remains fairly equal, and without disturbing the network too much. 

As we know, classical hash tables can be resized by rehashing using a new hash function 
with a different range and copying the items over to a new table. This is a very expensive 
operation, and it typically pays off because it is done once in a while and it is amortized 
against a large number of inexpensive operations. For our dynamic web caching scenario, 
where node arrivals and departures happen constantly, changing resource-to-node mappings 
every time a minor change to the network occurs is highly impractical (Figure 2.11).  

 
10 D. KTarger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine and D. Lewin, "Consistent hashing and random trees: distributed caching protocols for 

relieving hot spots on the World Wide Web," in Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, El Paso, Texas, 1997. 
11 G. Valiant and T. Roughgarden, "CS168 The Modern Algorithmic Toolbox," 01 April 2019. [Online]. Available: 

https://web.stanford.edu/class/cs168/l/l1.pdf. [Accessed 30 March 2020]. 
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Figure 2.10: Using a hash table, we can map resources to nodes and help locate appropriate node for a 
queried resource (left). The problem arises when nodes join/leave the network (right.) 

 
Figure 2.11: Rehashing is not feasible in a highly dynamic context, because one node join/failure triggers re-
assignment of all resource-node allocations. In this example, changing the hash table size from 5 to 6 
changed node allocations for most resources. The bottom right illustration shows the “in-between” moment 
when nodes hold some out-of-date and some new resources. 

In the following sections, we will show how consistent hashing helps in satisfying all three 
requirements of our problem. We begin by introducing the concept of a hashring. 
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2.8.2 Hashring 
The main idea of consistent hashing is to hash both resources and nodes to a fixed range 

R = [0, 2k – 1]. It is helpful to visually imagine R spread out around a circle, with the 
northmost point being 0, and the rest of the range spread out clockwise in the increasing 
order uniformly around the circle. We denote this circle the hashring.  

Each resource and each node have a position on the hashring defined by their hashes. 
Given this setup, each resource is assigned to the first node encountered clockwise on the 
hashring. A good hash function should ensure that each node receives a fairly equal load of 
resources. See an example in the Figure 2.12:   

 
Figure 2.12: Mapping resources to nodes in the hashring. The example shows the hashring  R=[0,31] and 
nodes whose whose hashes are 5, 12, 18 and 27. Resources a, y and b are assigned to node 5, c and d are 
assigned to node 12, e is assigned to node 18, and f,h and i are assigned to node 27.  

 
To illustrate how consistent hashing works, along with node arrivals and departures, we 

show a simple Python implementation of the class HashRing step-by-step. Our 
implementation, shown in a sequence of small snippets, is only a simulation of the algorithm 
(the actual implementations of consistent hashing involve network calls between nodes, etc.) 
HashRing is implemented using a circular doubly-linked list of nodes where each node stores 
its resources in a local dictionary: 
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class Node: 
    def __init__(self, hashValue): 
         self.hashValue = hashValue 

  self.resources = {} 
  self.next = None 
  self.previous = None 

 
class HashRing: 
    def __init__(self, k): 
        self.head = None 
        self.k = k 

 self.min = 0 
 self.max = 2**k – 1 

 

 
The constructor of the HashRing class uses the parameter k which initializes the range 

to[0,2^k-1]. The Node class has an attribute hashValue that denotes its position on the 
ring, and a dictionary resources that holds its resources. The rest of the code is highly 
reminiscent of a typical circular doubly-linked list implementation.  

The first basic method describes the legal range of resource and node hash values that 
we allow on the hashring: 

 
    def legalRange(self, hashValue): 
        if self.min <= hashValue <= self.max: 
            return True 

 return False 
 

To assign the resources to their closest nodes, we define the notion of closest on the 
hashring using the following distance method: 

 
    def distance(self, a, b): 
        if a == b: 

     return 0 
 elif a < b: 
     return b - a 
 else: 
     return (2 ** self.k) + (b - a) 

 

 
For example, if we initialize an empty hashring with k=5: 

 
hr = HashRing(5)  
print(hr.distance(29,5)) 
print(hr.distance(29,12)) 
print(hr.distance(5,29)) 
 

we obtain the following output: 
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8 
15 
24 
 

The ring distance from the resource 29 to the node 5 is 8, shorter than the distance from 
29 to 12 (and in fact, shorter than to any other node from our example from figure 2.6, 
which makes node 5 the assigned node of resource 29). Keep in mind that the order of 
arguments in this function matters. 

2.8.3 Lookup 
The first functionality to implement with respect to HashRing is the lookup of the appropriate 
node given a hash value of the resource. We march along the hashring starting from the first 
node (with the smallest hash value), following the forward links as long as the current and 
the next node are ‘on the same side’ of the resource. The loop condition is broken when we 
are about to skip over the resource, that is, the current node precedes the resource and the 
next node comes immediately after the resource, and that is the node we need to return. If 
the resource is present, then that is the node containing the resource. This functionality is 
contained in the lookupNode method implemented below: 

 

 
    def lookupNode(self, hashValue): 
        if self.legalRange(hashValue): 

     temp = self.head 
     if temp is None: 
         return None 
     else: 
         while(self.distance(temp.hashValue, hashValue) >                 

                      self.distance(temp.next.hashValue, hashValue)): 
             temp = temp.next 
         if temp.hashValue == hashValue: 
             return temp 
         return temp.next 

 

In this implementation, we assume no hash collisions –-- no two distinct nodes (and no two 
distinct resources) will have the same hash value, however it can happen that the resource 
and a node land on the same position on the hashring, in which case the resource with hash 
value i is assigned to the node i. 

2.8.4 Adding a new node/resource 
When a new node A is added to the hashring, some of the resources previously belonging 

to what is now A’s successor might need to be re-assigned to A. These are the resources who 
now have a smaller distance to A than to their previously assigned node, i.e., A is on their 
clockwise path to their currently assigned node. See Figure 2.13 for an example of inserting 
a node with a hash value 30.  

34

https://livebook.manning.com/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 2.13: New node arrival. The resources a and y, with respective hash values 28 and 29, are now being re-
assigned to the newly inserted node with the hash value 30.  

Notice that this manner of adding a node is congruent with the constraint (3) from the 
beginning of the section: when a new node is added, only resources of one other node have 
potentially changed their mappings, and all other mappings remain untouched. 

First let’s see how the functionality of moving resources is implemented in a helper 
method moveResources that will also be used later for node deletions: 

 
    # move some resources to dest from orig 
    def moveResources(self, dest, orig, deleteTrue): 
        delete_list = [] 

 for i, j in orig.resources.items(): 
     if (self.distance(i, dest.hashValue) < self.distance(i, orig.hashValue) or   

                deleteTrue): 
         dest.resources[i] = j 
         delete_list.append(i) 
         print("\tMoving a resource " + str(i) +  " from " + str(orig.hashValue) + "   

                      to " + str(dest.hashValue)) 
 # delete the re-assigned resources from orig  

        for i in delete_list: 
     del orig.resources[i] 
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Special cases for node addition involve when the newly added node becomes the head 
node, or when the existing list is empty. For the common case, we use the lookup function 
from earlier to locate the correct place for a new node, and then do the needed rewiring of 
the hashring: 

 
    def addNode(self, hashValue): 
        if self.legalRange(hashValue): 

     ptr1 = Node(hashValue) 
     temp = self.head 
 
     # empty hashring 
     if self.head is None: 
         ptr1.next = ptr1 
         ptr1.previous = ptr1 
         self.head = ptr1 
         print("Adding a head node " + str(ptr1.hashValue) + "...") 
     else: 
         temp = self.lookupNode(hashValue) #successor 
         ptr1.next = temp 
         ptr1.previous = temp.previous 
         ptr1.previous.next = ptr1 
         ptr1.next.previous = ptr1 
         print("Adding a node " + str(ptr1.hashValue) + ". Its prev is " +  

                      str(ptr1.previous.hashValue) + ", and its next is " +   
                      str(ptr1.next.hashValue) + ".") 

         self.moveResources(ptr1, ptr1.next, False) 
 

         if hashValue < self.head.hashValue: #changing the head pointer                  
                    self.head = ptr1 
 

 
Now that we know how to add nodes, we can also add some resources. To add a new 

resource, we naturally employ the lookupNode method, and update the resources dictionary 
of the appropriate node with the new resource. To add a new resource, we require to have at 
least one node on the hashring: 

 

     
    def addResource(self, hashValueResource): 
        if self.legalRange(hashValueResource): 

     print("Adding a resource " + str(hashValueResource) + "...") 
     targetNode = self.lookupNode(hashValueResource) 
     if targetNode is not None: 
         value = "Dummy resource value of " + str(hashValueResource) 
         targetNode.resources[hashValueResource] = value 
     else: 
         print("Can't add a resource to an empty hashring") 

2.8.5 Removing a node 
Removal of a node in the hashring works in the following manner: when the node B leaves 
the hashring, which often corresponds to a spontaneous failure of a node, then the resources 

36

https://livebook.manning.com/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

previously belonging to B should be assigned to what was B’s successor on the hashring (see 
Figure 2.14). Again, only a small fraction of resources is affected by this change. 

 
Figure 2.14: Node removal. In this example, the node with the hash value 12 leaves the network, and its 
resources c and d, with hash values 8 and 10 respectively, are re-assigned to the node with the hash value 18, 
the previous successor of 12. 

The implementation needs to take into account the cases of empty and one-item hashring, 
attempting to remove a non-existent node, or removing the head item where the head 
pointer needs to be amended: 

 

 
    def removeNode(self, hashValue): 
        temp = self.lookupNode(hashValue) 

 if temp.hashValue == hashValue: 
     print("Removing the node " + str(hashValue) + ": ") 
     self.moveResources(temp.next, temp, True) 
     temp.previous.next = temp.next 
     temp.next.previous = temp.previous 
     if self.head.hashValue == hashValue: # removing the head item 
         self.head = temp.next 
         if self.head == self.head.next: # if removing from one-item hashring 
             self.head = None 
     return temp.next 
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 else: 
     print("Nothing to remove.") # no such node 

 

Lastly, in order to be able to show the contents of hashring, we implement a simple print 
method that shows the current state of hashring with nodes printed out in the increasing 
(clockwise order) starting from the northmost point of the ring, along with each node’s local 
resources stored in a local hash table: 

 
    def printHashRing(self): 
        print("*****") 

 print("Printing the hashring in the clockwise order:") 
 temp = self.head 
 if self.head is None: 
     print('Empty hashring') 
 else: 
     while (True): 
         print("Node: " + str(temp.hashValue) + ",", end = " ") 
         print("Resources: ", end = " ") 
         for i in temp.resources.keys(): 
             print(str(i), end = " ") 
             if not bool(temp.resources): 
                 print("Empty", end = "") 
             temp = temp.next 
             print(" ") 
             if (temp == self.head): 
                 break 
 print("*****") 

 

 
With all this functionality under our belt, we are now ready to show an example. 
 

AN EXAMPLE 

Let’s start by running the process shown in Figures 2.12 and 2.13. First, we add a number of 
nodes and resources in the arbitrary order and watch how resource re-assignments take 
place as nodes 5, 27 and 30 get added. Note that any order of additions of nodes and 
resources (as long as the first object added is a node, not a resource) should result in the 
same hashring: 

 
hr = HashRing(5) 
hr.addNode(12) 
hr.addNode(18) 
hr.addResource(24) 
hr.addResource(21) 
hr.addResource(16) 
hr.addResource(23) 
hr.addResource(2) 
hr.addResource(29) 
hr.addResource(28) 
hr.addResource(7) 
hr.addResource(10) 
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hr.printHashRing() 
 

which gives us the following output: 

 
Adding a head node 12... 
Adding a node 18. Its prev is 12, and its next is 12. 
Adding a resource 24... 
Adding a resource 21... 
Adding a resource 16... 
Adding a resource 23... 
Adding a resource 2... 
Adding a resource 29... 
Adding a resource 28... 
Adding a resource 7... 
Adding a resource 10... 
***** 
Printing the hashring in the clockwise order: 
Node: 12, Resources:  24 21 23 2 29 28 7 10   
Node: 18, Resources:  16   
***** 
 

Now we add two remaining nodes from Figure 2.12 and see how resource re-assignments 
take place: 

 
hr.addNode(5) 
hr.addNode(27) 
hr.addNode(30) 
hr.printHashRing() 
 

The output is as follows: 

 
Adding a node 5. Its prev is 18, and its next is 12. 
 Moving a resource 24 from 12 to 5 
 Moving a resource 21 from 12 to 5 
 Moving a resource 23 from 12 to 5 
 Moving a resource 2 from 12 to 5 
 Moving a resource 29 from 12 to 5 
 Moving a resource 28 from 12 to 5 
Adding a node 27. Its prev is 18, and its next is 5. 
 Moving a resource 24 from 5 to 27 
 Moving a resource 21 from 5 to 27 
 Moving a resource 23 from 5 to 27 
Adding a node 30. Its prev is 27, and its next is 5. 
 Moving a resource 29 from 5 to 30 
 Moving a resource 28 from 5 to 30 
***** 
Printing the hashring in the clockwise order: 
Node: 5, Resources:  2   
Node: 12, Resources:  7 10   
Node: 18, Resources:  16   
Node: 27, Resources:  24 21 23   
Node: 30, Resources:  29 28   
***** 
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The output above reflects the state of the hashring in Figure 2.13. Now let’s remove a 
node: 

 
hr.removeNode(12) 
hr.printHashRing() 
 

The final hashring, as shown in Figure 2.14, looks as follows: 

 
Removing the node 12:  
 Moving a resource 7 from 12 to 18 
 Moving a resource 10 from 12 to 18 
***** 
Printing the hashring in the clockwise order: 
Node: 5, Resources:  2   
Node: 18, Resources:  16 7 10   
Node: 27, Resources:  24 21 23   
Node: 30, Resources:  29 28   
***** 
 

 

2.8.6 Consistent hashing scenario: Chord 
Chord12 is the distributed lookup protocol for peer-to-peer networks that uses consistent 

hashing. The scheme from Chord, aside from being used in a number of peer-to-peer 
networks, has also been repurposed for Amazon’s Dynamo, a highly scalable data store that 
stores various core services of Amazon’s e-commerce platform13. 

The simplistic linked-list protocol we implemented leaves a lot to be desired in terms of 
efficiency for a real production system. To route a request from a resource, we expect to 
follow a linear number of forward pointers, and each such pointer translates into a network 
call between two machines. The time required to route the call will not scale in big systems. 
Also, to route the request, each machine needs to maintain a copy of the hashring, thus 
consuming a non-trivial amount of local memory. 

 Chord improves on the basic algorithm by having each node only store the information 
on other O(log n) nodes. Each node x maintains a so-called finger table that stores the key-
value mapping of points on the hashring at exponentially increasing distances from x (we call 
these keys fingers) to their successor nodes. This helps the lookup algorithm find the right 
node in a logarithmic number of steps.  

Specifically, for the hashring with interval R = [0, 2k – 1], the finger table of a node x 
contains all fingers f_i such that distance(x, f_i) = 2^(i-1) for all i≤k. The fingers’ 

 
12 I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H. Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup Protocol for 

Internet Applications," IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17-32, 2003. 
13 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall and W. Vogels, "Dynamo: Amazon's 

highly available key-value store," SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205-220, 2007. 
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successors can be computed using the lookupNode method we earlier implemented. For an 
example, see Figure 2.15 and the finger table for node x=5: 

 
Figure 2.15: Example finger table for the node 5, on the hashring where R=[0,31]. Node 5 has 5 entries stored 
in its finger table, for the successors of the points 5+1=6, 5+2=7, 5+4=9, 5+8=13, and 5+16=21. The 
respective successors are 12, 12, 12, 16 and 27.  

How can we use finger tables to speed up the lookup? The lookup operation in this scheme 
works in a way that, if the finger table of a node where the request originates does not 
contain the resource y, then the node forwards the request to the successor determined by 
the finger with the smallest distance to the resource. The example is shown in Figure 2.16 
with the lookup of the resource with hash value 29 starting at node 5: 
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Figure 2.16: Lookup procedure with a finger tables. To locate resource 29 starting from node 5, we first follow 
the finger (21=5+16) as it is the finger with smallest distance to 29. Its successor is 27, so the request is 
forwarded to 27. In the finger table of node 27, we take the finger 2, which gives us exactly 29. Its successor is 
30, where the request is finally routed, i.e., if the resource exists, it will be found at node 30. 

Here are a couple of coding exercises to test your understanding of Chord and finger 
tables.  

CONSISTENT HASHING: PROGRAMMING EXERCISES 

Exercise 1: 

 Given the code for HashRing class, add a new attribute fingerTable of type dict to 
the Node class definition. Now implement a buildFingerTables(self) method in 
the HashRing class that builds a finger table for each node in the hashring using the 
methods we already implemented. Along with the (finger, successor) pair, your finger table 
should also store the direct pointer to the given node (to allow the direct access to the 
node from the finger table). 

Exercise 2:  

Now that each node contains its own finger table, implement a more efficient lookup in a 
chordLookup(self,hashValue) method. Then create a large hashring with dozens 
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of thousands of nodes and resources, and measure the average number of hops required 
by the new lookup method. Compare that to the naïve linear-time lookup we implemented. 

Exercise 3: 

With node additions and removal, finger tables can go out of date and need to be re-built. 
Modify the implementation of HashRing such that finger tables always remain up-to-
date.  

2.9 Summary 
• Hash tables are irreplaceable in modern systems, such as networks, databases,

storage solutions, text-processing applications and so on. Depending on an application
and the workload, hash tables can be designed to suit different needs, such as speed
vs. space, simplicity vs optimizing the worst-case, etc.

• There is a large number of collision-resolution techniques, but the most frequently
used ones are chaining and linear probing (Section 2.5). Linear probing has benefits
when it comes to cache-efficiency. As hash tables grow, the cache-efficiency concern
take over the number of probes required by a particular technique.

• Most production-quality hash tables, such as Python’s dict (Section 2.6) are about
optimizing the common case and do not worry about solving rare pathological cases if
they will complicate the common case.

• Murmurhash (Section 2.7) is an example of a widely-used fast and simple non-
cryptographic hash function, often employed by hash-based data structures we will
learn about in this book.

• Consistent hashing (Section 2.8) solves the problem of hash tables that are
distributed among many machines, such is the case in peer-to-peer environments.
Consistent hashing has been implemented in many peer-to-peer products such as
BitTorrent, and also in data store systems such as Amazon’s Dynamo.
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3 
Approximate Membership and 

Bloom Filter 

This chapter covers: 

• Learning what Bloom filters are, why and when they are useful
• Understanding how Bloom filters work
• Configuring a Bloom filter in a practical setting
• Exploring the interplay between Bloom filter parameters
• Learning about quotient filter as a Bloom filter replacement
• Understanding how quotient filter works, and its comparison to the Bloom filter

Bloom filters seem to be all the rage these days. Most self-respecting industry blogs have 
articles fleshing out how Bloom filters enhance the performance in their infrastructure, and 
there are dozens of Bloom filter implementations floating around in various programming 
languages, each touting its own benefits. Bloom filters are also interesting to computer 
science researchers, who have, in past decade, designed many modifications and alternatives 
to the basic data structure, enhancing its various aspects. A skeptic and a curmudgeon in 
you might ask himself: What’s all the hype?  

The large part of the reason behind Bloom filter popularity is that they have that 
combination of being a fairly simple data structure to design and implement, yet very useful 
in many contexts. They were invented in 1970s by Burton Bloom28,29 but they only really 
“bloomed” in the last few decades with the onslaught of large amount of data in various 
domains, and the need to tame and compress such huge datasets. 

28 B. H. Bloom, "Space/Time Trade-Offs in Hash Coding with Allowable Errors," Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970. 
29 A. Broder and M. Mitzenmacher, "Network Applications of Bloom Filters: A Survey," in Internet Mathematics, 2002, pp. 636-646.  
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One simple way to think about Bloom filters is that they support insert and lookup in the 
same way the hash tables do, but using very little space, i.e., one byte per item or less. This 
is a significant saving when you have many items and each item takes up, say 8 bytes.   

Bloom filters do not store the items themselves, and they use less space than the lower 
theoretical limit required to store the data correctly, and therefore, they exhibit an error rate. 
They have false positives but they do not have false negatives, and the one-sidedness of the 
error can be turned to our benefit. When the Bloom filter reports the item as Found/Present,
there is a small chance it is not telling the truth, but when it reports the item as Not 
Found/Not Present, we know it’s telling the truth. So, in the context where the query
answer is expected to be Not Present most of the time, Bloom filters offer great accuracy
plus space-saving benefits.  

For instance, this is how Bloom filters are used in Google's Webtable30 and Apache 
Cassandra31 that are among the most widely used distributed storage systems designed to 
handle massive amounts of data. Namely, these systems organize their data into a number 
of tables called Sorted String Tables (SSTs) that reside on disk and are structured as key-
value maps. In Webtable, keys might be website names, and values might be website 
attributes or contents. In Cassandra, the type of data depends on what system is using it, so 
for example, for Twitter, a key might be a User ID, and the value could be user's tweets. 

When users query for data, the problem arises because we do not know which of the 
tables contains the desired result. To help locate the right table without checking explicitly on 
disk, we maintain a dedicated Bloom filter in RAM for each of the tables, and use them to 
route the query to the correct table, in the way described in Figure 3.1: 

30 F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes and R. E. Gruber, "Bigtable: A Distributed Storage System 
for Structured Data," ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1-4:26, 2008. 

31 S. Lebresne, "The Apache Cassandra Storage Engine," 2012. [Online]. Available: https://2012.nosql-matters.org/cgn/wp-
content/uploads/2012/06/Sylvain_Lebresne-Cassandra_Storage_Engine.pdf. [Accessed 03 04 2016]. 
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Figure 3.1: Bloom filters in distributed storage systems. In this example, we have 50 sorted string tables 
(SSTs) on disk, and each table has a dedicated Bloom filter that can fit into RAM due to its much smaller size. 
When a user does a lookup, the lookup first checks the Bloom filters. In this example, the first Bloom filter that 
reports the item as Present is Bloom filter No.3. Then we go ahead and check in the SST3 on disk whether the 
item is present. In this case, it was a false alarm. We continue checking until another Bloom filter reports 
Present. Bloom filter No.50 reports present, we go to the disk and actually locate and return the requested 
item.  

Bloom filters are most useful when they are strategically placed in high-ingestion systems, in 
parts of the application where they can prevent expensive disk seeks. For example, having 
an application perform a lookup of an element in a large table on a disk can easily bring 
down the throughput of an application from hundreds of thousands ops/sec to only a couple 
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of thousands ops/sec. Instead, if we place a Bloom filter in RAM to serve the lookups, this 
will deem the disk seek unnecessary except when the Bloom filter reports the key as 
Present. This way the Bloom filter can remove disk bottlenecks and help the application
maintain consistently high throughput across its different components. 

In this chapter, you will learn how Bloom filters work and when to use them, with various 
practical scenarios. You will also learn how to configure the parameters of the Bloom filter for 
your particular application: there is an interesting interplay between the space (m), number 
of elements (n), number of hash functions (k), and the false positive rate (f). For readers 
who like a challenge, we will spend some time understanding where the formulas relating the 
important parameters of Bloom filter come from and exploring whether one can do better 
than Bloom filter. 

In that light, we will spend a substantial amount of time exploring an interesting new 
type of a compact hash table called quotient filter32 that is functionally similar to the Bloom 
filter, and also offers many other advantages. So if you already are well familiar with the 
Bloom filters, and are ready for another challenge, skip ahead to Section 3.6. 

3.1 How It Works 
Bloom filter has two main components: 

• A bit array A[0..m-1] with all slots initially set to 0, and
• k independent hash functions h1, h2,…, hk, each mapping keys uniformly randomly onto

a range [0,m−1]

3.1.1 Insert  

To insert an item x into the Bloom filter, we first compute the k hash functions on x, and for 
each resulting hash, set the corresponding slot of A to 1 (see pseudocode and Figure 3.2
below): 

Bloom_insert(x): 
for i ← 1 to k  

  A[hi(x)] ←1 

32 M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane and E. Zadok, "Don't Thrash: 
How to Cache Your Hash on Flash," in Proceedings of the VLDB Endowment (PVLDB), Vol. 5, No. 11, pp. 1627-1637 (2012), 2012. 
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Figure 3.2: Example of insert into Bloom filter. In this example, an initially empty Bloom filter has m=8, and 
k=2 (two hash functions). To insert an element x, we first compute the two hashes on x, the first one of which 
generates 1 and the second one generates 5. We proceed to set A[1] and A[5] to 1.  To insert y, we also 
compute the hashes and similarly, set positions A[4] and A[6] to 1.  

3.1.2 Lookup 

Similarly to insert, lookup computes k hash functions on x, and the first time one of the 
corresponding slots of A equal to 0, the lookup reports the item as Not Present, otherwise it 
reports the item as Present (pseudocode below): 

Bloom_lookup(x): 
for i ← 1 to k  

 if(A[hi(x)] = 0) 
 return NOT PRESENT 

return PRESENT 

Here is an example of a Bloom filter lookup (Figure 3.3): 
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Figure 3.3: Example of a lookup on a Bloom filter. We take the resulting Bloom filter from Figure 3.2, where 
we inserted elements x and y. To do a lookup on x, we compute the hashes (which are the same as in the case 
of an insert), and we return Found/Present, as both bits in corresponding locations equal 1. Then we do a 
lookup of an element z, which we never inserted, and its hashes are respectively 4 and 5, and bits at locations 
A[4] and A[5] equal 1, thus we again return Found/Present. This is an example of a false positive, where two 
other items together set the bits of the third item to 1. An example of a negative (negative is always true), 
would be if we did a lookup on an element w, whose hashes are 2 and 5, (0 and 1), or 0 and 3 (0 and 0). If the 
Bloom filter reports an element as Not Found/Not Present, then we can be sure that this element was never 
inserted into a Bloom filter.  

Asymptotically, the insert operation on the Bloom filter costs O(k). Considering that the 
number of hash functions rarely goes above 12, this is a constant-time operation. The lookup 
might also need O(k), in case the operation has to check all the bits, but most unsuccessful 
lookups will give up way before; later we will see that on average, an unsuccessful lookup 
takes about 1-2 probes before giving up.  
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3.2 Use Cases 
In the introduction, we saw the application of Bloom filters to distributed storage systems. In 
this section, we will see more applications of Bloom filters to distributed networks: Squid 
network proxy, and Bitcoin mobile app. 

3.2.1 Bloom Filters in Networks: Squid 

Squid is a web proxy cache --- a server that act as a proxy between the client and other 
servers when the client requests a webpage, file, etc. Web proxies use caches to reduce web 
traffic, which means they maintain a local copy of recently accessed links, in case they are 
requested again, and this usually enhances the performance significantly. One of the 
protocols33 designed suggests that a web proxy locally keeps a Bloom filter for each of its 
neighboring servers' cache contents. This way when a proxy is looking for a webpage, it first 
checks its local cache. If the cache miss occurs locally, the proxy checks all its Bloom filters 
to see whether any of them contain the desired webpage, and if yes, it tries to fetch the 
webpage from the neighbor associated with that Bloom filter instead of directly fetching the 
page from the Web.  

Squid implements this functionality and it calls Bloom filters Cache Digests34 (see Figure 
3.4.) Because data is highly dynamic in the network scenario, and Bloom filters are only 
occasionally broadcasted between proxies, false negatives can arise.  

33 L. Fan, P. Cao, J. Almeida and A. Z. Broder, "Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol," IEEE/ACM Trans. Netw., vol. 8, no. 3, 
pp. 281-293, 2000. 

34 Squid, "Squid Cache Wiki," [Online]. Available: http://wiki.squid-cache.org/SquidFaq/AboutSquid. [Accessed 19 03 2016]. 
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Figure 3.4: Usage of Bloom filter in Squid web proxy. Web proxies keep the copies of recently accessed web 
pages, but also keep the record of recently accessed web pages of their neighbors by having each proxy 
occasionally broadcast the Bloom filter of their own cache. In this example, a user requests a web page x, and 
a web proxy A can not find it in its own cache, so it queries the Bloom filters of B, C and D. The Bloom filter of 
D reports Found/Present for x, so the request is forwarded to D. Note that, because Bloom filters are not 
always up-to-date, and the network environment is highly dynamic, by the time we get to the right proxy, the 
cache might have deleted the resource that we are looking for. Also, false negatives may arise, due to the gap 
in the broadcasting times.  

3.2.2 Bitcoin mobile app 

Peer-to-peer networks use Bloom filters to communicate data, and a well-known example of 
that is Bitcoin. An important feature of Bitcoin is ensuring transparency between clients, i.e., 
each node should be able to see everyone's transactions. However, for nodes that are 
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operating from a smartphone or a similar device of limited memory and bandwidth, keeping 
the copy of all transactions is highly impractical. This is why Bitcoin offers the option of 
simplified payment verification (SPV), where a node can choose to be a light node by 
advertising a list of transactions it is interested in. This is in contrast to full nodes that 
contain all the data (Figure 3.5): 

Figure 3.5: In Bitcoin, light clients can broadcast what transactions they are interested in, and thereby block 
the deluge of updates from the network. 

Light nodes compute and transmit a Bloom filter of the list of transactions they are interested 
in to the full nodes. This way, before a full node sends information about a transaction to the 
light node, it first checks its Bloom filter to see whether a node is interested in it. If the false 
positive occurs, the light node can discard the information upon its arrival.35 

3.3 Configuring a Bloom filter for your application 
When using an existing implementation of a Bloom filter, the constructor will allow you to set 
a couple of parameters and do the rest on its own. For example, 

bloom = BloomFilter(max_elements, fp_rate) 

35 A. Gervais, S. Capkun, G. O. Karame and D. Gruber, "On the privacy provisions of Bloom filters in lightweight bitcoin," in Proceedings of the 30th Annual 
Computer Security Applications Conference (ACSAC 2014), New Orleans, LA, 2014. 
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allows the user to set the maximum number of elements and the desired false positive rate, 
and the constructor does the job of setting other parameters (size of the filter and the 
number of hash functions). Similarly, we can have: 

bloom = BloomFilter(fp_rate, bits_per_element) 

that allows a user to set the desired false positive and how many bits per element they are 
willing to spend, and the number of elements inserted and the number of hash functions are 
additionally set, or simply,  

bloom = BloomFilter(), 

where the implementation sets parameters to the default values. In the rest of the section, 
we outline the main formulas relating important parameters of the Bloom filter, which you 
will need if you decide to implement your own Bloom filter, or to understand how the existing 
implementations optimally configure the Bloom filter. We will use following notation for the 
four parameters of the Bloom filter: 

• f = the false positive rate
• m = number of bits in a Bloom filter
• n = number of elements to insert
• k = number of hash functions

The formula that determines the false positive rate as a function of other three parameters is 
as follows (Formula 1): 

First let’s reason visually about this formula. Figure 3.6 below shows the plot of f as a 
function of k for different choices of m/n (bits per element). In many real-life applications, 
fixing bits-per-element ratio is meaningful because we often have an idea of how many bits 
we can spend per element. Common values for the bits-per-element ratio are between 6 and 
14, and such ratios allow us fairly low false positive rates as shown in the graph below: 
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Figure 3.6: The plot relating the number of hash functions (k) and the false positive rate (f) in a Bloom filter. 
The graph shows the false positive rate for a fixed bits-per-element ratio (m/n), different curves corresponding 
to different ratios. Starting from the top to bottom, we have m/n=6, 8, 10, 12, 14. As the amount of allowed 
space per element increases (going from top to bottom), given the same number of hash functions, the false 
positive rate drops. Also, the curves show the trend that increasing k up until some point (going from left to 
right), for a fixed m/n, reduces the error, but after some point, increasing k increases the error rate. Note that 
the curves are fairly smooth, and for example, when m/n=8, i.e., we are willing to spend 1 byte per element, if 
we use anywhere between 4 and 8 hash functions, the false positive rate will not go above 3%, even though 
the optimal choice of k is between 5 and 6.  

While increasing m or reducing n drops the false positive rate, i.e., more bits per element 
results in the overall lower false positive curve, the graph also shows the two-fold effect that 
k has on the false positive: up to some point, increasing k helps reduce the false positive, but 
from some point on, it worsens it: this is because having more hash functions allows a 
lookup more chance to find a zero, but also on an insert, sets more bits to 1. The minimum 
for each curve is that sweet spot that is the optimal k for a particular bits-per-element (which 
we get by doing a derivative on Formula 1 with respect to k), and it happens at (Formula 2): 

For example, when m/n = 8, kopt = 5.545. We can use this formula to optimally configure the 
Bloom filter, and an interesting consequence of choosing parameters this way is that in such 
a Bloom filter, the false positive rate turns out to be (Formula 3): 
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This is particularly convenient, considering that a false positive occurs when a lookup 
encounters a cell whose value is 1 k times in a row, which means that in an optimally filled 
Bloom filter the probability of a bit being equal to 1 is ½.  

Keep in mind that these calculations assume k is a real number, but our k has to be an 
integer. So if Formula 2 produces a non-integer, and we need to choose one of the two 
neighboring integers, then Formula 3 is also not an exact false positive rate anymore. The 
only correct formula to plug into is Formula 1, but even with Formula 3, we will not make too 
grave of a mistake. Often it is better to choose the smaller of the two possible values of k, 
because it reduces the amount of computation we need to do. 

3.3.1 Examples 

Here we show some examples of how to configure Bloom filters in different situations. 

Example 1. Calculating  f  from m, n, and  k 

You are trying to analyze the false positive rate of an already existing Bloom filter that has 
been acting out. The filter capacity is 3MB, and over time it ended up storing 107 elements 
(~2.5 bits per element) and it uses 2 hash functions. 

Answer for Example 1:  

Using Formula 1, we obtain the following: 

Example 2. Calculating f  and k from n  and m 

Consider you wish to build a Bloom filter for n = 106 elements, and you have about 1MB 
available for it (m = 8 ∗ 106 bits). Find the optimal false positive rate and determine the 
number of hash functions.  

Answer for Example 2: 

From Formula 2, the ideal number of hash functions should be k ≈ 0.693 ∗ 8 ∗ 106
 ⁄ 106

 =
5.544. Formula 3 tells us that the false positive rate is  f  ≈  (1⁄2)5.544 ≈ 0.0214,  but we need 
a legal value of k. In this situation, we might choose k = 5 or k = 6. In both cases, we will 
still obtain 2% false positive rate. 

Consider re-doing the Example 2 where the dataset becomes 100 times larger, and false 
positive rate is kept fixed: if we do the math, we will see that we will also require 
approximately 100 times larger Bloom filter. Therefore, Bloom filters grow linearly with the 
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size of the dataset and even though they are intended to be a small signature of the original 
data, they can also grow large enough to spill over to SSD/disk. 

3.4 A bit of theory 
First let’s see where the main formula for the Bloom filter false positive rate (Formula 1) 
comes from, as Formulas 2 and 3 are the consequence of minimizing f in Formula 1 with 
respect to k. For this analysis, we assume that hash functions are independent (the results of 
one hash function do not in any way affect the results of any other hash function) and that 
each function maps keys uniformly randomly over the range [0… m − 1]. 

If t is the fraction of bits that are still 0 after all n insertions took place, and k is the 
number of hash functions, then the probability f  of a false positive is: 

f = (1 − t)k 

considering that we need to get k 1s in order to report Present. It is impossible to know 
beforehand what t will be, because it depends on the outcome of hashing, but we can work 
with probability p of a bit being equal to 0 after all inserts took place, i.e.: 

p =  Prob(a fixed bit equals 0 after n inserts) 

The value of p will in the probabilistic sense, translate to the percentage of 0s in the filter. 
Now we derive the value of p to be equal the following expression:  

To understand why this is true, let's start from the empty Bloom filter. Right after the first 
hash function h1 has set one bit to 1, the probability that a fixed bit in the Bloom filter equals 
1 is 1⁄m, and the probability that it equals 0 is accordingly 1 − 1⁄m. After all the hashes of the 
first insert finished setting bits to 1, the probability that the fixed bit still equals zero is 
(1−1⁄m)k, and after we finished inserting the entire dataset of size n, this probability is 
(1−1⁄m)nk . The approximation (1−1⁄x)x ≈ e then further gives p ≈ e-nk/m.  

If we just replace t from the earlier expression f = (1 − t )k with our new value of p, we will 
obtain Formula 1. But to make this replacement kosher, we first have to prove that p is a 
random variable that is very stably concentrated around its mean, and this can be proved 
using Chernoff bounds. This means that it is exponentially unlikely that p will differ 
substantially from t, so it is safe to replace one with the other, thus giving Formula 1. 

3.4.1 Can we do better? 

Bloom filter packs the space really well but are there, or can there be better data structures? 
In other words, for the same amount of space, can we achieve a better false positive rate 
than the Bloom filter? To answer this question, we need to derive a lower bound that relates 
the space in the Bloom filter (m) with the false positive rate (f). This lower bound (available 
in some more theoretical resources on the subject) tells us that the amount of space the 
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Bloom filter uses is 1.44x away from the minimum. There are, in fact, data structures that 
are closer to this lower bound than Bloom filter, but some of them are very complex to 
understand and implement. 

3.5 Further reading: Bloom filter adaptations and alternatives 
The basic Bloom filter data structure leaves a lot to be desired, and computer scientists have 
developed various modified versions of Bloom filters that address its various inefficiencies. 
For example, the standard Bloom filter does not handle deletions. There exists a version of 
the Bloom filter called counting Bloom filter36 that uses counters instead of individual bits in 
the cells. The insert operation in the counting Bloom filter increments the respective 
counters, and the delete operation decrements the corresponding counters. Counting Bloom 
filters use more space and can also lead to false negatives, when, for example, we 
repeatedly delete the same element thereby bringing down some other elements’ counters to 
zero. 

Another issue with Bloom filters is inability to efficiently resize. One of the problems with 
resizing in the way we are used to with hash tables, by rehashing and re-inserting, is that in 
the Bloom filter, we do not store the items nor the fingerprints, so the original keys are 
effectively lost and rehashing is not an option. 

Also, Bloom filters are vulnerable when the queries are not drawn uniformly randomly. 
Queries in real-life scenarios are rarely uniform random. Instead, many queries follow the 
Zipfian distribution, where a small number of elements is queried a large number of times, 
and a large number of elements is queried only once or twice. This pattern of queries can 
increase our effective false positive rate, if one of our “hot” elements, i.e., the elements 
queried often, results in the false positive. A modification to the Bloom filter called weighted 
Bloom filter37 addresses this issue by devoting more hashes to the “hot” elements, thus 
reducing the chance of the false positive on those elements. There are also new adaptations 
of Bloom filters that are adaptive, i.e., upon the discovery of a false positive, they attempt to 
correct it.38 

The other vein of research has been focused on designing data structures functionally 
similar to the Bloom filter, but their design has been based on particular types of compact 
hash tables. In the next part, we cover one such interesting data structure: quotient filter. 
Some of the methods employed in the next section will closely tie to the subjects of 
designing hash tables for massive datasets, the topic of our previous chapter, but we cover it 
here because the main applications of quotient filters are functionally equivalent to Bloom 
filters, and find uses in similar contexts. 

36 L. Fan, P. Cao, J. Almeida and A. Z. Broder, "Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol," IEEE/ACM Trans. Netw., vol. 8, no. 3, 
pp. 281-293, 2000. 

37 J. Bruck, J. Gao and A. (. Jiang, "Weighted Bloom Filter," in IEEE International Symposium on Information Theory, 2006. 
38 M. A. Bender, M. Farach-Colton, M. Goswami, R. Johnson, S. McCauley and S. Singh, "Bloom Filters, Adaptivity, and the Dictionary Problem," in IEEE 

59th Annual Symposium on Foundations of Computer Science (FOCS), 2018. 
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3.6 Quotient filter 
Quotient filter39 offers a number of advantages over classical Bloom filter, such as the ability 
to delete elements and to resize itself. Also, two quotient filters can be efficiently merged, in 
a similar fashion to the merge subroutine in merge sort (fingerprints in the quotient filter are 
sorted). The ability to sequentially scan elements and merge makes the quotient filter a 
particularly good choice as a building block in larger disk-based data structures, where the 
difference between the sequential merge of quotient filter and random read/write access 
pattern of the Bloom filter becomes particularly significant.  

Even though only the part of the fingerprint is stored in the quotient filter, the full 
fingerprint can be recovered using metadata bits, and the false positives can only happen on 
the level of the same fingerprint/hash. That is, only if two distinct keys generate the same 
fingerprint, the quotient filter might mistake them one for another. This is in contrast with 
the Bloom filter, where an element can have a unique set of hashes, but still generate a false 
positive because some other two elements set its locations to 1. Quotient filter is, however, 
more complex to implement than a Bloom filter and insert and lookup operations can prove 
to be more time consuming due to all bit-packing, and especially as the filter becomes more 
full, just like in the classical linear probing hash table, which quotient filter effectively is.  

Next we will describe the design of quotient filter, first by learning what quotienting is, 
then by describing how quotient filter uses metadata bits together with quotienting to save 
space. Quotient filter is not the only data structure of this sort, but some of the tricks that 
you learn here can be generally useful when designing similar space-saving data structures. 

3.6.1 Quotienting 
Quotienting40 works differently from most hash tables, because instead of saving the key, it 
saves its hash, or more precisely, a part of the hash. In a quotienting table, we divide a hash 
of each item into two parts: quotient and a remainder. The hash table only stores the 
remainder. For example, if the hash is 64 bits long, and if the table size is a power of 2, 
m=2i, then the quotient is i bits long, and the remainder is 64 − i bits long. The quotient is 
used to index into the corresponding bucket of the hash table, where the remainder gets 
stored. Example from Figure 3.7 shows the hash partition on an example: 

39 M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane and E. Zadok, "Don't Thrash: 
How to Cache Your Hash on Flash," in Proceedings of the VLDB Endowment (PVLDB), Vol. 5, No. 11, pp. 1627-1637 (2012), 2012. 

40 D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching, Addison Wesley Longman Publishing Co., Inc., 1998. 
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Figure 3.7: Quotienting in a hash table. In this example, the hash table has 32 slots and hashes are 11 bits 
long. We need 5 bits to distinguish between 32 slots, so the quotient in the hash will be the first 5 bits of a 
hash, and the remainder will take up the last 6 bits. Quotient determines the bucket at which we will store the 
remainder. So for example, the item y has the hash 10100 101101, so it will be stored in the bucket 10100 
(bucket 20), and the value stored will be 101101 (value 35). This way, instead of storing all 11 bits, we only 
store 6 bits. 

Notice that if we use quotienting in combination with linear probing (or any collision-
resolution method where elements can move around the table), we run into trouble. As 
remainders move down as a result of collisions on the level of quotient, we are losing the 
association between quotients and remainders, and thus are not able to recover the full 
hash. (Note that in this sort of hash table, if two items collide on the whole hash, then we 
consider them the same item, and collisions occur when two hashes have the same quotient. 
This is applicable for contexts where the hash is sufficiently large that full-hash collisions are 
highly unlikely, or where some degree of false positive is allowable.) 

One way to link quotients to remainders is to use extra metadata bits in each hash table 
slot that enables the recovery of the original hashes. In the examples shown in Figures 3.8 
and 3.9 below, we show how to insert elements and later decode them in the scheme with 3 
metadata bits. 
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Figure 3.8: Metadata bits in a quotient filter. We inserted three elements into the filter in the following order: v, 
w and x. First we insert v, and set the bucket_occupied bit to 1, as an item has just hashed in that bucket. We 
leave the run_continued bit to be 0, because this item is not a continuation of a sequence of items that 
hashed to the same location. Similarly, we leave the is_shifted bit to be 0 because the item v is currently in its 
original position – it is not shifted. Then we insert w, and similarly set all identical bits as in the case of v. Then 
we insert w: because its original slot is taken (and the bucket_occupied bit for its bucket is already set to 1, we 
continue down the table until the first available slot, which is the slot 10100. We store the remainder in that 
position, while leaving the bucket_occupied bit of that position set to 0, as nothing hashed there. We also set 
the run_continued bit to 1, because the item right above x hashed to the same bucket as x, and we set 
is_shifted to 1, because the item x is not stored in its originally intended position. 
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The main role of metadata bits is to enable decoding the actual hashes when we do a lookup, 
for example. The decoding is done on the level of a cluster (a consecutive set of items that 
are not interrupted by an empty slot): 

Figure 3.9: Decoding details in quotient filter. When we decode, we work on the level of a cluster. Cluster is a 
set of items that are not broken up by an empty slot. In this example, we have two clusters: one is just one-slot 
long, at position 10001, and the other one is 4 slots long, starting from 10011 and ending at 10110. Inside 
that cluster, we have multiple items that hashed to different positions originally. A consecutive set of items 
that hashed to the same location originally is called a run. For example items stored at positions 10101 and 
10110 belong to the same run because the first one has the run_continued bit as zero, and the second one 
has it as 1. In this example cluster, items hashed to two distinct buckets, 10011 and 10100 so there are two 
runs in this cluster. Item at the location 10011 is an anchor --- it is a beginning of a cluster, so this item is in its 
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own original position (we can reconstruct this item as 10011 100111), but the item right below it is a 
continuation of the same run and is shifted (thus we can reconstruct it as 10011 000011). Similarly for two 
items below, the item at the slot 10101 is, even though shifted from where it originally hashed, not a 
continuation of the run --- it is the beginning of its own run (we can reconstruct it as 10100 101101 – our y), 
but the second is the continuation (so we can reconstruct it as 10100 111110 – our z). 

3.6.2 Resizing 

One particular advantage of quotienting is that it allows us to do resize operation on the hash 
table without having to do an expensive rehash operation on all the items. If we want to 
double the table, we steal one bit from remainder and give it to the quotient, and vice versa 
(example in Figure 3.10). 

Figure 3.10: Resizing with quotienting. To double the existing table, we steal one bit from the remainder and 
give it to the quotient. In this example, the original table had 4 slots, and the quotient is 2 bits while the 
remainder is 5 bits (entire hash is 7 bits long). To double the size of the table, we steal one bit from the 
remainder and give it to the quotient, so an item that was before stored in the bucket 01 with the remainder 
11011, is in the second table stored in the bucket 011 with the remainder 1011, and when the table is again 
doubled, it is stored in the bucket 0111 with the remainder 011.    
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There is a number of different tricks and methods one can use to make the quotient-filter-
type data structure more space-efficient. The scheme presented above can also be 
implemented with only two metadata bits, but that substantially complicates the decoding 
step, making common operations too CPU-intensive on longer clusters. Another similar data 
structure based on a different collision-resolution technique, cuckoo hashing, is called a 
cuckoo filter. One of the key advantage of cuckoo filter in the comparison to the Bloom filter 
is the fast lookup: even on a successful lookup, the data structure needs at most 2 random 
reads while the Bloom filter might need up to k. 

3.7 Summary 
• Bloom filters have been widely applied in the context of distributed databases,

networks, bioinformatics, and other domains where regular hash tables are too space-
consuming.

• Bloom filters trade accuracy for the savings in space, and there is a relationship
between the space, false positive rate, the number of elements and the number of
hash functions in the Bloom filter.

• Bloom filters do not meet the space vs. accuracy lower bound, but they are simpler to
implement than more space-efficient alternatives, and have been adapted over time
to deal with deletes, different query distributions, etc.

• Quotient filters are based on compact hash tables and are functionally equivalent to
Bloom filters, with the benefit of the cache-efficient operations, and ability to delete,
merge and resize.

• Cuckoo filters are based on cuckoo hash tables, and promise the lookup of O(1). Just
like quotient filters, they store fingerprints instead of the actual keys.
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4 
Frequency Estimation and  

Count-Min Sketch 

This chapter covers: 

• Understanding the streaming model and its constraints
• Exploring practical use cases where frequency estimates arise and how count-min sketch

can help
• Learning how count-min sketch works
• Exploring the error in count-min sketch and configuring the data structure
• Understanding how range queries can be solved with count-min sketch
• Exploring heavy hitters and approximate heavy hitters with count-min sketch

Measuring frequency is one of the most common operations in today’s data-intensive 
applications. Any kind of popularity analysis on a massive-data application, such as 
producing the bestseller list on Amazon.com, computing top-k  trending queries on Google, 
or monitoring the most frequent source-destination IP address pairs on the network are all 
frequency estimation problems. Estimating frequency also shows up when monitoring 
changes in systems that are awake 24/7, such as sensor networks or surveillance cameras. 
Here we can observe changes in parameters such as the temperature or location change of a 
sensor in the ocean, new object appearance in the frame, or the number of units by which a 
stock on the stock market rose or fell in a given time interval. For this purpose, in the next 
section, we introduce the streaming model of data that emphasizes challenges related to this 
particular setup. 

The amount of space required to exactly measure frequency is related to the number of 
distinct items in the dataset (n), not the entire quantity of the dataset (N). So for example, if 
on Amazon.com, we only have a couple of slam-dunk bestsellers that make up all the sales, 
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storing all distinct bestsellers and their sales numbers is not particularly challenging from the 
space point of view (it can even be done in O(1). On the other hand, selling a small number 
of copies of each book requires a lot of space to store (O(N), as in this case n = O(N)), but in 
many datasets with duplicates, we will find neither of the two scenarios to be the case. Real 
datasets exhibit certain commonalities regardless of the domain in which they appear, and 
they tend to contain a small number of items with very high frequencies, and also a large 
number of items with small frequencies, which in our Amazon.com example corresponds to 
having few slam-dunk bestsellers, and many books that get sold only a couple of times. This 
combination of quantity and diversity of items is challenging from the storage point of view. 

In this chapter, we will learn how to solve popularity problems of interest such as top-k 
queries, heavy hitters and frequency range queries under the constraint of limited space and 
time. We will see that with the limitations of the streaming model, many problems that had 
rather trivial solutions before can now only be solved approximately, yet with count-min 
sketch, we can achieve enormous space savings and not lose a lot of accuracy.  

To that end, we will learn about Count-Min sketch. Count-min sketch has been devised by 
Cormode and Muthukrishnan in 200541 and can be thought of as a young, up-and-coming 
cousin of Bloom filter. Similarly to how Bloom filter answers membership queries 
approximately with less space than hash tables, the count-min sketch estimates frequencies 
of items in less space than a hash table or any linear-space key-value dictionary. Another 
important similarity is that the count-min sketch is hashing-based, so we continue in the vein 
of using hashing to create compact and approximate sketches of data. But as we will see in 
this chapter, count-min sketch is a different animal than Bloom filter, mainly due to the 
contexts in which its main task of estimating frequency arises. 

The rest of the chapter outline is as follows: first we introduce some basic details of the 
streaming model. Then we introduce the count-min sketch data structure, show how it 
works, and we follow-up with a number of practical scenarios involving sensors and natural 
language processing applications. Lastly, we show how count-min sketch can be used to 
solve problems involving range queries and approximate heavy hitters. 

4.1 Streaming data 
Streaming data is definitely big, but not all big data is streaming. More and more applications 
nowadays produce and process data at rapid rates, and in an unpredictable and volatile 
fashion. We may visualize streams as never-ending sequences of data and huge datasets 
made up of many tiny pieces; most of the time, we are not particularly interested in the tiny 
pieces per se: “What was the exact temperature recorded by the sensor ID 1092 at 11:34pm 
on May 15, 2003?” sounds like a question someone might only ask in court. And for such 
purposes, data is stored in the archival storage. But what we care about on a daily basis is 
the imperfect big picture that is reported real-time for the users. This setup stands in 
contrast from how we are used to thinking of traditional databases that take great pride in 

41 G. Cormode and S. Muthukrishnan, "An Improved Data Stream Summary: The Count-Min Sketch and Its Applications," Journal of Algorithms, vol. 55, 
no. 1, p. 58–75, 2005. 
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providing perfect accuracy but on their own clock. The figure below42 is a rough depiction of 
the streaming model:  

Figure 4.1: Streaming model. The streaming model differs from the traditional database management system 
in that data passes through the processor and a small amount of working storage, and it is either never stored, 
or it is stored into the archival storage that is usually too large and slow to be indexed and searched. Items can 
be found there but we should not count on doing it often and quickly. All the real-time analysis is done on-the-
fly. There are standard (or standing) queries, ones that need to be computed all the time, and ad-hoc queries, 
that show up at unexpected times and their content is externally controlled.  

Generally speaking, once a piece of data has passed through our processor and working 
memory, we should not expect to see it ever again. This effectively makes most algorithms 
in this model one-pass, and most data structures sublinear because the working storage is 
insufficient to store all data.  

42 Partly adopted from A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University Press, 2011. 

66

https://livebook.manning.com/#!/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

The rise of streaming applications is what has led to the development of the large number 
of sketches, sampling methods and one-pass algorithms that can make sense of the 
galloping data. What makes streaming context specific is that we are limited both by time 
and space, and in the next sections, we will see how count-min sketch can help solve many 
of the problems we care about when analyzing massive datasets in such a challenging 
context. 

4.2 Count-min sketch: how it works 
Count-min sketch (CMS) supports two main operations: update, the equivalent of insert, and 
estimate, the equivalent of lookup. For the input pair (at,ct) at timeslot t, update increases 
the frequency of an item at  by the quantity ct (if in a particular application ct =1, that is, the 
counts do not make particular sense, we can override update to just use  at as an argument). 
Estimate operation returns the frequency estimate of at. The returned estimate can be an 
overestimate of the actual frequency, but never an underestimate (and that is not an 
accidental similarity with the Bloom filter feature of false positives but no false negatives.) 

Count-min sketch is represented a matrix of integer counters with d rows and w columns 
(CMS[1..d][1..w]), and d independent hash functions h1, h2,…, hd, each with range [1..w],
where the jth hash function is dedicated to the jth row of the CMS matrix, 1 ≤ j ≤ d. In the 
count-min sketch, all counters are originally initialized to 0. 

4.2.1 Update 

Update operation adds another instance (or a couple of instances) of an item to the dataset. 
Using d hash functions, update computes d hashes on at, and for each hash value 
hj (at), 1  ≤  j  ≤ d, that position in the jth row is incremented by ct (pseudocode shown below:) 

CMS_UPDATE(at,ct): 
for j ← 1 to d  

  CMS[j][hj(at)] = CMS[j][hj(at)] + ct 

An example of how update works is shown in the figure below: 
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Figure 4.2: Three UPDATE operations of x, y and z performed on an initially empty CMS of dimensions 3x8. 
Accordingly, we have 3 hash functions that are computed on each element, and the resulting hash is the index 
into the cell number of the appropriate row. For example, h1(x) = 3, so the location CMS[1][3] is being 
incremented by 2 during the update of x.  

4.2.2 Estimate 

Estimate operation reports the approximate frequency of the queried item. Just like update, 
estimate also computes d hashes, and it returns the minimum among d counters in d 
different rows, where the counter location in the jth row is specified by hash 

 hj (at), 1 ≤ j ≤ d (pseudocode below): 

CMS_ESTIMATE(at): 
min = INT_MAX 
for j ← 1 to d  

  if(CMS[j][hj(at)] < min) 
  min = CMS[j][hj(at)] 

return min 
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An example of how estimate works is shown in Figure 4.3 below. As we can see, count-min 
sketch can overestimate the actual frequency of an item when, during updates for different 
items, hashes collide, but the overestimate only happens if there was a collision in each row. 

Figure 4.3: Example of estimate operations on the count-min sketch from Figure 4.2. In the case of element y, 
whose true frequency is 1, count-min sketch reports the correct answer of 1 (the minimum of 1, 3 and 1). 
However, in the case of the element x, whose true frequency is 2, count-min sketch reports 3 (the minimum of 
5, 3 and 5). Refer to the Figure 3.2 to convince yourself that during earlier update operations, y and z together 
incremented all the counters that are used by x, thus resulting in an overestimate for x. 

4.2.3 Space and error in count-min sketch 

Count-min sketch exhibits two types of errors: ε (epsilon) that regulates the band of 
overestimate error, and δ (delta), the failure probability.  For a stream S that has come up to 
the timeslot t, S=(a1, c1), (a2, c2), … , (at, ct), if we define N as the total sum of frequencies 
observed in the stream N = ∑i

t
= 1 ct, then the overestimate error ε can be expressed as the 

percentage of N by which we can overshoot the actual frequency of any item. In other words, 
for an element x and its true frequency fx, count-min sketch estimates the frequency as fest:  

fx  ≤  fest  ≤  fx + εN 
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with probability at least 1 – δ. Usually δ is set to be small (e.g., 0.01) so that we can count on 
the overestimate error to stay in the promised band with high probability. In other words, 
there is a small probability δ that the overestimate in CMS can be unbounded.  

Example 1. 

Given N=108, ε = 10–6 and δ=0.1, determine the error properties of the count-min sketch. 

Solution for Example 1. 

CMS estimates of items’ frequencies will overshoot no more than 100 above the actual 
frequency in at least 90% of the cases. 

Just like with Bloom filter, we can tune CMS to be more accurate but that will cost us space. 
Whatever are the (ε,δ) values that we desire for our application, in order to achieve the 
bounds stated above, we need to configure the dimensions of count-min sketch to w=e/ε and 
d = log(1/δ). This way we can achieve the error bounds from above, and the space required by 
count-min sketch, expressed in the number of counters will then be (Formula 1): 

Example 2.  

Calculate the space requirements for the count-min sketch from Example 1. 

Solution for Example 2. 

Applying Formula 1 to our count-min sketch from the example above, we find that it will 
need ~2.7 million counters, and with 4-byte counters, we need only about 11MB. We could 
also get away with 3-byte counters and an 8MB count-min sketch, as the maximum 
number of bits required to store the value N  is 24. 

Note that CMS tends to be really small even when used on large datasets. In many 
resources, you will find that CMS miraculously does not depend on the size of the dataset 
that it is used for and in some sense that is true: after all, our expression for the required 
space does not have N in it. This is the case if you think of the error band as a fixed 
percentage of the dataset size: for example if you want to keep your allowed band of error 
fixed at 2% of N whatever your N is, then increasing N does not require a larger CMS to 
guarantee the same bounds. This way of looking at the error makes sense in many 
applications, where with larger data, we are willing to tolerate larger error.  

Something to think about - 1. 

As an experiment, consider what happens with the size (and the shape) of count-min 
sketch if we desire a fixed constant error (εN). For example, say we want to keep the 
overestimate at 100 or less like in the example above, but for a twice as big N. 
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Something to think about - 2. 

Can you design two count-min sketches that consume the same amount of space but have 
very different performance characteristics (with respect to their errors). Can you think of 
particular types of applications each of the two designs would be good for? 

By now, you can conclude that the width in the count-min sketch seems to be related to the band of the error ε, and 

the depth is related to the failure probability δ, but what is the intuition behind that? Without doing the actual proof, it
is hard to see exactly what happens, but the main idea is that stretching the CMS width will reduce how much 
different elements’ hashes collide within any one row on average, but collisions will still be likely to happen a lot. The 
depth allows us to reduce that probability because for the overestimate to happen, we require each row to have an 
overestimate in a corresponding cell. So for instance, if the chance of going outside the allowed band of error in a 

given cell in any one row is at most 1⁄2, then with d rows, the chance of overestimate for an element will be at most 

(1⁄2)d, substantially smaller. 

4.3 Use cases 
Now we move onto practical applications of count-min sketch in two different domains: a 
sensor smart-bed application, and a natural-language-processing (NLP) application. 

4.3.1 Top-k restless sleepers 

Science of sleep is a big thing these days (one might say that people are losing sleep over 
the quality of their sleep.) The invention of smart beds that come equipped with dozens of 
sensors capable of recording different parameters such as movement, pressure, temperature 
and so on offers new opportunities to analyze people’s sleep patterns and cater to individual 
sleeper’s needs. Based on the data, the bed components can be pulled up (e.g., to help with 
snoring), warmed up, cooled down, etc. Consider a smart-bed company that collects data at 
one central database and now that there are millions of users and sensors send out data 
every second, the amount of data is quickly becoming too large to process and analyze in a 
straightforward manner. Over the course of one day only, our hypothetical company collects 
a total of  108 (customers) ∗ 3,600 (seconds per hour) ∗ 24 (hours per day) ∗ 100 (sensors) = 8.6 ∗ 1014 
tuples of data, resulting in terabytes of storage on a daily basis (the specific example is 
hypothetical, but the size of the collected data and the related problem we study is not.) 

One of the new features in the focus of our company’s SleepQuality app is analyzing 
restlessness in sleepers, where we can envision each sleeper being mapped somewhere on 
the quality-of-sleep scale. To notify the customers with the most erratic sleeping patterns, 
the app also maintains a top-list of most restless sleepers.  

We can create a hash table that holds a separate entry for each user along with an 
integer that keeps track of their quality of sleep data, but that will result in an enormous 
hash table that needs many gigabytes. Also, if we wished to perform a more in-depth 
analysis by separately storing the movement information coming from different sensors of 
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the same bed, that would result in 10 billion distinct (user-id, sensor) pairs. Instead of
building an enormous hash table, we will build a count-min sketch. 

Figure 4.4: All sleep data is sent to a central archive, but before that, input into count-min sketch residing in 
RAM for later analysis. The (user-id, amount) pair is used as the input for the data structure, where the 
frequency of user-id increases by amount. 

As shown in the Figure 4.4, data arrives at a frequent rate from each sleeper, and at every 
timestep, the (user-id, amount) pair updates the count-min sketch. The frequency for the
given user is updated by a given amount. The count-min sketch will at all times then be 
available to produce approximate estimates for any user who requests it. But in order to 
maintain the list of top-k restless sleepers, we will have to do a little bit more than just 
updating the count-min sketch. Remember that the count-min sketch does not maintain any 
information on different user-ids, it is just a matrix of counters. So we can query it, but we 
need to know the user-id, or we have to store the important ones somewhere.  
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Something to think about – 3. 

Before moving onto the solution, think what could be the right data structure to help with 
storing the top-k restless sleepers in a space-efficient manner. 

One solution is to use a min-heap, as shown in the Figure 4.5 below: 

Figure 4.5: Every time the count-min sketch is updated with a (user-id, amount) pair, like with (100, 10) in this 
example, in order to maintain a correct list of top-k restless sleepers, we do an estimate on frequency of the 
recently updated user-id. In our case, the estimate for user-id 100 will be 70. Then, if the user-id is not present 
in the min-heap and it has a higher value than the min (as it does in our example), we will extract the min and 
insert the new (user-id, amount) pair into the min-heap. If the pair was already present, its amount needs to be 
updated by deleting and re-inserting the pair with the new updated (higher) amount. 
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Sensor sleep data is an example of a dataset where the big picture is more important than 
individual data points. In addition to producing the list of the most restless sleepers, we 
could do a more refined analysis of the most active sensors for a particular sleeper by having 
a mini min-heap per sleeper of interest, where the unique identifier would be a combination 
of user–id and the sensor-id.  

Next we will see how count-min sketch is used in NLP. 

4.3.2 Scaling distributional similarity of words 

The distributional similarity problem asks that, given a large text corpus, we find pairs of 
words that might be similar in meaning based on the contexts in which they appear, or as a 
well-known linguist John R. Firth put it: “You will know a word by a company it keeps”. So for 
example, the words ‘kayak’ and ‘canoe’ will appear surrounded by similar words like ‘water’, 
‘sport’, ‘weather’, ‘equipment’, etc. As a context for a given word, usually the window of size 
k (e.g., k = 3) is chosen, including k words before and  k words after the given word, or less if 
we are on the boundary of a sentence. 

One way to measure distributional similarity for a given word-context pair is pointwise 
mutual information (PMI)43. The formula for PMI for words A and B is as follows:  

Where Prob(A) denotes the probability of occurrence of A, that is, the number of occurrences 
of A in corpus divided by the total number of words in the corpus. The intuition behind this 
formula is that it measures how likely A and B are to occur close to each other in our corpus 
(enumerator) in comparison to how often they would co-occur if they were independent 
(denominator). The higher the PMI, the more similar the words are. Typically, to compute 
the PMIs for all word-context pairs or the particular word-context pairs of interest, we would 
preprocess the corpus to produce the following type of matrix: 

43 D. Jurafsky and J. H. Martin, Speech and language processing (2nd edition), Upper Saddle River, N.J.: Pearson Prentice Hall, 2009. 
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Figure 4.6: To preprocess the text corpus for computing PMI, one way is to create a matrix M where the entry 
M[A][B] contains the number of times the word A appears in the context B. So for example, ‘kayak’ appears 3 
times in the context of ‘water’ and 0 times in the context of ‘furniture’. We also produce the additional count 
for each word (the last column of the matrix), and count for each context (the last row in the matrix), as well as 
the total number of words (lower right corner). 

For better association scores between the words, the more text we use, the better, but with 
the larger corpus, even if the number of distinct words is fairly reasonable in size, the 
number of word-context pairs quickly gets out of hand.  

For example, authors of a paper that analyzes sketch techniques in NLP, and who analyze 
distributional similarity44 use the Gigaword dataset obtained from English text news sources 
with 9.8GB of text, and about 56 million sentences. This results in having 3.35 billion word-

44 A. Goyal, H. Daume III and G. Cormode, "Sketch Algorithms for Estimating Point Queries in NLP," in Proceedings of the 2012 Joint Conference on 
Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, 2012. 
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context pair tokens, and 215 million unique word-context pairs, and just storing those pairs 
with their counts takes 4.6GB.  

Using count-min sketch in this particular example of Gigaword, the space savings 
achieved were over a factor of 100. The solution they employ is to transform the matrix such 
that the word-context pair frequencies are stored in the count-min sketch, and because the 
number of distinct words is not too large, we can afford to store words and their counts in 
their own hash table (last column of the matrix), and the contexts and their counts in their 
own hash table (the last row of the matrix). The transformation can be seen in the Figure 4.7 
below: 

Figure 4.7: The transformation of the matrix from Figure 4.6 to save space: the word-context pairs stored in 
the main body of the matrix are replaced by a count-min sketch that stores frequencies of word-context pairs. 
Because the number of distinct words (and contexts) is not that large, we can store each in their own hash 
table with the appropriate counts. In other words, when we encounter a new pair (word, context), we increment 
the count of the pair in the CMS, and also increment respective counts in the word hash table and the context 
hash table. To calculate the PMI for a word-context pair, we do the estimate query on the count-min sketch, 
and find the appropriate counts of the word and the context in the respective hash tables. 
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The authors of this research report that a 40MB sketch gives results comparable to other 
methods that compute distributional similarity using much more space. Producing this count-
min sketch and the two hash table takes only one pass over preprocessed and cleaned data, 
which is a big plus for the streaming datasets. We could produce top-k PMIs with an 
additional sweep of the data.  

Keep in mind that we can not in the same straightforward manner apply the heap solution from the sensor example, 
because with the changing word and context counts as we go through the text, the PMIs change all the time and not 
only for the words appearing in the (word, context) pair that was just updated. This means that we would need to do a 
lot of work on the heap after every update operation if we wanted to avoid doing another sweep of data. 

4.4 Range queries with count-min sketch 
In this section, we will learn how to answer frequency estimates for ranges as oppose to 
single points. Range reporting is frequent in databases, as people often think in terms of 
categories, groups and classifications, which naturally translates into questions about ranges, 
such as: give me all employees that have worked for the company between a and b years, or 
who have salaries between x and y. Time series are another example of ranges, for example: 
How many books were sold on Amazon.com between December 20th and January 10th?  

Balanced binary search trees are an example of a good data structure for navigating 
ranges, as the items are ordered in the lexicographical order so the cost of the range query, 
after the initial point search, is proportional to the cost of reporting the points in the range --
- the minimum possible; this is in contrast to hash tables that scatter data all over the place
and querying for a range requires a full scan of the table, even if zero items are reported. As
you might imagine, that does not paint a promising picture for exploring ranges using our
hash-based sketches.

By now, you can conclude that the width in the count-min sketch seems to be related to 
the band of the error ε, and the depth is related to the failure probability δ, but what is the 
intuition behind that? Without doing the actual proof, it is hard to see exactly what happens, 
but the main idea is that stretching the CMS width will reduce how much different elements’ 
hashes collide within any one row on average, but collisions will still be likely to happen a lot. 
The depth allows us to reduce that probability because for the overestimate to happen, we 
require each row to have an overestimate in a corresponding cell. So for instance, if the 
chance of going outside the allowed band of error in a given cell in any one row is at most 
1⁄2, then with d rows, the chance of overestimate for an element will be at most (1⁄2)d, 
substantially smaller.  

One straightforward way to employ the count-min sketch to answer frequency estimates 
on ranges is to turn the range [x,y] into y – x + 1 point queries, assuming only integers are 
valid data points. Other than the query time growing linearly with the size of the range, the 
error would also increase linearly with the size of the range, so instead of promising the 
overestimate of at most εN with probability at least 1 – δ, we can only promise at most 
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(y – x + 1)εN, so if we expect an overestimate of at most 7 per point query, a range of size 
10,000 could produce an overestimate of up to 70,000, which for big ranges deems the data 
structure useless.  

It turns out that we can get tighter frequency estimates by using count-min sketch, that 
is, a couple of them together, in a creative way45,46. The main idea is that instead of dividing 
the range into unit ranges, we will divide the range into so-called dyadic ranges. Dyadic 
ranges are always the size of a power of two, and if we have a complete universe interval as 
I = [1, n], we define a collection of dyadic ranges at different levels: dyadic ranges of level i, 
0 ≤ I ≤ log2 n, are of length 2i, starting at the beginning at the whole interval and can be 
expressed as [j ∗ 2i + 1,(j + 1)2i], where 0 ≤ j ≤ n/2i −1. Specifically, let’s say we are analyzing 
sales over a 16-day period. Then we can divide the universe interval I = [1, 16] into dyadic 
ranges in the following way: 

Figure 4.8  Dyadic ranges for the interval [1, 16]. Dyadic ranges of level 0 are the bottom-most with ranges of 
size 1, then the ranges of level 1 are the level above with the ranges of size 2, and in general dyadic ranges at 
level i are of size 2i. Dyadic ranges across different levels are mutually aligned.

We will attach one count-min sketch to each level and the elements in the count-min sketch 
on the level i will be the dyadic ranges of that level (ranges can be hashed just like regular 
elements.) Given this scheme, Figures 4.9 and 4.10 respectively show how update of a new 
element as well as estimate for a range takes place. Every new element arriving will be 

45 G. Cormode and S. Muthukrishnan, "An Improved Data Stream Summary: The Count-Min Sketch and Its Applications," Journal of Algorithms, vol. 55, 
no. 1, p. 58–75, 2005. 

46 M. Charikar and N. Wein, "CS369G: Algorithmic Techniques for Big Data, Lecture 7: Heavy Hitters, Count-Min Sketch," Stanford (Lecture Notes), 2015-
2016. 
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updated in each count-min sketch, by updating its containing range in the respective CMS, as 
shown in Figure 4.9. Thus one update operation updates each count-min sketch (O(log2 n) of 
them): 

Figure 4.9: An update of one element is transformed into one update per level. For example, if we update 5, 
we effectively update [1,16] in CMS1, [1,8] in CMS2, [5,8] in CMS3, [5,6] in CMS4, and [5] in CMS5. 
Instead of updating an element, we are updating a corresponding range to which the element belongs, in the 
relevant CMS. 

Having performed update in such a manner, we are now ready to perform estimate on a 
particular range. Namely, we will divide the query range into its own dyadic ranges. For 
each dyadic interval, we perform estimate in the CMS that resides on its level. The 
final result is summing up all the estimates. Figure 4.10 shows how we can do the 
range estimate for [3,13]:  
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Figure 4.10: In this example, the query range [3, 13] is separated into  [3,4]∪[5,8]∪[9,12]∪[13], and we will 
obtain the frequency estimate for [3,13] by obtaining the frequency estimates for the mentioned ranges and 
summing them up. 

It helps to know that every range can be partitioned into at most 2logn dyadic ranges (at 
most 2 per level). Whichever range we are given (unless we are given a range that exactly 
corresponds to one of the dyadic ranges, in which case we can trivially partition), we can find 
a level on which the interval crosses only one boundary between dyadic ranges. In the 
example of [3,13], it will be the level 3, where the range crosses [1,8] and [9,16]. Now that we 
have found this boundary at 8, we need to handle the left side of the interval [3,8] and the 
right side of the interval [9,13] (in the case of a range that touched one of the boundaries, we 
have only one side). Because the boundaries of dyadic ranges are aligned, we can divide 
each side into at most log2 n smaller ranges on each side (in the same fashion in which we 
can represent each non-negative integer with log2 n binary digits). 

Both for the update and for the estimate, the runtime is logarithmic and also, the error 
grows only logarithmically, not linearly. (We can make the error the same as in the original 
single count-min sketch by making the individual CMSs in this scheme by a logarithmic factor 
wider, so that the logs cancel out.) 
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4.5 Approximate heavy hitters 
Approximate heavy hitters is the last (but not the least) application of count-min sketch that 
we will discuss in this chapter. In our practical scenario with restless sleepers, we were 
interested in answering a top-k query. The problem of heavy hitters is similar to top- k query 
in that heavy hitters are also the most frequent elements in the dataset, more precisely, 
HH(N,k)is an instance of a heavy hitter problem where in the stream with the total sum of 
frequencies N (or, if frequencies are all 1, then N corresponds to the number of elements 
encountered thus far in the stream), we are interested in outputting all items that occur at 
least N/k times. By pigeonhole principle, there can be at most k heavy hitters, so whenever 
we have a heavy hitter, we also have an element that is in top- k, but the other direction 
does not hold: a top- k element need not be a heavy hitter. 

4.5.1 Majority element 

The simplest version of heavy hitters when k = 2 is similar to a popular problem called the 
majority element. Given an array of N elements, and provided that the array contains an 
element that occurs at least ⌊N/2⌋  + 1   times (i.e., majority element), the task is to output 
the majority element. 

Something to think about – 4. 

Before moving on, try to design the best algorithm you can (both from the time and space 
perspective) for the majority problem. 

This problem can be solved using a one-pass-over-the-array algorithm47 that uses only two 
extra variables. The algorithm works by storing the current frontrunner in the battle for the 
majority element, along with the counter that records by how much the current frontrunner 
leads. As we sweep the array from left to right, at the current element of the array A[i], if
the counter is 0 (no one leads), A[i] is made the frontrunner and the counter is set to 1.
Otherwise, if the counter was not 0 (the existing frontrunner leads), then the counter is 
either incremented --- when A[i] equals the frontrunner, or it is decremented --- when A[i]
is different from the frontrunner. So for example, in the array: 

A = [4, 5, 5, 4, 6, 4, 4] 

the sequence of (frontrunner, counter) pairs goes like this:

(4,1),(4,0),(5,1),(5,0),(6,1),(6,0),(4,1) 

The last frontrunner 4 indeed is the majority element. Another, more visual way to think 
about this problem is to grab an arbitrary pair of adjacent numbers in the array that are not 
equal to each other and throw them out. Then contract the hole created by throwing out that 
pair, and continue this process until there are no more distinct pairs to throw out (there is 
only one distinct element in the array). The element we end up with --- potentially multiple 

47 T. Roughgarden and G. Valiant, "The Modern Algorithmic Toolbox Lecture #2: Approximate Heavy Hitters and Count-Min Sketch," Stanford (Lecture 
notes), 2020. 
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occurrences of it --- is guaranteed to be the majority. The example below shows how this 
algorithm works: 

Figure 4.11: We find a majority element in an array by having different neighboring elements throw each other 
out. In this example, after we throw out (1,2), (2,5), (3,2), and then (3,2) and (4,2), we are left with the majority 
element 2. 

The beauty of this algorithm is that it works no matter in which order we get rid of the pairs, 
and we can get rid of multiple pairs at the same time --- something that might be useful in a 
parallelized setting such as MapReduce, where we can split the large array into multiple sub-
arrays, have every sub-array individually perform this algorithm, and then finally merge the 
results and finish up at one node. 
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4.5.2 General heavy hitters 

It would be nice to extend the neat solution for the majority element to the general heavy 
hitters problem. The issue now is that there are many potential heavy hitters, and therefore 
many different counters to be maintained. In the extreme case where n =k/2, we are looking 
for the elements that occur twice or more.  

If you consider a long data stream where all the elements we discovered thus far have 
been distinct, then the next item we encounter might either be a repetition of an existing 
element, in which case we have a heavy hitter, or a new element. This setup is really 
stretching us out in terms of memory consumption because in order to know whether we 
have a repeat or a new element, we have to keep all the elements encountered thus far. This 
sneaky toy example can be generalized to other values of k, and its existence should 
convince you that we cannot always solve the general heavy hitter problem in one-pass and 
with sublinear space, and that we need to turn to solving this problem approximately. 

Solving approximate heavy hitters means that we will report all elements that occur at 
least N/k − εN times, that is, all the heavy hitters plus all the elements that are at most εN 
short from being heavy hitters. We can effectively identify approximate heavy hitters by 
constructing a count-min sketch with ε = 1/2k. Again, just like in the restless sleepers 
scenario, we can use a min-heap to keep the top scorers and as we scan the stream, insert 
into min-heap only the elements for whom the count-min sketch reports the frequency of N/k 
and above. For example, when N=109 and k=106, the min-heap will contain all the elements 
for whom the count-min sketch reports the frequency of 1,000 and above, while in reality 
those elements might have the frequency of 500 and above. 

Another way to obtain heavy hitters using count-min sketch is to use the construction of 
dyadic ranges from our range queries exploration (refer to Figure 4.10 for orientation) by 
doing queries on the top-level range first (size of the entire universe interval), and if the 
reported frequency is higher than N/k, we continue to the next level of dyadic ranges (size of 
the half of the universe interval), and so on. We proceed down the levels by only querying 
the dyadic ranges whose parent dyadic range, the one right above it, has reported the 
frequency of N/k or above. The last level brings us to unit intervals that correspond to 
individual elements that have the frequency of N/k and above.  

4.6 Summary 
• Frequency estimation problems arise very commonly in the analysis of big data,

especially in sets that have both many occurrences of very few items and a small
number of occurrences of many items. Even though in the standard RAM setting,
frequency estimation can be simply solved in linear-space, solving this problem
becomes very challenging in the context of streaming data where we both have only
one pass over the data and we need sublinear space.

• Streaming data is a specific type of big data because it often collects large amount of
data from multiple sources and at a rapid rate. Keeping every little piece of data is
less important than doing real-time analysis of the “big picture”, and one of such
problems is finding the most popular elements, i.e., frequency estimation.

• Count-Min sketch can efficiently solve the problems of frequency estimation, top-k
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query, range queries, heavy hitters, and others in a very small amount of space. If 
the allowed band of overestimate error is kept as a fixed percentage of the total 
quantity of data N, then the amount of space in count-min sketch is independent of 
the dataset size.  

• Range queries are usually not that well solved with hash-based sketches, but with
count-min sketch, it is possible to do a construction that does frequency estimates for
ranges with a fairly small error, using some more space (i.e., using a couple of count-
min sketch.)

• Count-min sketch is well suited to solve the approximate heavy hitters problem, that
in the streaming context, can only be solved approximately. The basic version of this
problem is majority element, that has a one-pass and constant-memory algorithm,
but the same can not be said for the general version of heavy hitters.
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5 
Cardinality Estimation 
and HyperLogLog 

This chapter covers: 

• Why cardinality estimation is important and the challenges that arise when measuring
cardinality on large data

• Practical use cases where space-efficient cardinality estimation algorithms are used
• Teaching the incremental development of ideas leading up to and including  HyperLogLog,

such as probabilistic counting and LogLog
• How HyperLogLog works, its space and error requirements and where it is used
• Demonstrating how different cardinality estimates behave on large data using a

simulation via an experiment
• Insights into practical implementations of HyperLogLog

Determining cardinality of a multiset (a set with duplicates) is a common problem cropping 
up in all areas of software development, and especially applications involving databases, 
network traffic, etc. However, since the expansion of internet services, where billions of 
clicks, searches and purchases are performed daily by a much smaller number of distinct 
users, there is a renewed interest in this fundamental problem. Specifically, there is a great 
interest in developing algorithms and data structures that can estimate cardinality of a 
multiset in one scan of data and in the amount of space substantially smaller than the 
number of distinct elements. 

Cardinality estimation is nowadays used to determine how many distinct visitors are 
interested in a particular product, how many different users are using particular features of a 
Web app, or to detect sudden changes in the number of distinct source-destination IP 
addresses passing through the router (potentially indicating a denial-of-service attack). 
Because of the way in which information on the Web is replicated over and over, measuring 
cardinality also helps ascertain how many distinct pieces of content we are dealing with, for 
example, the number of distinct news articles, or copies of a particular website content. 
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One the other hand, in many common computation problems, knowledge of the true 
cardinality can be exploited to predict the runtime of an algorithm and help us choose the 
right algorithm for our setting. Problems like merging sorted lists with duplicates, or sorting, 
can be much faster in a set with many duplicates, and its runtime can be expressed as a 
function of the number of distinct items. Query optimizers in database engines also use 
information on the number of distinct rows in a table or a column to determine the most 
efficient query plan when performing complex joins, etc. 

With large datasets of today, there is a burgeoning interest in designing algorithms that 
can accurately approximate set cardinality in the amount of space substantially smaller than 
the set itself. This chapter will examine one such algorithm called HyperLogLog, but first, 
let’s dive into one classical application of measuring cardinality to see why classical solutions 
to measuring cardinality do not measure up. 

5.1 Counting distinct items in databases 
Perhaps one of the most familiar examples of measuring cardinality comes from databases 
and how SQL uses the keyword DISTINCT. Applied to a single column in table, SELECT 
DISTINCT returns all the distinct items in that column, while SELECT COUNT DISTINCT returns
the number of distinct items in the given column.  

Queries with COUNT DISTINCT are very common, especially in e-commerce when we want
to obtain the usage statistics on the website. User visit data is often logged in the 
DAILY_VISITS table that tend to grow very large, with attributes such as: session_id,
timestamp, product_id, user_ip_address, visit_duration and others. By issuing the
following SELECT operation:

SELECT COUNT (DISTINCT user_ip_address) WHERE product_id = 9873947 
FROM DAILY_VISITS 

as a result, we will receive the number of distinct IP addresses (i.e., users) accessing the 
product with the ID 9873947 on a given day. On a busy website, a daily visit table can get 
few billion rows long, and this particular query might take a while.  

The delay is mostly due to the sorting operation that the classical COUNT DISTINCT in
most databases does (e.g., Azure SQL/SQL Server) unless the column was previously 
ordered --- after we sort the column, all duplicates have landed next to each other, and one 
sequential scan is sufficient to identify and count the distinct items. The sorting operation 
costs O(n log2 n) on a table with n rows and doesn’t scale well even on a few million, let alone 
few billion rows. To make matters worse, even simple queries do many COUNT DISTINCTs
and GROUP BYs on different columns and sorting one column does not help reduce the
complexity on sorting another one. We could instead use a hash table to make things faster, 
but a hash table still requires linear space in the number of distinct elements k. Because k 
can go up to n, we cannot afford to use hashing either. 

 An interesting (yet not so favorable) artifact of measuring cardinality is that, even when 
we only need to know how many distinct items the multiset has, without having to list the 
distinct items themselves, the complexity doesn’t drop if we want to solve the problem 
exactly. To convince yourself of that, consider the element-distinctness problem, in which 
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given an array of n elements, we are asked to determine whether all elements in it are 
distinct; this problem has a lower bound of Ω(n log2 n).48 

To address the scalability issues, the newer editions of database management systems 
and warehouses turn to cardinality estimates: SQL Server 2019 included a new 
APPROX_COUNT_DISTINCT operation49 that uses a very small amount of space and works fast.
Google BigQuery goes a step further and makes this approximate and probabilistic approach 
the default one in COUNT_DISTINCT, and reserves EXACT_COUNT_DISTINCT for the situations
when we absolutely need the exact answer50. Running underneath these estimators is the 
algorithm called HyperLogLog originally invented by Flajolet et al.51, that offers amazing 
space savings (think KBs) while processing trillion-sized datasets, and keeps the error fairly 
low --- on the order of O(1/√m) where n denotes the number of 5- or 6-bit-wide memory 
locations. One common choice for n is 214.  

By this point in the book, saving space in exchange for giving up some accuracy is not a 
new idea, however HyperLogLog gives a whole new meaning to space-efficiency, almost 
always staying in the range of few kilobytes while hitting the true cardinality with a small 
error (e.g., ±2%) on average.  

What follows in the next section is the incremental development of ideas that lead to 
HyperLogLog. We will present the original algorithm, some examples, simulations and 
mathematical intuition around it, as well as mention some of the ways in which HyperLogLog 
has been implemented and optimized by companies such as Redis, Google, Facebook and 
others.  

Is HyperLogLog a data structure or an algorithm (and does it matter)? Originally, 
HyperLogLog is referred to as an algorithm, and we will refer to it as an algorithm when we 
focus on the procedure that is performed on the input data. However, HyperLogLog also 
needs to store an array with values that are computed on the input data, and this structure 
is often stored for future use, as we will see in our aggregation example in Section 5.5. In 
that context, we might also talk about HyperLogLog as a data structure.  

5.2 HyperLogLog incremental design 
The essential idea of HyperLogLog (HLL) is to use probabilistic and statistical properties of 
uniform random bit strings to guess the cardinality of a multiset. To that end, elements are 
initially hashed into bit strings: the original implementation of HyperLogLog uses 32-bit 
hashes, and the more recent Google’s reincarnation called HyperLogLog++52 and the 
implementation by Redis53 use 64-bit hashes to accommodate arbitrarily large cardinalities. 
Hashes are not random, and it is impossible to obtain random data from non-random data, 

48  Skiena, S. S. (2008). The Algorithm Design Manual, Second Edition. Springer. 
49  https://docs.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver15  
50  https://cloud.google.com/bigquery/docs/reference/legacy-sql#countdistinct  
51  Flajolet, P., Fusy, E., Gandouet, O., & Meunier, F. (2007). HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. AOFA ’07: 

Proceedings of the 2007 International Conference on Analysis of Algorithms.  
52  Heule, S., Nunkesser, M., & Hall, A. (2013). HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm. 

Proceedings of the 16th International Conference on Extending Database Technology (pp. 683-692). Genoa, Italy: Association for Computing 
Machinery 

53  http://antirez.com/news/75  
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however, they mimick the randomness well enough for our purposes (i.e., they look 
random).  

Given a multiset Μ = {a1,a2,…,an} with n elements and k distinct elements (we do not 
know k), using a hash function h:U → {0,1}L, we produce a hashed set h(Μ)={h1,h2,…,hn} 
where hi = h(ai) with hash length L = |hi |. For a large enough L (e.g., L=64), each item will 
map to a distinct hash with high probability, so that the number of distinct hashes will also 
be k or very close. Hashing by itself does not help us estimate cardinality just yet, but now 
we switched from estimating the number of distinct input elements to estimating the number 
of distinct hashes. 

5.2.1 The first cut --- probabilistic counting 
The roughest estimate called probabilistic counting54 observes the bit patterns in the hash by 
computing ρi for each hash hi such that: 

ρi  = (The number of trailing zeros in hi) + 1 

That is, ρi will denote the position of the first 1 encountered from the right (if the hash does 
not contain any 1s, then ρi =L+1.) Without loss of generality, we will use right instead of left 
in this and other places in chapter. So for example, for h1 = 1100, h2 = 0111 and h3 = 0000, the 
respective values of ρi are ρ1 = 3, ρ2 = 1 and ρ3 = 5. The cardinality estimate E will depend on 
ρmax =max ( ρ1, ρ2,…, ρn), and it’s equal to: 

E = 2ρmax 

Here is the idea of probabilistic counting expressed in pseudocode: 

int pmax = 0 
for ai in M 
     hi = hash(ai) 
     pi = num_trailing_zeros(hi) + 1  
     if(pi > pmax) 

 pmax = pi 
return power(2,pmax) 

Example 1. 

The example below shows probabilistic counting in action (Figure 5.1) where n = 12, and k 
= 7, and the final estimate of 25=32, with the lemon item significantly affecting the 
estimate: 

54  Flajolet, P., & Martin, G. N. (1985). Probabilistic Counting Algorithms for Data Base Applications. Journal of Computer and System Sciences, 182-209. 
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Figure 5.1: A dataset of 12 items is hashed into 16-bit hashes. As we scan the dataset, we keep the 
running maximum of the ρi. In this example, the lemon item, whose hash is 1001 1111 0001 0000 
holds the maximum ρmax  = 5, and our cardinality estimate is E = 2ρmax = 32, but the true distinct 
count is k = 7. 

This is not as close to the truth as we would like, but we are just getting started. The rough 
intuition behind probabilistic counting is that if we managed to get an unusual hash (i.e., 
hash with many trailing zeros), then that is an indicator of the presence of many other 
hashes in the set.  

(Putting on our probability hats…) In a uniformly randomly generated set of k bit strings, 
on average about k/2 bit strings have 0 as their last digit, and the other k/2 have 1. Out of 
the former k/2, half on average (i.e., k/4) have 00 as their two last digits and the other k/4 
have 10, and so on. Ultimately, k/2i  items on average have their last i digits all 0s and 
another k/2i  have last i digits of the form 10i-1.   

Accordingly, the probability of generating a hash where ρi.= 1 (hash ends with 1) is 1/2, 
the probability of a hash where ρi.= 2 (hash ends with 10) is 1/4, and probability of a hash 
where ρi.= i (ends with 10i-1) is 1⁄2i . For the event that occurs with probability 1⁄2i, on average 
we need 2i repetitions for it to occur, so working backwards, having an element with ρi. = 
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ρmax on average implies the cardinality of 2ρmax , corresponding to probabilistic counting 
estimate. 

However, this is only the average behavior of random variables (i.e., expectation), and 
often, expectation is not what we expect (!). Deviations from this average will occur, and 
even a small deviation can significantly affect the estimate, considering that ρmax is in the 
exponent. In general, we observe the estimate error of HyperLogLog as the relative error --
- the fraction of the true cardinality by which the estimate is off in any direction (±(E−k)/k);
this fraction can get very large for small cardinalities.

5.2.2 Stochastic averaging or, when life gives you lemons… 

There is a couple of problems with our first-cut solution --- even without outliers affecting 
the estimate, all estimates are powers of 2, which, for many cardinalities makes it hopeless 
to hit close to the right answer. To address the outlier issue, we will resort to a method 
called stochastic averaging, which divides the hash set uniformly randomly into m = 2b 
subsets of roughly the same size, by throwing hashes in the buckets determined by the first 
b bits of each hash. Once each hash is assigned to a bucket, we will perform probabilistic 
counting on each bucket individually: instead of 1 estimator ρmax, we will have m estimators 
ρi,max, 1 ≤ i ≤ m, where ρi,max represents the ρmax of hashes from the ith bucket.  

You can think of partitioning into subsets as a poor-man’s hashing the whole set m times 
and obtainining m estimators that we can further combine. In reality, we cannot afford m 
hash functions and the computational cost of hashing each item m times. 

Now that we have m estimators, first we will compute their arithmetic average: 

and use it to obtain the average bucket estimate 

the equivalent of a geometric mean of probabilistic counting estimates for individual buckets. 
To obtain the overall estimate E, we need to account for all m buckets:  

Example1 (continued). 

Let’s see how this works on our example from above when b = 2, hence there are m = 4 
buckets, and Figure 5.2 illustrates the contents and ρi,max for each bucket. To compute the 
estimate, we first compute A = (2+2+5+1) / 4 = 2.5. From there, we have that Ebucket = 2A = 
22.5  ≈ 5.66, and E = m ∗ Ebucket  = 4 ∗ 5.66 = 22.64, more accurate than our earlier estimate 
of 32. 
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Figure 5.2: In this example, each hash is being mapped to a bucket based on its first two bits (e.g., the hash 
corresponding to the grape item is mapped to the bucket 00, while the hash corresponding to the pear item is 
mapped to the bucket 01.) When this process runs on large datasets, we would expect each bucket to receive 
the same number of distinct hashes. Each bucket computes its  ρi,max , which in this case results in bucket 
values 2, 2, 5 and 1. Now the hash of the lemon item is only affecting the value stored in the bucket 10.   

The pseudocode below shows how stochastic averaging works: 

int b = [4..16]//number of bits that determine the bucket, usually between 4 and 16 
int m = power(2,b) // number of buckets 
int S[m]: initialize all fields to 0 

for ai in M // iterating over multiset M 
     hi = hash(ai) 
     pi = num_trailing_zeros(hi) + 1 
     bucket = <hi,1, hi,2,…,hi,b> // integer described by first b bits of hi 
     if(pi > S[bucket]) 

 S[bucket] = pi 

double sum = 0 
for S[i] in S 
     sum = sum + S[i]  

double arit_avg = sum / m 
return m * power(2,avg) 

5.2.3 LogLog 
LogLog algorithm uses stochastic averaging in combination with a normalization constant m  
introduced to undo the systematic overestimate bias that occurs when we estimate 
cardinality with ρi,max random variable (the maximum of geometric variables of 
parameter1/2). Hence, we modify the original estimate to the following formula:  
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where the constant m is parameterized by m  and it equals: 

For most practical purposes (specifically, when m ≥ 64), one can use just m = 0.39701. More 
details on how the expression for m is derived can be found in the original LogLog paper.55 

Example 1 (continued). 

To obtain the LogLog estimate for our running example (from Figure 5.2), we compute 4 
to be approximately 0.292, so the LogLog estimate is 0.292 ∗ 22.6 ≈ 6.6, extremely close 
to the true cardinality! 

ERROR AND SPACE CONSIDERATIONS IN LOGLOG 

Using statistical analysis, it has been found that the relative error in LogLog can be closely 
approximated by 1.3/√m. To put this in perspective for many modern implementations, the 
value of m is often set to 214, and we can expect the relative error to be 1.3/√214 = 1.01%, 
regardless of the dataset size. If we take into account that 214 8-byte integer locations only 
take up about 130KBs, LogLog might seem like magic! 

Still, it is important to recognize that we do not need 8 bytes for bucket counters. In fact, 
we need 5 or 6 bits, depending on how large the cardinalities are that we’re estimating. If 
the upper cardinality limit of our dataset is kmax, then we need O(log2  kmax) to be the length of 
a hash to differentiate up to that cardinality, and then further we need O(log2 log2 kmax) bits to 
store the maximum value in the bucket (hence the log-log). A safe upper cardinality limit is 
kmax = 264, so one bucket needs 6 bits. The total storage requirement of LogLog is: 

O(m log2 log2 kmax) 

Plugging in for the common value of m = 214, it turns out we need approximately 12KBs to 
store LogLog. 

To be more exact, we would expect the maximum cardinality within one bucket to be 
closer to kmax /m (kmax is the worst case), which reduces the space requirement to: 

In our example where kmax /m = 250, this, however, does not help as the logarithms are 
rounded up to their integer values (logarithm of 50 in this case will be rounded up to 6.) 

55 Durand, M., & Flajolet, P. (2003). Loglog Counting of Large Cardinalities. European Symposium on Algorithms (ESA) 2003 (pp. 605-617). Springer 
Berlin Heidelberg. 
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SUPERLOGLOG 

One way to improve on the error of LogLog is to retain only a percentage θ of the lowest 
bucket values and base the estimate on those mθ = θm buckets. This is called truncation rule. 
A similar approach called restriction rule uses only bucket values not larger than 
⌈log2 (kmax /m) + 3⌉, which removes outliers but also allows us to use buckets that are 
⌈log2 ⌈log2 (kmax /m) + 3⌉⌉ bits wide. There is experimental evidence that the error drops to 
1.05/√m when employing truncation and the restriction rule. 

Even though an improvement over the basic probabilistic counting approach, the 
arithmetic mean in the exponent can still draw the final estimate arbitrarily far from the 
mean because the arithmetic mean is very sensitive to outliers. It is similar in the 3D 
context, where the centroid (the 3D version of arithmetic mean) can end up arbitrarily far 
from the center of the mass due to one point being far away from all the others. Our final 
improvement, HyperLogLog,  will use the harmonic mean of the bucket values to compute 
the estimate. 

5.2.4 HyperLogLog --- Stochastic averaging with harmonic mean 

The formula for harmonic mean applied to our buckets, that represents our new bucket 
average is as follows: 

For the final estimate, we will apply the appropriate bias-correcting factor αm and account for 
all m buckets: 

The bias-correcting factor is different than that of LogLog, and it can be approximated as 
follows: 

For very large values of m, αm = 1/2 ln 2 = 0.72134 is a good approximation, but it is also 
useful to build into our code some typical values of αm: 

α16 = 0.673 
α32 = 0.697 
α64 = 0.709 
αm = 0.7213/(1 + 1.079/m)  for  m  ≥ 128 
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Example 1 (continued). 

Applying the harmonic mean to our running example from Figure 5.2, we get: 

We also get α4 = 0.541 from the formula for αm, which further gives the following estimate: 

E = 0.541 ∗ 4 ∗ 3.88 = 8.39 

A little further in fact than our earlier LogLog estimate (6.6), but as datasets get bigger, as 
we will see in simulations in Section 5.4, HyperLogLog is a less biased estimator and with the 
smaller relative error. The statistical analysis shows that the relative error in the 
HyperLogLog algorithm is down to  1.04/√m. For more details on how the error in 
HyperLogLog is derived, you can consult the original HyperLogLog paper.56 

This is the end of our story about how we obtain the raw estimate in HyperLogLog, whose 
pseudocode is shown below. There are few minor tweaks after we obtained the raw estimate, 
specifically, when the cardinality we are computing is too small or too large, as shown in the 
final HyperLogLog pseudocode below:  

/* RAW ESTIMATE */ 
define alpha_16 = 0.673, alpha_32 = 0.697, alpha_64 = 0.709, 

  alpha_m = 0.7213/(1 + 1.079/m) for m>= 128 

int b = [4..16]//number of bits that determine the bucket, usually between 4 and 16 
int m = power(2,b) // number of buckets 
int S[m]: initialize all fields to 0 

for ai in M // iterating over multiset M 
     hi = hash(ai) /* 32-bit hash h1x2…x32 */ 
     pi = num_trailing_zeros(hi) + 1 
     bucket = <hi,1, hi,2,…,hi,b> // integer described by first b bits of hi 
     if(pi > S[bucket]) 

 S[bucket] = pi 

double sum = 0 
for S[i] in S 
     sum = sum + power(2,-S[i])  
double harmonic_avg = m /sum 
double E = alpha_m * m * harmonic_avg    /*raw estimate*/ 

/* CORRECTED ESTIMATE */ 
double Efinal 
if E <= 5m/2 then  // small range correction 
     Let V be the number of registers equal to 0 
     if V ≠ 0 then 

 Efinal = mlog(m/V) 
     else 

 Efinal = E 

56 Flajolet, P., Fusy, E., Gandouet, O., & Meunier, F. (2007). HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. AOFA ’07: 
Proceedings of the 2007 International Conference on Analysis of Algorithms. 
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if E <= power(2,32)/30 // intermediate range, no correction 
     set Efinal = E 
if E > power(2,32)/30 then // large range correction 
     Efinal = -power(2,32)log(1-E/power(2,32)) 
return Efinal // estimate with relative error of ±1.04/sqrt(m) 

In the case of very small cardinalities (in relation to the number of buckets), many buckets 
will remain empty, and in that case, we will resort to the probabilistic method called linear 
counting to establish the true cardinality. Namely, this approach follows the logic of balls-
and-bins setup where, if we throw n balls into m bins uniformly randomly, based on how 
many buckets remained empty, we can estimate the total number of balls. More details can 
be found in the paper on linear counting.57  

An interesting artifact of using linear counting is that right at the cross-over point, when 
the cardinality becomes large enough to switch to HyperLogLog estimate, there is a large 
spike in bias. The authors of HyperLogLog++ tried to alleviate this issue by experimentally 
ascertaining average amounts of bias for each cardinality around that point, and then 
returning the estimate by that bias amount. Redis implementation instead uses polynomial 
regression that approximates the curve of the bias and then returning the estimates by that 
predicted amount. 

Considering that our pseudocode reflects the original paper’s implementation of 
HyperLogLog, one issue that might arise when using 32-bit hashes, as they are in the 
original paper, is that for very large cardinalities, hashes start colliding, so we start losing 
accuracy even on the hashing level, and a correction to the estimate is also needed in that 
case. This is however not a problem if we use a 64-bit hash, as it is used in all modern 
implementations by Google, Redis, Facebook58 and others.  

ERROR AND SPACE CONSIDERATIONS IN HYPERLOGLOG 

Statistical proofs show that HyperLogLog has the relative error around 1.04/√m. Space 
consumption is exactly the same as in LogLog: 

O(m log2 log2 kmax) 

And just like in LogLog, we can use 6-bit fields for buckets. Are we being stingy by insisting 
on custom 6-bit fields as oppose to standard 8-bit fields for an algorithm that already has a 
very small memory footprint, and are we sacrificing the valuable CPU time by unpacking 
those bits? Answers to these questions are largely dependent on a particular application. For 
example, when embedding algorithms in hardware, or when aggregating a large number of 
HyperLogLogs into one, such differences add up and every space optimization trick is very 
much worth it. 

Before experimentally testing the features of data structures/algorithms introduced in this 
section, we will break up the technical discussion with an example of a context where HLL 
can be used. 

57 Whang, K.-Y., Vander-Zanden, B. T., & Taylor, H. M. (1990). A Linear-Time Probabilistic Counting Algorithm for Database Applications. ACM Trans. 
Database Syst., 208-229. 

58 https://engineering.fb.com/data-ifnfrastructure/hyperloglog/  
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5.3 Use case: catching worms with HLL 
Applications and intrusion detection systems that monitor network traffic keep track of 
changes in various network parameters that might reveal impending security breaches, in an 
organization’s network for example. One indicator of network health is related to the source-
destination IP address pairs available on packet headers passing through a router. 

Stable network traffic is marked by a (potentially large) number of packets exchanged 
between a much smaller number of pairs of computers. Depending on a type of security 
threat, having one source open a large number of connections to (sometimes random) 
destinations in a short time interval, or simply a significant rise in the number of distinct 
source-destinations IP address pairs might indicate a virus (see Figures 5.3 and 5.4).59 

Figure 5.3: A healthy network flow. A fairly large number of packets but a small number of different flows. 

59 Estan, C., Varghese, G., & Fisk, M. (2006). Bitmap Algorithms for Counting Active Flows on High-Speed Links. IEEE/ACM Transactions on Networking, 
925-937.
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Figure 5.4: A suspicious flow --- having many source-destination pairs, and one source opening a large number 
of different connections in a short amount of time.  

Thus, embedding a HyperLogLog in the software that is wired into a router can be very 
beneficial, especially due to the need for fast computations times and a small memory 
footprint. Another good place to strategically place a HyperLogLog and other data 
structures/algorithms that help analyze the busy network traffic with small space and time 
requirements is entry point in an organization’s network, as shown in Figure 5.5: 
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Figure 5.5: Placing a HyperLogLog at the entry point of the network within an organization can help us gather 
valuable statistics about the network traffic of that organization. 

5.4 But how does it actually work? A mini experiment 
In this section, we run simulations to gather some intuition on how various estimates --- 
probabilistic counting, LogLog and HyperLogLog compare with respect to bias and accuracy 
when run on a reasonably-sized dataset. We design an experiment to see how well the error 
bounds derived from probabilistic analysis correspond with numbers from the practical 
context. We are also interested in how much the normalization factors m (for LogLog) and 
αm (for HyperLogLog) improve the accuracy, as well as the effect of the number of buckets in 
HyperLogLog on the accuracy and the width of the distribution.   

Data for all plots in this section is derived from running the following experiment 1000 
times: we generate N = 216 = 65,536 32-bit strings where each bit is chosen uniformly 
randomly. We are starting from uniform random strings that act like hashes (and we will 
refer to them in future text as hashes) because we are interested in producing 1000 hashsets 
of the same (or almost the same) cardinality. Considering that there can be 232  hashes and 
our hashset size is 216, in most experiments, we will not encounter hash collisions, and the 

98

https://livebook.manning.com/#!/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

total number of distinct hashes/items is in most experiments will be equal to the dataset size 
N = k = 65,536; there is an occasional hash collision, but the distinct count k never goes below 
65,531, marking a negligible difference in cardinality between different experiments. We 
designed the experiment without duplicates because they do not influence the estimates of 
our methods, so this experiment could also serve to demonstrate how even much larger 
hashsets than 216 but with 216 distinct items behave.  

In our first plot, shown in Figure 5.6, we compare the following methods: 

• probabilistic counting
• stochastic averaging with arithmetic mean unnormalized (m = 64) and
• stochastic averaging with harmonic mean, unnormalized (m = 64).

The x axis shows the logarithm base 2 of cardinality; we indicate on the plot the position of 
true cardinality (at 16). The y axis shows the count of the number of experiments.  

The plot shows probabilistic counting to have the largest deviation of the three methods, 
having some instances of the experiment by as much as 12 units of log2 cardinality apart, 
and 384 instances of the experiment (over a third) with log2 cardinality of 18 and over. 
Probabilistic counting is followed by stochastic averaging with arithmetic mean unnormalized, 
spreading about 1.5 unit of log2 cardinality, and the stochastic averaging with harmonic 
mean unnormalized is the narrowest of the three.  

Figure 5.6: Plot shows the comparison of the probabilistic counting (Without buckets), stochastic averaging 
with arithmetic mean (unnormalized) (With buckets (Arithmetic mean)) and stochastic averaging with 
harmonic mean (unnormalized) (With buckets (Harmonic mean)). All raw estimates show consistent 
overestimate bias, however the least bias on average is shown by harmonic mean method, followed by the 
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arithmetic mean method and probabilistic counting. The largest deviation in the estimates (having different 
experiment vary in estimates by a factor of 212  is exhibited by probabilistic counting, that only has estimates 
that are powers of 2, followed by the arithmetic mean method, and then followed by the harmonic mean 
method. 

Closest to the true estimate on average is the harmonic mean method. The average log2 
cardinalities in this experiment are: 17.31 (probabilistic counting), 17.32 (stochastic averaging 
with arithmetic mean unnormalized), and 16.47 (stochastic averaging with harmonic mean 
unnormalized). 

After we normalize the arithmetic and harmonic mean estimates with respective 
constants 64 = 0.3907 and α64 = 0.709, average log2 cardinalities drop down to 15.97 (LogLog) 
and 15.93  (HyperLogLog) respectively, with an average bias from the true cardinality in both 
cases around 13%. It is pleasant that we obtain this result, considering that the estimated 
error in both cases is O(1/√m) = O(1/8), approximately 12.5%. 

5.4.1 The effect of the number of buckets ( ) 

Here we show the experiment with the same hashsets from above, but this time we measure 
the effect of using three different choices for number of buckets in HyperLogLog: m = 16, 
m = 64 and m = 256. As expected, the plot below shows that, the more buckets we have, the 
less variance we encounter in the obtained estimates:  

Figure 5.7: Effect of different values of m on the accuracy of log2 cardinality estimate in HyperLogLog. The 
larger the number of buckets, the smaller deviation from the true cardinality. In general, harmonic mean 
method once bias corrected, rarely over/underestimates by more than one unit of log2, in all three cases. 
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Because bias-corrected harmonic from HyperLogLog gets very close to the ground truth, here 
we also show the same graph, only plotting the bias from actual cardinality in each 
experiment (now x axis is the true cardinality not the logarithm):  

Figure 5.8: The effect of buckets on cardinality estimate in HyperLogLog. Larger m implies smaller bias and a 
more properly Gaussian-looking distribution. 

As observed in the original paper, the distribution of cardinalities appears Gaussian, with 
shorter tails when m is larger. The distribution being roughly Gaussian can help us draw the 
following practical conclusion:  

Given the standard error (or relative error) of HyperLogLog as σ = 1.04/√m, then respectively about 65%, 95% and

99% of values (a value here being the cardinality estimate for one dataset) will fall within σ, 2σ and 3σ fraction of 
true cardinality away from the true cardinality. 

To verify that in our simulations, we took the case of m = 256  buckets, hence σ = 1.04/√256 = 
0.065. Therefore, 6.5%, 13% and 19.5% are respectively one, two and three standard errors 
away from the truth. It turns out that in our experiment, respectively 71%, 94.8% and 
99.2% fall within the boundaries of the mentioned errors, indicating roughly Gaussian 
behavior (even a bit more tight). Thus, when we implement HyperLogLog, we can expect the 
estimates to behave in a fairly predictable manner and most often very close to the mean 
(true cardinality). 
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5.5 Use case: Aggregation using HyperLogLog 
Let’s revisit the example from introduction with tables of daily customer visits on a popular 
website. As we have seen, computing the distinct count on a column (e.g., finding a total 
number of users) in a large table is a challenge, but the real issue crops up when we need to 
aggregate those insights over a timespan of days, weeks, months, and so on. Individual daily 
are very costly to maintain for a long period of time, yet it is crucial for many businesses to 
be able to go back and pull out relevant statistics from an arbitrary moment in past. 
Unsplash, a photography website hosting a large number of images and receiving millions of 
visits per day, uses HyperLogLog to solve this exact problem.60 

One issue with calculating the distinct count on one or more columns in a table is that, 
even if we were magically given the distinct counts, that in no way helps compute the 
aggregated count, as shown in the Figure 5.9: 

Figure 5.9: In a daily visit table, each row indicates one visit by a user and each table maintains a separate 
distinct-count variable that tracks the number of different users. Considering that some users return to the 
website repeatedly, we can't simply sum up the individual counts to obtain the week’s distinct user count. 

However, if instead of the distinct count, one could maintain one HyperLogLog per daily 
table, then aggregate the results over multiple days by performing a union operation 
between two (or more) HyperLogLogs of the same size and the same hash function.  

The union operation of two HyperLogLogs HLL1[1..m] and HLL2[1..m] works by creating 
a new HyperLogLog HLL_UNION[1..m], and assigning max(HLL1[i], HLL2[i]) to 
HLL_UNION[i], for each i, 1≤ i ≤ m. For example, the union of two HyperLogLogs whose 

60 https://medium.com/unsplash/hyperloglog-in-google-bigquery-7145821ac81b  
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bucket values are (1, 4, 2, 5) and (2, 2, 5, 3) would produce another HyperLogLog with 
bucket values (2, 4, 5, 5).  

Figure 5.10: Maintaining one HyperLogLog per daily table helps us later aggregate the HyperLogLogs over 
multiple days to obtain an estimate for more tables. In fact, HyperLogLog can be easily encoded so that we 
can maintain a table of HyperLogLog schemas, later to be decoded. 

What happens to the error when we aggregate a large number of HyperLogLogs? The relative 
error, being dependent on the number of buckets  stays the same after aggregation, as the 

number of buckets remains unchanged. But as much as we might be tempted to think that in 
HyperLogLog the error does not depend on the size of the dataset, as it is often advertised, it 
is important to keep in mind (just like with count-min sketch) that the relative error is the 
percentage of true cardinality, which generally tends to increase with dataset size. So even 
though the error rate stays the same after union, the constant by which the error increases 
actually grows proportionally with the number of distinct elements.  

HyperLogLog has a simple encoding which makes it conducive to storing as a record in a 
table of HyperLogLogs, whose space requirements are dramatically smaller than maintaining 
the equivalent daily tables. This enables us to aggregate HLLs over arbitrary time intervals or 
at certain specific dates, as shown in Figure 5.11: 
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Figure 5.11: Once we have stored daily HLLs, we can perform union over the arbitrary choice of interest to 
obtain aggregate cardinality estimate for a given time period. 

Moreover, the estimates can be performed on many levels, where we can aggregate hourly 
HLLs into daily HLLs, then use daily HLLs to compute weekly HLLs, etc (shown in Figure 
5.12). In the world of traditional databases, doing a number of groupings on different levels 
usually means having to scan whole data once for each grouping we want to do. With 
HyperLogLog, we only need to scan all data only once to produce HyperLogLogs, and after 
that, we only read and combine HyperLogLogs. 
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Figure 5.12: Aggregation happens over multiple levels in this case: hour, day, week, etc. Commonly in 
databases, when we group by different timespans, this requires a one scan of entire data for each level of 
aggregation.  

5.6 Summary 
• Cardinality estimation arises in many areas of software development, primarily

databases, network traffic and e-commerce. Due to the volume of data, classical
database functions for exact cardinality computation are being replaced with
probabilistic methods that offer great space savings in exchange for a small error in
accuracy.

• HyperLogLog is the algorithm/data structure that uses hashing and probabilistic
properties of random bit strings to gauge the set cardinality. Its space consumption is
O(m log2 log2 kmax) and its relative error 1.04/√m.

• Many companies that run large systems have implemented HyperLogLog for their use,
and improved and modernized various aspects of it (e.g., implementations by Google,
Redis, Facebook and others.)

• The estimates provided by HyperLogLog have roughly Gaussian shape. In our
simulations on a hashset of 216, we ascertained that HyperLogLog obeys the rules of
Gaussian distribution, by letting approximately 70% of data fall within one, 95%
within two, and 99% within three standard errors.

• The true power of HyperLogLog is visible when doing aggregations of a huge number
of large individual tables that represent data over time. Instead of keeping the large
tables, we can instead store a table of HyperLogLogs, and choose to aggregate and
merge HyperLogLogs for the periods of interest (e.g., week, month, quarter, etc.)
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Streaming Data: Bringing 
Everything Together 

This chapter covers 

• Learning about the streaming data pipeline model and its distributed framework 
• Determining where streaming data applications and the data stream model meet
• Identifying where algorithms and data structures fit in data streams 
• Recognizing the current duality of the data processing paradigm
• Setting up basic computing constraints and concepts inherent to data streams

Previous chapters introduced a number of algorithms / data structures for sketching (an 
important characteristic of) huge amounts of data residing in a database or, as you saw in 
the application of HLL in network traffic surveillance, arriving and expiring at a lightning rate. 
Within the pages to follow, we will round up these at the corner where they usually meet 
anyway. 

The first part of the current chapter will serve the purpose of zooming out of the very 
granular algorithmic view on massive data algorithms and try to do some book-keeping and 
landscape inspection of the wider context where the algorithms covered so far, or in some 
sense their application areas “live”. Conveniently for us, who at this point need to start 
dealing with data streams, one of their natural habitats are streaming-data pipeline 
applications and their wider architectural context. This wider context is extensively discussed 
in the Manning manuscript Streaming Data by Andrew G. Psaltis1, hence we will use the 
model of the streaming data system / pipeline from that book to stage and depict how and 
where Bloom Filters, Count-Min Sketches and Hyper-Log-Logs can be found in that particular 
architectural landscape.  

1 Andrew G. Psaltis, Streaming Data. NY: Manning Publications Co., 2017. 
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Streaming data is definitely big, but not all big data is streaming. More and more 
applications nowadays produce and process data at rapid rates, and in an unpredictable and 
volatile fashion.  

 
Figure 6.1: Streaming model. The streaming model differs from the traditional database management system 
in that data passes through the processor and a small amount of working storage, and it is either never stored, 
or it is stored into the archival storage that is usually too large and slow to be indexed and searched. Items can 
be found there but we should not count on doing it often and quickly. All the real-time analysis is done on-the-
fly. There are standard (or standing) queries, ones that need to be computed all the time, and ad-hoc queries, 
that show up at unexpected times and their content is externally controlled. 

We may visualize streams as never-ending sequences of data and huge datasets made up 
of many tiny pieces; most of the time, we are not particularly interested in the tiny pieces 
per se: “What was the exact temperature recorded by the sensor ID 1092 at 11:34pm on 
May 15, 2003?” sounds like a question someone might only ask in court. And for such 
purposes, data is stored in the archival storage. But what we care about on a daily basis is 
the imperfect big picture that is reported real-time for the users. This setup stands in 
contrast from how we are used to thinking of traditional databases that take great pride in 
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providing perfect accuracy but on their own clock. The figure 5.12 is a rough depiction of the 
streaming model that algorithm researchers use.  

We are about to elucidate how this high-level view on streaming data (figure 6.1) fits into 
a fully implemented and functional streaming data cloud application. Namely, the streaming 
data model illustrated in figure 6.1 embodies the maximum complexity that should be 
permitted to be left of a realistic problem, when one wants to develop a functional algorithm 
to solve it. Such simplification facilitates algorithm designers (very smart people, most often 
theoretical computer scientists, applied mathematicians etc.) not to dissipate their time and 
focus, while trying to flesh out and communicate their ideas and eventually solve the 
problem. On the other hand, figure 6.1 is also the minimum complexity algorithm designers 
would be wise to allow, if they want their algorithm to be recognized as relevant and 
applicable in the practical setting. This sort of balance between abstraction and reality is 
somewhat analogous to Occam’s razor principle.  

Therefore, the streaming data model specified above fully serves its purpose, when one is 
to design a streaming-data processing algorithm, or the actual “heart” of a high-throughput 
data-intensive system.  

In the Streaming Data book, the author pedagogically plants this model in the analysis 
tier of the streaming-data pipeline model (see figure 6.2), because there, in the heart of this 
system, is where its designers imagined its use. This organic setting makes it easier for 
authors to teach it and for readers to internalize its main algorithmic ideas. For purposes of 
understanding an algorithm, such “zooming-in” is helpful, but it blurs our vision when we 
want to develop an intuition about when to use i.e. bloom filter as our solution. In this case, 
it helps to take a step back and observe the algorithm in a system, where it is used to solve 
several apparently different problems. This is the only way a novice in the area can recognize 
commonalities in different areas of application, with these commonalities being the key to 
successfully developing practice-relevant skills on the topic. We already saw illustrative use-
cases in previous chapters for each algorithm / data structure, but with a streaming data 
pipeline (figure 6.1), we have a chance to see them in close juxtaposition used for different 
purposes.  

 
2 Partly adopted from A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University Press, 2011. 
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Figure 6.2: The general model of a streaming data pipeline is shown. Data producers are initiating connections 
by interacting with retailer’s web site / mobile application / online shop / offline self-check-out service or their 
data is being pulled periodically.  

We will use figure 6.2 to describe the common evolution of data through streaming data 
pipeline. Data is consolidated in a centralized data center that integrates data coming from 
different geographical areas. Here some transformation, data augmentation and pre-
processing might happen. Data is then sent to message queuing servers (in-house or 
commodity hardware gathered around a cloud service) that check and, if possible, re-
establish structural, temporal and perhaps causal consistency of the data. Through message 
queuing paradigm this layer establishes and maintains the balance between ingestion rate of 
data from the collectors and consumption rate from the side of the analysis tier. This may 
happen because analysis tier is more computation intensive, than producers passing data to 
collection tier, which can easily lead to data congestion, load shedding (deliberate dropping 
of unprocessed tuples) hence loss of data. Finally, data reaches the analysis tier where 
different synopses of the data (sub)-streams are calculated and kept, streams are sampled, 
continuous and ad-hoc queries are answered. Subsequently, after collapsing the query 
answers output streams from the analysis tier are forwarded to supply different data- 
consumers on the “edge” of the streaming data system, like data dashboards, real-time add 
bidding application or some automated industrial production control application.           
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Section 6.1 describes a meta-example of sorts, that should contribute to your ability to 
recognize which problems, in an inherently massive-data context such as (distributed) 
streaming-data pipeline, are well suited to solve by applying our previous acquaintances 
(Bloom Filter, Count-Min Sketch …) and our future ones that we will get to know in chapters 
to follow. We hope that this will help you develop a skill of honing in on parts of the system 
that represent solutions for a narrow, localized problem and a skill of zooming out to a birds-
view on the data intensive distributed applications from their “source” to their “sink”. For 
those of you still inexperienced in streaming data applications, this will be a chance to have a 
safe first look from the “belly of the beast”.   

In section 6.2 we will report on future trends and predictions, when it comes to the 
duality of paradigms: traditional, database batch processing vs. continuous data stream 
processing.    

Section 6.3 introduces concepts native to data streams that drive algorithm design and 
define inherent constraints under which such algorithms are developed, in order to recognize 
those constraints in our own implementation or when making a decision about which one to 
use. To achieve this goal, our sincere recommendation is to read the book by Psaltis3, which 
in combination with the one you are holding in front of you makes up a well-rounded and 
powerful streaming data toolbox.  

6.1 Streaming Data System – a meta-example 
Figure 6.2 shows the model of the streaming-data pipeline (adapted from Psaltis). Keep in 
mind that the depicted tiers are not so clearly discernable from one another in practice, as 
they are in figure 6.2. As we will see, these tiers often overlap, in that some parts of the 
system integrate tasks that cannot be clearly attributed to a single tier only.  

Through a realistic example we will zoom in on the tiers shown there and identify where 
an application of an algorithm or a strategy (say hashing) for handling massive data  is 
present in this wider, architectural streaming-data context. The first and most plausible place 
to look for them is the “Analysis tier” in figure 6.2. This is where all our previously introduced 
algorithms will find their immediate purpose and here is where the majority of all our use 
cases so far are anchored (restless sleeper, top-k trending queries on Google etc.). Figure 
6.1 describes the components and make-up of the “Analysis tier” with Bloom filter, Count-
Min Sketch and others offering themselves more naturally for showcasing in this tier.  

But, if one looks a little closer at what happens in collection tier or message queing tier, 
we are going to recognize problems where algorithms and data sctructures for massive data 
crop up quite organically as possible solutions. This should not come as a surprise, since 
streaming data pipelines have vast numbers of data tuples fly by along their “whole length”. 
The only difference, as you will see, is, which components of the data tuples that are being 
sent / emmited, queued, transported, received and analyzed are relevant for each of these 
operations.  

We know that the most general model of sending data along some network entails at 
least two components, metadata and payload. We will see that, depending on where we are 
in the streaming data pipeline, the metadata and payload can change their conotation. This 

 
3 Andrew G. Psaltis, Streaming Data. NY: Manning Publications Co., 2017 
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means that along the data-pipeline, payload (defined as such w.r.t. bussiness problem that is 
to solve) sometimes becomes overhead of the data tuple, while metadata becomes relevant 
for the analysis. Now if this “switch” got you a little dizzy, it is high time to exemplify what 
we mean.  

6.1.1 Bloom-join 
We will use an example of a large retailer that sells its products online and in stores. 
Walmart or Wholefoods would fit the profile. The company might be interested to have a 
(close-to-) realtime analysis of the correlation between click pattern on their URLs and their 
sales transaction data, to potentially optimize their strategy for bidding in real-time ad 
campaigns4. These days it is still not uncommon to have these two types of data in two 
different database systems to make a so called hybrid warehouse. The sales data is more 
valuable for the company, hence it often resides in a parallel database on high-end servers 
called enterprise data warehouse (EDW), while for the click-stream data a comodity server 
network like Hadoop Distributed File System (HDFS), often might suffice.  

For now we will assume that the click stream data tuples arrive and are stored in HDFS, 
and we want to join the click stream data and the data on sales made online. We will do this 
by using the IP address column as the join key (here, for the sake of clarity, we are 
abstracting away the time-proximity that the join has to take into account, so that only clicks 
close-in-time to a on online purchase, are matched with that purchase, see figure 6.3). We 
can assume that both relations are large, but that HDFS-side one is larger, which is a 
plausible assumption. Without getting into all intricacies that such distributed computation 
between these storage systems carries with itself, we concentrate on minimizing the size of 
the tables that we need to broadcast between these two systems in order to implement such 
join operation. This saves bandwidth and time, particularly when the local predicates and / or 
projections applied to the tables are not highly selective (we end up with tables that are not 
much smaller than all the data that the storage systems hold). The common strategy in such 
case is for each side to first make a bloom filter (BF) of the join key. Let us assume that the 
final join happens on the HDFS side, then a global BFEDW on the EDW side calculated for the 
IP address column is sent to each HDFS query processor (HQP). Here it is used as a type of a 
predicate to identify the resulting smaller table that will actually participate in the final join. 
In case data needs to be shuffled among HQP processors, only data with a join key in BFEDW 
needs to be moved (up to the false positive rate of the BFEDW). Then the HDFS side makes its 
global BFHDFS and sends it to the EDW side, which uses it to further reduce the number of 
rows that need to be sent. After all this is done, EDW side sends the resulting table after 
applying the predicates, projections and BFHDFS on its original table. Through this two-way 
use of bloom filters, only those records that participate in the join will be sent over the 
network and only the neccesary shuffles of data between HQPs on the Hadoop side, need to 
be executed.  

 
4 (https://digitalmarketinginstitute.com/blog/the-beginners-guide-to-programmatic-advertising), last accessed on 10/20/2020 
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Exercise 1  

Assume that a single IP-address is saved using 4 bytes. The join between EDW and HDFS 
systems happens at a regular rate that keeps the number of communicated IP-addresses 
from which purchases have been made constant (this means, that for business purposes 
we can assume both purchases and clicks are uniformly distributed over time). Hence, the 
join described, happens at regular intervals. Assume that the next join happens after 1 mil. 
distinct purchases were made. What is the size of the communicated data that we save by 
employing a bloom filter here with a false positive rate of 0.1 %, 1 % and 5 % respectively? 

Now let’s look at where, in the streaming data pipeline, all this just happened. Such 
Bloom-join can be anchored somewhere in the collection tier of our schema from figure 6.2. 
It is a type of a data augmentation / preprocessing step to generate data apt for answering 
the question of interest from the bussiness domain of the company. The resulting table 
created in the HDFS-side join with tuples being combinations of temporally proximate clicks 
and purchases from the same IP address (figure 6.3), can then serve as a type of a producer 
for a data stream processing framework (i.e. Apache Kafka). The data tuples (rows in  the 
resulting table, figure 6.2) are then passed on to be  queued, analyzed and used for perhaps 
(close-to-) realtime individualized ad campains. 
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Figure 6.3: Figure shows the pre-join communication between Enterprise Data Warehouse (EDW) 
implemented with fast parallel database (on the left) and a Hadoop Distributed File System (HDFS) (on the 
right). Before the data for financial transactions is sent from EDW side, exchange of Bloom Filters that both 
storage systems make for the mutual join key (IP address) is made. Bloom filters are used by each side as a 
criterion to identify tuples that will participate in the final-join. HDFS can then shuffle only necessary data 
among its nodes and move the minimum of data to the node that will execute the join to come. EDW will 
identify which IP addresses didn’t appear in HDFS and send only those that will participate in the final join. 
This way, purchase data is augmented with the click-stream component from that IP address and can further 
be used as a data source in a hybrid streaming data pipeline. 

113

https://livebook.manning.com/book/algorithms-and-data-structures-for-massive-datasets/discussion


©Manning Publications Co.  To comment go to  liveBook 

6.1.2 De-duplication 
Due to the high ingestion frequency from data producers (see figure 6.2), and 
consequentially large flow of (perhaps preprocessed) data through the pipeline, each of the 
tiers shown in figure 6.2 is made up of a large number of nodes (machines) connected 
through a network. These computation nodes are implementing the task of their tier in 
parallel, as fast as possible. The message queueing tier is there to prevent congestion, loss 
of data (due to, say different rates at which data is produced and consumed), implement 
deduplication if necessary, etc. These safety mechanisms inherently entail some resolution 
steps between the nodes, that keep track of what data was passed through to the analysis 
tier and what should be next.  

Nodes in this tier are commonly called brokers and besides keeping message queues 
consistent, they do other preprocessing steps too. Imagine that a user, while interacting with 
a retailers website, loses wirelles reception, or enters an elevator and hence does not receive 
acknowledgment from the server side of her like, submitted comment, ad-click, submitted 
payment etc. The user or the mobile app will try to send the same request to the server 
again, leading to duplicates being received. Not to speak about the issue that a user might 
have if he/she is charged twice for a one-time service, but corporate systems also don’t like 
seeing duplicate payments either. Some systems, especially e-commerce ones, have a 
deduplication mechanisms to keep such redundancies out. The percentage of duplicates in 
realistic scenarios is not too large (maybe up to 1 %), nevertheless, in a system that logs 
billions of events these can lead to inefficiencies reflected as a significant loss of profit.  

Now, we had a de-duplication problem solved once already in the previous chapter. Can 
you remember the example with large file storage and back-up services? This reality where a 
small portion of messages (our data tuples from before describing click-patterns with 
message-id as a key) is duplicated, offers itself nicely to another bloom filter application. One 
solution allocates “intercept” nodes into the streaming application, built perhaps on Apache 
Kafka Streams (we won’t get into specific architectures here, as this would go beyond the 
scope of the book, but “Streaming Data” book does). These worker nodes are connected to 
highspeed databases and aside from permanently saving (all or just a “window” of) 
messages to facilitate a possible roll-back in case data is lost, they keep a bloom filter of all 
message ID’s of the messages they save. Each message that arrives is checked against the 
filter, and if it’s reported present (subject to BF false positive rate), worker nodes discard 
them. Deduplicated message streams proceed to queue in possibly Kafka output topics5 
where they can now be forwarded by a load balancing node to several brokers preceding the 
analysis tier. (figure 6.4) 

 
5 For more details on this de-duplication architecture see https://segment.com/blog/exactly-once-delivery, last accessed 10/22/2020 
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Figure 6.4: Intermediate nodes connected to fast databases implementing de-duplication to remove the 
repeated messaging instances in a streaming data pipeline. Each node keeps a Bloom Filter of messages it 
saved and at arrival of the next message ID checks the message ID hash against its Bloom Filter. In case the 
Bloom Filter reports that the message already exists, this message with its data is discarded, otherwise the 
message is saved and propagated on to the message queuing tier.    

6.1.3 Load balancing and tracking the network traffic  
As in any distributed computing system, in streaming data applications too, load balancing 
among the brokers is of paramount importance. Unbalanced load issued to brokers can cause 
one of them to receive disproportionately more connections, requests etc. Considering that 
the service is as fast as the slowest broker this can cause high end-to-end latencies and 
make real-time application not as real-time as to be useful. Near-real-time detecting of 
overused resources in a network is a clasical network traffic / distributed queueing problem 
and it boils down to detecting outliers / anomalies instantly. Such outiers come in the shape 
of overloading packet flow patterns and are typical for denial-of-service attacks on servers. 
Modern defense strategies rely on statistical methods to detect them in real time.  

One such class of algorithmic solutions for this issue in network traffic domain relies on 
monitoring package headers in the network (most basic data tuples facilitting this taks could 
be FL:=[source IP, source port, destination IP, destination port, protocol]). In load balancing 
problem domain, monitoring is exceuted for the stream of requests to a load balancer node 
in charge of the network of brokers operating in the message queuing tier of our data 
pipeline. This is done to potentially identify small number of flows that constitute most of the 
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network traffic, the so called heavy-hitters. In practice, we want to detect a number of them 
whose rate (nr of packets / requests (bytes) in a unit of time) is above some threshold.  

We already had a chance to see in chapter 5 a Hyper-log-log based solution for a worm 
detection problem in a generic network. Another solution might be to employ a count-min 
sketch that counts the aggregate size of the flow by adding the size of each packet sent 
through that flow (flow here is a pair of source/destination determinants). Keys hashed into 
the sketch are packet headers and the counter is incremented by the size of the packet or, in 
the case of a broker in the data streaming application, the number of requests to the same 
broker from momentarily increasing number of clients (called sudden-bursts in this context). 
The traffic measuring or load balancing application would then first estimate min counts. 
These would be periodically divided by the length of the measurement period to calculate 
flow rates / load rates. This allows us to identify rates above certain threshold and apply 
control strategy for the identified culprits. The flows under the threshold are definitely not 
malicious, while out of those identified, some may be false positives due to the overestimate 
inherent to count min sketch. We could then check quickly the exact size/rate of the small 
number of flows breaching the threshold and remove false positives leaving only the true 
culprits in the set.  

Exercise 2 

Consider using count-min sketch in the application of package flow threshold breach. In 
particular, recall two error parameters of count-min sketch, and the manner in which the 
overestimate in count-min sketch is expressed as a percentage of the total quantity (total 
flow, in this example, not individual flows.) Given a total flow of N=10 billion, and a 
threshold T of 1000, how would you design and use count-min sketch for two different 
scenarios:  

a) Count-min sketch reports only the true breachers in 99% of the cases, disregarding that 
there might be more breachers that it is not reporting, and  

b) reports potential breachers such that their true flow is at least 70% of the reported flow, 
also in 99% of the cases?    

The network traffic monitoring application fits organically in the cloud service on which 
your streaming data application is running and is implemented as part of the cloud service, 
while the load balancing use-case pertains to the streaming application itself (See figure 
6.5). 
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Figure 6.5: Figure shows a cloud computing architecture servicing different client data pipelines. Network 
traffic monitoring application installed to monitor communication of data producers (or any communication 
attempts originating outside of the cloud) is implemented with the help of a Count-Min Sketch. CMS identifies 
network flows that exhibit flow rates above a certain pre-determined threshold and acts accordingly. Similar 
problem of load balancing between the brokers of the message queuing tier is solved analogously by applying 
another CMS at the load balancer node in message queuing tier. Notice that both of these CMS are operating 
on the package / message headers and that the payload of the packets / messages, namely data on clicks 
issued by the user are not yet analyzed until they reach the analysis tier. There with the business problem at 
hand, other Bloom filters, Hyper-log-logs, sampling procedures or other synopsis are calculated.    

The purpose of this short and surface-scratching excursion into realistic streaming data 
architecture was to give you some insight into omnipresence of the algorithms and data 
structures, covered so far, in the state-of-the-art streaming data applications. Aside from 
that, we hoped to help you to a glance at all accompanying problems that need to be 
resolved in such an inherently distributed computing landscape. We hope to have weaved a 
rug to tie the room together for you so far.  

 Our second goal was to relate the level of abstraction needed to develop streaming data 
algorithms (figure 6.1) and the level necessary for building a realistic streaming data 
application / pipeline (Figure 6.2). We could see that the former crops up in several places of 
the latter and streaming data glues them naturally together, each becoming visible at 
different “image resolutions” of the system shown in figure 6.2. You noticed that our meta-
example had HDFS as a part of a collection tier of some streaming data pipeline. This might 
sound to some of you as mixing two paradigms that perhaps shouldn’t be as interdependent 
as they appear here. In the next section we will talk about some trends in the data 
processing world that houses both the batch-data procesing paradigm as well as streaming 
data approach. 
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6.2 The Future is coming: in discrete batches or as a continuous 
stream ? 

If you still haven’t, chances are you soon will, come across a discussion on your favorite data 
base / data analytics / Big Data community web site that debates the question of batch vs. 
stream processing of data. In our opinion the general resolution strategy that you can take 
off the shelf and apply to your use-case to make a decision, is so far not existent. The 
answer almost always depends on knowing external maket forces that steer one’s bussines 
model. In case you are planning to switch from your current batched data processing 
software to stream processing framework, your deliberations should concentrate on if and 
how (near-)real-time knowledge can offer you an edge over the competition. In other words, 
you should know when, why and how will you use real-time analytics after you implement 
such a paradigm changing migration. 

Recent study titled “Digital Transformation: Are We Finally Past the Unmet Expectations?”  
and comminisoned by Couchbase6 showed that out of 450 surveyed technology executives 
from the U.S., UK, France and Germany, 52% believe that the pressure for digital 
transformation could lead to wasting a big chunk of their planned investment for this purpose 
on ill-planned, rushed projects. The chances of this happening when switching to the 
technology that is still in its infancy like streaming data, are even higher. Taking into 
consideration the multi-disciplinary nature of the skill-set necessary to deploy a functional, 
robust and gainfully employed streaming data architecture, this endevor sounds even riskier.  

Another sobering finding from the study reveals that 35 % of the participants believe, 
that the main engine in enterprise digital transformation are advances made by competitors. 
This means that the arguments for or against real-time analytics depend more on dynamics 
between bussinesses and less on proactive, original ideas that should propel one’s own 
bussines forward. Reducing this to the lemonade-stand-level argument, would equate the 
situation where you, while you sell lemonade on your neigborhood corner, notice that the 
neighbor, with the same stand on the other side of the street, introduced one of those 
retractable belt barriers to help form a swirling queue, like those set-up in front of the airport 
security check. Although you know both of you see around 10 customers per afternoon, you 
get one too, in case someone decides to throw a block party and all your customers who 
can’t fit on the sidewalk, migrate to your neighbor’s finely arranged stream of customers 
harborred in the safety of the sidewalk next to its stand. 

Judging by the voices of authorities in both data-processing paradigms, the consensus is 
that the change will come gradually and the necessity for batch computation will probably 
stay around in one form or another for a long time. What we can currently observe are 
systems that integrate some streaming data solutions into their legacy batch systems. Our 
streaming application with the Bloom join step in the data collection tier, that then proceeds 
to be a data source in the data pipepline, would fit this profile. Such trends are in accord with 
the words of Doug Cutting, creator of Hadoop who expressed his skepsis for the prospect of 
streaming data completely replacing batch-data systems: “I don’t think there will be any 

 
6 “Digital Transformation: Are We Finally Past the Unmet Expectations”, https://resources.couchbase.com/cio_survey2019/2019-cio-survey-digital-

transformation 
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giant shift toward streaming. Rather, streaming now joins the suite of processing options 
that folks have at their disposal.” 

On the other hand, if we look at the way data is produced these days, we can all agree 
that each user, application, website or an enterprise sub-system generates data more or less 
as a continuous stream, while consumption of a possibly transformed stream happens 
continuously as well, by the same culprits. The question might then be, why make everything 
in the middle anything else but a stream as well.  

As you probably noticed, the answer to the question, whether the future is “coming” in 
the form of a stream or will it be showing up in batch steps is multifaceted and subject to 
many ifs and buts. What all recent studies on trends in ICT can agree on though, is that the 
biggest hurdle for wide adoption of streaming data technology will be the lag in know-how, in 
particular, developers attaining knowledge to write robust and performant applications. This 
includes ability and experience to recognize when, where and how to employ and 
parametrize algorithms and data-structures that operate in small time and small space. This, 
I would feel, speaks in favor of the professional future of anybody who decides to pick up this 
book.  

6.3 Practical constraints and concepts in data streams  
The part that follows introduces some computing and data partitioning concepts which we 
will need in order to differentiate constraints under which streaming data algorithms need to 
be designed.    

6.3.1 Time 
Designing a streaming data application is a task that takes our conception of time from a 
phylosophical passtime, to a very practical time-keeping excercise. First question that came 
to my mind and, judging by some posts on data analystics forums, I am not alone in this 
dillema, is, can real-time analytics ever exist? Any semi-respectable streaming data 
reference will tell you that data in a data stream is continuosly received (from possibly 
numerous producers) with such pace that both saving it and making more than one-pass 
over each data tuple is infeasible. In some applied domains like analysis of financial data 
streams to make trading decisions, having this unrealistic option to save and query the whole 
history is deemed useless, since decisions will depend only on the data from the most recent 
week, perhaps even from the last minute. Hence, it is reasonable that typical requirements 
for streaming data algorithms are for them to operate in one-pass in small time and in small 
space. 

Now let’s revisit our question of the existence of real-time analytics. Even if our 
algorithms are built under these requirements, computation (not to mention security, 
communication, scheduling, load balancing all part of a typical cloud based streaming data 
aplication) costs time. Strictly speaking, the only data that really is real-time comes as 
sensory stimulation from the events we are immediate witnesses of. If this sounds like hair 
splitting to you, it is hard form me to come up with a convincing argument of the contrary, 
but please, bear with me. If you are like myself, and are just irked by this subtlety, I have 
good news, we will resolve this. Let us agree that real-time and notion of (near) real-time 
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analytics is decided by the state-of-the art solution for a particular streaming data (bussines) 
problem that produces results and helps in decision making, with latency that does not leave 
the bussines lag its competitors. In other words, users / clients have a final saying in what is 
(near) real-time for them, even when they over- or underestimate their needs. 

 If we think about it, even when witnessing live events in our lives, we are all 
experiencing identical latency when it comes to our sensory and congnitive appreciation of 
the events happening in front of us. This is why we agree among us so easily about the 
concept of real-time, we are all equally “late”. Now that we settled this dilemma, of perhaps 
disputedly pressing, critical importance, we can continue with what we mean with small time 
and small space. 

6.3.2 Small time and small space 
For our considerations small space will be defined with respect to the available working 
memory depicted in figure 6.1 as limited working storage. In it we have to keep any data the 
stream-query processing engine needs to answer the ad-hoc or continuous queries in time. 
Here is where all the different data synopses: bloom filters, hyper log-logs, results from 
sampling algorithms (buffer) on data stream, histograms of the stream etc. need to fit. 

Small time refers to processing time of the algorithm per each new arrival, as well as 
time needed to issue an aswer to a particular query (query processing time). Small time 
usually means sublinear, typically poly-logarithmic in N, where N is the length of the sub-
stream that we can fit in the limited working memory. 

6.3.3 Concept shifts and concept drifts 
As much as data stream is continuous in its time component, the data generating mechanism 
can and will exhibit discontinuities.  

Let’s take a real-time streaming data application at Facebook that has a task of warning 
users of immediate local threat due to armed conflict, natural disaster or similar immanent 
danger that affects larger geographical area. Assume further that the application keeps 
counts of word occurences in sub-streams of user announcements on the platform. Sub-
streams may be defined using some geographical criteria that makes warnings about such 
events relevant for people in the affected area. Any solution would need to implement the 
logic for calculating rates (count divided by the measurement time) of occurrence of some 
reserved words. An immanent local threat to human lives in the area would translate in the 
sudden increase in rates of word occurences related to such a disaster. Streaming algorithm 
should be able to detect such abrupt changes in the data stream, in literature known as 
concept shifts. 

Behavior of the data stream similar to concept shift that is exhibited over a longer period 
of time and is characterized less by abrupt and more by gradual changes is called, concept 
drift. Detecting these is a less trivial problem compared to concept shifts and it has been a 
long standing research topic. For a good review of available methods see a review article by 
Sebastiao and Gamma7. 

 
7 Raquel Sebastiao and Joao Gama, "A Study on Change Detection Methods," in 14th Portugiese Conference on Artificial Inteligence, EPIA 2009, 2009. 
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Both concepts are intimately related to the notion of windowed data stream, one of the 
mechanisms for accounting for recency in a data stream.   

6.3.4 Sliding window model 
Theoretically, a data stream is infinite. The stream processing is asummed to begin at some 
well defined time t0 and that at any time t the queries are answered while taking into 
consideration all observed tuples seen between t0 and t. This model of a data stream is reffered 
to as landmark stream. 

Hopefully by now you may feel that this is just impossible, since we meanwhile know, 
that we cannot keep the stream in working memory and cannot make multiple passes on its 
data. At least not in time that would deem the answer relevant for practice. Luckily, the 
phrase taking into consideration means that the synopses that we make of the “galloping” 
data or samples that we may take from the stream data while it flies by, persist to be a 
function of all tuples seen so far. Hence, even the older data tuples that appeared long ago 
and, due to a our limited working memory, are long ago discarded or retired in archival 
storage (figure 6.1) contribute with the same weight the new ones. 

Remember concept shifts and drifts? For some applications, like financial data streams, 
having old data (definition of old being bussines model-specific) govern current answers to 
queries is useless at best, and liability in avergae case. In combination with concept shifts 
and drifts, queries in landmark streams are prone to inertia and can be too slow in reacting 
to changes in concept. For this purpose different time-decay mechanisms have been 
introduced that relate age of the data tuple and the weight with which it influences the 
answers to queries. 

Most prominent of them is sliding window model that considers only a certain number (a 
window) of most recently arrived data tuples. Data tuples outside of the window are 
automatically removed from the analysis or given the weight zero. Beware that they can still 
theoretically be in the limited working memory, if the sliding window is designed smaller than 
what we can fit in the space available to us for one-pass computing. 
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Figure 6.6: Figure shows last three sliding movements by the count-based window. Notice that window length 
is not necessarily all that we can fit into our working storage, but that is definitely the maximum in history that 
we can cover. Hence in applications where we want “as much history as possible” to influence our data stream 
analysis one would extend the length of the window to “everything we can fit”. Keep in mind that aside from a 
sub-stream that we need to operate in one-pass mode we need to preserve space for our synopses and 
computation needed to build and update them. This is indicated by the buffer space show.    

Sliding movement of the window can be either time-based or count-based. In time-based 
windows any data tuples that arrived in the last W time units are in the window, while for 
count-based windows sliding movement is governed by maintaining a constant number of W 
items in the window (it will be clear what we mean by W for each future mention). Figures 
6.6 and 6.7 show both of the models on a generic data stream example for 3 most recent 
sliding window movements. 

Our list of constraints related to data streams is by all means not exhaustive, but with the 
ones explained above, we can fare well through next couple of chapters without having to 
leave loose ends for any of the algorithms we will learn.  
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Figure 6.7: Here we can see the time-based sliding window of length W=2000 ms and its three last sliding 
(meaningful w.r.t. to the arrival times of the data tuples) movements. We started the data stream at time 0 
ms and at time 1 ms the first data tuple arrived. Then two more arrived at 500ms and 1000 ms. We are 
currently observing the stream after 5500ms. The three last movements of the window are indicated, that 
changed the content of the window: from 1400 to 1401 ms (data tuple arrived at 3400 ms enters the 
window), from 2700 ms to 2701 (notice that this movement resulted in 4 data tuples in the window) and from 
2800 ms to 2801 ms (data tuple at 2800 ms is discarded). 

6.4 Summary 
• Streaming data pipeline is a natural environment for showcasing the algorithms and 

data structures we learned so far and those we have yet to put under our belt.  
• The combination of distributed computing and imperative of real-time delivery of 

results in streaming data aplications create numerous opportunities for shortening the 
end-to-end latencies by smart use of hashing, bloom filters, count-min sketches and 
hyper log-logs.     

• Tasks like joining large tables saved across a heterogeneous storage systems, de-
duplication in the stream, monitoring network traffic and load balance are all real 
examples of such opportunities.  

• We need to be able to recognize and know how to use these chances where thinking 
about payload and overhead of a packet  is important in such process of tuning of 
your data-pipeline 

• Future of data processing architecture is an elegant dance between two paradigms: 
batch-processing and data streams. The transition from former to latter might 
happen, though it currently looks more as if hybrid systems might be first to take the 
stage for some time. 

• Real-time analytics is possible if stakeholders can agree on level of tolerance for 
latency in such systems. Data generating mechanism is prone to periodic or incidental 
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changes and our streaming data algorithms should be able to accommodate and 
detect those in time. There are data stream models like count-based or time-based 
sliding windows  to allow for recency adustments to detect such phenomena known as 
concept shifts and concept drifts.  
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